drm/i915: extract ironlake_set_pipeconf form ironlake_crtc_mode_set
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
127 .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
141 .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
155 .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
185 },
186 .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
200 .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
214 },
215 .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
229 },
230 .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 10, .p2_fast = 10 },
244 .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
250 /* Pineview's Ncounter is a ring counter */
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
253 /* Pineview only has one combined m divider, which we treat as m2. */
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
260 .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
274 .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
293 .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
307 .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
321 .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
333 .p1 = { .min = 2, .max = 8 },
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
336 .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
347 .p1 = { .min = 2, .max = 6 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
363 .p2_slow = 10, .p2_fast = 10 },
364 .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 162000, .max = 270000 },
397 .vco = { .min = 5994000, .max = 4000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 60, .max = 300 }, /* guess */
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436 {
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487 {
488 unsigned int val;
489
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
515 {
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 const intel_limit_t *limit;
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522 /* LVDS dual channel */
523 if (refclk == 100000)
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
528 if (refclk == 100000)
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
536 else
537 limit = &intel_limits_ironlake_dac;
538
539 return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549 if (is_dual_link_lvds(dev_priv, LVDS))
550 /* LVDS with dual channel */
551 limit = &intel_limits_g4x_dual_channel_lvds;
552 else
553 /* LVDS with dual channel */
554 limit = &intel_limits_g4x_single_channel_lvds;
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557 limit = &intel_limits_g4x_hdmi;
558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559 limit = &intel_limits_g4x_sdvo;
560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561 limit = &intel_limits_g4x_display_port;
562 } else /* The option is for other outputs */
563 limit = &intel_limits_i9xx_sdvo;
564
565 return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
573 if (HAS_PCH_SPLIT(dev))
574 limit = intel_ironlake_limit(crtc, refclk);
575 else if (IS_G4X(dev)) {
576 limit = intel_g4x_limit(crtc);
577 } else if (IS_PINEVIEW(dev)) {
578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_pineview_lvds;
580 else
581 limit = &intel_limits_pineview_sdvo;
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596 limit = &intel_limits_i8xx_lvds;
597 else
598 limit = &intel_limits_i8xx_dvo;
599 }
600 return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
616 return;
617 }
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629 struct drm_device *dev = crtc->dev;
630 struct intel_encoder *encoder;
631
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
634 return true;
635
636 return false;
637 }
638
639 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
648 {
649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
650 INTELPllInvalid("p1 out of range\n");
651 if (clock->p < limit->p.min || limit->p.max < clock->p)
652 INTELPllInvalid("p out of range\n");
653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
654 INTELPllInvalid("m2 out of range\n");
655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
656 INTELPllInvalid("m1 out of range\n");
657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658 INTELPllInvalid("m1 <= m2\n");
659 if (clock->m < limit->m.min || limit->m.max < clock->m)
660 INTELPllInvalid("m out of range\n");
661 if (clock->n < limit->n.min || limit->n.max < clock->n)
662 INTELPllInvalid("n out of range\n");
663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664 INTELPllInvalid("vco out of range\n");
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669 INTELPllInvalid("dot out of range\n");
670
671 return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
678
679 {
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
683 int err = target;
684
685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686 (I915_READ(LVDS)) != 0) {
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
693 if (is_dual_link_lvds(dev_priv, LVDS))
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
704 memset(best_clock, 0, sizeof(*best_clock));
705
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
717 int this_err;
718
719 intel_clock(dev, refclk, &clock);
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
722 continue;
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
744 {
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755 int lvds_reg;
756
757 if (HAS_PCH_SPLIT(dev))
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 /* based on hardware requirement, prefere larger m1,m2 */
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
786 intel_clock(dev, refclk, &clock);
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
789 continue;
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
793
794 this_err = abs(clock.dot - target);
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
805 return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812 {
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839 {
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865 {
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
872 flag = 0;
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 int pipestat_reg = PIPESTAT(pipe);
953
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975 /* Wait for vblank interrupt bit to set */
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
997 *
998 */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001 struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
1004 int reg = PIPECONF(pipe);
1005
1006 /* Wait for the Pipe State to go off */
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
1009 WARN(1, "pipe_off wait timed out\n");
1010 } else {
1011 u32 last_line, line_mask;
1012 int reg = PIPEDSL(pipe);
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 /* Wait for the display line to settle */
1021 do {
1022 last_line = I915_READ(reg) & line_mask;
1023 mdelay(5);
1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
1027 WARN(1, "pipe_off wait timed out\n");
1028 }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033 return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039 {
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
1059 {
1060 u32 val;
1061 bool cur_state;
1062
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070 return;
1071
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
1095 }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102 {
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126 {
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148 {
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167 {
1168 int reg;
1169 u32 val;
1170
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182 {
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
1186 bool locked = true;
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
1206 pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
1211 {
1212 int reg;
1213 u32 val;
1214 bool cur_state;
1215
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
1225 pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
1230 {
1231 int reg;
1232 u32 val;
1233 bool cur_state;
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248 {
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
1253 /* Planes are fixed to pipes on ILK+ */
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
1260 return;
1261 }
1262
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
1272 }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277 u32 val;
1278 bool enabled;
1279
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326 {
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342 {
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358 {
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, int reg, u32 port_sel)
1373 {
1374 u32 val = I915_READ(reg);
1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377 reg, pipe_name(pipe));
1378
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1380 "IBX PCH dp port still using transcoder B\n");
1381 }
1382
1383 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1384 enum pipe pipe, int reg)
1385 {
1386 u32 val = I915_READ(reg);
1387 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1388 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1389 reg, pipe_name(pipe));
1390
1391 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1392 "IBX PCH hdmi port still using transcoder B\n");
1393 }
1394
1395 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe)
1397 {
1398 int reg;
1399 u32 val;
1400
1401 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1402 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1404
1405 reg = PCH_ADPA;
1406 val = I915_READ(reg);
1407 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1408 "PCH VGA enabled on transcoder %c, should be disabled\n",
1409 pipe_name(pipe));
1410
1411 reg = PCH_LVDS;
1412 val = I915_READ(reg);
1413 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1414 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1415 pipe_name(pipe));
1416
1417 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1418 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1420 }
1421
1422 /**
1423 * intel_enable_pll - enable a PLL
1424 * @dev_priv: i915 private structure
1425 * @pipe: pipe PLL to enable
1426 *
1427 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1428 * make sure the PLL reg is writable first though, since the panel write
1429 * protect mechanism may be enabled.
1430 *
1431 * Note! This is for pre-ILK only.
1432 *
1433 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1434 */
1435 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436 {
1437 int reg;
1438 u32 val;
1439
1440 /* No really, not for ILK+ */
1441 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1442
1443 /* PLL is protected by panel, make sure we can write it */
1444 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1445 assert_panel_unlocked(dev_priv, pipe);
1446
1447 reg = DPLL(pipe);
1448 val = I915_READ(reg);
1449 val |= DPLL_VCO_ENABLE;
1450
1451 /* We do this three times for luck */
1452 I915_WRITE(reg, val);
1453 POSTING_READ(reg);
1454 udelay(150); /* wait for warmup */
1455 I915_WRITE(reg, val);
1456 POSTING_READ(reg);
1457 udelay(150); /* wait for warmup */
1458 I915_WRITE(reg, val);
1459 POSTING_READ(reg);
1460 udelay(150); /* wait for warmup */
1461 }
1462
1463 /**
1464 * intel_disable_pll - disable a PLL
1465 * @dev_priv: i915 private structure
1466 * @pipe: pipe PLL to disable
1467 *
1468 * Disable the PLL for @pipe, making sure the pipe is off first.
1469 *
1470 * Note! This is for pre-ILK only.
1471 */
1472 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474 int reg;
1475 u32 val;
1476
1477 /* Don't disable pipe A or pipe A PLLs if needed */
1478 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1479 return;
1480
1481 /* Make sure the pipe isn't still relying on us */
1482 assert_pipe_disabled(dev_priv, pipe);
1483
1484 reg = DPLL(pipe);
1485 val = I915_READ(reg);
1486 val &= ~DPLL_VCO_ENABLE;
1487 I915_WRITE(reg, val);
1488 POSTING_READ(reg);
1489 }
1490
1491 /* SBI access */
1492 static void
1493 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1494 {
1495 unsigned long flags;
1496
1497 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1498 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1499 100)) {
1500 DRM_ERROR("timeout waiting for SBI to become ready\n");
1501 goto out_unlock;
1502 }
1503
1504 I915_WRITE(SBI_ADDR,
1505 (reg << 16));
1506 I915_WRITE(SBI_DATA,
1507 value);
1508 I915_WRITE(SBI_CTL_STAT,
1509 SBI_BUSY |
1510 SBI_CTL_OP_CRWR);
1511
1512 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1513 100)) {
1514 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1515 goto out_unlock;
1516 }
1517
1518 out_unlock:
1519 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1520 }
1521
1522 static u32
1523 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1524 {
1525 unsigned long flags;
1526 u32 value = 0;
1527
1528 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1529 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1530 100)) {
1531 DRM_ERROR("timeout waiting for SBI to become ready\n");
1532 goto out_unlock;
1533 }
1534
1535 I915_WRITE(SBI_ADDR,
1536 (reg << 16));
1537 I915_WRITE(SBI_CTL_STAT,
1538 SBI_BUSY |
1539 SBI_CTL_OP_CRRD);
1540
1541 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1542 100)) {
1543 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1544 goto out_unlock;
1545 }
1546
1547 value = I915_READ(SBI_DATA);
1548
1549 out_unlock:
1550 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1551 return value;
1552 }
1553
1554 /**
1555 * intel_enable_pch_pll - enable PCH PLL
1556 * @dev_priv: i915 private structure
1557 * @pipe: pipe PLL to enable
1558 *
1559 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1560 * drives the transcoder clock.
1561 */
1562 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1563 {
1564 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1565 struct intel_pch_pll *pll;
1566 int reg;
1567 u32 val;
1568
1569 /* PCH PLLs only available on ILK, SNB and IVB */
1570 BUG_ON(dev_priv->info->gen < 5);
1571 pll = intel_crtc->pch_pll;
1572 if (pll == NULL)
1573 return;
1574
1575 if (WARN_ON(pll->refcount == 0))
1576 return;
1577
1578 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1579 pll->pll_reg, pll->active, pll->on,
1580 intel_crtc->base.base.id);
1581
1582 /* PCH refclock must be enabled first */
1583 assert_pch_refclk_enabled(dev_priv);
1584
1585 if (pll->active++ && pll->on) {
1586 assert_pch_pll_enabled(dev_priv, pll, NULL);
1587 return;
1588 }
1589
1590 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1591
1592 reg = pll->pll_reg;
1593 val = I915_READ(reg);
1594 val |= DPLL_VCO_ENABLE;
1595 I915_WRITE(reg, val);
1596 POSTING_READ(reg);
1597 udelay(200);
1598
1599 pll->on = true;
1600 }
1601
1602 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1603 {
1604 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1605 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1606 int reg;
1607 u32 val;
1608
1609 /* PCH only available on ILK+ */
1610 BUG_ON(dev_priv->info->gen < 5);
1611 if (pll == NULL)
1612 return;
1613
1614 if (WARN_ON(pll->refcount == 0))
1615 return;
1616
1617 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1618 pll->pll_reg, pll->active, pll->on,
1619 intel_crtc->base.base.id);
1620
1621 if (WARN_ON(pll->active == 0)) {
1622 assert_pch_pll_disabled(dev_priv, pll, NULL);
1623 return;
1624 }
1625
1626 if (--pll->active) {
1627 assert_pch_pll_enabled(dev_priv, pll, NULL);
1628 return;
1629 }
1630
1631 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1632
1633 /* Make sure transcoder isn't still depending on us */
1634 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1635
1636 reg = pll->pll_reg;
1637 val = I915_READ(reg);
1638 val &= ~DPLL_VCO_ENABLE;
1639 I915_WRITE(reg, val);
1640 POSTING_READ(reg);
1641 udelay(200);
1642
1643 pll->on = false;
1644 }
1645
1646 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1647 enum pipe pipe)
1648 {
1649 int reg;
1650 u32 val, pipeconf_val;
1651 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1652
1653 /* PCH only available on ILK+ */
1654 BUG_ON(dev_priv->info->gen < 5);
1655
1656 /* Make sure PCH DPLL is enabled */
1657 assert_pch_pll_enabled(dev_priv,
1658 to_intel_crtc(crtc)->pch_pll,
1659 to_intel_crtc(crtc));
1660
1661 /* FDI must be feeding us bits for PCH ports */
1662 assert_fdi_tx_enabled(dev_priv, pipe);
1663 assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1666 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1667 return;
1668 }
1669 reg = TRANSCONF(pipe);
1670 val = I915_READ(reg);
1671 pipeconf_val = I915_READ(PIPECONF(pipe));
1672
1673 if (HAS_PCH_IBX(dev_priv->dev)) {
1674 /*
1675 * make the BPC in transcoder be consistent with
1676 * that in pipeconf reg.
1677 */
1678 val &= ~PIPE_BPC_MASK;
1679 val |= pipeconf_val & PIPE_BPC_MASK;
1680 }
1681
1682 val &= ~TRANS_INTERLACE_MASK;
1683 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1684 if (HAS_PCH_IBX(dev_priv->dev) &&
1685 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1686 val |= TRANS_LEGACY_INTERLACED_ILK;
1687 else
1688 val |= TRANS_INTERLACED;
1689 else
1690 val |= TRANS_PROGRESSIVE;
1691
1692 I915_WRITE(reg, val | TRANS_ENABLE);
1693 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1694 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1695 }
1696
1697 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1698 enum pipe pipe)
1699 {
1700 int reg;
1701 u32 val;
1702
1703 /* FDI relies on the transcoder */
1704 assert_fdi_tx_disabled(dev_priv, pipe);
1705 assert_fdi_rx_disabled(dev_priv, pipe);
1706
1707 /* Ports must be off as well */
1708 assert_pch_ports_disabled(dev_priv, pipe);
1709
1710 reg = TRANSCONF(pipe);
1711 val = I915_READ(reg);
1712 val &= ~TRANS_ENABLE;
1713 I915_WRITE(reg, val);
1714 /* wait for PCH transcoder off, transcoder state */
1715 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1716 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1717 }
1718
1719 /**
1720 * intel_enable_pipe - enable a pipe, asserting requirements
1721 * @dev_priv: i915 private structure
1722 * @pipe: pipe to enable
1723 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1724 *
1725 * Enable @pipe, making sure that various hardware specific requirements
1726 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1727 *
1728 * @pipe should be %PIPE_A or %PIPE_B.
1729 *
1730 * Will wait until the pipe is actually running (i.e. first vblank) before
1731 * returning.
1732 */
1733 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1734 bool pch_port)
1735 {
1736 int reg;
1737 u32 val;
1738
1739 /*
1740 * A pipe without a PLL won't actually be able to drive bits from
1741 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1742 * need the check.
1743 */
1744 if (!HAS_PCH_SPLIT(dev_priv->dev))
1745 assert_pll_enabled(dev_priv, pipe);
1746 else {
1747 if (pch_port) {
1748 /* if driving the PCH, we need FDI enabled */
1749 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1750 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1751 }
1752 /* FIXME: assert CPU port conditions for SNB+ */
1753 }
1754
1755 reg = PIPECONF(pipe);
1756 val = I915_READ(reg);
1757 if (val & PIPECONF_ENABLE)
1758 return;
1759
1760 I915_WRITE(reg, val | PIPECONF_ENABLE);
1761 intel_wait_for_vblank(dev_priv->dev, pipe);
1762 }
1763
1764 /**
1765 * intel_disable_pipe - disable a pipe, asserting requirements
1766 * @dev_priv: i915 private structure
1767 * @pipe: pipe to disable
1768 *
1769 * Disable @pipe, making sure that various hardware specific requirements
1770 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1771 *
1772 * @pipe should be %PIPE_A or %PIPE_B.
1773 *
1774 * Will wait until the pipe has shut down before returning.
1775 */
1776 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1777 enum pipe pipe)
1778 {
1779 int reg;
1780 u32 val;
1781
1782 /*
1783 * Make sure planes won't keep trying to pump pixels to us,
1784 * or we might hang the display.
1785 */
1786 assert_planes_disabled(dev_priv, pipe);
1787
1788 /* Don't disable pipe A or pipe A PLLs if needed */
1789 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1790 return;
1791
1792 reg = PIPECONF(pipe);
1793 val = I915_READ(reg);
1794 if ((val & PIPECONF_ENABLE) == 0)
1795 return;
1796
1797 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1798 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1799 }
1800
1801 /*
1802 * Plane regs are double buffered, going from enabled->disabled needs a
1803 * trigger in order to latch. The display address reg provides this.
1804 */
1805 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1806 enum plane plane)
1807 {
1808 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1809 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1810 }
1811
1812 /**
1813 * intel_enable_plane - enable a display plane on a given pipe
1814 * @dev_priv: i915 private structure
1815 * @plane: plane to enable
1816 * @pipe: pipe being fed
1817 *
1818 * Enable @plane on @pipe, making sure that @pipe is running first.
1819 */
1820 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1821 enum plane plane, enum pipe pipe)
1822 {
1823 int reg;
1824 u32 val;
1825
1826 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1827 assert_pipe_enabled(dev_priv, pipe);
1828
1829 reg = DSPCNTR(plane);
1830 val = I915_READ(reg);
1831 if (val & DISPLAY_PLANE_ENABLE)
1832 return;
1833
1834 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1835 intel_flush_display_plane(dev_priv, plane);
1836 intel_wait_for_vblank(dev_priv->dev, pipe);
1837 }
1838
1839 /**
1840 * intel_disable_plane - disable a display plane
1841 * @dev_priv: i915 private structure
1842 * @plane: plane to disable
1843 * @pipe: pipe consuming the data
1844 *
1845 * Disable @plane; should be an independent operation.
1846 */
1847 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1848 enum plane plane, enum pipe pipe)
1849 {
1850 int reg;
1851 u32 val;
1852
1853 reg = DSPCNTR(plane);
1854 val = I915_READ(reg);
1855 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1856 return;
1857
1858 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1859 intel_flush_display_plane(dev_priv, plane);
1860 intel_wait_for_vblank(dev_priv->dev, pipe);
1861 }
1862
1863 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1864 enum pipe pipe, int reg, u32 port_sel)
1865 {
1866 u32 val = I915_READ(reg);
1867 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1868 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1869 I915_WRITE(reg, val & ~DP_PORT_EN);
1870 }
1871 }
1872
1873 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1874 enum pipe pipe, int reg)
1875 {
1876 u32 val = I915_READ(reg);
1877 if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
1878 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1879 reg, pipe);
1880 I915_WRITE(reg, val & ~PORT_ENABLE);
1881 }
1882 }
1883
1884 /* Disable any ports connected to this transcoder */
1885 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1886 enum pipe pipe)
1887 {
1888 u32 reg, val;
1889
1890 val = I915_READ(PCH_PP_CONTROL);
1891 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1892
1893 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1894 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1895 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1896
1897 reg = PCH_ADPA;
1898 val = I915_READ(reg);
1899 if (adpa_pipe_enabled(dev_priv, pipe, val))
1900 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1901
1902 reg = PCH_LVDS;
1903 val = I915_READ(reg);
1904 if (lvds_pipe_enabled(dev_priv, pipe, val)) {
1905 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1906 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1907 POSTING_READ(reg);
1908 udelay(100);
1909 }
1910
1911 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1912 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1913 disable_pch_hdmi(dev_priv, pipe, HDMID);
1914 }
1915
1916 int
1917 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1918 struct drm_i915_gem_object *obj,
1919 struct intel_ring_buffer *pipelined)
1920 {
1921 struct drm_i915_private *dev_priv = dev->dev_private;
1922 u32 alignment;
1923 int ret;
1924
1925 switch (obj->tiling_mode) {
1926 case I915_TILING_NONE:
1927 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1928 alignment = 128 * 1024;
1929 else if (INTEL_INFO(dev)->gen >= 4)
1930 alignment = 4 * 1024;
1931 else
1932 alignment = 64 * 1024;
1933 break;
1934 case I915_TILING_X:
1935 /* pin() will align the object as required by fence */
1936 alignment = 0;
1937 break;
1938 case I915_TILING_Y:
1939 /* FIXME: Is this true? */
1940 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1941 return -EINVAL;
1942 default:
1943 BUG();
1944 }
1945
1946 dev_priv->mm.interruptible = false;
1947 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1948 if (ret)
1949 goto err_interruptible;
1950
1951 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1952 * fence, whereas 965+ only requires a fence if using
1953 * framebuffer compression. For simplicity, we always install
1954 * a fence as the cost is not that onerous.
1955 */
1956 ret = i915_gem_object_get_fence(obj);
1957 if (ret)
1958 goto err_unpin;
1959
1960 i915_gem_object_pin_fence(obj);
1961
1962 dev_priv->mm.interruptible = true;
1963 return 0;
1964
1965 err_unpin:
1966 i915_gem_object_unpin(obj);
1967 err_interruptible:
1968 dev_priv->mm.interruptible = true;
1969 return ret;
1970 }
1971
1972 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1973 {
1974 i915_gem_object_unpin_fence(obj);
1975 i915_gem_object_unpin(obj);
1976 }
1977
1978 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1979 * is assumed to be a power-of-two. */
1980 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1981 unsigned int bpp,
1982 unsigned int pitch)
1983 {
1984 int tile_rows, tiles;
1985
1986 tile_rows = *y / 8;
1987 *y %= 8;
1988 tiles = *x / (512/bpp);
1989 *x %= 512/bpp;
1990
1991 return tile_rows * pitch * 8 + tiles * 4096;
1992 }
1993
1994 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1995 int x, int y)
1996 {
1997 struct drm_device *dev = crtc->dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2000 struct intel_framebuffer *intel_fb;
2001 struct drm_i915_gem_object *obj;
2002 int plane = intel_crtc->plane;
2003 unsigned long linear_offset;
2004 u32 dspcntr;
2005 u32 reg;
2006
2007 switch (plane) {
2008 case 0:
2009 case 1:
2010 break;
2011 default:
2012 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2013 return -EINVAL;
2014 }
2015
2016 intel_fb = to_intel_framebuffer(fb);
2017 obj = intel_fb->obj;
2018
2019 reg = DSPCNTR(plane);
2020 dspcntr = I915_READ(reg);
2021 /* Mask out pixel format bits in case we change it */
2022 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2023 switch (fb->bits_per_pixel) {
2024 case 8:
2025 dspcntr |= DISPPLANE_8BPP;
2026 break;
2027 case 16:
2028 if (fb->depth == 15)
2029 dspcntr |= DISPPLANE_15_16BPP;
2030 else
2031 dspcntr |= DISPPLANE_16BPP;
2032 break;
2033 case 24:
2034 case 32:
2035 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2036 break;
2037 default:
2038 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2039 return -EINVAL;
2040 }
2041 if (INTEL_INFO(dev)->gen >= 4) {
2042 if (obj->tiling_mode != I915_TILING_NONE)
2043 dspcntr |= DISPPLANE_TILED;
2044 else
2045 dspcntr &= ~DISPPLANE_TILED;
2046 }
2047
2048 I915_WRITE(reg, dspcntr);
2049
2050 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2051
2052 if (INTEL_INFO(dev)->gen >= 4) {
2053 intel_crtc->dspaddr_offset =
2054 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2055 fb->bits_per_pixel / 8,
2056 fb->pitches[0]);
2057 linear_offset -= intel_crtc->dspaddr_offset;
2058 } else {
2059 intel_crtc->dspaddr_offset = linear_offset;
2060 }
2061
2062 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2063 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2064 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2065 if (INTEL_INFO(dev)->gen >= 4) {
2066 I915_MODIFY_DISPBASE(DSPSURF(plane),
2067 obj->gtt_offset + intel_crtc->dspaddr_offset);
2068 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2069 I915_WRITE(DSPLINOFF(plane), linear_offset);
2070 } else
2071 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2072 POSTING_READ(reg);
2073
2074 return 0;
2075 }
2076
2077 static int ironlake_update_plane(struct drm_crtc *crtc,
2078 struct drm_framebuffer *fb, int x, int y)
2079 {
2080 struct drm_device *dev = crtc->dev;
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2083 struct intel_framebuffer *intel_fb;
2084 struct drm_i915_gem_object *obj;
2085 int plane = intel_crtc->plane;
2086 unsigned long linear_offset;
2087 u32 dspcntr;
2088 u32 reg;
2089
2090 switch (plane) {
2091 case 0:
2092 case 1:
2093 case 2:
2094 break;
2095 default:
2096 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2097 return -EINVAL;
2098 }
2099
2100 intel_fb = to_intel_framebuffer(fb);
2101 obj = intel_fb->obj;
2102
2103 reg = DSPCNTR(plane);
2104 dspcntr = I915_READ(reg);
2105 /* Mask out pixel format bits in case we change it */
2106 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2107 switch (fb->bits_per_pixel) {
2108 case 8:
2109 dspcntr |= DISPPLANE_8BPP;
2110 break;
2111 case 16:
2112 if (fb->depth != 16)
2113 return -EINVAL;
2114
2115 dspcntr |= DISPPLANE_16BPP;
2116 break;
2117 case 24:
2118 case 32:
2119 if (fb->depth == 24)
2120 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2121 else if (fb->depth == 30)
2122 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2123 else
2124 return -EINVAL;
2125 break;
2126 default:
2127 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2128 return -EINVAL;
2129 }
2130
2131 if (obj->tiling_mode != I915_TILING_NONE)
2132 dspcntr |= DISPPLANE_TILED;
2133 else
2134 dspcntr &= ~DISPPLANE_TILED;
2135
2136 /* must disable */
2137 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2138
2139 I915_WRITE(reg, dspcntr);
2140
2141 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2142 intel_crtc->dspaddr_offset =
2143 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2144 fb->bits_per_pixel / 8,
2145 fb->pitches[0]);
2146 linear_offset -= intel_crtc->dspaddr_offset;
2147
2148 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2149 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2150 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2151 I915_MODIFY_DISPBASE(DSPSURF(plane),
2152 obj->gtt_offset + intel_crtc->dspaddr_offset);
2153 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2154 I915_WRITE(DSPLINOFF(plane), linear_offset);
2155 POSTING_READ(reg);
2156
2157 return 0;
2158 }
2159
2160 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2161 static int
2162 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2163 int x, int y, enum mode_set_atomic state)
2164 {
2165 struct drm_device *dev = crtc->dev;
2166 struct drm_i915_private *dev_priv = dev->dev_private;
2167
2168 if (dev_priv->display.disable_fbc)
2169 dev_priv->display.disable_fbc(dev);
2170 intel_increase_pllclock(crtc);
2171
2172 return dev_priv->display.update_plane(crtc, fb, x, y);
2173 }
2174
2175 static int
2176 intel_finish_fb(struct drm_framebuffer *old_fb)
2177 {
2178 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2179 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2180 bool was_interruptible = dev_priv->mm.interruptible;
2181 int ret;
2182
2183 wait_event(dev_priv->pending_flip_queue,
2184 atomic_read(&dev_priv->mm.wedged) ||
2185 atomic_read(&obj->pending_flip) == 0);
2186
2187 /* Big Hammer, we also need to ensure that any pending
2188 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2189 * current scanout is retired before unpinning the old
2190 * framebuffer.
2191 *
2192 * This should only fail upon a hung GPU, in which case we
2193 * can safely continue.
2194 */
2195 dev_priv->mm.interruptible = false;
2196 ret = i915_gem_object_finish_gpu(obj);
2197 dev_priv->mm.interruptible = was_interruptible;
2198
2199 return ret;
2200 }
2201
2202 static int
2203 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2204 struct drm_framebuffer *fb)
2205 {
2206 struct drm_device *dev = crtc->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_i915_master_private *master_priv;
2209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2210 struct drm_framebuffer *old_fb;
2211 int ret;
2212
2213 /* no fb bound */
2214 if (!fb) {
2215 DRM_ERROR("No FB bound\n");
2216 return 0;
2217 }
2218
2219 if(intel_crtc->plane > dev_priv->num_pipe) {
2220 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2221 intel_crtc->plane,
2222 dev_priv->num_pipe);
2223 return -EINVAL;
2224 }
2225
2226 mutex_lock(&dev->struct_mutex);
2227 ret = intel_pin_and_fence_fb_obj(dev,
2228 to_intel_framebuffer(fb)->obj,
2229 NULL);
2230 if (ret != 0) {
2231 mutex_unlock(&dev->struct_mutex);
2232 DRM_ERROR("pin & fence failed\n");
2233 return ret;
2234 }
2235
2236 if (crtc->fb)
2237 intel_finish_fb(crtc->fb);
2238
2239 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2240 if (ret) {
2241 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2242 mutex_unlock(&dev->struct_mutex);
2243 DRM_ERROR("failed to update base address\n");
2244 return ret;
2245 }
2246
2247 old_fb = crtc->fb;
2248 crtc->fb = fb;
2249 crtc->x = x;
2250 crtc->y = y;
2251
2252 if (old_fb) {
2253 intel_wait_for_vblank(dev, intel_crtc->pipe);
2254 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2255 }
2256
2257 intel_update_fbc(dev);
2258 mutex_unlock(&dev->struct_mutex);
2259
2260 if (!dev->primary->master)
2261 return 0;
2262
2263 master_priv = dev->primary->master->driver_priv;
2264 if (!master_priv->sarea_priv)
2265 return 0;
2266
2267 if (intel_crtc->pipe) {
2268 master_priv->sarea_priv->pipeB_x = x;
2269 master_priv->sarea_priv->pipeB_y = y;
2270 } else {
2271 master_priv->sarea_priv->pipeA_x = x;
2272 master_priv->sarea_priv->pipeA_y = y;
2273 }
2274
2275 return 0;
2276 }
2277
2278 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2279 {
2280 struct drm_device *dev = crtc->dev;
2281 struct drm_i915_private *dev_priv = dev->dev_private;
2282 u32 dpa_ctl;
2283
2284 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2285 dpa_ctl = I915_READ(DP_A);
2286 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2287
2288 if (clock < 200000) {
2289 u32 temp;
2290 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2291 /* workaround for 160Mhz:
2292 1) program 0x4600c bits 15:0 = 0x8124
2293 2) program 0x46010 bit 0 = 1
2294 3) program 0x46034 bit 24 = 1
2295 4) program 0x64000 bit 14 = 1
2296 */
2297 temp = I915_READ(0x4600c);
2298 temp &= 0xffff0000;
2299 I915_WRITE(0x4600c, temp | 0x8124);
2300
2301 temp = I915_READ(0x46010);
2302 I915_WRITE(0x46010, temp | 1);
2303
2304 temp = I915_READ(0x46034);
2305 I915_WRITE(0x46034, temp | (1 << 24));
2306 } else {
2307 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2308 }
2309 I915_WRITE(DP_A, dpa_ctl);
2310
2311 POSTING_READ(DP_A);
2312 udelay(500);
2313 }
2314
2315 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2316 {
2317 struct drm_device *dev = crtc->dev;
2318 struct drm_i915_private *dev_priv = dev->dev_private;
2319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2320 int pipe = intel_crtc->pipe;
2321 u32 reg, temp;
2322
2323 /* enable normal train */
2324 reg = FDI_TX_CTL(pipe);
2325 temp = I915_READ(reg);
2326 if (IS_IVYBRIDGE(dev)) {
2327 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2328 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2329 } else {
2330 temp &= ~FDI_LINK_TRAIN_NONE;
2331 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2332 }
2333 I915_WRITE(reg, temp);
2334
2335 reg = FDI_RX_CTL(pipe);
2336 temp = I915_READ(reg);
2337 if (HAS_PCH_CPT(dev)) {
2338 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2339 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2340 } else {
2341 temp &= ~FDI_LINK_TRAIN_NONE;
2342 temp |= FDI_LINK_TRAIN_NONE;
2343 }
2344 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2345
2346 /* wait one idle pattern time */
2347 POSTING_READ(reg);
2348 udelay(1000);
2349
2350 /* IVB wants error correction enabled */
2351 if (IS_IVYBRIDGE(dev))
2352 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2353 FDI_FE_ERRC_ENABLE);
2354 }
2355
2356 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2357 {
2358 struct drm_i915_private *dev_priv = dev->dev_private;
2359 u32 flags = I915_READ(SOUTH_CHICKEN1);
2360
2361 flags |= FDI_PHASE_SYNC_OVR(pipe);
2362 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2363 flags |= FDI_PHASE_SYNC_EN(pipe);
2364 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2365 POSTING_READ(SOUTH_CHICKEN1);
2366 }
2367
2368 /* The FDI link training functions for ILK/Ibexpeak. */
2369 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2370 {
2371 struct drm_device *dev = crtc->dev;
2372 struct drm_i915_private *dev_priv = dev->dev_private;
2373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2374 int pipe = intel_crtc->pipe;
2375 int plane = intel_crtc->plane;
2376 u32 reg, temp, tries;
2377
2378 /* FDI needs bits from pipe & plane first */
2379 assert_pipe_enabled(dev_priv, pipe);
2380 assert_plane_enabled(dev_priv, plane);
2381
2382 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2383 for train result */
2384 reg = FDI_RX_IMR(pipe);
2385 temp = I915_READ(reg);
2386 temp &= ~FDI_RX_SYMBOL_LOCK;
2387 temp &= ~FDI_RX_BIT_LOCK;
2388 I915_WRITE(reg, temp);
2389 I915_READ(reg);
2390 udelay(150);
2391
2392 /* enable CPU FDI TX and PCH FDI RX */
2393 reg = FDI_TX_CTL(pipe);
2394 temp = I915_READ(reg);
2395 temp &= ~(7 << 19);
2396 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2397 temp &= ~FDI_LINK_TRAIN_NONE;
2398 temp |= FDI_LINK_TRAIN_PATTERN_1;
2399 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2400
2401 reg = FDI_RX_CTL(pipe);
2402 temp = I915_READ(reg);
2403 temp &= ~FDI_LINK_TRAIN_NONE;
2404 temp |= FDI_LINK_TRAIN_PATTERN_1;
2405 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2406
2407 POSTING_READ(reg);
2408 udelay(150);
2409
2410 /* Ironlake workaround, enable clock pointer after FDI enable*/
2411 if (HAS_PCH_IBX(dev)) {
2412 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2413 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2414 FDI_RX_PHASE_SYNC_POINTER_EN);
2415 }
2416
2417 reg = FDI_RX_IIR(pipe);
2418 for (tries = 0; tries < 5; tries++) {
2419 temp = I915_READ(reg);
2420 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2421
2422 if ((temp & FDI_RX_BIT_LOCK)) {
2423 DRM_DEBUG_KMS("FDI train 1 done.\n");
2424 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2425 break;
2426 }
2427 }
2428 if (tries == 5)
2429 DRM_ERROR("FDI train 1 fail!\n");
2430
2431 /* Train 2 */
2432 reg = FDI_TX_CTL(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_LINK_TRAIN_NONE;
2435 temp |= FDI_LINK_TRAIN_PATTERN_2;
2436 I915_WRITE(reg, temp);
2437
2438 reg = FDI_RX_CTL(pipe);
2439 temp = I915_READ(reg);
2440 temp &= ~FDI_LINK_TRAIN_NONE;
2441 temp |= FDI_LINK_TRAIN_PATTERN_2;
2442 I915_WRITE(reg, temp);
2443
2444 POSTING_READ(reg);
2445 udelay(150);
2446
2447 reg = FDI_RX_IIR(pipe);
2448 for (tries = 0; tries < 5; tries++) {
2449 temp = I915_READ(reg);
2450 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2451
2452 if (temp & FDI_RX_SYMBOL_LOCK) {
2453 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2454 DRM_DEBUG_KMS("FDI train 2 done.\n");
2455 break;
2456 }
2457 }
2458 if (tries == 5)
2459 DRM_ERROR("FDI train 2 fail!\n");
2460
2461 DRM_DEBUG_KMS("FDI train done\n");
2462
2463 }
2464
2465 static const int snb_b_fdi_train_param[] = {
2466 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2467 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2468 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2469 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2470 };
2471
2472 /* The FDI link training functions for SNB/Cougarpoint. */
2473 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2474 {
2475 struct drm_device *dev = crtc->dev;
2476 struct drm_i915_private *dev_priv = dev->dev_private;
2477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2478 int pipe = intel_crtc->pipe;
2479 u32 reg, temp, i, retry;
2480
2481 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2482 for train result */
2483 reg = FDI_RX_IMR(pipe);
2484 temp = I915_READ(reg);
2485 temp &= ~FDI_RX_SYMBOL_LOCK;
2486 temp &= ~FDI_RX_BIT_LOCK;
2487 I915_WRITE(reg, temp);
2488
2489 POSTING_READ(reg);
2490 udelay(150);
2491
2492 /* enable CPU FDI TX and PCH FDI RX */
2493 reg = FDI_TX_CTL(pipe);
2494 temp = I915_READ(reg);
2495 temp &= ~(7 << 19);
2496 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2497 temp &= ~FDI_LINK_TRAIN_NONE;
2498 temp |= FDI_LINK_TRAIN_PATTERN_1;
2499 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2500 /* SNB-B */
2501 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2502 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2503
2504 reg = FDI_RX_CTL(pipe);
2505 temp = I915_READ(reg);
2506 if (HAS_PCH_CPT(dev)) {
2507 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2508 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2509 } else {
2510 temp &= ~FDI_LINK_TRAIN_NONE;
2511 temp |= FDI_LINK_TRAIN_PATTERN_1;
2512 }
2513 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2514
2515 POSTING_READ(reg);
2516 udelay(150);
2517
2518 if (HAS_PCH_CPT(dev))
2519 cpt_phase_pointer_enable(dev, pipe);
2520
2521 for (i = 0; i < 4; i++) {
2522 reg = FDI_TX_CTL(pipe);
2523 temp = I915_READ(reg);
2524 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2525 temp |= snb_b_fdi_train_param[i];
2526 I915_WRITE(reg, temp);
2527
2528 POSTING_READ(reg);
2529 udelay(500);
2530
2531 for (retry = 0; retry < 5; retry++) {
2532 reg = FDI_RX_IIR(pipe);
2533 temp = I915_READ(reg);
2534 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2535 if (temp & FDI_RX_BIT_LOCK) {
2536 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2537 DRM_DEBUG_KMS("FDI train 1 done.\n");
2538 break;
2539 }
2540 udelay(50);
2541 }
2542 if (retry < 5)
2543 break;
2544 }
2545 if (i == 4)
2546 DRM_ERROR("FDI train 1 fail!\n");
2547
2548 /* Train 2 */
2549 reg = FDI_TX_CTL(pipe);
2550 temp = I915_READ(reg);
2551 temp &= ~FDI_LINK_TRAIN_NONE;
2552 temp |= FDI_LINK_TRAIN_PATTERN_2;
2553 if (IS_GEN6(dev)) {
2554 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2555 /* SNB-B */
2556 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2557 }
2558 I915_WRITE(reg, temp);
2559
2560 reg = FDI_RX_CTL(pipe);
2561 temp = I915_READ(reg);
2562 if (HAS_PCH_CPT(dev)) {
2563 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2564 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2565 } else {
2566 temp &= ~FDI_LINK_TRAIN_NONE;
2567 temp |= FDI_LINK_TRAIN_PATTERN_2;
2568 }
2569 I915_WRITE(reg, temp);
2570
2571 POSTING_READ(reg);
2572 udelay(150);
2573
2574 for (i = 0; i < 4; i++) {
2575 reg = FDI_TX_CTL(pipe);
2576 temp = I915_READ(reg);
2577 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2578 temp |= snb_b_fdi_train_param[i];
2579 I915_WRITE(reg, temp);
2580
2581 POSTING_READ(reg);
2582 udelay(500);
2583
2584 for (retry = 0; retry < 5; retry++) {
2585 reg = FDI_RX_IIR(pipe);
2586 temp = I915_READ(reg);
2587 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2588 if (temp & FDI_RX_SYMBOL_LOCK) {
2589 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2590 DRM_DEBUG_KMS("FDI train 2 done.\n");
2591 break;
2592 }
2593 udelay(50);
2594 }
2595 if (retry < 5)
2596 break;
2597 }
2598 if (i == 4)
2599 DRM_ERROR("FDI train 2 fail!\n");
2600
2601 DRM_DEBUG_KMS("FDI train done.\n");
2602 }
2603
2604 /* Manual link training for Ivy Bridge A0 parts */
2605 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2606 {
2607 struct drm_device *dev = crtc->dev;
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2610 int pipe = intel_crtc->pipe;
2611 u32 reg, temp, i;
2612
2613 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2614 for train result */
2615 reg = FDI_RX_IMR(pipe);
2616 temp = I915_READ(reg);
2617 temp &= ~FDI_RX_SYMBOL_LOCK;
2618 temp &= ~FDI_RX_BIT_LOCK;
2619 I915_WRITE(reg, temp);
2620
2621 POSTING_READ(reg);
2622 udelay(150);
2623
2624 /* enable CPU FDI TX and PCH FDI RX */
2625 reg = FDI_TX_CTL(pipe);
2626 temp = I915_READ(reg);
2627 temp &= ~(7 << 19);
2628 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2629 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2630 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2631 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2632 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2633 temp |= FDI_COMPOSITE_SYNC;
2634 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2635
2636 reg = FDI_RX_CTL(pipe);
2637 temp = I915_READ(reg);
2638 temp &= ~FDI_LINK_TRAIN_AUTO;
2639 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2640 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2641 temp |= FDI_COMPOSITE_SYNC;
2642 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2643
2644 POSTING_READ(reg);
2645 udelay(150);
2646
2647 if (HAS_PCH_CPT(dev))
2648 cpt_phase_pointer_enable(dev, pipe);
2649
2650 for (i = 0; i < 4; i++) {
2651 reg = FDI_TX_CTL(pipe);
2652 temp = I915_READ(reg);
2653 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2654 temp |= snb_b_fdi_train_param[i];
2655 I915_WRITE(reg, temp);
2656
2657 POSTING_READ(reg);
2658 udelay(500);
2659
2660 reg = FDI_RX_IIR(pipe);
2661 temp = I915_READ(reg);
2662 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2663
2664 if (temp & FDI_RX_BIT_LOCK ||
2665 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2666 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2667 DRM_DEBUG_KMS("FDI train 1 done.\n");
2668 break;
2669 }
2670 }
2671 if (i == 4)
2672 DRM_ERROR("FDI train 1 fail!\n");
2673
2674 /* Train 2 */
2675 reg = FDI_TX_CTL(pipe);
2676 temp = I915_READ(reg);
2677 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2678 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2679 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2680 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2681 I915_WRITE(reg, temp);
2682
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2686 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2687 I915_WRITE(reg, temp);
2688
2689 POSTING_READ(reg);
2690 udelay(150);
2691
2692 for (i = 0; i < 4; i++) {
2693 reg = FDI_TX_CTL(pipe);
2694 temp = I915_READ(reg);
2695 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2696 temp |= snb_b_fdi_train_param[i];
2697 I915_WRITE(reg, temp);
2698
2699 POSTING_READ(reg);
2700 udelay(500);
2701
2702 reg = FDI_RX_IIR(pipe);
2703 temp = I915_READ(reg);
2704 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705
2706 if (temp & FDI_RX_SYMBOL_LOCK) {
2707 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2708 DRM_DEBUG_KMS("FDI train 2 done.\n");
2709 break;
2710 }
2711 }
2712 if (i == 4)
2713 DRM_ERROR("FDI train 2 fail!\n");
2714
2715 DRM_DEBUG_KMS("FDI train done.\n");
2716 }
2717
2718 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2719 {
2720 struct drm_device *dev = intel_crtc->base.dev;
2721 struct drm_i915_private *dev_priv = dev->dev_private;
2722 int pipe = intel_crtc->pipe;
2723 u32 reg, temp;
2724
2725 /* Write the TU size bits so error detection works */
2726 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2727 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2728
2729 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2730 reg = FDI_RX_CTL(pipe);
2731 temp = I915_READ(reg);
2732 temp &= ~((0x7 << 19) | (0x7 << 16));
2733 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2734 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2735 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2736
2737 POSTING_READ(reg);
2738 udelay(200);
2739
2740 /* Switch from Rawclk to PCDclk */
2741 temp = I915_READ(reg);
2742 I915_WRITE(reg, temp | FDI_PCDCLK);
2743
2744 POSTING_READ(reg);
2745 udelay(200);
2746
2747 /* On Haswell, the PLL configuration for ports and pipes is handled
2748 * separately, as part of DDI setup */
2749 if (!IS_HASWELL(dev)) {
2750 /* Enable CPU FDI TX PLL, always on for Ironlake */
2751 reg = FDI_TX_CTL(pipe);
2752 temp = I915_READ(reg);
2753 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2754 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2755
2756 POSTING_READ(reg);
2757 udelay(100);
2758 }
2759 }
2760 }
2761
2762 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2763 {
2764 struct drm_device *dev = intel_crtc->base.dev;
2765 struct drm_i915_private *dev_priv = dev->dev_private;
2766 int pipe = intel_crtc->pipe;
2767 u32 reg, temp;
2768
2769 /* Switch from PCDclk to Rawclk */
2770 reg = FDI_RX_CTL(pipe);
2771 temp = I915_READ(reg);
2772 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2773
2774 /* Disable CPU FDI TX PLL */
2775 reg = FDI_TX_CTL(pipe);
2776 temp = I915_READ(reg);
2777 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2778
2779 POSTING_READ(reg);
2780 udelay(100);
2781
2782 reg = FDI_RX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2785
2786 /* Wait for the clocks to turn off. */
2787 POSTING_READ(reg);
2788 udelay(100);
2789 }
2790
2791 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2792 {
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 u32 flags = I915_READ(SOUTH_CHICKEN1);
2795
2796 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2797 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2798 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2799 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2800 POSTING_READ(SOUTH_CHICKEN1);
2801 }
2802 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2803 {
2804 struct drm_device *dev = crtc->dev;
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2807 int pipe = intel_crtc->pipe;
2808 u32 reg, temp;
2809
2810 /* disable CPU FDI tx and PCH FDI rx */
2811 reg = FDI_TX_CTL(pipe);
2812 temp = I915_READ(reg);
2813 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2814 POSTING_READ(reg);
2815
2816 reg = FDI_RX_CTL(pipe);
2817 temp = I915_READ(reg);
2818 temp &= ~(0x7 << 16);
2819 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2820 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2821
2822 POSTING_READ(reg);
2823 udelay(100);
2824
2825 /* Ironlake workaround, disable clock pointer after downing FDI */
2826 if (HAS_PCH_IBX(dev)) {
2827 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2828 I915_WRITE(FDI_RX_CHICKEN(pipe),
2829 I915_READ(FDI_RX_CHICKEN(pipe) &
2830 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2831 } else if (HAS_PCH_CPT(dev)) {
2832 cpt_phase_pointer_disable(dev, pipe);
2833 }
2834
2835 /* still set train pattern 1 */
2836 reg = FDI_TX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 temp &= ~FDI_LINK_TRAIN_NONE;
2839 temp |= FDI_LINK_TRAIN_PATTERN_1;
2840 I915_WRITE(reg, temp);
2841
2842 reg = FDI_RX_CTL(pipe);
2843 temp = I915_READ(reg);
2844 if (HAS_PCH_CPT(dev)) {
2845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2846 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2847 } else {
2848 temp &= ~FDI_LINK_TRAIN_NONE;
2849 temp |= FDI_LINK_TRAIN_PATTERN_1;
2850 }
2851 /* BPC in FDI rx is consistent with that in PIPECONF */
2852 temp &= ~(0x07 << 16);
2853 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2854 I915_WRITE(reg, temp);
2855
2856 POSTING_READ(reg);
2857 udelay(100);
2858 }
2859
2860 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2861 {
2862 struct drm_device *dev = crtc->dev;
2863
2864 if (crtc->fb == NULL)
2865 return;
2866
2867 mutex_lock(&dev->struct_mutex);
2868 intel_finish_fb(crtc->fb);
2869 mutex_unlock(&dev->struct_mutex);
2870 }
2871
2872 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2873 {
2874 struct drm_device *dev = crtc->dev;
2875 struct intel_encoder *intel_encoder;
2876
2877 /*
2878 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2879 * must be driven by its own crtc; no sharing is possible.
2880 */
2881 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2882
2883 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2884 * CPU handles all others */
2885 if (IS_HASWELL(dev)) {
2886 /* It is still unclear how this will work on PPT, so throw up a warning */
2887 WARN_ON(!HAS_PCH_LPT(dev));
2888
2889 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2890 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2891 return true;
2892 } else {
2893 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2894 intel_encoder->type);
2895 return false;
2896 }
2897 }
2898
2899 switch (intel_encoder->type) {
2900 case INTEL_OUTPUT_EDP:
2901 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2902 return false;
2903 continue;
2904 }
2905 }
2906
2907 return true;
2908 }
2909
2910 /* Program iCLKIP clock to the desired frequency */
2911 static void lpt_program_iclkip(struct drm_crtc *crtc)
2912 {
2913 struct drm_device *dev = crtc->dev;
2914 struct drm_i915_private *dev_priv = dev->dev_private;
2915 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2916 u32 temp;
2917
2918 /* It is necessary to ungate the pixclk gate prior to programming
2919 * the divisors, and gate it back when it is done.
2920 */
2921 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2922
2923 /* Disable SSCCTL */
2924 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2925 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2926 SBI_SSCCTL_DISABLE);
2927
2928 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2929 if (crtc->mode.clock == 20000) {
2930 auxdiv = 1;
2931 divsel = 0x41;
2932 phaseinc = 0x20;
2933 } else {
2934 /* The iCLK virtual clock root frequency is in MHz,
2935 * but the crtc->mode.clock in in KHz. To get the divisors,
2936 * it is necessary to divide one by another, so we
2937 * convert the virtual clock precision to KHz here for higher
2938 * precision.
2939 */
2940 u32 iclk_virtual_root_freq = 172800 * 1000;
2941 u32 iclk_pi_range = 64;
2942 u32 desired_divisor, msb_divisor_value, pi_value;
2943
2944 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2945 msb_divisor_value = desired_divisor / iclk_pi_range;
2946 pi_value = desired_divisor % iclk_pi_range;
2947
2948 auxdiv = 0;
2949 divsel = msb_divisor_value - 2;
2950 phaseinc = pi_value;
2951 }
2952
2953 /* This should not happen with any sane values */
2954 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2955 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2956 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2957 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2958
2959 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2960 crtc->mode.clock,
2961 auxdiv,
2962 divsel,
2963 phasedir,
2964 phaseinc);
2965
2966 /* Program SSCDIVINTPHASE6 */
2967 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2968 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2969 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2970 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2971 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2972 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2973 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2974
2975 intel_sbi_write(dev_priv,
2976 SBI_SSCDIVINTPHASE6,
2977 temp);
2978
2979 /* Program SSCAUXDIV */
2980 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2981 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2982 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2983 intel_sbi_write(dev_priv,
2984 SBI_SSCAUXDIV6,
2985 temp);
2986
2987
2988 /* Enable modulator and associated divider */
2989 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2990 temp &= ~SBI_SSCCTL_DISABLE;
2991 intel_sbi_write(dev_priv,
2992 SBI_SSCCTL6,
2993 temp);
2994
2995 /* Wait for initialization time */
2996 udelay(24);
2997
2998 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2999 }
3000
3001 /*
3002 * Enable PCH resources required for PCH ports:
3003 * - PCH PLLs
3004 * - FDI training & RX/TX
3005 * - update transcoder timings
3006 * - DP transcoding bits
3007 * - transcoder
3008 */
3009 static void ironlake_pch_enable(struct drm_crtc *crtc)
3010 {
3011 struct drm_device *dev = crtc->dev;
3012 struct drm_i915_private *dev_priv = dev->dev_private;
3013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3014 int pipe = intel_crtc->pipe;
3015 u32 reg, temp;
3016
3017 assert_transcoder_disabled(dev_priv, pipe);
3018
3019 /* For PCH output, training FDI link */
3020 dev_priv->display.fdi_link_train(crtc);
3021
3022 intel_enable_pch_pll(intel_crtc);
3023
3024 if (HAS_PCH_LPT(dev)) {
3025 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3026 lpt_program_iclkip(crtc);
3027 } else if (HAS_PCH_CPT(dev)) {
3028 u32 sel;
3029
3030 temp = I915_READ(PCH_DPLL_SEL);
3031 switch (pipe) {
3032 default:
3033 case 0:
3034 temp |= TRANSA_DPLL_ENABLE;
3035 sel = TRANSA_DPLLB_SEL;
3036 break;
3037 case 1:
3038 temp |= TRANSB_DPLL_ENABLE;
3039 sel = TRANSB_DPLLB_SEL;
3040 break;
3041 case 2:
3042 temp |= TRANSC_DPLL_ENABLE;
3043 sel = TRANSC_DPLLB_SEL;
3044 break;
3045 }
3046 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3047 temp |= sel;
3048 else
3049 temp &= ~sel;
3050 I915_WRITE(PCH_DPLL_SEL, temp);
3051 }
3052
3053 /* set transcoder timing, panel must allow it */
3054 assert_panel_unlocked(dev_priv, pipe);
3055 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3056 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3057 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3058
3059 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3060 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3061 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3062 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3063
3064 if (!IS_HASWELL(dev))
3065 intel_fdi_normal_train(crtc);
3066
3067 /* For PCH DP, enable TRANS_DP_CTL */
3068 if (HAS_PCH_CPT(dev) &&
3069 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3070 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3071 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3072 reg = TRANS_DP_CTL(pipe);
3073 temp = I915_READ(reg);
3074 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3075 TRANS_DP_SYNC_MASK |
3076 TRANS_DP_BPC_MASK);
3077 temp |= (TRANS_DP_OUTPUT_ENABLE |
3078 TRANS_DP_ENH_FRAMING);
3079 temp |= bpc << 9; /* same format but at 11:9 */
3080
3081 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3082 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3083 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3084 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3085
3086 switch (intel_trans_dp_port_sel(crtc)) {
3087 case PCH_DP_B:
3088 temp |= TRANS_DP_PORT_SEL_B;
3089 break;
3090 case PCH_DP_C:
3091 temp |= TRANS_DP_PORT_SEL_C;
3092 break;
3093 case PCH_DP_D:
3094 temp |= TRANS_DP_PORT_SEL_D;
3095 break;
3096 default:
3097 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3098 temp |= TRANS_DP_PORT_SEL_B;
3099 break;
3100 }
3101
3102 I915_WRITE(reg, temp);
3103 }
3104
3105 intel_enable_transcoder(dev_priv, pipe);
3106 }
3107
3108 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3109 {
3110 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3111
3112 if (pll == NULL)
3113 return;
3114
3115 if (pll->refcount == 0) {
3116 WARN(1, "bad PCH PLL refcount\n");
3117 return;
3118 }
3119
3120 --pll->refcount;
3121 intel_crtc->pch_pll = NULL;
3122 }
3123
3124 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3125 {
3126 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3127 struct intel_pch_pll *pll;
3128 int i;
3129
3130 pll = intel_crtc->pch_pll;
3131 if (pll) {
3132 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3133 intel_crtc->base.base.id, pll->pll_reg);
3134 goto prepare;
3135 }
3136
3137 if (HAS_PCH_IBX(dev_priv->dev)) {
3138 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3139 i = intel_crtc->pipe;
3140 pll = &dev_priv->pch_plls[i];
3141
3142 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3143 intel_crtc->base.base.id, pll->pll_reg);
3144
3145 goto found;
3146 }
3147
3148 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3149 pll = &dev_priv->pch_plls[i];
3150
3151 /* Only want to check enabled timings first */
3152 if (pll->refcount == 0)
3153 continue;
3154
3155 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3156 fp == I915_READ(pll->fp0_reg)) {
3157 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3158 intel_crtc->base.base.id,
3159 pll->pll_reg, pll->refcount, pll->active);
3160
3161 goto found;
3162 }
3163 }
3164
3165 /* Ok no matching timings, maybe there's a free one? */
3166 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3167 pll = &dev_priv->pch_plls[i];
3168 if (pll->refcount == 0) {
3169 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3170 intel_crtc->base.base.id, pll->pll_reg);
3171 goto found;
3172 }
3173 }
3174
3175 return NULL;
3176
3177 found:
3178 intel_crtc->pch_pll = pll;
3179 pll->refcount++;
3180 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3181 prepare: /* separate function? */
3182 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3183
3184 /* Wait for the clocks to stabilize before rewriting the regs */
3185 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3186 POSTING_READ(pll->pll_reg);
3187 udelay(150);
3188
3189 I915_WRITE(pll->fp0_reg, fp);
3190 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3191 pll->on = false;
3192 return pll;
3193 }
3194
3195 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3196 {
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3199 u32 temp;
3200
3201 temp = I915_READ(dslreg);
3202 udelay(500);
3203 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3204 /* Without this, mode sets may fail silently on FDI */
3205 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3206 udelay(250);
3207 I915_WRITE(tc2reg, 0);
3208 if (wait_for(I915_READ(dslreg) != temp, 5))
3209 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3210 }
3211 }
3212
3213 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3214 {
3215 struct drm_device *dev = crtc->dev;
3216 struct drm_i915_private *dev_priv = dev->dev_private;
3217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3218 struct intel_encoder *encoder;
3219 int pipe = intel_crtc->pipe;
3220 int plane = intel_crtc->plane;
3221 u32 temp;
3222 bool is_pch_port;
3223
3224 WARN_ON(!crtc->enabled);
3225
3226 if (intel_crtc->active)
3227 return;
3228
3229 intel_crtc->active = true;
3230 intel_update_watermarks(dev);
3231
3232 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3233 temp = I915_READ(PCH_LVDS);
3234 if ((temp & LVDS_PORT_EN) == 0)
3235 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3236 }
3237
3238 is_pch_port = intel_crtc_driving_pch(crtc);
3239
3240 if (is_pch_port)
3241 ironlake_fdi_pll_enable(intel_crtc);
3242 else
3243 ironlake_fdi_disable(crtc);
3244
3245 /* Enable panel fitting for LVDS */
3246 if (dev_priv->pch_pf_size &&
3247 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3248 /* Force use of hard-coded filter coefficients
3249 * as some pre-programmed values are broken,
3250 * e.g. x201.
3251 */
3252 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3253 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3254 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3255 }
3256
3257 /*
3258 * On ILK+ LUT must be loaded before the pipe is running but with
3259 * clocks enabled
3260 */
3261 intel_crtc_load_lut(crtc);
3262
3263 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3264 intel_enable_plane(dev_priv, plane, pipe);
3265
3266 if (is_pch_port)
3267 ironlake_pch_enable(crtc);
3268
3269 mutex_lock(&dev->struct_mutex);
3270 intel_update_fbc(dev);
3271 mutex_unlock(&dev->struct_mutex);
3272
3273 intel_crtc_update_cursor(crtc, true);
3274
3275 for_each_encoder_on_crtc(dev, crtc, encoder)
3276 encoder->enable(encoder);
3277
3278 if (HAS_PCH_CPT(dev))
3279 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3280 }
3281
3282 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3283 {
3284 struct drm_device *dev = crtc->dev;
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3287 struct intel_encoder *encoder;
3288 int pipe = intel_crtc->pipe;
3289 int plane = intel_crtc->plane;
3290 u32 reg, temp;
3291
3292
3293 if (!intel_crtc->active)
3294 return;
3295
3296 for_each_encoder_on_crtc(dev, crtc, encoder)
3297 encoder->disable(encoder);
3298
3299 intel_crtc_wait_for_pending_flips(crtc);
3300 drm_vblank_off(dev, pipe);
3301 intel_crtc_update_cursor(crtc, false);
3302
3303 intel_disable_plane(dev_priv, plane, pipe);
3304
3305 if (dev_priv->cfb_plane == plane)
3306 intel_disable_fbc(dev);
3307
3308 intel_disable_pipe(dev_priv, pipe);
3309
3310 /* Disable PF */
3311 I915_WRITE(PF_CTL(pipe), 0);
3312 I915_WRITE(PF_WIN_SZ(pipe), 0);
3313
3314 ironlake_fdi_disable(crtc);
3315
3316 /* This is a horrible layering violation; we should be doing this in
3317 * the connector/encoder ->prepare instead, but we don't always have
3318 * enough information there about the config to know whether it will
3319 * actually be necessary or just cause undesired flicker.
3320 */
3321 intel_disable_pch_ports(dev_priv, pipe);
3322
3323 intel_disable_transcoder(dev_priv, pipe);
3324
3325 if (HAS_PCH_CPT(dev)) {
3326 /* disable TRANS_DP_CTL */
3327 reg = TRANS_DP_CTL(pipe);
3328 temp = I915_READ(reg);
3329 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3330 temp |= TRANS_DP_PORT_SEL_NONE;
3331 I915_WRITE(reg, temp);
3332
3333 /* disable DPLL_SEL */
3334 temp = I915_READ(PCH_DPLL_SEL);
3335 switch (pipe) {
3336 case 0:
3337 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3338 break;
3339 case 1:
3340 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3341 break;
3342 case 2:
3343 /* C shares PLL A or B */
3344 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3345 break;
3346 default:
3347 BUG(); /* wtf */
3348 }
3349 I915_WRITE(PCH_DPLL_SEL, temp);
3350 }
3351
3352 /* disable PCH DPLL */
3353 intel_disable_pch_pll(intel_crtc);
3354
3355 ironlake_fdi_pll_disable(intel_crtc);
3356
3357 intel_crtc->active = false;
3358 intel_update_watermarks(dev);
3359
3360 mutex_lock(&dev->struct_mutex);
3361 intel_update_fbc(dev);
3362 mutex_unlock(&dev->struct_mutex);
3363 }
3364
3365 static void ironlake_crtc_off(struct drm_crtc *crtc)
3366 {
3367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3368 intel_put_pch_pll(intel_crtc);
3369 }
3370
3371 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3372 {
3373 if (!enable && intel_crtc->overlay) {
3374 struct drm_device *dev = intel_crtc->base.dev;
3375 struct drm_i915_private *dev_priv = dev->dev_private;
3376
3377 mutex_lock(&dev->struct_mutex);
3378 dev_priv->mm.interruptible = false;
3379 (void) intel_overlay_switch_off(intel_crtc->overlay);
3380 dev_priv->mm.interruptible = true;
3381 mutex_unlock(&dev->struct_mutex);
3382 }
3383
3384 /* Let userspace switch the overlay on again. In most cases userspace
3385 * has to recompute where to put it anyway.
3386 */
3387 }
3388
3389 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3390 {
3391 struct drm_device *dev = crtc->dev;
3392 struct drm_i915_private *dev_priv = dev->dev_private;
3393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3394 struct intel_encoder *encoder;
3395 int pipe = intel_crtc->pipe;
3396 int plane = intel_crtc->plane;
3397
3398 WARN_ON(!crtc->enabled);
3399
3400 if (intel_crtc->active)
3401 return;
3402
3403 intel_crtc->active = true;
3404 intel_update_watermarks(dev);
3405
3406 intel_enable_pll(dev_priv, pipe);
3407 intel_enable_pipe(dev_priv, pipe, false);
3408 intel_enable_plane(dev_priv, plane, pipe);
3409
3410 intel_crtc_load_lut(crtc);
3411 intel_update_fbc(dev);
3412
3413 /* Give the overlay scaler a chance to enable if it's on this pipe */
3414 intel_crtc_dpms_overlay(intel_crtc, true);
3415 intel_crtc_update_cursor(crtc, true);
3416
3417 for_each_encoder_on_crtc(dev, crtc, encoder)
3418 encoder->enable(encoder);
3419 }
3420
3421 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3422 {
3423 struct drm_device *dev = crtc->dev;
3424 struct drm_i915_private *dev_priv = dev->dev_private;
3425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3426 struct intel_encoder *encoder;
3427 int pipe = intel_crtc->pipe;
3428 int plane = intel_crtc->plane;
3429
3430
3431 if (!intel_crtc->active)
3432 return;
3433
3434 for_each_encoder_on_crtc(dev, crtc, encoder)
3435 encoder->disable(encoder);
3436
3437 /* Give the overlay scaler a chance to disable if it's on this pipe */
3438 intel_crtc_wait_for_pending_flips(crtc);
3439 drm_vblank_off(dev, pipe);
3440 intel_crtc_dpms_overlay(intel_crtc, false);
3441 intel_crtc_update_cursor(crtc, false);
3442
3443 if (dev_priv->cfb_plane == plane)
3444 intel_disable_fbc(dev);
3445
3446 intel_disable_plane(dev_priv, plane, pipe);
3447 intel_disable_pipe(dev_priv, pipe);
3448 intel_disable_pll(dev_priv, pipe);
3449
3450 intel_crtc->active = false;
3451 intel_update_fbc(dev);
3452 intel_update_watermarks(dev);
3453 }
3454
3455 static void i9xx_crtc_off(struct drm_crtc *crtc)
3456 {
3457 }
3458
3459 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3460 bool enabled)
3461 {
3462 struct drm_device *dev = crtc->dev;
3463 struct drm_i915_master_private *master_priv;
3464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3465 int pipe = intel_crtc->pipe;
3466
3467 if (!dev->primary->master)
3468 return;
3469
3470 master_priv = dev->primary->master->driver_priv;
3471 if (!master_priv->sarea_priv)
3472 return;
3473
3474 switch (pipe) {
3475 case 0:
3476 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3477 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3478 break;
3479 case 1:
3480 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3481 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3482 break;
3483 default:
3484 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3485 break;
3486 }
3487 }
3488
3489 /**
3490 * Sets the power management mode of the pipe and plane.
3491 */
3492 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3493 {
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_encoder *intel_encoder;
3497 bool enable = false;
3498
3499 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3500 enable |= intel_encoder->connectors_active;
3501
3502 if (enable)
3503 dev_priv->display.crtc_enable(crtc);
3504 else
3505 dev_priv->display.crtc_disable(crtc);
3506
3507 intel_crtc_update_sarea(crtc, enable);
3508 }
3509
3510 static void intel_crtc_noop(struct drm_crtc *crtc)
3511 {
3512 }
3513
3514 static void intel_crtc_disable(struct drm_crtc *crtc)
3515 {
3516 struct drm_device *dev = crtc->dev;
3517 struct drm_connector *connector;
3518 struct drm_i915_private *dev_priv = dev->dev_private;
3519
3520 /* crtc should still be enabled when we disable it. */
3521 WARN_ON(!crtc->enabled);
3522
3523 dev_priv->display.crtc_disable(crtc);
3524 intel_crtc_update_sarea(crtc, false);
3525 dev_priv->display.off(crtc);
3526
3527 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3528 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3529
3530 if (crtc->fb) {
3531 mutex_lock(&dev->struct_mutex);
3532 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3533 mutex_unlock(&dev->struct_mutex);
3534 crtc->fb = NULL;
3535 }
3536
3537 /* Update computed state. */
3538 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3539 if (!connector->encoder || !connector->encoder->crtc)
3540 continue;
3541
3542 if (connector->encoder->crtc != crtc)
3543 continue;
3544
3545 connector->dpms = DRM_MODE_DPMS_OFF;
3546 to_intel_encoder(connector->encoder)->connectors_active = false;
3547 }
3548 }
3549
3550 void intel_modeset_disable(struct drm_device *dev)
3551 {
3552 struct drm_crtc *crtc;
3553
3554 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3555 if (crtc->enabled)
3556 intel_crtc_disable(crtc);
3557 }
3558 }
3559
3560 void intel_encoder_noop(struct drm_encoder *encoder)
3561 {
3562 }
3563
3564 void intel_encoder_destroy(struct drm_encoder *encoder)
3565 {
3566 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3567
3568 drm_encoder_cleanup(encoder);
3569 kfree(intel_encoder);
3570 }
3571
3572 /* Simple dpms helper for encodres with just one connector, no cloning and only
3573 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3574 * state of the entire output pipe. */
3575 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3576 {
3577 if (mode == DRM_MODE_DPMS_ON) {
3578 encoder->connectors_active = true;
3579
3580 intel_crtc_update_dpms(encoder->base.crtc);
3581 } else {
3582 encoder->connectors_active = false;
3583
3584 intel_crtc_update_dpms(encoder->base.crtc);
3585 }
3586 }
3587
3588 /* Cross check the actual hw state with our own modeset state tracking (and it's
3589 * internal consistency). */
3590 static void intel_connector_check_state(struct intel_connector *connector)
3591 {
3592 if (connector->get_hw_state(connector)) {
3593 struct intel_encoder *encoder = connector->encoder;
3594 struct drm_crtc *crtc;
3595 bool encoder_enabled;
3596 enum pipe pipe;
3597
3598 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3599 connector->base.base.id,
3600 drm_get_connector_name(&connector->base));
3601
3602 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3603 "wrong connector dpms state\n");
3604 WARN(connector->base.encoder != &encoder->base,
3605 "active connector not linked to encoder\n");
3606 WARN(!encoder->connectors_active,
3607 "encoder->connectors_active not set\n");
3608
3609 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3610 WARN(!encoder_enabled, "encoder not enabled\n");
3611 if (WARN_ON(!encoder->base.crtc))
3612 return;
3613
3614 crtc = encoder->base.crtc;
3615
3616 WARN(!crtc->enabled, "crtc not enabled\n");
3617 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3618 WARN(pipe != to_intel_crtc(crtc)->pipe,
3619 "encoder active on the wrong pipe\n");
3620 }
3621 }
3622
3623 /* Even simpler default implementation, if there's really no special case to
3624 * consider. */
3625 void intel_connector_dpms(struct drm_connector *connector, int mode)
3626 {
3627 struct intel_encoder *encoder = intel_attached_encoder(connector);
3628
3629 /* All the simple cases only support two dpms states. */
3630 if (mode != DRM_MODE_DPMS_ON)
3631 mode = DRM_MODE_DPMS_OFF;
3632
3633 if (mode == connector->dpms)
3634 return;
3635
3636 connector->dpms = mode;
3637
3638 /* Only need to change hw state when actually enabled */
3639 if (encoder->base.crtc)
3640 intel_encoder_dpms(encoder, mode);
3641 else
3642 WARN_ON(encoder->connectors_active != false);
3643
3644 intel_modeset_check_state(connector->dev);
3645 }
3646
3647 /* Simple connector->get_hw_state implementation for encoders that support only
3648 * one connector and no cloning and hence the encoder state determines the state
3649 * of the connector. */
3650 bool intel_connector_get_hw_state(struct intel_connector *connector)
3651 {
3652 enum pipe pipe = 0;
3653 struct intel_encoder *encoder = connector->encoder;
3654
3655 return encoder->get_hw_state(encoder, &pipe);
3656 }
3657
3658 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3659 const struct drm_display_mode *mode,
3660 struct drm_display_mode *adjusted_mode)
3661 {
3662 struct drm_device *dev = crtc->dev;
3663
3664 if (HAS_PCH_SPLIT(dev)) {
3665 /* FDI link clock is fixed at 2.7G */
3666 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3667 return false;
3668 }
3669
3670 /* All interlaced capable intel hw wants timings in frames. Note though
3671 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3672 * timings, so we need to be careful not to clobber these.*/
3673 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3674 drm_mode_set_crtcinfo(adjusted_mode, 0);
3675
3676 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3677 * with a hsync front porch of 0.
3678 */
3679 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3680 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3681 return false;
3682
3683 return true;
3684 }
3685
3686 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3687 {
3688 return 400000; /* FIXME */
3689 }
3690
3691 static int i945_get_display_clock_speed(struct drm_device *dev)
3692 {
3693 return 400000;
3694 }
3695
3696 static int i915_get_display_clock_speed(struct drm_device *dev)
3697 {
3698 return 333000;
3699 }
3700
3701 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3702 {
3703 return 200000;
3704 }
3705
3706 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3707 {
3708 u16 gcfgc = 0;
3709
3710 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3711
3712 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3713 return 133000;
3714 else {
3715 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3716 case GC_DISPLAY_CLOCK_333_MHZ:
3717 return 333000;
3718 default:
3719 case GC_DISPLAY_CLOCK_190_200_MHZ:
3720 return 190000;
3721 }
3722 }
3723 }
3724
3725 static int i865_get_display_clock_speed(struct drm_device *dev)
3726 {
3727 return 266000;
3728 }
3729
3730 static int i855_get_display_clock_speed(struct drm_device *dev)
3731 {
3732 u16 hpllcc = 0;
3733 /* Assume that the hardware is in the high speed state. This
3734 * should be the default.
3735 */
3736 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3737 case GC_CLOCK_133_200:
3738 case GC_CLOCK_100_200:
3739 return 200000;
3740 case GC_CLOCK_166_250:
3741 return 250000;
3742 case GC_CLOCK_100_133:
3743 return 133000;
3744 }
3745
3746 /* Shouldn't happen */
3747 return 0;
3748 }
3749
3750 static int i830_get_display_clock_speed(struct drm_device *dev)
3751 {
3752 return 133000;
3753 }
3754
3755 struct fdi_m_n {
3756 u32 tu;
3757 u32 gmch_m;
3758 u32 gmch_n;
3759 u32 link_m;
3760 u32 link_n;
3761 };
3762
3763 static void
3764 fdi_reduce_ratio(u32 *num, u32 *den)
3765 {
3766 while (*num > 0xffffff || *den > 0xffffff) {
3767 *num >>= 1;
3768 *den >>= 1;
3769 }
3770 }
3771
3772 static void
3773 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3774 int link_clock, struct fdi_m_n *m_n)
3775 {
3776 m_n->tu = 64; /* default size */
3777
3778 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3779 m_n->gmch_m = bits_per_pixel * pixel_clock;
3780 m_n->gmch_n = link_clock * nlanes * 8;
3781 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3782
3783 m_n->link_m = pixel_clock;
3784 m_n->link_n = link_clock;
3785 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3786 }
3787
3788 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3789 {
3790 if (i915_panel_use_ssc >= 0)
3791 return i915_panel_use_ssc != 0;
3792 return dev_priv->lvds_use_ssc
3793 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3794 }
3795
3796 /**
3797 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3798 * @crtc: CRTC structure
3799 * @mode: requested mode
3800 *
3801 * A pipe may be connected to one or more outputs. Based on the depth of the
3802 * attached framebuffer, choose a good color depth to use on the pipe.
3803 *
3804 * If possible, match the pipe depth to the fb depth. In some cases, this
3805 * isn't ideal, because the connected output supports a lesser or restricted
3806 * set of depths. Resolve that here:
3807 * LVDS typically supports only 6bpc, so clamp down in that case
3808 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3809 * Displays may support a restricted set as well, check EDID and clamp as
3810 * appropriate.
3811 * DP may want to dither down to 6bpc to fit larger modes
3812 *
3813 * RETURNS:
3814 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3815 * true if they don't match).
3816 */
3817 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3818 struct drm_framebuffer *fb,
3819 unsigned int *pipe_bpp,
3820 struct drm_display_mode *mode)
3821 {
3822 struct drm_device *dev = crtc->dev;
3823 struct drm_i915_private *dev_priv = dev->dev_private;
3824 struct drm_connector *connector;
3825 struct intel_encoder *intel_encoder;
3826 unsigned int display_bpc = UINT_MAX, bpc;
3827
3828 /* Walk the encoders & connectors on this crtc, get min bpc */
3829 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3830
3831 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3832 unsigned int lvds_bpc;
3833
3834 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3835 LVDS_A3_POWER_UP)
3836 lvds_bpc = 8;
3837 else
3838 lvds_bpc = 6;
3839
3840 if (lvds_bpc < display_bpc) {
3841 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3842 display_bpc = lvds_bpc;
3843 }
3844 continue;
3845 }
3846
3847 /* Not one of the known troublemakers, check the EDID */
3848 list_for_each_entry(connector, &dev->mode_config.connector_list,
3849 head) {
3850 if (connector->encoder != &intel_encoder->base)
3851 continue;
3852
3853 /* Don't use an invalid EDID bpc value */
3854 if (connector->display_info.bpc &&
3855 connector->display_info.bpc < display_bpc) {
3856 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3857 display_bpc = connector->display_info.bpc;
3858 }
3859 }
3860
3861 /*
3862 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3863 * through, clamp it down. (Note: >12bpc will be caught below.)
3864 */
3865 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3866 if (display_bpc > 8 && display_bpc < 12) {
3867 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3868 display_bpc = 12;
3869 } else {
3870 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3871 display_bpc = 8;
3872 }
3873 }
3874 }
3875
3876 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3877 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3878 display_bpc = 6;
3879 }
3880
3881 /*
3882 * We could just drive the pipe at the highest bpc all the time and
3883 * enable dithering as needed, but that costs bandwidth. So choose
3884 * the minimum value that expresses the full color range of the fb but
3885 * also stays within the max display bpc discovered above.
3886 */
3887
3888 switch (fb->depth) {
3889 case 8:
3890 bpc = 8; /* since we go through a colormap */
3891 break;
3892 case 15:
3893 case 16:
3894 bpc = 6; /* min is 18bpp */
3895 break;
3896 case 24:
3897 bpc = 8;
3898 break;
3899 case 30:
3900 bpc = 10;
3901 break;
3902 case 48:
3903 bpc = 12;
3904 break;
3905 default:
3906 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3907 bpc = min((unsigned int)8, display_bpc);
3908 break;
3909 }
3910
3911 display_bpc = min(display_bpc, bpc);
3912
3913 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3914 bpc, display_bpc);
3915
3916 *pipe_bpp = display_bpc * 3;
3917
3918 return display_bpc != bpc;
3919 }
3920
3921 static int vlv_get_refclk(struct drm_crtc *crtc)
3922 {
3923 struct drm_device *dev = crtc->dev;
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925 int refclk = 27000; /* for DP & HDMI */
3926
3927 return 100000; /* only one validated so far */
3928
3929 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3930 refclk = 96000;
3931 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3932 if (intel_panel_use_ssc(dev_priv))
3933 refclk = 100000;
3934 else
3935 refclk = 96000;
3936 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3937 refclk = 100000;
3938 }
3939
3940 return refclk;
3941 }
3942
3943 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3944 {
3945 struct drm_device *dev = crtc->dev;
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947 int refclk;
3948
3949 if (IS_VALLEYVIEW(dev)) {
3950 refclk = vlv_get_refclk(crtc);
3951 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3952 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3953 refclk = dev_priv->lvds_ssc_freq * 1000;
3954 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3955 refclk / 1000);
3956 } else if (!IS_GEN2(dev)) {
3957 refclk = 96000;
3958 } else {
3959 refclk = 48000;
3960 }
3961
3962 return refclk;
3963 }
3964
3965 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3966 intel_clock_t *clock)
3967 {
3968 /* SDVO TV has fixed PLL values depend on its clock range,
3969 this mirrors vbios setting. */
3970 if (adjusted_mode->clock >= 100000
3971 && adjusted_mode->clock < 140500) {
3972 clock->p1 = 2;
3973 clock->p2 = 10;
3974 clock->n = 3;
3975 clock->m1 = 16;
3976 clock->m2 = 8;
3977 } else if (adjusted_mode->clock >= 140500
3978 && adjusted_mode->clock <= 200000) {
3979 clock->p1 = 1;
3980 clock->p2 = 10;
3981 clock->n = 6;
3982 clock->m1 = 12;
3983 clock->m2 = 8;
3984 }
3985 }
3986
3987 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3988 intel_clock_t *clock,
3989 intel_clock_t *reduced_clock)
3990 {
3991 struct drm_device *dev = crtc->dev;
3992 struct drm_i915_private *dev_priv = dev->dev_private;
3993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3994 int pipe = intel_crtc->pipe;
3995 u32 fp, fp2 = 0;
3996
3997 if (IS_PINEVIEW(dev)) {
3998 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3999 if (reduced_clock)
4000 fp2 = (1 << reduced_clock->n) << 16 |
4001 reduced_clock->m1 << 8 | reduced_clock->m2;
4002 } else {
4003 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4004 if (reduced_clock)
4005 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4006 reduced_clock->m2;
4007 }
4008
4009 I915_WRITE(FP0(pipe), fp);
4010
4011 intel_crtc->lowfreq_avail = false;
4012 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4013 reduced_clock && i915_powersave) {
4014 I915_WRITE(FP1(pipe), fp2);
4015 intel_crtc->lowfreq_avail = true;
4016 } else {
4017 I915_WRITE(FP1(pipe), fp);
4018 }
4019 }
4020
4021 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4022 struct drm_display_mode *adjusted_mode)
4023 {
4024 struct drm_device *dev = crtc->dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4027 int pipe = intel_crtc->pipe;
4028 u32 temp;
4029
4030 temp = I915_READ(LVDS);
4031 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4032 if (pipe == 1) {
4033 temp |= LVDS_PIPEB_SELECT;
4034 } else {
4035 temp &= ~LVDS_PIPEB_SELECT;
4036 }
4037 /* set the corresponsding LVDS_BORDER bit */
4038 temp |= dev_priv->lvds_border_bits;
4039 /* Set the B0-B3 data pairs corresponding to whether we're going to
4040 * set the DPLLs for dual-channel mode or not.
4041 */
4042 if (clock->p2 == 7)
4043 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4044 else
4045 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4046
4047 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4048 * appropriately here, but we need to look more thoroughly into how
4049 * panels behave in the two modes.
4050 */
4051 /* set the dithering flag on LVDS as needed */
4052 if (INTEL_INFO(dev)->gen >= 4) {
4053 if (dev_priv->lvds_dither)
4054 temp |= LVDS_ENABLE_DITHER;
4055 else
4056 temp &= ~LVDS_ENABLE_DITHER;
4057 }
4058 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4059 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4060 temp |= LVDS_HSYNC_POLARITY;
4061 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4062 temp |= LVDS_VSYNC_POLARITY;
4063 I915_WRITE(LVDS, temp);
4064 }
4065
4066 static void vlv_update_pll(struct drm_crtc *crtc,
4067 struct drm_display_mode *mode,
4068 struct drm_display_mode *adjusted_mode,
4069 intel_clock_t *clock, intel_clock_t *reduced_clock,
4070 int refclk, int num_connectors)
4071 {
4072 struct drm_device *dev = crtc->dev;
4073 struct drm_i915_private *dev_priv = dev->dev_private;
4074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4075 int pipe = intel_crtc->pipe;
4076 u32 dpll, mdiv, pdiv;
4077 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4078 bool is_hdmi;
4079
4080 is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4081
4082 bestn = clock->n;
4083 bestm1 = clock->m1;
4084 bestm2 = clock->m2;
4085 bestp1 = clock->p1;
4086 bestp2 = clock->p2;
4087
4088 /* Enable DPIO clock input */
4089 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4090 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4091 I915_WRITE(DPLL(pipe), dpll);
4092 POSTING_READ(DPLL(pipe));
4093
4094 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4095 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4096 mdiv |= ((bestn << DPIO_N_SHIFT));
4097 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4098 mdiv |= (1 << DPIO_K_SHIFT);
4099 mdiv |= DPIO_ENABLE_CALIBRATION;
4100 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4101
4102 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4103
4104 pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4105 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4106 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4107 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4108
4109 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4110
4111 dpll |= DPLL_VCO_ENABLE;
4112 I915_WRITE(DPLL(pipe), dpll);
4113 POSTING_READ(DPLL(pipe));
4114 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4115 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4116
4117 if (is_hdmi) {
4118 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4119
4120 if (temp > 1)
4121 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4122 else
4123 temp = 0;
4124
4125 I915_WRITE(DPLL_MD(pipe), temp);
4126 POSTING_READ(DPLL_MD(pipe));
4127 }
4128
4129 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4130 }
4131
4132 static void i9xx_update_pll(struct drm_crtc *crtc,
4133 struct drm_display_mode *mode,
4134 struct drm_display_mode *adjusted_mode,
4135 intel_clock_t *clock, intel_clock_t *reduced_clock,
4136 int num_connectors)
4137 {
4138 struct drm_device *dev = crtc->dev;
4139 struct drm_i915_private *dev_priv = dev->dev_private;
4140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4141 int pipe = intel_crtc->pipe;
4142 u32 dpll;
4143 bool is_sdvo;
4144
4145 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4146 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4147
4148 dpll = DPLL_VGA_MODE_DIS;
4149
4150 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4151 dpll |= DPLLB_MODE_LVDS;
4152 else
4153 dpll |= DPLLB_MODE_DAC_SERIAL;
4154 if (is_sdvo) {
4155 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4156 if (pixel_multiplier > 1) {
4157 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4158 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4159 }
4160 dpll |= DPLL_DVO_HIGH_SPEED;
4161 }
4162 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4163 dpll |= DPLL_DVO_HIGH_SPEED;
4164
4165 /* compute bitmask from p1 value */
4166 if (IS_PINEVIEW(dev))
4167 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4168 else {
4169 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4170 if (IS_G4X(dev) && reduced_clock)
4171 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4172 }
4173 switch (clock->p2) {
4174 case 5:
4175 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4176 break;
4177 case 7:
4178 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4179 break;
4180 case 10:
4181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4182 break;
4183 case 14:
4184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4185 break;
4186 }
4187 if (INTEL_INFO(dev)->gen >= 4)
4188 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4189
4190 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4191 dpll |= PLL_REF_INPUT_TVCLKINBC;
4192 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4193 /* XXX: just matching BIOS for now */
4194 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4195 dpll |= 3;
4196 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4197 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4198 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4199 else
4200 dpll |= PLL_REF_INPUT_DREFCLK;
4201
4202 dpll |= DPLL_VCO_ENABLE;
4203 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4204 POSTING_READ(DPLL(pipe));
4205 udelay(150);
4206
4207 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4208 * This is an exception to the general rule that mode_set doesn't turn
4209 * things on.
4210 */
4211 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4212 intel_update_lvds(crtc, clock, adjusted_mode);
4213
4214 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4215 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4216
4217 I915_WRITE(DPLL(pipe), dpll);
4218
4219 /* Wait for the clocks to stabilize. */
4220 POSTING_READ(DPLL(pipe));
4221 udelay(150);
4222
4223 if (INTEL_INFO(dev)->gen >= 4) {
4224 u32 temp = 0;
4225 if (is_sdvo) {
4226 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4227 if (temp > 1)
4228 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4229 else
4230 temp = 0;
4231 }
4232 I915_WRITE(DPLL_MD(pipe), temp);
4233 } else {
4234 /* The pixel multiplier can only be updated once the
4235 * DPLL is enabled and the clocks are stable.
4236 *
4237 * So write it again.
4238 */
4239 I915_WRITE(DPLL(pipe), dpll);
4240 }
4241 }
4242
4243 static void i8xx_update_pll(struct drm_crtc *crtc,
4244 struct drm_display_mode *adjusted_mode,
4245 intel_clock_t *clock,
4246 int num_connectors)
4247 {
4248 struct drm_device *dev = crtc->dev;
4249 struct drm_i915_private *dev_priv = dev->dev_private;
4250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4251 int pipe = intel_crtc->pipe;
4252 u32 dpll;
4253
4254 dpll = DPLL_VGA_MODE_DIS;
4255
4256 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4257 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4258 } else {
4259 if (clock->p1 == 2)
4260 dpll |= PLL_P1_DIVIDE_BY_TWO;
4261 else
4262 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4263 if (clock->p2 == 4)
4264 dpll |= PLL_P2_DIVIDE_BY_4;
4265 }
4266
4267 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4268 /* XXX: just matching BIOS for now */
4269 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4270 dpll |= 3;
4271 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4272 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4273 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4274 else
4275 dpll |= PLL_REF_INPUT_DREFCLK;
4276
4277 dpll |= DPLL_VCO_ENABLE;
4278 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4279 POSTING_READ(DPLL(pipe));
4280 udelay(150);
4281
4282 I915_WRITE(DPLL(pipe), dpll);
4283
4284 /* Wait for the clocks to stabilize. */
4285 POSTING_READ(DPLL(pipe));
4286 udelay(150);
4287
4288 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4289 * This is an exception to the general rule that mode_set doesn't turn
4290 * things on.
4291 */
4292 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4293 intel_update_lvds(crtc, clock, adjusted_mode);
4294
4295 /* The pixel multiplier can only be updated once the
4296 * DPLL is enabled and the clocks are stable.
4297 *
4298 * So write it again.
4299 */
4300 I915_WRITE(DPLL(pipe), dpll);
4301 }
4302
4303 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4304 struct drm_display_mode *mode,
4305 struct drm_display_mode *adjusted_mode,
4306 int x, int y,
4307 struct drm_framebuffer *fb)
4308 {
4309 struct drm_device *dev = crtc->dev;
4310 struct drm_i915_private *dev_priv = dev->dev_private;
4311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4312 int pipe = intel_crtc->pipe;
4313 int plane = intel_crtc->plane;
4314 int refclk, num_connectors = 0;
4315 intel_clock_t clock, reduced_clock;
4316 u32 dspcntr, pipeconf, vsyncshift;
4317 bool ok, has_reduced_clock = false, is_sdvo = false;
4318 bool is_lvds = false, is_tv = false, is_dp = false;
4319 struct intel_encoder *encoder;
4320 const intel_limit_t *limit;
4321 int ret;
4322
4323 for_each_encoder_on_crtc(dev, crtc, encoder) {
4324 switch (encoder->type) {
4325 case INTEL_OUTPUT_LVDS:
4326 is_lvds = true;
4327 break;
4328 case INTEL_OUTPUT_SDVO:
4329 case INTEL_OUTPUT_HDMI:
4330 is_sdvo = true;
4331 if (encoder->needs_tv_clock)
4332 is_tv = true;
4333 break;
4334 case INTEL_OUTPUT_TVOUT:
4335 is_tv = true;
4336 break;
4337 case INTEL_OUTPUT_DISPLAYPORT:
4338 is_dp = true;
4339 break;
4340 }
4341
4342 num_connectors++;
4343 }
4344
4345 refclk = i9xx_get_refclk(crtc, num_connectors);
4346
4347 /*
4348 * Returns a set of divisors for the desired target clock with the given
4349 * refclk, or FALSE. The returned values represent the clock equation:
4350 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4351 */
4352 limit = intel_limit(crtc, refclk);
4353 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4354 &clock);
4355 if (!ok) {
4356 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4357 return -EINVAL;
4358 }
4359
4360 /* Ensure that the cursor is valid for the new mode before changing... */
4361 intel_crtc_update_cursor(crtc, true);
4362
4363 if (is_lvds && dev_priv->lvds_downclock_avail) {
4364 /*
4365 * Ensure we match the reduced clock's P to the target clock.
4366 * If the clocks don't match, we can't switch the display clock
4367 * by using the FP0/FP1. In such case we will disable the LVDS
4368 * downclock feature.
4369 */
4370 has_reduced_clock = limit->find_pll(limit, crtc,
4371 dev_priv->lvds_downclock,
4372 refclk,
4373 &clock,
4374 &reduced_clock);
4375 }
4376
4377 if (is_sdvo && is_tv)
4378 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4379
4380 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4381 &reduced_clock : NULL);
4382
4383 if (IS_GEN2(dev))
4384 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4385 else if (IS_VALLEYVIEW(dev))
4386 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4387 refclk, num_connectors);
4388 else
4389 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4390 has_reduced_clock ? &reduced_clock : NULL,
4391 num_connectors);
4392
4393 /* setup pipeconf */
4394 pipeconf = I915_READ(PIPECONF(pipe));
4395
4396 /* Set up the display plane register */
4397 dspcntr = DISPPLANE_GAMMA_ENABLE;
4398
4399 if (pipe == 0)
4400 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4401 else
4402 dspcntr |= DISPPLANE_SEL_PIPE_B;
4403
4404 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4405 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4406 * core speed.
4407 *
4408 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4409 * pipe == 0 check?
4410 */
4411 if (mode->clock >
4412 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4413 pipeconf |= PIPECONF_DOUBLE_WIDE;
4414 else
4415 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4416 }
4417
4418 /* default to 8bpc */
4419 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4420 if (is_dp) {
4421 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4422 pipeconf |= PIPECONF_BPP_6 |
4423 PIPECONF_DITHER_EN |
4424 PIPECONF_DITHER_TYPE_SP;
4425 }
4426 }
4427
4428 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4429 drm_mode_debug_printmodeline(mode);
4430
4431 if (HAS_PIPE_CXSR(dev)) {
4432 if (intel_crtc->lowfreq_avail) {
4433 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4434 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4435 } else {
4436 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4437 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4438 }
4439 }
4440
4441 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4442 if (!IS_GEN2(dev) &&
4443 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4444 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4445 /* the chip adds 2 halflines automatically */
4446 adjusted_mode->crtc_vtotal -= 1;
4447 adjusted_mode->crtc_vblank_end -= 1;
4448 vsyncshift = adjusted_mode->crtc_hsync_start
4449 - adjusted_mode->crtc_htotal/2;
4450 } else {
4451 pipeconf |= PIPECONF_PROGRESSIVE;
4452 vsyncshift = 0;
4453 }
4454
4455 if (!IS_GEN3(dev))
4456 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4457
4458 I915_WRITE(HTOTAL(pipe),
4459 (adjusted_mode->crtc_hdisplay - 1) |
4460 ((adjusted_mode->crtc_htotal - 1) << 16));
4461 I915_WRITE(HBLANK(pipe),
4462 (adjusted_mode->crtc_hblank_start - 1) |
4463 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4464 I915_WRITE(HSYNC(pipe),
4465 (adjusted_mode->crtc_hsync_start - 1) |
4466 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4467
4468 I915_WRITE(VTOTAL(pipe),
4469 (adjusted_mode->crtc_vdisplay - 1) |
4470 ((adjusted_mode->crtc_vtotal - 1) << 16));
4471 I915_WRITE(VBLANK(pipe),
4472 (adjusted_mode->crtc_vblank_start - 1) |
4473 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4474 I915_WRITE(VSYNC(pipe),
4475 (adjusted_mode->crtc_vsync_start - 1) |
4476 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4477
4478 /* pipesrc and dspsize control the size that is scaled from,
4479 * which should always be the user's requested size.
4480 */
4481 I915_WRITE(DSPSIZE(plane),
4482 ((mode->vdisplay - 1) << 16) |
4483 (mode->hdisplay - 1));
4484 I915_WRITE(DSPPOS(plane), 0);
4485 I915_WRITE(PIPESRC(pipe),
4486 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4487
4488 I915_WRITE(PIPECONF(pipe), pipeconf);
4489 POSTING_READ(PIPECONF(pipe));
4490 intel_enable_pipe(dev_priv, pipe, false);
4491
4492 intel_wait_for_vblank(dev, pipe);
4493
4494 I915_WRITE(DSPCNTR(plane), dspcntr);
4495 POSTING_READ(DSPCNTR(plane));
4496
4497 ret = intel_pipe_set_base(crtc, x, y, fb);
4498
4499 intel_update_watermarks(dev);
4500
4501 return ret;
4502 }
4503
4504 /*
4505 * Initialize reference clocks when the driver loads
4506 */
4507 void ironlake_init_pch_refclk(struct drm_device *dev)
4508 {
4509 struct drm_i915_private *dev_priv = dev->dev_private;
4510 struct drm_mode_config *mode_config = &dev->mode_config;
4511 struct intel_encoder *encoder;
4512 u32 temp;
4513 bool has_lvds = false;
4514 bool has_cpu_edp = false;
4515 bool has_pch_edp = false;
4516 bool has_panel = false;
4517 bool has_ck505 = false;
4518 bool can_ssc = false;
4519
4520 /* We need to take the global config into account */
4521 list_for_each_entry(encoder, &mode_config->encoder_list,
4522 base.head) {
4523 switch (encoder->type) {
4524 case INTEL_OUTPUT_LVDS:
4525 has_panel = true;
4526 has_lvds = true;
4527 break;
4528 case INTEL_OUTPUT_EDP:
4529 has_panel = true;
4530 if (intel_encoder_is_pch_edp(&encoder->base))
4531 has_pch_edp = true;
4532 else
4533 has_cpu_edp = true;
4534 break;
4535 }
4536 }
4537
4538 if (HAS_PCH_IBX(dev)) {
4539 has_ck505 = dev_priv->display_clock_mode;
4540 can_ssc = has_ck505;
4541 } else {
4542 has_ck505 = false;
4543 can_ssc = true;
4544 }
4545
4546 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4547 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4548 has_ck505);
4549
4550 /* Ironlake: try to setup display ref clock before DPLL
4551 * enabling. This is only under driver's control after
4552 * PCH B stepping, previous chipset stepping should be
4553 * ignoring this setting.
4554 */
4555 temp = I915_READ(PCH_DREF_CONTROL);
4556 /* Always enable nonspread source */
4557 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4558
4559 if (has_ck505)
4560 temp |= DREF_NONSPREAD_CK505_ENABLE;
4561 else
4562 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4563
4564 if (has_panel) {
4565 temp &= ~DREF_SSC_SOURCE_MASK;
4566 temp |= DREF_SSC_SOURCE_ENABLE;
4567
4568 /* SSC must be turned on before enabling the CPU output */
4569 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4570 DRM_DEBUG_KMS("Using SSC on panel\n");
4571 temp |= DREF_SSC1_ENABLE;
4572 } else
4573 temp &= ~DREF_SSC1_ENABLE;
4574
4575 /* Get SSC going before enabling the outputs */
4576 I915_WRITE(PCH_DREF_CONTROL, temp);
4577 POSTING_READ(PCH_DREF_CONTROL);
4578 udelay(200);
4579
4580 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4581
4582 /* Enable CPU source on CPU attached eDP */
4583 if (has_cpu_edp) {
4584 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4585 DRM_DEBUG_KMS("Using SSC on eDP\n");
4586 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4587 }
4588 else
4589 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4590 } else
4591 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4592
4593 I915_WRITE(PCH_DREF_CONTROL, temp);
4594 POSTING_READ(PCH_DREF_CONTROL);
4595 udelay(200);
4596 } else {
4597 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4598
4599 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4600
4601 /* Turn off CPU output */
4602 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4603
4604 I915_WRITE(PCH_DREF_CONTROL, temp);
4605 POSTING_READ(PCH_DREF_CONTROL);
4606 udelay(200);
4607
4608 /* Turn off the SSC source */
4609 temp &= ~DREF_SSC_SOURCE_MASK;
4610 temp |= DREF_SSC_SOURCE_DISABLE;
4611
4612 /* Turn off SSC1 */
4613 temp &= ~ DREF_SSC1_ENABLE;
4614
4615 I915_WRITE(PCH_DREF_CONTROL, temp);
4616 POSTING_READ(PCH_DREF_CONTROL);
4617 udelay(200);
4618 }
4619 }
4620
4621 static int ironlake_get_refclk(struct drm_crtc *crtc)
4622 {
4623 struct drm_device *dev = crtc->dev;
4624 struct drm_i915_private *dev_priv = dev->dev_private;
4625 struct intel_encoder *encoder;
4626 struct intel_encoder *edp_encoder = NULL;
4627 int num_connectors = 0;
4628 bool is_lvds = false;
4629
4630 for_each_encoder_on_crtc(dev, crtc, encoder) {
4631 switch (encoder->type) {
4632 case INTEL_OUTPUT_LVDS:
4633 is_lvds = true;
4634 break;
4635 case INTEL_OUTPUT_EDP:
4636 edp_encoder = encoder;
4637 break;
4638 }
4639 num_connectors++;
4640 }
4641
4642 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4643 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4644 dev_priv->lvds_ssc_freq);
4645 return dev_priv->lvds_ssc_freq * 1000;
4646 }
4647
4648 return 120000;
4649 }
4650
4651 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4652 struct drm_display_mode *adjusted_mode,
4653 bool dither)
4654 {
4655 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4657 int pipe = intel_crtc->pipe;
4658 uint32_t val;
4659
4660 val = I915_READ(PIPECONF(pipe));
4661
4662 val &= ~PIPE_BPC_MASK;
4663 switch (intel_crtc->bpp) {
4664 case 18:
4665 val |= PIPE_6BPC;
4666 break;
4667 case 24:
4668 val |= PIPE_8BPC;
4669 break;
4670 case 30:
4671 val |= PIPE_10BPC;
4672 break;
4673 case 36:
4674 val |= PIPE_12BPC;
4675 break;
4676 default:
4677 val |= PIPE_8BPC;
4678 break;
4679 }
4680
4681 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4682 if (dither)
4683 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4684
4685 val &= ~PIPECONF_INTERLACE_MASK;
4686 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4687 val |= PIPECONF_INTERLACED_ILK;
4688 else
4689 val |= PIPECONF_PROGRESSIVE;
4690
4691 I915_WRITE(PIPECONF(pipe), val);
4692 POSTING_READ(PIPECONF(pipe));
4693 }
4694
4695 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4696 struct drm_display_mode *mode,
4697 struct drm_display_mode *adjusted_mode,
4698 int x, int y,
4699 struct drm_framebuffer *fb)
4700 {
4701 struct drm_device *dev = crtc->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4704 int pipe = intel_crtc->pipe;
4705 int plane = intel_crtc->plane;
4706 int refclk, num_connectors = 0;
4707 intel_clock_t clock, reduced_clock;
4708 u32 dpll, fp = 0, fp2 = 0, dspcntr;
4709 bool ok, has_reduced_clock = false, is_sdvo = false;
4710 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4711 struct intel_encoder *encoder, *edp_encoder = NULL;
4712 const intel_limit_t *limit;
4713 int ret;
4714 struct fdi_m_n m_n = {0};
4715 u32 temp;
4716 int target_clock, pixel_multiplier, lane, link_bw, factor;
4717 unsigned int pipe_bpp;
4718 bool dither;
4719 bool is_cpu_edp = false, is_pch_edp = false;
4720
4721 for_each_encoder_on_crtc(dev, crtc, encoder) {
4722 switch (encoder->type) {
4723 case INTEL_OUTPUT_LVDS:
4724 is_lvds = true;
4725 break;
4726 case INTEL_OUTPUT_SDVO:
4727 case INTEL_OUTPUT_HDMI:
4728 is_sdvo = true;
4729 if (encoder->needs_tv_clock)
4730 is_tv = true;
4731 break;
4732 case INTEL_OUTPUT_TVOUT:
4733 is_tv = true;
4734 break;
4735 case INTEL_OUTPUT_ANALOG:
4736 is_crt = true;
4737 break;
4738 case INTEL_OUTPUT_DISPLAYPORT:
4739 is_dp = true;
4740 break;
4741 case INTEL_OUTPUT_EDP:
4742 is_dp = true;
4743 if (intel_encoder_is_pch_edp(&encoder->base))
4744 is_pch_edp = true;
4745 else
4746 is_cpu_edp = true;
4747 edp_encoder = encoder;
4748 break;
4749 }
4750
4751 num_connectors++;
4752 }
4753
4754 refclk = ironlake_get_refclk(crtc);
4755
4756 /*
4757 * Returns a set of divisors for the desired target clock with the given
4758 * refclk, or FALSE. The returned values represent the clock equation:
4759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4760 */
4761 limit = intel_limit(crtc, refclk);
4762 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4763 &clock);
4764 if (!ok) {
4765 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4766 return -EINVAL;
4767 }
4768
4769 /* Ensure that the cursor is valid for the new mode before changing... */
4770 intel_crtc_update_cursor(crtc, true);
4771
4772 if (is_lvds && dev_priv->lvds_downclock_avail) {
4773 /*
4774 * Ensure we match the reduced clock's P to the target clock.
4775 * If the clocks don't match, we can't switch the display clock
4776 * by using the FP0/FP1. In such case we will disable the LVDS
4777 * downclock feature.
4778 */
4779 has_reduced_clock = limit->find_pll(limit, crtc,
4780 dev_priv->lvds_downclock,
4781 refclk,
4782 &clock,
4783 &reduced_clock);
4784 }
4785
4786 if (is_sdvo && is_tv)
4787 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4788
4789
4790 /* FDI link */
4791 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4792 lane = 0;
4793 /* CPU eDP doesn't require FDI link, so just set DP M/N
4794 according to current link config */
4795 if (is_cpu_edp) {
4796 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4797 } else {
4798 /* FDI is a binary signal running at ~2.7GHz, encoding
4799 * each output octet as 10 bits. The actual frequency
4800 * is stored as a divider into a 100MHz clock, and the
4801 * mode pixel clock is stored in units of 1KHz.
4802 * Hence the bw of each lane in terms of the mode signal
4803 * is:
4804 */
4805 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4806 }
4807
4808 /* [e]DP over FDI requires target mode clock instead of link clock. */
4809 if (edp_encoder)
4810 target_clock = intel_edp_target_clock(edp_encoder, mode);
4811 else if (is_dp)
4812 target_clock = mode->clock;
4813 else
4814 target_clock = adjusted_mode->clock;
4815
4816 /* determine panel color depth */
4817 dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp, mode);
4818 if (is_lvds && dev_priv->lvds_dither)
4819 dither = true;
4820
4821 if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
4822 pipe_bpp != 36) {
4823 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4824 pipe_bpp);
4825 pipe_bpp = 24;
4826 }
4827 intel_crtc->bpp = pipe_bpp;
4828
4829 if (!lane) {
4830 /*
4831 * Account for spread spectrum to avoid
4832 * oversubscribing the link. Max center spread
4833 * is 2.5%; use 5% for safety's sake.
4834 */
4835 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4836 lane = bps / (link_bw * 8) + 1;
4837 }
4838
4839 intel_crtc->fdi_lanes = lane;
4840
4841 if (pixel_multiplier > 1)
4842 link_bw *= pixel_multiplier;
4843 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4844 &m_n);
4845
4846 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4847 if (has_reduced_clock)
4848 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4849 reduced_clock.m2;
4850
4851 /* Enable autotuning of the PLL clock (if permissible) */
4852 factor = 21;
4853 if (is_lvds) {
4854 if ((intel_panel_use_ssc(dev_priv) &&
4855 dev_priv->lvds_ssc_freq == 100) ||
4856 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4857 factor = 25;
4858 } else if (is_sdvo && is_tv)
4859 factor = 20;
4860
4861 if (clock.m < factor * clock.n)
4862 fp |= FP_CB_TUNE;
4863
4864 dpll = 0;
4865
4866 if (is_lvds)
4867 dpll |= DPLLB_MODE_LVDS;
4868 else
4869 dpll |= DPLLB_MODE_DAC_SERIAL;
4870 if (is_sdvo) {
4871 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4872 if (pixel_multiplier > 1) {
4873 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4874 }
4875 dpll |= DPLL_DVO_HIGH_SPEED;
4876 }
4877 if (is_dp && !is_cpu_edp)
4878 dpll |= DPLL_DVO_HIGH_SPEED;
4879
4880 /* compute bitmask from p1 value */
4881 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4882 /* also FPA1 */
4883 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4884
4885 switch (clock.p2) {
4886 case 5:
4887 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4888 break;
4889 case 7:
4890 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4891 break;
4892 case 10:
4893 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4894 break;
4895 case 14:
4896 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4897 break;
4898 }
4899
4900 if (is_sdvo && is_tv)
4901 dpll |= PLL_REF_INPUT_TVCLKINBC;
4902 else if (is_tv)
4903 /* XXX: just matching BIOS for now */
4904 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4905 dpll |= 3;
4906 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4907 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4908 else
4909 dpll |= PLL_REF_INPUT_DREFCLK;
4910
4911 /* Set up the display plane register */
4912 dspcntr = DISPPLANE_GAMMA_ENABLE;
4913
4914 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4915 drm_mode_debug_printmodeline(mode);
4916
4917 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4918 * pre-Haswell/LPT generation */
4919 if (HAS_PCH_LPT(dev)) {
4920 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4921 pipe);
4922 } else if (!is_cpu_edp) {
4923 struct intel_pch_pll *pll;
4924
4925 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4926 if (pll == NULL) {
4927 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4928 pipe);
4929 return -EINVAL;
4930 }
4931 } else
4932 intel_put_pch_pll(intel_crtc);
4933
4934 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4935 * This is an exception to the general rule that mode_set doesn't turn
4936 * things on.
4937 */
4938 if (is_lvds) {
4939 temp = I915_READ(PCH_LVDS);
4940 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4941 if (HAS_PCH_CPT(dev)) {
4942 temp &= ~PORT_TRANS_SEL_MASK;
4943 temp |= PORT_TRANS_SEL_CPT(pipe);
4944 } else {
4945 if (pipe == 1)
4946 temp |= LVDS_PIPEB_SELECT;
4947 else
4948 temp &= ~LVDS_PIPEB_SELECT;
4949 }
4950
4951 /* set the corresponsding LVDS_BORDER bit */
4952 temp |= dev_priv->lvds_border_bits;
4953 /* Set the B0-B3 data pairs corresponding to whether we're going to
4954 * set the DPLLs for dual-channel mode or not.
4955 */
4956 if (clock.p2 == 7)
4957 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4958 else
4959 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4960
4961 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4962 * appropriately here, but we need to look more thoroughly into how
4963 * panels behave in the two modes.
4964 */
4965 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4966 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4967 temp |= LVDS_HSYNC_POLARITY;
4968 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4969 temp |= LVDS_VSYNC_POLARITY;
4970 I915_WRITE(PCH_LVDS, temp);
4971 }
4972
4973 if (is_dp && !is_cpu_edp) {
4974 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4975 } else {
4976 /* For non-DP output, clear any trans DP clock recovery setting.*/
4977 I915_WRITE(TRANSDATA_M1(pipe), 0);
4978 I915_WRITE(TRANSDATA_N1(pipe), 0);
4979 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4980 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4981 }
4982
4983 if (intel_crtc->pch_pll) {
4984 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4985
4986 /* Wait for the clocks to stabilize. */
4987 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4988 udelay(150);
4989
4990 /* The pixel multiplier can only be updated once the
4991 * DPLL is enabled and the clocks are stable.
4992 *
4993 * So write it again.
4994 */
4995 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4996 }
4997
4998 intel_crtc->lowfreq_avail = false;
4999 if (intel_crtc->pch_pll) {
5000 if (is_lvds && has_reduced_clock && i915_powersave) {
5001 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5002 intel_crtc->lowfreq_avail = true;
5003 } else {
5004 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5005 }
5006 }
5007
5008 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5009 /* the chip adds 2 halflines automatically */
5010 adjusted_mode->crtc_vtotal -= 1;
5011 adjusted_mode->crtc_vblank_end -= 1;
5012 I915_WRITE(VSYNCSHIFT(pipe),
5013 adjusted_mode->crtc_hsync_start
5014 - adjusted_mode->crtc_htotal/2);
5015 } else {
5016 I915_WRITE(VSYNCSHIFT(pipe), 0);
5017 }
5018
5019 I915_WRITE(HTOTAL(pipe),
5020 (adjusted_mode->crtc_hdisplay - 1) |
5021 ((adjusted_mode->crtc_htotal - 1) << 16));
5022 I915_WRITE(HBLANK(pipe),
5023 (adjusted_mode->crtc_hblank_start - 1) |
5024 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5025 I915_WRITE(HSYNC(pipe),
5026 (adjusted_mode->crtc_hsync_start - 1) |
5027 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5028
5029 I915_WRITE(VTOTAL(pipe),
5030 (adjusted_mode->crtc_vdisplay - 1) |
5031 ((adjusted_mode->crtc_vtotal - 1) << 16));
5032 I915_WRITE(VBLANK(pipe),
5033 (adjusted_mode->crtc_vblank_start - 1) |
5034 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5035 I915_WRITE(VSYNC(pipe),
5036 (adjusted_mode->crtc_vsync_start - 1) |
5037 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5038
5039 /* pipesrc controls the size that is scaled from, which should
5040 * always be the user's requested size.
5041 */
5042 I915_WRITE(PIPESRC(pipe),
5043 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5044
5045 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5046 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5047 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5048 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5049
5050 if (is_cpu_edp)
5051 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5052
5053 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5054
5055 intel_wait_for_vblank(dev, pipe);
5056
5057 I915_WRITE(DSPCNTR(plane), dspcntr);
5058 POSTING_READ(DSPCNTR(plane));
5059
5060 ret = intel_pipe_set_base(crtc, x, y, fb);
5061
5062 intel_update_watermarks(dev);
5063
5064 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5065
5066 return ret;
5067 }
5068
5069 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5070 struct drm_display_mode *mode,
5071 struct drm_display_mode *adjusted_mode,
5072 int x, int y,
5073 struct drm_framebuffer *fb)
5074 {
5075 struct drm_device *dev = crtc->dev;
5076 struct drm_i915_private *dev_priv = dev->dev_private;
5077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078 int pipe = intel_crtc->pipe;
5079 int ret;
5080
5081 drm_vblank_pre_modeset(dev, pipe);
5082
5083 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5084 x, y, fb);
5085 drm_vblank_post_modeset(dev, pipe);
5086
5087 return ret;
5088 }
5089
5090 static bool intel_eld_uptodate(struct drm_connector *connector,
5091 int reg_eldv, uint32_t bits_eldv,
5092 int reg_elda, uint32_t bits_elda,
5093 int reg_edid)
5094 {
5095 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5096 uint8_t *eld = connector->eld;
5097 uint32_t i;
5098
5099 i = I915_READ(reg_eldv);
5100 i &= bits_eldv;
5101
5102 if (!eld[0])
5103 return !i;
5104
5105 if (!i)
5106 return false;
5107
5108 i = I915_READ(reg_elda);
5109 i &= ~bits_elda;
5110 I915_WRITE(reg_elda, i);
5111
5112 for (i = 0; i < eld[2]; i++)
5113 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5114 return false;
5115
5116 return true;
5117 }
5118
5119 static void g4x_write_eld(struct drm_connector *connector,
5120 struct drm_crtc *crtc)
5121 {
5122 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5123 uint8_t *eld = connector->eld;
5124 uint32_t eldv;
5125 uint32_t len;
5126 uint32_t i;
5127
5128 i = I915_READ(G4X_AUD_VID_DID);
5129
5130 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5131 eldv = G4X_ELDV_DEVCL_DEVBLC;
5132 else
5133 eldv = G4X_ELDV_DEVCTG;
5134
5135 if (intel_eld_uptodate(connector,
5136 G4X_AUD_CNTL_ST, eldv,
5137 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5138 G4X_HDMIW_HDMIEDID))
5139 return;
5140
5141 i = I915_READ(G4X_AUD_CNTL_ST);
5142 i &= ~(eldv | G4X_ELD_ADDR);
5143 len = (i >> 9) & 0x1f; /* ELD buffer size */
5144 I915_WRITE(G4X_AUD_CNTL_ST, i);
5145
5146 if (!eld[0])
5147 return;
5148
5149 len = min_t(uint8_t, eld[2], len);
5150 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5151 for (i = 0; i < len; i++)
5152 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5153
5154 i = I915_READ(G4X_AUD_CNTL_ST);
5155 i |= eldv;
5156 I915_WRITE(G4X_AUD_CNTL_ST, i);
5157 }
5158
5159 static void haswell_write_eld(struct drm_connector *connector,
5160 struct drm_crtc *crtc)
5161 {
5162 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5163 uint8_t *eld = connector->eld;
5164 struct drm_device *dev = crtc->dev;
5165 uint32_t eldv;
5166 uint32_t i;
5167 int len;
5168 int pipe = to_intel_crtc(crtc)->pipe;
5169 int tmp;
5170
5171 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5172 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5173 int aud_config = HSW_AUD_CFG(pipe);
5174 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5175
5176
5177 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5178
5179 /* Audio output enable */
5180 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5181 tmp = I915_READ(aud_cntrl_st2);
5182 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5183 I915_WRITE(aud_cntrl_st2, tmp);
5184
5185 /* Wait for 1 vertical blank */
5186 intel_wait_for_vblank(dev, pipe);
5187
5188 /* Set ELD valid state */
5189 tmp = I915_READ(aud_cntrl_st2);
5190 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5191 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5192 I915_WRITE(aud_cntrl_st2, tmp);
5193 tmp = I915_READ(aud_cntrl_st2);
5194 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5195
5196 /* Enable HDMI mode */
5197 tmp = I915_READ(aud_config);
5198 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5199 /* clear N_programing_enable and N_value_index */
5200 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5201 I915_WRITE(aud_config, tmp);
5202
5203 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5204
5205 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5206
5207 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5208 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5209 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5210 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5211 } else
5212 I915_WRITE(aud_config, 0);
5213
5214 if (intel_eld_uptodate(connector,
5215 aud_cntrl_st2, eldv,
5216 aud_cntl_st, IBX_ELD_ADDRESS,
5217 hdmiw_hdmiedid))
5218 return;
5219
5220 i = I915_READ(aud_cntrl_st2);
5221 i &= ~eldv;
5222 I915_WRITE(aud_cntrl_st2, i);
5223
5224 if (!eld[0])
5225 return;
5226
5227 i = I915_READ(aud_cntl_st);
5228 i &= ~IBX_ELD_ADDRESS;
5229 I915_WRITE(aud_cntl_st, i);
5230 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5231 DRM_DEBUG_DRIVER("port num:%d\n", i);
5232
5233 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5234 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5235 for (i = 0; i < len; i++)
5236 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5237
5238 i = I915_READ(aud_cntrl_st2);
5239 i |= eldv;
5240 I915_WRITE(aud_cntrl_st2, i);
5241
5242 }
5243
5244 static void ironlake_write_eld(struct drm_connector *connector,
5245 struct drm_crtc *crtc)
5246 {
5247 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5248 uint8_t *eld = connector->eld;
5249 uint32_t eldv;
5250 uint32_t i;
5251 int len;
5252 int hdmiw_hdmiedid;
5253 int aud_config;
5254 int aud_cntl_st;
5255 int aud_cntrl_st2;
5256 int pipe = to_intel_crtc(crtc)->pipe;
5257
5258 if (HAS_PCH_IBX(connector->dev)) {
5259 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5260 aud_config = IBX_AUD_CFG(pipe);
5261 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5262 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5263 } else {
5264 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5265 aud_config = CPT_AUD_CFG(pipe);
5266 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5267 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5268 }
5269
5270 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5271
5272 i = I915_READ(aud_cntl_st);
5273 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5274 if (!i) {
5275 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5276 /* operate blindly on all ports */
5277 eldv = IBX_ELD_VALIDB;
5278 eldv |= IBX_ELD_VALIDB << 4;
5279 eldv |= IBX_ELD_VALIDB << 8;
5280 } else {
5281 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5282 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5283 }
5284
5285 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5286 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5287 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5288 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5289 } else
5290 I915_WRITE(aud_config, 0);
5291
5292 if (intel_eld_uptodate(connector,
5293 aud_cntrl_st2, eldv,
5294 aud_cntl_st, IBX_ELD_ADDRESS,
5295 hdmiw_hdmiedid))
5296 return;
5297
5298 i = I915_READ(aud_cntrl_st2);
5299 i &= ~eldv;
5300 I915_WRITE(aud_cntrl_st2, i);
5301
5302 if (!eld[0])
5303 return;
5304
5305 i = I915_READ(aud_cntl_st);
5306 i &= ~IBX_ELD_ADDRESS;
5307 I915_WRITE(aud_cntl_st, i);
5308
5309 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5310 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5311 for (i = 0; i < len; i++)
5312 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5313
5314 i = I915_READ(aud_cntrl_st2);
5315 i |= eldv;
5316 I915_WRITE(aud_cntrl_st2, i);
5317 }
5318
5319 void intel_write_eld(struct drm_encoder *encoder,
5320 struct drm_display_mode *mode)
5321 {
5322 struct drm_crtc *crtc = encoder->crtc;
5323 struct drm_connector *connector;
5324 struct drm_device *dev = encoder->dev;
5325 struct drm_i915_private *dev_priv = dev->dev_private;
5326
5327 connector = drm_select_eld(encoder, mode);
5328 if (!connector)
5329 return;
5330
5331 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5332 connector->base.id,
5333 drm_get_connector_name(connector),
5334 connector->encoder->base.id,
5335 drm_get_encoder_name(connector->encoder));
5336
5337 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5338
5339 if (dev_priv->display.write_eld)
5340 dev_priv->display.write_eld(connector, crtc);
5341 }
5342
5343 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5344 void intel_crtc_load_lut(struct drm_crtc *crtc)
5345 {
5346 struct drm_device *dev = crtc->dev;
5347 struct drm_i915_private *dev_priv = dev->dev_private;
5348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5349 int palreg = PALETTE(intel_crtc->pipe);
5350 int i;
5351
5352 /* The clocks have to be on to load the palette. */
5353 if (!crtc->enabled || !intel_crtc->active)
5354 return;
5355
5356 /* use legacy palette for Ironlake */
5357 if (HAS_PCH_SPLIT(dev))
5358 palreg = LGC_PALETTE(intel_crtc->pipe);
5359
5360 for (i = 0; i < 256; i++) {
5361 I915_WRITE(palreg + 4 * i,
5362 (intel_crtc->lut_r[i] << 16) |
5363 (intel_crtc->lut_g[i] << 8) |
5364 intel_crtc->lut_b[i]);
5365 }
5366 }
5367
5368 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5369 {
5370 struct drm_device *dev = crtc->dev;
5371 struct drm_i915_private *dev_priv = dev->dev_private;
5372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5373 bool visible = base != 0;
5374 u32 cntl;
5375
5376 if (intel_crtc->cursor_visible == visible)
5377 return;
5378
5379 cntl = I915_READ(_CURACNTR);
5380 if (visible) {
5381 /* On these chipsets we can only modify the base whilst
5382 * the cursor is disabled.
5383 */
5384 I915_WRITE(_CURABASE, base);
5385
5386 cntl &= ~(CURSOR_FORMAT_MASK);
5387 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5388 cntl |= CURSOR_ENABLE |
5389 CURSOR_GAMMA_ENABLE |
5390 CURSOR_FORMAT_ARGB;
5391 } else
5392 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5393 I915_WRITE(_CURACNTR, cntl);
5394
5395 intel_crtc->cursor_visible = visible;
5396 }
5397
5398 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5399 {
5400 struct drm_device *dev = crtc->dev;
5401 struct drm_i915_private *dev_priv = dev->dev_private;
5402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5403 int pipe = intel_crtc->pipe;
5404 bool visible = base != 0;
5405
5406 if (intel_crtc->cursor_visible != visible) {
5407 uint32_t cntl = I915_READ(CURCNTR(pipe));
5408 if (base) {
5409 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5410 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5411 cntl |= pipe << 28; /* Connect to correct pipe */
5412 } else {
5413 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5414 cntl |= CURSOR_MODE_DISABLE;
5415 }
5416 I915_WRITE(CURCNTR(pipe), cntl);
5417
5418 intel_crtc->cursor_visible = visible;
5419 }
5420 /* and commit changes on next vblank */
5421 I915_WRITE(CURBASE(pipe), base);
5422 }
5423
5424 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5425 {
5426 struct drm_device *dev = crtc->dev;
5427 struct drm_i915_private *dev_priv = dev->dev_private;
5428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5429 int pipe = intel_crtc->pipe;
5430 bool visible = base != 0;
5431
5432 if (intel_crtc->cursor_visible != visible) {
5433 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5434 if (base) {
5435 cntl &= ~CURSOR_MODE;
5436 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5437 } else {
5438 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5439 cntl |= CURSOR_MODE_DISABLE;
5440 }
5441 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5442
5443 intel_crtc->cursor_visible = visible;
5444 }
5445 /* and commit changes on next vblank */
5446 I915_WRITE(CURBASE_IVB(pipe), base);
5447 }
5448
5449 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5450 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5451 bool on)
5452 {
5453 struct drm_device *dev = crtc->dev;
5454 struct drm_i915_private *dev_priv = dev->dev_private;
5455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5456 int pipe = intel_crtc->pipe;
5457 int x = intel_crtc->cursor_x;
5458 int y = intel_crtc->cursor_y;
5459 u32 base, pos;
5460 bool visible;
5461
5462 pos = 0;
5463
5464 if (on && crtc->enabled && crtc->fb) {
5465 base = intel_crtc->cursor_addr;
5466 if (x > (int) crtc->fb->width)
5467 base = 0;
5468
5469 if (y > (int) crtc->fb->height)
5470 base = 0;
5471 } else
5472 base = 0;
5473
5474 if (x < 0) {
5475 if (x + intel_crtc->cursor_width < 0)
5476 base = 0;
5477
5478 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5479 x = -x;
5480 }
5481 pos |= x << CURSOR_X_SHIFT;
5482
5483 if (y < 0) {
5484 if (y + intel_crtc->cursor_height < 0)
5485 base = 0;
5486
5487 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5488 y = -y;
5489 }
5490 pos |= y << CURSOR_Y_SHIFT;
5491
5492 visible = base != 0;
5493 if (!visible && !intel_crtc->cursor_visible)
5494 return;
5495
5496 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5497 I915_WRITE(CURPOS_IVB(pipe), pos);
5498 ivb_update_cursor(crtc, base);
5499 } else {
5500 I915_WRITE(CURPOS(pipe), pos);
5501 if (IS_845G(dev) || IS_I865G(dev))
5502 i845_update_cursor(crtc, base);
5503 else
5504 i9xx_update_cursor(crtc, base);
5505 }
5506 }
5507
5508 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5509 struct drm_file *file,
5510 uint32_t handle,
5511 uint32_t width, uint32_t height)
5512 {
5513 struct drm_device *dev = crtc->dev;
5514 struct drm_i915_private *dev_priv = dev->dev_private;
5515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5516 struct drm_i915_gem_object *obj;
5517 uint32_t addr;
5518 int ret;
5519
5520 /* if we want to turn off the cursor ignore width and height */
5521 if (!handle) {
5522 DRM_DEBUG_KMS("cursor off\n");
5523 addr = 0;
5524 obj = NULL;
5525 mutex_lock(&dev->struct_mutex);
5526 goto finish;
5527 }
5528
5529 /* Currently we only support 64x64 cursors */
5530 if (width != 64 || height != 64) {
5531 DRM_ERROR("we currently only support 64x64 cursors\n");
5532 return -EINVAL;
5533 }
5534
5535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5536 if (&obj->base == NULL)
5537 return -ENOENT;
5538
5539 if (obj->base.size < width * height * 4) {
5540 DRM_ERROR("buffer is to small\n");
5541 ret = -ENOMEM;
5542 goto fail;
5543 }
5544
5545 /* we only need to pin inside GTT if cursor is non-phy */
5546 mutex_lock(&dev->struct_mutex);
5547 if (!dev_priv->info->cursor_needs_physical) {
5548 if (obj->tiling_mode) {
5549 DRM_ERROR("cursor cannot be tiled\n");
5550 ret = -EINVAL;
5551 goto fail_locked;
5552 }
5553
5554 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5555 if (ret) {
5556 DRM_ERROR("failed to move cursor bo into the GTT\n");
5557 goto fail_locked;
5558 }
5559
5560 ret = i915_gem_object_put_fence(obj);
5561 if (ret) {
5562 DRM_ERROR("failed to release fence for cursor");
5563 goto fail_unpin;
5564 }
5565
5566 addr = obj->gtt_offset;
5567 } else {
5568 int align = IS_I830(dev) ? 16 * 1024 : 256;
5569 ret = i915_gem_attach_phys_object(dev, obj,
5570 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5571 align);
5572 if (ret) {
5573 DRM_ERROR("failed to attach phys object\n");
5574 goto fail_locked;
5575 }
5576 addr = obj->phys_obj->handle->busaddr;
5577 }
5578
5579 if (IS_GEN2(dev))
5580 I915_WRITE(CURSIZE, (height << 12) | width);
5581
5582 finish:
5583 if (intel_crtc->cursor_bo) {
5584 if (dev_priv->info->cursor_needs_physical) {
5585 if (intel_crtc->cursor_bo != obj)
5586 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5587 } else
5588 i915_gem_object_unpin(intel_crtc->cursor_bo);
5589 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5590 }
5591
5592 mutex_unlock(&dev->struct_mutex);
5593
5594 intel_crtc->cursor_addr = addr;
5595 intel_crtc->cursor_bo = obj;
5596 intel_crtc->cursor_width = width;
5597 intel_crtc->cursor_height = height;
5598
5599 intel_crtc_update_cursor(crtc, true);
5600
5601 return 0;
5602 fail_unpin:
5603 i915_gem_object_unpin(obj);
5604 fail_locked:
5605 mutex_unlock(&dev->struct_mutex);
5606 fail:
5607 drm_gem_object_unreference_unlocked(&obj->base);
5608 return ret;
5609 }
5610
5611 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5612 {
5613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5614
5615 intel_crtc->cursor_x = x;
5616 intel_crtc->cursor_y = y;
5617
5618 intel_crtc_update_cursor(crtc, true);
5619
5620 return 0;
5621 }
5622
5623 /** Sets the color ramps on behalf of RandR */
5624 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5625 u16 blue, int regno)
5626 {
5627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5628
5629 intel_crtc->lut_r[regno] = red >> 8;
5630 intel_crtc->lut_g[regno] = green >> 8;
5631 intel_crtc->lut_b[regno] = blue >> 8;
5632 }
5633
5634 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5635 u16 *blue, int regno)
5636 {
5637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5638
5639 *red = intel_crtc->lut_r[regno] << 8;
5640 *green = intel_crtc->lut_g[regno] << 8;
5641 *blue = intel_crtc->lut_b[regno] << 8;
5642 }
5643
5644 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5645 u16 *blue, uint32_t start, uint32_t size)
5646 {
5647 int end = (start + size > 256) ? 256 : start + size, i;
5648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5649
5650 for (i = start; i < end; i++) {
5651 intel_crtc->lut_r[i] = red[i] >> 8;
5652 intel_crtc->lut_g[i] = green[i] >> 8;
5653 intel_crtc->lut_b[i] = blue[i] >> 8;
5654 }
5655
5656 intel_crtc_load_lut(crtc);
5657 }
5658
5659 /**
5660 * Get a pipe with a simple mode set on it for doing load-based monitor
5661 * detection.
5662 *
5663 * It will be up to the load-detect code to adjust the pipe as appropriate for
5664 * its requirements. The pipe will be connected to no other encoders.
5665 *
5666 * Currently this code will only succeed if there is a pipe with no encoders
5667 * configured for it. In the future, it could choose to temporarily disable
5668 * some outputs to free up a pipe for its use.
5669 *
5670 * \return crtc, or NULL if no pipes are available.
5671 */
5672
5673 /* VESA 640x480x72Hz mode to set on the pipe */
5674 static struct drm_display_mode load_detect_mode = {
5675 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5676 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5677 };
5678
5679 static struct drm_framebuffer *
5680 intel_framebuffer_create(struct drm_device *dev,
5681 struct drm_mode_fb_cmd2 *mode_cmd,
5682 struct drm_i915_gem_object *obj)
5683 {
5684 struct intel_framebuffer *intel_fb;
5685 int ret;
5686
5687 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5688 if (!intel_fb) {
5689 drm_gem_object_unreference_unlocked(&obj->base);
5690 return ERR_PTR(-ENOMEM);
5691 }
5692
5693 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5694 if (ret) {
5695 drm_gem_object_unreference_unlocked(&obj->base);
5696 kfree(intel_fb);
5697 return ERR_PTR(ret);
5698 }
5699
5700 return &intel_fb->base;
5701 }
5702
5703 static u32
5704 intel_framebuffer_pitch_for_width(int width, int bpp)
5705 {
5706 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5707 return ALIGN(pitch, 64);
5708 }
5709
5710 static u32
5711 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5712 {
5713 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5714 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5715 }
5716
5717 static struct drm_framebuffer *
5718 intel_framebuffer_create_for_mode(struct drm_device *dev,
5719 struct drm_display_mode *mode,
5720 int depth, int bpp)
5721 {
5722 struct drm_i915_gem_object *obj;
5723 struct drm_mode_fb_cmd2 mode_cmd;
5724
5725 obj = i915_gem_alloc_object(dev,
5726 intel_framebuffer_size_for_mode(mode, bpp));
5727 if (obj == NULL)
5728 return ERR_PTR(-ENOMEM);
5729
5730 mode_cmd.width = mode->hdisplay;
5731 mode_cmd.height = mode->vdisplay;
5732 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5733 bpp);
5734 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5735
5736 return intel_framebuffer_create(dev, &mode_cmd, obj);
5737 }
5738
5739 static struct drm_framebuffer *
5740 mode_fits_in_fbdev(struct drm_device *dev,
5741 struct drm_display_mode *mode)
5742 {
5743 struct drm_i915_private *dev_priv = dev->dev_private;
5744 struct drm_i915_gem_object *obj;
5745 struct drm_framebuffer *fb;
5746
5747 if (dev_priv->fbdev == NULL)
5748 return NULL;
5749
5750 obj = dev_priv->fbdev->ifb.obj;
5751 if (obj == NULL)
5752 return NULL;
5753
5754 fb = &dev_priv->fbdev->ifb.base;
5755 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5756 fb->bits_per_pixel))
5757 return NULL;
5758
5759 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5760 return NULL;
5761
5762 return fb;
5763 }
5764
5765 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5766 struct drm_display_mode *mode,
5767 struct intel_load_detect_pipe *old)
5768 {
5769 struct intel_crtc *intel_crtc;
5770 struct intel_encoder *intel_encoder =
5771 intel_attached_encoder(connector);
5772 struct drm_crtc *possible_crtc;
5773 struct drm_encoder *encoder = &intel_encoder->base;
5774 struct drm_crtc *crtc = NULL;
5775 struct drm_device *dev = encoder->dev;
5776 struct drm_framebuffer *fb;
5777 int i = -1;
5778
5779 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5780 connector->base.id, drm_get_connector_name(connector),
5781 encoder->base.id, drm_get_encoder_name(encoder));
5782
5783 /*
5784 * Algorithm gets a little messy:
5785 *
5786 * - if the connector already has an assigned crtc, use it (but make
5787 * sure it's on first)
5788 *
5789 * - try to find the first unused crtc that can drive this connector,
5790 * and use that if we find one
5791 */
5792
5793 /* See if we already have a CRTC for this connector */
5794 if (encoder->crtc) {
5795 crtc = encoder->crtc;
5796
5797 old->dpms_mode = connector->dpms;
5798 old->load_detect_temp = false;
5799
5800 /* Make sure the crtc and connector are running */
5801 if (connector->dpms != DRM_MODE_DPMS_ON)
5802 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5803
5804 return true;
5805 }
5806
5807 /* Find an unused one (if possible) */
5808 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5809 i++;
5810 if (!(encoder->possible_crtcs & (1 << i)))
5811 continue;
5812 if (!possible_crtc->enabled) {
5813 crtc = possible_crtc;
5814 break;
5815 }
5816 }
5817
5818 /*
5819 * If we didn't find an unused CRTC, don't use any.
5820 */
5821 if (!crtc) {
5822 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5823 return false;
5824 }
5825
5826 intel_encoder->new_crtc = to_intel_crtc(crtc);
5827 to_intel_connector(connector)->new_encoder = intel_encoder;
5828
5829 intel_crtc = to_intel_crtc(crtc);
5830 old->dpms_mode = connector->dpms;
5831 old->load_detect_temp = true;
5832 old->release_fb = NULL;
5833
5834 if (!mode)
5835 mode = &load_detect_mode;
5836
5837 /* We need a framebuffer large enough to accommodate all accesses
5838 * that the plane may generate whilst we perform load detection.
5839 * We can not rely on the fbcon either being present (we get called
5840 * during its initialisation to detect all boot displays, or it may
5841 * not even exist) or that it is large enough to satisfy the
5842 * requested mode.
5843 */
5844 fb = mode_fits_in_fbdev(dev, mode);
5845 if (fb == NULL) {
5846 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5847 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5848 old->release_fb = fb;
5849 } else
5850 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5851 if (IS_ERR(fb)) {
5852 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5853 goto fail;
5854 }
5855
5856 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
5857 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5858 if (old->release_fb)
5859 old->release_fb->funcs->destroy(old->release_fb);
5860 goto fail;
5861 }
5862
5863 /* let the connector get through one full cycle before testing */
5864 intel_wait_for_vblank(dev, intel_crtc->pipe);
5865
5866 return true;
5867 fail:
5868 connector->encoder = NULL;
5869 encoder->crtc = NULL;
5870 return false;
5871 }
5872
5873 void intel_release_load_detect_pipe(struct drm_connector *connector,
5874 struct intel_load_detect_pipe *old)
5875 {
5876 struct intel_encoder *intel_encoder =
5877 intel_attached_encoder(connector);
5878 struct drm_encoder *encoder = &intel_encoder->base;
5879
5880 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5881 connector->base.id, drm_get_connector_name(connector),
5882 encoder->base.id, drm_get_encoder_name(encoder));
5883
5884 if (old->load_detect_temp) {
5885 struct drm_crtc *crtc = encoder->crtc;
5886
5887 to_intel_connector(connector)->new_encoder = NULL;
5888 intel_encoder->new_crtc = NULL;
5889 intel_set_mode(crtc, NULL, 0, 0, NULL);
5890
5891 if (old->release_fb)
5892 old->release_fb->funcs->destroy(old->release_fb);
5893
5894 return;
5895 }
5896
5897 /* Switch crtc and encoder back off if necessary */
5898 if (old->dpms_mode != DRM_MODE_DPMS_ON)
5899 connector->funcs->dpms(connector, old->dpms_mode);
5900 }
5901
5902 /* Returns the clock of the currently programmed mode of the given pipe. */
5903 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5904 {
5905 struct drm_i915_private *dev_priv = dev->dev_private;
5906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5907 int pipe = intel_crtc->pipe;
5908 u32 dpll = I915_READ(DPLL(pipe));
5909 u32 fp;
5910 intel_clock_t clock;
5911
5912 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5913 fp = I915_READ(FP0(pipe));
5914 else
5915 fp = I915_READ(FP1(pipe));
5916
5917 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5918 if (IS_PINEVIEW(dev)) {
5919 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5920 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5921 } else {
5922 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5923 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5924 }
5925
5926 if (!IS_GEN2(dev)) {
5927 if (IS_PINEVIEW(dev))
5928 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5929 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5930 else
5931 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5932 DPLL_FPA01_P1_POST_DIV_SHIFT);
5933
5934 switch (dpll & DPLL_MODE_MASK) {
5935 case DPLLB_MODE_DAC_SERIAL:
5936 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5937 5 : 10;
5938 break;
5939 case DPLLB_MODE_LVDS:
5940 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5941 7 : 14;
5942 break;
5943 default:
5944 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5945 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5946 return 0;
5947 }
5948
5949 /* XXX: Handle the 100Mhz refclk */
5950 intel_clock(dev, 96000, &clock);
5951 } else {
5952 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5953
5954 if (is_lvds) {
5955 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5956 DPLL_FPA01_P1_POST_DIV_SHIFT);
5957 clock.p2 = 14;
5958
5959 if ((dpll & PLL_REF_INPUT_MASK) ==
5960 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5961 /* XXX: might not be 66MHz */
5962 intel_clock(dev, 66000, &clock);
5963 } else
5964 intel_clock(dev, 48000, &clock);
5965 } else {
5966 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5967 clock.p1 = 2;
5968 else {
5969 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5970 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5971 }
5972 if (dpll & PLL_P2_DIVIDE_BY_4)
5973 clock.p2 = 4;
5974 else
5975 clock.p2 = 2;
5976
5977 intel_clock(dev, 48000, &clock);
5978 }
5979 }
5980
5981 /* XXX: It would be nice to validate the clocks, but we can't reuse
5982 * i830PllIsValid() because it relies on the xf86_config connector
5983 * configuration being accurate, which it isn't necessarily.
5984 */
5985
5986 return clock.dot;
5987 }
5988
5989 /** Returns the currently programmed mode of the given pipe. */
5990 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5991 struct drm_crtc *crtc)
5992 {
5993 struct drm_i915_private *dev_priv = dev->dev_private;
5994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5995 int pipe = intel_crtc->pipe;
5996 struct drm_display_mode *mode;
5997 int htot = I915_READ(HTOTAL(pipe));
5998 int hsync = I915_READ(HSYNC(pipe));
5999 int vtot = I915_READ(VTOTAL(pipe));
6000 int vsync = I915_READ(VSYNC(pipe));
6001
6002 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6003 if (!mode)
6004 return NULL;
6005
6006 mode->clock = intel_crtc_clock_get(dev, crtc);
6007 mode->hdisplay = (htot & 0xffff) + 1;
6008 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6009 mode->hsync_start = (hsync & 0xffff) + 1;
6010 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6011 mode->vdisplay = (vtot & 0xffff) + 1;
6012 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6013 mode->vsync_start = (vsync & 0xffff) + 1;
6014 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6015
6016 drm_mode_set_name(mode);
6017
6018 return mode;
6019 }
6020
6021 static void intel_increase_pllclock(struct drm_crtc *crtc)
6022 {
6023 struct drm_device *dev = crtc->dev;
6024 drm_i915_private_t *dev_priv = dev->dev_private;
6025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6026 int pipe = intel_crtc->pipe;
6027 int dpll_reg = DPLL(pipe);
6028 int dpll;
6029
6030 if (HAS_PCH_SPLIT(dev))
6031 return;
6032
6033 if (!dev_priv->lvds_downclock_avail)
6034 return;
6035
6036 dpll = I915_READ(dpll_reg);
6037 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6038 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6039
6040 assert_panel_unlocked(dev_priv, pipe);
6041
6042 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6043 I915_WRITE(dpll_reg, dpll);
6044 intel_wait_for_vblank(dev, pipe);
6045
6046 dpll = I915_READ(dpll_reg);
6047 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6048 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6049 }
6050 }
6051
6052 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6053 {
6054 struct drm_device *dev = crtc->dev;
6055 drm_i915_private_t *dev_priv = dev->dev_private;
6056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6057
6058 if (HAS_PCH_SPLIT(dev))
6059 return;
6060
6061 if (!dev_priv->lvds_downclock_avail)
6062 return;
6063
6064 /*
6065 * Since this is called by a timer, we should never get here in
6066 * the manual case.
6067 */
6068 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6069 int pipe = intel_crtc->pipe;
6070 int dpll_reg = DPLL(pipe);
6071 int dpll;
6072
6073 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6074
6075 assert_panel_unlocked(dev_priv, pipe);
6076
6077 dpll = I915_READ(dpll_reg);
6078 dpll |= DISPLAY_RATE_SELECT_FPA1;
6079 I915_WRITE(dpll_reg, dpll);
6080 intel_wait_for_vblank(dev, pipe);
6081 dpll = I915_READ(dpll_reg);
6082 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6083 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6084 }
6085
6086 }
6087
6088 void intel_mark_busy(struct drm_device *dev)
6089 {
6090 i915_update_gfx_val(dev->dev_private);
6091 }
6092
6093 void intel_mark_idle(struct drm_device *dev)
6094 {
6095 }
6096
6097 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6098 {
6099 struct drm_device *dev = obj->base.dev;
6100 struct drm_crtc *crtc;
6101
6102 if (!i915_powersave)
6103 return;
6104
6105 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6106 if (!crtc->fb)
6107 continue;
6108
6109 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6110 intel_increase_pllclock(crtc);
6111 }
6112 }
6113
6114 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6115 {
6116 struct drm_device *dev = obj->base.dev;
6117 struct drm_crtc *crtc;
6118
6119 if (!i915_powersave)
6120 return;
6121
6122 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6123 if (!crtc->fb)
6124 continue;
6125
6126 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6127 intel_decrease_pllclock(crtc);
6128 }
6129 }
6130
6131 static void intel_crtc_destroy(struct drm_crtc *crtc)
6132 {
6133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6134 struct drm_device *dev = crtc->dev;
6135 struct intel_unpin_work *work;
6136 unsigned long flags;
6137
6138 spin_lock_irqsave(&dev->event_lock, flags);
6139 work = intel_crtc->unpin_work;
6140 intel_crtc->unpin_work = NULL;
6141 spin_unlock_irqrestore(&dev->event_lock, flags);
6142
6143 if (work) {
6144 cancel_work_sync(&work->work);
6145 kfree(work);
6146 }
6147
6148 drm_crtc_cleanup(crtc);
6149
6150 kfree(intel_crtc);
6151 }
6152
6153 static void intel_unpin_work_fn(struct work_struct *__work)
6154 {
6155 struct intel_unpin_work *work =
6156 container_of(__work, struct intel_unpin_work, work);
6157
6158 mutex_lock(&work->dev->struct_mutex);
6159 intel_unpin_fb_obj(work->old_fb_obj);
6160 drm_gem_object_unreference(&work->pending_flip_obj->base);
6161 drm_gem_object_unreference(&work->old_fb_obj->base);
6162
6163 intel_update_fbc(work->dev);
6164 mutex_unlock(&work->dev->struct_mutex);
6165 kfree(work);
6166 }
6167
6168 static void do_intel_finish_page_flip(struct drm_device *dev,
6169 struct drm_crtc *crtc)
6170 {
6171 drm_i915_private_t *dev_priv = dev->dev_private;
6172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6173 struct intel_unpin_work *work;
6174 struct drm_i915_gem_object *obj;
6175 struct drm_pending_vblank_event *e;
6176 struct timeval tnow, tvbl;
6177 unsigned long flags;
6178
6179 /* Ignore early vblank irqs */
6180 if (intel_crtc == NULL)
6181 return;
6182
6183 do_gettimeofday(&tnow);
6184
6185 spin_lock_irqsave(&dev->event_lock, flags);
6186 work = intel_crtc->unpin_work;
6187 if (work == NULL || !work->pending) {
6188 spin_unlock_irqrestore(&dev->event_lock, flags);
6189 return;
6190 }
6191
6192 intel_crtc->unpin_work = NULL;
6193
6194 if (work->event) {
6195 e = work->event;
6196 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6197
6198 /* Called before vblank count and timestamps have
6199 * been updated for the vblank interval of flip
6200 * completion? Need to increment vblank count and
6201 * add one videorefresh duration to returned timestamp
6202 * to account for this. We assume this happened if we
6203 * get called over 0.9 frame durations after the last
6204 * timestamped vblank.
6205 *
6206 * This calculation can not be used with vrefresh rates
6207 * below 5Hz (10Hz to be on the safe side) without
6208 * promoting to 64 integers.
6209 */
6210 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6211 9 * crtc->framedur_ns) {
6212 e->event.sequence++;
6213 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6214 crtc->framedur_ns);
6215 }
6216
6217 e->event.tv_sec = tvbl.tv_sec;
6218 e->event.tv_usec = tvbl.tv_usec;
6219
6220 list_add_tail(&e->base.link,
6221 &e->base.file_priv->event_list);
6222 wake_up_interruptible(&e->base.file_priv->event_wait);
6223 }
6224
6225 drm_vblank_put(dev, intel_crtc->pipe);
6226
6227 spin_unlock_irqrestore(&dev->event_lock, flags);
6228
6229 obj = work->old_fb_obj;
6230
6231 atomic_clear_mask(1 << intel_crtc->plane,
6232 &obj->pending_flip.counter);
6233 if (atomic_read(&obj->pending_flip) == 0)
6234 wake_up(&dev_priv->pending_flip_queue);
6235
6236 schedule_work(&work->work);
6237
6238 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6239 }
6240
6241 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6242 {
6243 drm_i915_private_t *dev_priv = dev->dev_private;
6244 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6245
6246 do_intel_finish_page_flip(dev, crtc);
6247 }
6248
6249 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6250 {
6251 drm_i915_private_t *dev_priv = dev->dev_private;
6252 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6253
6254 do_intel_finish_page_flip(dev, crtc);
6255 }
6256
6257 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6258 {
6259 drm_i915_private_t *dev_priv = dev->dev_private;
6260 struct intel_crtc *intel_crtc =
6261 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6262 unsigned long flags;
6263
6264 spin_lock_irqsave(&dev->event_lock, flags);
6265 if (intel_crtc->unpin_work) {
6266 if ((++intel_crtc->unpin_work->pending) > 1)
6267 DRM_ERROR("Prepared flip multiple times\n");
6268 } else {
6269 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6270 }
6271 spin_unlock_irqrestore(&dev->event_lock, flags);
6272 }
6273
6274 static int intel_gen2_queue_flip(struct drm_device *dev,
6275 struct drm_crtc *crtc,
6276 struct drm_framebuffer *fb,
6277 struct drm_i915_gem_object *obj)
6278 {
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281 u32 flip_mask;
6282 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6283 int ret;
6284
6285 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6286 if (ret)
6287 goto err;
6288
6289 ret = intel_ring_begin(ring, 6);
6290 if (ret)
6291 goto err_unpin;
6292
6293 /* Can't queue multiple flips, so wait for the previous
6294 * one to finish before executing the next.
6295 */
6296 if (intel_crtc->plane)
6297 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6298 else
6299 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6300 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6301 intel_ring_emit(ring, MI_NOOP);
6302 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6303 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6304 intel_ring_emit(ring, fb->pitches[0]);
6305 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6306 intel_ring_emit(ring, 0); /* aux display base address, unused */
6307 intel_ring_advance(ring);
6308 return 0;
6309
6310 err_unpin:
6311 intel_unpin_fb_obj(obj);
6312 err:
6313 return ret;
6314 }
6315
6316 static int intel_gen3_queue_flip(struct drm_device *dev,
6317 struct drm_crtc *crtc,
6318 struct drm_framebuffer *fb,
6319 struct drm_i915_gem_object *obj)
6320 {
6321 struct drm_i915_private *dev_priv = dev->dev_private;
6322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6323 u32 flip_mask;
6324 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6325 int ret;
6326
6327 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6328 if (ret)
6329 goto err;
6330
6331 ret = intel_ring_begin(ring, 6);
6332 if (ret)
6333 goto err_unpin;
6334
6335 if (intel_crtc->plane)
6336 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6337 else
6338 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6339 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6340 intel_ring_emit(ring, MI_NOOP);
6341 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6342 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6343 intel_ring_emit(ring, fb->pitches[0]);
6344 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6345 intel_ring_emit(ring, MI_NOOP);
6346
6347 intel_ring_advance(ring);
6348 return 0;
6349
6350 err_unpin:
6351 intel_unpin_fb_obj(obj);
6352 err:
6353 return ret;
6354 }
6355
6356 static int intel_gen4_queue_flip(struct drm_device *dev,
6357 struct drm_crtc *crtc,
6358 struct drm_framebuffer *fb,
6359 struct drm_i915_gem_object *obj)
6360 {
6361 struct drm_i915_private *dev_priv = dev->dev_private;
6362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6363 uint32_t pf, pipesrc;
6364 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6365 int ret;
6366
6367 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6368 if (ret)
6369 goto err;
6370
6371 ret = intel_ring_begin(ring, 4);
6372 if (ret)
6373 goto err_unpin;
6374
6375 /* i965+ uses the linear or tiled offsets from the
6376 * Display Registers (which do not change across a page-flip)
6377 * so we need only reprogram the base address.
6378 */
6379 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6380 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6381 intel_ring_emit(ring, fb->pitches[0]);
6382 intel_ring_emit(ring,
6383 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6384 obj->tiling_mode);
6385
6386 /* XXX Enabling the panel-fitter across page-flip is so far
6387 * untested on non-native modes, so ignore it for now.
6388 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6389 */
6390 pf = 0;
6391 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6392 intel_ring_emit(ring, pf | pipesrc);
6393 intel_ring_advance(ring);
6394 return 0;
6395
6396 err_unpin:
6397 intel_unpin_fb_obj(obj);
6398 err:
6399 return ret;
6400 }
6401
6402 static int intel_gen6_queue_flip(struct drm_device *dev,
6403 struct drm_crtc *crtc,
6404 struct drm_framebuffer *fb,
6405 struct drm_i915_gem_object *obj)
6406 {
6407 struct drm_i915_private *dev_priv = dev->dev_private;
6408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6410 uint32_t pf, pipesrc;
6411 int ret;
6412
6413 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6414 if (ret)
6415 goto err;
6416
6417 ret = intel_ring_begin(ring, 4);
6418 if (ret)
6419 goto err_unpin;
6420
6421 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6422 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6423 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6424 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6425
6426 /* Contrary to the suggestions in the documentation,
6427 * "Enable Panel Fitter" does not seem to be required when page
6428 * flipping with a non-native mode, and worse causes a normal
6429 * modeset to fail.
6430 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6431 */
6432 pf = 0;
6433 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6434 intel_ring_emit(ring, pf | pipesrc);
6435 intel_ring_advance(ring);
6436 return 0;
6437
6438 err_unpin:
6439 intel_unpin_fb_obj(obj);
6440 err:
6441 return ret;
6442 }
6443
6444 /*
6445 * On gen7 we currently use the blit ring because (in early silicon at least)
6446 * the render ring doesn't give us interrpts for page flip completion, which
6447 * means clients will hang after the first flip is queued. Fortunately the
6448 * blit ring generates interrupts properly, so use it instead.
6449 */
6450 static int intel_gen7_queue_flip(struct drm_device *dev,
6451 struct drm_crtc *crtc,
6452 struct drm_framebuffer *fb,
6453 struct drm_i915_gem_object *obj)
6454 {
6455 struct drm_i915_private *dev_priv = dev->dev_private;
6456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6457 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6458 uint32_t plane_bit = 0;
6459 int ret;
6460
6461 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6462 if (ret)
6463 goto err;
6464
6465 switch(intel_crtc->plane) {
6466 case PLANE_A:
6467 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6468 break;
6469 case PLANE_B:
6470 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6471 break;
6472 case PLANE_C:
6473 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6474 break;
6475 default:
6476 WARN_ONCE(1, "unknown plane in flip command\n");
6477 ret = -ENODEV;
6478 goto err_unpin;
6479 }
6480
6481 ret = intel_ring_begin(ring, 4);
6482 if (ret)
6483 goto err_unpin;
6484
6485 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6486 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6487 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6488 intel_ring_emit(ring, (MI_NOOP));
6489 intel_ring_advance(ring);
6490 return 0;
6491
6492 err_unpin:
6493 intel_unpin_fb_obj(obj);
6494 err:
6495 return ret;
6496 }
6497
6498 static int intel_default_queue_flip(struct drm_device *dev,
6499 struct drm_crtc *crtc,
6500 struct drm_framebuffer *fb,
6501 struct drm_i915_gem_object *obj)
6502 {
6503 return -ENODEV;
6504 }
6505
6506 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6507 struct drm_framebuffer *fb,
6508 struct drm_pending_vblank_event *event)
6509 {
6510 struct drm_device *dev = crtc->dev;
6511 struct drm_i915_private *dev_priv = dev->dev_private;
6512 struct intel_framebuffer *intel_fb;
6513 struct drm_i915_gem_object *obj;
6514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6515 struct intel_unpin_work *work;
6516 unsigned long flags;
6517 int ret;
6518
6519 /* Can't change pixel format via MI display flips. */
6520 if (fb->pixel_format != crtc->fb->pixel_format)
6521 return -EINVAL;
6522
6523 /*
6524 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6525 * Note that pitch changes could also affect these register.
6526 */
6527 if (INTEL_INFO(dev)->gen > 3 &&
6528 (fb->offsets[0] != crtc->fb->offsets[0] ||
6529 fb->pitches[0] != crtc->fb->pitches[0]))
6530 return -EINVAL;
6531
6532 work = kzalloc(sizeof *work, GFP_KERNEL);
6533 if (work == NULL)
6534 return -ENOMEM;
6535
6536 work->event = event;
6537 work->dev = crtc->dev;
6538 intel_fb = to_intel_framebuffer(crtc->fb);
6539 work->old_fb_obj = intel_fb->obj;
6540 INIT_WORK(&work->work, intel_unpin_work_fn);
6541
6542 ret = drm_vblank_get(dev, intel_crtc->pipe);
6543 if (ret)
6544 goto free_work;
6545
6546 /* We borrow the event spin lock for protecting unpin_work */
6547 spin_lock_irqsave(&dev->event_lock, flags);
6548 if (intel_crtc->unpin_work) {
6549 spin_unlock_irqrestore(&dev->event_lock, flags);
6550 kfree(work);
6551 drm_vblank_put(dev, intel_crtc->pipe);
6552
6553 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6554 return -EBUSY;
6555 }
6556 intel_crtc->unpin_work = work;
6557 spin_unlock_irqrestore(&dev->event_lock, flags);
6558
6559 intel_fb = to_intel_framebuffer(fb);
6560 obj = intel_fb->obj;
6561
6562 ret = i915_mutex_lock_interruptible(dev);
6563 if (ret)
6564 goto cleanup;
6565
6566 /* Reference the objects for the scheduled work. */
6567 drm_gem_object_reference(&work->old_fb_obj->base);
6568 drm_gem_object_reference(&obj->base);
6569
6570 crtc->fb = fb;
6571
6572 work->pending_flip_obj = obj;
6573
6574 work->enable_stall_check = true;
6575
6576 /* Block clients from rendering to the new back buffer until
6577 * the flip occurs and the object is no longer visible.
6578 */
6579 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6580
6581 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6582 if (ret)
6583 goto cleanup_pending;
6584
6585 intel_disable_fbc(dev);
6586 intel_mark_fb_busy(obj);
6587 mutex_unlock(&dev->struct_mutex);
6588
6589 trace_i915_flip_request(intel_crtc->plane, obj);
6590
6591 return 0;
6592
6593 cleanup_pending:
6594 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6595 drm_gem_object_unreference(&work->old_fb_obj->base);
6596 drm_gem_object_unreference(&obj->base);
6597 mutex_unlock(&dev->struct_mutex);
6598
6599 cleanup:
6600 spin_lock_irqsave(&dev->event_lock, flags);
6601 intel_crtc->unpin_work = NULL;
6602 spin_unlock_irqrestore(&dev->event_lock, flags);
6603
6604 drm_vblank_put(dev, intel_crtc->pipe);
6605 free_work:
6606 kfree(work);
6607
6608 return ret;
6609 }
6610
6611 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6612 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6613 .load_lut = intel_crtc_load_lut,
6614 .disable = intel_crtc_noop,
6615 };
6616
6617 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
6618 {
6619 struct intel_encoder *other_encoder;
6620 struct drm_crtc *crtc = &encoder->new_crtc->base;
6621
6622 if (WARN_ON(!crtc))
6623 return false;
6624
6625 list_for_each_entry(other_encoder,
6626 &crtc->dev->mode_config.encoder_list,
6627 base.head) {
6628
6629 if (&other_encoder->new_crtc->base != crtc ||
6630 encoder == other_encoder)
6631 continue;
6632 else
6633 return true;
6634 }
6635
6636 return false;
6637 }
6638
6639 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6640 struct drm_crtc *crtc)
6641 {
6642 struct drm_device *dev;
6643 struct drm_crtc *tmp;
6644 int crtc_mask = 1;
6645
6646 WARN(!crtc, "checking null crtc?\n");
6647
6648 dev = crtc->dev;
6649
6650 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6651 if (tmp == crtc)
6652 break;
6653 crtc_mask <<= 1;
6654 }
6655
6656 if (encoder->possible_crtcs & crtc_mask)
6657 return true;
6658 return false;
6659 }
6660
6661 /**
6662 * intel_modeset_update_staged_output_state
6663 *
6664 * Updates the staged output configuration state, e.g. after we've read out the
6665 * current hw state.
6666 */
6667 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
6668 {
6669 struct intel_encoder *encoder;
6670 struct intel_connector *connector;
6671
6672 list_for_each_entry(connector, &dev->mode_config.connector_list,
6673 base.head) {
6674 connector->new_encoder =
6675 to_intel_encoder(connector->base.encoder);
6676 }
6677
6678 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6679 base.head) {
6680 encoder->new_crtc =
6681 to_intel_crtc(encoder->base.crtc);
6682 }
6683 }
6684
6685 /**
6686 * intel_modeset_commit_output_state
6687 *
6688 * This function copies the stage display pipe configuration to the real one.
6689 */
6690 static void intel_modeset_commit_output_state(struct drm_device *dev)
6691 {
6692 struct intel_encoder *encoder;
6693 struct intel_connector *connector;
6694
6695 list_for_each_entry(connector, &dev->mode_config.connector_list,
6696 base.head) {
6697 connector->base.encoder = &connector->new_encoder->base;
6698 }
6699
6700 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6701 base.head) {
6702 encoder->base.crtc = &encoder->new_crtc->base;
6703 }
6704 }
6705
6706 static struct drm_display_mode *
6707 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6708 struct drm_display_mode *mode)
6709 {
6710 struct drm_device *dev = crtc->dev;
6711 struct drm_display_mode *adjusted_mode;
6712 struct drm_encoder_helper_funcs *encoder_funcs;
6713 struct intel_encoder *encoder;
6714
6715 adjusted_mode = drm_mode_duplicate(dev, mode);
6716 if (!adjusted_mode)
6717 return ERR_PTR(-ENOMEM);
6718
6719 /* Pass our mode to the connectors and the CRTC to give them a chance to
6720 * adjust it according to limitations or connector properties, and also
6721 * a chance to reject the mode entirely.
6722 */
6723 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6724 base.head) {
6725
6726 if (&encoder->new_crtc->base != crtc)
6727 continue;
6728 encoder_funcs = encoder->base.helper_private;
6729 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6730 adjusted_mode))) {
6731 DRM_DEBUG_KMS("Encoder fixup failed\n");
6732 goto fail;
6733 }
6734 }
6735
6736 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6737 DRM_DEBUG_KMS("CRTC fixup failed\n");
6738 goto fail;
6739 }
6740 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6741
6742 return adjusted_mode;
6743 fail:
6744 drm_mode_destroy(dev, adjusted_mode);
6745 return ERR_PTR(-EINVAL);
6746 }
6747
6748 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
6749 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6750 static void
6751 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6752 unsigned *prepare_pipes, unsigned *disable_pipes)
6753 {
6754 struct intel_crtc *intel_crtc;
6755 struct drm_device *dev = crtc->dev;
6756 struct intel_encoder *encoder;
6757 struct intel_connector *connector;
6758 struct drm_crtc *tmp_crtc;
6759
6760 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
6761
6762 /* Check which crtcs have changed outputs connected to them, these need
6763 * to be part of the prepare_pipes mask. We don't (yet) support global
6764 * modeset across multiple crtcs, so modeset_pipes will only have one
6765 * bit set at most. */
6766 list_for_each_entry(connector, &dev->mode_config.connector_list,
6767 base.head) {
6768 if (connector->base.encoder == &connector->new_encoder->base)
6769 continue;
6770
6771 if (connector->base.encoder) {
6772 tmp_crtc = connector->base.encoder->crtc;
6773
6774 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6775 }
6776
6777 if (connector->new_encoder)
6778 *prepare_pipes |=
6779 1 << connector->new_encoder->new_crtc->pipe;
6780 }
6781
6782 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6783 base.head) {
6784 if (encoder->base.crtc == &encoder->new_crtc->base)
6785 continue;
6786
6787 if (encoder->base.crtc) {
6788 tmp_crtc = encoder->base.crtc;
6789
6790 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6791 }
6792
6793 if (encoder->new_crtc)
6794 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
6795 }
6796
6797 /* Check for any pipes that will be fully disabled ... */
6798 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6799 base.head) {
6800 bool used = false;
6801
6802 /* Don't try to disable disabled crtcs. */
6803 if (!intel_crtc->base.enabled)
6804 continue;
6805
6806 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6807 base.head) {
6808 if (encoder->new_crtc == intel_crtc)
6809 used = true;
6810 }
6811
6812 if (!used)
6813 *disable_pipes |= 1 << intel_crtc->pipe;
6814 }
6815
6816
6817 /* set_mode is also used to update properties on life display pipes. */
6818 intel_crtc = to_intel_crtc(crtc);
6819 if (crtc->enabled)
6820 *prepare_pipes |= 1 << intel_crtc->pipe;
6821
6822 /* We only support modeset on one single crtc, hence we need to do that
6823 * only for the passed in crtc iff we change anything else than just
6824 * disable crtcs.
6825 *
6826 * This is actually not true, to be fully compatible with the old crtc
6827 * helper we automatically disable _any_ output (i.e. doesn't need to be
6828 * connected to the crtc we're modesetting on) if it's disconnected.
6829 * Which is a rather nutty api (since changed the output configuration
6830 * without userspace's explicit request can lead to confusion), but
6831 * alas. Hence we currently need to modeset on all pipes we prepare. */
6832 if (*prepare_pipes)
6833 *modeset_pipes = *prepare_pipes;
6834
6835 /* ... and mask these out. */
6836 *modeset_pipes &= ~(*disable_pipes);
6837 *prepare_pipes &= ~(*disable_pipes);
6838 }
6839
6840 static bool intel_crtc_in_use(struct drm_crtc *crtc)
6841 {
6842 struct drm_encoder *encoder;
6843 struct drm_device *dev = crtc->dev;
6844
6845 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6846 if (encoder->crtc == crtc)
6847 return true;
6848
6849 return false;
6850 }
6851
6852 static void
6853 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6854 {
6855 struct intel_encoder *intel_encoder;
6856 struct intel_crtc *intel_crtc;
6857 struct drm_connector *connector;
6858
6859 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6860 base.head) {
6861 if (!intel_encoder->base.crtc)
6862 continue;
6863
6864 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6865
6866 if (prepare_pipes & (1 << intel_crtc->pipe))
6867 intel_encoder->connectors_active = false;
6868 }
6869
6870 intel_modeset_commit_output_state(dev);
6871
6872 /* Update computed state. */
6873 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6874 base.head) {
6875 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6876 }
6877
6878 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6879 if (!connector->encoder || !connector->encoder->crtc)
6880 continue;
6881
6882 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6883
6884 if (prepare_pipes & (1 << intel_crtc->pipe)) {
6885 connector->dpms = DRM_MODE_DPMS_ON;
6886
6887 intel_encoder = to_intel_encoder(connector->encoder);
6888 intel_encoder->connectors_active = true;
6889 }
6890 }
6891
6892 }
6893
6894 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6895 list_for_each_entry((intel_crtc), \
6896 &(dev)->mode_config.crtc_list, \
6897 base.head) \
6898 if (mask & (1 <<(intel_crtc)->pipe)) \
6899
6900 void
6901 intel_modeset_check_state(struct drm_device *dev)
6902 {
6903 struct intel_crtc *crtc;
6904 struct intel_encoder *encoder;
6905 struct intel_connector *connector;
6906
6907 list_for_each_entry(connector, &dev->mode_config.connector_list,
6908 base.head) {
6909 /* This also checks the encoder/connector hw state with the
6910 * ->get_hw_state callbacks. */
6911 intel_connector_check_state(connector);
6912
6913 WARN(&connector->new_encoder->base != connector->base.encoder,
6914 "connector's staged encoder doesn't match current encoder\n");
6915 }
6916
6917 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6918 base.head) {
6919 bool enabled = false;
6920 bool active = false;
6921 enum pipe pipe, tracked_pipe;
6922
6923 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
6924 encoder->base.base.id,
6925 drm_get_encoder_name(&encoder->base));
6926
6927 WARN(&encoder->new_crtc->base != encoder->base.crtc,
6928 "encoder's stage crtc doesn't match current crtc\n");
6929 WARN(encoder->connectors_active && !encoder->base.crtc,
6930 "encoder's active_connectors set, but no crtc\n");
6931
6932 list_for_each_entry(connector, &dev->mode_config.connector_list,
6933 base.head) {
6934 if (connector->base.encoder != &encoder->base)
6935 continue;
6936 enabled = true;
6937 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
6938 active = true;
6939 }
6940 WARN(!!encoder->base.crtc != enabled,
6941 "encoder's enabled state mismatch "
6942 "(expected %i, found %i)\n",
6943 !!encoder->base.crtc, enabled);
6944 WARN(active && !encoder->base.crtc,
6945 "active encoder with no crtc\n");
6946
6947 WARN(encoder->connectors_active != active,
6948 "encoder's computed active state doesn't match tracked active state "
6949 "(expected %i, found %i)\n", active, encoder->connectors_active);
6950
6951 active = encoder->get_hw_state(encoder, &pipe);
6952 WARN(active != encoder->connectors_active,
6953 "encoder's hw state doesn't match sw tracking "
6954 "(expected %i, found %i)\n",
6955 encoder->connectors_active, active);
6956
6957 if (!encoder->base.crtc)
6958 continue;
6959
6960 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
6961 WARN(active && pipe != tracked_pipe,
6962 "active encoder's pipe doesn't match"
6963 "(expected %i, found %i)\n",
6964 tracked_pipe, pipe);
6965
6966 }
6967
6968 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
6969 base.head) {
6970 bool enabled = false;
6971 bool active = false;
6972
6973 DRM_DEBUG_KMS("[CRTC:%d]\n",
6974 crtc->base.base.id);
6975
6976 WARN(crtc->active && !crtc->base.enabled,
6977 "active crtc, but not enabled in sw tracking\n");
6978
6979 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6980 base.head) {
6981 if (encoder->base.crtc != &crtc->base)
6982 continue;
6983 enabled = true;
6984 if (encoder->connectors_active)
6985 active = true;
6986 }
6987 WARN(active != crtc->active,
6988 "crtc's computed active state doesn't match tracked active state "
6989 "(expected %i, found %i)\n", active, crtc->active);
6990 WARN(enabled != crtc->base.enabled,
6991 "crtc's computed enabled state doesn't match tracked enabled state "
6992 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
6993
6994 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
6995 }
6996 }
6997
6998 bool intel_set_mode(struct drm_crtc *crtc,
6999 struct drm_display_mode *mode,
7000 int x, int y, struct drm_framebuffer *fb)
7001 {
7002 struct drm_device *dev = crtc->dev;
7003 drm_i915_private_t *dev_priv = dev->dev_private;
7004 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7005 struct drm_encoder_helper_funcs *encoder_funcs;
7006 struct drm_encoder *encoder;
7007 struct intel_crtc *intel_crtc;
7008 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7009 bool ret = true;
7010
7011 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7012 &prepare_pipes, &disable_pipes);
7013
7014 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7015 modeset_pipes, prepare_pipes, disable_pipes);
7016
7017 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7018 intel_crtc_disable(&intel_crtc->base);
7019
7020 saved_hwmode = crtc->hwmode;
7021 saved_mode = crtc->mode;
7022
7023 /* Hack: Because we don't (yet) support global modeset on multiple
7024 * crtcs, we don't keep track of the new mode for more than one crtc.
7025 * Hence simply check whether any bit is set in modeset_pipes in all the
7026 * pieces of code that are not yet converted to deal with mutliple crtcs
7027 * changing their mode at the same time. */
7028 adjusted_mode = NULL;
7029 if (modeset_pipes) {
7030 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7031 if (IS_ERR(adjusted_mode)) {
7032 return false;
7033 }
7034 }
7035
7036 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7037 if (intel_crtc->base.enabled)
7038 dev_priv->display.crtc_disable(&intel_crtc->base);
7039 }
7040
7041 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7042 * to set it here already despite that we pass it down the callchain.
7043 */
7044 if (modeset_pipes)
7045 crtc->mode = *mode;
7046
7047 /* Only after disabling all output pipelines that will be changed can we
7048 * update the the output configuration. */
7049 intel_modeset_update_state(dev, prepare_pipes);
7050
7051 /* Set up the DPLL and any encoders state that needs to adjust or depend
7052 * on the DPLL.
7053 */
7054 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7055 ret = !intel_crtc_mode_set(&intel_crtc->base,
7056 mode, adjusted_mode,
7057 x, y, fb);
7058 if (!ret)
7059 goto done;
7060
7061 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7062
7063 if (encoder->crtc != &intel_crtc->base)
7064 continue;
7065
7066 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7067 encoder->base.id, drm_get_encoder_name(encoder),
7068 mode->base.id, mode->name);
7069 encoder_funcs = encoder->helper_private;
7070 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7071 }
7072 }
7073
7074 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7075 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7076 dev_priv->display.crtc_enable(&intel_crtc->base);
7077
7078 if (modeset_pipes) {
7079 /* Store real post-adjustment hardware mode. */
7080 crtc->hwmode = *adjusted_mode;
7081
7082 /* Calculate and store various constants which
7083 * are later needed by vblank and swap-completion
7084 * timestamping. They are derived from true hwmode.
7085 */
7086 drm_calc_timestamping_constants(crtc);
7087 }
7088
7089 /* FIXME: add subpixel order */
7090 done:
7091 drm_mode_destroy(dev, adjusted_mode);
7092 if (!ret && crtc->enabled) {
7093 crtc->hwmode = saved_hwmode;
7094 crtc->mode = saved_mode;
7095 } else {
7096 intel_modeset_check_state(dev);
7097 }
7098
7099 return ret;
7100 }
7101
7102 #undef for_each_intel_crtc_masked
7103
7104 static void intel_set_config_free(struct intel_set_config *config)
7105 {
7106 if (!config)
7107 return;
7108
7109 kfree(config->save_connector_encoders);
7110 kfree(config->save_encoder_crtcs);
7111 kfree(config);
7112 }
7113
7114 static int intel_set_config_save_state(struct drm_device *dev,
7115 struct intel_set_config *config)
7116 {
7117 struct drm_encoder *encoder;
7118 struct drm_connector *connector;
7119 int count;
7120
7121 config->save_encoder_crtcs =
7122 kcalloc(dev->mode_config.num_encoder,
7123 sizeof(struct drm_crtc *), GFP_KERNEL);
7124 if (!config->save_encoder_crtcs)
7125 return -ENOMEM;
7126
7127 config->save_connector_encoders =
7128 kcalloc(dev->mode_config.num_connector,
7129 sizeof(struct drm_encoder *), GFP_KERNEL);
7130 if (!config->save_connector_encoders)
7131 return -ENOMEM;
7132
7133 /* Copy data. Note that driver private data is not affected.
7134 * Should anything bad happen only the expected state is
7135 * restored, not the drivers personal bookkeeping.
7136 */
7137 count = 0;
7138 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7139 config->save_encoder_crtcs[count++] = encoder->crtc;
7140 }
7141
7142 count = 0;
7143 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7144 config->save_connector_encoders[count++] = connector->encoder;
7145 }
7146
7147 return 0;
7148 }
7149
7150 static void intel_set_config_restore_state(struct drm_device *dev,
7151 struct intel_set_config *config)
7152 {
7153 struct intel_encoder *encoder;
7154 struct intel_connector *connector;
7155 int count;
7156
7157 count = 0;
7158 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7159 encoder->new_crtc =
7160 to_intel_crtc(config->save_encoder_crtcs[count++]);
7161 }
7162
7163 count = 0;
7164 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7165 connector->new_encoder =
7166 to_intel_encoder(config->save_connector_encoders[count++]);
7167 }
7168 }
7169
7170 static void
7171 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7172 struct intel_set_config *config)
7173 {
7174
7175 /* We should be able to check here if the fb has the same properties
7176 * and then just flip_or_move it */
7177 if (set->crtc->fb != set->fb) {
7178 /* If we have no fb then treat it as a full mode set */
7179 if (set->crtc->fb == NULL) {
7180 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7181 config->mode_changed = true;
7182 } else if (set->fb == NULL) {
7183 config->mode_changed = true;
7184 } else if (set->fb->depth != set->crtc->fb->depth) {
7185 config->mode_changed = true;
7186 } else if (set->fb->bits_per_pixel !=
7187 set->crtc->fb->bits_per_pixel) {
7188 config->mode_changed = true;
7189 } else
7190 config->fb_changed = true;
7191 }
7192
7193 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7194 config->fb_changed = true;
7195
7196 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7197 DRM_DEBUG_KMS("modes are different, full mode set\n");
7198 drm_mode_debug_printmodeline(&set->crtc->mode);
7199 drm_mode_debug_printmodeline(set->mode);
7200 config->mode_changed = true;
7201 }
7202 }
7203
7204 static int
7205 intel_modeset_stage_output_state(struct drm_device *dev,
7206 struct drm_mode_set *set,
7207 struct intel_set_config *config)
7208 {
7209 struct drm_crtc *new_crtc;
7210 struct intel_connector *connector;
7211 struct intel_encoder *encoder;
7212 int count, ro;
7213
7214 /* The upper layers ensure that we either disabl a crtc or have a list
7215 * of connectors. For paranoia, double-check this. */
7216 WARN_ON(!set->fb && (set->num_connectors != 0));
7217 WARN_ON(set->fb && (set->num_connectors == 0));
7218
7219 count = 0;
7220 list_for_each_entry(connector, &dev->mode_config.connector_list,
7221 base.head) {
7222 /* Otherwise traverse passed in connector list and get encoders
7223 * for them. */
7224 for (ro = 0; ro < set->num_connectors; ro++) {
7225 if (set->connectors[ro] == &connector->base) {
7226 connector->new_encoder = connector->encoder;
7227 break;
7228 }
7229 }
7230
7231 /* If we disable the crtc, disable all its connectors. Also, if
7232 * the connector is on the changing crtc but not on the new
7233 * connector list, disable it. */
7234 if ((!set->fb || ro == set->num_connectors) &&
7235 connector->base.encoder &&
7236 connector->base.encoder->crtc == set->crtc) {
7237 connector->new_encoder = NULL;
7238
7239 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7240 connector->base.base.id,
7241 drm_get_connector_name(&connector->base));
7242 }
7243
7244
7245 if (&connector->new_encoder->base != connector->base.encoder) {
7246 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7247 config->mode_changed = true;
7248 }
7249
7250 /* Disable all disconnected encoders. */
7251 if (connector->base.status == connector_status_disconnected)
7252 connector->new_encoder = NULL;
7253 }
7254 /* connector->new_encoder is now updated for all connectors. */
7255
7256 /* Update crtc of enabled connectors. */
7257 count = 0;
7258 list_for_each_entry(connector, &dev->mode_config.connector_list,
7259 base.head) {
7260 if (!connector->new_encoder)
7261 continue;
7262
7263 new_crtc = connector->new_encoder->base.crtc;
7264
7265 for (ro = 0; ro < set->num_connectors; ro++) {
7266 if (set->connectors[ro] == &connector->base)
7267 new_crtc = set->crtc;
7268 }
7269
7270 /* Make sure the new CRTC will work with the encoder */
7271 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7272 new_crtc)) {
7273 return -EINVAL;
7274 }
7275 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7276
7277 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7278 connector->base.base.id,
7279 drm_get_connector_name(&connector->base),
7280 new_crtc->base.id);
7281 }
7282
7283 /* Check for any encoders that needs to be disabled. */
7284 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7285 base.head) {
7286 list_for_each_entry(connector,
7287 &dev->mode_config.connector_list,
7288 base.head) {
7289 if (connector->new_encoder == encoder) {
7290 WARN_ON(!connector->new_encoder->new_crtc);
7291
7292 goto next_encoder;
7293 }
7294 }
7295 encoder->new_crtc = NULL;
7296 next_encoder:
7297 /* Only now check for crtc changes so we don't miss encoders
7298 * that will be disabled. */
7299 if (&encoder->new_crtc->base != encoder->base.crtc) {
7300 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7301 config->mode_changed = true;
7302 }
7303 }
7304 /* Now we've also updated encoder->new_crtc for all encoders. */
7305
7306 return 0;
7307 }
7308
7309 static int intel_crtc_set_config(struct drm_mode_set *set)
7310 {
7311 struct drm_device *dev;
7312 struct drm_mode_set save_set;
7313 struct intel_set_config *config;
7314 int ret;
7315 int i;
7316
7317 BUG_ON(!set);
7318 BUG_ON(!set->crtc);
7319 BUG_ON(!set->crtc->helper_private);
7320
7321 if (!set->mode)
7322 set->fb = NULL;
7323
7324 /* The fb helper likes to play gross jokes with ->mode_set_config.
7325 * Unfortunately the crtc helper doesn't do much at all for this case,
7326 * so we have to cope with this madness until the fb helper is fixed up. */
7327 if (set->fb && set->num_connectors == 0)
7328 return 0;
7329
7330 if (set->fb) {
7331 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7332 set->crtc->base.id, set->fb->base.id,
7333 (int)set->num_connectors, set->x, set->y);
7334 } else {
7335 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7336 }
7337
7338 dev = set->crtc->dev;
7339
7340 ret = -ENOMEM;
7341 config = kzalloc(sizeof(*config), GFP_KERNEL);
7342 if (!config)
7343 goto out_config;
7344
7345 ret = intel_set_config_save_state(dev, config);
7346 if (ret)
7347 goto out_config;
7348
7349 save_set.crtc = set->crtc;
7350 save_set.mode = &set->crtc->mode;
7351 save_set.x = set->crtc->x;
7352 save_set.y = set->crtc->y;
7353 save_set.fb = set->crtc->fb;
7354
7355 /* Compute whether we need a full modeset, only an fb base update or no
7356 * change at all. In the future we might also check whether only the
7357 * mode changed, e.g. for LVDS where we only change the panel fitter in
7358 * such cases. */
7359 intel_set_config_compute_mode_changes(set, config);
7360
7361 ret = intel_modeset_stage_output_state(dev, set, config);
7362 if (ret)
7363 goto fail;
7364
7365 if (config->mode_changed) {
7366 if (set->mode) {
7367 DRM_DEBUG_KMS("attempting to set mode from"
7368 " userspace\n");
7369 drm_mode_debug_printmodeline(set->mode);
7370 }
7371
7372 if (!intel_set_mode(set->crtc, set->mode,
7373 set->x, set->y, set->fb)) {
7374 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7375 set->crtc->base.id);
7376 ret = -EINVAL;
7377 goto fail;
7378 }
7379
7380 if (set->crtc->enabled) {
7381 DRM_DEBUG_KMS("Setting connector DPMS state to on\n");
7382 for (i = 0; i < set->num_connectors; i++) {
7383 DRM_DEBUG_KMS("\t[CONNECTOR:%d:%s] set DPMS on\n", set->connectors[i]->base.id,
7384 drm_get_connector_name(set->connectors[i]));
7385 set->connectors[i]->funcs->dpms(set->connectors[i], DRM_MODE_DPMS_ON);
7386 }
7387 }
7388 } else if (config->fb_changed) {
7389 ret = intel_pipe_set_base(set->crtc,
7390 set->x, set->y, set->fb);
7391 }
7392
7393 intel_set_config_free(config);
7394
7395 return 0;
7396
7397 fail:
7398 intel_set_config_restore_state(dev, config);
7399
7400 /* Try to restore the config */
7401 if (config->mode_changed &&
7402 !intel_set_mode(save_set.crtc, save_set.mode,
7403 save_set.x, save_set.y, save_set.fb))
7404 DRM_ERROR("failed to restore config after modeset failure\n");
7405
7406 out_config:
7407 intel_set_config_free(config);
7408 return ret;
7409 }
7410
7411 static const struct drm_crtc_funcs intel_crtc_funcs = {
7412 .cursor_set = intel_crtc_cursor_set,
7413 .cursor_move = intel_crtc_cursor_move,
7414 .gamma_set = intel_crtc_gamma_set,
7415 .set_config = intel_crtc_set_config,
7416 .destroy = intel_crtc_destroy,
7417 .page_flip = intel_crtc_page_flip,
7418 };
7419
7420 static void intel_pch_pll_init(struct drm_device *dev)
7421 {
7422 drm_i915_private_t *dev_priv = dev->dev_private;
7423 int i;
7424
7425 if (dev_priv->num_pch_pll == 0) {
7426 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7427 return;
7428 }
7429
7430 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7431 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7432 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7433 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7434 }
7435 }
7436
7437 static void intel_crtc_init(struct drm_device *dev, int pipe)
7438 {
7439 drm_i915_private_t *dev_priv = dev->dev_private;
7440 struct intel_crtc *intel_crtc;
7441 int i;
7442
7443 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7444 if (intel_crtc == NULL)
7445 return;
7446
7447 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7448
7449 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7450 for (i = 0; i < 256; i++) {
7451 intel_crtc->lut_r[i] = i;
7452 intel_crtc->lut_g[i] = i;
7453 intel_crtc->lut_b[i] = i;
7454 }
7455
7456 /* Swap pipes & planes for FBC on pre-965 */
7457 intel_crtc->pipe = pipe;
7458 intel_crtc->plane = pipe;
7459 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7460 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7461 intel_crtc->plane = !pipe;
7462 }
7463
7464 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7465 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7466 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7467 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7468
7469 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7470
7471 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7472 }
7473
7474 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7475 struct drm_file *file)
7476 {
7477 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7478 struct drm_mode_object *drmmode_obj;
7479 struct intel_crtc *crtc;
7480
7481 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7482 return -ENODEV;
7483
7484 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7485 DRM_MODE_OBJECT_CRTC);
7486
7487 if (!drmmode_obj) {
7488 DRM_ERROR("no such CRTC id\n");
7489 return -EINVAL;
7490 }
7491
7492 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7493 pipe_from_crtc_id->pipe = crtc->pipe;
7494
7495 return 0;
7496 }
7497
7498 static int intel_encoder_clones(struct intel_encoder *encoder)
7499 {
7500 struct drm_device *dev = encoder->base.dev;
7501 struct intel_encoder *source_encoder;
7502 int index_mask = 0;
7503 int entry = 0;
7504
7505 list_for_each_entry(source_encoder,
7506 &dev->mode_config.encoder_list, base.head) {
7507
7508 if (encoder == source_encoder)
7509 index_mask |= (1 << entry);
7510
7511 /* Intel hw has only one MUX where enocoders could be cloned. */
7512 if (encoder->cloneable && source_encoder->cloneable)
7513 index_mask |= (1 << entry);
7514
7515 entry++;
7516 }
7517
7518 return index_mask;
7519 }
7520
7521 static bool has_edp_a(struct drm_device *dev)
7522 {
7523 struct drm_i915_private *dev_priv = dev->dev_private;
7524
7525 if (!IS_MOBILE(dev))
7526 return false;
7527
7528 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7529 return false;
7530
7531 if (IS_GEN5(dev) &&
7532 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7533 return false;
7534
7535 return true;
7536 }
7537
7538 static void intel_setup_outputs(struct drm_device *dev)
7539 {
7540 struct drm_i915_private *dev_priv = dev->dev_private;
7541 struct intel_encoder *encoder;
7542 bool dpd_is_edp = false;
7543 bool has_lvds;
7544
7545 has_lvds = intel_lvds_init(dev);
7546 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7547 /* disable the panel fitter on everything but LVDS */
7548 I915_WRITE(PFIT_CONTROL, 0);
7549 }
7550
7551 if (HAS_PCH_SPLIT(dev)) {
7552 dpd_is_edp = intel_dpd_is_edp(dev);
7553
7554 if (has_edp_a(dev))
7555 intel_dp_init(dev, DP_A, PORT_A);
7556
7557 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7558 intel_dp_init(dev, PCH_DP_D, PORT_D);
7559 }
7560
7561 intel_crt_init(dev);
7562
7563 if (IS_HASWELL(dev)) {
7564 int found;
7565
7566 /* Haswell uses DDI functions to detect digital outputs */
7567 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7568 /* DDI A only supports eDP */
7569 if (found)
7570 intel_ddi_init(dev, PORT_A);
7571
7572 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7573 * register */
7574 found = I915_READ(SFUSE_STRAP);
7575
7576 if (found & SFUSE_STRAP_DDIB_DETECTED)
7577 intel_ddi_init(dev, PORT_B);
7578 if (found & SFUSE_STRAP_DDIC_DETECTED)
7579 intel_ddi_init(dev, PORT_C);
7580 if (found & SFUSE_STRAP_DDID_DETECTED)
7581 intel_ddi_init(dev, PORT_D);
7582 } else if (HAS_PCH_SPLIT(dev)) {
7583 int found;
7584
7585 if (I915_READ(HDMIB) & PORT_DETECTED) {
7586 /* PCH SDVOB multiplex with HDMIB */
7587 found = intel_sdvo_init(dev, PCH_SDVOB, true);
7588 if (!found)
7589 intel_hdmi_init(dev, HDMIB, PORT_B);
7590 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7591 intel_dp_init(dev, PCH_DP_B, PORT_B);
7592 }
7593
7594 if (I915_READ(HDMIC) & PORT_DETECTED)
7595 intel_hdmi_init(dev, HDMIC, PORT_C);
7596
7597 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7598 intel_hdmi_init(dev, HDMID, PORT_D);
7599
7600 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7601 intel_dp_init(dev, PCH_DP_C, PORT_C);
7602
7603 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7604 intel_dp_init(dev, PCH_DP_D, PORT_D);
7605 } else if (IS_VALLEYVIEW(dev)) {
7606 int found;
7607
7608 if (I915_READ(SDVOB) & PORT_DETECTED) {
7609 /* SDVOB multiplex with HDMIB */
7610 found = intel_sdvo_init(dev, SDVOB, true);
7611 if (!found)
7612 intel_hdmi_init(dev, SDVOB, PORT_B);
7613 if (!found && (I915_READ(DP_B) & DP_DETECTED))
7614 intel_dp_init(dev, DP_B, PORT_B);
7615 }
7616
7617 if (I915_READ(SDVOC) & PORT_DETECTED)
7618 intel_hdmi_init(dev, SDVOC, PORT_C);
7619
7620 /* Shares lanes with HDMI on SDVOC */
7621 if (I915_READ(DP_C) & DP_DETECTED)
7622 intel_dp_init(dev, DP_C, PORT_C);
7623 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7624 bool found = false;
7625
7626 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7627 DRM_DEBUG_KMS("probing SDVOB\n");
7628 found = intel_sdvo_init(dev, SDVOB, true);
7629 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7630 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7631 intel_hdmi_init(dev, SDVOB, PORT_B);
7632 }
7633
7634 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7635 DRM_DEBUG_KMS("probing DP_B\n");
7636 intel_dp_init(dev, DP_B, PORT_B);
7637 }
7638 }
7639
7640 /* Before G4X SDVOC doesn't have its own detect register */
7641
7642 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7643 DRM_DEBUG_KMS("probing SDVOC\n");
7644 found = intel_sdvo_init(dev, SDVOC, false);
7645 }
7646
7647 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7648
7649 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7650 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7651 intel_hdmi_init(dev, SDVOC, PORT_C);
7652 }
7653 if (SUPPORTS_INTEGRATED_DP(dev)) {
7654 DRM_DEBUG_KMS("probing DP_C\n");
7655 intel_dp_init(dev, DP_C, PORT_C);
7656 }
7657 }
7658
7659 if (SUPPORTS_INTEGRATED_DP(dev) &&
7660 (I915_READ(DP_D) & DP_DETECTED)) {
7661 DRM_DEBUG_KMS("probing DP_D\n");
7662 intel_dp_init(dev, DP_D, PORT_D);
7663 }
7664 } else if (IS_GEN2(dev))
7665 intel_dvo_init(dev);
7666
7667 if (SUPPORTS_TV(dev))
7668 intel_tv_init(dev);
7669
7670 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7671 encoder->base.possible_crtcs = encoder->crtc_mask;
7672 encoder->base.possible_clones =
7673 intel_encoder_clones(encoder);
7674 }
7675
7676 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7677 ironlake_init_pch_refclk(dev);
7678 }
7679
7680 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7681 {
7682 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7683
7684 drm_framebuffer_cleanup(fb);
7685 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7686
7687 kfree(intel_fb);
7688 }
7689
7690 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7691 struct drm_file *file,
7692 unsigned int *handle)
7693 {
7694 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7695 struct drm_i915_gem_object *obj = intel_fb->obj;
7696
7697 return drm_gem_handle_create(file, &obj->base, handle);
7698 }
7699
7700 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7701 .destroy = intel_user_framebuffer_destroy,
7702 .create_handle = intel_user_framebuffer_create_handle,
7703 };
7704
7705 int intel_framebuffer_init(struct drm_device *dev,
7706 struct intel_framebuffer *intel_fb,
7707 struct drm_mode_fb_cmd2 *mode_cmd,
7708 struct drm_i915_gem_object *obj)
7709 {
7710 int ret;
7711
7712 if (obj->tiling_mode == I915_TILING_Y)
7713 return -EINVAL;
7714
7715 if (mode_cmd->pitches[0] & 63)
7716 return -EINVAL;
7717
7718 switch (mode_cmd->pixel_format) {
7719 case DRM_FORMAT_RGB332:
7720 case DRM_FORMAT_RGB565:
7721 case DRM_FORMAT_XRGB8888:
7722 case DRM_FORMAT_XBGR8888:
7723 case DRM_FORMAT_ARGB8888:
7724 case DRM_FORMAT_XRGB2101010:
7725 case DRM_FORMAT_ARGB2101010:
7726 /* RGB formats are common across chipsets */
7727 break;
7728 case DRM_FORMAT_YUYV:
7729 case DRM_FORMAT_UYVY:
7730 case DRM_FORMAT_YVYU:
7731 case DRM_FORMAT_VYUY:
7732 break;
7733 default:
7734 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7735 mode_cmd->pixel_format);
7736 return -EINVAL;
7737 }
7738
7739 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7740 if (ret) {
7741 DRM_ERROR("framebuffer init failed %d\n", ret);
7742 return ret;
7743 }
7744
7745 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7746 intel_fb->obj = obj;
7747 return 0;
7748 }
7749
7750 static struct drm_framebuffer *
7751 intel_user_framebuffer_create(struct drm_device *dev,
7752 struct drm_file *filp,
7753 struct drm_mode_fb_cmd2 *mode_cmd)
7754 {
7755 struct drm_i915_gem_object *obj;
7756
7757 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7758 mode_cmd->handles[0]));
7759 if (&obj->base == NULL)
7760 return ERR_PTR(-ENOENT);
7761
7762 return intel_framebuffer_create(dev, mode_cmd, obj);
7763 }
7764
7765 static const struct drm_mode_config_funcs intel_mode_funcs = {
7766 .fb_create = intel_user_framebuffer_create,
7767 .output_poll_changed = intel_fb_output_poll_changed,
7768 };
7769
7770 /* Set up chip specific display functions */
7771 static void intel_init_display(struct drm_device *dev)
7772 {
7773 struct drm_i915_private *dev_priv = dev->dev_private;
7774
7775 /* We always want a DPMS function */
7776 if (HAS_PCH_SPLIT(dev)) {
7777 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7778 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7779 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7780 dev_priv->display.off = ironlake_crtc_off;
7781 dev_priv->display.update_plane = ironlake_update_plane;
7782 } else {
7783 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7784 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7785 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7786 dev_priv->display.off = i9xx_crtc_off;
7787 dev_priv->display.update_plane = i9xx_update_plane;
7788 }
7789
7790 /* Returns the core display clock speed */
7791 if (IS_VALLEYVIEW(dev))
7792 dev_priv->display.get_display_clock_speed =
7793 valleyview_get_display_clock_speed;
7794 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7795 dev_priv->display.get_display_clock_speed =
7796 i945_get_display_clock_speed;
7797 else if (IS_I915G(dev))
7798 dev_priv->display.get_display_clock_speed =
7799 i915_get_display_clock_speed;
7800 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7801 dev_priv->display.get_display_clock_speed =
7802 i9xx_misc_get_display_clock_speed;
7803 else if (IS_I915GM(dev))
7804 dev_priv->display.get_display_clock_speed =
7805 i915gm_get_display_clock_speed;
7806 else if (IS_I865G(dev))
7807 dev_priv->display.get_display_clock_speed =
7808 i865_get_display_clock_speed;
7809 else if (IS_I85X(dev))
7810 dev_priv->display.get_display_clock_speed =
7811 i855_get_display_clock_speed;
7812 else /* 852, 830 */
7813 dev_priv->display.get_display_clock_speed =
7814 i830_get_display_clock_speed;
7815
7816 if (HAS_PCH_SPLIT(dev)) {
7817 if (IS_GEN5(dev)) {
7818 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7819 dev_priv->display.write_eld = ironlake_write_eld;
7820 } else if (IS_GEN6(dev)) {
7821 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7822 dev_priv->display.write_eld = ironlake_write_eld;
7823 } else if (IS_IVYBRIDGE(dev)) {
7824 /* FIXME: detect B0+ stepping and use auto training */
7825 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7826 dev_priv->display.write_eld = ironlake_write_eld;
7827 } else if (IS_HASWELL(dev)) {
7828 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7829 dev_priv->display.write_eld = haswell_write_eld;
7830 } else
7831 dev_priv->display.update_wm = NULL;
7832 } else if (IS_G4X(dev)) {
7833 dev_priv->display.write_eld = g4x_write_eld;
7834 }
7835
7836 /* Default just returns -ENODEV to indicate unsupported */
7837 dev_priv->display.queue_flip = intel_default_queue_flip;
7838
7839 switch (INTEL_INFO(dev)->gen) {
7840 case 2:
7841 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7842 break;
7843
7844 case 3:
7845 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7846 break;
7847
7848 case 4:
7849 case 5:
7850 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7851 break;
7852
7853 case 6:
7854 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7855 break;
7856 case 7:
7857 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7858 break;
7859 }
7860 }
7861
7862 /*
7863 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7864 * resume, or other times. This quirk makes sure that's the case for
7865 * affected systems.
7866 */
7867 static void quirk_pipea_force(struct drm_device *dev)
7868 {
7869 struct drm_i915_private *dev_priv = dev->dev_private;
7870
7871 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7872 DRM_INFO("applying pipe a force quirk\n");
7873 }
7874
7875 /*
7876 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7877 */
7878 static void quirk_ssc_force_disable(struct drm_device *dev)
7879 {
7880 struct drm_i915_private *dev_priv = dev->dev_private;
7881 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7882 DRM_INFO("applying lvds SSC disable quirk\n");
7883 }
7884
7885 /*
7886 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7887 * brightness value
7888 */
7889 static void quirk_invert_brightness(struct drm_device *dev)
7890 {
7891 struct drm_i915_private *dev_priv = dev->dev_private;
7892 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7893 DRM_INFO("applying inverted panel brightness quirk\n");
7894 }
7895
7896 struct intel_quirk {
7897 int device;
7898 int subsystem_vendor;
7899 int subsystem_device;
7900 void (*hook)(struct drm_device *dev);
7901 };
7902
7903 static struct intel_quirk intel_quirks[] = {
7904 /* HP Mini needs pipe A force quirk (LP: #322104) */
7905 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7906
7907 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7908 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7909
7910 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7911 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7912
7913 /* 855 & before need to leave pipe A & dpll A up */
7914 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7915 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7916 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7917
7918 /* Lenovo U160 cannot use SSC on LVDS */
7919 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7920
7921 /* Sony Vaio Y cannot use SSC on LVDS */
7922 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7923
7924 /* Acer Aspire 5734Z must invert backlight brightness */
7925 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7926 };
7927
7928 static void intel_init_quirks(struct drm_device *dev)
7929 {
7930 struct pci_dev *d = dev->pdev;
7931 int i;
7932
7933 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7934 struct intel_quirk *q = &intel_quirks[i];
7935
7936 if (d->device == q->device &&
7937 (d->subsystem_vendor == q->subsystem_vendor ||
7938 q->subsystem_vendor == PCI_ANY_ID) &&
7939 (d->subsystem_device == q->subsystem_device ||
7940 q->subsystem_device == PCI_ANY_ID))
7941 q->hook(dev);
7942 }
7943 }
7944
7945 /* Disable the VGA plane that we never use */
7946 static void i915_disable_vga(struct drm_device *dev)
7947 {
7948 struct drm_i915_private *dev_priv = dev->dev_private;
7949 u8 sr1;
7950 u32 vga_reg;
7951
7952 if (HAS_PCH_SPLIT(dev))
7953 vga_reg = CPU_VGACNTRL;
7954 else
7955 vga_reg = VGACNTRL;
7956
7957 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7958 outb(SR01, VGA_SR_INDEX);
7959 sr1 = inb(VGA_SR_DATA);
7960 outb(sr1 | 1<<5, VGA_SR_DATA);
7961 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7962 udelay(300);
7963
7964 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7965 POSTING_READ(vga_reg);
7966 }
7967
7968 void intel_modeset_init_hw(struct drm_device *dev)
7969 {
7970 /* We attempt to init the necessary power wells early in the initialization
7971 * time, so the subsystems that expect power to be enabled can work.
7972 */
7973 intel_init_power_wells(dev);
7974
7975 intel_prepare_ddi(dev);
7976
7977 intel_init_clock_gating(dev);
7978
7979 mutex_lock(&dev->struct_mutex);
7980 intel_enable_gt_powersave(dev);
7981 mutex_unlock(&dev->struct_mutex);
7982 }
7983
7984 void intel_modeset_init(struct drm_device *dev)
7985 {
7986 struct drm_i915_private *dev_priv = dev->dev_private;
7987 int i, ret;
7988
7989 drm_mode_config_init(dev);
7990
7991 dev->mode_config.min_width = 0;
7992 dev->mode_config.min_height = 0;
7993
7994 dev->mode_config.preferred_depth = 24;
7995 dev->mode_config.prefer_shadow = 1;
7996
7997 dev->mode_config.funcs = &intel_mode_funcs;
7998
7999 intel_init_quirks(dev);
8000
8001 intel_init_pm(dev);
8002
8003 intel_init_display(dev);
8004
8005 if (IS_GEN2(dev)) {
8006 dev->mode_config.max_width = 2048;
8007 dev->mode_config.max_height = 2048;
8008 } else if (IS_GEN3(dev)) {
8009 dev->mode_config.max_width = 4096;
8010 dev->mode_config.max_height = 4096;
8011 } else {
8012 dev->mode_config.max_width = 8192;
8013 dev->mode_config.max_height = 8192;
8014 }
8015 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8016
8017 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8018 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8019
8020 for (i = 0; i < dev_priv->num_pipe; i++) {
8021 intel_crtc_init(dev, i);
8022 ret = intel_plane_init(dev, i);
8023 if (ret)
8024 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8025 }
8026
8027 intel_pch_pll_init(dev);
8028
8029 /* Just disable it once at startup */
8030 i915_disable_vga(dev);
8031 intel_setup_outputs(dev);
8032 }
8033
8034 static void
8035 intel_connector_break_all_links(struct intel_connector *connector)
8036 {
8037 connector->base.dpms = DRM_MODE_DPMS_OFF;
8038 connector->base.encoder = NULL;
8039 connector->encoder->connectors_active = false;
8040 connector->encoder->base.crtc = NULL;
8041 }
8042
8043 static void intel_enable_pipe_a(struct drm_device *dev)
8044 {
8045 struct intel_connector *connector;
8046 struct drm_connector *crt = NULL;
8047 struct intel_load_detect_pipe load_detect_temp;
8048
8049 /* We can't just switch on the pipe A, we need to set things up with a
8050 * proper mode and output configuration. As a gross hack, enable pipe A
8051 * by enabling the load detect pipe once. */
8052 list_for_each_entry(connector,
8053 &dev->mode_config.connector_list,
8054 base.head) {
8055 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8056 crt = &connector->base;
8057 break;
8058 }
8059 }
8060
8061 if (!crt)
8062 return;
8063
8064 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8065 intel_release_load_detect_pipe(crt, &load_detect_temp);
8066
8067
8068 }
8069
8070 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8071 {
8072 struct drm_device *dev = crtc->base.dev;
8073 struct drm_i915_private *dev_priv = dev->dev_private;
8074 u32 reg, val;
8075
8076 /* Clear any frame start delays used for debugging left by the BIOS */
8077 reg = PIPECONF(crtc->pipe);
8078 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8079
8080 /* We need to sanitize the plane -> pipe mapping first because this will
8081 * disable the crtc (and hence change the state) if it is wrong. */
8082 if (!HAS_PCH_SPLIT(dev)) {
8083 struct intel_connector *connector;
8084 bool plane;
8085
8086 reg = DSPCNTR(crtc->plane);
8087 val = I915_READ(reg);
8088
8089 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
8090 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8091 goto ok;
8092
8093 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8094 crtc->base.base.id);
8095
8096 /* Pipe has the wrong plane attached and the plane is active.
8097 * Temporarily change the plane mapping and disable everything
8098 * ... */
8099 plane = crtc->plane;
8100 crtc->plane = !plane;
8101 dev_priv->display.crtc_disable(&crtc->base);
8102 crtc->plane = plane;
8103
8104 /* ... and break all links. */
8105 list_for_each_entry(connector, &dev->mode_config.connector_list,
8106 base.head) {
8107 if (connector->encoder->base.crtc != &crtc->base)
8108 continue;
8109
8110 intel_connector_break_all_links(connector);
8111 }
8112
8113 WARN_ON(crtc->active);
8114 crtc->base.enabled = false;
8115 }
8116 ok:
8117
8118 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8119 crtc->pipe == PIPE_A && !crtc->active) {
8120 /* BIOS forgot to enable pipe A, this mostly happens after
8121 * resume. Force-enable the pipe to fix this, the update_dpms
8122 * call below we restore the pipe to the right state, but leave
8123 * the required bits on. */
8124 intel_enable_pipe_a(dev);
8125 }
8126
8127 /* Adjust the state of the output pipe according to whether we
8128 * have active connectors/encoders. */
8129 intel_crtc_update_dpms(&crtc->base);
8130
8131 if (crtc->active != crtc->base.enabled) {
8132 struct intel_encoder *encoder;
8133
8134 /* This can happen either due to bugs in the get_hw_state
8135 * functions or because the pipe is force-enabled due to the
8136 * pipe A quirk. */
8137 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8138 crtc->base.base.id,
8139 crtc->base.enabled ? "enabled" : "disabled",
8140 crtc->active ? "enabled" : "disabled");
8141
8142 crtc->base.enabled = crtc->active;
8143
8144 /* Because we only establish the connector -> encoder ->
8145 * crtc links if something is active, this means the
8146 * crtc is now deactivated. Break the links. connector
8147 * -> encoder links are only establish when things are
8148 * actually up, hence no need to break them. */
8149 WARN_ON(crtc->active);
8150
8151 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8152 WARN_ON(encoder->connectors_active);
8153 encoder->base.crtc = NULL;
8154 }
8155 }
8156 }
8157
8158 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8159 {
8160 struct intel_connector *connector;
8161 struct drm_device *dev = encoder->base.dev;
8162
8163 /* We need to check both for a crtc link (meaning that the
8164 * encoder is active and trying to read from a pipe) and the
8165 * pipe itself being active. */
8166 bool has_active_crtc = encoder->base.crtc &&
8167 to_intel_crtc(encoder->base.crtc)->active;
8168
8169 if (encoder->connectors_active && !has_active_crtc) {
8170 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8171 encoder->base.base.id,
8172 drm_get_encoder_name(&encoder->base));
8173
8174 /* Connector is active, but has no active pipe. This is
8175 * fallout from our resume register restoring. Disable
8176 * the encoder manually again. */
8177 if (encoder->base.crtc) {
8178 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8179 encoder->base.base.id,
8180 drm_get_encoder_name(&encoder->base));
8181 encoder->disable(encoder);
8182 }
8183
8184 /* Inconsistent output/port/pipe state happens presumably due to
8185 * a bug in one of the get_hw_state functions. Or someplace else
8186 * in our code, like the register restore mess on resume. Clamp
8187 * things to off as a safer default. */
8188 list_for_each_entry(connector,
8189 &dev->mode_config.connector_list,
8190 base.head) {
8191 if (connector->encoder != encoder)
8192 continue;
8193
8194 intel_connector_break_all_links(connector);
8195 }
8196 }
8197 /* Enabled encoders without active connectors will be fixed in
8198 * the crtc fixup. */
8199 }
8200
8201 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8202 * and i915 state tracking structures. */
8203 void intel_modeset_setup_hw_state(struct drm_device *dev)
8204 {
8205 struct drm_i915_private *dev_priv = dev->dev_private;
8206 enum pipe pipe;
8207 u32 tmp;
8208 struct intel_crtc *crtc;
8209 struct intel_encoder *encoder;
8210 struct intel_connector *connector;
8211
8212 for_each_pipe(pipe) {
8213 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8214
8215 tmp = I915_READ(PIPECONF(pipe));
8216 if (tmp & PIPECONF_ENABLE)
8217 crtc->active = true;
8218 else
8219 crtc->active = false;
8220
8221 crtc->base.enabled = crtc->active;
8222
8223 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8224 crtc->base.base.id,
8225 crtc->active ? "enabled" : "disabled");
8226 }
8227
8228 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8229 base.head) {
8230 pipe = 0;
8231
8232 if (encoder->get_hw_state(encoder, &pipe)) {
8233 encoder->base.crtc =
8234 dev_priv->pipe_to_crtc_mapping[pipe];
8235 } else {
8236 encoder->base.crtc = NULL;
8237 }
8238
8239 encoder->connectors_active = false;
8240 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8241 encoder->base.base.id,
8242 drm_get_encoder_name(&encoder->base),
8243 encoder->base.crtc ? "enabled" : "disabled",
8244 pipe);
8245 }
8246
8247 list_for_each_entry(connector, &dev->mode_config.connector_list,
8248 base.head) {
8249 if (connector->get_hw_state(connector)) {
8250 connector->base.dpms = DRM_MODE_DPMS_ON;
8251 connector->encoder->connectors_active = true;
8252 connector->base.encoder = &connector->encoder->base;
8253 } else {
8254 connector->base.dpms = DRM_MODE_DPMS_OFF;
8255 connector->base.encoder = NULL;
8256 }
8257 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8258 connector->base.base.id,
8259 drm_get_connector_name(&connector->base),
8260 connector->base.encoder ? "enabled" : "disabled");
8261 }
8262
8263 /* HW state is read out, now we need to sanitize this mess. */
8264 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8265 base.head) {
8266 intel_sanitize_encoder(encoder);
8267 }
8268
8269 for_each_pipe(pipe) {
8270 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8271 intel_sanitize_crtc(crtc);
8272 }
8273
8274 intel_modeset_update_staged_output_state(dev);
8275
8276 intel_modeset_check_state(dev);
8277 }
8278
8279 void intel_modeset_gem_init(struct drm_device *dev)
8280 {
8281 intel_modeset_init_hw(dev);
8282
8283 intel_setup_overlay(dev);
8284
8285 intel_modeset_setup_hw_state(dev);
8286 }
8287
8288 void intel_modeset_cleanup(struct drm_device *dev)
8289 {
8290 struct drm_i915_private *dev_priv = dev->dev_private;
8291 struct drm_crtc *crtc;
8292 struct intel_crtc *intel_crtc;
8293
8294 drm_kms_helper_poll_fini(dev);
8295 mutex_lock(&dev->struct_mutex);
8296
8297 intel_unregister_dsm_handler();
8298
8299
8300 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8301 /* Skip inactive CRTCs */
8302 if (!crtc->fb)
8303 continue;
8304
8305 intel_crtc = to_intel_crtc(crtc);
8306 intel_increase_pllclock(crtc);
8307 }
8308
8309 intel_disable_fbc(dev);
8310
8311 intel_disable_gt_powersave(dev);
8312
8313 ironlake_teardown_rc6(dev);
8314
8315 if (IS_VALLEYVIEW(dev))
8316 vlv_init_dpio(dev);
8317
8318 mutex_unlock(&dev->struct_mutex);
8319
8320 /* Disable the irq before mode object teardown, for the irq might
8321 * enqueue unpin/hotplug work. */
8322 drm_irq_uninstall(dev);
8323 cancel_work_sync(&dev_priv->hotplug_work);
8324 cancel_work_sync(&dev_priv->rps.work);
8325
8326 /* flush any delayed tasks or pending work */
8327 flush_scheduled_work();
8328
8329 drm_mode_config_cleanup(dev);
8330 }
8331
8332 /*
8333 * Return which encoder is currently attached for connector.
8334 */
8335 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8336 {
8337 return &intel_attached_encoder(connector)->base;
8338 }
8339
8340 void intel_connector_attach_encoder(struct intel_connector *connector,
8341 struct intel_encoder *encoder)
8342 {
8343 connector->encoder = encoder;
8344 drm_mode_connector_attach_encoder(&connector->base,
8345 &encoder->base);
8346 }
8347
8348 /*
8349 * set vga decode state - true == enable VGA decode
8350 */
8351 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8352 {
8353 struct drm_i915_private *dev_priv = dev->dev_private;
8354 u16 gmch_ctrl;
8355
8356 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8357 if (state)
8358 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8359 else
8360 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8361 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8362 return 0;
8363 }
8364
8365 #ifdef CONFIG_DEBUG_FS
8366 #include <linux/seq_file.h>
8367
8368 struct intel_display_error_state {
8369 struct intel_cursor_error_state {
8370 u32 control;
8371 u32 position;
8372 u32 base;
8373 u32 size;
8374 } cursor[I915_MAX_PIPES];
8375
8376 struct intel_pipe_error_state {
8377 u32 conf;
8378 u32 source;
8379
8380 u32 htotal;
8381 u32 hblank;
8382 u32 hsync;
8383 u32 vtotal;
8384 u32 vblank;
8385 u32 vsync;
8386 } pipe[I915_MAX_PIPES];
8387
8388 struct intel_plane_error_state {
8389 u32 control;
8390 u32 stride;
8391 u32 size;
8392 u32 pos;
8393 u32 addr;
8394 u32 surface;
8395 u32 tile_offset;
8396 } plane[I915_MAX_PIPES];
8397 };
8398
8399 struct intel_display_error_state *
8400 intel_display_capture_error_state(struct drm_device *dev)
8401 {
8402 drm_i915_private_t *dev_priv = dev->dev_private;
8403 struct intel_display_error_state *error;
8404 int i;
8405
8406 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8407 if (error == NULL)
8408 return NULL;
8409
8410 for_each_pipe(i) {
8411 error->cursor[i].control = I915_READ(CURCNTR(i));
8412 error->cursor[i].position = I915_READ(CURPOS(i));
8413 error->cursor[i].base = I915_READ(CURBASE(i));
8414
8415 error->plane[i].control = I915_READ(DSPCNTR(i));
8416 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8417 error->plane[i].size = I915_READ(DSPSIZE(i));
8418 error->plane[i].pos = I915_READ(DSPPOS(i));
8419 error->plane[i].addr = I915_READ(DSPADDR(i));
8420 if (INTEL_INFO(dev)->gen >= 4) {
8421 error->plane[i].surface = I915_READ(DSPSURF(i));
8422 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8423 }
8424
8425 error->pipe[i].conf = I915_READ(PIPECONF(i));
8426 error->pipe[i].source = I915_READ(PIPESRC(i));
8427 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8428 error->pipe[i].hblank = I915_READ(HBLANK(i));
8429 error->pipe[i].hsync = I915_READ(HSYNC(i));
8430 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8431 error->pipe[i].vblank = I915_READ(VBLANK(i));
8432 error->pipe[i].vsync = I915_READ(VSYNC(i));
8433 }
8434
8435 return error;
8436 }
8437
8438 void
8439 intel_display_print_error_state(struct seq_file *m,
8440 struct drm_device *dev,
8441 struct intel_display_error_state *error)
8442 {
8443 drm_i915_private_t *dev_priv = dev->dev_private;
8444 int i;
8445
8446 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8447 for_each_pipe(i) {
8448 seq_printf(m, "Pipe [%d]:\n", i);
8449 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8450 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8451 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8452 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8453 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8454 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8455 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8456 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8457
8458 seq_printf(m, "Plane [%d]:\n", i);
8459 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8460 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8461 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8462 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8463 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8464 if (INTEL_INFO(dev)->gen >= 4) {
8465 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8466 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8467 }
8468
8469 seq_printf(m, "Cursor [%d]:\n", i);
8470 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8471 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8472 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8473 }
8474 }
8475 #endif
This page took 0.324007 seconds and 5 git commands to generate.