74e7625b19dc41744b6b3a2083a4fc43fcce1ca0
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
179 .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
195 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
224 },
225 .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
239 },
240 .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
253 .p2_slow = 10, .p2_fast = 10 },
254 .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
260 /* Pineview's Ncounter is a ring counter */
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
263 /* Pineview only has one combined m divider, which we treat as m2. */
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
284 .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
343 .p1 = { .min = 2, .max = 8 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
357 .p1 = { .min = 2, .max = 6 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
360 .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
373 .p2_slow = 10, .p2_fast = 10 },
374 .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
393 .vco = { .min = 4000000, .max = 5994000},
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 22, .max = 450 },
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446 {
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497 {
498 unsigned int val;
499
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
525 {
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 const intel_limit_t *limit;
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532 /* LVDS dual channel */
533 if (refclk == 100000)
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
538 if (refclk == 100000)
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
546 else
547 limit = &intel_limits_ironlake_dac;
548
549 return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559 if (is_dual_link_lvds(dev_priv, LVDS))
560 /* LVDS with dual channel */
561 limit = &intel_limits_g4x_dual_channel_lvds;
562 else
563 /* LVDS with dual channel */
564 limit = &intel_limits_g4x_single_channel_lvds;
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567 limit = &intel_limits_g4x_hdmi;
568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569 limit = &intel_limits_g4x_sdvo;
570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571 limit = &intel_limits_g4x_display_port;
572 } else /* The option is for other outputs */
573 limit = &intel_limits_i9xx_sdvo;
574
575 return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
583 if (HAS_PCH_SPLIT(dev))
584 limit = intel_ironlake_limit(crtc, refclk);
585 else if (IS_G4X(dev)) {
586 limit = intel_g4x_limit(crtc);
587 } else if (IS_PINEVIEW(dev)) {
588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589 limit = &intel_limits_pineview_lvds;
590 else
591 limit = &intel_limits_pineview_sdvo;
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606 limit = &intel_limits_i8xx_lvds;
607 else
608 limit = &intel_limits_i8xx_dvo;
609 }
610 return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
626 return;
627 }
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639 struct drm_device *dev = crtc->dev;
640 struct intel_encoder *encoder;
641
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
644 return true;
645
646 return false;
647 }
648
649 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
658 {
659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
660 INTELPllInvalid("p1 out of range\n");
661 if (clock->p < limit->p.min || limit->p.max < clock->p)
662 INTELPllInvalid("p out of range\n");
663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
664 INTELPllInvalid("m2 out of range\n");
665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
666 INTELPllInvalid("m1 out of range\n");
667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668 INTELPllInvalid("m1 <= m2\n");
669 if (clock->m < limit->m.min || limit->m.max < clock->m)
670 INTELPllInvalid("m out of range\n");
671 if (clock->n < limit->n.min || limit->n.max < clock->n)
672 INTELPllInvalid("n out of range\n");
673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674 INTELPllInvalid("vco out of range\n");
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679 INTELPllInvalid("dot out of range\n");
680
681 return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
688
689 {
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
693 int err = target;
694
695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696 (I915_READ(LVDS)) != 0) {
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
703 if (is_dual_link_lvds(dev_priv, LVDS))
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
714 memset(best_clock, 0, sizeof(*best_clock));
715
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
727 int this_err;
728
729 intel_clock(dev, refclk, &clock);
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
732 continue;
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
754 {
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765 int lvds_reg;
766
767 if (HAS_PCH_SPLIT(dev))
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
785 /* based on hardware requirement, prefer smaller n to precision */
786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787 /* based on hardware requirement, prefere larger m1,m2 */
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
796 intel_clock(dev, refclk, &clock);
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
799 continue;
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
803
804 this_err = abs(clock.dot - target);
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
815 return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
822 {
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
825
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
849 {
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875 {
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
882 flag = 0;
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942 {
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946 return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
953
954 frame = I915_READ(frame_reg);
955
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
964 *
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
967 */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970 struct drm_i915_private *dev_priv = dev->dev_private;
971 int pipestat_reg = PIPESTAT(pipe);
972
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
976 }
977
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
980 *
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
990 */
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994 /* Wait for vblank interrupt bit to set */
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
998 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1005 *
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1009 *
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1012 *
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
1016 *
1017 */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021
1022 if (INTEL_INFO(dev)->gen >= 4) {
1023 int reg = PIPECONF(pipe);
1024
1025 /* Wait for the Pipe State to go off */
1026 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027 100))
1028 WARN(1, "pipe_off wait timed out\n");
1029 } else {
1030 u32 last_line, line_mask;
1031 int reg = PIPEDSL(pipe);
1032 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034 if (IS_GEN2(dev))
1035 line_mask = DSL_LINEMASK_GEN2;
1036 else
1037 line_mask = DSL_LINEMASK_GEN3;
1038
1039 /* Wait for the display line to settle */
1040 do {
1041 last_line = I915_READ(reg) & line_mask;
1042 mdelay(5);
1043 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044 time_after(timeout, jiffies));
1045 if (time_after(jiffies, timeout))
1046 WARN(1, "pipe_off wait timed out\n");
1047 }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052 return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1058 {
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075 struct intel_pch_pll *pll,
1076 struct intel_crtc *crtc,
1077 bool state)
1078 {
1079 u32 val;
1080 bool cur_state;
1081
1082 if (HAS_PCH_LPT(dev_priv->dev)) {
1083 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084 return;
1085 }
1086
1087 if (WARN (!pll,
1088 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089 return;
1090
1091 val = I915_READ(pll->pll_reg);
1092 cur_state = !!(val & DPLL_VCO_ENABLE);
1093 WARN(cur_state != state,
1094 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095 pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097 /* Make sure the selected PLL is correctly attached to the transcoder */
1098 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099 u32 pch_dpll;
1100
1101 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104 "PLL[%d] not attached to this transcoder %d: %08x\n",
1105 cur_state, crtc->pipe, pch_dpll)) {
1106 cur_state = !!(val >> (4*crtc->pipe + 3));
1107 WARN(cur_state != state,
1108 "PLL[%d] not %s on this transcoder %d: %08x\n",
1109 pll->pll_reg == _PCH_DPLL_B,
1110 state_string(state),
1111 crtc->pipe,
1112 val);
1113 }
1114 }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121 {
1122 int reg;
1123 u32 val;
1124 bool cur_state;
1125
1126 if (IS_HASWELL(dev_priv->dev)) {
1127 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1128 reg = DDI_FUNC_CTL(pipe);
1129 val = I915_READ(reg);
1130 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1131 } else {
1132 reg = FDI_TX_CTL(pipe);
1133 val = I915_READ(reg);
1134 cur_state = !!(val & FDI_TX_ENABLE);
1135 }
1136 WARN(cur_state != state,
1137 "FDI TX state assertion failure (expected %s, current %s)\n",
1138 state_string(state), state_string(cur_state));
1139 }
1140 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1141 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1142
1143 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1144 enum pipe pipe, bool state)
1145 {
1146 int reg;
1147 u32 val;
1148 bool cur_state;
1149
1150 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1151 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1152 return;
1153 } else {
1154 reg = FDI_RX_CTL(pipe);
1155 val = I915_READ(reg);
1156 cur_state = !!(val & FDI_RX_ENABLE);
1157 }
1158 WARN(cur_state != state,
1159 "FDI RX state assertion failure (expected %s, current %s)\n",
1160 state_string(state), state_string(cur_state));
1161 }
1162 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1163 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1164
1165 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167 {
1168 int reg;
1169 u32 val;
1170
1171 /* ILK FDI PLL is always enabled */
1172 if (dev_priv->info->gen == 5)
1173 return;
1174
1175 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1176 if (IS_HASWELL(dev_priv->dev))
1177 return;
1178
1179 reg = FDI_TX_CTL(pipe);
1180 val = I915_READ(reg);
1181 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1182 }
1183
1184 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186 {
1187 int reg;
1188 u32 val;
1189
1190 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1191 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1192 return;
1193 }
1194 reg = FDI_RX_CTL(pipe);
1195 val = I915_READ(reg);
1196 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1197 }
1198
1199 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1200 enum pipe pipe)
1201 {
1202 int pp_reg, lvds_reg;
1203 u32 val;
1204 enum pipe panel_pipe = PIPE_A;
1205 bool locked = true;
1206
1207 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1208 pp_reg = PCH_PP_CONTROL;
1209 lvds_reg = PCH_LVDS;
1210 } else {
1211 pp_reg = PP_CONTROL;
1212 lvds_reg = LVDS;
1213 }
1214
1215 val = I915_READ(pp_reg);
1216 if (!(val & PANEL_POWER_ON) ||
1217 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1218 locked = false;
1219
1220 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1221 panel_pipe = PIPE_B;
1222
1223 WARN(panel_pipe == pipe && locked,
1224 "panel assertion failure, pipe %c regs locked\n",
1225 pipe_name(pipe));
1226 }
1227
1228 void assert_pipe(struct drm_i915_private *dev_priv,
1229 enum pipe pipe, bool state)
1230 {
1231 int reg;
1232 u32 val;
1233 bool cur_state;
1234
1235 /* if we need the pipe A quirk it must be always on */
1236 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1237 state = true;
1238
1239 reg = PIPECONF(pipe);
1240 val = I915_READ(reg);
1241 cur_state = !!(val & PIPECONF_ENABLE);
1242 WARN(cur_state != state,
1243 "pipe %c assertion failure (expected %s, current %s)\n",
1244 pipe_name(pipe), state_string(state), state_string(cur_state));
1245 }
1246
1247 static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
1249 {
1250 int reg;
1251 u32 val;
1252 bool cur_state;
1253
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1257 WARN(cur_state != state,
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
1260 }
1261
1262 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
1265 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267 {
1268 int reg, i;
1269 u32 val;
1270 int cur_pipe;
1271
1272 /* Planes are fixed to pipes on ILK+ */
1273 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1274 reg = DSPCNTR(pipe);
1275 val = I915_READ(reg);
1276 WARN((val & DISPLAY_PLANE_ENABLE),
1277 "plane %c assertion failure, should be disabled but not\n",
1278 plane_name(pipe));
1279 return;
1280 }
1281
1282 /* Need to check both planes against the pipe */
1283 for (i = 0; i < 2; i++) {
1284 reg = DSPCNTR(i);
1285 val = I915_READ(reg);
1286 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1287 DISPPLANE_SEL_PIPE_SHIFT;
1288 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1289 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1290 plane_name(i), pipe_name(pipe));
1291 }
1292 }
1293
1294 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1295 {
1296 u32 val;
1297 bool enabled;
1298
1299 if (HAS_PCH_LPT(dev_priv->dev)) {
1300 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1301 return;
1302 }
1303
1304 val = I915_READ(PCH_DREF_CONTROL);
1305 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1306 DREF_SUPERSPREAD_SOURCE_MASK));
1307 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1308 }
1309
1310 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe)
1312 {
1313 int reg;
1314 u32 val;
1315 bool enabled;
1316
1317 reg = TRANSCONF(pipe);
1318 val = I915_READ(reg);
1319 enabled = !!(val & TRANS_ENABLE);
1320 WARN(enabled,
1321 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1322 pipe_name(pipe));
1323 }
1324
1325 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1326 enum pipe pipe, u32 port_sel, u32 val)
1327 {
1328 if ((val & DP_PORT_EN) == 0)
1329 return false;
1330
1331 if (HAS_PCH_CPT(dev_priv->dev)) {
1332 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1333 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1334 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1335 return false;
1336 } else {
1337 if ((val & DP_PIPE_MASK) != (pipe << 30))
1338 return false;
1339 }
1340 return true;
1341 }
1342
1343 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1344 enum pipe pipe, u32 val)
1345 {
1346 if ((val & PORT_ENABLE) == 0)
1347 return false;
1348
1349 if (HAS_PCH_CPT(dev_priv->dev)) {
1350 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1351 return false;
1352 } else {
1353 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1354 return false;
1355 }
1356 return true;
1357 }
1358
1359 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe, u32 val)
1361 {
1362 if ((val & LVDS_PORT_EN) == 0)
1363 return false;
1364
1365 if (HAS_PCH_CPT(dev_priv->dev)) {
1366 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1367 return false;
1368 } else {
1369 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1370 return false;
1371 }
1372 return true;
1373 }
1374
1375 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1376 enum pipe pipe, u32 val)
1377 {
1378 if ((val & ADPA_DAC_ENABLE) == 0)
1379 return false;
1380 if (HAS_PCH_CPT(dev_priv->dev)) {
1381 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1382 return false;
1383 } else {
1384 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1385 return false;
1386 }
1387 return true;
1388 }
1389
1390 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, int reg, u32 port_sel)
1392 {
1393 u32 val = I915_READ(reg);
1394 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1395 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1396 reg, pipe_name(pipe));
1397
1398 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1399 && (val & DP_PIPEB_SELECT),
1400 "IBX PCH dp port still using transcoder B\n");
1401 }
1402
1403 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, int reg)
1405 {
1406 u32 val = I915_READ(reg);
1407 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1408 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1409 reg, pipe_name(pipe));
1410
1411 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1412 && (val & SDVO_PIPE_B_SELECT),
1413 "IBX PCH hdmi port still using transcoder B\n");
1414 }
1415
1416 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1417 enum pipe pipe)
1418 {
1419 int reg;
1420 u32 val;
1421
1422 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1423 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1424 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1425
1426 reg = PCH_ADPA;
1427 val = I915_READ(reg);
1428 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1429 "PCH VGA enabled on transcoder %c, should be disabled\n",
1430 pipe_name(pipe));
1431
1432 reg = PCH_LVDS;
1433 val = I915_READ(reg);
1434 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1435 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1436 pipe_name(pipe));
1437
1438 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1439 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1440 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1441 }
1442
1443 /**
1444 * intel_enable_pll - enable a PLL
1445 * @dev_priv: i915 private structure
1446 * @pipe: pipe PLL to enable
1447 *
1448 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1449 * make sure the PLL reg is writable first though, since the panel write
1450 * protect mechanism may be enabled.
1451 *
1452 * Note! This is for pre-ILK only.
1453 *
1454 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1455 */
1456 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1457 {
1458 int reg;
1459 u32 val;
1460
1461 /* No really, not for ILK+ */
1462 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1463
1464 /* PLL is protected by panel, make sure we can write it */
1465 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1466 assert_panel_unlocked(dev_priv, pipe);
1467
1468 reg = DPLL(pipe);
1469 val = I915_READ(reg);
1470 val |= DPLL_VCO_ENABLE;
1471
1472 /* We do this three times for luck */
1473 I915_WRITE(reg, val);
1474 POSTING_READ(reg);
1475 udelay(150); /* wait for warmup */
1476 I915_WRITE(reg, val);
1477 POSTING_READ(reg);
1478 udelay(150); /* wait for warmup */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 }
1483
1484 /**
1485 * intel_disable_pll - disable a PLL
1486 * @dev_priv: i915 private structure
1487 * @pipe: pipe PLL to disable
1488 *
1489 * Disable the PLL for @pipe, making sure the pipe is off first.
1490 *
1491 * Note! This is for pre-ILK only.
1492 */
1493 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1494 {
1495 int reg;
1496 u32 val;
1497
1498 /* Don't disable pipe A or pipe A PLLs if needed */
1499 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1500 return;
1501
1502 /* Make sure the pipe isn't still relying on us */
1503 assert_pipe_disabled(dev_priv, pipe);
1504
1505 reg = DPLL(pipe);
1506 val = I915_READ(reg);
1507 val &= ~DPLL_VCO_ENABLE;
1508 I915_WRITE(reg, val);
1509 POSTING_READ(reg);
1510 }
1511
1512 /* SBI access */
1513 static void
1514 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1515 {
1516 unsigned long flags;
1517
1518 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1519 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1520 100)) {
1521 DRM_ERROR("timeout waiting for SBI to become ready\n");
1522 goto out_unlock;
1523 }
1524
1525 I915_WRITE(SBI_ADDR,
1526 (reg << 16));
1527 I915_WRITE(SBI_DATA,
1528 value);
1529 I915_WRITE(SBI_CTL_STAT,
1530 SBI_BUSY |
1531 SBI_CTL_OP_CRWR);
1532
1533 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1534 100)) {
1535 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1536 goto out_unlock;
1537 }
1538
1539 out_unlock:
1540 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1541 }
1542
1543 static u32
1544 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1545 {
1546 unsigned long flags;
1547 u32 value = 0;
1548
1549 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1550 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1551 100)) {
1552 DRM_ERROR("timeout waiting for SBI to become ready\n");
1553 goto out_unlock;
1554 }
1555
1556 I915_WRITE(SBI_ADDR,
1557 (reg << 16));
1558 I915_WRITE(SBI_CTL_STAT,
1559 SBI_BUSY |
1560 SBI_CTL_OP_CRRD);
1561
1562 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1563 100)) {
1564 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1565 goto out_unlock;
1566 }
1567
1568 value = I915_READ(SBI_DATA);
1569
1570 out_unlock:
1571 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1572 return value;
1573 }
1574
1575 /**
1576 * intel_enable_pch_pll - enable PCH PLL
1577 * @dev_priv: i915 private structure
1578 * @pipe: pipe PLL to enable
1579 *
1580 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1581 * drives the transcoder clock.
1582 */
1583 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1584 {
1585 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1586 struct intel_pch_pll *pll;
1587 int reg;
1588 u32 val;
1589
1590 /* PCH PLLs only available on ILK, SNB and IVB */
1591 BUG_ON(dev_priv->info->gen < 5);
1592 pll = intel_crtc->pch_pll;
1593 if (pll == NULL)
1594 return;
1595
1596 if (WARN_ON(pll->refcount == 0))
1597 return;
1598
1599 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1600 pll->pll_reg, pll->active, pll->on,
1601 intel_crtc->base.base.id);
1602
1603 /* PCH refclock must be enabled first */
1604 assert_pch_refclk_enabled(dev_priv);
1605
1606 if (pll->active++ && pll->on) {
1607 assert_pch_pll_enabled(dev_priv, pll, NULL);
1608 return;
1609 }
1610
1611 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1612
1613 reg = pll->pll_reg;
1614 val = I915_READ(reg);
1615 val |= DPLL_VCO_ENABLE;
1616 I915_WRITE(reg, val);
1617 POSTING_READ(reg);
1618 udelay(200);
1619
1620 pll->on = true;
1621 }
1622
1623 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1624 {
1625 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1626 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1627 int reg;
1628 u32 val;
1629
1630 /* PCH only available on ILK+ */
1631 BUG_ON(dev_priv->info->gen < 5);
1632 if (pll == NULL)
1633 return;
1634
1635 if (WARN_ON(pll->refcount == 0))
1636 return;
1637
1638 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1639 pll->pll_reg, pll->active, pll->on,
1640 intel_crtc->base.base.id);
1641
1642 if (WARN_ON(pll->active == 0)) {
1643 assert_pch_pll_disabled(dev_priv, pll, NULL);
1644 return;
1645 }
1646
1647 if (--pll->active) {
1648 assert_pch_pll_enabled(dev_priv, pll, NULL);
1649 return;
1650 }
1651
1652 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1653
1654 /* Make sure transcoder isn't still depending on us */
1655 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1656
1657 reg = pll->pll_reg;
1658 val = I915_READ(reg);
1659 val &= ~DPLL_VCO_ENABLE;
1660 I915_WRITE(reg, val);
1661 POSTING_READ(reg);
1662 udelay(200);
1663
1664 pll->on = false;
1665 }
1666
1667 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1668 enum pipe pipe)
1669 {
1670 int reg;
1671 u32 val, pipeconf_val;
1672 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1673
1674 /* PCH only available on ILK+ */
1675 BUG_ON(dev_priv->info->gen < 5);
1676
1677 /* Make sure PCH DPLL is enabled */
1678 assert_pch_pll_enabled(dev_priv,
1679 to_intel_crtc(crtc)->pch_pll,
1680 to_intel_crtc(crtc));
1681
1682 /* FDI must be feeding us bits for PCH ports */
1683 assert_fdi_tx_enabled(dev_priv, pipe);
1684 assert_fdi_rx_enabled(dev_priv, pipe);
1685
1686 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1687 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1688 return;
1689 }
1690 reg = TRANSCONF(pipe);
1691 val = I915_READ(reg);
1692 pipeconf_val = I915_READ(PIPECONF(pipe));
1693
1694 if (HAS_PCH_IBX(dev_priv->dev)) {
1695 /*
1696 * make the BPC in transcoder be consistent with
1697 * that in pipeconf reg.
1698 */
1699 val &= ~PIPE_BPC_MASK;
1700 val |= pipeconf_val & PIPE_BPC_MASK;
1701 }
1702
1703 val &= ~TRANS_INTERLACE_MASK;
1704 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1705 if (HAS_PCH_IBX(dev_priv->dev) &&
1706 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1707 val |= TRANS_LEGACY_INTERLACED_ILK;
1708 else
1709 val |= TRANS_INTERLACED;
1710 else
1711 val |= TRANS_PROGRESSIVE;
1712
1713 I915_WRITE(reg, val | TRANS_ENABLE);
1714 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1715 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1716 }
1717
1718 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1719 enum pipe pipe)
1720 {
1721 int reg;
1722 u32 val;
1723
1724 /* FDI relies on the transcoder */
1725 assert_fdi_tx_disabled(dev_priv, pipe);
1726 assert_fdi_rx_disabled(dev_priv, pipe);
1727
1728 /* Ports must be off as well */
1729 assert_pch_ports_disabled(dev_priv, pipe);
1730
1731 reg = TRANSCONF(pipe);
1732 val = I915_READ(reg);
1733 val &= ~TRANS_ENABLE;
1734 I915_WRITE(reg, val);
1735 /* wait for PCH transcoder off, transcoder state */
1736 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1737 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1738 }
1739
1740 /**
1741 * intel_enable_pipe - enable a pipe, asserting requirements
1742 * @dev_priv: i915 private structure
1743 * @pipe: pipe to enable
1744 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1745 *
1746 * Enable @pipe, making sure that various hardware specific requirements
1747 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1748 *
1749 * @pipe should be %PIPE_A or %PIPE_B.
1750 *
1751 * Will wait until the pipe is actually running (i.e. first vblank) before
1752 * returning.
1753 */
1754 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1755 bool pch_port)
1756 {
1757 int reg;
1758 u32 val;
1759
1760 /*
1761 * A pipe without a PLL won't actually be able to drive bits from
1762 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1763 * need the check.
1764 */
1765 if (!HAS_PCH_SPLIT(dev_priv->dev))
1766 assert_pll_enabled(dev_priv, pipe);
1767 else {
1768 if (pch_port) {
1769 /* if driving the PCH, we need FDI enabled */
1770 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1771 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1772 }
1773 /* FIXME: assert CPU port conditions for SNB+ */
1774 }
1775
1776 reg = PIPECONF(pipe);
1777 val = I915_READ(reg);
1778 if (val & PIPECONF_ENABLE)
1779 return;
1780
1781 I915_WRITE(reg, val | PIPECONF_ENABLE);
1782 intel_wait_for_vblank(dev_priv->dev, pipe);
1783 }
1784
1785 /**
1786 * intel_disable_pipe - disable a pipe, asserting requirements
1787 * @dev_priv: i915 private structure
1788 * @pipe: pipe to disable
1789 *
1790 * Disable @pipe, making sure that various hardware specific requirements
1791 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1792 *
1793 * @pipe should be %PIPE_A or %PIPE_B.
1794 *
1795 * Will wait until the pipe has shut down before returning.
1796 */
1797 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1798 enum pipe pipe)
1799 {
1800 int reg;
1801 u32 val;
1802
1803 /*
1804 * Make sure planes won't keep trying to pump pixels to us,
1805 * or we might hang the display.
1806 */
1807 assert_planes_disabled(dev_priv, pipe);
1808
1809 /* Don't disable pipe A or pipe A PLLs if needed */
1810 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1811 return;
1812
1813 reg = PIPECONF(pipe);
1814 val = I915_READ(reg);
1815 if ((val & PIPECONF_ENABLE) == 0)
1816 return;
1817
1818 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1819 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1820 }
1821
1822 /*
1823 * Plane regs are double buffered, going from enabled->disabled needs a
1824 * trigger in order to latch. The display address reg provides this.
1825 */
1826 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1827 enum plane plane)
1828 {
1829 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1830 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1831 }
1832
1833 /**
1834 * intel_enable_plane - enable a display plane on a given pipe
1835 * @dev_priv: i915 private structure
1836 * @plane: plane to enable
1837 * @pipe: pipe being fed
1838 *
1839 * Enable @plane on @pipe, making sure that @pipe is running first.
1840 */
1841 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1842 enum plane plane, enum pipe pipe)
1843 {
1844 int reg;
1845 u32 val;
1846
1847 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1848 assert_pipe_enabled(dev_priv, pipe);
1849
1850 reg = DSPCNTR(plane);
1851 val = I915_READ(reg);
1852 if (val & DISPLAY_PLANE_ENABLE)
1853 return;
1854
1855 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1856 intel_flush_display_plane(dev_priv, plane);
1857 intel_wait_for_vblank(dev_priv->dev, pipe);
1858 }
1859
1860 /**
1861 * intel_disable_plane - disable a display plane
1862 * @dev_priv: i915 private structure
1863 * @plane: plane to disable
1864 * @pipe: pipe consuming the data
1865 *
1866 * Disable @plane; should be an independent operation.
1867 */
1868 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1869 enum plane plane, enum pipe pipe)
1870 {
1871 int reg;
1872 u32 val;
1873
1874 reg = DSPCNTR(plane);
1875 val = I915_READ(reg);
1876 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1877 return;
1878
1879 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1880 intel_flush_display_plane(dev_priv, plane);
1881 intel_wait_for_vblank(dev_priv->dev, pipe);
1882 }
1883
1884 int
1885 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1886 struct drm_i915_gem_object *obj,
1887 struct intel_ring_buffer *pipelined)
1888 {
1889 struct drm_i915_private *dev_priv = dev->dev_private;
1890 u32 alignment;
1891 int ret;
1892
1893 switch (obj->tiling_mode) {
1894 case I915_TILING_NONE:
1895 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1896 alignment = 128 * 1024;
1897 else if (INTEL_INFO(dev)->gen >= 4)
1898 alignment = 4 * 1024;
1899 else
1900 alignment = 64 * 1024;
1901 break;
1902 case I915_TILING_X:
1903 /* pin() will align the object as required by fence */
1904 alignment = 0;
1905 break;
1906 case I915_TILING_Y:
1907 /* FIXME: Is this true? */
1908 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1909 return -EINVAL;
1910 default:
1911 BUG();
1912 }
1913
1914 dev_priv->mm.interruptible = false;
1915 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1916 if (ret)
1917 goto err_interruptible;
1918
1919 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1920 * fence, whereas 965+ only requires a fence if using
1921 * framebuffer compression. For simplicity, we always install
1922 * a fence as the cost is not that onerous.
1923 */
1924 ret = i915_gem_object_get_fence(obj);
1925 if (ret)
1926 goto err_unpin;
1927
1928 i915_gem_object_pin_fence(obj);
1929
1930 dev_priv->mm.interruptible = true;
1931 return 0;
1932
1933 err_unpin:
1934 i915_gem_object_unpin(obj);
1935 err_interruptible:
1936 dev_priv->mm.interruptible = true;
1937 return ret;
1938 }
1939
1940 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1941 {
1942 i915_gem_object_unpin_fence(obj);
1943 i915_gem_object_unpin(obj);
1944 }
1945
1946 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1947 * is assumed to be a power-of-two. */
1948 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1949 unsigned int bpp,
1950 unsigned int pitch)
1951 {
1952 int tile_rows, tiles;
1953
1954 tile_rows = *y / 8;
1955 *y %= 8;
1956 tiles = *x / (512/bpp);
1957 *x %= 512/bpp;
1958
1959 return tile_rows * pitch * 8 + tiles * 4096;
1960 }
1961
1962 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1963 int x, int y)
1964 {
1965 struct drm_device *dev = crtc->dev;
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1968 struct intel_framebuffer *intel_fb;
1969 struct drm_i915_gem_object *obj;
1970 int plane = intel_crtc->plane;
1971 unsigned long linear_offset;
1972 u32 dspcntr;
1973 u32 reg;
1974
1975 switch (plane) {
1976 case 0:
1977 case 1:
1978 break;
1979 default:
1980 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1981 return -EINVAL;
1982 }
1983
1984 intel_fb = to_intel_framebuffer(fb);
1985 obj = intel_fb->obj;
1986
1987 reg = DSPCNTR(plane);
1988 dspcntr = I915_READ(reg);
1989 /* Mask out pixel format bits in case we change it */
1990 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1991 switch (fb->bits_per_pixel) {
1992 case 8:
1993 dspcntr |= DISPPLANE_8BPP;
1994 break;
1995 case 16:
1996 if (fb->depth == 15)
1997 dspcntr |= DISPPLANE_15_16BPP;
1998 else
1999 dspcntr |= DISPPLANE_16BPP;
2000 break;
2001 case 24:
2002 case 32:
2003 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2004 break;
2005 default:
2006 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2007 return -EINVAL;
2008 }
2009 if (INTEL_INFO(dev)->gen >= 4) {
2010 if (obj->tiling_mode != I915_TILING_NONE)
2011 dspcntr |= DISPPLANE_TILED;
2012 else
2013 dspcntr &= ~DISPPLANE_TILED;
2014 }
2015
2016 I915_WRITE(reg, dspcntr);
2017
2018 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2019
2020 if (INTEL_INFO(dev)->gen >= 4) {
2021 intel_crtc->dspaddr_offset =
2022 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2023 fb->bits_per_pixel / 8,
2024 fb->pitches[0]);
2025 linear_offset -= intel_crtc->dspaddr_offset;
2026 } else {
2027 intel_crtc->dspaddr_offset = linear_offset;
2028 }
2029
2030 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2031 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2032 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2033 if (INTEL_INFO(dev)->gen >= 4) {
2034 I915_MODIFY_DISPBASE(DSPSURF(plane),
2035 obj->gtt_offset + intel_crtc->dspaddr_offset);
2036 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2037 I915_WRITE(DSPLINOFF(plane), linear_offset);
2038 } else
2039 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2040 POSTING_READ(reg);
2041
2042 return 0;
2043 }
2044
2045 static int ironlake_update_plane(struct drm_crtc *crtc,
2046 struct drm_framebuffer *fb, int x, int y)
2047 {
2048 struct drm_device *dev = crtc->dev;
2049 struct drm_i915_private *dev_priv = dev->dev_private;
2050 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2051 struct intel_framebuffer *intel_fb;
2052 struct drm_i915_gem_object *obj;
2053 int plane = intel_crtc->plane;
2054 unsigned long linear_offset;
2055 u32 dspcntr;
2056 u32 reg;
2057
2058 switch (plane) {
2059 case 0:
2060 case 1:
2061 case 2:
2062 break;
2063 default:
2064 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2065 return -EINVAL;
2066 }
2067
2068 intel_fb = to_intel_framebuffer(fb);
2069 obj = intel_fb->obj;
2070
2071 reg = DSPCNTR(plane);
2072 dspcntr = I915_READ(reg);
2073 /* Mask out pixel format bits in case we change it */
2074 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2075 switch (fb->bits_per_pixel) {
2076 case 8:
2077 dspcntr |= DISPPLANE_8BPP;
2078 break;
2079 case 16:
2080 if (fb->depth != 16)
2081 return -EINVAL;
2082
2083 dspcntr |= DISPPLANE_16BPP;
2084 break;
2085 case 24:
2086 case 32:
2087 if (fb->depth == 24)
2088 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2089 else if (fb->depth == 30)
2090 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2091 else
2092 return -EINVAL;
2093 break;
2094 default:
2095 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2096 return -EINVAL;
2097 }
2098
2099 if (obj->tiling_mode != I915_TILING_NONE)
2100 dspcntr |= DISPPLANE_TILED;
2101 else
2102 dspcntr &= ~DISPPLANE_TILED;
2103
2104 /* must disable */
2105 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2106
2107 I915_WRITE(reg, dspcntr);
2108
2109 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2110 intel_crtc->dspaddr_offset =
2111 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2112 fb->bits_per_pixel / 8,
2113 fb->pitches[0]);
2114 linear_offset -= intel_crtc->dspaddr_offset;
2115
2116 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2117 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2118 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2119 I915_MODIFY_DISPBASE(DSPSURF(plane),
2120 obj->gtt_offset + intel_crtc->dspaddr_offset);
2121 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2122 I915_WRITE(DSPLINOFF(plane), linear_offset);
2123 POSTING_READ(reg);
2124
2125 return 0;
2126 }
2127
2128 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2129 static int
2130 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2131 int x, int y, enum mode_set_atomic state)
2132 {
2133 struct drm_device *dev = crtc->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135
2136 if (dev_priv->display.disable_fbc)
2137 dev_priv->display.disable_fbc(dev);
2138 intel_increase_pllclock(crtc);
2139
2140 return dev_priv->display.update_plane(crtc, fb, x, y);
2141 }
2142
2143 static int
2144 intel_finish_fb(struct drm_framebuffer *old_fb)
2145 {
2146 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2147 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2148 bool was_interruptible = dev_priv->mm.interruptible;
2149 int ret;
2150
2151 wait_event(dev_priv->pending_flip_queue,
2152 atomic_read(&dev_priv->mm.wedged) ||
2153 atomic_read(&obj->pending_flip) == 0);
2154
2155 /* Big Hammer, we also need to ensure that any pending
2156 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2157 * current scanout is retired before unpinning the old
2158 * framebuffer.
2159 *
2160 * This should only fail upon a hung GPU, in which case we
2161 * can safely continue.
2162 */
2163 dev_priv->mm.interruptible = false;
2164 ret = i915_gem_object_finish_gpu(obj);
2165 dev_priv->mm.interruptible = was_interruptible;
2166
2167 return ret;
2168 }
2169
2170 static int
2171 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2172 struct drm_framebuffer *fb)
2173 {
2174 struct drm_device *dev = crtc->dev;
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 struct drm_i915_master_private *master_priv;
2177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2178 struct drm_framebuffer *old_fb;
2179 int ret;
2180
2181 /* no fb bound */
2182 if (!fb) {
2183 DRM_ERROR("No FB bound\n");
2184 return 0;
2185 }
2186
2187 if(intel_crtc->plane > dev_priv->num_pipe) {
2188 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2189 intel_crtc->plane,
2190 dev_priv->num_pipe);
2191 return -EINVAL;
2192 }
2193
2194 mutex_lock(&dev->struct_mutex);
2195 ret = intel_pin_and_fence_fb_obj(dev,
2196 to_intel_framebuffer(fb)->obj,
2197 NULL);
2198 if (ret != 0) {
2199 mutex_unlock(&dev->struct_mutex);
2200 DRM_ERROR("pin & fence failed\n");
2201 return ret;
2202 }
2203
2204 if (crtc->fb)
2205 intel_finish_fb(crtc->fb);
2206
2207 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2208 if (ret) {
2209 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2210 mutex_unlock(&dev->struct_mutex);
2211 DRM_ERROR("failed to update base address\n");
2212 return ret;
2213 }
2214
2215 old_fb = crtc->fb;
2216 crtc->fb = fb;
2217 crtc->x = x;
2218 crtc->y = y;
2219
2220 if (old_fb) {
2221 intel_wait_for_vblank(dev, intel_crtc->pipe);
2222 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2223 }
2224
2225 intel_update_fbc(dev);
2226 mutex_unlock(&dev->struct_mutex);
2227
2228 if (!dev->primary->master)
2229 return 0;
2230
2231 master_priv = dev->primary->master->driver_priv;
2232 if (!master_priv->sarea_priv)
2233 return 0;
2234
2235 if (intel_crtc->pipe) {
2236 master_priv->sarea_priv->pipeB_x = x;
2237 master_priv->sarea_priv->pipeB_y = y;
2238 } else {
2239 master_priv->sarea_priv->pipeA_x = x;
2240 master_priv->sarea_priv->pipeA_y = y;
2241 }
2242
2243 return 0;
2244 }
2245
2246 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2247 {
2248 struct drm_device *dev = crtc->dev;
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250 u32 dpa_ctl;
2251
2252 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2253 dpa_ctl = I915_READ(DP_A);
2254 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2255
2256 if (clock < 200000) {
2257 u32 temp;
2258 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2259 /* workaround for 160Mhz:
2260 1) program 0x4600c bits 15:0 = 0x8124
2261 2) program 0x46010 bit 0 = 1
2262 3) program 0x46034 bit 24 = 1
2263 4) program 0x64000 bit 14 = 1
2264 */
2265 temp = I915_READ(0x4600c);
2266 temp &= 0xffff0000;
2267 I915_WRITE(0x4600c, temp | 0x8124);
2268
2269 temp = I915_READ(0x46010);
2270 I915_WRITE(0x46010, temp | 1);
2271
2272 temp = I915_READ(0x46034);
2273 I915_WRITE(0x46034, temp | (1 << 24));
2274 } else {
2275 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2276 }
2277 I915_WRITE(DP_A, dpa_ctl);
2278
2279 POSTING_READ(DP_A);
2280 udelay(500);
2281 }
2282
2283 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2284 {
2285 struct drm_device *dev = crtc->dev;
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2288 int pipe = intel_crtc->pipe;
2289 u32 reg, temp;
2290
2291 /* enable normal train */
2292 reg = FDI_TX_CTL(pipe);
2293 temp = I915_READ(reg);
2294 if (IS_IVYBRIDGE(dev)) {
2295 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2296 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2297 } else {
2298 temp &= ~FDI_LINK_TRAIN_NONE;
2299 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2300 }
2301 I915_WRITE(reg, temp);
2302
2303 reg = FDI_RX_CTL(pipe);
2304 temp = I915_READ(reg);
2305 if (HAS_PCH_CPT(dev)) {
2306 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2307 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2308 } else {
2309 temp &= ~FDI_LINK_TRAIN_NONE;
2310 temp |= FDI_LINK_TRAIN_NONE;
2311 }
2312 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2313
2314 /* wait one idle pattern time */
2315 POSTING_READ(reg);
2316 udelay(1000);
2317
2318 /* IVB wants error correction enabled */
2319 if (IS_IVYBRIDGE(dev))
2320 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2321 FDI_FE_ERRC_ENABLE);
2322 }
2323
2324 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2325 {
2326 struct drm_i915_private *dev_priv = dev->dev_private;
2327 u32 flags = I915_READ(SOUTH_CHICKEN1);
2328
2329 flags |= FDI_PHASE_SYNC_OVR(pipe);
2330 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2331 flags |= FDI_PHASE_SYNC_EN(pipe);
2332 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2333 POSTING_READ(SOUTH_CHICKEN1);
2334 }
2335
2336 /* The FDI link training functions for ILK/Ibexpeak. */
2337 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2338 {
2339 struct drm_device *dev = crtc->dev;
2340 struct drm_i915_private *dev_priv = dev->dev_private;
2341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2342 int pipe = intel_crtc->pipe;
2343 int plane = intel_crtc->plane;
2344 u32 reg, temp, tries;
2345
2346 /* FDI needs bits from pipe & plane first */
2347 assert_pipe_enabled(dev_priv, pipe);
2348 assert_plane_enabled(dev_priv, plane);
2349
2350 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2351 for train result */
2352 reg = FDI_RX_IMR(pipe);
2353 temp = I915_READ(reg);
2354 temp &= ~FDI_RX_SYMBOL_LOCK;
2355 temp &= ~FDI_RX_BIT_LOCK;
2356 I915_WRITE(reg, temp);
2357 I915_READ(reg);
2358 udelay(150);
2359
2360 /* enable CPU FDI TX and PCH FDI RX */
2361 reg = FDI_TX_CTL(pipe);
2362 temp = I915_READ(reg);
2363 temp &= ~(7 << 19);
2364 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2365 temp &= ~FDI_LINK_TRAIN_NONE;
2366 temp |= FDI_LINK_TRAIN_PATTERN_1;
2367 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2368
2369 reg = FDI_RX_CTL(pipe);
2370 temp = I915_READ(reg);
2371 temp &= ~FDI_LINK_TRAIN_NONE;
2372 temp |= FDI_LINK_TRAIN_PATTERN_1;
2373 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2374
2375 POSTING_READ(reg);
2376 udelay(150);
2377
2378 /* Ironlake workaround, enable clock pointer after FDI enable*/
2379 if (HAS_PCH_IBX(dev)) {
2380 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2381 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2382 FDI_RX_PHASE_SYNC_POINTER_EN);
2383 }
2384
2385 reg = FDI_RX_IIR(pipe);
2386 for (tries = 0; tries < 5; tries++) {
2387 temp = I915_READ(reg);
2388 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2389
2390 if ((temp & FDI_RX_BIT_LOCK)) {
2391 DRM_DEBUG_KMS("FDI train 1 done.\n");
2392 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2393 break;
2394 }
2395 }
2396 if (tries == 5)
2397 DRM_ERROR("FDI train 1 fail!\n");
2398
2399 /* Train 2 */
2400 reg = FDI_TX_CTL(pipe);
2401 temp = I915_READ(reg);
2402 temp &= ~FDI_LINK_TRAIN_NONE;
2403 temp |= FDI_LINK_TRAIN_PATTERN_2;
2404 I915_WRITE(reg, temp);
2405
2406 reg = FDI_RX_CTL(pipe);
2407 temp = I915_READ(reg);
2408 temp &= ~FDI_LINK_TRAIN_NONE;
2409 temp |= FDI_LINK_TRAIN_PATTERN_2;
2410 I915_WRITE(reg, temp);
2411
2412 POSTING_READ(reg);
2413 udelay(150);
2414
2415 reg = FDI_RX_IIR(pipe);
2416 for (tries = 0; tries < 5; tries++) {
2417 temp = I915_READ(reg);
2418 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2419
2420 if (temp & FDI_RX_SYMBOL_LOCK) {
2421 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2422 DRM_DEBUG_KMS("FDI train 2 done.\n");
2423 break;
2424 }
2425 }
2426 if (tries == 5)
2427 DRM_ERROR("FDI train 2 fail!\n");
2428
2429 DRM_DEBUG_KMS("FDI train done\n");
2430
2431 }
2432
2433 static const int snb_b_fdi_train_param[] = {
2434 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2435 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2436 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2437 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2438 };
2439
2440 /* The FDI link training functions for SNB/Cougarpoint. */
2441 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2442 {
2443 struct drm_device *dev = crtc->dev;
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2446 int pipe = intel_crtc->pipe;
2447 u32 reg, temp, i, retry;
2448
2449 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2450 for train result */
2451 reg = FDI_RX_IMR(pipe);
2452 temp = I915_READ(reg);
2453 temp &= ~FDI_RX_SYMBOL_LOCK;
2454 temp &= ~FDI_RX_BIT_LOCK;
2455 I915_WRITE(reg, temp);
2456
2457 POSTING_READ(reg);
2458 udelay(150);
2459
2460 /* enable CPU FDI TX and PCH FDI RX */
2461 reg = FDI_TX_CTL(pipe);
2462 temp = I915_READ(reg);
2463 temp &= ~(7 << 19);
2464 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2465 temp &= ~FDI_LINK_TRAIN_NONE;
2466 temp |= FDI_LINK_TRAIN_PATTERN_1;
2467 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2468 /* SNB-B */
2469 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2470 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2471
2472 reg = FDI_RX_CTL(pipe);
2473 temp = I915_READ(reg);
2474 if (HAS_PCH_CPT(dev)) {
2475 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2476 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2477 } else {
2478 temp &= ~FDI_LINK_TRAIN_NONE;
2479 temp |= FDI_LINK_TRAIN_PATTERN_1;
2480 }
2481 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2482
2483 POSTING_READ(reg);
2484 udelay(150);
2485
2486 if (HAS_PCH_CPT(dev))
2487 cpt_phase_pointer_enable(dev, pipe);
2488
2489 for (i = 0; i < 4; i++) {
2490 reg = FDI_TX_CTL(pipe);
2491 temp = I915_READ(reg);
2492 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2493 temp |= snb_b_fdi_train_param[i];
2494 I915_WRITE(reg, temp);
2495
2496 POSTING_READ(reg);
2497 udelay(500);
2498
2499 for (retry = 0; retry < 5; retry++) {
2500 reg = FDI_RX_IIR(pipe);
2501 temp = I915_READ(reg);
2502 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2503 if (temp & FDI_RX_BIT_LOCK) {
2504 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2505 DRM_DEBUG_KMS("FDI train 1 done.\n");
2506 break;
2507 }
2508 udelay(50);
2509 }
2510 if (retry < 5)
2511 break;
2512 }
2513 if (i == 4)
2514 DRM_ERROR("FDI train 1 fail!\n");
2515
2516 /* Train 2 */
2517 reg = FDI_TX_CTL(pipe);
2518 temp = I915_READ(reg);
2519 temp &= ~FDI_LINK_TRAIN_NONE;
2520 temp |= FDI_LINK_TRAIN_PATTERN_2;
2521 if (IS_GEN6(dev)) {
2522 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2523 /* SNB-B */
2524 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2525 }
2526 I915_WRITE(reg, temp);
2527
2528 reg = FDI_RX_CTL(pipe);
2529 temp = I915_READ(reg);
2530 if (HAS_PCH_CPT(dev)) {
2531 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2532 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2533 } else {
2534 temp &= ~FDI_LINK_TRAIN_NONE;
2535 temp |= FDI_LINK_TRAIN_PATTERN_2;
2536 }
2537 I915_WRITE(reg, temp);
2538
2539 POSTING_READ(reg);
2540 udelay(150);
2541
2542 for (i = 0; i < 4; i++) {
2543 reg = FDI_TX_CTL(pipe);
2544 temp = I915_READ(reg);
2545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546 temp |= snb_b_fdi_train_param[i];
2547 I915_WRITE(reg, temp);
2548
2549 POSTING_READ(reg);
2550 udelay(500);
2551
2552 for (retry = 0; retry < 5; retry++) {
2553 reg = FDI_RX_IIR(pipe);
2554 temp = I915_READ(reg);
2555 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2556 if (temp & FDI_RX_SYMBOL_LOCK) {
2557 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2558 DRM_DEBUG_KMS("FDI train 2 done.\n");
2559 break;
2560 }
2561 udelay(50);
2562 }
2563 if (retry < 5)
2564 break;
2565 }
2566 if (i == 4)
2567 DRM_ERROR("FDI train 2 fail!\n");
2568
2569 DRM_DEBUG_KMS("FDI train done.\n");
2570 }
2571
2572 /* Manual link training for Ivy Bridge A0 parts */
2573 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2574 {
2575 struct drm_device *dev = crtc->dev;
2576 struct drm_i915_private *dev_priv = dev->dev_private;
2577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2578 int pipe = intel_crtc->pipe;
2579 u32 reg, temp, i;
2580
2581 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2582 for train result */
2583 reg = FDI_RX_IMR(pipe);
2584 temp = I915_READ(reg);
2585 temp &= ~FDI_RX_SYMBOL_LOCK;
2586 temp &= ~FDI_RX_BIT_LOCK;
2587 I915_WRITE(reg, temp);
2588
2589 POSTING_READ(reg);
2590 udelay(150);
2591
2592 /* enable CPU FDI TX and PCH FDI RX */
2593 reg = FDI_TX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 temp &= ~(7 << 19);
2596 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2597 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2598 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2599 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2600 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2601 temp |= FDI_COMPOSITE_SYNC;
2602 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2603
2604 reg = FDI_RX_CTL(pipe);
2605 temp = I915_READ(reg);
2606 temp &= ~FDI_LINK_TRAIN_AUTO;
2607 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2608 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2609 temp |= FDI_COMPOSITE_SYNC;
2610 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 if (HAS_PCH_CPT(dev))
2616 cpt_phase_pointer_enable(dev, pipe);
2617
2618 for (i = 0; i < 4; i++) {
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622 temp |= snb_b_fdi_train_param[i];
2623 I915_WRITE(reg, temp);
2624
2625 POSTING_READ(reg);
2626 udelay(500);
2627
2628 reg = FDI_RX_IIR(pipe);
2629 temp = I915_READ(reg);
2630 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2631
2632 if (temp & FDI_RX_BIT_LOCK ||
2633 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2634 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2635 DRM_DEBUG_KMS("FDI train 1 done.\n");
2636 break;
2637 }
2638 }
2639 if (i == 4)
2640 DRM_ERROR("FDI train 1 fail!\n");
2641
2642 /* Train 2 */
2643 reg = FDI_TX_CTL(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2646 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2647 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2649 I915_WRITE(reg, temp);
2650
2651 reg = FDI_RX_CTL(pipe);
2652 temp = I915_READ(reg);
2653 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2654 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2655 I915_WRITE(reg, temp);
2656
2657 POSTING_READ(reg);
2658 udelay(150);
2659
2660 for (i = 0; i < 4; i++) {
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664 temp |= snb_b_fdi_train_param[i];
2665 I915_WRITE(reg, temp);
2666
2667 POSTING_READ(reg);
2668 udelay(500);
2669
2670 reg = FDI_RX_IIR(pipe);
2671 temp = I915_READ(reg);
2672 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2673
2674 if (temp & FDI_RX_SYMBOL_LOCK) {
2675 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677 break;
2678 }
2679 }
2680 if (i == 4)
2681 DRM_ERROR("FDI train 2 fail!\n");
2682
2683 DRM_DEBUG_KMS("FDI train done.\n");
2684 }
2685
2686 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2687 {
2688 struct drm_device *dev = intel_crtc->base.dev;
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690 int pipe = intel_crtc->pipe;
2691 u32 reg, temp;
2692
2693 /* Write the TU size bits so error detection works */
2694 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2695 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2696
2697 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2698 reg = FDI_RX_CTL(pipe);
2699 temp = I915_READ(reg);
2700 temp &= ~((0x7 << 19) | (0x7 << 16));
2701 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2702 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2703 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2704
2705 POSTING_READ(reg);
2706 udelay(200);
2707
2708 /* Switch from Rawclk to PCDclk */
2709 temp = I915_READ(reg);
2710 I915_WRITE(reg, temp | FDI_PCDCLK);
2711
2712 POSTING_READ(reg);
2713 udelay(200);
2714
2715 /* On Haswell, the PLL configuration for ports and pipes is handled
2716 * separately, as part of DDI setup */
2717 if (!IS_HASWELL(dev)) {
2718 /* Enable CPU FDI TX PLL, always on for Ironlake */
2719 reg = FDI_TX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2722 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2723
2724 POSTING_READ(reg);
2725 udelay(100);
2726 }
2727 }
2728 }
2729
2730 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2731 {
2732 struct drm_device *dev = intel_crtc->base.dev;
2733 struct drm_i915_private *dev_priv = dev->dev_private;
2734 int pipe = intel_crtc->pipe;
2735 u32 reg, temp;
2736
2737 /* Switch from PCDclk to Rawclk */
2738 reg = FDI_RX_CTL(pipe);
2739 temp = I915_READ(reg);
2740 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2741
2742 /* Disable CPU FDI TX PLL */
2743 reg = FDI_TX_CTL(pipe);
2744 temp = I915_READ(reg);
2745 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2746
2747 POSTING_READ(reg);
2748 udelay(100);
2749
2750 reg = FDI_RX_CTL(pipe);
2751 temp = I915_READ(reg);
2752 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2753
2754 /* Wait for the clocks to turn off. */
2755 POSTING_READ(reg);
2756 udelay(100);
2757 }
2758
2759 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2760 {
2761 struct drm_i915_private *dev_priv = dev->dev_private;
2762 u32 flags = I915_READ(SOUTH_CHICKEN1);
2763
2764 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2765 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2766 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2767 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2768 POSTING_READ(SOUTH_CHICKEN1);
2769 }
2770 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2771 {
2772 struct drm_device *dev = crtc->dev;
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2775 int pipe = intel_crtc->pipe;
2776 u32 reg, temp;
2777
2778 /* disable CPU FDI tx and PCH FDI rx */
2779 reg = FDI_TX_CTL(pipe);
2780 temp = I915_READ(reg);
2781 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2782 POSTING_READ(reg);
2783
2784 reg = FDI_RX_CTL(pipe);
2785 temp = I915_READ(reg);
2786 temp &= ~(0x7 << 16);
2787 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2788 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2789
2790 POSTING_READ(reg);
2791 udelay(100);
2792
2793 /* Ironlake workaround, disable clock pointer after downing FDI */
2794 if (HAS_PCH_IBX(dev)) {
2795 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2796 I915_WRITE(FDI_RX_CHICKEN(pipe),
2797 I915_READ(FDI_RX_CHICKEN(pipe) &
2798 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2799 } else if (HAS_PCH_CPT(dev)) {
2800 cpt_phase_pointer_disable(dev, pipe);
2801 }
2802
2803 /* still set train pattern 1 */
2804 reg = FDI_TX_CTL(pipe);
2805 temp = I915_READ(reg);
2806 temp &= ~FDI_LINK_TRAIN_NONE;
2807 temp |= FDI_LINK_TRAIN_PATTERN_1;
2808 I915_WRITE(reg, temp);
2809
2810 reg = FDI_RX_CTL(pipe);
2811 temp = I915_READ(reg);
2812 if (HAS_PCH_CPT(dev)) {
2813 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2814 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2815 } else {
2816 temp &= ~FDI_LINK_TRAIN_NONE;
2817 temp |= FDI_LINK_TRAIN_PATTERN_1;
2818 }
2819 /* BPC in FDI rx is consistent with that in PIPECONF */
2820 temp &= ~(0x07 << 16);
2821 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2822 I915_WRITE(reg, temp);
2823
2824 POSTING_READ(reg);
2825 udelay(100);
2826 }
2827
2828 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2829 {
2830 struct drm_device *dev = crtc->dev;
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832 unsigned long flags;
2833 bool pending;
2834
2835 if (atomic_read(&dev_priv->mm.wedged))
2836 return false;
2837
2838 spin_lock_irqsave(&dev->event_lock, flags);
2839 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2840 spin_unlock_irqrestore(&dev->event_lock, flags);
2841
2842 return pending;
2843 }
2844
2845 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2846 {
2847 struct drm_device *dev = crtc->dev;
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849
2850 if (crtc->fb == NULL)
2851 return;
2852
2853 wait_event(dev_priv->pending_flip_queue,
2854 !intel_crtc_has_pending_flip(crtc));
2855
2856 mutex_lock(&dev->struct_mutex);
2857 intel_finish_fb(crtc->fb);
2858 mutex_unlock(&dev->struct_mutex);
2859 }
2860
2861 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2862 {
2863 struct drm_device *dev = crtc->dev;
2864 struct intel_encoder *intel_encoder;
2865
2866 /*
2867 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2868 * must be driven by its own crtc; no sharing is possible.
2869 */
2870 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2871 switch (intel_encoder->type) {
2872 case INTEL_OUTPUT_EDP:
2873 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2874 return false;
2875 continue;
2876 }
2877 }
2878
2879 return true;
2880 }
2881
2882 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2883 {
2884 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2885 }
2886
2887 /* Program iCLKIP clock to the desired frequency */
2888 static void lpt_program_iclkip(struct drm_crtc *crtc)
2889 {
2890 struct drm_device *dev = crtc->dev;
2891 struct drm_i915_private *dev_priv = dev->dev_private;
2892 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2893 u32 temp;
2894
2895 /* It is necessary to ungate the pixclk gate prior to programming
2896 * the divisors, and gate it back when it is done.
2897 */
2898 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2899
2900 /* Disable SSCCTL */
2901 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2902 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2903 SBI_SSCCTL_DISABLE);
2904
2905 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2906 if (crtc->mode.clock == 20000) {
2907 auxdiv = 1;
2908 divsel = 0x41;
2909 phaseinc = 0x20;
2910 } else {
2911 /* The iCLK virtual clock root frequency is in MHz,
2912 * but the crtc->mode.clock in in KHz. To get the divisors,
2913 * it is necessary to divide one by another, so we
2914 * convert the virtual clock precision to KHz here for higher
2915 * precision.
2916 */
2917 u32 iclk_virtual_root_freq = 172800 * 1000;
2918 u32 iclk_pi_range = 64;
2919 u32 desired_divisor, msb_divisor_value, pi_value;
2920
2921 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2922 msb_divisor_value = desired_divisor / iclk_pi_range;
2923 pi_value = desired_divisor % iclk_pi_range;
2924
2925 auxdiv = 0;
2926 divsel = msb_divisor_value - 2;
2927 phaseinc = pi_value;
2928 }
2929
2930 /* This should not happen with any sane values */
2931 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2932 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2933 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2934 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2935
2936 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2937 crtc->mode.clock,
2938 auxdiv,
2939 divsel,
2940 phasedir,
2941 phaseinc);
2942
2943 /* Program SSCDIVINTPHASE6 */
2944 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2945 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2946 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2947 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2948 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2949 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2950 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2951
2952 intel_sbi_write(dev_priv,
2953 SBI_SSCDIVINTPHASE6,
2954 temp);
2955
2956 /* Program SSCAUXDIV */
2957 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2958 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2959 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2960 intel_sbi_write(dev_priv,
2961 SBI_SSCAUXDIV6,
2962 temp);
2963
2964
2965 /* Enable modulator and associated divider */
2966 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2967 temp &= ~SBI_SSCCTL_DISABLE;
2968 intel_sbi_write(dev_priv,
2969 SBI_SSCCTL6,
2970 temp);
2971
2972 /* Wait for initialization time */
2973 udelay(24);
2974
2975 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2976 }
2977
2978 /*
2979 * Enable PCH resources required for PCH ports:
2980 * - PCH PLLs
2981 * - FDI training & RX/TX
2982 * - update transcoder timings
2983 * - DP transcoding bits
2984 * - transcoder
2985 */
2986 static void ironlake_pch_enable(struct drm_crtc *crtc)
2987 {
2988 struct drm_device *dev = crtc->dev;
2989 struct drm_i915_private *dev_priv = dev->dev_private;
2990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2991 int pipe = intel_crtc->pipe;
2992 u32 reg, temp;
2993
2994 assert_transcoder_disabled(dev_priv, pipe);
2995
2996 /* For PCH output, training FDI link */
2997 dev_priv->display.fdi_link_train(crtc);
2998
2999 intel_enable_pch_pll(intel_crtc);
3000
3001 if (HAS_PCH_LPT(dev)) {
3002 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3003 lpt_program_iclkip(crtc);
3004 } else if (HAS_PCH_CPT(dev)) {
3005 u32 sel;
3006
3007 temp = I915_READ(PCH_DPLL_SEL);
3008 switch (pipe) {
3009 default:
3010 case 0:
3011 temp |= TRANSA_DPLL_ENABLE;
3012 sel = TRANSA_DPLLB_SEL;
3013 break;
3014 case 1:
3015 temp |= TRANSB_DPLL_ENABLE;
3016 sel = TRANSB_DPLLB_SEL;
3017 break;
3018 case 2:
3019 temp |= TRANSC_DPLL_ENABLE;
3020 sel = TRANSC_DPLLB_SEL;
3021 break;
3022 }
3023 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3024 temp |= sel;
3025 else
3026 temp &= ~sel;
3027 I915_WRITE(PCH_DPLL_SEL, temp);
3028 }
3029
3030 /* set transcoder timing, panel must allow it */
3031 assert_panel_unlocked(dev_priv, pipe);
3032 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3033 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3034 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3035
3036 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3037 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3038 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3039 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3040
3041 if (!IS_HASWELL(dev))
3042 intel_fdi_normal_train(crtc);
3043
3044 /* For PCH DP, enable TRANS_DP_CTL */
3045 if (HAS_PCH_CPT(dev) &&
3046 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3047 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3048 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3049 reg = TRANS_DP_CTL(pipe);
3050 temp = I915_READ(reg);
3051 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3052 TRANS_DP_SYNC_MASK |
3053 TRANS_DP_BPC_MASK);
3054 temp |= (TRANS_DP_OUTPUT_ENABLE |
3055 TRANS_DP_ENH_FRAMING);
3056 temp |= bpc << 9; /* same format but at 11:9 */
3057
3058 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3059 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3060 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3061 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3062
3063 switch (intel_trans_dp_port_sel(crtc)) {
3064 case PCH_DP_B:
3065 temp |= TRANS_DP_PORT_SEL_B;
3066 break;
3067 case PCH_DP_C:
3068 temp |= TRANS_DP_PORT_SEL_C;
3069 break;
3070 case PCH_DP_D:
3071 temp |= TRANS_DP_PORT_SEL_D;
3072 break;
3073 default:
3074 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3075 temp |= TRANS_DP_PORT_SEL_B;
3076 break;
3077 }
3078
3079 I915_WRITE(reg, temp);
3080 }
3081
3082 intel_enable_transcoder(dev_priv, pipe);
3083 }
3084
3085 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3086 {
3087 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3088
3089 if (pll == NULL)
3090 return;
3091
3092 if (pll->refcount == 0) {
3093 WARN(1, "bad PCH PLL refcount\n");
3094 return;
3095 }
3096
3097 --pll->refcount;
3098 intel_crtc->pch_pll = NULL;
3099 }
3100
3101 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3102 {
3103 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3104 struct intel_pch_pll *pll;
3105 int i;
3106
3107 pll = intel_crtc->pch_pll;
3108 if (pll) {
3109 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3110 intel_crtc->base.base.id, pll->pll_reg);
3111 goto prepare;
3112 }
3113
3114 if (HAS_PCH_IBX(dev_priv->dev)) {
3115 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3116 i = intel_crtc->pipe;
3117 pll = &dev_priv->pch_plls[i];
3118
3119 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3120 intel_crtc->base.base.id, pll->pll_reg);
3121
3122 goto found;
3123 }
3124
3125 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3126 pll = &dev_priv->pch_plls[i];
3127
3128 /* Only want to check enabled timings first */
3129 if (pll->refcount == 0)
3130 continue;
3131
3132 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3133 fp == I915_READ(pll->fp0_reg)) {
3134 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3135 intel_crtc->base.base.id,
3136 pll->pll_reg, pll->refcount, pll->active);
3137
3138 goto found;
3139 }
3140 }
3141
3142 /* Ok no matching timings, maybe there's a free one? */
3143 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3144 pll = &dev_priv->pch_plls[i];
3145 if (pll->refcount == 0) {
3146 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3147 intel_crtc->base.base.id, pll->pll_reg);
3148 goto found;
3149 }
3150 }
3151
3152 return NULL;
3153
3154 found:
3155 intel_crtc->pch_pll = pll;
3156 pll->refcount++;
3157 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3158 prepare: /* separate function? */
3159 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3160
3161 /* Wait for the clocks to stabilize before rewriting the regs */
3162 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3163 POSTING_READ(pll->pll_reg);
3164 udelay(150);
3165
3166 I915_WRITE(pll->fp0_reg, fp);
3167 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3168 pll->on = false;
3169 return pll;
3170 }
3171
3172 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3173 {
3174 struct drm_i915_private *dev_priv = dev->dev_private;
3175 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3176 u32 temp;
3177
3178 temp = I915_READ(dslreg);
3179 udelay(500);
3180 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3181 /* Without this, mode sets may fail silently on FDI */
3182 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3183 udelay(250);
3184 I915_WRITE(tc2reg, 0);
3185 if (wait_for(I915_READ(dslreg) != temp, 5))
3186 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3187 }
3188 }
3189
3190 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3191 {
3192 struct drm_device *dev = crtc->dev;
3193 struct drm_i915_private *dev_priv = dev->dev_private;
3194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3195 struct intel_encoder *encoder;
3196 int pipe = intel_crtc->pipe;
3197 int plane = intel_crtc->plane;
3198 u32 temp;
3199 bool is_pch_port;
3200
3201 WARN_ON(!crtc->enabled);
3202
3203 if (intel_crtc->active)
3204 return;
3205
3206 intel_crtc->active = true;
3207 intel_update_watermarks(dev);
3208
3209 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3210 temp = I915_READ(PCH_LVDS);
3211 if ((temp & LVDS_PORT_EN) == 0)
3212 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3213 }
3214
3215 is_pch_port = ironlake_crtc_driving_pch(crtc);
3216
3217 if (is_pch_port) {
3218 ironlake_fdi_pll_enable(intel_crtc);
3219 } else {
3220 assert_fdi_tx_disabled(dev_priv, pipe);
3221 assert_fdi_rx_disabled(dev_priv, pipe);
3222 }
3223
3224 for_each_encoder_on_crtc(dev, crtc, encoder)
3225 if (encoder->pre_enable)
3226 encoder->pre_enable(encoder);
3227
3228 /* Enable panel fitting for LVDS */
3229 if (dev_priv->pch_pf_size &&
3230 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3231 /* Force use of hard-coded filter coefficients
3232 * as some pre-programmed values are broken,
3233 * e.g. x201.
3234 */
3235 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3236 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3237 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3238 }
3239
3240 /*
3241 * On ILK+ LUT must be loaded before the pipe is running but with
3242 * clocks enabled
3243 */
3244 intel_crtc_load_lut(crtc);
3245
3246 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3247 intel_enable_plane(dev_priv, plane, pipe);
3248
3249 if (is_pch_port)
3250 ironlake_pch_enable(crtc);
3251
3252 mutex_lock(&dev->struct_mutex);
3253 intel_update_fbc(dev);
3254 mutex_unlock(&dev->struct_mutex);
3255
3256 intel_crtc_update_cursor(crtc, true);
3257
3258 for_each_encoder_on_crtc(dev, crtc, encoder)
3259 encoder->enable(encoder);
3260
3261 if (HAS_PCH_CPT(dev))
3262 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3263
3264 /*
3265 * There seems to be a race in PCH platform hw (at least on some
3266 * outputs) where an enabled pipe still completes any pageflip right
3267 * away (as if the pipe is off) instead of waiting for vblank. As soon
3268 * as the first vblank happend, everything works as expected. Hence just
3269 * wait for one vblank before returning to avoid strange things
3270 * happening.
3271 */
3272 intel_wait_for_vblank(dev, intel_crtc->pipe);
3273 }
3274
3275 static void haswell_crtc_enable(struct drm_crtc *crtc)
3276 {
3277 struct drm_device *dev = crtc->dev;
3278 struct drm_i915_private *dev_priv = dev->dev_private;
3279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3280 struct intel_encoder *encoder;
3281 int pipe = intel_crtc->pipe;
3282 int plane = intel_crtc->plane;
3283 bool is_pch_port;
3284
3285 WARN_ON(!crtc->enabled);
3286
3287 if (intel_crtc->active)
3288 return;
3289
3290 intel_crtc->active = true;
3291 intel_update_watermarks(dev);
3292
3293 is_pch_port = haswell_crtc_driving_pch(crtc);
3294
3295 if (is_pch_port)
3296 ironlake_fdi_pll_enable(intel_crtc);
3297
3298 for_each_encoder_on_crtc(dev, crtc, encoder)
3299 if (encoder->pre_enable)
3300 encoder->pre_enable(encoder);
3301
3302 intel_ddi_enable_pipe_clock(intel_crtc);
3303
3304 /* Enable panel fitting for eDP */
3305 if (dev_priv->pch_pf_size && HAS_eDP) {
3306 /* Force use of hard-coded filter coefficients
3307 * as some pre-programmed values are broken,
3308 * e.g. x201.
3309 */
3310 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3311 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3312 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3313 }
3314
3315 /*
3316 * On ILK+ LUT must be loaded before the pipe is running but with
3317 * clocks enabled
3318 */
3319 intel_crtc_load_lut(crtc);
3320
3321 intel_ddi_set_pipe_settings(crtc);
3322 intel_ddi_enable_pipe_func(crtc);
3323
3324 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3325 intel_enable_plane(dev_priv, plane, pipe);
3326
3327 if (is_pch_port)
3328 ironlake_pch_enable(crtc);
3329
3330 mutex_lock(&dev->struct_mutex);
3331 intel_update_fbc(dev);
3332 mutex_unlock(&dev->struct_mutex);
3333
3334 intel_crtc_update_cursor(crtc, true);
3335
3336 for_each_encoder_on_crtc(dev, crtc, encoder)
3337 encoder->enable(encoder);
3338
3339 /*
3340 * There seems to be a race in PCH platform hw (at least on some
3341 * outputs) where an enabled pipe still completes any pageflip right
3342 * away (as if the pipe is off) instead of waiting for vblank. As soon
3343 * as the first vblank happend, everything works as expected. Hence just
3344 * wait for one vblank before returning to avoid strange things
3345 * happening.
3346 */
3347 intel_wait_for_vblank(dev, intel_crtc->pipe);
3348 }
3349
3350 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3351 {
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355 struct intel_encoder *encoder;
3356 int pipe = intel_crtc->pipe;
3357 int plane = intel_crtc->plane;
3358 u32 reg, temp;
3359
3360
3361 if (!intel_crtc->active)
3362 return;
3363
3364 for_each_encoder_on_crtc(dev, crtc, encoder)
3365 encoder->disable(encoder);
3366
3367 intel_crtc_wait_for_pending_flips(crtc);
3368 drm_vblank_off(dev, pipe);
3369 intel_crtc_update_cursor(crtc, false);
3370
3371 intel_disable_plane(dev_priv, plane, pipe);
3372
3373 if (dev_priv->cfb_plane == plane)
3374 intel_disable_fbc(dev);
3375
3376 intel_disable_pipe(dev_priv, pipe);
3377
3378 /* Disable PF */
3379 I915_WRITE(PF_CTL(pipe), 0);
3380 I915_WRITE(PF_WIN_SZ(pipe), 0);
3381
3382 for_each_encoder_on_crtc(dev, crtc, encoder)
3383 if (encoder->post_disable)
3384 encoder->post_disable(encoder);
3385
3386 ironlake_fdi_disable(crtc);
3387
3388 intel_disable_transcoder(dev_priv, pipe);
3389
3390 if (HAS_PCH_CPT(dev)) {
3391 /* disable TRANS_DP_CTL */
3392 reg = TRANS_DP_CTL(pipe);
3393 temp = I915_READ(reg);
3394 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3395 temp |= TRANS_DP_PORT_SEL_NONE;
3396 I915_WRITE(reg, temp);
3397
3398 /* disable DPLL_SEL */
3399 temp = I915_READ(PCH_DPLL_SEL);
3400 switch (pipe) {
3401 case 0:
3402 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3403 break;
3404 case 1:
3405 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3406 break;
3407 case 2:
3408 /* C shares PLL A or B */
3409 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3410 break;
3411 default:
3412 BUG(); /* wtf */
3413 }
3414 I915_WRITE(PCH_DPLL_SEL, temp);
3415 }
3416
3417 /* disable PCH DPLL */
3418 intel_disable_pch_pll(intel_crtc);
3419
3420 ironlake_fdi_pll_disable(intel_crtc);
3421
3422 intel_crtc->active = false;
3423 intel_update_watermarks(dev);
3424
3425 mutex_lock(&dev->struct_mutex);
3426 intel_update_fbc(dev);
3427 mutex_unlock(&dev->struct_mutex);
3428 }
3429
3430 static void haswell_crtc_disable(struct drm_crtc *crtc)
3431 {
3432 struct drm_device *dev = crtc->dev;
3433 struct drm_i915_private *dev_priv = dev->dev_private;
3434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3435 struct intel_encoder *encoder;
3436 int pipe = intel_crtc->pipe;
3437 int plane = intel_crtc->plane;
3438 bool is_pch_port;
3439
3440 if (!intel_crtc->active)
3441 return;
3442
3443 is_pch_port = haswell_crtc_driving_pch(crtc);
3444
3445 for_each_encoder_on_crtc(dev, crtc, encoder)
3446 encoder->disable(encoder);
3447
3448 intel_crtc_wait_for_pending_flips(crtc);
3449 drm_vblank_off(dev, pipe);
3450 intel_crtc_update_cursor(crtc, false);
3451
3452 intel_disable_plane(dev_priv, plane, pipe);
3453
3454 if (dev_priv->cfb_plane == plane)
3455 intel_disable_fbc(dev);
3456
3457 intel_disable_pipe(dev_priv, pipe);
3458
3459 intel_ddi_disable_pipe_func(dev_priv, pipe);
3460
3461 /* Disable PF */
3462 I915_WRITE(PF_CTL(pipe), 0);
3463 I915_WRITE(PF_WIN_SZ(pipe), 0);
3464
3465 intel_ddi_disable_pipe_clock(intel_crtc);
3466
3467 for_each_encoder_on_crtc(dev, crtc, encoder)
3468 if (encoder->post_disable)
3469 encoder->post_disable(encoder);
3470
3471 if (is_pch_port) {
3472 ironlake_fdi_disable(crtc);
3473 intel_disable_transcoder(dev_priv, pipe);
3474 intel_disable_pch_pll(intel_crtc);
3475 ironlake_fdi_pll_disable(intel_crtc);
3476 }
3477
3478 intel_crtc->active = false;
3479 intel_update_watermarks(dev);
3480
3481 mutex_lock(&dev->struct_mutex);
3482 intel_update_fbc(dev);
3483 mutex_unlock(&dev->struct_mutex);
3484 }
3485
3486 static void ironlake_crtc_off(struct drm_crtc *crtc)
3487 {
3488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3489 intel_put_pch_pll(intel_crtc);
3490 }
3491
3492 static void haswell_crtc_off(struct drm_crtc *crtc)
3493 {
3494 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3495
3496 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3497 * start using it. */
3498 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3499
3500 intel_ddi_put_crtc_pll(crtc);
3501 }
3502
3503 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3504 {
3505 if (!enable && intel_crtc->overlay) {
3506 struct drm_device *dev = intel_crtc->base.dev;
3507 struct drm_i915_private *dev_priv = dev->dev_private;
3508
3509 mutex_lock(&dev->struct_mutex);
3510 dev_priv->mm.interruptible = false;
3511 (void) intel_overlay_switch_off(intel_crtc->overlay);
3512 dev_priv->mm.interruptible = true;
3513 mutex_unlock(&dev->struct_mutex);
3514 }
3515
3516 /* Let userspace switch the overlay on again. In most cases userspace
3517 * has to recompute where to put it anyway.
3518 */
3519 }
3520
3521 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3522 {
3523 struct drm_device *dev = crtc->dev;
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3526 struct intel_encoder *encoder;
3527 int pipe = intel_crtc->pipe;
3528 int plane = intel_crtc->plane;
3529
3530 WARN_ON(!crtc->enabled);
3531
3532 if (intel_crtc->active)
3533 return;
3534
3535 intel_crtc->active = true;
3536 intel_update_watermarks(dev);
3537
3538 intel_enable_pll(dev_priv, pipe);
3539 intel_enable_pipe(dev_priv, pipe, false);
3540 intel_enable_plane(dev_priv, plane, pipe);
3541
3542 intel_crtc_load_lut(crtc);
3543 intel_update_fbc(dev);
3544
3545 /* Give the overlay scaler a chance to enable if it's on this pipe */
3546 intel_crtc_dpms_overlay(intel_crtc, true);
3547 intel_crtc_update_cursor(crtc, true);
3548
3549 for_each_encoder_on_crtc(dev, crtc, encoder)
3550 encoder->enable(encoder);
3551 }
3552
3553 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3554 {
3555 struct drm_device *dev = crtc->dev;
3556 struct drm_i915_private *dev_priv = dev->dev_private;
3557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3558 struct intel_encoder *encoder;
3559 int pipe = intel_crtc->pipe;
3560 int plane = intel_crtc->plane;
3561
3562
3563 if (!intel_crtc->active)
3564 return;
3565
3566 for_each_encoder_on_crtc(dev, crtc, encoder)
3567 encoder->disable(encoder);
3568
3569 /* Give the overlay scaler a chance to disable if it's on this pipe */
3570 intel_crtc_wait_for_pending_flips(crtc);
3571 drm_vblank_off(dev, pipe);
3572 intel_crtc_dpms_overlay(intel_crtc, false);
3573 intel_crtc_update_cursor(crtc, false);
3574
3575 if (dev_priv->cfb_plane == plane)
3576 intel_disable_fbc(dev);
3577
3578 intel_disable_plane(dev_priv, plane, pipe);
3579 intel_disable_pipe(dev_priv, pipe);
3580 intel_disable_pll(dev_priv, pipe);
3581
3582 intel_crtc->active = false;
3583 intel_update_fbc(dev);
3584 intel_update_watermarks(dev);
3585 }
3586
3587 static void i9xx_crtc_off(struct drm_crtc *crtc)
3588 {
3589 }
3590
3591 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3592 bool enabled)
3593 {
3594 struct drm_device *dev = crtc->dev;
3595 struct drm_i915_master_private *master_priv;
3596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3597 int pipe = intel_crtc->pipe;
3598
3599 if (!dev->primary->master)
3600 return;
3601
3602 master_priv = dev->primary->master->driver_priv;
3603 if (!master_priv->sarea_priv)
3604 return;
3605
3606 switch (pipe) {
3607 case 0:
3608 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3609 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3610 break;
3611 case 1:
3612 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3613 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3614 break;
3615 default:
3616 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3617 break;
3618 }
3619 }
3620
3621 /**
3622 * Sets the power management mode of the pipe and plane.
3623 */
3624 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3625 {
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_encoder *intel_encoder;
3629 bool enable = false;
3630
3631 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3632 enable |= intel_encoder->connectors_active;
3633
3634 if (enable)
3635 dev_priv->display.crtc_enable(crtc);
3636 else
3637 dev_priv->display.crtc_disable(crtc);
3638
3639 intel_crtc_update_sarea(crtc, enable);
3640 }
3641
3642 static void intel_crtc_noop(struct drm_crtc *crtc)
3643 {
3644 }
3645
3646 static void intel_crtc_disable(struct drm_crtc *crtc)
3647 {
3648 struct drm_device *dev = crtc->dev;
3649 struct drm_connector *connector;
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652 /* crtc should still be enabled when we disable it. */
3653 WARN_ON(!crtc->enabled);
3654
3655 dev_priv->display.crtc_disable(crtc);
3656 intel_crtc_update_sarea(crtc, false);
3657 dev_priv->display.off(crtc);
3658
3659 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3660 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3661
3662 if (crtc->fb) {
3663 mutex_lock(&dev->struct_mutex);
3664 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3665 mutex_unlock(&dev->struct_mutex);
3666 crtc->fb = NULL;
3667 }
3668
3669 /* Update computed state. */
3670 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3671 if (!connector->encoder || !connector->encoder->crtc)
3672 continue;
3673
3674 if (connector->encoder->crtc != crtc)
3675 continue;
3676
3677 connector->dpms = DRM_MODE_DPMS_OFF;
3678 to_intel_encoder(connector->encoder)->connectors_active = false;
3679 }
3680 }
3681
3682 void intel_modeset_disable(struct drm_device *dev)
3683 {
3684 struct drm_crtc *crtc;
3685
3686 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3687 if (crtc->enabled)
3688 intel_crtc_disable(crtc);
3689 }
3690 }
3691
3692 void intel_encoder_noop(struct drm_encoder *encoder)
3693 {
3694 }
3695
3696 void intel_encoder_destroy(struct drm_encoder *encoder)
3697 {
3698 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3699
3700 drm_encoder_cleanup(encoder);
3701 kfree(intel_encoder);
3702 }
3703
3704 /* Simple dpms helper for encodres with just one connector, no cloning and only
3705 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3706 * state of the entire output pipe. */
3707 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3708 {
3709 if (mode == DRM_MODE_DPMS_ON) {
3710 encoder->connectors_active = true;
3711
3712 intel_crtc_update_dpms(encoder->base.crtc);
3713 } else {
3714 encoder->connectors_active = false;
3715
3716 intel_crtc_update_dpms(encoder->base.crtc);
3717 }
3718 }
3719
3720 /* Cross check the actual hw state with our own modeset state tracking (and it's
3721 * internal consistency). */
3722 static void intel_connector_check_state(struct intel_connector *connector)
3723 {
3724 if (connector->get_hw_state(connector)) {
3725 struct intel_encoder *encoder = connector->encoder;
3726 struct drm_crtc *crtc;
3727 bool encoder_enabled;
3728 enum pipe pipe;
3729
3730 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3731 connector->base.base.id,
3732 drm_get_connector_name(&connector->base));
3733
3734 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3735 "wrong connector dpms state\n");
3736 WARN(connector->base.encoder != &encoder->base,
3737 "active connector not linked to encoder\n");
3738 WARN(!encoder->connectors_active,
3739 "encoder->connectors_active not set\n");
3740
3741 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3742 WARN(!encoder_enabled, "encoder not enabled\n");
3743 if (WARN_ON(!encoder->base.crtc))
3744 return;
3745
3746 crtc = encoder->base.crtc;
3747
3748 WARN(!crtc->enabled, "crtc not enabled\n");
3749 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3750 WARN(pipe != to_intel_crtc(crtc)->pipe,
3751 "encoder active on the wrong pipe\n");
3752 }
3753 }
3754
3755 /* Even simpler default implementation, if there's really no special case to
3756 * consider. */
3757 void intel_connector_dpms(struct drm_connector *connector, int mode)
3758 {
3759 struct intel_encoder *encoder = intel_attached_encoder(connector);
3760
3761 /* All the simple cases only support two dpms states. */
3762 if (mode != DRM_MODE_DPMS_ON)
3763 mode = DRM_MODE_DPMS_OFF;
3764
3765 if (mode == connector->dpms)
3766 return;
3767
3768 connector->dpms = mode;
3769
3770 /* Only need to change hw state when actually enabled */
3771 if (encoder->base.crtc)
3772 intel_encoder_dpms(encoder, mode);
3773 else
3774 WARN_ON(encoder->connectors_active != false);
3775
3776 intel_modeset_check_state(connector->dev);
3777 }
3778
3779 /* Simple connector->get_hw_state implementation for encoders that support only
3780 * one connector and no cloning and hence the encoder state determines the state
3781 * of the connector. */
3782 bool intel_connector_get_hw_state(struct intel_connector *connector)
3783 {
3784 enum pipe pipe = 0;
3785 struct intel_encoder *encoder = connector->encoder;
3786
3787 return encoder->get_hw_state(encoder, &pipe);
3788 }
3789
3790 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3791 const struct drm_display_mode *mode,
3792 struct drm_display_mode *adjusted_mode)
3793 {
3794 struct drm_device *dev = crtc->dev;
3795
3796 if (HAS_PCH_SPLIT(dev)) {
3797 /* FDI link clock is fixed at 2.7G */
3798 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3799 return false;
3800 }
3801
3802 /* All interlaced capable intel hw wants timings in frames. Note though
3803 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3804 * timings, so we need to be careful not to clobber these.*/
3805 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3806 drm_mode_set_crtcinfo(adjusted_mode, 0);
3807
3808 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3809 * with a hsync front porch of 0.
3810 */
3811 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3812 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3813 return false;
3814
3815 return true;
3816 }
3817
3818 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3819 {
3820 return 400000; /* FIXME */
3821 }
3822
3823 static int i945_get_display_clock_speed(struct drm_device *dev)
3824 {
3825 return 400000;
3826 }
3827
3828 static int i915_get_display_clock_speed(struct drm_device *dev)
3829 {
3830 return 333000;
3831 }
3832
3833 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3834 {
3835 return 200000;
3836 }
3837
3838 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3839 {
3840 u16 gcfgc = 0;
3841
3842 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3843
3844 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3845 return 133000;
3846 else {
3847 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3848 case GC_DISPLAY_CLOCK_333_MHZ:
3849 return 333000;
3850 default:
3851 case GC_DISPLAY_CLOCK_190_200_MHZ:
3852 return 190000;
3853 }
3854 }
3855 }
3856
3857 static int i865_get_display_clock_speed(struct drm_device *dev)
3858 {
3859 return 266000;
3860 }
3861
3862 static int i855_get_display_clock_speed(struct drm_device *dev)
3863 {
3864 u16 hpllcc = 0;
3865 /* Assume that the hardware is in the high speed state. This
3866 * should be the default.
3867 */
3868 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3869 case GC_CLOCK_133_200:
3870 case GC_CLOCK_100_200:
3871 return 200000;
3872 case GC_CLOCK_166_250:
3873 return 250000;
3874 case GC_CLOCK_100_133:
3875 return 133000;
3876 }
3877
3878 /* Shouldn't happen */
3879 return 0;
3880 }
3881
3882 static int i830_get_display_clock_speed(struct drm_device *dev)
3883 {
3884 return 133000;
3885 }
3886
3887 struct fdi_m_n {
3888 u32 tu;
3889 u32 gmch_m;
3890 u32 gmch_n;
3891 u32 link_m;
3892 u32 link_n;
3893 };
3894
3895 static void
3896 fdi_reduce_ratio(u32 *num, u32 *den)
3897 {
3898 while (*num > 0xffffff || *den > 0xffffff) {
3899 *num >>= 1;
3900 *den >>= 1;
3901 }
3902 }
3903
3904 static void
3905 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3906 int link_clock, struct fdi_m_n *m_n)
3907 {
3908 m_n->tu = 64; /* default size */
3909
3910 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3911 m_n->gmch_m = bits_per_pixel * pixel_clock;
3912 m_n->gmch_n = link_clock * nlanes * 8;
3913 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3914
3915 m_n->link_m = pixel_clock;
3916 m_n->link_n = link_clock;
3917 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3918 }
3919
3920 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3921 {
3922 if (i915_panel_use_ssc >= 0)
3923 return i915_panel_use_ssc != 0;
3924 return dev_priv->lvds_use_ssc
3925 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3926 }
3927
3928 /**
3929 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3930 * @crtc: CRTC structure
3931 * @mode: requested mode
3932 *
3933 * A pipe may be connected to one or more outputs. Based on the depth of the
3934 * attached framebuffer, choose a good color depth to use on the pipe.
3935 *
3936 * If possible, match the pipe depth to the fb depth. In some cases, this
3937 * isn't ideal, because the connected output supports a lesser or restricted
3938 * set of depths. Resolve that here:
3939 * LVDS typically supports only 6bpc, so clamp down in that case
3940 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3941 * Displays may support a restricted set as well, check EDID and clamp as
3942 * appropriate.
3943 * DP may want to dither down to 6bpc to fit larger modes
3944 *
3945 * RETURNS:
3946 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3947 * true if they don't match).
3948 */
3949 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3950 struct drm_framebuffer *fb,
3951 unsigned int *pipe_bpp,
3952 struct drm_display_mode *mode)
3953 {
3954 struct drm_device *dev = crtc->dev;
3955 struct drm_i915_private *dev_priv = dev->dev_private;
3956 struct drm_connector *connector;
3957 struct intel_encoder *intel_encoder;
3958 unsigned int display_bpc = UINT_MAX, bpc;
3959
3960 /* Walk the encoders & connectors on this crtc, get min bpc */
3961 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3962
3963 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3964 unsigned int lvds_bpc;
3965
3966 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3967 LVDS_A3_POWER_UP)
3968 lvds_bpc = 8;
3969 else
3970 lvds_bpc = 6;
3971
3972 if (lvds_bpc < display_bpc) {
3973 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3974 display_bpc = lvds_bpc;
3975 }
3976 continue;
3977 }
3978
3979 /* Not one of the known troublemakers, check the EDID */
3980 list_for_each_entry(connector, &dev->mode_config.connector_list,
3981 head) {
3982 if (connector->encoder != &intel_encoder->base)
3983 continue;
3984
3985 /* Don't use an invalid EDID bpc value */
3986 if (connector->display_info.bpc &&
3987 connector->display_info.bpc < display_bpc) {
3988 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3989 display_bpc = connector->display_info.bpc;
3990 }
3991 }
3992
3993 /*
3994 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3995 * through, clamp it down. (Note: >12bpc will be caught below.)
3996 */
3997 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3998 if (display_bpc > 8 && display_bpc < 12) {
3999 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4000 display_bpc = 12;
4001 } else {
4002 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4003 display_bpc = 8;
4004 }
4005 }
4006 }
4007
4008 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4009 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4010 display_bpc = 6;
4011 }
4012
4013 /*
4014 * We could just drive the pipe at the highest bpc all the time and
4015 * enable dithering as needed, but that costs bandwidth. So choose
4016 * the minimum value that expresses the full color range of the fb but
4017 * also stays within the max display bpc discovered above.
4018 */
4019
4020 switch (fb->depth) {
4021 case 8:
4022 bpc = 8; /* since we go through a colormap */
4023 break;
4024 case 15:
4025 case 16:
4026 bpc = 6; /* min is 18bpp */
4027 break;
4028 case 24:
4029 bpc = 8;
4030 break;
4031 case 30:
4032 bpc = 10;
4033 break;
4034 case 48:
4035 bpc = 12;
4036 break;
4037 default:
4038 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4039 bpc = min((unsigned int)8, display_bpc);
4040 break;
4041 }
4042
4043 display_bpc = min(display_bpc, bpc);
4044
4045 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4046 bpc, display_bpc);
4047
4048 *pipe_bpp = display_bpc * 3;
4049
4050 return display_bpc != bpc;
4051 }
4052
4053 static int vlv_get_refclk(struct drm_crtc *crtc)
4054 {
4055 struct drm_device *dev = crtc->dev;
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 int refclk = 27000; /* for DP & HDMI */
4058
4059 return 100000; /* only one validated so far */
4060
4061 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4062 refclk = 96000;
4063 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4064 if (intel_panel_use_ssc(dev_priv))
4065 refclk = 100000;
4066 else
4067 refclk = 96000;
4068 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4069 refclk = 100000;
4070 }
4071
4072 return refclk;
4073 }
4074
4075 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4076 {
4077 struct drm_device *dev = crtc->dev;
4078 struct drm_i915_private *dev_priv = dev->dev_private;
4079 int refclk;
4080
4081 if (IS_VALLEYVIEW(dev)) {
4082 refclk = vlv_get_refclk(crtc);
4083 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4084 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4085 refclk = dev_priv->lvds_ssc_freq * 1000;
4086 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4087 refclk / 1000);
4088 } else if (!IS_GEN2(dev)) {
4089 refclk = 96000;
4090 } else {
4091 refclk = 48000;
4092 }
4093
4094 return refclk;
4095 }
4096
4097 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4098 intel_clock_t *clock)
4099 {
4100 /* SDVO TV has fixed PLL values depend on its clock range,
4101 this mirrors vbios setting. */
4102 if (adjusted_mode->clock >= 100000
4103 && adjusted_mode->clock < 140500) {
4104 clock->p1 = 2;
4105 clock->p2 = 10;
4106 clock->n = 3;
4107 clock->m1 = 16;
4108 clock->m2 = 8;
4109 } else if (adjusted_mode->clock >= 140500
4110 && adjusted_mode->clock <= 200000) {
4111 clock->p1 = 1;
4112 clock->p2 = 10;
4113 clock->n = 6;
4114 clock->m1 = 12;
4115 clock->m2 = 8;
4116 }
4117 }
4118
4119 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4120 intel_clock_t *clock,
4121 intel_clock_t *reduced_clock)
4122 {
4123 struct drm_device *dev = crtc->dev;
4124 struct drm_i915_private *dev_priv = dev->dev_private;
4125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4126 int pipe = intel_crtc->pipe;
4127 u32 fp, fp2 = 0;
4128
4129 if (IS_PINEVIEW(dev)) {
4130 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4131 if (reduced_clock)
4132 fp2 = (1 << reduced_clock->n) << 16 |
4133 reduced_clock->m1 << 8 | reduced_clock->m2;
4134 } else {
4135 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4136 if (reduced_clock)
4137 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4138 reduced_clock->m2;
4139 }
4140
4141 I915_WRITE(FP0(pipe), fp);
4142
4143 intel_crtc->lowfreq_avail = false;
4144 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4145 reduced_clock && i915_powersave) {
4146 I915_WRITE(FP1(pipe), fp2);
4147 intel_crtc->lowfreq_avail = true;
4148 } else {
4149 I915_WRITE(FP1(pipe), fp);
4150 }
4151 }
4152
4153 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4154 struct drm_display_mode *adjusted_mode)
4155 {
4156 struct drm_device *dev = crtc->dev;
4157 struct drm_i915_private *dev_priv = dev->dev_private;
4158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4159 int pipe = intel_crtc->pipe;
4160 u32 temp;
4161
4162 temp = I915_READ(LVDS);
4163 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4164 if (pipe == 1) {
4165 temp |= LVDS_PIPEB_SELECT;
4166 } else {
4167 temp &= ~LVDS_PIPEB_SELECT;
4168 }
4169 /* set the corresponsding LVDS_BORDER bit */
4170 temp |= dev_priv->lvds_border_bits;
4171 /* Set the B0-B3 data pairs corresponding to whether we're going to
4172 * set the DPLLs for dual-channel mode or not.
4173 */
4174 if (clock->p2 == 7)
4175 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4176 else
4177 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4178
4179 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4180 * appropriately here, but we need to look more thoroughly into how
4181 * panels behave in the two modes.
4182 */
4183 /* set the dithering flag on LVDS as needed */
4184 if (INTEL_INFO(dev)->gen >= 4) {
4185 if (dev_priv->lvds_dither)
4186 temp |= LVDS_ENABLE_DITHER;
4187 else
4188 temp &= ~LVDS_ENABLE_DITHER;
4189 }
4190 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4191 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4192 temp |= LVDS_HSYNC_POLARITY;
4193 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4194 temp |= LVDS_VSYNC_POLARITY;
4195 I915_WRITE(LVDS, temp);
4196 }
4197
4198 static void vlv_update_pll(struct drm_crtc *crtc,
4199 struct drm_display_mode *mode,
4200 struct drm_display_mode *adjusted_mode,
4201 intel_clock_t *clock, intel_clock_t *reduced_clock,
4202 int num_connectors)
4203 {
4204 struct drm_device *dev = crtc->dev;
4205 struct drm_i915_private *dev_priv = dev->dev_private;
4206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4207 int pipe = intel_crtc->pipe;
4208 u32 dpll, mdiv, pdiv;
4209 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4210 bool is_sdvo;
4211 u32 temp;
4212
4213 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4214 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4215
4216 dpll = DPLL_VGA_MODE_DIS;
4217 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4218 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4219 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4220
4221 I915_WRITE(DPLL(pipe), dpll);
4222 POSTING_READ(DPLL(pipe));
4223
4224 bestn = clock->n;
4225 bestm1 = clock->m1;
4226 bestm2 = clock->m2;
4227 bestp1 = clock->p1;
4228 bestp2 = clock->p2;
4229
4230 /*
4231 * In Valleyview PLL and program lane counter registers are exposed
4232 * through DPIO interface
4233 */
4234 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4235 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4236 mdiv |= ((bestn << DPIO_N_SHIFT));
4237 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4238 mdiv |= (1 << DPIO_K_SHIFT);
4239 mdiv |= DPIO_ENABLE_CALIBRATION;
4240 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4241
4242 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4243
4244 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4245 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4246 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4247 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4248 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4249
4250 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4251
4252 dpll |= DPLL_VCO_ENABLE;
4253 I915_WRITE(DPLL(pipe), dpll);
4254 POSTING_READ(DPLL(pipe));
4255 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4256 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4257
4258 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4259
4260 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4261 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4262
4263 I915_WRITE(DPLL(pipe), dpll);
4264
4265 /* Wait for the clocks to stabilize. */
4266 POSTING_READ(DPLL(pipe));
4267 udelay(150);
4268
4269 temp = 0;
4270 if (is_sdvo) {
4271 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4272 if (temp > 1)
4273 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4274 else
4275 temp = 0;
4276 }
4277 I915_WRITE(DPLL_MD(pipe), temp);
4278 POSTING_READ(DPLL_MD(pipe));
4279
4280 /* Now program lane control registers */
4281 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4282 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4283 {
4284 temp = 0x1000C4;
4285 if(pipe == 1)
4286 temp |= (1 << 21);
4287 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4288 }
4289 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4290 {
4291 temp = 0x1000C4;
4292 if(pipe == 1)
4293 temp |= (1 << 21);
4294 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4295 }
4296 }
4297
4298 static void i9xx_update_pll(struct drm_crtc *crtc,
4299 struct drm_display_mode *mode,
4300 struct drm_display_mode *adjusted_mode,
4301 intel_clock_t *clock, intel_clock_t *reduced_clock,
4302 int num_connectors)
4303 {
4304 struct drm_device *dev = crtc->dev;
4305 struct drm_i915_private *dev_priv = dev->dev_private;
4306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4307 int pipe = intel_crtc->pipe;
4308 u32 dpll;
4309 bool is_sdvo;
4310
4311 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4312
4313 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4314 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4315
4316 dpll = DPLL_VGA_MODE_DIS;
4317
4318 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4319 dpll |= DPLLB_MODE_LVDS;
4320 else
4321 dpll |= DPLLB_MODE_DAC_SERIAL;
4322 if (is_sdvo) {
4323 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4324 if (pixel_multiplier > 1) {
4325 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4326 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4327 }
4328 dpll |= DPLL_DVO_HIGH_SPEED;
4329 }
4330 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4331 dpll |= DPLL_DVO_HIGH_SPEED;
4332
4333 /* compute bitmask from p1 value */
4334 if (IS_PINEVIEW(dev))
4335 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4336 else {
4337 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4338 if (IS_G4X(dev) && reduced_clock)
4339 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4340 }
4341 switch (clock->p2) {
4342 case 5:
4343 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4344 break;
4345 case 7:
4346 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4347 break;
4348 case 10:
4349 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4350 break;
4351 case 14:
4352 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4353 break;
4354 }
4355 if (INTEL_INFO(dev)->gen >= 4)
4356 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4357
4358 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4359 dpll |= PLL_REF_INPUT_TVCLKINBC;
4360 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4361 /* XXX: just matching BIOS for now */
4362 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4363 dpll |= 3;
4364 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4365 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4366 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4367 else
4368 dpll |= PLL_REF_INPUT_DREFCLK;
4369
4370 dpll |= DPLL_VCO_ENABLE;
4371 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4372 POSTING_READ(DPLL(pipe));
4373 udelay(150);
4374
4375 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4376 * This is an exception to the general rule that mode_set doesn't turn
4377 * things on.
4378 */
4379 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4380 intel_update_lvds(crtc, clock, adjusted_mode);
4381
4382 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4383 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4384
4385 I915_WRITE(DPLL(pipe), dpll);
4386
4387 /* Wait for the clocks to stabilize. */
4388 POSTING_READ(DPLL(pipe));
4389 udelay(150);
4390
4391 if (INTEL_INFO(dev)->gen >= 4) {
4392 u32 temp = 0;
4393 if (is_sdvo) {
4394 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4395 if (temp > 1)
4396 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4397 else
4398 temp = 0;
4399 }
4400 I915_WRITE(DPLL_MD(pipe), temp);
4401 } else {
4402 /* The pixel multiplier can only be updated once the
4403 * DPLL is enabled and the clocks are stable.
4404 *
4405 * So write it again.
4406 */
4407 I915_WRITE(DPLL(pipe), dpll);
4408 }
4409 }
4410
4411 static void i8xx_update_pll(struct drm_crtc *crtc,
4412 struct drm_display_mode *adjusted_mode,
4413 intel_clock_t *clock, intel_clock_t *reduced_clock,
4414 int num_connectors)
4415 {
4416 struct drm_device *dev = crtc->dev;
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4419 int pipe = intel_crtc->pipe;
4420 u32 dpll;
4421
4422 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4423
4424 dpll = DPLL_VGA_MODE_DIS;
4425
4426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4427 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4428 } else {
4429 if (clock->p1 == 2)
4430 dpll |= PLL_P1_DIVIDE_BY_TWO;
4431 else
4432 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4433 if (clock->p2 == 4)
4434 dpll |= PLL_P2_DIVIDE_BY_4;
4435 }
4436
4437 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4438 /* XXX: just matching BIOS for now */
4439 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4440 dpll |= 3;
4441 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4442 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4443 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4444 else
4445 dpll |= PLL_REF_INPUT_DREFCLK;
4446
4447 dpll |= DPLL_VCO_ENABLE;
4448 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4449 POSTING_READ(DPLL(pipe));
4450 udelay(150);
4451
4452 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4453 * This is an exception to the general rule that mode_set doesn't turn
4454 * things on.
4455 */
4456 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4457 intel_update_lvds(crtc, clock, adjusted_mode);
4458
4459 I915_WRITE(DPLL(pipe), dpll);
4460
4461 /* Wait for the clocks to stabilize. */
4462 POSTING_READ(DPLL(pipe));
4463 udelay(150);
4464
4465 /* The pixel multiplier can only be updated once the
4466 * DPLL is enabled and the clocks are stable.
4467 *
4468 * So write it again.
4469 */
4470 I915_WRITE(DPLL(pipe), dpll);
4471 }
4472
4473 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4474 struct drm_display_mode *mode,
4475 struct drm_display_mode *adjusted_mode)
4476 {
4477 struct drm_device *dev = intel_crtc->base.dev;
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479 enum pipe pipe = intel_crtc->pipe;
4480 uint32_t vsyncshift;
4481
4482 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4483 /* the chip adds 2 halflines automatically */
4484 adjusted_mode->crtc_vtotal -= 1;
4485 adjusted_mode->crtc_vblank_end -= 1;
4486 vsyncshift = adjusted_mode->crtc_hsync_start
4487 - adjusted_mode->crtc_htotal / 2;
4488 } else {
4489 vsyncshift = 0;
4490 }
4491
4492 if (INTEL_INFO(dev)->gen > 3)
4493 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4494
4495 I915_WRITE(HTOTAL(pipe),
4496 (adjusted_mode->crtc_hdisplay - 1) |
4497 ((adjusted_mode->crtc_htotal - 1) << 16));
4498 I915_WRITE(HBLANK(pipe),
4499 (adjusted_mode->crtc_hblank_start - 1) |
4500 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4501 I915_WRITE(HSYNC(pipe),
4502 (adjusted_mode->crtc_hsync_start - 1) |
4503 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4504
4505 I915_WRITE(VTOTAL(pipe),
4506 (adjusted_mode->crtc_vdisplay - 1) |
4507 ((adjusted_mode->crtc_vtotal - 1) << 16));
4508 I915_WRITE(VBLANK(pipe),
4509 (adjusted_mode->crtc_vblank_start - 1) |
4510 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4511 I915_WRITE(VSYNC(pipe),
4512 (adjusted_mode->crtc_vsync_start - 1) |
4513 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4514
4515 /* pipesrc controls the size that is scaled from, which should
4516 * always be the user's requested size.
4517 */
4518 I915_WRITE(PIPESRC(pipe),
4519 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4520 }
4521
4522 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4523 struct drm_display_mode *mode,
4524 struct drm_display_mode *adjusted_mode,
4525 int x, int y,
4526 struct drm_framebuffer *fb)
4527 {
4528 struct drm_device *dev = crtc->dev;
4529 struct drm_i915_private *dev_priv = dev->dev_private;
4530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4531 int pipe = intel_crtc->pipe;
4532 int plane = intel_crtc->plane;
4533 int refclk, num_connectors = 0;
4534 intel_clock_t clock, reduced_clock;
4535 u32 dspcntr, pipeconf;
4536 bool ok, has_reduced_clock = false, is_sdvo = false;
4537 bool is_lvds = false, is_tv = false, is_dp = false;
4538 struct intel_encoder *encoder;
4539 const intel_limit_t *limit;
4540 int ret;
4541
4542 for_each_encoder_on_crtc(dev, crtc, encoder) {
4543 switch (encoder->type) {
4544 case INTEL_OUTPUT_LVDS:
4545 is_lvds = true;
4546 break;
4547 case INTEL_OUTPUT_SDVO:
4548 case INTEL_OUTPUT_HDMI:
4549 is_sdvo = true;
4550 if (encoder->needs_tv_clock)
4551 is_tv = true;
4552 break;
4553 case INTEL_OUTPUT_TVOUT:
4554 is_tv = true;
4555 break;
4556 case INTEL_OUTPUT_DISPLAYPORT:
4557 is_dp = true;
4558 break;
4559 }
4560
4561 num_connectors++;
4562 }
4563
4564 refclk = i9xx_get_refclk(crtc, num_connectors);
4565
4566 /*
4567 * Returns a set of divisors for the desired target clock with the given
4568 * refclk, or FALSE. The returned values represent the clock equation:
4569 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4570 */
4571 limit = intel_limit(crtc, refclk);
4572 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4573 &clock);
4574 if (!ok) {
4575 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4576 return -EINVAL;
4577 }
4578
4579 /* Ensure that the cursor is valid for the new mode before changing... */
4580 intel_crtc_update_cursor(crtc, true);
4581
4582 if (is_lvds && dev_priv->lvds_downclock_avail) {
4583 /*
4584 * Ensure we match the reduced clock's P to the target clock.
4585 * If the clocks don't match, we can't switch the display clock
4586 * by using the FP0/FP1. In such case we will disable the LVDS
4587 * downclock feature.
4588 */
4589 has_reduced_clock = limit->find_pll(limit, crtc,
4590 dev_priv->lvds_downclock,
4591 refclk,
4592 &clock,
4593 &reduced_clock);
4594 }
4595
4596 if (is_sdvo && is_tv)
4597 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4598
4599 if (IS_GEN2(dev))
4600 i8xx_update_pll(crtc, adjusted_mode, &clock,
4601 has_reduced_clock ? &reduced_clock : NULL,
4602 num_connectors);
4603 else if (IS_VALLEYVIEW(dev))
4604 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4605 has_reduced_clock ? &reduced_clock : NULL,
4606 num_connectors);
4607 else
4608 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4609 has_reduced_clock ? &reduced_clock : NULL,
4610 num_connectors);
4611
4612 /* setup pipeconf */
4613 pipeconf = I915_READ(PIPECONF(pipe));
4614
4615 /* Set up the display plane register */
4616 dspcntr = DISPPLANE_GAMMA_ENABLE;
4617
4618 if (pipe == 0)
4619 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4620 else
4621 dspcntr |= DISPPLANE_SEL_PIPE_B;
4622
4623 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4624 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4625 * core speed.
4626 *
4627 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4628 * pipe == 0 check?
4629 */
4630 if (mode->clock >
4631 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4632 pipeconf |= PIPECONF_DOUBLE_WIDE;
4633 else
4634 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4635 }
4636
4637 /* default to 8bpc */
4638 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4639 if (is_dp) {
4640 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4641 pipeconf |= PIPECONF_BPP_6 |
4642 PIPECONF_DITHER_EN |
4643 PIPECONF_DITHER_TYPE_SP;
4644 }
4645 }
4646
4647 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4648 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4649 pipeconf |= PIPECONF_BPP_6 |
4650 PIPECONF_ENABLE |
4651 I965_PIPECONF_ACTIVE;
4652 }
4653 }
4654
4655 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4656 drm_mode_debug_printmodeline(mode);
4657
4658 if (HAS_PIPE_CXSR(dev)) {
4659 if (intel_crtc->lowfreq_avail) {
4660 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4661 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4662 } else {
4663 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4664 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4665 }
4666 }
4667
4668 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4669 if (!IS_GEN2(dev) &&
4670 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4671 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4672 else
4673 pipeconf |= PIPECONF_PROGRESSIVE;
4674
4675 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4676
4677 /* pipesrc and dspsize control the size that is scaled from,
4678 * which should always be the user's requested size.
4679 */
4680 I915_WRITE(DSPSIZE(plane),
4681 ((mode->vdisplay - 1) << 16) |
4682 (mode->hdisplay - 1));
4683 I915_WRITE(DSPPOS(plane), 0);
4684
4685 I915_WRITE(PIPECONF(pipe), pipeconf);
4686 POSTING_READ(PIPECONF(pipe));
4687 intel_enable_pipe(dev_priv, pipe, false);
4688
4689 intel_wait_for_vblank(dev, pipe);
4690
4691 I915_WRITE(DSPCNTR(plane), dspcntr);
4692 POSTING_READ(DSPCNTR(plane));
4693
4694 ret = intel_pipe_set_base(crtc, x, y, fb);
4695
4696 intel_update_watermarks(dev);
4697
4698 return ret;
4699 }
4700
4701 /*
4702 * Initialize reference clocks when the driver loads
4703 */
4704 void ironlake_init_pch_refclk(struct drm_device *dev)
4705 {
4706 struct drm_i915_private *dev_priv = dev->dev_private;
4707 struct drm_mode_config *mode_config = &dev->mode_config;
4708 struct intel_encoder *encoder;
4709 u32 temp;
4710 bool has_lvds = false;
4711 bool has_cpu_edp = false;
4712 bool has_pch_edp = false;
4713 bool has_panel = false;
4714 bool has_ck505 = false;
4715 bool can_ssc = false;
4716
4717 /* We need to take the global config into account */
4718 list_for_each_entry(encoder, &mode_config->encoder_list,
4719 base.head) {
4720 switch (encoder->type) {
4721 case INTEL_OUTPUT_LVDS:
4722 has_panel = true;
4723 has_lvds = true;
4724 break;
4725 case INTEL_OUTPUT_EDP:
4726 has_panel = true;
4727 if (intel_encoder_is_pch_edp(&encoder->base))
4728 has_pch_edp = true;
4729 else
4730 has_cpu_edp = true;
4731 break;
4732 }
4733 }
4734
4735 if (HAS_PCH_IBX(dev)) {
4736 has_ck505 = dev_priv->display_clock_mode;
4737 can_ssc = has_ck505;
4738 } else {
4739 has_ck505 = false;
4740 can_ssc = true;
4741 }
4742
4743 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4744 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4745 has_ck505);
4746
4747 /* Ironlake: try to setup display ref clock before DPLL
4748 * enabling. This is only under driver's control after
4749 * PCH B stepping, previous chipset stepping should be
4750 * ignoring this setting.
4751 */
4752 temp = I915_READ(PCH_DREF_CONTROL);
4753 /* Always enable nonspread source */
4754 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4755
4756 if (has_ck505)
4757 temp |= DREF_NONSPREAD_CK505_ENABLE;
4758 else
4759 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4760
4761 if (has_panel) {
4762 temp &= ~DREF_SSC_SOURCE_MASK;
4763 temp |= DREF_SSC_SOURCE_ENABLE;
4764
4765 /* SSC must be turned on before enabling the CPU output */
4766 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4767 DRM_DEBUG_KMS("Using SSC on panel\n");
4768 temp |= DREF_SSC1_ENABLE;
4769 } else
4770 temp &= ~DREF_SSC1_ENABLE;
4771
4772 /* Get SSC going before enabling the outputs */
4773 I915_WRITE(PCH_DREF_CONTROL, temp);
4774 POSTING_READ(PCH_DREF_CONTROL);
4775 udelay(200);
4776
4777 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4778
4779 /* Enable CPU source on CPU attached eDP */
4780 if (has_cpu_edp) {
4781 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4782 DRM_DEBUG_KMS("Using SSC on eDP\n");
4783 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4784 }
4785 else
4786 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4787 } else
4788 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4789
4790 I915_WRITE(PCH_DREF_CONTROL, temp);
4791 POSTING_READ(PCH_DREF_CONTROL);
4792 udelay(200);
4793 } else {
4794 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4795
4796 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4797
4798 /* Turn off CPU output */
4799 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4800
4801 I915_WRITE(PCH_DREF_CONTROL, temp);
4802 POSTING_READ(PCH_DREF_CONTROL);
4803 udelay(200);
4804
4805 /* Turn off the SSC source */
4806 temp &= ~DREF_SSC_SOURCE_MASK;
4807 temp |= DREF_SSC_SOURCE_DISABLE;
4808
4809 /* Turn off SSC1 */
4810 temp &= ~ DREF_SSC1_ENABLE;
4811
4812 I915_WRITE(PCH_DREF_CONTROL, temp);
4813 POSTING_READ(PCH_DREF_CONTROL);
4814 udelay(200);
4815 }
4816 }
4817
4818 static int ironlake_get_refclk(struct drm_crtc *crtc)
4819 {
4820 struct drm_device *dev = crtc->dev;
4821 struct drm_i915_private *dev_priv = dev->dev_private;
4822 struct intel_encoder *encoder;
4823 struct intel_encoder *edp_encoder = NULL;
4824 int num_connectors = 0;
4825 bool is_lvds = false;
4826
4827 for_each_encoder_on_crtc(dev, crtc, encoder) {
4828 switch (encoder->type) {
4829 case INTEL_OUTPUT_LVDS:
4830 is_lvds = true;
4831 break;
4832 case INTEL_OUTPUT_EDP:
4833 edp_encoder = encoder;
4834 break;
4835 }
4836 num_connectors++;
4837 }
4838
4839 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4840 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4841 dev_priv->lvds_ssc_freq);
4842 return dev_priv->lvds_ssc_freq * 1000;
4843 }
4844
4845 return 120000;
4846 }
4847
4848 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4849 struct drm_display_mode *adjusted_mode,
4850 bool dither)
4851 {
4852 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854 int pipe = intel_crtc->pipe;
4855 uint32_t val;
4856
4857 val = I915_READ(PIPECONF(pipe));
4858
4859 val &= ~PIPE_BPC_MASK;
4860 switch (intel_crtc->bpp) {
4861 case 18:
4862 val |= PIPE_6BPC;
4863 break;
4864 case 24:
4865 val |= PIPE_8BPC;
4866 break;
4867 case 30:
4868 val |= PIPE_10BPC;
4869 break;
4870 case 36:
4871 val |= PIPE_12BPC;
4872 break;
4873 default:
4874 /* Case prevented by intel_choose_pipe_bpp_dither. */
4875 BUG();
4876 }
4877
4878 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4879 if (dither)
4880 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4881
4882 val &= ~PIPECONF_INTERLACE_MASK;
4883 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4884 val |= PIPECONF_INTERLACED_ILK;
4885 else
4886 val |= PIPECONF_PROGRESSIVE;
4887
4888 I915_WRITE(PIPECONF(pipe), val);
4889 POSTING_READ(PIPECONF(pipe));
4890 }
4891
4892 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4893 struct drm_display_mode *adjusted_mode,
4894 bool dither)
4895 {
4896 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4898 int pipe = intel_crtc->pipe;
4899 uint32_t val;
4900
4901 val = I915_READ(PIPECONF(pipe));
4902
4903 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4904 if (dither)
4905 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4906
4907 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4908 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4909 val |= PIPECONF_INTERLACED_ILK;
4910 else
4911 val |= PIPECONF_PROGRESSIVE;
4912
4913 I915_WRITE(PIPECONF(pipe), val);
4914 POSTING_READ(PIPECONF(pipe));
4915 }
4916
4917 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4918 struct drm_display_mode *adjusted_mode,
4919 intel_clock_t *clock,
4920 bool *has_reduced_clock,
4921 intel_clock_t *reduced_clock)
4922 {
4923 struct drm_device *dev = crtc->dev;
4924 struct drm_i915_private *dev_priv = dev->dev_private;
4925 struct intel_encoder *intel_encoder;
4926 int refclk;
4927 const intel_limit_t *limit;
4928 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4929
4930 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4931 switch (intel_encoder->type) {
4932 case INTEL_OUTPUT_LVDS:
4933 is_lvds = true;
4934 break;
4935 case INTEL_OUTPUT_SDVO:
4936 case INTEL_OUTPUT_HDMI:
4937 is_sdvo = true;
4938 if (intel_encoder->needs_tv_clock)
4939 is_tv = true;
4940 break;
4941 case INTEL_OUTPUT_TVOUT:
4942 is_tv = true;
4943 break;
4944 }
4945 }
4946
4947 refclk = ironlake_get_refclk(crtc);
4948
4949 /*
4950 * Returns a set of divisors for the desired target clock with the given
4951 * refclk, or FALSE. The returned values represent the clock equation:
4952 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4953 */
4954 limit = intel_limit(crtc, refclk);
4955 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4956 clock);
4957 if (!ret)
4958 return false;
4959
4960 if (is_lvds && dev_priv->lvds_downclock_avail) {
4961 /*
4962 * Ensure we match the reduced clock's P to the target clock.
4963 * If the clocks don't match, we can't switch the display clock
4964 * by using the FP0/FP1. In such case we will disable the LVDS
4965 * downclock feature.
4966 */
4967 *has_reduced_clock = limit->find_pll(limit, crtc,
4968 dev_priv->lvds_downclock,
4969 refclk,
4970 clock,
4971 reduced_clock);
4972 }
4973
4974 if (is_sdvo && is_tv)
4975 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4976
4977 return true;
4978 }
4979
4980 static void ironlake_set_m_n(struct drm_crtc *crtc,
4981 struct drm_display_mode *mode,
4982 struct drm_display_mode *adjusted_mode)
4983 {
4984 struct drm_device *dev = crtc->dev;
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4987 enum pipe pipe = intel_crtc->pipe;
4988 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
4989 struct fdi_m_n m_n = {0};
4990 int target_clock, pixel_multiplier, lane, link_bw;
4991 bool is_dp = false, is_cpu_edp = false;
4992
4993 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4994 switch (intel_encoder->type) {
4995 case INTEL_OUTPUT_DISPLAYPORT:
4996 is_dp = true;
4997 break;
4998 case INTEL_OUTPUT_EDP:
4999 is_dp = true;
5000 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5001 is_cpu_edp = true;
5002 edp_encoder = intel_encoder;
5003 break;
5004 }
5005 }
5006
5007 /* FDI link */
5008 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5009 lane = 0;
5010 /* CPU eDP doesn't require FDI link, so just set DP M/N
5011 according to current link config */
5012 if (is_cpu_edp) {
5013 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5014 } else {
5015 /* FDI is a binary signal running at ~2.7GHz, encoding
5016 * each output octet as 10 bits. The actual frequency
5017 * is stored as a divider into a 100MHz clock, and the
5018 * mode pixel clock is stored in units of 1KHz.
5019 * Hence the bw of each lane in terms of the mode signal
5020 * is:
5021 */
5022 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5023 }
5024
5025 /* [e]DP over FDI requires target mode clock instead of link clock. */
5026 if (edp_encoder)
5027 target_clock = intel_edp_target_clock(edp_encoder, mode);
5028 else if (is_dp)
5029 target_clock = mode->clock;
5030 else
5031 target_clock = adjusted_mode->clock;
5032
5033 if (!lane) {
5034 /*
5035 * Account for spread spectrum to avoid
5036 * oversubscribing the link. Max center spread
5037 * is 2.5%; use 5% for safety's sake.
5038 */
5039 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5040 lane = bps / (link_bw * 8) + 1;
5041 }
5042
5043 intel_crtc->fdi_lanes = lane;
5044
5045 if (pixel_multiplier > 1)
5046 link_bw *= pixel_multiplier;
5047 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5048 &m_n);
5049
5050 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5051 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5052 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5053 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5054 }
5055
5056 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5057 struct drm_display_mode *adjusted_mode,
5058 intel_clock_t *clock, u32 fp)
5059 {
5060 struct drm_crtc *crtc = &intel_crtc->base;
5061 struct drm_device *dev = crtc->dev;
5062 struct drm_i915_private *dev_priv = dev->dev_private;
5063 struct intel_encoder *intel_encoder;
5064 uint32_t dpll;
5065 int factor, pixel_multiplier, num_connectors = 0;
5066 bool is_lvds = false, is_sdvo = false, is_tv = false;
5067 bool is_dp = false, is_cpu_edp = false;
5068
5069 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5070 switch (intel_encoder->type) {
5071 case INTEL_OUTPUT_LVDS:
5072 is_lvds = true;
5073 break;
5074 case INTEL_OUTPUT_SDVO:
5075 case INTEL_OUTPUT_HDMI:
5076 is_sdvo = true;
5077 if (intel_encoder->needs_tv_clock)
5078 is_tv = true;
5079 break;
5080 case INTEL_OUTPUT_TVOUT:
5081 is_tv = true;
5082 break;
5083 case INTEL_OUTPUT_DISPLAYPORT:
5084 is_dp = true;
5085 break;
5086 case INTEL_OUTPUT_EDP:
5087 is_dp = true;
5088 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5089 is_cpu_edp = true;
5090 break;
5091 }
5092
5093 num_connectors++;
5094 }
5095
5096 /* Enable autotuning of the PLL clock (if permissible) */
5097 factor = 21;
5098 if (is_lvds) {
5099 if ((intel_panel_use_ssc(dev_priv) &&
5100 dev_priv->lvds_ssc_freq == 100) ||
5101 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5102 factor = 25;
5103 } else if (is_sdvo && is_tv)
5104 factor = 20;
5105
5106 if (clock->m < factor * clock->n)
5107 fp |= FP_CB_TUNE;
5108
5109 dpll = 0;
5110
5111 if (is_lvds)
5112 dpll |= DPLLB_MODE_LVDS;
5113 else
5114 dpll |= DPLLB_MODE_DAC_SERIAL;
5115 if (is_sdvo) {
5116 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5117 if (pixel_multiplier > 1) {
5118 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5119 }
5120 dpll |= DPLL_DVO_HIGH_SPEED;
5121 }
5122 if (is_dp && !is_cpu_edp)
5123 dpll |= DPLL_DVO_HIGH_SPEED;
5124
5125 /* compute bitmask from p1 value */
5126 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5127 /* also FPA1 */
5128 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5129
5130 switch (clock->p2) {
5131 case 5:
5132 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5133 break;
5134 case 7:
5135 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5136 break;
5137 case 10:
5138 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5139 break;
5140 case 14:
5141 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5142 break;
5143 }
5144
5145 if (is_sdvo && is_tv)
5146 dpll |= PLL_REF_INPUT_TVCLKINBC;
5147 else if (is_tv)
5148 /* XXX: just matching BIOS for now */
5149 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5150 dpll |= 3;
5151 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5152 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5153 else
5154 dpll |= PLL_REF_INPUT_DREFCLK;
5155
5156 return dpll;
5157 }
5158
5159 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5160 struct drm_display_mode *mode,
5161 struct drm_display_mode *adjusted_mode,
5162 int x, int y,
5163 struct drm_framebuffer *fb)
5164 {
5165 struct drm_device *dev = crtc->dev;
5166 struct drm_i915_private *dev_priv = dev->dev_private;
5167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5168 int pipe = intel_crtc->pipe;
5169 int plane = intel_crtc->plane;
5170 int num_connectors = 0;
5171 intel_clock_t clock, reduced_clock;
5172 u32 dpll, fp = 0, fp2 = 0;
5173 bool ok, has_reduced_clock = false;
5174 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5175 struct intel_encoder *encoder;
5176 u32 temp;
5177 int ret;
5178 bool dither;
5179
5180 for_each_encoder_on_crtc(dev, crtc, encoder) {
5181 switch (encoder->type) {
5182 case INTEL_OUTPUT_LVDS:
5183 is_lvds = true;
5184 break;
5185 case INTEL_OUTPUT_DISPLAYPORT:
5186 is_dp = true;
5187 break;
5188 case INTEL_OUTPUT_EDP:
5189 is_dp = true;
5190 if (!intel_encoder_is_pch_edp(&encoder->base))
5191 is_cpu_edp = true;
5192 break;
5193 }
5194
5195 num_connectors++;
5196 }
5197
5198 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5199 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5200
5201 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5202 &has_reduced_clock, &reduced_clock);
5203 if (!ok) {
5204 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5205 return -EINVAL;
5206 }
5207
5208 /* Ensure that the cursor is valid for the new mode before changing... */
5209 intel_crtc_update_cursor(crtc, true);
5210
5211 /* determine panel color depth */
5212 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5213 if (is_lvds && dev_priv->lvds_dither)
5214 dither = true;
5215
5216 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5217 if (has_reduced_clock)
5218 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5219 reduced_clock.m2;
5220
5221 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5222
5223 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5224 drm_mode_debug_printmodeline(mode);
5225
5226 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5227 if (!is_cpu_edp) {
5228 struct intel_pch_pll *pll;
5229
5230 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5231 if (pll == NULL) {
5232 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5233 pipe);
5234 return -EINVAL;
5235 }
5236 } else
5237 intel_put_pch_pll(intel_crtc);
5238
5239 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5240 * This is an exception to the general rule that mode_set doesn't turn
5241 * things on.
5242 */
5243 if (is_lvds) {
5244 temp = I915_READ(PCH_LVDS);
5245 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5246 if (HAS_PCH_CPT(dev)) {
5247 temp &= ~PORT_TRANS_SEL_MASK;
5248 temp |= PORT_TRANS_SEL_CPT(pipe);
5249 } else {
5250 if (pipe == 1)
5251 temp |= LVDS_PIPEB_SELECT;
5252 else
5253 temp &= ~LVDS_PIPEB_SELECT;
5254 }
5255
5256 /* set the corresponsding LVDS_BORDER bit */
5257 temp |= dev_priv->lvds_border_bits;
5258 /* Set the B0-B3 data pairs corresponding to whether we're going to
5259 * set the DPLLs for dual-channel mode or not.
5260 */
5261 if (clock.p2 == 7)
5262 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5263 else
5264 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5265
5266 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5267 * appropriately here, but we need to look more thoroughly into how
5268 * panels behave in the two modes.
5269 */
5270 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5271 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5272 temp |= LVDS_HSYNC_POLARITY;
5273 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5274 temp |= LVDS_VSYNC_POLARITY;
5275 I915_WRITE(PCH_LVDS, temp);
5276 }
5277
5278 if (is_dp && !is_cpu_edp) {
5279 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5280 } else {
5281 /* For non-DP output, clear any trans DP clock recovery setting.*/
5282 I915_WRITE(TRANSDATA_M1(pipe), 0);
5283 I915_WRITE(TRANSDATA_N1(pipe), 0);
5284 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5285 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5286 }
5287
5288 if (intel_crtc->pch_pll) {
5289 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5290
5291 /* Wait for the clocks to stabilize. */
5292 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5293 udelay(150);
5294
5295 /* The pixel multiplier can only be updated once the
5296 * DPLL is enabled and the clocks are stable.
5297 *
5298 * So write it again.
5299 */
5300 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5301 }
5302
5303 intel_crtc->lowfreq_avail = false;
5304 if (intel_crtc->pch_pll) {
5305 if (is_lvds && has_reduced_clock && i915_powersave) {
5306 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5307 intel_crtc->lowfreq_avail = true;
5308 } else {
5309 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5310 }
5311 }
5312
5313 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5314
5315 ironlake_set_m_n(crtc, mode, adjusted_mode);
5316
5317 if (is_cpu_edp)
5318 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5319
5320 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5321
5322 intel_wait_for_vblank(dev, pipe);
5323
5324 /* Set up the display plane register */
5325 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5326 POSTING_READ(DSPCNTR(plane));
5327
5328 ret = intel_pipe_set_base(crtc, x, y, fb);
5329
5330 intel_update_watermarks(dev);
5331
5332 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5333
5334 return ret;
5335 }
5336
5337 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5338 struct drm_display_mode *mode,
5339 struct drm_display_mode *adjusted_mode,
5340 int x, int y,
5341 struct drm_framebuffer *fb)
5342 {
5343 struct drm_device *dev = crtc->dev;
5344 struct drm_i915_private *dev_priv = dev->dev_private;
5345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5346 int pipe = intel_crtc->pipe;
5347 int plane = intel_crtc->plane;
5348 int num_connectors = 0;
5349 intel_clock_t clock, reduced_clock;
5350 u32 dpll = 0, fp = 0, fp2 = 0;
5351 bool ok, has_reduced_clock = false;
5352 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5353 struct intel_encoder *encoder;
5354 u32 temp;
5355 int ret;
5356 bool dither;
5357
5358 for_each_encoder_on_crtc(dev, crtc, encoder) {
5359 switch (encoder->type) {
5360 case INTEL_OUTPUT_LVDS:
5361 is_lvds = true;
5362 break;
5363 case INTEL_OUTPUT_DISPLAYPORT:
5364 is_dp = true;
5365 break;
5366 case INTEL_OUTPUT_EDP:
5367 is_dp = true;
5368 if (!intel_encoder_is_pch_edp(&encoder->base))
5369 is_cpu_edp = true;
5370 break;
5371 }
5372
5373 num_connectors++;
5374 }
5375
5376 if (is_cpu_edp)
5377 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5378 else
5379 intel_crtc->cpu_transcoder = pipe;
5380
5381 /* We are not sure yet this won't happen. */
5382 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5383 INTEL_PCH_TYPE(dev));
5384
5385 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5386 num_connectors, pipe_name(pipe));
5387
5388 WARN_ON(I915_READ(PIPECONF(pipe)) &
5389 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5390
5391 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5392
5393 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5394 return -EINVAL;
5395
5396 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5397 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5398 &has_reduced_clock,
5399 &reduced_clock);
5400 if (!ok) {
5401 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5402 return -EINVAL;
5403 }
5404 }
5405
5406 /* Ensure that the cursor is valid for the new mode before changing... */
5407 intel_crtc_update_cursor(crtc, true);
5408
5409 /* determine panel color depth */
5410 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5411 if (is_lvds && dev_priv->lvds_dither)
5412 dither = true;
5413
5414 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5415 drm_mode_debug_printmodeline(mode);
5416
5417 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5418 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5419 if (has_reduced_clock)
5420 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5421 reduced_clock.m2;
5422
5423 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5424 fp);
5425
5426 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5427 * own on pre-Haswell/LPT generation */
5428 if (!is_cpu_edp) {
5429 struct intel_pch_pll *pll;
5430
5431 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5432 if (pll == NULL) {
5433 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5434 pipe);
5435 return -EINVAL;
5436 }
5437 } else
5438 intel_put_pch_pll(intel_crtc);
5439
5440 /* The LVDS pin pair needs to be on before the DPLLs are
5441 * enabled. This is an exception to the general rule that
5442 * mode_set doesn't turn things on.
5443 */
5444 if (is_lvds) {
5445 temp = I915_READ(PCH_LVDS);
5446 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5447 if (HAS_PCH_CPT(dev)) {
5448 temp &= ~PORT_TRANS_SEL_MASK;
5449 temp |= PORT_TRANS_SEL_CPT(pipe);
5450 } else {
5451 if (pipe == 1)
5452 temp |= LVDS_PIPEB_SELECT;
5453 else
5454 temp &= ~LVDS_PIPEB_SELECT;
5455 }
5456
5457 /* set the corresponsding LVDS_BORDER bit */
5458 temp |= dev_priv->lvds_border_bits;
5459 /* Set the B0-B3 data pairs corresponding to whether
5460 * we're going to set the DPLLs for dual-channel mode or
5461 * not.
5462 */
5463 if (clock.p2 == 7)
5464 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5465 else
5466 temp &= ~(LVDS_B0B3_POWER_UP |
5467 LVDS_CLKB_POWER_UP);
5468
5469 /* It would be nice to set 24 vs 18-bit mode
5470 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5471 * look more thoroughly into how panels behave in the
5472 * two modes.
5473 */
5474 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5475 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5476 temp |= LVDS_HSYNC_POLARITY;
5477 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5478 temp |= LVDS_VSYNC_POLARITY;
5479 I915_WRITE(PCH_LVDS, temp);
5480 }
5481 }
5482
5483 if (is_dp && !is_cpu_edp) {
5484 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5485 } else {
5486 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5487 /* For non-DP output, clear any trans DP clock recovery
5488 * setting.*/
5489 I915_WRITE(TRANSDATA_M1(pipe), 0);
5490 I915_WRITE(TRANSDATA_N1(pipe), 0);
5491 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5492 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5493 }
5494 }
5495
5496 intel_crtc->lowfreq_avail = false;
5497 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5498 if (intel_crtc->pch_pll) {
5499 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5500
5501 /* Wait for the clocks to stabilize. */
5502 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5503 udelay(150);
5504
5505 /* The pixel multiplier can only be updated once the
5506 * DPLL is enabled and the clocks are stable.
5507 *
5508 * So write it again.
5509 */
5510 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5511 }
5512
5513 if (intel_crtc->pch_pll) {
5514 if (is_lvds && has_reduced_clock && i915_powersave) {
5515 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5516 intel_crtc->lowfreq_avail = true;
5517 } else {
5518 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5519 }
5520 }
5521 }
5522
5523 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5524
5525 if (!is_dp || is_cpu_edp)
5526 ironlake_set_m_n(crtc, mode, adjusted_mode);
5527
5528 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5529 if (is_cpu_edp)
5530 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5531
5532 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5533
5534 /* Set up the display plane register */
5535 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5536 POSTING_READ(DSPCNTR(plane));
5537
5538 ret = intel_pipe_set_base(crtc, x, y, fb);
5539
5540 intel_update_watermarks(dev);
5541
5542 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5543
5544 return ret;
5545 }
5546
5547 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5548 struct drm_display_mode *mode,
5549 struct drm_display_mode *adjusted_mode,
5550 int x, int y,
5551 struct drm_framebuffer *fb)
5552 {
5553 struct drm_device *dev = crtc->dev;
5554 struct drm_i915_private *dev_priv = dev->dev_private;
5555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5556 int pipe = intel_crtc->pipe;
5557 int ret;
5558
5559 drm_vblank_pre_modeset(dev, pipe);
5560
5561 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5562 x, y, fb);
5563 drm_vblank_post_modeset(dev, pipe);
5564
5565 return ret;
5566 }
5567
5568 static bool intel_eld_uptodate(struct drm_connector *connector,
5569 int reg_eldv, uint32_t bits_eldv,
5570 int reg_elda, uint32_t bits_elda,
5571 int reg_edid)
5572 {
5573 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5574 uint8_t *eld = connector->eld;
5575 uint32_t i;
5576
5577 i = I915_READ(reg_eldv);
5578 i &= bits_eldv;
5579
5580 if (!eld[0])
5581 return !i;
5582
5583 if (!i)
5584 return false;
5585
5586 i = I915_READ(reg_elda);
5587 i &= ~bits_elda;
5588 I915_WRITE(reg_elda, i);
5589
5590 for (i = 0; i < eld[2]; i++)
5591 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5592 return false;
5593
5594 return true;
5595 }
5596
5597 static void g4x_write_eld(struct drm_connector *connector,
5598 struct drm_crtc *crtc)
5599 {
5600 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5601 uint8_t *eld = connector->eld;
5602 uint32_t eldv;
5603 uint32_t len;
5604 uint32_t i;
5605
5606 i = I915_READ(G4X_AUD_VID_DID);
5607
5608 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5609 eldv = G4X_ELDV_DEVCL_DEVBLC;
5610 else
5611 eldv = G4X_ELDV_DEVCTG;
5612
5613 if (intel_eld_uptodate(connector,
5614 G4X_AUD_CNTL_ST, eldv,
5615 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5616 G4X_HDMIW_HDMIEDID))
5617 return;
5618
5619 i = I915_READ(G4X_AUD_CNTL_ST);
5620 i &= ~(eldv | G4X_ELD_ADDR);
5621 len = (i >> 9) & 0x1f; /* ELD buffer size */
5622 I915_WRITE(G4X_AUD_CNTL_ST, i);
5623
5624 if (!eld[0])
5625 return;
5626
5627 len = min_t(uint8_t, eld[2], len);
5628 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5629 for (i = 0; i < len; i++)
5630 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5631
5632 i = I915_READ(G4X_AUD_CNTL_ST);
5633 i |= eldv;
5634 I915_WRITE(G4X_AUD_CNTL_ST, i);
5635 }
5636
5637 static void haswell_write_eld(struct drm_connector *connector,
5638 struct drm_crtc *crtc)
5639 {
5640 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5641 uint8_t *eld = connector->eld;
5642 struct drm_device *dev = crtc->dev;
5643 uint32_t eldv;
5644 uint32_t i;
5645 int len;
5646 int pipe = to_intel_crtc(crtc)->pipe;
5647 int tmp;
5648
5649 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5650 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5651 int aud_config = HSW_AUD_CFG(pipe);
5652 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5653
5654
5655 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5656
5657 /* Audio output enable */
5658 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5659 tmp = I915_READ(aud_cntrl_st2);
5660 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5661 I915_WRITE(aud_cntrl_st2, tmp);
5662
5663 /* Wait for 1 vertical blank */
5664 intel_wait_for_vblank(dev, pipe);
5665
5666 /* Set ELD valid state */
5667 tmp = I915_READ(aud_cntrl_st2);
5668 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5669 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5670 I915_WRITE(aud_cntrl_st2, tmp);
5671 tmp = I915_READ(aud_cntrl_st2);
5672 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5673
5674 /* Enable HDMI mode */
5675 tmp = I915_READ(aud_config);
5676 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5677 /* clear N_programing_enable and N_value_index */
5678 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5679 I915_WRITE(aud_config, tmp);
5680
5681 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5682
5683 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5684
5685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5686 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5687 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5688 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5689 } else
5690 I915_WRITE(aud_config, 0);
5691
5692 if (intel_eld_uptodate(connector,
5693 aud_cntrl_st2, eldv,
5694 aud_cntl_st, IBX_ELD_ADDRESS,
5695 hdmiw_hdmiedid))
5696 return;
5697
5698 i = I915_READ(aud_cntrl_st2);
5699 i &= ~eldv;
5700 I915_WRITE(aud_cntrl_st2, i);
5701
5702 if (!eld[0])
5703 return;
5704
5705 i = I915_READ(aud_cntl_st);
5706 i &= ~IBX_ELD_ADDRESS;
5707 I915_WRITE(aud_cntl_st, i);
5708 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5709 DRM_DEBUG_DRIVER("port num:%d\n", i);
5710
5711 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5712 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5713 for (i = 0; i < len; i++)
5714 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5715
5716 i = I915_READ(aud_cntrl_st2);
5717 i |= eldv;
5718 I915_WRITE(aud_cntrl_st2, i);
5719
5720 }
5721
5722 static void ironlake_write_eld(struct drm_connector *connector,
5723 struct drm_crtc *crtc)
5724 {
5725 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5726 uint8_t *eld = connector->eld;
5727 uint32_t eldv;
5728 uint32_t i;
5729 int len;
5730 int hdmiw_hdmiedid;
5731 int aud_config;
5732 int aud_cntl_st;
5733 int aud_cntrl_st2;
5734 int pipe = to_intel_crtc(crtc)->pipe;
5735
5736 if (HAS_PCH_IBX(connector->dev)) {
5737 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5738 aud_config = IBX_AUD_CFG(pipe);
5739 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5740 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5741 } else {
5742 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5743 aud_config = CPT_AUD_CFG(pipe);
5744 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5745 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5746 }
5747
5748 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5749
5750 i = I915_READ(aud_cntl_st);
5751 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5752 if (!i) {
5753 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5754 /* operate blindly on all ports */
5755 eldv = IBX_ELD_VALIDB;
5756 eldv |= IBX_ELD_VALIDB << 4;
5757 eldv |= IBX_ELD_VALIDB << 8;
5758 } else {
5759 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5760 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5761 }
5762
5763 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5764 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5765 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5766 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5767 } else
5768 I915_WRITE(aud_config, 0);
5769
5770 if (intel_eld_uptodate(connector,
5771 aud_cntrl_st2, eldv,
5772 aud_cntl_st, IBX_ELD_ADDRESS,
5773 hdmiw_hdmiedid))
5774 return;
5775
5776 i = I915_READ(aud_cntrl_st2);
5777 i &= ~eldv;
5778 I915_WRITE(aud_cntrl_st2, i);
5779
5780 if (!eld[0])
5781 return;
5782
5783 i = I915_READ(aud_cntl_st);
5784 i &= ~IBX_ELD_ADDRESS;
5785 I915_WRITE(aud_cntl_st, i);
5786
5787 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5788 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5789 for (i = 0; i < len; i++)
5790 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5791
5792 i = I915_READ(aud_cntrl_st2);
5793 i |= eldv;
5794 I915_WRITE(aud_cntrl_st2, i);
5795 }
5796
5797 void intel_write_eld(struct drm_encoder *encoder,
5798 struct drm_display_mode *mode)
5799 {
5800 struct drm_crtc *crtc = encoder->crtc;
5801 struct drm_connector *connector;
5802 struct drm_device *dev = encoder->dev;
5803 struct drm_i915_private *dev_priv = dev->dev_private;
5804
5805 connector = drm_select_eld(encoder, mode);
5806 if (!connector)
5807 return;
5808
5809 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5810 connector->base.id,
5811 drm_get_connector_name(connector),
5812 connector->encoder->base.id,
5813 drm_get_encoder_name(connector->encoder));
5814
5815 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5816
5817 if (dev_priv->display.write_eld)
5818 dev_priv->display.write_eld(connector, crtc);
5819 }
5820
5821 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5822 void intel_crtc_load_lut(struct drm_crtc *crtc)
5823 {
5824 struct drm_device *dev = crtc->dev;
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5827 int palreg = PALETTE(intel_crtc->pipe);
5828 int i;
5829
5830 /* The clocks have to be on to load the palette. */
5831 if (!crtc->enabled || !intel_crtc->active)
5832 return;
5833
5834 /* use legacy palette for Ironlake */
5835 if (HAS_PCH_SPLIT(dev))
5836 palreg = LGC_PALETTE(intel_crtc->pipe);
5837
5838 for (i = 0; i < 256; i++) {
5839 I915_WRITE(palreg + 4 * i,
5840 (intel_crtc->lut_r[i] << 16) |
5841 (intel_crtc->lut_g[i] << 8) |
5842 intel_crtc->lut_b[i]);
5843 }
5844 }
5845
5846 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5847 {
5848 struct drm_device *dev = crtc->dev;
5849 struct drm_i915_private *dev_priv = dev->dev_private;
5850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5851 bool visible = base != 0;
5852 u32 cntl;
5853
5854 if (intel_crtc->cursor_visible == visible)
5855 return;
5856
5857 cntl = I915_READ(_CURACNTR);
5858 if (visible) {
5859 /* On these chipsets we can only modify the base whilst
5860 * the cursor is disabled.
5861 */
5862 I915_WRITE(_CURABASE, base);
5863
5864 cntl &= ~(CURSOR_FORMAT_MASK);
5865 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5866 cntl |= CURSOR_ENABLE |
5867 CURSOR_GAMMA_ENABLE |
5868 CURSOR_FORMAT_ARGB;
5869 } else
5870 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5871 I915_WRITE(_CURACNTR, cntl);
5872
5873 intel_crtc->cursor_visible = visible;
5874 }
5875
5876 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5877 {
5878 struct drm_device *dev = crtc->dev;
5879 struct drm_i915_private *dev_priv = dev->dev_private;
5880 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5881 int pipe = intel_crtc->pipe;
5882 bool visible = base != 0;
5883
5884 if (intel_crtc->cursor_visible != visible) {
5885 uint32_t cntl = I915_READ(CURCNTR(pipe));
5886 if (base) {
5887 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5888 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5889 cntl |= pipe << 28; /* Connect to correct pipe */
5890 } else {
5891 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5892 cntl |= CURSOR_MODE_DISABLE;
5893 }
5894 I915_WRITE(CURCNTR(pipe), cntl);
5895
5896 intel_crtc->cursor_visible = visible;
5897 }
5898 /* and commit changes on next vblank */
5899 I915_WRITE(CURBASE(pipe), base);
5900 }
5901
5902 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5903 {
5904 struct drm_device *dev = crtc->dev;
5905 struct drm_i915_private *dev_priv = dev->dev_private;
5906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5907 int pipe = intel_crtc->pipe;
5908 bool visible = base != 0;
5909
5910 if (intel_crtc->cursor_visible != visible) {
5911 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5912 if (base) {
5913 cntl &= ~CURSOR_MODE;
5914 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5915 } else {
5916 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5917 cntl |= CURSOR_MODE_DISABLE;
5918 }
5919 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5920
5921 intel_crtc->cursor_visible = visible;
5922 }
5923 /* and commit changes on next vblank */
5924 I915_WRITE(CURBASE_IVB(pipe), base);
5925 }
5926
5927 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5928 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5929 bool on)
5930 {
5931 struct drm_device *dev = crtc->dev;
5932 struct drm_i915_private *dev_priv = dev->dev_private;
5933 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5934 int pipe = intel_crtc->pipe;
5935 int x = intel_crtc->cursor_x;
5936 int y = intel_crtc->cursor_y;
5937 u32 base, pos;
5938 bool visible;
5939
5940 pos = 0;
5941
5942 if (on && crtc->enabled && crtc->fb) {
5943 base = intel_crtc->cursor_addr;
5944 if (x > (int) crtc->fb->width)
5945 base = 0;
5946
5947 if (y > (int) crtc->fb->height)
5948 base = 0;
5949 } else
5950 base = 0;
5951
5952 if (x < 0) {
5953 if (x + intel_crtc->cursor_width < 0)
5954 base = 0;
5955
5956 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5957 x = -x;
5958 }
5959 pos |= x << CURSOR_X_SHIFT;
5960
5961 if (y < 0) {
5962 if (y + intel_crtc->cursor_height < 0)
5963 base = 0;
5964
5965 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5966 y = -y;
5967 }
5968 pos |= y << CURSOR_Y_SHIFT;
5969
5970 visible = base != 0;
5971 if (!visible && !intel_crtc->cursor_visible)
5972 return;
5973
5974 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5975 I915_WRITE(CURPOS_IVB(pipe), pos);
5976 ivb_update_cursor(crtc, base);
5977 } else {
5978 I915_WRITE(CURPOS(pipe), pos);
5979 if (IS_845G(dev) || IS_I865G(dev))
5980 i845_update_cursor(crtc, base);
5981 else
5982 i9xx_update_cursor(crtc, base);
5983 }
5984 }
5985
5986 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5987 struct drm_file *file,
5988 uint32_t handle,
5989 uint32_t width, uint32_t height)
5990 {
5991 struct drm_device *dev = crtc->dev;
5992 struct drm_i915_private *dev_priv = dev->dev_private;
5993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5994 struct drm_i915_gem_object *obj;
5995 uint32_t addr;
5996 int ret;
5997
5998 /* if we want to turn off the cursor ignore width and height */
5999 if (!handle) {
6000 DRM_DEBUG_KMS("cursor off\n");
6001 addr = 0;
6002 obj = NULL;
6003 mutex_lock(&dev->struct_mutex);
6004 goto finish;
6005 }
6006
6007 /* Currently we only support 64x64 cursors */
6008 if (width != 64 || height != 64) {
6009 DRM_ERROR("we currently only support 64x64 cursors\n");
6010 return -EINVAL;
6011 }
6012
6013 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6014 if (&obj->base == NULL)
6015 return -ENOENT;
6016
6017 if (obj->base.size < width * height * 4) {
6018 DRM_ERROR("buffer is to small\n");
6019 ret = -ENOMEM;
6020 goto fail;
6021 }
6022
6023 /* we only need to pin inside GTT if cursor is non-phy */
6024 mutex_lock(&dev->struct_mutex);
6025 if (!dev_priv->info->cursor_needs_physical) {
6026 if (obj->tiling_mode) {
6027 DRM_ERROR("cursor cannot be tiled\n");
6028 ret = -EINVAL;
6029 goto fail_locked;
6030 }
6031
6032 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6033 if (ret) {
6034 DRM_ERROR("failed to move cursor bo into the GTT\n");
6035 goto fail_locked;
6036 }
6037
6038 ret = i915_gem_object_put_fence(obj);
6039 if (ret) {
6040 DRM_ERROR("failed to release fence for cursor");
6041 goto fail_unpin;
6042 }
6043
6044 addr = obj->gtt_offset;
6045 } else {
6046 int align = IS_I830(dev) ? 16 * 1024 : 256;
6047 ret = i915_gem_attach_phys_object(dev, obj,
6048 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6049 align);
6050 if (ret) {
6051 DRM_ERROR("failed to attach phys object\n");
6052 goto fail_locked;
6053 }
6054 addr = obj->phys_obj->handle->busaddr;
6055 }
6056
6057 if (IS_GEN2(dev))
6058 I915_WRITE(CURSIZE, (height << 12) | width);
6059
6060 finish:
6061 if (intel_crtc->cursor_bo) {
6062 if (dev_priv->info->cursor_needs_physical) {
6063 if (intel_crtc->cursor_bo != obj)
6064 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6065 } else
6066 i915_gem_object_unpin(intel_crtc->cursor_bo);
6067 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6068 }
6069
6070 mutex_unlock(&dev->struct_mutex);
6071
6072 intel_crtc->cursor_addr = addr;
6073 intel_crtc->cursor_bo = obj;
6074 intel_crtc->cursor_width = width;
6075 intel_crtc->cursor_height = height;
6076
6077 intel_crtc_update_cursor(crtc, true);
6078
6079 return 0;
6080 fail_unpin:
6081 i915_gem_object_unpin(obj);
6082 fail_locked:
6083 mutex_unlock(&dev->struct_mutex);
6084 fail:
6085 drm_gem_object_unreference_unlocked(&obj->base);
6086 return ret;
6087 }
6088
6089 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6090 {
6091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6092
6093 intel_crtc->cursor_x = x;
6094 intel_crtc->cursor_y = y;
6095
6096 intel_crtc_update_cursor(crtc, true);
6097
6098 return 0;
6099 }
6100
6101 /** Sets the color ramps on behalf of RandR */
6102 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6103 u16 blue, int regno)
6104 {
6105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6106
6107 intel_crtc->lut_r[regno] = red >> 8;
6108 intel_crtc->lut_g[regno] = green >> 8;
6109 intel_crtc->lut_b[regno] = blue >> 8;
6110 }
6111
6112 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6113 u16 *blue, int regno)
6114 {
6115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6116
6117 *red = intel_crtc->lut_r[regno] << 8;
6118 *green = intel_crtc->lut_g[regno] << 8;
6119 *blue = intel_crtc->lut_b[regno] << 8;
6120 }
6121
6122 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6123 u16 *blue, uint32_t start, uint32_t size)
6124 {
6125 int end = (start + size > 256) ? 256 : start + size, i;
6126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6127
6128 for (i = start; i < end; i++) {
6129 intel_crtc->lut_r[i] = red[i] >> 8;
6130 intel_crtc->lut_g[i] = green[i] >> 8;
6131 intel_crtc->lut_b[i] = blue[i] >> 8;
6132 }
6133
6134 intel_crtc_load_lut(crtc);
6135 }
6136
6137 /**
6138 * Get a pipe with a simple mode set on it for doing load-based monitor
6139 * detection.
6140 *
6141 * It will be up to the load-detect code to adjust the pipe as appropriate for
6142 * its requirements. The pipe will be connected to no other encoders.
6143 *
6144 * Currently this code will only succeed if there is a pipe with no encoders
6145 * configured for it. In the future, it could choose to temporarily disable
6146 * some outputs to free up a pipe for its use.
6147 *
6148 * \return crtc, or NULL if no pipes are available.
6149 */
6150
6151 /* VESA 640x480x72Hz mode to set on the pipe */
6152 static struct drm_display_mode load_detect_mode = {
6153 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6154 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6155 };
6156
6157 static struct drm_framebuffer *
6158 intel_framebuffer_create(struct drm_device *dev,
6159 struct drm_mode_fb_cmd2 *mode_cmd,
6160 struct drm_i915_gem_object *obj)
6161 {
6162 struct intel_framebuffer *intel_fb;
6163 int ret;
6164
6165 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6166 if (!intel_fb) {
6167 drm_gem_object_unreference_unlocked(&obj->base);
6168 return ERR_PTR(-ENOMEM);
6169 }
6170
6171 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6172 if (ret) {
6173 drm_gem_object_unreference_unlocked(&obj->base);
6174 kfree(intel_fb);
6175 return ERR_PTR(ret);
6176 }
6177
6178 return &intel_fb->base;
6179 }
6180
6181 static u32
6182 intel_framebuffer_pitch_for_width(int width, int bpp)
6183 {
6184 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6185 return ALIGN(pitch, 64);
6186 }
6187
6188 static u32
6189 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6190 {
6191 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6192 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6193 }
6194
6195 static struct drm_framebuffer *
6196 intel_framebuffer_create_for_mode(struct drm_device *dev,
6197 struct drm_display_mode *mode,
6198 int depth, int bpp)
6199 {
6200 struct drm_i915_gem_object *obj;
6201 struct drm_mode_fb_cmd2 mode_cmd;
6202
6203 obj = i915_gem_alloc_object(dev,
6204 intel_framebuffer_size_for_mode(mode, bpp));
6205 if (obj == NULL)
6206 return ERR_PTR(-ENOMEM);
6207
6208 mode_cmd.width = mode->hdisplay;
6209 mode_cmd.height = mode->vdisplay;
6210 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6211 bpp);
6212 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6213
6214 return intel_framebuffer_create(dev, &mode_cmd, obj);
6215 }
6216
6217 static struct drm_framebuffer *
6218 mode_fits_in_fbdev(struct drm_device *dev,
6219 struct drm_display_mode *mode)
6220 {
6221 struct drm_i915_private *dev_priv = dev->dev_private;
6222 struct drm_i915_gem_object *obj;
6223 struct drm_framebuffer *fb;
6224
6225 if (dev_priv->fbdev == NULL)
6226 return NULL;
6227
6228 obj = dev_priv->fbdev->ifb.obj;
6229 if (obj == NULL)
6230 return NULL;
6231
6232 fb = &dev_priv->fbdev->ifb.base;
6233 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6234 fb->bits_per_pixel))
6235 return NULL;
6236
6237 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6238 return NULL;
6239
6240 return fb;
6241 }
6242
6243 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6244 struct drm_display_mode *mode,
6245 struct intel_load_detect_pipe *old)
6246 {
6247 struct intel_crtc *intel_crtc;
6248 struct intel_encoder *intel_encoder =
6249 intel_attached_encoder(connector);
6250 struct drm_crtc *possible_crtc;
6251 struct drm_encoder *encoder = &intel_encoder->base;
6252 struct drm_crtc *crtc = NULL;
6253 struct drm_device *dev = encoder->dev;
6254 struct drm_framebuffer *fb;
6255 int i = -1;
6256
6257 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6258 connector->base.id, drm_get_connector_name(connector),
6259 encoder->base.id, drm_get_encoder_name(encoder));
6260
6261 /*
6262 * Algorithm gets a little messy:
6263 *
6264 * - if the connector already has an assigned crtc, use it (but make
6265 * sure it's on first)
6266 *
6267 * - try to find the first unused crtc that can drive this connector,
6268 * and use that if we find one
6269 */
6270
6271 /* See if we already have a CRTC for this connector */
6272 if (encoder->crtc) {
6273 crtc = encoder->crtc;
6274
6275 old->dpms_mode = connector->dpms;
6276 old->load_detect_temp = false;
6277
6278 /* Make sure the crtc and connector are running */
6279 if (connector->dpms != DRM_MODE_DPMS_ON)
6280 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6281
6282 return true;
6283 }
6284
6285 /* Find an unused one (if possible) */
6286 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6287 i++;
6288 if (!(encoder->possible_crtcs & (1 << i)))
6289 continue;
6290 if (!possible_crtc->enabled) {
6291 crtc = possible_crtc;
6292 break;
6293 }
6294 }
6295
6296 /*
6297 * If we didn't find an unused CRTC, don't use any.
6298 */
6299 if (!crtc) {
6300 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6301 return false;
6302 }
6303
6304 intel_encoder->new_crtc = to_intel_crtc(crtc);
6305 to_intel_connector(connector)->new_encoder = intel_encoder;
6306
6307 intel_crtc = to_intel_crtc(crtc);
6308 old->dpms_mode = connector->dpms;
6309 old->load_detect_temp = true;
6310 old->release_fb = NULL;
6311
6312 if (!mode)
6313 mode = &load_detect_mode;
6314
6315 /* We need a framebuffer large enough to accommodate all accesses
6316 * that the plane may generate whilst we perform load detection.
6317 * We can not rely on the fbcon either being present (we get called
6318 * during its initialisation to detect all boot displays, or it may
6319 * not even exist) or that it is large enough to satisfy the
6320 * requested mode.
6321 */
6322 fb = mode_fits_in_fbdev(dev, mode);
6323 if (fb == NULL) {
6324 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6325 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6326 old->release_fb = fb;
6327 } else
6328 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6329 if (IS_ERR(fb)) {
6330 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6331 goto fail;
6332 }
6333
6334 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6335 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6336 if (old->release_fb)
6337 old->release_fb->funcs->destroy(old->release_fb);
6338 goto fail;
6339 }
6340
6341 /* let the connector get through one full cycle before testing */
6342 intel_wait_for_vblank(dev, intel_crtc->pipe);
6343
6344 return true;
6345 fail:
6346 connector->encoder = NULL;
6347 encoder->crtc = NULL;
6348 return false;
6349 }
6350
6351 void intel_release_load_detect_pipe(struct drm_connector *connector,
6352 struct intel_load_detect_pipe *old)
6353 {
6354 struct intel_encoder *intel_encoder =
6355 intel_attached_encoder(connector);
6356 struct drm_encoder *encoder = &intel_encoder->base;
6357
6358 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6359 connector->base.id, drm_get_connector_name(connector),
6360 encoder->base.id, drm_get_encoder_name(encoder));
6361
6362 if (old->load_detect_temp) {
6363 struct drm_crtc *crtc = encoder->crtc;
6364
6365 to_intel_connector(connector)->new_encoder = NULL;
6366 intel_encoder->new_crtc = NULL;
6367 intel_set_mode(crtc, NULL, 0, 0, NULL);
6368
6369 if (old->release_fb)
6370 old->release_fb->funcs->destroy(old->release_fb);
6371
6372 return;
6373 }
6374
6375 /* Switch crtc and encoder back off if necessary */
6376 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6377 connector->funcs->dpms(connector, old->dpms_mode);
6378 }
6379
6380 /* Returns the clock of the currently programmed mode of the given pipe. */
6381 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6382 {
6383 struct drm_i915_private *dev_priv = dev->dev_private;
6384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6385 int pipe = intel_crtc->pipe;
6386 u32 dpll = I915_READ(DPLL(pipe));
6387 u32 fp;
6388 intel_clock_t clock;
6389
6390 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6391 fp = I915_READ(FP0(pipe));
6392 else
6393 fp = I915_READ(FP1(pipe));
6394
6395 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6396 if (IS_PINEVIEW(dev)) {
6397 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6398 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6399 } else {
6400 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6401 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6402 }
6403
6404 if (!IS_GEN2(dev)) {
6405 if (IS_PINEVIEW(dev))
6406 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6407 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6408 else
6409 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6410 DPLL_FPA01_P1_POST_DIV_SHIFT);
6411
6412 switch (dpll & DPLL_MODE_MASK) {
6413 case DPLLB_MODE_DAC_SERIAL:
6414 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6415 5 : 10;
6416 break;
6417 case DPLLB_MODE_LVDS:
6418 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6419 7 : 14;
6420 break;
6421 default:
6422 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6423 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6424 return 0;
6425 }
6426
6427 /* XXX: Handle the 100Mhz refclk */
6428 intel_clock(dev, 96000, &clock);
6429 } else {
6430 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6431
6432 if (is_lvds) {
6433 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6434 DPLL_FPA01_P1_POST_DIV_SHIFT);
6435 clock.p2 = 14;
6436
6437 if ((dpll & PLL_REF_INPUT_MASK) ==
6438 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6439 /* XXX: might not be 66MHz */
6440 intel_clock(dev, 66000, &clock);
6441 } else
6442 intel_clock(dev, 48000, &clock);
6443 } else {
6444 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6445 clock.p1 = 2;
6446 else {
6447 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6448 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6449 }
6450 if (dpll & PLL_P2_DIVIDE_BY_4)
6451 clock.p2 = 4;
6452 else
6453 clock.p2 = 2;
6454
6455 intel_clock(dev, 48000, &clock);
6456 }
6457 }
6458
6459 /* XXX: It would be nice to validate the clocks, but we can't reuse
6460 * i830PllIsValid() because it relies on the xf86_config connector
6461 * configuration being accurate, which it isn't necessarily.
6462 */
6463
6464 return clock.dot;
6465 }
6466
6467 /** Returns the currently programmed mode of the given pipe. */
6468 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6469 struct drm_crtc *crtc)
6470 {
6471 struct drm_i915_private *dev_priv = dev->dev_private;
6472 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6473 int pipe = intel_crtc->pipe;
6474 struct drm_display_mode *mode;
6475 int htot = I915_READ(HTOTAL(pipe));
6476 int hsync = I915_READ(HSYNC(pipe));
6477 int vtot = I915_READ(VTOTAL(pipe));
6478 int vsync = I915_READ(VSYNC(pipe));
6479
6480 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6481 if (!mode)
6482 return NULL;
6483
6484 mode->clock = intel_crtc_clock_get(dev, crtc);
6485 mode->hdisplay = (htot & 0xffff) + 1;
6486 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6487 mode->hsync_start = (hsync & 0xffff) + 1;
6488 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6489 mode->vdisplay = (vtot & 0xffff) + 1;
6490 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6491 mode->vsync_start = (vsync & 0xffff) + 1;
6492 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6493
6494 drm_mode_set_name(mode);
6495
6496 return mode;
6497 }
6498
6499 static void intel_increase_pllclock(struct drm_crtc *crtc)
6500 {
6501 struct drm_device *dev = crtc->dev;
6502 drm_i915_private_t *dev_priv = dev->dev_private;
6503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6504 int pipe = intel_crtc->pipe;
6505 int dpll_reg = DPLL(pipe);
6506 int dpll;
6507
6508 if (HAS_PCH_SPLIT(dev))
6509 return;
6510
6511 if (!dev_priv->lvds_downclock_avail)
6512 return;
6513
6514 dpll = I915_READ(dpll_reg);
6515 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6516 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6517
6518 assert_panel_unlocked(dev_priv, pipe);
6519
6520 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6521 I915_WRITE(dpll_reg, dpll);
6522 intel_wait_for_vblank(dev, pipe);
6523
6524 dpll = I915_READ(dpll_reg);
6525 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6526 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6527 }
6528 }
6529
6530 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6531 {
6532 struct drm_device *dev = crtc->dev;
6533 drm_i915_private_t *dev_priv = dev->dev_private;
6534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6535
6536 if (HAS_PCH_SPLIT(dev))
6537 return;
6538
6539 if (!dev_priv->lvds_downclock_avail)
6540 return;
6541
6542 /*
6543 * Since this is called by a timer, we should never get here in
6544 * the manual case.
6545 */
6546 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6547 int pipe = intel_crtc->pipe;
6548 int dpll_reg = DPLL(pipe);
6549 int dpll;
6550
6551 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6552
6553 assert_panel_unlocked(dev_priv, pipe);
6554
6555 dpll = I915_READ(dpll_reg);
6556 dpll |= DISPLAY_RATE_SELECT_FPA1;
6557 I915_WRITE(dpll_reg, dpll);
6558 intel_wait_for_vblank(dev, pipe);
6559 dpll = I915_READ(dpll_reg);
6560 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6561 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6562 }
6563
6564 }
6565
6566 void intel_mark_busy(struct drm_device *dev)
6567 {
6568 i915_update_gfx_val(dev->dev_private);
6569 }
6570
6571 void intel_mark_idle(struct drm_device *dev)
6572 {
6573 }
6574
6575 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6576 {
6577 struct drm_device *dev = obj->base.dev;
6578 struct drm_crtc *crtc;
6579
6580 if (!i915_powersave)
6581 return;
6582
6583 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6584 if (!crtc->fb)
6585 continue;
6586
6587 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6588 intel_increase_pllclock(crtc);
6589 }
6590 }
6591
6592 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6593 {
6594 struct drm_device *dev = obj->base.dev;
6595 struct drm_crtc *crtc;
6596
6597 if (!i915_powersave)
6598 return;
6599
6600 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6601 if (!crtc->fb)
6602 continue;
6603
6604 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6605 intel_decrease_pllclock(crtc);
6606 }
6607 }
6608
6609 static void intel_crtc_destroy(struct drm_crtc *crtc)
6610 {
6611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6612 struct drm_device *dev = crtc->dev;
6613 struct intel_unpin_work *work;
6614 unsigned long flags;
6615
6616 spin_lock_irqsave(&dev->event_lock, flags);
6617 work = intel_crtc->unpin_work;
6618 intel_crtc->unpin_work = NULL;
6619 spin_unlock_irqrestore(&dev->event_lock, flags);
6620
6621 if (work) {
6622 cancel_work_sync(&work->work);
6623 kfree(work);
6624 }
6625
6626 drm_crtc_cleanup(crtc);
6627
6628 kfree(intel_crtc);
6629 }
6630
6631 static void intel_unpin_work_fn(struct work_struct *__work)
6632 {
6633 struct intel_unpin_work *work =
6634 container_of(__work, struct intel_unpin_work, work);
6635
6636 mutex_lock(&work->dev->struct_mutex);
6637 intel_unpin_fb_obj(work->old_fb_obj);
6638 drm_gem_object_unreference(&work->pending_flip_obj->base);
6639 drm_gem_object_unreference(&work->old_fb_obj->base);
6640
6641 intel_update_fbc(work->dev);
6642 mutex_unlock(&work->dev->struct_mutex);
6643 kfree(work);
6644 }
6645
6646 static void do_intel_finish_page_flip(struct drm_device *dev,
6647 struct drm_crtc *crtc)
6648 {
6649 drm_i915_private_t *dev_priv = dev->dev_private;
6650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6651 struct intel_unpin_work *work;
6652 struct drm_i915_gem_object *obj;
6653 struct drm_pending_vblank_event *e;
6654 struct timeval tvbl;
6655 unsigned long flags;
6656
6657 /* Ignore early vblank irqs */
6658 if (intel_crtc == NULL)
6659 return;
6660
6661 spin_lock_irqsave(&dev->event_lock, flags);
6662 work = intel_crtc->unpin_work;
6663 if (work == NULL || !work->pending) {
6664 spin_unlock_irqrestore(&dev->event_lock, flags);
6665 return;
6666 }
6667
6668 intel_crtc->unpin_work = NULL;
6669
6670 if (work->event) {
6671 e = work->event;
6672 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6673
6674 e->event.tv_sec = tvbl.tv_sec;
6675 e->event.tv_usec = tvbl.tv_usec;
6676
6677 list_add_tail(&e->base.link,
6678 &e->base.file_priv->event_list);
6679 wake_up_interruptible(&e->base.file_priv->event_wait);
6680 }
6681
6682 drm_vblank_put(dev, intel_crtc->pipe);
6683
6684 spin_unlock_irqrestore(&dev->event_lock, flags);
6685
6686 obj = work->old_fb_obj;
6687
6688 atomic_clear_mask(1 << intel_crtc->plane,
6689 &obj->pending_flip.counter);
6690
6691 wake_up(&dev_priv->pending_flip_queue);
6692 schedule_work(&work->work);
6693
6694 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6695 }
6696
6697 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6698 {
6699 drm_i915_private_t *dev_priv = dev->dev_private;
6700 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6701
6702 do_intel_finish_page_flip(dev, crtc);
6703 }
6704
6705 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6706 {
6707 drm_i915_private_t *dev_priv = dev->dev_private;
6708 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6709
6710 do_intel_finish_page_flip(dev, crtc);
6711 }
6712
6713 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6714 {
6715 drm_i915_private_t *dev_priv = dev->dev_private;
6716 struct intel_crtc *intel_crtc =
6717 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6718 unsigned long flags;
6719
6720 spin_lock_irqsave(&dev->event_lock, flags);
6721 if (intel_crtc->unpin_work) {
6722 if ((++intel_crtc->unpin_work->pending) > 1)
6723 DRM_ERROR("Prepared flip multiple times\n");
6724 } else {
6725 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6726 }
6727 spin_unlock_irqrestore(&dev->event_lock, flags);
6728 }
6729
6730 static int intel_gen2_queue_flip(struct drm_device *dev,
6731 struct drm_crtc *crtc,
6732 struct drm_framebuffer *fb,
6733 struct drm_i915_gem_object *obj)
6734 {
6735 struct drm_i915_private *dev_priv = dev->dev_private;
6736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737 u32 flip_mask;
6738 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6739 int ret;
6740
6741 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6742 if (ret)
6743 goto err;
6744
6745 ret = intel_ring_begin(ring, 6);
6746 if (ret)
6747 goto err_unpin;
6748
6749 /* Can't queue multiple flips, so wait for the previous
6750 * one to finish before executing the next.
6751 */
6752 if (intel_crtc->plane)
6753 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6754 else
6755 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6756 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6757 intel_ring_emit(ring, MI_NOOP);
6758 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6759 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6760 intel_ring_emit(ring, fb->pitches[0]);
6761 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6762 intel_ring_emit(ring, 0); /* aux display base address, unused */
6763 intel_ring_advance(ring);
6764 return 0;
6765
6766 err_unpin:
6767 intel_unpin_fb_obj(obj);
6768 err:
6769 return ret;
6770 }
6771
6772 static int intel_gen3_queue_flip(struct drm_device *dev,
6773 struct drm_crtc *crtc,
6774 struct drm_framebuffer *fb,
6775 struct drm_i915_gem_object *obj)
6776 {
6777 struct drm_i915_private *dev_priv = dev->dev_private;
6778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6779 u32 flip_mask;
6780 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6781 int ret;
6782
6783 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6784 if (ret)
6785 goto err;
6786
6787 ret = intel_ring_begin(ring, 6);
6788 if (ret)
6789 goto err_unpin;
6790
6791 if (intel_crtc->plane)
6792 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6793 else
6794 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6795 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6796 intel_ring_emit(ring, MI_NOOP);
6797 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6798 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6799 intel_ring_emit(ring, fb->pitches[0]);
6800 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6801 intel_ring_emit(ring, MI_NOOP);
6802
6803 intel_ring_advance(ring);
6804 return 0;
6805
6806 err_unpin:
6807 intel_unpin_fb_obj(obj);
6808 err:
6809 return ret;
6810 }
6811
6812 static int intel_gen4_queue_flip(struct drm_device *dev,
6813 struct drm_crtc *crtc,
6814 struct drm_framebuffer *fb,
6815 struct drm_i915_gem_object *obj)
6816 {
6817 struct drm_i915_private *dev_priv = dev->dev_private;
6818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6819 uint32_t pf, pipesrc;
6820 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6821 int ret;
6822
6823 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6824 if (ret)
6825 goto err;
6826
6827 ret = intel_ring_begin(ring, 4);
6828 if (ret)
6829 goto err_unpin;
6830
6831 /* i965+ uses the linear or tiled offsets from the
6832 * Display Registers (which do not change across a page-flip)
6833 * so we need only reprogram the base address.
6834 */
6835 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6836 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6837 intel_ring_emit(ring, fb->pitches[0]);
6838 intel_ring_emit(ring,
6839 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6840 obj->tiling_mode);
6841
6842 /* XXX Enabling the panel-fitter across page-flip is so far
6843 * untested on non-native modes, so ignore it for now.
6844 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6845 */
6846 pf = 0;
6847 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6848 intel_ring_emit(ring, pf | pipesrc);
6849 intel_ring_advance(ring);
6850 return 0;
6851
6852 err_unpin:
6853 intel_unpin_fb_obj(obj);
6854 err:
6855 return ret;
6856 }
6857
6858 static int intel_gen6_queue_flip(struct drm_device *dev,
6859 struct drm_crtc *crtc,
6860 struct drm_framebuffer *fb,
6861 struct drm_i915_gem_object *obj)
6862 {
6863 struct drm_i915_private *dev_priv = dev->dev_private;
6864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6865 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6866 uint32_t pf, pipesrc;
6867 int ret;
6868
6869 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6870 if (ret)
6871 goto err;
6872
6873 ret = intel_ring_begin(ring, 4);
6874 if (ret)
6875 goto err_unpin;
6876
6877 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6878 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6879 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6880 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6881
6882 /* Contrary to the suggestions in the documentation,
6883 * "Enable Panel Fitter" does not seem to be required when page
6884 * flipping with a non-native mode, and worse causes a normal
6885 * modeset to fail.
6886 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6887 */
6888 pf = 0;
6889 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6890 intel_ring_emit(ring, pf | pipesrc);
6891 intel_ring_advance(ring);
6892 return 0;
6893
6894 err_unpin:
6895 intel_unpin_fb_obj(obj);
6896 err:
6897 return ret;
6898 }
6899
6900 /*
6901 * On gen7 we currently use the blit ring because (in early silicon at least)
6902 * the render ring doesn't give us interrpts for page flip completion, which
6903 * means clients will hang after the first flip is queued. Fortunately the
6904 * blit ring generates interrupts properly, so use it instead.
6905 */
6906 static int intel_gen7_queue_flip(struct drm_device *dev,
6907 struct drm_crtc *crtc,
6908 struct drm_framebuffer *fb,
6909 struct drm_i915_gem_object *obj)
6910 {
6911 struct drm_i915_private *dev_priv = dev->dev_private;
6912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6913 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6914 uint32_t plane_bit = 0;
6915 int ret;
6916
6917 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6918 if (ret)
6919 goto err;
6920
6921 switch(intel_crtc->plane) {
6922 case PLANE_A:
6923 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6924 break;
6925 case PLANE_B:
6926 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6927 break;
6928 case PLANE_C:
6929 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6930 break;
6931 default:
6932 WARN_ONCE(1, "unknown plane in flip command\n");
6933 ret = -ENODEV;
6934 goto err_unpin;
6935 }
6936
6937 ret = intel_ring_begin(ring, 4);
6938 if (ret)
6939 goto err_unpin;
6940
6941 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6942 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6943 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6944 intel_ring_emit(ring, (MI_NOOP));
6945 intel_ring_advance(ring);
6946 return 0;
6947
6948 err_unpin:
6949 intel_unpin_fb_obj(obj);
6950 err:
6951 return ret;
6952 }
6953
6954 static int intel_default_queue_flip(struct drm_device *dev,
6955 struct drm_crtc *crtc,
6956 struct drm_framebuffer *fb,
6957 struct drm_i915_gem_object *obj)
6958 {
6959 return -ENODEV;
6960 }
6961
6962 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6963 struct drm_framebuffer *fb,
6964 struct drm_pending_vblank_event *event)
6965 {
6966 struct drm_device *dev = crtc->dev;
6967 struct drm_i915_private *dev_priv = dev->dev_private;
6968 struct intel_framebuffer *intel_fb;
6969 struct drm_i915_gem_object *obj;
6970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6971 struct intel_unpin_work *work;
6972 unsigned long flags;
6973 int ret;
6974
6975 /* Can't change pixel format via MI display flips. */
6976 if (fb->pixel_format != crtc->fb->pixel_format)
6977 return -EINVAL;
6978
6979 /*
6980 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6981 * Note that pitch changes could also affect these register.
6982 */
6983 if (INTEL_INFO(dev)->gen > 3 &&
6984 (fb->offsets[0] != crtc->fb->offsets[0] ||
6985 fb->pitches[0] != crtc->fb->pitches[0]))
6986 return -EINVAL;
6987
6988 work = kzalloc(sizeof *work, GFP_KERNEL);
6989 if (work == NULL)
6990 return -ENOMEM;
6991
6992 work->event = event;
6993 work->dev = crtc->dev;
6994 intel_fb = to_intel_framebuffer(crtc->fb);
6995 work->old_fb_obj = intel_fb->obj;
6996 INIT_WORK(&work->work, intel_unpin_work_fn);
6997
6998 ret = drm_vblank_get(dev, intel_crtc->pipe);
6999 if (ret)
7000 goto free_work;
7001
7002 /* We borrow the event spin lock for protecting unpin_work */
7003 spin_lock_irqsave(&dev->event_lock, flags);
7004 if (intel_crtc->unpin_work) {
7005 spin_unlock_irqrestore(&dev->event_lock, flags);
7006 kfree(work);
7007 drm_vblank_put(dev, intel_crtc->pipe);
7008
7009 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7010 return -EBUSY;
7011 }
7012 intel_crtc->unpin_work = work;
7013 spin_unlock_irqrestore(&dev->event_lock, flags);
7014
7015 intel_fb = to_intel_framebuffer(fb);
7016 obj = intel_fb->obj;
7017
7018 ret = i915_mutex_lock_interruptible(dev);
7019 if (ret)
7020 goto cleanup;
7021
7022 /* Reference the objects for the scheduled work. */
7023 drm_gem_object_reference(&work->old_fb_obj->base);
7024 drm_gem_object_reference(&obj->base);
7025
7026 crtc->fb = fb;
7027
7028 work->pending_flip_obj = obj;
7029
7030 work->enable_stall_check = true;
7031
7032 /* Block clients from rendering to the new back buffer until
7033 * the flip occurs and the object is no longer visible.
7034 */
7035 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7036
7037 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7038 if (ret)
7039 goto cleanup_pending;
7040
7041 intel_disable_fbc(dev);
7042 intel_mark_fb_busy(obj);
7043 mutex_unlock(&dev->struct_mutex);
7044
7045 trace_i915_flip_request(intel_crtc->plane, obj);
7046
7047 return 0;
7048
7049 cleanup_pending:
7050 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7051 drm_gem_object_unreference(&work->old_fb_obj->base);
7052 drm_gem_object_unreference(&obj->base);
7053 mutex_unlock(&dev->struct_mutex);
7054
7055 cleanup:
7056 spin_lock_irqsave(&dev->event_lock, flags);
7057 intel_crtc->unpin_work = NULL;
7058 spin_unlock_irqrestore(&dev->event_lock, flags);
7059
7060 drm_vblank_put(dev, intel_crtc->pipe);
7061 free_work:
7062 kfree(work);
7063
7064 return ret;
7065 }
7066
7067 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7068 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7069 .load_lut = intel_crtc_load_lut,
7070 .disable = intel_crtc_noop,
7071 };
7072
7073 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7074 {
7075 struct intel_encoder *other_encoder;
7076 struct drm_crtc *crtc = &encoder->new_crtc->base;
7077
7078 if (WARN_ON(!crtc))
7079 return false;
7080
7081 list_for_each_entry(other_encoder,
7082 &crtc->dev->mode_config.encoder_list,
7083 base.head) {
7084
7085 if (&other_encoder->new_crtc->base != crtc ||
7086 encoder == other_encoder)
7087 continue;
7088 else
7089 return true;
7090 }
7091
7092 return false;
7093 }
7094
7095 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7096 struct drm_crtc *crtc)
7097 {
7098 struct drm_device *dev;
7099 struct drm_crtc *tmp;
7100 int crtc_mask = 1;
7101
7102 WARN(!crtc, "checking null crtc?\n");
7103
7104 dev = crtc->dev;
7105
7106 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7107 if (tmp == crtc)
7108 break;
7109 crtc_mask <<= 1;
7110 }
7111
7112 if (encoder->possible_crtcs & crtc_mask)
7113 return true;
7114 return false;
7115 }
7116
7117 /**
7118 * intel_modeset_update_staged_output_state
7119 *
7120 * Updates the staged output configuration state, e.g. after we've read out the
7121 * current hw state.
7122 */
7123 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7124 {
7125 struct intel_encoder *encoder;
7126 struct intel_connector *connector;
7127
7128 list_for_each_entry(connector, &dev->mode_config.connector_list,
7129 base.head) {
7130 connector->new_encoder =
7131 to_intel_encoder(connector->base.encoder);
7132 }
7133
7134 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7135 base.head) {
7136 encoder->new_crtc =
7137 to_intel_crtc(encoder->base.crtc);
7138 }
7139 }
7140
7141 /**
7142 * intel_modeset_commit_output_state
7143 *
7144 * This function copies the stage display pipe configuration to the real one.
7145 */
7146 static void intel_modeset_commit_output_state(struct drm_device *dev)
7147 {
7148 struct intel_encoder *encoder;
7149 struct intel_connector *connector;
7150
7151 list_for_each_entry(connector, &dev->mode_config.connector_list,
7152 base.head) {
7153 connector->base.encoder = &connector->new_encoder->base;
7154 }
7155
7156 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7157 base.head) {
7158 encoder->base.crtc = &encoder->new_crtc->base;
7159 }
7160 }
7161
7162 static struct drm_display_mode *
7163 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7164 struct drm_display_mode *mode)
7165 {
7166 struct drm_device *dev = crtc->dev;
7167 struct drm_display_mode *adjusted_mode;
7168 struct drm_encoder_helper_funcs *encoder_funcs;
7169 struct intel_encoder *encoder;
7170
7171 adjusted_mode = drm_mode_duplicate(dev, mode);
7172 if (!adjusted_mode)
7173 return ERR_PTR(-ENOMEM);
7174
7175 /* Pass our mode to the connectors and the CRTC to give them a chance to
7176 * adjust it according to limitations or connector properties, and also
7177 * a chance to reject the mode entirely.
7178 */
7179 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7180 base.head) {
7181
7182 if (&encoder->new_crtc->base != crtc)
7183 continue;
7184 encoder_funcs = encoder->base.helper_private;
7185 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7186 adjusted_mode))) {
7187 DRM_DEBUG_KMS("Encoder fixup failed\n");
7188 goto fail;
7189 }
7190 }
7191
7192 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7193 DRM_DEBUG_KMS("CRTC fixup failed\n");
7194 goto fail;
7195 }
7196 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7197
7198 return adjusted_mode;
7199 fail:
7200 drm_mode_destroy(dev, adjusted_mode);
7201 return ERR_PTR(-EINVAL);
7202 }
7203
7204 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7205 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7206 static void
7207 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7208 unsigned *prepare_pipes, unsigned *disable_pipes)
7209 {
7210 struct intel_crtc *intel_crtc;
7211 struct drm_device *dev = crtc->dev;
7212 struct intel_encoder *encoder;
7213 struct intel_connector *connector;
7214 struct drm_crtc *tmp_crtc;
7215
7216 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7217
7218 /* Check which crtcs have changed outputs connected to them, these need
7219 * to be part of the prepare_pipes mask. We don't (yet) support global
7220 * modeset across multiple crtcs, so modeset_pipes will only have one
7221 * bit set at most. */
7222 list_for_each_entry(connector, &dev->mode_config.connector_list,
7223 base.head) {
7224 if (connector->base.encoder == &connector->new_encoder->base)
7225 continue;
7226
7227 if (connector->base.encoder) {
7228 tmp_crtc = connector->base.encoder->crtc;
7229
7230 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7231 }
7232
7233 if (connector->new_encoder)
7234 *prepare_pipes |=
7235 1 << connector->new_encoder->new_crtc->pipe;
7236 }
7237
7238 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7239 base.head) {
7240 if (encoder->base.crtc == &encoder->new_crtc->base)
7241 continue;
7242
7243 if (encoder->base.crtc) {
7244 tmp_crtc = encoder->base.crtc;
7245
7246 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7247 }
7248
7249 if (encoder->new_crtc)
7250 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7251 }
7252
7253 /* Check for any pipes that will be fully disabled ... */
7254 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7255 base.head) {
7256 bool used = false;
7257
7258 /* Don't try to disable disabled crtcs. */
7259 if (!intel_crtc->base.enabled)
7260 continue;
7261
7262 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7263 base.head) {
7264 if (encoder->new_crtc == intel_crtc)
7265 used = true;
7266 }
7267
7268 if (!used)
7269 *disable_pipes |= 1 << intel_crtc->pipe;
7270 }
7271
7272
7273 /* set_mode is also used to update properties on life display pipes. */
7274 intel_crtc = to_intel_crtc(crtc);
7275 if (crtc->enabled)
7276 *prepare_pipes |= 1 << intel_crtc->pipe;
7277
7278 /* We only support modeset on one single crtc, hence we need to do that
7279 * only for the passed in crtc iff we change anything else than just
7280 * disable crtcs.
7281 *
7282 * This is actually not true, to be fully compatible with the old crtc
7283 * helper we automatically disable _any_ output (i.e. doesn't need to be
7284 * connected to the crtc we're modesetting on) if it's disconnected.
7285 * Which is a rather nutty api (since changed the output configuration
7286 * without userspace's explicit request can lead to confusion), but
7287 * alas. Hence we currently need to modeset on all pipes we prepare. */
7288 if (*prepare_pipes)
7289 *modeset_pipes = *prepare_pipes;
7290
7291 /* ... and mask these out. */
7292 *modeset_pipes &= ~(*disable_pipes);
7293 *prepare_pipes &= ~(*disable_pipes);
7294 }
7295
7296 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7297 {
7298 struct drm_encoder *encoder;
7299 struct drm_device *dev = crtc->dev;
7300
7301 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7302 if (encoder->crtc == crtc)
7303 return true;
7304
7305 return false;
7306 }
7307
7308 static void
7309 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7310 {
7311 struct intel_encoder *intel_encoder;
7312 struct intel_crtc *intel_crtc;
7313 struct drm_connector *connector;
7314
7315 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7316 base.head) {
7317 if (!intel_encoder->base.crtc)
7318 continue;
7319
7320 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7321
7322 if (prepare_pipes & (1 << intel_crtc->pipe))
7323 intel_encoder->connectors_active = false;
7324 }
7325
7326 intel_modeset_commit_output_state(dev);
7327
7328 /* Update computed state. */
7329 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7330 base.head) {
7331 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7332 }
7333
7334 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7335 if (!connector->encoder || !connector->encoder->crtc)
7336 continue;
7337
7338 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7339
7340 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7341 struct drm_property *dpms_property =
7342 dev->mode_config.dpms_property;
7343
7344 connector->dpms = DRM_MODE_DPMS_ON;
7345 drm_connector_property_set_value(connector,
7346 dpms_property,
7347 DRM_MODE_DPMS_ON);
7348
7349 intel_encoder = to_intel_encoder(connector->encoder);
7350 intel_encoder->connectors_active = true;
7351 }
7352 }
7353
7354 }
7355
7356 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7357 list_for_each_entry((intel_crtc), \
7358 &(dev)->mode_config.crtc_list, \
7359 base.head) \
7360 if (mask & (1 <<(intel_crtc)->pipe)) \
7361
7362 void
7363 intel_modeset_check_state(struct drm_device *dev)
7364 {
7365 struct intel_crtc *crtc;
7366 struct intel_encoder *encoder;
7367 struct intel_connector *connector;
7368
7369 list_for_each_entry(connector, &dev->mode_config.connector_list,
7370 base.head) {
7371 /* This also checks the encoder/connector hw state with the
7372 * ->get_hw_state callbacks. */
7373 intel_connector_check_state(connector);
7374
7375 WARN(&connector->new_encoder->base != connector->base.encoder,
7376 "connector's staged encoder doesn't match current encoder\n");
7377 }
7378
7379 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7380 base.head) {
7381 bool enabled = false;
7382 bool active = false;
7383 enum pipe pipe, tracked_pipe;
7384
7385 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7386 encoder->base.base.id,
7387 drm_get_encoder_name(&encoder->base));
7388
7389 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7390 "encoder's stage crtc doesn't match current crtc\n");
7391 WARN(encoder->connectors_active && !encoder->base.crtc,
7392 "encoder's active_connectors set, but no crtc\n");
7393
7394 list_for_each_entry(connector, &dev->mode_config.connector_list,
7395 base.head) {
7396 if (connector->base.encoder != &encoder->base)
7397 continue;
7398 enabled = true;
7399 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7400 active = true;
7401 }
7402 WARN(!!encoder->base.crtc != enabled,
7403 "encoder's enabled state mismatch "
7404 "(expected %i, found %i)\n",
7405 !!encoder->base.crtc, enabled);
7406 WARN(active && !encoder->base.crtc,
7407 "active encoder with no crtc\n");
7408
7409 WARN(encoder->connectors_active != active,
7410 "encoder's computed active state doesn't match tracked active state "
7411 "(expected %i, found %i)\n", active, encoder->connectors_active);
7412
7413 active = encoder->get_hw_state(encoder, &pipe);
7414 WARN(active != encoder->connectors_active,
7415 "encoder's hw state doesn't match sw tracking "
7416 "(expected %i, found %i)\n",
7417 encoder->connectors_active, active);
7418
7419 if (!encoder->base.crtc)
7420 continue;
7421
7422 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7423 WARN(active && pipe != tracked_pipe,
7424 "active encoder's pipe doesn't match"
7425 "(expected %i, found %i)\n",
7426 tracked_pipe, pipe);
7427
7428 }
7429
7430 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7431 base.head) {
7432 bool enabled = false;
7433 bool active = false;
7434
7435 DRM_DEBUG_KMS("[CRTC:%d]\n",
7436 crtc->base.base.id);
7437
7438 WARN(crtc->active && !crtc->base.enabled,
7439 "active crtc, but not enabled in sw tracking\n");
7440
7441 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7442 base.head) {
7443 if (encoder->base.crtc != &crtc->base)
7444 continue;
7445 enabled = true;
7446 if (encoder->connectors_active)
7447 active = true;
7448 }
7449 WARN(active != crtc->active,
7450 "crtc's computed active state doesn't match tracked active state "
7451 "(expected %i, found %i)\n", active, crtc->active);
7452 WARN(enabled != crtc->base.enabled,
7453 "crtc's computed enabled state doesn't match tracked enabled state "
7454 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7455
7456 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7457 }
7458 }
7459
7460 bool intel_set_mode(struct drm_crtc *crtc,
7461 struct drm_display_mode *mode,
7462 int x, int y, struct drm_framebuffer *fb)
7463 {
7464 struct drm_device *dev = crtc->dev;
7465 drm_i915_private_t *dev_priv = dev->dev_private;
7466 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7467 struct drm_encoder_helper_funcs *encoder_funcs;
7468 struct drm_encoder *encoder;
7469 struct intel_crtc *intel_crtc;
7470 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7471 bool ret = true;
7472
7473 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7474 &prepare_pipes, &disable_pipes);
7475
7476 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7477 modeset_pipes, prepare_pipes, disable_pipes);
7478
7479 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7480 intel_crtc_disable(&intel_crtc->base);
7481
7482 saved_hwmode = crtc->hwmode;
7483 saved_mode = crtc->mode;
7484
7485 /* Hack: Because we don't (yet) support global modeset on multiple
7486 * crtcs, we don't keep track of the new mode for more than one crtc.
7487 * Hence simply check whether any bit is set in modeset_pipes in all the
7488 * pieces of code that are not yet converted to deal with mutliple crtcs
7489 * changing their mode at the same time. */
7490 adjusted_mode = NULL;
7491 if (modeset_pipes) {
7492 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7493 if (IS_ERR(adjusted_mode)) {
7494 return false;
7495 }
7496 }
7497
7498 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7499 if (intel_crtc->base.enabled)
7500 dev_priv->display.crtc_disable(&intel_crtc->base);
7501 }
7502
7503 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7504 * to set it here already despite that we pass it down the callchain.
7505 */
7506 if (modeset_pipes)
7507 crtc->mode = *mode;
7508
7509 /* Only after disabling all output pipelines that will be changed can we
7510 * update the the output configuration. */
7511 intel_modeset_update_state(dev, prepare_pipes);
7512
7513 /* Set up the DPLL and any encoders state that needs to adjust or depend
7514 * on the DPLL.
7515 */
7516 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7517 ret = !intel_crtc_mode_set(&intel_crtc->base,
7518 mode, adjusted_mode,
7519 x, y, fb);
7520 if (!ret)
7521 goto done;
7522
7523 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7524
7525 if (encoder->crtc != &intel_crtc->base)
7526 continue;
7527
7528 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7529 encoder->base.id, drm_get_encoder_name(encoder),
7530 mode->base.id, mode->name);
7531 encoder_funcs = encoder->helper_private;
7532 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7533 }
7534 }
7535
7536 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7537 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7538 dev_priv->display.crtc_enable(&intel_crtc->base);
7539
7540 if (modeset_pipes) {
7541 /* Store real post-adjustment hardware mode. */
7542 crtc->hwmode = *adjusted_mode;
7543
7544 /* Calculate and store various constants which
7545 * are later needed by vblank and swap-completion
7546 * timestamping. They are derived from true hwmode.
7547 */
7548 drm_calc_timestamping_constants(crtc);
7549 }
7550
7551 /* FIXME: add subpixel order */
7552 done:
7553 drm_mode_destroy(dev, adjusted_mode);
7554 if (!ret && crtc->enabled) {
7555 crtc->hwmode = saved_hwmode;
7556 crtc->mode = saved_mode;
7557 } else {
7558 intel_modeset_check_state(dev);
7559 }
7560
7561 return ret;
7562 }
7563
7564 #undef for_each_intel_crtc_masked
7565
7566 static void intel_set_config_free(struct intel_set_config *config)
7567 {
7568 if (!config)
7569 return;
7570
7571 kfree(config->save_connector_encoders);
7572 kfree(config->save_encoder_crtcs);
7573 kfree(config);
7574 }
7575
7576 static int intel_set_config_save_state(struct drm_device *dev,
7577 struct intel_set_config *config)
7578 {
7579 struct drm_encoder *encoder;
7580 struct drm_connector *connector;
7581 int count;
7582
7583 config->save_encoder_crtcs =
7584 kcalloc(dev->mode_config.num_encoder,
7585 sizeof(struct drm_crtc *), GFP_KERNEL);
7586 if (!config->save_encoder_crtcs)
7587 return -ENOMEM;
7588
7589 config->save_connector_encoders =
7590 kcalloc(dev->mode_config.num_connector,
7591 sizeof(struct drm_encoder *), GFP_KERNEL);
7592 if (!config->save_connector_encoders)
7593 return -ENOMEM;
7594
7595 /* Copy data. Note that driver private data is not affected.
7596 * Should anything bad happen only the expected state is
7597 * restored, not the drivers personal bookkeeping.
7598 */
7599 count = 0;
7600 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7601 config->save_encoder_crtcs[count++] = encoder->crtc;
7602 }
7603
7604 count = 0;
7605 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7606 config->save_connector_encoders[count++] = connector->encoder;
7607 }
7608
7609 return 0;
7610 }
7611
7612 static void intel_set_config_restore_state(struct drm_device *dev,
7613 struct intel_set_config *config)
7614 {
7615 struct intel_encoder *encoder;
7616 struct intel_connector *connector;
7617 int count;
7618
7619 count = 0;
7620 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7621 encoder->new_crtc =
7622 to_intel_crtc(config->save_encoder_crtcs[count++]);
7623 }
7624
7625 count = 0;
7626 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7627 connector->new_encoder =
7628 to_intel_encoder(config->save_connector_encoders[count++]);
7629 }
7630 }
7631
7632 static void
7633 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7634 struct intel_set_config *config)
7635 {
7636
7637 /* We should be able to check here if the fb has the same properties
7638 * and then just flip_or_move it */
7639 if (set->crtc->fb != set->fb) {
7640 /* If we have no fb then treat it as a full mode set */
7641 if (set->crtc->fb == NULL) {
7642 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7643 config->mode_changed = true;
7644 } else if (set->fb == NULL) {
7645 config->mode_changed = true;
7646 } else if (set->fb->depth != set->crtc->fb->depth) {
7647 config->mode_changed = true;
7648 } else if (set->fb->bits_per_pixel !=
7649 set->crtc->fb->bits_per_pixel) {
7650 config->mode_changed = true;
7651 } else
7652 config->fb_changed = true;
7653 }
7654
7655 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7656 config->fb_changed = true;
7657
7658 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7659 DRM_DEBUG_KMS("modes are different, full mode set\n");
7660 drm_mode_debug_printmodeline(&set->crtc->mode);
7661 drm_mode_debug_printmodeline(set->mode);
7662 config->mode_changed = true;
7663 }
7664 }
7665
7666 static int
7667 intel_modeset_stage_output_state(struct drm_device *dev,
7668 struct drm_mode_set *set,
7669 struct intel_set_config *config)
7670 {
7671 struct drm_crtc *new_crtc;
7672 struct intel_connector *connector;
7673 struct intel_encoder *encoder;
7674 int count, ro;
7675
7676 /* The upper layers ensure that we either disabl a crtc or have a list
7677 * of connectors. For paranoia, double-check this. */
7678 WARN_ON(!set->fb && (set->num_connectors != 0));
7679 WARN_ON(set->fb && (set->num_connectors == 0));
7680
7681 count = 0;
7682 list_for_each_entry(connector, &dev->mode_config.connector_list,
7683 base.head) {
7684 /* Otherwise traverse passed in connector list and get encoders
7685 * for them. */
7686 for (ro = 0; ro < set->num_connectors; ro++) {
7687 if (set->connectors[ro] == &connector->base) {
7688 connector->new_encoder = connector->encoder;
7689 break;
7690 }
7691 }
7692
7693 /* If we disable the crtc, disable all its connectors. Also, if
7694 * the connector is on the changing crtc but not on the new
7695 * connector list, disable it. */
7696 if ((!set->fb || ro == set->num_connectors) &&
7697 connector->base.encoder &&
7698 connector->base.encoder->crtc == set->crtc) {
7699 connector->new_encoder = NULL;
7700
7701 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7702 connector->base.base.id,
7703 drm_get_connector_name(&connector->base));
7704 }
7705
7706
7707 if (&connector->new_encoder->base != connector->base.encoder) {
7708 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7709 config->mode_changed = true;
7710 }
7711
7712 /* Disable all disconnected encoders. */
7713 if (connector->base.status == connector_status_disconnected)
7714 connector->new_encoder = NULL;
7715 }
7716 /* connector->new_encoder is now updated for all connectors. */
7717
7718 /* Update crtc of enabled connectors. */
7719 count = 0;
7720 list_for_each_entry(connector, &dev->mode_config.connector_list,
7721 base.head) {
7722 if (!connector->new_encoder)
7723 continue;
7724
7725 new_crtc = connector->new_encoder->base.crtc;
7726
7727 for (ro = 0; ro < set->num_connectors; ro++) {
7728 if (set->connectors[ro] == &connector->base)
7729 new_crtc = set->crtc;
7730 }
7731
7732 /* Make sure the new CRTC will work with the encoder */
7733 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7734 new_crtc)) {
7735 return -EINVAL;
7736 }
7737 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7738
7739 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7740 connector->base.base.id,
7741 drm_get_connector_name(&connector->base),
7742 new_crtc->base.id);
7743 }
7744
7745 /* Check for any encoders that needs to be disabled. */
7746 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7747 base.head) {
7748 list_for_each_entry(connector,
7749 &dev->mode_config.connector_list,
7750 base.head) {
7751 if (connector->new_encoder == encoder) {
7752 WARN_ON(!connector->new_encoder->new_crtc);
7753
7754 goto next_encoder;
7755 }
7756 }
7757 encoder->new_crtc = NULL;
7758 next_encoder:
7759 /* Only now check for crtc changes so we don't miss encoders
7760 * that will be disabled. */
7761 if (&encoder->new_crtc->base != encoder->base.crtc) {
7762 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7763 config->mode_changed = true;
7764 }
7765 }
7766 /* Now we've also updated encoder->new_crtc for all encoders. */
7767
7768 return 0;
7769 }
7770
7771 static int intel_crtc_set_config(struct drm_mode_set *set)
7772 {
7773 struct drm_device *dev;
7774 struct drm_mode_set save_set;
7775 struct intel_set_config *config;
7776 int ret;
7777
7778 BUG_ON(!set);
7779 BUG_ON(!set->crtc);
7780 BUG_ON(!set->crtc->helper_private);
7781
7782 if (!set->mode)
7783 set->fb = NULL;
7784
7785 /* The fb helper likes to play gross jokes with ->mode_set_config.
7786 * Unfortunately the crtc helper doesn't do much at all for this case,
7787 * so we have to cope with this madness until the fb helper is fixed up. */
7788 if (set->fb && set->num_connectors == 0)
7789 return 0;
7790
7791 if (set->fb) {
7792 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7793 set->crtc->base.id, set->fb->base.id,
7794 (int)set->num_connectors, set->x, set->y);
7795 } else {
7796 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7797 }
7798
7799 dev = set->crtc->dev;
7800
7801 ret = -ENOMEM;
7802 config = kzalloc(sizeof(*config), GFP_KERNEL);
7803 if (!config)
7804 goto out_config;
7805
7806 ret = intel_set_config_save_state(dev, config);
7807 if (ret)
7808 goto out_config;
7809
7810 save_set.crtc = set->crtc;
7811 save_set.mode = &set->crtc->mode;
7812 save_set.x = set->crtc->x;
7813 save_set.y = set->crtc->y;
7814 save_set.fb = set->crtc->fb;
7815
7816 /* Compute whether we need a full modeset, only an fb base update or no
7817 * change at all. In the future we might also check whether only the
7818 * mode changed, e.g. for LVDS where we only change the panel fitter in
7819 * such cases. */
7820 intel_set_config_compute_mode_changes(set, config);
7821
7822 ret = intel_modeset_stage_output_state(dev, set, config);
7823 if (ret)
7824 goto fail;
7825
7826 if (config->mode_changed) {
7827 if (set->mode) {
7828 DRM_DEBUG_KMS("attempting to set mode from"
7829 " userspace\n");
7830 drm_mode_debug_printmodeline(set->mode);
7831 }
7832
7833 if (!intel_set_mode(set->crtc, set->mode,
7834 set->x, set->y, set->fb)) {
7835 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7836 set->crtc->base.id);
7837 ret = -EINVAL;
7838 goto fail;
7839 }
7840 } else if (config->fb_changed) {
7841 ret = intel_pipe_set_base(set->crtc,
7842 set->x, set->y, set->fb);
7843 }
7844
7845 intel_set_config_free(config);
7846
7847 return 0;
7848
7849 fail:
7850 intel_set_config_restore_state(dev, config);
7851
7852 /* Try to restore the config */
7853 if (config->mode_changed &&
7854 !intel_set_mode(save_set.crtc, save_set.mode,
7855 save_set.x, save_set.y, save_set.fb))
7856 DRM_ERROR("failed to restore config after modeset failure\n");
7857
7858 out_config:
7859 intel_set_config_free(config);
7860 return ret;
7861 }
7862
7863 static const struct drm_crtc_funcs intel_crtc_funcs = {
7864 .cursor_set = intel_crtc_cursor_set,
7865 .cursor_move = intel_crtc_cursor_move,
7866 .gamma_set = intel_crtc_gamma_set,
7867 .set_config = intel_crtc_set_config,
7868 .destroy = intel_crtc_destroy,
7869 .page_flip = intel_crtc_page_flip,
7870 };
7871
7872 static void intel_cpu_pll_init(struct drm_device *dev)
7873 {
7874 if (IS_HASWELL(dev))
7875 intel_ddi_pll_init(dev);
7876 }
7877
7878 static void intel_pch_pll_init(struct drm_device *dev)
7879 {
7880 drm_i915_private_t *dev_priv = dev->dev_private;
7881 int i;
7882
7883 if (dev_priv->num_pch_pll == 0) {
7884 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7885 return;
7886 }
7887
7888 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7889 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7890 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7891 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7892 }
7893 }
7894
7895 static void intel_crtc_init(struct drm_device *dev, int pipe)
7896 {
7897 drm_i915_private_t *dev_priv = dev->dev_private;
7898 struct intel_crtc *intel_crtc;
7899 int i;
7900
7901 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7902 if (intel_crtc == NULL)
7903 return;
7904
7905 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7906
7907 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7908 for (i = 0; i < 256; i++) {
7909 intel_crtc->lut_r[i] = i;
7910 intel_crtc->lut_g[i] = i;
7911 intel_crtc->lut_b[i] = i;
7912 }
7913
7914 /* Swap pipes & planes for FBC on pre-965 */
7915 intel_crtc->pipe = pipe;
7916 intel_crtc->plane = pipe;
7917 intel_crtc->cpu_transcoder = pipe;
7918 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7919 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7920 intel_crtc->plane = !pipe;
7921 }
7922
7923 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7924 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7925 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7926 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7927
7928 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7929
7930 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7931 }
7932
7933 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7934 struct drm_file *file)
7935 {
7936 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7937 struct drm_mode_object *drmmode_obj;
7938 struct intel_crtc *crtc;
7939
7940 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7941 return -ENODEV;
7942
7943 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7944 DRM_MODE_OBJECT_CRTC);
7945
7946 if (!drmmode_obj) {
7947 DRM_ERROR("no such CRTC id\n");
7948 return -EINVAL;
7949 }
7950
7951 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7952 pipe_from_crtc_id->pipe = crtc->pipe;
7953
7954 return 0;
7955 }
7956
7957 static int intel_encoder_clones(struct intel_encoder *encoder)
7958 {
7959 struct drm_device *dev = encoder->base.dev;
7960 struct intel_encoder *source_encoder;
7961 int index_mask = 0;
7962 int entry = 0;
7963
7964 list_for_each_entry(source_encoder,
7965 &dev->mode_config.encoder_list, base.head) {
7966
7967 if (encoder == source_encoder)
7968 index_mask |= (1 << entry);
7969
7970 /* Intel hw has only one MUX where enocoders could be cloned. */
7971 if (encoder->cloneable && source_encoder->cloneable)
7972 index_mask |= (1 << entry);
7973
7974 entry++;
7975 }
7976
7977 return index_mask;
7978 }
7979
7980 static bool has_edp_a(struct drm_device *dev)
7981 {
7982 struct drm_i915_private *dev_priv = dev->dev_private;
7983
7984 if (!IS_MOBILE(dev))
7985 return false;
7986
7987 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7988 return false;
7989
7990 if (IS_GEN5(dev) &&
7991 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7992 return false;
7993
7994 return true;
7995 }
7996
7997 static void intel_setup_outputs(struct drm_device *dev)
7998 {
7999 struct drm_i915_private *dev_priv = dev->dev_private;
8000 struct intel_encoder *encoder;
8001 bool dpd_is_edp = false;
8002 bool has_lvds;
8003
8004 has_lvds = intel_lvds_init(dev);
8005 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8006 /* disable the panel fitter on everything but LVDS */
8007 I915_WRITE(PFIT_CONTROL, 0);
8008 }
8009
8010 if (HAS_PCH_SPLIT(dev)) {
8011 dpd_is_edp = intel_dpd_is_edp(dev);
8012
8013 if (has_edp_a(dev))
8014 intel_dp_init(dev, DP_A, PORT_A);
8015
8016 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8017 intel_dp_init(dev, PCH_DP_D, PORT_D);
8018 }
8019
8020 intel_crt_init(dev);
8021
8022 if (IS_HASWELL(dev)) {
8023 int found;
8024
8025 /* Haswell uses DDI functions to detect digital outputs */
8026 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8027 /* DDI A only supports eDP */
8028 if (found)
8029 intel_ddi_init(dev, PORT_A);
8030
8031 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8032 * register */
8033 found = I915_READ(SFUSE_STRAP);
8034
8035 if (found & SFUSE_STRAP_DDIB_DETECTED)
8036 intel_ddi_init(dev, PORT_B);
8037 if (found & SFUSE_STRAP_DDIC_DETECTED)
8038 intel_ddi_init(dev, PORT_C);
8039 if (found & SFUSE_STRAP_DDID_DETECTED)
8040 intel_ddi_init(dev, PORT_D);
8041 } else if (HAS_PCH_SPLIT(dev)) {
8042 int found;
8043
8044 if (I915_READ(HDMIB) & PORT_DETECTED) {
8045 /* PCH SDVOB multiplex with HDMIB */
8046 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8047 if (!found)
8048 intel_hdmi_init(dev, HDMIB, PORT_B);
8049 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8050 intel_dp_init(dev, PCH_DP_B, PORT_B);
8051 }
8052
8053 if (I915_READ(HDMIC) & PORT_DETECTED)
8054 intel_hdmi_init(dev, HDMIC, PORT_C);
8055
8056 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8057 intel_hdmi_init(dev, HDMID, PORT_D);
8058
8059 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8060 intel_dp_init(dev, PCH_DP_C, PORT_C);
8061
8062 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8063 intel_dp_init(dev, PCH_DP_D, PORT_D);
8064 } else if (IS_VALLEYVIEW(dev)) {
8065 int found;
8066
8067 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8068 if (I915_READ(DP_C) & DP_DETECTED)
8069 intel_dp_init(dev, DP_C, PORT_C);
8070
8071 if (I915_READ(SDVOB) & PORT_DETECTED) {
8072 /* SDVOB multiplex with HDMIB */
8073 found = intel_sdvo_init(dev, SDVOB, true);
8074 if (!found)
8075 intel_hdmi_init(dev, SDVOB, PORT_B);
8076 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8077 intel_dp_init(dev, DP_B, PORT_B);
8078 }
8079
8080 if (I915_READ(SDVOC) & PORT_DETECTED)
8081 intel_hdmi_init(dev, SDVOC, PORT_C);
8082
8083 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8084 bool found = false;
8085
8086 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8087 DRM_DEBUG_KMS("probing SDVOB\n");
8088 found = intel_sdvo_init(dev, SDVOB, true);
8089 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8090 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8091 intel_hdmi_init(dev, SDVOB, PORT_B);
8092 }
8093
8094 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8095 DRM_DEBUG_KMS("probing DP_B\n");
8096 intel_dp_init(dev, DP_B, PORT_B);
8097 }
8098 }
8099
8100 /* Before G4X SDVOC doesn't have its own detect register */
8101
8102 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8103 DRM_DEBUG_KMS("probing SDVOC\n");
8104 found = intel_sdvo_init(dev, SDVOC, false);
8105 }
8106
8107 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8108
8109 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8110 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8111 intel_hdmi_init(dev, SDVOC, PORT_C);
8112 }
8113 if (SUPPORTS_INTEGRATED_DP(dev)) {
8114 DRM_DEBUG_KMS("probing DP_C\n");
8115 intel_dp_init(dev, DP_C, PORT_C);
8116 }
8117 }
8118
8119 if (SUPPORTS_INTEGRATED_DP(dev) &&
8120 (I915_READ(DP_D) & DP_DETECTED)) {
8121 DRM_DEBUG_KMS("probing DP_D\n");
8122 intel_dp_init(dev, DP_D, PORT_D);
8123 }
8124 } else if (IS_GEN2(dev))
8125 intel_dvo_init(dev);
8126
8127 if (SUPPORTS_TV(dev))
8128 intel_tv_init(dev);
8129
8130 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8131 encoder->base.possible_crtcs = encoder->crtc_mask;
8132 encoder->base.possible_clones =
8133 intel_encoder_clones(encoder);
8134 }
8135
8136 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8137 ironlake_init_pch_refclk(dev);
8138 }
8139
8140 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8141 {
8142 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8143
8144 drm_framebuffer_cleanup(fb);
8145 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8146
8147 kfree(intel_fb);
8148 }
8149
8150 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8151 struct drm_file *file,
8152 unsigned int *handle)
8153 {
8154 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8155 struct drm_i915_gem_object *obj = intel_fb->obj;
8156
8157 return drm_gem_handle_create(file, &obj->base, handle);
8158 }
8159
8160 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8161 .destroy = intel_user_framebuffer_destroy,
8162 .create_handle = intel_user_framebuffer_create_handle,
8163 };
8164
8165 int intel_framebuffer_init(struct drm_device *dev,
8166 struct intel_framebuffer *intel_fb,
8167 struct drm_mode_fb_cmd2 *mode_cmd,
8168 struct drm_i915_gem_object *obj)
8169 {
8170 int ret;
8171
8172 if (obj->tiling_mode == I915_TILING_Y)
8173 return -EINVAL;
8174
8175 if (mode_cmd->pitches[0] & 63)
8176 return -EINVAL;
8177
8178 switch (mode_cmd->pixel_format) {
8179 case DRM_FORMAT_RGB332:
8180 case DRM_FORMAT_RGB565:
8181 case DRM_FORMAT_XRGB8888:
8182 case DRM_FORMAT_XBGR8888:
8183 case DRM_FORMAT_ARGB8888:
8184 case DRM_FORMAT_XRGB2101010:
8185 case DRM_FORMAT_ARGB2101010:
8186 /* RGB formats are common across chipsets */
8187 break;
8188 case DRM_FORMAT_YUYV:
8189 case DRM_FORMAT_UYVY:
8190 case DRM_FORMAT_YVYU:
8191 case DRM_FORMAT_VYUY:
8192 break;
8193 default:
8194 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8195 mode_cmd->pixel_format);
8196 return -EINVAL;
8197 }
8198
8199 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8200 if (ret) {
8201 DRM_ERROR("framebuffer init failed %d\n", ret);
8202 return ret;
8203 }
8204
8205 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8206 intel_fb->obj = obj;
8207 return 0;
8208 }
8209
8210 static struct drm_framebuffer *
8211 intel_user_framebuffer_create(struct drm_device *dev,
8212 struct drm_file *filp,
8213 struct drm_mode_fb_cmd2 *mode_cmd)
8214 {
8215 struct drm_i915_gem_object *obj;
8216
8217 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8218 mode_cmd->handles[0]));
8219 if (&obj->base == NULL)
8220 return ERR_PTR(-ENOENT);
8221
8222 return intel_framebuffer_create(dev, mode_cmd, obj);
8223 }
8224
8225 static const struct drm_mode_config_funcs intel_mode_funcs = {
8226 .fb_create = intel_user_framebuffer_create,
8227 .output_poll_changed = intel_fb_output_poll_changed,
8228 };
8229
8230 /* Set up chip specific display functions */
8231 static void intel_init_display(struct drm_device *dev)
8232 {
8233 struct drm_i915_private *dev_priv = dev->dev_private;
8234
8235 /* We always want a DPMS function */
8236 if (IS_HASWELL(dev)) {
8237 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8238 dev_priv->display.crtc_enable = haswell_crtc_enable;
8239 dev_priv->display.crtc_disable = haswell_crtc_disable;
8240 dev_priv->display.off = haswell_crtc_off;
8241 dev_priv->display.update_plane = ironlake_update_plane;
8242 } else if (HAS_PCH_SPLIT(dev)) {
8243 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8244 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8245 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8246 dev_priv->display.off = ironlake_crtc_off;
8247 dev_priv->display.update_plane = ironlake_update_plane;
8248 } else {
8249 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8250 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8251 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8252 dev_priv->display.off = i9xx_crtc_off;
8253 dev_priv->display.update_plane = i9xx_update_plane;
8254 }
8255
8256 /* Returns the core display clock speed */
8257 if (IS_VALLEYVIEW(dev))
8258 dev_priv->display.get_display_clock_speed =
8259 valleyview_get_display_clock_speed;
8260 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8261 dev_priv->display.get_display_clock_speed =
8262 i945_get_display_clock_speed;
8263 else if (IS_I915G(dev))
8264 dev_priv->display.get_display_clock_speed =
8265 i915_get_display_clock_speed;
8266 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8267 dev_priv->display.get_display_clock_speed =
8268 i9xx_misc_get_display_clock_speed;
8269 else if (IS_I915GM(dev))
8270 dev_priv->display.get_display_clock_speed =
8271 i915gm_get_display_clock_speed;
8272 else if (IS_I865G(dev))
8273 dev_priv->display.get_display_clock_speed =
8274 i865_get_display_clock_speed;
8275 else if (IS_I85X(dev))
8276 dev_priv->display.get_display_clock_speed =
8277 i855_get_display_clock_speed;
8278 else /* 852, 830 */
8279 dev_priv->display.get_display_clock_speed =
8280 i830_get_display_clock_speed;
8281
8282 if (HAS_PCH_SPLIT(dev)) {
8283 if (IS_GEN5(dev)) {
8284 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8285 dev_priv->display.write_eld = ironlake_write_eld;
8286 } else if (IS_GEN6(dev)) {
8287 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8288 dev_priv->display.write_eld = ironlake_write_eld;
8289 } else if (IS_IVYBRIDGE(dev)) {
8290 /* FIXME: detect B0+ stepping and use auto training */
8291 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8292 dev_priv->display.write_eld = ironlake_write_eld;
8293 } else if (IS_HASWELL(dev)) {
8294 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8295 dev_priv->display.write_eld = haswell_write_eld;
8296 } else
8297 dev_priv->display.update_wm = NULL;
8298 } else if (IS_G4X(dev)) {
8299 dev_priv->display.write_eld = g4x_write_eld;
8300 }
8301
8302 /* Default just returns -ENODEV to indicate unsupported */
8303 dev_priv->display.queue_flip = intel_default_queue_flip;
8304
8305 switch (INTEL_INFO(dev)->gen) {
8306 case 2:
8307 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8308 break;
8309
8310 case 3:
8311 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8312 break;
8313
8314 case 4:
8315 case 5:
8316 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8317 break;
8318
8319 case 6:
8320 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8321 break;
8322 case 7:
8323 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8324 break;
8325 }
8326 }
8327
8328 /*
8329 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8330 * resume, or other times. This quirk makes sure that's the case for
8331 * affected systems.
8332 */
8333 static void quirk_pipea_force(struct drm_device *dev)
8334 {
8335 struct drm_i915_private *dev_priv = dev->dev_private;
8336
8337 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8338 DRM_INFO("applying pipe a force quirk\n");
8339 }
8340
8341 /*
8342 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8343 */
8344 static void quirk_ssc_force_disable(struct drm_device *dev)
8345 {
8346 struct drm_i915_private *dev_priv = dev->dev_private;
8347 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8348 DRM_INFO("applying lvds SSC disable quirk\n");
8349 }
8350
8351 /*
8352 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8353 * brightness value
8354 */
8355 static void quirk_invert_brightness(struct drm_device *dev)
8356 {
8357 struct drm_i915_private *dev_priv = dev->dev_private;
8358 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8359 DRM_INFO("applying inverted panel brightness quirk\n");
8360 }
8361
8362 struct intel_quirk {
8363 int device;
8364 int subsystem_vendor;
8365 int subsystem_device;
8366 void (*hook)(struct drm_device *dev);
8367 };
8368
8369 static struct intel_quirk intel_quirks[] = {
8370 /* HP Mini needs pipe A force quirk (LP: #322104) */
8371 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8372
8373 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8374 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8375
8376 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8377 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8378
8379 /* 830/845 need to leave pipe A & dpll A up */
8380 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8381 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8382
8383 /* Lenovo U160 cannot use SSC on LVDS */
8384 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8385
8386 /* Sony Vaio Y cannot use SSC on LVDS */
8387 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8388
8389 /* Acer Aspire 5734Z must invert backlight brightness */
8390 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8391 };
8392
8393 static void intel_init_quirks(struct drm_device *dev)
8394 {
8395 struct pci_dev *d = dev->pdev;
8396 int i;
8397
8398 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8399 struct intel_quirk *q = &intel_quirks[i];
8400
8401 if (d->device == q->device &&
8402 (d->subsystem_vendor == q->subsystem_vendor ||
8403 q->subsystem_vendor == PCI_ANY_ID) &&
8404 (d->subsystem_device == q->subsystem_device ||
8405 q->subsystem_device == PCI_ANY_ID))
8406 q->hook(dev);
8407 }
8408 }
8409
8410 /* Disable the VGA plane that we never use */
8411 static void i915_disable_vga(struct drm_device *dev)
8412 {
8413 struct drm_i915_private *dev_priv = dev->dev_private;
8414 u8 sr1;
8415 u32 vga_reg;
8416
8417 if (HAS_PCH_SPLIT(dev))
8418 vga_reg = CPU_VGACNTRL;
8419 else
8420 vga_reg = VGACNTRL;
8421
8422 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8423 outb(SR01, VGA_SR_INDEX);
8424 sr1 = inb(VGA_SR_DATA);
8425 outb(sr1 | 1<<5, VGA_SR_DATA);
8426 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8427 udelay(300);
8428
8429 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8430 POSTING_READ(vga_reg);
8431 }
8432
8433 void intel_modeset_init_hw(struct drm_device *dev)
8434 {
8435 /* We attempt to init the necessary power wells early in the initialization
8436 * time, so the subsystems that expect power to be enabled can work.
8437 */
8438 intel_init_power_wells(dev);
8439
8440 intel_prepare_ddi(dev);
8441
8442 intel_init_clock_gating(dev);
8443
8444 mutex_lock(&dev->struct_mutex);
8445 intel_enable_gt_powersave(dev);
8446 mutex_unlock(&dev->struct_mutex);
8447 }
8448
8449 void intel_modeset_init(struct drm_device *dev)
8450 {
8451 struct drm_i915_private *dev_priv = dev->dev_private;
8452 int i, ret;
8453
8454 drm_mode_config_init(dev);
8455
8456 dev->mode_config.min_width = 0;
8457 dev->mode_config.min_height = 0;
8458
8459 dev->mode_config.preferred_depth = 24;
8460 dev->mode_config.prefer_shadow = 1;
8461
8462 dev->mode_config.funcs = &intel_mode_funcs;
8463
8464 intel_init_quirks(dev);
8465
8466 intel_init_pm(dev);
8467
8468 intel_init_display(dev);
8469
8470 if (IS_GEN2(dev)) {
8471 dev->mode_config.max_width = 2048;
8472 dev->mode_config.max_height = 2048;
8473 } else if (IS_GEN3(dev)) {
8474 dev->mode_config.max_width = 4096;
8475 dev->mode_config.max_height = 4096;
8476 } else {
8477 dev->mode_config.max_width = 8192;
8478 dev->mode_config.max_height = 8192;
8479 }
8480 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8481
8482 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8483 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8484
8485 for (i = 0; i < dev_priv->num_pipe; i++) {
8486 intel_crtc_init(dev, i);
8487 ret = intel_plane_init(dev, i);
8488 if (ret)
8489 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8490 }
8491
8492 intel_cpu_pll_init(dev);
8493 intel_pch_pll_init(dev);
8494
8495 /* Just disable it once at startup */
8496 i915_disable_vga(dev);
8497 intel_setup_outputs(dev);
8498 }
8499
8500 static void
8501 intel_connector_break_all_links(struct intel_connector *connector)
8502 {
8503 connector->base.dpms = DRM_MODE_DPMS_OFF;
8504 connector->base.encoder = NULL;
8505 connector->encoder->connectors_active = false;
8506 connector->encoder->base.crtc = NULL;
8507 }
8508
8509 static void intel_enable_pipe_a(struct drm_device *dev)
8510 {
8511 struct intel_connector *connector;
8512 struct drm_connector *crt = NULL;
8513 struct intel_load_detect_pipe load_detect_temp;
8514
8515 /* We can't just switch on the pipe A, we need to set things up with a
8516 * proper mode and output configuration. As a gross hack, enable pipe A
8517 * by enabling the load detect pipe once. */
8518 list_for_each_entry(connector,
8519 &dev->mode_config.connector_list,
8520 base.head) {
8521 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8522 crt = &connector->base;
8523 break;
8524 }
8525 }
8526
8527 if (!crt)
8528 return;
8529
8530 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8531 intel_release_load_detect_pipe(crt, &load_detect_temp);
8532
8533
8534 }
8535
8536 static bool
8537 intel_check_plane_mapping(struct intel_crtc *crtc)
8538 {
8539 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8540 u32 reg, val;
8541
8542 if (dev_priv->num_pipe == 1)
8543 return true;
8544
8545 reg = DSPCNTR(!crtc->plane);
8546 val = I915_READ(reg);
8547
8548 if ((val & DISPLAY_PLANE_ENABLE) &&
8549 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8550 return false;
8551
8552 return true;
8553 }
8554
8555 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8556 {
8557 struct drm_device *dev = crtc->base.dev;
8558 struct drm_i915_private *dev_priv = dev->dev_private;
8559 u32 reg;
8560
8561 /* Clear any frame start delays used for debugging left by the BIOS */
8562 reg = PIPECONF(crtc->pipe);
8563 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8564
8565 /* We need to sanitize the plane -> pipe mapping first because this will
8566 * disable the crtc (and hence change the state) if it is wrong. Note
8567 * that gen4+ has a fixed plane -> pipe mapping. */
8568 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8569 struct intel_connector *connector;
8570 bool plane;
8571
8572 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8573 crtc->base.base.id);
8574
8575 /* Pipe has the wrong plane attached and the plane is active.
8576 * Temporarily change the plane mapping and disable everything
8577 * ... */
8578 plane = crtc->plane;
8579 crtc->plane = !plane;
8580 dev_priv->display.crtc_disable(&crtc->base);
8581 crtc->plane = plane;
8582
8583 /* ... and break all links. */
8584 list_for_each_entry(connector, &dev->mode_config.connector_list,
8585 base.head) {
8586 if (connector->encoder->base.crtc != &crtc->base)
8587 continue;
8588
8589 intel_connector_break_all_links(connector);
8590 }
8591
8592 WARN_ON(crtc->active);
8593 crtc->base.enabled = false;
8594 }
8595
8596 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8597 crtc->pipe == PIPE_A && !crtc->active) {
8598 /* BIOS forgot to enable pipe A, this mostly happens after
8599 * resume. Force-enable the pipe to fix this, the update_dpms
8600 * call below we restore the pipe to the right state, but leave
8601 * the required bits on. */
8602 intel_enable_pipe_a(dev);
8603 }
8604
8605 /* Adjust the state of the output pipe according to whether we
8606 * have active connectors/encoders. */
8607 intel_crtc_update_dpms(&crtc->base);
8608
8609 if (crtc->active != crtc->base.enabled) {
8610 struct intel_encoder *encoder;
8611
8612 /* This can happen either due to bugs in the get_hw_state
8613 * functions or because the pipe is force-enabled due to the
8614 * pipe A quirk. */
8615 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8616 crtc->base.base.id,
8617 crtc->base.enabled ? "enabled" : "disabled",
8618 crtc->active ? "enabled" : "disabled");
8619
8620 crtc->base.enabled = crtc->active;
8621
8622 /* Because we only establish the connector -> encoder ->
8623 * crtc links if something is active, this means the
8624 * crtc is now deactivated. Break the links. connector
8625 * -> encoder links are only establish when things are
8626 * actually up, hence no need to break them. */
8627 WARN_ON(crtc->active);
8628
8629 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8630 WARN_ON(encoder->connectors_active);
8631 encoder->base.crtc = NULL;
8632 }
8633 }
8634 }
8635
8636 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8637 {
8638 struct intel_connector *connector;
8639 struct drm_device *dev = encoder->base.dev;
8640
8641 /* We need to check both for a crtc link (meaning that the
8642 * encoder is active and trying to read from a pipe) and the
8643 * pipe itself being active. */
8644 bool has_active_crtc = encoder->base.crtc &&
8645 to_intel_crtc(encoder->base.crtc)->active;
8646
8647 if (encoder->connectors_active && !has_active_crtc) {
8648 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8649 encoder->base.base.id,
8650 drm_get_encoder_name(&encoder->base));
8651
8652 /* Connector is active, but has no active pipe. This is
8653 * fallout from our resume register restoring. Disable
8654 * the encoder manually again. */
8655 if (encoder->base.crtc) {
8656 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8657 encoder->base.base.id,
8658 drm_get_encoder_name(&encoder->base));
8659 encoder->disable(encoder);
8660 }
8661
8662 /* Inconsistent output/port/pipe state happens presumably due to
8663 * a bug in one of the get_hw_state functions. Or someplace else
8664 * in our code, like the register restore mess on resume. Clamp
8665 * things to off as a safer default. */
8666 list_for_each_entry(connector,
8667 &dev->mode_config.connector_list,
8668 base.head) {
8669 if (connector->encoder != encoder)
8670 continue;
8671
8672 intel_connector_break_all_links(connector);
8673 }
8674 }
8675 /* Enabled encoders without active connectors will be fixed in
8676 * the crtc fixup. */
8677 }
8678
8679 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8680 * and i915 state tracking structures. */
8681 void intel_modeset_setup_hw_state(struct drm_device *dev)
8682 {
8683 struct drm_i915_private *dev_priv = dev->dev_private;
8684 enum pipe pipe;
8685 u32 tmp;
8686 struct intel_crtc *crtc;
8687 struct intel_encoder *encoder;
8688 struct intel_connector *connector;
8689
8690 for_each_pipe(pipe) {
8691 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8692
8693 tmp = I915_READ(PIPECONF(pipe));
8694 if (tmp & PIPECONF_ENABLE)
8695 crtc->active = true;
8696 else
8697 crtc->active = false;
8698
8699 crtc->base.enabled = crtc->active;
8700
8701 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8702 crtc->base.base.id,
8703 crtc->active ? "enabled" : "disabled");
8704 }
8705
8706 if (IS_HASWELL(dev))
8707 intel_ddi_setup_hw_pll_state(dev);
8708
8709 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8710 base.head) {
8711 pipe = 0;
8712
8713 if (encoder->get_hw_state(encoder, &pipe)) {
8714 encoder->base.crtc =
8715 dev_priv->pipe_to_crtc_mapping[pipe];
8716 } else {
8717 encoder->base.crtc = NULL;
8718 }
8719
8720 encoder->connectors_active = false;
8721 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8722 encoder->base.base.id,
8723 drm_get_encoder_name(&encoder->base),
8724 encoder->base.crtc ? "enabled" : "disabled",
8725 pipe);
8726 }
8727
8728 list_for_each_entry(connector, &dev->mode_config.connector_list,
8729 base.head) {
8730 if (connector->get_hw_state(connector)) {
8731 connector->base.dpms = DRM_MODE_DPMS_ON;
8732 connector->encoder->connectors_active = true;
8733 connector->base.encoder = &connector->encoder->base;
8734 } else {
8735 connector->base.dpms = DRM_MODE_DPMS_OFF;
8736 connector->base.encoder = NULL;
8737 }
8738 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8739 connector->base.base.id,
8740 drm_get_connector_name(&connector->base),
8741 connector->base.encoder ? "enabled" : "disabled");
8742 }
8743
8744 /* HW state is read out, now we need to sanitize this mess. */
8745 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8746 base.head) {
8747 intel_sanitize_encoder(encoder);
8748 }
8749
8750 for_each_pipe(pipe) {
8751 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8752 intel_sanitize_crtc(crtc);
8753 }
8754
8755 intel_modeset_update_staged_output_state(dev);
8756
8757 intel_modeset_check_state(dev);
8758
8759 drm_mode_config_reset(dev);
8760 }
8761
8762 void intel_modeset_gem_init(struct drm_device *dev)
8763 {
8764 intel_modeset_init_hw(dev);
8765
8766 intel_setup_overlay(dev);
8767
8768 intel_modeset_setup_hw_state(dev);
8769 }
8770
8771 void intel_modeset_cleanup(struct drm_device *dev)
8772 {
8773 struct drm_i915_private *dev_priv = dev->dev_private;
8774 struct drm_crtc *crtc;
8775 struct intel_crtc *intel_crtc;
8776
8777 drm_kms_helper_poll_fini(dev);
8778 mutex_lock(&dev->struct_mutex);
8779
8780 intel_unregister_dsm_handler();
8781
8782
8783 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8784 /* Skip inactive CRTCs */
8785 if (!crtc->fb)
8786 continue;
8787
8788 intel_crtc = to_intel_crtc(crtc);
8789 intel_increase_pllclock(crtc);
8790 }
8791
8792 intel_disable_fbc(dev);
8793
8794 intel_disable_gt_powersave(dev);
8795
8796 ironlake_teardown_rc6(dev);
8797
8798 if (IS_VALLEYVIEW(dev))
8799 vlv_init_dpio(dev);
8800
8801 mutex_unlock(&dev->struct_mutex);
8802
8803 /* Disable the irq before mode object teardown, for the irq might
8804 * enqueue unpin/hotplug work. */
8805 drm_irq_uninstall(dev);
8806 cancel_work_sync(&dev_priv->hotplug_work);
8807 cancel_work_sync(&dev_priv->rps.work);
8808
8809 /* flush any delayed tasks or pending work */
8810 flush_scheduled_work();
8811
8812 drm_mode_config_cleanup(dev);
8813 }
8814
8815 /*
8816 * Return which encoder is currently attached for connector.
8817 */
8818 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8819 {
8820 return &intel_attached_encoder(connector)->base;
8821 }
8822
8823 void intel_connector_attach_encoder(struct intel_connector *connector,
8824 struct intel_encoder *encoder)
8825 {
8826 connector->encoder = encoder;
8827 drm_mode_connector_attach_encoder(&connector->base,
8828 &encoder->base);
8829 }
8830
8831 /*
8832 * set vga decode state - true == enable VGA decode
8833 */
8834 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8835 {
8836 struct drm_i915_private *dev_priv = dev->dev_private;
8837 u16 gmch_ctrl;
8838
8839 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8840 if (state)
8841 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8842 else
8843 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8844 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8845 return 0;
8846 }
8847
8848 #ifdef CONFIG_DEBUG_FS
8849 #include <linux/seq_file.h>
8850
8851 struct intel_display_error_state {
8852 struct intel_cursor_error_state {
8853 u32 control;
8854 u32 position;
8855 u32 base;
8856 u32 size;
8857 } cursor[I915_MAX_PIPES];
8858
8859 struct intel_pipe_error_state {
8860 u32 conf;
8861 u32 source;
8862
8863 u32 htotal;
8864 u32 hblank;
8865 u32 hsync;
8866 u32 vtotal;
8867 u32 vblank;
8868 u32 vsync;
8869 } pipe[I915_MAX_PIPES];
8870
8871 struct intel_plane_error_state {
8872 u32 control;
8873 u32 stride;
8874 u32 size;
8875 u32 pos;
8876 u32 addr;
8877 u32 surface;
8878 u32 tile_offset;
8879 } plane[I915_MAX_PIPES];
8880 };
8881
8882 struct intel_display_error_state *
8883 intel_display_capture_error_state(struct drm_device *dev)
8884 {
8885 drm_i915_private_t *dev_priv = dev->dev_private;
8886 struct intel_display_error_state *error;
8887 int i;
8888
8889 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8890 if (error == NULL)
8891 return NULL;
8892
8893 for_each_pipe(i) {
8894 error->cursor[i].control = I915_READ(CURCNTR(i));
8895 error->cursor[i].position = I915_READ(CURPOS(i));
8896 error->cursor[i].base = I915_READ(CURBASE(i));
8897
8898 error->plane[i].control = I915_READ(DSPCNTR(i));
8899 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8900 error->plane[i].size = I915_READ(DSPSIZE(i));
8901 error->plane[i].pos = I915_READ(DSPPOS(i));
8902 error->plane[i].addr = I915_READ(DSPADDR(i));
8903 if (INTEL_INFO(dev)->gen >= 4) {
8904 error->plane[i].surface = I915_READ(DSPSURF(i));
8905 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8906 }
8907
8908 error->pipe[i].conf = I915_READ(PIPECONF(i));
8909 error->pipe[i].source = I915_READ(PIPESRC(i));
8910 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8911 error->pipe[i].hblank = I915_READ(HBLANK(i));
8912 error->pipe[i].hsync = I915_READ(HSYNC(i));
8913 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8914 error->pipe[i].vblank = I915_READ(VBLANK(i));
8915 error->pipe[i].vsync = I915_READ(VSYNC(i));
8916 }
8917
8918 return error;
8919 }
8920
8921 void
8922 intel_display_print_error_state(struct seq_file *m,
8923 struct drm_device *dev,
8924 struct intel_display_error_state *error)
8925 {
8926 drm_i915_private_t *dev_priv = dev->dev_private;
8927 int i;
8928
8929 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8930 for_each_pipe(i) {
8931 seq_printf(m, "Pipe [%d]:\n", i);
8932 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8933 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8934 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8935 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8936 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8937 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8938 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8939 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8940
8941 seq_printf(m, "Plane [%d]:\n", i);
8942 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8943 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8944 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8945 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8946 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8947 if (INTEL_INFO(dev)->gen >= 4) {
8948 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8949 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8950 }
8951
8952 seq_printf(m, "Cursor [%d]:\n", i);
8953 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8954 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8955 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8956 }
8957 }
8958 #endif
This page took 0.261527 seconds and 4 git commands to generate.