Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/i2c.h>
28 #include "drmP.h"
29 #include "intel_drv.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32
33 #include "drm_crtc_helper.h"
34
35 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
36
37 typedef struct {
38 /* given values */
39 int n;
40 int m1, m2;
41 int p1, p2;
42 /* derived values */
43 int dot;
44 int vco;
45 int m;
46 int p;
47 } intel_clock_t;
48
49 typedef struct {
50 int min, max;
51 } intel_range_t;
52
53 typedef struct {
54 int dot_limit;
55 int p2_slow, p2_fast;
56 } intel_p2_t;
57
58 #define INTEL_P2_NUM 2
59 typedef struct intel_limit intel_limit_t;
60 struct intel_limit {
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
62 intel_p2_t p2;
63 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
64 int, int, intel_clock_t *);
65 };
66
67 #define I8XX_DOT_MIN 25000
68 #define I8XX_DOT_MAX 350000
69 #define I8XX_VCO_MIN 930000
70 #define I8XX_VCO_MAX 1400000
71 #define I8XX_N_MIN 3
72 #define I8XX_N_MAX 16
73 #define I8XX_M_MIN 96
74 #define I8XX_M_MAX 140
75 #define I8XX_M1_MIN 18
76 #define I8XX_M1_MAX 26
77 #define I8XX_M2_MIN 6
78 #define I8XX_M2_MAX 16
79 #define I8XX_P_MIN 4
80 #define I8XX_P_MAX 128
81 #define I8XX_P1_MIN 2
82 #define I8XX_P1_MAX 33
83 #define I8XX_P1_LVDS_MIN 1
84 #define I8XX_P1_LVDS_MAX 6
85 #define I8XX_P2_SLOW 4
86 #define I8XX_P2_FAST 2
87 #define I8XX_P2_LVDS_SLOW 14
88 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
89 #define I8XX_P2_SLOW_LIMIT 165000
90
91 #define I9XX_DOT_MIN 20000
92 #define I9XX_DOT_MAX 400000
93 #define I9XX_VCO_MIN 1400000
94 #define I9XX_VCO_MAX 2800000
95 #define IGD_VCO_MIN 1700000
96 #define IGD_VCO_MAX 3500000
97 #define I9XX_N_MIN 1
98 #define I9XX_N_MAX 6
99 /* IGD's Ncounter is a ring counter */
100 #define IGD_N_MIN 3
101 #define IGD_N_MAX 6
102 #define I9XX_M_MIN 70
103 #define I9XX_M_MAX 120
104 #define IGD_M_MIN 2
105 #define IGD_M_MAX 256
106 #define I9XX_M1_MIN 10
107 #define I9XX_M1_MAX 22
108 #define I9XX_M2_MIN 5
109 #define I9XX_M2_MAX 9
110 /* IGD M1 is reserved, and must be 0 */
111 #define IGD_M1_MIN 0
112 #define IGD_M1_MAX 0
113 #define IGD_M2_MIN 0
114 #define IGD_M2_MAX 254
115 #define I9XX_P_SDVO_DAC_MIN 5
116 #define I9XX_P_SDVO_DAC_MAX 80
117 #define I9XX_P_LVDS_MIN 7
118 #define I9XX_P_LVDS_MAX 98
119 #define IGD_P_LVDS_MIN 7
120 #define IGD_P_LVDS_MAX 112
121 #define I9XX_P1_MIN 1
122 #define I9XX_P1_MAX 8
123 #define I9XX_P2_SDVO_DAC_SLOW 10
124 #define I9XX_P2_SDVO_DAC_FAST 5
125 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
126 #define I9XX_P2_LVDS_SLOW 14
127 #define I9XX_P2_LVDS_FAST 7
128 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
129
130 #define INTEL_LIMIT_I8XX_DVO_DAC 0
131 #define INTEL_LIMIT_I8XX_LVDS 1
132 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
133 #define INTEL_LIMIT_I9XX_LVDS 3
134 #define INTEL_LIMIT_G4X_SDVO 4
135 #define INTEL_LIMIT_G4X_HDMI_DAC 5
136 #define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS 6
137 #define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS 7
138 #define INTEL_LIMIT_IGD_SDVO_DAC 8
139 #define INTEL_LIMIT_IGD_LVDS 9
140
141 /*The parameter is for SDVO on G4x platform*/
142 #define G4X_DOT_SDVO_MIN 25000
143 #define G4X_DOT_SDVO_MAX 270000
144 #define G4X_VCO_MIN 1750000
145 #define G4X_VCO_MAX 3500000
146 #define G4X_N_SDVO_MIN 1
147 #define G4X_N_SDVO_MAX 4
148 #define G4X_M_SDVO_MIN 104
149 #define G4X_M_SDVO_MAX 138
150 #define G4X_M1_SDVO_MIN 17
151 #define G4X_M1_SDVO_MAX 23
152 #define G4X_M2_SDVO_MIN 5
153 #define G4X_M2_SDVO_MAX 11
154 #define G4X_P_SDVO_MIN 10
155 #define G4X_P_SDVO_MAX 30
156 #define G4X_P1_SDVO_MIN 1
157 #define G4X_P1_SDVO_MAX 3
158 #define G4X_P2_SDVO_SLOW 10
159 #define G4X_P2_SDVO_FAST 10
160 #define G4X_P2_SDVO_LIMIT 270000
161
162 /*The parameter is for HDMI_DAC on G4x platform*/
163 #define G4X_DOT_HDMI_DAC_MIN 22000
164 #define G4X_DOT_HDMI_DAC_MAX 400000
165 #define G4X_N_HDMI_DAC_MIN 1
166 #define G4X_N_HDMI_DAC_MAX 4
167 #define G4X_M_HDMI_DAC_MIN 104
168 #define G4X_M_HDMI_DAC_MAX 138
169 #define G4X_M1_HDMI_DAC_MIN 16
170 #define G4X_M1_HDMI_DAC_MAX 23
171 #define G4X_M2_HDMI_DAC_MIN 5
172 #define G4X_M2_HDMI_DAC_MAX 11
173 #define G4X_P_HDMI_DAC_MIN 5
174 #define G4X_P_HDMI_DAC_MAX 80
175 #define G4X_P1_HDMI_DAC_MIN 1
176 #define G4X_P1_HDMI_DAC_MAX 8
177 #define G4X_P2_HDMI_DAC_SLOW 10
178 #define G4X_P2_HDMI_DAC_FAST 5
179 #define G4X_P2_HDMI_DAC_LIMIT 165000
180
181 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199
200 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
203 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
204 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
205 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
206 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
211 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
212 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
215 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218
219 static bool
220 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
221 int target, int refclk, intel_clock_t *best_clock);
222 static bool
223 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
224 int target, int refclk, intel_clock_t *best_clock);
225
226 static const intel_limit_t intel_limits[] = {
227 { /* INTEL_LIMIT_I8XX_DVO_DAC */
228 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
229 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
230 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
231 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
232 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
233 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
234 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
235 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
236 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
237 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
238 .find_pll = intel_find_best_PLL,
239 },
240 { /* INTEL_LIMIT_I8XX_LVDS */
241 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
242 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
243 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
244 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
245 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
246 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
247 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
248 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
249 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
250 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
251 .find_pll = intel_find_best_PLL,
252 },
253 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
254 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
255 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
256 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
257 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
258 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
259 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
260 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
261 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
262 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
263 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
264 .find_pll = intel_find_best_PLL,
265 },
266 { /* INTEL_LIMIT_I9XX_LVDS */
267 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
268 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
269 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
270 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
271 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
272 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
273 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
274 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
275 /* The single-channel range is 25-112Mhz, and dual-channel
276 * is 80-224Mhz. Prefer single channel as much as possible.
277 */
278 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
279 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
280 .find_pll = intel_find_best_PLL,
281 },
282 /* below parameter and function is for G4X Chipset Family*/
283 { /* INTEL_LIMIT_G4X_SDVO */
284 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
285 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
286 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
287 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
288 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
289 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
290 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
291 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
292 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
293 .p2_slow = G4X_P2_SDVO_SLOW,
294 .p2_fast = G4X_P2_SDVO_FAST
295 },
296 .find_pll = intel_g4x_find_best_PLL,
297 },
298 { /* INTEL_LIMIT_G4X_HDMI_DAC */
299 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
300 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
301 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
302 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
303 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
304 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
305 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
306 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
307 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
308 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
309 .p2_fast = G4X_P2_HDMI_DAC_FAST
310 },
311 .find_pll = intel_g4x_find_best_PLL,
312 },
313 { /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
314 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
315 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
316 .vco = { .min = G4X_VCO_MIN,
317 .max = G4X_VCO_MAX },
318 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
319 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
320 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
321 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
322 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
323 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
324 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
325 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
326 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
327 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
328 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
329 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
330 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
331 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
332 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
333 },
334 .find_pll = intel_g4x_find_best_PLL,
335 },
336 { /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
337 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
338 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
339 .vco = { .min = G4X_VCO_MIN,
340 .max = G4X_VCO_MAX },
341 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
342 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
343 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
344 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
345 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
346 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
347 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
348 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
349 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
350 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
351 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
352 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
353 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
354 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
355 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
356 },
357 .find_pll = intel_g4x_find_best_PLL,
358 },
359 { /* INTEL_LIMIT_IGD_SDVO */
360 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
361 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
362 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
363 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
364 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
365 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
366 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
367 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
368 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
369 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
370 },
371 { /* INTEL_LIMIT_IGD_LVDS */
372 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
373 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
374 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
375 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
376 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
377 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
378 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
379 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
380 /* IGD only supports single-channel mode. */
381 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
382 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
383 },
384
385 };
386
387 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
388 {
389 struct drm_device *dev = crtc->dev;
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 const intel_limit_t *limit;
392
393 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
394 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
395 LVDS_CLKB_POWER_UP)
396 /* LVDS with dual channel */
397 limit = &intel_limits
398 [INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS];
399 else
400 /* LVDS with dual channel */
401 limit = &intel_limits
402 [INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS];
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405 limit = &intel_limits[INTEL_LIMIT_G4X_HDMI_DAC];
406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407 limit = &intel_limits[INTEL_LIMIT_G4X_SDVO];
408 } else /* The option is for other outputs */
409 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
410
411 return limit;
412 }
413
414 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
415 {
416 struct drm_device *dev = crtc->dev;
417 const intel_limit_t *limit;
418
419 if (IS_G4X(dev)) {
420 limit = intel_g4x_limit(crtc);
421 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
422 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
424 else
425 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
426 } else if (IS_IGD(dev)) {
427 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428 limit = &intel_limits[INTEL_LIMIT_IGD_LVDS];
429 else
430 limit = &intel_limits[INTEL_LIMIT_IGD_SDVO_DAC];
431 } else {
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
433 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
434 else
435 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
436 }
437 return limit;
438 }
439
440 /* m1 is reserved as 0 in IGD, n is a ring counter */
441 static void igd_clock(int refclk, intel_clock_t *clock)
442 {
443 clock->m = clock->m2 + 2;
444 clock->p = clock->p1 * clock->p2;
445 clock->vco = refclk * clock->m / clock->n;
446 clock->dot = clock->vco / clock->p;
447 }
448
449 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
450 {
451 if (IS_IGD(dev)) {
452 igd_clock(refclk, clock);
453 return;
454 }
455 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
456 clock->p = clock->p1 * clock->p2;
457 clock->vco = refclk * clock->m / (clock->n + 2);
458 clock->dot = clock->vco / clock->p;
459 }
460
461 /**
462 * Returns whether any output on the specified pipe is of the specified type
463 */
464 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
465 {
466 struct drm_device *dev = crtc->dev;
467 struct drm_mode_config *mode_config = &dev->mode_config;
468 struct drm_connector *l_entry;
469
470 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
471 if (l_entry->encoder &&
472 l_entry->encoder->crtc == crtc) {
473 struct intel_output *intel_output = to_intel_output(l_entry);
474 if (intel_output->type == type)
475 return true;
476 }
477 }
478 return false;
479 }
480
481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
485 */
486
487 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
488 {
489 const intel_limit_t *limit = intel_limit (crtc);
490 struct drm_device *dev = crtc->dev;
491
492 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
493 INTELPllInvalid ("p1 out of range\n");
494 if (clock->p < limit->p.min || limit->p.max < clock->p)
495 INTELPllInvalid ("p out of range\n");
496 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
497 INTELPllInvalid ("m2 out of range\n");
498 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
499 INTELPllInvalid ("m1 out of range\n");
500 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
501 INTELPllInvalid ("m1 <= m2\n");
502 if (clock->m < limit->m.min || limit->m.max < clock->m)
503 INTELPllInvalid ("m out of range\n");
504 if (clock->n < limit->n.min || limit->n.max < clock->n)
505 INTELPllInvalid ("n out of range\n");
506 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
507 INTELPllInvalid ("vco out of range\n");
508 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
509 * connector, etc., rather than just a single range.
510 */
511 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
512 INTELPllInvalid ("dot out of range\n");
513
514 return true;
515 }
516
517 static bool
518 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
519 int target, int refclk, intel_clock_t *best_clock)
520
521 {
522 struct drm_device *dev = crtc->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 intel_clock_t clock;
525 int err = target;
526
527 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
528 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
529 /*
530 * For LVDS, if the panel is on, just rely on its current
531 * settings for dual-channel. We haven't figured out how to
532 * reliably set up different single/dual channel state, if we
533 * even can.
534 */
535 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536 LVDS_CLKB_POWER_UP)
537 clock.p2 = limit->p2.p2_fast;
538 else
539 clock.p2 = limit->p2.p2_slow;
540 } else {
541 if (target < limit->p2.dot_limit)
542 clock.p2 = limit->p2.p2_slow;
543 else
544 clock.p2 = limit->p2.p2_fast;
545 }
546
547 memset (best_clock, 0, sizeof (*best_clock));
548
549 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
550 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
551 /* m1 is always 0 in IGD */
552 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
553 break;
554 for (clock.n = limit->n.min; clock.n <= limit->n.max;
555 clock.n++) {
556 for (clock.p1 = limit->p1.min;
557 clock.p1 <= limit->p1.max; clock.p1++) {
558 int this_err;
559
560 intel_clock(dev, refclk, &clock);
561
562 if (!intel_PLL_is_valid(crtc, &clock))
563 continue;
564
565 this_err = abs(clock.dot - target);
566 if (this_err < err) {
567 *best_clock = clock;
568 err = this_err;
569 }
570 }
571 }
572 }
573 }
574
575 return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580 int target, int refclk, intel_clock_t *best_clock)
581 {
582 struct drm_device *dev = crtc->dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 intel_clock_t clock;
585 int max_n;
586 bool found;
587 /* approximately equals target * 0.00488 */
588 int err_most = (target >> 8) + (target >> 10);
589 found = false;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
593 LVDS_CLKB_POWER_UP)
594 clock.p2 = limit->p2.p2_fast;
595 else
596 clock.p2 = limit->p2.p2_slow;
597 } else {
598 if (target < limit->p2.dot_limit)
599 clock.p2 = limit->p2.p2_slow;
600 else
601 clock.p2 = limit->p2.p2_fast;
602 }
603
604 memset(best_clock, 0, sizeof(*best_clock));
605 max_n = limit->n.max;
606 /* based on hardware requriment prefer smaller n to precision */
607 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
608 /* based on hardware requirment prefere larger m1,m2, p1 */
609 for (clock.m1 = limit->m1.max;
610 clock.m1 >= limit->m1.min; clock.m1--) {
611 for (clock.m2 = limit->m2.max;
612 clock.m2 >= limit->m2.min; clock.m2--) {
613 for (clock.p1 = limit->p1.max;
614 clock.p1 >= limit->p1.min; clock.p1--) {
615 int this_err;
616
617 intel_clock(dev, refclk, &clock);
618 if (!intel_PLL_is_valid(crtc, &clock))
619 continue;
620 this_err = abs(clock.dot - target) ;
621 if (this_err < err_most) {
622 *best_clock = clock;
623 err_most = this_err;
624 max_n = clock.n;
625 found = true;
626 }
627 }
628 }
629 }
630 }
631
632 return found;
633 }
634
635 void
636 intel_wait_for_vblank(struct drm_device *dev)
637 {
638 /* Wait for 20ms, i.e. one cycle at 50hz. */
639 mdelay(20);
640 }
641
642 static int
643 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
644 struct drm_framebuffer *old_fb)
645 {
646 struct drm_device *dev = crtc->dev;
647 struct drm_i915_private *dev_priv = dev->dev_private;
648 struct drm_i915_master_private *master_priv;
649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
650 struct intel_framebuffer *intel_fb;
651 struct drm_i915_gem_object *obj_priv;
652 struct drm_gem_object *obj;
653 int pipe = intel_crtc->pipe;
654 unsigned long Start, Offset;
655 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
656 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
657 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
658 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
659 u32 dspcntr, alignment;
660 int ret;
661
662 /* no fb bound */
663 if (!crtc->fb) {
664 DRM_DEBUG("No FB bound\n");
665 return 0;
666 }
667
668 switch (pipe) {
669 case 0:
670 case 1:
671 break;
672 default:
673 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
674 return -EINVAL;
675 }
676
677 intel_fb = to_intel_framebuffer(crtc->fb);
678 obj = intel_fb->obj;
679 obj_priv = obj->driver_private;
680
681 switch (obj_priv->tiling_mode) {
682 case I915_TILING_NONE:
683 alignment = 64 * 1024;
684 break;
685 case I915_TILING_X:
686 /* pin() will align the object as required by fence */
687 alignment = 0;
688 break;
689 case I915_TILING_Y:
690 /* FIXME: Is this true? */
691 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
692 return -EINVAL;
693 default:
694 BUG();
695 }
696
697 mutex_lock(&dev->struct_mutex);
698 ret = i915_gem_object_pin(intel_fb->obj, alignment);
699 if (ret != 0) {
700 mutex_unlock(&dev->struct_mutex);
701 return ret;
702 }
703
704 ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
705 if (ret != 0) {
706 i915_gem_object_unpin(intel_fb->obj);
707 mutex_unlock(&dev->struct_mutex);
708 return ret;
709 }
710
711 dspcntr = I915_READ(dspcntr_reg);
712 /* Mask out pixel format bits in case we change it */
713 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
714 switch (crtc->fb->bits_per_pixel) {
715 case 8:
716 dspcntr |= DISPPLANE_8BPP;
717 break;
718 case 16:
719 if (crtc->fb->depth == 15)
720 dspcntr |= DISPPLANE_15_16BPP;
721 else
722 dspcntr |= DISPPLANE_16BPP;
723 break;
724 case 24:
725 case 32:
726 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
727 break;
728 default:
729 DRM_ERROR("Unknown color depth\n");
730 i915_gem_object_unpin(intel_fb->obj);
731 mutex_unlock(&dev->struct_mutex);
732 return -EINVAL;
733 }
734 I915_WRITE(dspcntr_reg, dspcntr);
735
736 Start = obj_priv->gtt_offset;
737 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
738
739 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
740 I915_WRITE(dspstride, crtc->fb->pitch);
741 if (IS_I965G(dev)) {
742 I915_WRITE(dspbase, Offset);
743 I915_READ(dspbase);
744 I915_WRITE(dspsurf, Start);
745 I915_READ(dspsurf);
746 } else {
747 I915_WRITE(dspbase, Start + Offset);
748 I915_READ(dspbase);
749 }
750
751 intel_wait_for_vblank(dev);
752
753 if (old_fb) {
754 intel_fb = to_intel_framebuffer(old_fb);
755 i915_gem_object_unpin(intel_fb->obj);
756 }
757 mutex_unlock(&dev->struct_mutex);
758
759 if (!dev->primary->master)
760 return 0;
761
762 master_priv = dev->primary->master->driver_priv;
763 if (!master_priv->sarea_priv)
764 return 0;
765
766 if (pipe) {
767 master_priv->sarea_priv->pipeB_x = x;
768 master_priv->sarea_priv->pipeB_y = y;
769 } else {
770 master_priv->sarea_priv->pipeA_x = x;
771 master_priv->sarea_priv->pipeA_y = y;
772 }
773
774 return 0;
775 }
776
777
778
779 /**
780 * Sets the power management mode of the pipe and plane.
781 *
782 * This code should probably grow support for turning the cursor off and back
783 * on appropriately at the same time as we're turning the pipe off/on.
784 */
785 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
786 {
787 struct drm_device *dev = crtc->dev;
788 struct drm_i915_master_private *master_priv;
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
791 int pipe = intel_crtc->pipe;
792 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
793 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
794 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
795 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
796 u32 temp;
797 bool enabled;
798
799 /* XXX: When our outputs are all unaware of DPMS modes other than off
800 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
801 */
802 switch (mode) {
803 case DRM_MODE_DPMS_ON:
804 case DRM_MODE_DPMS_STANDBY:
805 case DRM_MODE_DPMS_SUSPEND:
806 /* Enable the DPLL */
807 temp = I915_READ(dpll_reg);
808 if ((temp & DPLL_VCO_ENABLE) == 0) {
809 I915_WRITE(dpll_reg, temp);
810 I915_READ(dpll_reg);
811 /* Wait for the clocks to stabilize. */
812 udelay(150);
813 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
814 I915_READ(dpll_reg);
815 /* Wait for the clocks to stabilize. */
816 udelay(150);
817 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
818 I915_READ(dpll_reg);
819 /* Wait for the clocks to stabilize. */
820 udelay(150);
821 }
822
823 /* Enable the pipe */
824 temp = I915_READ(pipeconf_reg);
825 if ((temp & PIPEACONF_ENABLE) == 0)
826 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
827
828 /* Enable the plane */
829 temp = I915_READ(dspcntr_reg);
830 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
831 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
832 /* Flush the plane changes */
833 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
834 }
835
836 intel_crtc_load_lut(crtc);
837
838 /* Give the overlay scaler a chance to enable if it's on this pipe */
839 //intel_crtc_dpms_video(crtc, true); TODO
840 break;
841 case DRM_MODE_DPMS_OFF:
842 /* Give the overlay scaler a chance to disable if it's on this pipe */
843 //intel_crtc_dpms_video(crtc, FALSE); TODO
844
845 /* Disable the VGA plane that we never use */
846 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
847
848 /* Disable display plane */
849 temp = I915_READ(dspcntr_reg);
850 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
851 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
852 /* Flush the plane changes */
853 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
854 I915_READ(dspbase_reg);
855 }
856
857 if (!IS_I9XX(dev)) {
858 /* Wait for vblank for the disable to take effect */
859 intel_wait_for_vblank(dev);
860 }
861
862 /* Next, disable display pipes */
863 temp = I915_READ(pipeconf_reg);
864 if ((temp & PIPEACONF_ENABLE) != 0) {
865 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
866 I915_READ(pipeconf_reg);
867 }
868
869 /* Wait for vblank for the disable to take effect. */
870 intel_wait_for_vblank(dev);
871
872 temp = I915_READ(dpll_reg);
873 if ((temp & DPLL_VCO_ENABLE) != 0) {
874 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
875 I915_READ(dpll_reg);
876 }
877
878 /* Wait for the clocks to turn off. */
879 udelay(150);
880 break;
881 }
882
883 if (!dev->primary->master)
884 return;
885
886 master_priv = dev->primary->master->driver_priv;
887 if (!master_priv->sarea_priv)
888 return;
889
890 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
891
892 switch (pipe) {
893 case 0:
894 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
895 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
896 break;
897 case 1:
898 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
899 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
900 break;
901 default:
902 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
903 break;
904 }
905
906 intel_crtc->dpms_mode = mode;
907 }
908
909 static void intel_crtc_prepare (struct drm_crtc *crtc)
910 {
911 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
912 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
913 }
914
915 static void intel_crtc_commit (struct drm_crtc *crtc)
916 {
917 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
918 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
919 }
920
921 void intel_encoder_prepare (struct drm_encoder *encoder)
922 {
923 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
924 /* lvds has its own version of prepare see intel_lvds_prepare */
925 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
926 }
927
928 void intel_encoder_commit (struct drm_encoder *encoder)
929 {
930 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
931 /* lvds has its own version of commit see intel_lvds_commit */
932 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
933 }
934
935 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
936 struct drm_display_mode *mode,
937 struct drm_display_mode *adjusted_mode)
938 {
939 return true;
940 }
941
942
943 /** Returns the core display clock speed for i830 - i945 */
944 static int intel_get_core_clock_speed(struct drm_device *dev)
945 {
946
947 /* Core clock values taken from the published datasheets.
948 * The 830 may go up to 166 Mhz, which we should check.
949 */
950 if (IS_I945G(dev))
951 return 400000;
952 else if (IS_I915G(dev))
953 return 333000;
954 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
955 return 200000;
956 else if (IS_I915GM(dev)) {
957 u16 gcfgc = 0;
958
959 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
960
961 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
962 return 133000;
963 else {
964 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
965 case GC_DISPLAY_CLOCK_333_MHZ:
966 return 333000;
967 default:
968 case GC_DISPLAY_CLOCK_190_200_MHZ:
969 return 190000;
970 }
971 }
972 } else if (IS_I865G(dev))
973 return 266000;
974 else if (IS_I855(dev)) {
975 u16 hpllcc = 0;
976 /* Assume that the hardware is in the high speed state. This
977 * should be the default.
978 */
979 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
980 case GC_CLOCK_133_200:
981 case GC_CLOCK_100_200:
982 return 200000;
983 case GC_CLOCK_166_250:
984 return 250000;
985 case GC_CLOCK_100_133:
986 return 133000;
987 }
988 } else /* 852, 830 */
989 return 133000;
990
991 return 0; /* Silence gcc warning */
992 }
993
994
995 /**
996 * Return the pipe currently connected to the panel fitter,
997 * or -1 if the panel fitter is not present or not in use
998 */
999 static int intel_panel_fitter_pipe (struct drm_device *dev)
1000 {
1001 struct drm_i915_private *dev_priv = dev->dev_private;
1002 u32 pfit_control;
1003
1004 /* i830 doesn't have a panel fitter */
1005 if (IS_I830(dev))
1006 return -1;
1007
1008 pfit_control = I915_READ(PFIT_CONTROL);
1009
1010 /* See if the panel fitter is in use */
1011 if ((pfit_control & PFIT_ENABLE) == 0)
1012 return -1;
1013
1014 /* 965 can place panel fitter on either pipe */
1015 if (IS_I965G(dev))
1016 return (pfit_control >> 29) & 0x3;
1017
1018 /* older chips can only use pipe 1 */
1019 return 1;
1020 }
1021
1022 static int intel_crtc_mode_set(struct drm_crtc *crtc,
1023 struct drm_display_mode *mode,
1024 struct drm_display_mode *adjusted_mode,
1025 int x, int y,
1026 struct drm_framebuffer *old_fb)
1027 {
1028 struct drm_device *dev = crtc->dev;
1029 struct drm_i915_private *dev_priv = dev->dev_private;
1030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1031 int pipe = intel_crtc->pipe;
1032 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
1033 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1034 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
1035 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1036 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1037 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1038 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1039 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1040 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1041 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1042 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1043 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
1044 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
1045 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
1046 int refclk, num_outputs = 0;
1047 intel_clock_t clock;
1048 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
1049 bool ok, is_sdvo = false, is_dvo = false;
1050 bool is_crt = false, is_lvds = false, is_tv = false;
1051 struct drm_mode_config *mode_config = &dev->mode_config;
1052 struct drm_connector *connector;
1053 const intel_limit_t *limit;
1054 int ret;
1055
1056 drm_vblank_pre_modeset(dev, pipe);
1057
1058 list_for_each_entry(connector, &mode_config->connector_list, head) {
1059 struct intel_output *intel_output = to_intel_output(connector);
1060
1061 if (!connector->encoder || connector->encoder->crtc != crtc)
1062 continue;
1063
1064 switch (intel_output->type) {
1065 case INTEL_OUTPUT_LVDS:
1066 is_lvds = true;
1067 break;
1068 case INTEL_OUTPUT_SDVO:
1069 case INTEL_OUTPUT_HDMI:
1070 is_sdvo = true;
1071 if (intel_output->needs_tv_clock)
1072 is_tv = true;
1073 break;
1074 case INTEL_OUTPUT_DVO:
1075 is_dvo = true;
1076 break;
1077 case INTEL_OUTPUT_TVOUT:
1078 is_tv = true;
1079 break;
1080 case INTEL_OUTPUT_ANALOG:
1081 is_crt = true;
1082 break;
1083 }
1084
1085 num_outputs++;
1086 }
1087
1088 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
1089 refclk = dev_priv->lvds_ssc_freq * 1000;
1090 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
1091 } else if (IS_I9XX(dev)) {
1092 refclk = 96000;
1093 } else {
1094 refclk = 48000;
1095 }
1096
1097 /*
1098 * Returns a set of divisors for the desired target clock with the given
1099 * refclk, or FALSE. The returned values represent the clock equation:
1100 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
1101 */
1102 limit = intel_limit(crtc);
1103 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
1104 if (!ok) {
1105 DRM_ERROR("Couldn't find PLL settings for mode!\n");
1106 return -EINVAL;
1107 }
1108
1109 /* SDVO TV has fixed PLL values depend on its clock range,
1110 this mirrors vbios setting. */
1111 if (is_sdvo && is_tv) {
1112 if (adjusted_mode->clock >= 100000
1113 && adjusted_mode->clock < 140500) {
1114 clock.p1 = 2;
1115 clock.p2 = 10;
1116 clock.n = 3;
1117 clock.m1 = 16;
1118 clock.m2 = 8;
1119 } else if (adjusted_mode->clock >= 140500
1120 && adjusted_mode->clock <= 200000) {
1121 clock.p1 = 1;
1122 clock.p2 = 10;
1123 clock.n = 6;
1124 clock.m1 = 12;
1125 clock.m2 = 8;
1126 }
1127 }
1128
1129 if (IS_IGD(dev))
1130 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
1131 else
1132 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
1133
1134 dpll = DPLL_VGA_MODE_DIS;
1135 if (IS_I9XX(dev)) {
1136 if (is_lvds)
1137 dpll |= DPLLB_MODE_LVDS;
1138 else
1139 dpll |= DPLLB_MODE_DAC_SERIAL;
1140 if (is_sdvo) {
1141 dpll |= DPLL_DVO_HIGH_SPEED;
1142 if (IS_I945G(dev) || IS_I945GM(dev)) {
1143 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1144 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
1145 }
1146 }
1147
1148 /* compute bitmask from p1 value */
1149 if (IS_IGD(dev))
1150 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
1151 else
1152 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1153 switch (clock.p2) {
1154 case 5:
1155 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1156 break;
1157 case 7:
1158 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1159 break;
1160 case 10:
1161 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1162 break;
1163 case 14:
1164 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1165 break;
1166 }
1167 if (IS_I965G(dev))
1168 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1169 } else {
1170 if (is_lvds) {
1171 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1172 } else {
1173 if (clock.p1 == 2)
1174 dpll |= PLL_P1_DIVIDE_BY_TWO;
1175 else
1176 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1177 if (clock.p2 == 4)
1178 dpll |= PLL_P2_DIVIDE_BY_4;
1179 }
1180 }
1181
1182 if (is_sdvo && is_tv)
1183 dpll |= PLL_REF_INPUT_TVCLKINBC;
1184 else if (is_tv)
1185 /* XXX: just matching BIOS for now */
1186 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
1187 dpll |= 3;
1188 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
1189 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1190 else
1191 dpll |= PLL_REF_INPUT_DREFCLK;
1192
1193 /* setup pipeconf */
1194 pipeconf = I915_READ(pipeconf_reg);
1195
1196 /* Set up the display plane register */
1197 dspcntr = DISPPLANE_GAMMA_ENABLE;
1198
1199 if (pipe == 0)
1200 dspcntr |= DISPPLANE_SEL_PIPE_A;
1201 else
1202 dspcntr |= DISPPLANE_SEL_PIPE_B;
1203
1204 if (pipe == 0 && !IS_I965G(dev)) {
1205 /* Enable pixel doubling when the dot clock is > 90% of the (display)
1206 * core speed.
1207 *
1208 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
1209 * pipe == 0 check?
1210 */
1211 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
1212 pipeconf |= PIPEACONF_DOUBLE_WIDE;
1213 else
1214 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
1215 }
1216
1217 dspcntr |= DISPLAY_PLANE_ENABLE;
1218 pipeconf |= PIPEACONF_ENABLE;
1219 dpll |= DPLL_VCO_ENABLE;
1220
1221
1222 /* Disable the panel fitter if it was on our pipe */
1223 if (intel_panel_fitter_pipe(dev) == pipe)
1224 I915_WRITE(PFIT_CONTROL, 0);
1225
1226 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1227 drm_mode_debug_printmodeline(mode);
1228
1229
1230 if (dpll & DPLL_VCO_ENABLE) {
1231 I915_WRITE(fp_reg, fp);
1232 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
1233 I915_READ(dpll_reg);
1234 udelay(150);
1235 }
1236
1237 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1238 * This is an exception to the general rule that mode_set doesn't turn
1239 * things on.
1240 */
1241 if (is_lvds) {
1242 u32 lvds = I915_READ(LVDS);
1243
1244 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
1245 /* Set the B0-B3 data pairs corresponding to whether we're going to
1246 * set the DPLLs for dual-channel mode or not.
1247 */
1248 if (clock.p2 == 7)
1249 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1250 else
1251 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1252
1253 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1254 * appropriately here, but we need to look more thoroughly into how
1255 * panels behave in the two modes.
1256 */
1257
1258 I915_WRITE(LVDS, lvds);
1259 I915_READ(LVDS);
1260 }
1261
1262 I915_WRITE(fp_reg, fp);
1263 I915_WRITE(dpll_reg, dpll);
1264 I915_READ(dpll_reg);
1265 /* Wait for the clocks to stabilize. */
1266 udelay(150);
1267
1268 if (IS_I965G(dev)) {
1269 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1270 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
1271 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1272 } else {
1273 /* write it again -- the BIOS does, after all */
1274 I915_WRITE(dpll_reg, dpll);
1275 }
1276 I915_READ(dpll_reg);
1277 /* Wait for the clocks to stabilize. */
1278 udelay(150);
1279
1280 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
1281 ((adjusted_mode->crtc_htotal - 1) << 16));
1282 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
1283 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1284 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
1285 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1286 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
1287 ((adjusted_mode->crtc_vtotal - 1) << 16));
1288 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
1289 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1290 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
1291 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1292 /* pipesrc and dspsize control the size that is scaled from, which should
1293 * always be the user's requested size.
1294 */
1295 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1296 I915_WRITE(dsppos_reg, 0);
1297 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1298 I915_WRITE(pipeconf_reg, pipeconf);
1299 I915_READ(pipeconf_reg);
1300
1301 intel_wait_for_vblank(dev);
1302
1303 I915_WRITE(dspcntr_reg, dspcntr);
1304
1305 /* Flush the plane changes */
1306 ret = intel_pipe_set_base(crtc, x, y, old_fb);
1307 if (ret != 0)
1308 return ret;
1309
1310 drm_vblank_post_modeset(dev, pipe);
1311
1312 return 0;
1313 }
1314
1315 /** Loads the palette/gamma unit for the CRTC with the prepared values */
1316 void intel_crtc_load_lut(struct drm_crtc *crtc)
1317 {
1318 struct drm_device *dev = crtc->dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1321 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
1322 int i;
1323
1324 /* The clocks have to be on to load the palette. */
1325 if (!crtc->enabled)
1326 return;
1327
1328 for (i = 0; i < 256; i++) {
1329 I915_WRITE(palreg + 4 * i,
1330 (intel_crtc->lut_r[i] << 16) |
1331 (intel_crtc->lut_g[i] << 8) |
1332 intel_crtc->lut_b[i]);
1333 }
1334 }
1335
1336 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
1337 struct drm_file *file_priv,
1338 uint32_t handle,
1339 uint32_t width, uint32_t height)
1340 {
1341 struct drm_device *dev = crtc->dev;
1342 struct drm_i915_private *dev_priv = dev->dev_private;
1343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1344 struct drm_gem_object *bo;
1345 struct drm_i915_gem_object *obj_priv;
1346 int pipe = intel_crtc->pipe;
1347 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1348 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1349 uint32_t temp;
1350 size_t addr;
1351 int ret;
1352
1353 DRM_DEBUG("\n");
1354
1355 /* if we want to turn off the cursor ignore width and height */
1356 if (!handle) {
1357 DRM_DEBUG("cursor off\n");
1358 temp = CURSOR_MODE_DISABLE;
1359 addr = 0;
1360 bo = NULL;
1361 mutex_lock(&dev->struct_mutex);
1362 goto finish;
1363 }
1364
1365 /* Currently we only support 64x64 cursors */
1366 if (width != 64 || height != 64) {
1367 DRM_ERROR("we currently only support 64x64 cursors\n");
1368 return -EINVAL;
1369 }
1370
1371 bo = drm_gem_object_lookup(dev, file_priv, handle);
1372 if (!bo)
1373 return -ENOENT;
1374
1375 obj_priv = bo->driver_private;
1376
1377 if (bo->size < width * height * 4) {
1378 DRM_ERROR("buffer is to small\n");
1379 ret = -ENOMEM;
1380 goto fail;
1381 }
1382
1383 /* we only need to pin inside GTT if cursor is non-phy */
1384 mutex_lock(&dev->struct_mutex);
1385 if (!dev_priv->cursor_needs_physical) {
1386 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1387 if (ret) {
1388 DRM_ERROR("failed to pin cursor bo\n");
1389 goto fail_locked;
1390 }
1391 addr = obj_priv->gtt_offset;
1392 } else {
1393 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1394 if (ret) {
1395 DRM_ERROR("failed to attach phys object\n");
1396 goto fail_locked;
1397 }
1398 addr = obj_priv->phys_obj->handle->busaddr;
1399 }
1400
1401 temp = 0;
1402 /* set the pipe for the cursor */
1403 temp |= (pipe << 28);
1404 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1405
1406 finish:
1407 I915_WRITE(control, temp);
1408 I915_WRITE(base, addr);
1409
1410 if (intel_crtc->cursor_bo) {
1411 if (dev_priv->cursor_needs_physical) {
1412 if (intel_crtc->cursor_bo != bo)
1413 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1414 } else
1415 i915_gem_object_unpin(intel_crtc->cursor_bo);
1416 drm_gem_object_unreference(intel_crtc->cursor_bo);
1417 }
1418 mutex_unlock(&dev->struct_mutex);
1419
1420 intel_crtc->cursor_addr = addr;
1421 intel_crtc->cursor_bo = bo;
1422
1423 return 0;
1424 fail:
1425 mutex_lock(&dev->struct_mutex);
1426 fail_locked:
1427 drm_gem_object_unreference(bo);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
1431
1432 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1433 {
1434 struct drm_device *dev = crtc->dev;
1435 struct drm_i915_private *dev_priv = dev->dev_private;
1436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1437 int pipe = intel_crtc->pipe;
1438 uint32_t temp = 0;
1439 uint32_t adder;
1440
1441 if (x < 0) {
1442 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1443 x = -x;
1444 }
1445 if (y < 0) {
1446 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1447 y = -y;
1448 }
1449
1450 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1451 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1452
1453 adder = intel_crtc->cursor_addr;
1454 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1455 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1456
1457 return 0;
1458 }
1459
1460 /** Sets the color ramps on behalf of RandR */
1461 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1462 u16 blue, int regno)
1463 {
1464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1465
1466 intel_crtc->lut_r[regno] = red >> 8;
1467 intel_crtc->lut_g[regno] = green >> 8;
1468 intel_crtc->lut_b[regno] = blue >> 8;
1469 }
1470
1471 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1472 u16 *blue, uint32_t size)
1473 {
1474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1475 int i;
1476
1477 if (size != 256)
1478 return;
1479
1480 for (i = 0; i < 256; i++) {
1481 intel_crtc->lut_r[i] = red[i] >> 8;
1482 intel_crtc->lut_g[i] = green[i] >> 8;
1483 intel_crtc->lut_b[i] = blue[i] >> 8;
1484 }
1485
1486 intel_crtc_load_lut(crtc);
1487 }
1488
1489 /**
1490 * Get a pipe with a simple mode set on it for doing load-based monitor
1491 * detection.
1492 *
1493 * It will be up to the load-detect code to adjust the pipe as appropriate for
1494 * its requirements. The pipe will be connected to no other outputs.
1495 *
1496 * Currently this code will only succeed if there is a pipe with no outputs
1497 * configured for it. In the future, it could choose to temporarily disable
1498 * some outputs to free up a pipe for its use.
1499 *
1500 * \return crtc, or NULL if no pipes are available.
1501 */
1502
1503 /* VESA 640x480x72Hz mode to set on the pipe */
1504 static struct drm_display_mode load_detect_mode = {
1505 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
1506 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1507 };
1508
1509 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
1510 struct drm_display_mode *mode,
1511 int *dpms_mode)
1512 {
1513 struct intel_crtc *intel_crtc;
1514 struct drm_crtc *possible_crtc;
1515 struct drm_crtc *supported_crtc =NULL;
1516 struct drm_encoder *encoder = &intel_output->enc;
1517 struct drm_crtc *crtc = NULL;
1518 struct drm_device *dev = encoder->dev;
1519 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1520 struct drm_crtc_helper_funcs *crtc_funcs;
1521 int i = -1;
1522
1523 /*
1524 * Algorithm gets a little messy:
1525 * - if the connector already has an assigned crtc, use it (but make
1526 * sure it's on first)
1527 * - try to find the first unused crtc that can drive this connector,
1528 * and use that if we find one
1529 * - if there are no unused crtcs available, try to use the first
1530 * one we found that supports the connector
1531 */
1532
1533 /* See if we already have a CRTC for this connector */
1534 if (encoder->crtc) {
1535 crtc = encoder->crtc;
1536 /* Make sure the crtc and connector are running */
1537 intel_crtc = to_intel_crtc(crtc);
1538 *dpms_mode = intel_crtc->dpms_mode;
1539 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1540 crtc_funcs = crtc->helper_private;
1541 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1542 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1543 }
1544 return crtc;
1545 }
1546
1547 /* Find an unused one (if possible) */
1548 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
1549 i++;
1550 if (!(encoder->possible_crtcs & (1 << i)))
1551 continue;
1552 if (!possible_crtc->enabled) {
1553 crtc = possible_crtc;
1554 break;
1555 }
1556 if (!supported_crtc)
1557 supported_crtc = possible_crtc;
1558 }
1559
1560 /*
1561 * If we didn't find an unused CRTC, don't use any.
1562 */
1563 if (!crtc) {
1564 return NULL;
1565 }
1566
1567 encoder->crtc = crtc;
1568 intel_output->load_detect_temp = true;
1569
1570 intel_crtc = to_intel_crtc(crtc);
1571 *dpms_mode = intel_crtc->dpms_mode;
1572
1573 if (!crtc->enabled) {
1574 if (!mode)
1575 mode = &load_detect_mode;
1576 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
1577 } else {
1578 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1579 crtc_funcs = crtc->helper_private;
1580 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1581 }
1582
1583 /* Add this connector to the crtc */
1584 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
1585 encoder_funcs->commit(encoder);
1586 }
1587 /* let the connector get through one full cycle before testing */
1588 intel_wait_for_vblank(dev);
1589
1590 return crtc;
1591 }
1592
1593 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
1594 {
1595 struct drm_encoder *encoder = &intel_output->enc;
1596 struct drm_device *dev = encoder->dev;
1597 struct drm_crtc *crtc = encoder->crtc;
1598 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1599 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1600
1601 if (intel_output->load_detect_temp) {
1602 encoder->crtc = NULL;
1603 intel_output->load_detect_temp = false;
1604 crtc->enabled = drm_helper_crtc_in_use(crtc);
1605 drm_helper_disable_unused_functions(dev);
1606 }
1607
1608 /* Switch crtc and output back off if necessary */
1609 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
1610 if (encoder->crtc == crtc)
1611 encoder_funcs->dpms(encoder, dpms_mode);
1612 crtc_funcs->dpms(crtc, dpms_mode);
1613 }
1614 }
1615
1616 /* Returns the clock of the currently programmed mode of the given pipe. */
1617 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
1618 {
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1621 int pipe = intel_crtc->pipe;
1622 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
1623 u32 fp;
1624 intel_clock_t clock;
1625
1626 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1627 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
1628 else
1629 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
1630
1631 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1632 if (IS_IGD(dev)) {
1633 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
1634 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
1635 } else {
1636 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1637 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1638 }
1639
1640 if (IS_I9XX(dev)) {
1641 if (IS_IGD(dev))
1642 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
1643 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
1644 else
1645 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
1646 DPLL_FPA01_P1_POST_DIV_SHIFT);
1647
1648 switch (dpll & DPLL_MODE_MASK) {
1649 case DPLLB_MODE_DAC_SERIAL:
1650 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
1651 5 : 10;
1652 break;
1653 case DPLLB_MODE_LVDS:
1654 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
1655 7 : 14;
1656 break;
1657 default:
1658 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
1659 "mode\n", (int)(dpll & DPLL_MODE_MASK));
1660 return 0;
1661 }
1662
1663 /* XXX: Handle the 100Mhz refclk */
1664 intel_clock(dev, 96000, &clock);
1665 } else {
1666 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
1667
1668 if (is_lvds) {
1669 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1670 DPLL_FPA01_P1_POST_DIV_SHIFT);
1671 clock.p2 = 14;
1672
1673 if ((dpll & PLL_REF_INPUT_MASK) ==
1674 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1675 /* XXX: might not be 66MHz */
1676 intel_clock(dev, 66000, &clock);
1677 } else
1678 intel_clock(dev, 48000, &clock);
1679 } else {
1680 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1681 clock.p1 = 2;
1682 else {
1683 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1684 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1685 }
1686 if (dpll & PLL_P2_DIVIDE_BY_4)
1687 clock.p2 = 4;
1688 else
1689 clock.p2 = 2;
1690
1691 intel_clock(dev, 48000, &clock);
1692 }
1693 }
1694
1695 /* XXX: It would be nice to validate the clocks, but we can't reuse
1696 * i830PllIsValid() because it relies on the xf86_config connector
1697 * configuration being accurate, which it isn't necessarily.
1698 */
1699
1700 return clock.dot;
1701 }
1702
1703 /** Returns the currently programmed mode of the given pipe. */
1704 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
1705 struct drm_crtc *crtc)
1706 {
1707 struct drm_i915_private *dev_priv = dev->dev_private;
1708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1709 int pipe = intel_crtc->pipe;
1710 struct drm_display_mode *mode;
1711 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1712 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1713 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1714 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1715
1716 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1717 if (!mode)
1718 return NULL;
1719
1720 mode->clock = intel_crtc_clock_get(dev, crtc);
1721 mode->hdisplay = (htot & 0xffff) + 1;
1722 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1723 mode->hsync_start = (hsync & 0xffff) + 1;
1724 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1725 mode->vdisplay = (vtot & 0xffff) + 1;
1726 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1727 mode->vsync_start = (vsync & 0xffff) + 1;
1728 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1729
1730 drm_mode_set_name(mode);
1731 drm_mode_set_crtcinfo(mode, 0);
1732
1733 return mode;
1734 }
1735
1736 static void intel_crtc_destroy(struct drm_crtc *crtc)
1737 {
1738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1739
1740 drm_crtc_cleanup(crtc);
1741 kfree(intel_crtc);
1742 }
1743
1744 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
1745 .dpms = intel_crtc_dpms,
1746 .mode_fixup = intel_crtc_mode_fixup,
1747 .mode_set = intel_crtc_mode_set,
1748 .mode_set_base = intel_pipe_set_base,
1749 .prepare = intel_crtc_prepare,
1750 .commit = intel_crtc_commit,
1751 };
1752
1753 static const struct drm_crtc_funcs intel_crtc_funcs = {
1754 .cursor_set = intel_crtc_cursor_set,
1755 .cursor_move = intel_crtc_cursor_move,
1756 .gamma_set = intel_crtc_gamma_set,
1757 .set_config = drm_crtc_helper_set_config,
1758 .destroy = intel_crtc_destroy,
1759 };
1760
1761
1762 static void intel_crtc_init(struct drm_device *dev, int pipe)
1763 {
1764 struct intel_crtc *intel_crtc;
1765 int i;
1766
1767 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
1768 if (intel_crtc == NULL)
1769 return;
1770
1771 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
1772
1773 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
1774 intel_crtc->pipe = pipe;
1775 for (i = 0; i < 256; i++) {
1776 intel_crtc->lut_r[i] = i;
1777 intel_crtc->lut_g[i] = i;
1778 intel_crtc->lut_b[i] = i;
1779 }
1780
1781 intel_crtc->cursor_addr = 0;
1782 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
1783 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
1784
1785 intel_crtc->mode_set.crtc = &intel_crtc->base;
1786 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
1787 intel_crtc->mode_set.num_connectors = 0;
1788
1789 if (i915_fbpercrtc) {
1790
1791
1792
1793 }
1794 }
1795
1796 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1797 {
1798 struct drm_crtc *crtc = NULL;
1799
1800 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1802 if (intel_crtc->pipe == pipe)
1803 break;
1804 }
1805 return crtc;
1806 }
1807
1808 static int intel_connector_clones(struct drm_device *dev, int type_mask)
1809 {
1810 int index_mask = 0;
1811 struct drm_connector *connector;
1812 int entry = 0;
1813
1814 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1815 struct intel_output *intel_output = to_intel_output(connector);
1816 if (type_mask & (1 << intel_output->type))
1817 index_mask |= (1 << entry);
1818 entry++;
1819 }
1820 return index_mask;
1821 }
1822
1823
1824 static void intel_setup_outputs(struct drm_device *dev)
1825 {
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827 struct drm_connector *connector;
1828
1829 intel_crt_init(dev);
1830
1831 /* Set up integrated LVDS */
1832 if (IS_MOBILE(dev) && !IS_I830(dev))
1833 intel_lvds_init(dev);
1834
1835 if (IS_I9XX(dev)) {
1836 int found;
1837 u32 reg;
1838
1839 if (I915_READ(SDVOB) & SDVO_DETECTED) {
1840 found = intel_sdvo_init(dev, SDVOB);
1841 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1842 intel_hdmi_init(dev, SDVOB);
1843 }
1844
1845 /* Before G4X SDVOC doesn't have its own detect register */
1846 if (IS_G4X(dev))
1847 reg = SDVOC;
1848 else
1849 reg = SDVOB;
1850
1851 if (I915_READ(reg) & SDVO_DETECTED) {
1852 found = intel_sdvo_init(dev, SDVOC);
1853 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1854 intel_hdmi_init(dev, SDVOC);
1855 }
1856 } else
1857 intel_dvo_init(dev);
1858
1859 if (IS_I9XX(dev) && IS_MOBILE(dev))
1860 intel_tv_init(dev);
1861
1862 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1863 struct intel_output *intel_output = to_intel_output(connector);
1864 struct drm_encoder *encoder = &intel_output->enc;
1865 int crtc_mask = 0, clone_mask = 0;
1866
1867 /* valid crtcs */
1868 switch(intel_output->type) {
1869 case INTEL_OUTPUT_HDMI:
1870 crtc_mask = ((1 << 0)|
1871 (1 << 1));
1872 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
1873 break;
1874 case INTEL_OUTPUT_DVO:
1875 case INTEL_OUTPUT_SDVO:
1876 crtc_mask = ((1 << 0)|
1877 (1 << 1));
1878 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1879 (1 << INTEL_OUTPUT_DVO) |
1880 (1 << INTEL_OUTPUT_SDVO));
1881 break;
1882 case INTEL_OUTPUT_ANALOG:
1883 crtc_mask = ((1 << 0)|
1884 (1 << 1));
1885 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1886 (1 << INTEL_OUTPUT_DVO) |
1887 (1 << INTEL_OUTPUT_SDVO));
1888 break;
1889 case INTEL_OUTPUT_LVDS:
1890 crtc_mask = (1 << 1);
1891 clone_mask = (1 << INTEL_OUTPUT_LVDS);
1892 break;
1893 case INTEL_OUTPUT_TVOUT:
1894 crtc_mask = ((1 << 0) |
1895 (1 << 1));
1896 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
1897 break;
1898 }
1899 encoder->possible_crtcs = crtc_mask;
1900 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
1901 }
1902 }
1903
1904 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
1905 {
1906 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1907 struct drm_device *dev = fb->dev;
1908
1909 if (fb->fbdev)
1910 intelfb_remove(dev, fb);
1911
1912 drm_framebuffer_cleanup(fb);
1913 mutex_lock(&dev->struct_mutex);
1914 drm_gem_object_unreference(intel_fb->obj);
1915 mutex_unlock(&dev->struct_mutex);
1916
1917 kfree(intel_fb);
1918 }
1919
1920 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
1921 struct drm_file *file_priv,
1922 unsigned int *handle)
1923 {
1924 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1925 struct drm_gem_object *object = intel_fb->obj;
1926
1927 return drm_gem_handle_create(file_priv, object, handle);
1928 }
1929
1930 static const struct drm_framebuffer_funcs intel_fb_funcs = {
1931 .destroy = intel_user_framebuffer_destroy,
1932 .create_handle = intel_user_framebuffer_create_handle,
1933 };
1934
1935 int intel_framebuffer_create(struct drm_device *dev,
1936 struct drm_mode_fb_cmd *mode_cmd,
1937 struct drm_framebuffer **fb,
1938 struct drm_gem_object *obj)
1939 {
1940 struct intel_framebuffer *intel_fb;
1941 int ret;
1942
1943 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1944 if (!intel_fb)
1945 return -ENOMEM;
1946
1947 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
1948 if (ret) {
1949 DRM_ERROR("framebuffer init failed %d\n", ret);
1950 return ret;
1951 }
1952
1953 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
1954
1955 intel_fb->obj = obj;
1956
1957 *fb = &intel_fb->base;
1958
1959 return 0;
1960 }
1961
1962
1963 static struct drm_framebuffer *
1964 intel_user_framebuffer_create(struct drm_device *dev,
1965 struct drm_file *filp,
1966 struct drm_mode_fb_cmd *mode_cmd)
1967 {
1968 struct drm_gem_object *obj;
1969 struct drm_framebuffer *fb;
1970 int ret;
1971
1972 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
1973 if (!obj)
1974 return NULL;
1975
1976 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
1977 if (ret) {
1978 mutex_lock(&dev->struct_mutex);
1979 drm_gem_object_unreference(obj);
1980 mutex_unlock(&dev->struct_mutex);
1981 return NULL;
1982 }
1983
1984 return fb;
1985 }
1986
1987 static const struct drm_mode_config_funcs intel_mode_funcs = {
1988 .fb_create = intel_user_framebuffer_create,
1989 .fb_changed = intelfb_probe,
1990 };
1991
1992 void intel_modeset_init(struct drm_device *dev)
1993 {
1994 int num_pipe;
1995 int i;
1996
1997 drm_mode_config_init(dev);
1998
1999 dev->mode_config.min_width = 0;
2000 dev->mode_config.min_height = 0;
2001
2002 dev->mode_config.funcs = (void *)&intel_mode_funcs;
2003
2004 if (IS_I965G(dev)) {
2005 dev->mode_config.max_width = 8192;
2006 dev->mode_config.max_height = 8192;
2007 } else {
2008 dev->mode_config.max_width = 2048;
2009 dev->mode_config.max_height = 2048;
2010 }
2011
2012 /* set memory base */
2013 if (IS_I9XX(dev))
2014 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
2015 else
2016 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
2017
2018 if (IS_MOBILE(dev) || IS_I9XX(dev))
2019 num_pipe = 2;
2020 else
2021 num_pipe = 1;
2022 DRM_DEBUG("%d display pipe%s available.\n",
2023 num_pipe, num_pipe > 1 ? "s" : "");
2024
2025 for (i = 0; i < num_pipe; i++) {
2026 intel_crtc_init(dev, i);
2027 }
2028
2029 intel_setup_outputs(dev);
2030 }
2031
2032 void intel_modeset_cleanup(struct drm_device *dev)
2033 {
2034 drm_mode_config_cleanup(dev);
2035 }
2036
2037
2038 /* current intel driver doesn't take advantage of encoders
2039 always give back the encoder for the connector
2040 */
2041 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2042 {
2043 struct intel_output *intel_output = to_intel_output(connector);
2044
2045 return &intel_output->enc;
2046 }
This page took 0.092216 seconds and 5 git commands to generate.