drm/i915: Fix dynamic allocation of physical handles
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54 static int intel_framebuffer_init(struct drm_device *dev,
55 struct intel_framebuffer *ifb,
56 struct drm_mode_fb_cmd2 *mode_cmd,
57 struct drm_i915_gem_object *obj);
58
59 typedef struct {
60 int min, max;
61 } intel_range_t;
62
63 typedef struct {
64 int dot_limit;
65 int p2_slow, p2_fast;
66 } intel_p2_t;
67
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70 intel_range_t dot, vco, n, m, m1, m2, p, p1;
71 intel_p2_t p2;
72 };
73
74 int
75 intel_pch_rawclk(struct drm_device *dev)
76 {
77 struct drm_i915_private *dev_priv = dev->dev_private;
78
79 WARN_ON(!HAS_PCH_SPLIT(dev));
80
81 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
82 }
83
84 static inline u32 /* units of 100MHz */
85 intel_fdi_link_freq(struct drm_device *dev)
86 {
87 if (IS_GEN5(dev)) {
88 struct drm_i915_private *dev_priv = dev->dev_private;
89 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
90 } else
91 return 27;
92 }
93
94 static const intel_limit_t intel_limits_i8xx_dac = {
95 .dot = { .min = 25000, .max = 350000 },
96 .vco = { .min = 908000, .max = 1512000 },
97 .n = { .min = 2, .max = 16 },
98 .m = { .min = 96, .max = 140 },
99 .m1 = { .min = 18, .max = 26 },
100 .m2 = { .min = 6, .max = 16 },
101 .p = { .min = 4, .max = 128 },
102 .p1 = { .min = 2, .max = 33 },
103 .p2 = { .dot_limit = 165000,
104 .p2_slow = 4, .p2_fast = 2 },
105 };
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 908000, .max = 1512000 },
110 .n = { .min = 2, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 4 },
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121 .dot = { .min = 25000, .max = 350000 },
122 .vco = { .min = 908000, .max = 1512000 },
123 .n = { .min = 2, .max = 16 },
124 .m = { .min = 96, .max = 140 },
125 .m1 = { .min = 18, .max = 26 },
126 .m2 = { .min = 6, .max = 16 },
127 .p = { .min = 4, .max = 128 },
128 .p1 = { .min = 1, .max = 6 },
129 .p2 = { .dot_limit = 165000,
130 .p2_slow = 14, .p2_fast = 7 },
131 };
132
133 static const intel_limit_t intel_limits_i9xx_sdvo = {
134 .dot = { .min = 20000, .max = 400000 },
135 .vco = { .min = 1400000, .max = 2800000 },
136 .n = { .min = 1, .max = 6 },
137 .m = { .min = 70, .max = 120 },
138 .m1 = { .min = 8, .max = 18 },
139 .m2 = { .min = 3, .max = 7 },
140 .p = { .min = 5, .max = 80 },
141 .p1 = { .min = 1, .max = 8 },
142 .p2 = { .dot_limit = 200000,
143 .p2_slow = 10, .p2_fast = 5 },
144 };
145
146 static const intel_limit_t intel_limits_i9xx_lvds = {
147 .dot = { .min = 20000, .max = 400000 },
148 .vco = { .min = 1400000, .max = 2800000 },
149 .n = { .min = 1, .max = 6 },
150 .m = { .min = 70, .max = 120 },
151 .m1 = { .min = 8, .max = 18 },
152 .m2 = { .min = 3, .max = 7 },
153 .p = { .min = 7, .max = 98 },
154 .p1 = { .min = 1, .max = 8 },
155 .p2 = { .dot_limit = 112000,
156 .p2_slow = 14, .p2_fast = 7 },
157 };
158
159
160 static const intel_limit_t intel_limits_g4x_sdvo = {
161 .dot = { .min = 25000, .max = 270000 },
162 .vco = { .min = 1750000, .max = 3500000},
163 .n = { .min = 1, .max = 4 },
164 .m = { .min = 104, .max = 138 },
165 .m1 = { .min = 17, .max = 23 },
166 .m2 = { .min = 5, .max = 11 },
167 .p = { .min = 10, .max = 30 },
168 .p1 = { .min = 1, .max = 3},
169 .p2 = { .dot_limit = 270000,
170 .p2_slow = 10,
171 .p2_fast = 10
172 },
173 };
174
175 static const intel_limit_t intel_limits_g4x_hdmi = {
176 .dot = { .min = 22000, .max = 400000 },
177 .vco = { .min = 1750000, .max = 3500000},
178 .n = { .min = 1, .max = 4 },
179 .m = { .min = 104, .max = 138 },
180 .m1 = { .min = 16, .max = 23 },
181 .m2 = { .min = 5, .max = 11 },
182 .p = { .min = 5, .max = 80 },
183 .p1 = { .min = 1, .max = 8},
184 .p2 = { .dot_limit = 165000,
185 .p2_slow = 10, .p2_fast = 5 },
186 };
187
188 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
189 .dot = { .min = 20000, .max = 115000 },
190 .vco = { .min = 1750000, .max = 3500000 },
191 .n = { .min = 1, .max = 3 },
192 .m = { .min = 104, .max = 138 },
193 .m1 = { .min = 17, .max = 23 },
194 .m2 = { .min = 5, .max = 11 },
195 .p = { .min = 28, .max = 112 },
196 .p1 = { .min = 2, .max = 8 },
197 .p2 = { .dot_limit = 0,
198 .p2_slow = 14, .p2_fast = 14
199 },
200 };
201
202 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
203 .dot = { .min = 80000, .max = 224000 },
204 .vco = { .min = 1750000, .max = 3500000 },
205 .n = { .min = 1, .max = 3 },
206 .m = { .min = 104, .max = 138 },
207 .m1 = { .min = 17, .max = 23 },
208 .m2 = { .min = 5, .max = 11 },
209 .p = { .min = 14, .max = 42 },
210 .p1 = { .min = 2, .max = 6 },
211 .p2 = { .dot_limit = 0,
212 .p2_slow = 7, .p2_fast = 7
213 },
214 };
215
216 static const intel_limit_t intel_limits_pineview_sdvo = {
217 .dot = { .min = 20000, .max = 400000},
218 .vco = { .min = 1700000, .max = 3500000 },
219 /* Pineview's Ncounter is a ring counter */
220 .n = { .min = 3, .max = 6 },
221 .m = { .min = 2, .max = 256 },
222 /* Pineview only has one combined m divider, which we treat as m2. */
223 .m1 = { .min = 0, .max = 0 },
224 .m2 = { .min = 0, .max = 254 },
225 .p = { .min = 5, .max = 80 },
226 .p1 = { .min = 1, .max = 8 },
227 .p2 = { .dot_limit = 200000,
228 .p2_slow = 10, .p2_fast = 5 },
229 };
230
231 static const intel_limit_t intel_limits_pineview_lvds = {
232 .dot = { .min = 20000, .max = 400000 },
233 .vco = { .min = 1700000, .max = 3500000 },
234 .n = { .min = 3, .max = 6 },
235 .m = { .min = 2, .max = 256 },
236 .m1 = { .min = 0, .max = 0 },
237 .m2 = { .min = 0, .max = 254 },
238 .p = { .min = 7, .max = 112 },
239 .p1 = { .min = 1, .max = 8 },
240 .p2 = { .dot_limit = 112000,
241 .p2_slow = 14, .p2_fast = 14 },
242 };
243
244 /* Ironlake / Sandybridge
245 *
246 * We calculate clock using (register_value + 2) for N/M1/M2, so here
247 * the range value for them is (actual_value - 2).
248 */
249 static const intel_limit_t intel_limits_ironlake_dac = {
250 .dot = { .min = 25000, .max = 350000 },
251 .vco = { .min = 1760000, .max = 3510000 },
252 .n = { .min = 1, .max = 5 },
253 .m = { .min = 79, .max = 127 },
254 .m1 = { .min = 12, .max = 22 },
255 .m2 = { .min = 5, .max = 9 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 225000,
259 .p2_slow = 10, .p2_fast = 5 },
260 };
261
262 static const intel_limit_t intel_limits_ironlake_single_lvds = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 1760000, .max = 3510000 },
265 .n = { .min = 1, .max = 3 },
266 .m = { .min = 79, .max = 118 },
267 .m1 = { .min = 12, .max = 22 },
268 .m2 = { .min = 5, .max = 9 },
269 .p = { .min = 28, .max = 112 },
270 .p1 = { .min = 2, .max = 8 },
271 .p2 = { .dot_limit = 225000,
272 .p2_slow = 14, .p2_fast = 14 },
273 };
274
275 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
276 .dot = { .min = 25000, .max = 350000 },
277 .vco = { .min = 1760000, .max = 3510000 },
278 .n = { .min = 1, .max = 3 },
279 .m = { .min = 79, .max = 127 },
280 .m1 = { .min = 12, .max = 22 },
281 .m2 = { .min = 5, .max = 9 },
282 .p = { .min = 14, .max = 56 },
283 .p1 = { .min = 2, .max = 8 },
284 .p2 = { .dot_limit = 225000,
285 .p2_slow = 7, .p2_fast = 7 },
286 };
287
288 /* LVDS 100mhz refclk limits. */
289 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 1760000, .max = 3510000 },
292 .n = { .min = 1, .max = 2 },
293 .m = { .min = 79, .max = 126 },
294 .m1 = { .min = 12, .max = 22 },
295 .m2 = { .min = 5, .max = 9 },
296 .p = { .min = 28, .max = 112 },
297 .p1 = { .min = 2, .max = 8 },
298 .p2 = { .dot_limit = 225000,
299 .p2_slow = 14, .p2_fast = 14 },
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 126 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 42 },
310 .p1 = { .min = 2, .max = 6 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
313 };
314
315 static const intel_limit_t intel_limits_vlv = {
316 /*
317 * These are the data rate limits (measured in fast clocks)
318 * since those are the strictest limits we have. The fast
319 * clock and actual rate limits are more relaxed, so checking
320 * them would make no difference.
321 */
322 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
323 .vco = { .min = 4000000, .max = 6000000 },
324 .n = { .min = 1, .max = 7 },
325 .m1 = { .min = 2, .max = 3 },
326 .m2 = { .min = 11, .max = 156 },
327 .p1 = { .min = 2, .max = 3 },
328 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
329 };
330
331 static void vlv_clock(int refclk, intel_clock_t *clock)
332 {
333 clock->m = clock->m1 * clock->m2;
334 clock->p = clock->p1 * clock->p2;
335 if (WARN_ON(clock->n == 0 || clock->p == 0))
336 return;
337 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
338 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
339 }
340
341 /**
342 * Returns whether any output on the specified pipe is of the specified type
343 */
344 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
345 {
346 struct drm_device *dev = crtc->dev;
347 struct intel_encoder *encoder;
348
349 for_each_encoder_on_crtc(dev, crtc, encoder)
350 if (encoder->type == type)
351 return true;
352
353 return false;
354 }
355
356 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
357 int refclk)
358 {
359 struct drm_device *dev = crtc->dev;
360 const intel_limit_t *limit;
361
362 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
363 if (intel_is_dual_link_lvds(dev)) {
364 if (refclk == 100000)
365 limit = &intel_limits_ironlake_dual_lvds_100m;
366 else
367 limit = &intel_limits_ironlake_dual_lvds;
368 } else {
369 if (refclk == 100000)
370 limit = &intel_limits_ironlake_single_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_single_lvds;
373 }
374 } else
375 limit = &intel_limits_ironlake_dac;
376
377 return limit;
378 }
379
380 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
381 {
382 struct drm_device *dev = crtc->dev;
383 const intel_limit_t *limit;
384
385 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
386 if (intel_is_dual_link_lvds(dev))
387 limit = &intel_limits_g4x_dual_channel_lvds;
388 else
389 limit = &intel_limits_g4x_single_channel_lvds;
390 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
391 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
392 limit = &intel_limits_g4x_hdmi;
393 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
394 limit = &intel_limits_g4x_sdvo;
395 } else /* The option is for other outputs */
396 limit = &intel_limits_i9xx_sdvo;
397
398 return limit;
399 }
400
401 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
402 {
403 struct drm_device *dev = crtc->dev;
404 const intel_limit_t *limit;
405
406 if (HAS_PCH_SPLIT(dev))
407 limit = intel_ironlake_limit(crtc, refclk);
408 else if (IS_G4X(dev)) {
409 limit = intel_g4x_limit(crtc);
410 } else if (IS_PINEVIEW(dev)) {
411 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412 limit = &intel_limits_pineview_lvds;
413 else
414 limit = &intel_limits_pineview_sdvo;
415 } else if (IS_VALLEYVIEW(dev)) {
416 limit = &intel_limits_vlv;
417 } else if (!IS_GEN2(dev)) {
418 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419 limit = &intel_limits_i9xx_lvds;
420 else
421 limit = &intel_limits_i9xx_sdvo;
422 } else {
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424 limit = &intel_limits_i8xx_lvds;
425 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426 limit = &intel_limits_i8xx_dvo;
427 else
428 limit = &intel_limits_i8xx_dac;
429 }
430 return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436 clock->m = clock->m2 + 2;
437 clock->p = clock->p1 * clock->p2;
438 if (WARN_ON(clock->n == 0 || clock->p == 0))
439 return;
440 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
441 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
442 }
443
444 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
445 {
446 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
447 }
448
449 static void i9xx_clock(int refclk, intel_clock_t *clock)
450 {
451 clock->m = i9xx_dpll_compute_m(clock);
452 clock->p = clock->p1 * clock->p2;
453 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
454 return;
455 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
456 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
457 }
458
459 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
460 /**
461 * Returns whether the given set of divisors are valid for a given refclk with
462 * the given connectors.
463 */
464
465 static bool intel_PLL_is_valid(struct drm_device *dev,
466 const intel_limit_t *limit,
467 const intel_clock_t *clock)
468 {
469 if (clock->n < limit->n.min || limit->n.max < clock->n)
470 INTELPllInvalid("n out of range\n");
471 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
472 INTELPllInvalid("p1 out of range\n");
473 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
474 INTELPllInvalid("m2 out of range\n");
475 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
476 INTELPllInvalid("m1 out of range\n");
477
478 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
479 if (clock->m1 <= clock->m2)
480 INTELPllInvalid("m1 <= m2\n");
481
482 if (!IS_VALLEYVIEW(dev)) {
483 if (clock->p < limit->p.min || limit->p.max < clock->p)
484 INTELPllInvalid("p out of range\n");
485 if (clock->m < limit->m.min || limit->m.max < clock->m)
486 INTELPllInvalid("m out of range\n");
487 }
488
489 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
490 INTELPllInvalid("vco out of range\n");
491 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
492 * connector, etc., rather than just a single range.
493 */
494 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
495 INTELPllInvalid("dot out of range\n");
496
497 return true;
498 }
499
500 static bool
501 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
502 int target, int refclk, intel_clock_t *match_clock,
503 intel_clock_t *best_clock)
504 {
505 struct drm_device *dev = crtc->dev;
506 intel_clock_t clock;
507 int err = target;
508
509 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
510 /*
511 * For LVDS just rely on its current settings for dual-channel.
512 * We haven't figured out how to reliably set up different
513 * single/dual channel state, if we even can.
514 */
515 if (intel_is_dual_link_lvds(dev))
516 clock.p2 = limit->p2.p2_fast;
517 else
518 clock.p2 = limit->p2.p2_slow;
519 } else {
520 if (target < limit->p2.dot_limit)
521 clock.p2 = limit->p2.p2_slow;
522 else
523 clock.p2 = limit->p2.p2_fast;
524 }
525
526 memset(best_clock, 0, sizeof(*best_clock));
527
528 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
529 clock.m1++) {
530 for (clock.m2 = limit->m2.min;
531 clock.m2 <= limit->m2.max; clock.m2++) {
532 if (clock.m2 >= clock.m1)
533 break;
534 for (clock.n = limit->n.min;
535 clock.n <= limit->n.max; clock.n++) {
536 for (clock.p1 = limit->p1.min;
537 clock.p1 <= limit->p1.max; clock.p1++) {
538 int this_err;
539
540 i9xx_clock(refclk, &clock);
541 if (!intel_PLL_is_valid(dev, limit,
542 &clock))
543 continue;
544 if (match_clock &&
545 clock.p != match_clock->p)
546 continue;
547
548 this_err = abs(clock.dot - target);
549 if (this_err < err) {
550 *best_clock = clock;
551 err = this_err;
552 }
553 }
554 }
555 }
556 }
557
558 return (err != target);
559 }
560
561 static bool
562 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
563 int target, int refclk, intel_clock_t *match_clock,
564 intel_clock_t *best_clock)
565 {
566 struct drm_device *dev = crtc->dev;
567 intel_clock_t clock;
568 int err = target;
569
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
571 /*
572 * For LVDS just rely on its current settings for dual-channel.
573 * We haven't figured out how to reliably set up different
574 * single/dual channel state, if we even can.
575 */
576 if (intel_is_dual_link_lvds(dev))
577 clock.p2 = limit->p2.p2_fast;
578 else
579 clock.p2 = limit->p2.p2_slow;
580 } else {
581 if (target < limit->p2.dot_limit)
582 clock.p2 = limit->p2.p2_slow;
583 else
584 clock.p2 = limit->p2.p2_fast;
585 }
586
587 memset(best_clock, 0, sizeof(*best_clock));
588
589 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
590 clock.m1++) {
591 for (clock.m2 = limit->m2.min;
592 clock.m2 <= limit->m2.max; clock.m2++) {
593 for (clock.n = limit->n.min;
594 clock.n <= limit->n.max; clock.n++) {
595 for (clock.p1 = limit->p1.min;
596 clock.p1 <= limit->p1.max; clock.p1++) {
597 int this_err;
598
599 pineview_clock(refclk, &clock);
600 if (!intel_PLL_is_valid(dev, limit,
601 &clock))
602 continue;
603 if (match_clock &&
604 clock.p != match_clock->p)
605 continue;
606
607 this_err = abs(clock.dot - target);
608 if (this_err < err) {
609 *best_clock = clock;
610 err = this_err;
611 }
612 }
613 }
614 }
615 }
616
617 return (err != target);
618 }
619
620 static bool
621 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
622 int target, int refclk, intel_clock_t *match_clock,
623 intel_clock_t *best_clock)
624 {
625 struct drm_device *dev = crtc->dev;
626 intel_clock_t clock;
627 int max_n;
628 bool found;
629 /* approximately equals target * 0.00585 */
630 int err_most = (target >> 8) + (target >> 9);
631 found = false;
632
633 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
634 if (intel_is_dual_link_lvds(dev))
635 clock.p2 = limit->p2.p2_fast;
636 else
637 clock.p2 = limit->p2.p2_slow;
638 } else {
639 if (target < limit->p2.dot_limit)
640 clock.p2 = limit->p2.p2_slow;
641 else
642 clock.p2 = limit->p2.p2_fast;
643 }
644
645 memset(best_clock, 0, sizeof(*best_clock));
646 max_n = limit->n.max;
647 /* based on hardware requirement, prefer smaller n to precision */
648 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
649 /* based on hardware requirement, prefere larger m1,m2 */
650 for (clock.m1 = limit->m1.max;
651 clock.m1 >= limit->m1.min; clock.m1--) {
652 for (clock.m2 = limit->m2.max;
653 clock.m2 >= limit->m2.min; clock.m2--) {
654 for (clock.p1 = limit->p1.max;
655 clock.p1 >= limit->p1.min; clock.p1--) {
656 int this_err;
657
658 i9xx_clock(refclk, &clock);
659 if (!intel_PLL_is_valid(dev, limit,
660 &clock))
661 continue;
662
663 this_err = abs(clock.dot - target);
664 if (this_err < err_most) {
665 *best_clock = clock;
666 err_most = this_err;
667 max_n = clock.n;
668 found = true;
669 }
670 }
671 }
672 }
673 }
674 return found;
675 }
676
677 static bool
678 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *match_clock,
680 intel_clock_t *best_clock)
681 {
682 struct drm_device *dev = crtc->dev;
683 intel_clock_t clock;
684 unsigned int bestppm = 1000000;
685 /* min update 19.2 MHz */
686 int max_n = min(limit->n.max, refclk / 19200);
687 bool found = false;
688
689 target *= 5; /* fast clock */
690
691 memset(best_clock, 0, sizeof(*best_clock));
692
693 /* based on hardware requirement, prefer smaller n to precision */
694 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
695 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
696 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
697 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
698 clock.p = clock.p1 * clock.p2;
699 /* based on hardware requirement, prefer bigger m1,m2 values */
700 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
701 unsigned int ppm, diff;
702
703 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
704 refclk * clock.m1);
705
706 vlv_clock(refclk, &clock);
707
708 if (!intel_PLL_is_valid(dev, limit,
709 &clock))
710 continue;
711
712 diff = abs(clock.dot - target);
713 ppm = div_u64(1000000ULL * diff, target);
714
715 if (ppm < 100 && clock.p > best_clock->p) {
716 bestppm = 0;
717 *best_clock = clock;
718 found = true;
719 }
720
721 if (bestppm >= 10 && ppm < bestppm - 10) {
722 bestppm = ppm;
723 *best_clock = clock;
724 found = true;
725 }
726 }
727 }
728 }
729 }
730
731 return found;
732 }
733
734 bool intel_crtc_active(struct drm_crtc *crtc)
735 {
736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738 /* Be paranoid as we can arrive here with only partial
739 * state retrieved from the hardware during setup.
740 *
741 * We can ditch the adjusted_mode.crtc_clock check as soon
742 * as Haswell has gained clock readout/fastboot support.
743 *
744 * We can ditch the crtc->primary->fb check as soon as we can
745 * properly reconstruct framebuffers.
746 */
747 return intel_crtc->active && crtc->primary->fb &&
748 intel_crtc->config.adjusted_mode.crtc_clock;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752 enum pipe pipe)
753 {
754 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757 return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762 struct drm_i915_private *dev_priv = dev->dev_private;
763 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
764
765 frame = I915_READ(frame_reg);
766
767 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768 DRM_DEBUG_KMS("vblank wait timed out\n");
769 }
770
771 /**
772 * intel_wait_for_vblank - wait for vblank on a given pipe
773 * @dev: drm device
774 * @pipe: pipe to wait for
775 *
776 * Wait for vblank to occur on a given pipe. Needed for various bits of
777 * mode setting code.
778 */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781 struct drm_i915_private *dev_priv = dev->dev_private;
782 int pipestat_reg = PIPESTAT(pipe);
783
784 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785 g4x_wait_for_vblank(dev, pipe);
786 return;
787 }
788
789 /* Clear existing vblank status. Note this will clear any other
790 * sticky status fields as well.
791 *
792 * This races with i915_driver_irq_handler() with the result
793 * that either function could miss a vblank event. Here it is not
794 * fatal, as we will either wait upon the next vblank interrupt or
795 * timeout. Generally speaking intel_wait_for_vblank() is only
796 * called during modeset at which time the GPU should be idle and
797 * should *not* be performing page flips and thus not waiting on
798 * vblanks...
799 * Currently, the result of us stealing a vblank from the irq
800 * handler is that a single frame will be skipped during swapbuffers.
801 */
802 I915_WRITE(pipestat_reg,
803 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805 /* Wait for vblank interrupt bit to set */
806 if (wait_for(I915_READ(pipestat_reg) &
807 PIPE_VBLANK_INTERRUPT_STATUS,
808 50))
809 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
813 {
814 struct drm_i915_private *dev_priv = dev->dev_private;
815 u32 reg = PIPEDSL(pipe);
816 u32 line1, line2;
817 u32 line_mask;
818
819 if (IS_GEN2(dev))
820 line_mask = DSL_LINEMASK_GEN2;
821 else
822 line_mask = DSL_LINEMASK_GEN3;
823
824 line1 = I915_READ(reg) & line_mask;
825 mdelay(5);
826 line2 = I915_READ(reg) & line_mask;
827
828 return line1 == line2;
829 }
830
831 /*
832 * intel_wait_for_pipe_off - wait for pipe to turn off
833 * @dev: drm device
834 * @pipe: pipe to wait for
835 *
836 * After disabling a pipe, we can't wait for vblank in the usual way,
837 * spinning on the vblank interrupt status bit, since we won't actually
838 * see an interrupt when the pipe is disabled.
839 *
840 * On Gen4 and above:
841 * wait for the pipe register state bit to turn off
842 *
843 * Otherwise:
844 * wait for the display line value to settle (it usually
845 * ends up stopping at the start of the next frame).
846 *
847 */
848 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
849 {
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
852 pipe);
853
854 if (INTEL_INFO(dev)->gen >= 4) {
855 int reg = PIPECONF(cpu_transcoder);
856
857 /* Wait for the Pipe State to go off */
858 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
859 100))
860 WARN(1, "pipe_off wait timed out\n");
861 } else {
862 /* Wait for the display line to settle */
863 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
864 WARN(1, "pipe_off wait timed out\n");
865 }
866 }
867
868 /*
869 * ibx_digital_port_connected - is the specified port connected?
870 * @dev_priv: i915 private structure
871 * @port: the port to test
872 *
873 * Returns true if @port is connected, false otherwise.
874 */
875 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
876 struct intel_digital_port *port)
877 {
878 u32 bit;
879
880 if (HAS_PCH_IBX(dev_priv->dev)) {
881 switch(port->port) {
882 case PORT_B:
883 bit = SDE_PORTB_HOTPLUG;
884 break;
885 case PORT_C:
886 bit = SDE_PORTC_HOTPLUG;
887 break;
888 case PORT_D:
889 bit = SDE_PORTD_HOTPLUG;
890 break;
891 default:
892 return true;
893 }
894 } else {
895 switch(port->port) {
896 case PORT_B:
897 bit = SDE_PORTB_HOTPLUG_CPT;
898 break;
899 case PORT_C:
900 bit = SDE_PORTC_HOTPLUG_CPT;
901 break;
902 case PORT_D:
903 bit = SDE_PORTD_HOTPLUG_CPT;
904 break;
905 default:
906 return true;
907 }
908 }
909
910 return I915_READ(SDEISR) & bit;
911 }
912
913 static const char *state_string(bool enabled)
914 {
915 return enabled ? "on" : "off";
916 }
917
918 /* Only for pre-ILK configs */
919 void assert_pll(struct drm_i915_private *dev_priv,
920 enum pipe pipe, bool state)
921 {
922 int reg;
923 u32 val;
924 bool cur_state;
925
926 reg = DPLL(pipe);
927 val = I915_READ(reg);
928 cur_state = !!(val & DPLL_VCO_ENABLE);
929 WARN(cur_state != state,
930 "PLL state assertion failure (expected %s, current %s)\n",
931 state_string(state), state_string(cur_state));
932 }
933
934 /* XXX: the dsi pll is shared between MIPI DSI ports */
935 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
936 {
937 u32 val;
938 bool cur_state;
939
940 mutex_lock(&dev_priv->dpio_lock);
941 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
942 mutex_unlock(&dev_priv->dpio_lock);
943
944 cur_state = val & DSI_PLL_VCO_EN;
945 WARN(cur_state != state,
946 "DSI PLL state assertion failure (expected %s, current %s)\n",
947 state_string(state), state_string(cur_state));
948 }
949 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
950 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
951
952 struct intel_shared_dpll *
953 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
954 {
955 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
956
957 if (crtc->config.shared_dpll < 0)
958 return NULL;
959
960 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
961 }
962
963 /* For ILK+ */
964 void assert_shared_dpll(struct drm_i915_private *dev_priv,
965 struct intel_shared_dpll *pll,
966 bool state)
967 {
968 bool cur_state;
969 struct intel_dpll_hw_state hw_state;
970
971 if (HAS_PCH_LPT(dev_priv->dev)) {
972 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
973 return;
974 }
975
976 if (WARN (!pll,
977 "asserting DPLL %s with no DPLL\n", state_string(state)))
978 return;
979
980 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
981 WARN(cur_state != state,
982 "%s assertion failure (expected %s, current %s)\n",
983 pll->name, state_string(state), state_string(cur_state));
984 }
985
986 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
987 enum pipe pipe, bool state)
988 {
989 int reg;
990 u32 val;
991 bool cur_state;
992 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
993 pipe);
994
995 if (HAS_DDI(dev_priv->dev)) {
996 /* DDI does not have a specific FDI_TX register */
997 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
998 val = I915_READ(reg);
999 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1000 } else {
1001 reg = FDI_TX_CTL(pipe);
1002 val = I915_READ(reg);
1003 cur_state = !!(val & FDI_TX_ENABLE);
1004 }
1005 WARN(cur_state != state,
1006 "FDI TX state assertion failure (expected %s, current %s)\n",
1007 state_string(state), state_string(cur_state));
1008 }
1009 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1010 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1011
1012 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1013 enum pipe pipe, bool state)
1014 {
1015 int reg;
1016 u32 val;
1017 bool cur_state;
1018
1019 reg = FDI_RX_CTL(pipe);
1020 val = I915_READ(reg);
1021 cur_state = !!(val & FDI_RX_ENABLE);
1022 WARN(cur_state != state,
1023 "FDI RX state assertion failure (expected %s, current %s)\n",
1024 state_string(state), state_string(cur_state));
1025 }
1026 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1027 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1028
1029 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1030 enum pipe pipe)
1031 {
1032 int reg;
1033 u32 val;
1034
1035 /* ILK FDI PLL is always enabled */
1036 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1037 return;
1038
1039 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1040 if (HAS_DDI(dev_priv->dev))
1041 return;
1042
1043 reg = FDI_TX_CTL(pipe);
1044 val = I915_READ(reg);
1045 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1046 }
1047
1048 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1049 enum pipe pipe, bool state)
1050 {
1051 int reg;
1052 u32 val;
1053 bool cur_state;
1054
1055 reg = FDI_RX_CTL(pipe);
1056 val = I915_READ(reg);
1057 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1058 WARN(cur_state != state,
1059 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1060 state_string(state), state_string(cur_state));
1061 }
1062
1063 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1064 enum pipe pipe)
1065 {
1066 int pp_reg, lvds_reg;
1067 u32 val;
1068 enum pipe panel_pipe = PIPE_A;
1069 bool locked = true;
1070
1071 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1072 pp_reg = PCH_PP_CONTROL;
1073 lvds_reg = PCH_LVDS;
1074 } else {
1075 pp_reg = PP_CONTROL;
1076 lvds_reg = LVDS;
1077 }
1078
1079 val = I915_READ(pp_reg);
1080 if (!(val & PANEL_POWER_ON) ||
1081 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1082 locked = false;
1083
1084 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1085 panel_pipe = PIPE_B;
1086
1087 WARN(panel_pipe == pipe && locked,
1088 "panel assertion failure, pipe %c regs locked\n",
1089 pipe_name(pipe));
1090 }
1091
1092 static void assert_cursor(struct drm_i915_private *dev_priv,
1093 enum pipe pipe, bool state)
1094 {
1095 struct drm_device *dev = dev_priv->dev;
1096 bool cur_state;
1097
1098 if (IS_845G(dev) || IS_I865G(dev))
1099 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1100 else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1101 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1102 else
1103 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1104
1105 WARN(cur_state != state,
1106 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1107 pipe_name(pipe), state_string(state), state_string(cur_state));
1108 }
1109 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1110 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1111
1112 void assert_pipe(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114 {
1115 int reg;
1116 u32 val;
1117 bool cur_state;
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
1120
1121 /* if we need the pipe A quirk it must be always on */
1122 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1123 state = true;
1124
1125 if (!intel_display_power_enabled(dev_priv,
1126 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1127 cur_state = false;
1128 } else {
1129 reg = PIPECONF(cpu_transcoder);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & PIPECONF_ENABLE);
1132 }
1133
1134 WARN(cur_state != state,
1135 "pipe %c assertion failure (expected %s, current %s)\n",
1136 pipe_name(pipe), state_string(state), state_string(cur_state));
1137 }
1138
1139 static void assert_plane(struct drm_i915_private *dev_priv,
1140 enum plane plane, bool state)
1141 {
1142 int reg;
1143 u32 val;
1144 bool cur_state;
1145
1146 reg = DSPCNTR(plane);
1147 val = I915_READ(reg);
1148 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1149 WARN(cur_state != state,
1150 "plane %c assertion failure (expected %s, current %s)\n",
1151 plane_name(plane), state_string(state), state_string(cur_state));
1152 }
1153
1154 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1155 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1156
1157 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1158 enum pipe pipe)
1159 {
1160 struct drm_device *dev = dev_priv->dev;
1161 int reg, i;
1162 u32 val;
1163 int cur_pipe;
1164
1165 /* Primary planes are fixed to pipes on gen4+ */
1166 if (INTEL_INFO(dev)->gen >= 4) {
1167 reg = DSPCNTR(pipe);
1168 val = I915_READ(reg);
1169 WARN(val & DISPLAY_PLANE_ENABLE,
1170 "plane %c assertion failure, should be disabled but not\n",
1171 plane_name(pipe));
1172 return;
1173 }
1174
1175 /* Need to check both planes against the pipe */
1176 for_each_pipe(i) {
1177 reg = DSPCNTR(i);
1178 val = I915_READ(reg);
1179 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1180 DISPPLANE_SEL_PIPE_SHIFT;
1181 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1182 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1183 plane_name(i), pipe_name(pipe));
1184 }
1185 }
1186
1187 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1188 enum pipe pipe)
1189 {
1190 struct drm_device *dev = dev_priv->dev;
1191 int reg, sprite;
1192 u32 val;
1193
1194 if (IS_VALLEYVIEW(dev)) {
1195 for_each_sprite(pipe, sprite) {
1196 reg = SPCNTR(pipe, sprite);
1197 val = I915_READ(reg);
1198 WARN(val & SP_ENABLE,
1199 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1200 sprite_name(pipe, sprite), pipe_name(pipe));
1201 }
1202 } else if (INTEL_INFO(dev)->gen >= 7) {
1203 reg = SPRCTL(pipe);
1204 val = I915_READ(reg);
1205 WARN(val & SPRITE_ENABLE,
1206 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1207 plane_name(pipe), pipe_name(pipe));
1208 } else if (INTEL_INFO(dev)->gen >= 5) {
1209 reg = DVSCNTR(pipe);
1210 val = I915_READ(reg);
1211 WARN(val & DVS_ENABLE,
1212 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1213 plane_name(pipe), pipe_name(pipe));
1214 }
1215 }
1216
1217 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1218 {
1219 u32 val;
1220 bool enabled;
1221
1222 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1223
1224 val = I915_READ(PCH_DREF_CONTROL);
1225 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226 DREF_SUPERSPREAD_SOURCE_MASK));
1227 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231 enum pipe pipe)
1232 {
1233 int reg;
1234 u32 val;
1235 bool enabled;
1236
1237 reg = PCH_TRANSCONF(pipe);
1238 val = I915_READ(reg);
1239 enabled = !!(val & TRANS_ENABLE);
1240 WARN(enabled,
1241 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242 pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246 enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248 if ((val & DP_PORT_EN) == 0)
1249 return false;
1250
1251 if (HAS_PCH_CPT(dev_priv->dev)) {
1252 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255 return false;
1256 } else {
1257 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258 return false;
1259 }
1260 return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264 enum pipe pipe, u32 val)
1265 {
1266 if ((val & SDVO_ENABLE) == 0)
1267 return false;
1268
1269 if (HAS_PCH_CPT(dev_priv->dev)) {
1270 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271 return false;
1272 } else {
1273 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274 return false;
1275 }
1276 return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280 enum pipe pipe, u32 val)
1281 {
1282 if ((val & LVDS_PORT_EN) == 0)
1283 return false;
1284
1285 if (HAS_PCH_CPT(dev_priv->dev)) {
1286 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287 return false;
1288 } else {
1289 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290 return false;
1291 }
1292 return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe, u32 val)
1297 {
1298 if ((val & ADPA_DAC_ENABLE) == 0)
1299 return false;
1300 if (HAS_PCH_CPT(dev_priv->dev)) {
1301 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302 return false;
1303 } else {
1304 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305 return false;
1306 }
1307 return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe, int reg, u32 port_sel)
1312 {
1313 u32 val = I915_READ(reg);
1314 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316 reg, pipe_name(pipe));
1317
1318 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319 && (val & DP_PIPEB_SELECT),
1320 "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324 enum pipe pipe, int reg)
1325 {
1326 u32 val = I915_READ(reg);
1327 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329 reg, pipe_name(pipe));
1330
1331 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332 && (val & SDVO_PIPE_B_SELECT),
1333 "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe)
1338 {
1339 int reg;
1340 u32 val;
1341
1342 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346 reg = PCH_ADPA;
1347 val = I915_READ(reg);
1348 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349 "PCH VGA enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 reg = PCH_LVDS;
1353 val = I915_READ(reg);
1354 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356 pipe_name(pipe));
1357
1358 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367 if (!IS_VALLEYVIEW(dev))
1368 return;
1369
1370 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1371 }
1372
1373 static void intel_reset_dpio(struct drm_device *dev)
1374 {
1375 struct drm_i915_private *dev_priv = dev->dev_private;
1376
1377 if (!IS_VALLEYVIEW(dev))
1378 return;
1379
1380 /*
1381 * Enable the CRI clock source so we can get at the display and the
1382 * reference clock for VGA hotplug / manual detection.
1383 */
1384 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1385 DPLL_REFA_CLK_ENABLE_VLV |
1386 DPLL_INTEGRATED_CRI_CLK_VLV);
1387
1388 /*
1389 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1390 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1391 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1392 * b. The other bits such as sfr settings / modesel may all be set
1393 * to 0.
1394 *
1395 * This should only be done on init and resume from S3 with both
1396 * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1397 */
1398 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1399 }
1400
1401 static void vlv_enable_pll(struct intel_crtc *crtc)
1402 {
1403 struct drm_device *dev = crtc->base.dev;
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405 int reg = DPLL(crtc->pipe);
1406 u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408 assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410 /* No really, not for ILK+ */
1411 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1412
1413 /* PLL is protected by panel, make sure we can write it */
1414 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1415 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417 I915_WRITE(reg, dpll);
1418 POSTING_READ(reg);
1419 udelay(150);
1420
1421 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1422 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1423
1424 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1425 POSTING_READ(DPLL_MD(crtc->pipe));
1426
1427 /* We do this three times for luck */
1428 I915_WRITE(reg, dpll);
1429 POSTING_READ(reg);
1430 udelay(150); /* wait for warmup */
1431 I915_WRITE(reg, dpll);
1432 POSTING_READ(reg);
1433 udelay(150); /* wait for warmup */
1434 I915_WRITE(reg, dpll);
1435 POSTING_READ(reg);
1436 udelay(150); /* wait for warmup */
1437 }
1438
1439 static void i9xx_enable_pll(struct intel_crtc *crtc)
1440 {
1441 struct drm_device *dev = crtc->base.dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443 int reg = DPLL(crtc->pipe);
1444 u32 dpll = crtc->config.dpll_hw_state.dpll;
1445
1446 assert_pipe_disabled(dev_priv, crtc->pipe);
1447
1448 /* No really, not for ILK+ */
1449 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1450
1451 /* PLL is protected by panel, make sure we can write it */
1452 if (IS_MOBILE(dev) && !IS_I830(dev))
1453 assert_panel_unlocked(dev_priv, crtc->pipe);
1454
1455 I915_WRITE(reg, dpll);
1456
1457 /* Wait for the clocks to stabilize. */
1458 POSTING_READ(reg);
1459 udelay(150);
1460
1461 if (INTEL_INFO(dev)->gen >= 4) {
1462 I915_WRITE(DPLL_MD(crtc->pipe),
1463 crtc->config.dpll_hw_state.dpll_md);
1464 } else {
1465 /* The pixel multiplier can only be updated once the
1466 * DPLL is enabled and the clocks are stable.
1467 *
1468 * So write it again.
1469 */
1470 I915_WRITE(reg, dpll);
1471 }
1472
1473 /* We do this three times for luck */
1474 I915_WRITE(reg, dpll);
1475 POSTING_READ(reg);
1476 udelay(150); /* wait for warmup */
1477 I915_WRITE(reg, dpll);
1478 POSTING_READ(reg);
1479 udelay(150); /* wait for warmup */
1480 I915_WRITE(reg, dpll);
1481 POSTING_READ(reg);
1482 udelay(150); /* wait for warmup */
1483 }
1484
1485 /**
1486 * i9xx_disable_pll - disable a PLL
1487 * @dev_priv: i915 private structure
1488 * @pipe: pipe PLL to disable
1489 *
1490 * Disable the PLL for @pipe, making sure the pipe is off first.
1491 *
1492 * Note! This is for pre-ILK only.
1493 */
1494 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496 /* Don't disable pipe A or pipe A PLLs if needed */
1497 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1498 return;
1499
1500 /* Make sure the pipe isn't still relying on us */
1501 assert_pipe_disabled(dev_priv, pipe);
1502
1503 I915_WRITE(DPLL(pipe), 0);
1504 POSTING_READ(DPLL(pipe));
1505 }
1506
1507 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1508 {
1509 u32 val = 0;
1510
1511 /* Make sure the pipe isn't still relying on us */
1512 assert_pipe_disabled(dev_priv, pipe);
1513
1514 /*
1515 * Leave integrated clock source and reference clock enabled for pipe B.
1516 * The latter is needed for VGA hotplug / manual detection.
1517 */
1518 if (pipe == PIPE_B)
1519 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1520 I915_WRITE(DPLL(pipe), val);
1521 POSTING_READ(DPLL(pipe));
1522 }
1523
1524 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1525 struct intel_digital_port *dport)
1526 {
1527 u32 port_mask;
1528
1529 switch (dport->port) {
1530 case PORT_B:
1531 port_mask = DPLL_PORTB_READY_MASK;
1532 break;
1533 case PORT_C:
1534 port_mask = DPLL_PORTC_READY_MASK;
1535 break;
1536 default:
1537 BUG();
1538 }
1539
1540 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1541 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1542 port_name(dport->port), I915_READ(DPLL(0)));
1543 }
1544
1545 /**
1546 * ironlake_enable_shared_dpll - enable PCH PLL
1547 * @dev_priv: i915 private structure
1548 * @pipe: pipe PLL to enable
1549 *
1550 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1551 * drives the transcoder clock.
1552 */
1553 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1554 {
1555 struct drm_device *dev = crtc->base.dev;
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1558
1559 /* PCH PLLs only available on ILK, SNB and IVB */
1560 BUG_ON(INTEL_INFO(dev)->gen < 5);
1561 if (WARN_ON(pll == NULL))
1562 return;
1563
1564 if (WARN_ON(pll->refcount == 0))
1565 return;
1566
1567 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1568 pll->name, pll->active, pll->on,
1569 crtc->base.base.id);
1570
1571 if (pll->active++) {
1572 WARN_ON(!pll->on);
1573 assert_shared_dpll_enabled(dev_priv, pll);
1574 return;
1575 }
1576 WARN_ON(pll->on);
1577
1578 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1579 pll->enable(dev_priv, pll);
1580 pll->on = true;
1581 }
1582
1583 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1584 {
1585 struct drm_device *dev = crtc->base.dev;
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1588
1589 /* PCH only available on ILK+ */
1590 BUG_ON(INTEL_INFO(dev)->gen < 5);
1591 if (WARN_ON(pll == NULL))
1592 return;
1593
1594 if (WARN_ON(pll->refcount == 0))
1595 return;
1596
1597 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1598 pll->name, pll->active, pll->on,
1599 crtc->base.base.id);
1600
1601 if (WARN_ON(pll->active == 0)) {
1602 assert_shared_dpll_disabled(dev_priv, pll);
1603 return;
1604 }
1605
1606 assert_shared_dpll_enabled(dev_priv, pll);
1607 WARN_ON(!pll->on);
1608 if (--pll->active)
1609 return;
1610
1611 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1612 pll->disable(dev_priv, pll);
1613 pll->on = false;
1614 }
1615
1616 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1617 enum pipe pipe)
1618 {
1619 struct drm_device *dev = dev_priv->dev;
1620 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622 uint32_t reg, val, pipeconf_val;
1623
1624 /* PCH only available on ILK+ */
1625 BUG_ON(INTEL_INFO(dev)->gen < 5);
1626
1627 /* Make sure PCH DPLL is enabled */
1628 assert_shared_dpll_enabled(dev_priv,
1629 intel_crtc_to_shared_dpll(intel_crtc));
1630
1631 /* FDI must be feeding us bits for PCH ports */
1632 assert_fdi_tx_enabled(dev_priv, pipe);
1633 assert_fdi_rx_enabled(dev_priv, pipe);
1634
1635 if (HAS_PCH_CPT(dev)) {
1636 /* Workaround: Set the timing override bit before enabling the
1637 * pch transcoder. */
1638 reg = TRANS_CHICKEN2(pipe);
1639 val = I915_READ(reg);
1640 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641 I915_WRITE(reg, val);
1642 }
1643
1644 reg = PCH_TRANSCONF(pipe);
1645 val = I915_READ(reg);
1646 pipeconf_val = I915_READ(PIPECONF(pipe));
1647
1648 if (HAS_PCH_IBX(dev_priv->dev)) {
1649 /*
1650 * make the BPC in transcoder be consistent with
1651 * that in pipeconf reg.
1652 */
1653 val &= ~PIPECONF_BPC_MASK;
1654 val |= pipeconf_val & PIPECONF_BPC_MASK;
1655 }
1656
1657 val &= ~TRANS_INTERLACE_MASK;
1658 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1659 if (HAS_PCH_IBX(dev_priv->dev) &&
1660 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1661 val |= TRANS_LEGACY_INTERLACED_ILK;
1662 else
1663 val |= TRANS_INTERLACED;
1664 else
1665 val |= TRANS_PROGRESSIVE;
1666
1667 I915_WRITE(reg, val | TRANS_ENABLE);
1668 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1669 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1670 }
1671
1672 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1673 enum transcoder cpu_transcoder)
1674 {
1675 u32 val, pipeconf_val;
1676
1677 /* PCH only available on ILK+ */
1678 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1679
1680 /* FDI must be feeding us bits for PCH ports */
1681 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1682 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1683
1684 /* Workaround: set timing override bit. */
1685 val = I915_READ(_TRANSA_CHICKEN2);
1686 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687 I915_WRITE(_TRANSA_CHICKEN2, val);
1688
1689 val = TRANS_ENABLE;
1690 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1691
1692 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1693 PIPECONF_INTERLACED_ILK)
1694 val |= TRANS_INTERLACED;
1695 else
1696 val |= TRANS_PROGRESSIVE;
1697
1698 I915_WRITE(LPT_TRANSCONF, val);
1699 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1700 DRM_ERROR("Failed to enable PCH transcoder\n");
1701 }
1702
1703 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1704 enum pipe pipe)
1705 {
1706 struct drm_device *dev = dev_priv->dev;
1707 uint32_t reg, val;
1708
1709 /* FDI relies on the transcoder */
1710 assert_fdi_tx_disabled(dev_priv, pipe);
1711 assert_fdi_rx_disabled(dev_priv, pipe);
1712
1713 /* Ports must be off as well */
1714 assert_pch_ports_disabled(dev_priv, pipe);
1715
1716 reg = PCH_TRANSCONF(pipe);
1717 val = I915_READ(reg);
1718 val &= ~TRANS_ENABLE;
1719 I915_WRITE(reg, val);
1720 /* wait for PCH transcoder off, transcoder state */
1721 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1722 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1723
1724 if (!HAS_PCH_IBX(dev)) {
1725 /* Workaround: Clear the timing override chicken bit again. */
1726 reg = TRANS_CHICKEN2(pipe);
1727 val = I915_READ(reg);
1728 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 I915_WRITE(reg, val);
1730 }
1731 }
1732
1733 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1734 {
1735 u32 val;
1736
1737 val = I915_READ(LPT_TRANSCONF);
1738 val &= ~TRANS_ENABLE;
1739 I915_WRITE(LPT_TRANSCONF, val);
1740 /* wait for PCH transcoder off, transcoder state */
1741 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1742 DRM_ERROR("Failed to disable PCH transcoder\n");
1743
1744 /* Workaround: clear timing override bit. */
1745 val = I915_READ(_TRANSA_CHICKEN2);
1746 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1747 I915_WRITE(_TRANSA_CHICKEN2, val);
1748 }
1749
1750 /**
1751 * intel_enable_pipe - enable a pipe, asserting requirements
1752 * @crtc: crtc responsible for the pipe
1753 *
1754 * Enable @crtc's pipe, making sure that various hardware specific requirements
1755 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1756 */
1757 static void intel_enable_pipe(struct intel_crtc *crtc)
1758 {
1759 struct drm_device *dev = crtc->base.dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 enum pipe pipe = crtc->pipe;
1762 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763 pipe);
1764 enum pipe pch_transcoder;
1765 int reg;
1766 u32 val;
1767
1768 assert_planes_disabled(dev_priv, pipe);
1769 assert_cursor_disabled(dev_priv, pipe);
1770 assert_sprites_disabled(dev_priv, pipe);
1771
1772 if (HAS_PCH_LPT(dev_priv->dev))
1773 pch_transcoder = TRANSCODER_A;
1774 else
1775 pch_transcoder = pipe;
1776
1777 /*
1778 * A pipe without a PLL won't actually be able to drive bits from
1779 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1780 * need the check.
1781 */
1782 if (!HAS_PCH_SPLIT(dev_priv->dev))
1783 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1784 assert_dsi_pll_enabled(dev_priv);
1785 else
1786 assert_pll_enabled(dev_priv, pipe);
1787 else {
1788 if (crtc->config.has_pch_encoder) {
1789 /* if driving the PCH, we need FDI enabled */
1790 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791 assert_fdi_tx_pll_enabled(dev_priv,
1792 (enum pipe) cpu_transcoder);
1793 }
1794 /* FIXME: assert CPU port conditions for SNB+ */
1795 }
1796
1797 reg = PIPECONF(cpu_transcoder);
1798 val = I915_READ(reg);
1799 if (val & PIPECONF_ENABLE) {
1800 WARN_ON(!(pipe == PIPE_A &&
1801 dev_priv->quirks & QUIRK_PIPEA_FORCE));
1802 return;
1803 }
1804
1805 I915_WRITE(reg, val | PIPECONF_ENABLE);
1806 POSTING_READ(reg);
1807
1808 /*
1809 * There's no guarantee the pipe will really start running now. It
1810 * depends on the Gen, the output type and the relative order between
1811 * pipe and plane enabling. Avoid waiting on HSW+ since it's not
1812 * necessary.
1813 * TODO: audit the previous gens.
1814 */
1815 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
1816 intel_wait_for_vblank(dev_priv->dev, pipe);
1817 }
1818
1819 /**
1820 * intel_disable_pipe - disable a pipe, asserting requirements
1821 * @dev_priv: i915 private structure
1822 * @pipe: pipe to disable
1823 *
1824 * Disable @pipe, making sure that various hardware specific requirements
1825 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1826 *
1827 * @pipe should be %PIPE_A or %PIPE_B.
1828 *
1829 * Will wait until the pipe has shut down before returning.
1830 */
1831 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1832 enum pipe pipe)
1833 {
1834 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1835 pipe);
1836 int reg;
1837 u32 val;
1838
1839 /*
1840 * Make sure planes won't keep trying to pump pixels to us,
1841 * or we might hang the display.
1842 */
1843 assert_planes_disabled(dev_priv, pipe);
1844 assert_cursor_disabled(dev_priv, pipe);
1845 assert_sprites_disabled(dev_priv, pipe);
1846
1847 /* Don't disable pipe A or pipe A PLLs if needed */
1848 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1849 return;
1850
1851 reg = PIPECONF(cpu_transcoder);
1852 val = I915_READ(reg);
1853 if ((val & PIPECONF_ENABLE) == 0)
1854 return;
1855
1856 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1857 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1858 }
1859
1860 /*
1861 * Plane regs are double buffered, going from enabled->disabled needs a
1862 * trigger in order to latch. The display address reg provides this.
1863 */
1864 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1865 enum plane plane)
1866 {
1867 struct drm_device *dev = dev_priv->dev;
1868 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1869
1870 I915_WRITE(reg, I915_READ(reg));
1871 POSTING_READ(reg);
1872 }
1873
1874 /**
1875 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
1876 * @dev_priv: i915 private structure
1877 * @plane: plane to enable
1878 * @pipe: pipe being fed
1879 *
1880 * Enable @plane on @pipe, making sure that @pipe is running first.
1881 */
1882 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
1883 enum plane plane, enum pipe pipe)
1884 {
1885 struct intel_crtc *intel_crtc =
1886 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1887 int reg;
1888 u32 val;
1889
1890 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1891 assert_pipe_enabled(dev_priv, pipe);
1892
1893 WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1894
1895 intel_crtc->primary_enabled = true;
1896
1897 reg = DSPCNTR(plane);
1898 val = I915_READ(reg);
1899 if (val & DISPLAY_PLANE_ENABLE)
1900 return;
1901
1902 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1903 intel_flush_primary_plane(dev_priv, plane);
1904 intel_wait_for_vblank(dev_priv->dev, pipe);
1905 }
1906
1907 /**
1908 * intel_disable_primary_hw_plane - disable the primary hardware plane
1909 * @dev_priv: i915 private structure
1910 * @plane: plane to disable
1911 * @pipe: pipe consuming the data
1912 *
1913 * Disable @plane; should be an independent operation.
1914 */
1915 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
1916 enum plane plane, enum pipe pipe)
1917 {
1918 struct intel_crtc *intel_crtc =
1919 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1920 int reg;
1921 u32 val;
1922
1923 WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1924
1925 intel_crtc->primary_enabled = false;
1926
1927 reg = DSPCNTR(plane);
1928 val = I915_READ(reg);
1929 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1930 return;
1931
1932 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1933 intel_flush_primary_plane(dev_priv, plane);
1934 intel_wait_for_vblank(dev_priv->dev, pipe);
1935 }
1936
1937 static bool need_vtd_wa(struct drm_device *dev)
1938 {
1939 #ifdef CONFIG_INTEL_IOMMU
1940 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1941 return true;
1942 #endif
1943 return false;
1944 }
1945
1946 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
1947 {
1948 int tile_height;
1949
1950 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
1951 return ALIGN(height, tile_height);
1952 }
1953
1954 int
1955 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1956 struct drm_i915_gem_object *obj,
1957 struct intel_ring_buffer *pipelined)
1958 {
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 u32 alignment;
1961 int ret;
1962
1963 switch (obj->tiling_mode) {
1964 case I915_TILING_NONE:
1965 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1966 alignment = 128 * 1024;
1967 else if (INTEL_INFO(dev)->gen >= 4)
1968 alignment = 4 * 1024;
1969 else
1970 alignment = 64 * 1024;
1971 break;
1972 case I915_TILING_X:
1973 /* pin() will align the object as required by fence */
1974 alignment = 0;
1975 break;
1976 case I915_TILING_Y:
1977 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1978 return -EINVAL;
1979 default:
1980 BUG();
1981 }
1982
1983 /* Note that the w/a also requires 64 PTE of padding following the
1984 * bo. We currently fill all unused PTE with the shadow page and so
1985 * we should always have valid PTE following the scanout preventing
1986 * the VT-d warning.
1987 */
1988 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1989 alignment = 256 * 1024;
1990
1991 dev_priv->mm.interruptible = false;
1992 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1993 if (ret)
1994 goto err_interruptible;
1995
1996 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1997 * fence, whereas 965+ only requires a fence if using
1998 * framebuffer compression. For simplicity, we always install
1999 * a fence as the cost is not that onerous.
2000 */
2001 ret = i915_gem_object_get_fence(obj);
2002 if (ret)
2003 goto err_unpin;
2004
2005 i915_gem_object_pin_fence(obj);
2006
2007 dev_priv->mm.interruptible = true;
2008 return 0;
2009
2010 err_unpin:
2011 i915_gem_object_unpin_from_display_plane(obj);
2012 err_interruptible:
2013 dev_priv->mm.interruptible = true;
2014 return ret;
2015 }
2016
2017 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2018 {
2019 i915_gem_object_unpin_fence(obj);
2020 i915_gem_object_unpin_from_display_plane(obj);
2021 }
2022
2023 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2024 * is assumed to be a power-of-two. */
2025 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2026 unsigned int tiling_mode,
2027 unsigned int cpp,
2028 unsigned int pitch)
2029 {
2030 if (tiling_mode != I915_TILING_NONE) {
2031 unsigned int tile_rows, tiles;
2032
2033 tile_rows = *y / 8;
2034 *y %= 8;
2035
2036 tiles = *x / (512/cpp);
2037 *x %= 512/cpp;
2038
2039 return tile_rows * pitch * 8 + tiles * 4096;
2040 } else {
2041 unsigned int offset;
2042
2043 offset = *y * pitch + *x * cpp;
2044 *y = 0;
2045 *x = (offset & 4095) / cpp;
2046 return offset & -4096;
2047 }
2048 }
2049
2050 int intel_format_to_fourcc(int format)
2051 {
2052 switch (format) {
2053 case DISPPLANE_8BPP:
2054 return DRM_FORMAT_C8;
2055 case DISPPLANE_BGRX555:
2056 return DRM_FORMAT_XRGB1555;
2057 case DISPPLANE_BGRX565:
2058 return DRM_FORMAT_RGB565;
2059 default:
2060 case DISPPLANE_BGRX888:
2061 return DRM_FORMAT_XRGB8888;
2062 case DISPPLANE_RGBX888:
2063 return DRM_FORMAT_XBGR8888;
2064 case DISPPLANE_BGRX101010:
2065 return DRM_FORMAT_XRGB2101010;
2066 case DISPPLANE_RGBX101010:
2067 return DRM_FORMAT_XBGR2101010;
2068 }
2069 }
2070
2071 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2072 struct intel_plane_config *plane_config)
2073 {
2074 struct drm_device *dev = crtc->base.dev;
2075 struct drm_i915_gem_object *obj = NULL;
2076 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2077 u32 base = plane_config->base;
2078
2079 if (plane_config->size == 0)
2080 return false;
2081
2082 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2083 plane_config->size);
2084 if (!obj)
2085 return false;
2086
2087 if (plane_config->tiled) {
2088 obj->tiling_mode = I915_TILING_X;
2089 obj->stride = crtc->base.primary->fb->pitches[0];
2090 }
2091
2092 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2093 mode_cmd.width = crtc->base.primary->fb->width;
2094 mode_cmd.height = crtc->base.primary->fb->height;
2095 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2096
2097 mutex_lock(&dev->struct_mutex);
2098
2099 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2100 &mode_cmd, obj)) {
2101 DRM_DEBUG_KMS("intel fb init failed\n");
2102 goto out_unref_obj;
2103 }
2104
2105 mutex_unlock(&dev->struct_mutex);
2106
2107 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2108 return true;
2109
2110 out_unref_obj:
2111 drm_gem_object_unreference(&obj->base);
2112 mutex_unlock(&dev->struct_mutex);
2113 return false;
2114 }
2115
2116 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2117 struct intel_plane_config *plane_config)
2118 {
2119 struct drm_device *dev = intel_crtc->base.dev;
2120 struct drm_crtc *c;
2121 struct intel_crtc *i;
2122 struct intel_framebuffer *fb;
2123
2124 if (!intel_crtc->base.primary->fb)
2125 return;
2126
2127 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2128 return;
2129
2130 kfree(intel_crtc->base.primary->fb);
2131 intel_crtc->base.primary->fb = NULL;
2132
2133 /*
2134 * Failed to alloc the obj, check to see if we should share
2135 * an fb with another CRTC instead
2136 */
2137 list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2138 i = to_intel_crtc(c);
2139
2140 if (c == &intel_crtc->base)
2141 continue;
2142
2143 if (!i->active || !c->primary->fb)
2144 continue;
2145
2146 fb = to_intel_framebuffer(c->primary->fb);
2147 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2148 drm_framebuffer_reference(c->primary->fb);
2149 intel_crtc->base.primary->fb = c->primary->fb;
2150 break;
2151 }
2152 }
2153 }
2154
2155 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2156 struct drm_framebuffer *fb,
2157 int x, int y)
2158 {
2159 struct drm_device *dev = crtc->dev;
2160 struct drm_i915_private *dev_priv = dev->dev_private;
2161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162 struct intel_framebuffer *intel_fb;
2163 struct drm_i915_gem_object *obj;
2164 int plane = intel_crtc->plane;
2165 unsigned long linear_offset;
2166 u32 dspcntr;
2167 u32 reg;
2168
2169 switch (plane) {
2170 case 0:
2171 case 1:
2172 break;
2173 default:
2174 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2175 return -EINVAL;
2176 }
2177
2178 intel_fb = to_intel_framebuffer(fb);
2179 obj = intel_fb->obj;
2180
2181 reg = DSPCNTR(plane);
2182 dspcntr = I915_READ(reg);
2183 /* Mask out pixel format bits in case we change it */
2184 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2185 switch (fb->pixel_format) {
2186 case DRM_FORMAT_C8:
2187 dspcntr |= DISPPLANE_8BPP;
2188 break;
2189 case DRM_FORMAT_XRGB1555:
2190 case DRM_FORMAT_ARGB1555:
2191 dspcntr |= DISPPLANE_BGRX555;
2192 break;
2193 case DRM_FORMAT_RGB565:
2194 dspcntr |= DISPPLANE_BGRX565;
2195 break;
2196 case DRM_FORMAT_XRGB8888:
2197 case DRM_FORMAT_ARGB8888:
2198 dspcntr |= DISPPLANE_BGRX888;
2199 break;
2200 case DRM_FORMAT_XBGR8888:
2201 case DRM_FORMAT_ABGR8888:
2202 dspcntr |= DISPPLANE_RGBX888;
2203 break;
2204 case DRM_FORMAT_XRGB2101010:
2205 case DRM_FORMAT_ARGB2101010:
2206 dspcntr |= DISPPLANE_BGRX101010;
2207 break;
2208 case DRM_FORMAT_XBGR2101010:
2209 case DRM_FORMAT_ABGR2101010:
2210 dspcntr |= DISPPLANE_RGBX101010;
2211 break;
2212 default:
2213 BUG();
2214 }
2215
2216 if (INTEL_INFO(dev)->gen >= 4) {
2217 if (obj->tiling_mode != I915_TILING_NONE)
2218 dspcntr |= DISPPLANE_TILED;
2219 else
2220 dspcntr &= ~DISPPLANE_TILED;
2221 }
2222
2223 if (IS_G4X(dev))
2224 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2225
2226 I915_WRITE(reg, dspcntr);
2227
2228 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2229
2230 if (INTEL_INFO(dev)->gen >= 4) {
2231 intel_crtc->dspaddr_offset =
2232 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2233 fb->bits_per_pixel / 8,
2234 fb->pitches[0]);
2235 linear_offset -= intel_crtc->dspaddr_offset;
2236 } else {
2237 intel_crtc->dspaddr_offset = linear_offset;
2238 }
2239
2240 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2241 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2242 fb->pitches[0]);
2243 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2244 if (INTEL_INFO(dev)->gen >= 4) {
2245 I915_WRITE(DSPSURF(plane),
2246 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2247 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2248 I915_WRITE(DSPLINOFF(plane), linear_offset);
2249 } else
2250 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2251 POSTING_READ(reg);
2252
2253 return 0;
2254 }
2255
2256 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2257 struct drm_framebuffer *fb,
2258 int x, int y)
2259 {
2260 struct drm_device *dev = crtc->dev;
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263 struct intel_framebuffer *intel_fb;
2264 struct drm_i915_gem_object *obj;
2265 int plane = intel_crtc->plane;
2266 unsigned long linear_offset;
2267 u32 dspcntr;
2268 u32 reg;
2269
2270 switch (plane) {
2271 case 0:
2272 case 1:
2273 case 2:
2274 break;
2275 default:
2276 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2277 return -EINVAL;
2278 }
2279
2280 intel_fb = to_intel_framebuffer(fb);
2281 obj = intel_fb->obj;
2282
2283 reg = DSPCNTR(plane);
2284 dspcntr = I915_READ(reg);
2285 /* Mask out pixel format bits in case we change it */
2286 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2287 switch (fb->pixel_format) {
2288 case DRM_FORMAT_C8:
2289 dspcntr |= DISPPLANE_8BPP;
2290 break;
2291 case DRM_FORMAT_RGB565:
2292 dspcntr |= DISPPLANE_BGRX565;
2293 break;
2294 case DRM_FORMAT_XRGB8888:
2295 case DRM_FORMAT_ARGB8888:
2296 dspcntr |= DISPPLANE_BGRX888;
2297 break;
2298 case DRM_FORMAT_XBGR8888:
2299 case DRM_FORMAT_ABGR8888:
2300 dspcntr |= DISPPLANE_RGBX888;
2301 break;
2302 case DRM_FORMAT_XRGB2101010:
2303 case DRM_FORMAT_ARGB2101010:
2304 dspcntr |= DISPPLANE_BGRX101010;
2305 break;
2306 case DRM_FORMAT_XBGR2101010:
2307 case DRM_FORMAT_ABGR2101010:
2308 dspcntr |= DISPPLANE_RGBX101010;
2309 break;
2310 default:
2311 BUG();
2312 }
2313
2314 if (obj->tiling_mode != I915_TILING_NONE)
2315 dspcntr |= DISPPLANE_TILED;
2316 else
2317 dspcntr &= ~DISPPLANE_TILED;
2318
2319 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2321 else
2322 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2323
2324 I915_WRITE(reg, dspcntr);
2325
2326 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327 intel_crtc->dspaddr_offset =
2328 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2329 fb->bits_per_pixel / 8,
2330 fb->pitches[0]);
2331 linear_offset -= intel_crtc->dspaddr_offset;
2332
2333 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2334 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2335 fb->pitches[0]);
2336 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2337 I915_WRITE(DSPSURF(plane),
2338 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2339 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2340 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2341 } else {
2342 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2343 I915_WRITE(DSPLINOFF(plane), linear_offset);
2344 }
2345 POSTING_READ(reg);
2346
2347 return 0;
2348 }
2349
2350 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2351 static int
2352 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2353 int x, int y, enum mode_set_atomic state)
2354 {
2355 struct drm_device *dev = crtc->dev;
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358 if (dev_priv->display.disable_fbc)
2359 dev_priv->display.disable_fbc(dev);
2360 intel_increase_pllclock(crtc);
2361
2362 return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2363 }
2364
2365 void intel_display_handle_reset(struct drm_device *dev)
2366 {
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 struct drm_crtc *crtc;
2369
2370 /*
2371 * Flips in the rings have been nuked by the reset,
2372 * so complete all pending flips so that user space
2373 * will get its events and not get stuck.
2374 *
2375 * Also update the base address of all primary
2376 * planes to the the last fb to make sure we're
2377 * showing the correct fb after a reset.
2378 *
2379 * Need to make two loops over the crtcs so that we
2380 * don't try to grab a crtc mutex before the
2381 * pending_flip_queue really got woken up.
2382 */
2383
2384 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386 enum plane plane = intel_crtc->plane;
2387
2388 intel_prepare_page_flip(dev, plane);
2389 intel_finish_page_flip_plane(dev, plane);
2390 }
2391
2392 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394
2395 mutex_lock(&crtc->mutex);
2396 /*
2397 * FIXME: Once we have proper support for primary planes (and
2398 * disabling them without disabling the entire crtc) allow again
2399 * a NULL crtc->primary->fb.
2400 */
2401 if (intel_crtc->active && crtc->primary->fb)
2402 dev_priv->display.update_primary_plane(crtc,
2403 crtc->primary->fb,
2404 crtc->x,
2405 crtc->y);
2406 mutex_unlock(&crtc->mutex);
2407 }
2408 }
2409
2410 static int
2411 intel_finish_fb(struct drm_framebuffer *old_fb)
2412 {
2413 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2414 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2415 bool was_interruptible = dev_priv->mm.interruptible;
2416 int ret;
2417
2418 /* Big Hammer, we also need to ensure that any pending
2419 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2420 * current scanout is retired before unpinning the old
2421 * framebuffer.
2422 *
2423 * This should only fail upon a hung GPU, in which case we
2424 * can safely continue.
2425 */
2426 dev_priv->mm.interruptible = false;
2427 ret = i915_gem_object_finish_gpu(obj);
2428 dev_priv->mm.interruptible = was_interruptible;
2429
2430 return ret;
2431 }
2432
2433 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2434 {
2435 struct drm_device *dev = crtc->dev;
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438 unsigned long flags;
2439 bool pending;
2440
2441 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2442 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2443 return false;
2444
2445 spin_lock_irqsave(&dev->event_lock, flags);
2446 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2447 spin_unlock_irqrestore(&dev->event_lock, flags);
2448
2449 return pending;
2450 }
2451
2452 static int
2453 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2454 struct drm_framebuffer *fb)
2455 {
2456 struct drm_device *dev = crtc->dev;
2457 struct drm_i915_private *dev_priv = dev->dev_private;
2458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459 struct drm_framebuffer *old_fb;
2460 int ret;
2461
2462 if (intel_crtc_has_pending_flip(crtc)) {
2463 DRM_ERROR("pipe is still busy with an old pageflip\n");
2464 return -EBUSY;
2465 }
2466
2467 /* no fb bound */
2468 if (!fb) {
2469 DRM_ERROR("No FB bound\n");
2470 return 0;
2471 }
2472
2473 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2474 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2475 plane_name(intel_crtc->plane),
2476 INTEL_INFO(dev)->num_pipes);
2477 return -EINVAL;
2478 }
2479
2480 mutex_lock(&dev->struct_mutex);
2481 ret = intel_pin_and_fence_fb_obj(dev,
2482 to_intel_framebuffer(fb)->obj,
2483 NULL);
2484 mutex_unlock(&dev->struct_mutex);
2485 if (ret != 0) {
2486 DRM_ERROR("pin & fence failed\n");
2487 return ret;
2488 }
2489
2490 /*
2491 * Update pipe size and adjust fitter if needed: the reason for this is
2492 * that in compute_mode_changes we check the native mode (not the pfit
2493 * mode) to see if we can flip rather than do a full mode set. In the
2494 * fastboot case, we'll flip, but if we don't update the pipesrc and
2495 * pfit state, we'll end up with a big fb scanned out into the wrong
2496 * sized surface.
2497 *
2498 * To fix this properly, we need to hoist the checks up into
2499 * compute_mode_changes (or above), check the actual pfit state and
2500 * whether the platform allows pfit disable with pipe active, and only
2501 * then update the pipesrc and pfit state, even on the flip path.
2502 */
2503 if (i915.fastboot) {
2504 const struct drm_display_mode *adjusted_mode =
2505 &intel_crtc->config.adjusted_mode;
2506
2507 I915_WRITE(PIPESRC(intel_crtc->pipe),
2508 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2509 (adjusted_mode->crtc_vdisplay - 1));
2510 if (!intel_crtc->config.pch_pfit.enabled &&
2511 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2512 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2513 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2514 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2515 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2516 }
2517 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2518 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2519 }
2520
2521 ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2522 if (ret) {
2523 mutex_lock(&dev->struct_mutex);
2524 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2525 mutex_unlock(&dev->struct_mutex);
2526 DRM_ERROR("failed to update base address\n");
2527 return ret;
2528 }
2529
2530 old_fb = crtc->primary->fb;
2531 crtc->primary->fb = fb;
2532 crtc->x = x;
2533 crtc->y = y;
2534
2535 if (old_fb) {
2536 if (intel_crtc->active && old_fb != fb)
2537 intel_wait_for_vblank(dev, intel_crtc->pipe);
2538 mutex_lock(&dev->struct_mutex);
2539 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2540 mutex_unlock(&dev->struct_mutex);
2541 }
2542
2543 mutex_lock(&dev->struct_mutex);
2544 intel_update_fbc(dev);
2545 intel_edp_psr_update(dev);
2546 mutex_unlock(&dev->struct_mutex);
2547
2548 return 0;
2549 }
2550
2551 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2552 {
2553 struct drm_device *dev = crtc->dev;
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2556 int pipe = intel_crtc->pipe;
2557 u32 reg, temp;
2558
2559 /* enable normal train */
2560 reg = FDI_TX_CTL(pipe);
2561 temp = I915_READ(reg);
2562 if (IS_IVYBRIDGE(dev)) {
2563 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2564 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2565 } else {
2566 temp &= ~FDI_LINK_TRAIN_NONE;
2567 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2568 }
2569 I915_WRITE(reg, temp);
2570
2571 reg = FDI_RX_CTL(pipe);
2572 temp = I915_READ(reg);
2573 if (HAS_PCH_CPT(dev)) {
2574 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2575 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2576 } else {
2577 temp &= ~FDI_LINK_TRAIN_NONE;
2578 temp |= FDI_LINK_TRAIN_NONE;
2579 }
2580 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2581
2582 /* wait one idle pattern time */
2583 POSTING_READ(reg);
2584 udelay(1000);
2585
2586 /* IVB wants error correction enabled */
2587 if (IS_IVYBRIDGE(dev))
2588 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2589 FDI_FE_ERRC_ENABLE);
2590 }
2591
2592 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2593 {
2594 return crtc->base.enabled && crtc->active &&
2595 crtc->config.has_pch_encoder;
2596 }
2597
2598 static void ivb_modeset_global_resources(struct drm_device *dev)
2599 {
2600 struct drm_i915_private *dev_priv = dev->dev_private;
2601 struct intel_crtc *pipe_B_crtc =
2602 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2603 struct intel_crtc *pipe_C_crtc =
2604 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2605 uint32_t temp;
2606
2607 /*
2608 * When everything is off disable fdi C so that we could enable fdi B
2609 * with all lanes. Note that we don't care about enabled pipes without
2610 * an enabled pch encoder.
2611 */
2612 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2613 !pipe_has_enabled_pch(pipe_C_crtc)) {
2614 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2615 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2616
2617 temp = I915_READ(SOUTH_CHICKEN1);
2618 temp &= ~FDI_BC_BIFURCATION_SELECT;
2619 DRM_DEBUG_KMS("disabling fdi C rx\n");
2620 I915_WRITE(SOUTH_CHICKEN1, temp);
2621 }
2622 }
2623
2624 /* The FDI link training functions for ILK/Ibexpeak. */
2625 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2626 {
2627 struct drm_device *dev = crtc->dev;
2628 struct drm_i915_private *dev_priv = dev->dev_private;
2629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630 int pipe = intel_crtc->pipe;
2631 int plane = intel_crtc->plane;
2632 u32 reg, temp, tries;
2633
2634 /* FDI needs bits from pipe & plane first */
2635 assert_pipe_enabled(dev_priv, pipe);
2636 assert_plane_enabled(dev_priv, plane);
2637
2638 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639 for train result */
2640 reg = FDI_RX_IMR(pipe);
2641 temp = I915_READ(reg);
2642 temp &= ~FDI_RX_SYMBOL_LOCK;
2643 temp &= ~FDI_RX_BIT_LOCK;
2644 I915_WRITE(reg, temp);
2645 I915_READ(reg);
2646 udelay(150);
2647
2648 /* enable CPU FDI TX and PCH FDI RX */
2649 reg = FDI_TX_CTL(pipe);
2650 temp = I915_READ(reg);
2651 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2652 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2653 temp &= ~FDI_LINK_TRAIN_NONE;
2654 temp |= FDI_LINK_TRAIN_PATTERN_1;
2655 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2656
2657 reg = FDI_RX_CTL(pipe);
2658 temp = I915_READ(reg);
2659 temp &= ~FDI_LINK_TRAIN_NONE;
2660 temp |= FDI_LINK_TRAIN_PATTERN_1;
2661 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2662
2663 POSTING_READ(reg);
2664 udelay(150);
2665
2666 /* Ironlake workaround, enable clock pointer after FDI enable*/
2667 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2668 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2669 FDI_RX_PHASE_SYNC_POINTER_EN);
2670
2671 reg = FDI_RX_IIR(pipe);
2672 for (tries = 0; tries < 5; tries++) {
2673 temp = I915_READ(reg);
2674 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2675
2676 if ((temp & FDI_RX_BIT_LOCK)) {
2677 DRM_DEBUG_KMS("FDI train 1 done.\n");
2678 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2679 break;
2680 }
2681 }
2682 if (tries == 5)
2683 DRM_ERROR("FDI train 1 fail!\n");
2684
2685 /* Train 2 */
2686 reg = FDI_TX_CTL(pipe);
2687 temp = I915_READ(reg);
2688 temp &= ~FDI_LINK_TRAIN_NONE;
2689 temp |= FDI_LINK_TRAIN_PATTERN_2;
2690 I915_WRITE(reg, temp);
2691
2692 reg = FDI_RX_CTL(pipe);
2693 temp = I915_READ(reg);
2694 temp &= ~FDI_LINK_TRAIN_NONE;
2695 temp |= FDI_LINK_TRAIN_PATTERN_2;
2696 I915_WRITE(reg, temp);
2697
2698 POSTING_READ(reg);
2699 udelay(150);
2700
2701 reg = FDI_RX_IIR(pipe);
2702 for (tries = 0; tries < 5; tries++) {
2703 temp = I915_READ(reg);
2704 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705
2706 if (temp & FDI_RX_SYMBOL_LOCK) {
2707 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2708 DRM_DEBUG_KMS("FDI train 2 done.\n");
2709 break;
2710 }
2711 }
2712 if (tries == 5)
2713 DRM_ERROR("FDI train 2 fail!\n");
2714
2715 DRM_DEBUG_KMS("FDI train done\n");
2716
2717 }
2718
2719 static const int snb_b_fdi_train_param[] = {
2720 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2721 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2722 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2723 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2724 };
2725
2726 /* The FDI link training functions for SNB/Cougarpoint. */
2727 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2728 {
2729 struct drm_device *dev = crtc->dev;
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2732 int pipe = intel_crtc->pipe;
2733 u32 reg, temp, i, retry;
2734
2735 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2736 for train result */
2737 reg = FDI_RX_IMR(pipe);
2738 temp = I915_READ(reg);
2739 temp &= ~FDI_RX_SYMBOL_LOCK;
2740 temp &= ~FDI_RX_BIT_LOCK;
2741 I915_WRITE(reg, temp);
2742
2743 POSTING_READ(reg);
2744 udelay(150);
2745
2746 /* enable CPU FDI TX and PCH FDI RX */
2747 reg = FDI_TX_CTL(pipe);
2748 temp = I915_READ(reg);
2749 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2750 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2751 temp &= ~FDI_LINK_TRAIN_NONE;
2752 temp |= FDI_LINK_TRAIN_PATTERN_1;
2753 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2754 /* SNB-B */
2755 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2756 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2757
2758 I915_WRITE(FDI_RX_MISC(pipe),
2759 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2760
2761 reg = FDI_RX_CTL(pipe);
2762 temp = I915_READ(reg);
2763 if (HAS_PCH_CPT(dev)) {
2764 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2765 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2766 } else {
2767 temp &= ~FDI_LINK_TRAIN_NONE;
2768 temp |= FDI_LINK_TRAIN_PATTERN_1;
2769 }
2770 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2771
2772 POSTING_READ(reg);
2773 udelay(150);
2774
2775 for (i = 0; i < 4; i++) {
2776 reg = FDI_TX_CTL(pipe);
2777 temp = I915_READ(reg);
2778 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779 temp |= snb_b_fdi_train_param[i];
2780 I915_WRITE(reg, temp);
2781
2782 POSTING_READ(reg);
2783 udelay(500);
2784
2785 for (retry = 0; retry < 5; retry++) {
2786 reg = FDI_RX_IIR(pipe);
2787 temp = I915_READ(reg);
2788 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789 if (temp & FDI_RX_BIT_LOCK) {
2790 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791 DRM_DEBUG_KMS("FDI train 1 done.\n");
2792 break;
2793 }
2794 udelay(50);
2795 }
2796 if (retry < 5)
2797 break;
2798 }
2799 if (i == 4)
2800 DRM_ERROR("FDI train 1 fail!\n");
2801
2802 /* Train 2 */
2803 reg = FDI_TX_CTL(pipe);
2804 temp = I915_READ(reg);
2805 temp &= ~FDI_LINK_TRAIN_NONE;
2806 temp |= FDI_LINK_TRAIN_PATTERN_2;
2807 if (IS_GEN6(dev)) {
2808 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2809 /* SNB-B */
2810 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2811 }
2812 I915_WRITE(reg, temp);
2813
2814 reg = FDI_RX_CTL(pipe);
2815 temp = I915_READ(reg);
2816 if (HAS_PCH_CPT(dev)) {
2817 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2818 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2819 } else {
2820 temp &= ~FDI_LINK_TRAIN_NONE;
2821 temp |= FDI_LINK_TRAIN_PATTERN_2;
2822 }
2823 I915_WRITE(reg, temp);
2824
2825 POSTING_READ(reg);
2826 udelay(150);
2827
2828 for (i = 0; i < 4; i++) {
2829 reg = FDI_TX_CTL(pipe);
2830 temp = I915_READ(reg);
2831 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2832 temp |= snb_b_fdi_train_param[i];
2833 I915_WRITE(reg, temp);
2834
2835 POSTING_READ(reg);
2836 udelay(500);
2837
2838 for (retry = 0; retry < 5; retry++) {
2839 reg = FDI_RX_IIR(pipe);
2840 temp = I915_READ(reg);
2841 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2842 if (temp & FDI_RX_SYMBOL_LOCK) {
2843 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2844 DRM_DEBUG_KMS("FDI train 2 done.\n");
2845 break;
2846 }
2847 udelay(50);
2848 }
2849 if (retry < 5)
2850 break;
2851 }
2852 if (i == 4)
2853 DRM_ERROR("FDI train 2 fail!\n");
2854
2855 DRM_DEBUG_KMS("FDI train done.\n");
2856 }
2857
2858 /* Manual link training for Ivy Bridge A0 parts */
2859 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2860 {
2861 struct drm_device *dev = crtc->dev;
2862 struct drm_i915_private *dev_priv = dev->dev_private;
2863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864 int pipe = intel_crtc->pipe;
2865 u32 reg, temp, i, j;
2866
2867 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2868 for train result */
2869 reg = FDI_RX_IMR(pipe);
2870 temp = I915_READ(reg);
2871 temp &= ~FDI_RX_SYMBOL_LOCK;
2872 temp &= ~FDI_RX_BIT_LOCK;
2873 I915_WRITE(reg, temp);
2874
2875 POSTING_READ(reg);
2876 udelay(150);
2877
2878 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2879 I915_READ(FDI_RX_IIR(pipe)));
2880
2881 /* Try each vswing and preemphasis setting twice before moving on */
2882 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2883 /* disable first in case we need to retry */
2884 reg = FDI_TX_CTL(pipe);
2885 temp = I915_READ(reg);
2886 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2887 temp &= ~FDI_TX_ENABLE;
2888 I915_WRITE(reg, temp);
2889
2890 reg = FDI_RX_CTL(pipe);
2891 temp = I915_READ(reg);
2892 temp &= ~FDI_LINK_TRAIN_AUTO;
2893 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2894 temp &= ~FDI_RX_ENABLE;
2895 I915_WRITE(reg, temp);
2896
2897 /* enable CPU FDI TX and PCH FDI RX */
2898 reg = FDI_TX_CTL(pipe);
2899 temp = I915_READ(reg);
2900 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2901 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2902 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2903 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2904 temp |= snb_b_fdi_train_param[j/2];
2905 temp |= FDI_COMPOSITE_SYNC;
2906 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2907
2908 I915_WRITE(FDI_RX_MISC(pipe),
2909 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2910
2911 reg = FDI_RX_CTL(pipe);
2912 temp = I915_READ(reg);
2913 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914 temp |= FDI_COMPOSITE_SYNC;
2915 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2916
2917 POSTING_READ(reg);
2918 udelay(1); /* should be 0.5us */
2919
2920 for (i = 0; i < 4; i++) {
2921 reg = FDI_RX_IIR(pipe);
2922 temp = I915_READ(reg);
2923 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925 if (temp & FDI_RX_BIT_LOCK ||
2926 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2927 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2928 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2929 i);
2930 break;
2931 }
2932 udelay(1); /* should be 0.5us */
2933 }
2934 if (i == 4) {
2935 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2936 continue;
2937 }
2938
2939 /* Train 2 */
2940 reg = FDI_TX_CTL(pipe);
2941 temp = I915_READ(reg);
2942 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2943 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2944 I915_WRITE(reg, temp);
2945
2946 reg = FDI_RX_CTL(pipe);
2947 temp = I915_READ(reg);
2948 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2950 I915_WRITE(reg, temp);
2951
2952 POSTING_READ(reg);
2953 udelay(2); /* should be 1.5us */
2954
2955 for (i = 0; i < 4; i++) {
2956 reg = FDI_RX_IIR(pipe);
2957 temp = I915_READ(reg);
2958 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2959
2960 if (temp & FDI_RX_SYMBOL_LOCK ||
2961 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2962 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2963 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2964 i);
2965 goto train_done;
2966 }
2967 udelay(2); /* should be 1.5us */
2968 }
2969 if (i == 4)
2970 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2971 }
2972
2973 train_done:
2974 DRM_DEBUG_KMS("FDI train done.\n");
2975 }
2976
2977 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2978 {
2979 struct drm_device *dev = intel_crtc->base.dev;
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981 int pipe = intel_crtc->pipe;
2982 u32 reg, temp;
2983
2984
2985 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2986 reg = FDI_RX_CTL(pipe);
2987 temp = I915_READ(reg);
2988 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2989 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2990 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2991 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2992
2993 POSTING_READ(reg);
2994 udelay(200);
2995
2996 /* Switch from Rawclk to PCDclk */
2997 temp = I915_READ(reg);
2998 I915_WRITE(reg, temp | FDI_PCDCLK);
2999
3000 POSTING_READ(reg);
3001 udelay(200);
3002
3003 /* Enable CPU FDI TX PLL, always on for Ironlake */
3004 reg = FDI_TX_CTL(pipe);
3005 temp = I915_READ(reg);
3006 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3007 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3008
3009 POSTING_READ(reg);
3010 udelay(100);
3011 }
3012 }
3013
3014 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3015 {
3016 struct drm_device *dev = intel_crtc->base.dev;
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 int pipe = intel_crtc->pipe;
3019 u32 reg, temp;
3020
3021 /* Switch from PCDclk to Rawclk */
3022 reg = FDI_RX_CTL(pipe);
3023 temp = I915_READ(reg);
3024 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3025
3026 /* Disable CPU FDI TX PLL */
3027 reg = FDI_TX_CTL(pipe);
3028 temp = I915_READ(reg);
3029 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3030
3031 POSTING_READ(reg);
3032 udelay(100);
3033
3034 reg = FDI_RX_CTL(pipe);
3035 temp = I915_READ(reg);
3036 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3037
3038 /* Wait for the clocks to turn off. */
3039 POSTING_READ(reg);
3040 udelay(100);
3041 }
3042
3043 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3044 {
3045 struct drm_device *dev = crtc->dev;
3046 struct drm_i915_private *dev_priv = dev->dev_private;
3047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048 int pipe = intel_crtc->pipe;
3049 u32 reg, temp;
3050
3051 /* disable CPU FDI tx and PCH FDI rx */
3052 reg = FDI_TX_CTL(pipe);
3053 temp = I915_READ(reg);
3054 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3055 POSTING_READ(reg);
3056
3057 reg = FDI_RX_CTL(pipe);
3058 temp = I915_READ(reg);
3059 temp &= ~(0x7 << 16);
3060 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3061 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3062
3063 POSTING_READ(reg);
3064 udelay(100);
3065
3066 /* Ironlake workaround, disable clock pointer after downing FDI */
3067 if (HAS_PCH_IBX(dev)) {
3068 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3069 }
3070
3071 /* still set train pattern 1 */
3072 reg = FDI_TX_CTL(pipe);
3073 temp = I915_READ(reg);
3074 temp &= ~FDI_LINK_TRAIN_NONE;
3075 temp |= FDI_LINK_TRAIN_PATTERN_1;
3076 I915_WRITE(reg, temp);
3077
3078 reg = FDI_RX_CTL(pipe);
3079 temp = I915_READ(reg);
3080 if (HAS_PCH_CPT(dev)) {
3081 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3082 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3083 } else {
3084 temp &= ~FDI_LINK_TRAIN_NONE;
3085 temp |= FDI_LINK_TRAIN_PATTERN_1;
3086 }
3087 /* BPC in FDI rx is consistent with that in PIPECONF */
3088 temp &= ~(0x07 << 16);
3089 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3090 I915_WRITE(reg, temp);
3091
3092 POSTING_READ(reg);
3093 udelay(100);
3094 }
3095
3096 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3097 {
3098 struct intel_crtc *crtc;
3099
3100 /* Note that we don't need to be called with mode_config.lock here
3101 * as our list of CRTC objects is static for the lifetime of the
3102 * device and so cannot disappear as we iterate. Similarly, we can
3103 * happily treat the predicates as racy, atomic checks as userspace
3104 * cannot claim and pin a new fb without at least acquring the
3105 * struct_mutex and so serialising with us.
3106 */
3107 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3108 if (atomic_read(&crtc->unpin_work_count) == 0)
3109 continue;
3110
3111 if (crtc->unpin_work)
3112 intel_wait_for_vblank(dev, crtc->pipe);
3113
3114 return true;
3115 }
3116
3117 return false;
3118 }
3119
3120 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3121 {
3122 struct drm_device *dev = crtc->dev;
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124
3125 if (crtc->primary->fb == NULL)
3126 return;
3127
3128 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3129
3130 wait_event(dev_priv->pending_flip_queue,
3131 !intel_crtc_has_pending_flip(crtc));
3132
3133 mutex_lock(&dev->struct_mutex);
3134 intel_finish_fb(crtc->primary->fb);
3135 mutex_unlock(&dev->struct_mutex);
3136 }
3137
3138 /* Program iCLKIP clock to the desired frequency */
3139 static void lpt_program_iclkip(struct drm_crtc *crtc)
3140 {
3141 struct drm_device *dev = crtc->dev;
3142 struct drm_i915_private *dev_priv = dev->dev_private;
3143 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3144 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3145 u32 temp;
3146
3147 mutex_lock(&dev_priv->dpio_lock);
3148
3149 /* It is necessary to ungate the pixclk gate prior to programming
3150 * the divisors, and gate it back when it is done.
3151 */
3152 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3153
3154 /* Disable SSCCTL */
3155 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3156 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3157 SBI_SSCCTL_DISABLE,
3158 SBI_ICLK);
3159
3160 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3161 if (clock == 20000) {
3162 auxdiv = 1;
3163 divsel = 0x41;
3164 phaseinc = 0x20;
3165 } else {
3166 /* The iCLK virtual clock root frequency is in MHz,
3167 * but the adjusted_mode->crtc_clock in in KHz. To get the
3168 * divisors, it is necessary to divide one by another, so we
3169 * convert the virtual clock precision to KHz here for higher
3170 * precision.
3171 */
3172 u32 iclk_virtual_root_freq = 172800 * 1000;
3173 u32 iclk_pi_range = 64;
3174 u32 desired_divisor, msb_divisor_value, pi_value;
3175
3176 desired_divisor = (iclk_virtual_root_freq / clock);
3177 msb_divisor_value = desired_divisor / iclk_pi_range;
3178 pi_value = desired_divisor % iclk_pi_range;
3179
3180 auxdiv = 0;
3181 divsel = msb_divisor_value - 2;
3182 phaseinc = pi_value;
3183 }
3184
3185 /* This should not happen with any sane values */
3186 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3187 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3188 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3189 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3190
3191 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3192 clock,
3193 auxdiv,
3194 divsel,
3195 phasedir,
3196 phaseinc);
3197
3198 /* Program SSCDIVINTPHASE6 */
3199 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3200 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3201 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3202 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3203 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3204 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3205 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3206 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3207
3208 /* Program SSCAUXDIV */
3209 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3210 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3211 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3212 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3213
3214 /* Enable modulator and associated divider */
3215 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3216 temp &= ~SBI_SSCCTL_DISABLE;
3217 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3218
3219 /* Wait for initialization time */
3220 udelay(24);
3221
3222 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3223
3224 mutex_unlock(&dev_priv->dpio_lock);
3225 }
3226
3227 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3228 enum pipe pch_transcoder)
3229 {
3230 struct drm_device *dev = crtc->base.dev;
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3233
3234 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3235 I915_READ(HTOTAL(cpu_transcoder)));
3236 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3237 I915_READ(HBLANK(cpu_transcoder)));
3238 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3239 I915_READ(HSYNC(cpu_transcoder)));
3240
3241 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3242 I915_READ(VTOTAL(cpu_transcoder)));
3243 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3244 I915_READ(VBLANK(cpu_transcoder)));
3245 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3246 I915_READ(VSYNC(cpu_transcoder)));
3247 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3248 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3249 }
3250
3251 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3252 {
3253 struct drm_i915_private *dev_priv = dev->dev_private;
3254 uint32_t temp;
3255
3256 temp = I915_READ(SOUTH_CHICKEN1);
3257 if (temp & FDI_BC_BIFURCATION_SELECT)
3258 return;
3259
3260 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3261 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3262
3263 temp |= FDI_BC_BIFURCATION_SELECT;
3264 DRM_DEBUG_KMS("enabling fdi C rx\n");
3265 I915_WRITE(SOUTH_CHICKEN1, temp);
3266 POSTING_READ(SOUTH_CHICKEN1);
3267 }
3268
3269 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3270 {
3271 struct drm_device *dev = intel_crtc->base.dev;
3272 struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274 switch (intel_crtc->pipe) {
3275 case PIPE_A:
3276 break;
3277 case PIPE_B:
3278 if (intel_crtc->config.fdi_lanes > 2)
3279 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3280 else
3281 cpt_enable_fdi_bc_bifurcation(dev);
3282
3283 break;
3284 case PIPE_C:
3285 cpt_enable_fdi_bc_bifurcation(dev);
3286
3287 break;
3288 default:
3289 BUG();
3290 }
3291 }
3292
3293 /*
3294 * Enable PCH resources required for PCH ports:
3295 * - PCH PLLs
3296 * - FDI training & RX/TX
3297 * - update transcoder timings
3298 * - DP transcoding bits
3299 * - transcoder
3300 */
3301 static void ironlake_pch_enable(struct drm_crtc *crtc)
3302 {
3303 struct drm_device *dev = crtc->dev;
3304 struct drm_i915_private *dev_priv = dev->dev_private;
3305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306 int pipe = intel_crtc->pipe;
3307 u32 reg, temp;
3308
3309 assert_pch_transcoder_disabled(dev_priv, pipe);
3310
3311 if (IS_IVYBRIDGE(dev))
3312 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3313
3314 /* Write the TU size bits before fdi link training, so that error
3315 * detection works. */
3316 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3317 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3318
3319 /* For PCH output, training FDI link */
3320 dev_priv->display.fdi_link_train(crtc);
3321
3322 /* We need to program the right clock selection before writing the pixel
3323 * mutliplier into the DPLL. */
3324 if (HAS_PCH_CPT(dev)) {
3325 u32 sel;
3326
3327 temp = I915_READ(PCH_DPLL_SEL);
3328 temp |= TRANS_DPLL_ENABLE(pipe);
3329 sel = TRANS_DPLLB_SEL(pipe);
3330 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3331 temp |= sel;
3332 else
3333 temp &= ~sel;
3334 I915_WRITE(PCH_DPLL_SEL, temp);
3335 }
3336
3337 /* XXX: pch pll's can be enabled any time before we enable the PCH
3338 * transcoder, and we actually should do this to not upset any PCH
3339 * transcoder that already use the clock when we share it.
3340 *
3341 * Note that enable_shared_dpll tries to do the right thing, but
3342 * get_shared_dpll unconditionally resets the pll - we need that to have
3343 * the right LVDS enable sequence. */
3344 ironlake_enable_shared_dpll(intel_crtc);
3345
3346 /* set transcoder timing, panel must allow it */
3347 assert_panel_unlocked(dev_priv, pipe);
3348 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3349
3350 intel_fdi_normal_train(crtc);
3351
3352 /* For PCH DP, enable TRANS_DP_CTL */
3353 if (HAS_PCH_CPT(dev) &&
3354 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3355 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3356 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3357 reg = TRANS_DP_CTL(pipe);
3358 temp = I915_READ(reg);
3359 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3360 TRANS_DP_SYNC_MASK |
3361 TRANS_DP_BPC_MASK);
3362 temp |= (TRANS_DP_OUTPUT_ENABLE |
3363 TRANS_DP_ENH_FRAMING);
3364 temp |= bpc << 9; /* same format but at 11:9 */
3365
3366 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3367 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3368 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3369 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3370
3371 switch (intel_trans_dp_port_sel(crtc)) {
3372 case PCH_DP_B:
3373 temp |= TRANS_DP_PORT_SEL_B;
3374 break;
3375 case PCH_DP_C:
3376 temp |= TRANS_DP_PORT_SEL_C;
3377 break;
3378 case PCH_DP_D:
3379 temp |= TRANS_DP_PORT_SEL_D;
3380 break;
3381 default:
3382 BUG();
3383 }
3384
3385 I915_WRITE(reg, temp);
3386 }
3387
3388 ironlake_enable_pch_transcoder(dev_priv, pipe);
3389 }
3390
3391 static void lpt_pch_enable(struct drm_crtc *crtc)
3392 {
3393 struct drm_device *dev = crtc->dev;
3394 struct drm_i915_private *dev_priv = dev->dev_private;
3395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3397
3398 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3399
3400 lpt_program_iclkip(crtc);
3401
3402 /* Set transcoder timing. */
3403 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3404
3405 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3406 }
3407
3408 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3409 {
3410 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3411
3412 if (pll == NULL)
3413 return;
3414
3415 if (pll->refcount == 0) {
3416 WARN(1, "bad %s refcount\n", pll->name);
3417 return;
3418 }
3419
3420 if (--pll->refcount == 0) {
3421 WARN_ON(pll->on);
3422 WARN_ON(pll->active);
3423 }
3424
3425 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3426 }
3427
3428 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3429 {
3430 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3431 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3432 enum intel_dpll_id i;
3433
3434 if (pll) {
3435 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3436 crtc->base.base.id, pll->name);
3437 intel_put_shared_dpll(crtc);
3438 }
3439
3440 if (HAS_PCH_IBX(dev_priv->dev)) {
3441 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3442 i = (enum intel_dpll_id) crtc->pipe;
3443 pll = &dev_priv->shared_dplls[i];
3444
3445 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3446 crtc->base.base.id, pll->name);
3447
3448 goto found;
3449 }
3450
3451 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3452 pll = &dev_priv->shared_dplls[i];
3453
3454 /* Only want to check enabled timings first */
3455 if (pll->refcount == 0)
3456 continue;
3457
3458 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3459 sizeof(pll->hw_state)) == 0) {
3460 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3461 crtc->base.base.id,
3462 pll->name, pll->refcount, pll->active);
3463
3464 goto found;
3465 }
3466 }
3467
3468 /* Ok no matching timings, maybe there's a free one? */
3469 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3470 pll = &dev_priv->shared_dplls[i];
3471 if (pll->refcount == 0) {
3472 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3473 crtc->base.base.id, pll->name);
3474 goto found;
3475 }
3476 }
3477
3478 return NULL;
3479
3480 found:
3481 crtc->config.shared_dpll = i;
3482 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3483 pipe_name(crtc->pipe));
3484
3485 if (pll->active == 0) {
3486 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3487 sizeof(pll->hw_state));
3488
3489 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3490 WARN_ON(pll->on);
3491 assert_shared_dpll_disabled(dev_priv, pll);
3492
3493 pll->mode_set(dev_priv, pll);
3494 }
3495 pll->refcount++;
3496
3497 return pll;
3498 }
3499
3500 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3501 {
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 int dslreg = PIPEDSL(pipe);
3504 u32 temp;
3505
3506 temp = I915_READ(dslreg);
3507 udelay(500);
3508 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3509 if (wait_for(I915_READ(dslreg) != temp, 5))
3510 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3511 }
3512 }
3513
3514 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3515 {
3516 struct drm_device *dev = crtc->base.dev;
3517 struct drm_i915_private *dev_priv = dev->dev_private;
3518 int pipe = crtc->pipe;
3519
3520 if (crtc->config.pch_pfit.enabled) {
3521 /* Force use of hard-coded filter coefficients
3522 * as some pre-programmed values are broken,
3523 * e.g. x201.
3524 */
3525 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3526 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3527 PF_PIPE_SEL_IVB(pipe));
3528 else
3529 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3530 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3531 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3532 }
3533 }
3534
3535 static void intel_enable_planes(struct drm_crtc *crtc)
3536 {
3537 struct drm_device *dev = crtc->dev;
3538 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3539 struct drm_plane *plane;
3540 struct intel_plane *intel_plane;
3541
3542 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3543 intel_plane = to_intel_plane(plane);
3544 if (intel_plane->pipe == pipe)
3545 intel_plane_restore(&intel_plane->base);
3546 }
3547 }
3548
3549 static void intel_disable_planes(struct drm_crtc *crtc)
3550 {
3551 struct drm_device *dev = crtc->dev;
3552 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3553 struct drm_plane *plane;
3554 struct intel_plane *intel_plane;
3555
3556 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3557 intel_plane = to_intel_plane(plane);
3558 if (intel_plane->pipe == pipe)
3559 intel_plane_disable(&intel_plane->base);
3560 }
3561 }
3562
3563 void hsw_enable_ips(struct intel_crtc *crtc)
3564 {
3565 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3566
3567 if (!crtc->config.ips_enabled)
3568 return;
3569
3570 /* We can only enable IPS after we enable a plane and wait for a vblank.
3571 * We guarantee that the plane is enabled by calling intel_enable_ips
3572 * only after intel_enable_plane. And intel_enable_plane already waits
3573 * for a vblank, so all we need to do here is to enable the IPS bit. */
3574 assert_plane_enabled(dev_priv, crtc->plane);
3575 if (IS_BROADWELL(crtc->base.dev)) {
3576 mutex_lock(&dev_priv->rps.hw_lock);
3577 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3578 mutex_unlock(&dev_priv->rps.hw_lock);
3579 /* Quoting Art Runyan: "its not safe to expect any particular
3580 * value in IPS_CTL bit 31 after enabling IPS through the
3581 * mailbox." Moreover, the mailbox may return a bogus state,
3582 * so we need to just enable it and continue on.
3583 */
3584 } else {
3585 I915_WRITE(IPS_CTL, IPS_ENABLE);
3586 /* The bit only becomes 1 in the next vblank, so this wait here
3587 * is essentially intel_wait_for_vblank. If we don't have this
3588 * and don't wait for vblanks until the end of crtc_enable, then
3589 * the HW state readout code will complain that the expected
3590 * IPS_CTL value is not the one we read. */
3591 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3592 DRM_ERROR("Timed out waiting for IPS enable\n");
3593 }
3594 }
3595
3596 void hsw_disable_ips(struct intel_crtc *crtc)
3597 {
3598 struct drm_device *dev = crtc->base.dev;
3599 struct drm_i915_private *dev_priv = dev->dev_private;
3600
3601 if (!crtc->config.ips_enabled)
3602 return;
3603
3604 assert_plane_enabled(dev_priv, crtc->plane);
3605 if (IS_BROADWELL(crtc->base.dev)) {
3606 mutex_lock(&dev_priv->rps.hw_lock);
3607 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3608 mutex_unlock(&dev_priv->rps.hw_lock);
3609 } else {
3610 I915_WRITE(IPS_CTL, 0);
3611 POSTING_READ(IPS_CTL);
3612 }
3613
3614 /* We need to wait for a vblank before we can disable the plane. */
3615 intel_wait_for_vblank(dev, crtc->pipe);
3616 }
3617
3618 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3619 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3620 {
3621 struct drm_device *dev = crtc->dev;
3622 struct drm_i915_private *dev_priv = dev->dev_private;
3623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624 enum pipe pipe = intel_crtc->pipe;
3625 int palreg = PALETTE(pipe);
3626 int i;
3627 bool reenable_ips = false;
3628
3629 /* The clocks have to be on to load the palette. */
3630 if (!crtc->enabled || !intel_crtc->active)
3631 return;
3632
3633 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3634 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3635 assert_dsi_pll_enabled(dev_priv);
3636 else
3637 assert_pll_enabled(dev_priv, pipe);
3638 }
3639
3640 /* use legacy palette for Ironlake */
3641 if (HAS_PCH_SPLIT(dev))
3642 palreg = LGC_PALETTE(pipe);
3643
3644 /* Workaround : Do not read or write the pipe palette/gamma data while
3645 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3646 */
3647 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3648 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3649 GAMMA_MODE_MODE_SPLIT)) {
3650 hsw_disable_ips(intel_crtc);
3651 reenable_ips = true;
3652 }
3653
3654 for (i = 0; i < 256; i++) {
3655 I915_WRITE(palreg + 4 * i,
3656 (intel_crtc->lut_r[i] << 16) |
3657 (intel_crtc->lut_g[i] << 8) |
3658 intel_crtc->lut_b[i]);
3659 }
3660
3661 if (reenable_ips)
3662 hsw_enable_ips(intel_crtc);
3663 }
3664
3665 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3666 {
3667 struct drm_device *dev = crtc->dev;
3668 struct drm_i915_private *dev_priv = dev->dev_private;
3669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3670 struct intel_encoder *encoder;
3671 int pipe = intel_crtc->pipe;
3672 int plane = intel_crtc->plane;
3673
3674 WARN_ON(!crtc->enabled);
3675
3676 if (intel_crtc->active)
3677 return;
3678
3679 intel_crtc->active = true;
3680
3681 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3682 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3683
3684 for_each_encoder_on_crtc(dev, crtc, encoder)
3685 if (encoder->pre_enable)
3686 encoder->pre_enable(encoder);
3687
3688 if (intel_crtc->config.has_pch_encoder) {
3689 /* Note: FDI PLL enabling _must_ be done before we enable the
3690 * cpu pipes, hence this is separate from all the other fdi/pch
3691 * enabling. */
3692 ironlake_fdi_pll_enable(intel_crtc);
3693 } else {
3694 assert_fdi_tx_disabled(dev_priv, pipe);
3695 assert_fdi_rx_disabled(dev_priv, pipe);
3696 }
3697
3698 ironlake_pfit_enable(intel_crtc);
3699
3700 /*
3701 * On ILK+ LUT must be loaded before the pipe is running but with
3702 * clocks enabled
3703 */
3704 intel_crtc_load_lut(crtc);
3705
3706 intel_update_watermarks(crtc);
3707 intel_enable_pipe(intel_crtc);
3708 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3709 intel_enable_planes(crtc);
3710 intel_crtc_update_cursor(crtc, true);
3711
3712 if (intel_crtc->config.has_pch_encoder)
3713 ironlake_pch_enable(crtc);
3714
3715 mutex_lock(&dev->struct_mutex);
3716 intel_update_fbc(dev);
3717 mutex_unlock(&dev->struct_mutex);
3718
3719 for_each_encoder_on_crtc(dev, crtc, encoder)
3720 encoder->enable(encoder);
3721
3722 if (HAS_PCH_CPT(dev))
3723 cpt_verify_modeset(dev, intel_crtc->pipe);
3724
3725 /*
3726 * There seems to be a race in PCH platform hw (at least on some
3727 * outputs) where an enabled pipe still completes any pageflip right
3728 * away (as if the pipe is off) instead of waiting for vblank. As soon
3729 * as the first vblank happend, everything works as expected. Hence just
3730 * wait for one vblank before returning to avoid strange things
3731 * happening.
3732 */
3733 intel_wait_for_vblank(dev, intel_crtc->pipe);
3734 }
3735
3736 /* IPS only exists on ULT machines and is tied to pipe A. */
3737 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3738 {
3739 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3740 }
3741
3742 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3743 {
3744 struct drm_device *dev = crtc->dev;
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3747 int pipe = intel_crtc->pipe;
3748 int plane = intel_crtc->plane;
3749
3750 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3751 intel_enable_planes(crtc);
3752 intel_crtc_update_cursor(crtc, true);
3753
3754 hsw_enable_ips(intel_crtc);
3755
3756 mutex_lock(&dev->struct_mutex);
3757 intel_update_fbc(dev);
3758 mutex_unlock(&dev->struct_mutex);
3759 }
3760
3761 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3762 {
3763 struct drm_device *dev = crtc->dev;
3764 struct drm_i915_private *dev_priv = dev->dev_private;
3765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3766 int pipe = intel_crtc->pipe;
3767 int plane = intel_crtc->plane;
3768
3769 intel_crtc_wait_for_pending_flips(crtc);
3770 drm_vblank_off(dev, pipe);
3771
3772 /* FBC must be disabled before disabling the plane on HSW. */
3773 if (dev_priv->fbc.plane == plane)
3774 intel_disable_fbc(dev);
3775
3776 hsw_disable_ips(intel_crtc);
3777
3778 intel_crtc_update_cursor(crtc, false);
3779 intel_disable_planes(crtc);
3780 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3781 }
3782
3783 /*
3784 * This implements the workaround described in the "notes" section of the mode
3785 * set sequence documentation. When going from no pipes or single pipe to
3786 * multiple pipes, and planes are enabled after the pipe, we need to wait at
3787 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3788 */
3789 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3790 {
3791 struct drm_device *dev = crtc->base.dev;
3792 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3793
3794 /* We want to get the other_active_crtc only if there's only 1 other
3795 * active crtc. */
3796 list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3797 if (!crtc_it->active || crtc_it == crtc)
3798 continue;
3799
3800 if (other_active_crtc)
3801 return;
3802
3803 other_active_crtc = crtc_it;
3804 }
3805 if (!other_active_crtc)
3806 return;
3807
3808 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3809 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3810 }
3811
3812 static void haswell_crtc_enable(struct drm_crtc *crtc)
3813 {
3814 struct drm_device *dev = crtc->dev;
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3817 struct intel_encoder *encoder;
3818 int pipe = intel_crtc->pipe;
3819
3820 WARN_ON(!crtc->enabled);
3821
3822 if (intel_crtc->active)
3823 return;
3824
3825 intel_crtc->active = true;
3826
3827 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3828 if (intel_crtc->config.has_pch_encoder)
3829 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3830
3831 if (intel_crtc->config.has_pch_encoder)
3832 dev_priv->display.fdi_link_train(crtc);
3833
3834 for_each_encoder_on_crtc(dev, crtc, encoder)
3835 if (encoder->pre_enable)
3836 encoder->pre_enable(encoder);
3837
3838 intel_ddi_enable_pipe_clock(intel_crtc);
3839
3840 ironlake_pfit_enable(intel_crtc);
3841
3842 /*
3843 * On ILK+ LUT must be loaded before the pipe is running but with
3844 * clocks enabled
3845 */
3846 intel_crtc_load_lut(crtc);
3847
3848 intel_ddi_set_pipe_settings(crtc);
3849 intel_ddi_enable_transcoder_func(crtc);
3850
3851 intel_update_watermarks(crtc);
3852 intel_enable_pipe(intel_crtc);
3853
3854 if (intel_crtc->config.has_pch_encoder)
3855 lpt_pch_enable(crtc);
3856
3857 for_each_encoder_on_crtc(dev, crtc, encoder) {
3858 encoder->enable(encoder);
3859 intel_opregion_notify_encoder(encoder, true);
3860 }
3861
3862 /* If we change the relative order between pipe/planes enabling, we need
3863 * to change the workaround. */
3864 haswell_mode_set_planes_workaround(intel_crtc);
3865 haswell_crtc_enable_planes(crtc);
3866 }
3867
3868 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3869 {
3870 struct drm_device *dev = crtc->base.dev;
3871 struct drm_i915_private *dev_priv = dev->dev_private;
3872 int pipe = crtc->pipe;
3873
3874 /* To avoid upsetting the power well on haswell only disable the pfit if
3875 * it's in use. The hw state code will make sure we get this right. */
3876 if (crtc->config.pch_pfit.enabled) {
3877 I915_WRITE(PF_CTL(pipe), 0);
3878 I915_WRITE(PF_WIN_POS(pipe), 0);
3879 I915_WRITE(PF_WIN_SZ(pipe), 0);
3880 }
3881 }
3882
3883 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3884 {
3885 struct drm_device *dev = crtc->dev;
3886 struct drm_i915_private *dev_priv = dev->dev_private;
3887 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3888 struct intel_encoder *encoder;
3889 int pipe = intel_crtc->pipe;
3890 int plane = intel_crtc->plane;
3891 u32 reg, temp;
3892
3893
3894 if (!intel_crtc->active)
3895 return;
3896
3897 for_each_encoder_on_crtc(dev, crtc, encoder)
3898 encoder->disable(encoder);
3899
3900 intel_crtc_wait_for_pending_flips(crtc);
3901 drm_vblank_off(dev, pipe);
3902
3903 if (dev_priv->fbc.plane == plane)
3904 intel_disable_fbc(dev);
3905
3906 intel_crtc_update_cursor(crtc, false);
3907 intel_disable_planes(crtc);
3908 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3909
3910 if (intel_crtc->config.has_pch_encoder)
3911 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3912
3913 intel_disable_pipe(dev_priv, pipe);
3914
3915 ironlake_pfit_disable(intel_crtc);
3916
3917 for_each_encoder_on_crtc(dev, crtc, encoder)
3918 if (encoder->post_disable)
3919 encoder->post_disable(encoder);
3920
3921 if (intel_crtc->config.has_pch_encoder) {
3922 ironlake_fdi_disable(crtc);
3923
3924 ironlake_disable_pch_transcoder(dev_priv, pipe);
3925 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3926
3927 if (HAS_PCH_CPT(dev)) {
3928 /* disable TRANS_DP_CTL */
3929 reg = TRANS_DP_CTL(pipe);
3930 temp = I915_READ(reg);
3931 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3932 TRANS_DP_PORT_SEL_MASK);
3933 temp |= TRANS_DP_PORT_SEL_NONE;
3934 I915_WRITE(reg, temp);
3935
3936 /* disable DPLL_SEL */
3937 temp = I915_READ(PCH_DPLL_SEL);
3938 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3939 I915_WRITE(PCH_DPLL_SEL, temp);
3940 }
3941
3942 /* disable PCH DPLL */
3943 intel_disable_shared_dpll(intel_crtc);
3944
3945 ironlake_fdi_pll_disable(intel_crtc);
3946 }
3947
3948 intel_crtc->active = false;
3949 intel_update_watermarks(crtc);
3950
3951 mutex_lock(&dev->struct_mutex);
3952 intel_update_fbc(dev);
3953 mutex_unlock(&dev->struct_mutex);
3954 }
3955
3956 static void haswell_crtc_disable(struct drm_crtc *crtc)
3957 {
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3961 struct intel_encoder *encoder;
3962 int pipe = intel_crtc->pipe;
3963 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3964
3965 if (!intel_crtc->active)
3966 return;
3967
3968 haswell_crtc_disable_planes(crtc);
3969
3970 for_each_encoder_on_crtc(dev, crtc, encoder) {
3971 intel_opregion_notify_encoder(encoder, false);
3972 encoder->disable(encoder);
3973 }
3974
3975 if (intel_crtc->config.has_pch_encoder)
3976 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3977 intel_disable_pipe(dev_priv, pipe);
3978
3979 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3980
3981 ironlake_pfit_disable(intel_crtc);
3982
3983 intel_ddi_disable_pipe_clock(intel_crtc);
3984
3985 for_each_encoder_on_crtc(dev, crtc, encoder)
3986 if (encoder->post_disable)
3987 encoder->post_disable(encoder);
3988
3989 if (intel_crtc->config.has_pch_encoder) {
3990 lpt_disable_pch_transcoder(dev_priv);
3991 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3992 intel_ddi_fdi_disable(crtc);
3993 }
3994
3995 intel_crtc->active = false;
3996 intel_update_watermarks(crtc);
3997
3998 mutex_lock(&dev->struct_mutex);
3999 intel_update_fbc(dev);
4000 mutex_unlock(&dev->struct_mutex);
4001 }
4002
4003 static void ironlake_crtc_off(struct drm_crtc *crtc)
4004 {
4005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4006 intel_put_shared_dpll(intel_crtc);
4007 }
4008
4009 static void haswell_crtc_off(struct drm_crtc *crtc)
4010 {
4011 intel_ddi_put_crtc_pll(crtc);
4012 }
4013
4014 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4015 {
4016 if (!enable && intel_crtc->overlay) {
4017 struct drm_device *dev = intel_crtc->base.dev;
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019
4020 mutex_lock(&dev->struct_mutex);
4021 dev_priv->mm.interruptible = false;
4022 (void) intel_overlay_switch_off(intel_crtc->overlay);
4023 dev_priv->mm.interruptible = true;
4024 mutex_unlock(&dev->struct_mutex);
4025 }
4026
4027 /* Let userspace switch the overlay on again. In most cases userspace
4028 * has to recompute where to put it anyway.
4029 */
4030 }
4031
4032 /**
4033 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
4034 * cursor plane briefly if not already running after enabling the display
4035 * plane.
4036 * This workaround avoids occasional blank screens when self refresh is
4037 * enabled.
4038 */
4039 static void
4040 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
4041 {
4042 u32 cntl = I915_READ(CURCNTR(pipe));
4043
4044 if ((cntl & CURSOR_MODE) == 0) {
4045 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
4046
4047 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
4048 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
4049 intel_wait_for_vblank(dev_priv->dev, pipe);
4050 I915_WRITE(CURCNTR(pipe), cntl);
4051 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
4052 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
4053 }
4054 }
4055
4056 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4057 {
4058 struct drm_device *dev = crtc->base.dev;
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 struct intel_crtc_config *pipe_config = &crtc->config;
4061
4062 if (!crtc->config.gmch_pfit.control)
4063 return;
4064
4065 /*
4066 * The panel fitter should only be adjusted whilst the pipe is disabled,
4067 * according to register description and PRM.
4068 */
4069 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4070 assert_pipe_disabled(dev_priv, crtc->pipe);
4071
4072 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4073 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4074
4075 /* Border color in case we don't scale up to the full screen. Black by
4076 * default, change to something else for debugging. */
4077 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4078 }
4079
4080 #define for_each_power_domain(domain, mask) \
4081 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4082 if ((1 << (domain)) & (mask))
4083
4084 enum intel_display_power_domain
4085 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4086 {
4087 struct drm_device *dev = intel_encoder->base.dev;
4088 struct intel_digital_port *intel_dig_port;
4089
4090 switch (intel_encoder->type) {
4091 case INTEL_OUTPUT_UNKNOWN:
4092 /* Only DDI platforms should ever use this output type */
4093 WARN_ON_ONCE(!HAS_DDI(dev));
4094 case INTEL_OUTPUT_DISPLAYPORT:
4095 case INTEL_OUTPUT_HDMI:
4096 case INTEL_OUTPUT_EDP:
4097 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4098 switch (intel_dig_port->port) {
4099 case PORT_A:
4100 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4101 case PORT_B:
4102 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4103 case PORT_C:
4104 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4105 case PORT_D:
4106 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4107 default:
4108 WARN_ON_ONCE(1);
4109 return POWER_DOMAIN_PORT_OTHER;
4110 }
4111 case INTEL_OUTPUT_ANALOG:
4112 return POWER_DOMAIN_PORT_CRT;
4113 case INTEL_OUTPUT_DSI:
4114 return POWER_DOMAIN_PORT_DSI;
4115 default:
4116 return POWER_DOMAIN_PORT_OTHER;
4117 }
4118 }
4119
4120 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4121 {
4122 struct drm_device *dev = crtc->dev;
4123 struct intel_encoder *intel_encoder;
4124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125 enum pipe pipe = intel_crtc->pipe;
4126 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4127 unsigned long mask;
4128 enum transcoder transcoder;
4129
4130 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4131
4132 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4133 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4134 if (pfit_enabled)
4135 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4136
4137 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4138 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4139
4140 return mask;
4141 }
4142
4143 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4144 bool enable)
4145 {
4146 if (dev_priv->power_domains.init_power_on == enable)
4147 return;
4148
4149 if (enable)
4150 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4151 else
4152 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4153
4154 dev_priv->power_domains.init_power_on = enable;
4155 }
4156
4157 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4158 {
4159 struct drm_i915_private *dev_priv = dev->dev_private;
4160 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4161 struct intel_crtc *crtc;
4162
4163 /*
4164 * First get all needed power domains, then put all unneeded, to avoid
4165 * any unnecessary toggling of the power wells.
4166 */
4167 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4168 enum intel_display_power_domain domain;
4169
4170 if (!crtc->base.enabled)
4171 continue;
4172
4173 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4174
4175 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4176 intel_display_power_get(dev_priv, domain);
4177 }
4178
4179 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4180 enum intel_display_power_domain domain;
4181
4182 for_each_power_domain(domain, crtc->enabled_power_domains)
4183 intel_display_power_put(dev_priv, domain);
4184
4185 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4186 }
4187
4188 intel_display_set_init_power(dev_priv, false);
4189 }
4190
4191 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4192 {
4193 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4194
4195 /* Obtain SKU information */
4196 mutex_lock(&dev_priv->dpio_lock);
4197 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4198 CCK_FUSE_HPLL_FREQ_MASK;
4199 mutex_unlock(&dev_priv->dpio_lock);
4200
4201 return vco_freq[hpll_freq];
4202 }
4203
4204 /* Adjust CDclk dividers to allow high res or save power if possible */
4205 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4206 {
4207 struct drm_i915_private *dev_priv = dev->dev_private;
4208 u32 val, cmd;
4209
4210 if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4211 cmd = 2;
4212 else if (cdclk == 266)
4213 cmd = 1;
4214 else
4215 cmd = 0;
4216
4217 mutex_lock(&dev_priv->rps.hw_lock);
4218 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4219 val &= ~DSPFREQGUAR_MASK;
4220 val |= (cmd << DSPFREQGUAR_SHIFT);
4221 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4222 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4223 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4224 50)) {
4225 DRM_ERROR("timed out waiting for CDclk change\n");
4226 }
4227 mutex_unlock(&dev_priv->rps.hw_lock);
4228
4229 if (cdclk == 400) {
4230 u32 divider, vco;
4231
4232 vco = valleyview_get_vco(dev_priv);
4233 divider = ((vco << 1) / cdclk) - 1;
4234
4235 mutex_lock(&dev_priv->dpio_lock);
4236 /* adjust cdclk divider */
4237 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4238 val &= ~0xf;
4239 val |= divider;
4240 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4241 mutex_unlock(&dev_priv->dpio_lock);
4242 }
4243
4244 mutex_lock(&dev_priv->dpio_lock);
4245 /* adjust self-refresh exit latency value */
4246 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4247 val &= ~0x7f;
4248
4249 /*
4250 * For high bandwidth configs, we set a higher latency in the bunit
4251 * so that the core display fetch happens in time to avoid underruns.
4252 */
4253 if (cdclk == 400)
4254 val |= 4500 / 250; /* 4.5 usec */
4255 else
4256 val |= 3000 / 250; /* 3.0 usec */
4257 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4258 mutex_unlock(&dev_priv->dpio_lock);
4259
4260 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4261 intel_i2c_reset(dev);
4262 }
4263
4264 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4265 {
4266 int cur_cdclk, vco;
4267 int divider;
4268
4269 vco = valleyview_get_vco(dev_priv);
4270
4271 mutex_lock(&dev_priv->dpio_lock);
4272 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4273 mutex_unlock(&dev_priv->dpio_lock);
4274
4275 divider &= 0xf;
4276
4277 cur_cdclk = (vco << 1) / (divider + 1);
4278
4279 return cur_cdclk;
4280 }
4281
4282 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4283 int max_pixclk)
4284 {
4285 int cur_cdclk;
4286
4287 cur_cdclk = valleyview_cur_cdclk(dev_priv);
4288
4289 /*
4290 * Really only a few cases to deal with, as only 4 CDclks are supported:
4291 * 200MHz
4292 * 267MHz
4293 * 320MHz
4294 * 400MHz
4295 * So we check to see whether we're above 90% of the lower bin and
4296 * adjust if needed.
4297 */
4298 if (max_pixclk > 288000) {
4299 return 400;
4300 } else if (max_pixclk > 240000) {
4301 return 320;
4302 } else
4303 return 266;
4304 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4305 }
4306
4307 /* compute the max pixel clock for new configuration */
4308 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4309 {
4310 struct drm_device *dev = dev_priv->dev;
4311 struct intel_crtc *intel_crtc;
4312 int max_pixclk = 0;
4313
4314 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4315 base.head) {
4316 if (intel_crtc->new_enabled)
4317 max_pixclk = max(max_pixclk,
4318 intel_crtc->new_config->adjusted_mode.crtc_clock);
4319 }
4320
4321 return max_pixclk;
4322 }
4323
4324 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4325 unsigned *prepare_pipes)
4326 {
4327 struct drm_i915_private *dev_priv = dev->dev_private;
4328 struct intel_crtc *intel_crtc;
4329 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4330 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4331
4332 if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4333 return;
4334
4335 /* disable/enable all currently active pipes while we change cdclk */
4336 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4337 base.head)
4338 if (intel_crtc->base.enabled)
4339 *prepare_pipes |= (1 << intel_crtc->pipe);
4340 }
4341
4342 static void valleyview_modeset_global_resources(struct drm_device *dev)
4343 {
4344 struct drm_i915_private *dev_priv = dev->dev_private;
4345 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4346 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4347 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4348
4349 if (req_cdclk != cur_cdclk)
4350 valleyview_set_cdclk(dev, req_cdclk);
4351 modeset_update_crtc_power_domains(dev);
4352 }
4353
4354 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4355 {
4356 struct drm_device *dev = crtc->dev;
4357 struct drm_i915_private *dev_priv = dev->dev_private;
4358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4359 struct intel_encoder *encoder;
4360 int pipe = intel_crtc->pipe;
4361 int plane = intel_crtc->plane;
4362 bool is_dsi;
4363
4364 WARN_ON(!crtc->enabled);
4365
4366 if (intel_crtc->active)
4367 return;
4368
4369 intel_crtc->active = true;
4370
4371 for_each_encoder_on_crtc(dev, crtc, encoder)
4372 if (encoder->pre_pll_enable)
4373 encoder->pre_pll_enable(encoder);
4374
4375 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4376
4377 if (!is_dsi)
4378 vlv_enable_pll(intel_crtc);
4379
4380 for_each_encoder_on_crtc(dev, crtc, encoder)
4381 if (encoder->pre_enable)
4382 encoder->pre_enable(encoder);
4383
4384 i9xx_pfit_enable(intel_crtc);
4385
4386 intel_crtc_load_lut(crtc);
4387
4388 intel_update_watermarks(crtc);
4389 intel_enable_pipe(intel_crtc);
4390 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4391 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4392 intel_enable_planes(crtc);
4393 intel_crtc_update_cursor(crtc, true);
4394
4395 intel_update_fbc(dev);
4396
4397 for_each_encoder_on_crtc(dev, crtc, encoder)
4398 encoder->enable(encoder);
4399 }
4400
4401 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4402 {
4403 struct drm_device *dev = crtc->dev;
4404 struct drm_i915_private *dev_priv = dev->dev_private;
4405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4406 struct intel_encoder *encoder;
4407 int pipe = intel_crtc->pipe;
4408 int plane = intel_crtc->plane;
4409
4410 WARN_ON(!crtc->enabled);
4411
4412 if (intel_crtc->active)
4413 return;
4414
4415 intel_crtc->active = true;
4416
4417 for_each_encoder_on_crtc(dev, crtc, encoder)
4418 if (encoder->pre_enable)
4419 encoder->pre_enable(encoder);
4420
4421 i9xx_enable_pll(intel_crtc);
4422
4423 i9xx_pfit_enable(intel_crtc);
4424
4425 intel_crtc_load_lut(crtc);
4426
4427 intel_update_watermarks(crtc);
4428 intel_enable_pipe(intel_crtc);
4429 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4430 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4431 intel_enable_planes(crtc);
4432 /* The fixup needs to happen before cursor is enabled */
4433 if (IS_G4X(dev))
4434 g4x_fixup_plane(dev_priv, pipe);
4435 intel_crtc_update_cursor(crtc, true);
4436
4437 /* Give the overlay scaler a chance to enable if it's on this pipe */
4438 intel_crtc_dpms_overlay(intel_crtc, true);
4439
4440 intel_update_fbc(dev);
4441
4442 for_each_encoder_on_crtc(dev, crtc, encoder)
4443 encoder->enable(encoder);
4444 }
4445
4446 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4447 {
4448 struct drm_device *dev = crtc->base.dev;
4449 struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451 if (!crtc->config.gmch_pfit.control)
4452 return;
4453
4454 assert_pipe_disabled(dev_priv, crtc->pipe);
4455
4456 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4457 I915_READ(PFIT_CONTROL));
4458 I915_WRITE(PFIT_CONTROL, 0);
4459 }
4460
4461 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4462 {
4463 struct drm_device *dev = crtc->dev;
4464 struct drm_i915_private *dev_priv = dev->dev_private;
4465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4466 struct intel_encoder *encoder;
4467 int pipe = intel_crtc->pipe;
4468 int plane = intel_crtc->plane;
4469
4470 if (!intel_crtc->active)
4471 return;
4472
4473 for_each_encoder_on_crtc(dev, crtc, encoder)
4474 encoder->disable(encoder);
4475
4476 /* Give the overlay scaler a chance to disable if it's on this pipe */
4477 intel_crtc_wait_for_pending_flips(crtc);
4478 drm_vblank_off(dev, pipe);
4479
4480 if (dev_priv->fbc.plane == plane)
4481 intel_disable_fbc(dev);
4482
4483 intel_crtc_dpms_overlay(intel_crtc, false);
4484 intel_crtc_update_cursor(crtc, false);
4485 intel_disable_planes(crtc);
4486 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
4487
4488 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4489 intel_disable_pipe(dev_priv, pipe);
4490
4491 i9xx_pfit_disable(intel_crtc);
4492
4493 for_each_encoder_on_crtc(dev, crtc, encoder)
4494 if (encoder->post_disable)
4495 encoder->post_disable(encoder);
4496
4497 if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4498 vlv_disable_pll(dev_priv, pipe);
4499 else if (!IS_VALLEYVIEW(dev))
4500 i9xx_disable_pll(dev_priv, pipe);
4501
4502 intel_crtc->active = false;
4503 intel_update_watermarks(crtc);
4504
4505 intel_update_fbc(dev);
4506 }
4507
4508 static void i9xx_crtc_off(struct drm_crtc *crtc)
4509 {
4510 }
4511
4512 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4513 bool enabled)
4514 {
4515 struct drm_device *dev = crtc->dev;
4516 struct drm_i915_master_private *master_priv;
4517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4518 int pipe = intel_crtc->pipe;
4519
4520 if (!dev->primary->master)
4521 return;
4522
4523 master_priv = dev->primary->master->driver_priv;
4524 if (!master_priv->sarea_priv)
4525 return;
4526
4527 switch (pipe) {
4528 case 0:
4529 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4530 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4531 break;
4532 case 1:
4533 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4534 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4535 break;
4536 default:
4537 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4538 break;
4539 }
4540 }
4541
4542 /**
4543 * Sets the power management mode of the pipe and plane.
4544 */
4545 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4546 {
4547 struct drm_device *dev = crtc->dev;
4548 struct drm_i915_private *dev_priv = dev->dev_private;
4549 struct intel_encoder *intel_encoder;
4550 bool enable = false;
4551
4552 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4553 enable |= intel_encoder->connectors_active;
4554
4555 if (enable)
4556 dev_priv->display.crtc_enable(crtc);
4557 else
4558 dev_priv->display.crtc_disable(crtc);
4559
4560 intel_crtc_update_sarea(crtc, enable);
4561 }
4562
4563 static void intel_crtc_disable(struct drm_crtc *crtc)
4564 {
4565 struct drm_device *dev = crtc->dev;
4566 struct drm_connector *connector;
4567 struct drm_i915_private *dev_priv = dev->dev_private;
4568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4569
4570 /* crtc should still be enabled when we disable it. */
4571 WARN_ON(!crtc->enabled);
4572
4573 dev_priv->display.crtc_disable(crtc);
4574 intel_crtc->eld_vld = false;
4575 intel_crtc_update_sarea(crtc, false);
4576 dev_priv->display.off(crtc);
4577
4578 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4579 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4580 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4581
4582 if (crtc->primary->fb) {
4583 mutex_lock(&dev->struct_mutex);
4584 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4585 mutex_unlock(&dev->struct_mutex);
4586 crtc->primary->fb = NULL;
4587 }
4588
4589 /* Update computed state. */
4590 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4591 if (!connector->encoder || !connector->encoder->crtc)
4592 continue;
4593
4594 if (connector->encoder->crtc != crtc)
4595 continue;
4596
4597 connector->dpms = DRM_MODE_DPMS_OFF;
4598 to_intel_encoder(connector->encoder)->connectors_active = false;
4599 }
4600 }
4601
4602 void intel_encoder_destroy(struct drm_encoder *encoder)
4603 {
4604 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4605
4606 drm_encoder_cleanup(encoder);
4607 kfree(intel_encoder);
4608 }
4609
4610 /* Simple dpms helper for encoders with just one connector, no cloning and only
4611 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4612 * state of the entire output pipe. */
4613 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4614 {
4615 if (mode == DRM_MODE_DPMS_ON) {
4616 encoder->connectors_active = true;
4617
4618 intel_crtc_update_dpms(encoder->base.crtc);
4619 } else {
4620 encoder->connectors_active = false;
4621
4622 intel_crtc_update_dpms(encoder->base.crtc);
4623 }
4624 }
4625
4626 /* Cross check the actual hw state with our own modeset state tracking (and it's
4627 * internal consistency). */
4628 static void intel_connector_check_state(struct intel_connector *connector)
4629 {
4630 if (connector->get_hw_state(connector)) {
4631 struct intel_encoder *encoder = connector->encoder;
4632 struct drm_crtc *crtc;
4633 bool encoder_enabled;
4634 enum pipe pipe;
4635
4636 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4637 connector->base.base.id,
4638 drm_get_connector_name(&connector->base));
4639
4640 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4641 "wrong connector dpms state\n");
4642 WARN(connector->base.encoder != &encoder->base,
4643 "active connector not linked to encoder\n");
4644 WARN(!encoder->connectors_active,
4645 "encoder->connectors_active not set\n");
4646
4647 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4648 WARN(!encoder_enabled, "encoder not enabled\n");
4649 if (WARN_ON(!encoder->base.crtc))
4650 return;
4651
4652 crtc = encoder->base.crtc;
4653
4654 WARN(!crtc->enabled, "crtc not enabled\n");
4655 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4656 WARN(pipe != to_intel_crtc(crtc)->pipe,
4657 "encoder active on the wrong pipe\n");
4658 }
4659 }
4660
4661 /* Even simpler default implementation, if there's really no special case to
4662 * consider. */
4663 void intel_connector_dpms(struct drm_connector *connector, int mode)
4664 {
4665 /* All the simple cases only support two dpms states. */
4666 if (mode != DRM_MODE_DPMS_ON)
4667 mode = DRM_MODE_DPMS_OFF;
4668
4669 if (mode == connector->dpms)
4670 return;
4671
4672 connector->dpms = mode;
4673
4674 /* Only need to change hw state when actually enabled */
4675 if (connector->encoder)
4676 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4677
4678 intel_modeset_check_state(connector->dev);
4679 }
4680
4681 /* Simple connector->get_hw_state implementation for encoders that support only
4682 * one connector and no cloning and hence the encoder state determines the state
4683 * of the connector. */
4684 bool intel_connector_get_hw_state(struct intel_connector *connector)
4685 {
4686 enum pipe pipe = 0;
4687 struct intel_encoder *encoder = connector->encoder;
4688
4689 return encoder->get_hw_state(encoder, &pipe);
4690 }
4691
4692 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4693 struct intel_crtc_config *pipe_config)
4694 {
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 struct intel_crtc *pipe_B_crtc =
4697 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4698
4699 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4700 pipe_name(pipe), pipe_config->fdi_lanes);
4701 if (pipe_config->fdi_lanes > 4) {
4702 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4703 pipe_name(pipe), pipe_config->fdi_lanes);
4704 return false;
4705 }
4706
4707 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4708 if (pipe_config->fdi_lanes > 2) {
4709 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4710 pipe_config->fdi_lanes);
4711 return false;
4712 } else {
4713 return true;
4714 }
4715 }
4716
4717 if (INTEL_INFO(dev)->num_pipes == 2)
4718 return true;
4719
4720 /* Ivybridge 3 pipe is really complicated */
4721 switch (pipe) {
4722 case PIPE_A:
4723 return true;
4724 case PIPE_B:
4725 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4726 pipe_config->fdi_lanes > 2) {
4727 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4728 pipe_name(pipe), pipe_config->fdi_lanes);
4729 return false;
4730 }
4731 return true;
4732 case PIPE_C:
4733 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4734 pipe_B_crtc->config.fdi_lanes <= 2) {
4735 if (pipe_config->fdi_lanes > 2) {
4736 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4737 pipe_name(pipe), pipe_config->fdi_lanes);
4738 return false;
4739 }
4740 } else {
4741 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4742 return false;
4743 }
4744 return true;
4745 default:
4746 BUG();
4747 }
4748 }
4749
4750 #define RETRY 1
4751 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4752 struct intel_crtc_config *pipe_config)
4753 {
4754 struct drm_device *dev = intel_crtc->base.dev;
4755 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4756 int lane, link_bw, fdi_dotclock;
4757 bool setup_ok, needs_recompute = false;
4758
4759 retry:
4760 /* FDI is a binary signal running at ~2.7GHz, encoding
4761 * each output octet as 10 bits. The actual frequency
4762 * is stored as a divider into a 100MHz clock, and the
4763 * mode pixel clock is stored in units of 1KHz.
4764 * Hence the bw of each lane in terms of the mode signal
4765 * is:
4766 */
4767 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4768
4769 fdi_dotclock = adjusted_mode->crtc_clock;
4770
4771 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4772 pipe_config->pipe_bpp);
4773
4774 pipe_config->fdi_lanes = lane;
4775
4776 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4777 link_bw, &pipe_config->fdi_m_n);
4778
4779 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4780 intel_crtc->pipe, pipe_config);
4781 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4782 pipe_config->pipe_bpp -= 2*3;
4783 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4784 pipe_config->pipe_bpp);
4785 needs_recompute = true;
4786 pipe_config->bw_constrained = true;
4787
4788 goto retry;
4789 }
4790
4791 if (needs_recompute)
4792 return RETRY;
4793
4794 return setup_ok ? 0 : -EINVAL;
4795 }
4796
4797 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4798 struct intel_crtc_config *pipe_config)
4799 {
4800 pipe_config->ips_enabled = i915.enable_ips &&
4801 hsw_crtc_supports_ips(crtc) &&
4802 pipe_config->pipe_bpp <= 24;
4803 }
4804
4805 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4806 struct intel_crtc_config *pipe_config)
4807 {
4808 struct drm_device *dev = crtc->base.dev;
4809 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4810
4811 /* FIXME should check pixel clock limits on all platforms */
4812 if (INTEL_INFO(dev)->gen < 4) {
4813 struct drm_i915_private *dev_priv = dev->dev_private;
4814 int clock_limit =
4815 dev_priv->display.get_display_clock_speed(dev);
4816
4817 /*
4818 * Enable pixel doubling when the dot clock
4819 * is > 90% of the (display) core speed.
4820 *
4821 * GDG double wide on either pipe,
4822 * otherwise pipe A only.
4823 */
4824 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4825 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4826 clock_limit *= 2;
4827 pipe_config->double_wide = true;
4828 }
4829
4830 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4831 return -EINVAL;
4832 }
4833
4834 /*
4835 * Pipe horizontal size must be even in:
4836 * - DVO ganged mode
4837 * - LVDS dual channel mode
4838 * - Double wide pipe
4839 */
4840 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4841 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4842 pipe_config->pipe_src_w &= ~1;
4843
4844 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4845 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4846 */
4847 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4848 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4849 return -EINVAL;
4850
4851 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4852 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4853 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4854 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4855 * for lvds. */
4856 pipe_config->pipe_bpp = 8*3;
4857 }
4858
4859 if (HAS_IPS(dev))
4860 hsw_compute_ips_config(crtc, pipe_config);
4861
4862 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4863 * clock survives for now. */
4864 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4865 pipe_config->shared_dpll = crtc->config.shared_dpll;
4866
4867 if (pipe_config->has_pch_encoder)
4868 return ironlake_fdi_compute_config(crtc, pipe_config);
4869
4870 return 0;
4871 }
4872
4873 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4874 {
4875 return 400000; /* FIXME */
4876 }
4877
4878 static int i945_get_display_clock_speed(struct drm_device *dev)
4879 {
4880 return 400000;
4881 }
4882
4883 static int i915_get_display_clock_speed(struct drm_device *dev)
4884 {
4885 return 333000;
4886 }
4887
4888 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4889 {
4890 return 200000;
4891 }
4892
4893 static int pnv_get_display_clock_speed(struct drm_device *dev)
4894 {
4895 u16 gcfgc = 0;
4896
4897 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4898
4899 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4900 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4901 return 267000;
4902 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4903 return 333000;
4904 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4905 return 444000;
4906 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4907 return 200000;
4908 default:
4909 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4910 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4911 return 133000;
4912 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4913 return 167000;
4914 }
4915 }
4916
4917 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4918 {
4919 u16 gcfgc = 0;
4920
4921 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4922
4923 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4924 return 133000;
4925 else {
4926 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4927 case GC_DISPLAY_CLOCK_333_MHZ:
4928 return 333000;
4929 default:
4930 case GC_DISPLAY_CLOCK_190_200_MHZ:
4931 return 190000;
4932 }
4933 }
4934 }
4935
4936 static int i865_get_display_clock_speed(struct drm_device *dev)
4937 {
4938 return 266000;
4939 }
4940
4941 static int i855_get_display_clock_speed(struct drm_device *dev)
4942 {
4943 u16 hpllcc = 0;
4944 /* Assume that the hardware is in the high speed state. This
4945 * should be the default.
4946 */
4947 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4948 case GC_CLOCK_133_200:
4949 case GC_CLOCK_100_200:
4950 return 200000;
4951 case GC_CLOCK_166_250:
4952 return 250000;
4953 case GC_CLOCK_100_133:
4954 return 133000;
4955 }
4956
4957 /* Shouldn't happen */
4958 return 0;
4959 }
4960
4961 static int i830_get_display_clock_speed(struct drm_device *dev)
4962 {
4963 return 133000;
4964 }
4965
4966 static void
4967 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4968 {
4969 while (*num > DATA_LINK_M_N_MASK ||
4970 *den > DATA_LINK_M_N_MASK) {
4971 *num >>= 1;
4972 *den >>= 1;
4973 }
4974 }
4975
4976 static void compute_m_n(unsigned int m, unsigned int n,
4977 uint32_t *ret_m, uint32_t *ret_n)
4978 {
4979 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4980 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4981 intel_reduce_m_n_ratio(ret_m, ret_n);
4982 }
4983
4984 void
4985 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4986 int pixel_clock, int link_clock,
4987 struct intel_link_m_n *m_n)
4988 {
4989 m_n->tu = 64;
4990
4991 compute_m_n(bits_per_pixel * pixel_clock,
4992 link_clock * nlanes * 8,
4993 &m_n->gmch_m, &m_n->gmch_n);
4994
4995 compute_m_n(pixel_clock, link_clock,
4996 &m_n->link_m, &m_n->link_n);
4997 }
4998
4999 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5000 {
5001 if (i915.panel_use_ssc >= 0)
5002 return i915.panel_use_ssc != 0;
5003 return dev_priv->vbt.lvds_use_ssc
5004 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5005 }
5006
5007 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5008 {
5009 struct drm_device *dev = crtc->dev;
5010 struct drm_i915_private *dev_priv = dev->dev_private;
5011 int refclk;
5012
5013 if (IS_VALLEYVIEW(dev)) {
5014 refclk = 100000;
5015 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5016 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5017 refclk = dev_priv->vbt.lvds_ssc_freq;
5018 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5019 } else if (!IS_GEN2(dev)) {
5020 refclk = 96000;
5021 } else {
5022 refclk = 48000;
5023 }
5024
5025 return refclk;
5026 }
5027
5028 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5029 {
5030 return (1 << dpll->n) << 16 | dpll->m2;
5031 }
5032
5033 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5034 {
5035 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5036 }
5037
5038 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5039 intel_clock_t *reduced_clock)
5040 {
5041 struct drm_device *dev = crtc->base.dev;
5042 struct drm_i915_private *dev_priv = dev->dev_private;
5043 int pipe = crtc->pipe;
5044 u32 fp, fp2 = 0;
5045
5046 if (IS_PINEVIEW(dev)) {
5047 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5048 if (reduced_clock)
5049 fp2 = pnv_dpll_compute_fp(reduced_clock);
5050 } else {
5051 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5052 if (reduced_clock)
5053 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5054 }
5055
5056 I915_WRITE(FP0(pipe), fp);
5057 crtc->config.dpll_hw_state.fp0 = fp;
5058
5059 crtc->lowfreq_avail = false;
5060 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5061 reduced_clock && i915.powersave) {
5062 I915_WRITE(FP1(pipe), fp2);
5063 crtc->config.dpll_hw_state.fp1 = fp2;
5064 crtc->lowfreq_avail = true;
5065 } else {
5066 I915_WRITE(FP1(pipe), fp);
5067 crtc->config.dpll_hw_state.fp1 = fp;
5068 }
5069 }
5070
5071 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5072 pipe)
5073 {
5074 u32 reg_val;
5075
5076 /*
5077 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5078 * and set it to a reasonable value instead.
5079 */
5080 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5081 reg_val &= 0xffffff00;
5082 reg_val |= 0x00000030;
5083 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5084
5085 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5086 reg_val &= 0x8cffffff;
5087 reg_val = 0x8c000000;
5088 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5089
5090 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5091 reg_val &= 0xffffff00;
5092 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5093
5094 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5095 reg_val &= 0x00ffffff;
5096 reg_val |= 0xb0000000;
5097 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5098 }
5099
5100 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5101 struct intel_link_m_n *m_n)
5102 {
5103 struct drm_device *dev = crtc->base.dev;
5104 struct drm_i915_private *dev_priv = dev->dev_private;
5105 int pipe = crtc->pipe;
5106
5107 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5108 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5109 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5110 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5111 }
5112
5113 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5114 struct intel_link_m_n *m_n)
5115 {
5116 struct drm_device *dev = crtc->base.dev;
5117 struct drm_i915_private *dev_priv = dev->dev_private;
5118 int pipe = crtc->pipe;
5119 enum transcoder transcoder = crtc->config.cpu_transcoder;
5120
5121 if (INTEL_INFO(dev)->gen >= 5) {
5122 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5123 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5124 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5125 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5126 } else {
5127 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5128 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5129 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5130 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5131 }
5132 }
5133
5134 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5135 {
5136 if (crtc->config.has_pch_encoder)
5137 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5138 else
5139 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5140 }
5141
5142 static void vlv_update_pll(struct intel_crtc *crtc)
5143 {
5144 struct drm_device *dev = crtc->base.dev;
5145 struct drm_i915_private *dev_priv = dev->dev_private;
5146 int pipe = crtc->pipe;
5147 u32 dpll, mdiv;
5148 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5149 u32 coreclk, reg_val, dpll_md;
5150
5151 mutex_lock(&dev_priv->dpio_lock);
5152
5153 bestn = crtc->config.dpll.n;
5154 bestm1 = crtc->config.dpll.m1;
5155 bestm2 = crtc->config.dpll.m2;
5156 bestp1 = crtc->config.dpll.p1;
5157 bestp2 = crtc->config.dpll.p2;
5158
5159 /* See eDP HDMI DPIO driver vbios notes doc */
5160
5161 /* PLL B needs special handling */
5162 if (pipe)
5163 vlv_pllb_recal_opamp(dev_priv, pipe);
5164
5165 /* Set up Tx target for periodic Rcomp update */
5166 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5167
5168 /* Disable target IRef on PLL */
5169 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5170 reg_val &= 0x00ffffff;
5171 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5172
5173 /* Disable fast lock */
5174 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5175
5176 /* Set idtafcrecal before PLL is enabled */
5177 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5178 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5179 mdiv |= ((bestn << DPIO_N_SHIFT));
5180 mdiv |= (1 << DPIO_K_SHIFT);
5181
5182 /*
5183 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5184 * but we don't support that).
5185 * Note: don't use the DAC post divider as it seems unstable.
5186 */
5187 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5188 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5189
5190 mdiv |= DPIO_ENABLE_CALIBRATION;
5191 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5192
5193 /* Set HBR and RBR LPF coefficients */
5194 if (crtc->config.port_clock == 162000 ||
5195 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5196 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5197 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5198 0x009f0003);
5199 else
5200 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5201 0x00d0000f);
5202
5203 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5204 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5205 /* Use SSC source */
5206 if (!pipe)
5207 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5208 0x0df40000);
5209 else
5210 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5211 0x0df70000);
5212 } else { /* HDMI or VGA */
5213 /* Use bend source */
5214 if (!pipe)
5215 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5216 0x0df70000);
5217 else
5218 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5219 0x0df40000);
5220 }
5221
5222 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5223 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5224 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5225 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5226 coreclk |= 0x01000000;
5227 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5228
5229 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5230
5231 /*
5232 * Enable DPIO clock input. We should never disable the reference
5233 * clock for pipe B, since VGA hotplug / manual detection depends
5234 * on it.
5235 */
5236 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5237 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5238 /* We should never disable this, set it here for state tracking */
5239 if (pipe == PIPE_B)
5240 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5241 dpll |= DPLL_VCO_ENABLE;
5242 crtc->config.dpll_hw_state.dpll = dpll;
5243
5244 dpll_md = (crtc->config.pixel_multiplier - 1)
5245 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5246 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5247
5248 if (crtc->config.has_dp_encoder)
5249 intel_dp_set_m_n(crtc);
5250
5251 mutex_unlock(&dev_priv->dpio_lock);
5252 }
5253
5254 static void i9xx_update_pll(struct intel_crtc *crtc,
5255 intel_clock_t *reduced_clock,
5256 int num_connectors)
5257 {
5258 struct drm_device *dev = crtc->base.dev;
5259 struct drm_i915_private *dev_priv = dev->dev_private;
5260 u32 dpll;
5261 bool is_sdvo;
5262 struct dpll *clock = &crtc->config.dpll;
5263
5264 i9xx_update_pll_dividers(crtc, reduced_clock);
5265
5266 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5267 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5268
5269 dpll = DPLL_VGA_MODE_DIS;
5270
5271 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5272 dpll |= DPLLB_MODE_LVDS;
5273 else
5274 dpll |= DPLLB_MODE_DAC_SERIAL;
5275
5276 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5277 dpll |= (crtc->config.pixel_multiplier - 1)
5278 << SDVO_MULTIPLIER_SHIFT_HIRES;
5279 }
5280
5281 if (is_sdvo)
5282 dpll |= DPLL_SDVO_HIGH_SPEED;
5283
5284 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5285 dpll |= DPLL_SDVO_HIGH_SPEED;
5286
5287 /* compute bitmask from p1 value */
5288 if (IS_PINEVIEW(dev))
5289 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5290 else {
5291 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5292 if (IS_G4X(dev) && reduced_clock)
5293 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5294 }
5295 switch (clock->p2) {
5296 case 5:
5297 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5298 break;
5299 case 7:
5300 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5301 break;
5302 case 10:
5303 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5304 break;
5305 case 14:
5306 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5307 break;
5308 }
5309 if (INTEL_INFO(dev)->gen >= 4)
5310 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5311
5312 if (crtc->config.sdvo_tv_clock)
5313 dpll |= PLL_REF_INPUT_TVCLKINBC;
5314 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5315 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5316 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5317 else
5318 dpll |= PLL_REF_INPUT_DREFCLK;
5319
5320 dpll |= DPLL_VCO_ENABLE;
5321 crtc->config.dpll_hw_state.dpll = dpll;
5322
5323 if (INTEL_INFO(dev)->gen >= 4) {
5324 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5325 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5326 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5327 }
5328
5329 if (crtc->config.has_dp_encoder)
5330 intel_dp_set_m_n(crtc);
5331 }
5332
5333 static void i8xx_update_pll(struct intel_crtc *crtc,
5334 intel_clock_t *reduced_clock,
5335 int num_connectors)
5336 {
5337 struct drm_device *dev = crtc->base.dev;
5338 struct drm_i915_private *dev_priv = dev->dev_private;
5339 u32 dpll;
5340 struct dpll *clock = &crtc->config.dpll;
5341
5342 i9xx_update_pll_dividers(crtc, reduced_clock);
5343
5344 dpll = DPLL_VGA_MODE_DIS;
5345
5346 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5347 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5348 } else {
5349 if (clock->p1 == 2)
5350 dpll |= PLL_P1_DIVIDE_BY_TWO;
5351 else
5352 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5353 if (clock->p2 == 4)
5354 dpll |= PLL_P2_DIVIDE_BY_4;
5355 }
5356
5357 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5358 dpll |= DPLL_DVO_2X_MODE;
5359
5360 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5361 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5362 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5363 else
5364 dpll |= PLL_REF_INPUT_DREFCLK;
5365
5366 dpll |= DPLL_VCO_ENABLE;
5367 crtc->config.dpll_hw_state.dpll = dpll;
5368 }
5369
5370 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5371 {
5372 struct drm_device *dev = intel_crtc->base.dev;
5373 struct drm_i915_private *dev_priv = dev->dev_private;
5374 enum pipe pipe = intel_crtc->pipe;
5375 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5376 struct drm_display_mode *adjusted_mode =
5377 &intel_crtc->config.adjusted_mode;
5378 uint32_t crtc_vtotal, crtc_vblank_end;
5379 int vsyncshift = 0;
5380
5381 /* We need to be careful not to changed the adjusted mode, for otherwise
5382 * the hw state checker will get angry at the mismatch. */
5383 crtc_vtotal = adjusted_mode->crtc_vtotal;
5384 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5385
5386 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5387 /* the chip adds 2 halflines automatically */
5388 crtc_vtotal -= 1;
5389 crtc_vblank_end -= 1;
5390
5391 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5392 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5393 else
5394 vsyncshift = adjusted_mode->crtc_hsync_start -
5395 adjusted_mode->crtc_htotal / 2;
5396 if (vsyncshift < 0)
5397 vsyncshift += adjusted_mode->crtc_htotal;
5398 }
5399
5400 if (INTEL_INFO(dev)->gen > 3)
5401 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5402
5403 I915_WRITE(HTOTAL(cpu_transcoder),
5404 (adjusted_mode->crtc_hdisplay - 1) |
5405 ((adjusted_mode->crtc_htotal - 1) << 16));
5406 I915_WRITE(HBLANK(cpu_transcoder),
5407 (adjusted_mode->crtc_hblank_start - 1) |
5408 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5409 I915_WRITE(HSYNC(cpu_transcoder),
5410 (adjusted_mode->crtc_hsync_start - 1) |
5411 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5412
5413 I915_WRITE(VTOTAL(cpu_transcoder),
5414 (adjusted_mode->crtc_vdisplay - 1) |
5415 ((crtc_vtotal - 1) << 16));
5416 I915_WRITE(VBLANK(cpu_transcoder),
5417 (adjusted_mode->crtc_vblank_start - 1) |
5418 ((crtc_vblank_end - 1) << 16));
5419 I915_WRITE(VSYNC(cpu_transcoder),
5420 (adjusted_mode->crtc_vsync_start - 1) |
5421 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5422
5423 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5424 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5425 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5426 * bits. */
5427 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5428 (pipe == PIPE_B || pipe == PIPE_C))
5429 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5430
5431 /* pipesrc controls the size that is scaled from, which should
5432 * always be the user's requested size.
5433 */
5434 I915_WRITE(PIPESRC(pipe),
5435 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5436 (intel_crtc->config.pipe_src_h - 1));
5437 }
5438
5439 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5440 struct intel_crtc_config *pipe_config)
5441 {
5442 struct drm_device *dev = crtc->base.dev;
5443 struct drm_i915_private *dev_priv = dev->dev_private;
5444 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5445 uint32_t tmp;
5446
5447 tmp = I915_READ(HTOTAL(cpu_transcoder));
5448 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5449 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5450 tmp = I915_READ(HBLANK(cpu_transcoder));
5451 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5452 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5453 tmp = I915_READ(HSYNC(cpu_transcoder));
5454 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5455 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5456
5457 tmp = I915_READ(VTOTAL(cpu_transcoder));
5458 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5459 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5460 tmp = I915_READ(VBLANK(cpu_transcoder));
5461 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5462 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5463 tmp = I915_READ(VSYNC(cpu_transcoder));
5464 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5465 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5466
5467 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5468 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5469 pipe_config->adjusted_mode.crtc_vtotal += 1;
5470 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5471 }
5472
5473 tmp = I915_READ(PIPESRC(crtc->pipe));
5474 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5475 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5476
5477 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5478 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5479 }
5480
5481 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5482 struct intel_crtc_config *pipe_config)
5483 {
5484 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5485 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5486 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5487 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5488
5489 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5490 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5491 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5492 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5493
5494 mode->flags = pipe_config->adjusted_mode.flags;
5495
5496 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5497 mode->flags |= pipe_config->adjusted_mode.flags;
5498 }
5499
5500 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5501 {
5502 struct drm_device *dev = intel_crtc->base.dev;
5503 struct drm_i915_private *dev_priv = dev->dev_private;
5504 uint32_t pipeconf;
5505
5506 pipeconf = 0;
5507
5508 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5509 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5510 pipeconf |= PIPECONF_ENABLE;
5511
5512 if (intel_crtc->config.double_wide)
5513 pipeconf |= PIPECONF_DOUBLE_WIDE;
5514
5515 /* only g4x and later have fancy bpc/dither controls */
5516 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5517 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5518 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5519 pipeconf |= PIPECONF_DITHER_EN |
5520 PIPECONF_DITHER_TYPE_SP;
5521
5522 switch (intel_crtc->config.pipe_bpp) {
5523 case 18:
5524 pipeconf |= PIPECONF_6BPC;
5525 break;
5526 case 24:
5527 pipeconf |= PIPECONF_8BPC;
5528 break;
5529 case 30:
5530 pipeconf |= PIPECONF_10BPC;
5531 break;
5532 default:
5533 /* Case prevented by intel_choose_pipe_bpp_dither. */
5534 BUG();
5535 }
5536 }
5537
5538 if (HAS_PIPE_CXSR(dev)) {
5539 if (intel_crtc->lowfreq_avail) {
5540 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5541 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5542 } else {
5543 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5544 }
5545 }
5546
5547 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5548 if (INTEL_INFO(dev)->gen < 4 ||
5549 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5550 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5551 else
5552 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5553 } else
5554 pipeconf |= PIPECONF_PROGRESSIVE;
5555
5556 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5557 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5558
5559 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5560 POSTING_READ(PIPECONF(intel_crtc->pipe));
5561 }
5562
5563 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5564 int x, int y,
5565 struct drm_framebuffer *fb)
5566 {
5567 struct drm_device *dev = crtc->dev;
5568 struct drm_i915_private *dev_priv = dev->dev_private;
5569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5570 int pipe = intel_crtc->pipe;
5571 int plane = intel_crtc->plane;
5572 int refclk, num_connectors = 0;
5573 intel_clock_t clock, reduced_clock;
5574 u32 dspcntr;
5575 bool ok, has_reduced_clock = false;
5576 bool is_lvds = false, is_dsi = false;
5577 struct intel_encoder *encoder;
5578 const intel_limit_t *limit;
5579 int ret;
5580
5581 for_each_encoder_on_crtc(dev, crtc, encoder) {
5582 switch (encoder->type) {
5583 case INTEL_OUTPUT_LVDS:
5584 is_lvds = true;
5585 break;
5586 case INTEL_OUTPUT_DSI:
5587 is_dsi = true;
5588 break;
5589 }
5590
5591 num_connectors++;
5592 }
5593
5594 if (is_dsi)
5595 goto skip_dpll;
5596
5597 if (!intel_crtc->config.clock_set) {
5598 refclk = i9xx_get_refclk(crtc, num_connectors);
5599
5600 /*
5601 * Returns a set of divisors for the desired target clock with
5602 * the given refclk, or FALSE. The returned values represent
5603 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5604 * 2) / p1 / p2.
5605 */
5606 limit = intel_limit(crtc, refclk);
5607 ok = dev_priv->display.find_dpll(limit, crtc,
5608 intel_crtc->config.port_clock,
5609 refclk, NULL, &clock);
5610 if (!ok) {
5611 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5612 return -EINVAL;
5613 }
5614
5615 if (is_lvds && dev_priv->lvds_downclock_avail) {
5616 /*
5617 * Ensure we match the reduced clock's P to the target
5618 * clock. If the clocks don't match, we can't switch
5619 * the display clock by using the FP0/FP1. In such case
5620 * we will disable the LVDS downclock feature.
5621 */
5622 has_reduced_clock =
5623 dev_priv->display.find_dpll(limit, crtc,
5624 dev_priv->lvds_downclock,
5625 refclk, &clock,
5626 &reduced_clock);
5627 }
5628 /* Compat-code for transition, will disappear. */
5629 intel_crtc->config.dpll.n = clock.n;
5630 intel_crtc->config.dpll.m1 = clock.m1;
5631 intel_crtc->config.dpll.m2 = clock.m2;
5632 intel_crtc->config.dpll.p1 = clock.p1;
5633 intel_crtc->config.dpll.p2 = clock.p2;
5634 }
5635
5636 if (IS_GEN2(dev)) {
5637 i8xx_update_pll(intel_crtc,
5638 has_reduced_clock ? &reduced_clock : NULL,
5639 num_connectors);
5640 } else if (IS_VALLEYVIEW(dev)) {
5641 vlv_update_pll(intel_crtc);
5642 } else {
5643 i9xx_update_pll(intel_crtc,
5644 has_reduced_clock ? &reduced_clock : NULL,
5645 num_connectors);
5646 }
5647
5648 skip_dpll:
5649 /* Set up the display plane register */
5650 dspcntr = DISPPLANE_GAMMA_ENABLE;
5651
5652 if (!IS_VALLEYVIEW(dev)) {
5653 if (pipe == 0)
5654 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5655 else
5656 dspcntr |= DISPPLANE_SEL_PIPE_B;
5657 }
5658
5659 intel_set_pipe_timings(intel_crtc);
5660
5661 /* pipesrc and dspsize control the size that is scaled from,
5662 * which should always be the user's requested size.
5663 */
5664 I915_WRITE(DSPSIZE(plane),
5665 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5666 (intel_crtc->config.pipe_src_w - 1));
5667 I915_WRITE(DSPPOS(plane), 0);
5668
5669 i9xx_set_pipeconf(intel_crtc);
5670
5671 I915_WRITE(DSPCNTR(plane), dspcntr);
5672 POSTING_READ(DSPCNTR(plane));
5673
5674 ret = intel_pipe_set_base(crtc, x, y, fb);
5675
5676 return ret;
5677 }
5678
5679 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5680 struct intel_crtc_config *pipe_config)
5681 {
5682 struct drm_device *dev = crtc->base.dev;
5683 struct drm_i915_private *dev_priv = dev->dev_private;
5684 uint32_t tmp;
5685
5686 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5687 return;
5688
5689 tmp = I915_READ(PFIT_CONTROL);
5690 if (!(tmp & PFIT_ENABLE))
5691 return;
5692
5693 /* Check whether the pfit is attached to our pipe. */
5694 if (INTEL_INFO(dev)->gen < 4) {
5695 if (crtc->pipe != PIPE_B)
5696 return;
5697 } else {
5698 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5699 return;
5700 }
5701
5702 pipe_config->gmch_pfit.control = tmp;
5703 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5704 if (INTEL_INFO(dev)->gen < 5)
5705 pipe_config->gmch_pfit.lvds_border_bits =
5706 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5707 }
5708
5709 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5710 struct intel_crtc_config *pipe_config)
5711 {
5712 struct drm_device *dev = crtc->base.dev;
5713 struct drm_i915_private *dev_priv = dev->dev_private;
5714 int pipe = pipe_config->cpu_transcoder;
5715 intel_clock_t clock;
5716 u32 mdiv;
5717 int refclk = 100000;
5718
5719 mutex_lock(&dev_priv->dpio_lock);
5720 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5721 mutex_unlock(&dev_priv->dpio_lock);
5722
5723 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5724 clock.m2 = mdiv & DPIO_M2DIV_MASK;
5725 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5726 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5727 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5728
5729 vlv_clock(refclk, &clock);
5730
5731 /* clock.dot is the fast clock */
5732 pipe_config->port_clock = clock.dot / 5;
5733 }
5734
5735 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5736 struct intel_plane_config *plane_config)
5737 {
5738 struct drm_device *dev = crtc->base.dev;
5739 struct drm_i915_private *dev_priv = dev->dev_private;
5740 u32 val, base, offset;
5741 int pipe = crtc->pipe, plane = crtc->plane;
5742 int fourcc, pixel_format;
5743 int aligned_height;
5744
5745 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5746 if (!crtc->base.primary->fb) {
5747 DRM_DEBUG_KMS("failed to alloc fb\n");
5748 return;
5749 }
5750
5751 val = I915_READ(DSPCNTR(plane));
5752
5753 if (INTEL_INFO(dev)->gen >= 4)
5754 if (val & DISPPLANE_TILED)
5755 plane_config->tiled = true;
5756
5757 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5758 fourcc = intel_format_to_fourcc(pixel_format);
5759 crtc->base.primary->fb->pixel_format = fourcc;
5760 crtc->base.primary->fb->bits_per_pixel =
5761 drm_format_plane_cpp(fourcc, 0) * 8;
5762
5763 if (INTEL_INFO(dev)->gen >= 4) {
5764 if (plane_config->tiled)
5765 offset = I915_READ(DSPTILEOFF(plane));
5766 else
5767 offset = I915_READ(DSPLINOFF(plane));
5768 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5769 } else {
5770 base = I915_READ(DSPADDR(plane));
5771 }
5772 plane_config->base = base;
5773
5774 val = I915_READ(PIPESRC(pipe));
5775 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5776 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5777
5778 val = I915_READ(DSPSTRIDE(pipe));
5779 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5780
5781 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5782 plane_config->tiled);
5783
5784 plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5785 aligned_height, PAGE_SIZE);
5786
5787 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5788 pipe, plane, crtc->base.primary->fb->width,
5789 crtc->base.primary->fb->height,
5790 crtc->base.primary->fb->bits_per_pixel, base,
5791 crtc->base.primary->fb->pitches[0],
5792 plane_config->size);
5793
5794 }
5795
5796 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5797 struct intel_crtc_config *pipe_config)
5798 {
5799 struct drm_device *dev = crtc->base.dev;
5800 struct drm_i915_private *dev_priv = dev->dev_private;
5801 uint32_t tmp;
5802
5803 if (!intel_display_power_enabled(dev_priv,
5804 POWER_DOMAIN_PIPE(crtc->pipe)))
5805 return false;
5806
5807 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5808 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5809
5810 tmp = I915_READ(PIPECONF(crtc->pipe));
5811 if (!(tmp & PIPECONF_ENABLE))
5812 return false;
5813
5814 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5815 switch (tmp & PIPECONF_BPC_MASK) {
5816 case PIPECONF_6BPC:
5817 pipe_config->pipe_bpp = 18;
5818 break;
5819 case PIPECONF_8BPC:
5820 pipe_config->pipe_bpp = 24;
5821 break;
5822 case PIPECONF_10BPC:
5823 pipe_config->pipe_bpp = 30;
5824 break;
5825 default:
5826 break;
5827 }
5828 }
5829
5830 if (INTEL_INFO(dev)->gen < 4)
5831 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5832
5833 intel_get_pipe_timings(crtc, pipe_config);
5834
5835 i9xx_get_pfit_config(crtc, pipe_config);
5836
5837 if (INTEL_INFO(dev)->gen >= 4) {
5838 tmp = I915_READ(DPLL_MD(crtc->pipe));
5839 pipe_config->pixel_multiplier =
5840 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5841 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5842 pipe_config->dpll_hw_state.dpll_md = tmp;
5843 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5844 tmp = I915_READ(DPLL(crtc->pipe));
5845 pipe_config->pixel_multiplier =
5846 ((tmp & SDVO_MULTIPLIER_MASK)
5847 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5848 } else {
5849 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5850 * port and will be fixed up in the encoder->get_config
5851 * function. */
5852 pipe_config->pixel_multiplier = 1;
5853 }
5854 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5855 if (!IS_VALLEYVIEW(dev)) {
5856 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5857 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5858 } else {
5859 /* Mask out read-only status bits. */
5860 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5861 DPLL_PORTC_READY_MASK |
5862 DPLL_PORTB_READY_MASK);
5863 }
5864
5865 if (IS_VALLEYVIEW(dev))
5866 vlv_crtc_clock_get(crtc, pipe_config);
5867 else
5868 i9xx_crtc_clock_get(crtc, pipe_config);
5869
5870 return true;
5871 }
5872
5873 static void ironlake_init_pch_refclk(struct drm_device *dev)
5874 {
5875 struct drm_i915_private *dev_priv = dev->dev_private;
5876 struct drm_mode_config *mode_config = &dev->mode_config;
5877 struct intel_encoder *encoder;
5878 u32 val, final;
5879 bool has_lvds = false;
5880 bool has_cpu_edp = false;
5881 bool has_panel = false;
5882 bool has_ck505 = false;
5883 bool can_ssc = false;
5884
5885 /* We need to take the global config into account */
5886 list_for_each_entry(encoder, &mode_config->encoder_list,
5887 base.head) {
5888 switch (encoder->type) {
5889 case INTEL_OUTPUT_LVDS:
5890 has_panel = true;
5891 has_lvds = true;
5892 break;
5893 case INTEL_OUTPUT_EDP:
5894 has_panel = true;
5895 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5896 has_cpu_edp = true;
5897 break;
5898 }
5899 }
5900
5901 if (HAS_PCH_IBX(dev)) {
5902 has_ck505 = dev_priv->vbt.display_clock_mode;
5903 can_ssc = has_ck505;
5904 } else {
5905 has_ck505 = false;
5906 can_ssc = true;
5907 }
5908
5909 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5910 has_panel, has_lvds, has_ck505);
5911
5912 /* Ironlake: try to setup display ref clock before DPLL
5913 * enabling. This is only under driver's control after
5914 * PCH B stepping, previous chipset stepping should be
5915 * ignoring this setting.
5916 */
5917 val = I915_READ(PCH_DREF_CONTROL);
5918
5919 /* As we must carefully and slowly disable/enable each source in turn,
5920 * compute the final state we want first and check if we need to
5921 * make any changes at all.
5922 */
5923 final = val;
5924 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5925 if (has_ck505)
5926 final |= DREF_NONSPREAD_CK505_ENABLE;
5927 else
5928 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5929
5930 final &= ~DREF_SSC_SOURCE_MASK;
5931 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5932 final &= ~DREF_SSC1_ENABLE;
5933
5934 if (has_panel) {
5935 final |= DREF_SSC_SOURCE_ENABLE;
5936
5937 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5938 final |= DREF_SSC1_ENABLE;
5939
5940 if (has_cpu_edp) {
5941 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5942 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5943 else
5944 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5945 } else
5946 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5947 } else {
5948 final |= DREF_SSC_SOURCE_DISABLE;
5949 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5950 }
5951
5952 if (final == val)
5953 return;
5954
5955 /* Always enable nonspread source */
5956 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5957
5958 if (has_ck505)
5959 val |= DREF_NONSPREAD_CK505_ENABLE;
5960 else
5961 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5962
5963 if (has_panel) {
5964 val &= ~DREF_SSC_SOURCE_MASK;
5965 val |= DREF_SSC_SOURCE_ENABLE;
5966
5967 /* SSC must be turned on before enabling the CPU output */
5968 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5969 DRM_DEBUG_KMS("Using SSC on panel\n");
5970 val |= DREF_SSC1_ENABLE;
5971 } else
5972 val &= ~DREF_SSC1_ENABLE;
5973
5974 /* Get SSC going before enabling the outputs */
5975 I915_WRITE(PCH_DREF_CONTROL, val);
5976 POSTING_READ(PCH_DREF_CONTROL);
5977 udelay(200);
5978
5979 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5980
5981 /* Enable CPU source on CPU attached eDP */
5982 if (has_cpu_edp) {
5983 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5984 DRM_DEBUG_KMS("Using SSC on eDP\n");
5985 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5986 }
5987 else
5988 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5989 } else
5990 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5991
5992 I915_WRITE(PCH_DREF_CONTROL, val);
5993 POSTING_READ(PCH_DREF_CONTROL);
5994 udelay(200);
5995 } else {
5996 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5997
5998 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5999
6000 /* Turn off CPU output */
6001 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6002
6003 I915_WRITE(PCH_DREF_CONTROL, val);
6004 POSTING_READ(PCH_DREF_CONTROL);
6005 udelay(200);
6006
6007 /* Turn off the SSC source */
6008 val &= ~DREF_SSC_SOURCE_MASK;
6009 val |= DREF_SSC_SOURCE_DISABLE;
6010
6011 /* Turn off SSC1 */
6012 val &= ~DREF_SSC1_ENABLE;
6013
6014 I915_WRITE(PCH_DREF_CONTROL, val);
6015 POSTING_READ(PCH_DREF_CONTROL);
6016 udelay(200);
6017 }
6018
6019 BUG_ON(val != final);
6020 }
6021
6022 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6023 {
6024 uint32_t tmp;
6025
6026 tmp = I915_READ(SOUTH_CHICKEN2);
6027 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6028 I915_WRITE(SOUTH_CHICKEN2, tmp);
6029
6030 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6031 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6032 DRM_ERROR("FDI mPHY reset assert timeout\n");
6033
6034 tmp = I915_READ(SOUTH_CHICKEN2);
6035 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6036 I915_WRITE(SOUTH_CHICKEN2, tmp);
6037
6038 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6039 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6040 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6041 }
6042
6043 /* WaMPhyProgramming:hsw */
6044 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6045 {
6046 uint32_t tmp;
6047
6048 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6049 tmp &= ~(0xFF << 24);
6050 tmp |= (0x12 << 24);
6051 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6052
6053 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6054 tmp |= (1 << 11);
6055 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6056
6057 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6058 tmp |= (1 << 11);
6059 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6060
6061 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6062 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6063 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6064
6065 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6066 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6067 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6068
6069 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6070 tmp &= ~(7 << 13);
6071 tmp |= (5 << 13);
6072 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6073
6074 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6075 tmp &= ~(7 << 13);
6076 tmp |= (5 << 13);
6077 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6078
6079 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6080 tmp &= ~0xFF;
6081 tmp |= 0x1C;
6082 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6083
6084 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6085 tmp &= ~0xFF;
6086 tmp |= 0x1C;
6087 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6088
6089 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6090 tmp &= ~(0xFF << 16);
6091 tmp |= (0x1C << 16);
6092 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6093
6094 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6095 tmp &= ~(0xFF << 16);
6096 tmp |= (0x1C << 16);
6097 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6098
6099 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6100 tmp |= (1 << 27);
6101 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6102
6103 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6104 tmp |= (1 << 27);
6105 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6106
6107 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6108 tmp &= ~(0xF << 28);
6109 tmp |= (4 << 28);
6110 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6111
6112 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6113 tmp &= ~(0xF << 28);
6114 tmp |= (4 << 28);
6115 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6116 }
6117
6118 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6119 * Programming" based on the parameters passed:
6120 * - Sequence to enable CLKOUT_DP
6121 * - Sequence to enable CLKOUT_DP without spread
6122 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6123 */
6124 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6125 bool with_fdi)
6126 {
6127 struct drm_i915_private *dev_priv = dev->dev_private;
6128 uint32_t reg, tmp;
6129
6130 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6131 with_spread = true;
6132 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6133 with_fdi, "LP PCH doesn't have FDI\n"))
6134 with_fdi = false;
6135
6136 mutex_lock(&dev_priv->dpio_lock);
6137
6138 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6139 tmp &= ~SBI_SSCCTL_DISABLE;
6140 tmp |= SBI_SSCCTL_PATHALT;
6141 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6142
6143 udelay(24);
6144
6145 if (with_spread) {
6146 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6147 tmp &= ~SBI_SSCCTL_PATHALT;
6148 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6149
6150 if (with_fdi) {
6151 lpt_reset_fdi_mphy(dev_priv);
6152 lpt_program_fdi_mphy(dev_priv);
6153 }
6154 }
6155
6156 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6157 SBI_GEN0 : SBI_DBUFF0;
6158 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6159 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6160 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6161
6162 mutex_unlock(&dev_priv->dpio_lock);
6163 }
6164
6165 /* Sequence to disable CLKOUT_DP */
6166 static void lpt_disable_clkout_dp(struct drm_device *dev)
6167 {
6168 struct drm_i915_private *dev_priv = dev->dev_private;
6169 uint32_t reg, tmp;
6170
6171 mutex_lock(&dev_priv->dpio_lock);
6172
6173 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6174 SBI_GEN0 : SBI_DBUFF0;
6175 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6176 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6177 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6178
6179 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6180 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6181 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6182 tmp |= SBI_SSCCTL_PATHALT;
6183 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6184 udelay(32);
6185 }
6186 tmp |= SBI_SSCCTL_DISABLE;
6187 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6188 }
6189
6190 mutex_unlock(&dev_priv->dpio_lock);
6191 }
6192
6193 static void lpt_init_pch_refclk(struct drm_device *dev)
6194 {
6195 struct drm_mode_config *mode_config = &dev->mode_config;
6196 struct intel_encoder *encoder;
6197 bool has_vga = false;
6198
6199 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6200 switch (encoder->type) {
6201 case INTEL_OUTPUT_ANALOG:
6202 has_vga = true;
6203 break;
6204 }
6205 }
6206
6207 if (has_vga)
6208 lpt_enable_clkout_dp(dev, true, true);
6209 else
6210 lpt_disable_clkout_dp(dev);
6211 }
6212
6213 /*
6214 * Initialize reference clocks when the driver loads
6215 */
6216 void intel_init_pch_refclk(struct drm_device *dev)
6217 {
6218 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6219 ironlake_init_pch_refclk(dev);
6220 else if (HAS_PCH_LPT(dev))
6221 lpt_init_pch_refclk(dev);
6222 }
6223
6224 static int ironlake_get_refclk(struct drm_crtc *crtc)
6225 {
6226 struct drm_device *dev = crtc->dev;
6227 struct drm_i915_private *dev_priv = dev->dev_private;
6228 struct intel_encoder *encoder;
6229 int num_connectors = 0;
6230 bool is_lvds = false;
6231
6232 for_each_encoder_on_crtc(dev, crtc, encoder) {
6233 switch (encoder->type) {
6234 case INTEL_OUTPUT_LVDS:
6235 is_lvds = true;
6236 break;
6237 }
6238 num_connectors++;
6239 }
6240
6241 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6242 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6243 dev_priv->vbt.lvds_ssc_freq);
6244 return dev_priv->vbt.lvds_ssc_freq;
6245 }
6246
6247 return 120000;
6248 }
6249
6250 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6251 {
6252 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6254 int pipe = intel_crtc->pipe;
6255 uint32_t val;
6256
6257 val = 0;
6258
6259 switch (intel_crtc->config.pipe_bpp) {
6260 case 18:
6261 val |= PIPECONF_6BPC;
6262 break;
6263 case 24:
6264 val |= PIPECONF_8BPC;
6265 break;
6266 case 30:
6267 val |= PIPECONF_10BPC;
6268 break;
6269 case 36:
6270 val |= PIPECONF_12BPC;
6271 break;
6272 default:
6273 /* Case prevented by intel_choose_pipe_bpp_dither. */
6274 BUG();
6275 }
6276
6277 if (intel_crtc->config.dither)
6278 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6279
6280 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6281 val |= PIPECONF_INTERLACED_ILK;
6282 else
6283 val |= PIPECONF_PROGRESSIVE;
6284
6285 if (intel_crtc->config.limited_color_range)
6286 val |= PIPECONF_COLOR_RANGE_SELECT;
6287
6288 I915_WRITE(PIPECONF(pipe), val);
6289 POSTING_READ(PIPECONF(pipe));
6290 }
6291
6292 /*
6293 * Set up the pipe CSC unit.
6294 *
6295 * Currently only full range RGB to limited range RGB conversion
6296 * is supported, but eventually this should handle various
6297 * RGB<->YCbCr scenarios as well.
6298 */
6299 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6300 {
6301 struct drm_device *dev = crtc->dev;
6302 struct drm_i915_private *dev_priv = dev->dev_private;
6303 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6304 int pipe = intel_crtc->pipe;
6305 uint16_t coeff = 0x7800; /* 1.0 */
6306
6307 /*
6308 * TODO: Check what kind of values actually come out of the pipe
6309 * with these coeff/postoff values and adjust to get the best
6310 * accuracy. Perhaps we even need to take the bpc value into
6311 * consideration.
6312 */
6313
6314 if (intel_crtc->config.limited_color_range)
6315 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6316
6317 /*
6318 * GY/GU and RY/RU should be the other way around according
6319 * to BSpec, but reality doesn't agree. Just set them up in
6320 * a way that results in the correct picture.
6321 */
6322 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6323 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6324
6325 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6326 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6327
6328 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6329 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6330
6331 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6332 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6333 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6334
6335 if (INTEL_INFO(dev)->gen > 6) {
6336 uint16_t postoff = 0;
6337
6338 if (intel_crtc->config.limited_color_range)
6339 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6340
6341 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6342 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6343 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6344
6345 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6346 } else {
6347 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6348
6349 if (intel_crtc->config.limited_color_range)
6350 mode |= CSC_BLACK_SCREEN_OFFSET;
6351
6352 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6353 }
6354 }
6355
6356 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6357 {
6358 struct drm_device *dev = crtc->dev;
6359 struct drm_i915_private *dev_priv = dev->dev_private;
6360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6361 enum pipe pipe = intel_crtc->pipe;
6362 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6363 uint32_t val;
6364
6365 val = 0;
6366
6367 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6368 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6369
6370 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6371 val |= PIPECONF_INTERLACED_ILK;
6372 else
6373 val |= PIPECONF_PROGRESSIVE;
6374
6375 I915_WRITE(PIPECONF(cpu_transcoder), val);
6376 POSTING_READ(PIPECONF(cpu_transcoder));
6377
6378 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6379 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6380
6381 if (IS_BROADWELL(dev)) {
6382 val = 0;
6383
6384 switch (intel_crtc->config.pipe_bpp) {
6385 case 18:
6386 val |= PIPEMISC_DITHER_6_BPC;
6387 break;
6388 case 24:
6389 val |= PIPEMISC_DITHER_8_BPC;
6390 break;
6391 case 30:
6392 val |= PIPEMISC_DITHER_10_BPC;
6393 break;
6394 case 36:
6395 val |= PIPEMISC_DITHER_12_BPC;
6396 break;
6397 default:
6398 /* Case prevented by pipe_config_set_bpp. */
6399 BUG();
6400 }
6401
6402 if (intel_crtc->config.dither)
6403 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6404
6405 I915_WRITE(PIPEMISC(pipe), val);
6406 }
6407 }
6408
6409 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6410 intel_clock_t *clock,
6411 bool *has_reduced_clock,
6412 intel_clock_t *reduced_clock)
6413 {
6414 struct drm_device *dev = crtc->dev;
6415 struct drm_i915_private *dev_priv = dev->dev_private;
6416 struct intel_encoder *intel_encoder;
6417 int refclk;
6418 const intel_limit_t *limit;
6419 bool ret, is_lvds = false;
6420
6421 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6422 switch (intel_encoder->type) {
6423 case INTEL_OUTPUT_LVDS:
6424 is_lvds = true;
6425 break;
6426 }
6427 }
6428
6429 refclk = ironlake_get_refclk(crtc);
6430
6431 /*
6432 * Returns a set of divisors for the desired target clock with the given
6433 * refclk, or FALSE. The returned values represent the clock equation:
6434 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6435 */
6436 limit = intel_limit(crtc, refclk);
6437 ret = dev_priv->display.find_dpll(limit, crtc,
6438 to_intel_crtc(crtc)->config.port_clock,
6439 refclk, NULL, clock);
6440 if (!ret)
6441 return false;
6442
6443 if (is_lvds && dev_priv->lvds_downclock_avail) {
6444 /*
6445 * Ensure we match the reduced clock's P to the target clock.
6446 * If the clocks don't match, we can't switch the display clock
6447 * by using the FP0/FP1. In such case we will disable the LVDS
6448 * downclock feature.
6449 */
6450 *has_reduced_clock =
6451 dev_priv->display.find_dpll(limit, crtc,
6452 dev_priv->lvds_downclock,
6453 refclk, clock,
6454 reduced_clock);
6455 }
6456
6457 return true;
6458 }
6459
6460 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6461 {
6462 /*
6463 * Account for spread spectrum to avoid
6464 * oversubscribing the link. Max center spread
6465 * is 2.5%; use 5% for safety's sake.
6466 */
6467 u32 bps = target_clock * bpp * 21 / 20;
6468 return DIV_ROUND_UP(bps, link_bw * 8);
6469 }
6470
6471 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6472 {
6473 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6474 }
6475
6476 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6477 u32 *fp,
6478 intel_clock_t *reduced_clock, u32 *fp2)
6479 {
6480 struct drm_crtc *crtc = &intel_crtc->base;
6481 struct drm_device *dev = crtc->dev;
6482 struct drm_i915_private *dev_priv = dev->dev_private;
6483 struct intel_encoder *intel_encoder;
6484 uint32_t dpll;
6485 int factor, num_connectors = 0;
6486 bool is_lvds = false, is_sdvo = false;
6487
6488 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6489 switch (intel_encoder->type) {
6490 case INTEL_OUTPUT_LVDS:
6491 is_lvds = true;
6492 break;
6493 case INTEL_OUTPUT_SDVO:
6494 case INTEL_OUTPUT_HDMI:
6495 is_sdvo = true;
6496 break;
6497 }
6498
6499 num_connectors++;
6500 }
6501
6502 /* Enable autotuning of the PLL clock (if permissible) */
6503 factor = 21;
6504 if (is_lvds) {
6505 if ((intel_panel_use_ssc(dev_priv) &&
6506 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6507 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6508 factor = 25;
6509 } else if (intel_crtc->config.sdvo_tv_clock)
6510 factor = 20;
6511
6512 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6513 *fp |= FP_CB_TUNE;
6514
6515 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6516 *fp2 |= FP_CB_TUNE;
6517
6518 dpll = 0;
6519
6520 if (is_lvds)
6521 dpll |= DPLLB_MODE_LVDS;
6522 else
6523 dpll |= DPLLB_MODE_DAC_SERIAL;
6524
6525 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6526 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6527
6528 if (is_sdvo)
6529 dpll |= DPLL_SDVO_HIGH_SPEED;
6530 if (intel_crtc->config.has_dp_encoder)
6531 dpll |= DPLL_SDVO_HIGH_SPEED;
6532
6533 /* compute bitmask from p1 value */
6534 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6535 /* also FPA1 */
6536 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6537
6538 switch (intel_crtc->config.dpll.p2) {
6539 case 5:
6540 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6541 break;
6542 case 7:
6543 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6544 break;
6545 case 10:
6546 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6547 break;
6548 case 14:
6549 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6550 break;
6551 }
6552
6553 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6554 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6555 else
6556 dpll |= PLL_REF_INPUT_DREFCLK;
6557
6558 return dpll | DPLL_VCO_ENABLE;
6559 }
6560
6561 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6562 int x, int y,
6563 struct drm_framebuffer *fb)
6564 {
6565 struct drm_device *dev = crtc->dev;
6566 struct drm_i915_private *dev_priv = dev->dev_private;
6567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6568 int pipe = intel_crtc->pipe;
6569 int plane = intel_crtc->plane;
6570 int num_connectors = 0;
6571 intel_clock_t clock, reduced_clock;
6572 u32 dpll = 0, fp = 0, fp2 = 0;
6573 bool ok, has_reduced_clock = false;
6574 bool is_lvds = false;
6575 struct intel_encoder *encoder;
6576 struct intel_shared_dpll *pll;
6577 int ret;
6578
6579 for_each_encoder_on_crtc(dev, crtc, encoder) {
6580 switch (encoder->type) {
6581 case INTEL_OUTPUT_LVDS:
6582 is_lvds = true;
6583 break;
6584 }
6585
6586 num_connectors++;
6587 }
6588
6589 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6590 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6591
6592 ok = ironlake_compute_clocks(crtc, &clock,
6593 &has_reduced_clock, &reduced_clock);
6594 if (!ok && !intel_crtc->config.clock_set) {
6595 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6596 return -EINVAL;
6597 }
6598 /* Compat-code for transition, will disappear. */
6599 if (!intel_crtc->config.clock_set) {
6600 intel_crtc->config.dpll.n = clock.n;
6601 intel_crtc->config.dpll.m1 = clock.m1;
6602 intel_crtc->config.dpll.m2 = clock.m2;
6603 intel_crtc->config.dpll.p1 = clock.p1;
6604 intel_crtc->config.dpll.p2 = clock.p2;
6605 }
6606
6607 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6608 if (intel_crtc->config.has_pch_encoder) {
6609 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6610 if (has_reduced_clock)
6611 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6612
6613 dpll = ironlake_compute_dpll(intel_crtc,
6614 &fp, &reduced_clock,
6615 has_reduced_clock ? &fp2 : NULL);
6616
6617 intel_crtc->config.dpll_hw_state.dpll = dpll;
6618 intel_crtc->config.dpll_hw_state.fp0 = fp;
6619 if (has_reduced_clock)
6620 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6621 else
6622 intel_crtc->config.dpll_hw_state.fp1 = fp;
6623
6624 pll = intel_get_shared_dpll(intel_crtc);
6625 if (pll == NULL) {
6626 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6627 pipe_name(pipe));
6628 return -EINVAL;
6629 }
6630 } else
6631 intel_put_shared_dpll(intel_crtc);
6632
6633 if (intel_crtc->config.has_dp_encoder)
6634 intel_dp_set_m_n(intel_crtc);
6635
6636 if (is_lvds && has_reduced_clock && i915.powersave)
6637 intel_crtc->lowfreq_avail = true;
6638 else
6639 intel_crtc->lowfreq_avail = false;
6640
6641 intel_set_pipe_timings(intel_crtc);
6642
6643 if (intel_crtc->config.has_pch_encoder) {
6644 intel_cpu_transcoder_set_m_n(intel_crtc,
6645 &intel_crtc->config.fdi_m_n);
6646 }
6647
6648 ironlake_set_pipeconf(crtc);
6649
6650 /* Set up the display plane register */
6651 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6652 POSTING_READ(DSPCNTR(plane));
6653
6654 ret = intel_pipe_set_base(crtc, x, y, fb);
6655
6656 return ret;
6657 }
6658
6659 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6660 struct intel_link_m_n *m_n)
6661 {
6662 struct drm_device *dev = crtc->base.dev;
6663 struct drm_i915_private *dev_priv = dev->dev_private;
6664 enum pipe pipe = crtc->pipe;
6665
6666 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6667 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6668 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6669 & ~TU_SIZE_MASK;
6670 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6671 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6672 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6673 }
6674
6675 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6676 enum transcoder transcoder,
6677 struct intel_link_m_n *m_n)
6678 {
6679 struct drm_device *dev = crtc->base.dev;
6680 struct drm_i915_private *dev_priv = dev->dev_private;
6681 enum pipe pipe = crtc->pipe;
6682
6683 if (INTEL_INFO(dev)->gen >= 5) {
6684 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6685 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6686 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6687 & ~TU_SIZE_MASK;
6688 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6689 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6690 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6691 } else {
6692 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6693 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6694 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6695 & ~TU_SIZE_MASK;
6696 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6697 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6698 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6699 }
6700 }
6701
6702 void intel_dp_get_m_n(struct intel_crtc *crtc,
6703 struct intel_crtc_config *pipe_config)
6704 {
6705 if (crtc->config.has_pch_encoder)
6706 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6707 else
6708 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6709 &pipe_config->dp_m_n);
6710 }
6711
6712 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6713 struct intel_crtc_config *pipe_config)
6714 {
6715 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6716 &pipe_config->fdi_m_n);
6717 }
6718
6719 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6720 struct intel_crtc_config *pipe_config)
6721 {
6722 struct drm_device *dev = crtc->base.dev;
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724 uint32_t tmp;
6725
6726 tmp = I915_READ(PF_CTL(crtc->pipe));
6727
6728 if (tmp & PF_ENABLE) {
6729 pipe_config->pch_pfit.enabled = true;
6730 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6731 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6732
6733 /* We currently do not free assignements of panel fitters on
6734 * ivb/hsw (since we don't use the higher upscaling modes which
6735 * differentiates them) so just WARN about this case for now. */
6736 if (IS_GEN7(dev)) {
6737 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6738 PF_PIPE_SEL_IVB(crtc->pipe));
6739 }
6740 }
6741 }
6742
6743 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6744 struct intel_plane_config *plane_config)
6745 {
6746 struct drm_device *dev = crtc->base.dev;
6747 struct drm_i915_private *dev_priv = dev->dev_private;
6748 u32 val, base, offset;
6749 int pipe = crtc->pipe, plane = crtc->plane;
6750 int fourcc, pixel_format;
6751 int aligned_height;
6752
6753 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6754 if (!crtc->base.primary->fb) {
6755 DRM_DEBUG_KMS("failed to alloc fb\n");
6756 return;
6757 }
6758
6759 val = I915_READ(DSPCNTR(plane));
6760
6761 if (INTEL_INFO(dev)->gen >= 4)
6762 if (val & DISPPLANE_TILED)
6763 plane_config->tiled = true;
6764
6765 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6766 fourcc = intel_format_to_fourcc(pixel_format);
6767 crtc->base.primary->fb->pixel_format = fourcc;
6768 crtc->base.primary->fb->bits_per_pixel =
6769 drm_format_plane_cpp(fourcc, 0) * 8;
6770
6771 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6772 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6773 offset = I915_READ(DSPOFFSET(plane));
6774 } else {
6775 if (plane_config->tiled)
6776 offset = I915_READ(DSPTILEOFF(plane));
6777 else
6778 offset = I915_READ(DSPLINOFF(plane));
6779 }
6780 plane_config->base = base;
6781
6782 val = I915_READ(PIPESRC(pipe));
6783 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6784 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6785
6786 val = I915_READ(DSPSTRIDE(pipe));
6787 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6788
6789 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6790 plane_config->tiled);
6791
6792 plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6793 aligned_height, PAGE_SIZE);
6794
6795 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6796 pipe, plane, crtc->base.primary->fb->width,
6797 crtc->base.primary->fb->height,
6798 crtc->base.primary->fb->bits_per_pixel, base,
6799 crtc->base.primary->fb->pitches[0],
6800 plane_config->size);
6801 }
6802
6803 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6804 struct intel_crtc_config *pipe_config)
6805 {
6806 struct drm_device *dev = crtc->base.dev;
6807 struct drm_i915_private *dev_priv = dev->dev_private;
6808 uint32_t tmp;
6809
6810 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6811 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6812
6813 tmp = I915_READ(PIPECONF(crtc->pipe));
6814 if (!(tmp & PIPECONF_ENABLE))
6815 return false;
6816
6817 switch (tmp & PIPECONF_BPC_MASK) {
6818 case PIPECONF_6BPC:
6819 pipe_config->pipe_bpp = 18;
6820 break;
6821 case PIPECONF_8BPC:
6822 pipe_config->pipe_bpp = 24;
6823 break;
6824 case PIPECONF_10BPC:
6825 pipe_config->pipe_bpp = 30;
6826 break;
6827 case PIPECONF_12BPC:
6828 pipe_config->pipe_bpp = 36;
6829 break;
6830 default:
6831 break;
6832 }
6833
6834 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6835 struct intel_shared_dpll *pll;
6836
6837 pipe_config->has_pch_encoder = true;
6838
6839 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6840 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6841 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6842
6843 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6844
6845 if (HAS_PCH_IBX(dev_priv->dev)) {
6846 pipe_config->shared_dpll =
6847 (enum intel_dpll_id) crtc->pipe;
6848 } else {
6849 tmp = I915_READ(PCH_DPLL_SEL);
6850 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6851 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6852 else
6853 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6854 }
6855
6856 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6857
6858 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6859 &pipe_config->dpll_hw_state));
6860
6861 tmp = pipe_config->dpll_hw_state.dpll;
6862 pipe_config->pixel_multiplier =
6863 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6864 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6865
6866 ironlake_pch_clock_get(crtc, pipe_config);
6867 } else {
6868 pipe_config->pixel_multiplier = 1;
6869 }
6870
6871 intel_get_pipe_timings(crtc, pipe_config);
6872
6873 ironlake_get_pfit_config(crtc, pipe_config);
6874
6875 return true;
6876 }
6877
6878 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6879 {
6880 struct drm_device *dev = dev_priv->dev;
6881 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6882 struct intel_crtc *crtc;
6883 unsigned long irqflags;
6884 uint32_t val;
6885
6886 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6887 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6888 pipe_name(crtc->pipe));
6889
6890 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6891 WARN(plls->spll_refcount, "SPLL enabled\n");
6892 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6893 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6894 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6895 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6896 "CPU PWM1 enabled\n");
6897 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6898 "CPU PWM2 enabled\n");
6899 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6900 "PCH PWM1 enabled\n");
6901 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6902 "Utility pin enabled\n");
6903 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6904
6905 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6906 val = I915_READ(DEIMR);
6907 WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6908 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6909 val = I915_READ(SDEIMR);
6910 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6911 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6912 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6913 }
6914
6915 /*
6916 * This function implements pieces of two sequences from BSpec:
6917 * - Sequence for display software to disable LCPLL
6918 * - Sequence for display software to allow package C8+
6919 * The steps implemented here are just the steps that actually touch the LCPLL
6920 * register. Callers should take care of disabling all the display engine
6921 * functions, doing the mode unset, fixing interrupts, etc.
6922 */
6923 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6924 bool switch_to_fclk, bool allow_power_down)
6925 {
6926 uint32_t val;
6927
6928 assert_can_disable_lcpll(dev_priv);
6929
6930 val = I915_READ(LCPLL_CTL);
6931
6932 if (switch_to_fclk) {
6933 val |= LCPLL_CD_SOURCE_FCLK;
6934 I915_WRITE(LCPLL_CTL, val);
6935
6936 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6937 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6938 DRM_ERROR("Switching to FCLK failed\n");
6939
6940 val = I915_READ(LCPLL_CTL);
6941 }
6942
6943 val |= LCPLL_PLL_DISABLE;
6944 I915_WRITE(LCPLL_CTL, val);
6945 POSTING_READ(LCPLL_CTL);
6946
6947 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6948 DRM_ERROR("LCPLL still locked\n");
6949
6950 val = I915_READ(D_COMP);
6951 val |= D_COMP_COMP_DISABLE;
6952 mutex_lock(&dev_priv->rps.hw_lock);
6953 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6954 DRM_ERROR("Failed to disable D_COMP\n");
6955 mutex_unlock(&dev_priv->rps.hw_lock);
6956 POSTING_READ(D_COMP);
6957 ndelay(100);
6958
6959 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6960 DRM_ERROR("D_COMP RCOMP still in progress\n");
6961
6962 if (allow_power_down) {
6963 val = I915_READ(LCPLL_CTL);
6964 val |= LCPLL_POWER_DOWN_ALLOW;
6965 I915_WRITE(LCPLL_CTL, val);
6966 POSTING_READ(LCPLL_CTL);
6967 }
6968 }
6969
6970 /*
6971 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6972 * source.
6973 */
6974 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6975 {
6976 uint32_t val;
6977 unsigned long irqflags;
6978
6979 val = I915_READ(LCPLL_CTL);
6980
6981 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6982 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6983 return;
6984
6985 /*
6986 * Make sure we're not on PC8 state before disabling PC8, otherwise
6987 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
6988 *
6989 * The other problem is that hsw_restore_lcpll() is called as part of
6990 * the runtime PM resume sequence, so we can't just call
6991 * gen6_gt_force_wake_get() because that function calls
6992 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
6993 * while we are on the resume sequence. So to solve this problem we have
6994 * to call special forcewake code that doesn't touch runtime PM and
6995 * doesn't enable the forcewake delayed work.
6996 */
6997 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6998 if (dev_priv->uncore.forcewake_count++ == 0)
6999 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7000 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7001
7002 if (val & LCPLL_POWER_DOWN_ALLOW) {
7003 val &= ~LCPLL_POWER_DOWN_ALLOW;
7004 I915_WRITE(LCPLL_CTL, val);
7005 POSTING_READ(LCPLL_CTL);
7006 }
7007
7008 val = I915_READ(D_COMP);
7009 val |= D_COMP_COMP_FORCE;
7010 val &= ~D_COMP_COMP_DISABLE;
7011 mutex_lock(&dev_priv->rps.hw_lock);
7012 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
7013 DRM_ERROR("Failed to enable D_COMP\n");
7014 mutex_unlock(&dev_priv->rps.hw_lock);
7015 POSTING_READ(D_COMP);
7016
7017 val = I915_READ(LCPLL_CTL);
7018 val &= ~LCPLL_PLL_DISABLE;
7019 I915_WRITE(LCPLL_CTL, val);
7020
7021 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7022 DRM_ERROR("LCPLL not locked yet\n");
7023
7024 if (val & LCPLL_CD_SOURCE_FCLK) {
7025 val = I915_READ(LCPLL_CTL);
7026 val &= ~LCPLL_CD_SOURCE_FCLK;
7027 I915_WRITE(LCPLL_CTL, val);
7028
7029 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7030 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7031 DRM_ERROR("Switching back to LCPLL failed\n");
7032 }
7033
7034 /* See the big comment above. */
7035 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7036 if (--dev_priv->uncore.forcewake_count == 0)
7037 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7038 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7039 }
7040
7041 /*
7042 * Package states C8 and deeper are really deep PC states that can only be
7043 * reached when all the devices on the system allow it, so even if the graphics
7044 * device allows PC8+, it doesn't mean the system will actually get to these
7045 * states. Our driver only allows PC8+ when going into runtime PM.
7046 *
7047 * The requirements for PC8+ are that all the outputs are disabled, the power
7048 * well is disabled and most interrupts are disabled, and these are also
7049 * requirements for runtime PM. When these conditions are met, we manually do
7050 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7051 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7052 * hang the machine.
7053 *
7054 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7055 * the state of some registers, so when we come back from PC8+ we need to
7056 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7057 * need to take care of the registers kept by RC6. Notice that this happens even
7058 * if we don't put the device in PCI D3 state (which is what currently happens
7059 * because of the runtime PM support).
7060 *
7061 * For more, read "Display Sequences for Package C8" on the hardware
7062 * documentation.
7063 */
7064 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7065 {
7066 struct drm_device *dev = dev_priv->dev;
7067 uint32_t val;
7068
7069 WARN_ON(!HAS_PC8(dev));
7070
7071 DRM_DEBUG_KMS("Enabling package C8+\n");
7072
7073 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7074 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7075 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7076 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7077 }
7078
7079 lpt_disable_clkout_dp(dev);
7080 hsw_runtime_pm_disable_interrupts(dev);
7081 hsw_disable_lcpll(dev_priv, true, true);
7082 }
7083
7084 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7085 {
7086 struct drm_device *dev = dev_priv->dev;
7087 uint32_t val;
7088
7089 WARN_ON(!HAS_PC8(dev));
7090
7091 DRM_DEBUG_KMS("Disabling package C8+\n");
7092
7093 hsw_restore_lcpll(dev_priv);
7094 hsw_runtime_pm_restore_interrupts(dev);
7095 lpt_init_pch_refclk(dev);
7096
7097 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7098 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7099 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7100 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7101 }
7102
7103 intel_prepare_ddi(dev);
7104 i915_gem_init_swizzling(dev);
7105 mutex_lock(&dev_priv->rps.hw_lock);
7106 gen6_update_ring_freq(dev);
7107 mutex_unlock(&dev_priv->rps.hw_lock);
7108 }
7109
7110 static void haswell_modeset_global_resources(struct drm_device *dev)
7111 {
7112 modeset_update_crtc_power_domains(dev);
7113 }
7114
7115 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7116 int x, int y,
7117 struct drm_framebuffer *fb)
7118 {
7119 struct drm_device *dev = crtc->dev;
7120 struct drm_i915_private *dev_priv = dev->dev_private;
7121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7122 int plane = intel_crtc->plane;
7123 int ret;
7124
7125 if (!intel_ddi_pll_select(intel_crtc))
7126 return -EINVAL;
7127 intel_ddi_pll_enable(intel_crtc);
7128
7129 if (intel_crtc->config.has_dp_encoder)
7130 intel_dp_set_m_n(intel_crtc);
7131
7132 intel_crtc->lowfreq_avail = false;
7133
7134 intel_set_pipe_timings(intel_crtc);
7135
7136 if (intel_crtc->config.has_pch_encoder) {
7137 intel_cpu_transcoder_set_m_n(intel_crtc,
7138 &intel_crtc->config.fdi_m_n);
7139 }
7140
7141 haswell_set_pipeconf(crtc);
7142
7143 intel_set_pipe_csc(crtc);
7144
7145 /* Set up the display plane register */
7146 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7147 POSTING_READ(DSPCNTR(plane));
7148
7149 ret = intel_pipe_set_base(crtc, x, y, fb);
7150
7151 return ret;
7152 }
7153
7154 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7155 struct intel_crtc_config *pipe_config)
7156 {
7157 struct drm_device *dev = crtc->base.dev;
7158 struct drm_i915_private *dev_priv = dev->dev_private;
7159 enum intel_display_power_domain pfit_domain;
7160 uint32_t tmp;
7161
7162 if (!intel_display_power_enabled(dev_priv,
7163 POWER_DOMAIN_PIPE(crtc->pipe)))
7164 return false;
7165
7166 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7167 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7168
7169 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7170 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7171 enum pipe trans_edp_pipe;
7172 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7173 default:
7174 WARN(1, "unknown pipe linked to edp transcoder\n");
7175 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7176 case TRANS_DDI_EDP_INPUT_A_ON:
7177 trans_edp_pipe = PIPE_A;
7178 break;
7179 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7180 trans_edp_pipe = PIPE_B;
7181 break;
7182 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7183 trans_edp_pipe = PIPE_C;
7184 break;
7185 }
7186
7187 if (trans_edp_pipe == crtc->pipe)
7188 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7189 }
7190
7191 if (!intel_display_power_enabled(dev_priv,
7192 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7193 return false;
7194
7195 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7196 if (!(tmp & PIPECONF_ENABLE))
7197 return false;
7198
7199 /*
7200 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7201 * DDI E. So just check whether this pipe is wired to DDI E and whether
7202 * the PCH transcoder is on.
7203 */
7204 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7205 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7206 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7207 pipe_config->has_pch_encoder = true;
7208
7209 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7210 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7211 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7212
7213 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7214 }
7215
7216 intel_get_pipe_timings(crtc, pipe_config);
7217
7218 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7219 if (intel_display_power_enabled(dev_priv, pfit_domain))
7220 ironlake_get_pfit_config(crtc, pipe_config);
7221
7222 if (IS_HASWELL(dev))
7223 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7224 (I915_READ(IPS_CTL) & IPS_ENABLE);
7225
7226 pipe_config->pixel_multiplier = 1;
7227
7228 return true;
7229 }
7230
7231 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7232 int x, int y,
7233 struct drm_framebuffer *fb)
7234 {
7235 struct drm_device *dev = crtc->dev;
7236 struct drm_i915_private *dev_priv = dev->dev_private;
7237 struct intel_encoder *encoder;
7238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7239 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7240 int pipe = intel_crtc->pipe;
7241 int ret;
7242
7243 drm_vblank_pre_modeset(dev, pipe);
7244
7245 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7246
7247 drm_vblank_post_modeset(dev, pipe);
7248
7249 if (ret != 0)
7250 return ret;
7251
7252 for_each_encoder_on_crtc(dev, crtc, encoder) {
7253 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7254 encoder->base.base.id,
7255 drm_get_encoder_name(&encoder->base),
7256 mode->base.id, mode->name);
7257 encoder->mode_set(encoder);
7258 }
7259
7260 return 0;
7261 }
7262
7263 static struct {
7264 int clock;
7265 u32 config;
7266 } hdmi_audio_clock[] = {
7267 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7268 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7269 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7270 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7271 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7272 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7273 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7274 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7275 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7276 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7277 };
7278
7279 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7280 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7281 {
7282 int i;
7283
7284 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7285 if (mode->clock == hdmi_audio_clock[i].clock)
7286 break;
7287 }
7288
7289 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7290 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7291 i = 1;
7292 }
7293
7294 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7295 hdmi_audio_clock[i].clock,
7296 hdmi_audio_clock[i].config);
7297
7298 return hdmi_audio_clock[i].config;
7299 }
7300
7301 static bool intel_eld_uptodate(struct drm_connector *connector,
7302 int reg_eldv, uint32_t bits_eldv,
7303 int reg_elda, uint32_t bits_elda,
7304 int reg_edid)
7305 {
7306 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7307 uint8_t *eld = connector->eld;
7308 uint32_t i;
7309
7310 i = I915_READ(reg_eldv);
7311 i &= bits_eldv;
7312
7313 if (!eld[0])
7314 return !i;
7315
7316 if (!i)
7317 return false;
7318
7319 i = I915_READ(reg_elda);
7320 i &= ~bits_elda;
7321 I915_WRITE(reg_elda, i);
7322
7323 for (i = 0; i < eld[2]; i++)
7324 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7325 return false;
7326
7327 return true;
7328 }
7329
7330 static void g4x_write_eld(struct drm_connector *connector,
7331 struct drm_crtc *crtc,
7332 struct drm_display_mode *mode)
7333 {
7334 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7335 uint8_t *eld = connector->eld;
7336 uint32_t eldv;
7337 uint32_t len;
7338 uint32_t i;
7339
7340 i = I915_READ(G4X_AUD_VID_DID);
7341
7342 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7343 eldv = G4X_ELDV_DEVCL_DEVBLC;
7344 else
7345 eldv = G4X_ELDV_DEVCTG;
7346
7347 if (intel_eld_uptodate(connector,
7348 G4X_AUD_CNTL_ST, eldv,
7349 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7350 G4X_HDMIW_HDMIEDID))
7351 return;
7352
7353 i = I915_READ(G4X_AUD_CNTL_ST);
7354 i &= ~(eldv | G4X_ELD_ADDR);
7355 len = (i >> 9) & 0x1f; /* ELD buffer size */
7356 I915_WRITE(G4X_AUD_CNTL_ST, i);
7357
7358 if (!eld[0])
7359 return;
7360
7361 len = min_t(uint8_t, eld[2], len);
7362 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7363 for (i = 0; i < len; i++)
7364 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7365
7366 i = I915_READ(G4X_AUD_CNTL_ST);
7367 i |= eldv;
7368 I915_WRITE(G4X_AUD_CNTL_ST, i);
7369 }
7370
7371 static void haswell_write_eld(struct drm_connector *connector,
7372 struct drm_crtc *crtc,
7373 struct drm_display_mode *mode)
7374 {
7375 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7376 uint8_t *eld = connector->eld;
7377 struct drm_device *dev = crtc->dev;
7378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7379 uint32_t eldv;
7380 uint32_t i;
7381 int len;
7382 int pipe = to_intel_crtc(crtc)->pipe;
7383 int tmp;
7384
7385 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7386 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7387 int aud_config = HSW_AUD_CFG(pipe);
7388 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7389
7390
7391 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7392
7393 /* Audio output enable */
7394 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7395 tmp = I915_READ(aud_cntrl_st2);
7396 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7397 I915_WRITE(aud_cntrl_st2, tmp);
7398
7399 /* Wait for 1 vertical blank */
7400 intel_wait_for_vblank(dev, pipe);
7401
7402 /* Set ELD valid state */
7403 tmp = I915_READ(aud_cntrl_st2);
7404 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7405 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7406 I915_WRITE(aud_cntrl_st2, tmp);
7407 tmp = I915_READ(aud_cntrl_st2);
7408 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7409
7410 /* Enable HDMI mode */
7411 tmp = I915_READ(aud_config);
7412 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7413 /* clear N_programing_enable and N_value_index */
7414 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7415 I915_WRITE(aud_config, tmp);
7416
7417 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7418
7419 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7420 intel_crtc->eld_vld = true;
7421
7422 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7423 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7424 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7425 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7426 } else {
7427 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7428 }
7429
7430 if (intel_eld_uptodate(connector,
7431 aud_cntrl_st2, eldv,
7432 aud_cntl_st, IBX_ELD_ADDRESS,
7433 hdmiw_hdmiedid))
7434 return;
7435
7436 i = I915_READ(aud_cntrl_st2);
7437 i &= ~eldv;
7438 I915_WRITE(aud_cntrl_st2, i);
7439
7440 if (!eld[0])
7441 return;
7442
7443 i = I915_READ(aud_cntl_st);
7444 i &= ~IBX_ELD_ADDRESS;
7445 I915_WRITE(aud_cntl_st, i);
7446 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7447 DRM_DEBUG_DRIVER("port num:%d\n", i);
7448
7449 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7450 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7451 for (i = 0; i < len; i++)
7452 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7453
7454 i = I915_READ(aud_cntrl_st2);
7455 i |= eldv;
7456 I915_WRITE(aud_cntrl_st2, i);
7457
7458 }
7459
7460 static void ironlake_write_eld(struct drm_connector *connector,
7461 struct drm_crtc *crtc,
7462 struct drm_display_mode *mode)
7463 {
7464 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7465 uint8_t *eld = connector->eld;
7466 uint32_t eldv;
7467 uint32_t i;
7468 int len;
7469 int hdmiw_hdmiedid;
7470 int aud_config;
7471 int aud_cntl_st;
7472 int aud_cntrl_st2;
7473 int pipe = to_intel_crtc(crtc)->pipe;
7474
7475 if (HAS_PCH_IBX(connector->dev)) {
7476 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7477 aud_config = IBX_AUD_CFG(pipe);
7478 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7479 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7480 } else if (IS_VALLEYVIEW(connector->dev)) {
7481 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7482 aud_config = VLV_AUD_CFG(pipe);
7483 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7484 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7485 } else {
7486 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7487 aud_config = CPT_AUD_CFG(pipe);
7488 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7489 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7490 }
7491
7492 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7493
7494 if (IS_VALLEYVIEW(connector->dev)) {
7495 struct intel_encoder *intel_encoder;
7496 struct intel_digital_port *intel_dig_port;
7497
7498 intel_encoder = intel_attached_encoder(connector);
7499 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7500 i = intel_dig_port->port;
7501 } else {
7502 i = I915_READ(aud_cntl_st);
7503 i = (i >> 29) & DIP_PORT_SEL_MASK;
7504 /* DIP_Port_Select, 0x1 = PortB */
7505 }
7506
7507 if (!i) {
7508 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7509 /* operate blindly on all ports */
7510 eldv = IBX_ELD_VALIDB;
7511 eldv |= IBX_ELD_VALIDB << 4;
7512 eldv |= IBX_ELD_VALIDB << 8;
7513 } else {
7514 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7515 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7516 }
7517
7518 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7519 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7520 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7521 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7522 } else {
7523 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7524 }
7525
7526 if (intel_eld_uptodate(connector,
7527 aud_cntrl_st2, eldv,
7528 aud_cntl_st, IBX_ELD_ADDRESS,
7529 hdmiw_hdmiedid))
7530 return;
7531
7532 i = I915_READ(aud_cntrl_st2);
7533 i &= ~eldv;
7534 I915_WRITE(aud_cntrl_st2, i);
7535
7536 if (!eld[0])
7537 return;
7538
7539 i = I915_READ(aud_cntl_st);
7540 i &= ~IBX_ELD_ADDRESS;
7541 I915_WRITE(aud_cntl_st, i);
7542
7543 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7544 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7545 for (i = 0; i < len; i++)
7546 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7547
7548 i = I915_READ(aud_cntrl_st2);
7549 i |= eldv;
7550 I915_WRITE(aud_cntrl_st2, i);
7551 }
7552
7553 void intel_write_eld(struct drm_encoder *encoder,
7554 struct drm_display_mode *mode)
7555 {
7556 struct drm_crtc *crtc = encoder->crtc;
7557 struct drm_connector *connector;
7558 struct drm_device *dev = encoder->dev;
7559 struct drm_i915_private *dev_priv = dev->dev_private;
7560
7561 connector = drm_select_eld(encoder, mode);
7562 if (!connector)
7563 return;
7564
7565 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7566 connector->base.id,
7567 drm_get_connector_name(connector),
7568 connector->encoder->base.id,
7569 drm_get_encoder_name(connector->encoder));
7570
7571 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7572
7573 if (dev_priv->display.write_eld)
7574 dev_priv->display.write_eld(connector, crtc, mode);
7575 }
7576
7577 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7578 {
7579 struct drm_device *dev = crtc->dev;
7580 struct drm_i915_private *dev_priv = dev->dev_private;
7581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7582 bool visible = base != 0;
7583 u32 cntl;
7584
7585 if (intel_crtc->cursor_visible == visible)
7586 return;
7587
7588 cntl = I915_READ(_CURACNTR);
7589 if (visible) {
7590 /* On these chipsets we can only modify the base whilst
7591 * the cursor is disabled.
7592 */
7593 I915_WRITE(_CURABASE, base);
7594
7595 cntl &= ~(CURSOR_FORMAT_MASK);
7596 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7597 cntl |= CURSOR_ENABLE |
7598 CURSOR_GAMMA_ENABLE |
7599 CURSOR_FORMAT_ARGB;
7600 } else
7601 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7602 I915_WRITE(_CURACNTR, cntl);
7603
7604 intel_crtc->cursor_visible = visible;
7605 }
7606
7607 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7608 {
7609 struct drm_device *dev = crtc->dev;
7610 struct drm_i915_private *dev_priv = dev->dev_private;
7611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7612 int pipe = intel_crtc->pipe;
7613 bool visible = base != 0;
7614
7615 if (intel_crtc->cursor_visible != visible) {
7616 int16_t width = intel_crtc->cursor_width;
7617 uint32_t cntl = I915_READ(CURCNTR(pipe));
7618 if (base) {
7619 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7620 cntl |= MCURSOR_GAMMA_ENABLE;
7621
7622 switch (width) {
7623 case 64:
7624 cntl |= CURSOR_MODE_64_ARGB_AX;
7625 break;
7626 case 128:
7627 cntl |= CURSOR_MODE_128_ARGB_AX;
7628 break;
7629 case 256:
7630 cntl |= CURSOR_MODE_256_ARGB_AX;
7631 break;
7632 default:
7633 WARN_ON(1);
7634 return;
7635 }
7636 cntl |= pipe << 28; /* Connect to correct pipe */
7637 } else {
7638 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7639 cntl |= CURSOR_MODE_DISABLE;
7640 }
7641 I915_WRITE(CURCNTR(pipe), cntl);
7642
7643 intel_crtc->cursor_visible = visible;
7644 }
7645 /* and commit changes on next vblank */
7646 POSTING_READ(CURCNTR(pipe));
7647 I915_WRITE(CURBASE(pipe), base);
7648 POSTING_READ(CURBASE(pipe));
7649 }
7650
7651 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7652 {
7653 struct drm_device *dev = crtc->dev;
7654 struct drm_i915_private *dev_priv = dev->dev_private;
7655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7656 int pipe = intel_crtc->pipe;
7657 bool visible = base != 0;
7658
7659 if (intel_crtc->cursor_visible != visible) {
7660 int16_t width = intel_crtc->cursor_width;
7661 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7662 if (base) {
7663 cntl &= ~CURSOR_MODE;
7664 cntl |= MCURSOR_GAMMA_ENABLE;
7665 switch (width) {
7666 case 64:
7667 cntl |= CURSOR_MODE_64_ARGB_AX;
7668 break;
7669 case 128:
7670 cntl |= CURSOR_MODE_128_ARGB_AX;
7671 break;
7672 case 256:
7673 cntl |= CURSOR_MODE_256_ARGB_AX;
7674 break;
7675 default:
7676 WARN_ON(1);
7677 return;
7678 }
7679 } else {
7680 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7681 cntl |= CURSOR_MODE_DISABLE;
7682 }
7683 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7684 cntl |= CURSOR_PIPE_CSC_ENABLE;
7685 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7686 }
7687 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7688
7689 intel_crtc->cursor_visible = visible;
7690 }
7691 /* and commit changes on next vblank */
7692 POSTING_READ(CURCNTR_IVB(pipe));
7693 I915_WRITE(CURBASE_IVB(pipe), base);
7694 POSTING_READ(CURBASE_IVB(pipe));
7695 }
7696
7697 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7698 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7699 bool on)
7700 {
7701 struct drm_device *dev = crtc->dev;
7702 struct drm_i915_private *dev_priv = dev->dev_private;
7703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7704 int pipe = intel_crtc->pipe;
7705 int x = intel_crtc->cursor_x;
7706 int y = intel_crtc->cursor_y;
7707 u32 base = 0, pos = 0;
7708 bool visible;
7709
7710 if (on)
7711 base = intel_crtc->cursor_addr;
7712
7713 if (x >= intel_crtc->config.pipe_src_w)
7714 base = 0;
7715
7716 if (y >= intel_crtc->config.pipe_src_h)
7717 base = 0;
7718
7719 if (x < 0) {
7720 if (x + intel_crtc->cursor_width <= 0)
7721 base = 0;
7722
7723 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7724 x = -x;
7725 }
7726 pos |= x << CURSOR_X_SHIFT;
7727
7728 if (y < 0) {
7729 if (y + intel_crtc->cursor_height <= 0)
7730 base = 0;
7731
7732 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7733 y = -y;
7734 }
7735 pos |= y << CURSOR_Y_SHIFT;
7736
7737 visible = base != 0;
7738 if (!visible && !intel_crtc->cursor_visible)
7739 return;
7740
7741 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7742 I915_WRITE(CURPOS_IVB(pipe), pos);
7743 ivb_update_cursor(crtc, base);
7744 } else {
7745 I915_WRITE(CURPOS(pipe), pos);
7746 if (IS_845G(dev) || IS_I865G(dev))
7747 i845_update_cursor(crtc, base);
7748 else
7749 i9xx_update_cursor(crtc, base);
7750 }
7751 }
7752
7753 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7754 struct drm_file *file,
7755 uint32_t handle,
7756 uint32_t width, uint32_t height)
7757 {
7758 struct drm_device *dev = crtc->dev;
7759 struct drm_i915_private *dev_priv = dev->dev_private;
7760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7761 struct drm_i915_gem_object *obj;
7762 unsigned old_width;
7763 uint32_t addr;
7764 int ret;
7765
7766 /* if we want to turn off the cursor ignore width and height */
7767 if (!handle) {
7768 DRM_DEBUG_KMS("cursor off\n");
7769 addr = 0;
7770 obj = NULL;
7771 mutex_lock(&dev->struct_mutex);
7772 goto finish;
7773 }
7774
7775 /* Check for which cursor types we support */
7776 if (!((width == 64 && height == 64) ||
7777 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7778 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7779 DRM_DEBUG("Cursor dimension not supported\n");
7780 return -EINVAL;
7781 }
7782
7783 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7784 if (&obj->base == NULL)
7785 return -ENOENT;
7786
7787 if (obj->base.size < width * height * 4) {
7788 DRM_DEBUG_KMS("buffer is to small\n");
7789 ret = -ENOMEM;
7790 goto fail;
7791 }
7792
7793 /* we only need to pin inside GTT if cursor is non-phy */
7794 mutex_lock(&dev->struct_mutex);
7795 if (!INTEL_INFO(dev)->cursor_needs_physical) {
7796 unsigned alignment;
7797
7798 if (obj->tiling_mode) {
7799 DRM_DEBUG_KMS("cursor cannot be tiled\n");
7800 ret = -EINVAL;
7801 goto fail_locked;
7802 }
7803
7804 /* Note that the w/a also requires 2 PTE of padding following
7805 * the bo. We currently fill all unused PTE with the shadow
7806 * page and so we should always have valid PTE following the
7807 * cursor preventing the VT-d warning.
7808 */
7809 alignment = 0;
7810 if (need_vtd_wa(dev))
7811 alignment = 64*1024;
7812
7813 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7814 if (ret) {
7815 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
7816 goto fail_locked;
7817 }
7818
7819 ret = i915_gem_object_put_fence(obj);
7820 if (ret) {
7821 DRM_DEBUG_KMS("failed to release fence for cursor");
7822 goto fail_unpin;
7823 }
7824
7825 addr = i915_gem_obj_ggtt_offset(obj);
7826 } else {
7827 int align = IS_I830(dev) ? 16 * 1024 : 256;
7828 ret = i915_gem_object_attach_phys(obj, align);
7829 if (ret) {
7830 DRM_DEBUG_KMS("failed to attach phys object\n");
7831 goto fail_locked;
7832 }
7833 addr = obj->phys_handle->busaddr;
7834 }
7835
7836 if (IS_GEN2(dev))
7837 I915_WRITE(CURSIZE, (height << 12) | width);
7838
7839 finish:
7840 if (intel_crtc->cursor_bo) {
7841 if (!INTEL_INFO(dev)->cursor_needs_physical)
7842 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7843 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7844 }
7845
7846 mutex_unlock(&dev->struct_mutex);
7847
7848 old_width = intel_crtc->cursor_width;
7849
7850 intel_crtc->cursor_addr = addr;
7851 intel_crtc->cursor_bo = obj;
7852 intel_crtc->cursor_width = width;
7853 intel_crtc->cursor_height = height;
7854
7855 if (intel_crtc->active) {
7856 if (old_width != width)
7857 intel_update_watermarks(crtc);
7858 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7859 }
7860
7861 return 0;
7862 fail_unpin:
7863 i915_gem_object_unpin_from_display_plane(obj);
7864 fail_locked:
7865 mutex_unlock(&dev->struct_mutex);
7866 fail:
7867 drm_gem_object_unreference_unlocked(&obj->base);
7868 return ret;
7869 }
7870
7871 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7872 {
7873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7874
7875 intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7876 intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7877
7878 if (intel_crtc->active)
7879 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7880
7881 return 0;
7882 }
7883
7884 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7885 u16 *blue, uint32_t start, uint32_t size)
7886 {
7887 int end = (start + size > 256) ? 256 : start + size, i;
7888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7889
7890 for (i = start; i < end; i++) {
7891 intel_crtc->lut_r[i] = red[i] >> 8;
7892 intel_crtc->lut_g[i] = green[i] >> 8;
7893 intel_crtc->lut_b[i] = blue[i] >> 8;
7894 }
7895
7896 intel_crtc_load_lut(crtc);
7897 }
7898
7899 /* VESA 640x480x72Hz mode to set on the pipe */
7900 static struct drm_display_mode load_detect_mode = {
7901 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7902 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7903 };
7904
7905 struct drm_framebuffer *
7906 __intel_framebuffer_create(struct drm_device *dev,
7907 struct drm_mode_fb_cmd2 *mode_cmd,
7908 struct drm_i915_gem_object *obj)
7909 {
7910 struct intel_framebuffer *intel_fb;
7911 int ret;
7912
7913 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7914 if (!intel_fb) {
7915 drm_gem_object_unreference_unlocked(&obj->base);
7916 return ERR_PTR(-ENOMEM);
7917 }
7918
7919 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7920 if (ret)
7921 goto err;
7922
7923 return &intel_fb->base;
7924 err:
7925 drm_gem_object_unreference_unlocked(&obj->base);
7926 kfree(intel_fb);
7927
7928 return ERR_PTR(ret);
7929 }
7930
7931 static struct drm_framebuffer *
7932 intel_framebuffer_create(struct drm_device *dev,
7933 struct drm_mode_fb_cmd2 *mode_cmd,
7934 struct drm_i915_gem_object *obj)
7935 {
7936 struct drm_framebuffer *fb;
7937 int ret;
7938
7939 ret = i915_mutex_lock_interruptible(dev);
7940 if (ret)
7941 return ERR_PTR(ret);
7942 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
7943 mutex_unlock(&dev->struct_mutex);
7944
7945 return fb;
7946 }
7947
7948 static u32
7949 intel_framebuffer_pitch_for_width(int width, int bpp)
7950 {
7951 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7952 return ALIGN(pitch, 64);
7953 }
7954
7955 static u32
7956 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7957 {
7958 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7959 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7960 }
7961
7962 static struct drm_framebuffer *
7963 intel_framebuffer_create_for_mode(struct drm_device *dev,
7964 struct drm_display_mode *mode,
7965 int depth, int bpp)
7966 {
7967 struct drm_i915_gem_object *obj;
7968 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7969
7970 obj = i915_gem_alloc_object(dev,
7971 intel_framebuffer_size_for_mode(mode, bpp));
7972 if (obj == NULL)
7973 return ERR_PTR(-ENOMEM);
7974
7975 mode_cmd.width = mode->hdisplay;
7976 mode_cmd.height = mode->vdisplay;
7977 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7978 bpp);
7979 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7980
7981 return intel_framebuffer_create(dev, &mode_cmd, obj);
7982 }
7983
7984 static struct drm_framebuffer *
7985 mode_fits_in_fbdev(struct drm_device *dev,
7986 struct drm_display_mode *mode)
7987 {
7988 #ifdef CONFIG_DRM_I915_FBDEV
7989 struct drm_i915_private *dev_priv = dev->dev_private;
7990 struct drm_i915_gem_object *obj;
7991 struct drm_framebuffer *fb;
7992
7993 if (!dev_priv->fbdev)
7994 return NULL;
7995
7996 if (!dev_priv->fbdev->fb)
7997 return NULL;
7998
7999 obj = dev_priv->fbdev->fb->obj;
8000 BUG_ON(!obj);
8001
8002 fb = &dev_priv->fbdev->fb->base;
8003 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8004 fb->bits_per_pixel))
8005 return NULL;
8006
8007 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8008 return NULL;
8009
8010 return fb;
8011 #else
8012 return NULL;
8013 #endif
8014 }
8015
8016 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8017 struct drm_display_mode *mode,
8018 struct intel_load_detect_pipe *old)
8019 {
8020 struct intel_crtc *intel_crtc;
8021 struct intel_encoder *intel_encoder =
8022 intel_attached_encoder(connector);
8023 struct drm_crtc *possible_crtc;
8024 struct drm_encoder *encoder = &intel_encoder->base;
8025 struct drm_crtc *crtc = NULL;
8026 struct drm_device *dev = encoder->dev;
8027 struct drm_framebuffer *fb;
8028 int i = -1;
8029
8030 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8031 connector->base.id, drm_get_connector_name(connector),
8032 encoder->base.id, drm_get_encoder_name(encoder));
8033
8034 /*
8035 * Algorithm gets a little messy:
8036 *
8037 * - if the connector already has an assigned crtc, use it (but make
8038 * sure it's on first)
8039 *
8040 * - try to find the first unused crtc that can drive this connector,
8041 * and use that if we find one
8042 */
8043
8044 /* See if we already have a CRTC for this connector */
8045 if (encoder->crtc) {
8046 crtc = encoder->crtc;
8047
8048 mutex_lock(&crtc->mutex);
8049
8050 old->dpms_mode = connector->dpms;
8051 old->load_detect_temp = false;
8052
8053 /* Make sure the crtc and connector are running */
8054 if (connector->dpms != DRM_MODE_DPMS_ON)
8055 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8056
8057 return true;
8058 }
8059
8060 /* Find an unused one (if possible) */
8061 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
8062 i++;
8063 if (!(encoder->possible_crtcs & (1 << i)))
8064 continue;
8065 if (!possible_crtc->enabled) {
8066 crtc = possible_crtc;
8067 break;
8068 }
8069 }
8070
8071 /*
8072 * If we didn't find an unused CRTC, don't use any.
8073 */
8074 if (!crtc) {
8075 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8076 return false;
8077 }
8078
8079 mutex_lock(&crtc->mutex);
8080 intel_encoder->new_crtc = to_intel_crtc(crtc);
8081 to_intel_connector(connector)->new_encoder = intel_encoder;
8082
8083 intel_crtc = to_intel_crtc(crtc);
8084 intel_crtc->new_enabled = true;
8085 intel_crtc->new_config = &intel_crtc->config;
8086 old->dpms_mode = connector->dpms;
8087 old->load_detect_temp = true;
8088 old->release_fb = NULL;
8089
8090 if (!mode)
8091 mode = &load_detect_mode;
8092
8093 /* We need a framebuffer large enough to accommodate all accesses
8094 * that the plane may generate whilst we perform load detection.
8095 * We can not rely on the fbcon either being present (we get called
8096 * during its initialisation to detect all boot displays, or it may
8097 * not even exist) or that it is large enough to satisfy the
8098 * requested mode.
8099 */
8100 fb = mode_fits_in_fbdev(dev, mode);
8101 if (fb == NULL) {
8102 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8103 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8104 old->release_fb = fb;
8105 } else
8106 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8107 if (IS_ERR(fb)) {
8108 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8109 goto fail;
8110 }
8111
8112 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8113 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8114 if (old->release_fb)
8115 old->release_fb->funcs->destroy(old->release_fb);
8116 goto fail;
8117 }
8118
8119 /* let the connector get through one full cycle before testing */
8120 intel_wait_for_vblank(dev, intel_crtc->pipe);
8121 return true;
8122
8123 fail:
8124 intel_crtc->new_enabled = crtc->enabled;
8125 if (intel_crtc->new_enabled)
8126 intel_crtc->new_config = &intel_crtc->config;
8127 else
8128 intel_crtc->new_config = NULL;
8129 mutex_unlock(&crtc->mutex);
8130 return false;
8131 }
8132
8133 void intel_release_load_detect_pipe(struct drm_connector *connector,
8134 struct intel_load_detect_pipe *old)
8135 {
8136 struct intel_encoder *intel_encoder =
8137 intel_attached_encoder(connector);
8138 struct drm_encoder *encoder = &intel_encoder->base;
8139 struct drm_crtc *crtc = encoder->crtc;
8140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8141
8142 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8143 connector->base.id, drm_get_connector_name(connector),
8144 encoder->base.id, drm_get_encoder_name(encoder));
8145
8146 if (old->load_detect_temp) {
8147 to_intel_connector(connector)->new_encoder = NULL;
8148 intel_encoder->new_crtc = NULL;
8149 intel_crtc->new_enabled = false;
8150 intel_crtc->new_config = NULL;
8151 intel_set_mode(crtc, NULL, 0, 0, NULL);
8152
8153 if (old->release_fb) {
8154 drm_framebuffer_unregister_private(old->release_fb);
8155 drm_framebuffer_unreference(old->release_fb);
8156 }
8157
8158 mutex_unlock(&crtc->mutex);
8159 return;
8160 }
8161
8162 /* Switch crtc and encoder back off if necessary */
8163 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8164 connector->funcs->dpms(connector, old->dpms_mode);
8165
8166 mutex_unlock(&crtc->mutex);
8167 }
8168
8169 static int i9xx_pll_refclk(struct drm_device *dev,
8170 const struct intel_crtc_config *pipe_config)
8171 {
8172 struct drm_i915_private *dev_priv = dev->dev_private;
8173 u32 dpll = pipe_config->dpll_hw_state.dpll;
8174
8175 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8176 return dev_priv->vbt.lvds_ssc_freq;
8177 else if (HAS_PCH_SPLIT(dev))
8178 return 120000;
8179 else if (!IS_GEN2(dev))
8180 return 96000;
8181 else
8182 return 48000;
8183 }
8184
8185 /* Returns the clock of the currently programmed mode of the given pipe. */
8186 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8187 struct intel_crtc_config *pipe_config)
8188 {
8189 struct drm_device *dev = crtc->base.dev;
8190 struct drm_i915_private *dev_priv = dev->dev_private;
8191 int pipe = pipe_config->cpu_transcoder;
8192 u32 dpll = pipe_config->dpll_hw_state.dpll;
8193 u32 fp;
8194 intel_clock_t clock;
8195 int refclk = i9xx_pll_refclk(dev, pipe_config);
8196
8197 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8198 fp = pipe_config->dpll_hw_state.fp0;
8199 else
8200 fp = pipe_config->dpll_hw_state.fp1;
8201
8202 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8203 if (IS_PINEVIEW(dev)) {
8204 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8205 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8206 } else {
8207 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8208 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8209 }
8210
8211 if (!IS_GEN2(dev)) {
8212 if (IS_PINEVIEW(dev))
8213 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8214 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8215 else
8216 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8217 DPLL_FPA01_P1_POST_DIV_SHIFT);
8218
8219 switch (dpll & DPLL_MODE_MASK) {
8220 case DPLLB_MODE_DAC_SERIAL:
8221 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8222 5 : 10;
8223 break;
8224 case DPLLB_MODE_LVDS:
8225 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8226 7 : 14;
8227 break;
8228 default:
8229 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8230 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8231 return;
8232 }
8233
8234 if (IS_PINEVIEW(dev))
8235 pineview_clock(refclk, &clock);
8236 else
8237 i9xx_clock(refclk, &clock);
8238 } else {
8239 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8240 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8241
8242 if (is_lvds) {
8243 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8244 DPLL_FPA01_P1_POST_DIV_SHIFT);
8245
8246 if (lvds & LVDS_CLKB_POWER_UP)
8247 clock.p2 = 7;
8248 else
8249 clock.p2 = 14;
8250 } else {
8251 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8252 clock.p1 = 2;
8253 else {
8254 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8255 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8256 }
8257 if (dpll & PLL_P2_DIVIDE_BY_4)
8258 clock.p2 = 4;
8259 else
8260 clock.p2 = 2;
8261 }
8262
8263 i9xx_clock(refclk, &clock);
8264 }
8265
8266 /*
8267 * This value includes pixel_multiplier. We will use
8268 * port_clock to compute adjusted_mode.crtc_clock in the
8269 * encoder's get_config() function.
8270 */
8271 pipe_config->port_clock = clock.dot;
8272 }
8273
8274 int intel_dotclock_calculate(int link_freq,
8275 const struct intel_link_m_n *m_n)
8276 {
8277 /*
8278 * The calculation for the data clock is:
8279 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8280 * But we want to avoid losing precison if possible, so:
8281 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8282 *
8283 * and the link clock is simpler:
8284 * link_clock = (m * link_clock) / n
8285 */
8286
8287 if (!m_n->link_n)
8288 return 0;
8289
8290 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8291 }
8292
8293 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8294 struct intel_crtc_config *pipe_config)
8295 {
8296 struct drm_device *dev = crtc->base.dev;
8297
8298 /* read out port_clock from the DPLL */
8299 i9xx_crtc_clock_get(crtc, pipe_config);
8300
8301 /*
8302 * This value does not include pixel_multiplier.
8303 * We will check that port_clock and adjusted_mode.crtc_clock
8304 * agree once we know their relationship in the encoder's
8305 * get_config() function.
8306 */
8307 pipe_config->adjusted_mode.crtc_clock =
8308 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8309 &pipe_config->fdi_m_n);
8310 }
8311
8312 /** Returns the currently programmed mode of the given pipe. */
8313 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8314 struct drm_crtc *crtc)
8315 {
8316 struct drm_i915_private *dev_priv = dev->dev_private;
8317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8318 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8319 struct drm_display_mode *mode;
8320 struct intel_crtc_config pipe_config;
8321 int htot = I915_READ(HTOTAL(cpu_transcoder));
8322 int hsync = I915_READ(HSYNC(cpu_transcoder));
8323 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8324 int vsync = I915_READ(VSYNC(cpu_transcoder));
8325 enum pipe pipe = intel_crtc->pipe;
8326
8327 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8328 if (!mode)
8329 return NULL;
8330
8331 /*
8332 * Construct a pipe_config sufficient for getting the clock info
8333 * back out of crtc_clock_get.
8334 *
8335 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8336 * to use a real value here instead.
8337 */
8338 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8339 pipe_config.pixel_multiplier = 1;
8340 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8341 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8342 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8343 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8344
8345 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8346 mode->hdisplay = (htot & 0xffff) + 1;
8347 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8348 mode->hsync_start = (hsync & 0xffff) + 1;
8349 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8350 mode->vdisplay = (vtot & 0xffff) + 1;
8351 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8352 mode->vsync_start = (vsync & 0xffff) + 1;
8353 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8354
8355 drm_mode_set_name(mode);
8356
8357 return mode;
8358 }
8359
8360 static void intel_increase_pllclock(struct drm_crtc *crtc)
8361 {
8362 struct drm_device *dev = crtc->dev;
8363 struct drm_i915_private *dev_priv = dev->dev_private;
8364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8365 int pipe = intel_crtc->pipe;
8366 int dpll_reg = DPLL(pipe);
8367 int dpll;
8368
8369 if (HAS_PCH_SPLIT(dev))
8370 return;
8371
8372 if (!dev_priv->lvds_downclock_avail)
8373 return;
8374
8375 dpll = I915_READ(dpll_reg);
8376 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8377 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8378
8379 assert_panel_unlocked(dev_priv, pipe);
8380
8381 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8382 I915_WRITE(dpll_reg, dpll);
8383 intel_wait_for_vblank(dev, pipe);
8384
8385 dpll = I915_READ(dpll_reg);
8386 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8387 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8388 }
8389 }
8390
8391 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8392 {
8393 struct drm_device *dev = crtc->dev;
8394 struct drm_i915_private *dev_priv = dev->dev_private;
8395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8396
8397 if (HAS_PCH_SPLIT(dev))
8398 return;
8399
8400 if (!dev_priv->lvds_downclock_avail)
8401 return;
8402
8403 /*
8404 * Since this is called by a timer, we should never get here in
8405 * the manual case.
8406 */
8407 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8408 int pipe = intel_crtc->pipe;
8409 int dpll_reg = DPLL(pipe);
8410 int dpll;
8411
8412 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8413
8414 assert_panel_unlocked(dev_priv, pipe);
8415
8416 dpll = I915_READ(dpll_reg);
8417 dpll |= DISPLAY_RATE_SELECT_FPA1;
8418 I915_WRITE(dpll_reg, dpll);
8419 intel_wait_for_vblank(dev, pipe);
8420 dpll = I915_READ(dpll_reg);
8421 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8422 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8423 }
8424
8425 }
8426
8427 void intel_mark_busy(struct drm_device *dev)
8428 {
8429 struct drm_i915_private *dev_priv = dev->dev_private;
8430
8431 if (dev_priv->mm.busy)
8432 return;
8433
8434 intel_runtime_pm_get(dev_priv);
8435 i915_update_gfx_val(dev_priv);
8436 dev_priv->mm.busy = true;
8437 }
8438
8439 void intel_mark_idle(struct drm_device *dev)
8440 {
8441 struct drm_i915_private *dev_priv = dev->dev_private;
8442 struct drm_crtc *crtc;
8443
8444 if (!dev_priv->mm.busy)
8445 return;
8446
8447 dev_priv->mm.busy = false;
8448
8449 if (!i915.powersave)
8450 goto out;
8451
8452 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8453 if (!crtc->primary->fb)
8454 continue;
8455
8456 intel_decrease_pllclock(crtc);
8457 }
8458
8459 if (INTEL_INFO(dev)->gen >= 6)
8460 gen6_rps_idle(dev->dev_private);
8461
8462 out:
8463 intel_runtime_pm_put(dev_priv);
8464 }
8465
8466 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8467 struct intel_ring_buffer *ring)
8468 {
8469 struct drm_device *dev = obj->base.dev;
8470 struct drm_crtc *crtc;
8471
8472 if (!i915.powersave)
8473 return;
8474
8475 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8476 if (!crtc->primary->fb)
8477 continue;
8478
8479 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8480 continue;
8481
8482 intel_increase_pllclock(crtc);
8483 if (ring && intel_fbc_enabled(dev))
8484 ring->fbc_dirty = true;
8485 }
8486 }
8487
8488 static void intel_crtc_destroy(struct drm_crtc *crtc)
8489 {
8490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8491 struct drm_device *dev = crtc->dev;
8492 struct intel_unpin_work *work;
8493 unsigned long flags;
8494
8495 spin_lock_irqsave(&dev->event_lock, flags);
8496 work = intel_crtc->unpin_work;
8497 intel_crtc->unpin_work = NULL;
8498 spin_unlock_irqrestore(&dev->event_lock, flags);
8499
8500 if (work) {
8501 cancel_work_sync(&work->work);
8502 kfree(work);
8503 }
8504
8505 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8506
8507 drm_crtc_cleanup(crtc);
8508
8509 kfree(intel_crtc);
8510 }
8511
8512 static void intel_unpin_work_fn(struct work_struct *__work)
8513 {
8514 struct intel_unpin_work *work =
8515 container_of(__work, struct intel_unpin_work, work);
8516 struct drm_device *dev = work->crtc->dev;
8517
8518 mutex_lock(&dev->struct_mutex);
8519 intel_unpin_fb_obj(work->old_fb_obj);
8520 drm_gem_object_unreference(&work->pending_flip_obj->base);
8521 drm_gem_object_unreference(&work->old_fb_obj->base);
8522
8523 intel_update_fbc(dev);
8524 mutex_unlock(&dev->struct_mutex);
8525
8526 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8527 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8528
8529 kfree(work);
8530 }
8531
8532 static void do_intel_finish_page_flip(struct drm_device *dev,
8533 struct drm_crtc *crtc)
8534 {
8535 struct drm_i915_private *dev_priv = dev->dev_private;
8536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8537 struct intel_unpin_work *work;
8538 unsigned long flags;
8539
8540 /* Ignore early vblank irqs */
8541 if (intel_crtc == NULL)
8542 return;
8543
8544 spin_lock_irqsave(&dev->event_lock, flags);
8545 work = intel_crtc->unpin_work;
8546
8547 /* Ensure we don't miss a work->pending update ... */
8548 smp_rmb();
8549
8550 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8551 spin_unlock_irqrestore(&dev->event_lock, flags);
8552 return;
8553 }
8554
8555 /* and that the unpin work is consistent wrt ->pending. */
8556 smp_rmb();
8557
8558 intel_crtc->unpin_work = NULL;
8559
8560 if (work->event)
8561 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8562
8563 drm_vblank_put(dev, intel_crtc->pipe);
8564
8565 spin_unlock_irqrestore(&dev->event_lock, flags);
8566
8567 wake_up_all(&dev_priv->pending_flip_queue);
8568
8569 queue_work(dev_priv->wq, &work->work);
8570
8571 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8572 }
8573
8574 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8575 {
8576 struct drm_i915_private *dev_priv = dev->dev_private;
8577 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8578
8579 do_intel_finish_page_flip(dev, crtc);
8580 }
8581
8582 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8583 {
8584 struct drm_i915_private *dev_priv = dev->dev_private;
8585 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8586
8587 do_intel_finish_page_flip(dev, crtc);
8588 }
8589
8590 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8591 {
8592 struct drm_i915_private *dev_priv = dev->dev_private;
8593 struct intel_crtc *intel_crtc =
8594 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8595 unsigned long flags;
8596
8597 /* NB: An MMIO update of the plane base pointer will also
8598 * generate a page-flip completion irq, i.e. every modeset
8599 * is also accompanied by a spurious intel_prepare_page_flip().
8600 */
8601 spin_lock_irqsave(&dev->event_lock, flags);
8602 if (intel_crtc->unpin_work)
8603 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8604 spin_unlock_irqrestore(&dev->event_lock, flags);
8605 }
8606
8607 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8608 {
8609 /* Ensure that the work item is consistent when activating it ... */
8610 smp_wmb();
8611 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8612 /* and that it is marked active as soon as the irq could fire. */
8613 smp_wmb();
8614 }
8615
8616 static int intel_gen2_queue_flip(struct drm_device *dev,
8617 struct drm_crtc *crtc,
8618 struct drm_framebuffer *fb,
8619 struct drm_i915_gem_object *obj,
8620 uint32_t flags)
8621 {
8622 struct drm_i915_private *dev_priv = dev->dev_private;
8623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8624 u32 flip_mask;
8625 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8626 int ret;
8627
8628 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8629 if (ret)
8630 goto err;
8631
8632 ret = intel_ring_begin(ring, 6);
8633 if (ret)
8634 goto err_unpin;
8635
8636 /* Can't queue multiple flips, so wait for the previous
8637 * one to finish before executing the next.
8638 */
8639 if (intel_crtc->plane)
8640 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8641 else
8642 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8643 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8644 intel_ring_emit(ring, MI_NOOP);
8645 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8646 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8647 intel_ring_emit(ring, fb->pitches[0]);
8648 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8649 intel_ring_emit(ring, 0); /* aux display base address, unused */
8650
8651 intel_mark_page_flip_active(intel_crtc);
8652 __intel_ring_advance(ring);
8653 return 0;
8654
8655 err_unpin:
8656 intel_unpin_fb_obj(obj);
8657 err:
8658 return ret;
8659 }
8660
8661 static int intel_gen3_queue_flip(struct drm_device *dev,
8662 struct drm_crtc *crtc,
8663 struct drm_framebuffer *fb,
8664 struct drm_i915_gem_object *obj,
8665 uint32_t flags)
8666 {
8667 struct drm_i915_private *dev_priv = dev->dev_private;
8668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8669 u32 flip_mask;
8670 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8671 int ret;
8672
8673 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8674 if (ret)
8675 goto err;
8676
8677 ret = intel_ring_begin(ring, 6);
8678 if (ret)
8679 goto err_unpin;
8680
8681 if (intel_crtc->plane)
8682 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8683 else
8684 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8685 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8686 intel_ring_emit(ring, MI_NOOP);
8687 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8688 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8689 intel_ring_emit(ring, fb->pitches[0]);
8690 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8691 intel_ring_emit(ring, MI_NOOP);
8692
8693 intel_mark_page_flip_active(intel_crtc);
8694 __intel_ring_advance(ring);
8695 return 0;
8696
8697 err_unpin:
8698 intel_unpin_fb_obj(obj);
8699 err:
8700 return ret;
8701 }
8702
8703 static int intel_gen4_queue_flip(struct drm_device *dev,
8704 struct drm_crtc *crtc,
8705 struct drm_framebuffer *fb,
8706 struct drm_i915_gem_object *obj,
8707 uint32_t flags)
8708 {
8709 struct drm_i915_private *dev_priv = dev->dev_private;
8710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8711 uint32_t pf, pipesrc;
8712 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8713 int ret;
8714
8715 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8716 if (ret)
8717 goto err;
8718
8719 ret = intel_ring_begin(ring, 4);
8720 if (ret)
8721 goto err_unpin;
8722
8723 /* i965+ uses the linear or tiled offsets from the
8724 * Display Registers (which do not change across a page-flip)
8725 * so we need only reprogram the base address.
8726 */
8727 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8728 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8729 intel_ring_emit(ring, fb->pitches[0]);
8730 intel_ring_emit(ring,
8731 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8732 obj->tiling_mode);
8733
8734 /* XXX Enabling the panel-fitter across page-flip is so far
8735 * untested on non-native modes, so ignore it for now.
8736 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8737 */
8738 pf = 0;
8739 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8740 intel_ring_emit(ring, pf | pipesrc);
8741
8742 intel_mark_page_flip_active(intel_crtc);
8743 __intel_ring_advance(ring);
8744 return 0;
8745
8746 err_unpin:
8747 intel_unpin_fb_obj(obj);
8748 err:
8749 return ret;
8750 }
8751
8752 static int intel_gen6_queue_flip(struct drm_device *dev,
8753 struct drm_crtc *crtc,
8754 struct drm_framebuffer *fb,
8755 struct drm_i915_gem_object *obj,
8756 uint32_t flags)
8757 {
8758 struct drm_i915_private *dev_priv = dev->dev_private;
8759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8760 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8761 uint32_t pf, pipesrc;
8762 int ret;
8763
8764 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8765 if (ret)
8766 goto err;
8767
8768 ret = intel_ring_begin(ring, 4);
8769 if (ret)
8770 goto err_unpin;
8771
8772 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8773 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8774 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8775 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8776
8777 /* Contrary to the suggestions in the documentation,
8778 * "Enable Panel Fitter" does not seem to be required when page
8779 * flipping with a non-native mode, and worse causes a normal
8780 * modeset to fail.
8781 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8782 */
8783 pf = 0;
8784 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8785 intel_ring_emit(ring, pf | pipesrc);
8786
8787 intel_mark_page_flip_active(intel_crtc);
8788 __intel_ring_advance(ring);
8789 return 0;
8790
8791 err_unpin:
8792 intel_unpin_fb_obj(obj);
8793 err:
8794 return ret;
8795 }
8796
8797 static int intel_gen7_queue_flip(struct drm_device *dev,
8798 struct drm_crtc *crtc,
8799 struct drm_framebuffer *fb,
8800 struct drm_i915_gem_object *obj,
8801 uint32_t flags)
8802 {
8803 struct drm_i915_private *dev_priv = dev->dev_private;
8804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8805 struct intel_ring_buffer *ring;
8806 uint32_t plane_bit = 0;
8807 int len, ret;
8808
8809 ring = obj->ring;
8810 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8811 ring = &dev_priv->ring[BCS];
8812
8813 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8814 if (ret)
8815 goto err;
8816
8817 switch(intel_crtc->plane) {
8818 case PLANE_A:
8819 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8820 break;
8821 case PLANE_B:
8822 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8823 break;
8824 case PLANE_C:
8825 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8826 break;
8827 default:
8828 WARN_ONCE(1, "unknown plane in flip command\n");
8829 ret = -ENODEV;
8830 goto err_unpin;
8831 }
8832
8833 len = 4;
8834 if (ring->id == RCS)
8835 len += 6;
8836
8837 /*
8838 * BSpec MI_DISPLAY_FLIP for IVB:
8839 * "The full packet must be contained within the same cache line."
8840 *
8841 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8842 * cacheline, if we ever start emitting more commands before
8843 * the MI_DISPLAY_FLIP we may need to first emit everything else,
8844 * then do the cacheline alignment, and finally emit the
8845 * MI_DISPLAY_FLIP.
8846 */
8847 ret = intel_ring_cacheline_align(ring);
8848 if (ret)
8849 goto err_unpin;
8850
8851 ret = intel_ring_begin(ring, len);
8852 if (ret)
8853 goto err_unpin;
8854
8855 /* Unmask the flip-done completion message. Note that the bspec says that
8856 * we should do this for both the BCS and RCS, and that we must not unmask
8857 * more than one flip event at any time (or ensure that one flip message
8858 * can be sent by waiting for flip-done prior to queueing new flips).
8859 * Experimentation says that BCS works despite DERRMR masking all
8860 * flip-done completion events and that unmasking all planes at once
8861 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8862 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8863 */
8864 if (ring->id == RCS) {
8865 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8866 intel_ring_emit(ring, DERRMR);
8867 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8868 DERRMR_PIPEB_PRI_FLIP_DONE |
8869 DERRMR_PIPEC_PRI_FLIP_DONE));
8870 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8871 MI_SRM_LRM_GLOBAL_GTT);
8872 intel_ring_emit(ring, DERRMR);
8873 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8874 }
8875
8876 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8877 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8878 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8879 intel_ring_emit(ring, (MI_NOOP));
8880
8881 intel_mark_page_flip_active(intel_crtc);
8882 __intel_ring_advance(ring);
8883 return 0;
8884
8885 err_unpin:
8886 intel_unpin_fb_obj(obj);
8887 err:
8888 return ret;
8889 }
8890
8891 static int intel_default_queue_flip(struct drm_device *dev,
8892 struct drm_crtc *crtc,
8893 struct drm_framebuffer *fb,
8894 struct drm_i915_gem_object *obj,
8895 uint32_t flags)
8896 {
8897 return -ENODEV;
8898 }
8899
8900 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8901 struct drm_framebuffer *fb,
8902 struct drm_pending_vblank_event *event,
8903 uint32_t page_flip_flags)
8904 {
8905 struct drm_device *dev = crtc->dev;
8906 struct drm_i915_private *dev_priv = dev->dev_private;
8907 struct drm_framebuffer *old_fb = crtc->primary->fb;
8908 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8909 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8910 struct intel_unpin_work *work;
8911 unsigned long flags;
8912 int ret;
8913
8914 /* Can't change pixel format via MI display flips. */
8915 if (fb->pixel_format != crtc->primary->fb->pixel_format)
8916 return -EINVAL;
8917
8918 /*
8919 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8920 * Note that pitch changes could also affect these register.
8921 */
8922 if (INTEL_INFO(dev)->gen > 3 &&
8923 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
8924 fb->pitches[0] != crtc->primary->fb->pitches[0]))
8925 return -EINVAL;
8926
8927 if (i915_terminally_wedged(&dev_priv->gpu_error))
8928 goto out_hang;
8929
8930 work = kzalloc(sizeof(*work), GFP_KERNEL);
8931 if (work == NULL)
8932 return -ENOMEM;
8933
8934 work->event = event;
8935 work->crtc = crtc;
8936 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8937 INIT_WORK(&work->work, intel_unpin_work_fn);
8938
8939 ret = drm_vblank_get(dev, intel_crtc->pipe);
8940 if (ret)
8941 goto free_work;
8942
8943 /* We borrow the event spin lock for protecting unpin_work */
8944 spin_lock_irqsave(&dev->event_lock, flags);
8945 if (intel_crtc->unpin_work) {
8946 spin_unlock_irqrestore(&dev->event_lock, flags);
8947 kfree(work);
8948 drm_vblank_put(dev, intel_crtc->pipe);
8949
8950 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8951 return -EBUSY;
8952 }
8953 intel_crtc->unpin_work = work;
8954 spin_unlock_irqrestore(&dev->event_lock, flags);
8955
8956 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8957 flush_workqueue(dev_priv->wq);
8958
8959 ret = i915_mutex_lock_interruptible(dev);
8960 if (ret)
8961 goto cleanup;
8962
8963 /* Reference the objects for the scheduled work. */
8964 drm_gem_object_reference(&work->old_fb_obj->base);
8965 drm_gem_object_reference(&obj->base);
8966
8967 crtc->primary->fb = fb;
8968
8969 work->pending_flip_obj = obj;
8970
8971 work->enable_stall_check = true;
8972
8973 atomic_inc(&intel_crtc->unpin_work_count);
8974 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8975
8976 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8977 if (ret)
8978 goto cleanup_pending;
8979
8980 intel_disable_fbc(dev);
8981 intel_mark_fb_busy(obj, NULL);
8982 mutex_unlock(&dev->struct_mutex);
8983
8984 trace_i915_flip_request(intel_crtc->plane, obj);
8985
8986 return 0;
8987
8988 cleanup_pending:
8989 atomic_dec(&intel_crtc->unpin_work_count);
8990 crtc->primary->fb = old_fb;
8991 drm_gem_object_unreference(&work->old_fb_obj->base);
8992 drm_gem_object_unreference(&obj->base);
8993 mutex_unlock(&dev->struct_mutex);
8994
8995 cleanup:
8996 spin_lock_irqsave(&dev->event_lock, flags);
8997 intel_crtc->unpin_work = NULL;
8998 spin_unlock_irqrestore(&dev->event_lock, flags);
8999
9000 drm_vblank_put(dev, intel_crtc->pipe);
9001 free_work:
9002 kfree(work);
9003
9004 if (ret == -EIO) {
9005 out_hang:
9006 intel_crtc_wait_for_pending_flips(crtc);
9007 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9008 if (ret == 0 && event)
9009 drm_send_vblank_event(dev, intel_crtc->pipe, event);
9010 }
9011 return ret;
9012 }
9013
9014 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9015 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9016 .load_lut = intel_crtc_load_lut,
9017 };
9018
9019 /**
9020 * intel_modeset_update_staged_output_state
9021 *
9022 * Updates the staged output configuration state, e.g. after we've read out the
9023 * current hw state.
9024 */
9025 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9026 {
9027 struct intel_crtc *crtc;
9028 struct intel_encoder *encoder;
9029 struct intel_connector *connector;
9030
9031 list_for_each_entry(connector, &dev->mode_config.connector_list,
9032 base.head) {
9033 connector->new_encoder =
9034 to_intel_encoder(connector->base.encoder);
9035 }
9036
9037 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9038 base.head) {
9039 encoder->new_crtc =
9040 to_intel_crtc(encoder->base.crtc);
9041 }
9042
9043 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9044 base.head) {
9045 crtc->new_enabled = crtc->base.enabled;
9046
9047 if (crtc->new_enabled)
9048 crtc->new_config = &crtc->config;
9049 else
9050 crtc->new_config = NULL;
9051 }
9052 }
9053
9054 /**
9055 * intel_modeset_commit_output_state
9056 *
9057 * This function copies the stage display pipe configuration to the real one.
9058 */
9059 static void intel_modeset_commit_output_state(struct drm_device *dev)
9060 {
9061 struct intel_crtc *crtc;
9062 struct intel_encoder *encoder;
9063 struct intel_connector *connector;
9064
9065 list_for_each_entry(connector, &dev->mode_config.connector_list,
9066 base.head) {
9067 connector->base.encoder = &connector->new_encoder->base;
9068 }
9069
9070 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9071 base.head) {
9072 encoder->base.crtc = &encoder->new_crtc->base;
9073 }
9074
9075 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9076 base.head) {
9077 crtc->base.enabled = crtc->new_enabled;
9078 }
9079 }
9080
9081 static void
9082 connected_sink_compute_bpp(struct intel_connector * connector,
9083 struct intel_crtc_config *pipe_config)
9084 {
9085 int bpp = pipe_config->pipe_bpp;
9086
9087 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9088 connector->base.base.id,
9089 drm_get_connector_name(&connector->base));
9090
9091 /* Don't use an invalid EDID bpc value */
9092 if (connector->base.display_info.bpc &&
9093 connector->base.display_info.bpc * 3 < bpp) {
9094 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9095 bpp, connector->base.display_info.bpc*3);
9096 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9097 }
9098
9099 /* Clamp bpp to 8 on screens without EDID 1.4 */
9100 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9101 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9102 bpp);
9103 pipe_config->pipe_bpp = 24;
9104 }
9105 }
9106
9107 static int
9108 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9109 struct drm_framebuffer *fb,
9110 struct intel_crtc_config *pipe_config)
9111 {
9112 struct drm_device *dev = crtc->base.dev;
9113 struct intel_connector *connector;
9114 int bpp;
9115
9116 switch (fb->pixel_format) {
9117 case DRM_FORMAT_C8:
9118 bpp = 8*3; /* since we go through a colormap */
9119 break;
9120 case DRM_FORMAT_XRGB1555:
9121 case DRM_FORMAT_ARGB1555:
9122 /* checked in intel_framebuffer_init already */
9123 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9124 return -EINVAL;
9125 case DRM_FORMAT_RGB565:
9126 bpp = 6*3; /* min is 18bpp */
9127 break;
9128 case DRM_FORMAT_XBGR8888:
9129 case DRM_FORMAT_ABGR8888:
9130 /* checked in intel_framebuffer_init already */
9131 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9132 return -EINVAL;
9133 case DRM_FORMAT_XRGB8888:
9134 case DRM_FORMAT_ARGB8888:
9135 bpp = 8*3;
9136 break;
9137 case DRM_FORMAT_XRGB2101010:
9138 case DRM_FORMAT_ARGB2101010:
9139 case DRM_FORMAT_XBGR2101010:
9140 case DRM_FORMAT_ABGR2101010:
9141 /* checked in intel_framebuffer_init already */
9142 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9143 return -EINVAL;
9144 bpp = 10*3;
9145 break;
9146 /* TODO: gen4+ supports 16 bpc floating point, too. */
9147 default:
9148 DRM_DEBUG_KMS("unsupported depth\n");
9149 return -EINVAL;
9150 }
9151
9152 pipe_config->pipe_bpp = bpp;
9153
9154 /* Clamp display bpp to EDID value */
9155 list_for_each_entry(connector, &dev->mode_config.connector_list,
9156 base.head) {
9157 if (!connector->new_encoder ||
9158 connector->new_encoder->new_crtc != crtc)
9159 continue;
9160
9161 connected_sink_compute_bpp(connector, pipe_config);
9162 }
9163
9164 return bpp;
9165 }
9166
9167 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9168 {
9169 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9170 "type: 0x%x flags: 0x%x\n",
9171 mode->crtc_clock,
9172 mode->crtc_hdisplay, mode->crtc_hsync_start,
9173 mode->crtc_hsync_end, mode->crtc_htotal,
9174 mode->crtc_vdisplay, mode->crtc_vsync_start,
9175 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9176 }
9177
9178 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9179 struct intel_crtc_config *pipe_config,
9180 const char *context)
9181 {
9182 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9183 context, pipe_name(crtc->pipe));
9184
9185 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9186 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9187 pipe_config->pipe_bpp, pipe_config->dither);
9188 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9189 pipe_config->has_pch_encoder,
9190 pipe_config->fdi_lanes,
9191 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9192 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9193 pipe_config->fdi_m_n.tu);
9194 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9195 pipe_config->has_dp_encoder,
9196 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9197 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9198 pipe_config->dp_m_n.tu);
9199 DRM_DEBUG_KMS("requested mode:\n");
9200 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9201 DRM_DEBUG_KMS("adjusted mode:\n");
9202 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9203 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9204 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9205 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9206 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9207 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9208 pipe_config->gmch_pfit.control,
9209 pipe_config->gmch_pfit.pgm_ratios,
9210 pipe_config->gmch_pfit.lvds_border_bits);
9211 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9212 pipe_config->pch_pfit.pos,
9213 pipe_config->pch_pfit.size,
9214 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9215 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9216 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9217 }
9218
9219 static bool encoders_cloneable(const struct intel_encoder *a,
9220 const struct intel_encoder *b)
9221 {
9222 /* masks could be asymmetric, so check both ways */
9223 return a == b || (a->cloneable & (1 << b->type) &&
9224 b->cloneable & (1 << a->type));
9225 }
9226
9227 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9228 struct intel_encoder *encoder)
9229 {
9230 struct drm_device *dev = crtc->base.dev;
9231 struct intel_encoder *source_encoder;
9232
9233 list_for_each_entry(source_encoder,
9234 &dev->mode_config.encoder_list, base.head) {
9235 if (source_encoder->new_crtc != crtc)
9236 continue;
9237
9238 if (!encoders_cloneable(encoder, source_encoder))
9239 return false;
9240 }
9241
9242 return true;
9243 }
9244
9245 static bool check_encoder_cloning(struct intel_crtc *crtc)
9246 {
9247 struct drm_device *dev = crtc->base.dev;
9248 struct intel_encoder *encoder;
9249
9250 list_for_each_entry(encoder,
9251 &dev->mode_config.encoder_list, base.head) {
9252 if (encoder->new_crtc != crtc)
9253 continue;
9254
9255 if (!check_single_encoder_cloning(crtc, encoder))
9256 return false;
9257 }
9258
9259 return true;
9260 }
9261
9262 static struct intel_crtc_config *
9263 intel_modeset_pipe_config(struct drm_crtc *crtc,
9264 struct drm_framebuffer *fb,
9265 struct drm_display_mode *mode)
9266 {
9267 struct drm_device *dev = crtc->dev;
9268 struct intel_encoder *encoder;
9269 struct intel_crtc_config *pipe_config;
9270 int plane_bpp, ret = -EINVAL;
9271 bool retry = true;
9272
9273 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9274 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9275 return ERR_PTR(-EINVAL);
9276 }
9277
9278 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9279 if (!pipe_config)
9280 return ERR_PTR(-ENOMEM);
9281
9282 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9283 drm_mode_copy(&pipe_config->requested_mode, mode);
9284
9285 pipe_config->cpu_transcoder =
9286 (enum transcoder) to_intel_crtc(crtc)->pipe;
9287 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9288
9289 /*
9290 * Sanitize sync polarity flags based on requested ones. If neither
9291 * positive or negative polarity is requested, treat this as meaning
9292 * negative polarity.
9293 */
9294 if (!(pipe_config->adjusted_mode.flags &
9295 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9296 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9297
9298 if (!(pipe_config->adjusted_mode.flags &
9299 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9300 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9301
9302 /* Compute a starting value for pipe_config->pipe_bpp taking the source
9303 * plane pixel format and any sink constraints into account. Returns the
9304 * source plane bpp so that dithering can be selected on mismatches
9305 * after encoders and crtc also have had their say. */
9306 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9307 fb, pipe_config);
9308 if (plane_bpp < 0)
9309 goto fail;
9310
9311 /*
9312 * Determine the real pipe dimensions. Note that stereo modes can
9313 * increase the actual pipe size due to the frame doubling and
9314 * insertion of additional space for blanks between the frame. This
9315 * is stored in the crtc timings. We use the requested mode to do this
9316 * computation to clearly distinguish it from the adjusted mode, which
9317 * can be changed by the connectors in the below retry loop.
9318 */
9319 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9320 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9321 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9322
9323 encoder_retry:
9324 /* Ensure the port clock defaults are reset when retrying. */
9325 pipe_config->port_clock = 0;
9326 pipe_config->pixel_multiplier = 1;
9327
9328 /* Fill in default crtc timings, allow encoders to overwrite them. */
9329 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9330
9331 /* Pass our mode to the connectors and the CRTC to give them a chance to
9332 * adjust it according to limitations or connector properties, and also
9333 * a chance to reject the mode entirely.
9334 */
9335 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9336 base.head) {
9337
9338 if (&encoder->new_crtc->base != crtc)
9339 continue;
9340
9341 if (!(encoder->compute_config(encoder, pipe_config))) {
9342 DRM_DEBUG_KMS("Encoder config failure\n");
9343 goto fail;
9344 }
9345 }
9346
9347 /* Set default port clock if not overwritten by the encoder. Needs to be
9348 * done afterwards in case the encoder adjusts the mode. */
9349 if (!pipe_config->port_clock)
9350 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9351 * pipe_config->pixel_multiplier;
9352
9353 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9354 if (ret < 0) {
9355 DRM_DEBUG_KMS("CRTC fixup failed\n");
9356 goto fail;
9357 }
9358
9359 if (ret == RETRY) {
9360 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9361 ret = -EINVAL;
9362 goto fail;
9363 }
9364
9365 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9366 retry = false;
9367 goto encoder_retry;
9368 }
9369
9370 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9371 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9372 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9373
9374 return pipe_config;
9375 fail:
9376 kfree(pipe_config);
9377 return ERR_PTR(ret);
9378 }
9379
9380 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9381 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9382 static void
9383 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9384 unsigned *prepare_pipes, unsigned *disable_pipes)
9385 {
9386 struct intel_crtc *intel_crtc;
9387 struct drm_device *dev = crtc->dev;
9388 struct intel_encoder *encoder;
9389 struct intel_connector *connector;
9390 struct drm_crtc *tmp_crtc;
9391
9392 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9393
9394 /* Check which crtcs have changed outputs connected to them, these need
9395 * to be part of the prepare_pipes mask. We don't (yet) support global
9396 * modeset across multiple crtcs, so modeset_pipes will only have one
9397 * bit set at most. */
9398 list_for_each_entry(connector, &dev->mode_config.connector_list,
9399 base.head) {
9400 if (connector->base.encoder == &connector->new_encoder->base)
9401 continue;
9402
9403 if (connector->base.encoder) {
9404 tmp_crtc = connector->base.encoder->crtc;
9405
9406 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9407 }
9408
9409 if (connector->new_encoder)
9410 *prepare_pipes |=
9411 1 << connector->new_encoder->new_crtc->pipe;
9412 }
9413
9414 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9415 base.head) {
9416 if (encoder->base.crtc == &encoder->new_crtc->base)
9417 continue;
9418
9419 if (encoder->base.crtc) {
9420 tmp_crtc = encoder->base.crtc;
9421
9422 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9423 }
9424
9425 if (encoder->new_crtc)
9426 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9427 }
9428
9429 /* Check for pipes that will be enabled/disabled ... */
9430 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9431 base.head) {
9432 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9433 continue;
9434
9435 if (!intel_crtc->new_enabled)
9436 *disable_pipes |= 1 << intel_crtc->pipe;
9437 else
9438 *prepare_pipes |= 1 << intel_crtc->pipe;
9439 }
9440
9441
9442 /* set_mode is also used to update properties on life display pipes. */
9443 intel_crtc = to_intel_crtc(crtc);
9444 if (intel_crtc->new_enabled)
9445 *prepare_pipes |= 1 << intel_crtc->pipe;
9446
9447 /*
9448 * For simplicity do a full modeset on any pipe where the output routing
9449 * changed. We could be more clever, but that would require us to be
9450 * more careful with calling the relevant encoder->mode_set functions.
9451 */
9452 if (*prepare_pipes)
9453 *modeset_pipes = *prepare_pipes;
9454
9455 /* ... and mask these out. */
9456 *modeset_pipes &= ~(*disable_pipes);
9457 *prepare_pipes &= ~(*disable_pipes);
9458
9459 /*
9460 * HACK: We don't (yet) fully support global modesets. intel_set_config
9461 * obies this rule, but the modeset restore mode of
9462 * intel_modeset_setup_hw_state does not.
9463 */
9464 *modeset_pipes &= 1 << intel_crtc->pipe;
9465 *prepare_pipes &= 1 << intel_crtc->pipe;
9466
9467 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9468 *modeset_pipes, *prepare_pipes, *disable_pipes);
9469 }
9470
9471 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9472 {
9473 struct drm_encoder *encoder;
9474 struct drm_device *dev = crtc->dev;
9475
9476 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9477 if (encoder->crtc == crtc)
9478 return true;
9479
9480 return false;
9481 }
9482
9483 static void
9484 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9485 {
9486 struct intel_encoder *intel_encoder;
9487 struct intel_crtc *intel_crtc;
9488 struct drm_connector *connector;
9489
9490 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9491 base.head) {
9492 if (!intel_encoder->base.crtc)
9493 continue;
9494
9495 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9496
9497 if (prepare_pipes & (1 << intel_crtc->pipe))
9498 intel_encoder->connectors_active = false;
9499 }
9500
9501 intel_modeset_commit_output_state(dev);
9502
9503 /* Double check state. */
9504 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9505 base.head) {
9506 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9507 WARN_ON(intel_crtc->new_config &&
9508 intel_crtc->new_config != &intel_crtc->config);
9509 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9510 }
9511
9512 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9513 if (!connector->encoder || !connector->encoder->crtc)
9514 continue;
9515
9516 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9517
9518 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9519 struct drm_property *dpms_property =
9520 dev->mode_config.dpms_property;
9521
9522 connector->dpms = DRM_MODE_DPMS_ON;
9523 drm_object_property_set_value(&connector->base,
9524 dpms_property,
9525 DRM_MODE_DPMS_ON);
9526
9527 intel_encoder = to_intel_encoder(connector->encoder);
9528 intel_encoder->connectors_active = true;
9529 }
9530 }
9531
9532 }
9533
9534 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9535 {
9536 int diff;
9537
9538 if (clock1 == clock2)
9539 return true;
9540
9541 if (!clock1 || !clock2)
9542 return false;
9543
9544 diff = abs(clock1 - clock2);
9545
9546 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9547 return true;
9548
9549 return false;
9550 }
9551
9552 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9553 list_for_each_entry((intel_crtc), \
9554 &(dev)->mode_config.crtc_list, \
9555 base.head) \
9556 if (mask & (1 <<(intel_crtc)->pipe))
9557
9558 static bool
9559 intel_pipe_config_compare(struct drm_device *dev,
9560 struct intel_crtc_config *current_config,
9561 struct intel_crtc_config *pipe_config)
9562 {
9563 #define PIPE_CONF_CHECK_X(name) \
9564 if (current_config->name != pipe_config->name) { \
9565 DRM_ERROR("mismatch in " #name " " \
9566 "(expected 0x%08x, found 0x%08x)\n", \
9567 current_config->name, \
9568 pipe_config->name); \
9569 return false; \
9570 }
9571
9572 #define PIPE_CONF_CHECK_I(name) \
9573 if (current_config->name != pipe_config->name) { \
9574 DRM_ERROR("mismatch in " #name " " \
9575 "(expected %i, found %i)\n", \
9576 current_config->name, \
9577 pipe_config->name); \
9578 return false; \
9579 }
9580
9581 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
9582 if ((current_config->name ^ pipe_config->name) & (mask)) { \
9583 DRM_ERROR("mismatch in " #name "(" #mask ") " \
9584 "(expected %i, found %i)\n", \
9585 current_config->name & (mask), \
9586 pipe_config->name & (mask)); \
9587 return false; \
9588 }
9589
9590 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9591 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9592 DRM_ERROR("mismatch in " #name " " \
9593 "(expected %i, found %i)\n", \
9594 current_config->name, \
9595 pipe_config->name); \
9596 return false; \
9597 }
9598
9599 #define PIPE_CONF_QUIRK(quirk) \
9600 ((current_config->quirks | pipe_config->quirks) & (quirk))
9601
9602 PIPE_CONF_CHECK_I(cpu_transcoder);
9603
9604 PIPE_CONF_CHECK_I(has_pch_encoder);
9605 PIPE_CONF_CHECK_I(fdi_lanes);
9606 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9607 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9608 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9609 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9610 PIPE_CONF_CHECK_I(fdi_m_n.tu);
9611
9612 PIPE_CONF_CHECK_I(has_dp_encoder);
9613 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9614 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9615 PIPE_CONF_CHECK_I(dp_m_n.link_m);
9616 PIPE_CONF_CHECK_I(dp_m_n.link_n);
9617 PIPE_CONF_CHECK_I(dp_m_n.tu);
9618
9619 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9620 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9621 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9622 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9623 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9624 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9625
9626 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9627 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9628 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9629 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9630 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9631 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9632
9633 PIPE_CONF_CHECK_I(pixel_multiplier);
9634
9635 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9636 DRM_MODE_FLAG_INTERLACE);
9637
9638 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9639 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9640 DRM_MODE_FLAG_PHSYNC);
9641 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9642 DRM_MODE_FLAG_NHSYNC);
9643 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9644 DRM_MODE_FLAG_PVSYNC);
9645 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9646 DRM_MODE_FLAG_NVSYNC);
9647 }
9648
9649 PIPE_CONF_CHECK_I(pipe_src_w);
9650 PIPE_CONF_CHECK_I(pipe_src_h);
9651
9652 /*
9653 * FIXME: BIOS likes to set up a cloned config with lvds+external
9654 * screen. Since we don't yet re-compute the pipe config when moving
9655 * just the lvds port away to another pipe the sw tracking won't match.
9656 *
9657 * Proper atomic modesets with recomputed global state will fix this.
9658 * Until then just don't check gmch state for inherited modes.
9659 */
9660 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9661 PIPE_CONF_CHECK_I(gmch_pfit.control);
9662 /* pfit ratios are autocomputed by the hw on gen4+ */
9663 if (INTEL_INFO(dev)->gen < 4)
9664 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9665 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9666 }
9667
9668 PIPE_CONF_CHECK_I(pch_pfit.enabled);
9669 if (current_config->pch_pfit.enabled) {
9670 PIPE_CONF_CHECK_I(pch_pfit.pos);
9671 PIPE_CONF_CHECK_I(pch_pfit.size);
9672 }
9673
9674 /* BDW+ don't expose a synchronous way to read the state */
9675 if (IS_HASWELL(dev))
9676 PIPE_CONF_CHECK_I(ips_enabled);
9677
9678 PIPE_CONF_CHECK_I(double_wide);
9679
9680 PIPE_CONF_CHECK_I(shared_dpll);
9681 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9682 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9683 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9684 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9685
9686 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9687 PIPE_CONF_CHECK_I(pipe_bpp);
9688
9689 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9690 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9691
9692 #undef PIPE_CONF_CHECK_X
9693 #undef PIPE_CONF_CHECK_I
9694 #undef PIPE_CONF_CHECK_FLAGS
9695 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9696 #undef PIPE_CONF_QUIRK
9697
9698 return true;
9699 }
9700
9701 static void
9702 check_connector_state(struct drm_device *dev)
9703 {
9704 struct intel_connector *connector;
9705
9706 list_for_each_entry(connector, &dev->mode_config.connector_list,
9707 base.head) {
9708 /* This also checks the encoder/connector hw state with the
9709 * ->get_hw_state callbacks. */
9710 intel_connector_check_state(connector);
9711
9712 WARN(&connector->new_encoder->base != connector->base.encoder,
9713 "connector's staged encoder doesn't match current encoder\n");
9714 }
9715 }
9716
9717 static void
9718 check_encoder_state(struct drm_device *dev)
9719 {
9720 struct intel_encoder *encoder;
9721 struct intel_connector *connector;
9722
9723 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9724 base.head) {
9725 bool enabled = false;
9726 bool active = false;
9727 enum pipe pipe, tracked_pipe;
9728
9729 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9730 encoder->base.base.id,
9731 drm_get_encoder_name(&encoder->base));
9732
9733 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9734 "encoder's stage crtc doesn't match current crtc\n");
9735 WARN(encoder->connectors_active && !encoder->base.crtc,
9736 "encoder's active_connectors set, but no crtc\n");
9737
9738 list_for_each_entry(connector, &dev->mode_config.connector_list,
9739 base.head) {
9740 if (connector->base.encoder != &encoder->base)
9741 continue;
9742 enabled = true;
9743 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9744 active = true;
9745 }
9746 WARN(!!encoder->base.crtc != enabled,
9747 "encoder's enabled state mismatch "
9748 "(expected %i, found %i)\n",
9749 !!encoder->base.crtc, enabled);
9750 WARN(active && !encoder->base.crtc,
9751 "active encoder with no crtc\n");
9752
9753 WARN(encoder->connectors_active != active,
9754 "encoder's computed active state doesn't match tracked active state "
9755 "(expected %i, found %i)\n", active, encoder->connectors_active);
9756
9757 active = encoder->get_hw_state(encoder, &pipe);
9758 WARN(active != encoder->connectors_active,
9759 "encoder's hw state doesn't match sw tracking "
9760 "(expected %i, found %i)\n",
9761 encoder->connectors_active, active);
9762
9763 if (!encoder->base.crtc)
9764 continue;
9765
9766 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9767 WARN(active && pipe != tracked_pipe,
9768 "active encoder's pipe doesn't match"
9769 "(expected %i, found %i)\n",
9770 tracked_pipe, pipe);
9771
9772 }
9773 }
9774
9775 static void
9776 check_crtc_state(struct drm_device *dev)
9777 {
9778 struct drm_i915_private *dev_priv = dev->dev_private;
9779 struct intel_crtc *crtc;
9780 struct intel_encoder *encoder;
9781 struct intel_crtc_config pipe_config;
9782
9783 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9784 base.head) {
9785 bool enabled = false;
9786 bool active = false;
9787
9788 memset(&pipe_config, 0, sizeof(pipe_config));
9789
9790 DRM_DEBUG_KMS("[CRTC:%d]\n",
9791 crtc->base.base.id);
9792
9793 WARN(crtc->active && !crtc->base.enabled,
9794 "active crtc, but not enabled in sw tracking\n");
9795
9796 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9797 base.head) {
9798 if (encoder->base.crtc != &crtc->base)
9799 continue;
9800 enabled = true;
9801 if (encoder->connectors_active)
9802 active = true;
9803 }
9804
9805 WARN(active != crtc->active,
9806 "crtc's computed active state doesn't match tracked active state "
9807 "(expected %i, found %i)\n", active, crtc->active);
9808 WARN(enabled != crtc->base.enabled,
9809 "crtc's computed enabled state doesn't match tracked enabled state "
9810 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9811
9812 active = dev_priv->display.get_pipe_config(crtc,
9813 &pipe_config);
9814
9815 /* hw state is inconsistent with the pipe A quirk */
9816 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9817 active = crtc->active;
9818
9819 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9820 base.head) {
9821 enum pipe pipe;
9822 if (encoder->base.crtc != &crtc->base)
9823 continue;
9824 if (encoder->get_hw_state(encoder, &pipe))
9825 encoder->get_config(encoder, &pipe_config);
9826 }
9827
9828 WARN(crtc->active != active,
9829 "crtc active state doesn't match with hw state "
9830 "(expected %i, found %i)\n", crtc->active, active);
9831
9832 if (active &&
9833 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9834 WARN(1, "pipe state doesn't match!\n");
9835 intel_dump_pipe_config(crtc, &pipe_config,
9836 "[hw state]");
9837 intel_dump_pipe_config(crtc, &crtc->config,
9838 "[sw state]");
9839 }
9840 }
9841 }
9842
9843 static void
9844 check_shared_dpll_state(struct drm_device *dev)
9845 {
9846 struct drm_i915_private *dev_priv = dev->dev_private;
9847 struct intel_crtc *crtc;
9848 struct intel_dpll_hw_state dpll_hw_state;
9849 int i;
9850
9851 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9852 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9853 int enabled_crtcs = 0, active_crtcs = 0;
9854 bool active;
9855
9856 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9857
9858 DRM_DEBUG_KMS("%s\n", pll->name);
9859
9860 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9861
9862 WARN(pll->active > pll->refcount,
9863 "more active pll users than references: %i vs %i\n",
9864 pll->active, pll->refcount);
9865 WARN(pll->active && !pll->on,
9866 "pll in active use but not on in sw tracking\n");
9867 WARN(pll->on && !pll->active,
9868 "pll in on but not on in use in sw tracking\n");
9869 WARN(pll->on != active,
9870 "pll on state mismatch (expected %i, found %i)\n",
9871 pll->on, active);
9872
9873 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9874 base.head) {
9875 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9876 enabled_crtcs++;
9877 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9878 active_crtcs++;
9879 }
9880 WARN(pll->active != active_crtcs,
9881 "pll active crtcs mismatch (expected %i, found %i)\n",
9882 pll->active, active_crtcs);
9883 WARN(pll->refcount != enabled_crtcs,
9884 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9885 pll->refcount, enabled_crtcs);
9886
9887 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9888 sizeof(dpll_hw_state)),
9889 "pll hw state mismatch\n");
9890 }
9891 }
9892
9893 void
9894 intel_modeset_check_state(struct drm_device *dev)
9895 {
9896 check_connector_state(dev);
9897 check_encoder_state(dev);
9898 check_crtc_state(dev);
9899 check_shared_dpll_state(dev);
9900 }
9901
9902 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9903 int dotclock)
9904 {
9905 /*
9906 * FDI already provided one idea for the dotclock.
9907 * Yell if the encoder disagrees.
9908 */
9909 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9910 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9911 pipe_config->adjusted_mode.crtc_clock, dotclock);
9912 }
9913
9914 static int __intel_set_mode(struct drm_crtc *crtc,
9915 struct drm_display_mode *mode,
9916 int x, int y, struct drm_framebuffer *fb)
9917 {
9918 struct drm_device *dev = crtc->dev;
9919 struct drm_i915_private *dev_priv = dev->dev_private;
9920 struct drm_display_mode *saved_mode;
9921 struct intel_crtc_config *pipe_config = NULL;
9922 struct intel_crtc *intel_crtc;
9923 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9924 int ret = 0;
9925
9926 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9927 if (!saved_mode)
9928 return -ENOMEM;
9929
9930 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9931 &prepare_pipes, &disable_pipes);
9932
9933 *saved_mode = crtc->mode;
9934
9935 /* Hack: Because we don't (yet) support global modeset on multiple
9936 * crtcs, we don't keep track of the new mode for more than one crtc.
9937 * Hence simply check whether any bit is set in modeset_pipes in all the
9938 * pieces of code that are not yet converted to deal with mutliple crtcs
9939 * changing their mode at the same time. */
9940 if (modeset_pipes) {
9941 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9942 if (IS_ERR(pipe_config)) {
9943 ret = PTR_ERR(pipe_config);
9944 pipe_config = NULL;
9945
9946 goto out;
9947 }
9948 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9949 "[modeset]");
9950 to_intel_crtc(crtc)->new_config = pipe_config;
9951 }
9952
9953 /*
9954 * See if the config requires any additional preparation, e.g.
9955 * to adjust global state with pipes off. We need to do this
9956 * here so we can get the modeset_pipe updated config for the new
9957 * mode set on this crtc. For other crtcs we need to use the
9958 * adjusted_mode bits in the crtc directly.
9959 */
9960 if (IS_VALLEYVIEW(dev)) {
9961 valleyview_modeset_global_pipes(dev, &prepare_pipes);
9962
9963 /* may have added more to prepare_pipes than we should */
9964 prepare_pipes &= ~disable_pipes;
9965 }
9966
9967 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9968 intel_crtc_disable(&intel_crtc->base);
9969
9970 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9971 if (intel_crtc->base.enabled)
9972 dev_priv->display.crtc_disable(&intel_crtc->base);
9973 }
9974
9975 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9976 * to set it here already despite that we pass it down the callchain.
9977 */
9978 if (modeset_pipes) {
9979 crtc->mode = *mode;
9980 /* mode_set/enable/disable functions rely on a correct pipe
9981 * config. */
9982 to_intel_crtc(crtc)->config = *pipe_config;
9983 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
9984
9985 /*
9986 * Calculate and store various constants which
9987 * are later needed by vblank and swap-completion
9988 * timestamping. They are derived from true hwmode.
9989 */
9990 drm_calc_timestamping_constants(crtc,
9991 &pipe_config->adjusted_mode);
9992 }
9993
9994 /* Only after disabling all output pipelines that will be changed can we
9995 * update the the output configuration. */
9996 intel_modeset_update_state(dev, prepare_pipes);
9997
9998 if (dev_priv->display.modeset_global_resources)
9999 dev_priv->display.modeset_global_resources(dev);
10000
10001 /* Set up the DPLL and any encoders state that needs to adjust or depend
10002 * on the DPLL.
10003 */
10004 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10005 ret = intel_crtc_mode_set(&intel_crtc->base,
10006 x, y, fb);
10007 if (ret)
10008 goto done;
10009 }
10010
10011 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10012 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
10013 dev_priv->display.crtc_enable(&intel_crtc->base);
10014
10015 /* FIXME: add subpixel order */
10016 done:
10017 if (ret && crtc->enabled)
10018 crtc->mode = *saved_mode;
10019
10020 out:
10021 kfree(pipe_config);
10022 kfree(saved_mode);
10023 return ret;
10024 }
10025
10026 static int intel_set_mode(struct drm_crtc *crtc,
10027 struct drm_display_mode *mode,
10028 int x, int y, struct drm_framebuffer *fb)
10029 {
10030 int ret;
10031
10032 ret = __intel_set_mode(crtc, mode, x, y, fb);
10033
10034 if (ret == 0)
10035 intel_modeset_check_state(crtc->dev);
10036
10037 return ret;
10038 }
10039
10040 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10041 {
10042 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10043 }
10044
10045 #undef for_each_intel_crtc_masked
10046
10047 static void intel_set_config_free(struct intel_set_config *config)
10048 {
10049 if (!config)
10050 return;
10051
10052 kfree(config->save_connector_encoders);
10053 kfree(config->save_encoder_crtcs);
10054 kfree(config->save_crtc_enabled);
10055 kfree(config);
10056 }
10057
10058 static int intel_set_config_save_state(struct drm_device *dev,
10059 struct intel_set_config *config)
10060 {
10061 struct drm_crtc *crtc;
10062 struct drm_encoder *encoder;
10063 struct drm_connector *connector;
10064 int count;
10065
10066 config->save_crtc_enabled =
10067 kcalloc(dev->mode_config.num_crtc,
10068 sizeof(bool), GFP_KERNEL);
10069 if (!config->save_crtc_enabled)
10070 return -ENOMEM;
10071
10072 config->save_encoder_crtcs =
10073 kcalloc(dev->mode_config.num_encoder,
10074 sizeof(struct drm_crtc *), GFP_KERNEL);
10075 if (!config->save_encoder_crtcs)
10076 return -ENOMEM;
10077
10078 config->save_connector_encoders =
10079 kcalloc(dev->mode_config.num_connector,
10080 sizeof(struct drm_encoder *), GFP_KERNEL);
10081 if (!config->save_connector_encoders)
10082 return -ENOMEM;
10083
10084 /* Copy data. Note that driver private data is not affected.
10085 * Should anything bad happen only the expected state is
10086 * restored, not the drivers personal bookkeeping.
10087 */
10088 count = 0;
10089 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10090 config->save_crtc_enabled[count++] = crtc->enabled;
10091 }
10092
10093 count = 0;
10094 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10095 config->save_encoder_crtcs[count++] = encoder->crtc;
10096 }
10097
10098 count = 0;
10099 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10100 config->save_connector_encoders[count++] = connector->encoder;
10101 }
10102
10103 return 0;
10104 }
10105
10106 static void intel_set_config_restore_state(struct drm_device *dev,
10107 struct intel_set_config *config)
10108 {
10109 struct intel_crtc *crtc;
10110 struct intel_encoder *encoder;
10111 struct intel_connector *connector;
10112 int count;
10113
10114 count = 0;
10115 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10116 crtc->new_enabled = config->save_crtc_enabled[count++];
10117
10118 if (crtc->new_enabled)
10119 crtc->new_config = &crtc->config;
10120 else
10121 crtc->new_config = NULL;
10122 }
10123
10124 count = 0;
10125 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10126 encoder->new_crtc =
10127 to_intel_crtc(config->save_encoder_crtcs[count++]);
10128 }
10129
10130 count = 0;
10131 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10132 connector->new_encoder =
10133 to_intel_encoder(config->save_connector_encoders[count++]);
10134 }
10135 }
10136
10137 static bool
10138 is_crtc_connector_off(struct drm_mode_set *set)
10139 {
10140 int i;
10141
10142 if (set->num_connectors == 0)
10143 return false;
10144
10145 if (WARN_ON(set->connectors == NULL))
10146 return false;
10147
10148 for (i = 0; i < set->num_connectors; i++)
10149 if (set->connectors[i]->encoder &&
10150 set->connectors[i]->encoder->crtc == set->crtc &&
10151 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10152 return true;
10153
10154 return false;
10155 }
10156
10157 static void
10158 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10159 struct intel_set_config *config)
10160 {
10161
10162 /* We should be able to check here if the fb has the same properties
10163 * and then just flip_or_move it */
10164 if (is_crtc_connector_off(set)) {
10165 config->mode_changed = true;
10166 } else if (set->crtc->primary->fb != set->fb) {
10167 /* If we have no fb then treat it as a full mode set */
10168 if (set->crtc->primary->fb == NULL) {
10169 struct intel_crtc *intel_crtc =
10170 to_intel_crtc(set->crtc);
10171
10172 if (intel_crtc->active && i915.fastboot) {
10173 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10174 config->fb_changed = true;
10175 } else {
10176 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10177 config->mode_changed = true;
10178 }
10179 } else if (set->fb == NULL) {
10180 config->mode_changed = true;
10181 } else if (set->fb->pixel_format !=
10182 set->crtc->primary->fb->pixel_format) {
10183 config->mode_changed = true;
10184 } else {
10185 config->fb_changed = true;
10186 }
10187 }
10188
10189 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10190 config->fb_changed = true;
10191
10192 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10193 DRM_DEBUG_KMS("modes are different, full mode set\n");
10194 drm_mode_debug_printmodeline(&set->crtc->mode);
10195 drm_mode_debug_printmodeline(set->mode);
10196 config->mode_changed = true;
10197 }
10198
10199 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10200 set->crtc->base.id, config->mode_changed, config->fb_changed);
10201 }
10202
10203 static int
10204 intel_modeset_stage_output_state(struct drm_device *dev,
10205 struct drm_mode_set *set,
10206 struct intel_set_config *config)
10207 {
10208 struct intel_connector *connector;
10209 struct intel_encoder *encoder;
10210 struct intel_crtc *crtc;
10211 int ro;
10212
10213 /* The upper layers ensure that we either disable a crtc or have a list
10214 * of connectors. For paranoia, double-check this. */
10215 WARN_ON(!set->fb && (set->num_connectors != 0));
10216 WARN_ON(set->fb && (set->num_connectors == 0));
10217
10218 list_for_each_entry(connector, &dev->mode_config.connector_list,
10219 base.head) {
10220 /* Otherwise traverse passed in connector list and get encoders
10221 * for them. */
10222 for (ro = 0; ro < set->num_connectors; ro++) {
10223 if (set->connectors[ro] == &connector->base) {
10224 connector->new_encoder = connector->encoder;
10225 break;
10226 }
10227 }
10228
10229 /* If we disable the crtc, disable all its connectors. Also, if
10230 * the connector is on the changing crtc but not on the new
10231 * connector list, disable it. */
10232 if ((!set->fb || ro == set->num_connectors) &&
10233 connector->base.encoder &&
10234 connector->base.encoder->crtc == set->crtc) {
10235 connector->new_encoder = NULL;
10236
10237 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10238 connector->base.base.id,
10239 drm_get_connector_name(&connector->base));
10240 }
10241
10242
10243 if (&connector->new_encoder->base != connector->base.encoder) {
10244 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10245 config->mode_changed = true;
10246 }
10247 }
10248 /* connector->new_encoder is now updated for all connectors. */
10249
10250 /* Update crtc of enabled connectors. */
10251 list_for_each_entry(connector, &dev->mode_config.connector_list,
10252 base.head) {
10253 struct drm_crtc *new_crtc;
10254
10255 if (!connector->new_encoder)
10256 continue;
10257
10258 new_crtc = connector->new_encoder->base.crtc;
10259
10260 for (ro = 0; ro < set->num_connectors; ro++) {
10261 if (set->connectors[ro] == &connector->base)
10262 new_crtc = set->crtc;
10263 }
10264
10265 /* Make sure the new CRTC will work with the encoder */
10266 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10267 new_crtc)) {
10268 return -EINVAL;
10269 }
10270 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10271
10272 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10273 connector->base.base.id,
10274 drm_get_connector_name(&connector->base),
10275 new_crtc->base.id);
10276 }
10277
10278 /* Check for any encoders that needs to be disabled. */
10279 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10280 base.head) {
10281 int num_connectors = 0;
10282 list_for_each_entry(connector,
10283 &dev->mode_config.connector_list,
10284 base.head) {
10285 if (connector->new_encoder == encoder) {
10286 WARN_ON(!connector->new_encoder->new_crtc);
10287 num_connectors++;
10288 }
10289 }
10290
10291 if (num_connectors == 0)
10292 encoder->new_crtc = NULL;
10293 else if (num_connectors > 1)
10294 return -EINVAL;
10295
10296 /* Only now check for crtc changes so we don't miss encoders
10297 * that will be disabled. */
10298 if (&encoder->new_crtc->base != encoder->base.crtc) {
10299 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10300 config->mode_changed = true;
10301 }
10302 }
10303 /* Now we've also updated encoder->new_crtc for all encoders. */
10304
10305 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10306 base.head) {
10307 crtc->new_enabled = false;
10308
10309 list_for_each_entry(encoder,
10310 &dev->mode_config.encoder_list,
10311 base.head) {
10312 if (encoder->new_crtc == crtc) {
10313 crtc->new_enabled = true;
10314 break;
10315 }
10316 }
10317
10318 if (crtc->new_enabled != crtc->base.enabled) {
10319 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10320 crtc->new_enabled ? "en" : "dis");
10321 config->mode_changed = true;
10322 }
10323
10324 if (crtc->new_enabled)
10325 crtc->new_config = &crtc->config;
10326 else
10327 crtc->new_config = NULL;
10328 }
10329
10330 return 0;
10331 }
10332
10333 static void disable_crtc_nofb(struct intel_crtc *crtc)
10334 {
10335 struct drm_device *dev = crtc->base.dev;
10336 struct intel_encoder *encoder;
10337 struct intel_connector *connector;
10338
10339 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10340 pipe_name(crtc->pipe));
10341
10342 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10343 if (connector->new_encoder &&
10344 connector->new_encoder->new_crtc == crtc)
10345 connector->new_encoder = NULL;
10346 }
10347
10348 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10349 if (encoder->new_crtc == crtc)
10350 encoder->new_crtc = NULL;
10351 }
10352
10353 crtc->new_enabled = false;
10354 crtc->new_config = NULL;
10355 }
10356
10357 static int intel_crtc_set_config(struct drm_mode_set *set)
10358 {
10359 struct drm_device *dev;
10360 struct drm_mode_set save_set;
10361 struct intel_set_config *config;
10362 int ret;
10363
10364 BUG_ON(!set);
10365 BUG_ON(!set->crtc);
10366 BUG_ON(!set->crtc->helper_private);
10367
10368 /* Enforce sane interface api - has been abused by the fb helper. */
10369 BUG_ON(!set->mode && set->fb);
10370 BUG_ON(set->fb && set->num_connectors == 0);
10371
10372 if (set->fb) {
10373 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10374 set->crtc->base.id, set->fb->base.id,
10375 (int)set->num_connectors, set->x, set->y);
10376 } else {
10377 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10378 }
10379
10380 dev = set->crtc->dev;
10381
10382 ret = -ENOMEM;
10383 config = kzalloc(sizeof(*config), GFP_KERNEL);
10384 if (!config)
10385 goto out_config;
10386
10387 ret = intel_set_config_save_state(dev, config);
10388 if (ret)
10389 goto out_config;
10390
10391 save_set.crtc = set->crtc;
10392 save_set.mode = &set->crtc->mode;
10393 save_set.x = set->crtc->x;
10394 save_set.y = set->crtc->y;
10395 save_set.fb = set->crtc->primary->fb;
10396
10397 /* Compute whether we need a full modeset, only an fb base update or no
10398 * change at all. In the future we might also check whether only the
10399 * mode changed, e.g. for LVDS where we only change the panel fitter in
10400 * such cases. */
10401 intel_set_config_compute_mode_changes(set, config);
10402
10403 ret = intel_modeset_stage_output_state(dev, set, config);
10404 if (ret)
10405 goto fail;
10406
10407 if (config->mode_changed) {
10408 ret = intel_set_mode(set->crtc, set->mode,
10409 set->x, set->y, set->fb);
10410 } else if (config->fb_changed) {
10411 intel_crtc_wait_for_pending_flips(set->crtc);
10412
10413 ret = intel_pipe_set_base(set->crtc,
10414 set->x, set->y, set->fb);
10415 /*
10416 * In the fastboot case this may be our only check of the
10417 * state after boot. It would be better to only do it on
10418 * the first update, but we don't have a nice way of doing that
10419 * (and really, set_config isn't used much for high freq page
10420 * flipping, so increasing its cost here shouldn't be a big
10421 * deal).
10422 */
10423 if (i915.fastboot && ret == 0)
10424 intel_modeset_check_state(set->crtc->dev);
10425 }
10426
10427 if (ret) {
10428 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10429 set->crtc->base.id, ret);
10430 fail:
10431 intel_set_config_restore_state(dev, config);
10432
10433 /*
10434 * HACK: if the pipe was on, but we didn't have a framebuffer,
10435 * force the pipe off to avoid oopsing in the modeset code
10436 * due to fb==NULL. This should only happen during boot since
10437 * we don't yet reconstruct the FB from the hardware state.
10438 */
10439 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10440 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10441
10442 /* Try to restore the config */
10443 if (config->mode_changed &&
10444 intel_set_mode(save_set.crtc, save_set.mode,
10445 save_set.x, save_set.y, save_set.fb))
10446 DRM_ERROR("failed to restore config after modeset failure\n");
10447 }
10448
10449 out_config:
10450 intel_set_config_free(config);
10451 return ret;
10452 }
10453
10454 static const struct drm_crtc_funcs intel_crtc_funcs = {
10455 .cursor_set = intel_crtc_cursor_set,
10456 .cursor_move = intel_crtc_cursor_move,
10457 .gamma_set = intel_crtc_gamma_set,
10458 .set_config = intel_crtc_set_config,
10459 .destroy = intel_crtc_destroy,
10460 .page_flip = intel_crtc_page_flip,
10461 };
10462
10463 static void intel_cpu_pll_init(struct drm_device *dev)
10464 {
10465 if (HAS_DDI(dev))
10466 intel_ddi_pll_init(dev);
10467 }
10468
10469 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10470 struct intel_shared_dpll *pll,
10471 struct intel_dpll_hw_state *hw_state)
10472 {
10473 uint32_t val;
10474
10475 val = I915_READ(PCH_DPLL(pll->id));
10476 hw_state->dpll = val;
10477 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10478 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10479
10480 return val & DPLL_VCO_ENABLE;
10481 }
10482
10483 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10484 struct intel_shared_dpll *pll)
10485 {
10486 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10487 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10488 }
10489
10490 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10491 struct intel_shared_dpll *pll)
10492 {
10493 /* PCH refclock must be enabled first */
10494 ibx_assert_pch_refclk_enabled(dev_priv);
10495
10496 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10497
10498 /* Wait for the clocks to stabilize. */
10499 POSTING_READ(PCH_DPLL(pll->id));
10500 udelay(150);
10501
10502 /* The pixel multiplier can only be updated once the
10503 * DPLL is enabled and the clocks are stable.
10504 *
10505 * So write it again.
10506 */
10507 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10508 POSTING_READ(PCH_DPLL(pll->id));
10509 udelay(200);
10510 }
10511
10512 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10513 struct intel_shared_dpll *pll)
10514 {
10515 struct drm_device *dev = dev_priv->dev;
10516 struct intel_crtc *crtc;
10517
10518 /* Make sure no transcoder isn't still depending on us. */
10519 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10520 if (intel_crtc_to_shared_dpll(crtc) == pll)
10521 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10522 }
10523
10524 I915_WRITE(PCH_DPLL(pll->id), 0);
10525 POSTING_READ(PCH_DPLL(pll->id));
10526 udelay(200);
10527 }
10528
10529 static char *ibx_pch_dpll_names[] = {
10530 "PCH DPLL A",
10531 "PCH DPLL B",
10532 };
10533
10534 static void ibx_pch_dpll_init(struct drm_device *dev)
10535 {
10536 struct drm_i915_private *dev_priv = dev->dev_private;
10537 int i;
10538
10539 dev_priv->num_shared_dpll = 2;
10540
10541 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10542 dev_priv->shared_dplls[i].id = i;
10543 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10544 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10545 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10546 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10547 dev_priv->shared_dplls[i].get_hw_state =
10548 ibx_pch_dpll_get_hw_state;
10549 }
10550 }
10551
10552 static void intel_shared_dpll_init(struct drm_device *dev)
10553 {
10554 struct drm_i915_private *dev_priv = dev->dev_private;
10555
10556 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10557 ibx_pch_dpll_init(dev);
10558 else
10559 dev_priv->num_shared_dpll = 0;
10560
10561 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10562 }
10563
10564 static void intel_crtc_init(struct drm_device *dev, int pipe)
10565 {
10566 struct drm_i915_private *dev_priv = dev->dev_private;
10567 struct intel_crtc *intel_crtc;
10568 int i;
10569
10570 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10571 if (intel_crtc == NULL)
10572 return;
10573
10574 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10575
10576 if (IS_GEN2(dev)) {
10577 intel_crtc->max_cursor_width = GEN2_CURSOR_WIDTH;
10578 intel_crtc->max_cursor_height = GEN2_CURSOR_HEIGHT;
10579 } else {
10580 intel_crtc->max_cursor_width = CURSOR_WIDTH;
10581 intel_crtc->max_cursor_height = CURSOR_HEIGHT;
10582 }
10583 dev->mode_config.cursor_width = intel_crtc->max_cursor_width;
10584 dev->mode_config.cursor_height = intel_crtc->max_cursor_height;
10585
10586 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10587 for (i = 0; i < 256; i++) {
10588 intel_crtc->lut_r[i] = i;
10589 intel_crtc->lut_g[i] = i;
10590 intel_crtc->lut_b[i] = i;
10591 }
10592
10593 /*
10594 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10595 * is hooked to plane B. Hence we want plane A feeding pipe B.
10596 */
10597 intel_crtc->pipe = pipe;
10598 intel_crtc->plane = pipe;
10599 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10600 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10601 intel_crtc->plane = !pipe;
10602 }
10603
10604 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10605 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10606 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10607 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10608
10609 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10610 }
10611
10612 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10613 {
10614 struct drm_encoder *encoder = connector->base.encoder;
10615
10616 WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10617
10618 if (!encoder)
10619 return INVALID_PIPE;
10620
10621 return to_intel_crtc(encoder->crtc)->pipe;
10622 }
10623
10624 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10625 struct drm_file *file)
10626 {
10627 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10628 struct drm_mode_object *drmmode_obj;
10629 struct intel_crtc *crtc;
10630
10631 if (!drm_core_check_feature(dev, DRIVER_MODESET))
10632 return -ENODEV;
10633
10634 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10635 DRM_MODE_OBJECT_CRTC);
10636
10637 if (!drmmode_obj) {
10638 DRM_ERROR("no such CRTC id\n");
10639 return -ENOENT;
10640 }
10641
10642 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10643 pipe_from_crtc_id->pipe = crtc->pipe;
10644
10645 return 0;
10646 }
10647
10648 static int intel_encoder_clones(struct intel_encoder *encoder)
10649 {
10650 struct drm_device *dev = encoder->base.dev;
10651 struct intel_encoder *source_encoder;
10652 int index_mask = 0;
10653 int entry = 0;
10654
10655 list_for_each_entry(source_encoder,
10656 &dev->mode_config.encoder_list, base.head) {
10657 if (encoders_cloneable(encoder, source_encoder))
10658 index_mask |= (1 << entry);
10659
10660 entry++;
10661 }
10662
10663 return index_mask;
10664 }
10665
10666 static bool has_edp_a(struct drm_device *dev)
10667 {
10668 struct drm_i915_private *dev_priv = dev->dev_private;
10669
10670 if (!IS_MOBILE(dev))
10671 return false;
10672
10673 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10674 return false;
10675
10676 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10677 return false;
10678
10679 return true;
10680 }
10681
10682 const char *intel_output_name(int output)
10683 {
10684 static const char *names[] = {
10685 [INTEL_OUTPUT_UNUSED] = "Unused",
10686 [INTEL_OUTPUT_ANALOG] = "Analog",
10687 [INTEL_OUTPUT_DVO] = "DVO",
10688 [INTEL_OUTPUT_SDVO] = "SDVO",
10689 [INTEL_OUTPUT_LVDS] = "LVDS",
10690 [INTEL_OUTPUT_TVOUT] = "TV",
10691 [INTEL_OUTPUT_HDMI] = "HDMI",
10692 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10693 [INTEL_OUTPUT_EDP] = "eDP",
10694 [INTEL_OUTPUT_DSI] = "DSI",
10695 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10696 };
10697
10698 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10699 return "Invalid";
10700
10701 return names[output];
10702 }
10703
10704 static void intel_setup_outputs(struct drm_device *dev)
10705 {
10706 struct drm_i915_private *dev_priv = dev->dev_private;
10707 struct intel_encoder *encoder;
10708 bool dpd_is_edp = false;
10709
10710 intel_lvds_init(dev);
10711
10712 if (!IS_ULT(dev))
10713 intel_crt_init(dev);
10714
10715 if (HAS_DDI(dev)) {
10716 int found;
10717
10718 /* Haswell uses DDI functions to detect digital outputs */
10719 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10720 /* DDI A only supports eDP */
10721 if (found)
10722 intel_ddi_init(dev, PORT_A);
10723
10724 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10725 * register */
10726 found = I915_READ(SFUSE_STRAP);
10727
10728 if (found & SFUSE_STRAP_DDIB_DETECTED)
10729 intel_ddi_init(dev, PORT_B);
10730 if (found & SFUSE_STRAP_DDIC_DETECTED)
10731 intel_ddi_init(dev, PORT_C);
10732 if (found & SFUSE_STRAP_DDID_DETECTED)
10733 intel_ddi_init(dev, PORT_D);
10734 } else if (HAS_PCH_SPLIT(dev)) {
10735 int found;
10736 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10737
10738 if (has_edp_a(dev))
10739 intel_dp_init(dev, DP_A, PORT_A);
10740
10741 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10742 /* PCH SDVOB multiplex with HDMIB */
10743 found = intel_sdvo_init(dev, PCH_SDVOB, true);
10744 if (!found)
10745 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10746 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10747 intel_dp_init(dev, PCH_DP_B, PORT_B);
10748 }
10749
10750 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10751 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10752
10753 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10754 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10755
10756 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10757 intel_dp_init(dev, PCH_DP_C, PORT_C);
10758
10759 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10760 intel_dp_init(dev, PCH_DP_D, PORT_D);
10761 } else if (IS_VALLEYVIEW(dev)) {
10762 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10763 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10764 PORT_B);
10765 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10766 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10767 }
10768
10769 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10770 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10771 PORT_C);
10772 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10773 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10774 }
10775
10776 intel_dsi_init(dev);
10777 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10778 bool found = false;
10779
10780 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10781 DRM_DEBUG_KMS("probing SDVOB\n");
10782 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10783 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10784 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10785 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10786 }
10787
10788 if (!found && SUPPORTS_INTEGRATED_DP(dev))
10789 intel_dp_init(dev, DP_B, PORT_B);
10790 }
10791
10792 /* Before G4X SDVOC doesn't have its own detect register */
10793
10794 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10795 DRM_DEBUG_KMS("probing SDVOC\n");
10796 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10797 }
10798
10799 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10800
10801 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10802 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10803 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10804 }
10805 if (SUPPORTS_INTEGRATED_DP(dev))
10806 intel_dp_init(dev, DP_C, PORT_C);
10807 }
10808
10809 if (SUPPORTS_INTEGRATED_DP(dev) &&
10810 (I915_READ(DP_D) & DP_DETECTED))
10811 intel_dp_init(dev, DP_D, PORT_D);
10812 } else if (IS_GEN2(dev))
10813 intel_dvo_init(dev);
10814
10815 if (SUPPORTS_TV(dev))
10816 intel_tv_init(dev);
10817
10818 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10819 encoder->base.possible_crtcs = encoder->crtc_mask;
10820 encoder->base.possible_clones =
10821 intel_encoder_clones(encoder);
10822 }
10823
10824 intel_init_pch_refclk(dev);
10825
10826 drm_helper_move_panel_connectors_to_head(dev);
10827 }
10828
10829 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10830 {
10831 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10832
10833 drm_framebuffer_cleanup(fb);
10834 WARN_ON(!intel_fb->obj->framebuffer_references--);
10835 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
10836 kfree(intel_fb);
10837 }
10838
10839 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10840 struct drm_file *file,
10841 unsigned int *handle)
10842 {
10843 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10844 struct drm_i915_gem_object *obj = intel_fb->obj;
10845
10846 return drm_gem_handle_create(file, &obj->base, handle);
10847 }
10848
10849 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10850 .destroy = intel_user_framebuffer_destroy,
10851 .create_handle = intel_user_framebuffer_create_handle,
10852 };
10853
10854 static int intel_framebuffer_init(struct drm_device *dev,
10855 struct intel_framebuffer *intel_fb,
10856 struct drm_mode_fb_cmd2 *mode_cmd,
10857 struct drm_i915_gem_object *obj)
10858 {
10859 int aligned_height;
10860 int pitch_limit;
10861 int ret;
10862
10863 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10864
10865 if (obj->tiling_mode == I915_TILING_Y) {
10866 DRM_DEBUG("hardware does not support tiling Y\n");
10867 return -EINVAL;
10868 }
10869
10870 if (mode_cmd->pitches[0] & 63) {
10871 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10872 mode_cmd->pitches[0]);
10873 return -EINVAL;
10874 }
10875
10876 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10877 pitch_limit = 32*1024;
10878 } else if (INTEL_INFO(dev)->gen >= 4) {
10879 if (obj->tiling_mode)
10880 pitch_limit = 16*1024;
10881 else
10882 pitch_limit = 32*1024;
10883 } else if (INTEL_INFO(dev)->gen >= 3) {
10884 if (obj->tiling_mode)
10885 pitch_limit = 8*1024;
10886 else
10887 pitch_limit = 16*1024;
10888 } else
10889 /* XXX DSPC is limited to 4k tiled */
10890 pitch_limit = 8*1024;
10891
10892 if (mode_cmd->pitches[0] > pitch_limit) {
10893 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10894 obj->tiling_mode ? "tiled" : "linear",
10895 mode_cmd->pitches[0], pitch_limit);
10896 return -EINVAL;
10897 }
10898
10899 if (obj->tiling_mode != I915_TILING_NONE &&
10900 mode_cmd->pitches[0] != obj->stride) {
10901 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10902 mode_cmd->pitches[0], obj->stride);
10903 return -EINVAL;
10904 }
10905
10906 /* Reject formats not supported by any plane early. */
10907 switch (mode_cmd->pixel_format) {
10908 case DRM_FORMAT_C8:
10909 case DRM_FORMAT_RGB565:
10910 case DRM_FORMAT_XRGB8888:
10911 case DRM_FORMAT_ARGB8888:
10912 break;
10913 case DRM_FORMAT_XRGB1555:
10914 case DRM_FORMAT_ARGB1555:
10915 if (INTEL_INFO(dev)->gen > 3) {
10916 DRM_DEBUG("unsupported pixel format: %s\n",
10917 drm_get_format_name(mode_cmd->pixel_format));
10918 return -EINVAL;
10919 }
10920 break;
10921 case DRM_FORMAT_XBGR8888:
10922 case DRM_FORMAT_ABGR8888:
10923 case DRM_FORMAT_XRGB2101010:
10924 case DRM_FORMAT_ARGB2101010:
10925 case DRM_FORMAT_XBGR2101010:
10926 case DRM_FORMAT_ABGR2101010:
10927 if (INTEL_INFO(dev)->gen < 4) {
10928 DRM_DEBUG("unsupported pixel format: %s\n",
10929 drm_get_format_name(mode_cmd->pixel_format));
10930 return -EINVAL;
10931 }
10932 break;
10933 case DRM_FORMAT_YUYV:
10934 case DRM_FORMAT_UYVY:
10935 case DRM_FORMAT_YVYU:
10936 case DRM_FORMAT_VYUY:
10937 if (INTEL_INFO(dev)->gen < 5) {
10938 DRM_DEBUG("unsupported pixel format: %s\n",
10939 drm_get_format_name(mode_cmd->pixel_format));
10940 return -EINVAL;
10941 }
10942 break;
10943 default:
10944 DRM_DEBUG("unsupported pixel format: %s\n",
10945 drm_get_format_name(mode_cmd->pixel_format));
10946 return -EINVAL;
10947 }
10948
10949 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10950 if (mode_cmd->offsets[0] != 0)
10951 return -EINVAL;
10952
10953 aligned_height = intel_align_height(dev, mode_cmd->height,
10954 obj->tiling_mode);
10955 /* FIXME drm helper for size checks (especially planar formats)? */
10956 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10957 return -EINVAL;
10958
10959 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10960 intel_fb->obj = obj;
10961 intel_fb->obj->framebuffer_references++;
10962
10963 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10964 if (ret) {
10965 DRM_ERROR("framebuffer init failed %d\n", ret);
10966 return ret;
10967 }
10968
10969 return 0;
10970 }
10971
10972 static struct drm_framebuffer *
10973 intel_user_framebuffer_create(struct drm_device *dev,
10974 struct drm_file *filp,
10975 struct drm_mode_fb_cmd2 *mode_cmd)
10976 {
10977 struct drm_i915_gem_object *obj;
10978
10979 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10980 mode_cmd->handles[0]));
10981 if (&obj->base == NULL)
10982 return ERR_PTR(-ENOENT);
10983
10984 return intel_framebuffer_create(dev, mode_cmd, obj);
10985 }
10986
10987 #ifndef CONFIG_DRM_I915_FBDEV
10988 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10989 {
10990 }
10991 #endif
10992
10993 static const struct drm_mode_config_funcs intel_mode_funcs = {
10994 .fb_create = intel_user_framebuffer_create,
10995 .output_poll_changed = intel_fbdev_output_poll_changed,
10996 };
10997
10998 /* Set up chip specific display functions */
10999 static void intel_init_display(struct drm_device *dev)
11000 {
11001 struct drm_i915_private *dev_priv = dev->dev_private;
11002
11003 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11004 dev_priv->display.find_dpll = g4x_find_best_dpll;
11005 else if (IS_VALLEYVIEW(dev))
11006 dev_priv->display.find_dpll = vlv_find_best_dpll;
11007 else if (IS_PINEVIEW(dev))
11008 dev_priv->display.find_dpll = pnv_find_best_dpll;
11009 else
11010 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11011
11012 if (HAS_DDI(dev)) {
11013 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11014 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11015 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11016 dev_priv->display.crtc_enable = haswell_crtc_enable;
11017 dev_priv->display.crtc_disable = haswell_crtc_disable;
11018 dev_priv->display.off = haswell_crtc_off;
11019 dev_priv->display.update_primary_plane =
11020 ironlake_update_primary_plane;
11021 } else if (HAS_PCH_SPLIT(dev)) {
11022 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11023 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11024 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11025 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11026 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11027 dev_priv->display.off = ironlake_crtc_off;
11028 dev_priv->display.update_primary_plane =
11029 ironlake_update_primary_plane;
11030 } else if (IS_VALLEYVIEW(dev)) {
11031 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11032 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11033 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11034 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11035 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11036 dev_priv->display.off = i9xx_crtc_off;
11037 dev_priv->display.update_primary_plane =
11038 i9xx_update_primary_plane;
11039 } else {
11040 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11041 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11042 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11043 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11044 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11045 dev_priv->display.off = i9xx_crtc_off;
11046 dev_priv->display.update_primary_plane =
11047 i9xx_update_primary_plane;
11048 }
11049
11050 /* Returns the core display clock speed */
11051 if (IS_VALLEYVIEW(dev))
11052 dev_priv->display.get_display_clock_speed =
11053 valleyview_get_display_clock_speed;
11054 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11055 dev_priv->display.get_display_clock_speed =
11056 i945_get_display_clock_speed;
11057 else if (IS_I915G(dev))
11058 dev_priv->display.get_display_clock_speed =
11059 i915_get_display_clock_speed;
11060 else if (IS_I945GM(dev) || IS_845G(dev))
11061 dev_priv->display.get_display_clock_speed =
11062 i9xx_misc_get_display_clock_speed;
11063 else if (IS_PINEVIEW(dev))
11064 dev_priv->display.get_display_clock_speed =
11065 pnv_get_display_clock_speed;
11066 else if (IS_I915GM(dev))
11067 dev_priv->display.get_display_clock_speed =
11068 i915gm_get_display_clock_speed;
11069 else if (IS_I865G(dev))
11070 dev_priv->display.get_display_clock_speed =
11071 i865_get_display_clock_speed;
11072 else if (IS_I85X(dev))
11073 dev_priv->display.get_display_clock_speed =
11074 i855_get_display_clock_speed;
11075 else /* 852, 830 */
11076 dev_priv->display.get_display_clock_speed =
11077 i830_get_display_clock_speed;
11078
11079 if (HAS_PCH_SPLIT(dev)) {
11080 if (IS_GEN5(dev)) {
11081 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11082 dev_priv->display.write_eld = ironlake_write_eld;
11083 } else if (IS_GEN6(dev)) {
11084 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11085 dev_priv->display.write_eld = ironlake_write_eld;
11086 } else if (IS_IVYBRIDGE(dev)) {
11087 /* FIXME: detect B0+ stepping and use auto training */
11088 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11089 dev_priv->display.write_eld = ironlake_write_eld;
11090 dev_priv->display.modeset_global_resources =
11091 ivb_modeset_global_resources;
11092 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11093 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11094 dev_priv->display.write_eld = haswell_write_eld;
11095 dev_priv->display.modeset_global_resources =
11096 haswell_modeset_global_resources;
11097 }
11098 } else if (IS_G4X(dev)) {
11099 dev_priv->display.write_eld = g4x_write_eld;
11100 } else if (IS_VALLEYVIEW(dev)) {
11101 dev_priv->display.modeset_global_resources =
11102 valleyview_modeset_global_resources;
11103 dev_priv->display.write_eld = ironlake_write_eld;
11104 }
11105
11106 /* Default just returns -ENODEV to indicate unsupported */
11107 dev_priv->display.queue_flip = intel_default_queue_flip;
11108
11109 switch (INTEL_INFO(dev)->gen) {
11110 case 2:
11111 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11112 break;
11113
11114 case 3:
11115 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11116 break;
11117
11118 case 4:
11119 case 5:
11120 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11121 break;
11122
11123 case 6:
11124 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11125 break;
11126 case 7:
11127 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11128 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11129 break;
11130 }
11131
11132 intel_panel_init_backlight_funcs(dev);
11133 }
11134
11135 /*
11136 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11137 * resume, or other times. This quirk makes sure that's the case for
11138 * affected systems.
11139 */
11140 static void quirk_pipea_force(struct drm_device *dev)
11141 {
11142 struct drm_i915_private *dev_priv = dev->dev_private;
11143
11144 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11145 DRM_INFO("applying pipe a force quirk\n");
11146 }
11147
11148 /*
11149 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11150 */
11151 static void quirk_ssc_force_disable(struct drm_device *dev)
11152 {
11153 struct drm_i915_private *dev_priv = dev->dev_private;
11154 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11155 DRM_INFO("applying lvds SSC disable quirk\n");
11156 }
11157
11158 /*
11159 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11160 * brightness value
11161 */
11162 static void quirk_invert_brightness(struct drm_device *dev)
11163 {
11164 struct drm_i915_private *dev_priv = dev->dev_private;
11165 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11166 DRM_INFO("applying inverted panel brightness quirk\n");
11167 }
11168
11169 struct intel_quirk {
11170 int device;
11171 int subsystem_vendor;
11172 int subsystem_device;
11173 void (*hook)(struct drm_device *dev);
11174 };
11175
11176 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11177 struct intel_dmi_quirk {
11178 void (*hook)(struct drm_device *dev);
11179 const struct dmi_system_id (*dmi_id_list)[];
11180 };
11181
11182 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11183 {
11184 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11185 return 1;
11186 }
11187
11188 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11189 {
11190 .dmi_id_list = &(const struct dmi_system_id[]) {
11191 {
11192 .callback = intel_dmi_reverse_brightness,
11193 .ident = "NCR Corporation",
11194 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11195 DMI_MATCH(DMI_PRODUCT_NAME, ""),
11196 },
11197 },
11198 { } /* terminating entry */
11199 },
11200 .hook = quirk_invert_brightness,
11201 },
11202 };
11203
11204 static struct intel_quirk intel_quirks[] = {
11205 /* HP Mini needs pipe A force quirk (LP: #322104) */
11206 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11207
11208 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11209 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11210
11211 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11212 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11213
11214 /* 830 needs to leave pipe A & dpll A up */
11215 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11216
11217 /* Lenovo U160 cannot use SSC on LVDS */
11218 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11219
11220 /* Sony Vaio Y cannot use SSC on LVDS */
11221 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11222
11223 /* Acer Aspire 5734Z must invert backlight brightness */
11224 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11225
11226 /* Acer/eMachines G725 */
11227 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11228
11229 /* Acer/eMachines e725 */
11230 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11231
11232 /* Acer/Packard Bell NCL20 */
11233 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11234
11235 /* Acer Aspire 4736Z */
11236 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11237
11238 /* Acer Aspire 5336 */
11239 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11240 };
11241
11242 static void intel_init_quirks(struct drm_device *dev)
11243 {
11244 struct pci_dev *d = dev->pdev;
11245 int i;
11246
11247 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11248 struct intel_quirk *q = &intel_quirks[i];
11249
11250 if (d->device == q->device &&
11251 (d->subsystem_vendor == q->subsystem_vendor ||
11252 q->subsystem_vendor == PCI_ANY_ID) &&
11253 (d->subsystem_device == q->subsystem_device ||
11254 q->subsystem_device == PCI_ANY_ID))
11255 q->hook(dev);
11256 }
11257 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11258 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11259 intel_dmi_quirks[i].hook(dev);
11260 }
11261 }
11262
11263 /* Disable the VGA plane that we never use */
11264 static void i915_disable_vga(struct drm_device *dev)
11265 {
11266 struct drm_i915_private *dev_priv = dev->dev_private;
11267 u8 sr1;
11268 u32 vga_reg = i915_vgacntrl_reg(dev);
11269
11270 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11271 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11272 outb(SR01, VGA_SR_INDEX);
11273 sr1 = inb(VGA_SR_DATA);
11274 outb(sr1 | 1<<5, VGA_SR_DATA);
11275 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11276 udelay(300);
11277
11278 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11279 POSTING_READ(vga_reg);
11280 }
11281
11282 void intel_modeset_init_hw(struct drm_device *dev)
11283 {
11284 intel_prepare_ddi(dev);
11285
11286 intel_init_clock_gating(dev);
11287
11288 intel_reset_dpio(dev);
11289
11290 mutex_lock(&dev->struct_mutex);
11291 intel_enable_gt_powersave(dev);
11292 mutex_unlock(&dev->struct_mutex);
11293 }
11294
11295 void intel_modeset_suspend_hw(struct drm_device *dev)
11296 {
11297 intel_suspend_hw(dev);
11298 }
11299
11300 void intel_modeset_init(struct drm_device *dev)
11301 {
11302 struct drm_i915_private *dev_priv = dev->dev_private;
11303 int sprite, ret;
11304 enum pipe pipe;
11305 struct intel_crtc *crtc;
11306
11307 drm_mode_config_init(dev);
11308
11309 dev->mode_config.min_width = 0;
11310 dev->mode_config.min_height = 0;
11311
11312 dev->mode_config.preferred_depth = 24;
11313 dev->mode_config.prefer_shadow = 1;
11314
11315 dev->mode_config.funcs = &intel_mode_funcs;
11316
11317 intel_init_quirks(dev);
11318
11319 intel_init_pm(dev);
11320
11321 if (INTEL_INFO(dev)->num_pipes == 0)
11322 return;
11323
11324 intel_init_display(dev);
11325
11326 if (IS_GEN2(dev)) {
11327 dev->mode_config.max_width = 2048;
11328 dev->mode_config.max_height = 2048;
11329 } else if (IS_GEN3(dev)) {
11330 dev->mode_config.max_width = 4096;
11331 dev->mode_config.max_height = 4096;
11332 } else {
11333 dev->mode_config.max_width = 8192;
11334 dev->mode_config.max_height = 8192;
11335 }
11336 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11337
11338 DRM_DEBUG_KMS("%d display pipe%s available.\n",
11339 INTEL_INFO(dev)->num_pipes,
11340 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11341
11342 for_each_pipe(pipe) {
11343 intel_crtc_init(dev, pipe);
11344 for_each_sprite(pipe, sprite) {
11345 ret = intel_plane_init(dev, pipe, sprite);
11346 if (ret)
11347 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11348 pipe_name(pipe), sprite_name(pipe, sprite), ret);
11349 }
11350 }
11351
11352 intel_init_dpio(dev);
11353 intel_reset_dpio(dev);
11354
11355 intel_cpu_pll_init(dev);
11356 intel_shared_dpll_init(dev);
11357
11358 /* Just disable it once at startup */
11359 i915_disable_vga(dev);
11360 intel_setup_outputs(dev);
11361
11362 /* Just in case the BIOS is doing something questionable. */
11363 intel_disable_fbc(dev);
11364
11365 mutex_lock(&dev->mode_config.mutex);
11366 intel_modeset_setup_hw_state(dev, false);
11367 mutex_unlock(&dev->mode_config.mutex);
11368
11369 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11370 base.head) {
11371 if (!crtc->active)
11372 continue;
11373
11374 /*
11375 * Note that reserving the BIOS fb up front prevents us
11376 * from stuffing other stolen allocations like the ring
11377 * on top. This prevents some ugliness at boot time, and
11378 * can even allow for smooth boot transitions if the BIOS
11379 * fb is large enough for the active pipe configuration.
11380 */
11381 if (dev_priv->display.get_plane_config) {
11382 dev_priv->display.get_plane_config(crtc,
11383 &crtc->plane_config);
11384 /*
11385 * If the fb is shared between multiple heads, we'll
11386 * just get the first one.
11387 */
11388 intel_find_plane_obj(crtc, &crtc->plane_config);
11389 }
11390 }
11391 }
11392
11393 static void intel_enable_pipe_a(struct drm_device *dev)
11394 {
11395 struct intel_connector *connector;
11396 struct drm_connector *crt = NULL;
11397 struct intel_load_detect_pipe load_detect_temp;
11398
11399 /* We can't just switch on the pipe A, we need to set things up with a
11400 * proper mode and output configuration. As a gross hack, enable pipe A
11401 * by enabling the load detect pipe once. */
11402 list_for_each_entry(connector,
11403 &dev->mode_config.connector_list,
11404 base.head) {
11405 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11406 crt = &connector->base;
11407 break;
11408 }
11409 }
11410
11411 if (!crt)
11412 return;
11413
11414 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11415 intel_release_load_detect_pipe(crt, &load_detect_temp);
11416
11417
11418 }
11419
11420 static bool
11421 intel_check_plane_mapping(struct intel_crtc *crtc)
11422 {
11423 struct drm_device *dev = crtc->base.dev;
11424 struct drm_i915_private *dev_priv = dev->dev_private;
11425 u32 reg, val;
11426
11427 if (INTEL_INFO(dev)->num_pipes == 1)
11428 return true;
11429
11430 reg = DSPCNTR(!crtc->plane);
11431 val = I915_READ(reg);
11432
11433 if ((val & DISPLAY_PLANE_ENABLE) &&
11434 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11435 return false;
11436
11437 return true;
11438 }
11439
11440 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11441 {
11442 struct drm_device *dev = crtc->base.dev;
11443 struct drm_i915_private *dev_priv = dev->dev_private;
11444 u32 reg;
11445
11446 /* Clear any frame start delays used for debugging left by the BIOS */
11447 reg = PIPECONF(crtc->config.cpu_transcoder);
11448 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11449
11450 /* We need to sanitize the plane -> pipe mapping first because this will
11451 * disable the crtc (and hence change the state) if it is wrong. Note
11452 * that gen4+ has a fixed plane -> pipe mapping. */
11453 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11454 struct intel_connector *connector;
11455 bool plane;
11456
11457 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11458 crtc->base.base.id);
11459
11460 /* Pipe has the wrong plane attached and the plane is active.
11461 * Temporarily change the plane mapping and disable everything
11462 * ... */
11463 plane = crtc->plane;
11464 crtc->plane = !plane;
11465 dev_priv->display.crtc_disable(&crtc->base);
11466 crtc->plane = plane;
11467
11468 /* ... and break all links. */
11469 list_for_each_entry(connector, &dev->mode_config.connector_list,
11470 base.head) {
11471 if (connector->encoder->base.crtc != &crtc->base)
11472 continue;
11473
11474 connector->base.dpms = DRM_MODE_DPMS_OFF;
11475 connector->base.encoder = NULL;
11476 }
11477 /* multiple connectors may have the same encoder:
11478 * handle them and break crtc link separately */
11479 list_for_each_entry(connector, &dev->mode_config.connector_list,
11480 base.head)
11481 if (connector->encoder->base.crtc == &crtc->base) {
11482 connector->encoder->base.crtc = NULL;
11483 connector->encoder->connectors_active = false;
11484 }
11485
11486 WARN_ON(crtc->active);
11487 crtc->base.enabled = false;
11488 }
11489
11490 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11491 crtc->pipe == PIPE_A && !crtc->active) {
11492 /* BIOS forgot to enable pipe A, this mostly happens after
11493 * resume. Force-enable the pipe to fix this, the update_dpms
11494 * call below we restore the pipe to the right state, but leave
11495 * the required bits on. */
11496 intel_enable_pipe_a(dev);
11497 }
11498
11499 /* Adjust the state of the output pipe according to whether we
11500 * have active connectors/encoders. */
11501 intel_crtc_update_dpms(&crtc->base);
11502
11503 if (crtc->active != crtc->base.enabled) {
11504 struct intel_encoder *encoder;
11505
11506 /* This can happen either due to bugs in the get_hw_state
11507 * functions or because the pipe is force-enabled due to the
11508 * pipe A quirk. */
11509 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11510 crtc->base.base.id,
11511 crtc->base.enabled ? "enabled" : "disabled",
11512 crtc->active ? "enabled" : "disabled");
11513
11514 crtc->base.enabled = crtc->active;
11515
11516 /* Because we only establish the connector -> encoder ->
11517 * crtc links if something is active, this means the
11518 * crtc is now deactivated. Break the links. connector
11519 * -> encoder links are only establish when things are
11520 * actually up, hence no need to break them. */
11521 WARN_ON(crtc->active);
11522
11523 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11524 WARN_ON(encoder->connectors_active);
11525 encoder->base.crtc = NULL;
11526 }
11527 }
11528 if (crtc->active) {
11529 /*
11530 * We start out with underrun reporting disabled to avoid races.
11531 * For correct bookkeeping mark this on active crtcs.
11532 *
11533 * No protection against concurrent access is required - at
11534 * worst a fifo underrun happens which also sets this to false.
11535 */
11536 crtc->cpu_fifo_underrun_disabled = true;
11537 crtc->pch_fifo_underrun_disabled = true;
11538 }
11539 }
11540
11541 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11542 {
11543 struct intel_connector *connector;
11544 struct drm_device *dev = encoder->base.dev;
11545
11546 /* We need to check both for a crtc link (meaning that the
11547 * encoder is active and trying to read from a pipe) and the
11548 * pipe itself being active. */
11549 bool has_active_crtc = encoder->base.crtc &&
11550 to_intel_crtc(encoder->base.crtc)->active;
11551
11552 if (encoder->connectors_active && !has_active_crtc) {
11553 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11554 encoder->base.base.id,
11555 drm_get_encoder_name(&encoder->base));
11556
11557 /* Connector is active, but has no active pipe. This is
11558 * fallout from our resume register restoring. Disable
11559 * the encoder manually again. */
11560 if (encoder->base.crtc) {
11561 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11562 encoder->base.base.id,
11563 drm_get_encoder_name(&encoder->base));
11564 encoder->disable(encoder);
11565 }
11566 encoder->base.crtc = NULL;
11567 encoder->connectors_active = false;
11568
11569 /* Inconsistent output/port/pipe state happens presumably due to
11570 * a bug in one of the get_hw_state functions. Or someplace else
11571 * in our code, like the register restore mess on resume. Clamp
11572 * things to off as a safer default. */
11573 list_for_each_entry(connector,
11574 &dev->mode_config.connector_list,
11575 base.head) {
11576 if (connector->encoder != encoder)
11577 continue;
11578 connector->base.dpms = DRM_MODE_DPMS_OFF;
11579 connector->base.encoder = NULL;
11580 }
11581 }
11582 /* Enabled encoders without active connectors will be fixed in
11583 * the crtc fixup. */
11584 }
11585
11586 void i915_redisable_vga_power_on(struct drm_device *dev)
11587 {
11588 struct drm_i915_private *dev_priv = dev->dev_private;
11589 u32 vga_reg = i915_vgacntrl_reg(dev);
11590
11591 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11592 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11593 i915_disable_vga(dev);
11594 }
11595 }
11596
11597 void i915_redisable_vga(struct drm_device *dev)
11598 {
11599 struct drm_i915_private *dev_priv = dev->dev_private;
11600
11601 /* This function can be called both from intel_modeset_setup_hw_state or
11602 * at a very early point in our resume sequence, where the power well
11603 * structures are not yet restored. Since this function is at a very
11604 * paranoid "someone might have enabled VGA while we were not looking"
11605 * level, just check if the power well is enabled instead of trying to
11606 * follow the "don't touch the power well if we don't need it" policy
11607 * the rest of the driver uses. */
11608 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11609 return;
11610
11611 i915_redisable_vga_power_on(dev);
11612 }
11613
11614 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11615 {
11616 struct drm_i915_private *dev_priv = dev->dev_private;
11617 enum pipe pipe;
11618 struct intel_crtc *crtc;
11619 struct intel_encoder *encoder;
11620 struct intel_connector *connector;
11621 int i;
11622
11623 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11624 base.head) {
11625 memset(&crtc->config, 0, sizeof(crtc->config));
11626
11627 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
11628
11629 crtc->active = dev_priv->display.get_pipe_config(crtc,
11630 &crtc->config);
11631
11632 crtc->base.enabled = crtc->active;
11633 crtc->primary_enabled = crtc->active;
11634
11635 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11636 crtc->base.base.id,
11637 crtc->active ? "enabled" : "disabled");
11638 }
11639
11640 /* FIXME: Smash this into the new shared dpll infrastructure. */
11641 if (HAS_DDI(dev))
11642 intel_ddi_setup_hw_pll_state(dev);
11643
11644 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11645 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11646
11647 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11648 pll->active = 0;
11649 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11650 base.head) {
11651 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11652 pll->active++;
11653 }
11654 pll->refcount = pll->active;
11655
11656 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11657 pll->name, pll->refcount, pll->on);
11658 }
11659
11660 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11661 base.head) {
11662 pipe = 0;
11663
11664 if (encoder->get_hw_state(encoder, &pipe)) {
11665 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11666 encoder->base.crtc = &crtc->base;
11667 encoder->get_config(encoder, &crtc->config);
11668 } else {
11669 encoder->base.crtc = NULL;
11670 }
11671
11672 encoder->connectors_active = false;
11673 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11674 encoder->base.base.id,
11675 drm_get_encoder_name(&encoder->base),
11676 encoder->base.crtc ? "enabled" : "disabled",
11677 pipe_name(pipe));
11678 }
11679
11680 list_for_each_entry(connector, &dev->mode_config.connector_list,
11681 base.head) {
11682 if (connector->get_hw_state(connector)) {
11683 connector->base.dpms = DRM_MODE_DPMS_ON;
11684 connector->encoder->connectors_active = true;
11685 connector->base.encoder = &connector->encoder->base;
11686 } else {
11687 connector->base.dpms = DRM_MODE_DPMS_OFF;
11688 connector->base.encoder = NULL;
11689 }
11690 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11691 connector->base.base.id,
11692 drm_get_connector_name(&connector->base),
11693 connector->base.encoder ? "enabled" : "disabled");
11694 }
11695 }
11696
11697 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11698 * and i915 state tracking structures. */
11699 void intel_modeset_setup_hw_state(struct drm_device *dev,
11700 bool force_restore)
11701 {
11702 struct drm_i915_private *dev_priv = dev->dev_private;
11703 enum pipe pipe;
11704 struct intel_crtc *crtc;
11705 struct intel_encoder *encoder;
11706 int i;
11707
11708 intel_modeset_readout_hw_state(dev);
11709
11710 /*
11711 * Now that we have the config, copy it to each CRTC struct
11712 * Note that this could go away if we move to using crtc_config
11713 * checking everywhere.
11714 */
11715 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11716 base.head) {
11717 if (crtc->active && i915.fastboot) {
11718 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11719 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11720 crtc->base.base.id);
11721 drm_mode_debug_printmodeline(&crtc->base.mode);
11722 }
11723 }
11724
11725 /* HW state is read out, now we need to sanitize this mess. */
11726 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11727 base.head) {
11728 intel_sanitize_encoder(encoder);
11729 }
11730
11731 for_each_pipe(pipe) {
11732 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11733 intel_sanitize_crtc(crtc);
11734 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11735 }
11736
11737 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11738 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11739
11740 if (!pll->on || pll->active)
11741 continue;
11742
11743 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11744
11745 pll->disable(dev_priv, pll);
11746 pll->on = false;
11747 }
11748
11749 if (HAS_PCH_SPLIT(dev))
11750 ilk_wm_get_hw_state(dev);
11751
11752 if (force_restore) {
11753 i915_redisable_vga(dev);
11754
11755 /*
11756 * We need to use raw interfaces for restoring state to avoid
11757 * checking (bogus) intermediate states.
11758 */
11759 for_each_pipe(pipe) {
11760 struct drm_crtc *crtc =
11761 dev_priv->pipe_to_crtc_mapping[pipe];
11762
11763 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11764 crtc->primary->fb);
11765 }
11766 } else {
11767 intel_modeset_update_staged_output_state(dev);
11768 }
11769
11770 intel_modeset_check_state(dev);
11771 }
11772
11773 void intel_modeset_gem_init(struct drm_device *dev)
11774 {
11775 struct drm_crtc *c;
11776 struct intel_framebuffer *fb;
11777
11778 mutex_lock(&dev->struct_mutex);
11779 intel_init_gt_powersave(dev);
11780 mutex_unlock(&dev->struct_mutex);
11781
11782 intel_modeset_init_hw(dev);
11783
11784 intel_setup_overlay(dev);
11785
11786 /*
11787 * Make sure any fbs we allocated at startup are properly
11788 * pinned & fenced. When we do the allocation it's too early
11789 * for this.
11790 */
11791 mutex_lock(&dev->struct_mutex);
11792 list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
11793 if (!c->primary->fb)
11794 continue;
11795
11796 fb = to_intel_framebuffer(c->primary->fb);
11797 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
11798 DRM_ERROR("failed to pin boot fb on pipe %d\n",
11799 to_intel_crtc(c)->pipe);
11800 drm_framebuffer_unreference(c->primary->fb);
11801 c->primary->fb = NULL;
11802 }
11803 }
11804 mutex_unlock(&dev->struct_mutex);
11805 }
11806
11807 void intel_connector_unregister(struct intel_connector *intel_connector)
11808 {
11809 struct drm_connector *connector = &intel_connector->base;
11810
11811 intel_panel_destroy_backlight(connector);
11812 drm_sysfs_connector_remove(connector);
11813 }
11814
11815 void intel_modeset_cleanup(struct drm_device *dev)
11816 {
11817 struct drm_i915_private *dev_priv = dev->dev_private;
11818 struct drm_crtc *crtc;
11819 struct drm_connector *connector;
11820
11821 /*
11822 * Interrupts and polling as the first thing to avoid creating havoc.
11823 * Too much stuff here (turning of rps, connectors, ...) would
11824 * experience fancy races otherwise.
11825 */
11826 drm_irq_uninstall(dev);
11827 cancel_work_sync(&dev_priv->hotplug_work);
11828 /*
11829 * Due to the hpd irq storm handling the hotplug work can re-arm the
11830 * poll handlers. Hence disable polling after hpd handling is shut down.
11831 */
11832 drm_kms_helper_poll_fini(dev);
11833
11834 mutex_lock(&dev->struct_mutex);
11835
11836 intel_unregister_dsm_handler();
11837
11838 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11839 /* Skip inactive CRTCs */
11840 if (!crtc->primary->fb)
11841 continue;
11842
11843 intel_increase_pllclock(crtc);
11844 }
11845
11846 intel_disable_fbc(dev);
11847
11848 intel_disable_gt_powersave(dev);
11849
11850 ironlake_teardown_rc6(dev);
11851
11852 mutex_unlock(&dev->struct_mutex);
11853
11854 /* flush any delayed tasks or pending work */
11855 flush_scheduled_work();
11856
11857 /* destroy the backlight and sysfs files before encoders/connectors */
11858 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11859 struct intel_connector *intel_connector;
11860
11861 intel_connector = to_intel_connector(connector);
11862 intel_connector->unregister(intel_connector);
11863 }
11864
11865 drm_mode_config_cleanup(dev);
11866
11867 intel_cleanup_overlay(dev);
11868
11869 mutex_lock(&dev->struct_mutex);
11870 intel_cleanup_gt_powersave(dev);
11871 mutex_unlock(&dev->struct_mutex);
11872 }
11873
11874 /*
11875 * Return which encoder is currently attached for connector.
11876 */
11877 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11878 {
11879 return &intel_attached_encoder(connector)->base;
11880 }
11881
11882 void intel_connector_attach_encoder(struct intel_connector *connector,
11883 struct intel_encoder *encoder)
11884 {
11885 connector->encoder = encoder;
11886 drm_mode_connector_attach_encoder(&connector->base,
11887 &encoder->base);
11888 }
11889
11890 /*
11891 * set vga decode state - true == enable VGA decode
11892 */
11893 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11894 {
11895 struct drm_i915_private *dev_priv = dev->dev_private;
11896 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11897 u16 gmch_ctrl;
11898
11899 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
11900 DRM_ERROR("failed to read control word\n");
11901 return -EIO;
11902 }
11903
11904 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
11905 return 0;
11906
11907 if (state)
11908 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11909 else
11910 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11911
11912 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
11913 DRM_ERROR("failed to write control word\n");
11914 return -EIO;
11915 }
11916
11917 return 0;
11918 }
11919
11920 struct intel_display_error_state {
11921
11922 u32 power_well_driver;
11923
11924 int num_transcoders;
11925
11926 struct intel_cursor_error_state {
11927 u32 control;
11928 u32 position;
11929 u32 base;
11930 u32 size;
11931 } cursor[I915_MAX_PIPES];
11932
11933 struct intel_pipe_error_state {
11934 bool power_domain_on;
11935 u32 source;
11936 } pipe[I915_MAX_PIPES];
11937
11938 struct intel_plane_error_state {
11939 u32 control;
11940 u32 stride;
11941 u32 size;
11942 u32 pos;
11943 u32 addr;
11944 u32 surface;
11945 u32 tile_offset;
11946 } plane[I915_MAX_PIPES];
11947
11948 struct intel_transcoder_error_state {
11949 bool power_domain_on;
11950 enum transcoder cpu_transcoder;
11951
11952 u32 conf;
11953
11954 u32 htotal;
11955 u32 hblank;
11956 u32 hsync;
11957 u32 vtotal;
11958 u32 vblank;
11959 u32 vsync;
11960 } transcoder[4];
11961 };
11962
11963 struct intel_display_error_state *
11964 intel_display_capture_error_state(struct drm_device *dev)
11965 {
11966 struct drm_i915_private *dev_priv = dev->dev_private;
11967 struct intel_display_error_state *error;
11968 int transcoders[] = {
11969 TRANSCODER_A,
11970 TRANSCODER_B,
11971 TRANSCODER_C,
11972 TRANSCODER_EDP,
11973 };
11974 int i;
11975
11976 if (INTEL_INFO(dev)->num_pipes == 0)
11977 return NULL;
11978
11979 error = kzalloc(sizeof(*error), GFP_ATOMIC);
11980 if (error == NULL)
11981 return NULL;
11982
11983 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11984 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11985
11986 for_each_pipe(i) {
11987 error->pipe[i].power_domain_on =
11988 intel_display_power_enabled_sw(dev_priv,
11989 POWER_DOMAIN_PIPE(i));
11990 if (!error->pipe[i].power_domain_on)
11991 continue;
11992
11993 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11994 error->cursor[i].control = I915_READ(CURCNTR(i));
11995 error->cursor[i].position = I915_READ(CURPOS(i));
11996 error->cursor[i].base = I915_READ(CURBASE(i));
11997 } else {
11998 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11999 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
12000 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
12001 }
12002
12003 error->plane[i].control = I915_READ(DSPCNTR(i));
12004 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12005 if (INTEL_INFO(dev)->gen <= 3) {
12006 error->plane[i].size = I915_READ(DSPSIZE(i));
12007 error->plane[i].pos = I915_READ(DSPPOS(i));
12008 }
12009 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12010 error->plane[i].addr = I915_READ(DSPADDR(i));
12011 if (INTEL_INFO(dev)->gen >= 4) {
12012 error->plane[i].surface = I915_READ(DSPSURF(i));
12013 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12014 }
12015
12016 error->pipe[i].source = I915_READ(PIPESRC(i));
12017 }
12018
12019 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12020 if (HAS_DDI(dev_priv->dev))
12021 error->num_transcoders++; /* Account for eDP. */
12022
12023 for (i = 0; i < error->num_transcoders; i++) {
12024 enum transcoder cpu_transcoder = transcoders[i];
12025
12026 error->transcoder[i].power_domain_on =
12027 intel_display_power_enabled_sw(dev_priv,
12028 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12029 if (!error->transcoder[i].power_domain_on)
12030 continue;
12031
12032 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12033
12034 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12035 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12036 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12037 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12038 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12039 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12040 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12041 }
12042
12043 return error;
12044 }
12045
12046 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12047
12048 void
12049 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12050 struct drm_device *dev,
12051 struct intel_display_error_state *error)
12052 {
12053 int i;
12054
12055 if (!error)
12056 return;
12057
12058 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12059 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12060 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12061 error->power_well_driver);
12062 for_each_pipe(i) {
12063 err_printf(m, "Pipe [%d]:\n", i);
12064 err_printf(m, " Power: %s\n",
12065 error->pipe[i].power_domain_on ? "on" : "off");
12066 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
12067
12068 err_printf(m, "Plane [%d]:\n", i);
12069 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
12070 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
12071 if (INTEL_INFO(dev)->gen <= 3) {
12072 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
12073 err_printf(m, " POS: %08x\n", error->plane[i].pos);
12074 }
12075 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12076 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
12077 if (INTEL_INFO(dev)->gen >= 4) {
12078 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
12079 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
12080 }
12081
12082 err_printf(m, "Cursor [%d]:\n", i);
12083 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
12084 err_printf(m, " POS: %08x\n", error->cursor[i].position);
12085 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
12086 }
12087
12088 for (i = 0; i < error->num_transcoders; i++) {
12089 err_printf(m, "CPU transcoder: %c\n",
12090 transcoder_name(error->transcoder[i].cpu_transcoder));
12091 err_printf(m, " Power: %s\n",
12092 error->transcoder[i].power_domain_on ? "on" : "off");
12093 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
12094 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
12095 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
12096 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
12097 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
12098 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
12099 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
12100 }
12101 }
This page took 0.534875 seconds and 5 git commands to generate.