drm/i915: pixel multiplier readout support for pch ports
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 int min, max;
50 } intel_range_t;
51
52 typedef struct {
53 int dot_limit;
54 int p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM 2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60 intel_range_t dot, vco, n, m, m1, m2, p, p1;
61 intel_p2_t p2;
62 };
63
64 /* FDI */
65 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
66
67 int
68 intel_pch_rawclk(struct drm_device *dev)
69 {
70 struct drm_i915_private *dev_priv = dev->dev_private;
71
72 WARN_ON(!HAS_PCH_SPLIT(dev));
73
74 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
75 }
76
77 static inline u32 /* units of 100MHz */
78 intel_fdi_link_freq(struct drm_device *dev)
79 {
80 if (IS_GEN5(dev)) {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
83 } else
84 return 27;
85 }
86
87 static const intel_limit_t intel_limits_i8xx_dvo = {
88 .dot = { .min = 25000, .max = 350000 },
89 .vco = { .min = 930000, .max = 1400000 },
90 .n = { .min = 3, .max = 16 },
91 .m = { .min = 96, .max = 140 },
92 .m1 = { .min = 18, .max = 26 },
93 .m2 = { .min = 6, .max = 16 },
94 .p = { .min = 4, .max = 128 },
95 .p1 = { .min = 2, .max = 33 },
96 .p2 = { .dot_limit = 165000,
97 .p2_slow = 4, .p2_fast = 2 },
98 };
99
100 static const intel_limit_t intel_limits_i8xx_lvds = {
101 .dot = { .min = 25000, .max = 350000 },
102 .vco = { .min = 930000, .max = 1400000 },
103 .n = { .min = 3, .max = 16 },
104 .m = { .min = 96, .max = 140 },
105 .m1 = { .min = 18, .max = 26 },
106 .m2 = { .min = 6, .max = 16 },
107 .p = { .min = 4, .max = 128 },
108 .p1 = { .min = 1, .max = 6 },
109 .p2 = { .dot_limit = 165000,
110 .p2_slow = 14, .p2_fast = 7 },
111 };
112
113 static const intel_limit_t intel_limits_i9xx_sdvo = {
114 .dot = { .min = 20000, .max = 400000 },
115 .vco = { .min = 1400000, .max = 2800000 },
116 .n = { .min = 1, .max = 6 },
117 .m = { .min = 70, .max = 120 },
118 .m1 = { .min = 8, .max = 18 },
119 .m2 = { .min = 3, .max = 7 },
120 .p = { .min = 5, .max = 80 },
121 .p1 = { .min = 1, .max = 8 },
122 .p2 = { .dot_limit = 200000,
123 .p2_slow = 10, .p2_fast = 5 },
124 };
125
126 static const intel_limit_t intel_limits_i9xx_lvds = {
127 .dot = { .min = 20000, .max = 400000 },
128 .vco = { .min = 1400000, .max = 2800000 },
129 .n = { .min = 1, .max = 6 },
130 .m = { .min = 70, .max = 120 },
131 .m1 = { .min = 8, .max = 18 },
132 .m2 = { .min = 3, .max = 7 },
133 .p = { .min = 7, .max = 98 },
134 .p1 = { .min = 1, .max = 8 },
135 .p2 = { .dot_limit = 112000,
136 .p2_slow = 14, .p2_fast = 7 },
137 };
138
139
140 static const intel_limit_t intel_limits_g4x_sdvo = {
141 .dot = { .min = 25000, .max = 270000 },
142 .vco = { .min = 1750000, .max = 3500000},
143 .n = { .min = 1, .max = 4 },
144 .m = { .min = 104, .max = 138 },
145 .m1 = { .min = 17, .max = 23 },
146 .m2 = { .min = 5, .max = 11 },
147 .p = { .min = 10, .max = 30 },
148 .p1 = { .min = 1, .max = 3},
149 .p2 = { .dot_limit = 270000,
150 .p2_slow = 10,
151 .p2_fast = 10
152 },
153 };
154
155 static const intel_limit_t intel_limits_g4x_hdmi = {
156 .dot = { .min = 22000, .max = 400000 },
157 .vco = { .min = 1750000, .max = 3500000},
158 .n = { .min = 1, .max = 4 },
159 .m = { .min = 104, .max = 138 },
160 .m1 = { .min = 16, .max = 23 },
161 .m2 = { .min = 5, .max = 11 },
162 .p = { .min = 5, .max = 80 },
163 .p1 = { .min = 1, .max = 8},
164 .p2 = { .dot_limit = 165000,
165 .p2_slow = 10, .p2_fast = 5 },
166 };
167
168 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
169 .dot = { .min = 20000, .max = 115000 },
170 .vco = { .min = 1750000, .max = 3500000 },
171 .n = { .min = 1, .max = 3 },
172 .m = { .min = 104, .max = 138 },
173 .m1 = { .min = 17, .max = 23 },
174 .m2 = { .min = 5, .max = 11 },
175 .p = { .min = 28, .max = 112 },
176 .p1 = { .min = 2, .max = 8 },
177 .p2 = { .dot_limit = 0,
178 .p2_slow = 14, .p2_fast = 14
179 },
180 };
181
182 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
183 .dot = { .min = 80000, .max = 224000 },
184 .vco = { .min = 1750000, .max = 3500000 },
185 .n = { .min = 1, .max = 3 },
186 .m = { .min = 104, .max = 138 },
187 .m1 = { .min = 17, .max = 23 },
188 .m2 = { .min = 5, .max = 11 },
189 .p = { .min = 14, .max = 42 },
190 .p1 = { .min = 2, .max = 6 },
191 .p2 = { .dot_limit = 0,
192 .p2_slow = 7, .p2_fast = 7
193 },
194 };
195
196 static const intel_limit_t intel_limits_pineview_sdvo = {
197 .dot = { .min = 20000, .max = 400000},
198 .vco = { .min = 1700000, .max = 3500000 },
199 /* Pineview's Ncounter is a ring counter */
200 .n = { .min = 3, .max = 6 },
201 .m = { .min = 2, .max = 256 },
202 /* Pineview only has one combined m divider, which we treat as m2. */
203 .m1 = { .min = 0, .max = 0 },
204 .m2 = { .min = 0, .max = 254 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 200000,
208 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const intel_limit_t intel_limits_pineview_lvds = {
212 .dot = { .min = 20000, .max = 400000 },
213 .vco = { .min = 1700000, .max = 3500000 },
214 .n = { .min = 3, .max = 6 },
215 .m = { .min = 2, .max = 256 },
216 .m1 = { .min = 0, .max = 0 },
217 .m2 = { .min = 0, .max = 254 },
218 .p = { .min = 7, .max = 112 },
219 .p1 = { .min = 1, .max = 8 },
220 .p2 = { .dot_limit = 112000,
221 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 /* Ironlake / Sandybridge
225 *
226 * We calculate clock using (register_value + 2) for N/M1/M2, so here
227 * the range value for them is (actual_value - 2).
228 */
229 static const intel_limit_t intel_limits_ironlake_dac = {
230 .dot = { .min = 25000, .max = 350000 },
231 .vco = { .min = 1760000, .max = 3510000 },
232 .n = { .min = 1, .max = 5 },
233 .m = { .min = 79, .max = 127 },
234 .m1 = { .min = 12, .max = 22 },
235 .m2 = { .min = 5, .max = 9 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8 },
238 .p2 = { .dot_limit = 225000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_ironlake_single_lvds = {
243 .dot = { .min = 25000, .max = 350000 },
244 .vco = { .min = 1760000, .max = 3510000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 79, .max = 118 },
247 .m1 = { .min = 12, .max = 22 },
248 .m2 = { .min = 5, .max = 9 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 225000,
252 .p2_slow = 14, .p2_fast = 14 },
253 };
254
255 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
256 .dot = { .min = 25000, .max = 350000 },
257 .vco = { .min = 1760000, .max = 3510000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 79, .max = 127 },
260 .m1 = { .min = 12, .max = 22 },
261 .m2 = { .min = 5, .max = 9 },
262 .p = { .min = 14, .max = 56 },
263 .p1 = { .min = 2, .max = 8 },
264 .p2 = { .dot_limit = 225000,
265 .p2_slow = 7, .p2_fast = 7 },
266 };
267
268 /* LVDS 100mhz refclk limits. */
269 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
270 .dot = { .min = 25000, .max = 350000 },
271 .vco = { .min = 1760000, .max = 3510000 },
272 .n = { .min = 1, .max = 2 },
273 .m = { .min = 79, .max = 126 },
274 .m1 = { .min = 12, .max = 22 },
275 .m2 = { .min = 5, .max = 9 },
276 .p = { .min = 28, .max = 112 },
277 .p1 = { .min = 2, .max = 8 },
278 .p2 = { .dot_limit = 225000,
279 .p2_slow = 14, .p2_fast = 14 },
280 };
281
282 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 3 },
286 .m = { .min = 79, .max = 126 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 14, .max = 42 },
290 .p1 = { .min = 2, .max = 6 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 7, .p2_fast = 7 },
293 };
294
295 static const intel_limit_t intel_limits_vlv_dac = {
296 .dot = { .min = 25000, .max = 270000 },
297 .vco = { .min = 4000000, .max = 6000000 },
298 .n = { .min = 1, .max = 7 },
299 .m = { .min = 22, .max = 450 }, /* guess */
300 .m1 = { .min = 2, .max = 3 },
301 .m2 = { .min = 11, .max = 156 },
302 .p = { .min = 10, .max = 30 },
303 .p1 = { .min = 1, .max = 3 },
304 .p2 = { .dot_limit = 270000,
305 .p2_slow = 2, .p2_fast = 20 },
306 };
307
308 static const intel_limit_t intel_limits_vlv_hdmi = {
309 .dot = { .min = 25000, .max = 270000 },
310 .vco = { .min = 4000000, .max = 6000000 },
311 .n = { .min = 1, .max = 7 },
312 .m = { .min = 60, .max = 300 }, /* guess */
313 .m1 = { .min = 2, .max = 3 },
314 .m2 = { .min = 11, .max = 156 },
315 .p = { .min = 10, .max = 30 },
316 .p1 = { .min = 2, .max = 3 },
317 .p2 = { .dot_limit = 270000,
318 .p2_slow = 2, .p2_fast = 20 },
319 };
320
321 static const intel_limit_t intel_limits_vlv_dp = {
322 .dot = { .min = 25000, .max = 270000 },
323 .vco = { .min = 4000000, .max = 6000000 },
324 .n = { .min = 1, .max = 7 },
325 .m = { .min = 22, .max = 450 },
326 .m1 = { .min = 2, .max = 3 },
327 .m2 = { .min = 11, .max = 156 },
328 .p = { .min = 10, .max = 30 },
329 .p1 = { .min = 1, .max = 3 },
330 .p2 = { .dot_limit = 270000,
331 .p2_slow = 2, .p2_fast = 20 },
332 };
333
334 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
335 int refclk)
336 {
337 struct drm_device *dev = crtc->dev;
338 const intel_limit_t *limit;
339
340 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
341 if (intel_is_dual_link_lvds(dev)) {
342 if (refclk == 100000)
343 limit = &intel_limits_ironlake_dual_lvds_100m;
344 else
345 limit = &intel_limits_ironlake_dual_lvds;
346 } else {
347 if (refclk == 100000)
348 limit = &intel_limits_ironlake_single_lvds_100m;
349 else
350 limit = &intel_limits_ironlake_single_lvds;
351 }
352 } else
353 limit = &intel_limits_ironlake_dac;
354
355 return limit;
356 }
357
358 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
359 {
360 struct drm_device *dev = crtc->dev;
361 const intel_limit_t *limit;
362
363 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
364 if (intel_is_dual_link_lvds(dev))
365 limit = &intel_limits_g4x_dual_channel_lvds;
366 else
367 limit = &intel_limits_g4x_single_channel_lvds;
368 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
369 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
370 limit = &intel_limits_g4x_hdmi;
371 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
372 limit = &intel_limits_g4x_sdvo;
373 } else /* The option is for other outputs */
374 limit = &intel_limits_i9xx_sdvo;
375
376 return limit;
377 }
378
379 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
380 {
381 struct drm_device *dev = crtc->dev;
382 const intel_limit_t *limit;
383
384 if (HAS_PCH_SPLIT(dev))
385 limit = intel_ironlake_limit(crtc, refclk);
386 else if (IS_G4X(dev)) {
387 limit = intel_g4x_limit(crtc);
388 } else if (IS_PINEVIEW(dev)) {
389 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
390 limit = &intel_limits_pineview_lvds;
391 else
392 limit = &intel_limits_pineview_sdvo;
393 } else if (IS_VALLEYVIEW(dev)) {
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
395 limit = &intel_limits_vlv_dac;
396 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
397 limit = &intel_limits_vlv_hdmi;
398 else
399 limit = &intel_limits_vlv_dp;
400 } else if (!IS_GEN2(dev)) {
401 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
402 limit = &intel_limits_i9xx_lvds;
403 else
404 limit = &intel_limits_i9xx_sdvo;
405 } else {
406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407 limit = &intel_limits_i8xx_lvds;
408 else
409 limit = &intel_limits_i8xx_dvo;
410 }
411 return limit;
412 }
413
414 /* m1 is reserved as 0 in Pineview, n is a ring counter */
415 static void pineview_clock(int refclk, intel_clock_t *clock)
416 {
417 clock->m = clock->m2 + 2;
418 clock->p = clock->p1 * clock->p2;
419 clock->vco = refclk * clock->m / clock->n;
420 clock->dot = clock->vco / clock->p;
421 }
422
423 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
424 {
425 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
426 }
427
428 static void i9xx_clock(int refclk, intel_clock_t *clock)
429 {
430 clock->m = i9xx_dpll_compute_m(clock);
431 clock->p = clock->p1 * clock->p2;
432 clock->vco = refclk * clock->m / (clock->n + 2);
433 clock->dot = clock->vco / clock->p;
434 }
435
436 /**
437 * Returns whether any output on the specified pipe is of the specified type
438 */
439 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
440 {
441 struct drm_device *dev = crtc->dev;
442 struct intel_encoder *encoder;
443
444 for_each_encoder_on_crtc(dev, crtc, encoder)
445 if (encoder->type == type)
446 return true;
447
448 return false;
449 }
450
451 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
452 /**
453 * Returns whether the given set of divisors are valid for a given refclk with
454 * the given connectors.
455 */
456
457 static bool intel_PLL_is_valid(struct drm_device *dev,
458 const intel_limit_t *limit,
459 const intel_clock_t *clock)
460 {
461 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
462 INTELPllInvalid("p1 out of range\n");
463 if (clock->p < limit->p.min || limit->p.max < clock->p)
464 INTELPllInvalid("p out of range\n");
465 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
466 INTELPllInvalid("m2 out of range\n");
467 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
468 INTELPllInvalid("m1 out of range\n");
469 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
470 INTELPllInvalid("m1 <= m2\n");
471 if (clock->m < limit->m.min || limit->m.max < clock->m)
472 INTELPllInvalid("m out of range\n");
473 if (clock->n < limit->n.min || limit->n.max < clock->n)
474 INTELPllInvalid("n out of range\n");
475 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
476 INTELPllInvalid("vco out of range\n");
477 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
478 * connector, etc., rather than just a single range.
479 */
480 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
481 INTELPllInvalid("dot out of range\n");
482
483 return true;
484 }
485
486 static bool
487 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
488 int target, int refclk, intel_clock_t *match_clock,
489 intel_clock_t *best_clock)
490 {
491 struct drm_device *dev = crtc->dev;
492 intel_clock_t clock;
493 int err = target;
494
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
496 /*
497 * For LVDS just rely on its current settings for dual-channel.
498 * We haven't figured out how to reliably set up different
499 * single/dual channel state, if we even can.
500 */
501 if (intel_is_dual_link_lvds(dev))
502 clock.p2 = limit->p2.p2_fast;
503 else
504 clock.p2 = limit->p2.p2_slow;
505 } else {
506 if (target < limit->p2.dot_limit)
507 clock.p2 = limit->p2.p2_slow;
508 else
509 clock.p2 = limit->p2.p2_fast;
510 }
511
512 memset(best_clock, 0, sizeof(*best_clock));
513
514 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
515 clock.m1++) {
516 for (clock.m2 = limit->m2.min;
517 clock.m2 <= limit->m2.max; clock.m2++) {
518 if (clock.m2 >= clock.m1)
519 break;
520 for (clock.n = limit->n.min;
521 clock.n <= limit->n.max; clock.n++) {
522 for (clock.p1 = limit->p1.min;
523 clock.p1 <= limit->p1.max; clock.p1++) {
524 int this_err;
525
526 i9xx_clock(refclk, &clock);
527 if (!intel_PLL_is_valid(dev, limit,
528 &clock))
529 continue;
530 if (match_clock &&
531 clock.p != match_clock->p)
532 continue;
533
534 this_err = abs(clock.dot - target);
535 if (this_err < err) {
536 *best_clock = clock;
537 err = this_err;
538 }
539 }
540 }
541 }
542 }
543
544 return (err != target);
545 }
546
547 static bool
548 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
549 int target, int refclk, intel_clock_t *match_clock,
550 intel_clock_t *best_clock)
551 {
552 struct drm_device *dev = crtc->dev;
553 intel_clock_t clock;
554 int err = target;
555
556 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557 /*
558 * For LVDS just rely on its current settings for dual-channel.
559 * We haven't figured out how to reliably set up different
560 * single/dual channel state, if we even can.
561 */
562 if (intel_is_dual_link_lvds(dev))
563 clock.p2 = limit->p2.p2_fast;
564 else
565 clock.p2 = limit->p2.p2_slow;
566 } else {
567 if (target < limit->p2.dot_limit)
568 clock.p2 = limit->p2.p2_slow;
569 else
570 clock.p2 = limit->p2.p2_fast;
571 }
572
573 memset(best_clock, 0, sizeof(*best_clock));
574
575 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
576 clock.m1++) {
577 for (clock.m2 = limit->m2.min;
578 clock.m2 <= limit->m2.max; clock.m2++) {
579 for (clock.n = limit->n.min;
580 clock.n <= limit->n.max; clock.n++) {
581 for (clock.p1 = limit->p1.min;
582 clock.p1 <= limit->p1.max; clock.p1++) {
583 int this_err;
584
585 pineview_clock(refclk, &clock);
586 if (!intel_PLL_is_valid(dev, limit,
587 &clock))
588 continue;
589 if (match_clock &&
590 clock.p != match_clock->p)
591 continue;
592
593 this_err = abs(clock.dot - target);
594 if (this_err < err) {
595 *best_clock = clock;
596 err = this_err;
597 }
598 }
599 }
600 }
601 }
602
603 return (err != target);
604 }
605
606 static bool
607 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
608 int target, int refclk, intel_clock_t *match_clock,
609 intel_clock_t *best_clock)
610 {
611 struct drm_device *dev = crtc->dev;
612 intel_clock_t clock;
613 int max_n;
614 bool found;
615 /* approximately equals target * 0.00585 */
616 int err_most = (target >> 8) + (target >> 9);
617 found = false;
618
619 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
620 if (intel_is_dual_link_lvds(dev))
621 clock.p2 = limit->p2.p2_fast;
622 else
623 clock.p2 = limit->p2.p2_slow;
624 } else {
625 if (target < limit->p2.dot_limit)
626 clock.p2 = limit->p2.p2_slow;
627 else
628 clock.p2 = limit->p2.p2_fast;
629 }
630
631 memset(best_clock, 0, sizeof(*best_clock));
632 max_n = limit->n.max;
633 /* based on hardware requirement, prefer smaller n to precision */
634 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
635 /* based on hardware requirement, prefere larger m1,m2 */
636 for (clock.m1 = limit->m1.max;
637 clock.m1 >= limit->m1.min; clock.m1--) {
638 for (clock.m2 = limit->m2.max;
639 clock.m2 >= limit->m2.min; clock.m2--) {
640 for (clock.p1 = limit->p1.max;
641 clock.p1 >= limit->p1.min; clock.p1--) {
642 int this_err;
643
644 i9xx_clock(refclk, &clock);
645 if (!intel_PLL_is_valid(dev, limit,
646 &clock))
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err_most) {
651 *best_clock = clock;
652 err_most = this_err;
653 max_n = clock.n;
654 found = true;
655 }
656 }
657 }
658 }
659 }
660 return found;
661 }
662
663 static bool
664 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
665 int target, int refclk, intel_clock_t *match_clock,
666 intel_clock_t *best_clock)
667 {
668 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
669 u32 m, n, fastclk;
670 u32 updrate, minupdate, fracbits, p;
671 unsigned long bestppm, ppm, absppm;
672 int dotclk, flag;
673
674 flag = 0;
675 dotclk = target * 1000;
676 bestppm = 1000000;
677 ppm = absppm = 0;
678 fastclk = dotclk / (2*100);
679 updrate = 0;
680 minupdate = 19200;
681 fracbits = 1;
682 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
683 bestm1 = bestm2 = bestp1 = bestp2 = 0;
684
685 /* based on hardware requirement, prefer smaller n to precision */
686 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
687 updrate = refclk / n;
688 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
689 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
690 if (p2 > 10)
691 p2 = p2 - 1;
692 p = p1 * p2;
693 /* based on hardware requirement, prefer bigger m1,m2 values */
694 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
695 m2 = (((2*(fastclk * p * n / m1 )) +
696 refclk) / (2*refclk));
697 m = m1 * m2;
698 vco = updrate * m;
699 if (vco >= limit->vco.min && vco < limit->vco.max) {
700 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
701 absppm = (ppm > 0) ? ppm : (-ppm);
702 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
703 bestppm = 0;
704 flag = 1;
705 }
706 if (absppm < bestppm - 10) {
707 bestppm = absppm;
708 flag = 1;
709 }
710 if (flag) {
711 bestn = n;
712 bestm1 = m1;
713 bestm2 = m2;
714 bestp1 = p1;
715 bestp2 = p2;
716 flag = 0;
717 }
718 }
719 }
720 }
721 }
722 }
723 best_clock->n = bestn;
724 best_clock->m1 = bestm1;
725 best_clock->m2 = bestm2;
726 best_clock->p1 = bestp1;
727 best_clock->p2 = bestp2;
728
729 return true;
730 }
731
732 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
733 enum pipe pipe)
734 {
735 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738 return intel_crtc->config.cpu_transcoder;
739 }
740
741 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
742 {
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 u32 frame, frame_reg = PIPEFRAME(pipe);
745
746 frame = I915_READ(frame_reg);
747
748 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
749 DRM_DEBUG_KMS("vblank wait timed out\n");
750 }
751
752 /**
753 * intel_wait_for_vblank - wait for vblank on a given pipe
754 * @dev: drm device
755 * @pipe: pipe to wait for
756 *
757 * Wait for vblank to occur on a given pipe. Needed for various bits of
758 * mode setting code.
759 */
760 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762 struct drm_i915_private *dev_priv = dev->dev_private;
763 int pipestat_reg = PIPESTAT(pipe);
764
765 if (INTEL_INFO(dev)->gen >= 5) {
766 ironlake_wait_for_vblank(dev, pipe);
767 return;
768 }
769
770 /* Clear existing vblank status. Note this will clear any other
771 * sticky status fields as well.
772 *
773 * This races with i915_driver_irq_handler() with the result
774 * that either function could miss a vblank event. Here it is not
775 * fatal, as we will either wait upon the next vblank interrupt or
776 * timeout. Generally speaking intel_wait_for_vblank() is only
777 * called during modeset at which time the GPU should be idle and
778 * should *not* be performing page flips and thus not waiting on
779 * vblanks...
780 * Currently, the result of us stealing a vblank from the irq
781 * handler is that a single frame will be skipped during swapbuffers.
782 */
783 I915_WRITE(pipestat_reg,
784 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
785
786 /* Wait for vblank interrupt bit to set */
787 if (wait_for(I915_READ(pipestat_reg) &
788 PIPE_VBLANK_INTERRUPT_STATUS,
789 50))
790 DRM_DEBUG_KMS("vblank wait timed out\n");
791 }
792
793 /*
794 * intel_wait_for_pipe_off - wait for pipe to turn off
795 * @dev: drm device
796 * @pipe: pipe to wait for
797 *
798 * After disabling a pipe, we can't wait for vblank in the usual way,
799 * spinning on the vblank interrupt status bit, since we won't actually
800 * see an interrupt when the pipe is disabled.
801 *
802 * On Gen4 and above:
803 * wait for the pipe register state bit to turn off
804 *
805 * Otherwise:
806 * wait for the display line value to settle (it usually
807 * ends up stopping at the start of the next frame).
808 *
809 */
810 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
811 {
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
814 pipe);
815
816 if (INTEL_INFO(dev)->gen >= 4) {
817 int reg = PIPECONF(cpu_transcoder);
818
819 /* Wait for the Pipe State to go off */
820 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
821 100))
822 WARN(1, "pipe_off wait timed out\n");
823 } else {
824 u32 last_line, line_mask;
825 int reg = PIPEDSL(pipe);
826 unsigned long timeout = jiffies + msecs_to_jiffies(100);
827
828 if (IS_GEN2(dev))
829 line_mask = DSL_LINEMASK_GEN2;
830 else
831 line_mask = DSL_LINEMASK_GEN3;
832
833 /* Wait for the display line to settle */
834 do {
835 last_line = I915_READ(reg) & line_mask;
836 mdelay(5);
837 } while (((I915_READ(reg) & line_mask) != last_line) &&
838 time_after(timeout, jiffies));
839 if (time_after(jiffies, timeout))
840 WARN(1, "pipe_off wait timed out\n");
841 }
842 }
843
844 /*
845 * ibx_digital_port_connected - is the specified port connected?
846 * @dev_priv: i915 private structure
847 * @port: the port to test
848 *
849 * Returns true if @port is connected, false otherwise.
850 */
851 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
852 struct intel_digital_port *port)
853 {
854 u32 bit;
855
856 if (HAS_PCH_IBX(dev_priv->dev)) {
857 switch(port->port) {
858 case PORT_B:
859 bit = SDE_PORTB_HOTPLUG;
860 break;
861 case PORT_C:
862 bit = SDE_PORTC_HOTPLUG;
863 break;
864 case PORT_D:
865 bit = SDE_PORTD_HOTPLUG;
866 break;
867 default:
868 return true;
869 }
870 } else {
871 switch(port->port) {
872 case PORT_B:
873 bit = SDE_PORTB_HOTPLUG_CPT;
874 break;
875 case PORT_C:
876 bit = SDE_PORTC_HOTPLUG_CPT;
877 break;
878 case PORT_D:
879 bit = SDE_PORTD_HOTPLUG_CPT;
880 break;
881 default:
882 return true;
883 }
884 }
885
886 return I915_READ(SDEISR) & bit;
887 }
888
889 static const char *state_string(bool enabled)
890 {
891 return enabled ? "on" : "off";
892 }
893
894 /* Only for pre-ILK configs */
895 void assert_pll(struct drm_i915_private *dev_priv,
896 enum pipe pipe, bool state)
897 {
898 int reg;
899 u32 val;
900 bool cur_state;
901
902 reg = DPLL(pipe);
903 val = I915_READ(reg);
904 cur_state = !!(val & DPLL_VCO_ENABLE);
905 WARN(cur_state != state,
906 "PLL state assertion failure (expected %s, current %s)\n",
907 state_string(state), state_string(cur_state));
908 }
909
910 struct intel_shared_dpll *
911 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
912 {
913 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
914
915 if (crtc->config.shared_dpll < 0)
916 return NULL;
917
918 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
919 }
920
921 /* For ILK+ */
922 void assert_shared_dpll(struct drm_i915_private *dev_priv,
923 struct intel_shared_dpll *pll,
924 bool state)
925 {
926 bool cur_state;
927 struct intel_dpll_hw_state hw_state;
928
929 if (HAS_PCH_LPT(dev_priv->dev)) {
930 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
931 return;
932 }
933
934 if (WARN (!pll,
935 "asserting DPLL %s with no DPLL\n", state_string(state)))
936 return;
937
938 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
939 WARN(cur_state != state,
940 "%s assertion failure (expected %s, current %s)\n",
941 pll->name, state_string(state), state_string(cur_state));
942 }
943
944 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
945 enum pipe pipe, bool state)
946 {
947 int reg;
948 u32 val;
949 bool cur_state;
950 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
951 pipe);
952
953 if (HAS_DDI(dev_priv->dev)) {
954 /* DDI does not have a specific FDI_TX register */
955 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
956 val = I915_READ(reg);
957 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
958 } else {
959 reg = FDI_TX_CTL(pipe);
960 val = I915_READ(reg);
961 cur_state = !!(val & FDI_TX_ENABLE);
962 }
963 WARN(cur_state != state,
964 "FDI TX state assertion failure (expected %s, current %s)\n",
965 state_string(state), state_string(cur_state));
966 }
967 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
968 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
969
970 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
971 enum pipe pipe, bool state)
972 {
973 int reg;
974 u32 val;
975 bool cur_state;
976
977 reg = FDI_RX_CTL(pipe);
978 val = I915_READ(reg);
979 cur_state = !!(val & FDI_RX_ENABLE);
980 WARN(cur_state != state,
981 "FDI RX state assertion failure (expected %s, current %s)\n",
982 state_string(state), state_string(cur_state));
983 }
984 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
985 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
986
987 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
988 enum pipe pipe)
989 {
990 int reg;
991 u32 val;
992
993 /* ILK FDI PLL is always enabled */
994 if (dev_priv->info->gen == 5)
995 return;
996
997 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
998 if (HAS_DDI(dev_priv->dev))
999 return;
1000
1001 reg = FDI_TX_CTL(pipe);
1002 val = I915_READ(reg);
1003 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1004 }
1005
1006 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1007 enum pipe pipe, bool state)
1008 {
1009 int reg;
1010 u32 val;
1011 bool cur_state;
1012
1013 reg = FDI_RX_CTL(pipe);
1014 val = I915_READ(reg);
1015 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1016 WARN(cur_state != state,
1017 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1018 state_string(state), state_string(cur_state));
1019 }
1020
1021 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1022 enum pipe pipe)
1023 {
1024 int pp_reg, lvds_reg;
1025 u32 val;
1026 enum pipe panel_pipe = PIPE_A;
1027 bool locked = true;
1028
1029 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1030 pp_reg = PCH_PP_CONTROL;
1031 lvds_reg = PCH_LVDS;
1032 } else {
1033 pp_reg = PP_CONTROL;
1034 lvds_reg = LVDS;
1035 }
1036
1037 val = I915_READ(pp_reg);
1038 if (!(val & PANEL_POWER_ON) ||
1039 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1040 locked = false;
1041
1042 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1043 panel_pipe = PIPE_B;
1044
1045 WARN(panel_pipe == pipe && locked,
1046 "panel assertion failure, pipe %c regs locked\n",
1047 pipe_name(pipe));
1048 }
1049
1050 void assert_pipe(struct drm_i915_private *dev_priv,
1051 enum pipe pipe, bool state)
1052 {
1053 int reg;
1054 u32 val;
1055 bool cur_state;
1056 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1057 pipe);
1058
1059 /* if we need the pipe A quirk it must be always on */
1060 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1061 state = true;
1062
1063 if (!intel_display_power_enabled(dev_priv->dev,
1064 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1065 cur_state = false;
1066 } else {
1067 reg = PIPECONF(cpu_transcoder);
1068 val = I915_READ(reg);
1069 cur_state = !!(val & PIPECONF_ENABLE);
1070 }
1071
1072 WARN(cur_state != state,
1073 "pipe %c assertion failure (expected %s, current %s)\n",
1074 pipe_name(pipe), state_string(state), state_string(cur_state));
1075 }
1076
1077 static void assert_plane(struct drm_i915_private *dev_priv,
1078 enum plane plane, bool state)
1079 {
1080 int reg;
1081 u32 val;
1082 bool cur_state;
1083
1084 reg = DSPCNTR(plane);
1085 val = I915_READ(reg);
1086 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1087 WARN(cur_state != state,
1088 "plane %c assertion failure (expected %s, current %s)\n",
1089 plane_name(plane), state_string(state), state_string(cur_state));
1090 }
1091
1092 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1093 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1094
1095 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1096 enum pipe pipe)
1097 {
1098 struct drm_device *dev = dev_priv->dev;
1099 int reg, i;
1100 u32 val;
1101 int cur_pipe;
1102
1103 /* Primary planes are fixed to pipes on gen4+ */
1104 if (INTEL_INFO(dev)->gen >= 4) {
1105 reg = DSPCNTR(pipe);
1106 val = I915_READ(reg);
1107 WARN((val & DISPLAY_PLANE_ENABLE),
1108 "plane %c assertion failure, should be disabled but not\n",
1109 plane_name(pipe));
1110 return;
1111 }
1112
1113 /* Need to check both planes against the pipe */
1114 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
1115 reg = DSPCNTR(i);
1116 val = I915_READ(reg);
1117 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1118 DISPPLANE_SEL_PIPE_SHIFT;
1119 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1120 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1121 plane_name(i), pipe_name(pipe));
1122 }
1123 }
1124
1125 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127 {
1128 struct drm_device *dev = dev_priv->dev;
1129 int reg, i;
1130 u32 val;
1131
1132 if (IS_VALLEYVIEW(dev)) {
1133 for (i = 0; i < dev_priv->num_plane; i++) {
1134 reg = SPCNTR(pipe, i);
1135 val = I915_READ(reg);
1136 WARN((val & SP_ENABLE),
1137 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1138 sprite_name(pipe, i), pipe_name(pipe));
1139 }
1140 } else if (INTEL_INFO(dev)->gen >= 7) {
1141 reg = SPRCTL(pipe);
1142 val = I915_READ(reg);
1143 WARN((val & SPRITE_ENABLE),
1144 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1145 plane_name(pipe), pipe_name(pipe));
1146 } else if (INTEL_INFO(dev)->gen >= 5) {
1147 reg = DVSCNTR(pipe);
1148 val = I915_READ(reg);
1149 WARN((val & DVS_ENABLE),
1150 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1151 plane_name(pipe), pipe_name(pipe));
1152 }
1153 }
1154
1155 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1156 {
1157 u32 val;
1158 bool enabled;
1159
1160 if (HAS_PCH_LPT(dev_priv->dev)) {
1161 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1162 return;
1163 }
1164
1165 val = I915_READ(PCH_DREF_CONTROL);
1166 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1167 DREF_SUPERSPREAD_SOURCE_MASK));
1168 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1169 }
1170
1171 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1172 enum pipe pipe)
1173 {
1174 int reg;
1175 u32 val;
1176 bool enabled;
1177
1178 reg = PCH_TRANSCONF(pipe);
1179 val = I915_READ(reg);
1180 enabled = !!(val & TRANS_ENABLE);
1181 WARN(enabled,
1182 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1183 pipe_name(pipe));
1184 }
1185
1186 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1187 enum pipe pipe, u32 port_sel, u32 val)
1188 {
1189 if ((val & DP_PORT_EN) == 0)
1190 return false;
1191
1192 if (HAS_PCH_CPT(dev_priv->dev)) {
1193 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1194 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1195 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1196 return false;
1197 } else {
1198 if ((val & DP_PIPE_MASK) != (pipe << 30))
1199 return false;
1200 }
1201 return true;
1202 }
1203
1204 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1205 enum pipe pipe, u32 val)
1206 {
1207 if ((val & SDVO_ENABLE) == 0)
1208 return false;
1209
1210 if (HAS_PCH_CPT(dev_priv->dev)) {
1211 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1212 return false;
1213 } else {
1214 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1215 return false;
1216 }
1217 return true;
1218 }
1219
1220 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1221 enum pipe pipe, u32 val)
1222 {
1223 if ((val & LVDS_PORT_EN) == 0)
1224 return false;
1225
1226 if (HAS_PCH_CPT(dev_priv->dev)) {
1227 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1228 return false;
1229 } else {
1230 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1231 return false;
1232 }
1233 return true;
1234 }
1235
1236 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, u32 val)
1238 {
1239 if ((val & ADPA_DAC_ENABLE) == 0)
1240 return false;
1241 if (HAS_PCH_CPT(dev_priv->dev)) {
1242 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1243 return false;
1244 } else {
1245 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1246 return false;
1247 }
1248 return true;
1249 }
1250
1251 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1252 enum pipe pipe, int reg, u32 port_sel)
1253 {
1254 u32 val = I915_READ(reg);
1255 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1256 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1257 reg, pipe_name(pipe));
1258
1259 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1260 && (val & DP_PIPEB_SELECT),
1261 "IBX PCH dp port still using transcoder B\n");
1262 }
1263
1264 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1265 enum pipe pipe, int reg)
1266 {
1267 u32 val = I915_READ(reg);
1268 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1269 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1270 reg, pipe_name(pipe));
1271
1272 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1273 && (val & SDVO_PIPE_B_SELECT),
1274 "IBX PCH hdmi port still using transcoder B\n");
1275 }
1276
1277 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1278 enum pipe pipe)
1279 {
1280 int reg;
1281 u32 val;
1282
1283 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1284 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1285 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1286
1287 reg = PCH_ADPA;
1288 val = I915_READ(reg);
1289 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1290 "PCH VGA enabled on transcoder %c, should be disabled\n",
1291 pipe_name(pipe));
1292
1293 reg = PCH_LVDS;
1294 val = I915_READ(reg);
1295 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1296 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1297 pipe_name(pipe));
1298
1299 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1300 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1301 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1302 }
1303
1304 static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1305 {
1306 int reg;
1307 u32 val;
1308
1309 assert_pipe_disabled(dev_priv, pipe);
1310
1311 /* No really, not for ILK+ */
1312 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1313
1314 /* PLL is protected by panel, make sure we can write it */
1315 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1316 assert_panel_unlocked(dev_priv, pipe);
1317
1318 reg = DPLL(pipe);
1319 val = I915_READ(reg);
1320 val |= DPLL_VCO_ENABLE;
1321
1322 /* We do this three times for luck */
1323 I915_WRITE(reg, val);
1324 POSTING_READ(reg);
1325 udelay(150); /* wait for warmup */
1326 I915_WRITE(reg, val);
1327 POSTING_READ(reg);
1328 udelay(150); /* wait for warmup */
1329 I915_WRITE(reg, val);
1330 POSTING_READ(reg);
1331 udelay(150); /* wait for warmup */
1332 }
1333
1334 static void i9xx_enable_pll(struct intel_crtc *crtc)
1335 {
1336 struct drm_device *dev = crtc->base.dev;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 int reg = DPLL(crtc->pipe);
1339 u32 dpll = crtc->config.dpll_hw_state.dpll;
1340
1341 assert_pipe_disabled(dev_priv, crtc->pipe);
1342
1343 /* No really, not for ILK+ */
1344 BUG_ON(dev_priv->info->gen >= 5);
1345
1346 /* PLL is protected by panel, make sure we can write it */
1347 if (IS_MOBILE(dev) && !IS_I830(dev))
1348 assert_panel_unlocked(dev_priv, crtc->pipe);
1349
1350 I915_WRITE(reg, dpll);
1351
1352 /* Wait for the clocks to stabilize. */
1353 POSTING_READ(reg);
1354 udelay(150);
1355
1356 if (INTEL_INFO(dev)->gen >= 4) {
1357 I915_WRITE(DPLL_MD(crtc->pipe),
1358 crtc->config.dpll_hw_state.dpll_md);
1359 } else {
1360 /* The pixel multiplier can only be updated once the
1361 * DPLL is enabled and the clocks are stable.
1362 *
1363 * So write it again.
1364 */
1365 I915_WRITE(reg, dpll);
1366 }
1367
1368 /* We do this three times for luck */
1369 I915_WRITE(reg, dpll);
1370 POSTING_READ(reg);
1371 udelay(150); /* wait for warmup */
1372 I915_WRITE(reg, dpll);
1373 POSTING_READ(reg);
1374 udelay(150); /* wait for warmup */
1375 I915_WRITE(reg, dpll);
1376 POSTING_READ(reg);
1377 udelay(150); /* wait for warmup */
1378 }
1379
1380 /**
1381 * intel_disable_pll - disable a PLL
1382 * @dev_priv: i915 private structure
1383 * @pipe: pipe PLL to disable
1384 *
1385 * Disable the PLL for @pipe, making sure the pipe is off first.
1386 *
1387 * Note! This is for pre-ILK only.
1388 */
1389 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1390 {
1391 int reg;
1392 u32 val;
1393
1394 /* Don't disable pipe A or pipe A PLLs if needed */
1395 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1396 return;
1397
1398 /* Make sure the pipe isn't still relying on us */
1399 assert_pipe_disabled(dev_priv, pipe);
1400
1401 reg = DPLL(pipe);
1402 val = I915_READ(reg);
1403 val &= ~DPLL_VCO_ENABLE;
1404 I915_WRITE(reg, val);
1405 POSTING_READ(reg);
1406 }
1407
1408 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1409 {
1410 u32 port_mask;
1411
1412 if (!port)
1413 port_mask = DPLL_PORTB_READY_MASK;
1414 else
1415 port_mask = DPLL_PORTC_READY_MASK;
1416
1417 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1418 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1419 'B' + port, I915_READ(DPLL(0)));
1420 }
1421
1422 /**
1423 * ironlake_enable_shared_dpll - enable PCH PLL
1424 * @dev_priv: i915 private structure
1425 * @pipe: pipe PLL to enable
1426 *
1427 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1428 * drives the transcoder clock.
1429 */
1430 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1431 {
1432 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1433 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1434
1435 /* PCH PLLs only available on ILK, SNB and IVB */
1436 BUG_ON(dev_priv->info->gen < 5);
1437 if (WARN_ON(pll == NULL))
1438 return;
1439
1440 if (WARN_ON(pll->refcount == 0))
1441 return;
1442
1443 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1444 pll->name, pll->active, pll->on,
1445 crtc->base.base.id);
1446
1447 if (pll->active++) {
1448 WARN_ON(!pll->on);
1449 assert_shared_dpll_enabled(dev_priv, pll);
1450 return;
1451 }
1452 WARN_ON(pll->on);
1453
1454 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1455 pll->enable(dev_priv, pll);
1456 pll->on = true;
1457 }
1458
1459 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1460 {
1461 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1462 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1463
1464 /* PCH only available on ILK+ */
1465 BUG_ON(dev_priv->info->gen < 5);
1466 if (WARN_ON(pll == NULL))
1467 return;
1468
1469 if (WARN_ON(pll->refcount == 0))
1470 return;
1471
1472 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1473 pll->name, pll->active, pll->on,
1474 crtc->base.base.id);
1475
1476 if (WARN_ON(pll->active == 0)) {
1477 assert_shared_dpll_disabled(dev_priv, pll);
1478 return;
1479 }
1480
1481 assert_shared_dpll_enabled(dev_priv, pll);
1482 WARN_ON(!pll->on);
1483 if (--pll->active)
1484 return;
1485
1486 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1487 pll->disable(dev_priv, pll);
1488 pll->on = false;
1489 }
1490
1491 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1492 enum pipe pipe)
1493 {
1494 struct drm_device *dev = dev_priv->dev;
1495 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1497 uint32_t reg, val, pipeconf_val;
1498
1499 /* PCH only available on ILK+ */
1500 BUG_ON(dev_priv->info->gen < 5);
1501
1502 /* Make sure PCH DPLL is enabled */
1503 assert_shared_dpll_enabled(dev_priv,
1504 intel_crtc_to_shared_dpll(intel_crtc));
1505
1506 /* FDI must be feeding us bits for PCH ports */
1507 assert_fdi_tx_enabled(dev_priv, pipe);
1508 assert_fdi_rx_enabled(dev_priv, pipe);
1509
1510 if (HAS_PCH_CPT(dev)) {
1511 /* Workaround: Set the timing override bit before enabling the
1512 * pch transcoder. */
1513 reg = TRANS_CHICKEN2(pipe);
1514 val = I915_READ(reg);
1515 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1516 I915_WRITE(reg, val);
1517 }
1518
1519 reg = PCH_TRANSCONF(pipe);
1520 val = I915_READ(reg);
1521 pipeconf_val = I915_READ(PIPECONF(pipe));
1522
1523 if (HAS_PCH_IBX(dev_priv->dev)) {
1524 /*
1525 * make the BPC in transcoder be consistent with
1526 * that in pipeconf reg.
1527 */
1528 val &= ~PIPECONF_BPC_MASK;
1529 val |= pipeconf_val & PIPECONF_BPC_MASK;
1530 }
1531
1532 val &= ~TRANS_INTERLACE_MASK;
1533 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1534 if (HAS_PCH_IBX(dev_priv->dev) &&
1535 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1536 val |= TRANS_LEGACY_INTERLACED_ILK;
1537 else
1538 val |= TRANS_INTERLACED;
1539 else
1540 val |= TRANS_PROGRESSIVE;
1541
1542 I915_WRITE(reg, val | TRANS_ENABLE);
1543 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1544 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1545 }
1546
1547 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1548 enum transcoder cpu_transcoder)
1549 {
1550 u32 val, pipeconf_val;
1551
1552 /* PCH only available on ILK+ */
1553 BUG_ON(dev_priv->info->gen < 5);
1554
1555 /* FDI must be feeding us bits for PCH ports */
1556 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1557 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1558
1559 /* Workaround: set timing override bit. */
1560 val = I915_READ(_TRANSA_CHICKEN2);
1561 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1562 I915_WRITE(_TRANSA_CHICKEN2, val);
1563
1564 val = TRANS_ENABLE;
1565 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1566
1567 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1568 PIPECONF_INTERLACED_ILK)
1569 val |= TRANS_INTERLACED;
1570 else
1571 val |= TRANS_PROGRESSIVE;
1572
1573 I915_WRITE(LPT_TRANSCONF, val);
1574 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1575 DRM_ERROR("Failed to enable PCH transcoder\n");
1576 }
1577
1578 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1579 enum pipe pipe)
1580 {
1581 struct drm_device *dev = dev_priv->dev;
1582 uint32_t reg, val;
1583
1584 /* FDI relies on the transcoder */
1585 assert_fdi_tx_disabled(dev_priv, pipe);
1586 assert_fdi_rx_disabled(dev_priv, pipe);
1587
1588 /* Ports must be off as well */
1589 assert_pch_ports_disabled(dev_priv, pipe);
1590
1591 reg = PCH_TRANSCONF(pipe);
1592 val = I915_READ(reg);
1593 val &= ~TRANS_ENABLE;
1594 I915_WRITE(reg, val);
1595 /* wait for PCH transcoder off, transcoder state */
1596 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1597 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1598
1599 if (!HAS_PCH_IBX(dev)) {
1600 /* Workaround: Clear the timing override chicken bit again. */
1601 reg = TRANS_CHICKEN2(pipe);
1602 val = I915_READ(reg);
1603 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1604 I915_WRITE(reg, val);
1605 }
1606 }
1607
1608 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1609 {
1610 u32 val;
1611
1612 val = I915_READ(LPT_TRANSCONF);
1613 val &= ~TRANS_ENABLE;
1614 I915_WRITE(LPT_TRANSCONF, val);
1615 /* wait for PCH transcoder off, transcoder state */
1616 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1617 DRM_ERROR("Failed to disable PCH transcoder\n");
1618
1619 /* Workaround: clear timing override bit. */
1620 val = I915_READ(_TRANSA_CHICKEN2);
1621 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1622 I915_WRITE(_TRANSA_CHICKEN2, val);
1623 }
1624
1625 /**
1626 * intel_enable_pipe - enable a pipe, asserting requirements
1627 * @dev_priv: i915 private structure
1628 * @pipe: pipe to enable
1629 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1630 *
1631 * Enable @pipe, making sure that various hardware specific requirements
1632 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1633 *
1634 * @pipe should be %PIPE_A or %PIPE_B.
1635 *
1636 * Will wait until the pipe is actually running (i.e. first vblank) before
1637 * returning.
1638 */
1639 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1640 bool pch_port)
1641 {
1642 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1643 pipe);
1644 enum pipe pch_transcoder;
1645 int reg;
1646 u32 val;
1647
1648 assert_planes_disabled(dev_priv, pipe);
1649 assert_sprites_disabled(dev_priv, pipe);
1650
1651 if (HAS_PCH_LPT(dev_priv->dev))
1652 pch_transcoder = TRANSCODER_A;
1653 else
1654 pch_transcoder = pipe;
1655
1656 /*
1657 * A pipe without a PLL won't actually be able to drive bits from
1658 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1659 * need the check.
1660 */
1661 if (!HAS_PCH_SPLIT(dev_priv->dev))
1662 assert_pll_enabled(dev_priv, pipe);
1663 else {
1664 if (pch_port) {
1665 /* if driving the PCH, we need FDI enabled */
1666 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1667 assert_fdi_tx_pll_enabled(dev_priv,
1668 (enum pipe) cpu_transcoder);
1669 }
1670 /* FIXME: assert CPU port conditions for SNB+ */
1671 }
1672
1673 reg = PIPECONF(cpu_transcoder);
1674 val = I915_READ(reg);
1675 if (val & PIPECONF_ENABLE)
1676 return;
1677
1678 I915_WRITE(reg, val | PIPECONF_ENABLE);
1679 intel_wait_for_vblank(dev_priv->dev, pipe);
1680 }
1681
1682 /**
1683 * intel_disable_pipe - disable a pipe, asserting requirements
1684 * @dev_priv: i915 private structure
1685 * @pipe: pipe to disable
1686 *
1687 * Disable @pipe, making sure that various hardware specific requirements
1688 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1689 *
1690 * @pipe should be %PIPE_A or %PIPE_B.
1691 *
1692 * Will wait until the pipe has shut down before returning.
1693 */
1694 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1695 enum pipe pipe)
1696 {
1697 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1698 pipe);
1699 int reg;
1700 u32 val;
1701
1702 /*
1703 * Make sure planes won't keep trying to pump pixels to us,
1704 * or we might hang the display.
1705 */
1706 assert_planes_disabled(dev_priv, pipe);
1707 assert_sprites_disabled(dev_priv, pipe);
1708
1709 /* Don't disable pipe A or pipe A PLLs if needed */
1710 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1711 return;
1712
1713 reg = PIPECONF(cpu_transcoder);
1714 val = I915_READ(reg);
1715 if ((val & PIPECONF_ENABLE) == 0)
1716 return;
1717
1718 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1719 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1720 }
1721
1722 /*
1723 * Plane regs are double buffered, going from enabled->disabled needs a
1724 * trigger in order to latch. The display address reg provides this.
1725 */
1726 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1727 enum plane plane)
1728 {
1729 if (dev_priv->info->gen >= 4)
1730 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1731 else
1732 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1733 }
1734
1735 /**
1736 * intel_enable_plane - enable a display plane on a given pipe
1737 * @dev_priv: i915 private structure
1738 * @plane: plane to enable
1739 * @pipe: pipe being fed
1740 *
1741 * Enable @plane on @pipe, making sure that @pipe is running first.
1742 */
1743 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1744 enum plane plane, enum pipe pipe)
1745 {
1746 int reg;
1747 u32 val;
1748
1749 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1750 assert_pipe_enabled(dev_priv, pipe);
1751
1752 reg = DSPCNTR(plane);
1753 val = I915_READ(reg);
1754 if (val & DISPLAY_PLANE_ENABLE)
1755 return;
1756
1757 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1758 intel_flush_display_plane(dev_priv, plane);
1759 intel_wait_for_vblank(dev_priv->dev, pipe);
1760 }
1761
1762 /**
1763 * intel_disable_plane - disable a display plane
1764 * @dev_priv: i915 private structure
1765 * @plane: plane to disable
1766 * @pipe: pipe consuming the data
1767 *
1768 * Disable @plane; should be an independent operation.
1769 */
1770 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1771 enum plane plane, enum pipe pipe)
1772 {
1773 int reg;
1774 u32 val;
1775
1776 reg = DSPCNTR(plane);
1777 val = I915_READ(reg);
1778 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1779 return;
1780
1781 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1782 intel_flush_display_plane(dev_priv, plane);
1783 intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 static bool need_vtd_wa(struct drm_device *dev)
1787 {
1788 #ifdef CONFIG_INTEL_IOMMU
1789 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1790 return true;
1791 #endif
1792 return false;
1793 }
1794
1795 int
1796 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1797 struct drm_i915_gem_object *obj,
1798 struct intel_ring_buffer *pipelined)
1799 {
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 u32 alignment;
1802 int ret;
1803
1804 switch (obj->tiling_mode) {
1805 case I915_TILING_NONE:
1806 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1807 alignment = 128 * 1024;
1808 else if (INTEL_INFO(dev)->gen >= 4)
1809 alignment = 4 * 1024;
1810 else
1811 alignment = 64 * 1024;
1812 break;
1813 case I915_TILING_X:
1814 /* pin() will align the object as required by fence */
1815 alignment = 0;
1816 break;
1817 case I915_TILING_Y:
1818 /* Despite that we check this in framebuffer_init userspace can
1819 * screw us over and change the tiling after the fact. Only
1820 * pinned buffers can't change their tiling. */
1821 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1822 return -EINVAL;
1823 default:
1824 BUG();
1825 }
1826
1827 /* Note that the w/a also requires 64 PTE of padding following the
1828 * bo. We currently fill all unused PTE with the shadow page and so
1829 * we should always have valid PTE following the scanout preventing
1830 * the VT-d warning.
1831 */
1832 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1833 alignment = 256 * 1024;
1834
1835 dev_priv->mm.interruptible = false;
1836 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1837 if (ret)
1838 goto err_interruptible;
1839
1840 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1841 * fence, whereas 965+ only requires a fence if using
1842 * framebuffer compression. For simplicity, we always install
1843 * a fence as the cost is not that onerous.
1844 */
1845 ret = i915_gem_object_get_fence(obj);
1846 if (ret)
1847 goto err_unpin;
1848
1849 i915_gem_object_pin_fence(obj);
1850
1851 dev_priv->mm.interruptible = true;
1852 return 0;
1853
1854 err_unpin:
1855 i915_gem_object_unpin(obj);
1856 err_interruptible:
1857 dev_priv->mm.interruptible = true;
1858 return ret;
1859 }
1860
1861 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1862 {
1863 i915_gem_object_unpin_fence(obj);
1864 i915_gem_object_unpin(obj);
1865 }
1866
1867 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1868 * is assumed to be a power-of-two. */
1869 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1870 unsigned int tiling_mode,
1871 unsigned int cpp,
1872 unsigned int pitch)
1873 {
1874 if (tiling_mode != I915_TILING_NONE) {
1875 unsigned int tile_rows, tiles;
1876
1877 tile_rows = *y / 8;
1878 *y %= 8;
1879
1880 tiles = *x / (512/cpp);
1881 *x %= 512/cpp;
1882
1883 return tile_rows * pitch * 8 + tiles * 4096;
1884 } else {
1885 unsigned int offset;
1886
1887 offset = *y * pitch + *x * cpp;
1888 *y = 0;
1889 *x = (offset & 4095) / cpp;
1890 return offset & -4096;
1891 }
1892 }
1893
1894 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1895 int x, int y)
1896 {
1897 struct drm_device *dev = crtc->dev;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1900 struct intel_framebuffer *intel_fb;
1901 struct drm_i915_gem_object *obj;
1902 int plane = intel_crtc->plane;
1903 unsigned long linear_offset;
1904 u32 dspcntr;
1905 u32 reg;
1906
1907 switch (plane) {
1908 case 0:
1909 case 1:
1910 break;
1911 default:
1912 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1913 return -EINVAL;
1914 }
1915
1916 intel_fb = to_intel_framebuffer(fb);
1917 obj = intel_fb->obj;
1918
1919 reg = DSPCNTR(plane);
1920 dspcntr = I915_READ(reg);
1921 /* Mask out pixel format bits in case we change it */
1922 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1923 switch (fb->pixel_format) {
1924 case DRM_FORMAT_C8:
1925 dspcntr |= DISPPLANE_8BPP;
1926 break;
1927 case DRM_FORMAT_XRGB1555:
1928 case DRM_FORMAT_ARGB1555:
1929 dspcntr |= DISPPLANE_BGRX555;
1930 break;
1931 case DRM_FORMAT_RGB565:
1932 dspcntr |= DISPPLANE_BGRX565;
1933 break;
1934 case DRM_FORMAT_XRGB8888:
1935 case DRM_FORMAT_ARGB8888:
1936 dspcntr |= DISPPLANE_BGRX888;
1937 break;
1938 case DRM_FORMAT_XBGR8888:
1939 case DRM_FORMAT_ABGR8888:
1940 dspcntr |= DISPPLANE_RGBX888;
1941 break;
1942 case DRM_FORMAT_XRGB2101010:
1943 case DRM_FORMAT_ARGB2101010:
1944 dspcntr |= DISPPLANE_BGRX101010;
1945 break;
1946 case DRM_FORMAT_XBGR2101010:
1947 case DRM_FORMAT_ABGR2101010:
1948 dspcntr |= DISPPLANE_RGBX101010;
1949 break;
1950 default:
1951 BUG();
1952 }
1953
1954 if (INTEL_INFO(dev)->gen >= 4) {
1955 if (obj->tiling_mode != I915_TILING_NONE)
1956 dspcntr |= DISPPLANE_TILED;
1957 else
1958 dspcntr &= ~DISPPLANE_TILED;
1959 }
1960
1961 if (IS_G4X(dev))
1962 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1963
1964 I915_WRITE(reg, dspcntr);
1965
1966 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1967
1968 if (INTEL_INFO(dev)->gen >= 4) {
1969 intel_crtc->dspaddr_offset =
1970 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1971 fb->bits_per_pixel / 8,
1972 fb->pitches[0]);
1973 linear_offset -= intel_crtc->dspaddr_offset;
1974 } else {
1975 intel_crtc->dspaddr_offset = linear_offset;
1976 }
1977
1978 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
1979 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
1980 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1981 if (INTEL_INFO(dev)->gen >= 4) {
1982 I915_MODIFY_DISPBASE(DSPSURF(plane),
1983 obj->gtt_offset + intel_crtc->dspaddr_offset);
1984 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1985 I915_WRITE(DSPLINOFF(plane), linear_offset);
1986 } else
1987 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
1988 POSTING_READ(reg);
1989
1990 return 0;
1991 }
1992
1993 static int ironlake_update_plane(struct drm_crtc *crtc,
1994 struct drm_framebuffer *fb, int x, int y)
1995 {
1996 struct drm_device *dev = crtc->dev;
1997 struct drm_i915_private *dev_priv = dev->dev_private;
1998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1999 struct intel_framebuffer *intel_fb;
2000 struct drm_i915_gem_object *obj;
2001 int plane = intel_crtc->plane;
2002 unsigned long linear_offset;
2003 u32 dspcntr;
2004 u32 reg;
2005
2006 switch (plane) {
2007 case 0:
2008 case 1:
2009 case 2:
2010 break;
2011 default:
2012 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2013 return -EINVAL;
2014 }
2015
2016 intel_fb = to_intel_framebuffer(fb);
2017 obj = intel_fb->obj;
2018
2019 reg = DSPCNTR(plane);
2020 dspcntr = I915_READ(reg);
2021 /* Mask out pixel format bits in case we change it */
2022 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2023 switch (fb->pixel_format) {
2024 case DRM_FORMAT_C8:
2025 dspcntr |= DISPPLANE_8BPP;
2026 break;
2027 case DRM_FORMAT_RGB565:
2028 dspcntr |= DISPPLANE_BGRX565;
2029 break;
2030 case DRM_FORMAT_XRGB8888:
2031 case DRM_FORMAT_ARGB8888:
2032 dspcntr |= DISPPLANE_BGRX888;
2033 break;
2034 case DRM_FORMAT_XBGR8888:
2035 case DRM_FORMAT_ABGR8888:
2036 dspcntr |= DISPPLANE_RGBX888;
2037 break;
2038 case DRM_FORMAT_XRGB2101010:
2039 case DRM_FORMAT_ARGB2101010:
2040 dspcntr |= DISPPLANE_BGRX101010;
2041 break;
2042 case DRM_FORMAT_XBGR2101010:
2043 case DRM_FORMAT_ABGR2101010:
2044 dspcntr |= DISPPLANE_RGBX101010;
2045 break;
2046 default:
2047 BUG();
2048 }
2049
2050 if (obj->tiling_mode != I915_TILING_NONE)
2051 dspcntr |= DISPPLANE_TILED;
2052 else
2053 dspcntr &= ~DISPPLANE_TILED;
2054
2055 /* must disable */
2056 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2057
2058 I915_WRITE(reg, dspcntr);
2059
2060 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2061 intel_crtc->dspaddr_offset =
2062 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2063 fb->bits_per_pixel / 8,
2064 fb->pitches[0]);
2065 linear_offset -= intel_crtc->dspaddr_offset;
2066
2067 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2068 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2069 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2070 I915_MODIFY_DISPBASE(DSPSURF(plane),
2071 obj->gtt_offset + intel_crtc->dspaddr_offset);
2072 if (IS_HASWELL(dev)) {
2073 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2074 } else {
2075 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2076 I915_WRITE(DSPLINOFF(plane), linear_offset);
2077 }
2078 POSTING_READ(reg);
2079
2080 return 0;
2081 }
2082
2083 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2084 static int
2085 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2086 int x, int y, enum mode_set_atomic state)
2087 {
2088 struct drm_device *dev = crtc->dev;
2089 struct drm_i915_private *dev_priv = dev->dev_private;
2090
2091 if (dev_priv->display.disable_fbc)
2092 dev_priv->display.disable_fbc(dev);
2093 intel_increase_pllclock(crtc);
2094
2095 return dev_priv->display.update_plane(crtc, fb, x, y);
2096 }
2097
2098 void intel_display_handle_reset(struct drm_device *dev)
2099 {
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 struct drm_crtc *crtc;
2102
2103 /*
2104 * Flips in the rings have been nuked by the reset,
2105 * so complete all pending flips so that user space
2106 * will get its events and not get stuck.
2107 *
2108 * Also update the base address of all primary
2109 * planes to the the last fb to make sure we're
2110 * showing the correct fb after a reset.
2111 *
2112 * Need to make two loops over the crtcs so that we
2113 * don't try to grab a crtc mutex before the
2114 * pending_flip_queue really got woken up.
2115 */
2116
2117 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2119 enum plane plane = intel_crtc->plane;
2120
2121 intel_prepare_page_flip(dev, plane);
2122 intel_finish_page_flip_plane(dev, plane);
2123 }
2124
2125 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2127
2128 mutex_lock(&crtc->mutex);
2129 if (intel_crtc->active)
2130 dev_priv->display.update_plane(crtc, crtc->fb,
2131 crtc->x, crtc->y);
2132 mutex_unlock(&crtc->mutex);
2133 }
2134 }
2135
2136 static int
2137 intel_finish_fb(struct drm_framebuffer *old_fb)
2138 {
2139 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2140 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2141 bool was_interruptible = dev_priv->mm.interruptible;
2142 int ret;
2143
2144 /* Big Hammer, we also need to ensure that any pending
2145 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2146 * current scanout is retired before unpinning the old
2147 * framebuffer.
2148 *
2149 * This should only fail upon a hung GPU, in which case we
2150 * can safely continue.
2151 */
2152 dev_priv->mm.interruptible = false;
2153 ret = i915_gem_object_finish_gpu(obj);
2154 dev_priv->mm.interruptible = was_interruptible;
2155
2156 return ret;
2157 }
2158
2159 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2160 {
2161 struct drm_device *dev = crtc->dev;
2162 struct drm_i915_master_private *master_priv;
2163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2164
2165 if (!dev->primary->master)
2166 return;
2167
2168 master_priv = dev->primary->master->driver_priv;
2169 if (!master_priv->sarea_priv)
2170 return;
2171
2172 switch (intel_crtc->pipe) {
2173 case 0:
2174 master_priv->sarea_priv->pipeA_x = x;
2175 master_priv->sarea_priv->pipeA_y = y;
2176 break;
2177 case 1:
2178 master_priv->sarea_priv->pipeB_x = x;
2179 master_priv->sarea_priv->pipeB_y = y;
2180 break;
2181 default:
2182 break;
2183 }
2184 }
2185
2186 static int
2187 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2188 struct drm_framebuffer *fb)
2189 {
2190 struct drm_device *dev = crtc->dev;
2191 struct drm_i915_private *dev_priv = dev->dev_private;
2192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2193 struct drm_framebuffer *old_fb;
2194 int ret;
2195
2196 /* no fb bound */
2197 if (!fb) {
2198 DRM_ERROR("No FB bound\n");
2199 return 0;
2200 }
2201
2202 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2203 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2204 plane_name(intel_crtc->plane),
2205 INTEL_INFO(dev)->num_pipes);
2206 return -EINVAL;
2207 }
2208
2209 mutex_lock(&dev->struct_mutex);
2210 ret = intel_pin_and_fence_fb_obj(dev,
2211 to_intel_framebuffer(fb)->obj,
2212 NULL);
2213 if (ret != 0) {
2214 mutex_unlock(&dev->struct_mutex);
2215 DRM_ERROR("pin & fence failed\n");
2216 return ret;
2217 }
2218
2219 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2220 if (ret) {
2221 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2222 mutex_unlock(&dev->struct_mutex);
2223 DRM_ERROR("failed to update base address\n");
2224 return ret;
2225 }
2226
2227 old_fb = crtc->fb;
2228 crtc->fb = fb;
2229 crtc->x = x;
2230 crtc->y = y;
2231
2232 if (old_fb) {
2233 if (intel_crtc->active && old_fb != fb)
2234 intel_wait_for_vblank(dev, intel_crtc->pipe);
2235 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2236 }
2237
2238 intel_update_fbc(dev);
2239 mutex_unlock(&dev->struct_mutex);
2240
2241 intel_crtc_update_sarea_pos(crtc, x, y);
2242
2243 return 0;
2244 }
2245
2246 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2247 {
2248 struct drm_device *dev = crtc->dev;
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2251 int pipe = intel_crtc->pipe;
2252 u32 reg, temp;
2253
2254 /* enable normal train */
2255 reg = FDI_TX_CTL(pipe);
2256 temp = I915_READ(reg);
2257 if (IS_IVYBRIDGE(dev)) {
2258 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2259 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2260 } else {
2261 temp &= ~FDI_LINK_TRAIN_NONE;
2262 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2263 }
2264 I915_WRITE(reg, temp);
2265
2266 reg = FDI_RX_CTL(pipe);
2267 temp = I915_READ(reg);
2268 if (HAS_PCH_CPT(dev)) {
2269 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2270 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2271 } else {
2272 temp &= ~FDI_LINK_TRAIN_NONE;
2273 temp |= FDI_LINK_TRAIN_NONE;
2274 }
2275 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2276
2277 /* wait one idle pattern time */
2278 POSTING_READ(reg);
2279 udelay(1000);
2280
2281 /* IVB wants error correction enabled */
2282 if (IS_IVYBRIDGE(dev))
2283 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2284 FDI_FE_ERRC_ENABLE);
2285 }
2286
2287 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2288 {
2289 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2290 }
2291
2292 static void ivb_modeset_global_resources(struct drm_device *dev)
2293 {
2294 struct drm_i915_private *dev_priv = dev->dev_private;
2295 struct intel_crtc *pipe_B_crtc =
2296 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2297 struct intel_crtc *pipe_C_crtc =
2298 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2299 uint32_t temp;
2300
2301 /*
2302 * When everything is off disable fdi C so that we could enable fdi B
2303 * with all lanes. Note that we don't care about enabled pipes without
2304 * an enabled pch encoder.
2305 */
2306 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2307 !pipe_has_enabled_pch(pipe_C_crtc)) {
2308 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2309 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2310
2311 temp = I915_READ(SOUTH_CHICKEN1);
2312 temp &= ~FDI_BC_BIFURCATION_SELECT;
2313 DRM_DEBUG_KMS("disabling fdi C rx\n");
2314 I915_WRITE(SOUTH_CHICKEN1, temp);
2315 }
2316 }
2317
2318 /* The FDI link training functions for ILK/Ibexpeak. */
2319 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2320 {
2321 struct drm_device *dev = crtc->dev;
2322 struct drm_i915_private *dev_priv = dev->dev_private;
2323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2324 int pipe = intel_crtc->pipe;
2325 int plane = intel_crtc->plane;
2326 u32 reg, temp, tries;
2327
2328 /* FDI needs bits from pipe & plane first */
2329 assert_pipe_enabled(dev_priv, pipe);
2330 assert_plane_enabled(dev_priv, plane);
2331
2332 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2333 for train result */
2334 reg = FDI_RX_IMR(pipe);
2335 temp = I915_READ(reg);
2336 temp &= ~FDI_RX_SYMBOL_LOCK;
2337 temp &= ~FDI_RX_BIT_LOCK;
2338 I915_WRITE(reg, temp);
2339 I915_READ(reg);
2340 udelay(150);
2341
2342 /* enable CPU FDI TX and PCH FDI RX */
2343 reg = FDI_TX_CTL(pipe);
2344 temp = I915_READ(reg);
2345 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2346 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2347 temp &= ~FDI_LINK_TRAIN_NONE;
2348 temp |= FDI_LINK_TRAIN_PATTERN_1;
2349 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2350
2351 reg = FDI_RX_CTL(pipe);
2352 temp = I915_READ(reg);
2353 temp &= ~FDI_LINK_TRAIN_NONE;
2354 temp |= FDI_LINK_TRAIN_PATTERN_1;
2355 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2356
2357 POSTING_READ(reg);
2358 udelay(150);
2359
2360 /* Ironlake workaround, enable clock pointer after FDI enable*/
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364
2365 reg = FDI_RX_IIR(pipe);
2366 for (tries = 0; tries < 5; tries++) {
2367 temp = I915_READ(reg);
2368 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2369
2370 if ((temp & FDI_RX_BIT_LOCK)) {
2371 DRM_DEBUG_KMS("FDI train 1 done.\n");
2372 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2373 break;
2374 }
2375 }
2376 if (tries == 5)
2377 DRM_ERROR("FDI train 1 fail!\n");
2378
2379 /* Train 2 */
2380 reg = FDI_TX_CTL(pipe);
2381 temp = I915_READ(reg);
2382 temp &= ~FDI_LINK_TRAIN_NONE;
2383 temp |= FDI_LINK_TRAIN_PATTERN_2;
2384 I915_WRITE(reg, temp);
2385
2386 reg = FDI_RX_CTL(pipe);
2387 temp = I915_READ(reg);
2388 temp &= ~FDI_LINK_TRAIN_NONE;
2389 temp |= FDI_LINK_TRAIN_PATTERN_2;
2390 I915_WRITE(reg, temp);
2391
2392 POSTING_READ(reg);
2393 udelay(150);
2394
2395 reg = FDI_RX_IIR(pipe);
2396 for (tries = 0; tries < 5; tries++) {
2397 temp = I915_READ(reg);
2398 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400 if (temp & FDI_RX_SYMBOL_LOCK) {
2401 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2402 DRM_DEBUG_KMS("FDI train 2 done.\n");
2403 break;
2404 }
2405 }
2406 if (tries == 5)
2407 DRM_ERROR("FDI train 2 fail!\n");
2408
2409 DRM_DEBUG_KMS("FDI train done\n");
2410
2411 }
2412
2413 static const int snb_b_fdi_train_param[] = {
2414 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2415 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2416 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2417 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2418 };
2419
2420 /* The FDI link training functions for SNB/Cougarpoint. */
2421 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2422 {
2423 struct drm_device *dev = crtc->dev;
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2426 int pipe = intel_crtc->pipe;
2427 u32 reg, temp, i, retry;
2428
2429 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2430 for train result */
2431 reg = FDI_RX_IMR(pipe);
2432 temp = I915_READ(reg);
2433 temp &= ~FDI_RX_SYMBOL_LOCK;
2434 temp &= ~FDI_RX_BIT_LOCK;
2435 I915_WRITE(reg, temp);
2436
2437 POSTING_READ(reg);
2438 udelay(150);
2439
2440 /* enable CPU FDI TX and PCH FDI RX */
2441 reg = FDI_TX_CTL(pipe);
2442 temp = I915_READ(reg);
2443 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2444 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2445 temp &= ~FDI_LINK_TRAIN_NONE;
2446 temp |= FDI_LINK_TRAIN_PATTERN_1;
2447 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2448 /* SNB-B */
2449 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2450 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2451
2452 I915_WRITE(FDI_RX_MISC(pipe),
2453 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2454
2455 reg = FDI_RX_CTL(pipe);
2456 temp = I915_READ(reg);
2457 if (HAS_PCH_CPT(dev)) {
2458 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2459 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2460 } else {
2461 temp &= ~FDI_LINK_TRAIN_NONE;
2462 temp |= FDI_LINK_TRAIN_PATTERN_1;
2463 }
2464 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2465
2466 POSTING_READ(reg);
2467 udelay(150);
2468
2469 for (i = 0; i < 4; i++) {
2470 reg = FDI_TX_CTL(pipe);
2471 temp = I915_READ(reg);
2472 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2473 temp |= snb_b_fdi_train_param[i];
2474 I915_WRITE(reg, temp);
2475
2476 POSTING_READ(reg);
2477 udelay(500);
2478
2479 for (retry = 0; retry < 5; retry++) {
2480 reg = FDI_RX_IIR(pipe);
2481 temp = I915_READ(reg);
2482 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2483 if (temp & FDI_RX_BIT_LOCK) {
2484 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2485 DRM_DEBUG_KMS("FDI train 1 done.\n");
2486 break;
2487 }
2488 udelay(50);
2489 }
2490 if (retry < 5)
2491 break;
2492 }
2493 if (i == 4)
2494 DRM_ERROR("FDI train 1 fail!\n");
2495
2496 /* Train 2 */
2497 reg = FDI_TX_CTL(pipe);
2498 temp = I915_READ(reg);
2499 temp &= ~FDI_LINK_TRAIN_NONE;
2500 temp |= FDI_LINK_TRAIN_PATTERN_2;
2501 if (IS_GEN6(dev)) {
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 /* SNB-B */
2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505 }
2506 I915_WRITE(reg, temp);
2507
2508 reg = FDI_RX_CTL(pipe);
2509 temp = I915_READ(reg);
2510 if (HAS_PCH_CPT(dev)) {
2511 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2512 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2513 } else {
2514 temp &= ~FDI_LINK_TRAIN_NONE;
2515 temp |= FDI_LINK_TRAIN_PATTERN_2;
2516 }
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(150);
2521
2522 for (i = 0; i < 4; i++) {
2523 reg = FDI_TX_CTL(pipe);
2524 temp = I915_READ(reg);
2525 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2526 temp |= snb_b_fdi_train_param[i];
2527 I915_WRITE(reg, temp);
2528
2529 POSTING_READ(reg);
2530 udelay(500);
2531
2532 for (retry = 0; retry < 5; retry++) {
2533 reg = FDI_RX_IIR(pipe);
2534 temp = I915_READ(reg);
2535 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2536 if (temp & FDI_RX_SYMBOL_LOCK) {
2537 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2538 DRM_DEBUG_KMS("FDI train 2 done.\n");
2539 break;
2540 }
2541 udelay(50);
2542 }
2543 if (retry < 5)
2544 break;
2545 }
2546 if (i == 4)
2547 DRM_ERROR("FDI train 2 fail!\n");
2548
2549 DRM_DEBUG_KMS("FDI train done.\n");
2550 }
2551
2552 /* Manual link training for Ivy Bridge A0 parts */
2553 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2554 {
2555 struct drm_device *dev = crtc->dev;
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2558 int pipe = intel_crtc->pipe;
2559 u32 reg, temp, i;
2560
2561 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2562 for train result */
2563 reg = FDI_RX_IMR(pipe);
2564 temp = I915_READ(reg);
2565 temp &= ~FDI_RX_SYMBOL_LOCK;
2566 temp &= ~FDI_RX_BIT_LOCK;
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
2570 udelay(150);
2571
2572 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2573 I915_READ(FDI_RX_IIR(pipe)));
2574
2575 /* enable CPU FDI TX and PCH FDI RX */
2576 reg = FDI_TX_CTL(pipe);
2577 temp = I915_READ(reg);
2578 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2579 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2580 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2581 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2583 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2584 temp |= FDI_COMPOSITE_SYNC;
2585 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2586
2587 I915_WRITE(FDI_RX_MISC(pipe),
2588 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2589
2590 reg = FDI_RX_CTL(pipe);
2591 temp = I915_READ(reg);
2592 temp &= ~FDI_LINK_TRAIN_AUTO;
2593 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2594 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2595 temp |= FDI_COMPOSITE_SYNC;
2596 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2597
2598 POSTING_READ(reg);
2599 udelay(150);
2600
2601 for (i = 0; i < 4; i++) {
2602 reg = FDI_TX_CTL(pipe);
2603 temp = I915_READ(reg);
2604 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2605 temp |= snb_b_fdi_train_param[i];
2606 I915_WRITE(reg, temp);
2607
2608 POSTING_READ(reg);
2609 udelay(500);
2610
2611 reg = FDI_RX_IIR(pipe);
2612 temp = I915_READ(reg);
2613 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2614
2615 if (temp & FDI_RX_BIT_LOCK ||
2616 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2617 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2618 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2619 break;
2620 }
2621 }
2622 if (i == 4)
2623 DRM_ERROR("FDI train 1 fail!\n");
2624
2625 /* Train 2 */
2626 reg = FDI_TX_CTL(pipe);
2627 temp = I915_READ(reg);
2628 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2629 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2630 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2631 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2632 I915_WRITE(reg, temp);
2633
2634 reg = FDI_RX_CTL(pipe);
2635 temp = I915_READ(reg);
2636 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2637 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2638 I915_WRITE(reg, temp);
2639
2640 POSTING_READ(reg);
2641 udelay(150);
2642
2643 for (i = 0; i < 4; i++) {
2644 reg = FDI_TX_CTL(pipe);
2645 temp = I915_READ(reg);
2646 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2647 temp |= snb_b_fdi_train_param[i];
2648 I915_WRITE(reg, temp);
2649
2650 POSTING_READ(reg);
2651 udelay(500);
2652
2653 reg = FDI_RX_IIR(pipe);
2654 temp = I915_READ(reg);
2655 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2656
2657 if (temp & FDI_RX_SYMBOL_LOCK) {
2658 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2659 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2660 break;
2661 }
2662 }
2663 if (i == 4)
2664 DRM_ERROR("FDI train 2 fail!\n");
2665
2666 DRM_DEBUG_KMS("FDI train done.\n");
2667 }
2668
2669 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2670 {
2671 struct drm_device *dev = intel_crtc->base.dev;
2672 struct drm_i915_private *dev_priv = dev->dev_private;
2673 int pipe = intel_crtc->pipe;
2674 u32 reg, temp;
2675
2676
2677 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2678 reg = FDI_RX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2681 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2682 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2683 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2684
2685 POSTING_READ(reg);
2686 udelay(200);
2687
2688 /* Switch from Rawclk to PCDclk */
2689 temp = I915_READ(reg);
2690 I915_WRITE(reg, temp | FDI_PCDCLK);
2691
2692 POSTING_READ(reg);
2693 udelay(200);
2694
2695 /* Enable CPU FDI TX PLL, always on for Ironlake */
2696 reg = FDI_TX_CTL(pipe);
2697 temp = I915_READ(reg);
2698 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2699 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2700
2701 POSTING_READ(reg);
2702 udelay(100);
2703 }
2704 }
2705
2706 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2707 {
2708 struct drm_device *dev = intel_crtc->base.dev;
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 int pipe = intel_crtc->pipe;
2711 u32 reg, temp;
2712
2713 /* Switch from PCDclk to Rawclk */
2714 reg = FDI_RX_CTL(pipe);
2715 temp = I915_READ(reg);
2716 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2717
2718 /* Disable CPU FDI TX PLL */
2719 reg = FDI_TX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2722
2723 POSTING_READ(reg);
2724 udelay(100);
2725
2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg);
2728 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2729
2730 /* Wait for the clocks to turn off. */
2731 POSTING_READ(reg);
2732 udelay(100);
2733 }
2734
2735 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2736 {
2737 struct drm_device *dev = crtc->dev;
2738 struct drm_i915_private *dev_priv = dev->dev_private;
2739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2740 int pipe = intel_crtc->pipe;
2741 u32 reg, temp;
2742
2743 /* disable CPU FDI tx and PCH FDI rx */
2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg);
2746 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2747 POSTING_READ(reg);
2748
2749 reg = FDI_RX_CTL(pipe);
2750 temp = I915_READ(reg);
2751 temp &= ~(0x7 << 16);
2752 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2753 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2754
2755 POSTING_READ(reg);
2756 udelay(100);
2757
2758 /* Ironlake workaround, disable clock pointer after downing FDI */
2759 if (HAS_PCH_IBX(dev)) {
2760 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2761 }
2762
2763 /* still set train pattern 1 */
2764 reg = FDI_TX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 temp &= ~FDI_LINK_TRAIN_NONE;
2767 temp |= FDI_LINK_TRAIN_PATTERN_1;
2768 I915_WRITE(reg, temp);
2769
2770 reg = FDI_RX_CTL(pipe);
2771 temp = I915_READ(reg);
2772 if (HAS_PCH_CPT(dev)) {
2773 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2774 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2775 } else {
2776 temp &= ~FDI_LINK_TRAIN_NONE;
2777 temp |= FDI_LINK_TRAIN_PATTERN_1;
2778 }
2779 /* BPC in FDI rx is consistent with that in PIPECONF */
2780 temp &= ~(0x07 << 16);
2781 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2782 I915_WRITE(reg, temp);
2783
2784 POSTING_READ(reg);
2785 udelay(100);
2786 }
2787
2788 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2789 {
2790 struct drm_device *dev = crtc->dev;
2791 struct drm_i915_private *dev_priv = dev->dev_private;
2792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2793 unsigned long flags;
2794 bool pending;
2795
2796 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2797 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2798 return false;
2799
2800 spin_lock_irqsave(&dev->event_lock, flags);
2801 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2802 spin_unlock_irqrestore(&dev->event_lock, flags);
2803
2804 return pending;
2805 }
2806
2807 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2808 {
2809 struct drm_device *dev = crtc->dev;
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811
2812 if (crtc->fb == NULL)
2813 return;
2814
2815 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2816
2817 wait_event(dev_priv->pending_flip_queue,
2818 !intel_crtc_has_pending_flip(crtc));
2819
2820 mutex_lock(&dev->struct_mutex);
2821 intel_finish_fb(crtc->fb);
2822 mutex_unlock(&dev->struct_mutex);
2823 }
2824
2825 /* Program iCLKIP clock to the desired frequency */
2826 static void lpt_program_iclkip(struct drm_crtc *crtc)
2827 {
2828 struct drm_device *dev = crtc->dev;
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2831 u32 temp;
2832
2833 mutex_lock(&dev_priv->dpio_lock);
2834
2835 /* It is necessary to ungate the pixclk gate prior to programming
2836 * the divisors, and gate it back when it is done.
2837 */
2838 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2839
2840 /* Disable SSCCTL */
2841 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2842 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2843 SBI_SSCCTL_DISABLE,
2844 SBI_ICLK);
2845
2846 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2847 if (crtc->mode.clock == 20000) {
2848 auxdiv = 1;
2849 divsel = 0x41;
2850 phaseinc = 0x20;
2851 } else {
2852 /* The iCLK virtual clock root frequency is in MHz,
2853 * but the crtc->mode.clock in in KHz. To get the divisors,
2854 * it is necessary to divide one by another, so we
2855 * convert the virtual clock precision to KHz here for higher
2856 * precision.
2857 */
2858 u32 iclk_virtual_root_freq = 172800 * 1000;
2859 u32 iclk_pi_range = 64;
2860 u32 desired_divisor, msb_divisor_value, pi_value;
2861
2862 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2863 msb_divisor_value = desired_divisor / iclk_pi_range;
2864 pi_value = desired_divisor % iclk_pi_range;
2865
2866 auxdiv = 0;
2867 divsel = msb_divisor_value - 2;
2868 phaseinc = pi_value;
2869 }
2870
2871 /* This should not happen with any sane values */
2872 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2873 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2874 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2875 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2876
2877 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2878 crtc->mode.clock,
2879 auxdiv,
2880 divsel,
2881 phasedir,
2882 phaseinc);
2883
2884 /* Program SSCDIVINTPHASE6 */
2885 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2886 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2887 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2888 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2889 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2890 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2891 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2892 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2893
2894 /* Program SSCAUXDIV */
2895 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2896 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2897 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2898 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2899
2900 /* Enable modulator and associated divider */
2901 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2902 temp &= ~SBI_SSCCTL_DISABLE;
2903 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2904
2905 /* Wait for initialization time */
2906 udelay(24);
2907
2908 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2909
2910 mutex_unlock(&dev_priv->dpio_lock);
2911 }
2912
2913 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2914 enum pipe pch_transcoder)
2915 {
2916 struct drm_device *dev = crtc->base.dev;
2917 struct drm_i915_private *dev_priv = dev->dev_private;
2918 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2919
2920 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2921 I915_READ(HTOTAL(cpu_transcoder)));
2922 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2923 I915_READ(HBLANK(cpu_transcoder)));
2924 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2925 I915_READ(HSYNC(cpu_transcoder)));
2926
2927 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2928 I915_READ(VTOTAL(cpu_transcoder)));
2929 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2930 I915_READ(VBLANK(cpu_transcoder)));
2931 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2932 I915_READ(VSYNC(cpu_transcoder)));
2933 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2934 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2935 }
2936
2937 /*
2938 * Enable PCH resources required for PCH ports:
2939 * - PCH PLLs
2940 * - FDI training & RX/TX
2941 * - update transcoder timings
2942 * - DP transcoding bits
2943 * - transcoder
2944 */
2945 static void ironlake_pch_enable(struct drm_crtc *crtc)
2946 {
2947 struct drm_device *dev = crtc->dev;
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2950 int pipe = intel_crtc->pipe;
2951 u32 reg, temp;
2952
2953 assert_pch_transcoder_disabled(dev_priv, pipe);
2954
2955 /* Write the TU size bits before fdi link training, so that error
2956 * detection works. */
2957 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2958 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2959
2960 /* For PCH output, training FDI link */
2961 dev_priv->display.fdi_link_train(crtc);
2962
2963 /* XXX: pch pll's can be enabled any time before we enable the PCH
2964 * transcoder, and we actually should do this to not upset any PCH
2965 * transcoder that already use the clock when we share it.
2966 *
2967 * Note that enable_shared_dpll tries to do the right thing, but
2968 * get_shared_dpll unconditionally resets the pll - we need that to have
2969 * the right LVDS enable sequence. */
2970 ironlake_enable_shared_dpll(intel_crtc);
2971
2972 if (HAS_PCH_CPT(dev)) {
2973 u32 sel;
2974
2975 temp = I915_READ(PCH_DPLL_SEL);
2976 temp |= TRANS_DPLL_ENABLE(pipe);
2977 sel = TRANS_DPLLB_SEL(pipe);
2978 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
2979 temp |= sel;
2980 else
2981 temp &= ~sel;
2982 I915_WRITE(PCH_DPLL_SEL, temp);
2983 }
2984
2985 /* set transcoder timing, panel must allow it */
2986 assert_panel_unlocked(dev_priv, pipe);
2987 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2988
2989 intel_fdi_normal_train(crtc);
2990
2991 /* For PCH DP, enable TRANS_DP_CTL */
2992 if (HAS_PCH_CPT(dev) &&
2993 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2994 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2995 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2996 reg = TRANS_DP_CTL(pipe);
2997 temp = I915_READ(reg);
2998 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2999 TRANS_DP_SYNC_MASK |
3000 TRANS_DP_BPC_MASK);
3001 temp |= (TRANS_DP_OUTPUT_ENABLE |
3002 TRANS_DP_ENH_FRAMING);
3003 temp |= bpc << 9; /* same format but at 11:9 */
3004
3005 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3006 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3007 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3008 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3009
3010 switch (intel_trans_dp_port_sel(crtc)) {
3011 case PCH_DP_B:
3012 temp |= TRANS_DP_PORT_SEL_B;
3013 break;
3014 case PCH_DP_C:
3015 temp |= TRANS_DP_PORT_SEL_C;
3016 break;
3017 case PCH_DP_D:
3018 temp |= TRANS_DP_PORT_SEL_D;
3019 break;
3020 default:
3021 BUG();
3022 }
3023
3024 I915_WRITE(reg, temp);
3025 }
3026
3027 ironlake_enable_pch_transcoder(dev_priv, pipe);
3028 }
3029
3030 static void lpt_pch_enable(struct drm_crtc *crtc)
3031 {
3032 struct drm_device *dev = crtc->dev;
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3035 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3036
3037 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3038
3039 lpt_program_iclkip(crtc);
3040
3041 /* Set transcoder timing. */
3042 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3043
3044 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3045 }
3046
3047 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3048 {
3049 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3050
3051 if (pll == NULL)
3052 return;
3053
3054 if (pll->refcount == 0) {
3055 WARN(1, "bad %s refcount\n", pll->name);
3056 return;
3057 }
3058
3059 if (--pll->refcount == 0) {
3060 WARN_ON(pll->on);
3061 WARN_ON(pll->active);
3062 }
3063
3064 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3065 }
3066
3067 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3068 {
3069 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3070 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3071 enum intel_dpll_id i;
3072
3073 if (pll) {
3074 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3075 crtc->base.base.id, pll->name);
3076 intel_put_shared_dpll(crtc);
3077 }
3078
3079 if (HAS_PCH_IBX(dev_priv->dev)) {
3080 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3081 i = crtc->pipe;
3082 pll = &dev_priv->shared_dplls[i];
3083
3084 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3085 crtc->base.base.id, pll->name);
3086
3087 goto found;
3088 }
3089
3090 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3091 pll = &dev_priv->shared_dplls[i];
3092
3093 /* Only want to check enabled timings first */
3094 if (pll->refcount == 0)
3095 continue;
3096
3097 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3098 sizeof(pll->hw_state)) == 0) {
3099 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3100 crtc->base.base.id,
3101 pll->name, pll->refcount, pll->active);
3102
3103 goto found;
3104 }
3105 }
3106
3107 /* Ok no matching timings, maybe there's a free one? */
3108 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3109 pll = &dev_priv->shared_dplls[i];
3110 if (pll->refcount == 0) {
3111 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3112 crtc->base.base.id, pll->name);
3113 goto found;
3114 }
3115 }
3116
3117 return NULL;
3118
3119 found:
3120 crtc->config.shared_dpll = i;
3121 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3122 pipe_name(crtc->pipe));
3123
3124 if (pll->active == 0) {
3125 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3126 sizeof(pll->hw_state));
3127
3128 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3129 WARN_ON(pll->on);
3130 assert_shared_dpll_disabled(dev_priv, pll);
3131
3132 pll->mode_set(dev_priv, pll);
3133 }
3134 pll->refcount++;
3135
3136 return pll;
3137 }
3138
3139 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3140 {
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3142 int dslreg = PIPEDSL(pipe);
3143 u32 temp;
3144
3145 temp = I915_READ(dslreg);
3146 udelay(500);
3147 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3148 if (wait_for(I915_READ(dslreg) != temp, 5))
3149 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3150 }
3151 }
3152
3153 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3154 {
3155 struct drm_device *dev = crtc->base.dev;
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157 int pipe = crtc->pipe;
3158
3159 if (crtc->config.pch_pfit.size) {
3160 /* Force use of hard-coded filter coefficients
3161 * as some pre-programmed values are broken,
3162 * e.g. x201.
3163 */
3164 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3165 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3166 PF_PIPE_SEL_IVB(pipe));
3167 else
3168 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3169 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3170 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3171 }
3172 }
3173
3174 static void intel_enable_planes(struct drm_crtc *crtc)
3175 {
3176 struct drm_device *dev = crtc->dev;
3177 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3178 struct intel_plane *intel_plane;
3179
3180 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3181 if (intel_plane->pipe == pipe)
3182 intel_plane_restore(&intel_plane->base);
3183 }
3184
3185 static void intel_disable_planes(struct drm_crtc *crtc)
3186 {
3187 struct drm_device *dev = crtc->dev;
3188 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3189 struct intel_plane *intel_plane;
3190
3191 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3192 if (intel_plane->pipe == pipe)
3193 intel_plane_disable(&intel_plane->base);
3194 }
3195
3196 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3197 {
3198 struct drm_device *dev = crtc->dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201 struct intel_encoder *encoder;
3202 int pipe = intel_crtc->pipe;
3203 int plane = intel_crtc->plane;
3204
3205 WARN_ON(!crtc->enabled);
3206
3207 if (intel_crtc->active)
3208 return;
3209
3210 intel_crtc->active = true;
3211
3212 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3213 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3214
3215 intel_update_watermarks(dev);
3216
3217 for_each_encoder_on_crtc(dev, crtc, encoder)
3218 if (encoder->pre_enable)
3219 encoder->pre_enable(encoder);
3220
3221 if (intel_crtc->config.has_pch_encoder) {
3222 /* Note: FDI PLL enabling _must_ be done before we enable the
3223 * cpu pipes, hence this is separate from all the other fdi/pch
3224 * enabling. */
3225 ironlake_fdi_pll_enable(intel_crtc);
3226 } else {
3227 assert_fdi_tx_disabled(dev_priv, pipe);
3228 assert_fdi_rx_disabled(dev_priv, pipe);
3229 }
3230
3231 ironlake_pfit_enable(intel_crtc);
3232
3233 /*
3234 * On ILK+ LUT must be loaded before the pipe is running but with
3235 * clocks enabled
3236 */
3237 intel_crtc_load_lut(crtc);
3238
3239 intel_enable_pipe(dev_priv, pipe,
3240 intel_crtc->config.has_pch_encoder);
3241 intel_enable_plane(dev_priv, plane, pipe);
3242 intel_enable_planes(crtc);
3243 intel_crtc_update_cursor(crtc, true);
3244
3245 if (intel_crtc->config.has_pch_encoder)
3246 ironlake_pch_enable(crtc);
3247
3248 mutex_lock(&dev->struct_mutex);
3249 intel_update_fbc(dev);
3250 mutex_unlock(&dev->struct_mutex);
3251
3252 for_each_encoder_on_crtc(dev, crtc, encoder)
3253 encoder->enable(encoder);
3254
3255 if (HAS_PCH_CPT(dev))
3256 cpt_verify_modeset(dev, intel_crtc->pipe);
3257
3258 /*
3259 * There seems to be a race in PCH platform hw (at least on some
3260 * outputs) where an enabled pipe still completes any pageflip right
3261 * away (as if the pipe is off) instead of waiting for vblank. As soon
3262 * as the first vblank happend, everything works as expected. Hence just
3263 * wait for one vblank before returning to avoid strange things
3264 * happening.
3265 */
3266 intel_wait_for_vblank(dev, intel_crtc->pipe);
3267 }
3268
3269 /* IPS only exists on ULT machines and is tied to pipe A. */
3270 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3271 {
3272 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3273 }
3274
3275 static void hsw_enable_ips(struct intel_crtc *crtc)
3276 {
3277 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3278
3279 if (!crtc->config.ips_enabled)
3280 return;
3281
3282 /* We can only enable IPS after we enable a plane and wait for a vblank.
3283 * We guarantee that the plane is enabled by calling intel_enable_ips
3284 * only after intel_enable_plane. And intel_enable_plane already waits
3285 * for a vblank, so all we need to do here is to enable the IPS bit. */
3286 assert_plane_enabled(dev_priv, crtc->plane);
3287 I915_WRITE(IPS_CTL, IPS_ENABLE);
3288 }
3289
3290 static void hsw_disable_ips(struct intel_crtc *crtc)
3291 {
3292 struct drm_device *dev = crtc->base.dev;
3293 struct drm_i915_private *dev_priv = dev->dev_private;
3294
3295 if (!crtc->config.ips_enabled)
3296 return;
3297
3298 assert_plane_enabled(dev_priv, crtc->plane);
3299 I915_WRITE(IPS_CTL, 0);
3300
3301 /* We need to wait for a vblank before we can disable the plane. */
3302 intel_wait_for_vblank(dev, crtc->pipe);
3303 }
3304
3305 static void haswell_crtc_enable(struct drm_crtc *crtc)
3306 {
3307 struct drm_device *dev = crtc->dev;
3308 struct drm_i915_private *dev_priv = dev->dev_private;
3309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3310 struct intel_encoder *encoder;
3311 int pipe = intel_crtc->pipe;
3312 int plane = intel_crtc->plane;
3313
3314 WARN_ON(!crtc->enabled);
3315
3316 if (intel_crtc->active)
3317 return;
3318
3319 intel_crtc->active = true;
3320
3321 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3322 if (intel_crtc->config.has_pch_encoder)
3323 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3324
3325 intel_update_watermarks(dev);
3326
3327 if (intel_crtc->config.has_pch_encoder)
3328 dev_priv->display.fdi_link_train(crtc);
3329
3330 for_each_encoder_on_crtc(dev, crtc, encoder)
3331 if (encoder->pre_enable)
3332 encoder->pre_enable(encoder);
3333
3334 intel_ddi_enable_pipe_clock(intel_crtc);
3335
3336 ironlake_pfit_enable(intel_crtc);
3337
3338 /*
3339 * On ILK+ LUT must be loaded before the pipe is running but with
3340 * clocks enabled
3341 */
3342 intel_crtc_load_lut(crtc);
3343
3344 intel_ddi_set_pipe_settings(crtc);
3345 intel_ddi_enable_transcoder_func(crtc);
3346
3347 intel_enable_pipe(dev_priv, pipe,
3348 intel_crtc->config.has_pch_encoder);
3349 intel_enable_plane(dev_priv, plane, pipe);
3350 intel_enable_planes(crtc);
3351 intel_crtc_update_cursor(crtc, true);
3352
3353 hsw_enable_ips(intel_crtc);
3354
3355 if (intel_crtc->config.has_pch_encoder)
3356 lpt_pch_enable(crtc);
3357
3358 mutex_lock(&dev->struct_mutex);
3359 intel_update_fbc(dev);
3360 mutex_unlock(&dev->struct_mutex);
3361
3362 for_each_encoder_on_crtc(dev, crtc, encoder)
3363 encoder->enable(encoder);
3364
3365 /*
3366 * There seems to be a race in PCH platform hw (at least on some
3367 * outputs) where an enabled pipe still completes any pageflip right
3368 * away (as if the pipe is off) instead of waiting for vblank. As soon
3369 * as the first vblank happend, everything works as expected. Hence just
3370 * wait for one vblank before returning to avoid strange things
3371 * happening.
3372 */
3373 intel_wait_for_vblank(dev, intel_crtc->pipe);
3374 }
3375
3376 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3377 {
3378 struct drm_device *dev = crtc->base.dev;
3379 struct drm_i915_private *dev_priv = dev->dev_private;
3380 int pipe = crtc->pipe;
3381
3382 /* To avoid upsetting the power well on haswell only disable the pfit if
3383 * it's in use. The hw state code will make sure we get this right. */
3384 if (crtc->config.pch_pfit.size) {
3385 I915_WRITE(PF_CTL(pipe), 0);
3386 I915_WRITE(PF_WIN_POS(pipe), 0);
3387 I915_WRITE(PF_WIN_SZ(pipe), 0);
3388 }
3389 }
3390
3391 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3392 {
3393 struct drm_device *dev = crtc->dev;
3394 struct drm_i915_private *dev_priv = dev->dev_private;
3395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396 struct intel_encoder *encoder;
3397 int pipe = intel_crtc->pipe;
3398 int plane = intel_crtc->plane;
3399 u32 reg, temp;
3400
3401
3402 if (!intel_crtc->active)
3403 return;
3404
3405 for_each_encoder_on_crtc(dev, crtc, encoder)
3406 encoder->disable(encoder);
3407
3408 intel_crtc_wait_for_pending_flips(crtc);
3409 drm_vblank_off(dev, pipe);
3410
3411 if (dev_priv->fbc.plane == plane)
3412 intel_disable_fbc(dev);
3413
3414 intel_crtc_update_cursor(crtc, false);
3415 intel_disable_planes(crtc);
3416 intel_disable_plane(dev_priv, plane, pipe);
3417
3418 if (intel_crtc->config.has_pch_encoder)
3419 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3420
3421 intel_disable_pipe(dev_priv, pipe);
3422
3423 ironlake_pfit_disable(intel_crtc);
3424
3425 for_each_encoder_on_crtc(dev, crtc, encoder)
3426 if (encoder->post_disable)
3427 encoder->post_disable(encoder);
3428
3429 if (intel_crtc->config.has_pch_encoder) {
3430 ironlake_fdi_disable(crtc);
3431
3432 ironlake_disable_pch_transcoder(dev_priv, pipe);
3433 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3434
3435 if (HAS_PCH_CPT(dev)) {
3436 /* disable TRANS_DP_CTL */
3437 reg = TRANS_DP_CTL(pipe);
3438 temp = I915_READ(reg);
3439 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3440 TRANS_DP_PORT_SEL_MASK);
3441 temp |= TRANS_DP_PORT_SEL_NONE;
3442 I915_WRITE(reg, temp);
3443
3444 /* disable DPLL_SEL */
3445 temp = I915_READ(PCH_DPLL_SEL);
3446 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3447 I915_WRITE(PCH_DPLL_SEL, temp);
3448 }
3449
3450 /* disable PCH DPLL */
3451 intel_disable_shared_dpll(intel_crtc);
3452
3453 ironlake_fdi_pll_disable(intel_crtc);
3454 }
3455
3456 intel_crtc->active = false;
3457 intel_update_watermarks(dev);
3458
3459 mutex_lock(&dev->struct_mutex);
3460 intel_update_fbc(dev);
3461 mutex_unlock(&dev->struct_mutex);
3462 }
3463
3464 static void haswell_crtc_disable(struct drm_crtc *crtc)
3465 {
3466 struct drm_device *dev = crtc->dev;
3467 struct drm_i915_private *dev_priv = dev->dev_private;
3468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3469 struct intel_encoder *encoder;
3470 int pipe = intel_crtc->pipe;
3471 int plane = intel_crtc->plane;
3472 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3473
3474 if (!intel_crtc->active)
3475 return;
3476
3477 for_each_encoder_on_crtc(dev, crtc, encoder)
3478 encoder->disable(encoder);
3479
3480 intel_crtc_wait_for_pending_flips(crtc);
3481 drm_vblank_off(dev, pipe);
3482
3483 /* FBC must be disabled before disabling the plane on HSW. */
3484 if (dev_priv->fbc.plane == plane)
3485 intel_disable_fbc(dev);
3486
3487 hsw_disable_ips(intel_crtc);
3488
3489 intel_crtc_update_cursor(crtc, false);
3490 intel_disable_planes(crtc);
3491 intel_disable_plane(dev_priv, plane, pipe);
3492
3493 if (intel_crtc->config.has_pch_encoder)
3494 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3495 intel_disable_pipe(dev_priv, pipe);
3496
3497 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3498
3499 ironlake_pfit_disable(intel_crtc);
3500
3501 intel_ddi_disable_pipe_clock(intel_crtc);
3502
3503 for_each_encoder_on_crtc(dev, crtc, encoder)
3504 if (encoder->post_disable)
3505 encoder->post_disable(encoder);
3506
3507 if (intel_crtc->config.has_pch_encoder) {
3508 lpt_disable_pch_transcoder(dev_priv);
3509 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3510 intel_ddi_fdi_disable(crtc);
3511 }
3512
3513 intel_crtc->active = false;
3514 intel_update_watermarks(dev);
3515
3516 mutex_lock(&dev->struct_mutex);
3517 intel_update_fbc(dev);
3518 mutex_unlock(&dev->struct_mutex);
3519 }
3520
3521 static void ironlake_crtc_off(struct drm_crtc *crtc)
3522 {
3523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3524 intel_put_shared_dpll(intel_crtc);
3525 }
3526
3527 static void haswell_crtc_off(struct drm_crtc *crtc)
3528 {
3529 intel_ddi_put_crtc_pll(crtc);
3530 }
3531
3532 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3533 {
3534 if (!enable && intel_crtc->overlay) {
3535 struct drm_device *dev = intel_crtc->base.dev;
3536 struct drm_i915_private *dev_priv = dev->dev_private;
3537
3538 mutex_lock(&dev->struct_mutex);
3539 dev_priv->mm.interruptible = false;
3540 (void) intel_overlay_switch_off(intel_crtc->overlay);
3541 dev_priv->mm.interruptible = true;
3542 mutex_unlock(&dev->struct_mutex);
3543 }
3544
3545 /* Let userspace switch the overlay on again. In most cases userspace
3546 * has to recompute where to put it anyway.
3547 */
3548 }
3549
3550 /**
3551 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3552 * cursor plane briefly if not already running after enabling the display
3553 * plane.
3554 * This workaround avoids occasional blank screens when self refresh is
3555 * enabled.
3556 */
3557 static void
3558 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3559 {
3560 u32 cntl = I915_READ(CURCNTR(pipe));
3561
3562 if ((cntl & CURSOR_MODE) == 0) {
3563 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3564
3565 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3566 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3567 intel_wait_for_vblank(dev_priv->dev, pipe);
3568 I915_WRITE(CURCNTR(pipe), cntl);
3569 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3570 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3571 }
3572 }
3573
3574 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3575 {
3576 struct drm_device *dev = crtc->base.dev;
3577 struct drm_i915_private *dev_priv = dev->dev_private;
3578 struct intel_crtc_config *pipe_config = &crtc->config;
3579
3580 if (!crtc->config.gmch_pfit.control)
3581 return;
3582
3583 /*
3584 * The panel fitter should only be adjusted whilst the pipe is disabled,
3585 * according to register description and PRM.
3586 */
3587 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3588 assert_pipe_disabled(dev_priv, crtc->pipe);
3589
3590 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3591 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3592
3593 /* Border color in case we don't scale up to the full screen. Black by
3594 * default, change to something else for debugging. */
3595 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3596 }
3597
3598 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3599 {
3600 struct drm_device *dev = crtc->dev;
3601 struct drm_i915_private *dev_priv = dev->dev_private;
3602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3603 struct intel_encoder *encoder;
3604 int pipe = intel_crtc->pipe;
3605 int plane = intel_crtc->plane;
3606
3607 WARN_ON(!crtc->enabled);
3608
3609 if (intel_crtc->active)
3610 return;
3611
3612 intel_crtc->active = true;
3613 intel_update_watermarks(dev);
3614
3615 mutex_lock(&dev_priv->dpio_lock);
3616
3617 for_each_encoder_on_crtc(dev, crtc, encoder)
3618 if (encoder->pre_pll_enable)
3619 encoder->pre_pll_enable(encoder);
3620
3621 vlv_enable_pll(dev_priv, pipe);
3622
3623 for_each_encoder_on_crtc(dev, crtc, encoder)
3624 if (encoder->pre_enable)
3625 encoder->pre_enable(encoder);
3626
3627 /* VLV wants encoder enabling _before_ the pipe is up. */
3628 for_each_encoder_on_crtc(dev, crtc, encoder)
3629 encoder->enable(encoder);
3630
3631 i9xx_pfit_enable(intel_crtc);
3632
3633 intel_crtc_load_lut(crtc);
3634
3635 intel_enable_pipe(dev_priv, pipe, false);
3636 intel_enable_plane(dev_priv, plane, pipe);
3637 intel_enable_planes(crtc);
3638 intel_crtc_update_cursor(crtc, true);
3639
3640 intel_update_fbc(dev);
3641
3642 mutex_unlock(&dev_priv->dpio_lock);
3643 }
3644
3645 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3646 {
3647 struct drm_device *dev = crtc->dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650 struct intel_encoder *encoder;
3651 int pipe = intel_crtc->pipe;
3652 int plane = intel_crtc->plane;
3653
3654 WARN_ON(!crtc->enabled);
3655
3656 if (intel_crtc->active)
3657 return;
3658
3659 intel_crtc->active = true;
3660 intel_update_watermarks(dev);
3661
3662 for_each_encoder_on_crtc(dev, crtc, encoder)
3663 if (encoder->pre_enable)
3664 encoder->pre_enable(encoder);
3665
3666 i9xx_enable_pll(intel_crtc);
3667
3668 i9xx_pfit_enable(intel_crtc);
3669
3670 intel_crtc_load_lut(crtc);
3671
3672 intel_enable_pipe(dev_priv, pipe, false);
3673 intel_enable_plane(dev_priv, plane, pipe);
3674 intel_enable_planes(crtc);
3675 /* The fixup needs to happen before cursor is enabled */
3676 if (IS_G4X(dev))
3677 g4x_fixup_plane(dev_priv, pipe);
3678 intel_crtc_update_cursor(crtc, true);
3679
3680 /* Give the overlay scaler a chance to enable if it's on this pipe */
3681 intel_crtc_dpms_overlay(intel_crtc, true);
3682
3683 intel_update_fbc(dev);
3684
3685 for_each_encoder_on_crtc(dev, crtc, encoder)
3686 encoder->enable(encoder);
3687 }
3688
3689 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3690 {
3691 struct drm_device *dev = crtc->base.dev;
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693
3694 if (!crtc->config.gmch_pfit.control)
3695 return;
3696
3697 assert_pipe_disabled(dev_priv, crtc->pipe);
3698
3699 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3700 I915_READ(PFIT_CONTROL));
3701 I915_WRITE(PFIT_CONTROL, 0);
3702 }
3703
3704 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3705 {
3706 struct drm_device *dev = crtc->dev;
3707 struct drm_i915_private *dev_priv = dev->dev_private;
3708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3709 struct intel_encoder *encoder;
3710 int pipe = intel_crtc->pipe;
3711 int plane = intel_crtc->plane;
3712
3713 if (!intel_crtc->active)
3714 return;
3715
3716 for_each_encoder_on_crtc(dev, crtc, encoder)
3717 encoder->disable(encoder);
3718
3719 /* Give the overlay scaler a chance to disable if it's on this pipe */
3720 intel_crtc_wait_for_pending_flips(crtc);
3721 drm_vblank_off(dev, pipe);
3722
3723 if (dev_priv->fbc.plane == plane)
3724 intel_disable_fbc(dev);
3725
3726 intel_crtc_dpms_overlay(intel_crtc, false);
3727 intel_crtc_update_cursor(crtc, false);
3728 intel_disable_planes(crtc);
3729 intel_disable_plane(dev_priv, plane, pipe);
3730
3731 intel_disable_pipe(dev_priv, pipe);
3732
3733 i9xx_pfit_disable(intel_crtc);
3734
3735 for_each_encoder_on_crtc(dev, crtc, encoder)
3736 if (encoder->post_disable)
3737 encoder->post_disable(encoder);
3738
3739 intel_disable_pll(dev_priv, pipe);
3740
3741 intel_crtc->active = false;
3742 intel_update_fbc(dev);
3743 intel_update_watermarks(dev);
3744 }
3745
3746 static void i9xx_crtc_off(struct drm_crtc *crtc)
3747 {
3748 }
3749
3750 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3751 bool enabled)
3752 {
3753 struct drm_device *dev = crtc->dev;
3754 struct drm_i915_master_private *master_priv;
3755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3756 int pipe = intel_crtc->pipe;
3757
3758 if (!dev->primary->master)
3759 return;
3760
3761 master_priv = dev->primary->master->driver_priv;
3762 if (!master_priv->sarea_priv)
3763 return;
3764
3765 switch (pipe) {
3766 case 0:
3767 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3768 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3769 break;
3770 case 1:
3771 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3772 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3773 break;
3774 default:
3775 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3776 break;
3777 }
3778 }
3779
3780 /**
3781 * Sets the power management mode of the pipe and plane.
3782 */
3783 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3784 {
3785 struct drm_device *dev = crtc->dev;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 struct intel_encoder *intel_encoder;
3788 bool enable = false;
3789
3790 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3791 enable |= intel_encoder->connectors_active;
3792
3793 if (enable)
3794 dev_priv->display.crtc_enable(crtc);
3795 else
3796 dev_priv->display.crtc_disable(crtc);
3797
3798 intel_crtc_update_sarea(crtc, enable);
3799 }
3800
3801 static void intel_crtc_disable(struct drm_crtc *crtc)
3802 {
3803 struct drm_device *dev = crtc->dev;
3804 struct drm_connector *connector;
3805 struct drm_i915_private *dev_priv = dev->dev_private;
3806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3807
3808 /* crtc should still be enabled when we disable it. */
3809 WARN_ON(!crtc->enabled);
3810
3811 dev_priv->display.crtc_disable(crtc);
3812 intel_crtc->eld_vld = false;
3813 intel_crtc_update_sarea(crtc, false);
3814 dev_priv->display.off(crtc);
3815
3816 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3817 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3818
3819 if (crtc->fb) {
3820 mutex_lock(&dev->struct_mutex);
3821 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3822 mutex_unlock(&dev->struct_mutex);
3823 crtc->fb = NULL;
3824 }
3825
3826 /* Update computed state. */
3827 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3828 if (!connector->encoder || !connector->encoder->crtc)
3829 continue;
3830
3831 if (connector->encoder->crtc != crtc)
3832 continue;
3833
3834 connector->dpms = DRM_MODE_DPMS_OFF;
3835 to_intel_encoder(connector->encoder)->connectors_active = false;
3836 }
3837 }
3838
3839 void intel_modeset_disable(struct drm_device *dev)
3840 {
3841 struct drm_crtc *crtc;
3842
3843 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3844 if (crtc->enabled)
3845 intel_crtc_disable(crtc);
3846 }
3847 }
3848
3849 void intel_encoder_destroy(struct drm_encoder *encoder)
3850 {
3851 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3852
3853 drm_encoder_cleanup(encoder);
3854 kfree(intel_encoder);
3855 }
3856
3857 /* Simple dpms helper for encodres with just one connector, no cloning and only
3858 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3859 * state of the entire output pipe. */
3860 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3861 {
3862 if (mode == DRM_MODE_DPMS_ON) {
3863 encoder->connectors_active = true;
3864
3865 intel_crtc_update_dpms(encoder->base.crtc);
3866 } else {
3867 encoder->connectors_active = false;
3868
3869 intel_crtc_update_dpms(encoder->base.crtc);
3870 }
3871 }
3872
3873 /* Cross check the actual hw state with our own modeset state tracking (and it's
3874 * internal consistency). */
3875 static void intel_connector_check_state(struct intel_connector *connector)
3876 {
3877 if (connector->get_hw_state(connector)) {
3878 struct intel_encoder *encoder = connector->encoder;
3879 struct drm_crtc *crtc;
3880 bool encoder_enabled;
3881 enum pipe pipe;
3882
3883 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3884 connector->base.base.id,
3885 drm_get_connector_name(&connector->base));
3886
3887 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3888 "wrong connector dpms state\n");
3889 WARN(connector->base.encoder != &encoder->base,
3890 "active connector not linked to encoder\n");
3891 WARN(!encoder->connectors_active,
3892 "encoder->connectors_active not set\n");
3893
3894 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3895 WARN(!encoder_enabled, "encoder not enabled\n");
3896 if (WARN_ON(!encoder->base.crtc))
3897 return;
3898
3899 crtc = encoder->base.crtc;
3900
3901 WARN(!crtc->enabled, "crtc not enabled\n");
3902 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3903 WARN(pipe != to_intel_crtc(crtc)->pipe,
3904 "encoder active on the wrong pipe\n");
3905 }
3906 }
3907
3908 /* Even simpler default implementation, if there's really no special case to
3909 * consider. */
3910 void intel_connector_dpms(struct drm_connector *connector, int mode)
3911 {
3912 struct intel_encoder *encoder = intel_attached_encoder(connector);
3913
3914 /* All the simple cases only support two dpms states. */
3915 if (mode != DRM_MODE_DPMS_ON)
3916 mode = DRM_MODE_DPMS_OFF;
3917
3918 if (mode == connector->dpms)
3919 return;
3920
3921 connector->dpms = mode;
3922
3923 /* Only need to change hw state when actually enabled */
3924 if (encoder->base.crtc)
3925 intel_encoder_dpms(encoder, mode);
3926 else
3927 WARN_ON(encoder->connectors_active != false);
3928
3929 intel_modeset_check_state(connector->dev);
3930 }
3931
3932 /* Simple connector->get_hw_state implementation for encoders that support only
3933 * one connector and no cloning and hence the encoder state determines the state
3934 * of the connector. */
3935 bool intel_connector_get_hw_state(struct intel_connector *connector)
3936 {
3937 enum pipe pipe = 0;
3938 struct intel_encoder *encoder = connector->encoder;
3939
3940 return encoder->get_hw_state(encoder, &pipe);
3941 }
3942
3943 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3944 struct intel_crtc_config *pipe_config)
3945 {
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947 struct intel_crtc *pipe_B_crtc =
3948 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3949
3950 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3951 pipe_name(pipe), pipe_config->fdi_lanes);
3952 if (pipe_config->fdi_lanes > 4) {
3953 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3954 pipe_name(pipe), pipe_config->fdi_lanes);
3955 return false;
3956 }
3957
3958 if (IS_HASWELL(dev)) {
3959 if (pipe_config->fdi_lanes > 2) {
3960 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3961 pipe_config->fdi_lanes);
3962 return false;
3963 } else {
3964 return true;
3965 }
3966 }
3967
3968 if (INTEL_INFO(dev)->num_pipes == 2)
3969 return true;
3970
3971 /* Ivybridge 3 pipe is really complicated */
3972 switch (pipe) {
3973 case PIPE_A:
3974 return true;
3975 case PIPE_B:
3976 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3977 pipe_config->fdi_lanes > 2) {
3978 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3979 pipe_name(pipe), pipe_config->fdi_lanes);
3980 return false;
3981 }
3982 return true;
3983 case PIPE_C:
3984 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
3985 pipe_B_crtc->config.fdi_lanes <= 2) {
3986 if (pipe_config->fdi_lanes > 2) {
3987 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3988 pipe_name(pipe), pipe_config->fdi_lanes);
3989 return false;
3990 }
3991 } else {
3992 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
3993 return false;
3994 }
3995 return true;
3996 default:
3997 BUG();
3998 }
3999 }
4000
4001 #define RETRY 1
4002 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4003 struct intel_crtc_config *pipe_config)
4004 {
4005 struct drm_device *dev = intel_crtc->base.dev;
4006 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4007 int lane, link_bw, fdi_dotclock;
4008 bool setup_ok, needs_recompute = false;
4009
4010 retry:
4011 /* FDI is a binary signal running at ~2.7GHz, encoding
4012 * each output octet as 10 bits. The actual frequency
4013 * is stored as a divider into a 100MHz clock, and the
4014 * mode pixel clock is stored in units of 1KHz.
4015 * Hence the bw of each lane in terms of the mode signal
4016 * is:
4017 */
4018 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4019
4020 fdi_dotclock = adjusted_mode->clock;
4021 fdi_dotclock /= pipe_config->pixel_multiplier;
4022
4023 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4024 pipe_config->pipe_bpp);
4025
4026 pipe_config->fdi_lanes = lane;
4027
4028 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4029 link_bw, &pipe_config->fdi_m_n);
4030
4031 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4032 intel_crtc->pipe, pipe_config);
4033 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4034 pipe_config->pipe_bpp -= 2*3;
4035 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4036 pipe_config->pipe_bpp);
4037 needs_recompute = true;
4038 pipe_config->bw_constrained = true;
4039
4040 goto retry;
4041 }
4042
4043 if (needs_recompute)
4044 return RETRY;
4045
4046 return setup_ok ? 0 : -EINVAL;
4047 }
4048
4049 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4050 struct intel_crtc_config *pipe_config)
4051 {
4052 pipe_config->ips_enabled = i915_enable_ips &&
4053 hsw_crtc_supports_ips(crtc) &&
4054 pipe_config->pipe_bpp == 24;
4055 }
4056
4057 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4058 struct intel_crtc_config *pipe_config)
4059 {
4060 struct drm_device *dev = crtc->base.dev;
4061 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4062
4063 if (HAS_PCH_SPLIT(dev)) {
4064 /* FDI link clock is fixed at 2.7G */
4065 if (pipe_config->requested_mode.clock * 3
4066 > IRONLAKE_FDI_FREQ * 4)
4067 return -EINVAL;
4068 }
4069
4070 /* All interlaced capable intel hw wants timings in frames. Note though
4071 * that intel_lvds_mode_fixup does some funny tricks with the crtc
4072 * timings, so we need to be careful not to clobber these.*/
4073 if (!pipe_config->timings_set)
4074 drm_mode_set_crtcinfo(adjusted_mode, 0);
4075
4076 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4077 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4078 */
4079 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4080 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4081 return -EINVAL;
4082
4083 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4084 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4085 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4086 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4087 * for lvds. */
4088 pipe_config->pipe_bpp = 8*3;
4089 }
4090
4091 if (HAS_IPS(dev))
4092 hsw_compute_ips_config(crtc, pipe_config);
4093
4094 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4095 * clock survives for now. */
4096 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4097 pipe_config->shared_dpll = crtc->config.shared_dpll;
4098
4099 if (pipe_config->has_pch_encoder)
4100 return ironlake_fdi_compute_config(crtc, pipe_config);
4101
4102 return 0;
4103 }
4104
4105 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4106 {
4107 return 400000; /* FIXME */
4108 }
4109
4110 static int i945_get_display_clock_speed(struct drm_device *dev)
4111 {
4112 return 400000;
4113 }
4114
4115 static int i915_get_display_clock_speed(struct drm_device *dev)
4116 {
4117 return 333000;
4118 }
4119
4120 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4121 {
4122 return 200000;
4123 }
4124
4125 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4126 {
4127 u16 gcfgc = 0;
4128
4129 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4130
4131 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4132 return 133000;
4133 else {
4134 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4135 case GC_DISPLAY_CLOCK_333_MHZ:
4136 return 333000;
4137 default:
4138 case GC_DISPLAY_CLOCK_190_200_MHZ:
4139 return 190000;
4140 }
4141 }
4142 }
4143
4144 static int i865_get_display_clock_speed(struct drm_device *dev)
4145 {
4146 return 266000;
4147 }
4148
4149 static int i855_get_display_clock_speed(struct drm_device *dev)
4150 {
4151 u16 hpllcc = 0;
4152 /* Assume that the hardware is in the high speed state. This
4153 * should be the default.
4154 */
4155 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4156 case GC_CLOCK_133_200:
4157 case GC_CLOCK_100_200:
4158 return 200000;
4159 case GC_CLOCK_166_250:
4160 return 250000;
4161 case GC_CLOCK_100_133:
4162 return 133000;
4163 }
4164
4165 /* Shouldn't happen */
4166 return 0;
4167 }
4168
4169 static int i830_get_display_clock_speed(struct drm_device *dev)
4170 {
4171 return 133000;
4172 }
4173
4174 static void
4175 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4176 {
4177 while (*num > DATA_LINK_M_N_MASK ||
4178 *den > DATA_LINK_M_N_MASK) {
4179 *num >>= 1;
4180 *den >>= 1;
4181 }
4182 }
4183
4184 static void compute_m_n(unsigned int m, unsigned int n,
4185 uint32_t *ret_m, uint32_t *ret_n)
4186 {
4187 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4188 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4189 intel_reduce_m_n_ratio(ret_m, ret_n);
4190 }
4191
4192 void
4193 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4194 int pixel_clock, int link_clock,
4195 struct intel_link_m_n *m_n)
4196 {
4197 m_n->tu = 64;
4198
4199 compute_m_n(bits_per_pixel * pixel_clock,
4200 link_clock * nlanes * 8,
4201 &m_n->gmch_m, &m_n->gmch_n);
4202
4203 compute_m_n(pixel_clock, link_clock,
4204 &m_n->link_m, &m_n->link_n);
4205 }
4206
4207 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4208 {
4209 if (i915_panel_use_ssc >= 0)
4210 return i915_panel_use_ssc != 0;
4211 return dev_priv->vbt.lvds_use_ssc
4212 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4213 }
4214
4215 static int vlv_get_refclk(struct drm_crtc *crtc)
4216 {
4217 struct drm_device *dev = crtc->dev;
4218 struct drm_i915_private *dev_priv = dev->dev_private;
4219 int refclk = 27000; /* for DP & HDMI */
4220
4221 return 100000; /* only one validated so far */
4222
4223 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4224 refclk = 96000;
4225 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4226 if (intel_panel_use_ssc(dev_priv))
4227 refclk = 100000;
4228 else
4229 refclk = 96000;
4230 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4231 refclk = 100000;
4232 }
4233
4234 return refclk;
4235 }
4236
4237 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4238 {
4239 struct drm_device *dev = crtc->dev;
4240 struct drm_i915_private *dev_priv = dev->dev_private;
4241 int refclk;
4242
4243 if (IS_VALLEYVIEW(dev)) {
4244 refclk = vlv_get_refclk(crtc);
4245 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4246 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4247 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4248 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4249 refclk / 1000);
4250 } else if (!IS_GEN2(dev)) {
4251 refclk = 96000;
4252 } else {
4253 refclk = 48000;
4254 }
4255
4256 return refclk;
4257 }
4258
4259 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4260 {
4261 return (1 << dpll->n) << 16 | dpll->m2;
4262 }
4263
4264 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4265 {
4266 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4267 }
4268
4269 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4270 intel_clock_t *reduced_clock)
4271 {
4272 struct drm_device *dev = crtc->base.dev;
4273 struct drm_i915_private *dev_priv = dev->dev_private;
4274 int pipe = crtc->pipe;
4275 u32 fp, fp2 = 0;
4276
4277 if (IS_PINEVIEW(dev)) {
4278 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4279 if (reduced_clock)
4280 fp2 = pnv_dpll_compute_fp(reduced_clock);
4281 } else {
4282 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4283 if (reduced_clock)
4284 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4285 }
4286
4287 I915_WRITE(FP0(pipe), fp);
4288 crtc->config.dpll_hw_state.fp0 = fp;
4289
4290 crtc->lowfreq_avail = false;
4291 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4292 reduced_clock && i915_powersave) {
4293 I915_WRITE(FP1(pipe), fp2);
4294 crtc->config.dpll_hw_state.fp1 = fp2;
4295 crtc->lowfreq_avail = true;
4296 } else {
4297 I915_WRITE(FP1(pipe), fp);
4298 crtc->config.dpll_hw_state.fp1 = fp;
4299 }
4300 }
4301
4302 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4303 {
4304 u32 reg_val;
4305
4306 /*
4307 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4308 * and set it to a reasonable value instead.
4309 */
4310 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4311 reg_val &= 0xffffff00;
4312 reg_val |= 0x00000030;
4313 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4314
4315 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4316 reg_val &= 0x8cffffff;
4317 reg_val = 0x8c000000;
4318 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4319
4320 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4321 reg_val &= 0xffffff00;
4322 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4323
4324 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4325 reg_val &= 0x00ffffff;
4326 reg_val |= 0xb0000000;
4327 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4328 }
4329
4330 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4331 struct intel_link_m_n *m_n)
4332 {
4333 struct drm_device *dev = crtc->base.dev;
4334 struct drm_i915_private *dev_priv = dev->dev_private;
4335 int pipe = crtc->pipe;
4336
4337 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4338 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4339 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4340 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4341 }
4342
4343 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4344 struct intel_link_m_n *m_n)
4345 {
4346 struct drm_device *dev = crtc->base.dev;
4347 struct drm_i915_private *dev_priv = dev->dev_private;
4348 int pipe = crtc->pipe;
4349 enum transcoder transcoder = crtc->config.cpu_transcoder;
4350
4351 if (INTEL_INFO(dev)->gen >= 5) {
4352 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4353 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4354 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4355 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4356 } else {
4357 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4358 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4359 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4360 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4361 }
4362 }
4363
4364 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4365 {
4366 if (crtc->config.has_pch_encoder)
4367 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4368 else
4369 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4370 }
4371
4372 static void vlv_update_pll(struct intel_crtc *crtc)
4373 {
4374 struct drm_device *dev = crtc->base.dev;
4375 struct drm_i915_private *dev_priv = dev->dev_private;
4376 struct intel_encoder *encoder;
4377 int pipe = crtc->pipe;
4378 u32 dpll, mdiv;
4379 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4380 bool is_hdmi;
4381 u32 coreclk, reg_val, dpll_md;
4382
4383 mutex_lock(&dev_priv->dpio_lock);
4384
4385 is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4386
4387 bestn = crtc->config.dpll.n;
4388 bestm1 = crtc->config.dpll.m1;
4389 bestm2 = crtc->config.dpll.m2;
4390 bestp1 = crtc->config.dpll.p1;
4391 bestp2 = crtc->config.dpll.p2;
4392
4393 /* See eDP HDMI DPIO driver vbios notes doc */
4394
4395 /* PLL B needs special handling */
4396 if (pipe)
4397 vlv_pllb_recal_opamp(dev_priv);
4398
4399 /* Set up Tx target for periodic Rcomp update */
4400 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4401
4402 /* Disable target IRef on PLL */
4403 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4404 reg_val &= 0x00ffffff;
4405 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4406
4407 /* Disable fast lock */
4408 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4409
4410 /* Set idtafcrecal before PLL is enabled */
4411 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4412 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4413 mdiv |= ((bestn << DPIO_N_SHIFT));
4414 mdiv |= (1 << DPIO_K_SHIFT);
4415
4416 /*
4417 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4418 * but we don't support that).
4419 * Note: don't use the DAC post divider as it seems unstable.
4420 */
4421 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4422 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4423
4424 mdiv |= DPIO_ENABLE_CALIBRATION;
4425 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4426
4427 /* Set HBR and RBR LPF coefficients */
4428 if (crtc->config.port_clock == 162000 ||
4429 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4430 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4431 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4432 0x005f0021);
4433 else
4434 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4435 0x00d0000f);
4436
4437 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4438 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4439 /* Use SSC source */
4440 if (!pipe)
4441 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4442 0x0df40000);
4443 else
4444 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4445 0x0df70000);
4446 } else { /* HDMI or VGA */
4447 /* Use bend source */
4448 if (!pipe)
4449 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4450 0x0df70000);
4451 else
4452 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4453 0x0df40000);
4454 }
4455
4456 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4457 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4458 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4459 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4460 coreclk |= 0x01000000;
4461 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4462
4463 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4464
4465 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4466 if (encoder->pre_pll_enable)
4467 encoder->pre_pll_enable(encoder);
4468
4469 /* Enable DPIO clock input */
4470 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4471 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4472 if (pipe)
4473 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4474
4475 dpll |= DPLL_VCO_ENABLE;
4476 crtc->config.dpll_hw_state.dpll = dpll;
4477
4478 I915_WRITE(DPLL(pipe), dpll);
4479 POSTING_READ(DPLL(pipe));
4480 udelay(150);
4481
4482 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4483 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4484
4485 dpll_md = (crtc->config.pixel_multiplier - 1)
4486 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4487 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4488
4489 I915_WRITE(DPLL_MD(pipe), dpll_md);
4490 POSTING_READ(DPLL_MD(pipe));
4491
4492 if (crtc->config.has_dp_encoder)
4493 intel_dp_set_m_n(crtc);
4494
4495 mutex_unlock(&dev_priv->dpio_lock);
4496 }
4497
4498 static void i9xx_update_pll(struct intel_crtc *crtc,
4499 intel_clock_t *reduced_clock,
4500 int num_connectors)
4501 {
4502 struct drm_device *dev = crtc->base.dev;
4503 struct drm_i915_private *dev_priv = dev->dev_private;
4504 u32 dpll;
4505 bool is_sdvo;
4506 struct dpll *clock = &crtc->config.dpll;
4507
4508 i9xx_update_pll_dividers(crtc, reduced_clock);
4509
4510 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4511 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4512
4513 dpll = DPLL_VGA_MODE_DIS;
4514
4515 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4516 dpll |= DPLLB_MODE_LVDS;
4517 else
4518 dpll |= DPLLB_MODE_DAC_SERIAL;
4519
4520 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4521 dpll |= (crtc->config.pixel_multiplier - 1)
4522 << SDVO_MULTIPLIER_SHIFT_HIRES;
4523 }
4524
4525 if (is_sdvo)
4526 dpll |= DPLL_DVO_HIGH_SPEED;
4527
4528 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4529 dpll |= DPLL_DVO_HIGH_SPEED;
4530
4531 /* compute bitmask from p1 value */
4532 if (IS_PINEVIEW(dev))
4533 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4534 else {
4535 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4536 if (IS_G4X(dev) && reduced_clock)
4537 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4538 }
4539 switch (clock->p2) {
4540 case 5:
4541 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4542 break;
4543 case 7:
4544 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4545 break;
4546 case 10:
4547 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4548 break;
4549 case 14:
4550 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4551 break;
4552 }
4553 if (INTEL_INFO(dev)->gen >= 4)
4554 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4555
4556 if (crtc->config.sdvo_tv_clock)
4557 dpll |= PLL_REF_INPUT_TVCLKINBC;
4558 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4559 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4560 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4561 else
4562 dpll |= PLL_REF_INPUT_DREFCLK;
4563
4564 dpll |= DPLL_VCO_ENABLE;
4565 crtc->config.dpll_hw_state.dpll = dpll;
4566
4567 if (INTEL_INFO(dev)->gen >= 4) {
4568 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4569 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4570 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4571 }
4572
4573 if (crtc->config.has_dp_encoder)
4574 intel_dp_set_m_n(crtc);
4575 }
4576
4577 static void i8xx_update_pll(struct intel_crtc *crtc,
4578 intel_clock_t *reduced_clock,
4579 int num_connectors)
4580 {
4581 struct drm_device *dev = crtc->base.dev;
4582 struct drm_i915_private *dev_priv = dev->dev_private;
4583 u32 dpll;
4584 struct dpll *clock = &crtc->config.dpll;
4585
4586 i9xx_update_pll_dividers(crtc, reduced_clock);
4587
4588 dpll = DPLL_VGA_MODE_DIS;
4589
4590 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4591 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4592 } else {
4593 if (clock->p1 == 2)
4594 dpll |= PLL_P1_DIVIDE_BY_TWO;
4595 else
4596 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4597 if (clock->p2 == 4)
4598 dpll |= PLL_P2_DIVIDE_BY_4;
4599 }
4600
4601 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4602 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4603 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4604 else
4605 dpll |= PLL_REF_INPUT_DREFCLK;
4606
4607 dpll |= DPLL_VCO_ENABLE;
4608 crtc->config.dpll_hw_state.dpll = dpll;
4609 }
4610
4611 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4612 {
4613 struct drm_device *dev = intel_crtc->base.dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 enum pipe pipe = intel_crtc->pipe;
4616 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4617 struct drm_display_mode *adjusted_mode =
4618 &intel_crtc->config.adjusted_mode;
4619 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4620 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4621
4622 /* We need to be careful not to changed the adjusted mode, for otherwise
4623 * the hw state checker will get angry at the mismatch. */
4624 crtc_vtotal = adjusted_mode->crtc_vtotal;
4625 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4626
4627 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4628 /* the chip adds 2 halflines automatically */
4629 crtc_vtotal -= 1;
4630 crtc_vblank_end -= 1;
4631 vsyncshift = adjusted_mode->crtc_hsync_start
4632 - adjusted_mode->crtc_htotal / 2;
4633 } else {
4634 vsyncshift = 0;
4635 }
4636
4637 if (INTEL_INFO(dev)->gen > 3)
4638 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4639
4640 I915_WRITE(HTOTAL(cpu_transcoder),
4641 (adjusted_mode->crtc_hdisplay - 1) |
4642 ((adjusted_mode->crtc_htotal - 1) << 16));
4643 I915_WRITE(HBLANK(cpu_transcoder),
4644 (adjusted_mode->crtc_hblank_start - 1) |
4645 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4646 I915_WRITE(HSYNC(cpu_transcoder),
4647 (adjusted_mode->crtc_hsync_start - 1) |
4648 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4649
4650 I915_WRITE(VTOTAL(cpu_transcoder),
4651 (adjusted_mode->crtc_vdisplay - 1) |
4652 ((crtc_vtotal - 1) << 16));
4653 I915_WRITE(VBLANK(cpu_transcoder),
4654 (adjusted_mode->crtc_vblank_start - 1) |
4655 ((crtc_vblank_end - 1) << 16));
4656 I915_WRITE(VSYNC(cpu_transcoder),
4657 (adjusted_mode->crtc_vsync_start - 1) |
4658 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4659
4660 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4661 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4662 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4663 * bits. */
4664 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4665 (pipe == PIPE_B || pipe == PIPE_C))
4666 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4667
4668 /* pipesrc controls the size that is scaled from, which should
4669 * always be the user's requested size.
4670 */
4671 I915_WRITE(PIPESRC(pipe),
4672 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4673 }
4674
4675 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4676 struct intel_crtc_config *pipe_config)
4677 {
4678 struct drm_device *dev = crtc->base.dev;
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4681 uint32_t tmp;
4682
4683 tmp = I915_READ(HTOTAL(cpu_transcoder));
4684 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4685 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4686 tmp = I915_READ(HBLANK(cpu_transcoder));
4687 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4688 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4689 tmp = I915_READ(HSYNC(cpu_transcoder));
4690 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4691 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4692
4693 tmp = I915_READ(VTOTAL(cpu_transcoder));
4694 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4695 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4696 tmp = I915_READ(VBLANK(cpu_transcoder));
4697 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4698 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4699 tmp = I915_READ(VSYNC(cpu_transcoder));
4700 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4701 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4702
4703 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4704 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4705 pipe_config->adjusted_mode.crtc_vtotal += 1;
4706 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4707 }
4708
4709 tmp = I915_READ(PIPESRC(crtc->pipe));
4710 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4711 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4712 }
4713
4714 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4715 {
4716 struct drm_device *dev = intel_crtc->base.dev;
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 uint32_t pipeconf;
4719
4720 pipeconf = 0;
4721
4722 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4723 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4724 * core speed.
4725 *
4726 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4727 * pipe == 0 check?
4728 */
4729 if (intel_crtc->config.requested_mode.clock >
4730 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4731 pipeconf |= PIPECONF_DOUBLE_WIDE;
4732 }
4733
4734 /* only g4x and later have fancy bpc/dither controls */
4735 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4736 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4737 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4738 pipeconf |= PIPECONF_DITHER_EN |
4739 PIPECONF_DITHER_TYPE_SP;
4740
4741 switch (intel_crtc->config.pipe_bpp) {
4742 case 18:
4743 pipeconf |= PIPECONF_6BPC;
4744 break;
4745 case 24:
4746 pipeconf |= PIPECONF_8BPC;
4747 break;
4748 case 30:
4749 pipeconf |= PIPECONF_10BPC;
4750 break;
4751 default:
4752 /* Case prevented by intel_choose_pipe_bpp_dither. */
4753 BUG();
4754 }
4755 }
4756
4757 if (HAS_PIPE_CXSR(dev)) {
4758 if (intel_crtc->lowfreq_avail) {
4759 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4760 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4761 } else {
4762 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4763 }
4764 }
4765
4766 if (!IS_GEN2(dev) &&
4767 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4768 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4769 else
4770 pipeconf |= PIPECONF_PROGRESSIVE;
4771
4772 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4773 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4774
4775 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4776 POSTING_READ(PIPECONF(intel_crtc->pipe));
4777 }
4778
4779 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4780 int x, int y,
4781 struct drm_framebuffer *fb)
4782 {
4783 struct drm_device *dev = crtc->dev;
4784 struct drm_i915_private *dev_priv = dev->dev_private;
4785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4786 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4787 int pipe = intel_crtc->pipe;
4788 int plane = intel_crtc->plane;
4789 int refclk, num_connectors = 0;
4790 intel_clock_t clock, reduced_clock;
4791 u32 dspcntr;
4792 bool ok, has_reduced_clock = false;
4793 bool is_lvds = false;
4794 struct intel_encoder *encoder;
4795 const intel_limit_t *limit;
4796 int ret;
4797
4798 for_each_encoder_on_crtc(dev, crtc, encoder) {
4799 switch (encoder->type) {
4800 case INTEL_OUTPUT_LVDS:
4801 is_lvds = true;
4802 break;
4803 }
4804
4805 num_connectors++;
4806 }
4807
4808 refclk = i9xx_get_refclk(crtc, num_connectors);
4809
4810 /*
4811 * Returns a set of divisors for the desired target clock with the given
4812 * refclk, or FALSE. The returned values represent the clock equation:
4813 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4814 */
4815 limit = intel_limit(crtc, refclk);
4816 ok = dev_priv->display.find_dpll(limit, crtc,
4817 intel_crtc->config.port_clock,
4818 refclk, NULL, &clock);
4819 if (!ok && !intel_crtc->config.clock_set) {
4820 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4821 return -EINVAL;
4822 }
4823
4824 /* Ensure that the cursor is valid for the new mode before changing... */
4825 intel_crtc_update_cursor(crtc, true);
4826
4827 if (is_lvds && dev_priv->lvds_downclock_avail) {
4828 /*
4829 * Ensure we match the reduced clock's P to the target clock.
4830 * If the clocks don't match, we can't switch the display clock
4831 * by using the FP0/FP1. In such case we will disable the LVDS
4832 * downclock feature.
4833 */
4834 has_reduced_clock =
4835 dev_priv->display.find_dpll(limit, crtc,
4836 dev_priv->lvds_downclock,
4837 refclk, &clock,
4838 &reduced_clock);
4839 }
4840 /* Compat-code for transition, will disappear. */
4841 if (!intel_crtc->config.clock_set) {
4842 intel_crtc->config.dpll.n = clock.n;
4843 intel_crtc->config.dpll.m1 = clock.m1;
4844 intel_crtc->config.dpll.m2 = clock.m2;
4845 intel_crtc->config.dpll.p1 = clock.p1;
4846 intel_crtc->config.dpll.p2 = clock.p2;
4847 }
4848
4849 if (IS_GEN2(dev))
4850 i8xx_update_pll(intel_crtc,
4851 has_reduced_clock ? &reduced_clock : NULL,
4852 num_connectors);
4853 else if (IS_VALLEYVIEW(dev))
4854 vlv_update_pll(intel_crtc);
4855 else
4856 i9xx_update_pll(intel_crtc,
4857 has_reduced_clock ? &reduced_clock : NULL,
4858 num_connectors);
4859
4860 /* Set up the display plane register */
4861 dspcntr = DISPPLANE_GAMMA_ENABLE;
4862
4863 if (!IS_VALLEYVIEW(dev)) {
4864 if (pipe == 0)
4865 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4866 else
4867 dspcntr |= DISPPLANE_SEL_PIPE_B;
4868 }
4869
4870 intel_set_pipe_timings(intel_crtc);
4871
4872 /* pipesrc and dspsize control the size that is scaled from,
4873 * which should always be the user's requested size.
4874 */
4875 I915_WRITE(DSPSIZE(plane),
4876 ((mode->vdisplay - 1) << 16) |
4877 (mode->hdisplay - 1));
4878 I915_WRITE(DSPPOS(plane), 0);
4879
4880 i9xx_set_pipeconf(intel_crtc);
4881
4882 I915_WRITE(DSPCNTR(plane), dspcntr);
4883 POSTING_READ(DSPCNTR(plane));
4884
4885 ret = intel_pipe_set_base(crtc, x, y, fb);
4886
4887 intel_update_watermarks(dev);
4888
4889 return ret;
4890 }
4891
4892 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4893 struct intel_crtc_config *pipe_config)
4894 {
4895 struct drm_device *dev = crtc->base.dev;
4896 struct drm_i915_private *dev_priv = dev->dev_private;
4897 uint32_t tmp;
4898
4899 tmp = I915_READ(PFIT_CONTROL);
4900
4901 if (INTEL_INFO(dev)->gen < 4) {
4902 if (crtc->pipe != PIPE_B)
4903 return;
4904
4905 /* gen2/3 store dither state in pfit control, needs to match */
4906 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4907 } else {
4908 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4909 return;
4910 }
4911
4912 if (!(tmp & PFIT_ENABLE))
4913 return;
4914
4915 pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4916 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4917 if (INTEL_INFO(dev)->gen < 5)
4918 pipe_config->gmch_pfit.lvds_border_bits =
4919 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4920 }
4921
4922 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4923 struct intel_crtc_config *pipe_config)
4924 {
4925 struct drm_device *dev = crtc->base.dev;
4926 struct drm_i915_private *dev_priv = dev->dev_private;
4927 uint32_t tmp;
4928
4929 pipe_config->cpu_transcoder = crtc->pipe;
4930 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4931
4932 tmp = I915_READ(PIPECONF(crtc->pipe));
4933 if (!(tmp & PIPECONF_ENABLE))
4934 return false;
4935
4936 intel_get_pipe_timings(crtc, pipe_config);
4937
4938 i9xx_get_pfit_config(crtc, pipe_config);
4939
4940 if (INTEL_INFO(dev)->gen >= 4) {
4941 tmp = I915_READ(DPLL_MD(crtc->pipe));
4942 pipe_config->pixel_multiplier =
4943 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4944 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4945 pipe_config->dpll_hw_state.dpll_md = tmp;
4946 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4947 tmp = I915_READ(DPLL(crtc->pipe));
4948 pipe_config->pixel_multiplier =
4949 ((tmp & SDVO_MULTIPLIER_MASK)
4950 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
4951 } else {
4952 /* Note that on i915G/GM the pixel multiplier is in the sdvo
4953 * port and will be fixed up in the encoder->get_config
4954 * function. */
4955 pipe_config->pixel_multiplier = 1;
4956 }
4957 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
4958 if (!IS_VALLEYVIEW(dev)) {
4959 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
4960 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
4961 } else {
4962 /* Mask out read-only status bits. */
4963 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
4964 DPLL_PORTC_READY_MASK |
4965 DPLL_PORTB_READY_MASK);
4966 }
4967
4968 return true;
4969 }
4970
4971 static void ironlake_init_pch_refclk(struct drm_device *dev)
4972 {
4973 struct drm_i915_private *dev_priv = dev->dev_private;
4974 struct drm_mode_config *mode_config = &dev->mode_config;
4975 struct intel_encoder *encoder;
4976 u32 val, final;
4977 bool has_lvds = false;
4978 bool has_cpu_edp = false;
4979 bool has_panel = false;
4980 bool has_ck505 = false;
4981 bool can_ssc = false;
4982
4983 /* We need to take the global config into account */
4984 list_for_each_entry(encoder, &mode_config->encoder_list,
4985 base.head) {
4986 switch (encoder->type) {
4987 case INTEL_OUTPUT_LVDS:
4988 has_panel = true;
4989 has_lvds = true;
4990 break;
4991 case INTEL_OUTPUT_EDP:
4992 has_panel = true;
4993 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
4994 has_cpu_edp = true;
4995 break;
4996 }
4997 }
4998
4999 if (HAS_PCH_IBX(dev)) {
5000 has_ck505 = dev_priv->vbt.display_clock_mode;
5001 can_ssc = has_ck505;
5002 } else {
5003 has_ck505 = false;
5004 can_ssc = true;
5005 }
5006
5007 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5008 has_panel, has_lvds, has_ck505);
5009
5010 /* Ironlake: try to setup display ref clock before DPLL
5011 * enabling. This is only under driver's control after
5012 * PCH B stepping, previous chipset stepping should be
5013 * ignoring this setting.
5014 */
5015 val = I915_READ(PCH_DREF_CONTROL);
5016
5017 /* As we must carefully and slowly disable/enable each source in turn,
5018 * compute the final state we want first and check if we need to
5019 * make any changes at all.
5020 */
5021 final = val;
5022 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5023 if (has_ck505)
5024 final |= DREF_NONSPREAD_CK505_ENABLE;
5025 else
5026 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5027
5028 final &= ~DREF_SSC_SOURCE_MASK;
5029 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5030 final &= ~DREF_SSC1_ENABLE;
5031
5032 if (has_panel) {
5033 final |= DREF_SSC_SOURCE_ENABLE;
5034
5035 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5036 final |= DREF_SSC1_ENABLE;
5037
5038 if (has_cpu_edp) {
5039 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5040 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5041 else
5042 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5043 } else
5044 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5045 } else {
5046 final |= DREF_SSC_SOURCE_DISABLE;
5047 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5048 }
5049
5050 if (final == val)
5051 return;
5052
5053 /* Always enable nonspread source */
5054 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5055
5056 if (has_ck505)
5057 val |= DREF_NONSPREAD_CK505_ENABLE;
5058 else
5059 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5060
5061 if (has_panel) {
5062 val &= ~DREF_SSC_SOURCE_MASK;
5063 val |= DREF_SSC_SOURCE_ENABLE;
5064
5065 /* SSC must be turned on before enabling the CPU output */
5066 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5067 DRM_DEBUG_KMS("Using SSC on panel\n");
5068 val |= DREF_SSC1_ENABLE;
5069 } else
5070 val &= ~DREF_SSC1_ENABLE;
5071
5072 /* Get SSC going before enabling the outputs */
5073 I915_WRITE(PCH_DREF_CONTROL, val);
5074 POSTING_READ(PCH_DREF_CONTROL);
5075 udelay(200);
5076
5077 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5078
5079 /* Enable CPU source on CPU attached eDP */
5080 if (has_cpu_edp) {
5081 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5082 DRM_DEBUG_KMS("Using SSC on eDP\n");
5083 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5084 }
5085 else
5086 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5087 } else
5088 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5089
5090 I915_WRITE(PCH_DREF_CONTROL, val);
5091 POSTING_READ(PCH_DREF_CONTROL);
5092 udelay(200);
5093 } else {
5094 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5095
5096 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5097
5098 /* Turn off CPU output */
5099 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5100
5101 I915_WRITE(PCH_DREF_CONTROL, val);
5102 POSTING_READ(PCH_DREF_CONTROL);
5103 udelay(200);
5104
5105 /* Turn off the SSC source */
5106 val &= ~DREF_SSC_SOURCE_MASK;
5107 val |= DREF_SSC_SOURCE_DISABLE;
5108
5109 /* Turn off SSC1 */
5110 val &= ~DREF_SSC1_ENABLE;
5111
5112 I915_WRITE(PCH_DREF_CONTROL, val);
5113 POSTING_READ(PCH_DREF_CONTROL);
5114 udelay(200);
5115 }
5116
5117 BUG_ON(val != final);
5118 }
5119
5120 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5121 static void lpt_init_pch_refclk(struct drm_device *dev)
5122 {
5123 struct drm_i915_private *dev_priv = dev->dev_private;
5124 struct drm_mode_config *mode_config = &dev->mode_config;
5125 struct intel_encoder *encoder;
5126 bool has_vga = false;
5127 bool is_sdv = false;
5128 u32 tmp;
5129
5130 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5131 switch (encoder->type) {
5132 case INTEL_OUTPUT_ANALOG:
5133 has_vga = true;
5134 break;
5135 }
5136 }
5137
5138 if (!has_vga)
5139 return;
5140
5141 mutex_lock(&dev_priv->dpio_lock);
5142
5143 /* XXX: Rip out SDV support once Haswell ships for real. */
5144 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5145 is_sdv = true;
5146
5147 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5148 tmp &= ~SBI_SSCCTL_DISABLE;
5149 tmp |= SBI_SSCCTL_PATHALT;
5150 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5151
5152 udelay(24);
5153
5154 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5155 tmp &= ~SBI_SSCCTL_PATHALT;
5156 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5157
5158 if (!is_sdv) {
5159 tmp = I915_READ(SOUTH_CHICKEN2);
5160 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5161 I915_WRITE(SOUTH_CHICKEN2, tmp);
5162
5163 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5164 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5165 DRM_ERROR("FDI mPHY reset assert timeout\n");
5166
5167 tmp = I915_READ(SOUTH_CHICKEN2);
5168 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5169 I915_WRITE(SOUTH_CHICKEN2, tmp);
5170
5171 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5172 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5173 100))
5174 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5175 }
5176
5177 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5178 tmp &= ~(0xFF << 24);
5179 tmp |= (0x12 << 24);
5180 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5181
5182 if (is_sdv) {
5183 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5184 tmp |= 0x7FFF;
5185 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5186 }
5187
5188 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5189 tmp |= (1 << 11);
5190 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5191
5192 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5193 tmp |= (1 << 11);
5194 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5195
5196 if (is_sdv) {
5197 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5198 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5199 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5200
5201 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5202 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5203 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5204
5205 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5206 tmp |= (0x3F << 8);
5207 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5208
5209 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5210 tmp |= (0x3F << 8);
5211 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5212 }
5213
5214 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5215 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5216 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5217
5218 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5219 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5220 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5221
5222 if (!is_sdv) {
5223 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5224 tmp &= ~(7 << 13);
5225 tmp |= (5 << 13);
5226 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5227
5228 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5229 tmp &= ~(7 << 13);
5230 tmp |= (5 << 13);
5231 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5232 }
5233
5234 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5235 tmp &= ~0xFF;
5236 tmp |= 0x1C;
5237 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5238
5239 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5240 tmp &= ~0xFF;
5241 tmp |= 0x1C;
5242 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5243
5244 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5245 tmp &= ~(0xFF << 16);
5246 tmp |= (0x1C << 16);
5247 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5248
5249 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5250 tmp &= ~(0xFF << 16);
5251 tmp |= (0x1C << 16);
5252 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5253
5254 if (!is_sdv) {
5255 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5256 tmp |= (1 << 27);
5257 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5258
5259 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5260 tmp |= (1 << 27);
5261 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5262
5263 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5264 tmp &= ~(0xF << 28);
5265 tmp |= (4 << 28);
5266 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5267
5268 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5269 tmp &= ~(0xF << 28);
5270 tmp |= (4 << 28);
5271 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5272 }
5273
5274 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5275 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5276 tmp |= SBI_DBUFF0_ENABLE;
5277 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5278
5279 mutex_unlock(&dev_priv->dpio_lock);
5280 }
5281
5282 /*
5283 * Initialize reference clocks when the driver loads
5284 */
5285 void intel_init_pch_refclk(struct drm_device *dev)
5286 {
5287 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5288 ironlake_init_pch_refclk(dev);
5289 else if (HAS_PCH_LPT(dev))
5290 lpt_init_pch_refclk(dev);
5291 }
5292
5293 static int ironlake_get_refclk(struct drm_crtc *crtc)
5294 {
5295 struct drm_device *dev = crtc->dev;
5296 struct drm_i915_private *dev_priv = dev->dev_private;
5297 struct intel_encoder *encoder;
5298 int num_connectors = 0;
5299 bool is_lvds = false;
5300
5301 for_each_encoder_on_crtc(dev, crtc, encoder) {
5302 switch (encoder->type) {
5303 case INTEL_OUTPUT_LVDS:
5304 is_lvds = true;
5305 break;
5306 }
5307 num_connectors++;
5308 }
5309
5310 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5311 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5312 dev_priv->vbt.lvds_ssc_freq);
5313 return dev_priv->vbt.lvds_ssc_freq * 1000;
5314 }
5315
5316 return 120000;
5317 }
5318
5319 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5320 {
5321 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5323 int pipe = intel_crtc->pipe;
5324 uint32_t val;
5325
5326 val = 0;
5327
5328 switch (intel_crtc->config.pipe_bpp) {
5329 case 18:
5330 val |= PIPECONF_6BPC;
5331 break;
5332 case 24:
5333 val |= PIPECONF_8BPC;
5334 break;
5335 case 30:
5336 val |= PIPECONF_10BPC;
5337 break;
5338 case 36:
5339 val |= PIPECONF_12BPC;
5340 break;
5341 default:
5342 /* Case prevented by intel_choose_pipe_bpp_dither. */
5343 BUG();
5344 }
5345
5346 if (intel_crtc->config.dither)
5347 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5348
5349 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5350 val |= PIPECONF_INTERLACED_ILK;
5351 else
5352 val |= PIPECONF_PROGRESSIVE;
5353
5354 if (intel_crtc->config.limited_color_range)
5355 val |= PIPECONF_COLOR_RANGE_SELECT;
5356
5357 I915_WRITE(PIPECONF(pipe), val);
5358 POSTING_READ(PIPECONF(pipe));
5359 }
5360
5361 /*
5362 * Set up the pipe CSC unit.
5363 *
5364 * Currently only full range RGB to limited range RGB conversion
5365 * is supported, but eventually this should handle various
5366 * RGB<->YCbCr scenarios as well.
5367 */
5368 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5369 {
5370 struct drm_device *dev = crtc->dev;
5371 struct drm_i915_private *dev_priv = dev->dev_private;
5372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5373 int pipe = intel_crtc->pipe;
5374 uint16_t coeff = 0x7800; /* 1.0 */
5375
5376 /*
5377 * TODO: Check what kind of values actually come out of the pipe
5378 * with these coeff/postoff values and adjust to get the best
5379 * accuracy. Perhaps we even need to take the bpc value into
5380 * consideration.
5381 */
5382
5383 if (intel_crtc->config.limited_color_range)
5384 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5385
5386 /*
5387 * GY/GU and RY/RU should be the other way around according
5388 * to BSpec, but reality doesn't agree. Just set them up in
5389 * a way that results in the correct picture.
5390 */
5391 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5392 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5393
5394 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5395 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5396
5397 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5398 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5399
5400 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5401 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5402 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5403
5404 if (INTEL_INFO(dev)->gen > 6) {
5405 uint16_t postoff = 0;
5406
5407 if (intel_crtc->config.limited_color_range)
5408 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5409
5410 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5411 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5412 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5413
5414 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5415 } else {
5416 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5417
5418 if (intel_crtc->config.limited_color_range)
5419 mode |= CSC_BLACK_SCREEN_OFFSET;
5420
5421 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5422 }
5423 }
5424
5425 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5426 {
5427 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5429 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5430 uint32_t val;
5431
5432 val = 0;
5433
5434 if (intel_crtc->config.dither)
5435 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5436
5437 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5438 val |= PIPECONF_INTERLACED_ILK;
5439 else
5440 val |= PIPECONF_PROGRESSIVE;
5441
5442 I915_WRITE(PIPECONF(cpu_transcoder), val);
5443 POSTING_READ(PIPECONF(cpu_transcoder));
5444
5445 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5446 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5447 }
5448
5449 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5450 intel_clock_t *clock,
5451 bool *has_reduced_clock,
5452 intel_clock_t *reduced_clock)
5453 {
5454 struct drm_device *dev = crtc->dev;
5455 struct drm_i915_private *dev_priv = dev->dev_private;
5456 struct intel_encoder *intel_encoder;
5457 int refclk;
5458 const intel_limit_t *limit;
5459 bool ret, is_lvds = false;
5460
5461 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5462 switch (intel_encoder->type) {
5463 case INTEL_OUTPUT_LVDS:
5464 is_lvds = true;
5465 break;
5466 }
5467 }
5468
5469 refclk = ironlake_get_refclk(crtc);
5470
5471 /*
5472 * Returns a set of divisors for the desired target clock with the given
5473 * refclk, or FALSE. The returned values represent the clock equation:
5474 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5475 */
5476 limit = intel_limit(crtc, refclk);
5477 ret = dev_priv->display.find_dpll(limit, crtc,
5478 to_intel_crtc(crtc)->config.port_clock,
5479 refclk, NULL, clock);
5480 if (!ret)
5481 return false;
5482
5483 if (is_lvds && dev_priv->lvds_downclock_avail) {
5484 /*
5485 * Ensure we match the reduced clock's P to the target clock.
5486 * If the clocks don't match, we can't switch the display clock
5487 * by using the FP0/FP1. In such case we will disable the LVDS
5488 * downclock feature.
5489 */
5490 *has_reduced_clock =
5491 dev_priv->display.find_dpll(limit, crtc,
5492 dev_priv->lvds_downclock,
5493 refclk, clock,
5494 reduced_clock);
5495 }
5496
5497 return true;
5498 }
5499
5500 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5501 {
5502 struct drm_i915_private *dev_priv = dev->dev_private;
5503 uint32_t temp;
5504
5505 temp = I915_READ(SOUTH_CHICKEN1);
5506 if (temp & FDI_BC_BIFURCATION_SELECT)
5507 return;
5508
5509 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5510 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5511
5512 temp |= FDI_BC_BIFURCATION_SELECT;
5513 DRM_DEBUG_KMS("enabling fdi C rx\n");
5514 I915_WRITE(SOUTH_CHICKEN1, temp);
5515 POSTING_READ(SOUTH_CHICKEN1);
5516 }
5517
5518 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5519 {
5520 struct drm_device *dev = intel_crtc->base.dev;
5521 struct drm_i915_private *dev_priv = dev->dev_private;
5522
5523 switch (intel_crtc->pipe) {
5524 case PIPE_A:
5525 break;
5526 case PIPE_B:
5527 if (intel_crtc->config.fdi_lanes > 2)
5528 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5529 else
5530 cpt_enable_fdi_bc_bifurcation(dev);
5531
5532 break;
5533 case PIPE_C:
5534 cpt_enable_fdi_bc_bifurcation(dev);
5535
5536 break;
5537 default:
5538 BUG();
5539 }
5540 }
5541
5542 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5543 {
5544 /*
5545 * Account for spread spectrum to avoid
5546 * oversubscribing the link. Max center spread
5547 * is 2.5%; use 5% for safety's sake.
5548 */
5549 u32 bps = target_clock * bpp * 21 / 20;
5550 return bps / (link_bw * 8) + 1;
5551 }
5552
5553 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5554 {
5555 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5556 }
5557
5558 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5559 u32 *fp,
5560 intel_clock_t *reduced_clock, u32 *fp2)
5561 {
5562 struct drm_crtc *crtc = &intel_crtc->base;
5563 struct drm_device *dev = crtc->dev;
5564 struct drm_i915_private *dev_priv = dev->dev_private;
5565 struct intel_encoder *intel_encoder;
5566 uint32_t dpll;
5567 int factor, num_connectors = 0;
5568 bool is_lvds = false, is_sdvo = false;
5569
5570 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5571 switch (intel_encoder->type) {
5572 case INTEL_OUTPUT_LVDS:
5573 is_lvds = true;
5574 break;
5575 case INTEL_OUTPUT_SDVO:
5576 case INTEL_OUTPUT_HDMI:
5577 is_sdvo = true;
5578 break;
5579 }
5580
5581 num_connectors++;
5582 }
5583
5584 /* Enable autotuning of the PLL clock (if permissible) */
5585 factor = 21;
5586 if (is_lvds) {
5587 if ((intel_panel_use_ssc(dev_priv) &&
5588 dev_priv->vbt.lvds_ssc_freq == 100) ||
5589 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5590 factor = 25;
5591 } else if (intel_crtc->config.sdvo_tv_clock)
5592 factor = 20;
5593
5594 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5595 *fp |= FP_CB_TUNE;
5596
5597 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5598 *fp2 |= FP_CB_TUNE;
5599
5600 dpll = 0;
5601
5602 if (is_lvds)
5603 dpll |= DPLLB_MODE_LVDS;
5604 else
5605 dpll |= DPLLB_MODE_DAC_SERIAL;
5606
5607 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5608 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5609
5610 if (is_sdvo)
5611 dpll |= DPLL_DVO_HIGH_SPEED;
5612 if (intel_crtc->config.has_dp_encoder)
5613 dpll |= DPLL_DVO_HIGH_SPEED;
5614
5615 /* compute bitmask from p1 value */
5616 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5617 /* also FPA1 */
5618 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5619
5620 switch (intel_crtc->config.dpll.p2) {
5621 case 5:
5622 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5623 break;
5624 case 7:
5625 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5626 break;
5627 case 10:
5628 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5629 break;
5630 case 14:
5631 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5632 break;
5633 }
5634
5635 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5636 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5637 else
5638 dpll |= PLL_REF_INPUT_DREFCLK;
5639
5640 return dpll | DPLL_VCO_ENABLE;
5641 }
5642
5643 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5644 int x, int y,
5645 struct drm_framebuffer *fb)
5646 {
5647 struct drm_device *dev = crtc->dev;
5648 struct drm_i915_private *dev_priv = dev->dev_private;
5649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5650 int pipe = intel_crtc->pipe;
5651 int plane = intel_crtc->plane;
5652 int num_connectors = 0;
5653 intel_clock_t clock, reduced_clock;
5654 u32 dpll = 0, fp = 0, fp2 = 0;
5655 bool ok, has_reduced_clock = false;
5656 bool is_lvds = false;
5657 struct intel_encoder *encoder;
5658 struct intel_shared_dpll *pll;
5659 int ret;
5660
5661 for_each_encoder_on_crtc(dev, crtc, encoder) {
5662 switch (encoder->type) {
5663 case INTEL_OUTPUT_LVDS:
5664 is_lvds = true;
5665 break;
5666 }
5667
5668 num_connectors++;
5669 }
5670
5671 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5672 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5673
5674 ok = ironlake_compute_clocks(crtc, &clock,
5675 &has_reduced_clock, &reduced_clock);
5676 if (!ok && !intel_crtc->config.clock_set) {
5677 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5678 return -EINVAL;
5679 }
5680 /* Compat-code for transition, will disappear. */
5681 if (!intel_crtc->config.clock_set) {
5682 intel_crtc->config.dpll.n = clock.n;
5683 intel_crtc->config.dpll.m1 = clock.m1;
5684 intel_crtc->config.dpll.m2 = clock.m2;
5685 intel_crtc->config.dpll.p1 = clock.p1;
5686 intel_crtc->config.dpll.p2 = clock.p2;
5687 }
5688
5689 /* Ensure that the cursor is valid for the new mode before changing... */
5690 intel_crtc_update_cursor(crtc, true);
5691
5692 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5693 if (intel_crtc->config.has_pch_encoder) {
5694 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5695 if (has_reduced_clock)
5696 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5697
5698 dpll = ironlake_compute_dpll(intel_crtc,
5699 &fp, &reduced_clock,
5700 has_reduced_clock ? &fp2 : NULL);
5701
5702 intel_crtc->config.dpll_hw_state.dpll = dpll;
5703 intel_crtc->config.dpll_hw_state.fp0 = fp;
5704 if (has_reduced_clock)
5705 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5706 else
5707 intel_crtc->config.dpll_hw_state.fp1 = fp;
5708
5709 pll = intel_get_shared_dpll(intel_crtc);
5710 if (pll == NULL) {
5711 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5712 pipe_name(pipe));
5713 return -EINVAL;
5714 }
5715 } else
5716 intel_put_shared_dpll(intel_crtc);
5717
5718 if (intel_crtc->config.has_dp_encoder)
5719 intel_dp_set_m_n(intel_crtc);
5720
5721 if (is_lvds && has_reduced_clock && i915_powersave)
5722 intel_crtc->lowfreq_avail = true;
5723 else
5724 intel_crtc->lowfreq_avail = false;
5725
5726 if (intel_crtc->config.has_pch_encoder) {
5727 pll = intel_crtc_to_shared_dpll(intel_crtc);
5728
5729 }
5730
5731 intel_set_pipe_timings(intel_crtc);
5732
5733 if (intel_crtc->config.has_pch_encoder) {
5734 intel_cpu_transcoder_set_m_n(intel_crtc,
5735 &intel_crtc->config.fdi_m_n);
5736 }
5737
5738 if (IS_IVYBRIDGE(dev))
5739 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5740
5741 ironlake_set_pipeconf(crtc);
5742
5743 /* Set up the display plane register */
5744 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5745 POSTING_READ(DSPCNTR(plane));
5746
5747 ret = intel_pipe_set_base(crtc, x, y, fb);
5748
5749 intel_update_watermarks(dev);
5750
5751 return ret;
5752 }
5753
5754 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5755 struct intel_crtc_config *pipe_config)
5756 {
5757 struct drm_device *dev = crtc->base.dev;
5758 struct drm_i915_private *dev_priv = dev->dev_private;
5759 enum transcoder transcoder = pipe_config->cpu_transcoder;
5760
5761 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5762 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5763 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5764 & ~TU_SIZE_MASK;
5765 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5766 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5767 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5768 }
5769
5770 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5771 struct intel_crtc_config *pipe_config)
5772 {
5773 struct drm_device *dev = crtc->base.dev;
5774 struct drm_i915_private *dev_priv = dev->dev_private;
5775 uint32_t tmp;
5776
5777 tmp = I915_READ(PF_CTL(crtc->pipe));
5778
5779 if (tmp & PF_ENABLE) {
5780 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5781 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5782
5783 /* We currently do not free assignements of panel fitters on
5784 * ivb/hsw (since we don't use the higher upscaling modes which
5785 * differentiates them) so just WARN about this case for now. */
5786 if (IS_GEN7(dev)) {
5787 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5788 PF_PIPE_SEL_IVB(crtc->pipe));
5789 }
5790 }
5791 }
5792
5793 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5794 struct intel_crtc_config *pipe_config)
5795 {
5796 struct drm_device *dev = crtc->base.dev;
5797 struct drm_i915_private *dev_priv = dev->dev_private;
5798 uint32_t tmp;
5799
5800 pipe_config->cpu_transcoder = crtc->pipe;
5801 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5802
5803 tmp = I915_READ(PIPECONF(crtc->pipe));
5804 if (!(tmp & PIPECONF_ENABLE))
5805 return false;
5806
5807 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5808 struct intel_shared_dpll *pll;
5809
5810 pipe_config->has_pch_encoder = true;
5811
5812 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5813 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5814 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5815
5816 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5817
5818 if (HAS_PCH_IBX(dev_priv->dev)) {
5819 pipe_config->shared_dpll = crtc->pipe;
5820 } else {
5821 tmp = I915_READ(PCH_DPLL_SEL);
5822 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5823 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5824 else
5825 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5826 }
5827
5828 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5829
5830 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5831 &pipe_config->dpll_hw_state));
5832
5833 tmp = pipe_config->dpll_hw_state.dpll;
5834 pipe_config->pixel_multiplier =
5835 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5836 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5837 } else {
5838 pipe_config->pixel_multiplier = 1;
5839 }
5840
5841 intel_get_pipe_timings(crtc, pipe_config);
5842
5843 ironlake_get_pfit_config(crtc, pipe_config);
5844
5845 return true;
5846 }
5847
5848 static void haswell_modeset_global_resources(struct drm_device *dev)
5849 {
5850 bool enable = false;
5851 struct intel_crtc *crtc;
5852
5853 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5854 if (!crtc->base.enabled)
5855 continue;
5856
5857 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5858 crtc->config.cpu_transcoder != TRANSCODER_EDP)
5859 enable = true;
5860 }
5861
5862 intel_set_power_well(dev, enable);
5863 }
5864
5865 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5866 int x, int y,
5867 struct drm_framebuffer *fb)
5868 {
5869 struct drm_device *dev = crtc->dev;
5870 struct drm_i915_private *dev_priv = dev->dev_private;
5871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5872 int plane = intel_crtc->plane;
5873 int ret;
5874
5875 if (!intel_ddi_pll_mode_set(crtc))
5876 return -EINVAL;
5877
5878 /* Ensure that the cursor is valid for the new mode before changing... */
5879 intel_crtc_update_cursor(crtc, true);
5880
5881 if (intel_crtc->config.has_dp_encoder)
5882 intel_dp_set_m_n(intel_crtc);
5883
5884 intel_crtc->lowfreq_avail = false;
5885
5886 intel_set_pipe_timings(intel_crtc);
5887
5888 if (intel_crtc->config.has_pch_encoder) {
5889 intel_cpu_transcoder_set_m_n(intel_crtc,
5890 &intel_crtc->config.fdi_m_n);
5891 }
5892
5893 haswell_set_pipeconf(crtc);
5894
5895 intel_set_pipe_csc(crtc);
5896
5897 /* Set up the display plane register */
5898 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5899 POSTING_READ(DSPCNTR(plane));
5900
5901 ret = intel_pipe_set_base(crtc, x, y, fb);
5902
5903 intel_update_watermarks(dev);
5904
5905 return ret;
5906 }
5907
5908 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5909 struct intel_crtc_config *pipe_config)
5910 {
5911 struct drm_device *dev = crtc->base.dev;
5912 struct drm_i915_private *dev_priv = dev->dev_private;
5913 enum intel_display_power_domain pfit_domain;
5914 uint32_t tmp;
5915
5916 pipe_config->cpu_transcoder = crtc->pipe;
5917 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5918
5919 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5920 if (tmp & TRANS_DDI_FUNC_ENABLE) {
5921 enum pipe trans_edp_pipe;
5922 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5923 default:
5924 WARN(1, "unknown pipe linked to edp transcoder\n");
5925 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5926 case TRANS_DDI_EDP_INPUT_A_ON:
5927 trans_edp_pipe = PIPE_A;
5928 break;
5929 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5930 trans_edp_pipe = PIPE_B;
5931 break;
5932 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5933 trans_edp_pipe = PIPE_C;
5934 break;
5935 }
5936
5937 if (trans_edp_pipe == crtc->pipe)
5938 pipe_config->cpu_transcoder = TRANSCODER_EDP;
5939 }
5940
5941 if (!intel_display_power_enabled(dev,
5942 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5943 return false;
5944
5945 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5946 if (!(tmp & PIPECONF_ENABLE))
5947 return false;
5948
5949 /*
5950 * Haswell has only FDI/PCH transcoder A. It is which is connected to
5951 * DDI E. So just check whether this pipe is wired to DDI E and whether
5952 * the PCH transcoder is on.
5953 */
5954 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
5955 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5956 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5957 pipe_config->has_pch_encoder = true;
5958
5959 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5960 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5961 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5962
5963 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5964 }
5965
5966 intel_get_pipe_timings(crtc, pipe_config);
5967
5968 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
5969 if (intel_display_power_enabled(dev, pfit_domain))
5970 ironlake_get_pfit_config(crtc, pipe_config);
5971
5972 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
5973 (I915_READ(IPS_CTL) & IPS_ENABLE);
5974
5975 pipe_config->pixel_multiplier = 1;
5976
5977 return true;
5978 }
5979
5980 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5981 int x, int y,
5982 struct drm_framebuffer *fb)
5983 {
5984 struct drm_device *dev = crtc->dev;
5985 struct drm_i915_private *dev_priv = dev->dev_private;
5986 struct drm_encoder_helper_funcs *encoder_funcs;
5987 struct intel_encoder *encoder;
5988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5989 struct drm_display_mode *adjusted_mode =
5990 &intel_crtc->config.adjusted_mode;
5991 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5992 int pipe = intel_crtc->pipe;
5993 int ret;
5994
5995 drm_vblank_pre_modeset(dev, pipe);
5996
5997 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5998
5999 drm_vblank_post_modeset(dev, pipe);
6000
6001 if (ret != 0)
6002 return ret;
6003
6004 for_each_encoder_on_crtc(dev, crtc, encoder) {
6005 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6006 encoder->base.base.id,
6007 drm_get_encoder_name(&encoder->base),
6008 mode->base.id, mode->name);
6009 if (encoder->mode_set) {
6010 encoder->mode_set(encoder);
6011 } else {
6012 encoder_funcs = encoder->base.helper_private;
6013 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6014 }
6015 }
6016
6017 return 0;
6018 }
6019
6020 static bool intel_eld_uptodate(struct drm_connector *connector,
6021 int reg_eldv, uint32_t bits_eldv,
6022 int reg_elda, uint32_t bits_elda,
6023 int reg_edid)
6024 {
6025 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6026 uint8_t *eld = connector->eld;
6027 uint32_t i;
6028
6029 i = I915_READ(reg_eldv);
6030 i &= bits_eldv;
6031
6032 if (!eld[0])
6033 return !i;
6034
6035 if (!i)
6036 return false;
6037
6038 i = I915_READ(reg_elda);
6039 i &= ~bits_elda;
6040 I915_WRITE(reg_elda, i);
6041
6042 for (i = 0; i < eld[2]; i++)
6043 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6044 return false;
6045
6046 return true;
6047 }
6048
6049 static void g4x_write_eld(struct drm_connector *connector,
6050 struct drm_crtc *crtc)
6051 {
6052 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6053 uint8_t *eld = connector->eld;
6054 uint32_t eldv;
6055 uint32_t len;
6056 uint32_t i;
6057
6058 i = I915_READ(G4X_AUD_VID_DID);
6059
6060 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6061 eldv = G4X_ELDV_DEVCL_DEVBLC;
6062 else
6063 eldv = G4X_ELDV_DEVCTG;
6064
6065 if (intel_eld_uptodate(connector,
6066 G4X_AUD_CNTL_ST, eldv,
6067 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6068 G4X_HDMIW_HDMIEDID))
6069 return;
6070
6071 i = I915_READ(G4X_AUD_CNTL_ST);
6072 i &= ~(eldv | G4X_ELD_ADDR);
6073 len = (i >> 9) & 0x1f; /* ELD buffer size */
6074 I915_WRITE(G4X_AUD_CNTL_ST, i);
6075
6076 if (!eld[0])
6077 return;
6078
6079 len = min_t(uint8_t, eld[2], len);
6080 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6081 for (i = 0; i < len; i++)
6082 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6083
6084 i = I915_READ(G4X_AUD_CNTL_ST);
6085 i |= eldv;
6086 I915_WRITE(G4X_AUD_CNTL_ST, i);
6087 }
6088
6089 static void haswell_write_eld(struct drm_connector *connector,
6090 struct drm_crtc *crtc)
6091 {
6092 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6093 uint8_t *eld = connector->eld;
6094 struct drm_device *dev = crtc->dev;
6095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6096 uint32_t eldv;
6097 uint32_t i;
6098 int len;
6099 int pipe = to_intel_crtc(crtc)->pipe;
6100 int tmp;
6101
6102 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6103 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6104 int aud_config = HSW_AUD_CFG(pipe);
6105 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6106
6107
6108 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6109
6110 /* Audio output enable */
6111 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6112 tmp = I915_READ(aud_cntrl_st2);
6113 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6114 I915_WRITE(aud_cntrl_st2, tmp);
6115
6116 /* Wait for 1 vertical blank */
6117 intel_wait_for_vblank(dev, pipe);
6118
6119 /* Set ELD valid state */
6120 tmp = I915_READ(aud_cntrl_st2);
6121 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6122 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6123 I915_WRITE(aud_cntrl_st2, tmp);
6124 tmp = I915_READ(aud_cntrl_st2);
6125 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6126
6127 /* Enable HDMI mode */
6128 tmp = I915_READ(aud_config);
6129 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6130 /* clear N_programing_enable and N_value_index */
6131 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6132 I915_WRITE(aud_config, tmp);
6133
6134 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6135
6136 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6137 intel_crtc->eld_vld = true;
6138
6139 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6140 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6141 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6142 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6143 } else
6144 I915_WRITE(aud_config, 0);
6145
6146 if (intel_eld_uptodate(connector,
6147 aud_cntrl_st2, eldv,
6148 aud_cntl_st, IBX_ELD_ADDRESS,
6149 hdmiw_hdmiedid))
6150 return;
6151
6152 i = I915_READ(aud_cntrl_st2);
6153 i &= ~eldv;
6154 I915_WRITE(aud_cntrl_st2, i);
6155
6156 if (!eld[0])
6157 return;
6158
6159 i = I915_READ(aud_cntl_st);
6160 i &= ~IBX_ELD_ADDRESS;
6161 I915_WRITE(aud_cntl_st, i);
6162 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6163 DRM_DEBUG_DRIVER("port num:%d\n", i);
6164
6165 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6166 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6167 for (i = 0; i < len; i++)
6168 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6169
6170 i = I915_READ(aud_cntrl_st2);
6171 i |= eldv;
6172 I915_WRITE(aud_cntrl_st2, i);
6173
6174 }
6175
6176 static void ironlake_write_eld(struct drm_connector *connector,
6177 struct drm_crtc *crtc)
6178 {
6179 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6180 uint8_t *eld = connector->eld;
6181 uint32_t eldv;
6182 uint32_t i;
6183 int len;
6184 int hdmiw_hdmiedid;
6185 int aud_config;
6186 int aud_cntl_st;
6187 int aud_cntrl_st2;
6188 int pipe = to_intel_crtc(crtc)->pipe;
6189
6190 if (HAS_PCH_IBX(connector->dev)) {
6191 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6192 aud_config = IBX_AUD_CFG(pipe);
6193 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6194 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6195 } else {
6196 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6197 aud_config = CPT_AUD_CFG(pipe);
6198 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6199 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6200 }
6201
6202 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6203
6204 i = I915_READ(aud_cntl_st);
6205 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6206 if (!i) {
6207 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6208 /* operate blindly on all ports */
6209 eldv = IBX_ELD_VALIDB;
6210 eldv |= IBX_ELD_VALIDB << 4;
6211 eldv |= IBX_ELD_VALIDB << 8;
6212 } else {
6213 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6214 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6215 }
6216
6217 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6218 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6219 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6220 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6221 } else
6222 I915_WRITE(aud_config, 0);
6223
6224 if (intel_eld_uptodate(connector,
6225 aud_cntrl_st2, eldv,
6226 aud_cntl_st, IBX_ELD_ADDRESS,
6227 hdmiw_hdmiedid))
6228 return;
6229
6230 i = I915_READ(aud_cntrl_st2);
6231 i &= ~eldv;
6232 I915_WRITE(aud_cntrl_st2, i);
6233
6234 if (!eld[0])
6235 return;
6236
6237 i = I915_READ(aud_cntl_st);
6238 i &= ~IBX_ELD_ADDRESS;
6239 I915_WRITE(aud_cntl_st, i);
6240
6241 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6242 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6243 for (i = 0; i < len; i++)
6244 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6245
6246 i = I915_READ(aud_cntrl_st2);
6247 i |= eldv;
6248 I915_WRITE(aud_cntrl_st2, i);
6249 }
6250
6251 void intel_write_eld(struct drm_encoder *encoder,
6252 struct drm_display_mode *mode)
6253 {
6254 struct drm_crtc *crtc = encoder->crtc;
6255 struct drm_connector *connector;
6256 struct drm_device *dev = encoder->dev;
6257 struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259 connector = drm_select_eld(encoder, mode);
6260 if (!connector)
6261 return;
6262
6263 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6264 connector->base.id,
6265 drm_get_connector_name(connector),
6266 connector->encoder->base.id,
6267 drm_get_encoder_name(connector->encoder));
6268
6269 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6270
6271 if (dev_priv->display.write_eld)
6272 dev_priv->display.write_eld(connector, crtc);
6273 }
6274
6275 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6276 void intel_crtc_load_lut(struct drm_crtc *crtc)
6277 {
6278 struct drm_device *dev = crtc->dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281 enum pipe pipe = intel_crtc->pipe;
6282 int palreg = PALETTE(pipe);
6283 int i;
6284 bool reenable_ips = false;
6285
6286 /* The clocks have to be on to load the palette. */
6287 if (!crtc->enabled || !intel_crtc->active)
6288 return;
6289
6290 if (!HAS_PCH_SPLIT(dev_priv->dev))
6291 assert_pll_enabled(dev_priv, pipe);
6292
6293 /* use legacy palette for Ironlake */
6294 if (HAS_PCH_SPLIT(dev))
6295 palreg = LGC_PALETTE(pipe);
6296
6297 /* Workaround : Do not read or write the pipe palette/gamma data while
6298 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6299 */
6300 if (intel_crtc->config.ips_enabled &&
6301 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6302 GAMMA_MODE_MODE_SPLIT)) {
6303 hsw_disable_ips(intel_crtc);
6304 reenable_ips = true;
6305 }
6306
6307 for (i = 0; i < 256; i++) {
6308 I915_WRITE(palreg + 4 * i,
6309 (intel_crtc->lut_r[i] << 16) |
6310 (intel_crtc->lut_g[i] << 8) |
6311 intel_crtc->lut_b[i]);
6312 }
6313
6314 if (reenable_ips)
6315 hsw_enable_ips(intel_crtc);
6316 }
6317
6318 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6319 {
6320 struct drm_device *dev = crtc->dev;
6321 struct drm_i915_private *dev_priv = dev->dev_private;
6322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6323 bool visible = base != 0;
6324 u32 cntl;
6325
6326 if (intel_crtc->cursor_visible == visible)
6327 return;
6328
6329 cntl = I915_READ(_CURACNTR);
6330 if (visible) {
6331 /* On these chipsets we can only modify the base whilst
6332 * the cursor is disabled.
6333 */
6334 I915_WRITE(_CURABASE, base);
6335
6336 cntl &= ~(CURSOR_FORMAT_MASK);
6337 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6338 cntl |= CURSOR_ENABLE |
6339 CURSOR_GAMMA_ENABLE |
6340 CURSOR_FORMAT_ARGB;
6341 } else
6342 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6343 I915_WRITE(_CURACNTR, cntl);
6344
6345 intel_crtc->cursor_visible = visible;
6346 }
6347
6348 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6349 {
6350 struct drm_device *dev = crtc->dev;
6351 struct drm_i915_private *dev_priv = dev->dev_private;
6352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6353 int pipe = intel_crtc->pipe;
6354 bool visible = base != 0;
6355
6356 if (intel_crtc->cursor_visible != visible) {
6357 uint32_t cntl = I915_READ(CURCNTR(pipe));
6358 if (base) {
6359 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6360 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6361 cntl |= pipe << 28; /* Connect to correct pipe */
6362 } else {
6363 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6364 cntl |= CURSOR_MODE_DISABLE;
6365 }
6366 I915_WRITE(CURCNTR(pipe), cntl);
6367
6368 intel_crtc->cursor_visible = visible;
6369 }
6370 /* and commit changes on next vblank */
6371 I915_WRITE(CURBASE(pipe), base);
6372 }
6373
6374 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6375 {
6376 struct drm_device *dev = crtc->dev;
6377 struct drm_i915_private *dev_priv = dev->dev_private;
6378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6379 int pipe = intel_crtc->pipe;
6380 bool visible = base != 0;
6381
6382 if (intel_crtc->cursor_visible != visible) {
6383 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6384 if (base) {
6385 cntl &= ~CURSOR_MODE;
6386 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6387 } else {
6388 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6389 cntl |= CURSOR_MODE_DISABLE;
6390 }
6391 if (IS_HASWELL(dev))
6392 cntl |= CURSOR_PIPE_CSC_ENABLE;
6393 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6394
6395 intel_crtc->cursor_visible = visible;
6396 }
6397 /* and commit changes on next vblank */
6398 I915_WRITE(CURBASE_IVB(pipe), base);
6399 }
6400
6401 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6402 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6403 bool on)
6404 {
6405 struct drm_device *dev = crtc->dev;
6406 struct drm_i915_private *dev_priv = dev->dev_private;
6407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6408 int pipe = intel_crtc->pipe;
6409 int x = intel_crtc->cursor_x;
6410 int y = intel_crtc->cursor_y;
6411 u32 base, pos;
6412 bool visible;
6413
6414 pos = 0;
6415
6416 if (on && crtc->enabled && crtc->fb) {
6417 base = intel_crtc->cursor_addr;
6418 if (x > (int) crtc->fb->width)
6419 base = 0;
6420
6421 if (y > (int) crtc->fb->height)
6422 base = 0;
6423 } else
6424 base = 0;
6425
6426 if (x < 0) {
6427 if (x + intel_crtc->cursor_width < 0)
6428 base = 0;
6429
6430 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6431 x = -x;
6432 }
6433 pos |= x << CURSOR_X_SHIFT;
6434
6435 if (y < 0) {
6436 if (y + intel_crtc->cursor_height < 0)
6437 base = 0;
6438
6439 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6440 y = -y;
6441 }
6442 pos |= y << CURSOR_Y_SHIFT;
6443
6444 visible = base != 0;
6445 if (!visible && !intel_crtc->cursor_visible)
6446 return;
6447
6448 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6449 I915_WRITE(CURPOS_IVB(pipe), pos);
6450 ivb_update_cursor(crtc, base);
6451 } else {
6452 I915_WRITE(CURPOS(pipe), pos);
6453 if (IS_845G(dev) || IS_I865G(dev))
6454 i845_update_cursor(crtc, base);
6455 else
6456 i9xx_update_cursor(crtc, base);
6457 }
6458 }
6459
6460 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6461 struct drm_file *file,
6462 uint32_t handle,
6463 uint32_t width, uint32_t height)
6464 {
6465 struct drm_device *dev = crtc->dev;
6466 struct drm_i915_private *dev_priv = dev->dev_private;
6467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6468 struct drm_i915_gem_object *obj;
6469 uint32_t addr;
6470 int ret;
6471
6472 /* if we want to turn off the cursor ignore width and height */
6473 if (!handle) {
6474 DRM_DEBUG_KMS("cursor off\n");
6475 addr = 0;
6476 obj = NULL;
6477 mutex_lock(&dev->struct_mutex);
6478 goto finish;
6479 }
6480
6481 /* Currently we only support 64x64 cursors */
6482 if (width != 64 || height != 64) {
6483 DRM_ERROR("we currently only support 64x64 cursors\n");
6484 return -EINVAL;
6485 }
6486
6487 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6488 if (&obj->base == NULL)
6489 return -ENOENT;
6490
6491 if (obj->base.size < width * height * 4) {
6492 DRM_ERROR("buffer is to small\n");
6493 ret = -ENOMEM;
6494 goto fail;
6495 }
6496
6497 /* we only need to pin inside GTT if cursor is non-phy */
6498 mutex_lock(&dev->struct_mutex);
6499 if (!dev_priv->info->cursor_needs_physical) {
6500 unsigned alignment;
6501
6502 if (obj->tiling_mode) {
6503 DRM_ERROR("cursor cannot be tiled\n");
6504 ret = -EINVAL;
6505 goto fail_locked;
6506 }
6507
6508 /* Note that the w/a also requires 2 PTE of padding following
6509 * the bo. We currently fill all unused PTE with the shadow
6510 * page and so we should always have valid PTE following the
6511 * cursor preventing the VT-d warning.
6512 */
6513 alignment = 0;
6514 if (need_vtd_wa(dev))
6515 alignment = 64*1024;
6516
6517 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6518 if (ret) {
6519 DRM_ERROR("failed to move cursor bo into the GTT\n");
6520 goto fail_locked;
6521 }
6522
6523 ret = i915_gem_object_put_fence(obj);
6524 if (ret) {
6525 DRM_ERROR("failed to release fence for cursor");
6526 goto fail_unpin;
6527 }
6528
6529 addr = obj->gtt_offset;
6530 } else {
6531 int align = IS_I830(dev) ? 16 * 1024 : 256;
6532 ret = i915_gem_attach_phys_object(dev, obj,
6533 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6534 align);
6535 if (ret) {
6536 DRM_ERROR("failed to attach phys object\n");
6537 goto fail_locked;
6538 }
6539 addr = obj->phys_obj->handle->busaddr;
6540 }
6541
6542 if (IS_GEN2(dev))
6543 I915_WRITE(CURSIZE, (height << 12) | width);
6544
6545 finish:
6546 if (intel_crtc->cursor_bo) {
6547 if (dev_priv->info->cursor_needs_physical) {
6548 if (intel_crtc->cursor_bo != obj)
6549 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6550 } else
6551 i915_gem_object_unpin(intel_crtc->cursor_bo);
6552 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6553 }
6554
6555 mutex_unlock(&dev->struct_mutex);
6556
6557 intel_crtc->cursor_addr = addr;
6558 intel_crtc->cursor_bo = obj;
6559 intel_crtc->cursor_width = width;
6560 intel_crtc->cursor_height = height;
6561
6562 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6563
6564 return 0;
6565 fail_unpin:
6566 i915_gem_object_unpin(obj);
6567 fail_locked:
6568 mutex_unlock(&dev->struct_mutex);
6569 fail:
6570 drm_gem_object_unreference_unlocked(&obj->base);
6571 return ret;
6572 }
6573
6574 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6575 {
6576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6577
6578 intel_crtc->cursor_x = x;
6579 intel_crtc->cursor_y = y;
6580
6581 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6582
6583 return 0;
6584 }
6585
6586 /** Sets the color ramps on behalf of RandR */
6587 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6588 u16 blue, int regno)
6589 {
6590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591
6592 intel_crtc->lut_r[regno] = red >> 8;
6593 intel_crtc->lut_g[regno] = green >> 8;
6594 intel_crtc->lut_b[regno] = blue >> 8;
6595 }
6596
6597 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6598 u16 *blue, int regno)
6599 {
6600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6601
6602 *red = intel_crtc->lut_r[regno] << 8;
6603 *green = intel_crtc->lut_g[regno] << 8;
6604 *blue = intel_crtc->lut_b[regno] << 8;
6605 }
6606
6607 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6608 u16 *blue, uint32_t start, uint32_t size)
6609 {
6610 int end = (start + size > 256) ? 256 : start + size, i;
6611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6612
6613 for (i = start; i < end; i++) {
6614 intel_crtc->lut_r[i] = red[i] >> 8;
6615 intel_crtc->lut_g[i] = green[i] >> 8;
6616 intel_crtc->lut_b[i] = blue[i] >> 8;
6617 }
6618
6619 intel_crtc_load_lut(crtc);
6620 }
6621
6622 /* VESA 640x480x72Hz mode to set on the pipe */
6623 static struct drm_display_mode load_detect_mode = {
6624 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6625 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6626 };
6627
6628 static struct drm_framebuffer *
6629 intel_framebuffer_create(struct drm_device *dev,
6630 struct drm_mode_fb_cmd2 *mode_cmd,
6631 struct drm_i915_gem_object *obj)
6632 {
6633 struct intel_framebuffer *intel_fb;
6634 int ret;
6635
6636 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6637 if (!intel_fb) {
6638 drm_gem_object_unreference_unlocked(&obj->base);
6639 return ERR_PTR(-ENOMEM);
6640 }
6641
6642 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6643 if (ret) {
6644 drm_gem_object_unreference_unlocked(&obj->base);
6645 kfree(intel_fb);
6646 return ERR_PTR(ret);
6647 }
6648
6649 return &intel_fb->base;
6650 }
6651
6652 static u32
6653 intel_framebuffer_pitch_for_width(int width, int bpp)
6654 {
6655 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6656 return ALIGN(pitch, 64);
6657 }
6658
6659 static u32
6660 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6661 {
6662 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6663 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6664 }
6665
6666 static struct drm_framebuffer *
6667 intel_framebuffer_create_for_mode(struct drm_device *dev,
6668 struct drm_display_mode *mode,
6669 int depth, int bpp)
6670 {
6671 struct drm_i915_gem_object *obj;
6672 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6673
6674 obj = i915_gem_alloc_object(dev,
6675 intel_framebuffer_size_for_mode(mode, bpp));
6676 if (obj == NULL)
6677 return ERR_PTR(-ENOMEM);
6678
6679 mode_cmd.width = mode->hdisplay;
6680 mode_cmd.height = mode->vdisplay;
6681 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6682 bpp);
6683 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6684
6685 return intel_framebuffer_create(dev, &mode_cmd, obj);
6686 }
6687
6688 static struct drm_framebuffer *
6689 mode_fits_in_fbdev(struct drm_device *dev,
6690 struct drm_display_mode *mode)
6691 {
6692 struct drm_i915_private *dev_priv = dev->dev_private;
6693 struct drm_i915_gem_object *obj;
6694 struct drm_framebuffer *fb;
6695
6696 if (dev_priv->fbdev == NULL)
6697 return NULL;
6698
6699 obj = dev_priv->fbdev->ifb.obj;
6700 if (obj == NULL)
6701 return NULL;
6702
6703 fb = &dev_priv->fbdev->ifb.base;
6704 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6705 fb->bits_per_pixel))
6706 return NULL;
6707
6708 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6709 return NULL;
6710
6711 return fb;
6712 }
6713
6714 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6715 struct drm_display_mode *mode,
6716 struct intel_load_detect_pipe *old)
6717 {
6718 struct intel_crtc *intel_crtc;
6719 struct intel_encoder *intel_encoder =
6720 intel_attached_encoder(connector);
6721 struct drm_crtc *possible_crtc;
6722 struct drm_encoder *encoder = &intel_encoder->base;
6723 struct drm_crtc *crtc = NULL;
6724 struct drm_device *dev = encoder->dev;
6725 struct drm_framebuffer *fb;
6726 int i = -1;
6727
6728 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6729 connector->base.id, drm_get_connector_name(connector),
6730 encoder->base.id, drm_get_encoder_name(encoder));
6731
6732 /*
6733 * Algorithm gets a little messy:
6734 *
6735 * - if the connector already has an assigned crtc, use it (but make
6736 * sure it's on first)
6737 *
6738 * - try to find the first unused crtc that can drive this connector,
6739 * and use that if we find one
6740 */
6741
6742 /* See if we already have a CRTC for this connector */
6743 if (encoder->crtc) {
6744 crtc = encoder->crtc;
6745
6746 mutex_lock(&crtc->mutex);
6747
6748 old->dpms_mode = connector->dpms;
6749 old->load_detect_temp = false;
6750
6751 /* Make sure the crtc and connector are running */
6752 if (connector->dpms != DRM_MODE_DPMS_ON)
6753 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6754
6755 return true;
6756 }
6757
6758 /* Find an unused one (if possible) */
6759 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6760 i++;
6761 if (!(encoder->possible_crtcs & (1 << i)))
6762 continue;
6763 if (!possible_crtc->enabled) {
6764 crtc = possible_crtc;
6765 break;
6766 }
6767 }
6768
6769 /*
6770 * If we didn't find an unused CRTC, don't use any.
6771 */
6772 if (!crtc) {
6773 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6774 return false;
6775 }
6776
6777 mutex_lock(&crtc->mutex);
6778 intel_encoder->new_crtc = to_intel_crtc(crtc);
6779 to_intel_connector(connector)->new_encoder = intel_encoder;
6780
6781 intel_crtc = to_intel_crtc(crtc);
6782 old->dpms_mode = connector->dpms;
6783 old->load_detect_temp = true;
6784 old->release_fb = NULL;
6785
6786 if (!mode)
6787 mode = &load_detect_mode;
6788
6789 /* We need a framebuffer large enough to accommodate all accesses
6790 * that the plane may generate whilst we perform load detection.
6791 * We can not rely on the fbcon either being present (we get called
6792 * during its initialisation to detect all boot displays, or it may
6793 * not even exist) or that it is large enough to satisfy the
6794 * requested mode.
6795 */
6796 fb = mode_fits_in_fbdev(dev, mode);
6797 if (fb == NULL) {
6798 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6799 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6800 old->release_fb = fb;
6801 } else
6802 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6803 if (IS_ERR(fb)) {
6804 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6805 mutex_unlock(&crtc->mutex);
6806 return false;
6807 }
6808
6809 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6810 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6811 if (old->release_fb)
6812 old->release_fb->funcs->destroy(old->release_fb);
6813 mutex_unlock(&crtc->mutex);
6814 return false;
6815 }
6816
6817 /* let the connector get through one full cycle before testing */
6818 intel_wait_for_vblank(dev, intel_crtc->pipe);
6819 return true;
6820 }
6821
6822 void intel_release_load_detect_pipe(struct drm_connector *connector,
6823 struct intel_load_detect_pipe *old)
6824 {
6825 struct intel_encoder *intel_encoder =
6826 intel_attached_encoder(connector);
6827 struct drm_encoder *encoder = &intel_encoder->base;
6828 struct drm_crtc *crtc = encoder->crtc;
6829
6830 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6831 connector->base.id, drm_get_connector_name(connector),
6832 encoder->base.id, drm_get_encoder_name(encoder));
6833
6834 if (old->load_detect_temp) {
6835 to_intel_connector(connector)->new_encoder = NULL;
6836 intel_encoder->new_crtc = NULL;
6837 intel_set_mode(crtc, NULL, 0, 0, NULL);
6838
6839 if (old->release_fb) {
6840 drm_framebuffer_unregister_private(old->release_fb);
6841 drm_framebuffer_unreference(old->release_fb);
6842 }
6843
6844 mutex_unlock(&crtc->mutex);
6845 return;
6846 }
6847
6848 /* Switch crtc and encoder back off if necessary */
6849 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6850 connector->funcs->dpms(connector, old->dpms_mode);
6851
6852 mutex_unlock(&crtc->mutex);
6853 }
6854
6855 /* Returns the clock of the currently programmed mode of the given pipe. */
6856 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6857 {
6858 struct drm_i915_private *dev_priv = dev->dev_private;
6859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6860 int pipe = intel_crtc->pipe;
6861 u32 dpll = I915_READ(DPLL(pipe));
6862 u32 fp;
6863 intel_clock_t clock;
6864
6865 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6866 fp = I915_READ(FP0(pipe));
6867 else
6868 fp = I915_READ(FP1(pipe));
6869
6870 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6871 if (IS_PINEVIEW(dev)) {
6872 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6873 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6874 } else {
6875 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6876 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6877 }
6878
6879 if (!IS_GEN2(dev)) {
6880 if (IS_PINEVIEW(dev))
6881 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6882 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6883 else
6884 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6885 DPLL_FPA01_P1_POST_DIV_SHIFT);
6886
6887 switch (dpll & DPLL_MODE_MASK) {
6888 case DPLLB_MODE_DAC_SERIAL:
6889 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6890 5 : 10;
6891 break;
6892 case DPLLB_MODE_LVDS:
6893 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6894 7 : 14;
6895 break;
6896 default:
6897 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6898 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6899 return 0;
6900 }
6901
6902 if (IS_PINEVIEW(dev))
6903 pineview_clock(96000, &clock);
6904 else
6905 i9xx_clock(96000, &clock);
6906 } else {
6907 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6908
6909 if (is_lvds) {
6910 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6911 DPLL_FPA01_P1_POST_DIV_SHIFT);
6912 clock.p2 = 14;
6913
6914 if ((dpll & PLL_REF_INPUT_MASK) ==
6915 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6916 /* XXX: might not be 66MHz */
6917 i9xx_clock(66000, &clock);
6918 } else
6919 i9xx_clock(48000, &clock);
6920 } else {
6921 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6922 clock.p1 = 2;
6923 else {
6924 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6925 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6926 }
6927 if (dpll & PLL_P2_DIVIDE_BY_4)
6928 clock.p2 = 4;
6929 else
6930 clock.p2 = 2;
6931
6932 i9xx_clock(48000, &clock);
6933 }
6934 }
6935
6936 /* XXX: It would be nice to validate the clocks, but we can't reuse
6937 * i830PllIsValid() because it relies on the xf86_config connector
6938 * configuration being accurate, which it isn't necessarily.
6939 */
6940
6941 return clock.dot;
6942 }
6943
6944 /** Returns the currently programmed mode of the given pipe. */
6945 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6946 struct drm_crtc *crtc)
6947 {
6948 struct drm_i915_private *dev_priv = dev->dev_private;
6949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6950 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6951 struct drm_display_mode *mode;
6952 int htot = I915_READ(HTOTAL(cpu_transcoder));
6953 int hsync = I915_READ(HSYNC(cpu_transcoder));
6954 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6955 int vsync = I915_READ(VSYNC(cpu_transcoder));
6956
6957 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6958 if (!mode)
6959 return NULL;
6960
6961 mode->clock = intel_crtc_clock_get(dev, crtc);
6962 mode->hdisplay = (htot & 0xffff) + 1;
6963 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6964 mode->hsync_start = (hsync & 0xffff) + 1;
6965 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6966 mode->vdisplay = (vtot & 0xffff) + 1;
6967 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6968 mode->vsync_start = (vsync & 0xffff) + 1;
6969 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6970
6971 drm_mode_set_name(mode);
6972
6973 return mode;
6974 }
6975
6976 static void intel_increase_pllclock(struct drm_crtc *crtc)
6977 {
6978 struct drm_device *dev = crtc->dev;
6979 drm_i915_private_t *dev_priv = dev->dev_private;
6980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6981 int pipe = intel_crtc->pipe;
6982 int dpll_reg = DPLL(pipe);
6983 int dpll;
6984
6985 if (HAS_PCH_SPLIT(dev))
6986 return;
6987
6988 if (!dev_priv->lvds_downclock_avail)
6989 return;
6990
6991 dpll = I915_READ(dpll_reg);
6992 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6993 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6994
6995 assert_panel_unlocked(dev_priv, pipe);
6996
6997 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6998 I915_WRITE(dpll_reg, dpll);
6999 intel_wait_for_vblank(dev, pipe);
7000
7001 dpll = I915_READ(dpll_reg);
7002 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7003 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7004 }
7005 }
7006
7007 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7008 {
7009 struct drm_device *dev = crtc->dev;
7010 drm_i915_private_t *dev_priv = dev->dev_private;
7011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7012
7013 if (HAS_PCH_SPLIT(dev))
7014 return;
7015
7016 if (!dev_priv->lvds_downclock_avail)
7017 return;
7018
7019 /*
7020 * Since this is called by a timer, we should never get here in
7021 * the manual case.
7022 */
7023 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7024 int pipe = intel_crtc->pipe;
7025 int dpll_reg = DPLL(pipe);
7026 int dpll;
7027
7028 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7029
7030 assert_panel_unlocked(dev_priv, pipe);
7031
7032 dpll = I915_READ(dpll_reg);
7033 dpll |= DISPLAY_RATE_SELECT_FPA1;
7034 I915_WRITE(dpll_reg, dpll);
7035 intel_wait_for_vblank(dev, pipe);
7036 dpll = I915_READ(dpll_reg);
7037 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7038 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7039 }
7040
7041 }
7042
7043 void intel_mark_busy(struct drm_device *dev)
7044 {
7045 i915_update_gfx_val(dev->dev_private);
7046 }
7047
7048 void intel_mark_idle(struct drm_device *dev)
7049 {
7050 struct drm_crtc *crtc;
7051
7052 if (!i915_powersave)
7053 return;
7054
7055 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7056 if (!crtc->fb)
7057 continue;
7058
7059 intel_decrease_pllclock(crtc);
7060 }
7061 }
7062
7063 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7064 struct intel_ring_buffer *ring)
7065 {
7066 struct drm_device *dev = obj->base.dev;
7067 struct drm_crtc *crtc;
7068
7069 if (!i915_powersave)
7070 return;
7071
7072 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7073 if (!crtc->fb)
7074 continue;
7075
7076 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7077 continue;
7078
7079 intel_increase_pllclock(crtc);
7080 if (ring && intel_fbc_enabled(dev))
7081 ring->fbc_dirty = true;
7082 }
7083 }
7084
7085 static void intel_crtc_destroy(struct drm_crtc *crtc)
7086 {
7087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7088 struct drm_device *dev = crtc->dev;
7089 struct intel_unpin_work *work;
7090 unsigned long flags;
7091
7092 spin_lock_irqsave(&dev->event_lock, flags);
7093 work = intel_crtc->unpin_work;
7094 intel_crtc->unpin_work = NULL;
7095 spin_unlock_irqrestore(&dev->event_lock, flags);
7096
7097 if (work) {
7098 cancel_work_sync(&work->work);
7099 kfree(work);
7100 }
7101
7102 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7103
7104 drm_crtc_cleanup(crtc);
7105
7106 kfree(intel_crtc);
7107 }
7108
7109 static void intel_unpin_work_fn(struct work_struct *__work)
7110 {
7111 struct intel_unpin_work *work =
7112 container_of(__work, struct intel_unpin_work, work);
7113 struct drm_device *dev = work->crtc->dev;
7114
7115 mutex_lock(&dev->struct_mutex);
7116 intel_unpin_fb_obj(work->old_fb_obj);
7117 drm_gem_object_unreference(&work->pending_flip_obj->base);
7118 drm_gem_object_unreference(&work->old_fb_obj->base);
7119
7120 intel_update_fbc(dev);
7121 mutex_unlock(&dev->struct_mutex);
7122
7123 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7124 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7125
7126 kfree(work);
7127 }
7128
7129 static void do_intel_finish_page_flip(struct drm_device *dev,
7130 struct drm_crtc *crtc)
7131 {
7132 drm_i915_private_t *dev_priv = dev->dev_private;
7133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7134 struct intel_unpin_work *work;
7135 unsigned long flags;
7136
7137 /* Ignore early vblank irqs */
7138 if (intel_crtc == NULL)
7139 return;
7140
7141 spin_lock_irqsave(&dev->event_lock, flags);
7142 work = intel_crtc->unpin_work;
7143
7144 /* Ensure we don't miss a work->pending update ... */
7145 smp_rmb();
7146
7147 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7148 spin_unlock_irqrestore(&dev->event_lock, flags);
7149 return;
7150 }
7151
7152 /* and that the unpin work is consistent wrt ->pending. */
7153 smp_rmb();
7154
7155 intel_crtc->unpin_work = NULL;
7156
7157 if (work->event)
7158 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7159
7160 drm_vblank_put(dev, intel_crtc->pipe);
7161
7162 spin_unlock_irqrestore(&dev->event_lock, flags);
7163
7164 wake_up_all(&dev_priv->pending_flip_queue);
7165
7166 queue_work(dev_priv->wq, &work->work);
7167
7168 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7169 }
7170
7171 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7172 {
7173 drm_i915_private_t *dev_priv = dev->dev_private;
7174 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7175
7176 do_intel_finish_page_flip(dev, crtc);
7177 }
7178
7179 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7180 {
7181 drm_i915_private_t *dev_priv = dev->dev_private;
7182 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7183
7184 do_intel_finish_page_flip(dev, crtc);
7185 }
7186
7187 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7188 {
7189 drm_i915_private_t *dev_priv = dev->dev_private;
7190 struct intel_crtc *intel_crtc =
7191 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7192 unsigned long flags;
7193
7194 /* NB: An MMIO update of the plane base pointer will also
7195 * generate a page-flip completion irq, i.e. every modeset
7196 * is also accompanied by a spurious intel_prepare_page_flip().
7197 */
7198 spin_lock_irqsave(&dev->event_lock, flags);
7199 if (intel_crtc->unpin_work)
7200 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7201 spin_unlock_irqrestore(&dev->event_lock, flags);
7202 }
7203
7204 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7205 {
7206 /* Ensure that the work item is consistent when activating it ... */
7207 smp_wmb();
7208 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7209 /* and that it is marked active as soon as the irq could fire. */
7210 smp_wmb();
7211 }
7212
7213 static int intel_gen2_queue_flip(struct drm_device *dev,
7214 struct drm_crtc *crtc,
7215 struct drm_framebuffer *fb,
7216 struct drm_i915_gem_object *obj)
7217 {
7218 struct drm_i915_private *dev_priv = dev->dev_private;
7219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7220 u32 flip_mask;
7221 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7222 int ret;
7223
7224 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7225 if (ret)
7226 goto err;
7227
7228 ret = intel_ring_begin(ring, 6);
7229 if (ret)
7230 goto err_unpin;
7231
7232 /* Can't queue multiple flips, so wait for the previous
7233 * one to finish before executing the next.
7234 */
7235 if (intel_crtc->plane)
7236 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7237 else
7238 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7239 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7240 intel_ring_emit(ring, MI_NOOP);
7241 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7242 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7243 intel_ring_emit(ring, fb->pitches[0]);
7244 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7245 intel_ring_emit(ring, 0); /* aux display base address, unused */
7246
7247 intel_mark_page_flip_active(intel_crtc);
7248 intel_ring_advance(ring);
7249 return 0;
7250
7251 err_unpin:
7252 intel_unpin_fb_obj(obj);
7253 err:
7254 return ret;
7255 }
7256
7257 static int intel_gen3_queue_flip(struct drm_device *dev,
7258 struct drm_crtc *crtc,
7259 struct drm_framebuffer *fb,
7260 struct drm_i915_gem_object *obj)
7261 {
7262 struct drm_i915_private *dev_priv = dev->dev_private;
7263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7264 u32 flip_mask;
7265 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7266 int ret;
7267
7268 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7269 if (ret)
7270 goto err;
7271
7272 ret = intel_ring_begin(ring, 6);
7273 if (ret)
7274 goto err_unpin;
7275
7276 if (intel_crtc->plane)
7277 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7278 else
7279 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7280 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7281 intel_ring_emit(ring, MI_NOOP);
7282 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7283 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7284 intel_ring_emit(ring, fb->pitches[0]);
7285 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7286 intel_ring_emit(ring, MI_NOOP);
7287
7288 intel_mark_page_flip_active(intel_crtc);
7289 intel_ring_advance(ring);
7290 return 0;
7291
7292 err_unpin:
7293 intel_unpin_fb_obj(obj);
7294 err:
7295 return ret;
7296 }
7297
7298 static int intel_gen4_queue_flip(struct drm_device *dev,
7299 struct drm_crtc *crtc,
7300 struct drm_framebuffer *fb,
7301 struct drm_i915_gem_object *obj)
7302 {
7303 struct drm_i915_private *dev_priv = dev->dev_private;
7304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7305 uint32_t pf, pipesrc;
7306 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7307 int ret;
7308
7309 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7310 if (ret)
7311 goto err;
7312
7313 ret = intel_ring_begin(ring, 4);
7314 if (ret)
7315 goto err_unpin;
7316
7317 /* i965+ uses the linear or tiled offsets from the
7318 * Display Registers (which do not change across a page-flip)
7319 * so we need only reprogram the base address.
7320 */
7321 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7322 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7323 intel_ring_emit(ring, fb->pitches[0]);
7324 intel_ring_emit(ring,
7325 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7326 obj->tiling_mode);
7327
7328 /* XXX Enabling the panel-fitter across page-flip is so far
7329 * untested on non-native modes, so ignore it for now.
7330 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7331 */
7332 pf = 0;
7333 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7334 intel_ring_emit(ring, pf | pipesrc);
7335
7336 intel_mark_page_flip_active(intel_crtc);
7337 intel_ring_advance(ring);
7338 return 0;
7339
7340 err_unpin:
7341 intel_unpin_fb_obj(obj);
7342 err:
7343 return ret;
7344 }
7345
7346 static int intel_gen6_queue_flip(struct drm_device *dev,
7347 struct drm_crtc *crtc,
7348 struct drm_framebuffer *fb,
7349 struct drm_i915_gem_object *obj)
7350 {
7351 struct drm_i915_private *dev_priv = dev->dev_private;
7352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7353 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7354 uint32_t pf, pipesrc;
7355 int ret;
7356
7357 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7358 if (ret)
7359 goto err;
7360
7361 ret = intel_ring_begin(ring, 4);
7362 if (ret)
7363 goto err_unpin;
7364
7365 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7366 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7367 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7368 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7369
7370 /* Contrary to the suggestions in the documentation,
7371 * "Enable Panel Fitter" does not seem to be required when page
7372 * flipping with a non-native mode, and worse causes a normal
7373 * modeset to fail.
7374 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7375 */
7376 pf = 0;
7377 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7378 intel_ring_emit(ring, pf | pipesrc);
7379
7380 intel_mark_page_flip_active(intel_crtc);
7381 intel_ring_advance(ring);
7382 return 0;
7383
7384 err_unpin:
7385 intel_unpin_fb_obj(obj);
7386 err:
7387 return ret;
7388 }
7389
7390 /*
7391 * On gen7 we currently use the blit ring because (in early silicon at least)
7392 * the render ring doesn't give us interrpts for page flip completion, which
7393 * means clients will hang after the first flip is queued. Fortunately the
7394 * blit ring generates interrupts properly, so use it instead.
7395 */
7396 static int intel_gen7_queue_flip(struct drm_device *dev,
7397 struct drm_crtc *crtc,
7398 struct drm_framebuffer *fb,
7399 struct drm_i915_gem_object *obj)
7400 {
7401 struct drm_i915_private *dev_priv = dev->dev_private;
7402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7403 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7404 uint32_t plane_bit = 0;
7405 int ret;
7406
7407 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7408 if (ret)
7409 goto err;
7410
7411 switch(intel_crtc->plane) {
7412 case PLANE_A:
7413 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7414 break;
7415 case PLANE_B:
7416 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7417 break;
7418 case PLANE_C:
7419 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7420 break;
7421 default:
7422 WARN_ONCE(1, "unknown plane in flip command\n");
7423 ret = -ENODEV;
7424 goto err_unpin;
7425 }
7426
7427 ret = intel_ring_begin(ring, 4);
7428 if (ret)
7429 goto err_unpin;
7430
7431 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7432 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7433 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7434 intel_ring_emit(ring, (MI_NOOP));
7435
7436 intel_mark_page_flip_active(intel_crtc);
7437 intel_ring_advance(ring);
7438 return 0;
7439
7440 err_unpin:
7441 intel_unpin_fb_obj(obj);
7442 err:
7443 return ret;
7444 }
7445
7446 static int intel_default_queue_flip(struct drm_device *dev,
7447 struct drm_crtc *crtc,
7448 struct drm_framebuffer *fb,
7449 struct drm_i915_gem_object *obj)
7450 {
7451 return -ENODEV;
7452 }
7453
7454 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7455 struct drm_framebuffer *fb,
7456 struct drm_pending_vblank_event *event)
7457 {
7458 struct drm_device *dev = crtc->dev;
7459 struct drm_i915_private *dev_priv = dev->dev_private;
7460 struct drm_framebuffer *old_fb = crtc->fb;
7461 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7463 struct intel_unpin_work *work;
7464 unsigned long flags;
7465 int ret;
7466
7467 /* Can't change pixel format via MI display flips. */
7468 if (fb->pixel_format != crtc->fb->pixel_format)
7469 return -EINVAL;
7470
7471 /*
7472 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7473 * Note that pitch changes could also affect these register.
7474 */
7475 if (INTEL_INFO(dev)->gen > 3 &&
7476 (fb->offsets[0] != crtc->fb->offsets[0] ||
7477 fb->pitches[0] != crtc->fb->pitches[0]))
7478 return -EINVAL;
7479
7480 work = kzalloc(sizeof *work, GFP_KERNEL);
7481 if (work == NULL)
7482 return -ENOMEM;
7483
7484 work->event = event;
7485 work->crtc = crtc;
7486 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7487 INIT_WORK(&work->work, intel_unpin_work_fn);
7488
7489 ret = drm_vblank_get(dev, intel_crtc->pipe);
7490 if (ret)
7491 goto free_work;
7492
7493 /* We borrow the event spin lock for protecting unpin_work */
7494 spin_lock_irqsave(&dev->event_lock, flags);
7495 if (intel_crtc->unpin_work) {
7496 spin_unlock_irqrestore(&dev->event_lock, flags);
7497 kfree(work);
7498 drm_vblank_put(dev, intel_crtc->pipe);
7499
7500 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7501 return -EBUSY;
7502 }
7503 intel_crtc->unpin_work = work;
7504 spin_unlock_irqrestore(&dev->event_lock, flags);
7505
7506 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7507 flush_workqueue(dev_priv->wq);
7508
7509 ret = i915_mutex_lock_interruptible(dev);
7510 if (ret)
7511 goto cleanup;
7512
7513 /* Reference the objects for the scheduled work. */
7514 drm_gem_object_reference(&work->old_fb_obj->base);
7515 drm_gem_object_reference(&obj->base);
7516
7517 crtc->fb = fb;
7518
7519 work->pending_flip_obj = obj;
7520
7521 work->enable_stall_check = true;
7522
7523 atomic_inc(&intel_crtc->unpin_work_count);
7524 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7525
7526 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7527 if (ret)
7528 goto cleanup_pending;
7529
7530 intel_disable_fbc(dev);
7531 intel_mark_fb_busy(obj, NULL);
7532 mutex_unlock(&dev->struct_mutex);
7533
7534 trace_i915_flip_request(intel_crtc->plane, obj);
7535
7536 return 0;
7537
7538 cleanup_pending:
7539 atomic_dec(&intel_crtc->unpin_work_count);
7540 crtc->fb = old_fb;
7541 drm_gem_object_unreference(&work->old_fb_obj->base);
7542 drm_gem_object_unreference(&obj->base);
7543 mutex_unlock(&dev->struct_mutex);
7544
7545 cleanup:
7546 spin_lock_irqsave(&dev->event_lock, flags);
7547 intel_crtc->unpin_work = NULL;
7548 spin_unlock_irqrestore(&dev->event_lock, flags);
7549
7550 drm_vblank_put(dev, intel_crtc->pipe);
7551 free_work:
7552 kfree(work);
7553
7554 return ret;
7555 }
7556
7557 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7558 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7559 .load_lut = intel_crtc_load_lut,
7560 };
7561
7562 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7563 struct drm_crtc *crtc)
7564 {
7565 struct drm_device *dev;
7566 struct drm_crtc *tmp;
7567 int crtc_mask = 1;
7568
7569 WARN(!crtc, "checking null crtc?\n");
7570
7571 dev = crtc->dev;
7572
7573 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7574 if (tmp == crtc)
7575 break;
7576 crtc_mask <<= 1;
7577 }
7578
7579 if (encoder->possible_crtcs & crtc_mask)
7580 return true;
7581 return false;
7582 }
7583
7584 /**
7585 * intel_modeset_update_staged_output_state
7586 *
7587 * Updates the staged output configuration state, e.g. after we've read out the
7588 * current hw state.
7589 */
7590 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7591 {
7592 struct intel_encoder *encoder;
7593 struct intel_connector *connector;
7594
7595 list_for_each_entry(connector, &dev->mode_config.connector_list,
7596 base.head) {
7597 connector->new_encoder =
7598 to_intel_encoder(connector->base.encoder);
7599 }
7600
7601 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7602 base.head) {
7603 encoder->new_crtc =
7604 to_intel_crtc(encoder->base.crtc);
7605 }
7606 }
7607
7608 /**
7609 * intel_modeset_commit_output_state
7610 *
7611 * This function copies the stage display pipe configuration to the real one.
7612 */
7613 static void intel_modeset_commit_output_state(struct drm_device *dev)
7614 {
7615 struct intel_encoder *encoder;
7616 struct intel_connector *connector;
7617
7618 list_for_each_entry(connector, &dev->mode_config.connector_list,
7619 base.head) {
7620 connector->base.encoder = &connector->new_encoder->base;
7621 }
7622
7623 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7624 base.head) {
7625 encoder->base.crtc = &encoder->new_crtc->base;
7626 }
7627 }
7628
7629 static void
7630 connected_sink_compute_bpp(struct intel_connector * connector,
7631 struct intel_crtc_config *pipe_config)
7632 {
7633 int bpp = pipe_config->pipe_bpp;
7634
7635 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7636 connector->base.base.id,
7637 drm_get_connector_name(&connector->base));
7638
7639 /* Don't use an invalid EDID bpc value */
7640 if (connector->base.display_info.bpc &&
7641 connector->base.display_info.bpc * 3 < bpp) {
7642 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7643 bpp, connector->base.display_info.bpc*3);
7644 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7645 }
7646
7647 /* Clamp bpp to 8 on screens without EDID 1.4 */
7648 if (connector->base.display_info.bpc == 0 && bpp > 24) {
7649 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7650 bpp);
7651 pipe_config->pipe_bpp = 24;
7652 }
7653 }
7654
7655 static int
7656 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7657 struct drm_framebuffer *fb,
7658 struct intel_crtc_config *pipe_config)
7659 {
7660 struct drm_device *dev = crtc->base.dev;
7661 struct intel_connector *connector;
7662 int bpp;
7663
7664 switch (fb->pixel_format) {
7665 case DRM_FORMAT_C8:
7666 bpp = 8*3; /* since we go through a colormap */
7667 break;
7668 case DRM_FORMAT_XRGB1555:
7669 case DRM_FORMAT_ARGB1555:
7670 /* checked in intel_framebuffer_init already */
7671 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7672 return -EINVAL;
7673 case DRM_FORMAT_RGB565:
7674 bpp = 6*3; /* min is 18bpp */
7675 break;
7676 case DRM_FORMAT_XBGR8888:
7677 case DRM_FORMAT_ABGR8888:
7678 /* checked in intel_framebuffer_init already */
7679 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7680 return -EINVAL;
7681 case DRM_FORMAT_XRGB8888:
7682 case DRM_FORMAT_ARGB8888:
7683 bpp = 8*3;
7684 break;
7685 case DRM_FORMAT_XRGB2101010:
7686 case DRM_FORMAT_ARGB2101010:
7687 case DRM_FORMAT_XBGR2101010:
7688 case DRM_FORMAT_ABGR2101010:
7689 /* checked in intel_framebuffer_init already */
7690 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7691 return -EINVAL;
7692 bpp = 10*3;
7693 break;
7694 /* TODO: gen4+ supports 16 bpc floating point, too. */
7695 default:
7696 DRM_DEBUG_KMS("unsupported depth\n");
7697 return -EINVAL;
7698 }
7699
7700 pipe_config->pipe_bpp = bpp;
7701
7702 /* Clamp display bpp to EDID value */
7703 list_for_each_entry(connector, &dev->mode_config.connector_list,
7704 base.head) {
7705 if (!connector->new_encoder ||
7706 connector->new_encoder->new_crtc != crtc)
7707 continue;
7708
7709 connected_sink_compute_bpp(connector, pipe_config);
7710 }
7711
7712 return bpp;
7713 }
7714
7715 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7716 struct intel_crtc_config *pipe_config,
7717 const char *context)
7718 {
7719 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7720 context, pipe_name(crtc->pipe));
7721
7722 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7723 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7724 pipe_config->pipe_bpp, pipe_config->dither);
7725 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7726 pipe_config->has_pch_encoder,
7727 pipe_config->fdi_lanes,
7728 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7729 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7730 pipe_config->fdi_m_n.tu);
7731 DRM_DEBUG_KMS("requested mode:\n");
7732 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7733 DRM_DEBUG_KMS("adjusted mode:\n");
7734 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7735 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7736 pipe_config->gmch_pfit.control,
7737 pipe_config->gmch_pfit.pgm_ratios,
7738 pipe_config->gmch_pfit.lvds_border_bits);
7739 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7740 pipe_config->pch_pfit.pos,
7741 pipe_config->pch_pfit.size);
7742 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7743 }
7744
7745 static bool check_encoder_cloning(struct drm_crtc *crtc)
7746 {
7747 int num_encoders = 0;
7748 bool uncloneable_encoders = false;
7749 struct intel_encoder *encoder;
7750
7751 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
7752 base.head) {
7753 if (&encoder->new_crtc->base != crtc)
7754 continue;
7755
7756 num_encoders++;
7757 if (!encoder->cloneable)
7758 uncloneable_encoders = true;
7759 }
7760
7761 return !(num_encoders > 1 && uncloneable_encoders);
7762 }
7763
7764 static struct intel_crtc_config *
7765 intel_modeset_pipe_config(struct drm_crtc *crtc,
7766 struct drm_framebuffer *fb,
7767 struct drm_display_mode *mode)
7768 {
7769 struct drm_device *dev = crtc->dev;
7770 struct drm_encoder_helper_funcs *encoder_funcs;
7771 struct intel_encoder *encoder;
7772 struct intel_crtc_config *pipe_config;
7773 int plane_bpp, ret = -EINVAL;
7774 bool retry = true;
7775
7776 if (!check_encoder_cloning(crtc)) {
7777 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
7778 return ERR_PTR(-EINVAL);
7779 }
7780
7781 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7782 if (!pipe_config)
7783 return ERR_PTR(-ENOMEM);
7784
7785 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7786 drm_mode_copy(&pipe_config->requested_mode, mode);
7787 pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
7788 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7789
7790 /* Compute a starting value for pipe_config->pipe_bpp taking the source
7791 * plane pixel format and any sink constraints into account. Returns the
7792 * source plane bpp so that dithering can be selected on mismatches
7793 * after encoders and crtc also have had their say. */
7794 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
7795 fb, pipe_config);
7796 if (plane_bpp < 0)
7797 goto fail;
7798
7799 encoder_retry:
7800 /* Ensure the port clock defaults are reset when retrying. */
7801 pipe_config->port_clock = 0;
7802 pipe_config->pixel_multiplier = 1;
7803
7804 /* Pass our mode to the connectors and the CRTC to give them a chance to
7805 * adjust it according to limitations or connector properties, and also
7806 * a chance to reject the mode entirely.
7807 */
7808 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7809 base.head) {
7810
7811 if (&encoder->new_crtc->base != crtc)
7812 continue;
7813
7814 if (encoder->compute_config) {
7815 if (!(encoder->compute_config(encoder, pipe_config))) {
7816 DRM_DEBUG_KMS("Encoder config failure\n");
7817 goto fail;
7818 }
7819
7820 continue;
7821 }
7822
7823 encoder_funcs = encoder->base.helper_private;
7824 if (!(encoder_funcs->mode_fixup(&encoder->base,
7825 &pipe_config->requested_mode,
7826 &pipe_config->adjusted_mode))) {
7827 DRM_DEBUG_KMS("Encoder fixup failed\n");
7828 goto fail;
7829 }
7830 }
7831
7832 /* Set default port clock if not overwritten by the encoder. Needs to be
7833 * done afterwards in case the encoder adjusts the mode. */
7834 if (!pipe_config->port_clock)
7835 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
7836
7837 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
7838 if (ret < 0) {
7839 DRM_DEBUG_KMS("CRTC fixup failed\n");
7840 goto fail;
7841 }
7842
7843 if (ret == RETRY) {
7844 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7845 ret = -EINVAL;
7846 goto fail;
7847 }
7848
7849 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7850 retry = false;
7851 goto encoder_retry;
7852 }
7853
7854 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7855 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7856 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7857
7858 return pipe_config;
7859 fail:
7860 kfree(pipe_config);
7861 return ERR_PTR(ret);
7862 }
7863
7864 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7865 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7866 static void
7867 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7868 unsigned *prepare_pipes, unsigned *disable_pipes)
7869 {
7870 struct intel_crtc *intel_crtc;
7871 struct drm_device *dev = crtc->dev;
7872 struct intel_encoder *encoder;
7873 struct intel_connector *connector;
7874 struct drm_crtc *tmp_crtc;
7875
7876 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7877
7878 /* Check which crtcs have changed outputs connected to them, these need
7879 * to be part of the prepare_pipes mask. We don't (yet) support global
7880 * modeset across multiple crtcs, so modeset_pipes will only have one
7881 * bit set at most. */
7882 list_for_each_entry(connector, &dev->mode_config.connector_list,
7883 base.head) {
7884 if (connector->base.encoder == &connector->new_encoder->base)
7885 continue;
7886
7887 if (connector->base.encoder) {
7888 tmp_crtc = connector->base.encoder->crtc;
7889
7890 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7891 }
7892
7893 if (connector->new_encoder)
7894 *prepare_pipes |=
7895 1 << connector->new_encoder->new_crtc->pipe;
7896 }
7897
7898 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7899 base.head) {
7900 if (encoder->base.crtc == &encoder->new_crtc->base)
7901 continue;
7902
7903 if (encoder->base.crtc) {
7904 tmp_crtc = encoder->base.crtc;
7905
7906 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7907 }
7908
7909 if (encoder->new_crtc)
7910 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7911 }
7912
7913 /* Check for any pipes that will be fully disabled ... */
7914 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7915 base.head) {
7916 bool used = false;
7917
7918 /* Don't try to disable disabled crtcs. */
7919 if (!intel_crtc->base.enabled)
7920 continue;
7921
7922 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7923 base.head) {
7924 if (encoder->new_crtc == intel_crtc)
7925 used = true;
7926 }
7927
7928 if (!used)
7929 *disable_pipes |= 1 << intel_crtc->pipe;
7930 }
7931
7932
7933 /* set_mode is also used to update properties on life display pipes. */
7934 intel_crtc = to_intel_crtc(crtc);
7935 if (crtc->enabled)
7936 *prepare_pipes |= 1 << intel_crtc->pipe;
7937
7938 /*
7939 * For simplicity do a full modeset on any pipe where the output routing
7940 * changed. We could be more clever, but that would require us to be
7941 * more careful with calling the relevant encoder->mode_set functions.
7942 */
7943 if (*prepare_pipes)
7944 *modeset_pipes = *prepare_pipes;
7945
7946 /* ... and mask these out. */
7947 *modeset_pipes &= ~(*disable_pipes);
7948 *prepare_pipes &= ~(*disable_pipes);
7949
7950 /*
7951 * HACK: We don't (yet) fully support global modesets. intel_set_config
7952 * obies this rule, but the modeset restore mode of
7953 * intel_modeset_setup_hw_state does not.
7954 */
7955 *modeset_pipes &= 1 << intel_crtc->pipe;
7956 *prepare_pipes &= 1 << intel_crtc->pipe;
7957
7958 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7959 *modeset_pipes, *prepare_pipes, *disable_pipes);
7960 }
7961
7962 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7963 {
7964 struct drm_encoder *encoder;
7965 struct drm_device *dev = crtc->dev;
7966
7967 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7968 if (encoder->crtc == crtc)
7969 return true;
7970
7971 return false;
7972 }
7973
7974 static void
7975 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7976 {
7977 struct intel_encoder *intel_encoder;
7978 struct intel_crtc *intel_crtc;
7979 struct drm_connector *connector;
7980
7981 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7982 base.head) {
7983 if (!intel_encoder->base.crtc)
7984 continue;
7985
7986 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7987
7988 if (prepare_pipes & (1 << intel_crtc->pipe))
7989 intel_encoder->connectors_active = false;
7990 }
7991
7992 intel_modeset_commit_output_state(dev);
7993
7994 /* Update computed state. */
7995 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7996 base.head) {
7997 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7998 }
7999
8000 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8001 if (!connector->encoder || !connector->encoder->crtc)
8002 continue;
8003
8004 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8005
8006 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8007 struct drm_property *dpms_property =
8008 dev->mode_config.dpms_property;
8009
8010 connector->dpms = DRM_MODE_DPMS_ON;
8011 drm_object_property_set_value(&connector->base,
8012 dpms_property,
8013 DRM_MODE_DPMS_ON);
8014
8015 intel_encoder = to_intel_encoder(connector->encoder);
8016 intel_encoder->connectors_active = true;
8017 }
8018 }
8019
8020 }
8021
8022 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8023 list_for_each_entry((intel_crtc), \
8024 &(dev)->mode_config.crtc_list, \
8025 base.head) \
8026 if (mask & (1 <<(intel_crtc)->pipe))
8027
8028 static bool
8029 intel_pipe_config_compare(struct drm_device *dev,
8030 struct intel_crtc_config *current_config,
8031 struct intel_crtc_config *pipe_config)
8032 {
8033 #define PIPE_CONF_CHECK_X(name) \
8034 if (current_config->name != pipe_config->name) { \
8035 DRM_ERROR("mismatch in " #name " " \
8036 "(expected 0x%08x, found 0x%08x)\n", \
8037 current_config->name, \
8038 pipe_config->name); \
8039 return false; \
8040 }
8041
8042 #define PIPE_CONF_CHECK_I(name) \
8043 if (current_config->name != pipe_config->name) { \
8044 DRM_ERROR("mismatch in " #name " " \
8045 "(expected %i, found %i)\n", \
8046 current_config->name, \
8047 pipe_config->name); \
8048 return false; \
8049 }
8050
8051 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8052 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8053 DRM_ERROR("mismatch in " #name " " \
8054 "(expected %i, found %i)\n", \
8055 current_config->name & (mask), \
8056 pipe_config->name & (mask)); \
8057 return false; \
8058 }
8059
8060 #define PIPE_CONF_QUIRK(quirk) \
8061 ((current_config->quirks | pipe_config->quirks) & (quirk))
8062
8063 PIPE_CONF_CHECK_I(cpu_transcoder);
8064
8065 PIPE_CONF_CHECK_I(has_pch_encoder);
8066 PIPE_CONF_CHECK_I(fdi_lanes);
8067 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8068 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8069 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8070 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8071 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8072
8073 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8074 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8075 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8076 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8077 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8078 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8079
8080 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8081 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8082 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8083 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8084 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8085 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8086
8087 PIPE_CONF_CHECK_I(pixel_multiplier);
8088
8089 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8090 DRM_MODE_FLAG_INTERLACE);
8091
8092 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8093 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8094 DRM_MODE_FLAG_PHSYNC);
8095 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8096 DRM_MODE_FLAG_NHSYNC);
8097 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8098 DRM_MODE_FLAG_PVSYNC);
8099 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8100 DRM_MODE_FLAG_NVSYNC);
8101 }
8102
8103 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8104 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8105
8106 PIPE_CONF_CHECK_I(gmch_pfit.control);
8107 /* pfit ratios are autocomputed by the hw on gen4+ */
8108 if (INTEL_INFO(dev)->gen < 4)
8109 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8110 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8111 PIPE_CONF_CHECK_I(pch_pfit.pos);
8112 PIPE_CONF_CHECK_I(pch_pfit.size);
8113
8114 PIPE_CONF_CHECK_I(ips_enabled);
8115
8116 PIPE_CONF_CHECK_I(shared_dpll);
8117 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8118 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8119 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8120 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8121
8122 #undef PIPE_CONF_CHECK_X
8123 #undef PIPE_CONF_CHECK_I
8124 #undef PIPE_CONF_CHECK_FLAGS
8125 #undef PIPE_CONF_QUIRK
8126
8127 return true;
8128 }
8129
8130 static void
8131 check_connector_state(struct drm_device *dev)
8132 {
8133 struct intel_connector *connector;
8134
8135 list_for_each_entry(connector, &dev->mode_config.connector_list,
8136 base.head) {
8137 /* This also checks the encoder/connector hw state with the
8138 * ->get_hw_state callbacks. */
8139 intel_connector_check_state(connector);
8140
8141 WARN(&connector->new_encoder->base != connector->base.encoder,
8142 "connector's staged encoder doesn't match current encoder\n");
8143 }
8144 }
8145
8146 static void
8147 check_encoder_state(struct drm_device *dev)
8148 {
8149 struct intel_encoder *encoder;
8150 struct intel_connector *connector;
8151
8152 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8153 base.head) {
8154 bool enabled = false;
8155 bool active = false;
8156 enum pipe pipe, tracked_pipe;
8157
8158 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8159 encoder->base.base.id,
8160 drm_get_encoder_name(&encoder->base));
8161
8162 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8163 "encoder's stage crtc doesn't match current crtc\n");
8164 WARN(encoder->connectors_active && !encoder->base.crtc,
8165 "encoder's active_connectors set, but no crtc\n");
8166
8167 list_for_each_entry(connector, &dev->mode_config.connector_list,
8168 base.head) {
8169 if (connector->base.encoder != &encoder->base)
8170 continue;
8171 enabled = true;
8172 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8173 active = true;
8174 }
8175 WARN(!!encoder->base.crtc != enabled,
8176 "encoder's enabled state mismatch "
8177 "(expected %i, found %i)\n",
8178 !!encoder->base.crtc, enabled);
8179 WARN(active && !encoder->base.crtc,
8180 "active encoder with no crtc\n");
8181
8182 WARN(encoder->connectors_active != active,
8183 "encoder's computed active state doesn't match tracked active state "
8184 "(expected %i, found %i)\n", active, encoder->connectors_active);
8185
8186 active = encoder->get_hw_state(encoder, &pipe);
8187 WARN(active != encoder->connectors_active,
8188 "encoder's hw state doesn't match sw tracking "
8189 "(expected %i, found %i)\n",
8190 encoder->connectors_active, active);
8191
8192 if (!encoder->base.crtc)
8193 continue;
8194
8195 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8196 WARN(active && pipe != tracked_pipe,
8197 "active encoder's pipe doesn't match"
8198 "(expected %i, found %i)\n",
8199 tracked_pipe, pipe);
8200
8201 }
8202 }
8203
8204 static void
8205 check_crtc_state(struct drm_device *dev)
8206 {
8207 drm_i915_private_t *dev_priv = dev->dev_private;
8208 struct intel_crtc *crtc;
8209 struct intel_encoder *encoder;
8210 struct intel_crtc_config pipe_config;
8211
8212 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8213 base.head) {
8214 bool enabled = false;
8215 bool active = false;
8216
8217 memset(&pipe_config, 0, sizeof(pipe_config));
8218
8219 DRM_DEBUG_KMS("[CRTC:%d]\n",
8220 crtc->base.base.id);
8221
8222 WARN(crtc->active && !crtc->base.enabled,
8223 "active crtc, but not enabled in sw tracking\n");
8224
8225 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8226 base.head) {
8227 if (encoder->base.crtc != &crtc->base)
8228 continue;
8229 enabled = true;
8230 if (encoder->connectors_active)
8231 active = true;
8232 }
8233
8234 WARN(active != crtc->active,
8235 "crtc's computed active state doesn't match tracked active state "
8236 "(expected %i, found %i)\n", active, crtc->active);
8237 WARN(enabled != crtc->base.enabled,
8238 "crtc's computed enabled state doesn't match tracked enabled state "
8239 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8240
8241 active = dev_priv->display.get_pipe_config(crtc,
8242 &pipe_config);
8243
8244 /* hw state is inconsistent with the pipe A quirk */
8245 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8246 active = crtc->active;
8247
8248 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8249 base.head) {
8250 if (encoder->base.crtc != &crtc->base)
8251 continue;
8252 if (encoder->get_config)
8253 encoder->get_config(encoder, &pipe_config);
8254 }
8255
8256 WARN(crtc->active != active,
8257 "crtc active state doesn't match with hw state "
8258 "(expected %i, found %i)\n", crtc->active, active);
8259
8260 if (active &&
8261 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8262 WARN(1, "pipe state doesn't match!\n");
8263 intel_dump_pipe_config(crtc, &pipe_config,
8264 "[hw state]");
8265 intel_dump_pipe_config(crtc, &crtc->config,
8266 "[sw state]");
8267 }
8268 }
8269 }
8270
8271 static void
8272 check_shared_dpll_state(struct drm_device *dev)
8273 {
8274 drm_i915_private_t *dev_priv = dev->dev_private;
8275 struct intel_crtc *crtc;
8276 struct intel_dpll_hw_state dpll_hw_state;
8277 int i;
8278
8279 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8280 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8281 int enabled_crtcs = 0, active_crtcs = 0;
8282 bool active;
8283
8284 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8285
8286 DRM_DEBUG_KMS("%s\n", pll->name);
8287
8288 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8289
8290 WARN(pll->active > pll->refcount,
8291 "more active pll users than references: %i vs %i\n",
8292 pll->active, pll->refcount);
8293 WARN(pll->active && !pll->on,
8294 "pll in active use but not on in sw tracking\n");
8295 WARN(pll->on != active,
8296 "pll on state mismatch (expected %i, found %i)\n",
8297 pll->on, active);
8298
8299 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8300 base.head) {
8301 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8302 enabled_crtcs++;
8303 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8304 active_crtcs++;
8305 }
8306 WARN(pll->active != active_crtcs,
8307 "pll active crtcs mismatch (expected %i, found %i)\n",
8308 pll->active, active_crtcs);
8309 WARN(pll->refcount != enabled_crtcs,
8310 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8311 pll->refcount, enabled_crtcs);
8312
8313 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8314 sizeof(dpll_hw_state)),
8315 "pll hw state mismatch\n");
8316 }
8317 }
8318
8319 void
8320 intel_modeset_check_state(struct drm_device *dev)
8321 {
8322 check_connector_state(dev);
8323 check_encoder_state(dev);
8324 check_crtc_state(dev);
8325 check_shared_dpll_state(dev);
8326 }
8327
8328 static int __intel_set_mode(struct drm_crtc *crtc,
8329 struct drm_display_mode *mode,
8330 int x, int y, struct drm_framebuffer *fb)
8331 {
8332 struct drm_device *dev = crtc->dev;
8333 drm_i915_private_t *dev_priv = dev->dev_private;
8334 struct drm_display_mode *saved_mode, *saved_hwmode;
8335 struct intel_crtc_config *pipe_config = NULL;
8336 struct intel_crtc *intel_crtc;
8337 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8338 int ret = 0;
8339
8340 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8341 if (!saved_mode)
8342 return -ENOMEM;
8343 saved_hwmode = saved_mode + 1;
8344
8345 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8346 &prepare_pipes, &disable_pipes);
8347
8348 *saved_hwmode = crtc->hwmode;
8349 *saved_mode = crtc->mode;
8350
8351 /* Hack: Because we don't (yet) support global modeset on multiple
8352 * crtcs, we don't keep track of the new mode for more than one crtc.
8353 * Hence simply check whether any bit is set in modeset_pipes in all the
8354 * pieces of code that are not yet converted to deal with mutliple crtcs
8355 * changing their mode at the same time. */
8356 if (modeset_pipes) {
8357 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8358 if (IS_ERR(pipe_config)) {
8359 ret = PTR_ERR(pipe_config);
8360 pipe_config = NULL;
8361
8362 goto out;
8363 }
8364 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8365 "[modeset]");
8366 }
8367
8368 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8369 intel_crtc_disable(&intel_crtc->base);
8370
8371 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8372 if (intel_crtc->base.enabled)
8373 dev_priv->display.crtc_disable(&intel_crtc->base);
8374 }
8375
8376 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8377 * to set it here already despite that we pass it down the callchain.
8378 */
8379 if (modeset_pipes) {
8380 crtc->mode = *mode;
8381 /* mode_set/enable/disable functions rely on a correct pipe
8382 * config. */
8383 to_intel_crtc(crtc)->config = *pipe_config;
8384 }
8385
8386 /* Only after disabling all output pipelines that will be changed can we
8387 * update the the output configuration. */
8388 intel_modeset_update_state(dev, prepare_pipes);
8389
8390 if (dev_priv->display.modeset_global_resources)
8391 dev_priv->display.modeset_global_resources(dev);
8392
8393 /* Set up the DPLL and any encoders state that needs to adjust or depend
8394 * on the DPLL.
8395 */
8396 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8397 ret = intel_crtc_mode_set(&intel_crtc->base,
8398 x, y, fb);
8399 if (ret)
8400 goto done;
8401 }
8402
8403 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8404 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8405 dev_priv->display.crtc_enable(&intel_crtc->base);
8406
8407 if (modeset_pipes) {
8408 /* Store real post-adjustment hardware mode. */
8409 crtc->hwmode = pipe_config->adjusted_mode;
8410
8411 /* Calculate and store various constants which
8412 * are later needed by vblank and swap-completion
8413 * timestamping. They are derived from true hwmode.
8414 */
8415 drm_calc_timestamping_constants(crtc);
8416 }
8417
8418 /* FIXME: add subpixel order */
8419 done:
8420 if (ret && crtc->enabled) {
8421 crtc->hwmode = *saved_hwmode;
8422 crtc->mode = *saved_mode;
8423 }
8424
8425 out:
8426 kfree(pipe_config);
8427 kfree(saved_mode);
8428 return ret;
8429 }
8430
8431 int intel_set_mode(struct drm_crtc *crtc,
8432 struct drm_display_mode *mode,
8433 int x, int y, struct drm_framebuffer *fb)
8434 {
8435 int ret;
8436
8437 ret = __intel_set_mode(crtc, mode, x, y, fb);
8438
8439 if (ret == 0)
8440 intel_modeset_check_state(crtc->dev);
8441
8442 return ret;
8443 }
8444
8445 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8446 {
8447 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8448 }
8449
8450 #undef for_each_intel_crtc_masked
8451
8452 static void intel_set_config_free(struct intel_set_config *config)
8453 {
8454 if (!config)
8455 return;
8456
8457 kfree(config->save_connector_encoders);
8458 kfree(config->save_encoder_crtcs);
8459 kfree(config);
8460 }
8461
8462 static int intel_set_config_save_state(struct drm_device *dev,
8463 struct intel_set_config *config)
8464 {
8465 struct drm_encoder *encoder;
8466 struct drm_connector *connector;
8467 int count;
8468
8469 config->save_encoder_crtcs =
8470 kcalloc(dev->mode_config.num_encoder,
8471 sizeof(struct drm_crtc *), GFP_KERNEL);
8472 if (!config->save_encoder_crtcs)
8473 return -ENOMEM;
8474
8475 config->save_connector_encoders =
8476 kcalloc(dev->mode_config.num_connector,
8477 sizeof(struct drm_encoder *), GFP_KERNEL);
8478 if (!config->save_connector_encoders)
8479 return -ENOMEM;
8480
8481 /* Copy data. Note that driver private data is not affected.
8482 * Should anything bad happen only the expected state is
8483 * restored, not the drivers personal bookkeeping.
8484 */
8485 count = 0;
8486 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8487 config->save_encoder_crtcs[count++] = encoder->crtc;
8488 }
8489
8490 count = 0;
8491 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8492 config->save_connector_encoders[count++] = connector->encoder;
8493 }
8494
8495 return 0;
8496 }
8497
8498 static void intel_set_config_restore_state(struct drm_device *dev,
8499 struct intel_set_config *config)
8500 {
8501 struct intel_encoder *encoder;
8502 struct intel_connector *connector;
8503 int count;
8504
8505 count = 0;
8506 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8507 encoder->new_crtc =
8508 to_intel_crtc(config->save_encoder_crtcs[count++]);
8509 }
8510
8511 count = 0;
8512 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8513 connector->new_encoder =
8514 to_intel_encoder(config->save_connector_encoders[count++]);
8515 }
8516 }
8517
8518 static bool
8519 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8520 int num_connectors)
8521 {
8522 int i;
8523
8524 for (i = 0; i < num_connectors; i++)
8525 if (connectors[i].encoder &&
8526 connectors[i].encoder->crtc == crtc &&
8527 connectors[i].dpms != DRM_MODE_DPMS_ON)
8528 return true;
8529
8530 return false;
8531 }
8532
8533 static void
8534 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8535 struct intel_set_config *config)
8536 {
8537
8538 /* We should be able to check here if the fb has the same properties
8539 * and then just flip_or_move it */
8540 if (set->connectors != NULL &&
8541 is_crtc_connector_off(set->crtc, *set->connectors,
8542 set->num_connectors)) {
8543 config->mode_changed = true;
8544 } else if (set->crtc->fb != set->fb) {
8545 /* If we have no fb then treat it as a full mode set */
8546 if (set->crtc->fb == NULL) {
8547 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8548 config->mode_changed = true;
8549 } else if (set->fb == NULL) {
8550 config->mode_changed = true;
8551 } else if (set->fb->pixel_format !=
8552 set->crtc->fb->pixel_format) {
8553 config->mode_changed = true;
8554 } else {
8555 config->fb_changed = true;
8556 }
8557 }
8558
8559 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8560 config->fb_changed = true;
8561
8562 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8563 DRM_DEBUG_KMS("modes are different, full mode set\n");
8564 drm_mode_debug_printmodeline(&set->crtc->mode);
8565 drm_mode_debug_printmodeline(set->mode);
8566 config->mode_changed = true;
8567 }
8568 }
8569
8570 static int
8571 intel_modeset_stage_output_state(struct drm_device *dev,
8572 struct drm_mode_set *set,
8573 struct intel_set_config *config)
8574 {
8575 struct drm_crtc *new_crtc;
8576 struct intel_connector *connector;
8577 struct intel_encoder *encoder;
8578 int count, ro;
8579
8580 /* The upper layers ensure that we either disable a crtc or have a list
8581 * of connectors. For paranoia, double-check this. */
8582 WARN_ON(!set->fb && (set->num_connectors != 0));
8583 WARN_ON(set->fb && (set->num_connectors == 0));
8584
8585 count = 0;
8586 list_for_each_entry(connector, &dev->mode_config.connector_list,
8587 base.head) {
8588 /* Otherwise traverse passed in connector list and get encoders
8589 * for them. */
8590 for (ro = 0; ro < set->num_connectors; ro++) {
8591 if (set->connectors[ro] == &connector->base) {
8592 connector->new_encoder = connector->encoder;
8593 break;
8594 }
8595 }
8596
8597 /* If we disable the crtc, disable all its connectors. Also, if
8598 * the connector is on the changing crtc but not on the new
8599 * connector list, disable it. */
8600 if ((!set->fb || ro == set->num_connectors) &&
8601 connector->base.encoder &&
8602 connector->base.encoder->crtc == set->crtc) {
8603 connector->new_encoder = NULL;
8604
8605 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8606 connector->base.base.id,
8607 drm_get_connector_name(&connector->base));
8608 }
8609
8610
8611 if (&connector->new_encoder->base != connector->base.encoder) {
8612 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8613 config->mode_changed = true;
8614 }
8615 }
8616 /* connector->new_encoder is now updated for all connectors. */
8617
8618 /* Update crtc of enabled connectors. */
8619 count = 0;
8620 list_for_each_entry(connector, &dev->mode_config.connector_list,
8621 base.head) {
8622 if (!connector->new_encoder)
8623 continue;
8624
8625 new_crtc = connector->new_encoder->base.crtc;
8626
8627 for (ro = 0; ro < set->num_connectors; ro++) {
8628 if (set->connectors[ro] == &connector->base)
8629 new_crtc = set->crtc;
8630 }
8631
8632 /* Make sure the new CRTC will work with the encoder */
8633 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8634 new_crtc)) {
8635 return -EINVAL;
8636 }
8637 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8638
8639 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8640 connector->base.base.id,
8641 drm_get_connector_name(&connector->base),
8642 new_crtc->base.id);
8643 }
8644
8645 /* Check for any encoders that needs to be disabled. */
8646 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8647 base.head) {
8648 list_for_each_entry(connector,
8649 &dev->mode_config.connector_list,
8650 base.head) {
8651 if (connector->new_encoder == encoder) {
8652 WARN_ON(!connector->new_encoder->new_crtc);
8653
8654 goto next_encoder;
8655 }
8656 }
8657 encoder->new_crtc = NULL;
8658 next_encoder:
8659 /* Only now check for crtc changes so we don't miss encoders
8660 * that will be disabled. */
8661 if (&encoder->new_crtc->base != encoder->base.crtc) {
8662 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8663 config->mode_changed = true;
8664 }
8665 }
8666 /* Now we've also updated encoder->new_crtc for all encoders. */
8667
8668 return 0;
8669 }
8670
8671 static int intel_crtc_set_config(struct drm_mode_set *set)
8672 {
8673 struct drm_device *dev;
8674 struct drm_mode_set save_set;
8675 struct intel_set_config *config;
8676 int ret;
8677
8678 BUG_ON(!set);
8679 BUG_ON(!set->crtc);
8680 BUG_ON(!set->crtc->helper_private);
8681
8682 /* Enforce sane interface api - has been abused by the fb helper. */
8683 BUG_ON(!set->mode && set->fb);
8684 BUG_ON(set->fb && set->num_connectors == 0);
8685
8686 if (set->fb) {
8687 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8688 set->crtc->base.id, set->fb->base.id,
8689 (int)set->num_connectors, set->x, set->y);
8690 } else {
8691 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8692 }
8693
8694 dev = set->crtc->dev;
8695
8696 ret = -ENOMEM;
8697 config = kzalloc(sizeof(*config), GFP_KERNEL);
8698 if (!config)
8699 goto out_config;
8700
8701 ret = intel_set_config_save_state(dev, config);
8702 if (ret)
8703 goto out_config;
8704
8705 save_set.crtc = set->crtc;
8706 save_set.mode = &set->crtc->mode;
8707 save_set.x = set->crtc->x;
8708 save_set.y = set->crtc->y;
8709 save_set.fb = set->crtc->fb;
8710
8711 /* Compute whether we need a full modeset, only an fb base update or no
8712 * change at all. In the future we might also check whether only the
8713 * mode changed, e.g. for LVDS where we only change the panel fitter in
8714 * such cases. */
8715 intel_set_config_compute_mode_changes(set, config);
8716
8717 ret = intel_modeset_stage_output_state(dev, set, config);
8718 if (ret)
8719 goto fail;
8720
8721 if (config->mode_changed) {
8722 ret = intel_set_mode(set->crtc, set->mode,
8723 set->x, set->y, set->fb);
8724 } else if (config->fb_changed) {
8725 intel_crtc_wait_for_pending_flips(set->crtc);
8726
8727 ret = intel_pipe_set_base(set->crtc,
8728 set->x, set->y, set->fb);
8729 }
8730
8731 if (ret) {
8732 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
8733 set->crtc->base.id, ret);
8734 fail:
8735 intel_set_config_restore_state(dev, config);
8736
8737 /* Try to restore the config */
8738 if (config->mode_changed &&
8739 intel_set_mode(save_set.crtc, save_set.mode,
8740 save_set.x, save_set.y, save_set.fb))
8741 DRM_ERROR("failed to restore config after modeset failure\n");
8742 }
8743
8744 out_config:
8745 intel_set_config_free(config);
8746 return ret;
8747 }
8748
8749 static const struct drm_crtc_funcs intel_crtc_funcs = {
8750 .cursor_set = intel_crtc_cursor_set,
8751 .cursor_move = intel_crtc_cursor_move,
8752 .gamma_set = intel_crtc_gamma_set,
8753 .set_config = intel_crtc_set_config,
8754 .destroy = intel_crtc_destroy,
8755 .page_flip = intel_crtc_page_flip,
8756 };
8757
8758 static void intel_cpu_pll_init(struct drm_device *dev)
8759 {
8760 if (HAS_DDI(dev))
8761 intel_ddi_pll_init(dev);
8762 }
8763
8764 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
8765 struct intel_shared_dpll *pll,
8766 struct intel_dpll_hw_state *hw_state)
8767 {
8768 uint32_t val;
8769
8770 val = I915_READ(PCH_DPLL(pll->id));
8771 hw_state->dpll = val;
8772 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
8773 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
8774
8775 return val & DPLL_VCO_ENABLE;
8776 }
8777
8778 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
8779 struct intel_shared_dpll *pll)
8780 {
8781 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
8782 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
8783 }
8784
8785 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
8786 struct intel_shared_dpll *pll)
8787 {
8788 /* PCH refclock must be enabled first */
8789 assert_pch_refclk_enabled(dev_priv);
8790
8791 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8792
8793 /* Wait for the clocks to stabilize. */
8794 POSTING_READ(PCH_DPLL(pll->id));
8795 udelay(150);
8796
8797 /* The pixel multiplier can only be updated once the
8798 * DPLL is enabled and the clocks are stable.
8799 *
8800 * So write it again.
8801 */
8802 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8803 POSTING_READ(PCH_DPLL(pll->id));
8804 udelay(200);
8805 }
8806
8807 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
8808 struct intel_shared_dpll *pll)
8809 {
8810 struct drm_device *dev = dev_priv->dev;
8811 struct intel_crtc *crtc;
8812
8813 /* Make sure no transcoder isn't still depending on us. */
8814 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
8815 if (intel_crtc_to_shared_dpll(crtc) == pll)
8816 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
8817 }
8818
8819 I915_WRITE(PCH_DPLL(pll->id), 0);
8820 POSTING_READ(PCH_DPLL(pll->id));
8821 udelay(200);
8822 }
8823
8824 static char *ibx_pch_dpll_names[] = {
8825 "PCH DPLL A",
8826 "PCH DPLL B",
8827 };
8828
8829 static void ibx_pch_dpll_init(struct drm_device *dev)
8830 {
8831 struct drm_i915_private *dev_priv = dev->dev_private;
8832 int i;
8833
8834 dev_priv->num_shared_dpll = 2;
8835
8836 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8837 dev_priv->shared_dplls[i].id = i;
8838 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
8839 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
8840 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
8841 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
8842 dev_priv->shared_dplls[i].get_hw_state =
8843 ibx_pch_dpll_get_hw_state;
8844 }
8845 }
8846
8847 static void intel_shared_dpll_init(struct drm_device *dev)
8848 {
8849 struct drm_i915_private *dev_priv = dev->dev_private;
8850
8851 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8852 ibx_pch_dpll_init(dev);
8853 else
8854 dev_priv->num_shared_dpll = 0;
8855
8856 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
8857 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
8858 dev_priv->num_shared_dpll);
8859 }
8860
8861 static void intel_crtc_init(struct drm_device *dev, int pipe)
8862 {
8863 drm_i915_private_t *dev_priv = dev->dev_private;
8864 struct intel_crtc *intel_crtc;
8865 int i;
8866
8867 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8868 if (intel_crtc == NULL)
8869 return;
8870
8871 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8872
8873 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8874 for (i = 0; i < 256; i++) {
8875 intel_crtc->lut_r[i] = i;
8876 intel_crtc->lut_g[i] = i;
8877 intel_crtc->lut_b[i] = i;
8878 }
8879
8880 /* Swap pipes & planes for FBC on pre-965 */
8881 intel_crtc->pipe = pipe;
8882 intel_crtc->plane = pipe;
8883 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8884 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8885 intel_crtc->plane = !pipe;
8886 }
8887
8888 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8889 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8890 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8891 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8892
8893 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8894 }
8895
8896 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8897 struct drm_file *file)
8898 {
8899 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8900 struct drm_mode_object *drmmode_obj;
8901 struct intel_crtc *crtc;
8902
8903 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8904 return -ENODEV;
8905
8906 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8907 DRM_MODE_OBJECT_CRTC);
8908
8909 if (!drmmode_obj) {
8910 DRM_ERROR("no such CRTC id\n");
8911 return -EINVAL;
8912 }
8913
8914 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8915 pipe_from_crtc_id->pipe = crtc->pipe;
8916
8917 return 0;
8918 }
8919
8920 static int intel_encoder_clones(struct intel_encoder *encoder)
8921 {
8922 struct drm_device *dev = encoder->base.dev;
8923 struct intel_encoder *source_encoder;
8924 int index_mask = 0;
8925 int entry = 0;
8926
8927 list_for_each_entry(source_encoder,
8928 &dev->mode_config.encoder_list, base.head) {
8929
8930 if (encoder == source_encoder)
8931 index_mask |= (1 << entry);
8932
8933 /* Intel hw has only one MUX where enocoders could be cloned. */
8934 if (encoder->cloneable && source_encoder->cloneable)
8935 index_mask |= (1 << entry);
8936
8937 entry++;
8938 }
8939
8940 return index_mask;
8941 }
8942
8943 static bool has_edp_a(struct drm_device *dev)
8944 {
8945 struct drm_i915_private *dev_priv = dev->dev_private;
8946
8947 if (!IS_MOBILE(dev))
8948 return false;
8949
8950 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8951 return false;
8952
8953 if (IS_GEN5(dev) &&
8954 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8955 return false;
8956
8957 return true;
8958 }
8959
8960 static void intel_setup_outputs(struct drm_device *dev)
8961 {
8962 struct drm_i915_private *dev_priv = dev->dev_private;
8963 struct intel_encoder *encoder;
8964 bool dpd_is_edp = false;
8965
8966 intel_lvds_init(dev);
8967
8968 if (!IS_ULT(dev))
8969 intel_crt_init(dev);
8970
8971 if (HAS_DDI(dev)) {
8972 int found;
8973
8974 /* Haswell uses DDI functions to detect digital outputs */
8975 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8976 /* DDI A only supports eDP */
8977 if (found)
8978 intel_ddi_init(dev, PORT_A);
8979
8980 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8981 * register */
8982 found = I915_READ(SFUSE_STRAP);
8983
8984 if (found & SFUSE_STRAP_DDIB_DETECTED)
8985 intel_ddi_init(dev, PORT_B);
8986 if (found & SFUSE_STRAP_DDIC_DETECTED)
8987 intel_ddi_init(dev, PORT_C);
8988 if (found & SFUSE_STRAP_DDID_DETECTED)
8989 intel_ddi_init(dev, PORT_D);
8990 } else if (HAS_PCH_SPLIT(dev)) {
8991 int found;
8992 dpd_is_edp = intel_dpd_is_edp(dev);
8993
8994 if (has_edp_a(dev))
8995 intel_dp_init(dev, DP_A, PORT_A);
8996
8997 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8998 /* PCH SDVOB multiplex with HDMIB */
8999 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9000 if (!found)
9001 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9002 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9003 intel_dp_init(dev, PCH_DP_B, PORT_B);
9004 }
9005
9006 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9007 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9008
9009 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9010 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9011
9012 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9013 intel_dp_init(dev, PCH_DP_C, PORT_C);
9014
9015 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9016 intel_dp_init(dev, PCH_DP_D, PORT_D);
9017 } else if (IS_VALLEYVIEW(dev)) {
9018 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9019 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9020 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9021
9022 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9023 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9024 PORT_B);
9025 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9026 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9027 }
9028 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9029 bool found = false;
9030
9031 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9032 DRM_DEBUG_KMS("probing SDVOB\n");
9033 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9034 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9035 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9036 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9037 }
9038
9039 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9040 intel_dp_init(dev, DP_B, PORT_B);
9041 }
9042
9043 /* Before G4X SDVOC doesn't have its own detect register */
9044
9045 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9046 DRM_DEBUG_KMS("probing SDVOC\n");
9047 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9048 }
9049
9050 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9051
9052 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9053 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9054 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9055 }
9056 if (SUPPORTS_INTEGRATED_DP(dev))
9057 intel_dp_init(dev, DP_C, PORT_C);
9058 }
9059
9060 if (SUPPORTS_INTEGRATED_DP(dev) &&
9061 (I915_READ(DP_D) & DP_DETECTED))
9062 intel_dp_init(dev, DP_D, PORT_D);
9063 } else if (IS_GEN2(dev))
9064 intel_dvo_init(dev);
9065
9066 if (SUPPORTS_TV(dev))
9067 intel_tv_init(dev);
9068
9069 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9070 encoder->base.possible_crtcs = encoder->crtc_mask;
9071 encoder->base.possible_clones =
9072 intel_encoder_clones(encoder);
9073 }
9074
9075 intel_init_pch_refclk(dev);
9076
9077 drm_helper_move_panel_connectors_to_head(dev);
9078 }
9079
9080 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9081 {
9082 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9083
9084 drm_framebuffer_cleanup(fb);
9085 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9086
9087 kfree(intel_fb);
9088 }
9089
9090 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9091 struct drm_file *file,
9092 unsigned int *handle)
9093 {
9094 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9095 struct drm_i915_gem_object *obj = intel_fb->obj;
9096
9097 return drm_gem_handle_create(file, &obj->base, handle);
9098 }
9099
9100 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9101 .destroy = intel_user_framebuffer_destroy,
9102 .create_handle = intel_user_framebuffer_create_handle,
9103 };
9104
9105 int intel_framebuffer_init(struct drm_device *dev,
9106 struct intel_framebuffer *intel_fb,
9107 struct drm_mode_fb_cmd2 *mode_cmd,
9108 struct drm_i915_gem_object *obj)
9109 {
9110 int pitch_limit;
9111 int ret;
9112
9113 if (obj->tiling_mode == I915_TILING_Y) {
9114 DRM_DEBUG("hardware does not support tiling Y\n");
9115 return -EINVAL;
9116 }
9117
9118 if (mode_cmd->pitches[0] & 63) {
9119 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9120 mode_cmd->pitches[0]);
9121 return -EINVAL;
9122 }
9123
9124 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9125 pitch_limit = 32*1024;
9126 } else if (INTEL_INFO(dev)->gen >= 4) {
9127 if (obj->tiling_mode)
9128 pitch_limit = 16*1024;
9129 else
9130 pitch_limit = 32*1024;
9131 } else if (INTEL_INFO(dev)->gen >= 3) {
9132 if (obj->tiling_mode)
9133 pitch_limit = 8*1024;
9134 else
9135 pitch_limit = 16*1024;
9136 } else
9137 /* XXX DSPC is limited to 4k tiled */
9138 pitch_limit = 8*1024;
9139
9140 if (mode_cmd->pitches[0] > pitch_limit) {
9141 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9142 obj->tiling_mode ? "tiled" : "linear",
9143 mode_cmd->pitches[0], pitch_limit);
9144 return -EINVAL;
9145 }
9146
9147 if (obj->tiling_mode != I915_TILING_NONE &&
9148 mode_cmd->pitches[0] != obj->stride) {
9149 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9150 mode_cmd->pitches[0], obj->stride);
9151 return -EINVAL;
9152 }
9153
9154 /* Reject formats not supported by any plane early. */
9155 switch (mode_cmd->pixel_format) {
9156 case DRM_FORMAT_C8:
9157 case DRM_FORMAT_RGB565:
9158 case DRM_FORMAT_XRGB8888:
9159 case DRM_FORMAT_ARGB8888:
9160 break;
9161 case DRM_FORMAT_XRGB1555:
9162 case DRM_FORMAT_ARGB1555:
9163 if (INTEL_INFO(dev)->gen > 3) {
9164 DRM_DEBUG("unsupported pixel format: %s\n",
9165 drm_get_format_name(mode_cmd->pixel_format));
9166 return -EINVAL;
9167 }
9168 break;
9169 case DRM_FORMAT_XBGR8888:
9170 case DRM_FORMAT_ABGR8888:
9171 case DRM_FORMAT_XRGB2101010:
9172 case DRM_FORMAT_ARGB2101010:
9173 case DRM_FORMAT_XBGR2101010:
9174 case DRM_FORMAT_ABGR2101010:
9175 if (INTEL_INFO(dev)->gen < 4) {
9176 DRM_DEBUG("unsupported pixel format: %s\n",
9177 drm_get_format_name(mode_cmd->pixel_format));
9178 return -EINVAL;
9179 }
9180 break;
9181 case DRM_FORMAT_YUYV:
9182 case DRM_FORMAT_UYVY:
9183 case DRM_FORMAT_YVYU:
9184 case DRM_FORMAT_VYUY:
9185 if (INTEL_INFO(dev)->gen < 5) {
9186 DRM_DEBUG("unsupported pixel format: %s\n",
9187 drm_get_format_name(mode_cmd->pixel_format));
9188 return -EINVAL;
9189 }
9190 break;
9191 default:
9192 DRM_DEBUG("unsupported pixel format: %s\n",
9193 drm_get_format_name(mode_cmd->pixel_format));
9194 return -EINVAL;
9195 }
9196
9197 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9198 if (mode_cmd->offsets[0] != 0)
9199 return -EINVAL;
9200
9201 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9202 intel_fb->obj = obj;
9203
9204 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9205 if (ret) {
9206 DRM_ERROR("framebuffer init failed %d\n", ret);
9207 return ret;
9208 }
9209
9210 return 0;
9211 }
9212
9213 static struct drm_framebuffer *
9214 intel_user_framebuffer_create(struct drm_device *dev,
9215 struct drm_file *filp,
9216 struct drm_mode_fb_cmd2 *mode_cmd)
9217 {
9218 struct drm_i915_gem_object *obj;
9219
9220 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9221 mode_cmd->handles[0]));
9222 if (&obj->base == NULL)
9223 return ERR_PTR(-ENOENT);
9224
9225 return intel_framebuffer_create(dev, mode_cmd, obj);
9226 }
9227
9228 static const struct drm_mode_config_funcs intel_mode_funcs = {
9229 .fb_create = intel_user_framebuffer_create,
9230 .output_poll_changed = intel_fb_output_poll_changed,
9231 };
9232
9233 /* Set up chip specific display functions */
9234 static void intel_init_display(struct drm_device *dev)
9235 {
9236 struct drm_i915_private *dev_priv = dev->dev_private;
9237
9238 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9239 dev_priv->display.find_dpll = g4x_find_best_dpll;
9240 else if (IS_VALLEYVIEW(dev))
9241 dev_priv->display.find_dpll = vlv_find_best_dpll;
9242 else if (IS_PINEVIEW(dev))
9243 dev_priv->display.find_dpll = pnv_find_best_dpll;
9244 else
9245 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9246
9247 if (HAS_DDI(dev)) {
9248 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9249 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9250 dev_priv->display.crtc_enable = haswell_crtc_enable;
9251 dev_priv->display.crtc_disable = haswell_crtc_disable;
9252 dev_priv->display.off = haswell_crtc_off;
9253 dev_priv->display.update_plane = ironlake_update_plane;
9254 } else if (HAS_PCH_SPLIT(dev)) {
9255 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9256 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9257 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9258 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9259 dev_priv->display.off = ironlake_crtc_off;
9260 dev_priv->display.update_plane = ironlake_update_plane;
9261 } else if (IS_VALLEYVIEW(dev)) {
9262 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9263 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9264 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9265 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9266 dev_priv->display.off = i9xx_crtc_off;
9267 dev_priv->display.update_plane = i9xx_update_plane;
9268 } else {
9269 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9270 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9271 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9272 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9273 dev_priv->display.off = i9xx_crtc_off;
9274 dev_priv->display.update_plane = i9xx_update_plane;
9275 }
9276
9277 /* Returns the core display clock speed */
9278 if (IS_VALLEYVIEW(dev))
9279 dev_priv->display.get_display_clock_speed =
9280 valleyview_get_display_clock_speed;
9281 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9282 dev_priv->display.get_display_clock_speed =
9283 i945_get_display_clock_speed;
9284 else if (IS_I915G(dev))
9285 dev_priv->display.get_display_clock_speed =
9286 i915_get_display_clock_speed;
9287 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9288 dev_priv->display.get_display_clock_speed =
9289 i9xx_misc_get_display_clock_speed;
9290 else if (IS_I915GM(dev))
9291 dev_priv->display.get_display_clock_speed =
9292 i915gm_get_display_clock_speed;
9293 else if (IS_I865G(dev))
9294 dev_priv->display.get_display_clock_speed =
9295 i865_get_display_clock_speed;
9296 else if (IS_I85X(dev))
9297 dev_priv->display.get_display_clock_speed =
9298 i855_get_display_clock_speed;
9299 else /* 852, 830 */
9300 dev_priv->display.get_display_clock_speed =
9301 i830_get_display_clock_speed;
9302
9303 if (HAS_PCH_SPLIT(dev)) {
9304 if (IS_GEN5(dev)) {
9305 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9306 dev_priv->display.write_eld = ironlake_write_eld;
9307 } else if (IS_GEN6(dev)) {
9308 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9309 dev_priv->display.write_eld = ironlake_write_eld;
9310 } else if (IS_IVYBRIDGE(dev)) {
9311 /* FIXME: detect B0+ stepping and use auto training */
9312 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9313 dev_priv->display.write_eld = ironlake_write_eld;
9314 dev_priv->display.modeset_global_resources =
9315 ivb_modeset_global_resources;
9316 } else if (IS_HASWELL(dev)) {
9317 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9318 dev_priv->display.write_eld = haswell_write_eld;
9319 dev_priv->display.modeset_global_resources =
9320 haswell_modeset_global_resources;
9321 }
9322 } else if (IS_G4X(dev)) {
9323 dev_priv->display.write_eld = g4x_write_eld;
9324 }
9325
9326 /* Default just returns -ENODEV to indicate unsupported */
9327 dev_priv->display.queue_flip = intel_default_queue_flip;
9328
9329 switch (INTEL_INFO(dev)->gen) {
9330 case 2:
9331 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9332 break;
9333
9334 case 3:
9335 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9336 break;
9337
9338 case 4:
9339 case 5:
9340 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9341 break;
9342
9343 case 6:
9344 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9345 break;
9346 case 7:
9347 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9348 break;
9349 }
9350 }
9351
9352 /*
9353 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9354 * resume, or other times. This quirk makes sure that's the case for
9355 * affected systems.
9356 */
9357 static void quirk_pipea_force(struct drm_device *dev)
9358 {
9359 struct drm_i915_private *dev_priv = dev->dev_private;
9360
9361 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9362 DRM_INFO("applying pipe a force quirk\n");
9363 }
9364
9365 /*
9366 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9367 */
9368 static void quirk_ssc_force_disable(struct drm_device *dev)
9369 {
9370 struct drm_i915_private *dev_priv = dev->dev_private;
9371 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9372 DRM_INFO("applying lvds SSC disable quirk\n");
9373 }
9374
9375 /*
9376 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9377 * brightness value
9378 */
9379 static void quirk_invert_brightness(struct drm_device *dev)
9380 {
9381 struct drm_i915_private *dev_priv = dev->dev_private;
9382 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9383 DRM_INFO("applying inverted panel brightness quirk\n");
9384 }
9385
9386 struct intel_quirk {
9387 int device;
9388 int subsystem_vendor;
9389 int subsystem_device;
9390 void (*hook)(struct drm_device *dev);
9391 };
9392
9393 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9394 struct intel_dmi_quirk {
9395 void (*hook)(struct drm_device *dev);
9396 const struct dmi_system_id (*dmi_id_list)[];
9397 };
9398
9399 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9400 {
9401 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9402 return 1;
9403 }
9404
9405 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9406 {
9407 .dmi_id_list = &(const struct dmi_system_id[]) {
9408 {
9409 .callback = intel_dmi_reverse_brightness,
9410 .ident = "NCR Corporation",
9411 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9412 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9413 },
9414 },
9415 { } /* terminating entry */
9416 },
9417 .hook = quirk_invert_brightness,
9418 },
9419 };
9420
9421 static struct intel_quirk intel_quirks[] = {
9422 /* HP Mini needs pipe A force quirk (LP: #322104) */
9423 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9424
9425 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9426 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9427
9428 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9429 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9430
9431 /* 830/845 need to leave pipe A & dpll A up */
9432 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9433 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9434
9435 /* Lenovo U160 cannot use SSC on LVDS */
9436 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9437
9438 /* Sony Vaio Y cannot use SSC on LVDS */
9439 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9440
9441 /* Acer Aspire 5734Z must invert backlight brightness */
9442 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9443
9444 /* Acer/eMachines G725 */
9445 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9446
9447 /* Acer/eMachines e725 */
9448 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9449
9450 /* Acer/Packard Bell NCL20 */
9451 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9452
9453 /* Acer Aspire 4736Z */
9454 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9455 };
9456
9457 static void intel_init_quirks(struct drm_device *dev)
9458 {
9459 struct pci_dev *d = dev->pdev;
9460 int i;
9461
9462 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9463 struct intel_quirk *q = &intel_quirks[i];
9464
9465 if (d->device == q->device &&
9466 (d->subsystem_vendor == q->subsystem_vendor ||
9467 q->subsystem_vendor == PCI_ANY_ID) &&
9468 (d->subsystem_device == q->subsystem_device ||
9469 q->subsystem_device == PCI_ANY_ID))
9470 q->hook(dev);
9471 }
9472 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9473 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9474 intel_dmi_quirks[i].hook(dev);
9475 }
9476 }
9477
9478 /* Disable the VGA plane that we never use */
9479 static void i915_disable_vga(struct drm_device *dev)
9480 {
9481 struct drm_i915_private *dev_priv = dev->dev_private;
9482 u8 sr1;
9483 u32 vga_reg = i915_vgacntrl_reg(dev);
9484
9485 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9486 outb(SR01, VGA_SR_INDEX);
9487 sr1 = inb(VGA_SR_DATA);
9488 outb(sr1 | 1<<5, VGA_SR_DATA);
9489 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9490 udelay(300);
9491
9492 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9493 POSTING_READ(vga_reg);
9494 }
9495
9496 void intel_modeset_init_hw(struct drm_device *dev)
9497 {
9498 intel_init_power_well(dev);
9499
9500 intel_prepare_ddi(dev);
9501
9502 intel_init_clock_gating(dev);
9503
9504 mutex_lock(&dev->struct_mutex);
9505 intel_enable_gt_powersave(dev);
9506 mutex_unlock(&dev->struct_mutex);
9507 }
9508
9509 void intel_modeset_suspend_hw(struct drm_device *dev)
9510 {
9511 intel_suspend_hw(dev);
9512 }
9513
9514 void intel_modeset_init(struct drm_device *dev)
9515 {
9516 struct drm_i915_private *dev_priv = dev->dev_private;
9517 int i, j, ret;
9518
9519 drm_mode_config_init(dev);
9520
9521 dev->mode_config.min_width = 0;
9522 dev->mode_config.min_height = 0;
9523
9524 dev->mode_config.preferred_depth = 24;
9525 dev->mode_config.prefer_shadow = 1;
9526
9527 dev->mode_config.funcs = &intel_mode_funcs;
9528
9529 intel_init_quirks(dev);
9530
9531 intel_init_pm(dev);
9532
9533 if (INTEL_INFO(dev)->num_pipes == 0)
9534 return;
9535
9536 intel_init_display(dev);
9537
9538 if (IS_GEN2(dev)) {
9539 dev->mode_config.max_width = 2048;
9540 dev->mode_config.max_height = 2048;
9541 } else if (IS_GEN3(dev)) {
9542 dev->mode_config.max_width = 4096;
9543 dev->mode_config.max_height = 4096;
9544 } else {
9545 dev->mode_config.max_width = 8192;
9546 dev->mode_config.max_height = 8192;
9547 }
9548 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9549
9550 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9551 INTEL_INFO(dev)->num_pipes,
9552 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9553
9554 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9555 intel_crtc_init(dev, i);
9556 for (j = 0; j < dev_priv->num_plane; j++) {
9557 ret = intel_plane_init(dev, i, j);
9558 if (ret)
9559 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9560 pipe_name(i), sprite_name(i, j), ret);
9561 }
9562 }
9563
9564 intel_cpu_pll_init(dev);
9565 intel_shared_dpll_init(dev);
9566
9567 /* Just disable it once at startup */
9568 i915_disable_vga(dev);
9569 intel_setup_outputs(dev);
9570
9571 /* Just in case the BIOS is doing something questionable. */
9572 intel_disable_fbc(dev);
9573 }
9574
9575 static void
9576 intel_connector_break_all_links(struct intel_connector *connector)
9577 {
9578 connector->base.dpms = DRM_MODE_DPMS_OFF;
9579 connector->base.encoder = NULL;
9580 connector->encoder->connectors_active = false;
9581 connector->encoder->base.crtc = NULL;
9582 }
9583
9584 static void intel_enable_pipe_a(struct drm_device *dev)
9585 {
9586 struct intel_connector *connector;
9587 struct drm_connector *crt = NULL;
9588 struct intel_load_detect_pipe load_detect_temp;
9589
9590 /* We can't just switch on the pipe A, we need to set things up with a
9591 * proper mode and output configuration. As a gross hack, enable pipe A
9592 * by enabling the load detect pipe once. */
9593 list_for_each_entry(connector,
9594 &dev->mode_config.connector_list,
9595 base.head) {
9596 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9597 crt = &connector->base;
9598 break;
9599 }
9600 }
9601
9602 if (!crt)
9603 return;
9604
9605 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9606 intel_release_load_detect_pipe(crt, &load_detect_temp);
9607
9608
9609 }
9610
9611 static bool
9612 intel_check_plane_mapping(struct intel_crtc *crtc)
9613 {
9614 struct drm_device *dev = crtc->base.dev;
9615 struct drm_i915_private *dev_priv = dev->dev_private;
9616 u32 reg, val;
9617
9618 if (INTEL_INFO(dev)->num_pipes == 1)
9619 return true;
9620
9621 reg = DSPCNTR(!crtc->plane);
9622 val = I915_READ(reg);
9623
9624 if ((val & DISPLAY_PLANE_ENABLE) &&
9625 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9626 return false;
9627
9628 return true;
9629 }
9630
9631 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9632 {
9633 struct drm_device *dev = crtc->base.dev;
9634 struct drm_i915_private *dev_priv = dev->dev_private;
9635 u32 reg;
9636
9637 /* Clear any frame start delays used for debugging left by the BIOS */
9638 reg = PIPECONF(crtc->config.cpu_transcoder);
9639 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9640
9641 /* We need to sanitize the plane -> pipe mapping first because this will
9642 * disable the crtc (and hence change the state) if it is wrong. Note
9643 * that gen4+ has a fixed plane -> pipe mapping. */
9644 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9645 struct intel_connector *connector;
9646 bool plane;
9647
9648 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9649 crtc->base.base.id);
9650
9651 /* Pipe has the wrong plane attached and the plane is active.
9652 * Temporarily change the plane mapping and disable everything
9653 * ... */
9654 plane = crtc->plane;
9655 crtc->plane = !plane;
9656 dev_priv->display.crtc_disable(&crtc->base);
9657 crtc->plane = plane;
9658
9659 /* ... and break all links. */
9660 list_for_each_entry(connector, &dev->mode_config.connector_list,
9661 base.head) {
9662 if (connector->encoder->base.crtc != &crtc->base)
9663 continue;
9664
9665 intel_connector_break_all_links(connector);
9666 }
9667
9668 WARN_ON(crtc->active);
9669 crtc->base.enabled = false;
9670 }
9671
9672 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9673 crtc->pipe == PIPE_A && !crtc->active) {
9674 /* BIOS forgot to enable pipe A, this mostly happens after
9675 * resume. Force-enable the pipe to fix this, the update_dpms
9676 * call below we restore the pipe to the right state, but leave
9677 * the required bits on. */
9678 intel_enable_pipe_a(dev);
9679 }
9680
9681 /* Adjust the state of the output pipe according to whether we
9682 * have active connectors/encoders. */
9683 intel_crtc_update_dpms(&crtc->base);
9684
9685 if (crtc->active != crtc->base.enabled) {
9686 struct intel_encoder *encoder;
9687
9688 /* This can happen either due to bugs in the get_hw_state
9689 * functions or because the pipe is force-enabled due to the
9690 * pipe A quirk. */
9691 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9692 crtc->base.base.id,
9693 crtc->base.enabled ? "enabled" : "disabled",
9694 crtc->active ? "enabled" : "disabled");
9695
9696 crtc->base.enabled = crtc->active;
9697
9698 /* Because we only establish the connector -> encoder ->
9699 * crtc links if something is active, this means the
9700 * crtc is now deactivated. Break the links. connector
9701 * -> encoder links are only establish when things are
9702 * actually up, hence no need to break them. */
9703 WARN_ON(crtc->active);
9704
9705 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9706 WARN_ON(encoder->connectors_active);
9707 encoder->base.crtc = NULL;
9708 }
9709 }
9710 }
9711
9712 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9713 {
9714 struct intel_connector *connector;
9715 struct drm_device *dev = encoder->base.dev;
9716
9717 /* We need to check both for a crtc link (meaning that the
9718 * encoder is active and trying to read from a pipe) and the
9719 * pipe itself being active. */
9720 bool has_active_crtc = encoder->base.crtc &&
9721 to_intel_crtc(encoder->base.crtc)->active;
9722
9723 if (encoder->connectors_active && !has_active_crtc) {
9724 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9725 encoder->base.base.id,
9726 drm_get_encoder_name(&encoder->base));
9727
9728 /* Connector is active, but has no active pipe. This is
9729 * fallout from our resume register restoring. Disable
9730 * the encoder manually again. */
9731 if (encoder->base.crtc) {
9732 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9733 encoder->base.base.id,
9734 drm_get_encoder_name(&encoder->base));
9735 encoder->disable(encoder);
9736 }
9737
9738 /* Inconsistent output/port/pipe state happens presumably due to
9739 * a bug in one of the get_hw_state functions. Or someplace else
9740 * in our code, like the register restore mess on resume. Clamp
9741 * things to off as a safer default. */
9742 list_for_each_entry(connector,
9743 &dev->mode_config.connector_list,
9744 base.head) {
9745 if (connector->encoder != encoder)
9746 continue;
9747
9748 intel_connector_break_all_links(connector);
9749 }
9750 }
9751 /* Enabled encoders without active connectors will be fixed in
9752 * the crtc fixup. */
9753 }
9754
9755 void i915_redisable_vga(struct drm_device *dev)
9756 {
9757 struct drm_i915_private *dev_priv = dev->dev_private;
9758 u32 vga_reg = i915_vgacntrl_reg(dev);
9759
9760 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9761 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9762 i915_disable_vga(dev);
9763 }
9764 }
9765
9766 static void intel_modeset_readout_hw_state(struct drm_device *dev)
9767 {
9768 struct drm_i915_private *dev_priv = dev->dev_private;
9769 enum pipe pipe;
9770 struct intel_crtc *crtc;
9771 struct intel_encoder *encoder;
9772 struct intel_connector *connector;
9773 int i;
9774
9775 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9776 base.head) {
9777 memset(&crtc->config, 0, sizeof(crtc->config));
9778
9779 crtc->active = dev_priv->display.get_pipe_config(crtc,
9780 &crtc->config);
9781
9782 crtc->base.enabled = crtc->active;
9783
9784 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9785 crtc->base.base.id,
9786 crtc->active ? "enabled" : "disabled");
9787 }
9788
9789 /* FIXME: Smash this into the new shared dpll infrastructure. */
9790 if (HAS_DDI(dev))
9791 intel_ddi_setup_hw_pll_state(dev);
9792
9793 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9794 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9795
9796 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
9797 pll->active = 0;
9798 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9799 base.head) {
9800 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9801 pll->active++;
9802 }
9803 pll->refcount = pll->active;
9804
9805 DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
9806 pll->name, pll->refcount);
9807 }
9808
9809 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9810 base.head) {
9811 pipe = 0;
9812
9813 if (encoder->get_hw_state(encoder, &pipe)) {
9814 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9815 encoder->base.crtc = &crtc->base;
9816 if (encoder->get_config)
9817 encoder->get_config(encoder, &crtc->config);
9818 } else {
9819 encoder->base.crtc = NULL;
9820 }
9821
9822 encoder->connectors_active = false;
9823 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9824 encoder->base.base.id,
9825 drm_get_encoder_name(&encoder->base),
9826 encoder->base.crtc ? "enabled" : "disabled",
9827 pipe);
9828 }
9829
9830 list_for_each_entry(connector, &dev->mode_config.connector_list,
9831 base.head) {
9832 if (connector->get_hw_state(connector)) {
9833 connector->base.dpms = DRM_MODE_DPMS_ON;
9834 connector->encoder->connectors_active = true;
9835 connector->base.encoder = &connector->encoder->base;
9836 } else {
9837 connector->base.dpms = DRM_MODE_DPMS_OFF;
9838 connector->base.encoder = NULL;
9839 }
9840 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9841 connector->base.base.id,
9842 drm_get_connector_name(&connector->base),
9843 connector->base.encoder ? "enabled" : "disabled");
9844 }
9845 }
9846
9847 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9848 * and i915 state tracking structures. */
9849 void intel_modeset_setup_hw_state(struct drm_device *dev,
9850 bool force_restore)
9851 {
9852 struct drm_i915_private *dev_priv = dev->dev_private;
9853 enum pipe pipe;
9854 struct drm_plane *plane;
9855 struct intel_crtc *crtc;
9856 struct intel_encoder *encoder;
9857
9858 intel_modeset_readout_hw_state(dev);
9859
9860 /* HW state is read out, now we need to sanitize this mess. */
9861 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9862 base.head) {
9863 intel_sanitize_encoder(encoder);
9864 }
9865
9866 for_each_pipe(pipe) {
9867 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9868 intel_sanitize_crtc(crtc);
9869 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
9870 }
9871
9872 if (force_restore) {
9873 /*
9874 * We need to use raw interfaces for restoring state to avoid
9875 * checking (bogus) intermediate states.
9876 */
9877 for_each_pipe(pipe) {
9878 struct drm_crtc *crtc =
9879 dev_priv->pipe_to_crtc_mapping[pipe];
9880
9881 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9882 crtc->fb);
9883 }
9884 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9885 intel_plane_restore(plane);
9886
9887 i915_redisable_vga(dev);
9888 } else {
9889 intel_modeset_update_staged_output_state(dev);
9890 }
9891
9892 intel_modeset_check_state(dev);
9893
9894 drm_mode_config_reset(dev);
9895 }
9896
9897 void intel_modeset_gem_init(struct drm_device *dev)
9898 {
9899 intel_modeset_init_hw(dev);
9900
9901 intel_setup_overlay(dev);
9902
9903 intel_modeset_setup_hw_state(dev, false);
9904 }
9905
9906 void intel_modeset_cleanup(struct drm_device *dev)
9907 {
9908 struct drm_i915_private *dev_priv = dev->dev_private;
9909 struct drm_crtc *crtc;
9910 struct intel_crtc *intel_crtc;
9911
9912 /*
9913 * Interrupts and polling as the first thing to avoid creating havoc.
9914 * Too much stuff here (turning of rps, connectors, ...) would
9915 * experience fancy races otherwise.
9916 */
9917 drm_irq_uninstall(dev);
9918 cancel_work_sync(&dev_priv->hotplug_work);
9919 /*
9920 * Due to the hpd irq storm handling the hotplug work can re-arm the
9921 * poll handlers. Hence disable polling after hpd handling is shut down.
9922 */
9923 drm_kms_helper_poll_fini(dev);
9924
9925 mutex_lock(&dev->struct_mutex);
9926
9927 intel_unregister_dsm_handler();
9928
9929 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9930 /* Skip inactive CRTCs */
9931 if (!crtc->fb)
9932 continue;
9933
9934 intel_crtc = to_intel_crtc(crtc);
9935 intel_increase_pllclock(crtc);
9936 }
9937
9938 intel_disable_fbc(dev);
9939
9940 intel_disable_gt_powersave(dev);
9941
9942 ironlake_teardown_rc6(dev);
9943
9944 mutex_unlock(&dev->struct_mutex);
9945
9946 /* flush any delayed tasks or pending work */
9947 flush_scheduled_work();
9948
9949 /* destroy backlight, if any, before the connectors */
9950 intel_panel_destroy_backlight(dev);
9951
9952 drm_mode_config_cleanup(dev);
9953
9954 intel_cleanup_overlay(dev);
9955 }
9956
9957 /*
9958 * Return which encoder is currently attached for connector.
9959 */
9960 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9961 {
9962 return &intel_attached_encoder(connector)->base;
9963 }
9964
9965 void intel_connector_attach_encoder(struct intel_connector *connector,
9966 struct intel_encoder *encoder)
9967 {
9968 connector->encoder = encoder;
9969 drm_mode_connector_attach_encoder(&connector->base,
9970 &encoder->base);
9971 }
9972
9973 /*
9974 * set vga decode state - true == enable VGA decode
9975 */
9976 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9977 {
9978 struct drm_i915_private *dev_priv = dev->dev_private;
9979 u16 gmch_ctrl;
9980
9981 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9982 if (state)
9983 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9984 else
9985 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9986 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9987 return 0;
9988 }
9989
9990 #ifdef CONFIG_DEBUG_FS
9991 #include <linux/seq_file.h>
9992
9993 struct intel_display_error_state {
9994
9995 u32 power_well_driver;
9996
9997 struct intel_cursor_error_state {
9998 u32 control;
9999 u32 position;
10000 u32 base;
10001 u32 size;
10002 } cursor[I915_MAX_PIPES];
10003
10004 struct intel_pipe_error_state {
10005 enum transcoder cpu_transcoder;
10006 u32 conf;
10007 u32 source;
10008
10009 u32 htotal;
10010 u32 hblank;
10011 u32 hsync;
10012 u32 vtotal;
10013 u32 vblank;
10014 u32 vsync;
10015 } pipe[I915_MAX_PIPES];
10016
10017 struct intel_plane_error_state {
10018 u32 control;
10019 u32 stride;
10020 u32 size;
10021 u32 pos;
10022 u32 addr;
10023 u32 surface;
10024 u32 tile_offset;
10025 } plane[I915_MAX_PIPES];
10026 };
10027
10028 struct intel_display_error_state *
10029 intel_display_capture_error_state(struct drm_device *dev)
10030 {
10031 drm_i915_private_t *dev_priv = dev->dev_private;
10032 struct intel_display_error_state *error;
10033 enum transcoder cpu_transcoder;
10034 int i;
10035
10036 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10037 if (error == NULL)
10038 return NULL;
10039
10040 if (HAS_POWER_WELL(dev))
10041 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10042
10043 for_each_pipe(i) {
10044 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10045 error->pipe[i].cpu_transcoder = cpu_transcoder;
10046
10047 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10048 error->cursor[i].control = I915_READ(CURCNTR(i));
10049 error->cursor[i].position = I915_READ(CURPOS(i));
10050 error->cursor[i].base = I915_READ(CURBASE(i));
10051 } else {
10052 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10053 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10054 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10055 }
10056
10057 error->plane[i].control = I915_READ(DSPCNTR(i));
10058 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10059 if (INTEL_INFO(dev)->gen <= 3) {
10060 error->plane[i].size = I915_READ(DSPSIZE(i));
10061 error->plane[i].pos = I915_READ(DSPPOS(i));
10062 }
10063 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10064 error->plane[i].addr = I915_READ(DSPADDR(i));
10065 if (INTEL_INFO(dev)->gen >= 4) {
10066 error->plane[i].surface = I915_READ(DSPSURF(i));
10067 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10068 }
10069
10070 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10071 error->pipe[i].source = I915_READ(PIPESRC(i));
10072 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10073 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10074 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10075 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10076 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10077 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10078 }
10079
10080 /* In the code above we read the registers without checking if the power
10081 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10082 * prevent the next I915_WRITE from detecting it and printing an error
10083 * message. */
10084 if (HAS_POWER_WELL(dev))
10085 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
10086
10087 return error;
10088 }
10089
10090 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10091
10092 void
10093 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10094 struct drm_device *dev,
10095 struct intel_display_error_state *error)
10096 {
10097 int i;
10098
10099 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10100 if (HAS_POWER_WELL(dev))
10101 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10102 error->power_well_driver);
10103 for_each_pipe(i) {
10104 err_printf(m, "Pipe [%d]:\n", i);
10105 err_printf(m, " CPU transcoder: %c\n",
10106 transcoder_name(error->pipe[i].cpu_transcoder));
10107 err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
10108 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10109 err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
10110 err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
10111 err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
10112 err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
10113 err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
10114 err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
10115
10116 err_printf(m, "Plane [%d]:\n", i);
10117 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10118 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10119 if (INTEL_INFO(dev)->gen <= 3) {
10120 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10121 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10122 }
10123 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10124 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10125 if (INTEL_INFO(dev)->gen >= 4) {
10126 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10127 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10128 }
10129
10130 err_printf(m, "Cursor [%d]:\n", i);
10131 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10132 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10133 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10134 }
10135 }
10136 #endif
This page took 0.465018 seconds and 5 git commands to generate.