drm/i915: implement drmmode overlay support v4
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46 /* given values */
47 int n;
48 int m1, m2;
49 int p1, p2;
50 /* derived values */
51 int dot;
52 int vco;
53 int m;
54 int p;
55 } intel_clock_t;
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69 intel_range_t dot, vco, n, m, m1, m2, p, p1;
70 intel_p2_t p2;
71 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72 int, int, intel_clock_t *);
73 bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74 int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
81 #define I8XX_N_MIN 3
82 #define I8XX_N_MAX 16
83 #define I8XX_M_MIN 96
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MIN 6
88 #define I8XX_M2_MAX 16
89 #define I8XX_P_MIN 4
90 #define I8XX_P_MAX 128
91 #define I8XX_P1_MIN 2
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
100
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define IGD_VCO_MIN 1700000
106 #define IGD_VCO_MAX 3500000
107 #define I9XX_N_MIN 1
108 #define I9XX_N_MAX 6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN 3
111 #define IGD_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define IGD_M_MIN 2
115 #define IGD_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN 0
122 #define IGD_M1_MAX 0
123 #define IGD_M2_MIN 0
124 #define IGD_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define IGD_P_LVDS_MIN 7
130 #define IGD_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
240 */
241 #define IGDNG_DOT_MIN 25000
242 #define IGDNG_DOT_MAX 350000
243 #define IGDNG_VCO_MIN 1760000
244 #define IGDNG_VCO_MAX 3510000
245 #define IGDNG_N_MIN 1
246 #define IGDNG_N_MAX 5
247 #define IGDNG_M_MIN 79
248 #define IGDNG_M_MAX 118
249 #define IGDNG_M1_MIN 12
250 #define IGDNG_M1_MAX 23
251 #define IGDNG_M2_MIN 5
252 #define IGDNG_M2_MAX 9
253 #define IGDNG_P_SDVO_DAC_MIN 5
254 #define IGDNG_P_SDVO_DAC_MAX 80
255 #define IGDNG_P_LVDS_MIN 28
256 #define IGDNG_P_LVDS_MAX 112
257 #define IGDNG_P1_MIN 1
258 #define IGDNG_P1_MAX 8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
263 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267 int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270 int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273 int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276 int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280 int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283 int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
287 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
288 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
289 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
290 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
291 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
292 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
293 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
294 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
296 .find_pll = intel_find_best_PLL,
297 .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
302 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
303 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
304 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
305 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
306 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
307 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
308 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
309 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
311 .find_pll = intel_find_best_PLL,
312 .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
317 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
318 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
319 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
320 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
321 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
322 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
323 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
324 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326 .find_pll = intel_find_best_PLL,
327 .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
332 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
333 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
334 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
335 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
336 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
337 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
338 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
341 */
342 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
344 .find_pll = intel_find_best_PLL,
345 .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
351 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
352 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
353 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
354 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
355 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
356 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
357 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
358 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
359 .p2_slow = G4X_P2_SDVO_SLOW,
360 .p2_fast = G4X_P2_SDVO_FAST
361 },
362 .find_pll = intel_g4x_find_best_PLL,
363 .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
368 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
369 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
370 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
371 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
372 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
373 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
374 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
375 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377 .p2_fast = G4X_P2_HDMI_DAC_FAST
378 },
379 .find_pll = intel_g4x_find_best_PLL,
380 .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386 .vco = { .min = G4X_VCO_MIN,
387 .max = G4X_VCO_MAX },
388 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403 },
404 .find_pll = intel_g4x_find_best_PLL,
405 .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411 .vco = { .min = G4X_VCO_MIN,
412 .max = G4X_VCO_MAX },
413 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428 },
429 .find_pll = intel_g4x_find_best_PLL,
430 .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435 .max = G4X_DOT_DISPLAY_PORT_MAX },
436 .vco = { .min = G4X_VCO_MIN,
437 .max = G4X_VCO_MAX},
438 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
439 .max = G4X_N_DISPLAY_PORT_MAX },
440 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
441 .max = G4X_M_DISPLAY_PORT_MAX },
442 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
443 .max = G4X_M1_DISPLAY_PORT_MAX },
444 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
445 .max = G4X_M2_DISPLAY_PORT_MAX },
446 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
447 .max = G4X_P_DISPLAY_PORT_MAX },
448 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
449 .max = G4X_P1_DISPLAY_PORT_MAX},
450 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453 .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
458 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
459 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
460 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
461 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
462 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
463 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
464 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
465 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467 .find_pll = intel_find_best_PLL,
468 .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
473 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
474 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
475 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
476 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
477 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
478 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
480 /* IGD only supports single-channel mode. */
481 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
483 .find_pll = intel_find_best_PLL,
484 .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
489 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
490 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
491 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
492 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
493 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
494 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
495 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
496 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499 .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
504 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
505 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
506 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
507 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
508 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
509 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
510 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
511 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512 .p2_slow = IGDNG_P2_LVDS_SLOW,
513 .p2_fast = IGDNG_P2_LVDS_FAST },
514 .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521 limit = &intel_limits_igdng_lvds;
522 else
523 limit = &intel_limits_igdng_sdvo;
524
525 return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530 struct drm_device *dev = crtc->dev;
531 struct drm_i915_private *dev_priv = dev->dev_private;
532 const intel_limit_t *limit;
533
534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536 LVDS_CLKB_POWER_UP)
537 /* LVDS with dual channel */
538 limit = &intel_limits_g4x_dual_channel_lvds;
539 else
540 /* LVDS with dual channel */
541 limit = &intel_limits_g4x_single_channel_lvds;
542 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544 limit = &intel_limits_g4x_hdmi;
545 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546 limit = &intel_limits_g4x_sdvo;
547 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548 limit = &intel_limits_g4x_display_port;
549 } else /* The option is for other outputs */
550 limit = &intel_limits_i9xx_sdvo;
551
552 return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557 struct drm_device *dev = crtc->dev;
558 const intel_limit_t *limit;
559
560 if (IS_IGDNG(dev))
561 limit = intel_igdng_limit(crtc);
562 else if (IS_G4X(dev)) {
563 limit = intel_g4x_limit(crtc);
564 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566 limit = &intel_limits_i9xx_lvds;
567 else
568 limit = &intel_limits_i9xx_sdvo;
569 } else if (IS_IGD(dev)) {
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571 limit = &intel_limits_igd_lvds;
572 else
573 limit = &intel_limits_igd_sdvo;
574 } else {
575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576 limit = &intel_limits_i8xx_lvds;
577 else
578 limit = &intel_limits_i8xx_dvo;
579 }
580 return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586 clock->m = clock->m2 + 2;
587 clock->p = clock->p1 * clock->p2;
588 clock->vco = refclk * clock->m / clock->n;
589 clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594 if (IS_IGD(dev)) {
595 igd_clock(refclk, clock);
596 return;
597 }
598 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599 clock->p = clock->p1 * clock->p2;
600 clock->vco = refclk * clock->m / (clock->n + 2);
601 clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605 * Returns whether any output on the specified pipe is of the specified type
606 */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry;
612
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 struct intel_output *intel_output = to_intel_output(l_entry);
617 if (intel_output->type == type)
618 return true;
619 }
620 }
621 return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627 struct drm_device *dev = crtc->dev;
628 struct drm_mode_config *mode_config = &dev->mode_config;
629 struct drm_connector *l_entry, *ret = NULL;
630
631 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632 if (l_entry->encoder &&
633 l_entry->encoder->crtc == crtc) {
634 ret = l_entry;
635 break;
636 }
637 }
638 return ret;
639 }
640
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
645 */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649 const intel_limit_t *limit = intel_limit (crtc);
650 struct drm_device *dev = crtc->dev;
651
652 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock->p < limit->p.min || limit->p.max < clock->p)
655 INTELPllInvalid ("p out of range\n");
656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock->m < limit->m.min || limit->m.max < clock->m)
663 INTELPllInvalid ("m out of range\n");
664 if (clock->n < limit->n.min || limit->n.max < clock->n)
665 INTELPllInvalid ("n out of range\n");
666 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
670 */
671 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672 INTELPllInvalid ("dot out of range\n");
673
674 return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *best_clock)
680
681 {
682 struct drm_device *dev = crtc->dev;
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 intel_clock_t clock;
685 int err = target;
686
687 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688 (I915_READ(LVDS)) != 0) {
689 /*
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
693 * even can.
694 */
695 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696 LVDS_CLKB_POWER_UP)
697 clock.p2 = limit->p2.p2_fast;
698 else
699 clock.p2 = limit->p2.p2_slow;
700 } else {
701 if (target < limit->p2.dot_limit)
702 clock.p2 = limit->p2.p2_slow;
703 else
704 clock.p2 = limit->p2.p2_fast;
705 }
706
707 memset (best_clock, 0, sizeof (*best_clock));
708
709 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711 clock.m1++) {
712 for (clock.m2 = limit->m2.min;
713 clock.m2 <= limit->m2.max; clock.m2++) {
714 /* m1 is always 0 in IGD */
715 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716 break;
717 for (clock.n = limit->n.min;
718 clock.n <= limit->n.max; clock.n++) {
719 int this_err;
720
721 intel_clock(dev, refclk, &clock);
722
723 if (!intel_PLL_is_valid(crtc, &clock))
724 continue;
725
726 this_err = abs(clock.dot - target);
727 if (this_err < err) {
728 *best_clock = clock;
729 err = this_err;
730 }
731 }
732 }
733 }
734 }
735
736 return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *best_clock)
743
744 {
745 struct drm_device *dev = crtc->dev;
746 intel_clock_t clock;
747 int err = target;
748 bool found = false;
749
750 memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754 /* m1 is always 0 in IGD */
755 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756 break;
757 for (clock.n = limit->n.min; clock.n <= limit->n.max;
758 clock.n++) {
759 int this_err;
760
761 intel_clock(dev, refclk, &clock);
762
763 if (!intel_PLL_is_valid(crtc, &clock))
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 found = true;
771 }
772 }
773 }
774 }
775
776 return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781 int target, int refclk, intel_clock_t *best_clock)
782 {
783 struct drm_device *dev = crtc->dev;
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 intel_clock_t clock;
786 int max_n;
787 bool found;
788 /* approximately equals target * 0.00488 */
789 int err_most = (target >> 8) + (target >> 10);
790 found = false;
791
792 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794 LVDS_CLKB_POWER_UP)
795 clock.p2 = limit->p2.p2_fast;
796 else
797 clock.p2 = limit->p2.p2_slow;
798 } else {
799 if (target < limit->p2.dot_limit)
800 clock.p2 = limit->p2.p2_slow;
801 else
802 clock.p2 = limit->p2.p2_fast;
803 }
804
805 memset(best_clock, 0, sizeof(*best_clock));
806 max_n = limit->n.max;
807 /* based on hardware requriment prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirment prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 intel_clock(dev, refclk, &clock);
819 if (!intel_PLL_is_valid(crtc, &clock))
820 continue;
821 this_err = abs(clock.dot - target) ;
822 if (this_err < err_most) {
823 *best_clock = clock;
824 err_most = this_err;
825 max_n = clock.n;
826 found = true;
827 }
828 }
829 }
830 }
831 }
832 return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *best_clock)
838 {
839 struct drm_device *dev = crtc->dev;
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.n = 1;
843 clock.p1 = 2;
844 clock.p2 = 10;
845 clock.m1 = 12;
846 clock.m2 = 9;
847 } else {
848 clock.n = 2;
849 clock.p1 = 1;
850 clock.p2 = 10;
851 clock.m1 = 14;
852 clock.m2 = 8;
853 }
854 intel_clock(dev, refclk, &clock);
855 memcpy(best_clock, &clock, sizeof(intel_clock_t));
856 return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861 int target, int refclk, intel_clock_t *best_clock)
862 {
863 struct drm_device *dev = crtc->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865 intel_clock_t clock;
866 int err_most = 47;
867 int err_min = 10000;
868
869 /* eDP has only 2 clock choice, no n/m/p setting */
870 if (HAS_eDP)
871 return true;
872
873 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
874 return intel_find_pll_igdng_dp(limit, crtc, target,
875 refclk, best_clock);
876
877 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
878 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
879 LVDS_CLKB_POWER_UP)
880 clock.p2 = limit->p2.p2_fast;
881 else
882 clock.p2 = limit->p2.p2_slow;
883 } else {
884 if (target < limit->p2.dot_limit)
885 clock.p2 = limit->p2.p2_slow;
886 else
887 clock.p2 = limit->p2.p2_fast;
888 }
889
890 memset(best_clock, 0, sizeof(*best_clock));
891 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
892 /* based on hardware requriment prefer smaller n to precision */
893 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
894 /* based on hardware requirment prefere larger m1,m2 */
895 for (clock.m1 = limit->m1.max;
896 clock.m1 >= limit->m1.min; clock.m1--) {
897 for (clock.m2 = limit->m2.max;
898 clock.m2 >= limit->m2.min; clock.m2--) {
899 int this_err;
900
901 intel_clock(dev, refclk, &clock);
902 if (!intel_PLL_is_valid(crtc, &clock))
903 continue;
904 this_err = abs((10000 - (target*10000/clock.dot)));
905 if (this_err < err_most) {
906 *best_clock = clock;
907 /* found on first matching */
908 goto out;
909 } else if (this_err < err_min) {
910 *best_clock = clock;
911 err_min = this_err;
912 }
913 }
914 }
915 }
916 }
917 out:
918 return true;
919 }
920
921 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
922 static bool
923 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
924 int target, int refclk, intel_clock_t *best_clock)
925 {
926 intel_clock_t clock;
927 if (target < 200000) {
928 clock.p1 = 2;
929 clock.p2 = 10;
930 clock.n = 2;
931 clock.m1 = 23;
932 clock.m2 = 8;
933 } else {
934 clock.p1 = 1;
935 clock.p2 = 10;
936 clock.n = 1;
937 clock.m1 = 14;
938 clock.m2 = 2;
939 }
940 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
941 clock.p = (clock.p1 * clock.p2);
942 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
943 clock.vco = 0;
944 memcpy(best_clock, &clock, sizeof(intel_clock_t));
945 return true;
946 }
947
948 void
949 intel_wait_for_vblank(struct drm_device *dev)
950 {
951 /* Wait for 20ms, i.e. one cycle at 50hz. */
952 mdelay(20);
953 }
954
955 /* Parameters have changed, update FBC info */
956 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
957 {
958 struct drm_device *dev = crtc->dev;
959 struct drm_i915_private *dev_priv = dev->dev_private;
960 struct drm_framebuffer *fb = crtc->fb;
961 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
962 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
964 int plane, i;
965 u32 fbc_ctl, fbc_ctl2;
966
967 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
968
969 if (fb->pitch < dev_priv->cfb_pitch)
970 dev_priv->cfb_pitch = fb->pitch;
971
972 /* FBC_CTL wants 64B units */
973 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
974 dev_priv->cfb_fence = obj_priv->fence_reg;
975 dev_priv->cfb_plane = intel_crtc->plane;
976 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
977
978 /* Clear old tags */
979 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
980 I915_WRITE(FBC_TAG + (i * 4), 0);
981
982 /* Set it up... */
983 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
984 if (obj_priv->tiling_mode != I915_TILING_NONE)
985 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
986 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
987 I915_WRITE(FBC_FENCE_OFF, crtc->y);
988
989 /* enable it... */
990 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
991 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
992 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
993 if (obj_priv->tiling_mode != I915_TILING_NONE)
994 fbc_ctl |= dev_priv->cfb_fence;
995 I915_WRITE(FBC_CONTROL, fbc_ctl);
996
997 DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
998 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
999 }
1000
1001 void i8xx_disable_fbc(struct drm_device *dev)
1002 {
1003 struct drm_i915_private *dev_priv = dev->dev_private;
1004 u32 fbc_ctl;
1005
1006 if (!I915_HAS_FBC(dev))
1007 return;
1008
1009 /* Disable compression */
1010 fbc_ctl = I915_READ(FBC_CONTROL);
1011 fbc_ctl &= ~FBC_CTL_EN;
1012 I915_WRITE(FBC_CONTROL, fbc_ctl);
1013
1014 /* Wait for compressing bit to clear */
1015 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1016 ; /* nothing */
1017
1018 intel_wait_for_vblank(dev);
1019
1020 DRM_DEBUG("disabled FBC\n");
1021 }
1022
1023 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1024 {
1025 struct drm_device *dev = crtc->dev;
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1029 }
1030
1031 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1032 {
1033 struct drm_device *dev = crtc->dev;
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 struct drm_framebuffer *fb = crtc->fb;
1036 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1037 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1039 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1040 DPFC_CTL_PLANEB);
1041 unsigned long stall_watermark = 200;
1042 u32 dpfc_ctl;
1043
1044 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1045 dev_priv->cfb_fence = obj_priv->fence_reg;
1046 dev_priv->cfb_plane = intel_crtc->plane;
1047
1048 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1049 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1050 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1051 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1052 } else {
1053 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1054 }
1055
1056 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1057 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1058 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1059 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1060 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1061
1062 /* enable it... */
1063 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1064
1065 DRM_DEBUG("enabled fbc on plane %d\n", intel_crtc->plane);
1066 }
1067
1068 void g4x_disable_fbc(struct drm_device *dev)
1069 {
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 u32 dpfc_ctl;
1072
1073 /* Disable compression */
1074 dpfc_ctl = I915_READ(DPFC_CONTROL);
1075 dpfc_ctl &= ~DPFC_CTL_EN;
1076 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1077 intel_wait_for_vblank(dev);
1078
1079 DRM_DEBUG("disabled FBC\n");
1080 }
1081
1082 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1083 {
1084 struct drm_device *dev = crtc->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086
1087 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1088 }
1089
1090 /**
1091 * intel_update_fbc - enable/disable FBC as needed
1092 * @crtc: CRTC to point the compressor at
1093 * @mode: mode in use
1094 *
1095 * Set up the framebuffer compression hardware at mode set time. We
1096 * enable it if possible:
1097 * - plane A only (on pre-965)
1098 * - no pixel mulitply/line duplication
1099 * - no alpha buffer discard
1100 * - no dual wide
1101 * - framebuffer <= 2048 in width, 1536 in height
1102 *
1103 * We can't assume that any compression will take place (worst case),
1104 * so the compressed buffer has to be the same size as the uncompressed
1105 * one. It also must reside (along with the line length buffer) in
1106 * stolen memory.
1107 *
1108 * We need to enable/disable FBC on a global basis.
1109 */
1110 static void intel_update_fbc(struct drm_crtc *crtc,
1111 struct drm_display_mode *mode)
1112 {
1113 struct drm_device *dev = crtc->dev;
1114 struct drm_i915_private *dev_priv = dev->dev_private;
1115 struct drm_framebuffer *fb = crtc->fb;
1116 struct intel_framebuffer *intel_fb;
1117 struct drm_i915_gem_object *obj_priv;
1118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1119 int plane = intel_crtc->plane;
1120
1121 if (!i915_powersave)
1122 return;
1123
1124 if (!dev_priv->display.fbc_enabled ||
1125 !dev_priv->display.enable_fbc ||
1126 !dev_priv->display.disable_fbc)
1127 return;
1128
1129 if (!crtc->fb)
1130 return;
1131
1132 intel_fb = to_intel_framebuffer(fb);
1133 obj_priv = intel_fb->obj->driver_private;
1134
1135 /*
1136 * If FBC is already on, we just have to verify that we can
1137 * keep it that way...
1138 * Need to disable if:
1139 * - changing FBC params (stride, fence, mode)
1140 * - new fb is too large to fit in compressed buffer
1141 * - going to an unsupported config (interlace, pixel multiply, etc.)
1142 */
1143 if (intel_fb->obj->size > dev_priv->cfb_size) {
1144 DRM_DEBUG("framebuffer too large, disabling compression\n");
1145 goto out_disable;
1146 }
1147 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1148 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1149 DRM_DEBUG("mode incompatible with compression, disabling\n");
1150 goto out_disable;
1151 }
1152 if ((mode->hdisplay > 2048) ||
1153 (mode->vdisplay > 1536)) {
1154 DRM_DEBUG("mode too large for compression, disabling\n");
1155 goto out_disable;
1156 }
1157 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1158 DRM_DEBUG("plane not 0, disabling compression\n");
1159 goto out_disable;
1160 }
1161 if (obj_priv->tiling_mode != I915_TILING_X) {
1162 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1163 goto out_disable;
1164 }
1165
1166 if (dev_priv->display.fbc_enabled(crtc)) {
1167 /* We can re-enable it in this case, but need to update pitch */
1168 if (fb->pitch > dev_priv->cfb_pitch)
1169 dev_priv->display.disable_fbc(dev);
1170 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1171 dev_priv->display.disable_fbc(dev);
1172 if (plane != dev_priv->cfb_plane)
1173 dev_priv->display.disable_fbc(dev);
1174 }
1175
1176 if (!dev_priv->display.fbc_enabled(crtc)) {
1177 /* Now try to turn it back on if possible */
1178 dev_priv->display.enable_fbc(crtc, 500);
1179 }
1180
1181 return;
1182
1183 out_disable:
1184 DRM_DEBUG("unsupported config, disabling FBC\n");
1185 /* Multiple disables should be harmless */
1186 if (dev_priv->display.fbc_enabled(crtc))
1187 dev_priv->display.disable_fbc(dev);
1188 }
1189
1190 static int
1191 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1192 struct drm_framebuffer *old_fb)
1193 {
1194 struct drm_device *dev = crtc->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 struct drm_i915_master_private *master_priv;
1197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1198 struct intel_framebuffer *intel_fb;
1199 struct drm_i915_gem_object *obj_priv;
1200 struct drm_gem_object *obj;
1201 int pipe = intel_crtc->pipe;
1202 int plane = intel_crtc->plane;
1203 unsigned long Start, Offset;
1204 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1205 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1206 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1207 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1208 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1209 u32 dspcntr, alignment;
1210 int ret;
1211
1212 /* no fb bound */
1213 if (!crtc->fb) {
1214 DRM_DEBUG("No FB bound\n");
1215 return 0;
1216 }
1217
1218 switch (plane) {
1219 case 0:
1220 case 1:
1221 break;
1222 default:
1223 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1224 return -EINVAL;
1225 }
1226
1227 intel_fb = to_intel_framebuffer(crtc->fb);
1228 obj = intel_fb->obj;
1229 obj_priv = obj->driver_private;
1230
1231 switch (obj_priv->tiling_mode) {
1232 case I915_TILING_NONE:
1233 alignment = 64 * 1024;
1234 break;
1235 case I915_TILING_X:
1236 /* pin() will align the object as required by fence */
1237 alignment = 0;
1238 break;
1239 case I915_TILING_Y:
1240 /* FIXME: Is this true? */
1241 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1242 return -EINVAL;
1243 default:
1244 BUG();
1245 }
1246
1247 mutex_lock(&dev->struct_mutex);
1248 ret = i915_gem_object_pin(obj, alignment);
1249 if (ret != 0) {
1250 mutex_unlock(&dev->struct_mutex);
1251 return ret;
1252 }
1253
1254 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1255 if (ret != 0) {
1256 i915_gem_object_unpin(obj);
1257 mutex_unlock(&dev->struct_mutex);
1258 return ret;
1259 }
1260
1261 /* Install a fence for tiled scan-out. Pre-i965 always needs a fence,
1262 * whereas 965+ only requires a fence if using framebuffer compression.
1263 * For simplicity, we always install a fence as the cost is not that onerous.
1264 */
1265 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1266 obj_priv->tiling_mode != I915_TILING_NONE) {
1267 ret = i915_gem_object_get_fence_reg(obj);
1268 if (ret != 0) {
1269 i915_gem_object_unpin(obj);
1270 mutex_unlock(&dev->struct_mutex);
1271 return ret;
1272 }
1273 }
1274
1275 dspcntr = I915_READ(dspcntr_reg);
1276 /* Mask out pixel format bits in case we change it */
1277 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1278 switch (crtc->fb->bits_per_pixel) {
1279 case 8:
1280 dspcntr |= DISPPLANE_8BPP;
1281 break;
1282 case 16:
1283 if (crtc->fb->depth == 15)
1284 dspcntr |= DISPPLANE_15_16BPP;
1285 else
1286 dspcntr |= DISPPLANE_16BPP;
1287 break;
1288 case 24:
1289 case 32:
1290 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1291 break;
1292 default:
1293 DRM_ERROR("Unknown color depth\n");
1294 i915_gem_object_unpin(obj);
1295 mutex_unlock(&dev->struct_mutex);
1296 return -EINVAL;
1297 }
1298 if (IS_I965G(dev)) {
1299 if (obj_priv->tiling_mode != I915_TILING_NONE)
1300 dspcntr |= DISPPLANE_TILED;
1301 else
1302 dspcntr &= ~DISPPLANE_TILED;
1303 }
1304
1305 if (IS_IGDNG(dev))
1306 /* must disable */
1307 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1308
1309 I915_WRITE(dspcntr_reg, dspcntr);
1310
1311 Start = obj_priv->gtt_offset;
1312 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1313
1314 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1315 I915_WRITE(dspstride, crtc->fb->pitch);
1316 if (IS_I965G(dev)) {
1317 I915_WRITE(dspbase, Offset);
1318 I915_READ(dspbase);
1319 I915_WRITE(dspsurf, Start);
1320 I915_READ(dspsurf);
1321 I915_WRITE(dsptileoff, (y << 16) | x);
1322 } else {
1323 I915_WRITE(dspbase, Start + Offset);
1324 I915_READ(dspbase);
1325 }
1326
1327 if ((IS_I965G(dev) || plane == 0))
1328 intel_update_fbc(crtc, &crtc->mode);
1329
1330 intel_wait_for_vblank(dev);
1331
1332 if (old_fb) {
1333 intel_fb = to_intel_framebuffer(old_fb);
1334 obj_priv = intel_fb->obj->driver_private;
1335 i915_gem_object_unpin(intel_fb->obj);
1336 }
1337 intel_increase_pllclock(crtc, true);
1338
1339 mutex_unlock(&dev->struct_mutex);
1340
1341 if (!dev->primary->master)
1342 return 0;
1343
1344 master_priv = dev->primary->master->driver_priv;
1345 if (!master_priv->sarea_priv)
1346 return 0;
1347
1348 if (pipe) {
1349 master_priv->sarea_priv->pipeB_x = x;
1350 master_priv->sarea_priv->pipeB_y = y;
1351 } else {
1352 master_priv->sarea_priv->pipeA_x = x;
1353 master_priv->sarea_priv->pipeA_y = y;
1354 }
1355
1356 return 0;
1357 }
1358
1359 /* Disable the VGA plane that we never use */
1360 static void i915_disable_vga (struct drm_device *dev)
1361 {
1362 struct drm_i915_private *dev_priv = dev->dev_private;
1363 u8 sr1;
1364 u32 vga_reg;
1365
1366 if (IS_IGDNG(dev))
1367 vga_reg = CPU_VGACNTRL;
1368 else
1369 vga_reg = VGACNTRL;
1370
1371 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1372 return;
1373
1374 I915_WRITE8(VGA_SR_INDEX, 1);
1375 sr1 = I915_READ8(VGA_SR_DATA);
1376 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1377 udelay(100);
1378
1379 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1380 }
1381
1382 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1383 {
1384 struct drm_device *dev = crtc->dev;
1385 struct drm_i915_private *dev_priv = dev->dev_private;
1386 u32 dpa_ctl;
1387
1388 DRM_DEBUG("\n");
1389 dpa_ctl = I915_READ(DP_A);
1390 dpa_ctl &= ~DP_PLL_ENABLE;
1391 I915_WRITE(DP_A, dpa_ctl);
1392 }
1393
1394 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1395 {
1396 struct drm_device *dev = crtc->dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398 u32 dpa_ctl;
1399
1400 dpa_ctl = I915_READ(DP_A);
1401 dpa_ctl |= DP_PLL_ENABLE;
1402 I915_WRITE(DP_A, dpa_ctl);
1403 udelay(200);
1404 }
1405
1406
1407 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1408 {
1409 struct drm_device *dev = crtc->dev;
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 u32 dpa_ctl;
1412
1413 DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1414 dpa_ctl = I915_READ(DP_A);
1415 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1416
1417 if (clock < 200000) {
1418 u32 temp;
1419 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1420 /* workaround for 160Mhz:
1421 1) program 0x4600c bits 15:0 = 0x8124
1422 2) program 0x46010 bit 0 = 1
1423 3) program 0x46034 bit 24 = 1
1424 4) program 0x64000 bit 14 = 1
1425 */
1426 temp = I915_READ(0x4600c);
1427 temp &= 0xffff0000;
1428 I915_WRITE(0x4600c, temp | 0x8124);
1429
1430 temp = I915_READ(0x46010);
1431 I915_WRITE(0x46010, temp | 1);
1432
1433 temp = I915_READ(0x46034);
1434 I915_WRITE(0x46034, temp | (1 << 24));
1435 } else {
1436 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1437 }
1438 I915_WRITE(DP_A, dpa_ctl);
1439
1440 udelay(500);
1441 }
1442
1443 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1444 {
1445 struct drm_device *dev = crtc->dev;
1446 struct drm_i915_private *dev_priv = dev->dev_private;
1447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1448 int pipe = intel_crtc->pipe;
1449 int plane = intel_crtc->plane;
1450 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1451 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1452 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1453 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1454 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1455 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1456 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1457 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1458 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1459 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1460 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1461 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1462 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1463 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1464 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1465 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1466 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1467 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1468 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1469 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1470 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1471 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1472 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1473 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1474 u32 temp;
1475 int tries = 5, j, n;
1476
1477 /* XXX: When our outputs are all unaware of DPMS modes other than off
1478 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1479 */
1480 switch (mode) {
1481 case DRM_MODE_DPMS_ON:
1482 case DRM_MODE_DPMS_STANDBY:
1483 case DRM_MODE_DPMS_SUSPEND:
1484 DRM_DEBUG("crtc %d dpms on\n", pipe);
1485 if (HAS_eDP) {
1486 /* enable eDP PLL */
1487 igdng_enable_pll_edp(crtc);
1488 } else {
1489 /* enable PCH DPLL */
1490 temp = I915_READ(pch_dpll_reg);
1491 if ((temp & DPLL_VCO_ENABLE) == 0) {
1492 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1493 I915_READ(pch_dpll_reg);
1494 }
1495
1496 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1497 temp = I915_READ(fdi_rx_reg);
1498 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1499 FDI_SEL_PCDCLK |
1500 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1501 I915_READ(fdi_rx_reg);
1502 udelay(200);
1503
1504 /* Enable CPU FDI TX PLL, always on for IGDNG */
1505 temp = I915_READ(fdi_tx_reg);
1506 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1507 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1508 I915_READ(fdi_tx_reg);
1509 udelay(100);
1510 }
1511 }
1512
1513 /* Enable panel fitting for LVDS */
1514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1515 temp = I915_READ(pf_ctl_reg);
1516 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1517
1518 /* currently full aspect */
1519 I915_WRITE(pf_win_pos, 0);
1520
1521 I915_WRITE(pf_win_size,
1522 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1523 (dev_priv->panel_fixed_mode->vdisplay));
1524 }
1525
1526 /* Enable CPU pipe */
1527 temp = I915_READ(pipeconf_reg);
1528 if ((temp & PIPEACONF_ENABLE) == 0) {
1529 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1530 I915_READ(pipeconf_reg);
1531 udelay(100);
1532 }
1533
1534 /* configure and enable CPU plane */
1535 temp = I915_READ(dspcntr_reg);
1536 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1537 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1538 /* Flush the plane changes */
1539 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1540 }
1541
1542 if (!HAS_eDP) {
1543 /* enable CPU FDI TX and PCH FDI RX */
1544 temp = I915_READ(fdi_tx_reg);
1545 temp |= FDI_TX_ENABLE;
1546 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1547 temp &= ~FDI_LINK_TRAIN_NONE;
1548 temp |= FDI_LINK_TRAIN_PATTERN_1;
1549 I915_WRITE(fdi_tx_reg, temp);
1550 I915_READ(fdi_tx_reg);
1551
1552 temp = I915_READ(fdi_rx_reg);
1553 temp &= ~FDI_LINK_TRAIN_NONE;
1554 temp |= FDI_LINK_TRAIN_PATTERN_1;
1555 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556 I915_READ(fdi_rx_reg);
1557
1558 udelay(150);
1559
1560 /* Train FDI. */
1561 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1562 for train result */
1563 temp = I915_READ(fdi_rx_imr_reg);
1564 temp &= ~FDI_RX_SYMBOL_LOCK;
1565 temp &= ~FDI_RX_BIT_LOCK;
1566 I915_WRITE(fdi_rx_imr_reg, temp);
1567 I915_READ(fdi_rx_imr_reg);
1568 udelay(150);
1569
1570 temp = I915_READ(fdi_rx_iir_reg);
1571 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1572
1573 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1574 for (j = 0; j < tries; j++) {
1575 temp = I915_READ(fdi_rx_iir_reg);
1576 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1577 if (temp & FDI_RX_BIT_LOCK)
1578 break;
1579 udelay(200);
1580 }
1581 if (j != tries)
1582 I915_WRITE(fdi_rx_iir_reg,
1583 temp | FDI_RX_BIT_LOCK);
1584 else
1585 DRM_DEBUG("train 1 fail\n");
1586 } else {
1587 I915_WRITE(fdi_rx_iir_reg,
1588 temp | FDI_RX_BIT_LOCK);
1589 DRM_DEBUG("train 1 ok 2!\n");
1590 }
1591 temp = I915_READ(fdi_tx_reg);
1592 temp &= ~FDI_LINK_TRAIN_NONE;
1593 temp |= FDI_LINK_TRAIN_PATTERN_2;
1594 I915_WRITE(fdi_tx_reg, temp);
1595
1596 temp = I915_READ(fdi_rx_reg);
1597 temp &= ~FDI_LINK_TRAIN_NONE;
1598 temp |= FDI_LINK_TRAIN_PATTERN_2;
1599 I915_WRITE(fdi_rx_reg, temp);
1600
1601 udelay(150);
1602
1603 temp = I915_READ(fdi_rx_iir_reg);
1604 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1605
1606 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1607 for (j = 0; j < tries; j++) {
1608 temp = I915_READ(fdi_rx_iir_reg);
1609 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1610 if (temp & FDI_RX_SYMBOL_LOCK)
1611 break;
1612 udelay(200);
1613 }
1614 if (j != tries) {
1615 I915_WRITE(fdi_rx_iir_reg,
1616 temp | FDI_RX_SYMBOL_LOCK);
1617 DRM_DEBUG("train 2 ok 1!\n");
1618 } else
1619 DRM_DEBUG("train 2 fail\n");
1620 } else {
1621 I915_WRITE(fdi_rx_iir_reg,
1622 temp | FDI_RX_SYMBOL_LOCK);
1623 DRM_DEBUG("train 2 ok 2!\n");
1624 }
1625 DRM_DEBUG("train done\n");
1626
1627 /* set transcoder timing */
1628 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1629 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1630 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1631
1632 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1633 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1634 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1635
1636 /* enable PCH transcoder */
1637 temp = I915_READ(transconf_reg);
1638 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1639 I915_READ(transconf_reg);
1640
1641 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1642 ;
1643
1644 /* enable normal */
1645
1646 temp = I915_READ(fdi_tx_reg);
1647 temp &= ~FDI_LINK_TRAIN_NONE;
1648 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1649 FDI_TX_ENHANCE_FRAME_ENABLE);
1650 I915_READ(fdi_tx_reg);
1651
1652 temp = I915_READ(fdi_rx_reg);
1653 temp &= ~FDI_LINK_TRAIN_NONE;
1654 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1655 FDI_RX_ENHANCE_FRAME_ENABLE);
1656 I915_READ(fdi_rx_reg);
1657
1658 /* wait one idle pattern time */
1659 udelay(100);
1660
1661 }
1662
1663 intel_crtc_load_lut(crtc);
1664
1665 break;
1666 case DRM_MODE_DPMS_OFF:
1667 DRM_DEBUG("crtc %d dpms off\n", pipe);
1668
1669 i915_disable_vga(dev);
1670
1671 /* Disable display plane */
1672 temp = I915_READ(dspcntr_reg);
1673 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1674 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1675 /* Flush the plane changes */
1676 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1677 I915_READ(dspbase_reg);
1678 }
1679
1680 /* disable cpu pipe, disable after all planes disabled */
1681 temp = I915_READ(pipeconf_reg);
1682 if ((temp & PIPEACONF_ENABLE) != 0) {
1683 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1684 I915_READ(pipeconf_reg);
1685 n = 0;
1686 /* wait for cpu pipe off, pipe state */
1687 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1688 n++;
1689 if (n < 60) {
1690 udelay(500);
1691 continue;
1692 } else {
1693 DRM_DEBUG("pipe %d off delay\n", pipe);
1694 break;
1695 }
1696 }
1697 } else
1698 DRM_DEBUG("crtc %d is disabled\n", pipe);
1699
1700 if (HAS_eDP) {
1701 igdng_disable_pll_edp(crtc);
1702 }
1703
1704 /* disable CPU FDI tx and PCH FDI rx */
1705 temp = I915_READ(fdi_tx_reg);
1706 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1707 I915_READ(fdi_tx_reg);
1708
1709 temp = I915_READ(fdi_rx_reg);
1710 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1711 I915_READ(fdi_rx_reg);
1712
1713 udelay(100);
1714
1715 /* still set train pattern 1 */
1716 temp = I915_READ(fdi_tx_reg);
1717 temp &= ~FDI_LINK_TRAIN_NONE;
1718 temp |= FDI_LINK_TRAIN_PATTERN_1;
1719 I915_WRITE(fdi_tx_reg, temp);
1720
1721 temp = I915_READ(fdi_rx_reg);
1722 temp &= ~FDI_LINK_TRAIN_NONE;
1723 temp |= FDI_LINK_TRAIN_PATTERN_1;
1724 I915_WRITE(fdi_rx_reg, temp);
1725
1726 udelay(100);
1727
1728 /* disable PCH transcoder */
1729 temp = I915_READ(transconf_reg);
1730 if ((temp & TRANS_ENABLE) != 0) {
1731 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1732 I915_READ(transconf_reg);
1733 n = 0;
1734 /* wait for PCH transcoder off, transcoder state */
1735 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1736 n++;
1737 if (n < 60) {
1738 udelay(500);
1739 continue;
1740 } else {
1741 DRM_DEBUG("transcoder %d off delay\n", pipe);
1742 break;
1743 }
1744 }
1745 }
1746
1747 /* disable PCH DPLL */
1748 temp = I915_READ(pch_dpll_reg);
1749 if ((temp & DPLL_VCO_ENABLE) != 0) {
1750 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1751 I915_READ(pch_dpll_reg);
1752 }
1753
1754 temp = I915_READ(fdi_rx_reg);
1755 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1756 temp &= ~FDI_SEL_PCDCLK;
1757 temp &= ~FDI_RX_PLL_ENABLE;
1758 I915_WRITE(fdi_rx_reg, temp);
1759 I915_READ(fdi_rx_reg);
1760 }
1761
1762 /* Disable CPU FDI TX PLL */
1763 temp = I915_READ(fdi_tx_reg);
1764 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1765 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1766 I915_READ(fdi_tx_reg);
1767 udelay(100);
1768 }
1769
1770 /* Disable PF */
1771 temp = I915_READ(pf_ctl_reg);
1772 if ((temp & PF_ENABLE) != 0) {
1773 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1774 I915_READ(pf_ctl_reg);
1775 }
1776 I915_WRITE(pf_win_size, 0);
1777
1778 /* Wait for the clocks to turn off. */
1779 udelay(150);
1780 break;
1781 }
1782 }
1783
1784 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1785 {
1786 struct intel_overlay *overlay;
1787
1788 if (!enable && intel_crtc->overlay) {
1789 overlay = intel_crtc->overlay;
1790 mutex_lock(&overlay->dev->struct_mutex);
1791 intel_overlay_switch_off(overlay);
1792 mutex_unlock(&overlay->dev->struct_mutex);
1793 }
1794 /* Let userspace switch the overlay on again. In most cases userspace
1795 * has to recompute where to put it anyway. */
1796
1797 return;
1798 }
1799
1800 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1801 {
1802 struct drm_device *dev = crtc->dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
1804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1805 int pipe = intel_crtc->pipe;
1806 int plane = intel_crtc->plane;
1807 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1808 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1809 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1810 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1811 u32 temp;
1812
1813 /* XXX: When our outputs are all unaware of DPMS modes other than off
1814 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1815 */
1816 switch (mode) {
1817 case DRM_MODE_DPMS_ON:
1818 case DRM_MODE_DPMS_STANDBY:
1819 case DRM_MODE_DPMS_SUSPEND:
1820 intel_update_watermarks(dev);
1821
1822 /* Enable the DPLL */
1823 temp = I915_READ(dpll_reg);
1824 if ((temp & DPLL_VCO_ENABLE) == 0) {
1825 I915_WRITE(dpll_reg, temp);
1826 I915_READ(dpll_reg);
1827 /* Wait for the clocks to stabilize. */
1828 udelay(150);
1829 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1830 I915_READ(dpll_reg);
1831 /* Wait for the clocks to stabilize. */
1832 udelay(150);
1833 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1834 I915_READ(dpll_reg);
1835 /* Wait for the clocks to stabilize. */
1836 udelay(150);
1837 }
1838
1839 /* Enable the pipe */
1840 temp = I915_READ(pipeconf_reg);
1841 if ((temp & PIPEACONF_ENABLE) == 0)
1842 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1843
1844 /* Enable the plane */
1845 temp = I915_READ(dspcntr_reg);
1846 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1847 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1848 /* Flush the plane changes */
1849 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1850 }
1851
1852 intel_crtc_load_lut(crtc);
1853
1854 if ((IS_I965G(dev) || plane == 0))
1855 intel_update_fbc(crtc, &crtc->mode);
1856
1857 /* Give the overlay scaler a chance to enable if it's on this pipe */
1858 intel_crtc_dpms_overlay(intel_crtc, true);
1859 break;
1860 case DRM_MODE_DPMS_OFF:
1861 intel_update_watermarks(dev);
1862
1863 /* Give the overlay scaler a chance to disable if it's on this pipe */
1864 intel_crtc_dpms_overlay(intel_crtc, false);
1865
1866 if (dev_priv->cfb_plane == plane &&
1867 dev_priv->display.disable_fbc)
1868 dev_priv->display.disable_fbc(dev);
1869
1870 /* Disable the VGA plane that we never use */
1871 i915_disable_vga(dev);
1872
1873 /* Disable display plane */
1874 temp = I915_READ(dspcntr_reg);
1875 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1876 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1877 /* Flush the plane changes */
1878 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1879 I915_READ(dspbase_reg);
1880 }
1881
1882 if (!IS_I9XX(dev)) {
1883 /* Wait for vblank for the disable to take effect */
1884 intel_wait_for_vblank(dev);
1885 }
1886
1887 /* Next, disable display pipes */
1888 temp = I915_READ(pipeconf_reg);
1889 if ((temp & PIPEACONF_ENABLE) != 0) {
1890 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1891 I915_READ(pipeconf_reg);
1892 }
1893
1894 /* Wait for vblank for the disable to take effect. */
1895 intel_wait_for_vblank(dev);
1896
1897 temp = I915_READ(dpll_reg);
1898 if ((temp & DPLL_VCO_ENABLE) != 0) {
1899 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1900 I915_READ(dpll_reg);
1901 }
1902
1903 /* Wait for the clocks to turn off. */
1904 udelay(150);
1905 break;
1906 }
1907 }
1908
1909 /**
1910 * Sets the power management mode of the pipe and plane.
1911 *
1912 * This code should probably grow support for turning the cursor off and back
1913 * on appropriately at the same time as we're turning the pipe off/on.
1914 */
1915 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1916 {
1917 struct drm_device *dev = crtc->dev;
1918 struct drm_i915_private *dev_priv = dev->dev_private;
1919 struct drm_i915_master_private *master_priv;
1920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1921 int pipe = intel_crtc->pipe;
1922 bool enabled;
1923
1924 dev_priv->display.dpms(crtc, mode);
1925
1926 intel_crtc->dpms_mode = mode;
1927
1928 if (!dev->primary->master)
1929 return;
1930
1931 master_priv = dev->primary->master->driver_priv;
1932 if (!master_priv->sarea_priv)
1933 return;
1934
1935 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1936
1937 switch (pipe) {
1938 case 0:
1939 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1940 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1941 break;
1942 case 1:
1943 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1944 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1945 break;
1946 default:
1947 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1948 break;
1949 }
1950 }
1951
1952 static void intel_crtc_prepare (struct drm_crtc *crtc)
1953 {
1954 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1955 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1956 }
1957
1958 static void intel_crtc_commit (struct drm_crtc *crtc)
1959 {
1960 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1961 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1962 }
1963
1964 void intel_encoder_prepare (struct drm_encoder *encoder)
1965 {
1966 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1967 /* lvds has its own version of prepare see intel_lvds_prepare */
1968 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1969 }
1970
1971 void intel_encoder_commit (struct drm_encoder *encoder)
1972 {
1973 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1974 /* lvds has its own version of commit see intel_lvds_commit */
1975 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1976 }
1977
1978 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1979 struct drm_display_mode *mode,
1980 struct drm_display_mode *adjusted_mode)
1981 {
1982 struct drm_device *dev = crtc->dev;
1983 if (IS_IGDNG(dev)) {
1984 /* FDI link clock is fixed at 2.7G */
1985 if (mode->clock * 3 > 27000 * 4)
1986 return MODE_CLOCK_HIGH;
1987 }
1988 return true;
1989 }
1990
1991 static int i945_get_display_clock_speed(struct drm_device *dev)
1992 {
1993 return 400000;
1994 }
1995
1996 static int i915_get_display_clock_speed(struct drm_device *dev)
1997 {
1998 return 333000;
1999 }
2000
2001 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2002 {
2003 return 200000;
2004 }
2005
2006 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2007 {
2008 u16 gcfgc = 0;
2009
2010 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2011
2012 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2013 return 133000;
2014 else {
2015 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2016 case GC_DISPLAY_CLOCK_333_MHZ:
2017 return 333000;
2018 default:
2019 case GC_DISPLAY_CLOCK_190_200_MHZ:
2020 return 190000;
2021 }
2022 }
2023 }
2024
2025 static int i865_get_display_clock_speed(struct drm_device *dev)
2026 {
2027 return 266000;
2028 }
2029
2030 static int i855_get_display_clock_speed(struct drm_device *dev)
2031 {
2032 u16 hpllcc = 0;
2033 /* Assume that the hardware is in the high speed state. This
2034 * should be the default.
2035 */
2036 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2037 case GC_CLOCK_133_200:
2038 case GC_CLOCK_100_200:
2039 return 200000;
2040 case GC_CLOCK_166_250:
2041 return 250000;
2042 case GC_CLOCK_100_133:
2043 return 133000;
2044 }
2045
2046 /* Shouldn't happen */
2047 return 0;
2048 }
2049
2050 static int i830_get_display_clock_speed(struct drm_device *dev)
2051 {
2052 return 133000;
2053 }
2054
2055 /**
2056 * Return the pipe currently connected to the panel fitter,
2057 * or -1 if the panel fitter is not present or not in use
2058 */
2059 int intel_panel_fitter_pipe (struct drm_device *dev)
2060 {
2061 struct drm_i915_private *dev_priv = dev->dev_private;
2062 u32 pfit_control;
2063
2064 /* i830 doesn't have a panel fitter */
2065 if (IS_I830(dev))
2066 return -1;
2067
2068 pfit_control = I915_READ(PFIT_CONTROL);
2069
2070 /* See if the panel fitter is in use */
2071 if ((pfit_control & PFIT_ENABLE) == 0)
2072 return -1;
2073
2074 /* 965 can place panel fitter on either pipe */
2075 if (IS_I965G(dev))
2076 return (pfit_control >> 29) & 0x3;
2077
2078 /* older chips can only use pipe 1 */
2079 return 1;
2080 }
2081
2082 struct fdi_m_n {
2083 u32 tu;
2084 u32 gmch_m;
2085 u32 gmch_n;
2086 u32 link_m;
2087 u32 link_n;
2088 };
2089
2090 static void
2091 fdi_reduce_ratio(u32 *num, u32 *den)
2092 {
2093 while (*num > 0xffffff || *den > 0xffffff) {
2094 *num >>= 1;
2095 *den >>= 1;
2096 }
2097 }
2098
2099 #define DATA_N 0x800000
2100 #define LINK_N 0x80000
2101
2102 static void
2103 igdng_compute_m_n(int bits_per_pixel, int nlanes,
2104 int pixel_clock, int link_clock,
2105 struct fdi_m_n *m_n)
2106 {
2107 u64 temp;
2108
2109 m_n->tu = 64; /* default size */
2110
2111 temp = (u64) DATA_N * pixel_clock;
2112 temp = div_u64(temp, link_clock);
2113 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2114 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2115 m_n->gmch_n = DATA_N;
2116 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2117
2118 temp = (u64) LINK_N * pixel_clock;
2119 m_n->link_m = div_u64(temp, link_clock);
2120 m_n->link_n = LINK_N;
2121 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2122 }
2123
2124
2125 struct intel_watermark_params {
2126 unsigned long fifo_size;
2127 unsigned long max_wm;
2128 unsigned long default_wm;
2129 unsigned long guard_size;
2130 unsigned long cacheline_size;
2131 };
2132
2133 /* IGD has different values for various configs */
2134 static struct intel_watermark_params igd_display_wm = {
2135 IGD_DISPLAY_FIFO,
2136 IGD_MAX_WM,
2137 IGD_DFT_WM,
2138 IGD_GUARD_WM,
2139 IGD_FIFO_LINE_SIZE
2140 };
2141 static struct intel_watermark_params igd_display_hplloff_wm = {
2142 IGD_DISPLAY_FIFO,
2143 IGD_MAX_WM,
2144 IGD_DFT_HPLLOFF_WM,
2145 IGD_GUARD_WM,
2146 IGD_FIFO_LINE_SIZE
2147 };
2148 static struct intel_watermark_params igd_cursor_wm = {
2149 IGD_CURSOR_FIFO,
2150 IGD_CURSOR_MAX_WM,
2151 IGD_CURSOR_DFT_WM,
2152 IGD_CURSOR_GUARD_WM,
2153 IGD_FIFO_LINE_SIZE,
2154 };
2155 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2156 IGD_CURSOR_FIFO,
2157 IGD_CURSOR_MAX_WM,
2158 IGD_CURSOR_DFT_WM,
2159 IGD_CURSOR_GUARD_WM,
2160 IGD_FIFO_LINE_SIZE
2161 };
2162 static struct intel_watermark_params g4x_wm_info = {
2163 G4X_FIFO_SIZE,
2164 G4X_MAX_WM,
2165 G4X_MAX_WM,
2166 2,
2167 G4X_FIFO_LINE_SIZE,
2168 };
2169 static struct intel_watermark_params i945_wm_info = {
2170 I945_FIFO_SIZE,
2171 I915_MAX_WM,
2172 1,
2173 2,
2174 I915_FIFO_LINE_SIZE
2175 };
2176 static struct intel_watermark_params i915_wm_info = {
2177 I915_FIFO_SIZE,
2178 I915_MAX_WM,
2179 1,
2180 2,
2181 I915_FIFO_LINE_SIZE
2182 };
2183 static struct intel_watermark_params i855_wm_info = {
2184 I855GM_FIFO_SIZE,
2185 I915_MAX_WM,
2186 1,
2187 2,
2188 I830_FIFO_LINE_SIZE
2189 };
2190 static struct intel_watermark_params i830_wm_info = {
2191 I830_FIFO_SIZE,
2192 I915_MAX_WM,
2193 1,
2194 2,
2195 I830_FIFO_LINE_SIZE
2196 };
2197
2198 /**
2199 * intel_calculate_wm - calculate watermark level
2200 * @clock_in_khz: pixel clock
2201 * @wm: chip FIFO params
2202 * @pixel_size: display pixel size
2203 * @latency_ns: memory latency for the platform
2204 *
2205 * Calculate the watermark level (the level at which the display plane will
2206 * start fetching from memory again). Each chip has a different display
2207 * FIFO size and allocation, so the caller needs to figure that out and pass
2208 * in the correct intel_watermark_params structure.
2209 *
2210 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2211 * on the pixel size. When it reaches the watermark level, it'll start
2212 * fetching FIFO line sized based chunks from memory until the FIFO fills
2213 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2214 * will occur, and a display engine hang could result.
2215 */
2216 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2217 struct intel_watermark_params *wm,
2218 int pixel_size,
2219 unsigned long latency_ns)
2220 {
2221 long entries_required, wm_size;
2222
2223 /*
2224 * Note: we need to make sure we don't overflow for various clock &
2225 * latency values.
2226 * clocks go from a few thousand to several hundred thousand.
2227 * latency is usually a few thousand
2228 */
2229 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2230 1000;
2231 entries_required /= wm->cacheline_size;
2232
2233 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2234
2235 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2236
2237 DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2238
2239 /* Don't promote wm_size to unsigned... */
2240 if (wm_size > (long)wm->max_wm)
2241 wm_size = wm->max_wm;
2242 if (wm_size <= 0)
2243 wm_size = wm->default_wm;
2244 return wm_size;
2245 }
2246
2247 struct cxsr_latency {
2248 int is_desktop;
2249 unsigned long fsb_freq;
2250 unsigned long mem_freq;
2251 unsigned long display_sr;
2252 unsigned long display_hpll_disable;
2253 unsigned long cursor_sr;
2254 unsigned long cursor_hpll_disable;
2255 };
2256
2257 static struct cxsr_latency cxsr_latency_table[] = {
2258 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2259 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2260 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2261
2262 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2263 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2264 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2265
2266 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2267 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2268 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2269
2270 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2271 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2272 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2273
2274 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2275 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2276 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2277
2278 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2279 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2280 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2281 };
2282
2283 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2284 int mem)
2285 {
2286 int i;
2287 struct cxsr_latency *latency;
2288
2289 if (fsb == 0 || mem == 0)
2290 return NULL;
2291
2292 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2293 latency = &cxsr_latency_table[i];
2294 if (is_desktop == latency->is_desktop &&
2295 fsb == latency->fsb_freq && mem == latency->mem_freq)
2296 return latency;
2297 }
2298
2299 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2300
2301 return NULL;
2302 }
2303
2304 static void igd_disable_cxsr(struct drm_device *dev)
2305 {
2306 struct drm_i915_private *dev_priv = dev->dev_private;
2307 u32 reg;
2308
2309 /* deactivate cxsr */
2310 reg = I915_READ(DSPFW3);
2311 reg &= ~(IGD_SELF_REFRESH_EN);
2312 I915_WRITE(DSPFW3, reg);
2313 DRM_INFO("Big FIFO is disabled\n");
2314 }
2315
2316 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2317 int pixel_size)
2318 {
2319 struct drm_i915_private *dev_priv = dev->dev_private;
2320 u32 reg;
2321 unsigned long wm;
2322 struct cxsr_latency *latency;
2323
2324 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2325 dev_priv->mem_freq);
2326 if (!latency) {
2327 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2328 igd_disable_cxsr(dev);
2329 return;
2330 }
2331
2332 /* Display SR */
2333 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2334 latency->display_sr);
2335 reg = I915_READ(DSPFW1);
2336 reg &= 0x7fffff;
2337 reg |= wm << 23;
2338 I915_WRITE(DSPFW1, reg);
2339 DRM_DEBUG("DSPFW1 register is %x\n", reg);
2340
2341 /* cursor SR */
2342 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2343 latency->cursor_sr);
2344 reg = I915_READ(DSPFW3);
2345 reg &= ~(0x3f << 24);
2346 reg |= (wm & 0x3f) << 24;
2347 I915_WRITE(DSPFW3, reg);
2348
2349 /* Display HPLL off SR */
2350 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2351 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2352 reg = I915_READ(DSPFW3);
2353 reg &= 0xfffffe00;
2354 reg |= wm & 0x1ff;
2355 I915_WRITE(DSPFW3, reg);
2356
2357 /* cursor HPLL off SR */
2358 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2359 latency->cursor_hpll_disable);
2360 reg = I915_READ(DSPFW3);
2361 reg &= ~(0x3f << 16);
2362 reg |= (wm & 0x3f) << 16;
2363 I915_WRITE(DSPFW3, reg);
2364 DRM_DEBUG("DSPFW3 register is %x\n", reg);
2365
2366 /* activate cxsr */
2367 reg = I915_READ(DSPFW3);
2368 reg |= IGD_SELF_REFRESH_EN;
2369 I915_WRITE(DSPFW3, reg);
2370
2371 DRM_INFO("Big FIFO is enabled\n");
2372
2373 return;
2374 }
2375
2376 /*
2377 * Latency for FIFO fetches is dependent on several factors:
2378 * - memory configuration (speed, channels)
2379 * - chipset
2380 * - current MCH state
2381 * It can be fairly high in some situations, so here we assume a fairly
2382 * pessimal value. It's a tradeoff between extra memory fetches (if we
2383 * set this value too high, the FIFO will fetch frequently to stay full)
2384 * and power consumption (set it too low to save power and we might see
2385 * FIFO underruns and display "flicker").
2386 *
2387 * A value of 5us seems to be a good balance; safe for very low end
2388 * platforms but not overly aggressive on lower latency configs.
2389 */
2390 const static int latency_ns = 5000;
2391
2392 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2393 {
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395 uint32_t dsparb = I915_READ(DSPARB);
2396 int size;
2397
2398 if (plane == 0)
2399 size = dsparb & 0x7f;
2400 else
2401 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2402 (dsparb & 0x7f);
2403
2404 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2405 size);
2406
2407 return size;
2408 }
2409
2410 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2411 {
2412 struct drm_i915_private *dev_priv = dev->dev_private;
2413 uint32_t dsparb = I915_READ(DSPARB);
2414 int size;
2415
2416 if (plane == 0)
2417 size = dsparb & 0x1ff;
2418 else
2419 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2420 (dsparb & 0x1ff);
2421 size >>= 1; /* Convert to cachelines */
2422
2423 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2424 size);
2425
2426 return size;
2427 }
2428
2429 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2430 {
2431 struct drm_i915_private *dev_priv = dev->dev_private;
2432 uint32_t dsparb = I915_READ(DSPARB);
2433 int size;
2434
2435 size = dsparb & 0x7f;
2436 size >>= 2; /* Convert to cachelines */
2437
2438 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2439 size);
2440
2441 return size;
2442 }
2443
2444 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2445 {
2446 struct drm_i915_private *dev_priv = dev->dev_private;
2447 uint32_t dsparb = I915_READ(DSPARB);
2448 int size;
2449
2450 size = dsparb & 0x7f;
2451 size >>= 1; /* Convert to cachelines */
2452
2453 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2454 size);
2455
2456 return size;
2457 }
2458
2459 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2460 int planeb_clock, int sr_hdisplay, int pixel_size)
2461 {
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463 int total_size, cacheline_size;
2464 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2465 struct intel_watermark_params planea_params, planeb_params;
2466 unsigned long line_time_us;
2467 int sr_clock, sr_entries = 0, entries_required;
2468
2469 /* Create copies of the base settings for each pipe */
2470 planea_params = planeb_params = g4x_wm_info;
2471
2472 /* Grab a couple of global values before we overwrite them */
2473 total_size = planea_params.fifo_size;
2474 cacheline_size = planea_params.cacheline_size;
2475
2476 /*
2477 * Note: we need to make sure we don't overflow for various clock &
2478 * latency values.
2479 * clocks go from a few thousand to several hundred thousand.
2480 * latency is usually a few thousand
2481 */
2482 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2483 1000;
2484 entries_required /= G4X_FIFO_LINE_SIZE;
2485 planea_wm = entries_required + planea_params.guard_size;
2486
2487 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2488 1000;
2489 entries_required /= G4X_FIFO_LINE_SIZE;
2490 planeb_wm = entries_required + planeb_params.guard_size;
2491
2492 cursora_wm = cursorb_wm = 16;
2493 cursor_sr = 32;
2494
2495 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2496
2497 /* Calc sr entries for one plane configs */
2498 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2499 /* self-refresh has much higher latency */
2500 const static int sr_latency_ns = 12000;
2501
2502 sr_clock = planea_clock ? planea_clock : planeb_clock;
2503 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2504
2505 /* Use ns/us then divide to preserve precision */
2506 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2507 pixel_size * sr_hdisplay) / 1000;
2508 sr_entries = roundup(sr_entries / cacheline_size, 1);
2509 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2510 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2511 }
2512
2513 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2514 planea_wm, planeb_wm, sr_entries);
2515
2516 planea_wm &= 0x3f;
2517 planeb_wm &= 0x3f;
2518
2519 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2520 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2521 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2522 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2523 (cursora_wm << DSPFW_CURSORA_SHIFT));
2524 /* HPLL off in SR has some issues on G4x... disable it */
2525 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2526 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2527 }
2528
2529 static void i965_update_wm(struct drm_device *dev, int unused, int unused2,
2530 int unused3, int unused4)
2531 {
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533
2534 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2535
2536 /* 965 has limitations... */
2537 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2538 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2539 }
2540
2541 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2542 int planeb_clock, int sr_hdisplay, int pixel_size)
2543 {
2544 struct drm_i915_private *dev_priv = dev->dev_private;
2545 uint32_t fwater_lo;
2546 uint32_t fwater_hi;
2547 int total_size, cacheline_size, cwm, srwm = 1;
2548 int planea_wm, planeb_wm;
2549 struct intel_watermark_params planea_params, planeb_params;
2550 unsigned long line_time_us;
2551 int sr_clock, sr_entries = 0;
2552
2553 /* Create copies of the base settings for each pipe */
2554 if (IS_I965GM(dev) || IS_I945GM(dev))
2555 planea_params = planeb_params = i945_wm_info;
2556 else if (IS_I9XX(dev))
2557 planea_params = planeb_params = i915_wm_info;
2558 else
2559 planea_params = planeb_params = i855_wm_info;
2560
2561 /* Grab a couple of global values before we overwrite them */
2562 total_size = planea_params.fifo_size;
2563 cacheline_size = planea_params.cacheline_size;
2564
2565 /* Update per-plane FIFO sizes */
2566 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2567 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2568
2569 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2570 pixel_size, latency_ns);
2571 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2572 pixel_size, latency_ns);
2573 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2574
2575 /*
2576 * Overlay gets an aggressive default since video jitter is bad.
2577 */
2578 cwm = 2;
2579
2580 /* Calc sr entries for one plane configs */
2581 if (HAS_FW_BLC(dev) && sr_hdisplay &&
2582 (!planea_clock || !planeb_clock)) {
2583 /* self-refresh has much higher latency */
2584 const static int sr_latency_ns = 6000;
2585
2586 sr_clock = planea_clock ? planea_clock : planeb_clock;
2587 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2588
2589 /* Use ns/us then divide to preserve precision */
2590 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2591 pixel_size * sr_hdisplay) / 1000;
2592 sr_entries = roundup(sr_entries / cacheline_size, 1);
2593 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2594 srwm = total_size - sr_entries;
2595 if (srwm < 0)
2596 srwm = 1;
2597 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2598 }
2599
2600 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2601 planea_wm, planeb_wm, cwm, srwm);
2602
2603 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2604 fwater_hi = (cwm & 0x1f);
2605
2606 /* Set request length to 8 cachelines per fetch */
2607 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2608 fwater_hi = fwater_hi | (1 << 8);
2609
2610 I915_WRITE(FW_BLC, fwater_lo);
2611 I915_WRITE(FW_BLC2, fwater_hi);
2612 }
2613
2614 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2615 int unused2, int pixel_size)
2616 {
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2619 int planea_wm;
2620
2621 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2622
2623 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2624 pixel_size, latency_ns);
2625 fwater_lo |= (3<<8) | planea_wm;
2626
2627 DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2628
2629 I915_WRITE(FW_BLC, fwater_lo);
2630 }
2631
2632 /**
2633 * intel_update_watermarks - update FIFO watermark values based on current modes
2634 *
2635 * Calculate watermark values for the various WM regs based on current mode
2636 * and plane configuration.
2637 *
2638 * There are several cases to deal with here:
2639 * - normal (i.e. non-self-refresh)
2640 * - self-refresh (SR) mode
2641 * - lines are large relative to FIFO size (buffer can hold up to 2)
2642 * - lines are small relative to FIFO size (buffer can hold more than 2
2643 * lines), so need to account for TLB latency
2644 *
2645 * The normal calculation is:
2646 * watermark = dotclock * bytes per pixel * latency
2647 * where latency is platform & configuration dependent (we assume pessimal
2648 * values here).
2649 *
2650 * The SR calculation is:
2651 * watermark = (trunc(latency/line time)+1) * surface width *
2652 * bytes per pixel
2653 * where
2654 * line time = htotal / dotclock
2655 * and latency is assumed to be high, as above.
2656 *
2657 * The final value programmed to the register should always be rounded up,
2658 * and include an extra 2 entries to account for clock crossings.
2659 *
2660 * We don't use the sprite, so we can ignore that. And on Crestline we have
2661 * to set the non-SR watermarks to 8.
2662 */
2663 static void intel_update_watermarks(struct drm_device *dev)
2664 {
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666 struct drm_crtc *crtc;
2667 struct intel_crtc *intel_crtc;
2668 int sr_hdisplay = 0;
2669 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2670 int enabled = 0, pixel_size = 0;
2671
2672 if (!dev_priv->display.update_wm)
2673 return;
2674
2675 /* Get the clock config from both planes */
2676 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2677 intel_crtc = to_intel_crtc(crtc);
2678 if (crtc->enabled) {
2679 enabled++;
2680 if (intel_crtc->plane == 0) {
2681 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2682 intel_crtc->pipe, crtc->mode.clock);
2683 planea_clock = crtc->mode.clock;
2684 } else {
2685 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2686 intel_crtc->pipe, crtc->mode.clock);
2687 planeb_clock = crtc->mode.clock;
2688 }
2689 sr_hdisplay = crtc->mode.hdisplay;
2690 sr_clock = crtc->mode.clock;
2691 if (crtc->fb)
2692 pixel_size = crtc->fb->bits_per_pixel / 8;
2693 else
2694 pixel_size = 4; /* by default */
2695 }
2696 }
2697
2698 if (enabled <= 0)
2699 return;
2700
2701 /* Single plane configs can enable self refresh */
2702 if (enabled == 1 && IS_IGD(dev))
2703 igd_enable_cxsr(dev, sr_clock, pixel_size);
2704 else if (IS_IGD(dev))
2705 igd_disable_cxsr(dev);
2706
2707 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2708 sr_hdisplay, pixel_size);
2709 }
2710
2711 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2712 struct drm_display_mode *mode,
2713 struct drm_display_mode *adjusted_mode,
2714 int x, int y,
2715 struct drm_framebuffer *old_fb)
2716 {
2717 struct drm_device *dev = crtc->dev;
2718 struct drm_i915_private *dev_priv = dev->dev_private;
2719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2720 int pipe = intel_crtc->pipe;
2721 int plane = intel_crtc->plane;
2722 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2723 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2724 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2725 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2726 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2727 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2728 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2729 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2730 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2731 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2732 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2733 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2734 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2735 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2736 int refclk, num_outputs = 0;
2737 intel_clock_t clock, reduced_clock;
2738 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2739 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2740 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2741 bool is_edp = false;
2742 struct drm_mode_config *mode_config = &dev->mode_config;
2743 struct drm_connector *connector;
2744 const intel_limit_t *limit;
2745 int ret;
2746 struct fdi_m_n m_n = {0};
2747 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2748 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2749 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2750 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2751 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2752 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2753 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2754 int lvds_reg = LVDS;
2755 u32 temp;
2756 int sdvo_pixel_multiply;
2757 int target_clock;
2758
2759 drm_vblank_pre_modeset(dev, pipe);
2760
2761 list_for_each_entry(connector, &mode_config->connector_list, head) {
2762 struct intel_output *intel_output = to_intel_output(connector);
2763
2764 if (!connector->encoder || connector->encoder->crtc != crtc)
2765 continue;
2766
2767 switch (intel_output->type) {
2768 case INTEL_OUTPUT_LVDS:
2769 is_lvds = true;
2770 break;
2771 case INTEL_OUTPUT_SDVO:
2772 case INTEL_OUTPUT_HDMI:
2773 is_sdvo = true;
2774 if (intel_output->needs_tv_clock)
2775 is_tv = true;
2776 break;
2777 case INTEL_OUTPUT_DVO:
2778 is_dvo = true;
2779 break;
2780 case INTEL_OUTPUT_TVOUT:
2781 is_tv = true;
2782 break;
2783 case INTEL_OUTPUT_ANALOG:
2784 is_crt = true;
2785 break;
2786 case INTEL_OUTPUT_DISPLAYPORT:
2787 is_dp = true;
2788 break;
2789 case INTEL_OUTPUT_EDP:
2790 is_edp = true;
2791 break;
2792 }
2793
2794 num_outputs++;
2795 }
2796
2797 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2798 refclk = dev_priv->lvds_ssc_freq * 1000;
2799 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2800 } else if (IS_I9XX(dev)) {
2801 refclk = 96000;
2802 if (IS_IGDNG(dev))
2803 refclk = 120000; /* 120Mhz refclk */
2804 } else {
2805 refclk = 48000;
2806 }
2807
2808
2809 /*
2810 * Returns a set of divisors for the desired target clock with the given
2811 * refclk, or FALSE. The returned values represent the clock equation:
2812 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2813 */
2814 limit = intel_limit(crtc);
2815 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2816 if (!ok) {
2817 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2818 drm_vblank_post_modeset(dev, pipe);
2819 return -EINVAL;
2820 }
2821
2822 if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2823 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2824 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2825 (adjusted_mode->clock*3/4),
2826 refclk,
2827 &reduced_clock);
2828 }
2829
2830 /* SDVO TV has fixed PLL values depend on its clock range,
2831 this mirrors vbios setting. */
2832 if (is_sdvo && is_tv) {
2833 if (adjusted_mode->clock >= 100000
2834 && adjusted_mode->clock < 140500) {
2835 clock.p1 = 2;
2836 clock.p2 = 10;
2837 clock.n = 3;
2838 clock.m1 = 16;
2839 clock.m2 = 8;
2840 } else if (adjusted_mode->clock >= 140500
2841 && adjusted_mode->clock <= 200000) {
2842 clock.p1 = 1;
2843 clock.p2 = 10;
2844 clock.n = 6;
2845 clock.m1 = 12;
2846 clock.m2 = 8;
2847 }
2848 }
2849
2850 /* FDI link */
2851 if (IS_IGDNG(dev)) {
2852 int lane, link_bw, bpp;
2853 /* eDP doesn't require FDI link, so just set DP M/N
2854 according to current link config */
2855 if (is_edp) {
2856 struct drm_connector *edp;
2857 target_clock = mode->clock;
2858 edp = intel_pipe_get_output(crtc);
2859 intel_edp_link_config(to_intel_output(edp),
2860 &lane, &link_bw);
2861 } else {
2862 /* DP over FDI requires target mode clock
2863 instead of link clock */
2864 if (is_dp)
2865 target_clock = mode->clock;
2866 else
2867 target_clock = adjusted_mode->clock;
2868 lane = 4;
2869 link_bw = 270000;
2870 }
2871
2872 /* determine panel color depth */
2873 temp = I915_READ(pipeconf_reg);
2874
2875 switch (temp & PIPE_BPC_MASK) {
2876 case PIPE_8BPC:
2877 bpp = 24;
2878 break;
2879 case PIPE_10BPC:
2880 bpp = 30;
2881 break;
2882 case PIPE_6BPC:
2883 bpp = 18;
2884 break;
2885 case PIPE_12BPC:
2886 bpp = 36;
2887 break;
2888 default:
2889 DRM_ERROR("unknown pipe bpc value\n");
2890 bpp = 24;
2891 }
2892
2893 igdng_compute_m_n(bpp, lane, target_clock,
2894 link_bw, &m_n);
2895 }
2896
2897 /* Ironlake: try to setup display ref clock before DPLL
2898 * enabling. This is only under driver's control after
2899 * PCH B stepping, previous chipset stepping should be
2900 * ignoring this setting.
2901 */
2902 if (IS_IGDNG(dev)) {
2903 temp = I915_READ(PCH_DREF_CONTROL);
2904 /* Always enable nonspread source */
2905 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2906 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2907 I915_WRITE(PCH_DREF_CONTROL, temp);
2908 POSTING_READ(PCH_DREF_CONTROL);
2909
2910 temp &= ~DREF_SSC_SOURCE_MASK;
2911 temp |= DREF_SSC_SOURCE_ENABLE;
2912 I915_WRITE(PCH_DREF_CONTROL, temp);
2913 POSTING_READ(PCH_DREF_CONTROL);
2914
2915 udelay(200);
2916
2917 if (is_edp) {
2918 if (dev_priv->lvds_use_ssc) {
2919 temp |= DREF_SSC1_ENABLE;
2920 I915_WRITE(PCH_DREF_CONTROL, temp);
2921 POSTING_READ(PCH_DREF_CONTROL);
2922
2923 udelay(200);
2924
2925 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2926 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2927 I915_WRITE(PCH_DREF_CONTROL, temp);
2928 POSTING_READ(PCH_DREF_CONTROL);
2929 } else {
2930 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2931 I915_WRITE(PCH_DREF_CONTROL, temp);
2932 POSTING_READ(PCH_DREF_CONTROL);
2933 }
2934 }
2935 }
2936
2937 if (IS_IGD(dev)) {
2938 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2939 if (has_reduced_clock)
2940 fp2 = (1 << reduced_clock.n) << 16 |
2941 reduced_clock.m1 << 8 | reduced_clock.m2;
2942 } else {
2943 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2944 if (has_reduced_clock)
2945 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2946 reduced_clock.m2;
2947 }
2948
2949 if (!IS_IGDNG(dev))
2950 dpll = DPLL_VGA_MODE_DIS;
2951
2952 if (IS_I9XX(dev)) {
2953 if (is_lvds)
2954 dpll |= DPLLB_MODE_LVDS;
2955 else
2956 dpll |= DPLLB_MODE_DAC_SERIAL;
2957 if (is_sdvo) {
2958 dpll |= DPLL_DVO_HIGH_SPEED;
2959 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2960 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2961 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2962 else if (IS_IGDNG(dev))
2963 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2964 }
2965 if (is_dp)
2966 dpll |= DPLL_DVO_HIGH_SPEED;
2967
2968 /* compute bitmask from p1 value */
2969 if (IS_IGD(dev))
2970 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2971 else {
2972 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2973 /* also FPA1 */
2974 if (IS_IGDNG(dev))
2975 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2976 if (IS_G4X(dev) && has_reduced_clock)
2977 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2978 }
2979 switch (clock.p2) {
2980 case 5:
2981 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2982 break;
2983 case 7:
2984 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2985 break;
2986 case 10:
2987 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2988 break;
2989 case 14:
2990 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2991 break;
2992 }
2993 if (IS_I965G(dev) && !IS_IGDNG(dev))
2994 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2995 } else {
2996 if (is_lvds) {
2997 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2998 } else {
2999 if (clock.p1 == 2)
3000 dpll |= PLL_P1_DIVIDE_BY_TWO;
3001 else
3002 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3003 if (clock.p2 == 4)
3004 dpll |= PLL_P2_DIVIDE_BY_4;
3005 }
3006 }
3007
3008 if (is_sdvo && is_tv)
3009 dpll |= PLL_REF_INPUT_TVCLKINBC;
3010 else if (is_tv)
3011 /* XXX: just matching BIOS for now */
3012 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3013 dpll |= 3;
3014 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3015 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3016 else
3017 dpll |= PLL_REF_INPUT_DREFCLK;
3018
3019 /* setup pipeconf */
3020 pipeconf = I915_READ(pipeconf_reg);
3021
3022 /* Set up the display plane register */
3023 dspcntr = DISPPLANE_GAMMA_ENABLE;
3024
3025 /* IGDNG's plane is forced to pipe, bit 24 is to
3026 enable color space conversion */
3027 if (!IS_IGDNG(dev)) {
3028 if (pipe == 0)
3029 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3030 else
3031 dspcntr |= DISPPLANE_SEL_PIPE_B;
3032 }
3033
3034 if (pipe == 0 && !IS_I965G(dev)) {
3035 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3036 * core speed.
3037 *
3038 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3039 * pipe == 0 check?
3040 */
3041 if (mode->clock >
3042 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3043 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3044 else
3045 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3046 }
3047
3048 dspcntr |= DISPLAY_PLANE_ENABLE;
3049 pipeconf |= PIPEACONF_ENABLE;
3050 dpll |= DPLL_VCO_ENABLE;
3051
3052
3053 /* Disable the panel fitter if it was on our pipe */
3054 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
3055 I915_WRITE(PFIT_CONTROL, 0);
3056
3057 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3058 drm_mode_debug_printmodeline(mode);
3059
3060 /* assign to IGDNG registers */
3061 if (IS_IGDNG(dev)) {
3062 fp_reg = pch_fp_reg;
3063 dpll_reg = pch_dpll_reg;
3064 }
3065
3066 if (is_edp) {
3067 igdng_disable_pll_edp(crtc);
3068 } else if ((dpll & DPLL_VCO_ENABLE)) {
3069 I915_WRITE(fp_reg, fp);
3070 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3071 I915_READ(dpll_reg);
3072 udelay(150);
3073 }
3074
3075 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3076 * This is an exception to the general rule that mode_set doesn't turn
3077 * things on.
3078 */
3079 if (is_lvds) {
3080 u32 lvds;
3081
3082 if (IS_IGDNG(dev))
3083 lvds_reg = PCH_LVDS;
3084
3085 lvds = I915_READ(lvds_reg);
3086 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3087 /* set the corresponsding LVDS_BORDER bit */
3088 lvds |= dev_priv->lvds_border_bits;
3089 /* Set the B0-B3 data pairs corresponding to whether we're going to
3090 * set the DPLLs for dual-channel mode or not.
3091 */
3092 if (clock.p2 == 7)
3093 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3094 else
3095 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3096
3097 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3098 * appropriately here, but we need to look more thoroughly into how
3099 * panels behave in the two modes.
3100 */
3101
3102 I915_WRITE(lvds_reg, lvds);
3103 I915_READ(lvds_reg);
3104 }
3105 if (is_dp)
3106 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3107
3108 if (!is_edp) {
3109 I915_WRITE(fp_reg, fp);
3110 I915_WRITE(dpll_reg, dpll);
3111 I915_READ(dpll_reg);
3112 /* Wait for the clocks to stabilize. */
3113 udelay(150);
3114
3115 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
3116 if (is_sdvo) {
3117 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3118 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3119 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3120 } else
3121 I915_WRITE(dpll_md_reg, 0);
3122 } else {
3123 /* write it again -- the BIOS does, after all */
3124 I915_WRITE(dpll_reg, dpll);
3125 }
3126 I915_READ(dpll_reg);
3127 /* Wait for the clocks to stabilize. */
3128 udelay(150);
3129 }
3130
3131 if (is_lvds && has_reduced_clock && i915_powersave) {
3132 I915_WRITE(fp_reg + 4, fp2);
3133 intel_crtc->lowfreq_avail = true;
3134 if (HAS_PIPE_CXSR(dev)) {
3135 DRM_DEBUG("enabling CxSR downclocking\n");
3136 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3137 }
3138 } else {
3139 I915_WRITE(fp_reg + 4, fp);
3140 intel_crtc->lowfreq_avail = false;
3141 if (HAS_PIPE_CXSR(dev)) {
3142 DRM_DEBUG("disabling CxSR downclocking\n");
3143 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3144 }
3145 }
3146
3147 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3148 ((adjusted_mode->crtc_htotal - 1) << 16));
3149 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3150 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3151 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3152 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3153 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3154 ((adjusted_mode->crtc_vtotal - 1) << 16));
3155 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3156 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3157 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3158 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3159 /* pipesrc and dspsize control the size that is scaled from, which should
3160 * always be the user's requested size.
3161 */
3162 if (!IS_IGDNG(dev)) {
3163 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3164 (mode->hdisplay - 1));
3165 I915_WRITE(dsppos_reg, 0);
3166 }
3167 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3168
3169 if (IS_IGDNG(dev)) {
3170 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3171 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3172 I915_WRITE(link_m1_reg, m_n.link_m);
3173 I915_WRITE(link_n1_reg, m_n.link_n);
3174
3175 if (is_edp) {
3176 igdng_set_pll_edp(crtc, adjusted_mode->clock);
3177 } else {
3178 /* enable FDI RX PLL too */
3179 temp = I915_READ(fdi_rx_reg);
3180 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3181 udelay(200);
3182 }
3183 }
3184
3185 I915_WRITE(pipeconf_reg, pipeconf);
3186 I915_READ(pipeconf_reg);
3187
3188 intel_wait_for_vblank(dev);
3189
3190 if (IS_IGDNG(dev)) {
3191 /* enable address swizzle for tiling buffer */
3192 temp = I915_READ(DISP_ARB_CTL);
3193 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3194 }
3195
3196 I915_WRITE(dspcntr_reg, dspcntr);
3197
3198 /* Flush the plane changes */
3199 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3200
3201 if ((IS_I965G(dev) || plane == 0))
3202 intel_update_fbc(crtc, &crtc->mode);
3203
3204 intel_update_watermarks(dev);
3205
3206 drm_vblank_post_modeset(dev, pipe);
3207
3208 return ret;
3209 }
3210
3211 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3212 void intel_crtc_load_lut(struct drm_crtc *crtc)
3213 {
3214 struct drm_device *dev = crtc->dev;
3215 struct drm_i915_private *dev_priv = dev->dev_private;
3216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3217 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3218 int i;
3219
3220 /* The clocks have to be on to load the palette. */
3221 if (!crtc->enabled)
3222 return;
3223
3224 /* use legacy palette for IGDNG */
3225 if (IS_IGDNG(dev))
3226 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3227 LGC_PALETTE_B;
3228
3229 for (i = 0; i < 256; i++) {
3230 I915_WRITE(palreg + 4 * i,
3231 (intel_crtc->lut_r[i] << 16) |
3232 (intel_crtc->lut_g[i] << 8) |
3233 intel_crtc->lut_b[i]);
3234 }
3235 }
3236
3237 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3238 struct drm_file *file_priv,
3239 uint32_t handle,
3240 uint32_t width, uint32_t height)
3241 {
3242 struct drm_device *dev = crtc->dev;
3243 struct drm_i915_private *dev_priv = dev->dev_private;
3244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3245 struct drm_gem_object *bo;
3246 struct drm_i915_gem_object *obj_priv;
3247 int pipe = intel_crtc->pipe;
3248 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3249 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3250 uint32_t temp = I915_READ(control);
3251 size_t addr;
3252 int ret;
3253
3254 DRM_DEBUG("\n");
3255
3256 /* if we want to turn off the cursor ignore width and height */
3257 if (!handle) {
3258 DRM_DEBUG("cursor off\n");
3259 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3260 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3261 temp |= CURSOR_MODE_DISABLE;
3262 } else {
3263 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3264 }
3265 addr = 0;
3266 bo = NULL;
3267 mutex_lock(&dev->struct_mutex);
3268 goto finish;
3269 }
3270
3271 /* Currently we only support 64x64 cursors */
3272 if (width != 64 || height != 64) {
3273 DRM_ERROR("we currently only support 64x64 cursors\n");
3274 return -EINVAL;
3275 }
3276
3277 bo = drm_gem_object_lookup(dev, file_priv, handle);
3278 if (!bo)
3279 return -ENOENT;
3280
3281 obj_priv = bo->driver_private;
3282
3283 if (bo->size < width * height * 4) {
3284 DRM_ERROR("buffer is to small\n");
3285 ret = -ENOMEM;
3286 goto fail;
3287 }
3288
3289 /* we only need to pin inside GTT if cursor is non-phy */
3290 mutex_lock(&dev->struct_mutex);
3291 if (!dev_priv->cursor_needs_physical) {
3292 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3293 if (ret) {
3294 DRM_ERROR("failed to pin cursor bo\n");
3295 goto fail_locked;
3296 }
3297 addr = obj_priv->gtt_offset;
3298 } else {
3299 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3300 if (ret) {
3301 DRM_ERROR("failed to attach phys object\n");
3302 goto fail_locked;
3303 }
3304 addr = obj_priv->phys_obj->handle->busaddr;
3305 }
3306
3307 if (!IS_I9XX(dev))
3308 I915_WRITE(CURSIZE, (height << 12) | width);
3309
3310 /* Hooray for CUR*CNTR differences */
3311 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3312 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3313 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3314 temp |= (pipe << 28); /* Connect to correct pipe */
3315 } else {
3316 temp &= ~(CURSOR_FORMAT_MASK);
3317 temp |= CURSOR_ENABLE;
3318 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3319 }
3320
3321 finish:
3322 I915_WRITE(control, temp);
3323 I915_WRITE(base, addr);
3324
3325 if (intel_crtc->cursor_bo) {
3326 if (dev_priv->cursor_needs_physical) {
3327 if (intel_crtc->cursor_bo != bo)
3328 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3329 } else
3330 i915_gem_object_unpin(intel_crtc->cursor_bo);
3331 drm_gem_object_unreference(intel_crtc->cursor_bo);
3332 }
3333
3334 mutex_unlock(&dev->struct_mutex);
3335
3336 intel_crtc->cursor_addr = addr;
3337 intel_crtc->cursor_bo = bo;
3338
3339 return 0;
3340 fail:
3341 mutex_lock(&dev->struct_mutex);
3342 fail_locked:
3343 drm_gem_object_unreference(bo);
3344 mutex_unlock(&dev->struct_mutex);
3345 return ret;
3346 }
3347
3348 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3349 {
3350 struct drm_device *dev = crtc->dev;
3351 struct drm_i915_private *dev_priv = dev->dev_private;
3352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353 struct intel_framebuffer *intel_fb;
3354 int pipe = intel_crtc->pipe;
3355 uint32_t temp = 0;
3356 uint32_t adder;
3357
3358 if (crtc->fb) {
3359 intel_fb = to_intel_framebuffer(crtc->fb);
3360 intel_mark_busy(dev, intel_fb->obj);
3361 }
3362
3363 if (x < 0) {
3364 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3365 x = -x;
3366 }
3367 if (y < 0) {
3368 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3369 y = -y;
3370 }
3371
3372 temp |= x << CURSOR_X_SHIFT;
3373 temp |= y << CURSOR_Y_SHIFT;
3374
3375 adder = intel_crtc->cursor_addr;
3376 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3377 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3378
3379 return 0;
3380 }
3381
3382 /** Sets the color ramps on behalf of RandR */
3383 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3384 u16 blue, int regno)
3385 {
3386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3387
3388 intel_crtc->lut_r[regno] = red >> 8;
3389 intel_crtc->lut_g[regno] = green >> 8;
3390 intel_crtc->lut_b[regno] = blue >> 8;
3391 }
3392
3393 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3394 u16 *blue, int regno)
3395 {
3396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3397
3398 *red = intel_crtc->lut_r[regno] << 8;
3399 *green = intel_crtc->lut_g[regno] << 8;
3400 *blue = intel_crtc->lut_b[regno] << 8;
3401 }
3402
3403 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3404 u16 *blue, uint32_t size)
3405 {
3406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407 int i;
3408
3409 if (size != 256)
3410 return;
3411
3412 for (i = 0; i < 256; i++) {
3413 intel_crtc->lut_r[i] = red[i] >> 8;
3414 intel_crtc->lut_g[i] = green[i] >> 8;
3415 intel_crtc->lut_b[i] = blue[i] >> 8;
3416 }
3417
3418 intel_crtc_load_lut(crtc);
3419 }
3420
3421 /**
3422 * Get a pipe with a simple mode set on it for doing load-based monitor
3423 * detection.
3424 *
3425 * It will be up to the load-detect code to adjust the pipe as appropriate for
3426 * its requirements. The pipe will be connected to no other outputs.
3427 *
3428 * Currently this code will only succeed if there is a pipe with no outputs
3429 * configured for it. In the future, it could choose to temporarily disable
3430 * some outputs to free up a pipe for its use.
3431 *
3432 * \return crtc, or NULL if no pipes are available.
3433 */
3434
3435 /* VESA 640x480x72Hz mode to set on the pipe */
3436 static struct drm_display_mode load_detect_mode = {
3437 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3438 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3439 };
3440
3441 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3442 struct drm_display_mode *mode,
3443 int *dpms_mode)
3444 {
3445 struct intel_crtc *intel_crtc;
3446 struct drm_crtc *possible_crtc;
3447 struct drm_crtc *supported_crtc =NULL;
3448 struct drm_encoder *encoder = &intel_output->enc;
3449 struct drm_crtc *crtc = NULL;
3450 struct drm_device *dev = encoder->dev;
3451 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3452 struct drm_crtc_helper_funcs *crtc_funcs;
3453 int i = -1;
3454
3455 /*
3456 * Algorithm gets a little messy:
3457 * - if the connector already has an assigned crtc, use it (but make
3458 * sure it's on first)
3459 * - try to find the first unused crtc that can drive this connector,
3460 * and use that if we find one
3461 * - if there are no unused crtcs available, try to use the first
3462 * one we found that supports the connector
3463 */
3464
3465 /* See if we already have a CRTC for this connector */
3466 if (encoder->crtc) {
3467 crtc = encoder->crtc;
3468 /* Make sure the crtc and connector are running */
3469 intel_crtc = to_intel_crtc(crtc);
3470 *dpms_mode = intel_crtc->dpms_mode;
3471 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3472 crtc_funcs = crtc->helper_private;
3473 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3474 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3475 }
3476 return crtc;
3477 }
3478
3479 /* Find an unused one (if possible) */
3480 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3481 i++;
3482 if (!(encoder->possible_crtcs & (1 << i)))
3483 continue;
3484 if (!possible_crtc->enabled) {
3485 crtc = possible_crtc;
3486 break;
3487 }
3488 if (!supported_crtc)
3489 supported_crtc = possible_crtc;
3490 }
3491
3492 /*
3493 * If we didn't find an unused CRTC, don't use any.
3494 */
3495 if (!crtc) {
3496 return NULL;
3497 }
3498
3499 encoder->crtc = crtc;
3500 intel_output->base.encoder = encoder;
3501 intel_output->load_detect_temp = true;
3502
3503 intel_crtc = to_intel_crtc(crtc);
3504 *dpms_mode = intel_crtc->dpms_mode;
3505
3506 if (!crtc->enabled) {
3507 if (!mode)
3508 mode = &load_detect_mode;
3509 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3510 } else {
3511 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3512 crtc_funcs = crtc->helper_private;
3513 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3514 }
3515
3516 /* Add this connector to the crtc */
3517 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3518 encoder_funcs->commit(encoder);
3519 }
3520 /* let the connector get through one full cycle before testing */
3521 intel_wait_for_vblank(dev);
3522
3523 return crtc;
3524 }
3525
3526 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3527 {
3528 struct drm_encoder *encoder = &intel_output->enc;
3529 struct drm_device *dev = encoder->dev;
3530 struct drm_crtc *crtc = encoder->crtc;
3531 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3532 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3533
3534 if (intel_output->load_detect_temp) {
3535 encoder->crtc = NULL;
3536 intel_output->base.encoder = NULL;
3537 intel_output->load_detect_temp = false;
3538 crtc->enabled = drm_helper_crtc_in_use(crtc);
3539 drm_helper_disable_unused_functions(dev);
3540 }
3541
3542 /* Switch crtc and output back off if necessary */
3543 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3544 if (encoder->crtc == crtc)
3545 encoder_funcs->dpms(encoder, dpms_mode);
3546 crtc_funcs->dpms(crtc, dpms_mode);
3547 }
3548 }
3549
3550 /* Returns the clock of the currently programmed mode of the given pipe. */
3551 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3552 {
3553 struct drm_i915_private *dev_priv = dev->dev_private;
3554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3555 int pipe = intel_crtc->pipe;
3556 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3557 u32 fp;
3558 intel_clock_t clock;
3559
3560 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3561 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3562 else
3563 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3564
3565 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3566 if (IS_IGD(dev)) {
3567 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3568 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3569 } else {
3570 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3571 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3572 }
3573
3574 if (IS_I9XX(dev)) {
3575 if (IS_IGD(dev))
3576 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3577 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3578 else
3579 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3580 DPLL_FPA01_P1_POST_DIV_SHIFT);
3581
3582 switch (dpll & DPLL_MODE_MASK) {
3583 case DPLLB_MODE_DAC_SERIAL:
3584 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3585 5 : 10;
3586 break;
3587 case DPLLB_MODE_LVDS:
3588 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3589 7 : 14;
3590 break;
3591 default:
3592 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3593 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3594 return 0;
3595 }
3596
3597 /* XXX: Handle the 100Mhz refclk */
3598 intel_clock(dev, 96000, &clock);
3599 } else {
3600 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3601
3602 if (is_lvds) {
3603 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3604 DPLL_FPA01_P1_POST_DIV_SHIFT);
3605 clock.p2 = 14;
3606
3607 if ((dpll & PLL_REF_INPUT_MASK) ==
3608 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3609 /* XXX: might not be 66MHz */
3610 intel_clock(dev, 66000, &clock);
3611 } else
3612 intel_clock(dev, 48000, &clock);
3613 } else {
3614 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3615 clock.p1 = 2;
3616 else {
3617 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3618 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3619 }
3620 if (dpll & PLL_P2_DIVIDE_BY_4)
3621 clock.p2 = 4;
3622 else
3623 clock.p2 = 2;
3624
3625 intel_clock(dev, 48000, &clock);
3626 }
3627 }
3628
3629 /* XXX: It would be nice to validate the clocks, but we can't reuse
3630 * i830PllIsValid() because it relies on the xf86_config connector
3631 * configuration being accurate, which it isn't necessarily.
3632 */
3633
3634 return clock.dot;
3635 }
3636
3637 /** Returns the currently programmed mode of the given pipe. */
3638 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3639 struct drm_crtc *crtc)
3640 {
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3643 int pipe = intel_crtc->pipe;
3644 struct drm_display_mode *mode;
3645 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3646 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3647 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3648 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3649
3650 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3651 if (!mode)
3652 return NULL;
3653
3654 mode->clock = intel_crtc_clock_get(dev, crtc);
3655 mode->hdisplay = (htot & 0xffff) + 1;
3656 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3657 mode->hsync_start = (hsync & 0xffff) + 1;
3658 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3659 mode->vdisplay = (vtot & 0xffff) + 1;
3660 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3661 mode->vsync_start = (vsync & 0xffff) + 1;
3662 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3663
3664 drm_mode_set_name(mode);
3665 drm_mode_set_crtcinfo(mode, 0);
3666
3667 return mode;
3668 }
3669
3670 #define GPU_IDLE_TIMEOUT 500 /* ms */
3671
3672 /* When this timer fires, we've been idle for awhile */
3673 static void intel_gpu_idle_timer(unsigned long arg)
3674 {
3675 struct drm_device *dev = (struct drm_device *)arg;
3676 drm_i915_private_t *dev_priv = dev->dev_private;
3677
3678 DRM_DEBUG("idle timer fired, downclocking\n");
3679
3680 dev_priv->busy = false;
3681
3682 queue_work(dev_priv->wq, &dev_priv->idle_work);
3683 }
3684
3685 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3686 {
3687 drm_i915_private_t *dev_priv = dev->dev_private;
3688
3689 if (IS_IGDNG(dev))
3690 return;
3691
3692 if (!dev_priv->render_reclock_avail) {
3693 DRM_DEBUG("not reclocking render clock\n");
3694 return;
3695 }
3696
3697 /* Restore render clock frequency to original value */
3698 if (IS_G4X(dev) || IS_I9XX(dev))
3699 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3700 else if (IS_I85X(dev))
3701 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3702 DRM_DEBUG("increasing render clock frequency\n");
3703
3704 /* Schedule downclock */
3705 if (schedule)
3706 mod_timer(&dev_priv->idle_timer, jiffies +
3707 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3708 }
3709
3710 void intel_decrease_renderclock(struct drm_device *dev)
3711 {
3712 drm_i915_private_t *dev_priv = dev->dev_private;
3713
3714 if (IS_IGDNG(dev))
3715 return;
3716
3717 if (!dev_priv->render_reclock_avail) {
3718 DRM_DEBUG("not reclocking render clock\n");
3719 return;
3720 }
3721
3722 if (IS_G4X(dev)) {
3723 u16 gcfgc;
3724
3725 /* Adjust render clock... */
3726 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3727
3728 /* Down to minimum... */
3729 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3730 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3731
3732 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3733 } else if (IS_I965G(dev)) {
3734 u16 gcfgc;
3735
3736 /* Adjust render clock... */
3737 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3738
3739 /* Down to minimum... */
3740 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3741 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3742
3743 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3744 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3745 u16 gcfgc;
3746
3747 /* Adjust render clock... */
3748 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3749
3750 /* Down to minimum... */
3751 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3752 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3753
3754 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3755 } else if (IS_I915G(dev)) {
3756 u16 gcfgc;
3757
3758 /* Adjust render clock... */
3759 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3760
3761 /* Down to minimum... */
3762 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3763 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3764
3765 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3766 } else if (IS_I85X(dev)) {
3767 u16 hpllcc;
3768
3769 /* Adjust render clock... */
3770 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3771
3772 /* Up to maximum... */
3773 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3774 hpllcc |= GC_CLOCK_133_200;
3775
3776 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3777 }
3778 DRM_DEBUG("decreasing render clock frequency\n");
3779 }
3780
3781 /* Note that no increase function is needed for this - increase_renderclock()
3782 * will also rewrite these bits
3783 */
3784 void intel_decrease_displayclock(struct drm_device *dev)
3785 {
3786 if (IS_IGDNG(dev))
3787 return;
3788
3789 if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3790 IS_I915GM(dev)) {
3791 u16 gcfgc;
3792
3793 /* Adjust render clock... */
3794 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3795
3796 /* Down to minimum... */
3797 gcfgc &= ~0xf0;
3798 gcfgc |= 0x80;
3799
3800 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3801 }
3802 }
3803
3804 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3805
3806 static void intel_crtc_idle_timer(unsigned long arg)
3807 {
3808 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3809 struct drm_crtc *crtc = &intel_crtc->base;
3810 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3811
3812 DRM_DEBUG("idle timer fired, downclocking\n");
3813
3814 intel_crtc->busy = false;
3815
3816 queue_work(dev_priv->wq, &dev_priv->idle_work);
3817 }
3818
3819 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3820 {
3821 struct drm_device *dev = crtc->dev;
3822 drm_i915_private_t *dev_priv = dev->dev_private;
3823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3824 int pipe = intel_crtc->pipe;
3825 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3826 int dpll = I915_READ(dpll_reg);
3827
3828 if (IS_IGDNG(dev))
3829 return;
3830
3831 if (!dev_priv->lvds_downclock_avail)
3832 return;
3833
3834 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3835 DRM_DEBUG("upclocking LVDS\n");
3836
3837 /* Unlock panel regs */
3838 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3839
3840 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3841 I915_WRITE(dpll_reg, dpll);
3842 dpll = I915_READ(dpll_reg);
3843 intel_wait_for_vblank(dev);
3844 dpll = I915_READ(dpll_reg);
3845 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3846 DRM_DEBUG("failed to upclock LVDS!\n");
3847
3848 /* ...and lock them again */
3849 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3850 }
3851
3852 /* Schedule downclock */
3853 if (schedule)
3854 mod_timer(&intel_crtc->idle_timer, jiffies +
3855 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3856 }
3857
3858 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3859 {
3860 struct drm_device *dev = crtc->dev;
3861 drm_i915_private_t *dev_priv = dev->dev_private;
3862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3863 int pipe = intel_crtc->pipe;
3864 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3865 int dpll = I915_READ(dpll_reg);
3866
3867 if (IS_IGDNG(dev))
3868 return;
3869
3870 if (!dev_priv->lvds_downclock_avail)
3871 return;
3872
3873 /*
3874 * Since this is called by a timer, we should never get here in
3875 * the manual case.
3876 */
3877 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3878 DRM_DEBUG("downclocking LVDS\n");
3879
3880 /* Unlock panel regs */
3881 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3882
3883 dpll |= DISPLAY_RATE_SELECT_FPA1;
3884 I915_WRITE(dpll_reg, dpll);
3885 dpll = I915_READ(dpll_reg);
3886 intel_wait_for_vblank(dev);
3887 dpll = I915_READ(dpll_reg);
3888 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3889 DRM_DEBUG("failed to downclock LVDS!\n");
3890
3891 /* ...and lock them again */
3892 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3893 }
3894
3895 }
3896
3897 /**
3898 * intel_idle_update - adjust clocks for idleness
3899 * @work: work struct
3900 *
3901 * Either the GPU or display (or both) went idle. Check the busy status
3902 * here and adjust the CRTC and GPU clocks as necessary.
3903 */
3904 static void intel_idle_update(struct work_struct *work)
3905 {
3906 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3907 idle_work);
3908 struct drm_device *dev = dev_priv->dev;
3909 struct drm_crtc *crtc;
3910 struct intel_crtc *intel_crtc;
3911
3912 if (!i915_powersave)
3913 return;
3914
3915 mutex_lock(&dev->struct_mutex);
3916
3917 /* GPU isn't processing, downclock it. */
3918 if (!dev_priv->busy) {
3919 intel_decrease_renderclock(dev);
3920 intel_decrease_displayclock(dev);
3921 }
3922
3923 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3924 /* Skip inactive CRTCs */
3925 if (!crtc->fb)
3926 continue;
3927
3928 intel_crtc = to_intel_crtc(crtc);
3929 if (!intel_crtc->busy)
3930 intel_decrease_pllclock(crtc);
3931 }
3932
3933 mutex_unlock(&dev->struct_mutex);
3934 }
3935
3936 /**
3937 * intel_mark_busy - mark the GPU and possibly the display busy
3938 * @dev: drm device
3939 * @obj: object we're operating on
3940 *
3941 * Callers can use this function to indicate that the GPU is busy processing
3942 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
3943 * buffer), we'll also mark the display as busy, so we know to increase its
3944 * clock frequency.
3945 */
3946 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3947 {
3948 drm_i915_private_t *dev_priv = dev->dev_private;
3949 struct drm_crtc *crtc = NULL;
3950 struct intel_framebuffer *intel_fb;
3951 struct intel_crtc *intel_crtc;
3952
3953 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3954 return;
3955
3956 dev_priv->busy = true;
3957 intel_increase_renderclock(dev, true);
3958
3959 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3960 if (!crtc->fb)
3961 continue;
3962
3963 intel_crtc = to_intel_crtc(crtc);
3964 intel_fb = to_intel_framebuffer(crtc->fb);
3965 if (intel_fb->obj == obj) {
3966 if (!intel_crtc->busy) {
3967 /* Non-busy -> busy, upclock */
3968 intel_increase_pllclock(crtc, true);
3969 intel_crtc->busy = true;
3970 } else {
3971 /* Busy -> busy, put off timer */
3972 mod_timer(&intel_crtc->idle_timer, jiffies +
3973 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3974 }
3975 }
3976 }
3977 }
3978
3979 static void intel_crtc_destroy(struct drm_crtc *crtc)
3980 {
3981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3982
3983 drm_crtc_cleanup(crtc);
3984 kfree(intel_crtc);
3985 }
3986
3987 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3988 .dpms = intel_crtc_dpms,
3989 .mode_fixup = intel_crtc_mode_fixup,
3990 .mode_set = intel_crtc_mode_set,
3991 .mode_set_base = intel_pipe_set_base,
3992 .prepare = intel_crtc_prepare,
3993 .commit = intel_crtc_commit,
3994 .load_lut = intel_crtc_load_lut,
3995 };
3996
3997 static const struct drm_crtc_funcs intel_crtc_funcs = {
3998 .cursor_set = intel_crtc_cursor_set,
3999 .cursor_move = intel_crtc_cursor_move,
4000 .gamma_set = intel_crtc_gamma_set,
4001 .set_config = drm_crtc_helper_set_config,
4002 .destroy = intel_crtc_destroy,
4003 };
4004
4005
4006 static void intel_crtc_init(struct drm_device *dev, int pipe)
4007 {
4008 struct intel_crtc *intel_crtc;
4009 int i;
4010
4011 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4012 if (intel_crtc == NULL)
4013 return;
4014
4015 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4016
4017 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4018 intel_crtc->pipe = pipe;
4019 intel_crtc->plane = pipe;
4020 for (i = 0; i < 256; i++) {
4021 intel_crtc->lut_r[i] = i;
4022 intel_crtc->lut_g[i] = i;
4023 intel_crtc->lut_b[i] = i;
4024 }
4025
4026 /* Swap pipes & planes for FBC on pre-965 */
4027 intel_crtc->pipe = pipe;
4028 intel_crtc->plane = pipe;
4029 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4030 DRM_DEBUG("swapping pipes & planes for FBC\n");
4031 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4032 }
4033
4034 intel_crtc->cursor_addr = 0;
4035 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4036 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4037
4038 intel_crtc->busy = false;
4039
4040 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4041 (unsigned long)intel_crtc);
4042 }
4043
4044 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4045 struct drm_file *file_priv)
4046 {
4047 drm_i915_private_t *dev_priv = dev->dev_private;
4048 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4049 struct drm_mode_object *drmmode_obj;
4050 struct intel_crtc *crtc;
4051
4052 if (!dev_priv) {
4053 DRM_ERROR("called with no initialization\n");
4054 return -EINVAL;
4055 }
4056
4057 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4058 DRM_MODE_OBJECT_CRTC);
4059
4060 if (!drmmode_obj) {
4061 DRM_ERROR("no such CRTC id\n");
4062 return -EINVAL;
4063 }
4064
4065 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4066 pipe_from_crtc_id->pipe = crtc->pipe;
4067
4068 return 0;
4069 }
4070
4071 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4072 {
4073 struct drm_crtc *crtc = NULL;
4074
4075 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4077 if (intel_crtc->pipe == pipe)
4078 break;
4079 }
4080 return crtc;
4081 }
4082
4083 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4084 {
4085 int index_mask = 0;
4086 struct drm_connector *connector;
4087 int entry = 0;
4088
4089 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4090 struct intel_output *intel_output = to_intel_output(connector);
4091 if (type_mask & intel_output->clone_mask)
4092 index_mask |= (1 << entry);
4093 entry++;
4094 }
4095 return index_mask;
4096 }
4097
4098
4099 static void intel_setup_outputs(struct drm_device *dev)
4100 {
4101 struct drm_i915_private *dev_priv = dev->dev_private;
4102 struct drm_connector *connector;
4103
4104 intel_crt_init(dev);
4105
4106 /* Set up integrated LVDS */
4107 if (IS_MOBILE(dev) && !IS_I830(dev))
4108 intel_lvds_init(dev);
4109
4110 if (IS_IGDNG(dev)) {
4111 int found;
4112
4113 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4114 intel_dp_init(dev, DP_A);
4115
4116 if (I915_READ(HDMIB) & PORT_DETECTED) {
4117 /* check SDVOB */
4118 /* found = intel_sdvo_init(dev, HDMIB); */
4119 found = 0;
4120 if (!found)
4121 intel_hdmi_init(dev, HDMIB);
4122 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4123 intel_dp_init(dev, PCH_DP_B);
4124 }
4125
4126 if (I915_READ(HDMIC) & PORT_DETECTED)
4127 intel_hdmi_init(dev, HDMIC);
4128
4129 if (I915_READ(HDMID) & PORT_DETECTED)
4130 intel_hdmi_init(dev, HDMID);
4131
4132 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4133 intel_dp_init(dev, PCH_DP_C);
4134
4135 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4136 intel_dp_init(dev, PCH_DP_D);
4137
4138 } else if (IS_I9XX(dev)) {
4139 bool found = false;
4140
4141 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4142 found = intel_sdvo_init(dev, SDVOB);
4143 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
4144 intel_hdmi_init(dev, SDVOB);
4145
4146 if (!found && SUPPORTS_INTEGRATED_DP(dev))
4147 intel_dp_init(dev, DP_B);
4148 }
4149
4150 /* Before G4X SDVOC doesn't have its own detect register */
4151
4152 if (I915_READ(SDVOB) & SDVO_DETECTED)
4153 found = intel_sdvo_init(dev, SDVOC);
4154
4155 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4156
4157 if (SUPPORTS_INTEGRATED_HDMI(dev))
4158 intel_hdmi_init(dev, SDVOC);
4159 if (SUPPORTS_INTEGRATED_DP(dev))
4160 intel_dp_init(dev, DP_C);
4161 }
4162
4163 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4164 intel_dp_init(dev, DP_D);
4165 } else
4166 intel_dvo_init(dev);
4167
4168 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4169 intel_tv_init(dev);
4170
4171 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4172 struct intel_output *intel_output = to_intel_output(connector);
4173 struct drm_encoder *encoder = &intel_output->enc;
4174
4175 encoder->possible_crtcs = intel_output->crtc_mask;
4176 encoder->possible_clones = intel_connector_clones(dev,
4177 intel_output->clone_mask);
4178 }
4179 }
4180
4181 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4182 {
4183 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4184 struct drm_device *dev = fb->dev;
4185
4186 if (fb->fbdev)
4187 intelfb_remove(dev, fb);
4188
4189 drm_framebuffer_cleanup(fb);
4190 mutex_lock(&dev->struct_mutex);
4191 drm_gem_object_unreference(intel_fb->obj);
4192 mutex_unlock(&dev->struct_mutex);
4193
4194 kfree(intel_fb);
4195 }
4196
4197 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4198 struct drm_file *file_priv,
4199 unsigned int *handle)
4200 {
4201 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4202 struct drm_gem_object *object = intel_fb->obj;
4203
4204 return drm_gem_handle_create(file_priv, object, handle);
4205 }
4206
4207 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4208 .destroy = intel_user_framebuffer_destroy,
4209 .create_handle = intel_user_framebuffer_create_handle,
4210 };
4211
4212 int intel_framebuffer_create(struct drm_device *dev,
4213 struct drm_mode_fb_cmd *mode_cmd,
4214 struct drm_framebuffer **fb,
4215 struct drm_gem_object *obj)
4216 {
4217 struct intel_framebuffer *intel_fb;
4218 int ret;
4219
4220 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4221 if (!intel_fb)
4222 return -ENOMEM;
4223
4224 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4225 if (ret) {
4226 DRM_ERROR("framebuffer init failed %d\n", ret);
4227 return ret;
4228 }
4229
4230 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4231
4232 intel_fb->obj = obj;
4233
4234 *fb = &intel_fb->base;
4235
4236 return 0;
4237 }
4238
4239
4240 static struct drm_framebuffer *
4241 intel_user_framebuffer_create(struct drm_device *dev,
4242 struct drm_file *filp,
4243 struct drm_mode_fb_cmd *mode_cmd)
4244 {
4245 struct drm_gem_object *obj;
4246 struct drm_framebuffer *fb;
4247 int ret;
4248
4249 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4250 if (!obj)
4251 return NULL;
4252
4253 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4254 if (ret) {
4255 mutex_lock(&dev->struct_mutex);
4256 drm_gem_object_unreference(obj);
4257 mutex_unlock(&dev->struct_mutex);
4258 return NULL;
4259 }
4260
4261 return fb;
4262 }
4263
4264 static const struct drm_mode_config_funcs intel_mode_funcs = {
4265 .fb_create = intel_user_framebuffer_create,
4266 .fb_changed = intelfb_probe,
4267 };
4268
4269 void intel_init_clock_gating(struct drm_device *dev)
4270 {
4271 struct drm_i915_private *dev_priv = dev->dev_private;
4272
4273 /*
4274 * Disable clock gating reported to work incorrectly according to the
4275 * specs, but enable as much else as we can.
4276 */
4277 if (IS_IGDNG(dev)) {
4278 return;
4279 } else if (IS_G4X(dev)) {
4280 uint32_t dspclk_gate;
4281 I915_WRITE(RENCLK_GATE_D1, 0);
4282 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4283 GS_UNIT_CLOCK_GATE_DISABLE |
4284 CL_UNIT_CLOCK_GATE_DISABLE);
4285 I915_WRITE(RAMCLK_GATE_D, 0);
4286 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4287 OVRUNIT_CLOCK_GATE_DISABLE |
4288 OVCUNIT_CLOCK_GATE_DISABLE;
4289 if (IS_GM45(dev))
4290 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4291 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4292 } else if (IS_I965GM(dev)) {
4293 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4294 I915_WRITE(RENCLK_GATE_D2, 0);
4295 I915_WRITE(DSPCLK_GATE_D, 0);
4296 I915_WRITE(RAMCLK_GATE_D, 0);
4297 I915_WRITE16(DEUC, 0);
4298 } else if (IS_I965G(dev)) {
4299 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4300 I965_RCC_CLOCK_GATE_DISABLE |
4301 I965_RCPB_CLOCK_GATE_DISABLE |
4302 I965_ISC_CLOCK_GATE_DISABLE |
4303 I965_FBC_CLOCK_GATE_DISABLE);
4304 I915_WRITE(RENCLK_GATE_D2, 0);
4305 } else if (IS_I9XX(dev)) {
4306 u32 dstate = I915_READ(D_STATE);
4307
4308 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4309 DSTATE_DOT_CLOCK_GATING;
4310 I915_WRITE(D_STATE, dstate);
4311 } else if (IS_I85X(dev) || IS_I865G(dev)) {
4312 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4313 } else if (IS_I830(dev)) {
4314 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4315 }
4316
4317 /*
4318 * GPU can automatically power down the render unit if given a page
4319 * to save state.
4320 */
4321 if (I915_HAS_RC6(dev)) {
4322 struct drm_gem_object *pwrctx;
4323 struct drm_i915_gem_object *obj_priv;
4324 int ret;
4325
4326 pwrctx = drm_gem_object_alloc(dev, 4096);
4327 if (!pwrctx) {
4328 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4329 goto out;
4330 }
4331
4332 ret = i915_gem_object_pin(pwrctx, 4096);
4333 if (ret) {
4334 DRM_ERROR("failed to pin power context: %d\n", ret);
4335 drm_gem_object_unreference(pwrctx);
4336 goto out;
4337 }
4338
4339 i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4340
4341 obj_priv = pwrctx->driver_private;
4342
4343 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4344 I915_WRITE(MCHBAR_RENDER_STANDBY,
4345 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4346
4347 dev_priv->pwrctx = pwrctx;
4348 }
4349
4350 out:
4351 return;
4352 }
4353
4354 /* Set up chip specific display functions */
4355 static void intel_init_display(struct drm_device *dev)
4356 {
4357 struct drm_i915_private *dev_priv = dev->dev_private;
4358
4359 /* We always want a DPMS function */
4360 if (IS_IGDNG(dev))
4361 dev_priv->display.dpms = igdng_crtc_dpms;
4362 else
4363 dev_priv->display.dpms = i9xx_crtc_dpms;
4364
4365 /* Only mobile has FBC, leave pointers NULL for other chips */
4366 if (IS_MOBILE(dev)) {
4367 if (IS_GM45(dev)) {
4368 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4369 dev_priv->display.enable_fbc = g4x_enable_fbc;
4370 dev_priv->display.disable_fbc = g4x_disable_fbc;
4371 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4372 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4373 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4374 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4375 }
4376 /* 855GM needs testing */
4377 }
4378
4379 /* Returns the core display clock speed */
4380 if (IS_I945G(dev))
4381 dev_priv->display.get_display_clock_speed =
4382 i945_get_display_clock_speed;
4383 else if (IS_I915G(dev))
4384 dev_priv->display.get_display_clock_speed =
4385 i915_get_display_clock_speed;
4386 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4387 dev_priv->display.get_display_clock_speed =
4388 i9xx_misc_get_display_clock_speed;
4389 else if (IS_I915GM(dev))
4390 dev_priv->display.get_display_clock_speed =
4391 i915gm_get_display_clock_speed;
4392 else if (IS_I865G(dev))
4393 dev_priv->display.get_display_clock_speed =
4394 i865_get_display_clock_speed;
4395 else if (IS_I85X(dev))
4396 dev_priv->display.get_display_clock_speed =
4397 i855_get_display_clock_speed;
4398 else /* 852, 830 */
4399 dev_priv->display.get_display_clock_speed =
4400 i830_get_display_clock_speed;
4401
4402 /* For FIFO watermark updates */
4403 if (IS_IGDNG(dev))
4404 dev_priv->display.update_wm = NULL;
4405 else if (IS_G4X(dev))
4406 dev_priv->display.update_wm = g4x_update_wm;
4407 else if (IS_I965G(dev))
4408 dev_priv->display.update_wm = i965_update_wm;
4409 else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4410 dev_priv->display.update_wm = i9xx_update_wm;
4411 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4412 } else {
4413 if (IS_I85X(dev))
4414 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4415 else if (IS_845G(dev))
4416 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4417 else
4418 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4419 dev_priv->display.update_wm = i830_update_wm;
4420 }
4421 }
4422
4423 void intel_modeset_init(struct drm_device *dev)
4424 {
4425 struct drm_i915_private *dev_priv = dev->dev_private;
4426 int num_pipe;
4427 int i;
4428
4429 drm_mode_config_init(dev);
4430
4431 dev->mode_config.min_width = 0;
4432 dev->mode_config.min_height = 0;
4433
4434 dev->mode_config.funcs = (void *)&intel_mode_funcs;
4435
4436 intel_init_display(dev);
4437
4438 if (IS_I965G(dev)) {
4439 dev->mode_config.max_width = 8192;
4440 dev->mode_config.max_height = 8192;
4441 } else if (IS_I9XX(dev)) {
4442 dev->mode_config.max_width = 4096;
4443 dev->mode_config.max_height = 4096;
4444 } else {
4445 dev->mode_config.max_width = 2048;
4446 dev->mode_config.max_height = 2048;
4447 }
4448
4449 /* set memory base */
4450 if (IS_I9XX(dev))
4451 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4452 else
4453 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4454
4455 if (IS_MOBILE(dev) || IS_I9XX(dev))
4456 num_pipe = 2;
4457 else
4458 num_pipe = 1;
4459 DRM_DEBUG("%d display pipe%s available.\n",
4460 num_pipe, num_pipe > 1 ? "s" : "");
4461
4462 if (IS_I85X(dev))
4463 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4464 else if (IS_I9XX(dev) || IS_G4X(dev))
4465 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4466
4467 for (i = 0; i < num_pipe; i++) {
4468 intel_crtc_init(dev, i);
4469 }
4470
4471 intel_setup_outputs(dev);
4472
4473 intel_init_clock_gating(dev);
4474
4475 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4476 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4477 (unsigned long)dev);
4478
4479 intel_setup_overlay(dev);
4480 }
4481
4482 void intel_modeset_cleanup(struct drm_device *dev)
4483 {
4484 struct drm_i915_private *dev_priv = dev->dev_private;
4485 struct drm_crtc *crtc;
4486 struct intel_crtc *intel_crtc;
4487
4488 mutex_lock(&dev->struct_mutex);
4489
4490 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4491 /* Skip inactive CRTCs */
4492 if (!crtc->fb)
4493 continue;
4494
4495 intel_crtc = to_intel_crtc(crtc);
4496 intel_increase_pllclock(crtc, false);
4497 del_timer_sync(&intel_crtc->idle_timer);
4498 }
4499
4500 intel_increase_renderclock(dev, false);
4501 del_timer_sync(&dev_priv->idle_timer);
4502
4503 mutex_unlock(&dev->struct_mutex);
4504
4505 if (dev_priv->display.disable_fbc)
4506 dev_priv->display.disable_fbc(dev);
4507
4508 if (dev_priv->pwrctx) {
4509 i915_gem_object_unpin(dev_priv->pwrctx);
4510 drm_gem_object_unreference(dev_priv->pwrctx);
4511 }
4512
4513 drm_mode_config_cleanup(dev);
4514 }
4515
4516
4517 /* current intel driver doesn't take advantage of encoders
4518 always give back the encoder for the connector
4519 */
4520 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4521 {
4522 struct intel_output *intel_output = to_intel_output(connector);
4523
4524 return &intel_output->enc;
4525 }
4526
4527 /*
4528 * set vga decode state - true == enable VGA decode
4529 */
4530 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4531 {
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533 u16 gmch_ctrl;
4534
4535 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4536 if (state)
4537 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4538 else
4539 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4540 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4541 return 0;
4542 }
This page took 0.155568 seconds and 5 git commands to generate.