drm/i915: Wait for pending flips on the GPU
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
60
61 typedef struct {
62 int min, max;
63 } intel_range_t;
64
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
102
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
242 */
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348 struct drm_i915_private *dev_priv = dev->dev_private;
349 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
350 }
351
352 static const intel_limit_t intel_limits_i8xx_dvo = {
353 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
354 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
355 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
356 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
357 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
358 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
359 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
360 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
361 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
363 .find_pll = intel_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_i8xx_lvds = {
367 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
368 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
369 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
370 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
371 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
372 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
373 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
374 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
375 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
376 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
377 .find_pll = intel_find_best_PLL,
378 };
379
380 static const intel_limit_t intel_limits_i9xx_sdvo = {
381 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
382 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
383 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
384 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
385 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
386 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
387 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
388 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
389 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
390 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
391 .find_pll = intel_find_best_PLL,
392 };
393
394 static const intel_limit_t intel_limits_i9xx_lvds = {
395 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
396 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
397 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
398 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
399 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
400 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
401 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
402 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
403 /* The single-channel range is 25-112Mhz, and dual-channel
404 * is 80-224Mhz. Prefer single channel as much as possible.
405 */
406 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
407 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
408 .find_pll = intel_find_best_PLL,
409 };
410
411 /* below parameter and function is for G4X Chipset Family*/
412 static const intel_limit_t intel_limits_g4x_sdvo = {
413 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
414 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
415 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
416 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
417 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
418 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
419 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
420 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
421 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
422 .p2_slow = G4X_P2_SDVO_SLOW,
423 .p2_fast = G4X_P2_SDVO_FAST
424 },
425 .find_pll = intel_g4x_find_best_PLL,
426 };
427
428 static const intel_limit_t intel_limits_g4x_hdmi = {
429 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
430 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
431 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
432 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
433 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
434 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
435 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
436 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
437 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
438 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
439 .p2_fast = G4X_P2_HDMI_DAC_FAST
440 },
441 .find_pll = intel_g4x_find_best_PLL,
442 };
443
444 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
445 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
447 .vco = { .min = G4X_VCO_MIN,
448 .max = G4X_VCO_MAX },
449 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
450 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
451 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
452 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
453 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
454 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
455 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
456 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
457 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
458 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
459 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
460 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
461 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
462 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
463 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
464 },
465 .find_pll = intel_g4x_find_best_PLL,
466 };
467
468 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
469 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
471 .vco = { .min = G4X_VCO_MIN,
472 .max = G4X_VCO_MAX },
473 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
474 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
475 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
476 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
477 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
478 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
479 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
480 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
481 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
482 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
483 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
484 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
485 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
486 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
487 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
488 },
489 .find_pll = intel_g4x_find_best_PLL,
490 };
491
492 static const intel_limit_t intel_limits_g4x_display_port = {
493 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
494 .max = G4X_DOT_DISPLAY_PORT_MAX },
495 .vco = { .min = G4X_VCO_MIN,
496 .max = G4X_VCO_MAX},
497 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
498 .max = G4X_N_DISPLAY_PORT_MAX },
499 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
500 .max = G4X_M_DISPLAY_PORT_MAX },
501 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
502 .max = G4X_M1_DISPLAY_PORT_MAX },
503 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
504 .max = G4X_M2_DISPLAY_PORT_MAX },
505 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
506 .max = G4X_P_DISPLAY_PORT_MAX },
507 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
508 .max = G4X_P1_DISPLAY_PORT_MAX},
509 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
510 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
511 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
512 .find_pll = intel_find_pll_g4x_dp,
513 };
514
515 static const intel_limit_t intel_limits_pineview_sdvo = {
516 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
517 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
518 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
519 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
520 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
521 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
522 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
523 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
524 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
525 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
526 .find_pll = intel_find_best_PLL,
527 };
528
529 static const intel_limit_t intel_limits_pineview_lvds = {
530 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
531 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
532 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
533 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
534 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
535 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
536 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
537 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
538 /* Pineview only supports single-channel mode. */
539 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
540 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
541 .find_pll = intel_find_best_PLL,
542 };
543
544 static const intel_limit_t intel_limits_ironlake_dac = {
545 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
546 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
547 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
548 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
549 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
550 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
551 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
552 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
553 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
554 .p2_slow = IRONLAKE_DAC_P2_SLOW,
555 .p2_fast = IRONLAKE_DAC_P2_FAST },
556 .find_pll = intel_g4x_find_best_PLL,
557 };
558
559 static const intel_limit_t intel_limits_ironlake_single_lvds = {
560 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
561 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
562 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
563 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
564 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
565 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
566 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
567 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
568 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
569 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
570 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
571 .find_pll = intel_g4x_find_best_PLL,
572 };
573
574 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
575 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
576 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
577 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
578 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
579 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
580 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
581 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
582 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
583 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
584 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
585 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
586 .find_pll = intel_g4x_find_best_PLL,
587 };
588
589 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
590 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
591 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
592 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
593 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
594 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
595 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
596 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
597 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
598 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
599 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
600 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
601 .find_pll = intel_g4x_find_best_PLL,
602 };
603
604 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
605 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
606 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
607 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
608 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
609 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
610 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
611 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
612 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
613 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
614 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
615 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
616 .find_pll = intel_g4x_find_best_PLL,
617 };
618
619 static const intel_limit_t intel_limits_ironlake_display_port = {
620 .dot = { .min = IRONLAKE_DOT_MIN,
621 .max = IRONLAKE_DOT_MAX },
622 .vco = { .min = IRONLAKE_VCO_MIN,
623 .max = IRONLAKE_VCO_MAX},
624 .n = { .min = IRONLAKE_DP_N_MIN,
625 .max = IRONLAKE_DP_N_MAX },
626 .m = { .min = IRONLAKE_DP_M_MIN,
627 .max = IRONLAKE_DP_M_MAX },
628 .m1 = { .min = IRONLAKE_M1_MIN,
629 .max = IRONLAKE_M1_MAX },
630 .m2 = { .min = IRONLAKE_M2_MIN,
631 .max = IRONLAKE_M2_MAX },
632 .p = { .min = IRONLAKE_DP_P_MIN,
633 .max = IRONLAKE_DP_P_MAX },
634 .p1 = { .min = IRONLAKE_DP_P1_MIN,
635 .max = IRONLAKE_DP_P1_MAX},
636 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
637 .p2_slow = IRONLAKE_DP_P2_SLOW,
638 .p2_fast = IRONLAKE_DP_P2_FAST },
639 .find_pll = intel_find_pll_ironlake_dp,
640 };
641
642 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
643 {
644 struct drm_device *dev = crtc->dev;
645 struct drm_i915_private *dev_priv = dev->dev_private;
646 const intel_limit_t *limit;
647 int refclk = 120;
648
649 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
650 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
651 refclk = 100;
652
653 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654 LVDS_CLKB_POWER_UP) {
655 /* LVDS dual channel */
656 if (refclk == 100)
657 limit = &intel_limits_ironlake_dual_lvds_100m;
658 else
659 limit = &intel_limits_ironlake_dual_lvds;
660 } else {
661 if (refclk == 100)
662 limit = &intel_limits_ironlake_single_lvds_100m;
663 else
664 limit = &intel_limits_ironlake_single_lvds;
665 }
666 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667 HAS_eDP)
668 limit = &intel_limits_ironlake_display_port;
669 else
670 limit = &intel_limits_ironlake_dac;
671
672 return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677 struct drm_device *dev = crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 const intel_limit_t *limit;
680
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683 LVDS_CLKB_POWER_UP)
684 /* LVDS with dual channel */
685 limit = &intel_limits_g4x_dual_channel_lvds;
686 else
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_single_channel_lvds;
689 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691 limit = &intel_limits_g4x_hdmi;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693 limit = &intel_limits_g4x_sdvo;
694 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695 limit = &intel_limits_g4x_display_port;
696 } else /* The option is for other outputs */
697 limit = &intel_limits_i9xx_sdvo;
698
699 return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
703 {
704 struct drm_device *dev = crtc->dev;
705 const intel_limit_t *limit;
706
707 if (HAS_PCH_SPLIT(dev))
708 limit = intel_ironlake_limit(crtc);
709 else if (IS_G4X(dev)) {
710 limit = intel_g4x_limit(crtc);
711 } else if (IS_PINEVIEW(dev)) {
712 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713 limit = &intel_limits_pineview_lvds;
714 else
715 limit = &intel_limits_pineview_sdvo;
716 } else if (!IS_GEN2(dev)) {
717 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718 limit = &intel_limits_i9xx_lvds;
719 else
720 limit = &intel_limits_i9xx_sdvo;
721 } else {
722 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723 limit = &intel_limits_i8xx_lvds;
724 else
725 limit = &intel_limits_i8xx_dvo;
726 }
727 return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733 clock->m = clock->m2 + 2;
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / clock->n;
736 clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741 if (IS_PINEVIEW(dev)) {
742 pineview_clock(refclk, clock);
743 return;
744 }
745 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746 clock->p = clock->p1 * clock->p2;
747 clock->vco = refclk * clock->m / (clock->n + 2);
748 clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752 * Returns whether any output on the specified pipe is of the specified type
753 */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756 struct drm_device *dev = crtc->dev;
757 struct drm_mode_config *mode_config = &dev->mode_config;
758 struct intel_encoder *encoder;
759
760 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761 if (encoder->base.crtc == crtc && encoder->type == type)
762 return true;
763
764 return false;
765 }
766
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
771 */
772
773 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
774 {
775 const intel_limit_t *limit = intel_limit (crtc);
776 struct drm_device *dev = crtc->dev;
777
778 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
779 INTELPllInvalid ("p1 out of range\n");
780 if (clock->p < limit->p.min || limit->p.max < clock->p)
781 INTELPllInvalid ("p out of range\n");
782 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
783 INTELPllInvalid ("m2 out of range\n");
784 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
785 INTELPllInvalid ("m1 out of range\n");
786 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
787 INTELPllInvalid ("m1 <= m2\n");
788 if (clock->m < limit->m.min || limit->m.max < clock->m)
789 INTELPllInvalid ("m out of range\n");
790 if (clock->n < limit->n.min || limit->n.max < clock->n)
791 INTELPllInvalid ("n out of range\n");
792 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
793 INTELPllInvalid ("vco out of range\n");
794 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
795 * connector, etc., rather than just a single range.
796 */
797 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
798 INTELPllInvalid ("dot out of range\n");
799
800 return true;
801 }
802
803 static bool
804 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
805 int target, int refclk, intel_clock_t *best_clock)
806
807 {
808 struct drm_device *dev = crtc->dev;
809 struct drm_i915_private *dev_priv = dev->dev_private;
810 intel_clock_t clock;
811 int err = target;
812
813 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
814 (I915_READ(LVDS)) != 0) {
815 /*
816 * For LVDS, if the panel is on, just rely on its current
817 * settings for dual-channel. We haven't figured out how to
818 * reliably set up different single/dual channel state, if we
819 * even can.
820 */
821 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822 LVDS_CLKB_POWER_UP)
823 clock.p2 = limit->p2.p2_fast;
824 else
825 clock.p2 = limit->p2.p2_slow;
826 } else {
827 if (target < limit->p2.dot_limit)
828 clock.p2 = limit->p2.p2_slow;
829 else
830 clock.p2 = limit->p2.p2_fast;
831 }
832
833 memset (best_clock, 0, sizeof (*best_clock));
834
835 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
836 clock.m1++) {
837 for (clock.m2 = limit->m2.min;
838 clock.m2 <= limit->m2.max; clock.m2++) {
839 /* m1 is always 0 in Pineview */
840 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
841 break;
842 for (clock.n = limit->n.min;
843 clock.n <= limit->n.max; clock.n++) {
844 for (clock.p1 = limit->p1.min;
845 clock.p1 <= limit->p1.max; clock.p1++) {
846 int this_err;
847
848 intel_clock(dev, refclk, &clock);
849
850 if (!intel_PLL_is_valid(crtc, &clock))
851 continue;
852
853 this_err = abs(clock.dot - target);
854 if (this_err < err) {
855 *best_clock = clock;
856 err = this_err;
857 }
858 }
859 }
860 }
861 }
862
863 return (err != target);
864 }
865
866 static bool
867 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
868 int target, int refclk, intel_clock_t *best_clock)
869 {
870 struct drm_device *dev = crtc->dev;
871 struct drm_i915_private *dev_priv = dev->dev_private;
872 intel_clock_t clock;
873 int max_n;
874 bool found;
875 /* approximately equals target * 0.00585 */
876 int err_most = (target >> 8) + (target >> 9);
877 found = false;
878
879 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880 int lvds_reg;
881
882 if (HAS_PCH_SPLIT(dev))
883 lvds_reg = PCH_LVDS;
884 else
885 lvds_reg = LVDS;
886 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
887 LVDS_CLKB_POWER_UP)
888 clock.p2 = limit->p2.p2_fast;
889 else
890 clock.p2 = limit->p2.p2_slow;
891 } else {
892 if (target < limit->p2.dot_limit)
893 clock.p2 = limit->p2.p2_slow;
894 else
895 clock.p2 = limit->p2.p2_fast;
896 }
897
898 memset(best_clock, 0, sizeof(*best_clock));
899 max_n = limit->n.max;
900 /* based on hardware requirement, prefer smaller n to precision */
901 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
902 /* based on hardware requirement, prefere larger m1,m2 */
903 for (clock.m1 = limit->m1.max;
904 clock.m1 >= limit->m1.min; clock.m1--) {
905 for (clock.m2 = limit->m2.max;
906 clock.m2 >= limit->m2.min; clock.m2--) {
907 for (clock.p1 = limit->p1.max;
908 clock.p1 >= limit->p1.min; clock.p1--) {
909 int this_err;
910
911 intel_clock(dev, refclk, &clock);
912 if (!intel_PLL_is_valid(crtc, &clock))
913 continue;
914 this_err = abs(clock.dot - target) ;
915 if (this_err < err_most) {
916 *best_clock = clock;
917 err_most = this_err;
918 max_n = clock.n;
919 found = true;
920 }
921 }
922 }
923 }
924 }
925 return found;
926 }
927
928 static bool
929 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
930 int target, int refclk, intel_clock_t *best_clock)
931 {
932 struct drm_device *dev = crtc->dev;
933 intel_clock_t clock;
934
935 /* return directly when it is eDP */
936 if (HAS_eDP)
937 return true;
938
939 if (target < 200000) {
940 clock.n = 1;
941 clock.p1 = 2;
942 clock.p2 = 10;
943 clock.m1 = 12;
944 clock.m2 = 9;
945 } else {
946 clock.n = 2;
947 clock.p1 = 1;
948 clock.p2 = 10;
949 clock.m1 = 14;
950 clock.m2 = 8;
951 }
952 intel_clock(dev, refclk, &clock);
953 memcpy(best_clock, &clock, sizeof(intel_clock_t));
954 return true;
955 }
956
957 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
958 static bool
959 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
960 int target, int refclk, intel_clock_t *best_clock)
961 {
962 intel_clock_t clock;
963 if (target < 200000) {
964 clock.p1 = 2;
965 clock.p2 = 10;
966 clock.n = 2;
967 clock.m1 = 23;
968 clock.m2 = 8;
969 } else {
970 clock.p1 = 1;
971 clock.p2 = 10;
972 clock.n = 1;
973 clock.m1 = 14;
974 clock.m2 = 2;
975 }
976 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
977 clock.p = (clock.p1 * clock.p2);
978 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
979 clock.vco = 0;
980 memcpy(best_clock, &clock, sizeof(intel_clock_t));
981 return true;
982 }
983
984 /**
985 * intel_wait_for_vblank - wait for vblank on a given pipe
986 * @dev: drm device
987 * @pipe: pipe to wait for
988 *
989 * Wait for vblank to occur on a given pipe. Needed for various bits of
990 * mode setting code.
991 */
992 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
993 {
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
996
997 /* Clear existing vblank status. Note this will clear any other
998 * sticky status fields as well.
999 *
1000 * This races with i915_driver_irq_handler() with the result
1001 * that either function could miss a vblank event. Here it is not
1002 * fatal, as we will either wait upon the next vblank interrupt or
1003 * timeout. Generally speaking intel_wait_for_vblank() is only
1004 * called during modeset at which time the GPU should be idle and
1005 * should *not* be performing page flips and thus not waiting on
1006 * vblanks...
1007 * Currently, the result of us stealing a vblank from the irq
1008 * handler is that a single frame will be skipped during swapbuffers.
1009 */
1010 I915_WRITE(pipestat_reg,
1011 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1012
1013 /* Wait for vblank interrupt bit to set */
1014 if (wait_for(I915_READ(pipestat_reg) &
1015 PIPE_VBLANK_INTERRUPT_STATUS,
1016 50))
1017 DRM_DEBUG_KMS("vblank wait timed out\n");
1018 }
1019
1020 /*
1021 * intel_wait_for_pipe_off - wait for pipe to turn off
1022 * @dev: drm device
1023 * @pipe: pipe to wait for
1024 *
1025 * After disabling a pipe, we can't wait for vblank in the usual way,
1026 * spinning on the vblank interrupt status bit, since we won't actually
1027 * see an interrupt when the pipe is disabled.
1028 *
1029 * On Gen4 and above:
1030 * wait for the pipe register state bit to turn off
1031 *
1032 * Otherwise:
1033 * wait for the display line value to settle (it usually
1034 * ends up stopping at the start of the next frame).
1035 *
1036 */
1037 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1038 {
1039 struct drm_i915_private *dev_priv = dev->dev_private;
1040
1041 if (INTEL_INFO(dev)->gen >= 4) {
1042 int reg = PIPECONF(pipe);
1043
1044 /* Wait for the Pipe State to go off */
1045 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1046 100))
1047 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1048 } else {
1049 u32 last_line;
1050 int reg = PIPEDSL(pipe);
1051 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1052
1053 /* Wait for the display line to settle */
1054 do {
1055 last_line = I915_READ(reg) & DSL_LINEMASK;
1056 mdelay(5);
1057 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1058 time_after(timeout, jiffies));
1059 if (time_after(jiffies, timeout))
1060 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1061 }
1062 }
1063
1064 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1065 {
1066 struct drm_device *dev = crtc->dev;
1067 struct drm_i915_private *dev_priv = dev->dev_private;
1068 struct drm_framebuffer *fb = crtc->fb;
1069 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1070 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1072 int plane, i;
1073 u32 fbc_ctl, fbc_ctl2;
1074
1075 if (fb->pitch == dev_priv->cfb_pitch &&
1076 obj_priv->fence_reg == dev_priv->cfb_fence &&
1077 intel_crtc->plane == dev_priv->cfb_plane &&
1078 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1079 return;
1080
1081 i8xx_disable_fbc(dev);
1082
1083 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1084
1085 if (fb->pitch < dev_priv->cfb_pitch)
1086 dev_priv->cfb_pitch = fb->pitch;
1087
1088 /* FBC_CTL wants 64B units */
1089 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1090 dev_priv->cfb_fence = obj_priv->fence_reg;
1091 dev_priv->cfb_plane = intel_crtc->plane;
1092 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1093
1094 /* Clear old tags */
1095 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1096 I915_WRITE(FBC_TAG + (i * 4), 0);
1097
1098 /* Set it up... */
1099 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1100 if (obj_priv->tiling_mode != I915_TILING_NONE)
1101 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1102 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1103 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1104
1105 /* enable it... */
1106 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1107 if (IS_I945GM(dev))
1108 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1109 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1110 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1111 if (obj_priv->tiling_mode != I915_TILING_NONE)
1112 fbc_ctl |= dev_priv->cfb_fence;
1113 I915_WRITE(FBC_CONTROL, fbc_ctl);
1114
1115 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1116 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1117 }
1118
1119 void i8xx_disable_fbc(struct drm_device *dev)
1120 {
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 u32 fbc_ctl;
1123
1124 /* Disable compression */
1125 fbc_ctl = I915_READ(FBC_CONTROL);
1126 if ((fbc_ctl & FBC_CTL_EN) == 0)
1127 return;
1128
1129 fbc_ctl &= ~FBC_CTL_EN;
1130 I915_WRITE(FBC_CONTROL, fbc_ctl);
1131
1132 /* Wait for compressing bit to clear */
1133 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1134 DRM_DEBUG_KMS("FBC idle timed out\n");
1135 return;
1136 }
1137
1138 DRM_DEBUG_KMS("disabled FBC\n");
1139 }
1140
1141 static bool i8xx_fbc_enabled(struct drm_device *dev)
1142 {
1143 struct drm_i915_private *dev_priv = dev->dev_private;
1144
1145 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1146 }
1147
1148 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1149 {
1150 struct drm_device *dev = crtc->dev;
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 struct drm_framebuffer *fb = crtc->fb;
1153 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1154 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1156 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1157 unsigned long stall_watermark = 200;
1158 u32 dpfc_ctl;
1159
1160 dpfc_ctl = I915_READ(DPFC_CONTROL);
1161 if (dpfc_ctl & DPFC_CTL_EN) {
1162 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1163 dev_priv->cfb_fence == obj_priv->fence_reg &&
1164 dev_priv->cfb_plane == intel_crtc->plane &&
1165 dev_priv->cfb_y == crtc->y)
1166 return;
1167
1168 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1169 POSTING_READ(DPFC_CONTROL);
1170 intel_wait_for_vblank(dev, intel_crtc->pipe);
1171 }
1172
1173 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1174 dev_priv->cfb_fence = obj_priv->fence_reg;
1175 dev_priv->cfb_plane = intel_crtc->plane;
1176 dev_priv->cfb_y = crtc->y;
1177
1178 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1179 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1180 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1181 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1182 } else {
1183 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1184 }
1185
1186 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1187 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1188 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1189 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1190
1191 /* enable it... */
1192 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1193
1194 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1195 }
1196
1197 void g4x_disable_fbc(struct drm_device *dev)
1198 {
1199 struct drm_i915_private *dev_priv = dev->dev_private;
1200 u32 dpfc_ctl;
1201
1202 /* Disable compression */
1203 dpfc_ctl = I915_READ(DPFC_CONTROL);
1204 if (dpfc_ctl & DPFC_CTL_EN) {
1205 dpfc_ctl &= ~DPFC_CTL_EN;
1206 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1207
1208 DRM_DEBUG_KMS("disabled FBC\n");
1209 }
1210 }
1211
1212 static bool g4x_fbc_enabled(struct drm_device *dev)
1213 {
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215
1216 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1217 }
1218
1219 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1220 {
1221 struct drm_device *dev = crtc->dev;
1222 struct drm_i915_private *dev_priv = dev->dev_private;
1223 struct drm_framebuffer *fb = crtc->fb;
1224 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1225 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1227 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1228 unsigned long stall_watermark = 200;
1229 u32 dpfc_ctl;
1230
1231 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1232 if (dpfc_ctl & DPFC_CTL_EN) {
1233 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1234 dev_priv->cfb_fence == obj_priv->fence_reg &&
1235 dev_priv->cfb_plane == intel_crtc->plane &&
1236 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1237 dev_priv->cfb_y == crtc->y)
1238 return;
1239
1240 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1241 POSTING_READ(ILK_DPFC_CONTROL);
1242 intel_wait_for_vblank(dev, intel_crtc->pipe);
1243 }
1244
1245 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1246 dev_priv->cfb_fence = obj_priv->fence_reg;
1247 dev_priv->cfb_plane = intel_crtc->plane;
1248 dev_priv->cfb_offset = obj_priv->gtt_offset;
1249 dev_priv->cfb_y = crtc->y;
1250
1251 dpfc_ctl &= DPFC_RESERVED;
1252 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1253 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1254 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1255 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1256 } else {
1257 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1258 }
1259
1260 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1261 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1262 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1263 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1264 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1265 /* enable it... */
1266 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1267
1268 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1269 }
1270
1271 void ironlake_disable_fbc(struct drm_device *dev)
1272 {
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 u32 dpfc_ctl;
1275
1276 /* Disable compression */
1277 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1278 if (dpfc_ctl & DPFC_CTL_EN) {
1279 dpfc_ctl &= ~DPFC_CTL_EN;
1280 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1281
1282 DRM_DEBUG_KMS("disabled FBC\n");
1283 }
1284 }
1285
1286 static bool ironlake_fbc_enabled(struct drm_device *dev)
1287 {
1288 struct drm_i915_private *dev_priv = dev->dev_private;
1289
1290 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1291 }
1292
1293 bool intel_fbc_enabled(struct drm_device *dev)
1294 {
1295 struct drm_i915_private *dev_priv = dev->dev_private;
1296
1297 if (!dev_priv->display.fbc_enabled)
1298 return false;
1299
1300 return dev_priv->display.fbc_enabled(dev);
1301 }
1302
1303 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1304 {
1305 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1306
1307 if (!dev_priv->display.enable_fbc)
1308 return;
1309
1310 dev_priv->display.enable_fbc(crtc, interval);
1311 }
1312
1313 void intel_disable_fbc(struct drm_device *dev)
1314 {
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316
1317 if (!dev_priv->display.disable_fbc)
1318 return;
1319
1320 dev_priv->display.disable_fbc(dev);
1321 }
1322
1323 /**
1324 * intel_update_fbc - enable/disable FBC as needed
1325 * @dev: the drm_device
1326 *
1327 * Set up the framebuffer compression hardware at mode set time. We
1328 * enable it if possible:
1329 * - plane A only (on pre-965)
1330 * - no pixel mulitply/line duplication
1331 * - no alpha buffer discard
1332 * - no dual wide
1333 * - framebuffer <= 2048 in width, 1536 in height
1334 *
1335 * We can't assume that any compression will take place (worst case),
1336 * so the compressed buffer has to be the same size as the uncompressed
1337 * one. It also must reside (along with the line length buffer) in
1338 * stolen memory.
1339 *
1340 * We need to enable/disable FBC on a global basis.
1341 */
1342 static void intel_update_fbc(struct drm_device *dev)
1343 {
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 struct drm_crtc *crtc = NULL, *tmp_crtc;
1346 struct intel_crtc *intel_crtc;
1347 struct drm_framebuffer *fb;
1348 struct intel_framebuffer *intel_fb;
1349 struct drm_i915_gem_object *obj_priv;
1350
1351 DRM_DEBUG_KMS("\n");
1352
1353 if (!i915_powersave)
1354 return;
1355
1356 if (!I915_HAS_FBC(dev))
1357 return;
1358
1359 /*
1360 * If FBC is already on, we just have to verify that we can
1361 * keep it that way...
1362 * Need to disable if:
1363 * - more than one pipe is active
1364 * - changing FBC params (stride, fence, mode)
1365 * - new fb is too large to fit in compressed buffer
1366 * - going to an unsupported config (interlace, pixel multiply, etc.)
1367 */
1368 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1369 if (tmp_crtc->enabled) {
1370 if (crtc) {
1371 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1372 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1373 goto out_disable;
1374 }
1375 crtc = tmp_crtc;
1376 }
1377 }
1378
1379 if (!crtc || crtc->fb == NULL) {
1380 DRM_DEBUG_KMS("no output, disabling\n");
1381 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1382 goto out_disable;
1383 }
1384
1385 intel_crtc = to_intel_crtc(crtc);
1386 fb = crtc->fb;
1387 intel_fb = to_intel_framebuffer(fb);
1388 obj_priv = to_intel_bo(intel_fb->obj);
1389
1390 if (intel_fb->obj->size > dev_priv->cfb_size) {
1391 DRM_DEBUG_KMS("framebuffer too large, disabling "
1392 "compression\n");
1393 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1394 goto out_disable;
1395 }
1396 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1397 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1398 DRM_DEBUG_KMS("mode incompatible with compression, "
1399 "disabling\n");
1400 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1401 goto out_disable;
1402 }
1403 if ((crtc->mode.hdisplay > 2048) ||
1404 (crtc->mode.vdisplay > 1536)) {
1405 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1406 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1407 goto out_disable;
1408 }
1409 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1410 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1411 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1412 goto out_disable;
1413 }
1414 if (obj_priv->tiling_mode != I915_TILING_X) {
1415 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1416 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1417 goto out_disable;
1418 }
1419
1420 /* If the kernel debugger is active, always disable compression */
1421 if (in_dbg_master())
1422 goto out_disable;
1423
1424 intel_enable_fbc(crtc, 500);
1425 return;
1426
1427 out_disable:
1428 /* Multiple disables should be harmless */
1429 if (intel_fbc_enabled(dev)) {
1430 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1431 intel_disable_fbc(dev);
1432 }
1433 }
1434
1435 int
1436 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1437 struct drm_gem_object *obj,
1438 bool pipelined)
1439 {
1440 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1441 u32 alignment;
1442 int ret;
1443
1444 switch (obj_priv->tiling_mode) {
1445 case I915_TILING_NONE:
1446 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1447 alignment = 128 * 1024;
1448 else if (INTEL_INFO(dev)->gen >= 4)
1449 alignment = 4 * 1024;
1450 else
1451 alignment = 64 * 1024;
1452 break;
1453 case I915_TILING_X:
1454 /* pin() will align the object as required by fence */
1455 alignment = 0;
1456 break;
1457 case I915_TILING_Y:
1458 /* FIXME: Is this true? */
1459 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1460 return -EINVAL;
1461 default:
1462 BUG();
1463 }
1464
1465 ret = i915_gem_object_pin(obj, alignment);
1466 if (ret)
1467 return ret;
1468
1469 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1470 if (ret)
1471 goto err_unpin;
1472
1473 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1474 * fence, whereas 965+ only requires a fence if using
1475 * framebuffer compression. For simplicity, we always install
1476 * a fence as the cost is not that onerous.
1477 */
1478 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1479 obj_priv->tiling_mode != I915_TILING_NONE) {
1480 ret = i915_gem_object_get_fence_reg(obj, false);
1481 if (ret)
1482 goto err_unpin;
1483 }
1484
1485 return 0;
1486
1487 err_unpin:
1488 i915_gem_object_unpin(obj);
1489 return ret;
1490 }
1491
1492 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1493 static int
1494 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1495 int x, int y, int enter)
1496 {
1497 struct drm_device *dev = crtc->dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1500 struct intel_framebuffer *intel_fb;
1501 struct drm_i915_gem_object *obj_priv;
1502 struct drm_gem_object *obj;
1503 int plane = intel_crtc->plane;
1504 unsigned long Start, Offset;
1505 u32 dspcntr;
1506 u32 reg;
1507
1508 switch (plane) {
1509 case 0:
1510 case 1:
1511 break;
1512 default:
1513 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1514 return -EINVAL;
1515 }
1516
1517 intel_fb = to_intel_framebuffer(fb);
1518 obj = intel_fb->obj;
1519 obj_priv = to_intel_bo(obj);
1520
1521 reg = DSPCNTR(plane);
1522 dspcntr = I915_READ(reg);
1523 /* Mask out pixel format bits in case we change it */
1524 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1525 switch (fb->bits_per_pixel) {
1526 case 8:
1527 dspcntr |= DISPPLANE_8BPP;
1528 break;
1529 case 16:
1530 if (fb->depth == 15)
1531 dspcntr |= DISPPLANE_15_16BPP;
1532 else
1533 dspcntr |= DISPPLANE_16BPP;
1534 break;
1535 case 24:
1536 case 32:
1537 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1538 break;
1539 default:
1540 DRM_ERROR("Unknown color depth\n");
1541 return -EINVAL;
1542 }
1543 if (INTEL_INFO(dev)->gen >= 4) {
1544 if (obj_priv->tiling_mode != I915_TILING_NONE)
1545 dspcntr |= DISPPLANE_TILED;
1546 else
1547 dspcntr &= ~DISPPLANE_TILED;
1548 }
1549
1550 if (HAS_PCH_SPLIT(dev))
1551 /* must disable */
1552 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1553
1554 I915_WRITE(reg, dspcntr);
1555
1556 Start = obj_priv->gtt_offset;
1557 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1558
1559 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1560 Start, Offset, x, y, fb->pitch);
1561 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1562 if (INTEL_INFO(dev)->gen >= 4) {
1563 I915_WRITE(DSPSURF(plane), Start);
1564 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1565 I915_WRITE(DSPADDR(plane), Offset);
1566 } else
1567 I915_WRITE(DSPADDR(plane), Start + Offset);
1568 POSTING_READ(reg);
1569
1570 intel_update_fbc(dev);
1571 intel_increase_pllclock(crtc);
1572
1573 return 0;
1574 }
1575
1576 static int
1577 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1578 struct drm_framebuffer *old_fb)
1579 {
1580 struct drm_device *dev = crtc->dev;
1581 struct drm_i915_master_private *master_priv;
1582 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1583 int ret;
1584
1585 /* no fb bound */
1586 if (!crtc->fb) {
1587 DRM_DEBUG_KMS("No FB bound\n");
1588 return 0;
1589 }
1590
1591 switch (intel_crtc->plane) {
1592 case 0:
1593 case 1:
1594 break;
1595 default:
1596 return -EINVAL;
1597 }
1598
1599 mutex_lock(&dev->struct_mutex);
1600 ret = intel_pin_and_fence_fb_obj(dev,
1601 to_intel_framebuffer(crtc->fb)->obj,
1602 false);
1603 if (ret != 0) {
1604 mutex_unlock(&dev->struct_mutex);
1605 return ret;
1606 }
1607
1608 if (old_fb) {
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1611 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1612
1613 wait_event(dev_priv->pending_flip_queue,
1614 atomic_read(&obj_priv->pending_flip) == 0);
1615 }
1616
1617 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y, 0);
1618 if (ret) {
1619 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1620 mutex_unlock(&dev->struct_mutex);
1621 return ret;
1622 }
1623
1624 if (old_fb)
1625 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1626
1627 mutex_unlock(&dev->struct_mutex);
1628
1629 if (!dev->primary->master)
1630 return 0;
1631
1632 master_priv = dev->primary->master->driver_priv;
1633 if (!master_priv->sarea_priv)
1634 return 0;
1635
1636 if (intel_crtc->pipe) {
1637 master_priv->sarea_priv->pipeB_x = x;
1638 master_priv->sarea_priv->pipeB_y = y;
1639 } else {
1640 master_priv->sarea_priv->pipeA_x = x;
1641 master_priv->sarea_priv->pipeA_y = y;
1642 }
1643
1644 return 0;
1645 }
1646
1647 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1648 {
1649 struct drm_device *dev = crtc->dev;
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 u32 dpa_ctl;
1652
1653 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1654 dpa_ctl = I915_READ(DP_A);
1655 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1656
1657 if (clock < 200000) {
1658 u32 temp;
1659 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1660 /* workaround for 160Mhz:
1661 1) program 0x4600c bits 15:0 = 0x8124
1662 2) program 0x46010 bit 0 = 1
1663 3) program 0x46034 bit 24 = 1
1664 4) program 0x64000 bit 14 = 1
1665 */
1666 temp = I915_READ(0x4600c);
1667 temp &= 0xffff0000;
1668 I915_WRITE(0x4600c, temp | 0x8124);
1669
1670 temp = I915_READ(0x46010);
1671 I915_WRITE(0x46010, temp | 1);
1672
1673 temp = I915_READ(0x46034);
1674 I915_WRITE(0x46034, temp | (1 << 24));
1675 } else {
1676 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1677 }
1678 I915_WRITE(DP_A, dpa_ctl);
1679
1680 POSTING_READ(DP_A);
1681 udelay(500);
1682 }
1683
1684 /* The FDI link training functions for ILK/Ibexpeak. */
1685 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1686 {
1687 struct drm_device *dev = crtc->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1690 int pipe = intel_crtc->pipe;
1691 u32 reg, temp, tries;
1692
1693 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1694 for train result */
1695 reg = FDI_RX_IMR(pipe);
1696 temp = I915_READ(reg);
1697 temp &= ~FDI_RX_SYMBOL_LOCK;
1698 temp &= ~FDI_RX_BIT_LOCK;
1699 I915_WRITE(reg, temp);
1700 I915_READ(reg);
1701 udelay(150);
1702
1703 /* enable CPU FDI TX and PCH FDI RX */
1704 reg = FDI_TX_CTL(pipe);
1705 temp = I915_READ(reg);
1706 temp &= ~(7 << 19);
1707 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1708 temp &= ~FDI_LINK_TRAIN_NONE;
1709 temp |= FDI_LINK_TRAIN_PATTERN_1;
1710 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1711
1712 reg = FDI_RX_CTL(pipe);
1713 temp = I915_READ(reg);
1714 temp &= ~FDI_LINK_TRAIN_NONE;
1715 temp |= FDI_LINK_TRAIN_PATTERN_1;
1716 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1717
1718 POSTING_READ(reg);
1719 udelay(150);
1720
1721 reg = FDI_RX_IIR(pipe);
1722 for (tries = 0; tries < 5; tries++) {
1723 temp = I915_READ(reg);
1724 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1725
1726 if ((temp & FDI_RX_BIT_LOCK)) {
1727 DRM_DEBUG_KMS("FDI train 1 done.\n");
1728 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1729 break;
1730 }
1731 }
1732 if (tries == 5)
1733 DRM_ERROR("FDI train 1 fail!\n");
1734
1735 /* Train 2 */
1736 reg = FDI_TX_CTL(pipe);
1737 temp = I915_READ(reg);
1738 temp &= ~FDI_LINK_TRAIN_NONE;
1739 temp |= FDI_LINK_TRAIN_PATTERN_2;
1740 I915_WRITE(reg, temp);
1741
1742 reg = FDI_RX_CTL(pipe);
1743 temp = I915_READ(reg);
1744 temp &= ~FDI_LINK_TRAIN_NONE;
1745 temp |= FDI_LINK_TRAIN_PATTERN_2;
1746 I915_WRITE(reg, temp);
1747
1748 POSTING_READ(reg);
1749 udelay(150);
1750
1751 reg = FDI_RX_IIR(pipe);
1752 for (tries = 0; tries < 5; tries++) {
1753 temp = I915_READ(reg);
1754 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1755
1756 if (temp & FDI_RX_SYMBOL_LOCK) {
1757 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1758 DRM_DEBUG_KMS("FDI train 2 done.\n");
1759 break;
1760 }
1761 }
1762 if (tries == 5)
1763 DRM_ERROR("FDI train 2 fail!\n");
1764
1765 DRM_DEBUG_KMS("FDI train done\n");
1766 }
1767
1768 static const int const snb_b_fdi_train_param [] = {
1769 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1770 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1771 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1772 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1773 };
1774
1775 /* The FDI link training functions for SNB/Cougarpoint. */
1776 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1777 {
1778 struct drm_device *dev = crtc->dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1781 int pipe = intel_crtc->pipe;
1782 u32 reg, temp, i;
1783
1784 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1785 for train result */
1786 reg = FDI_RX_IMR(pipe);
1787 temp = I915_READ(reg);
1788 temp &= ~FDI_RX_SYMBOL_LOCK;
1789 temp &= ~FDI_RX_BIT_LOCK;
1790 I915_WRITE(reg, temp);
1791
1792 POSTING_READ(reg);
1793 udelay(150);
1794
1795 /* enable CPU FDI TX and PCH FDI RX */
1796 reg = FDI_TX_CTL(pipe);
1797 temp = I915_READ(reg);
1798 temp &= ~(7 << 19);
1799 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1800 temp &= ~FDI_LINK_TRAIN_NONE;
1801 temp |= FDI_LINK_TRAIN_PATTERN_1;
1802 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1803 /* SNB-B */
1804 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1805 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1806
1807 reg = FDI_RX_CTL(pipe);
1808 temp = I915_READ(reg);
1809 if (HAS_PCH_CPT(dev)) {
1810 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1811 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1812 } else {
1813 temp &= ~FDI_LINK_TRAIN_NONE;
1814 temp |= FDI_LINK_TRAIN_PATTERN_1;
1815 }
1816 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1817
1818 POSTING_READ(reg);
1819 udelay(150);
1820
1821 for (i = 0; i < 4; i++ ) {
1822 reg = FDI_TX_CTL(pipe);
1823 temp = I915_READ(reg);
1824 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1825 temp |= snb_b_fdi_train_param[i];
1826 I915_WRITE(reg, temp);
1827
1828 POSTING_READ(reg);
1829 udelay(500);
1830
1831 reg = FDI_RX_IIR(pipe);
1832 temp = I915_READ(reg);
1833 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1834
1835 if (temp & FDI_RX_BIT_LOCK) {
1836 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1837 DRM_DEBUG_KMS("FDI train 1 done.\n");
1838 break;
1839 }
1840 }
1841 if (i == 4)
1842 DRM_ERROR("FDI train 1 fail!\n");
1843
1844 /* Train 2 */
1845 reg = FDI_TX_CTL(pipe);
1846 temp = I915_READ(reg);
1847 temp &= ~FDI_LINK_TRAIN_NONE;
1848 temp |= FDI_LINK_TRAIN_PATTERN_2;
1849 if (IS_GEN6(dev)) {
1850 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1851 /* SNB-B */
1852 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1853 }
1854 I915_WRITE(reg, temp);
1855
1856 reg = FDI_RX_CTL(pipe);
1857 temp = I915_READ(reg);
1858 if (HAS_PCH_CPT(dev)) {
1859 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1860 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1861 } else {
1862 temp &= ~FDI_LINK_TRAIN_NONE;
1863 temp |= FDI_LINK_TRAIN_PATTERN_2;
1864 }
1865 I915_WRITE(reg, temp);
1866
1867 POSTING_READ(reg);
1868 udelay(150);
1869
1870 for (i = 0; i < 4; i++ ) {
1871 reg = FDI_TX_CTL(pipe);
1872 temp = I915_READ(reg);
1873 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1874 temp |= snb_b_fdi_train_param[i];
1875 I915_WRITE(reg, temp);
1876
1877 POSTING_READ(reg);
1878 udelay(500);
1879
1880 reg = FDI_RX_IIR(pipe);
1881 temp = I915_READ(reg);
1882 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1883
1884 if (temp & FDI_RX_SYMBOL_LOCK) {
1885 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1886 DRM_DEBUG_KMS("FDI train 2 done.\n");
1887 break;
1888 }
1889 }
1890 if (i == 4)
1891 DRM_ERROR("FDI train 2 fail!\n");
1892
1893 DRM_DEBUG_KMS("FDI train done.\n");
1894 }
1895
1896 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1897 {
1898 struct drm_device *dev = crtc->dev;
1899 struct drm_i915_private *dev_priv = dev->dev_private;
1900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1901 int pipe = intel_crtc->pipe;
1902 u32 reg, temp;
1903
1904 /* Write the TU size bits so error detection works */
1905 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1906 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1907
1908 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1909 reg = FDI_RX_CTL(pipe);
1910 temp = I915_READ(reg);
1911 temp &= ~((0x7 << 19) | (0x7 << 16));
1912 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1913 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1914 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1915
1916 POSTING_READ(reg);
1917 udelay(200);
1918
1919 /* Switch from Rawclk to PCDclk */
1920 temp = I915_READ(reg);
1921 I915_WRITE(reg, temp | FDI_PCDCLK);
1922
1923 POSTING_READ(reg);
1924 udelay(200);
1925
1926 /* Enable CPU FDI TX PLL, always on for Ironlake */
1927 reg = FDI_TX_CTL(pipe);
1928 temp = I915_READ(reg);
1929 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1930 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1931
1932 POSTING_READ(reg);
1933 udelay(100);
1934 }
1935 }
1936
1937 static void intel_flush_display_plane(struct drm_device *dev,
1938 int plane)
1939 {
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 u32 reg = DSPADDR(plane);
1942 I915_WRITE(reg, I915_READ(reg));
1943 }
1944
1945 /*
1946 * When we disable a pipe, we need to clear any pending scanline wait events
1947 * to avoid hanging the ring, which we assume we are waiting on.
1948 */
1949 static void intel_clear_scanline_wait(struct drm_device *dev)
1950 {
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 u32 tmp;
1953
1954 if (IS_GEN2(dev))
1955 /* Can't break the hang on i8xx */
1956 return;
1957
1958 tmp = I915_READ(PRB0_CTL);
1959 if (tmp & RING_WAIT) {
1960 I915_WRITE(PRB0_CTL, tmp);
1961 POSTING_READ(PRB0_CTL);
1962 }
1963 }
1964
1965 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
1966 {
1967 struct drm_i915_gem_object *obj_priv;
1968 struct drm_i915_private *dev_priv;
1969
1970 if (crtc->fb == NULL)
1971 return;
1972
1973 obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
1974 dev_priv = crtc->dev->dev_private;
1975 wait_event(dev_priv->pending_flip_queue,
1976 atomic_read(&obj_priv->pending_flip) == 0);
1977 }
1978
1979 static void ironlake_crtc_enable(struct drm_crtc *crtc)
1980 {
1981 struct drm_device *dev = crtc->dev;
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1984 int pipe = intel_crtc->pipe;
1985 int plane = intel_crtc->plane;
1986 u32 reg, temp;
1987
1988 if (intel_crtc->active)
1989 return;
1990
1991 intel_crtc->active = true;
1992 intel_update_watermarks(dev);
1993
1994 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1995 temp = I915_READ(PCH_LVDS);
1996 if ((temp & LVDS_PORT_EN) == 0)
1997 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1998 }
1999
2000 ironlake_fdi_enable(crtc);
2001
2002 /* Enable panel fitting for LVDS */
2003 if (dev_priv->pch_pf_size &&
2004 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
2005 || HAS_eDP || intel_pch_has_edp(crtc))) {
2006 /* Force use of hard-coded filter coefficients
2007 * as some pre-programmed values are broken,
2008 * e.g. x201.
2009 */
2010 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2011 PF_ENABLE | PF_FILTER_MED_3x3);
2012 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2013 dev_priv->pch_pf_pos);
2014 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2015 dev_priv->pch_pf_size);
2016 }
2017
2018 /* Enable CPU pipe */
2019 reg = PIPECONF(pipe);
2020 temp = I915_READ(reg);
2021 if ((temp & PIPECONF_ENABLE) == 0) {
2022 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2023 POSTING_READ(reg);
2024 udelay(100);
2025 }
2026
2027 /* configure and enable CPU plane */
2028 reg = DSPCNTR(plane);
2029 temp = I915_READ(reg);
2030 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2031 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2032 intel_flush_display_plane(dev, plane);
2033 }
2034
2035 /* For PCH output, training FDI link */
2036 if (IS_GEN6(dev))
2037 gen6_fdi_link_train(crtc);
2038 else
2039 ironlake_fdi_link_train(crtc);
2040
2041 /* enable PCH DPLL */
2042 reg = PCH_DPLL(pipe);
2043 temp = I915_READ(reg);
2044 if ((temp & DPLL_VCO_ENABLE) == 0) {
2045 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2046 POSTING_READ(reg);
2047 udelay(200);
2048 }
2049
2050 if (HAS_PCH_CPT(dev)) {
2051 /* Be sure PCH DPLL SEL is set */
2052 temp = I915_READ(PCH_DPLL_SEL);
2053 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2054 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2055 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2056 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2057 I915_WRITE(PCH_DPLL_SEL, temp);
2058 }
2059
2060 /* set transcoder timing */
2061 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2062 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2063 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2064
2065 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2066 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2067 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2068
2069 /* enable normal train */
2070 reg = FDI_TX_CTL(pipe);
2071 temp = I915_READ(reg);
2072 temp &= ~FDI_LINK_TRAIN_NONE;
2073 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2074 I915_WRITE(reg, temp);
2075
2076 reg = FDI_RX_CTL(pipe);
2077 temp = I915_READ(reg);
2078 if (HAS_PCH_CPT(dev)) {
2079 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2080 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2081 } else {
2082 temp &= ~FDI_LINK_TRAIN_NONE;
2083 temp |= FDI_LINK_TRAIN_NONE;
2084 }
2085 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2086
2087 /* wait one idle pattern time */
2088 POSTING_READ(reg);
2089 udelay(100);
2090
2091 /* For PCH DP, enable TRANS_DP_CTL */
2092 if (HAS_PCH_CPT(dev) &&
2093 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2094 reg = TRANS_DP_CTL(pipe);
2095 temp = I915_READ(reg);
2096 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2097 TRANS_DP_SYNC_MASK);
2098 temp |= (TRANS_DP_OUTPUT_ENABLE |
2099 TRANS_DP_ENH_FRAMING);
2100
2101 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2102 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2103 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2104 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2105
2106 switch (intel_trans_dp_port_sel(crtc)) {
2107 case PCH_DP_B:
2108 temp |= TRANS_DP_PORT_SEL_B;
2109 break;
2110 case PCH_DP_C:
2111 temp |= TRANS_DP_PORT_SEL_C;
2112 break;
2113 case PCH_DP_D:
2114 temp |= TRANS_DP_PORT_SEL_D;
2115 break;
2116 default:
2117 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2118 temp |= TRANS_DP_PORT_SEL_B;
2119 break;
2120 }
2121
2122 I915_WRITE(reg, temp);
2123 }
2124
2125 /* enable PCH transcoder */
2126 reg = TRANSCONF(pipe);
2127 temp = I915_READ(reg);
2128 /*
2129 * make the BPC in transcoder be consistent with
2130 * that in pipeconf reg.
2131 */
2132 temp &= ~PIPE_BPC_MASK;
2133 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2134 I915_WRITE(reg, temp | TRANS_ENABLE);
2135 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2136 DRM_ERROR("failed to enable transcoder\n");
2137
2138 intel_crtc_load_lut(crtc);
2139 intel_update_fbc(dev);
2140 intel_crtc_update_cursor(crtc, true);
2141 }
2142
2143 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2144 {
2145 struct drm_device *dev = crtc->dev;
2146 struct drm_i915_private *dev_priv = dev->dev_private;
2147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2148 int pipe = intel_crtc->pipe;
2149 int plane = intel_crtc->plane;
2150 u32 reg, temp;
2151
2152 if (!intel_crtc->active)
2153 return;
2154
2155 intel_crtc_wait_for_pending_flips(crtc);
2156 drm_vblank_off(dev, pipe);
2157 intel_crtc_update_cursor(crtc, false);
2158
2159 /* Disable display plane */
2160 reg = DSPCNTR(plane);
2161 temp = I915_READ(reg);
2162 if (temp & DISPLAY_PLANE_ENABLE) {
2163 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2164 intel_flush_display_plane(dev, plane);
2165 }
2166
2167 if (dev_priv->cfb_plane == plane &&
2168 dev_priv->display.disable_fbc)
2169 dev_priv->display.disable_fbc(dev);
2170
2171 /* disable cpu pipe, disable after all planes disabled */
2172 reg = PIPECONF(pipe);
2173 temp = I915_READ(reg);
2174 if (temp & PIPECONF_ENABLE) {
2175 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2176 /* wait for cpu pipe off, pipe state */
2177 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 50))
2178 DRM_ERROR("failed to turn off cpu pipe\n");
2179 }
2180
2181 /* Disable PF */
2182 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2183 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2184
2185 /* disable CPU FDI tx and PCH FDI rx */
2186 reg = FDI_TX_CTL(pipe);
2187 temp = I915_READ(reg);
2188 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2189 POSTING_READ(reg);
2190
2191 reg = FDI_RX_CTL(pipe);
2192 temp = I915_READ(reg);
2193 temp &= ~(0x7 << 16);
2194 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2195 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2196
2197 POSTING_READ(reg);
2198 udelay(100);
2199
2200 /* still set train pattern 1 */
2201 reg = FDI_TX_CTL(pipe);
2202 temp = I915_READ(reg);
2203 temp &= ~FDI_LINK_TRAIN_NONE;
2204 temp |= FDI_LINK_TRAIN_PATTERN_1;
2205 I915_WRITE(reg, temp);
2206
2207 reg = FDI_RX_CTL(pipe);
2208 temp = I915_READ(reg);
2209 if (HAS_PCH_CPT(dev)) {
2210 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2211 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2212 } else {
2213 temp &= ~FDI_LINK_TRAIN_NONE;
2214 temp |= FDI_LINK_TRAIN_PATTERN_1;
2215 }
2216 /* BPC in FDI rx is consistent with that in PIPECONF */
2217 temp &= ~(0x07 << 16);
2218 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2219 I915_WRITE(reg, temp);
2220
2221 POSTING_READ(reg);
2222 udelay(100);
2223
2224 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2225 temp = I915_READ(PCH_LVDS);
2226 if (temp & LVDS_PORT_EN) {
2227 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2228 POSTING_READ(PCH_LVDS);
2229 udelay(100);
2230 }
2231 }
2232
2233 /* disable PCH transcoder */
2234 reg = TRANSCONF(plane);
2235 temp = I915_READ(reg);
2236 if (temp & TRANS_ENABLE) {
2237 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2238 /* wait for PCH transcoder off, transcoder state */
2239 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2240 DRM_ERROR("failed to disable transcoder\n");
2241 }
2242
2243 if (HAS_PCH_CPT(dev)) {
2244 /* disable TRANS_DP_CTL */
2245 reg = TRANS_DP_CTL(pipe);
2246 temp = I915_READ(reg);
2247 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2248 I915_WRITE(reg, temp);
2249
2250 /* disable DPLL_SEL */
2251 temp = I915_READ(PCH_DPLL_SEL);
2252 if (pipe == 0)
2253 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2254 else
2255 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2256 I915_WRITE(PCH_DPLL_SEL, temp);
2257 }
2258
2259 /* disable PCH DPLL */
2260 reg = PCH_DPLL(pipe);
2261 temp = I915_READ(reg);
2262 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2263
2264 /* Switch from PCDclk to Rawclk */
2265 reg = FDI_RX_CTL(pipe);
2266 temp = I915_READ(reg);
2267 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2268
2269 /* Disable CPU FDI TX PLL */
2270 reg = FDI_TX_CTL(pipe);
2271 temp = I915_READ(reg);
2272 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2273
2274 POSTING_READ(reg);
2275 udelay(100);
2276
2277 reg = FDI_RX_CTL(pipe);
2278 temp = I915_READ(reg);
2279 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2280
2281 /* Wait for the clocks to turn off. */
2282 POSTING_READ(reg);
2283 udelay(100);
2284
2285 intel_crtc->active = false;
2286 intel_update_watermarks(dev);
2287 intel_update_fbc(dev);
2288 intel_clear_scanline_wait(dev);
2289 }
2290
2291 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2292 {
2293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294 int pipe = intel_crtc->pipe;
2295 int plane = intel_crtc->plane;
2296
2297 /* XXX: When our outputs are all unaware of DPMS modes other than off
2298 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2299 */
2300 switch (mode) {
2301 case DRM_MODE_DPMS_ON:
2302 case DRM_MODE_DPMS_STANDBY:
2303 case DRM_MODE_DPMS_SUSPEND:
2304 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2305 ironlake_crtc_enable(crtc);
2306 break;
2307
2308 case DRM_MODE_DPMS_OFF:
2309 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2310 ironlake_crtc_disable(crtc);
2311 break;
2312 }
2313 }
2314
2315 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2316 {
2317 if (!enable && intel_crtc->overlay) {
2318 struct drm_device *dev = intel_crtc->base.dev;
2319
2320 mutex_lock(&dev->struct_mutex);
2321 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2322 mutex_unlock(&dev->struct_mutex);
2323 }
2324
2325 /* Let userspace switch the overlay on again. In most cases userspace
2326 * has to recompute where to put it anyway.
2327 */
2328 }
2329
2330 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2331 {
2332 struct drm_device *dev = crtc->dev;
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335 int pipe = intel_crtc->pipe;
2336 int plane = intel_crtc->plane;
2337 u32 reg, temp;
2338
2339 if (intel_crtc->active)
2340 return;
2341
2342 intel_crtc->active = true;
2343 intel_update_watermarks(dev);
2344
2345 /* Enable the DPLL */
2346 reg = DPLL(pipe);
2347 temp = I915_READ(reg);
2348 if ((temp & DPLL_VCO_ENABLE) == 0) {
2349 I915_WRITE(reg, temp);
2350
2351 /* Wait for the clocks to stabilize. */
2352 POSTING_READ(reg);
2353 udelay(150);
2354
2355 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2356
2357 /* Wait for the clocks to stabilize. */
2358 POSTING_READ(reg);
2359 udelay(150);
2360
2361 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2362
2363 /* Wait for the clocks to stabilize. */
2364 POSTING_READ(reg);
2365 udelay(150);
2366 }
2367
2368 /* Enable the pipe */
2369 reg = PIPECONF(pipe);
2370 temp = I915_READ(reg);
2371 if ((temp & PIPECONF_ENABLE) == 0)
2372 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2373
2374 /* Enable the plane */
2375 reg = DSPCNTR(plane);
2376 temp = I915_READ(reg);
2377 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2378 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2379 intel_flush_display_plane(dev, plane);
2380 }
2381
2382 intel_crtc_load_lut(crtc);
2383 intel_update_fbc(dev);
2384
2385 /* Give the overlay scaler a chance to enable if it's on this pipe */
2386 intel_crtc_dpms_overlay(intel_crtc, true);
2387 intel_crtc_update_cursor(crtc, true);
2388 }
2389
2390 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2391 {
2392 struct drm_device *dev = crtc->dev;
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2395 int pipe = intel_crtc->pipe;
2396 int plane = intel_crtc->plane;
2397 u32 reg, temp;
2398
2399 if (!intel_crtc->active)
2400 return;
2401
2402 /* Give the overlay scaler a chance to disable if it's on this pipe */
2403 intel_crtc_wait_for_pending_flips(crtc);
2404 drm_vblank_off(dev, pipe);
2405 intel_crtc_dpms_overlay(intel_crtc, false);
2406 intel_crtc_update_cursor(crtc, false);
2407
2408 if (dev_priv->cfb_plane == plane &&
2409 dev_priv->display.disable_fbc)
2410 dev_priv->display.disable_fbc(dev);
2411
2412 /* Disable display plane */
2413 reg = DSPCNTR(plane);
2414 temp = I915_READ(reg);
2415 if (temp & DISPLAY_PLANE_ENABLE) {
2416 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2417 /* Flush the plane changes */
2418 intel_flush_display_plane(dev, plane);
2419
2420 /* Wait for vblank for the disable to take effect */
2421 if (IS_GEN2(dev))
2422 intel_wait_for_vblank(dev, pipe);
2423 }
2424
2425 /* Don't disable pipe A or pipe A PLLs if needed */
2426 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2427 goto done;
2428
2429 /* Next, disable display pipes */
2430 reg = PIPECONF(pipe);
2431 temp = I915_READ(reg);
2432 if (temp & PIPECONF_ENABLE) {
2433 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2434
2435 /* Wait for the pipe to turn off */
2436 POSTING_READ(reg);
2437 intel_wait_for_pipe_off(dev, pipe);
2438 }
2439
2440 reg = DPLL(pipe);
2441 temp = I915_READ(reg);
2442 if (temp & DPLL_VCO_ENABLE) {
2443 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2444
2445 /* Wait for the clocks to turn off. */
2446 POSTING_READ(reg);
2447 udelay(150);
2448 }
2449
2450 done:
2451 intel_crtc->active = false;
2452 intel_update_fbc(dev);
2453 intel_update_watermarks(dev);
2454 intel_clear_scanline_wait(dev);
2455 }
2456
2457 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2458 {
2459 /* XXX: When our outputs are all unaware of DPMS modes other than off
2460 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2461 */
2462 switch (mode) {
2463 case DRM_MODE_DPMS_ON:
2464 case DRM_MODE_DPMS_STANDBY:
2465 case DRM_MODE_DPMS_SUSPEND:
2466 i9xx_crtc_enable(crtc);
2467 break;
2468 case DRM_MODE_DPMS_OFF:
2469 i9xx_crtc_disable(crtc);
2470 break;
2471 }
2472 }
2473
2474 /**
2475 * Sets the power management mode of the pipe and plane.
2476 */
2477 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2478 {
2479 struct drm_device *dev = crtc->dev;
2480 struct drm_i915_private *dev_priv = dev->dev_private;
2481 struct drm_i915_master_private *master_priv;
2482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2483 int pipe = intel_crtc->pipe;
2484 bool enabled;
2485
2486 if (intel_crtc->dpms_mode == mode)
2487 return;
2488
2489 intel_crtc->dpms_mode = mode;
2490
2491 dev_priv->display.dpms(crtc, mode);
2492
2493 if (!dev->primary->master)
2494 return;
2495
2496 master_priv = dev->primary->master->driver_priv;
2497 if (!master_priv->sarea_priv)
2498 return;
2499
2500 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2501
2502 switch (pipe) {
2503 case 0:
2504 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2505 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2506 break;
2507 case 1:
2508 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2509 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2510 break;
2511 default:
2512 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2513 break;
2514 }
2515 }
2516
2517 static void intel_crtc_disable(struct drm_crtc *crtc)
2518 {
2519 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2520 struct drm_device *dev = crtc->dev;
2521
2522 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2523
2524 if (crtc->fb) {
2525 mutex_lock(&dev->struct_mutex);
2526 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2527 mutex_unlock(&dev->struct_mutex);
2528 }
2529 }
2530
2531 /* Prepare for a mode set.
2532 *
2533 * Note we could be a lot smarter here. We need to figure out which outputs
2534 * will be enabled, which disabled (in short, how the config will changes)
2535 * and perform the minimum necessary steps to accomplish that, e.g. updating
2536 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2537 * panel fitting is in the proper state, etc.
2538 */
2539 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2540 {
2541 i9xx_crtc_disable(crtc);
2542 }
2543
2544 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2545 {
2546 i9xx_crtc_enable(crtc);
2547 }
2548
2549 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2550 {
2551 ironlake_crtc_disable(crtc);
2552 }
2553
2554 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2555 {
2556 ironlake_crtc_enable(crtc);
2557 }
2558
2559 void intel_encoder_prepare (struct drm_encoder *encoder)
2560 {
2561 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2562 /* lvds has its own version of prepare see intel_lvds_prepare */
2563 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2564 }
2565
2566 void intel_encoder_commit (struct drm_encoder *encoder)
2567 {
2568 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2569 /* lvds has its own version of commit see intel_lvds_commit */
2570 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2571 }
2572
2573 void intel_encoder_destroy(struct drm_encoder *encoder)
2574 {
2575 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2576
2577 drm_encoder_cleanup(encoder);
2578 kfree(intel_encoder);
2579 }
2580
2581 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2582 struct drm_display_mode *mode,
2583 struct drm_display_mode *adjusted_mode)
2584 {
2585 struct drm_device *dev = crtc->dev;
2586
2587 if (HAS_PCH_SPLIT(dev)) {
2588 /* FDI link clock is fixed at 2.7G */
2589 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2590 return false;
2591 }
2592
2593 /* XXX some encoders set the crtcinfo, others don't.
2594 * Obviously we need some form of conflict resolution here...
2595 */
2596 if (adjusted_mode->crtc_htotal == 0)
2597 drm_mode_set_crtcinfo(adjusted_mode, 0);
2598
2599 return true;
2600 }
2601
2602 static int i945_get_display_clock_speed(struct drm_device *dev)
2603 {
2604 return 400000;
2605 }
2606
2607 static int i915_get_display_clock_speed(struct drm_device *dev)
2608 {
2609 return 333000;
2610 }
2611
2612 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2613 {
2614 return 200000;
2615 }
2616
2617 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2618 {
2619 u16 gcfgc = 0;
2620
2621 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2622
2623 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2624 return 133000;
2625 else {
2626 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2627 case GC_DISPLAY_CLOCK_333_MHZ:
2628 return 333000;
2629 default:
2630 case GC_DISPLAY_CLOCK_190_200_MHZ:
2631 return 190000;
2632 }
2633 }
2634 }
2635
2636 static int i865_get_display_clock_speed(struct drm_device *dev)
2637 {
2638 return 266000;
2639 }
2640
2641 static int i855_get_display_clock_speed(struct drm_device *dev)
2642 {
2643 u16 hpllcc = 0;
2644 /* Assume that the hardware is in the high speed state. This
2645 * should be the default.
2646 */
2647 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2648 case GC_CLOCK_133_200:
2649 case GC_CLOCK_100_200:
2650 return 200000;
2651 case GC_CLOCK_166_250:
2652 return 250000;
2653 case GC_CLOCK_100_133:
2654 return 133000;
2655 }
2656
2657 /* Shouldn't happen */
2658 return 0;
2659 }
2660
2661 static int i830_get_display_clock_speed(struct drm_device *dev)
2662 {
2663 return 133000;
2664 }
2665
2666 struct fdi_m_n {
2667 u32 tu;
2668 u32 gmch_m;
2669 u32 gmch_n;
2670 u32 link_m;
2671 u32 link_n;
2672 };
2673
2674 static void
2675 fdi_reduce_ratio(u32 *num, u32 *den)
2676 {
2677 while (*num > 0xffffff || *den > 0xffffff) {
2678 *num >>= 1;
2679 *den >>= 1;
2680 }
2681 }
2682
2683 #define DATA_N 0x800000
2684 #define LINK_N 0x80000
2685
2686 static void
2687 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2688 int link_clock, struct fdi_m_n *m_n)
2689 {
2690 u64 temp;
2691
2692 m_n->tu = 64; /* default size */
2693
2694 temp = (u64) DATA_N * pixel_clock;
2695 temp = div_u64(temp, link_clock);
2696 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2697 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2698 m_n->gmch_n = DATA_N;
2699 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2700
2701 temp = (u64) LINK_N * pixel_clock;
2702 m_n->link_m = div_u64(temp, link_clock);
2703 m_n->link_n = LINK_N;
2704 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2705 }
2706
2707
2708 struct intel_watermark_params {
2709 unsigned long fifo_size;
2710 unsigned long max_wm;
2711 unsigned long default_wm;
2712 unsigned long guard_size;
2713 unsigned long cacheline_size;
2714 };
2715
2716 /* Pineview has different values for various configs */
2717 static struct intel_watermark_params pineview_display_wm = {
2718 PINEVIEW_DISPLAY_FIFO,
2719 PINEVIEW_MAX_WM,
2720 PINEVIEW_DFT_WM,
2721 PINEVIEW_GUARD_WM,
2722 PINEVIEW_FIFO_LINE_SIZE
2723 };
2724 static struct intel_watermark_params pineview_display_hplloff_wm = {
2725 PINEVIEW_DISPLAY_FIFO,
2726 PINEVIEW_MAX_WM,
2727 PINEVIEW_DFT_HPLLOFF_WM,
2728 PINEVIEW_GUARD_WM,
2729 PINEVIEW_FIFO_LINE_SIZE
2730 };
2731 static struct intel_watermark_params pineview_cursor_wm = {
2732 PINEVIEW_CURSOR_FIFO,
2733 PINEVIEW_CURSOR_MAX_WM,
2734 PINEVIEW_CURSOR_DFT_WM,
2735 PINEVIEW_CURSOR_GUARD_WM,
2736 PINEVIEW_FIFO_LINE_SIZE,
2737 };
2738 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2739 PINEVIEW_CURSOR_FIFO,
2740 PINEVIEW_CURSOR_MAX_WM,
2741 PINEVIEW_CURSOR_DFT_WM,
2742 PINEVIEW_CURSOR_GUARD_WM,
2743 PINEVIEW_FIFO_LINE_SIZE
2744 };
2745 static struct intel_watermark_params g4x_wm_info = {
2746 G4X_FIFO_SIZE,
2747 G4X_MAX_WM,
2748 G4X_MAX_WM,
2749 2,
2750 G4X_FIFO_LINE_SIZE,
2751 };
2752 static struct intel_watermark_params g4x_cursor_wm_info = {
2753 I965_CURSOR_FIFO,
2754 I965_CURSOR_MAX_WM,
2755 I965_CURSOR_DFT_WM,
2756 2,
2757 G4X_FIFO_LINE_SIZE,
2758 };
2759 static struct intel_watermark_params i965_cursor_wm_info = {
2760 I965_CURSOR_FIFO,
2761 I965_CURSOR_MAX_WM,
2762 I965_CURSOR_DFT_WM,
2763 2,
2764 I915_FIFO_LINE_SIZE,
2765 };
2766 static struct intel_watermark_params i945_wm_info = {
2767 I945_FIFO_SIZE,
2768 I915_MAX_WM,
2769 1,
2770 2,
2771 I915_FIFO_LINE_SIZE
2772 };
2773 static struct intel_watermark_params i915_wm_info = {
2774 I915_FIFO_SIZE,
2775 I915_MAX_WM,
2776 1,
2777 2,
2778 I915_FIFO_LINE_SIZE
2779 };
2780 static struct intel_watermark_params i855_wm_info = {
2781 I855GM_FIFO_SIZE,
2782 I915_MAX_WM,
2783 1,
2784 2,
2785 I830_FIFO_LINE_SIZE
2786 };
2787 static struct intel_watermark_params i830_wm_info = {
2788 I830_FIFO_SIZE,
2789 I915_MAX_WM,
2790 1,
2791 2,
2792 I830_FIFO_LINE_SIZE
2793 };
2794
2795 static struct intel_watermark_params ironlake_display_wm_info = {
2796 ILK_DISPLAY_FIFO,
2797 ILK_DISPLAY_MAXWM,
2798 ILK_DISPLAY_DFTWM,
2799 2,
2800 ILK_FIFO_LINE_SIZE
2801 };
2802
2803 static struct intel_watermark_params ironlake_cursor_wm_info = {
2804 ILK_CURSOR_FIFO,
2805 ILK_CURSOR_MAXWM,
2806 ILK_CURSOR_DFTWM,
2807 2,
2808 ILK_FIFO_LINE_SIZE
2809 };
2810
2811 static struct intel_watermark_params ironlake_display_srwm_info = {
2812 ILK_DISPLAY_SR_FIFO,
2813 ILK_DISPLAY_MAX_SRWM,
2814 ILK_DISPLAY_DFT_SRWM,
2815 2,
2816 ILK_FIFO_LINE_SIZE
2817 };
2818
2819 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2820 ILK_CURSOR_SR_FIFO,
2821 ILK_CURSOR_MAX_SRWM,
2822 ILK_CURSOR_DFT_SRWM,
2823 2,
2824 ILK_FIFO_LINE_SIZE
2825 };
2826
2827 /**
2828 * intel_calculate_wm - calculate watermark level
2829 * @clock_in_khz: pixel clock
2830 * @wm: chip FIFO params
2831 * @pixel_size: display pixel size
2832 * @latency_ns: memory latency for the platform
2833 *
2834 * Calculate the watermark level (the level at which the display plane will
2835 * start fetching from memory again). Each chip has a different display
2836 * FIFO size and allocation, so the caller needs to figure that out and pass
2837 * in the correct intel_watermark_params structure.
2838 *
2839 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2840 * on the pixel size. When it reaches the watermark level, it'll start
2841 * fetching FIFO line sized based chunks from memory until the FIFO fills
2842 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2843 * will occur, and a display engine hang could result.
2844 */
2845 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2846 struct intel_watermark_params *wm,
2847 int pixel_size,
2848 unsigned long latency_ns)
2849 {
2850 long entries_required, wm_size;
2851
2852 /*
2853 * Note: we need to make sure we don't overflow for various clock &
2854 * latency values.
2855 * clocks go from a few thousand to several hundred thousand.
2856 * latency is usually a few thousand
2857 */
2858 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2859 1000;
2860 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2861
2862 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2863
2864 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2865
2866 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2867
2868 /* Don't promote wm_size to unsigned... */
2869 if (wm_size > (long)wm->max_wm)
2870 wm_size = wm->max_wm;
2871 if (wm_size <= 0)
2872 wm_size = wm->default_wm;
2873 return wm_size;
2874 }
2875
2876 struct cxsr_latency {
2877 int is_desktop;
2878 int is_ddr3;
2879 unsigned long fsb_freq;
2880 unsigned long mem_freq;
2881 unsigned long display_sr;
2882 unsigned long display_hpll_disable;
2883 unsigned long cursor_sr;
2884 unsigned long cursor_hpll_disable;
2885 };
2886
2887 static const struct cxsr_latency cxsr_latency_table[] = {
2888 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2889 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2890 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2891 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2892 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2893
2894 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2895 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2896 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2897 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2898 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2899
2900 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2901 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2902 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2903 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2904 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2905
2906 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2907 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2908 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2909 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2910 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2911
2912 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2913 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2914 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2915 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2916 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2917
2918 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2919 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2920 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2921 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2922 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2923 };
2924
2925 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2926 int is_ddr3,
2927 int fsb,
2928 int mem)
2929 {
2930 const struct cxsr_latency *latency;
2931 int i;
2932
2933 if (fsb == 0 || mem == 0)
2934 return NULL;
2935
2936 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2937 latency = &cxsr_latency_table[i];
2938 if (is_desktop == latency->is_desktop &&
2939 is_ddr3 == latency->is_ddr3 &&
2940 fsb == latency->fsb_freq && mem == latency->mem_freq)
2941 return latency;
2942 }
2943
2944 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2945
2946 return NULL;
2947 }
2948
2949 static void pineview_disable_cxsr(struct drm_device *dev)
2950 {
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952
2953 /* deactivate cxsr */
2954 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2955 }
2956
2957 /*
2958 * Latency for FIFO fetches is dependent on several factors:
2959 * - memory configuration (speed, channels)
2960 * - chipset
2961 * - current MCH state
2962 * It can be fairly high in some situations, so here we assume a fairly
2963 * pessimal value. It's a tradeoff between extra memory fetches (if we
2964 * set this value too high, the FIFO will fetch frequently to stay full)
2965 * and power consumption (set it too low to save power and we might see
2966 * FIFO underruns and display "flicker").
2967 *
2968 * A value of 5us seems to be a good balance; safe for very low end
2969 * platforms but not overly aggressive on lower latency configs.
2970 */
2971 static const int latency_ns = 5000;
2972
2973 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2974 {
2975 struct drm_i915_private *dev_priv = dev->dev_private;
2976 uint32_t dsparb = I915_READ(DSPARB);
2977 int size;
2978
2979 size = dsparb & 0x7f;
2980 if (plane)
2981 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2982
2983 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2984 plane ? "B" : "A", size);
2985
2986 return size;
2987 }
2988
2989 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2990 {
2991 struct drm_i915_private *dev_priv = dev->dev_private;
2992 uint32_t dsparb = I915_READ(DSPARB);
2993 int size;
2994
2995 size = dsparb & 0x1ff;
2996 if (plane)
2997 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2998 size >>= 1; /* Convert to cachelines */
2999
3000 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3001 plane ? "B" : "A", size);
3002
3003 return size;
3004 }
3005
3006 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3007 {
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 uint32_t dsparb = I915_READ(DSPARB);
3010 int size;
3011
3012 size = dsparb & 0x7f;
3013 size >>= 2; /* Convert to cachelines */
3014
3015 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3016 plane ? "B" : "A",
3017 size);
3018
3019 return size;
3020 }
3021
3022 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3023 {
3024 struct drm_i915_private *dev_priv = dev->dev_private;
3025 uint32_t dsparb = I915_READ(DSPARB);
3026 int size;
3027
3028 size = dsparb & 0x7f;
3029 size >>= 1; /* Convert to cachelines */
3030
3031 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3032 plane ? "B" : "A", size);
3033
3034 return size;
3035 }
3036
3037 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3038 int planeb_clock, int sr_hdisplay, int unused,
3039 int pixel_size)
3040 {
3041 struct drm_i915_private *dev_priv = dev->dev_private;
3042 const struct cxsr_latency *latency;
3043 u32 reg;
3044 unsigned long wm;
3045 int sr_clock;
3046
3047 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3048 dev_priv->fsb_freq, dev_priv->mem_freq);
3049 if (!latency) {
3050 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3051 pineview_disable_cxsr(dev);
3052 return;
3053 }
3054
3055 if (!planea_clock || !planeb_clock) {
3056 sr_clock = planea_clock ? planea_clock : planeb_clock;
3057
3058 /* Display SR */
3059 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3060 pixel_size, latency->display_sr);
3061 reg = I915_READ(DSPFW1);
3062 reg &= ~DSPFW_SR_MASK;
3063 reg |= wm << DSPFW_SR_SHIFT;
3064 I915_WRITE(DSPFW1, reg);
3065 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3066
3067 /* cursor SR */
3068 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3069 pixel_size, latency->cursor_sr);
3070 reg = I915_READ(DSPFW3);
3071 reg &= ~DSPFW_CURSOR_SR_MASK;
3072 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3073 I915_WRITE(DSPFW3, reg);
3074
3075 /* Display HPLL off SR */
3076 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3077 pixel_size, latency->display_hpll_disable);
3078 reg = I915_READ(DSPFW3);
3079 reg &= ~DSPFW_HPLL_SR_MASK;
3080 reg |= wm & DSPFW_HPLL_SR_MASK;
3081 I915_WRITE(DSPFW3, reg);
3082
3083 /* cursor HPLL off SR */
3084 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3085 pixel_size, latency->cursor_hpll_disable);
3086 reg = I915_READ(DSPFW3);
3087 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3088 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3089 I915_WRITE(DSPFW3, reg);
3090 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3091
3092 /* activate cxsr */
3093 I915_WRITE(DSPFW3,
3094 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3095 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3096 } else {
3097 pineview_disable_cxsr(dev);
3098 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3099 }
3100 }
3101
3102 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3103 int planeb_clock, int sr_hdisplay, int sr_htotal,
3104 int pixel_size)
3105 {
3106 struct drm_i915_private *dev_priv = dev->dev_private;
3107 int total_size, cacheline_size;
3108 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3109 struct intel_watermark_params planea_params, planeb_params;
3110 unsigned long line_time_us;
3111 int sr_clock, sr_entries = 0, entries_required;
3112
3113 /* Create copies of the base settings for each pipe */
3114 planea_params = planeb_params = g4x_wm_info;
3115
3116 /* Grab a couple of global values before we overwrite them */
3117 total_size = planea_params.fifo_size;
3118 cacheline_size = planea_params.cacheline_size;
3119
3120 /*
3121 * Note: we need to make sure we don't overflow for various clock &
3122 * latency values.
3123 * clocks go from a few thousand to several hundred thousand.
3124 * latency is usually a few thousand
3125 */
3126 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3127 1000;
3128 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3129 planea_wm = entries_required + planea_params.guard_size;
3130
3131 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3132 1000;
3133 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3134 planeb_wm = entries_required + planeb_params.guard_size;
3135
3136 cursora_wm = cursorb_wm = 16;
3137 cursor_sr = 32;
3138
3139 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3140
3141 /* Calc sr entries for one plane configs */
3142 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3143 /* self-refresh has much higher latency */
3144 static const int sr_latency_ns = 12000;
3145
3146 sr_clock = planea_clock ? planea_clock : planeb_clock;
3147 line_time_us = ((sr_htotal * 1000) / sr_clock);
3148
3149 /* Use ns/us then divide to preserve precision */
3150 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3151 pixel_size * sr_hdisplay;
3152 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3153
3154 entries_required = (((sr_latency_ns / line_time_us) +
3155 1000) / 1000) * pixel_size * 64;
3156 entries_required = DIV_ROUND_UP(entries_required,
3157 g4x_cursor_wm_info.cacheline_size);
3158 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3159
3160 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3161 cursor_sr = g4x_cursor_wm_info.max_wm;
3162 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3163 "cursor %d\n", sr_entries, cursor_sr);
3164
3165 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3166 } else {
3167 /* Turn off self refresh if both pipes are enabled */
3168 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3169 & ~FW_BLC_SELF_EN);
3170 }
3171
3172 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3173 planea_wm, planeb_wm, sr_entries);
3174
3175 planea_wm &= 0x3f;
3176 planeb_wm &= 0x3f;
3177
3178 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3179 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3180 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3181 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3182 (cursora_wm << DSPFW_CURSORA_SHIFT));
3183 /* HPLL off in SR has some issues on G4x... disable it */
3184 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3185 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3186 }
3187
3188 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3189 int planeb_clock, int sr_hdisplay, int sr_htotal,
3190 int pixel_size)
3191 {
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 unsigned long line_time_us;
3194 int sr_clock, sr_entries, srwm = 1;
3195 int cursor_sr = 16;
3196
3197 /* Calc sr entries for one plane configs */
3198 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3199 /* self-refresh has much higher latency */
3200 static const int sr_latency_ns = 12000;
3201
3202 sr_clock = planea_clock ? planea_clock : planeb_clock;
3203 line_time_us = ((sr_htotal * 1000) / sr_clock);
3204
3205 /* Use ns/us then divide to preserve precision */
3206 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3207 pixel_size * sr_hdisplay;
3208 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3209 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3210 srwm = I965_FIFO_SIZE - sr_entries;
3211 if (srwm < 0)
3212 srwm = 1;
3213 srwm &= 0x1ff;
3214
3215 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3216 pixel_size * 64;
3217 sr_entries = DIV_ROUND_UP(sr_entries,
3218 i965_cursor_wm_info.cacheline_size);
3219 cursor_sr = i965_cursor_wm_info.fifo_size -
3220 (sr_entries + i965_cursor_wm_info.guard_size);
3221
3222 if (cursor_sr > i965_cursor_wm_info.max_wm)
3223 cursor_sr = i965_cursor_wm_info.max_wm;
3224
3225 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3226 "cursor %d\n", srwm, cursor_sr);
3227
3228 if (IS_CRESTLINE(dev))
3229 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3230 } else {
3231 /* Turn off self refresh if both pipes are enabled */
3232 if (IS_CRESTLINE(dev))
3233 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3234 & ~FW_BLC_SELF_EN);
3235 }
3236
3237 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3238 srwm);
3239
3240 /* 965 has limitations... */
3241 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3242 (8 << 0));
3243 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3244 /* update cursor SR watermark */
3245 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3246 }
3247
3248 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3249 int planeb_clock, int sr_hdisplay, int sr_htotal,
3250 int pixel_size)
3251 {
3252 struct drm_i915_private *dev_priv = dev->dev_private;
3253 uint32_t fwater_lo;
3254 uint32_t fwater_hi;
3255 int total_size, cacheline_size, cwm, srwm = 1;
3256 int planea_wm, planeb_wm;
3257 struct intel_watermark_params planea_params, planeb_params;
3258 unsigned long line_time_us;
3259 int sr_clock, sr_entries = 0;
3260
3261 /* Create copies of the base settings for each pipe */
3262 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3263 planea_params = planeb_params = i945_wm_info;
3264 else if (!IS_GEN2(dev))
3265 planea_params = planeb_params = i915_wm_info;
3266 else
3267 planea_params = planeb_params = i855_wm_info;
3268
3269 /* Grab a couple of global values before we overwrite them */
3270 total_size = planea_params.fifo_size;
3271 cacheline_size = planea_params.cacheline_size;
3272
3273 /* Update per-plane FIFO sizes */
3274 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3275 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3276
3277 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3278 pixel_size, latency_ns);
3279 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3280 pixel_size, latency_ns);
3281 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3282
3283 /*
3284 * Overlay gets an aggressive default since video jitter is bad.
3285 */
3286 cwm = 2;
3287
3288 /* Calc sr entries for one plane configs */
3289 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3290 (!planea_clock || !planeb_clock)) {
3291 /* self-refresh has much higher latency */
3292 static const int sr_latency_ns = 6000;
3293
3294 sr_clock = planea_clock ? planea_clock : planeb_clock;
3295 line_time_us = ((sr_htotal * 1000) / sr_clock);
3296
3297 /* Use ns/us then divide to preserve precision */
3298 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3299 pixel_size * sr_hdisplay;
3300 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3301 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3302 srwm = total_size - sr_entries;
3303 if (srwm < 0)
3304 srwm = 1;
3305
3306 if (IS_I945G(dev) || IS_I945GM(dev))
3307 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3308 else if (IS_I915GM(dev)) {
3309 /* 915M has a smaller SRWM field */
3310 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3311 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3312 }
3313 } else {
3314 /* Turn off self refresh if both pipes are enabled */
3315 if (IS_I945G(dev) || IS_I945GM(dev)) {
3316 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3317 & ~FW_BLC_SELF_EN);
3318 } else if (IS_I915GM(dev)) {
3319 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3320 }
3321 }
3322
3323 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3324 planea_wm, planeb_wm, cwm, srwm);
3325
3326 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3327 fwater_hi = (cwm & 0x1f);
3328
3329 /* Set request length to 8 cachelines per fetch */
3330 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3331 fwater_hi = fwater_hi | (1 << 8);
3332
3333 I915_WRITE(FW_BLC, fwater_lo);
3334 I915_WRITE(FW_BLC2, fwater_hi);
3335 }
3336
3337 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3338 int unused2, int unused3, int pixel_size)
3339 {
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3342 int planea_wm;
3343
3344 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3345
3346 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3347 pixel_size, latency_ns);
3348 fwater_lo |= (3<<8) | planea_wm;
3349
3350 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3351
3352 I915_WRITE(FW_BLC, fwater_lo);
3353 }
3354
3355 #define ILK_LP0_PLANE_LATENCY 700
3356 #define ILK_LP0_CURSOR_LATENCY 1300
3357
3358 static bool ironlake_compute_wm0(struct drm_device *dev,
3359 int pipe,
3360 int *plane_wm,
3361 int *cursor_wm)
3362 {
3363 struct drm_crtc *crtc;
3364 int htotal, hdisplay, clock, pixel_size = 0;
3365 int line_time_us, line_count, entries;
3366
3367 crtc = intel_get_crtc_for_pipe(dev, pipe);
3368 if (crtc->fb == NULL || !crtc->enabled)
3369 return false;
3370
3371 htotal = crtc->mode.htotal;
3372 hdisplay = crtc->mode.hdisplay;
3373 clock = crtc->mode.clock;
3374 pixel_size = crtc->fb->bits_per_pixel / 8;
3375
3376 /* Use the small buffer method to calculate plane watermark */
3377 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3378 entries = DIV_ROUND_UP(entries,
3379 ironlake_display_wm_info.cacheline_size);
3380 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3381 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3382 *plane_wm = ironlake_display_wm_info.max_wm;
3383
3384 /* Use the large buffer method to calculate cursor watermark */
3385 line_time_us = ((htotal * 1000) / clock);
3386 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3387 entries = line_count * 64 * pixel_size;
3388 entries = DIV_ROUND_UP(entries,
3389 ironlake_cursor_wm_info.cacheline_size);
3390 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3391 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3392 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3393
3394 return true;
3395 }
3396
3397 static void ironlake_update_wm(struct drm_device *dev,
3398 int planea_clock, int planeb_clock,
3399 int sr_hdisplay, int sr_htotal,
3400 int pixel_size)
3401 {
3402 struct drm_i915_private *dev_priv = dev->dev_private;
3403 int plane_wm, cursor_wm, enabled;
3404 int tmp;
3405
3406 enabled = 0;
3407 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3408 I915_WRITE(WM0_PIPEA_ILK,
3409 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3410 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3411 " plane %d, " "cursor: %d\n",
3412 plane_wm, cursor_wm);
3413 enabled++;
3414 }
3415
3416 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3417 I915_WRITE(WM0_PIPEB_ILK,
3418 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3419 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3420 " plane %d, cursor: %d\n",
3421 plane_wm, cursor_wm);
3422 enabled++;
3423 }
3424
3425 /*
3426 * Calculate and update the self-refresh watermark only when one
3427 * display plane is used.
3428 */
3429 tmp = 0;
3430 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3431 unsigned long line_time_us;
3432 int small, large, plane_fbc;
3433 int sr_clock, entries;
3434 int line_count, line_size;
3435 /* Read the self-refresh latency. The unit is 0.5us */
3436 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3437
3438 sr_clock = planea_clock ? planea_clock : planeb_clock;
3439 line_time_us = (sr_htotal * 1000) / sr_clock;
3440
3441 /* Use ns/us then divide to preserve precision */
3442 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3443 / 1000;
3444 line_size = sr_hdisplay * pixel_size;
3445
3446 /* Use the minimum of the small and large buffer method for primary */
3447 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3448 large = line_count * line_size;
3449
3450 entries = DIV_ROUND_UP(min(small, large),
3451 ironlake_display_srwm_info.cacheline_size);
3452
3453 plane_fbc = entries * 64;
3454 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3455
3456 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3457 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3458 plane_wm = ironlake_display_srwm_info.max_wm;
3459
3460 /* calculate the self-refresh watermark for display cursor */
3461 entries = line_count * pixel_size * 64;
3462 entries = DIV_ROUND_UP(entries,
3463 ironlake_cursor_srwm_info.cacheline_size);
3464
3465 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3466 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3467 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3468
3469 /* configure watermark and enable self-refresh */
3470 tmp = (WM1_LP_SR_EN |
3471 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3472 (plane_fbc << WM1_LP_FBC_SHIFT) |
3473 (plane_wm << WM1_LP_SR_SHIFT) |
3474 cursor_wm);
3475 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3476 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3477 }
3478 I915_WRITE(WM1_LP_ILK, tmp);
3479 /* XXX setup WM2 and WM3 */
3480 }
3481
3482 /**
3483 * intel_update_watermarks - update FIFO watermark values based on current modes
3484 *
3485 * Calculate watermark values for the various WM regs based on current mode
3486 * and plane configuration.
3487 *
3488 * There are several cases to deal with here:
3489 * - normal (i.e. non-self-refresh)
3490 * - self-refresh (SR) mode
3491 * - lines are large relative to FIFO size (buffer can hold up to 2)
3492 * - lines are small relative to FIFO size (buffer can hold more than 2
3493 * lines), so need to account for TLB latency
3494 *
3495 * The normal calculation is:
3496 * watermark = dotclock * bytes per pixel * latency
3497 * where latency is platform & configuration dependent (we assume pessimal
3498 * values here).
3499 *
3500 * The SR calculation is:
3501 * watermark = (trunc(latency/line time)+1) * surface width *
3502 * bytes per pixel
3503 * where
3504 * line time = htotal / dotclock
3505 * surface width = hdisplay for normal plane and 64 for cursor
3506 * and latency is assumed to be high, as above.
3507 *
3508 * The final value programmed to the register should always be rounded up,
3509 * and include an extra 2 entries to account for clock crossings.
3510 *
3511 * We don't use the sprite, so we can ignore that. And on Crestline we have
3512 * to set the non-SR watermarks to 8.
3513 */
3514 static void intel_update_watermarks(struct drm_device *dev)
3515 {
3516 struct drm_i915_private *dev_priv = dev->dev_private;
3517 struct drm_crtc *crtc;
3518 int sr_hdisplay = 0;
3519 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3520 int enabled = 0, pixel_size = 0;
3521 int sr_htotal = 0;
3522
3523 if (!dev_priv->display.update_wm)
3524 return;
3525
3526 /* Get the clock config from both planes */
3527 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3529 if (intel_crtc->active) {
3530 enabled++;
3531 if (intel_crtc->plane == 0) {
3532 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3533 intel_crtc->pipe, crtc->mode.clock);
3534 planea_clock = crtc->mode.clock;
3535 } else {
3536 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3537 intel_crtc->pipe, crtc->mode.clock);
3538 planeb_clock = crtc->mode.clock;
3539 }
3540 sr_hdisplay = crtc->mode.hdisplay;
3541 sr_clock = crtc->mode.clock;
3542 sr_htotal = crtc->mode.htotal;
3543 if (crtc->fb)
3544 pixel_size = crtc->fb->bits_per_pixel / 8;
3545 else
3546 pixel_size = 4; /* by default */
3547 }
3548 }
3549
3550 if (enabled <= 0)
3551 return;
3552
3553 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3554 sr_hdisplay, sr_htotal, pixel_size);
3555 }
3556
3557 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3558 struct drm_display_mode *mode,
3559 struct drm_display_mode *adjusted_mode,
3560 int x, int y,
3561 struct drm_framebuffer *old_fb)
3562 {
3563 struct drm_device *dev = crtc->dev;
3564 struct drm_i915_private *dev_priv = dev->dev_private;
3565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3566 int pipe = intel_crtc->pipe;
3567 int plane = intel_crtc->plane;
3568 u32 fp_reg, dpll_reg;
3569 int refclk, num_connectors = 0;
3570 intel_clock_t clock, reduced_clock;
3571 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3572 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3573 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3574 struct intel_encoder *has_edp_encoder = NULL;
3575 struct drm_mode_config *mode_config = &dev->mode_config;
3576 struct intel_encoder *encoder;
3577 const intel_limit_t *limit;
3578 int ret;
3579 struct fdi_m_n m_n = {0};
3580 u32 reg, temp;
3581 int target_clock;
3582
3583 drm_vblank_pre_modeset(dev, pipe);
3584
3585 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3586 if (encoder->base.crtc != crtc)
3587 continue;
3588
3589 switch (encoder->type) {
3590 case INTEL_OUTPUT_LVDS:
3591 is_lvds = true;
3592 break;
3593 case INTEL_OUTPUT_SDVO:
3594 case INTEL_OUTPUT_HDMI:
3595 is_sdvo = true;
3596 if (encoder->needs_tv_clock)
3597 is_tv = true;
3598 break;
3599 case INTEL_OUTPUT_DVO:
3600 is_dvo = true;
3601 break;
3602 case INTEL_OUTPUT_TVOUT:
3603 is_tv = true;
3604 break;
3605 case INTEL_OUTPUT_ANALOG:
3606 is_crt = true;
3607 break;
3608 case INTEL_OUTPUT_DISPLAYPORT:
3609 is_dp = true;
3610 break;
3611 case INTEL_OUTPUT_EDP:
3612 has_edp_encoder = encoder;
3613 break;
3614 }
3615
3616 num_connectors++;
3617 }
3618
3619 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3620 refclk = dev_priv->lvds_ssc_freq * 1000;
3621 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3622 refclk / 1000);
3623 } else if (!IS_GEN2(dev)) {
3624 refclk = 96000;
3625 if (HAS_PCH_SPLIT(dev))
3626 refclk = 120000; /* 120Mhz refclk */
3627 } else {
3628 refclk = 48000;
3629 }
3630
3631 /*
3632 * Returns a set of divisors for the desired target clock with the given
3633 * refclk, or FALSE. The returned values represent the clock equation:
3634 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3635 */
3636 limit = intel_limit(crtc);
3637 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3638 if (!ok) {
3639 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3640 drm_vblank_post_modeset(dev, pipe);
3641 return -EINVAL;
3642 }
3643
3644 /* Ensure that the cursor is valid for the new mode before changing... */
3645 intel_crtc_update_cursor(crtc, true);
3646
3647 if (is_lvds && dev_priv->lvds_downclock_avail) {
3648 has_reduced_clock = limit->find_pll(limit, crtc,
3649 dev_priv->lvds_downclock,
3650 refclk,
3651 &reduced_clock);
3652 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3653 /*
3654 * If the different P is found, it means that we can't
3655 * switch the display clock by using the FP0/FP1.
3656 * In such case we will disable the LVDS downclock
3657 * feature.
3658 */
3659 DRM_DEBUG_KMS("Different P is found for "
3660 "LVDS clock/downclock\n");
3661 has_reduced_clock = 0;
3662 }
3663 }
3664 /* SDVO TV has fixed PLL values depend on its clock range,
3665 this mirrors vbios setting. */
3666 if (is_sdvo && is_tv) {
3667 if (adjusted_mode->clock >= 100000
3668 && adjusted_mode->clock < 140500) {
3669 clock.p1 = 2;
3670 clock.p2 = 10;
3671 clock.n = 3;
3672 clock.m1 = 16;
3673 clock.m2 = 8;
3674 } else if (adjusted_mode->clock >= 140500
3675 && adjusted_mode->clock <= 200000) {
3676 clock.p1 = 1;
3677 clock.p2 = 10;
3678 clock.n = 6;
3679 clock.m1 = 12;
3680 clock.m2 = 8;
3681 }
3682 }
3683
3684 /* FDI link */
3685 if (HAS_PCH_SPLIT(dev)) {
3686 int lane = 0, link_bw, bpp;
3687 /* eDP doesn't require FDI link, so just set DP M/N
3688 according to current link config */
3689 if (has_edp_encoder) {
3690 target_clock = mode->clock;
3691 intel_edp_link_config(has_edp_encoder,
3692 &lane, &link_bw);
3693 } else {
3694 /* DP over FDI requires target mode clock
3695 instead of link clock */
3696 if (is_dp)
3697 target_clock = mode->clock;
3698 else
3699 target_clock = adjusted_mode->clock;
3700
3701 /* FDI is a binary signal running at ~2.7GHz, encoding
3702 * each output octet as 10 bits. The actual frequency
3703 * is stored as a divider into a 100MHz clock, and the
3704 * mode pixel clock is stored in units of 1KHz.
3705 * Hence the bw of each lane in terms of the mode signal
3706 * is:
3707 */
3708 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3709 }
3710
3711 /* determine panel color depth */
3712 temp = I915_READ(PIPECONF(pipe));
3713 temp &= ~PIPE_BPC_MASK;
3714 if (is_lvds) {
3715 /* the BPC will be 6 if it is 18-bit LVDS panel */
3716 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3717 temp |= PIPE_8BPC;
3718 else
3719 temp |= PIPE_6BPC;
3720 } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) {
3721 switch (dev_priv->edp.bpp/3) {
3722 case 8:
3723 temp |= PIPE_8BPC;
3724 break;
3725 case 10:
3726 temp |= PIPE_10BPC;
3727 break;
3728 case 6:
3729 temp |= PIPE_6BPC;
3730 break;
3731 case 12:
3732 temp |= PIPE_12BPC;
3733 break;
3734 }
3735 } else
3736 temp |= PIPE_8BPC;
3737 I915_WRITE(PIPECONF(pipe), temp);
3738
3739 switch (temp & PIPE_BPC_MASK) {
3740 case PIPE_8BPC:
3741 bpp = 24;
3742 break;
3743 case PIPE_10BPC:
3744 bpp = 30;
3745 break;
3746 case PIPE_6BPC:
3747 bpp = 18;
3748 break;
3749 case PIPE_12BPC:
3750 bpp = 36;
3751 break;
3752 default:
3753 DRM_ERROR("unknown pipe bpc value\n");
3754 bpp = 24;
3755 }
3756
3757 if (!lane) {
3758 /*
3759 * Account for spread spectrum to avoid
3760 * oversubscribing the link. Max center spread
3761 * is 2.5%; use 5% for safety's sake.
3762 */
3763 u32 bps = target_clock * bpp * 21 / 20;
3764 lane = bps / (link_bw * 8) + 1;
3765 }
3766
3767 intel_crtc->fdi_lanes = lane;
3768
3769 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3770 }
3771
3772 /* Ironlake: try to setup display ref clock before DPLL
3773 * enabling. This is only under driver's control after
3774 * PCH B stepping, previous chipset stepping should be
3775 * ignoring this setting.
3776 */
3777 if (HAS_PCH_SPLIT(dev)) {
3778 temp = I915_READ(PCH_DREF_CONTROL);
3779 /* Always enable nonspread source */
3780 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3781 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3782 temp &= ~DREF_SSC_SOURCE_MASK;
3783 temp |= DREF_SSC_SOURCE_ENABLE;
3784 I915_WRITE(PCH_DREF_CONTROL, temp);
3785
3786 POSTING_READ(PCH_DREF_CONTROL);
3787 udelay(200);
3788
3789 if (has_edp_encoder) {
3790 if (dev_priv->lvds_use_ssc) {
3791 temp |= DREF_SSC1_ENABLE;
3792 I915_WRITE(PCH_DREF_CONTROL, temp);
3793
3794 POSTING_READ(PCH_DREF_CONTROL);
3795 udelay(200);
3796
3797 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3798 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3799 } else {
3800 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3801 }
3802 I915_WRITE(PCH_DREF_CONTROL, temp);
3803 }
3804 }
3805
3806 if (IS_PINEVIEW(dev)) {
3807 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3808 if (has_reduced_clock)
3809 fp2 = (1 << reduced_clock.n) << 16 |
3810 reduced_clock.m1 << 8 | reduced_clock.m2;
3811 } else {
3812 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3813 if (has_reduced_clock)
3814 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3815 reduced_clock.m2;
3816 }
3817
3818 dpll = 0;
3819 if (!HAS_PCH_SPLIT(dev))
3820 dpll = DPLL_VGA_MODE_DIS;
3821
3822 if (!IS_GEN2(dev)) {
3823 if (is_lvds)
3824 dpll |= DPLLB_MODE_LVDS;
3825 else
3826 dpll |= DPLLB_MODE_DAC_SERIAL;
3827 if (is_sdvo) {
3828 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3829 if (pixel_multiplier > 1) {
3830 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3831 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3832 else if (HAS_PCH_SPLIT(dev))
3833 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3834 }
3835 dpll |= DPLL_DVO_HIGH_SPEED;
3836 }
3837 if (is_dp)
3838 dpll |= DPLL_DVO_HIGH_SPEED;
3839
3840 /* compute bitmask from p1 value */
3841 if (IS_PINEVIEW(dev))
3842 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3843 else {
3844 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3845 /* also FPA1 */
3846 if (HAS_PCH_SPLIT(dev))
3847 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3848 if (IS_G4X(dev) && has_reduced_clock)
3849 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3850 }
3851 switch (clock.p2) {
3852 case 5:
3853 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3854 break;
3855 case 7:
3856 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3857 break;
3858 case 10:
3859 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3860 break;
3861 case 14:
3862 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3863 break;
3864 }
3865 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3866 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3867 } else {
3868 if (is_lvds) {
3869 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3870 } else {
3871 if (clock.p1 == 2)
3872 dpll |= PLL_P1_DIVIDE_BY_TWO;
3873 else
3874 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3875 if (clock.p2 == 4)
3876 dpll |= PLL_P2_DIVIDE_BY_4;
3877 }
3878 }
3879
3880 if (is_sdvo && is_tv)
3881 dpll |= PLL_REF_INPUT_TVCLKINBC;
3882 else if (is_tv)
3883 /* XXX: just matching BIOS for now */
3884 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3885 dpll |= 3;
3886 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3887 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3888 else
3889 dpll |= PLL_REF_INPUT_DREFCLK;
3890
3891 /* setup pipeconf */
3892 pipeconf = I915_READ(PIPECONF(pipe));
3893
3894 /* Set up the display plane register */
3895 dspcntr = DISPPLANE_GAMMA_ENABLE;
3896
3897 /* Ironlake's plane is forced to pipe, bit 24 is to
3898 enable color space conversion */
3899 if (!HAS_PCH_SPLIT(dev)) {
3900 if (pipe == 0)
3901 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3902 else
3903 dspcntr |= DISPPLANE_SEL_PIPE_B;
3904 }
3905
3906 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3907 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3908 * core speed.
3909 *
3910 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3911 * pipe == 0 check?
3912 */
3913 if (mode->clock >
3914 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3915 pipeconf |= PIPECONF_DOUBLE_WIDE;
3916 else
3917 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3918 }
3919
3920 dspcntr |= DISPLAY_PLANE_ENABLE;
3921 pipeconf |= PIPECONF_ENABLE;
3922 dpll |= DPLL_VCO_ENABLE;
3923
3924 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3925 drm_mode_debug_printmodeline(mode);
3926
3927 /* assign to Ironlake registers */
3928 if (HAS_PCH_SPLIT(dev)) {
3929 fp_reg = PCH_FP0(pipe);
3930 dpll_reg = PCH_DPLL(pipe);
3931 } else {
3932 fp_reg = FP0(pipe);
3933 dpll_reg = DPLL(pipe);
3934 }
3935
3936 if (!has_edp_encoder) {
3937 I915_WRITE(fp_reg, fp);
3938 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3939
3940 POSTING_READ(dpll_reg);
3941 udelay(150);
3942 }
3943
3944 /* enable transcoder DPLL */
3945 if (HAS_PCH_CPT(dev)) {
3946 temp = I915_READ(PCH_DPLL_SEL);
3947 if (pipe == 0)
3948 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3949 else
3950 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3951 I915_WRITE(PCH_DPLL_SEL, temp);
3952
3953 POSTING_READ(PCH_DPLL_SEL);
3954 udelay(150);
3955 }
3956
3957 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3958 * This is an exception to the general rule that mode_set doesn't turn
3959 * things on.
3960 */
3961 if (is_lvds) {
3962 reg = LVDS;
3963 if (HAS_PCH_SPLIT(dev))
3964 reg = PCH_LVDS;
3965
3966 temp = I915_READ(reg);
3967 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3968 if (pipe == 1) {
3969 if (HAS_PCH_CPT(dev))
3970 temp |= PORT_TRANS_B_SEL_CPT;
3971 else
3972 temp |= LVDS_PIPEB_SELECT;
3973 } else {
3974 if (HAS_PCH_CPT(dev))
3975 temp &= ~PORT_TRANS_SEL_MASK;
3976 else
3977 temp &= ~LVDS_PIPEB_SELECT;
3978 }
3979 /* set the corresponsding LVDS_BORDER bit */
3980 temp |= dev_priv->lvds_border_bits;
3981 /* Set the B0-B3 data pairs corresponding to whether we're going to
3982 * set the DPLLs for dual-channel mode or not.
3983 */
3984 if (clock.p2 == 7)
3985 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3986 else
3987 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3988
3989 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3990 * appropriately here, but we need to look more thoroughly into how
3991 * panels behave in the two modes.
3992 */
3993 /* set the dithering flag on non-PCH LVDS as needed */
3994 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
3995 if (dev_priv->lvds_dither)
3996 temp |= LVDS_ENABLE_DITHER;
3997 else
3998 temp &= ~LVDS_ENABLE_DITHER;
3999 }
4000 I915_WRITE(reg, temp);
4001 }
4002
4003 /* set the dithering flag and clear for anything other than a panel. */
4004 if (HAS_PCH_SPLIT(dev)) {
4005 pipeconf &= ~PIPECONF_DITHER_EN;
4006 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4007 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4008 pipeconf |= PIPECONF_DITHER_EN;
4009 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4010 }
4011 }
4012
4013 if (is_dp)
4014 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4015 else if (HAS_PCH_SPLIT(dev)) {
4016 /* For non-DP output, clear any trans DP clock recovery setting.*/
4017 if (pipe == 0) {
4018 I915_WRITE(TRANSA_DATA_M1, 0);
4019 I915_WRITE(TRANSA_DATA_N1, 0);
4020 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4021 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4022 } else {
4023 I915_WRITE(TRANSB_DATA_M1, 0);
4024 I915_WRITE(TRANSB_DATA_N1, 0);
4025 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4026 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4027 }
4028 }
4029
4030 if (!has_edp_encoder) {
4031 I915_WRITE(fp_reg, fp);
4032 I915_WRITE(dpll_reg, dpll);
4033
4034 /* Wait for the clocks to stabilize. */
4035 POSTING_READ(dpll_reg);
4036 udelay(150);
4037
4038 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4039 temp = 0;
4040 if (is_sdvo) {
4041 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4042 if (temp > 1)
4043 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4044 else
4045 temp = 0;
4046 }
4047 I915_WRITE(DPLL_MD(pipe), temp);
4048 } else {
4049 /* write it again -- the BIOS does, after all */
4050 I915_WRITE(dpll_reg, dpll);
4051 }
4052
4053 /* Wait for the clocks to stabilize. */
4054 POSTING_READ(dpll_reg);
4055 udelay(150);
4056 }
4057
4058 intel_crtc->lowfreq_avail = false;
4059 if (is_lvds && has_reduced_clock && i915_powersave) {
4060 I915_WRITE(fp_reg + 4, fp2);
4061 intel_crtc->lowfreq_avail = true;
4062 if (HAS_PIPE_CXSR(dev)) {
4063 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4064 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4065 }
4066 } else {
4067 I915_WRITE(fp_reg + 4, fp);
4068 if (HAS_PIPE_CXSR(dev)) {
4069 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4070 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4071 }
4072 }
4073
4074 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4075 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4076 /* the chip adds 2 halflines automatically */
4077 adjusted_mode->crtc_vdisplay -= 1;
4078 adjusted_mode->crtc_vtotal -= 1;
4079 adjusted_mode->crtc_vblank_start -= 1;
4080 adjusted_mode->crtc_vblank_end -= 1;
4081 adjusted_mode->crtc_vsync_end -= 1;
4082 adjusted_mode->crtc_vsync_start -= 1;
4083 } else
4084 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4085
4086 I915_WRITE(HTOTAL(pipe),
4087 (adjusted_mode->crtc_hdisplay - 1) |
4088 ((adjusted_mode->crtc_htotal - 1) << 16));
4089 I915_WRITE(HBLANK(pipe),
4090 (adjusted_mode->crtc_hblank_start - 1) |
4091 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4092 I915_WRITE(HSYNC(pipe),
4093 (adjusted_mode->crtc_hsync_start - 1) |
4094 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4095
4096 I915_WRITE(VTOTAL(pipe),
4097 (adjusted_mode->crtc_vdisplay - 1) |
4098 ((adjusted_mode->crtc_vtotal - 1) << 16));
4099 I915_WRITE(VBLANK(pipe),
4100 (adjusted_mode->crtc_vblank_start - 1) |
4101 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4102 I915_WRITE(VSYNC(pipe),
4103 (adjusted_mode->crtc_vsync_start - 1) |
4104 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4105
4106 /* pipesrc and dspsize control the size that is scaled from,
4107 * which should always be the user's requested size.
4108 */
4109 if (!HAS_PCH_SPLIT(dev)) {
4110 I915_WRITE(DSPSIZE(plane),
4111 ((mode->vdisplay - 1) << 16) |
4112 (mode->hdisplay - 1));
4113 I915_WRITE(DSPPOS(plane), 0);
4114 }
4115 I915_WRITE(PIPESRC(pipe),
4116 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4117
4118 if (HAS_PCH_SPLIT(dev)) {
4119 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4120 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4121 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4122 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4123
4124 if (has_edp_encoder) {
4125 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4126 } else {
4127 /* enable FDI RX PLL too */
4128 reg = FDI_RX_CTL(pipe);
4129 temp = I915_READ(reg);
4130 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4131
4132 POSTING_READ(reg);
4133 udelay(200);
4134
4135 /* enable FDI TX PLL too */
4136 reg = FDI_TX_CTL(pipe);
4137 temp = I915_READ(reg);
4138 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4139
4140 /* enable FDI RX PCDCLK */
4141 reg = FDI_RX_CTL(pipe);
4142 temp = I915_READ(reg);
4143 I915_WRITE(reg, temp | FDI_PCDCLK);
4144
4145 POSTING_READ(reg);
4146 udelay(200);
4147 }
4148 }
4149
4150 I915_WRITE(PIPECONF(pipe), pipeconf);
4151 POSTING_READ(PIPECONF(pipe));
4152
4153 intel_wait_for_vblank(dev, pipe);
4154
4155 if (IS_IRONLAKE(dev)) {
4156 /* enable address swizzle for tiling buffer */
4157 temp = I915_READ(DISP_ARB_CTL);
4158 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4159 }
4160
4161 I915_WRITE(DSPCNTR(plane), dspcntr);
4162
4163 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4164
4165 intel_update_watermarks(dev);
4166
4167 drm_vblank_post_modeset(dev, pipe);
4168
4169 return ret;
4170 }
4171
4172 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4173 void intel_crtc_load_lut(struct drm_crtc *crtc)
4174 {
4175 struct drm_device *dev = crtc->dev;
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4179 int i;
4180
4181 /* The clocks have to be on to load the palette. */
4182 if (!crtc->enabled)
4183 return;
4184
4185 /* use legacy palette for Ironlake */
4186 if (HAS_PCH_SPLIT(dev))
4187 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4188 LGC_PALETTE_B;
4189
4190 for (i = 0; i < 256; i++) {
4191 I915_WRITE(palreg + 4 * i,
4192 (intel_crtc->lut_r[i] << 16) |
4193 (intel_crtc->lut_g[i] << 8) |
4194 intel_crtc->lut_b[i]);
4195 }
4196 }
4197
4198 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4199 {
4200 struct drm_device *dev = crtc->dev;
4201 struct drm_i915_private *dev_priv = dev->dev_private;
4202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203 bool visible = base != 0;
4204 u32 cntl;
4205
4206 if (intel_crtc->cursor_visible == visible)
4207 return;
4208
4209 cntl = I915_READ(CURACNTR);
4210 if (visible) {
4211 /* On these chipsets we can only modify the base whilst
4212 * the cursor is disabled.
4213 */
4214 I915_WRITE(CURABASE, base);
4215
4216 cntl &= ~(CURSOR_FORMAT_MASK);
4217 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4218 cntl |= CURSOR_ENABLE |
4219 CURSOR_GAMMA_ENABLE |
4220 CURSOR_FORMAT_ARGB;
4221 } else
4222 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4223 I915_WRITE(CURACNTR, cntl);
4224
4225 intel_crtc->cursor_visible = visible;
4226 }
4227
4228 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4229 {
4230 struct drm_device *dev = crtc->dev;
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4233 int pipe = intel_crtc->pipe;
4234 bool visible = base != 0;
4235
4236 if (intel_crtc->cursor_visible != visible) {
4237 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4238 if (base) {
4239 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4240 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4241 cntl |= pipe << 28; /* Connect to correct pipe */
4242 } else {
4243 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4244 cntl |= CURSOR_MODE_DISABLE;
4245 }
4246 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4247
4248 intel_crtc->cursor_visible = visible;
4249 }
4250 /* and commit changes on next vblank */
4251 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4252 }
4253
4254 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4255 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4256 bool on)
4257 {
4258 struct drm_device *dev = crtc->dev;
4259 struct drm_i915_private *dev_priv = dev->dev_private;
4260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4261 int pipe = intel_crtc->pipe;
4262 int x = intel_crtc->cursor_x;
4263 int y = intel_crtc->cursor_y;
4264 u32 base, pos;
4265 bool visible;
4266
4267 pos = 0;
4268
4269 if (on && crtc->enabled && crtc->fb) {
4270 base = intel_crtc->cursor_addr;
4271 if (x > (int) crtc->fb->width)
4272 base = 0;
4273
4274 if (y > (int) crtc->fb->height)
4275 base = 0;
4276 } else
4277 base = 0;
4278
4279 if (x < 0) {
4280 if (x + intel_crtc->cursor_width < 0)
4281 base = 0;
4282
4283 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4284 x = -x;
4285 }
4286 pos |= x << CURSOR_X_SHIFT;
4287
4288 if (y < 0) {
4289 if (y + intel_crtc->cursor_height < 0)
4290 base = 0;
4291
4292 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4293 y = -y;
4294 }
4295 pos |= y << CURSOR_Y_SHIFT;
4296
4297 visible = base != 0;
4298 if (!visible && !intel_crtc->cursor_visible)
4299 return;
4300
4301 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4302 if (IS_845G(dev) || IS_I865G(dev))
4303 i845_update_cursor(crtc, base);
4304 else
4305 i9xx_update_cursor(crtc, base);
4306
4307 if (visible)
4308 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4309 }
4310
4311 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4312 struct drm_file *file_priv,
4313 uint32_t handle,
4314 uint32_t width, uint32_t height)
4315 {
4316 struct drm_device *dev = crtc->dev;
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4319 struct drm_gem_object *bo;
4320 struct drm_i915_gem_object *obj_priv;
4321 uint32_t addr;
4322 int ret;
4323
4324 DRM_DEBUG_KMS("\n");
4325
4326 /* if we want to turn off the cursor ignore width and height */
4327 if (!handle) {
4328 DRM_DEBUG_KMS("cursor off\n");
4329 addr = 0;
4330 bo = NULL;
4331 mutex_lock(&dev->struct_mutex);
4332 goto finish;
4333 }
4334
4335 /* Currently we only support 64x64 cursors */
4336 if (width != 64 || height != 64) {
4337 DRM_ERROR("we currently only support 64x64 cursors\n");
4338 return -EINVAL;
4339 }
4340
4341 bo = drm_gem_object_lookup(dev, file_priv, handle);
4342 if (!bo)
4343 return -ENOENT;
4344
4345 obj_priv = to_intel_bo(bo);
4346
4347 if (bo->size < width * height * 4) {
4348 DRM_ERROR("buffer is to small\n");
4349 ret = -ENOMEM;
4350 goto fail;
4351 }
4352
4353 /* we only need to pin inside GTT if cursor is non-phy */
4354 mutex_lock(&dev->struct_mutex);
4355 if (!dev_priv->info->cursor_needs_physical) {
4356 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4357 if (ret) {
4358 DRM_ERROR("failed to pin cursor bo\n");
4359 goto fail_locked;
4360 }
4361
4362 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4363 if (ret) {
4364 DRM_ERROR("failed to move cursor bo into the GTT\n");
4365 goto fail_unpin;
4366 }
4367
4368 addr = obj_priv->gtt_offset;
4369 } else {
4370 int align = IS_I830(dev) ? 16 * 1024 : 256;
4371 ret = i915_gem_attach_phys_object(dev, bo,
4372 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4373 align);
4374 if (ret) {
4375 DRM_ERROR("failed to attach phys object\n");
4376 goto fail_locked;
4377 }
4378 addr = obj_priv->phys_obj->handle->busaddr;
4379 }
4380
4381 if (IS_GEN2(dev))
4382 I915_WRITE(CURSIZE, (height << 12) | width);
4383
4384 finish:
4385 if (intel_crtc->cursor_bo) {
4386 if (dev_priv->info->cursor_needs_physical) {
4387 if (intel_crtc->cursor_bo != bo)
4388 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4389 } else
4390 i915_gem_object_unpin(intel_crtc->cursor_bo);
4391 drm_gem_object_unreference(intel_crtc->cursor_bo);
4392 }
4393
4394 mutex_unlock(&dev->struct_mutex);
4395
4396 intel_crtc->cursor_addr = addr;
4397 intel_crtc->cursor_bo = bo;
4398 intel_crtc->cursor_width = width;
4399 intel_crtc->cursor_height = height;
4400
4401 intel_crtc_update_cursor(crtc, true);
4402
4403 return 0;
4404 fail_unpin:
4405 i915_gem_object_unpin(bo);
4406 fail_locked:
4407 mutex_unlock(&dev->struct_mutex);
4408 fail:
4409 drm_gem_object_unreference_unlocked(bo);
4410 return ret;
4411 }
4412
4413 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4414 {
4415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4416
4417 intel_crtc->cursor_x = x;
4418 intel_crtc->cursor_y = y;
4419
4420 intel_crtc_update_cursor(crtc, true);
4421
4422 return 0;
4423 }
4424
4425 /** Sets the color ramps on behalf of RandR */
4426 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4427 u16 blue, int regno)
4428 {
4429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4430
4431 intel_crtc->lut_r[regno] = red >> 8;
4432 intel_crtc->lut_g[regno] = green >> 8;
4433 intel_crtc->lut_b[regno] = blue >> 8;
4434 }
4435
4436 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4437 u16 *blue, int regno)
4438 {
4439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4440
4441 *red = intel_crtc->lut_r[regno] << 8;
4442 *green = intel_crtc->lut_g[regno] << 8;
4443 *blue = intel_crtc->lut_b[regno] << 8;
4444 }
4445
4446 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4447 u16 *blue, uint32_t start, uint32_t size)
4448 {
4449 int end = (start + size > 256) ? 256 : start + size, i;
4450 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4451
4452 for (i = start; i < end; i++) {
4453 intel_crtc->lut_r[i] = red[i] >> 8;
4454 intel_crtc->lut_g[i] = green[i] >> 8;
4455 intel_crtc->lut_b[i] = blue[i] >> 8;
4456 }
4457
4458 intel_crtc_load_lut(crtc);
4459 }
4460
4461 /**
4462 * Get a pipe with a simple mode set on it for doing load-based monitor
4463 * detection.
4464 *
4465 * It will be up to the load-detect code to adjust the pipe as appropriate for
4466 * its requirements. The pipe will be connected to no other encoders.
4467 *
4468 * Currently this code will only succeed if there is a pipe with no encoders
4469 * configured for it. In the future, it could choose to temporarily disable
4470 * some outputs to free up a pipe for its use.
4471 *
4472 * \return crtc, or NULL if no pipes are available.
4473 */
4474
4475 /* VESA 640x480x72Hz mode to set on the pipe */
4476 static struct drm_display_mode load_detect_mode = {
4477 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4478 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4479 };
4480
4481 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4482 struct drm_connector *connector,
4483 struct drm_display_mode *mode,
4484 int *dpms_mode)
4485 {
4486 struct intel_crtc *intel_crtc;
4487 struct drm_crtc *possible_crtc;
4488 struct drm_crtc *supported_crtc =NULL;
4489 struct drm_encoder *encoder = &intel_encoder->base;
4490 struct drm_crtc *crtc = NULL;
4491 struct drm_device *dev = encoder->dev;
4492 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4493 struct drm_crtc_helper_funcs *crtc_funcs;
4494 int i = -1;
4495
4496 /*
4497 * Algorithm gets a little messy:
4498 * - if the connector already has an assigned crtc, use it (but make
4499 * sure it's on first)
4500 * - try to find the first unused crtc that can drive this connector,
4501 * and use that if we find one
4502 * - if there are no unused crtcs available, try to use the first
4503 * one we found that supports the connector
4504 */
4505
4506 /* See if we already have a CRTC for this connector */
4507 if (encoder->crtc) {
4508 crtc = encoder->crtc;
4509 /* Make sure the crtc and connector are running */
4510 intel_crtc = to_intel_crtc(crtc);
4511 *dpms_mode = intel_crtc->dpms_mode;
4512 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4513 crtc_funcs = crtc->helper_private;
4514 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4515 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4516 }
4517 return crtc;
4518 }
4519
4520 /* Find an unused one (if possible) */
4521 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4522 i++;
4523 if (!(encoder->possible_crtcs & (1 << i)))
4524 continue;
4525 if (!possible_crtc->enabled) {
4526 crtc = possible_crtc;
4527 break;
4528 }
4529 if (!supported_crtc)
4530 supported_crtc = possible_crtc;
4531 }
4532
4533 /*
4534 * If we didn't find an unused CRTC, don't use any.
4535 */
4536 if (!crtc) {
4537 return NULL;
4538 }
4539
4540 encoder->crtc = crtc;
4541 connector->encoder = encoder;
4542 intel_encoder->load_detect_temp = true;
4543
4544 intel_crtc = to_intel_crtc(crtc);
4545 *dpms_mode = intel_crtc->dpms_mode;
4546
4547 if (!crtc->enabled) {
4548 if (!mode)
4549 mode = &load_detect_mode;
4550 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4551 } else {
4552 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4553 crtc_funcs = crtc->helper_private;
4554 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4555 }
4556
4557 /* Add this connector to the crtc */
4558 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4559 encoder_funcs->commit(encoder);
4560 }
4561 /* let the connector get through one full cycle before testing */
4562 intel_wait_for_vblank(dev, intel_crtc->pipe);
4563
4564 return crtc;
4565 }
4566
4567 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4568 struct drm_connector *connector, int dpms_mode)
4569 {
4570 struct drm_encoder *encoder = &intel_encoder->base;
4571 struct drm_device *dev = encoder->dev;
4572 struct drm_crtc *crtc = encoder->crtc;
4573 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4574 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4575
4576 if (intel_encoder->load_detect_temp) {
4577 encoder->crtc = NULL;
4578 connector->encoder = NULL;
4579 intel_encoder->load_detect_temp = false;
4580 crtc->enabled = drm_helper_crtc_in_use(crtc);
4581 drm_helper_disable_unused_functions(dev);
4582 }
4583
4584 /* Switch crtc and encoder back off if necessary */
4585 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4586 if (encoder->crtc == crtc)
4587 encoder_funcs->dpms(encoder, dpms_mode);
4588 crtc_funcs->dpms(crtc, dpms_mode);
4589 }
4590 }
4591
4592 /* Returns the clock of the currently programmed mode of the given pipe. */
4593 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4594 {
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4597 int pipe = intel_crtc->pipe;
4598 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4599 u32 fp;
4600 intel_clock_t clock;
4601
4602 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4603 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4604 else
4605 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4606
4607 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4608 if (IS_PINEVIEW(dev)) {
4609 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4610 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4611 } else {
4612 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4613 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4614 }
4615
4616 if (!IS_GEN2(dev)) {
4617 if (IS_PINEVIEW(dev))
4618 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4619 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4620 else
4621 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4622 DPLL_FPA01_P1_POST_DIV_SHIFT);
4623
4624 switch (dpll & DPLL_MODE_MASK) {
4625 case DPLLB_MODE_DAC_SERIAL:
4626 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4627 5 : 10;
4628 break;
4629 case DPLLB_MODE_LVDS:
4630 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4631 7 : 14;
4632 break;
4633 default:
4634 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4635 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4636 return 0;
4637 }
4638
4639 /* XXX: Handle the 100Mhz refclk */
4640 intel_clock(dev, 96000, &clock);
4641 } else {
4642 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4643
4644 if (is_lvds) {
4645 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4646 DPLL_FPA01_P1_POST_DIV_SHIFT);
4647 clock.p2 = 14;
4648
4649 if ((dpll & PLL_REF_INPUT_MASK) ==
4650 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4651 /* XXX: might not be 66MHz */
4652 intel_clock(dev, 66000, &clock);
4653 } else
4654 intel_clock(dev, 48000, &clock);
4655 } else {
4656 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4657 clock.p1 = 2;
4658 else {
4659 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4660 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4661 }
4662 if (dpll & PLL_P2_DIVIDE_BY_4)
4663 clock.p2 = 4;
4664 else
4665 clock.p2 = 2;
4666
4667 intel_clock(dev, 48000, &clock);
4668 }
4669 }
4670
4671 /* XXX: It would be nice to validate the clocks, but we can't reuse
4672 * i830PllIsValid() because it relies on the xf86_config connector
4673 * configuration being accurate, which it isn't necessarily.
4674 */
4675
4676 return clock.dot;
4677 }
4678
4679 /** Returns the currently programmed mode of the given pipe. */
4680 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4681 struct drm_crtc *crtc)
4682 {
4683 struct drm_i915_private *dev_priv = dev->dev_private;
4684 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4685 int pipe = intel_crtc->pipe;
4686 struct drm_display_mode *mode;
4687 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4688 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4689 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4690 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4691
4692 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4693 if (!mode)
4694 return NULL;
4695
4696 mode->clock = intel_crtc_clock_get(dev, crtc);
4697 mode->hdisplay = (htot & 0xffff) + 1;
4698 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4699 mode->hsync_start = (hsync & 0xffff) + 1;
4700 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4701 mode->vdisplay = (vtot & 0xffff) + 1;
4702 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4703 mode->vsync_start = (vsync & 0xffff) + 1;
4704 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4705
4706 drm_mode_set_name(mode);
4707 drm_mode_set_crtcinfo(mode, 0);
4708
4709 return mode;
4710 }
4711
4712 #define GPU_IDLE_TIMEOUT 500 /* ms */
4713
4714 /* When this timer fires, we've been idle for awhile */
4715 static void intel_gpu_idle_timer(unsigned long arg)
4716 {
4717 struct drm_device *dev = (struct drm_device *)arg;
4718 drm_i915_private_t *dev_priv = dev->dev_private;
4719
4720 dev_priv->busy = false;
4721
4722 queue_work(dev_priv->wq, &dev_priv->idle_work);
4723 }
4724
4725 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4726
4727 static void intel_crtc_idle_timer(unsigned long arg)
4728 {
4729 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4730 struct drm_crtc *crtc = &intel_crtc->base;
4731 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4732
4733 intel_crtc->busy = false;
4734
4735 queue_work(dev_priv->wq, &dev_priv->idle_work);
4736 }
4737
4738 static void intel_increase_pllclock(struct drm_crtc *crtc)
4739 {
4740 struct drm_device *dev = crtc->dev;
4741 drm_i915_private_t *dev_priv = dev->dev_private;
4742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4743 int pipe = intel_crtc->pipe;
4744 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4745 int dpll = I915_READ(dpll_reg);
4746
4747 if (HAS_PCH_SPLIT(dev))
4748 return;
4749
4750 if (!dev_priv->lvds_downclock_avail)
4751 return;
4752
4753 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4754 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4755
4756 /* Unlock panel regs */
4757 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4758 PANEL_UNLOCK_REGS);
4759
4760 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4761 I915_WRITE(dpll_reg, dpll);
4762 dpll = I915_READ(dpll_reg);
4763 intel_wait_for_vblank(dev, pipe);
4764 dpll = I915_READ(dpll_reg);
4765 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4766 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4767
4768 /* ...and lock them again */
4769 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4770 }
4771
4772 /* Schedule downclock */
4773 mod_timer(&intel_crtc->idle_timer, jiffies +
4774 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4775 }
4776
4777 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4778 {
4779 struct drm_device *dev = crtc->dev;
4780 drm_i915_private_t *dev_priv = dev->dev_private;
4781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782 int pipe = intel_crtc->pipe;
4783 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4784 int dpll = I915_READ(dpll_reg);
4785
4786 if (HAS_PCH_SPLIT(dev))
4787 return;
4788
4789 if (!dev_priv->lvds_downclock_avail)
4790 return;
4791
4792 /*
4793 * Since this is called by a timer, we should never get here in
4794 * the manual case.
4795 */
4796 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4797 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4798
4799 /* Unlock panel regs */
4800 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4801 PANEL_UNLOCK_REGS);
4802
4803 dpll |= DISPLAY_RATE_SELECT_FPA1;
4804 I915_WRITE(dpll_reg, dpll);
4805 dpll = I915_READ(dpll_reg);
4806 intel_wait_for_vblank(dev, pipe);
4807 dpll = I915_READ(dpll_reg);
4808 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4809 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4810
4811 /* ...and lock them again */
4812 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4813 }
4814
4815 }
4816
4817 /**
4818 * intel_idle_update - adjust clocks for idleness
4819 * @work: work struct
4820 *
4821 * Either the GPU or display (or both) went idle. Check the busy status
4822 * here and adjust the CRTC and GPU clocks as necessary.
4823 */
4824 static void intel_idle_update(struct work_struct *work)
4825 {
4826 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4827 idle_work);
4828 struct drm_device *dev = dev_priv->dev;
4829 struct drm_crtc *crtc;
4830 struct intel_crtc *intel_crtc;
4831 int enabled = 0;
4832
4833 if (!i915_powersave)
4834 return;
4835
4836 mutex_lock(&dev->struct_mutex);
4837
4838 i915_update_gfx_val(dev_priv);
4839
4840 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4841 /* Skip inactive CRTCs */
4842 if (!crtc->fb)
4843 continue;
4844
4845 enabled++;
4846 intel_crtc = to_intel_crtc(crtc);
4847 if (!intel_crtc->busy)
4848 intel_decrease_pllclock(crtc);
4849 }
4850
4851 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4852 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4853 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4854 }
4855
4856 mutex_unlock(&dev->struct_mutex);
4857 }
4858
4859 /**
4860 * intel_mark_busy - mark the GPU and possibly the display busy
4861 * @dev: drm device
4862 * @obj: object we're operating on
4863 *
4864 * Callers can use this function to indicate that the GPU is busy processing
4865 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4866 * buffer), we'll also mark the display as busy, so we know to increase its
4867 * clock frequency.
4868 */
4869 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4870 {
4871 drm_i915_private_t *dev_priv = dev->dev_private;
4872 struct drm_crtc *crtc = NULL;
4873 struct intel_framebuffer *intel_fb;
4874 struct intel_crtc *intel_crtc;
4875
4876 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4877 return;
4878
4879 if (!dev_priv->busy) {
4880 if (IS_I945G(dev) || IS_I945GM(dev)) {
4881 u32 fw_blc_self;
4882
4883 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4884 fw_blc_self = I915_READ(FW_BLC_SELF);
4885 fw_blc_self &= ~FW_BLC_SELF_EN;
4886 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4887 }
4888 dev_priv->busy = true;
4889 } else
4890 mod_timer(&dev_priv->idle_timer, jiffies +
4891 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4892
4893 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4894 if (!crtc->fb)
4895 continue;
4896
4897 intel_crtc = to_intel_crtc(crtc);
4898 intel_fb = to_intel_framebuffer(crtc->fb);
4899 if (intel_fb->obj == obj) {
4900 if (!intel_crtc->busy) {
4901 if (IS_I945G(dev) || IS_I945GM(dev)) {
4902 u32 fw_blc_self;
4903
4904 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4905 fw_blc_self = I915_READ(FW_BLC_SELF);
4906 fw_blc_self &= ~FW_BLC_SELF_EN;
4907 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4908 }
4909 /* Non-busy -> busy, upclock */
4910 intel_increase_pllclock(crtc);
4911 intel_crtc->busy = true;
4912 } else {
4913 /* Busy -> busy, put off timer */
4914 mod_timer(&intel_crtc->idle_timer, jiffies +
4915 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4916 }
4917 }
4918 }
4919 }
4920
4921 static void intel_crtc_destroy(struct drm_crtc *crtc)
4922 {
4923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4924 struct drm_device *dev = crtc->dev;
4925 struct intel_unpin_work *work;
4926 unsigned long flags;
4927
4928 spin_lock_irqsave(&dev->event_lock, flags);
4929 work = intel_crtc->unpin_work;
4930 intel_crtc->unpin_work = NULL;
4931 spin_unlock_irqrestore(&dev->event_lock, flags);
4932
4933 if (work) {
4934 cancel_work_sync(&work->work);
4935 kfree(work);
4936 }
4937
4938 drm_crtc_cleanup(crtc);
4939
4940 kfree(intel_crtc);
4941 }
4942
4943 static void intel_unpin_work_fn(struct work_struct *__work)
4944 {
4945 struct intel_unpin_work *work =
4946 container_of(__work, struct intel_unpin_work, work);
4947
4948 mutex_lock(&work->dev->struct_mutex);
4949 i915_gem_object_unpin(work->old_fb_obj);
4950 drm_gem_object_unreference(work->pending_flip_obj);
4951 drm_gem_object_unreference(work->old_fb_obj);
4952 mutex_unlock(&work->dev->struct_mutex);
4953 kfree(work);
4954 }
4955
4956 static void do_intel_finish_page_flip(struct drm_device *dev,
4957 struct drm_crtc *crtc)
4958 {
4959 drm_i915_private_t *dev_priv = dev->dev_private;
4960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4961 struct intel_unpin_work *work;
4962 struct drm_i915_gem_object *obj_priv;
4963 struct drm_pending_vblank_event *e;
4964 struct timeval now;
4965 unsigned long flags;
4966
4967 /* Ignore early vblank irqs */
4968 if (intel_crtc == NULL)
4969 return;
4970
4971 spin_lock_irqsave(&dev->event_lock, flags);
4972 work = intel_crtc->unpin_work;
4973 if (work == NULL || !work->pending) {
4974 spin_unlock_irqrestore(&dev->event_lock, flags);
4975 return;
4976 }
4977
4978 intel_crtc->unpin_work = NULL;
4979 drm_vblank_put(dev, intel_crtc->pipe);
4980
4981 if (work->event) {
4982 e = work->event;
4983 do_gettimeofday(&now);
4984 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4985 e->event.tv_sec = now.tv_sec;
4986 e->event.tv_usec = now.tv_usec;
4987 list_add_tail(&e->base.link,
4988 &e->base.file_priv->event_list);
4989 wake_up_interruptible(&e->base.file_priv->event_wait);
4990 }
4991
4992 spin_unlock_irqrestore(&dev->event_lock, flags);
4993
4994 obj_priv = to_intel_bo(work->pending_flip_obj);
4995
4996 /* Initial scanout buffer will have a 0 pending flip count */
4997 atomic_clear_mask(1 << intel_crtc->plane,
4998 &obj_priv->pending_flip.counter);
4999 if (atomic_read(&obj_priv->pending_flip) == 0)
5000 wake_up(&dev_priv->pending_flip_queue);
5001 schedule_work(&work->work);
5002
5003 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5004 }
5005
5006 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5007 {
5008 drm_i915_private_t *dev_priv = dev->dev_private;
5009 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5010
5011 do_intel_finish_page_flip(dev, crtc);
5012 }
5013
5014 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5015 {
5016 drm_i915_private_t *dev_priv = dev->dev_private;
5017 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5018
5019 do_intel_finish_page_flip(dev, crtc);
5020 }
5021
5022 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5023 {
5024 drm_i915_private_t *dev_priv = dev->dev_private;
5025 struct intel_crtc *intel_crtc =
5026 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5027 unsigned long flags;
5028
5029 spin_lock_irqsave(&dev->event_lock, flags);
5030 if (intel_crtc->unpin_work) {
5031 if ((++intel_crtc->unpin_work->pending) > 1)
5032 DRM_ERROR("Prepared flip multiple times\n");
5033 } else {
5034 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5035 }
5036 spin_unlock_irqrestore(&dev->event_lock, flags);
5037 }
5038
5039 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5040 struct drm_framebuffer *fb,
5041 struct drm_pending_vblank_event *event)
5042 {
5043 struct drm_device *dev = crtc->dev;
5044 struct drm_i915_private *dev_priv = dev->dev_private;
5045 struct intel_framebuffer *intel_fb;
5046 struct drm_i915_gem_object *obj_priv;
5047 struct drm_gem_object *obj;
5048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5049 struct intel_unpin_work *work;
5050 unsigned long flags, offset;
5051 int pipe = intel_crtc->pipe;
5052 u32 pf, pipesrc;
5053 int ret;
5054
5055 work = kzalloc(sizeof *work, GFP_KERNEL);
5056 if (work == NULL)
5057 return -ENOMEM;
5058
5059 work->event = event;
5060 work->dev = crtc->dev;
5061 intel_fb = to_intel_framebuffer(crtc->fb);
5062 work->old_fb_obj = intel_fb->obj;
5063 INIT_WORK(&work->work, intel_unpin_work_fn);
5064
5065 /* We borrow the event spin lock for protecting unpin_work */
5066 spin_lock_irqsave(&dev->event_lock, flags);
5067 if (intel_crtc->unpin_work) {
5068 spin_unlock_irqrestore(&dev->event_lock, flags);
5069 kfree(work);
5070
5071 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5072 return -EBUSY;
5073 }
5074 intel_crtc->unpin_work = work;
5075 spin_unlock_irqrestore(&dev->event_lock, flags);
5076
5077 intel_fb = to_intel_framebuffer(fb);
5078 obj = intel_fb->obj;
5079
5080 mutex_lock(&dev->struct_mutex);
5081 ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5082 if (ret)
5083 goto cleanup_work;
5084
5085 /* Reference the objects for the scheduled work. */
5086 drm_gem_object_reference(work->old_fb_obj);
5087 drm_gem_object_reference(obj);
5088
5089 crtc->fb = fb;
5090
5091 ret = drm_vblank_get(dev, intel_crtc->pipe);
5092 if (ret)
5093 goto cleanup_objs;
5094
5095 obj_priv = to_intel_bo(obj);
5096 atomic_add(1 << intel_crtc->plane, &obj_priv->pending_flip);
5097 work->pending_flip_obj = obj;
5098
5099 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5100 u32 flip_mask;
5101
5102 /* Can't queue multiple flips, so wait for the previous
5103 * one to finish before executing the next.
5104 */
5105 BEGIN_LP_RING(2);
5106 if (intel_crtc->plane)
5107 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5108 else
5109 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5110 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5111 OUT_RING(MI_NOOP);
5112 ADVANCE_LP_RING();
5113 }
5114
5115 work->enable_stall_check = true;
5116
5117 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5118 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5119
5120 BEGIN_LP_RING(4);
5121 switch(INTEL_INFO(dev)->gen) {
5122 case 2:
5123 OUT_RING(MI_DISPLAY_FLIP |
5124 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5125 OUT_RING(fb->pitch);
5126 OUT_RING(obj_priv->gtt_offset + offset);
5127 OUT_RING(MI_NOOP);
5128 break;
5129
5130 case 3:
5131 OUT_RING(MI_DISPLAY_FLIP_I915 |
5132 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5133 OUT_RING(fb->pitch);
5134 OUT_RING(obj_priv->gtt_offset + offset);
5135 OUT_RING(MI_NOOP);
5136 break;
5137
5138 case 4:
5139 case 5:
5140 /* i965+ uses the linear or tiled offsets from the
5141 * Display Registers (which do not change across a page-flip)
5142 * so we need only reprogram the base address.
5143 */
5144 OUT_RING(MI_DISPLAY_FLIP |
5145 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5146 OUT_RING(fb->pitch);
5147 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5148
5149 /* XXX Enabling the panel-fitter across page-flip is so far
5150 * untested on non-native modes, so ignore it for now.
5151 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5152 */
5153 pf = 0;
5154 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5155 OUT_RING(pf | pipesrc);
5156 break;
5157
5158 case 6:
5159 OUT_RING(MI_DISPLAY_FLIP |
5160 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5161 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5162 OUT_RING(obj_priv->gtt_offset);
5163
5164 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5165 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5166 OUT_RING(pf | pipesrc);
5167 break;
5168 }
5169 ADVANCE_LP_RING();
5170
5171 mutex_unlock(&dev->struct_mutex);
5172
5173 trace_i915_flip_request(intel_crtc->plane, obj);
5174
5175 return 0;
5176
5177 cleanup_objs:
5178 drm_gem_object_unreference(work->old_fb_obj);
5179 drm_gem_object_unreference(obj);
5180 cleanup_work:
5181 mutex_unlock(&dev->struct_mutex);
5182
5183 spin_lock_irqsave(&dev->event_lock, flags);
5184 intel_crtc->unpin_work = NULL;
5185 spin_unlock_irqrestore(&dev->event_lock, flags);
5186
5187 kfree(work);
5188
5189 return ret;
5190 }
5191
5192 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5193 .dpms = intel_crtc_dpms,
5194 .mode_fixup = intel_crtc_mode_fixup,
5195 .mode_set = intel_crtc_mode_set,
5196 .mode_set_base = intel_pipe_set_base,
5197 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5198 .load_lut = intel_crtc_load_lut,
5199 .disable = intel_crtc_disable,
5200 };
5201
5202 static const struct drm_crtc_funcs intel_crtc_funcs = {
5203 .cursor_set = intel_crtc_cursor_set,
5204 .cursor_move = intel_crtc_cursor_move,
5205 .gamma_set = intel_crtc_gamma_set,
5206 .set_config = drm_crtc_helper_set_config,
5207 .destroy = intel_crtc_destroy,
5208 .page_flip = intel_crtc_page_flip,
5209 };
5210
5211
5212 static void intel_crtc_init(struct drm_device *dev, int pipe)
5213 {
5214 drm_i915_private_t *dev_priv = dev->dev_private;
5215 struct intel_crtc *intel_crtc;
5216 int i;
5217
5218 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5219 if (intel_crtc == NULL)
5220 return;
5221
5222 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5223
5224 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5225 for (i = 0; i < 256; i++) {
5226 intel_crtc->lut_r[i] = i;
5227 intel_crtc->lut_g[i] = i;
5228 intel_crtc->lut_b[i] = i;
5229 }
5230
5231 /* Swap pipes & planes for FBC on pre-965 */
5232 intel_crtc->pipe = pipe;
5233 intel_crtc->plane = pipe;
5234 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5235 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5236 intel_crtc->plane = !pipe;
5237 }
5238
5239 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5240 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5241 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5242 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5243
5244 intel_crtc->cursor_addr = 0;
5245 intel_crtc->dpms_mode = -1;
5246 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5247
5248 if (HAS_PCH_SPLIT(dev)) {
5249 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5250 intel_helper_funcs.commit = ironlake_crtc_commit;
5251 } else {
5252 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5253 intel_helper_funcs.commit = i9xx_crtc_commit;
5254 }
5255
5256 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5257
5258 intel_crtc->busy = false;
5259
5260 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5261 (unsigned long)intel_crtc);
5262 }
5263
5264 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5265 struct drm_file *file_priv)
5266 {
5267 drm_i915_private_t *dev_priv = dev->dev_private;
5268 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5269 struct drm_mode_object *drmmode_obj;
5270 struct intel_crtc *crtc;
5271
5272 if (!dev_priv) {
5273 DRM_ERROR("called with no initialization\n");
5274 return -EINVAL;
5275 }
5276
5277 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5278 DRM_MODE_OBJECT_CRTC);
5279
5280 if (!drmmode_obj) {
5281 DRM_ERROR("no such CRTC id\n");
5282 return -EINVAL;
5283 }
5284
5285 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5286 pipe_from_crtc_id->pipe = crtc->pipe;
5287
5288 return 0;
5289 }
5290
5291 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5292 {
5293 struct intel_encoder *encoder;
5294 int index_mask = 0;
5295 int entry = 0;
5296
5297 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5298 if (type_mask & encoder->clone_mask)
5299 index_mask |= (1 << entry);
5300 entry++;
5301 }
5302
5303 return index_mask;
5304 }
5305
5306 static void intel_setup_outputs(struct drm_device *dev)
5307 {
5308 struct drm_i915_private *dev_priv = dev->dev_private;
5309 struct intel_encoder *encoder;
5310 bool dpd_is_edp = false;
5311
5312 if (IS_MOBILE(dev) && !IS_I830(dev))
5313 intel_lvds_init(dev);
5314
5315 if (HAS_PCH_SPLIT(dev)) {
5316 dpd_is_edp = intel_dpd_is_edp(dev);
5317
5318 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5319 intel_dp_init(dev, DP_A);
5320
5321 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5322 intel_dp_init(dev, PCH_DP_D);
5323 }
5324
5325 intel_crt_init(dev);
5326
5327 if (HAS_PCH_SPLIT(dev)) {
5328 int found;
5329
5330 if (I915_READ(HDMIB) & PORT_DETECTED) {
5331 /* PCH SDVOB multiplex with HDMIB */
5332 found = intel_sdvo_init(dev, PCH_SDVOB);
5333 if (!found)
5334 intel_hdmi_init(dev, HDMIB);
5335 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5336 intel_dp_init(dev, PCH_DP_B);
5337 }
5338
5339 if (I915_READ(HDMIC) & PORT_DETECTED)
5340 intel_hdmi_init(dev, HDMIC);
5341
5342 if (I915_READ(HDMID) & PORT_DETECTED)
5343 intel_hdmi_init(dev, HDMID);
5344
5345 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5346 intel_dp_init(dev, PCH_DP_C);
5347
5348 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5349 intel_dp_init(dev, PCH_DP_D);
5350
5351 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5352 bool found = false;
5353
5354 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5355 DRM_DEBUG_KMS("probing SDVOB\n");
5356 found = intel_sdvo_init(dev, SDVOB);
5357 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5358 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5359 intel_hdmi_init(dev, SDVOB);
5360 }
5361
5362 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5363 DRM_DEBUG_KMS("probing DP_B\n");
5364 intel_dp_init(dev, DP_B);
5365 }
5366 }
5367
5368 /* Before G4X SDVOC doesn't have its own detect register */
5369
5370 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5371 DRM_DEBUG_KMS("probing SDVOC\n");
5372 found = intel_sdvo_init(dev, SDVOC);
5373 }
5374
5375 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5376
5377 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5378 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5379 intel_hdmi_init(dev, SDVOC);
5380 }
5381 if (SUPPORTS_INTEGRATED_DP(dev)) {
5382 DRM_DEBUG_KMS("probing DP_C\n");
5383 intel_dp_init(dev, DP_C);
5384 }
5385 }
5386
5387 if (SUPPORTS_INTEGRATED_DP(dev) &&
5388 (I915_READ(DP_D) & DP_DETECTED)) {
5389 DRM_DEBUG_KMS("probing DP_D\n");
5390 intel_dp_init(dev, DP_D);
5391 }
5392 } else if (IS_GEN2(dev))
5393 intel_dvo_init(dev);
5394
5395 if (SUPPORTS_TV(dev))
5396 intel_tv_init(dev);
5397
5398 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5399 encoder->base.possible_crtcs = encoder->crtc_mask;
5400 encoder->base.possible_clones =
5401 intel_encoder_clones(dev, encoder->clone_mask);
5402 }
5403 }
5404
5405 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5406 {
5407 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5408
5409 drm_framebuffer_cleanup(fb);
5410 drm_gem_object_unreference_unlocked(intel_fb->obj);
5411
5412 kfree(intel_fb);
5413 }
5414
5415 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5416 struct drm_file *file_priv,
5417 unsigned int *handle)
5418 {
5419 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5420 struct drm_gem_object *object = intel_fb->obj;
5421
5422 return drm_gem_handle_create(file_priv, object, handle);
5423 }
5424
5425 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5426 .destroy = intel_user_framebuffer_destroy,
5427 .create_handle = intel_user_framebuffer_create_handle,
5428 };
5429
5430 int intel_framebuffer_init(struct drm_device *dev,
5431 struct intel_framebuffer *intel_fb,
5432 struct drm_mode_fb_cmd *mode_cmd,
5433 struct drm_gem_object *obj)
5434 {
5435 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5436 int ret;
5437
5438 if (obj_priv->tiling_mode == I915_TILING_Y)
5439 return -EINVAL;
5440
5441 if (mode_cmd->pitch & 63)
5442 return -EINVAL;
5443
5444 switch (mode_cmd->bpp) {
5445 case 8:
5446 case 16:
5447 case 24:
5448 case 32:
5449 break;
5450 default:
5451 return -EINVAL;
5452 }
5453
5454 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5455 if (ret) {
5456 DRM_ERROR("framebuffer init failed %d\n", ret);
5457 return ret;
5458 }
5459
5460 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5461 intel_fb->obj = obj;
5462 return 0;
5463 }
5464
5465 static struct drm_framebuffer *
5466 intel_user_framebuffer_create(struct drm_device *dev,
5467 struct drm_file *filp,
5468 struct drm_mode_fb_cmd *mode_cmd)
5469 {
5470 struct drm_gem_object *obj;
5471 struct intel_framebuffer *intel_fb;
5472 int ret;
5473
5474 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5475 if (!obj)
5476 return ERR_PTR(-ENOENT);
5477
5478 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5479 if (!intel_fb)
5480 return ERR_PTR(-ENOMEM);
5481
5482 ret = intel_framebuffer_init(dev, intel_fb,
5483 mode_cmd, obj);
5484 if (ret) {
5485 drm_gem_object_unreference_unlocked(obj);
5486 kfree(intel_fb);
5487 return ERR_PTR(ret);
5488 }
5489
5490 return &intel_fb->base;
5491 }
5492
5493 static const struct drm_mode_config_funcs intel_mode_funcs = {
5494 .fb_create = intel_user_framebuffer_create,
5495 .output_poll_changed = intel_fb_output_poll_changed,
5496 };
5497
5498 static struct drm_gem_object *
5499 intel_alloc_context_page(struct drm_device *dev)
5500 {
5501 struct drm_gem_object *ctx;
5502 int ret;
5503
5504 ctx = i915_gem_alloc_object(dev, 4096);
5505 if (!ctx) {
5506 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5507 return NULL;
5508 }
5509
5510 mutex_lock(&dev->struct_mutex);
5511 ret = i915_gem_object_pin(ctx, 4096);
5512 if (ret) {
5513 DRM_ERROR("failed to pin power context: %d\n", ret);
5514 goto err_unref;
5515 }
5516
5517 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5518 if (ret) {
5519 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5520 goto err_unpin;
5521 }
5522 mutex_unlock(&dev->struct_mutex);
5523
5524 return ctx;
5525
5526 err_unpin:
5527 i915_gem_object_unpin(ctx);
5528 err_unref:
5529 drm_gem_object_unreference(ctx);
5530 mutex_unlock(&dev->struct_mutex);
5531 return NULL;
5532 }
5533
5534 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5535 {
5536 struct drm_i915_private *dev_priv = dev->dev_private;
5537 u16 rgvswctl;
5538
5539 rgvswctl = I915_READ16(MEMSWCTL);
5540 if (rgvswctl & MEMCTL_CMD_STS) {
5541 DRM_DEBUG("gpu busy, RCS change rejected\n");
5542 return false; /* still busy with another command */
5543 }
5544
5545 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5546 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5547 I915_WRITE16(MEMSWCTL, rgvswctl);
5548 POSTING_READ16(MEMSWCTL);
5549
5550 rgvswctl |= MEMCTL_CMD_STS;
5551 I915_WRITE16(MEMSWCTL, rgvswctl);
5552
5553 return true;
5554 }
5555
5556 void ironlake_enable_drps(struct drm_device *dev)
5557 {
5558 struct drm_i915_private *dev_priv = dev->dev_private;
5559 u32 rgvmodectl = I915_READ(MEMMODECTL);
5560 u8 fmax, fmin, fstart, vstart;
5561
5562 /* Enable temp reporting */
5563 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5564 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5565
5566 /* 100ms RC evaluation intervals */
5567 I915_WRITE(RCUPEI, 100000);
5568 I915_WRITE(RCDNEI, 100000);
5569
5570 /* Set max/min thresholds to 90ms and 80ms respectively */
5571 I915_WRITE(RCBMAXAVG, 90000);
5572 I915_WRITE(RCBMINAVG, 80000);
5573
5574 I915_WRITE(MEMIHYST, 1);
5575
5576 /* Set up min, max, and cur for interrupt handling */
5577 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5578 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5579 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5580 MEMMODE_FSTART_SHIFT;
5581 fstart = fmax;
5582
5583 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5584 PXVFREQ_PX_SHIFT;
5585
5586 dev_priv->fmax = fstart; /* IPS callback will increase this */
5587 dev_priv->fstart = fstart;
5588
5589 dev_priv->max_delay = fmax;
5590 dev_priv->min_delay = fmin;
5591 dev_priv->cur_delay = fstart;
5592
5593 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5594 fstart);
5595
5596 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5597
5598 /*
5599 * Interrupts will be enabled in ironlake_irq_postinstall
5600 */
5601
5602 I915_WRITE(VIDSTART, vstart);
5603 POSTING_READ(VIDSTART);
5604
5605 rgvmodectl |= MEMMODE_SWMODE_EN;
5606 I915_WRITE(MEMMODECTL, rgvmodectl);
5607
5608 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5609 DRM_ERROR("stuck trying to change perf mode\n");
5610 msleep(1);
5611
5612 ironlake_set_drps(dev, fstart);
5613
5614 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5615 I915_READ(0x112e0);
5616 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5617 dev_priv->last_count2 = I915_READ(0x112f4);
5618 getrawmonotonic(&dev_priv->last_time2);
5619 }
5620
5621 void ironlake_disable_drps(struct drm_device *dev)
5622 {
5623 struct drm_i915_private *dev_priv = dev->dev_private;
5624 u16 rgvswctl = I915_READ16(MEMSWCTL);
5625
5626 /* Ack interrupts, disable EFC interrupt */
5627 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5628 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5629 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5630 I915_WRITE(DEIIR, DE_PCU_EVENT);
5631 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5632
5633 /* Go back to the starting frequency */
5634 ironlake_set_drps(dev, dev_priv->fstart);
5635 msleep(1);
5636 rgvswctl |= MEMCTL_CMD_STS;
5637 I915_WRITE(MEMSWCTL, rgvswctl);
5638 msleep(1);
5639
5640 }
5641
5642 static unsigned long intel_pxfreq(u32 vidfreq)
5643 {
5644 unsigned long freq;
5645 int div = (vidfreq & 0x3f0000) >> 16;
5646 int post = (vidfreq & 0x3000) >> 12;
5647 int pre = (vidfreq & 0x7);
5648
5649 if (!pre)
5650 return 0;
5651
5652 freq = ((div * 133333) / ((1<<post) * pre));
5653
5654 return freq;
5655 }
5656
5657 void intel_init_emon(struct drm_device *dev)
5658 {
5659 struct drm_i915_private *dev_priv = dev->dev_private;
5660 u32 lcfuse;
5661 u8 pxw[16];
5662 int i;
5663
5664 /* Disable to program */
5665 I915_WRITE(ECR, 0);
5666 POSTING_READ(ECR);
5667
5668 /* Program energy weights for various events */
5669 I915_WRITE(SDEW, 0x15040d00);
5670 I915_WRITE(CSIEW0, 0x007f0000);
5671 I915_WRITE(CSIEW1, 0x1e220004);
5672 I915_WRITE(CSIEW2, 0x04000004);
5673
5674 for (i = 0; i < 5; i++)
5675 I915_WRITE(PEW + (i * 4), 0);
5676 for (i = 0; i < 3; i++)
5677 I915_WRITE(DEW + (i * 4), 0);
5678
5679 /* Program P-state weights to account for frequency power adjustment */
5680 for (i = 0; i < 16; i++) {
5681 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5682 unsigned long freq = intel_pxfreq(pxvidfreq);
5683 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5684 PXVFREQ_PX_SHIFT;
5685 unsigned long val;
5686
5687 val = vid * vid;
5688 val *= (freq / 1000);
5689 val *= 255;
5690 val /= (127*127*900);
5691 if (val > 0xff)
5692 DRM_ERROR("bad pxval: %ld\n", val);
5693 pxw[i] = val;
5694 }
5695 /* Render standby states get 0 weight */
5696 pxw[14] = 0;
5697 pxw[15] = 0;
5698
5699 for (i = 0; i < 4; i++) {
5700 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5701 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5702 I915_WRITE(PXW + (i * 4), val);
5703 }
5704
5705 /* Adjust magic regs to magic values (more experimental results) */
5706 I915_WRITE(OGW0, 0);
5707 I915_WRITE(OGW1, 0);
5708 I915_WRITE(EG0, 0x00007f00);
5709 I915_WRITE(EG1, 0x0000000e);
5710 I915_WRITE(EG2, 0x000e0000);
5711 I915_WRITE(EG3, 0x68000300);
5712 I915_WRITE(EG4, 0x42000000);
5713 I915_WRITE(EG5, 0x00140031);
5714 I915_WRITE(EG6, 0);
5715 I915_WRITE(EG7, 0);
5716
5717 for (i = 0; i < 8; i++)
5718 I915_WRITE(PXWL + (i * 4), 0);
5719
5720 /* Enable PMON + select events */
5721 I915_WRITE(ECR, 0x80000019);
5722
5723 lcfuse = I915_READ(LCFUSE02);
5724
5725 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5726 }
5727
5728 void intel_init_clock_gating(struct drm_device *dev)
5729 {
5730 struct drm_i915_private *dev_priv = dev->dev_private;
5731
5732 /*
5733 * Disable clock gating reported to work incorrectly according to the
5734 * specs, but enable as much else as we can.
5735 */
5736 if (HAS_PCH_SPLIT(dev)) {
5737 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5738
5739 if (IS_IRONLAKE(dev)) {
5740 /* Required for FBC */
5741 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5742 /* Required for CxSR */
5743 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5744
5745 I915_WRITE(PCH_3DCGDIS0,
5746 MARIUNIT_CLOCK_GATE_DISABLE |
5747 SVSMUNIT_CLOCK_GATE_DISABLE);
5748 }
5749
5750 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5751
5752 /*
5753 * According to the spec the following bits should be set in
5754 * order to enable memory self-refresh
5755 * The bit 22/21 of 0x42004
5756 * The bit 5 of 0x42020
5757 * The bit 15 of 0x45000
5758 */
5759 if (IS_IRONLAKE(dev)) {
5760 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5761 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5762 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5763 I915_WRITE(ILK_DSPCLK_GATE,
5764 (I915_READ(ILK_DSPCLK_GATE) |
5765 ILK_DPARB_CLK_GATE));
5766 I915_WRITE(DISP_ARB_CTL,
5767 (I915_READ(DISP_ARB_CTL) |
5768 DISP_FBC_WM_DIS));
5769 I915_WRITE(WM3_LP_ILK, 0);
5770 I915_WRITE(WM2_LP_ILK, 0);
5771 I915_WRITE(WM1_LP_ILK, 0);
5772 }
5773 /*
5774 * Based on the document from hardware guys the following bits
5775 * should be set unconditionally in order to enable FBC.
5776 * The bit 22 of 0x42000
5777 * The bit 22 of 0x42004
5778 * The bit 7,8,9 of 0x42020.
5779 */
5780 if (IS_IRONLAKE_M(dev)) {
5781 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5782 I915_READ(ILK_DISPLAY_CHICKEN1) |
5783 ILK_FBCQ_DIS);
5784 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5785 I915_READ(ILK_DISPLAY_CHICKEN2) |
5786 ILK_DPARB_GATE);
5787 I915_WRITE(ILK_DSPCLK_GATE,
5788 I915_READ(ILK_DSPCLK_GATE) |
5789 ILK_DPFC_DIS1 |
5790 ILK_DPFC_DIS2 |
5791 ILK_CLK_FBC);
5792 }
5793 return;
5794 } else if (IS_G4X(dev)) {
5795 uint32_t dspclk_gate;
5796 I915_WRITE(RENCLK_GATE_D1, 0);
5797 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5798 GS_UNIT_CLOCK_GATE_DISABLE |
5799 CL_UNIT_CLOCK_GATE_DISABLE);
5800 I915_WRITE(RAMCLK_GATE_D, 0);
5801 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5802 OVRUNIT_CLOCK_GATE_DISABLE |
5803 OVCUNIT_CLOCK_GATE_DISABLE;
5804 if (IS_GM45(dev))
5805 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5806 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5807 } else if (IS_CRESTLINE(dev)) {
5808 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5809 I915_WRITE(RENCLK_GATE_D2, 0);
5810 I915_WRITE(DSPCLK_GATE_D, 0);
5811 I915_WRITE(RAMCLK_GATE_D, 0);
5812 I915_WRITE16(DEUC, 0);
5813 } else if (IS_BROADWATER(dev)) {
5814 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5815 I965_RCC_CLOCK_GATE_DISABLE |
5816 I965_RCPB_CLOCK_GATE_DISABLE |
5817 I965_ISC_CLOCK_GATE_DISABLE |
5818 I965_FBC_CLOCK_GATE_DISABLE);
5819 I915_WRITE(RENCLK_GATE_D2, 0);
5820 } else if (IS_GEN3(dev)) {
5821 u32 dstate = I915_READ(D_STATE);
5822
5823 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5824 DSTATE_DOT_CLOCK_GATING;
5825 I915_WRITE(D_STATE, dstate);
5826 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5827 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5828 } else if (IS_I830(dev)) {
5829 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5830 }
5831
5832 /*
5833 * GPU can automatically power down the render unit if given a page
5834 * to save state.
5835 */
5836 if (IS_IRONLAKE_M(dev)) {
5837 if (dev_priv->renderctx == NULL)
5838 dev_priv->renderctx = intel_alloc_context_page(dev);
5839 if (dev_priv->renderctx) {
5840 struct drm_i915_gem_object *obj_priv;
5841 obj_priv = to_intel_bo(dev_priv->renderctx);
5842 if (obj_priv) {
5843 BEGIN_LP_RING(4);
5844 OUT_RING(MI_SET_CONTEXT);
5845 OUT_RING(obj_priv->gtt_offset |
5846 MI_MM_SPACE_GTT |
5847 MI_SAVE_EXT_STATE_EN |
5848 MI_RESTORE_EXT_STATE_EN |
5849 MI_RESTORE_INHIBIT);
5850 OUT_RING(MI_NOOP);
5851 OUT_RING(MI_FLUSH);
5852 ADVANCE_LP_RING();
5853 }
5854 } else
5855 DRM_DEBUG_KMS("Failed to allocate render context."
5856 "Disable RC6\n");
5857 }
5858
5859 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5860 struct drm_i915_gem_object *obj_priv = NULL;
5861
5862 if (dev_priv->pwrctx) {
5863 obj_priv = to_intel_bo(dev_priv->pwrctx);
5864 } else {
5865 struct drm_gem_object *pwrctx;
5866
5867 pwrctx = intel_alloc_context_page(dev);
5868 if (pwrctx) {
5869 dev_priv->pwrctx = pwrctx;
5870 obj_priv = to_intel_bo(pwrctx);
5871 }
5872 }
5873
5874 if (obj_priv) {
5875 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5876 I915_WRITE(MCHBAR_RENDER_STANDBY,
5877 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5878 }
5879 }
5880 }
5881
5882 /* Set up chip specific display functions */
5883 static void intel_init_display(struct drm_device *dev)
5884 {
5885 struct drm_i915_private *dev_priv = dev->dev_private;
5886
5887 /* We always want a DPMS function */
5888 if (HAS_PCH_SPLIT(dev))
5889 dev_priv->display.dpms = ironlake_crtc_dpms;
5890 else
5891 dev_priv->display.dpms = i9xx_crtc_dpms;
5892
5893 if (I915_HAS_FBC(dev)) {
5894 if (IS_IRONLAKE_M(dev)) {
5895 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5896 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5897 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5898 } else if (IS_GM45(dev)) {
5899 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5900 dev_priv->display.enable_fbc = g4x_enable_fbc;
5901 dev_priv->display.disable_fbc = g4x_disable_fbc;
5902 } else if (IS_CRESTLINE(dev)) {
5903 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5904 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5905 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5906 }
5907 /* 855GM needs testing */
5908 }
5909
5910 /* Returns the core display clock speed */
5911 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5912 dev_priv->display.get_display_clock_speed =
5913 i945_get_display_clock_speed;
5914 else if (IS_I915G(dev))
5915 dev_priv->display.get_display_clock_speed =
5916 i915_get_display_clock_speed;
5917 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5918 dev_priv->display.get_display_clock_speed =
5919 i9xx_misc_get_display_clock_speed;
5920 else if (IS_I915GM(dev))
5921 dev_priv->display.get_display_clock_speed =
5922 i915gm_get_display_clock_speed;
5923 else if (IS_I865G(dev))
5924 dev_priv->display.get_display_clock_speed =
5925 i865_get_display_clock_speed;
5926 else if (IS_I85X(dev))
5927 dev_priv->display.get_display_clock_speed =
5928 i855_get_display_clock_speed;
5929 else /* 852, 830 */
5930 dev_priv->display.get_display_clock_speed =
5931 i830_get_display_clock_speed;
5932
5933 /* For FIFO watermark updates */
5934 if (HAS_PCH_SPLIT(dev)) {
5935 if (IS_IRONLAKE(dev)) {
5936 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5937 dev_priv->display.update_wm = ironlake_update_wm;
5938 else {
5939 DRM_DEBUG_KMS("Failed to get proper latency. "
5940 "Disable CxSR\n");
5941 dev_priv->display.update_wm = NULL;
5942 }
5943 } else
5944 dev_priv->display.update_wm = NULL;
5945 } else if (IS_PINEVIEW(dev)) {
5946 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5947 dev_priv->is_ddr3,
5948 dev_priv->fsb_freq,
5949 dev_priv->mem_freq)) {
5950 DRM_INFO("failed to find known CxSR latency "
5951 "(found ddr%s fsb freq %d, mem freq %d), "
5952 "disabling CxSR\n",
5953 (dev_priv->is_ddr3 == 1) ? "3": "2",
5954 dev_priv->fsb_freq, dev_priv->mem_freq);
5955 /* Disable CxSR and never update its watermark again */
5956 pineview_disable_cxsr(dev);
5957 dev_priv->display.update_wm = NULL;
5958 } else
5959 dev_priv->display.update_wm = pineview_update_wm;
5960 } else if (IS_G4X(dev))
5961 dev_priv->display.update_wm = g4x_update_wm;
5962 else if (IS_GEN4(dev))
5963 dev_priv->display.update_wm = i965_update_wm;
5964 else if (IS_GEN3(dev)) {
5965 dev_priv->display.update_wm = i9xx_update_wm;
5966 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5967 } else if (IS_I85X(dev)) {
5968 dev_priv->display.update_wm = i9xx_update_wm;
5969 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5970 } else {
5971 dev_priv->display.update_wm = i830_update_wm;
5972 if (IS_845G(dev))
5973 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5974 else
5975 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5976 }
5977 }
5978
5979 /*
5980 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5981 * resume, or other times. This quirk makes sure that's the case for
5982 * affected systems.
5983 */
5984 static void quirk_pipea_force (struct drm_device *dev)
5985 {
5986 struct drm_i915_private *dev_priv = dev->dev_private;
5987
5988 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5989 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5990 }
5991
5992 struct intel_quirk {
5993 int device;
5994 int subsystem_vendor;
5995 int subsystem_device;
5996 void (*hook)(struct drm_device *dev);
5997 };
5998
5999 struct intel_quirk intel_quirks[] = {
6000 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6001 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6002 /* HP Mini needs pipe A force quirk (LP: #322104) */
6003 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6004
6005 /* Thinkpad R31 needs pipe A force quirk */
6006 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6007 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6008 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6009
6010 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6011 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6012 /* ThinkPad X40 needs pipe A force quirk */
6013
6014 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6015 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6016
6017 /* 855 & before need to leave pipe A & dpll A up */
6018 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6019 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6020 };
6021
6022 static void intel_init_quirks(struct drm_device *dev)
6023 {
6024 struct pci_dev *d = dev->pdev;
6025 int i;
6026
6027 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6028 struct intel_quirk *q = &intel_quirks[i];
6029
6030 if (d->device == q->device &&
6031 (d->subsystem_vendor == q->subsystem_vendor ||
6032 q->subsystem_vendor == PCI_ANY_ID) &&
6033 (d->subsystem_device == q->subsystem_device ||
6034 q->subsystem_device == PCI_ANY_ID))
6035 q->hook(dev);
6036 }
6037 }
6038
6039 /* Disable the VGA plane that we never use */
6040 static void i915_disable_vga(struct drm_device *dev)
6041 {
6042 struct drm_i915_private *dev_priv = dev->dev_private;
6043 u8 sr1;
6044 u32 vga_reg;
6045
6046 if (HAS_PCH_SPLIT(dev))
6047 vga_reg = CPU_VGACNTRL;
6048 else
6049 vga_reg = VGACNTRL;
6050
6051 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6052 outb(1, VGA_SR_INDEX);
6053 sr1 = inb(VGA_SR_DATA);
6054 outb(sr1 | 1<<5, VGA_SR_DATA);
6055 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6056 udelay(300);
6057
6058 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6059 POSTING_READ(vga_reg);
6060 }
6061
6062 void intel_modeset_init(struct drm_device *dev)
6063 {
6064 struct drm_i915_private *dev_priv = dev->dev_private;
6065 int i;
6066
6067 drm_mode_config_init(dev);
6068
6069 dev->mode_config.min_width = 0;
6070 dev->mode_config.min_height = 0;
6071
6072 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6073
6074 intel_init_quirks(dev);
6075
6076 intel_init_display(dev);
6077
6078 if (IS_GEN2(dev)) {
6079 dev->mode_config.max_width = 2048;
6080 dev->mode_config.max_height = 2048;
6081 } else if (IS_GEN3(dev)) {
6082 dev->mode_config.max_width = 4096;
6083 dev->mode_config.max_height = 4096;
6084 } else {
6085 dev->mode_config.max_width = 8192;
6086 dev->mode_config.max_height = 8192;
6087 }
6088
6089 /* set memory base */
6090 if (IS_GEN2(dev))
6091 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6092 else
6093 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6094
6095 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6096 dev_priv->num_pipe = 2;
6097 else
6098 dev_priv->num_pipe = 1;
6099 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6100 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6101
6102 for (i = 0; i < dev_priv->num_pipe; i++) {
6103 intel_crtc_init(dev, i);
6104 }
6105
6106 intel_setup_outputs(dev);
6107
6108 intel_init_clock_gating(dev);
6109
6110 /* Just disable it once at startup */
6111 i915_disable_vga(dev);
6112
6113 if (IS_IRONLAKE_M(dev)) {
6114 ironlake_enable_drps(dev);
6115 intel_init_emon(dev);
6116 }
6117
6118 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6119 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6120 (unsigned long)dev);
6121
6122 intel_setup_overlay(dev);
6123 }
6124
6125 void intel_modeset_cleanup(struct drm_device *dev)
6126 {
6127 struct drm_i915_private *dev_priv = dev->dev_private;
6128 struct drm_crtc *crtc;
6129 struct intel_crtc *intel_crtc;
6130
6131 drm_kms_helper_poll_fini(dev);
6132 mutex_lock(&dev->struct_mutex);
6133
6134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6135 /* Skip inactive CRTCs */
6136 if (!crtc->fb)
6137 continue;
6138
6139 intel_crtc = to_intel_crtc(crtc);
6140 intel_increase_pllclock(crtc);
6141 }
6142
6143 if (dev_priv->display.disable_fbc)
6144 dev_priv->display.disable_fbc(dev);
6145
6146 if (dev_priv->renderctx) {
6147 struct drm_i915_gem_object *obj_priv;
6148
6149 obj_priv = to_intel_bo(dev_priv->renderctx);
6150 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6151 I915_READ(CCID);
6152 i915_gem_object_unpin(dev_priv->renderctx);
6153 drm_gem_object_unreference(dev_priv->renderctx);
6154 }
6155
6156 if (dev_priv->pwrctx) {
6157 struct drm_i915_gem_object *obj_priv;
6158
6159 obj_priv = to_intel_bo(dev_priv->pwrctx);
6160 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6161 I915_READ(PWRCTXA);
6162 i915_gem_object_unpin(dev_priv->pwrctx);
6163 drm_gem_object_unreference(dev_priv->pwrctx);
6164 }
6165
6166 if (IS_IRONLAKE_M(dev))
6167 ironlake_disable_drps(dev);
6168
6169 mutex_unlock(&dev->struct_mutex);
6170
6171 /* Disable the irq before mode object teardown, for the irq might
6172 * enqueue unpin/hotplug work. */
6173 drm_irq_uninstall(dev);
6174 cancel_work_sync(&dev_priv->hotplug_work);
6175
6176 /* Shut off idle work before the crtcs get freed. */
6177 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6178 intel_crtc = to_intel_crtc(crtc);
6179 del_timer_sync(&intel_crtc->idle_timer);
6180 }
6181 del_timer_sync(&dev_priv->idle_timer);
6182 cancel_work_sync(&dev_priv->idle_work);
6183
6184 drm_mode_config_cleanup(dev);
6185 }
6186
6187 /*
6188 * Return which encoder is currently attached for connector.
6189 */
6190 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6191 {
6192 return &intel_attached_encoder(connector)->base;
6193 }
6194
6195 void intel_connector_attach_encoder(struct intel_connector *connector,
6196 struct intel_encoder *encoder)
6197 {
6198 connector->encoder = encoder;
6199 drm_mode_connector_attach_encoder(&connector->base,
6200 &encoder->base);
6201 }
6202
6203 /*
6204 * set vga decode state - true == enable VGA decode
6205 */
6206 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6207 {
6208 struct drm_i915_private *dev_priv = dev->dev_private;
6209 u16 gmch_ctrl;
6210
6211 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6212 if (state)
6213 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6214 else
6215 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6216 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6217 return 0;
6218 }
This page took 0.400793 seconds and 5 git commands to generate.