drm/i915: Rename intel_context[engine].ringbuf
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_dmabuf.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int bxt_calc_cdclk(int max_pixclk);
127
128 struct intel_limit {
129 struct {
130 int min, max;
131 } dot, vco, n, m, m1, m2, p, p1;
132
133 struct {
134 int dot_limit;
135 int p2_slow, p2_fast;
136 } p2;
137 };
138
139 /* returns HPLL frequency in kHz */
140 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141 {
142 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144 /* Obtain SKU information */
145 mutex_lock(&dev_priv->sb_lock);
146 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147 CCK_FUSE_HPLL_FREQ_MASK;
148 mutex_unlock(&dev_priv->sb_lock);
149
150 return vco_freq[hpll_freq] * 1000;
151 }
152
153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154 const char *name, u32 reg, int ref_freq)
155 {
156 u32 val;
157 int divider;
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 }
171
172 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173 const char *name, u32 reg)
174 {
175 if (dev_priv->hpll_freq == 0)
176 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178 return vlv_get_cck_clock(dev_priv, name, reg,
179 dev_priv->hpll_freq);
180 }
181
182 static int
183 intel_pch_rawclk(struct drm_i915_private *dev_priv)
184 {
185 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186 }
187
188 static int
189 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190 {
191 /* RAWCLK_FREQ_VLV register updated from power well code */
192 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193 CCK_DISPLAY_REF_CLOCK_CONTROL);
194 }
195
196 static int
197 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
198 {
199 uint32_t clkcfg;
200
201 /* hrawclock is 1/4 the FSB frequency */
202 clkcfg = I915_READ(CLKCFG);
203 switch (clkcfg & CLKCFG_FSB_MASK) {
204 case CLKCFG_FSB_400:
205 return 100000;
206 case CLKCFG_FSB_533:
207 return 133333;
208 case CLKCFG_FSB_667:
209 return 166667;
210 case CLKCFG_FSB_800:
211 return 200000;
212 case CLKCFG_FSB_1067:
213 return 266667;
214 case CLKCFG_FSB_1333:
215 return 333333;
216 /* these two are just a guess; one of them might be right */
217 case CLKCFG_FSB_1600:
218 case CLKCFG_FSB_1600_ALT:
219 return 400000;
220 default:
221 return 133333;
222 }
223 }
224
225 void intel_update_rawclk(struct drm_i915_private *dev_priv)
226 {
227 if (HAS_PCH_SPLIT(dev_priv))
228 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233 else
234 return; /* no rawclk on other platforms, or no need to know it */
235
236 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237 }
238
239 static void intel_update_czclk(struct drm_i915_private *dev_priv)
240 {
241 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
242 return;
243
244 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245 CCK_CZ_CLOCK_CONTROL);
246
247 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248 }
249
250 static inline u32 /* units of 100MHz */
251 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252 const struct intel_crtc_state *pipe_config)
253 {
254 if (HAS_DDI(dev_priv))
255 return pipe_config->port_clock; /* SPLL */
256 else if (IS_GEN5(dev_priv))
257 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
258 else
259 return 270000;
260 }
261
262 static const struct intel_limit intel_limits_i8xx_dac = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 2, .max = 33 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 4, .p2_fast = 2 },
273 };
274
275 static const struct intel_limit intel_limits_i8xx_dvo = {
276 .dot = { .min = 25000, .max = 350000 },
277 .vco = { .min = 908000, .max = 1512000 },
278 .n = { .min = 2, .max = 16 },
279 .m = { .min = 96, .max = 140 },
280 .m1 = { .min = 18, .max = 26 },
281 .m2 = { .min = 6, .max = 16 },
282 .p = { .min = 4, .max = 128 },
283 .p1 = { .min = 2, .max = 33 },
284 .p2 = { .dot_limit = 165000,
285 .p2_slow = 4, .p2_fast = 4 },
286 };
287
288 static const struct intel_limit intel_limits_i8xx_lvds = {
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 908000, .max = 1512000 },
291 .n = { .min = 2, .max = 16 },
292 .m = { .min = 96, .max = 140 },
293 .m1 = { .min = 18, .max = 26 },
294 .m2 = { .min = 6, .max = 16 },
295 .p = { .min = 4, .max = 128 },
296 .p1 = { .min = 1, .max = 6 },
297 .p2 = { .dot_limit = 165000,
298 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301 static const struct intel_limit intel_limits_i9xx_sdvo = {
302 .dot = { .min = 20000, .max = 400000 },
303 .vco = { .min = 1400000, .max = 2800000 },
304 .n = { .min = 1, .max = 6 },
305 .m = { .min = 70, .max = 120 },
306 .m1 = { .min = 8, .max = 18 },
307 .m2 = { .min = 3, .max = 7 },
308 .p = { .min = 5, .max = 80 },
309 .p1 = { .min = 1, .max = 8 },
310 .p2 = { .dot_limit = 200000,
311 .p2_slow = 10, .p2_fast = 5 },
312 };
313
314 static const struct intel_limit intel_limits_i9xx_lvds = {
315 .dot = { .min = 20000, .max = 400000 },
316 .vco = { .min = 1400000, .max = 2800000 },
317 .n = { .min = 1, .max = 6 },
318 .m = { .min = 70, .max = 120 },
319 .m1 = { .min = 8, .max = 18 },
320 .m2 = { .min = 3, .max = 7 },
321 .p = { .min = 7, .max = 98 },
322 .p1 = { .min = 1, .max = 8 },
323 .p2 = { .dot_limit = 112000,
324 .p2_slow = 14, .p2_fast = 7 },
325 };
326
327
328 static const struct intel_limit intel_limits_g4x_sdvo = {
329 .dot = { .min = 25000, .max = 270000 },
330 .vco = { .min = 1750000, .max = 3500000},
331 .n = { .min = 1, .max = 4 },
332 .m = { .min = 104, .max = 138 },
333 .m1 = { .min = 17, .max = 23 },
334 .m2 = { .min = 5, .max = 11 },
335 .p = { .min = 10, .max = 30 },
336 .p1 = { .min = 1, .max = 3},
337 .p2 = { .dot_limit = 270000,
338 .p2_slow = 10,
339 .p2_fast = 10
340 },
341 };
342
343 static const struct intel_limit intel_limits_g4x_hdmi = {
344 .dot = { .min = 22000, .max = 400000 },
345 .vco = { .min = 1750000, .max = 3500000},
346 .n = { .min = 1, .max = 4 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 16, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 5, .max = 80 },
351 .p1 = { .min = 1, .max = 8},
352 .p2 = { .dot_limit = 165000,
353 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
357 .dot = { .min = 20000, .max = 115000 },
358 .vco = { .min = 1750000, .max = 3500000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 104, .max = 138 },
361 .m1 = { .min = 17, .max = 23 },
362 .m2 = { .min = 5, .max = 11 },
363 .p = { .min = 28, .max = 112 },
364 .p1 = { .min = 2, .max = 8 },
365 .p2 = { .dot_limit = 0,
366 .p2_slow = 14, .p2_fast = 14
367 },
368 };
369
370 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
371 .dot = { .min = 80000, .max = 224000 },
372 .vco = { .min = 1750000, .max = 3500000 },
373 .n = { .min = 1, .max = 3 },
374 .m = { .min = 104, .max = 138 },
375 .m1 = { .min = 17, .max = 23 },
376 .m2 = { .min = 5, .max = 11 },
377 .p = { .min = 14, .max = 42 },
378 .p1 = { .min = 2, .max = 6 },
379 .p2 = { .dot_limit = 0,
380 .p2_slow = 7, .p2_fast = 7
381 },
382 };
383
384 static const struct intel_limit intel_limits_pineview_sdvo = {
385 .dot = { .min = 20000, .max = 400000},
386 .vco = { .min = 1700000, .max = 3500000 },
387 /* Pineview's Ncounter is a ring counter */
388 .n = { .min = 3, .max = 6 },
389 .m = { .min = 2, .max = 256 },
390 /* Pineview only has one combined m divider, which we treat as m2. */
391 .m1 = { .min = 0, .max = 0 },
392 .m2 = { .min = 0, .max = 254 },
393 .p = { .min = 5, .max = 80 },
394 .p1 = { .min = 1, .max = 8 },
395 .p2 = { .dot_limit = 200000,
396 .p2_slow = 10, .p2_fast = 5 },
397 };
398
399 static const struct intel_limit intel_limits_pineview_lvds = {
400 .dot = { .min = 20000, .max = 400000 },
401 .vco = { .min = 1700000, .max = 3500000 },
402 .n = { .min = 3, .max = 6 },
403 .m = { .min = 2, .max = 256 },
404 .m1 = { .min = 0, .max = 0 },
405 .m2 = { .min = 0, .max = 254 },
406 .p = { .min = 7, .max = 112 },
407 .p1 = { .min = 1, .max = 8 },
408 .p2 = { .dot_limit = 112000,
409 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 /* Ironlake / Sandybridge
413 *
414 * We calculate clock using (register_value + 2) for N/M1/M2, so here
415 * the range value for them is (actual_value - 2).
416 */
417 static const struct intel_limit intel_limits_ironlake_dac = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 5 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 5, .max = 80 },
425 .p1 = { .min = 1, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 10, .p2_fast = 5 },
428 };
429
430 static const struct intel_limit intel_limits_ironlake_single_lvds = {
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 3 },
434 .m = { .min = 79, .max = 118 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 127 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 56 },
451 .p1 = { .min = 2, .max = 8 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 /* LVDS 100mhz refclk limits. */
457 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
458 .dot = { .min = 25000, .max = 350000 },
459 .vco = { .min = 1760000, .max = 3510000 },
460 .n = { .min = 1, .max = 2 },
461 .m = { .min = 79, .max = 126 },
462 .m1 = { .min = 12, .max = 22 },
463 .m2 = { .min = 5, .max = 9 },
464 .p = { .min = 28, .max = 112 },
465 .p1 = { .min = 2, .max = 8 },
466 .p2 = { .dot_limit = 225000,
467 .p2_slow = 14, .p2_fast = 14 },
468 };
469
470 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
471 .dot = { .min = 25000, .max = 350000 },
472 .vco = { .min = 1760000, .max = 3510000 },
473 .n = { .min = 1, .max = 3 },
474 .m = { .min = 79, .max = 126 },
475 .m1 = { .min = 12, .max = 22 },
476 .m2 = { .min = 5, .max = 9 },
477 .p = { .min = 14, .max = 42 },
478 .p1 = { .min = 2, .max = 6 },
479 .p2 = { .dot_limit = 225000,
480 .p2_slow = 7, .p2_fast = 7 },
481 };
482
483 static const struct intel_limit intel_limits_vlv = {
484 /*
485 * These are the data rate limits (measured in fast clocks)
486 * since those are the strictest limits we have. The fast
487 * clock and actual rate limits are more relaxed, so checking
488 * them would make no difference.
489 */
490 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
491 .vco = { .min = 4000000, .max = 6000000 },
492 .n = { .min = 1, .max = 7 },
493 .m1 = { .min = 2, .max = 3 },
494 .m2 = { .min = 11, .max = 156 },
495 .p1 = { .min = 2, .max = 3 },
496 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
497 };
498
499 static const struct intel_limit intel_limits_chv = {
500 /*
501 * These are the data rate limits (measured in fast clocks)
502 * since those are the strictest limits we have. The fast
503 * clock and actual rate limits are more relaxed, so checking
504 * them would make no difference.
505 */
506 .dot = { .min = 25000 * 5, .max = 540000 * 5},
507 .vco = { .min = 4800000, .max = 6480000 },
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 .m2 = { .min = 24 << 22, .max = 175 << 22 },
511 .p1 = { .min = 2, .max = 4 },
512 .p2 = { .p2_slow = 1, .p2_fast = 14 },
513 };
514
515 static const struct intel_limit intel_limits_bxt = {
516 /* FIXME: find real dot limits */
517 .dot = { .min = 0, .max = INT_MAX },
518 .vco = { .min = 4800000, .max = 6700000 },
519 .n = { .min = 1, .max = 1 },
520 .m1 = { .min = 2, .max = 2 },
521 /* FIXME: find real m2 limits */
522 .m2 = { .min = 2 << 22, .max = 255 << 22 },
523 .p1 = { .min = 2, .max = 4 },
524 .p2 = { .p2_slow = 1, .p2_fast = 20 },
525 };
526
527 static bool
528 needs_modeset(struct drm_crtc_state *state)
529 {
530 return drm_atomic_crtc_needs_modeset(state);
531 }
532
533 /*
534 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
535 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
536 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
537 * The helpers' return value is the rate of the clock that is fed to the
538 * display engine's pipe which can be the above fast dot clock rate or a
539 * divided-down version of it.
540 */
541 /* m1 is reserved as 0 in Pineview, n is a ring counter */
542 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
543 {
544 clock->m = clock->m2 + 2;
545 clock->p = clock->p1 * clock->p2;
546 if (WARN_ON(clock->n == 0 || clock->p == 0))
547 return 0;
548 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
549 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
550
551 return clock->dot;
552 }
553
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
559 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
560 {
561 clock->m = i9xx_dpll_compute_m(clock);
562 clock->p = clock->p1 * clock->p2;
563 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 return 0;
565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567
568 return clock->dot;
569 }
570
571 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
572 {
573 clock->m = clock->m1 * clock->m2;
574 clock->p = clock->p1 * clock->p2;
575 if (WARN_ON(clock->n == 0 || clock->p == 0))
576 return 0;
577 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
578 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
579
580 return clock->dot / 5;
581 }
582
583 int chv_calc_dpll_params(int refclk, struct dpll *clock)
584 {
585 clock->m = clock->m1 * clock->m2;
586 clock->p = clock->p1 * clock->p2;
587 if (WARN_ON(clock->n == 0 || clock->p == 0))
588 return 0;
589 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
590 clock->n << 22);
591 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592
593 return clock->dot / 5;
594 }
595
596 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
597 /**
598 * Returns whether the given set of divisors are valid for a given refclk with
599 * the given connectors.
600 */
601
602 static bool intel_PLL_is_valid(struct drm_device *dev,
603 const struct intel_limit *limit,
604 const struct dpll *clock)
605 {
606 if (clock->n < limit->n.min || limit->n.max < clock->n)
607 INTELPllInvalid("n out of range\n");
608 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
609 INTELPllInvalid("p1 out of range\n");
610 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
611 INTELPllInvalid("m2 out of range\n");
612 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
613 INTELPllInvalid("m1 out of range\n");
614
615 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
616 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
617 if (clock->m1 <= clock->m2)
618 INTELPllInvalid("m1 <= m2\n");
619
620 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
621 if (clock->p < limit->p.min || limit->p.max < clock->p)
622 INTELPllInvalid("p out of range\n");
623 if (clock->m < limit->m.min || limit->m.max < clock->m)
624 INTELPllInvalid("m out of range\n");
625 }
626
627 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 INTELPllInvalid("vco out of range\n");
629 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 * connector, etc., rather than just a single range.
631 */
632 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 INTELPllInvalid("dot out of range\n");
634
635 return true;
636 }
637
638 static int
639 i9xx_select_p2_div(const struct intel_limit *limit,
640 const struct intel_crtc_state *crtc_state,
641 int target)
642 {
643 struct drm_device *dev = crtc_state->base.crtc->dev;
644
645 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
646 /*
647 * For LVDS just rely on its current settings for dual-channel.
648 * We haven't figured out how to reliably set up different
649 * single/dual channel state, if we even can.
650 */
651 if (intel_is_dual_link_lvds(dev))
652 return limit->p2.p2_fast;
653 else
654 return limit->p2.p2_slow;
655 } else {
656 if (target < limit->p2.dot_limit)
657 return limit->p2.p2_slow;
658 else
659 return limit->p2.p2_fast;
660 }
661 }
662
663 /*
664 * Returns a set of divisors for the desired target clock with the given
665 * refclk, or FALSE. The returned values represent the clock equation:
666 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667 *
668 * Target and reference clocks are specified in kHz.
669 *
670 * If match_clock is provided, then best_clock P divider must match the P
671 * divider from @match_clock used for LVDS downclocking.
672 */
673 static bool
674 i9xx_find_best_dpll(const struct intel_limit *limit,
675 struct intel_crtc_state *crtc_state,
676 int target, int refclk, struct dpll *match_clock,
677 struct dpll *best_clock)
678 {
679 struct drm_device *dev = crtc_state->base.crtc->dev;
680 struct dpll clock;
681 int err = target;
682
683 memset(best_clock, 0, sizeof(*best_clock));
684
685 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 if (clock.m2 >= clock.m1)
692 break;
693 for (clock.n = limit->n.min;
694 clock.n <= limit->n.max; clock.n++) {
695 for (clock.p1 = limit->p1.min;
696 clock.p1 <= limit->p1.max; clock.p1++) {
697 int this_err;
698
699 i9xx_calc_dpll_params(refclk, &clock);
700 if (!intel_PLL_is_valid(dev, limit,
701 &clock))
702 continue;
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718 }
719
720 /*
721 * Returns a set of divisors for the desired target clock with the given
722 * refclk, or FALSE. The returned values represent the clock equation:
723 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724 *
725 * Target and reference clocks are specified in kHz.
726 *
727 * If match_clock is provided, then best_clock P divider must match the P
728 * divider from @match_clock used for LVDS downclocking.
729 */
730 static bool
731 pnv_find_best_dpll(const struct intel_limit *limit,
732 struct intel_crtc_state *crtc_state,
733 int target, int refclk, struct dpll *match_clock,
734 struct dpll *best_clock)
735 {
736 struct drm_device *dev = crtc_state->base.crtc->dev;
737 struct dpll clock;
738 int err = target;
739
740 memset(best_clock, 0, sizeof(*best_clock));
741
742 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
743
744 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
745 clock.m1++) {
746 for (clock.m2 = limit->m2.min;
747 clock.m2 <= limit->m2.max; clock.m2++) {
748 for (clock.n = limit->n.min;
749 clock.n <= limit->n.max; clock.n++) {
750 for (clock.p1 = limit->p1.min;
751 clock.p1 <= limit->p1.max; clock.p1++) {
752 int this_err;
753
754 pnv_calc_dpll_params(refclk, &clock);
755 if (!intel_PLL_is_valid(dev, limit,
756 &clock))
757 continue;
758 if (match_clock &&
759 clock.p != match_clock->p)
760 continue;
761
762 this_err = abs(clock.dot - target);
763 if (this_err < err) {
764 *best_clock = clock;
765 err = this_err;
766 }
767 }
768 }
769 }
770 }
771
772 return (err != target);
773 }
774
775 /*
776 * Returns a set of divisors for the desired target clock with the given
777 * refclk, or FALSE. The returned values represent the clock equation:
778 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
779 *
780 * Target and reference clocks are specified in kHz.
781 *
782 * If match_clock is provided, then best_clock P divider must match the P
783 * divider from @match_clock used for LVDS downclocking.
784 */
785 static bool
786 g4x_find_best_dpll(const struct intel_limit *limit,
787 struct intel_crtc_state *crtc_state,
788 int target, int refclk, struct dpll *match_clock,
789 struct dpll *best_clock)
790 {
791 struct drm_device *dev = crtc_state->base.crtc->dev;
792 struct dpll clock;
793 int max_n;
794 bool found = false;
795 /* approximately equals target * 0.00585 */
796 int err_most = (target >> 8) + (target >> 9);
797
798 memset(best_clock, 0, sizeof(*best_clock));
799
800 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
801
802 max_n = limit->n.max;
803 /* based on hardware requirement, prefer smaller n to precision */
804 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
805 /* based on hardware requirement, prefere larger m1,m2 */
806 for (clock.m1 = limit->m1.max;
807 clock.m1 >= limit->m1.min; clock.m1--) {
808 for (clock.m2 = limit->m2.max;
809 clock.m2 >= limit->m2.min; clock.m2--) {
810 for (clock.p1 = limit->p1.max;
811 clock.p1 >= limit->p1.min; clock.p1--) {
812 int this_err;
813
814 i9xx_calc_dpll_params(refclk, &clock);
815 if (!intel_PLL_is_valid(dev, limit,
816 &clock))
817 continue;
818
819 this_err = abs(clock.dot - target);
820 if (this_err < err_most) {
821 *best_clock = clock;
822 err_most = this_err;
823 max_n = clock.n;
824 found = true;
825 }
826 }
827 }
828 }
829 }
830 return found;
831 }
832
833 /*
834 * Check if the calculated PLL configuration is more optimal compared to the
835 * best configuration and error found so far. Return the calculated error.
836 */
837 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
838 const struct dpll *calculated_clock,
839 const struct dpll *best_clock,
840 unsigned int best_error_ppm,
841 unsigned int *error_ppm)
842 {
843 /*
844 * For CHV ignore the error and consider only the P value.
845 * Prefer a bigger P value based on HW requirements.
846 */
847 if (IS_CHERRYVIEW(dev)) {
848 *error_ppm = 0;
849
850 return calculated_clock->p > best_clock->p;
851 }
852
853 if (WARN_ON_ONCE(!target_freq))
854 return false;
855
856 *error_ppm = div_u64(1000000ULL *
857 abs(target_freq - calculated_clock->dot),
858 target_freq);
859 /*
860 * Prefer a better P value over a better (smaller) error if the error
861 * is small. Ensure this preference for future configurations too by
862 * setting the error to 0.
863 */
864 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
865 *error_ppm = 0;
866
867 return true;
868 }
869
870 return *error_ppm + 10 < best_error_ppm;
871 }
872
873 /*
874 * Returns a set of divisors for the desired target clock with the given
875 * refclk, or FALSE. The returned values represent the clock equation:
876 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
877 */
878 static bool
879 vlv_find_best_dpll(const struct intel_limit *limit,
880 struct intel_crtc_state *crtc_state,
881 int target, int refclk, struct dpll *match_clock,
882 struct dpll *best_clock)
883 {
884 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
885 struct drm_device *dev = crtc->base.dev;
886 struct dpll clock;
887 unsigned int bestppm = 1000000;
888 /* min update 19.2 MHz */
889 int max_n = min(limit->n.max, refclk / 19200);
890 bool found = false;
891
892 target *= 5; /* fast clock */
893
894 memset(best_clock, 0, sizeof(*best_clock));
895
896 /* based on hardware requirement, prefer smaller n to precision */
897 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
899 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
900 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
901 clock.p = clock.p1 * clock.p2;
902 /* based on hardware requirement, prefer bigger m1,m2 values */
903 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
904 unsigned int ppm;
905
906 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
907 refclk * clock.m1);
908
909 vlv_calc_dpll_params(refclk, &clock);
910
911 if (!intel_PLL_is_valid(dev, limit,
912 &clock))
913 continue;
914
915 if (!vlv_PLL_is_optimal(dev, target,
916 &clock,
917 best_clock,
918 bestppm, &ppm))
919 continue;
920
921 *best_clock = clock;
922 bestppm = ppm;
923 found = true;
924 }
925 }
926 }
927 }
928
929 return found;
930 }
931
932 /*
933 * Returns a set of divisors for the desired target clock with the given
934 * refclk, or FALSE. The returned values represent the clock equation:
935 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
936 */
937 static bool
938 chv_find_best_dpll(const struct intel_limit *limit,
939 struct intel_crtc_state *crtc_state,
940 int target, int refclk, struct dpll *match_clock,
941 struct dpll *best_clock)
942 {
943 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
944 struct drm_device *dev = crtc->base.dev;
945 unsigned int best_error_ppm;
946 struct dpll clock;
947 uint64_t m2;
948 int found = false;
949
950 memset(best_clock, 0, sizeof(*best_clock));
951 best_error_ppm = 1000000;
952
953 /*
954 * Based on hardware doc, the n always set to 1, and m1 always
955 * set to 2. If requires to support 200Mhz refclk, we need to
956 * revisit this because n may not 1 anymore.
957 */
958 clock.n = 1, clock.m1 = 2;
959 target *= 5; /* fast clock */
960
961 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
962 for (clock.p2 = limit->p2.p2_fast;
963 clock.p2 >= limit->p2.p2_slow;
964 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
965 unsigned int error_ppm;
966
967 clock.p = clock.p1 * clock.p2;
968
969 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
970 clock.n) << 22, refclk * clock.m1);
971
972 if (m2 > INT_MAX/clock.m1)
973 continue;
974
975 clock.m2 = m2;
976
977 chv_calc_dpll_params(refclk, &clock);
978
979 if (!intel_PLL_is_valid(dev, limit, &clock))
980 continue;
981
982 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
983 best_error_ppm, &error_ppm))
984 continue;
985
986 *best_clock = clock;
987 best_error_ppm = error_ppm;
988 found = true;
989 }
990 }
991
992 return found;
993 }
994
995 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
996 struct dpll *best_clock)
997 {
998 int refclk = 100000;
999 const struct intel_limit *limit = &intel_limits_bxt;
1000
1001 return chv_find_best_dpll(limit, crtc_state,
1002 target_clock, refclk, NULL, best_clock);
1003 }
1004
1005 bool intel_crtc_active(struct drm_crtc *crtc)
1006 {
1007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008
1009 /* Be paranoid as we can arrive here with only partial
1010 * state retrieved from the hardware during setup.
1011 *
1012 * We can ditch the adjusted_mode.crtc_clock check as soon
1013 * as Haswell has gained clock readout/fastboot support.
1014 *
1015 * We can ditch the crtc->primary->fb check as soon as we can
1016 * properly reconstruct framebuffers.
1017 *
1018 * FIXME: The intel_crtc->active here should be switched to
1019 * crtc->state->active once we have proper CRTC states wired up
1020 * for atomic.
1021 */
1022 return intel_crtc->active && crtc->primary->state->fb &&
1023 intel_crtc->config->base.adjusted_mode.crtc_clock;
1024 }
1025
1026 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1031
1032 return intel_crtc->config->cpu_transcoder;
1033 }
1034
1035 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1036 {
1037 struct drm_i915_private *dev_priv = to_i915(dev);
1038 i915_reg_t reg = PIPEDSL(pipe);
1039 u32 line1, line2;
1040 u32 line_mask;
1041
1042 if (IS_GEN2(dev))
1043 line_mask = DSL_LINEMASK_GEN2;
1044 else
1045 line_mask = DSL_LINEMASK_GEN3;
1046
1047 line1 = I915_READ(reg) & line_mask;
1048 msleep(5);
1049 line2 = I915_READ(reg) & line_mask;
1050
1051 return line1 == line2;
1052 }
1053
1054 /*
1055 * intel_wait_for_pipe_off - wait for pipe to turn off
1056 * @crtc: crtc whose pipe to wait for
1057 *
1058 * After disabling a pipe, we can't wait for vblank in the usual way,
1059 * spinning on the vblank interrupt status bit, since we won't actually
1060 * see an interrupt when the pipe is disabled.
1061 *
1062 * On Gen4 and above:
1063 * wait for the pipe register state bit to turn off
1064 *
1065 * Otherwise:
1066 * wait for the display line value to settle (it usually
1067 * ends up stopping at the start of the next frame).
1068 *
1069 */
1070 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1071 {
1072 struct drm_device *dev = crtc->base.dev;
1073 struct drm_i915_private *dev_priv = to_i915(dev);
1074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1075 enum pipe pipe = crtc->pipe;
1076
1077 if (INTEL_INFO(dev)->gen >= 4) {
1078 i915_reg_t reg = PIPECONF(cpu_transcoder);
1079
1080 /* Wait for the Pipe State to go off */
1081 if (intel_wait_for_register(dev_priv,
1082 reg, I965_PIPECONF_ACTIVE, 0,
1083 100))
1084 WARN(1, "pipe_off wait timed out\n");
1085 } else {
1086 /* Wait for the display line to settle */
1087 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1088 WARN(1, "pipe_off wait timed out\n");
1089 }
1090 }
1091
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094 enum pipe pipe, bool state)
1095 {
1096 u32 val;
1097 bool cur_state;
1098
1099 val = I915_READ(DPLL(pipe));
1100 cur_state = !!(val & DPLL_VCO_ENABLE);
1101 I915_STATE_WARN(cur_state != state,
1102 "PLL state assertion failure (expected %s, current %s)\n",
1103 onoff(state), onoff(cur_state));
1104 }
1105
1106 /* XXX: the dsi pll is shared between MIPI DSI ports */
1107 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1108 {
1109 u32 val;
1110 bool cur_state;
1111
1112 mutex_lock(&dev_priv->sb_lock);
1113 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1114 mutex_unlock(&dev_priv->sb_lock);
1115
1116 cur_state = val & DSI_PLL_VCO_EN;
1117 I915_STATE_WARN(cur_state != state,
1118 "DSI PLL state assertion failure (expected %s, current %s)\n",
1119 onoff(state), onoff(cur_state));
1120 }
1121
1122 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1123 enum pipe pipe, bool state)
1124 {
1125 bool cur_state;
1126 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1127 pipe);
1128
1129 if (HAS_DDI(dev_priv)) {
1130 /* DDI does not have a specific FDI_TX register */
1131 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1132 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133 } else {
1134 u32 val = I915_READ(FDI_TX_CTL(pipe));
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
1137 I915_STATE_WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146 {
1147 u32 val;
1148 bool cur_state;
1149
1150 val = I915_READ(FDI_RX_CTL(pipe));
1151 cur_state = !!(val & FDI_RX_ENABLE);
1152 I915_STATE_WARN(cur_state != state,
1153 "FDI RX state assertion failure (expected %s, current %s)\n",
1154 onoff(state), onoff(cur_state));
1155 }
1156 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1161 {
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
1165 if (IS_GEN5(dev_priv))
1166 return;
1167
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv))
1170 return;
1171
1172 val = I915_READ(FDI_TX_CTL(pipe));
1173 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1174 }
1175
1176 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1177 enum pipe pipe, bool state)
1178 {
1179 u32 val;
1180 bool cur_state;
1181
1182 val = I915_READ(FDI_RX_CTL(pipe));
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 I915_STATE_WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 onoff(state), onoff(cur_state));
1187 }
1188
1189 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191 {
1192 struct drm_device *dev = &dev_priv->drm;
1193 i915_reg_t pp_reg;
1194 u32 val;
1195 enum pipe panel_pipe = PIPE_A;
1196 bool locked = true;
1197
1198 if (WARN_ON(HAS_DDI(dev)))
1199 return;
1200
1201 if (HAS_PCH_SPLIT(dev)) {
1202 u32 port_sel;
1203
1204 pp_reg = PCH_PP_CONTROL;
1205 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1206
1207 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1208 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1209 panel_pipe = PIPE_B;
1210 /* XXX: else fix for eDP */
1211 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1212 /* presumably write lock depends on pipe, not port select */
1213 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1214 panel_pipe = pipe;
1215 } else {
1216 pp_reg = PP_CONTROL;
1217 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1218 panel_pipe = PIPE_B;
1219 }
1220
1221 val = I915_READ(pp_reg);
1222 if (!(val & PANEL_POWER_ON) ||
1223 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1224 locked = false;
1225
1226 I915_STATE_WARN(panel_pipe == pipe && locked,
1227 "panel assertion failure, pipe %c regs locked\n",
1228 pipe_name(pipe));
1229 }
1230
1231 static void assert_cursor(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, bool state)
1233 {
1234 struct drm_device *dev = &dev_priv->drm;
1235 bool cur_state;
1236
1237 if (IS_845G(dev) || IS_I865G(dev))
1238 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1239 else
1240 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1241
1242 I915_STATE_WARN(cur_state != state,
1243 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1244 pipe_name(pipe), onoff(state), onoff(cur_state));
1245 }
1246 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1247 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1248
1249 void assert_pipe(struct drm_i915_private *dev_priv,
1250 enum pipe pipe, bool state)
1251 {
1252 bool cur_state;
1253 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1254 pipe);
1255 enum intel_display_power_domain power_domain;
1256
1257 /* if we need the pipe quirk it must be always on */
1258 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1259 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1260 state = true;
1261
1262 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1263 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1264 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1265 cur_state = !!(val & PIPECONF_ENABLE);
1266
1267 intel_display_power_put(dev_priv, power_domain);
1268 } else {
1269 cur_state = false;
1270 }
1271
1272 I915_STATE_WARN(cur_state != state,
1273 "pipe %c assertion failure (expected %s, current %s)\n",
1274 pipe_name(pipe), onoff(state), onoff(cur_state));
1275 }
1276
1277 static void assert_plane(struct drm_i915_private *dev_priv,
1278 enum plane plane, bool state)
1279 {
1280 u32 val;
1281 bool cur_state;
1282
1283 val = I915_READ(DSPCNTR(plane));
1284 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1285 I915_STATE_WARN(cur_state != state,
1286 "plane %c assertion failure (expected %s, current %s)\n",
1287 plane_name(plane), onoff(state), onoff(cur_state));
1288 }
1289
1290 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1291 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1292
1293 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1294 enum pipe pipe)
1295 {
1296 struct drm_device *dev = &dev_priv->drm;
1297 int i;
1298
1299 /* Primary planes are fixed to pipes on gen4+ */
1300 if (INTEL_INFO(dev)->gen >= 4) {
1301 u32 val = I915_READ(DSPCNTR(pipe));
1302 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1303 "plane %c assertion failure, should be disabled but not\n",
1304 plane_name(pipe));
1305 return;
1306 }
1307
1308 /* Need to check both planes against the pipe */
1309 for_each_pipe(dev_priv, i) {
1310 u32 val = I915_READ(DSPCNTR(i));
1311 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1312 DISPPLANE_SEL_PIPE_SHIFT;
1313 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1314 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1315 plane_name(i), pipe_name(pipe));
1316 }
1317 }
1318
1319 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1320 enum pipe pipe)
1321 {
1322 struct drm_device *dev = &dev_priv->drm;
1323 int sprite;
1324
1325 if (INTEL_INFO(dev)->gen >= 9) {
1326 for_each_sprite(dev_priv, pipe, sprite) {
1327 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1328 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1329 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1330 sprite, pipe_name(pipe));
1331 }
1332 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1333 for_each_sprite(dev_priv, pipe, sprite) {
1334 u32 val = I915_READ(SPCNTR(pipe, sprite));
1335 I915_STATE_WARN(val & SP_ENABLE,
1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1337 sprite_name(pipe, sprite), pipe_name(pipe));
1338 }
1339 } else if (INTEL_INFO(dev)->gen >= 7) {
1340 u32 val = I915_READ(SPRCTL(pipe));
1341 I915_STATE_WARN(val & SPRITE_ENABLE,
1342 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1343 plane_name(pipe), pipe_name(pipe));
1344 } else if (INTEL_INFO(dev)->gen >= 5) {
1345 u32 val = I915_READ(DVSCNTR(pipe));
1346 I915_STATE_WARN(val & DVS_ENABLE,
1347 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1348 plane_name(pipe), pipe_name(pipe));
1349 }
1350 }
1351
1352 static void assert_vblank_disabled(struct drm_crtc *crtc)
1353 {
1354 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1355 drm_crtc_vblank_put(crtc);
1356 }
1357
1358 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
1360 {
1361 u32 val;
1362 bool enabled;
1363
1364 val = I915_READ(PCH_TRANSCONF(pipe));
1365 enabled = !!(val & TRANS_ENABLE);
1366 I915_STATE_WARN(enabled,
1367 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1368 pipe_name(pipe));
1369 }
1370
1371 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, u32 port_sel, u32 val)
1373 {
1374 if ((val & DP_PORT_EN) == 0)
1375 return false;
1376
1377 if (HAS_PCH_CPT(dev_priv)) {
1378 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1379 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1380 return false;
1381 } else if (IS_CHERRYVIEW(dev_priv)) {
1382 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1383 return false;
1384 } else {
1385 if ((val & DP_PIPE_MASK) != (pipe << 30))
1386 return false;
1387 }
1388 return true;
1389 }
1390
1391 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, u32 val)
1393 {
1394 if ((val & SDVO_ENABLE) == 0)
1395 return false;
1396
1397 if (HAS_PCH_CPT(dev_priv)) {
1398 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1399 return false;
1400 } else if (IS_CHERRYVIEW(dev_priv)) {
1401 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1402 return false;
1403 } else {
1404 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1405 return false;
1406 }
1407 return true;
1408 }
1409
1410 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe, u32 val)
1412 {
1413 if ((val & LVDS_PORT_EN) == 0)
1414 return false;
1415
1416 if (HAS_PCH_CPT(dev_priv)) {
1417 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1418 return false;
1419 } else {
1420 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1421 return false;
1422 }
1423 return true;
1424 }
1425
1426 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1427 enum pipe pipe, u32 val)
1428 {
1429 if ((val & ADPA_DAC_ENABLE) == 0)
1430 return false;
1431 if (HAS_PCH_CPT(dev_priv)) {
1432 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1433 return false;
1434 } else {
1435 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1436 return false;
1437 }
1438 return true;
1439 }
1440
1441 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1442 enum pipe pipe, i915_reg_t reg,
1443 u32 port_sel)
1444 {
1445 u32 val = I915_READ(reg);
1446 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1447 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1448 i915_mmio_reg_offset(reg), pipe_name(pipe));
1449
1450 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1451 && (val & DP_PIPEB_SELECT),
1452 "IBX PCH dp port still using transcoder B\n");
1453 }
1454
1455 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1456 enum pipe pipe, i915_reg_t reg)
1457 {
1458 u32 val = I915_READ(reg);
1459 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1460 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1461 i915_mmio_reg_offset(reg), pipe_name(pipe));
1462
1463 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1464 && (val & SDVO_PIPE_B_SELECT),
1465 "IBX PCH hdmi port still using transcoder B\n");
1466 }
1467
1468 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1469 enum pipe pipe)
1470 {
1471 u32 val;
1472
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1476
1477 val = I915_READ(PCH_ADPA);
1478 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 val = I915_READ(PCH_LVDS);
1483 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1484 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1485 pipe_name(pipe));
1486
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1490 }
1491
1492 static void _vlv_enable_pll(struct intel_crtc *crtc,
1493 const struct intel_crtc_state *pipe_config)
1494 {
1495 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1496 enum pipe pipe = crtc->pipe;
1497
1498 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1499 POSTING_READ(DPLL(pipe));
1500 udelay(150);
1501
1502 if (intel_wait_for_register(dev_priv,
1503 DPLL(pipe),
1504 DPLL_LOCK_VLV,
1505 DPLL_LOCK_VLV,
1506 1))
1507 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1508 }
1509
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511 const struct intel_crtc_state *pipe_config)
1512 {
1513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1514 enum pipe pipe = crtc->pipe;
1515
1516 assert_pipe_disabled(dev_priv, pipe);
1517
1518 /* PLL is protected by panel, make sure we can write it */
1519 assert_panel_unlocked(dev_priv, pipe);
1520
1521 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1522 _vlv_enable_pll(crtc, pipe_config);
1523
1524 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1525 POSTING_READ(DPLL_MD(pipe));
1526 }
1527
1528
1529 static void _chv_enable_pll(struct intel_crtc *crtc,
1530 const struct intel_crtc_state *pipe_config)
1531 {
1532 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1533 enum pipe pipe = crtc->pipe;
1534 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1535 u32 tmp;
1536
1537 mutex_lock(&dev_priv->sb_lock);
1538
1539 /* Enable back the 10bit clock to display controller */
1540 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1541 tmp |= DPIO_DCLKP_EN;
1542 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1543
1544 mutex_unlock(&dev_priv->sb_lock);
1545
1546 /*
1547 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1548 */
1549 udelay(1);
1550
1551 /* Enable PLL */
1552 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1553
1554 /* Check PLL is locked */
1555 if (intel_wait_for_register(dev_priv,
1556 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1557 1))
1558 DRM_ERROR("PLL %d failed to lock\n", pipe);
1559 }
1560
1561 static void chv_enable_pll(struct intel_crtc *crtc,
1562 const struct intel_crtc_state *pipe_config)
1563 {
1564 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1565 enum pipe pipe = crtc->pipe;
1566
1567 assert_pipe_disabled(dev_priv, pipe);
1568
1569 /* PLL is protected by panel, make sure we can write it */
1570 assert_panel_unlocked(dev_priv, pipe);
1571
1572 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1573 _chv_enable_pll(crtc, pipe_config);
1574
1575 if (pipe != PIPE_A) {
1576 /*
1577 * WaPixelRepeatModeFixForC0:chv
1578 *
1579 * DPLLCMD is AWOL. Use chicken bits to propagate
1580 * the value from DPLLBMD to either pipe B or C.
1581 */
1582 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1583 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1584 I915_WRITE(CBR4_VLV, 0);
1585 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1586
1587 /*
1588 * DPLLB VGA mode also seems to cause problems.
1589 * We should always have it disabled.
1590 */
1591 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1592 } else {
1593 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1594 POSTING_READ(DPLL_MD(pipe));
1595 }
1596 }
1597
1598 static int intel_num_dvo_pipes(struct drm_device *dev)
1599 {
1600 struct intel_crtc *crtc;
1601 int count = 0;
1602
1603 for_each_intel_crtc(dev, crtc) {
1604 count += crtc->base.state->active &&
1605 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1606 }
1607
1608 return count;
1609 }
1610
1611 static void i9xx_enable_pll(struct intel_crtc *crtc)
1612 {
1613 struct drm_device *dev = crtc->base.dev;
1614 struct drm_i915_private *dev_priv = to_i915(dev);
1615 i915_reg_t reg = DPLL(crtc->pipe);
1616 u32 dpll = crtc->config->dpll_hw_state.dpll;
1617
1618 assert_pipe_disabled(dev_priv, crtc->pipe);
1619
1620 /* PLL is protected by panel, make sure we can write it */
1621 if (IS_MOBILE(dev) && !IS_I830(dev))
1622 assert_panel_unlocked(dev_priv, crtc->pipe);
1623
1624 /* Enable DVO 2x clock on both PLLs if necessary */
1625 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1626 /*
1627 * It appears to be important that we don't enable this
1628 * for the current pipe before otherwise configuring the
1629 * PLL. No idea how this should be handled if multiple
1630 * DVO outputs are enabled simultaneosly.
1631 */
1632 dpll |= DPLL_DVO_2X_MODE;
1633 I915_WRITE(DPLL(!crtc->pipe),
1634 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1635 }
1636
1637 /*
1638 * Apparently we need to have VGA mode enabled prior to changing
1639 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1640 * dividers, even though the register value does change.
1641 */
1642 I915_WRITE(reg, 0);
1643
1644 I915_WRITE(reg, dpll);
1645
1646 /* Wait for the clocks to stabilize. */
1647 POSTING_READ(reg);
1648 udelay(150);
1649
1650 if (INTEL_INFO(dev)->gen >= 4) {
1651 I915_WRITE(DPLL_MD(crtc->pipe),
1652 crtc->config->dpll_hw_state.dpll_md);
1653 } else {
1654 /* The pixel multiplier can only be updated once the
1655 * DPLL is enabled and the clocks are stable.
1656 *
1657 * So write it again.
1658 */
1659 I915_WRITE(reg, dpll);
1660 }
1661
1662 /* We do this three times for luck */
1663 I915_WRITE(reg, dpll);
1664 POSTING_READ(reg);
1665 udelay(150); /* wait for warmup */
1666 I915_WRITE(reg, dpll);
1667 POSTING_READ(reg);
1668 udelay(150); /* wait for warmup */
1669 I915_WRITE(reg, dpll);
1670 POSTING_READ(reg);
1671 udelay(150); /* wait for warmup */
1672 }
1673
1674 /**
1675 * i9xx_disable_pll - disable a PLL
1676 * @dev_priv: i915 private structure
1677 * @pipe: pipe PLL to disable
1678 *
1679 * Disable the PLL for @pipe, making sure the pipe is off first.
1680 *
1681 * Note! This is for pre-ILK only.
1682 */
1683 static void i9xx_disable_pll(struct intel_crtc *crtc)
1684 {
1685 struct drm_device *dev = crtc->base.dev;
1686 struct drm_i915_private *dev_priv = to_i915(dev);
1687 enum pipe pipe = crtc->pipe;
1688
1689 /* Disable DVO 2x clock on both PLLs if necessary */
1690 if (IS_I830(dev) &&
1691 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1692 !intel_num_dvo_pipes(dev)) {
1693 I915_WRITE(DPLL(PIPE_B),
1694 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1695 I915_WRITE(DPLL(PIPE_A),
1696 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1697 }
1698
1699 /* Don't disable pipe or pipe PLLs if needed */
1700 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1701 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1702 return;
1703
1704 /* Make sure the pipe isn't still relying on us */
1705 assert_pipe_disabled(dev_priv, pipe);
1706
1707 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1708 POSTING_READ(DPLL(pipe));
1709 }
1710
1711 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712 {
1713 u32 val;
1714
1715 /* Make sure the pipe isn't still relying on us */
1716 assert_pipe_disabled(dev_priv, pipe);
1717
1718 val = DPLL_INTEGRATED_REF_CLK_VLV |
1719 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1720 if (pipe != PIPE_A)
1721 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1722
1723 I915_WRITE(DPLL(pipe), val);
1724 POSTING_READ(DPLL(pipe));
1725 }
1726
1727 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1728 {
1729 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1730 u32 val;
1731
1732 /* Make sure the pipe isn't still relying on us */
1733 assert_pipe_disabled(dev_priv, pipe);
1734
1735 val = DPLL_SSC_REF_CLK_CHV |
1736 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1737 if (pipe != PIPE_A)
1738 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1739
1740 I915_WRITE(DPLL(pipe), val);
1741 POSTING_READ(DPLL(pipe));
1742
1743 mutex_lock(&dev_priv->sb_lock);
1744
1745 /* Disable 10bit clock to display controller */
1746 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1747 val &= ~DPIO_DCLKP_EN;
1748 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1749
1750 mutex_unlock(&dev_priv->sb_lock);
1751 }
1752
1753 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1754 struct intel_digital_port *dport,
1755 unsigned int expected_mask)
1756 {
1757 u32 port_mask;
1758 i915_reg_t dpll_reg;
1759
1760 switch (dport->port) {
1761 case PORT_B:
1762 port_mask = DPLL_PORTB_READY_MASK;
1763 dpll_reg = DPLL(0);
1764 break;
1765 case PORT_C:
1766 port_mask = DPLL_PORTC_READY_MASK;
1767 dpll_reg = DPLL(0);
1768 expected_mask <<= 4;
1769 break;
1770 case PORT_D:
1771 port_mask = DPLL_PORTD_READY_MASK;
1772 dpll_reg = DPIO_PHY_STATUS;
1773 break;
1774 default:
1775 BUG();
1776 }
1777
1778 if (intel_wait_for_register(dev_priv,
1779 dpll_reg, port_mask, expected_mask,
1780 1000))
1781 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1782 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1783 }
1784
1785 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1786 enum pipe pipe)
1787 {
1788 struct drm_device *dev = &dev_priv->drm;
1789 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1791 i915_reg_t reg;
1792 uint32_t val, pipeconf_val;
1793
1794 /* Make sure PCH DPLL is enabled */
1795 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1796
1797 /* FDI must be feeding us bits for PCH ports */
1798 assert_fdi_tx_enabled(dev_priv, pipe);
1799 assert_fdi_rx_enabled(dev_priv, pipe);
1800
1801 if (HAS_PCH_CPT(dev)) {
1802 /* Workaround: Set the timing override bit before enabling the
1803 * pch transcoder. */
1804 reg = TRANS_CHICKEN2(pipe);
1805 val = I915_READ(reg);
1806 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1807 I915_WRITE(reg, val);
1808 }
1809
1810 reg = PCH_TRANSCONF(pipe);
1811 val = I915_READ(reg);
1812 pipeconf_val = I915_READ(PIPECONF(pipe));
1813
1814 if (HAS_PCH_IBX(dev_priv)) {
1815 /*
1816 * Make the BPC in transcoder be consistent with
1817 * that in pipeconf reg. For HDMI we must use 8bpc
1818 * here for both 8bpc and 12bpc.
1819 */
1820 val &= ~PIPECONF_BPC_MASK;
1821 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1822 val |= PIPECONF_8BPC;
1823 else
1824 val |= pipeconf_val & PIPECONF_BPC_MASK;
1825 }
1826
1827 val &= ~TRANS_INTERLACE_MASK;
1828 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1829 if (HAS_PCH_IBX(dev_priv) &&
1830 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1831 val |= TRANS_LEGACY_INTERLACED_ILK;
1832 else
1833 val |= TRANS_INTERLACED;
1834 else
1835 val |= TRANS_PROGRESSIVE;
1836
1837 I915_WRITE(reg, val | TRANS_ENABLE);
1838 if (intel_wait_for_register(dev_priv,
1839 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1840 100))
1841 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1842 }
1843
1844 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1845 enum transcoder cpu_transcoder)
1846 {
1847 u32 val, pipeconf_val;
1848
1849 /* FDI must be feeding us bits for PCH ports */
1850 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1851 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1852
1853 /* Workaround: set timing override bit. */
1854 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1855 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1857
1858 val = TRANS_ENABLE;
1859 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1860
1861 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1862 PIPECONF_INTERLACED_ILK)
1863 val |= TRANS_INTERLACED;
1864 else
1865 val |= TRANS_PROGRESSIVE;
1866
1867 I915_WRITE(LPT_TRANSCONF, val);
1868 if (intel_wait_for_register(dev_priv,
1869 LPT_TRANSCONF,
1870 TRANS_STATE_ENABLE,
1871 TRANS_STATE_ENABLE,
1872 100))
1873 DRM_ERROR("Failed to enable PCH transcoder\n");
1874 }
1875
1876 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1877 enum pipe pipe)
1878 {
1879 struct drm_device *dev = &dev_priv->drm;
1880 i915_reg_t reg;
1881 uint32_t val;
1882
1883 /* FDI relies on the transcoder */
1884 assert_fdi_tx_disabled(dev_priv, pipe);
1885 assert_fdi_rx_disabled(dev_priv, pipe);
1886
1887 /* Ports must be off as well */
1888 assert_pch_ports_disabled(dev_priv, pipe);
1889
1890 reg = PCH_TRANSCONF(pipe);
1891 val = I915_READ(reg);
1892 val &= ~TRANS_ENABLE;
1893 I915_WRITE(reg, val);
1894 /* wait for PCH transcoder off, transcoder state */
1895 if (intel_wait_for_register(dev_priv,
1896 reg, TRANS_STATE_ENABLE, 0,
1897 50))
1898 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1899
1900 if (HAS_PCH_CPT(dev)) {
1901 /* Workaround: Clear the timing override chicken bit again. */
1902 reg = TRANS_CHICKEN2(pipe);
1903 val = I915_READ(reg);
1904 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1905 I915_WRITE(reg, val);
1906 }
1907 }
1908
1909 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1910 {
1911 u32 val;
1912
1913 val = I915_READ(LPT_TRANSCONF);
1914 val &= ~TRANS_ENABLE;
1915 I915_WRITE(LPT_TRANSCONF, val);
1916 /* wait for PCH transcoder off, transcoder state */
1917 if (intel_wait_for_register(dev_priv,
1918 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1919 50))
1920 DRM_ERROR("Failed to disable PCH transcoder\n");
1921
1922 /* Workaround: clear timing override bit. */
1923 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1924 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1925 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1926 }
1927
1928 /**
1929 * intel_enable_pipe - enable a pipe, asserting requirements
1930 * @crtc: crtc responsible for the pipe
1931 *
1932 * Enable @crtc's pipe, making sure that various hardware specific requirements
1933 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1934 */
1935 static void intel_enable_pipe(struct intel_crtc *crtc)
1936 {
1937 struct drm_device *dev = crtc->base.dev;
1938 struct drm_i915_private *dev_priv = to_i915(dev);
1939 enum pipe pipe = crtc->pipe;
1940 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1941 enum pipe pch_transcoder;
1942 i915_reg_t reg;
1943 u32 val;
1944
1945 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1946
1947 assert_planes_disabled(dev_priv, pipe);
1948 assert_cursor_disabled(dev_priv, pipe);
1949 assert_sprites_disabled(dev_priv, pipe);
1950
1951 if (HAS_PCH_LPT(dev_priv))
1952 pch_transcoder = TRANSCODER_A;
1953 else
1954 pch_transcoder = pipe;
1955
1956 /*
1957 * A pipe without a PLL won't actually be able to drive bits from
1958 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1959 * need the check.
1960 */
1961 if (HAS_GMCH_DISPLAY(dev_priv))
1962 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1963 assert_dsi_pll_enabled(dev_priv);
1964 else
1965 assert_pll_enabled(dev_priv, pipe);
1966 else {
1967 if (crtc->config->has_pch_encoder) {
1968 /* if driving the PCH, we need FDI enabled */
1969 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1970 assert_fdi_tx_pll_enabled(dev_priv,
1971 (enum pipe) cpu_transcoder);
1972 }
1973 /* FIXME: assert CPU port conditions for SNB+ */
1974 }
1975
1976 reg = PIPECONF(cpu_transcoder);
1977 val = I915_READ(reg);
1978 if (val & PIPECONF_ENABLE) {
1979 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1980 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1981 return;
1982 }
1983
1984 I915_WRITE(reg, val | PIPECONF_ENABLE);
1985 POSTING_READ(reg);
1986
1987 /*
1988 * Until the pipe starts DSL will read as 0, which would cause
1989 * an apparent vblank timestamp jump, which messes up also the
1990 * frame count when it's derived from the timestamps. So let's
1991 * wait for the pipe to start properly before we call
1992 * drm_crtc_vblank_on()
1993 */
1994 if (dev->max_vblank_count == 0 &&
1995 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1996 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1997 }
1998
1999 /**
2000 * intel_disable_pipe - disable a pipe, asserting requirements
2001 * @crtc: crtc whose pipes is to be disabled
2002 *
2003 * Disable the pipe of @crtc, making sure that various hardware
2004 * specific requirements are met, if applicable, e.g. plane
2005 * disabled, panel fitter off, etc.
2006 *
2007 * Will wait until the pipe has shut down before returning.
2008 */
2009 static void intel_disable_pipe(struct intel_crtc *crtc)
2010 {
2011 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2012 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2013 enum pipe pipe = crtc->pipe;
2014 i915_reg_t reg;
2015 u32 val;
2016
2017 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2018
2019 /*
2020 * Make sure planes won't keep trying to pump pixels to us,
2021 * or we might hang the display.
2022 */
2023 assert_planes_disabled(dev_priv, pipe);
2024 assert_cursor_disabled(dev_priv, pipe);
2025 assert_sprites_disabled(dev_priv, pipe);
2026
2027 reg = PIPECONF(cpu_transcoder);
2028 val = I915_READ(reg);
2029 if ((val & PIPECONF_ENABLE) == 0)
2030 return;
2031
2032 /*
2033 * Double wide has implications for planes
2034 * so best keep it disabled when not needed.
2035 */
2036 if (crtc->config->double_wide)
2037 val &= ~PIPECONF_DOUBLE_WIDE;
2038
2039 /* Don't disable pipe or pipe PLLs if needed */
2040 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2041 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2042 val &= ~PIPECONF_ENABLE;
2043
2044 I915_WRITE(reg, val);
2045 if ((val & PIPECONF_ENABLE) == 0)
2046 intel_wait_for_pipe_off(crtc);
2047 }
2048
2049 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2050 {
2051 return IS_GEN2(dev_priv) ? 2048 : 4096;
2052 }
2053
2054 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2055 uint64_t fb_modifier, unsigned int cpp)
2056 {
2057 switch (fb_modifier) {
2058 case DRM_FORMAT_MOD_NONE:
2059 return cpp;
2060 case I915_FORMAT_MOD_X_TILED:
2061 if (IS_GEN2(dev_priv))
2062 return 128;
2063 else
2064 return 512;
2065 case I915_FORMAT_MOD_Y_TILED:
2066 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2067 return 128;
2068 else
2069 return 512;
2070 case I915_FORMAT_MOD_Yf_TILED:
2071 switch (cpp) {
2072 case 1:
2073 return 64;
2074 case 2:
2075 case 4:
2076 return 128;
2077 case 8:
2078 case 16:
2079 return 256;
2080 default:
2081 MISSING_CASE(cpp);
2082 return cpp;
2083 }
2084 break;
2085 default:
2086 MISSING_CASE(fb_modifier);
2087 return cpp;
2088 }
2089 }
2090
2091 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2092 uint64_t fb_modifier, unsigned int cpp)
2093 {
2094 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2095 return 1;
2096 else
2097 return intel_tile_size(dev_priv) /
2098 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2099 }
2100
2101 /* Return the tile dimensions in pixel units */
2102 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2103 unsigned int *tile_width,
2104 unsigned int *tile_height,
2105 uint64_t fb_modifier,
2106 unsigned int cpp)
2107 {
2108 unsigned int tile_width_bytes =
2109 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2110
2111 *tile_width = tile_width_bytes / cpp;
2112 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2113 }
2114
2115 unsigned int
2116 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2117 uint32_t pixel_format, uint64_t fb_modifier)
2118 {
2119 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2120 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2121
2122 return ALIGN(height, tile_height);
2123 }
2124
2125 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2126 {
2127 unsigned int size = 0;
2128 int i;
2129
2130 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2131 size += rot_info->plane[i].width * rot_info->plane[i].height;
2132
2133 return size;
2134 }
2135
2136 static void
2137 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2138 const struct drm_framebuffer *fb,
2139 unsigned int rotation)
2140 {
2141 if (intel_rotation_90_or_270(rotation)) {
2142 *view = i915_ggtt_view_rotated;
2143 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2144 } else {
2145 *view = i915_ggtt_view_normal;
2146 }
2147 }
2148
2149 static void
2150 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2151 struct drm_framebuffer *fb)
2152 {
2153 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2154 unsigned int tile_size, tile_width, tile_height, cpp;
2155
2156 tile_size = intel_tile_size(dev_priv);
2157
2158 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2159 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2160 fb->modifier[0], cpp);
2161
2162 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2163 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2164
2165 if (info->pixel_format == DRM_FORMAT_NV12) {
2166 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2167 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2168 fb->modifier[1], cpp);
2169
2170 info->uv_offset = fb->offsets[1];
2171 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2172 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2173 }
2174 }
2175
2176 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2177 {
2178 if (INTEL_INFO(dev_priv)->gen >= 9)
2179 return 256 * 1024;
2180 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2181 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2182 return 128 * 1024;
2183 else if (INTEL_INFO(dev_priv)->gen >= 4)
2184 return 4 * 1024;
2185 else
2186 return 0;
2187 }
2188
2189 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2190 uint64_t fb_modifier)
2191 {
2192 switch (fb_modifier) {
2193 case DRM_FORMAT_MOD_NONE:
2194 return intel_linear_alignment(dev_priv);
2195 case I915_FORMAT_MOD_X_TILED:
2196 if (INTEL_INFO(dev_priv)->gen >= 9)
2197 return 256 * 1024;
2198 return 0;
2199 case I915_FORMAT_MOD_Y_TILED:
2200 case I915_FORMAT_MOD_Yf_TILED:
2201 return 1 * 1024 * 1024;
2202 default:
2203 MISSING_CASE(fb_modifier);
2204 return 0;
2205 }
2206 }
2207
2208 int
2209 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2210 unsigned int rotation)
2211 {
2212 struct drm_device *dev = fb->dev;
2213 struct drm_i915_private *dev_priv = to_i915(dev);
2214 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2215 struct i915_ggtt_view view;
2216 u32 alignment;
2217 int ret;
2218
2219 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2220
2221 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2222
2223 intel_fill_fb_ggtt_view(&view, fb, rotation);
2224
2225 /* Note that the w/a also requires 64 PTE of padding following the
2226 * bo. We currently fill all unused PTE with the shadow page and so
2227 * we should always have valid PTE following the scanout preventing
2228 * the VT-d warning.
2229 */
2230 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2231 alignment = 256 * 1024;
2232
2233 /*
2234 * Global gtt pte registers are special registers which actually forward
2235 * writes to a chunk of system memory. Which means that there is no risk
2236 * that the register values disappear as soon as we call
2237 * intel_runtime_pm_put(), so it is correct to wrap only the
2238 * pin/unpin/fence and not more.
2239 */
2240 intel_runtime_pm_get(dev_priv);
2241
2242 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2243 &view);
2244 if (ret)
2245 goto err_pm;
2246
2247 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2248 * fence, whereas 965+ only requires a fence if using
2249 * framebuffer compression. For simplicity, we always install
2250 * a fence as the cost is not that onerous.
2251 */
2252 if (view.type == I915_GGTT_VIEW_NORMAL) {
2253 ret = i915_gem_object_get_fence(obj);
2254 if (ret == -EDEADLK) {
2255 /*
2256 * -EDEADLK means there are no free fences
2257 * no pending flips.
2258 *
2259 * This is propagated to atomic, but it uses
2260 * -EDEADLK to force a locking recovery, so
2261 * change the returned error to -EBUSY.
2262 */
2263 ret = -EBUSY;
2264 goto err_unpin;
2265 } else if (ret)
2266 goto err_unpin;
2267
2268 i915_gem_object_pin_fence(obj);
2269 }
2270
2271 intel_runtime_pm_put(dev_priv);
2272 return 0;
2273
2274 err_unpin:
2275 i915_gem_object_unpin_from_display_plane(obj, &view);
2276 err_pm:
2277 intel_runtime_pm_put(dev_priv);
2278 return ret;
2279 }
2280
2281 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2282 {
2283 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2284 struct i915_ggtt_view view;
2285
2286 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2287
2288 intel_fill_fb_ggtt_view(&view, fb, rotation);
2289
2290 if (view.type == I915_GGTT_VIEW_NORMAL)
2291 i915_gem_object_unpin_fence(obj);
2292
2293 i915_gem_object_unpin_from_display_plane(obj, &view);
2294 }
2295
2296 /*
2297 * Adjust the tile offset by moving the difference into
2298 * the x/y offsets.
2299 *
2300 * Input tile dimensions and pitch must already be
2301 * rotated to match x and y, and in pixel units.
2302 */
2303 static u32 intel_adjust_tile_offset(int *x, int *y,
2304 unsigned int tile_width,
2305 unsigned int tile_height,
2306 unsigned int tile_size,
2307 unsigned int pitch_tiles,
2308 u32 old_offset,
2309 u32 new_offset)
2310 {
2311 unsigned int tiles;
2312
2313 WARN_ON(old_offset & (tile_size - 1));
2314 WARN_ON(new_offset & (tile_size - 1));
2315 WARN_ON(new_offset > old_offset);
2316
2317 tiles = (old_offset - new_offset) / tile_size;
2318
2319 *y += tiles / pitch_tiles * tile_height;
2320 *x += tiles % pitch_tiles * tile_width;
2321
2322 return new_offset;
2323 }
2324
2325 /*
2326 * Computes the linear offset to the base tile and adjusts
2327 * x, y. bytes per pixel is assumed to be a power-of-two.
2328 *
2329 * In the 90/270 rotated case, x and y are assumed
2330 * to be already rotated to match the rotated GTT view, and
2331 * pitch is the tile_height aligned framebuffer height.
2332 */
2333 u32 intel_compute_tile_offset(int *x, int *y,
2334 const struct drm_framebuffer *fb, int plane,
2335 unsigned int pitch,
2336 unsigned int rotation)
2337 {
2338 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2339 uint64_t fb_modifier = fb->modifier[plane];
2340 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2341 u32 offset, offset_aligned, alignment;
2342
2343 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2344 if (alignment)
2345 alignment--;
2346
2347 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2348 unsigned int tile_size, tile_width, tile_height;
2349 unsigned int tile_rows, tiles, pitch_tiles;
2350
2351 tile_size = intel_tile_size(dev_priv);
2352 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353 fb_modifier, cpp);
2354
2355 if (intel_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2360 }
2361
2362 tile_rows = *y / tile_height;
2363 *y %= tile_height;
2364
2365 tiles = *x / tile_width;
2366 *x %= tile_width;
2367
2368 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2369 offset_aligned = offset & ~alignment;
2370
2371 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372 tile_size, pitch_tiles,
2373 offset, offset_aligned);
2374 } else {
2375 offset = *y * pitch + *x * cpp;
2376 offset_aligned = offset & ~alignment;
2377
2378 *y = (offset & alignment) / pitch;
2379 *x = ((offset & alignment) - *y * pitch) / cpp;
2380 }
2381
2382 return offset_aligned;
2383 }
2384
2385 static int i9xx_format_to_fourcc(int format)
2386 {
2387 switch (format) {
2388 case DISPPLANE_8BPP:
2389 return DRM_FORMAT_C8;
2390 case DISPPLANE_BGRX555:
2391 return DRM_FORMAT_XRGB1555;
2392 case DISPPLANE_BGRX565:
2393 return DRM_FORMAT_RGB565;
2394 default:
2395 case DISPPLANE_BGRX888:
2396 return DRM_FORMAT_XRGB8888;
2397 case DISPPLANE_RGBX888:
2398 return DRM_FORMAT_XBGR8888;
2399 case DISPPLANE_BGRX101010:
2400 return DRM_FORMAT_XRGB2101010;
2401 case DISPPLANE_RGBX101010:
2402 return DRM_FORMAT_XBGR2101010;
2403 }
2404 }
2405
2406 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2407 {
2408 switch (format) {
2409 case PLANE_CTL_FORMAT_RGB_565:
2410 return DRM_FORMAT_RGB565;
2411 default:
2412 case PLANE_CTL_FORMAT_XRGB_8888:
2413 if (rgb_order) {
2414 if (alpha)
2415 return DRM_FORMAT_ABGR8888;
2416 else
2417 return DRM_FORMAT_XBGR8888;
2418 } else {
2419 if (alpha)
2420 return DRM_FORMAT_ARGB8888;
2421 else
2422 return DRM_FORMAT_XRGB8888;
2423 }
2424 case PLANE_CTL_FORMAT_XRGB_2101010:
2425 if (rgb_order)
2426 return DRM_FORMAT_XBGR2101010;
2427 else
2428 return DRM_FORMAT_XRGB2101010;
2429 }
2430 }
2431
2432 static bool
2433 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2434 struct intel_initial_plane_config *plane_config)
2435 {
2436 struct drm_device *dev = crtc->base.dev;
2437 struct drm_i915_private *dev_priv = to_i915(dev);
2438 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2439 struct drm_i915_gem_object *obj = NULL;
2440 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2441 struct drm_framebuffer *fb = &plane_config->fb->base;
2442 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2443 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2444 PAGE_SIZE);
2445
2446 size_aligned -= base_aligned;
2447
2448 if (plane_config->size == 0)
2449 return false;
2450
2451 /* If the FB is too big, just don't use it since fbdev is not very
2452 * important and we should probably use that space with FBC or other
2453 * features. */
2454 if (size_aligned * 2 > ggtt->stolen_usable_size)
2455 return false;
2456
2457 mutex_lock(&dev->struct_mutex);
2458
2459 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2460 base_aligned,
2461 base_aligned,
2462 size_aligned);
2463 if (!obj) {
2464 mutex_unlock(&dev->struct_mutex);
2465 return false;
2466 }
2467
2468 obj->tiling_mode = plane_config->tiling;
2469 if (obj->tiling_mode == I915_TILING_X)
2470 obj->stride = fb->pitches[0];
2471
2472 mode_cmd.pixel_format = fb->pixel_format;
2473 mode_cmd.width = fb->width;
2474 mode_cmd.height = fb->height;
2475 mode_cmd.pitches[0] = fb->pitches[0];
2476 mode_cmd.modifier[0] = fb->modifier[0];
2477 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2478
2479 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2480 &mode_cmd, obj)) {
2481 DRM_DEBUG_KMS("intel fb init failed\n");
2482 goto out_unref_obj;
2483 }
2484
2485 mutex_unlock(&dev->struct_mutex);
2486
2487 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2488 return true;
2489
2490 out_unref_obj:
2491 i915_gem_object_put(obj);
2492 mutex_unlock(&dev->struct_mutex);
2493 return false;
2494 }
2495
2496 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2497 static void
2498 update_state_fb(struct drm_plane *plane)
2499 {
2500 if (plane->fb == plane->state->fb)
2501 return;
2502
2503 if (plane->state->fb)
2504 drm_framebuffer_unreference(plane->state->fb);
2505 plane->state->fb = plane->fb;
2506 if (plane->state->fb)
2507 drm_framebuffer_reference(plane->state->fb);
2508 }
2509
2510 static void
2511 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2512 struct intel_initial_plane_config *plane_config)
2513 {
2514 struct drm_device *dev = intel_crtc->base.dev;
2515 struct drm_i915_private *dev_priv = to_i915(dev);
2516 struct drm_crtc *c;
2517 struct intel_crtc *i;
2518 struct drm_i915_gem_object *obj;
2519 struct drm_plane *primary = intel_crtc->base.primary;
2520 struct drm_plane_state *plane_state = primary->state;
2521 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2522 struct intel_plane *intel_plane = to_intel_plane(primary);
2523 struct intel_plane_state *intel_state =
2524 to_intel_plane_state(plane_state);
2525 struct drm_framebuffer *fb;
2526
2527 if (!plane_config->fb)
2528 return;
2529
2530 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2531 fb = &plane_config->fb->base;
2532 goto valid_fb;
2533 }
2534
2535 kfree(plane_config->fb);
2536
2537 /*
2538 * Failed to alloc the obj, check to see if we should share
2539 * an fb with another CRTC instead
2540 */
2541 for_each_crtc(dev, c) {
2542 i = to_intel_crtc(c);
2543
2544 if (c == &intel_crtc->base)
2545 continue;
2546
2547 if (!i->active)
2548 continue;
2549
2550 fb = c->primary->fb;
2551 if (!fb)
2552 continue;
2553
2554 obj = intel_fb_obj(fb);
2555 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2556 drm_framebuffer_reference(fb);
2557 goto valid_fb;
2558 }
2559 }
2560
2561 /*
2562 * We've failed to reconstruct the BIOS FB. Current display state
2563 * indicates that the primary plane is visible, but has a NULL FB,
2564 * which will lead to problems later if we don't fix it up. The
2565 * simplest solution is to just disable the primary plane now and
2566 * pretend the BIOS never had it enabled.
2567 */
2568 to_intel_plane_state(plane_state)->visible = false;
2569 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2570 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2571 intel_plane->disable_plane(primary, &intel_crtc->base);
2572
2573 return;
2574
2575 valid_fb:
2576 plane_state->src_x = 0;
2577 plane_state->src_y = 0;
2578 plane_state->src_w = fb->width << 16;
2579 plane_state->src_h = fb->height << 16;
2580
2581 plane_state->crtc_x = 0;
2582 plane_state->crtc_y = 0;
2583 plane_state->crtc_w = fb->width;
2584 plane_state->crtc_h = fb->height;
2585
2586 intel_state->src.x1 = plane_state->src_x;
2587 intel_state->src.y1 = plane_state->src_y;
2588 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2589 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2590 intel_state->dst.x1 = plane_state->crtc_x;
2591 intel_state->dst.y1 = plane_state->crtc_y;
2592 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2593 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2594
2595 obj = intel_fb_obj(fb);
2596 if (obj->tiling_mode != I915_TILING_NONE)
2597 dev_priv->preserve_bios_swizzle = true;
2598
2599 drm_framebuffer_reference(fb);
2600 primary->fb = primary->state->fb = fb;
2601 primary->crtc = primary->state->crtc = &intel_crtc->base;
2602 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2603 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2604 }
2605
2606 static void i9xx_update_primary_plane(struct drm_plane *primary,
2607 const struct intel_crtc_state *crtc_state,
2608 const struct intel_plane_state *plane_state)
2609 {
2610 struct drm_device *dev = primary->dev;
2611 struct drm_i915_private *dev_priv = to_i915(dev);
2612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2613 struct drm_framebuffer *fb = plane_state->base.fb;
2614 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2615 int plane = intel_crtc->plane;
2616 u32 linear_offset;
2617 u32 dspcntr;
2618 i915_reg_t reg = DSPCNTR(plane);
2619 unsigned int rotation = plane_state->base.rotation;
2620 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2621 int x = plane_state->src.x1 >> 16;
2622 int y = plane_state->src.y1 >> 16;
2623
2624 dspcntr = DISPPLANE_GAMMA_ENABLE;
2625
2626 dspcntr |= DISPLAY_PLANE_ENABLE;
2627
2628 if (INTEL_INFO(dev)->gen < 4) {
2629 if (intel_crtc->pipe == PIPE_B)
2630 dspcntr |= DISPPLANE_SEL_PIPE_B;
2631
2632 /* pipesrc and dspsize control the size that is scaled from,
2633 * which should always be the user's requested size.
2634 */
2635 I915_WRITE(DSPSIZE(plane),
2636 ((crtc_state->pipe_src_h - 1) << 16) |
2637 (crtc_state->pipe_src_w - 1));
2638 I915_WRITE(DSPPOS(plane), 0);
2639 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2640 I915_WRITE(PRIMSIZE(plane),
2641 ((crtc_state->pipe_src_h - 1) << 16) |
2642 (crtc_state->pipe_src_w - 1));
2643 I915_WRITE(PRIMPOS(plane), 0);
2644 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2645 }
2646
2647 switch (fb->pixel_format) {
2648 case DRM_FORMAT_C8:
2649 dspcntr |= DISPPLANE_8BPP;
2650 break;
2651 case DRM_FORMAT_XRGB1555:
2652 dspcntr |= DISPPLANE_BGRX555;
2653 break;
2654 case DRM_FORMAT_RGB565:
2655 dspcntr |= DISPPLANE_BGRX565;
2656 break;
2657 case DRM_FORMAT_XRGB8888:
2658 dspcntr |= DISPPLANE_BGRX888;
2659 break;
2660 case DRM_FORMAT_XBGR8888:
2661 dspcntr |= DISPPLANE_RGBX888;
2662 break;
2663 case DRM_FORMAT_XRGB2101010:
2664 dspcntr |= DISPPLANE_BGRX101010;
2665 break;
2666 case DRM_FORMAT_XBGR2101010:
2667 dspcntr |= DISPPLANE_RGBX101010;
2668 break;
2669 default:
2670 BUG();
2671 }
2672
2673 if (INTEL_INFO(dev)->gen >= 4 &&
2674 obj->tiling_mode != I915_TILING_NONE)
2675 dspcntr |= DISPPLANE_TILED;
2676
2677 if (IS_G4X(dev))
2678 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2679
2680 linear_offset = y * fb->pitches[0] + x * cpp;
2681
2682 if (INTEL_INFO(dev)->gen >= 4) {
2683 intel_crtc->dspaddr_offset =
2684 intel_compute_tile_offset(&x, &y, fb, 0,
2685 fb->pitches[0], rotation);
2686 linear_offset -= intel_crtc->dspaddr_offset;
2687 } else {
2688 intel_crtc->dspaddr_offset = linear_offset;
2689 }
2690
2691 if (rotation == BIT(DRM_ROTATE_180)) {
2692 dspcntr |= DISPPLANE_ROTATE_180;
2693
2694 x += (crtc_state->pipe_src_w - 1);
2695 y += (crtc_state->pipe_src_h - 1);
2696
2697 /* Finding the last pixel of the last line of the display
2698 data and adding to linear_offset*/
2699 linear_offset +=
2700 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2701 (crtc_state->pipe_src_w - 1) * cpp;
2702 }
2703
2704 intel_crtc->adjusted_x = x;
2705 intel_crtc->adjusted_y = y;
2706
2707 I915_WRITE(reg, dspcntr);
2708
2709 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2710 if (INTEL_INFO(dev)->gen >= 4) {
2711 I915_WRITE(DSPSURF(plane),
2712 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2713 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2714 I915_WRITE(DSPLINOFF(plane), linear_offset);
2715 } else
2716 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2717 POSTING_READ(reg);
2718 }
2719
2720 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2721 struct drm_crtc *crtc)
2722 {
2723 struct drm_device *dev = crtc->dev;
2724 struct drm_i915_private *dev_priv = to_i915(dev);
2725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 int plane = intel_crtc->plane;
2727
2728 I915_WRITE(DSPCNTR(plane), 0);
2729 if (INTEL_INFO(dev_priv)->gen >= 4)
2730 I915_WRITE(DSPSURF(plane), 0);
2731 else
2732 I915_WRITE(DSPADDR(plane), 0);
2733 POSTING_READ(DSPCNTR(plane));
2734 }
2735
2736 static void ironlake_update_primary_plane(struct drm_plane *primary,
2737 const struct intel_crtc_state *crtc_state,
2738 const struct intel_plane_state *plane_state)
2739 {
2740 struct drm_device *dev = primary->dev;
2741 struct drm_i915_private *dev_priv = to_i915(dev);
2742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2743 struct drm_framebuffer *fb = plane_state->base.fb;
2744 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2745 int plane = intel_crtc->plane;
2746 u32 linear_offset;
2747 u32 dspcntr;
2748 i915_reg_t reg = DSPCNTR(plane);
2749 unsigned int rotation = plane_state->base.rotation;
2750 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2751 int x = plane_state->src.x1 >> 16;
2752 int y = plane_state->src.y1 >> 16;
2753
2754 dspcntr = DISPPLANE_GAMMA_ENABLE;
2755 dspcntr |= DISPLAY_PLANE_ENABLE;
2756
2757 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2758 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2759
2760 switch (fb->pixel_format) {
2761 case DRM_FORMAT_C8:
2762 dspcntr |= DISPPLANE_8BPP;
2763 break;
2764 case DRM_FORMAT_RGB565:
2765 dspcntr |= DISPPLANE_BGRX565;
2766 break;
2767 case DRM_FORMAT_XRGB8888:
2768 dspcntr |= DISPPLANE_BGRX888;
2769 break;
2770 case DRM_FORMAT_XBGR8888:
2771 dspcntr |= DISPPLANE_RGBX888;
2772 break;
2773 case DRM_FORMAT_XRGB2101010:
2774 dspcntr |= DISPPLANE_BGRX101010;
2775 break;
2776 case DRM_FORMAT_XBGR2101010:
2777 dspcntr |= DISPPLANE_RGBX101010;
2778 break;
2779 default:
2780 BUG();
2781 }
2782
2783 if (obj->tiling_mode != I915_TILING_NONE)
2784 dspcntr |= DISPPLANE_TILED;
2785
2786 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2787 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2788
2789 linear_offset = y * fb->pitches[0] + x * cpp;
2790 intel_crtc->dspaddr_offset =
2791 intel_compute_tile_offset(&x, &y, fb, 0,
2792 fb->pitches[0], rotation);
2793 linear_offset -= intel_crtc->dspaddr_offset;
2794 if (rotation == BIT(DRM_ROTATE_180)) {
2795 dspcntr |= DISPPLANE_ROTATE_180;
2796
2797 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2798 x += (crtc_state->pipe_src_w - 1);
2799 y += (crtc_state->pipe_src_h - 1);
2800
2801 /* Finding the last pixel of the last line of the display
2802 data and adding to linear_offset*/
2803 linear_offset +=
2804 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2805 (crtc_state->pipe_src_w - 1) * cpp;
2806 }
2807 }
2808
2809 intel_crtc->adjusted_x = x;
2810 intel_crtc->adjusted_y = y;
2811
2812 I915_WRITE(reg, dspcntr);
2813
2814 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2815 I915_WRITE(DSPSURF(plane),
2816 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2817 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2818 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2819 } else {
2820 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2821 I915_WRITE(DSPLINOFF(plane), linear_offset);
2822 }
2823 POSTING_READ(reg);
2824 }
2825
2826 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2827 uint64_t fb_modifier, uint32_t pixel_format)
2828 {
2829 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2830 return 64;
2831 } else {
2832 int cpp = drm_format_plane_cpp(pixel_format, 0);
2833
2834 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2835 }
2836 }
2837
2838 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2839 struct drm_i915_gem_object *obj,
2840 unsigned int plane)
2841 {
2842 struct i915_ggtt_view view;
2843 struct i915_vma *vma;
2844 u64 offset;
2845
2846 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2847 intel_plane->base.state->rotation);
2848
2849 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2850 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2851 view.type))
2852 return -1;
2853
2854 offset = vma->node.start;
2855
2856 if (plane == 1) {
2857 offset += vma->ggtt_view.params.rotated.uv_start_page *
2858 PAGE_SIZE;
2859 }
2860
2861 WARN_ON(upper_32_bits(offset));
2862
2863 return lower_32_bits(offset);
2864 }
2865
2866 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2867 {
2868 struct drm_device *dev = intel_crtc->base.dev;
2869 struct drm_i915_private *dev_priv = to_i915(dev);
2870
2871 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2872 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2873 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2874 }
2875
2876 /*
2877 * This function detaches (aka. unbinds) unused scalers in hardware
2878 */
2879 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2880 {
2881 struct intel_crtc_scaler_state *scaler_state;
2882 int i;
2883
2884 scaler_state = &intel_crtc->config->scaler_state;
2885
2886 /* loop through and disable scalers that aren't in use */
2887 for (i = 0; i < intel_crtc->num_scalers; i++) {
2888 if (!scaler_state->scalers[i].in_use)
2889 skl_detach_scaler(intel_crtc, i);
2890 }
2891 }
2892
2893 u32 skl_plane_ctl_format(uint32_t pixel_format)
2894 {
2895 switch (pixel_format) {
2896 case DRM_FORMAT_C8:
2897 return PLANE_CTL_FORMAT_INDEXED;
2898 case DRM_FORMAT_RGB565:
2899 return PLANE_CTL_FORMAT_RGB_565;
2900 case DRM_FORMAT_XBGR8888:
2901 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2902 case DRM_FORMAT_XRGB8888:
2903 return PLANE_CTL_FORMAT_XRGB_8888;
2904 /*
2905 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2906 * to be already pre-multiplied. We need to add a knob (or a different
2907 * DRM_FORMAT) for user-space to configure that.
2908 */
2909 case DRM_FORMAT_ABGR8888:
2910 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2911 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2912 case DRM_FORMAT_ARGB8888:
2913 return PLANE_CTL_FORMAT_XRGB_8888 |
2914 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2915 case DRM_FORMAT_XRGB2101010:
2916 return PLANE_CTL_FORMAT_XRGB_2101010;
2917 case DRM_FORMAT_XBGR2101010:
2918 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2919 case DRM_FORMAT_YUYV:
2920 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2921 case DRM_FORMAT_YVYU:
2922 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2923 case DRM_FORMAT_UYVY:
2924 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2925 case DRM_FORMAT_VYUY:
2926 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2927 default:
2928 MISSING_CASE(pixel_format);
2929 }
2930
2931 return 0;
2932 }
2933
2934 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2935 {
2936 switch (fb_modifier) {
2937 case DRM_FORMAT_MOD_NONE:
2938 break;
2939 case I915_FORMAT_MOD_X_TILED:
2940 return PLANE_CTL_TILED_X;
2941 case I915_FORMAT_MOD_Y_TILED:
2942 return PLANE_CTL_TILED_Y;
2943 case I915_FORMAT_MOD_Yf_TILED:
2944 return PLANE_CTL_TILED_YF;
2945 default:
2946 MISSING_CASE(fb_modifier);
2947 }
2948
2949 return 0;
2950 }
2951
2952 u32 skl_plane_ctl_rotation(unsigned int rotation)
2953 {
2954 switch (rotation) {
2955 case BIT(DRM_ROTATE_0):
2956 break;
2957 /*
2958 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2959 * while i915 HW rotation is clockwise, thats why this swapping.
2960 */
2961 case BIT(DRM_ROTATE_90):
2962 return PLANE_CTL_ROTATE_270;
2963 case BIT(DRM_ROTATE_180):
2964 return PLANE_CTL_ROTATE_180;
2965 case BIT(DRM_ROTATE_270):
2966 return PLANE_CTL_ROTATE_90;
2967 default:
2968 MISSING_CASE(rotation);
2969 }
2970
2971 return 0;
2972 }
2973
2974 static void skylake_update_primary_plane(struct drm_plane *plane,
2975 const struct intel_crtc_state *crtc_state,
2976 const struct intel_plane_state *plane_state)
2977 {
2978 struct drm_device *dev = plane->dev;
2979 struct drm_i915_private *dev_priv = to_i915(dev);
2980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2981 struct drm_framebuffer *fb = plane_state->base.fb;
2982 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2983 int pipe = intel_crtc->pipe;
2984 u32 plane_ctl, stride_div, stride;
2985 u32 tile_height, plane_offset, plane_size;
2986 unsigned int rotation = plane_state->base.rotation;
2987 int x_offset, y_offset;
2988 u32 surf_addr;
2989 int scaler_id = plane_state->scaler_id;
2990 int src_x = plane_state->src.x1 >> 16;
2991 int src_y = plane_state->src.y1 >> 16;
2992 int src_w = drm_rect_width(&plane_state->src) >> 16;
2993 int src_h = drm_rect_height(&plane_state->src) >> 16;
2994 int dst_x = plane_state->dst.x1;
2995 int dst_y = plane_state->dst.y1;
2996 int dst_w = drm_rect_width(&plane_state->dst);
2997 int dst_h = drm_rect_height(&plane_state->dst);
2998
2999 plane_ctl = PLANE_CTL_ENABLE |
3000 PLANE_CTL_PIPE_GAMMA_ENABLE |
3001 PLANE_CTL_PIPE_CSC_ENABLE;
3002
3003 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3004 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3005 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3006 plane_ctl |= skl_plane_ctl_rotation(rotation);
3007
3008 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3009 fb->pixel_format);
3010 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3011
3012 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3013
3014 if (intel_rotation_90_or_270(rotation)) {
3015 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3016
3017 /* stride = Surface height in tiles */
3018 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3019 stride = DIV_ROUND_UP(fb->height, tile_height);
3020 x_offset = stride * tile_height - src_y - src_h;
3021 y_offset = src_x;
3022 plane_size = (src_w - 1) << 16 | (src_h - 1);
3023 } else {
3024 stride = fb->pitches[0] / stride_div;
3025 x_offset = src_x;
3026 y_offset = src_y;
3027 plane_size = (src_h - 1) << 16 | (src_w - 1);
3028 }
3029 plane_offset = y_offset << 16 | x_offset;
3030
3031 intel_crtc->adjusted_x = x_offset;
3032 intel_crtc->adjusted_y = y_offset;
3033
3034 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3035 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3036 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3037 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3038
3039 if (scaler_id >= 0) {
3040 uint32_t ps_ctrl = 0;
3041
3042 WARN_ON(!dst_w || !dst_h);
3043 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3044 crtc_state->scaler_state.scalers[scaler_id].mode;
3045 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3046 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3047 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3048 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3049 I915_WRITE(PLANE_POS(pipe, 0), 0);
3050 } else {
3051 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3052 }
3053
3054 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3055
3056 POSTING_READ(PLANE_SURF(pipe, 0));
3057 }
3058
3059 static void skylake_disable_primary_plane(struct drm_plane *primary,
3060 struct drm_crtc *crtc)
3061 {
3062 struct drm_device *dev = crtc->dev;
3063 struct drm_i915_private *dev_priv = to_i915(dev);
3064 int pipe = to_intel_crtc(crtc)->pipe;
3065
3066 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3067 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3068 POSTING_READ(PLANE_SURF(pipe, 0));
3069 }
3070
3071 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3072 static int
3073 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3074 int x, int y, enum mode_set_atomic state)
3075 {
3076 /* Support for kgdboc is disabled, this needs a major rework. */
3077 DRM_ERROR("legacy panic handler not supported any more.\n");
3078
3079 return -ENODEV;
3080 }
3081
3082 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3083 {
3084 struct intel_crtc *crtc;
3085
3086 for_each_intel_crtc(&dev_priv->drm, crtc)
3087 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3088 }
3089
3090 static void intel_update_primary_planes(struct drm_device *dev)
3091 {
3092 struct drm_crtc *crtc;
3093
3094 for_each_crtc(dev, crtc) {
3095 struct intel_plane *plane = to_intel_plane(crtc->primary);
3096 struct intel_plane_state *plane_state;
3097
3098 drm_modeset_lock_crtc(crtc, &plane->base);
3099 plane_state = to_intel_plane_state(plane->base.state);
3100
3101 if (plane_state->visible)
3102 plane->update_plane(&plane->base,
3103 to_intel_crtc_state(crtc->state),
3104 plane_state);
3105
3106 drm_modeset_unlock_crtc(crtc);
3107 }
3108 }
3109
3110 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3111 {
3112 /* no reset support for gen2 */
3113 if (IS_GEN2(dev_priv))
3114 return;
3115
3116 /* reset doesn't touch the display */
3117 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3118 return;
3119
3120 drm_modeset_lock_all(&dev_priv->drm);
3121 /*
3122 * Disabling the crtcs gracefully seems nicer. Also the
3123 * g33 docs say we should at least disable all the planes.
3124 */
3125 intel_display_suspend(&dev_priv->drm);
3126 }
3127
3128 void intel_finish_reset(struct drm_i915_private *dev_priv)
3129 {
3130 /*
3131 * Flips in the rings will be nuked by the reset,
3132 * so complete all pending flips so that user space
3133 * will get its events and not get stuck.
3134 */
3135 intel_complete_page_flips(dev_priv);
3136
3137 /* no reset support for gen2 */
3138 if (IS_GEN2(dev_priv))
3139 return;
3140
3141 /* reset doesn't touch the display */
3142 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3143 /*
3144 * Flips in the rings have been nuked by the reset,
3145 * so update the base address of all primary
3146 * planes to the the last fb to make sure we're
3147 * showing the correct fb after a reset.
3148 *
3149 * FIXME: Atomic will make this obsolete since we won't schedule
3150 * CS-based flips (which might get lost in gpu resets) any more.
3151 */
3152 intel_update_primary_planes(&dev_priv->drm);
3153 return;
3154 }
3155
3156 /*
3157 * The display has been reset as well,
3158 * so need a full re-initialization.
3159 */
3160 intel_runtime_pm_disable_interrupts(dev_priv);
3161 intel_runtime_pm_enable_interrupts(dev_priv);
3162
3163 intel_modeset_init_hw(&dev_priv->drm);
3164
3165 spin_lock_irq(&dev_priv->irq_lock);
3166 if (dev_priv->display.hpd_irq_setup)
3167 dev_priv->display.hpd_irq_setup(dev_priv);
3168 spin_unlock_irq(&dev_priv->irq_lock);
3169
3170 intel_display_resume(&dev_priv->drm);
3171
3172 intel_hpd_init(dev_priv);
3173
3174 drm_modeset_unlock_all(&dev_priv->drm);
3175 }
3176
3177 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3178 {
3179 struct drm_device *dev = crtc->dev;
3180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181 unsigned reset_counter;
3182 bool pending;
3183
3184 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3185 if (intel_crtc->reset_counter != reset_counter)
3186 return false;
3187
3188 spin_lock_irq(&dev->event_lock);
3189 pending = to_intel_crtc(crtc)->flip_work != NULL;
3190 spin_unlock_irq(&dev->event_lock);
3191
3192 return pending;
3193 }
3194
3195 static void intel_update_pipe_config(struct intel_crtc *crtc,
3196 struct intel_crtc_state *old_crtc_state)
3197 {
3198 struct drm_device *dev = crtc->base.dev;
3199 struct drm_i915_private *dev_priv = to_i915(dev);
3200 struct intel_crtc_state *pipe_config =
3201 to_intel_crtc_state(crtc->base.state);
3202
3203 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3204 crtc->base.mode = crtc->base.state->mode;
3205
3206 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3207 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3208 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3209
3210 /*
3211 * Update pipe size and adjust fitter if needed: the reason for this is
3212 * that in compute_mode_changes we check the native mode (not the pfit
3213 * mode) to see if we can flip rather than do a full mode set. In the
3214 * fastboot case, we'll flip, but if we don't update the pipesrc and
3215 * pfit state, we'll end up with a big fb scanned out into the wrong
3216 * sized surface.
3217 */
3218
3219 I915_WRITE(PIPESRC(crtc->pipe),
3220 ((pipe_config->pipe_src_w - 1) << 16) |
3221 (pipe_config->pipe_src_h - 1));
3222
3223 /* on skylake this is done by detaching scalers */
3224 if (INTEL_INFO(dev)->gen >= 9) {
3225 skl_detach_scalers(crtc);
3226
3227 if (pipe_config->pch_pfit.enabled)
3228 skylake_pfit_enable(crtc);
3229 } else if (HAS_PCH_SPLIT(dev)) {
3230 if (pipe_config->pch_pfit.enabled)
3231 ironlake_pfit_enable(crtc);
3232 else if (old_crtc_state->pch_pfit.enabled)
3233 ironlake_pfit_disable(crtc, true);
3234 }
3235 }
3236
3237 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3238 {
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = to_i915(dev);
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242 int pipe = intel_crtc->pipe;
3243 i915_reg_t reg;
3244 u32 temp;
3245
3246 /* enable normal train */
3247 reg = FDI_TX_CTL(pipe);
3248 temp = I915_READ(reg);
3249 if (IS_IVYBRIDGE(dev)) {
3250 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3251 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3252 } else {
3253 temp &= ~FDI_LINK_TRAIN_NONE;
3254 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3255 }
3256 I915_WRITE(reg, temp);
3257
3258 reg = FDI_RX_CTL(pipe);
3259 temp = I915_READ(reg);
3260 if (HAS_PCH_CPT(dev)) {
3261 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3262 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3263 } else {
3264 temp &= ~FDI_LINK_TRAIN_NONE;
3265 temp |= FDI_LINK_TRAIN_NONE;
3266 }
3267 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3268
3269 /* wait one idle pattern time */
3270 POSTING_READ(reg);
3271 udelay(1000);
3272
3273 /* IVB wants error correction enabled */
3274 if (IS_IVYBRIDGE(dev))
3275 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3276 FDI_FE_ERRC_ENABLE);
3277 }
3278
3279 /* The FDI link training functions for ILK/Ibexpeak. */
3280 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3281 {
3282 struct drm_device *dev = crtc->dev;
3283 struct drm_i915_private *dev_priv = to_i915(dev);
3284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285 int pipe = intel_crtc->pipe;
3286 i915_reg_t reg;
3287 u32 temp, tries;
3288
3289 /* FDI needs bits from pipe first */
3290 assert_pipe_enabled(dev_priv, pipe);
3291
3292 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3293 for train result */
3294 reg = FDI_RX_IMR(pipe);
3295 temp = I915_READ(reg);
3296 temp &= ~FDI_RX_SYMBOL_LOCK;
3297 temp &= ~FDI_RX_BIT_LOCK;
3298 I915_WRITE(reg, temp);
3299 I915_READ(reg);
3300 udelay(150);
3301
3302 /* enable CPU FDI TX and PCH FDI RX */
3303 reg = FDI_TX_CTL(pipe);
3304 temp = I915_READ(reg);
3305 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3306 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3307 temp &= ~FDI_LINK_TRAIN_NONE;
3308 temp |= FDI_LINK_TRAIN_PATTERN_1;
3309 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3310
3311 reg = FDI_RX_CTL(pipe);
3312 temp = I915_READ(reg);
3313 temp &= ~FDI_LINK_TRAIN_NONE;
3314 temp |= FDI_LINK_TRAIN_PATTERN_1;
3315 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3316
3317 POSTING_READ(reg);
3318 udelay(150);
3319
3320 /* Ironlake workaround, enable clock pointer after FDI enable*/
3321 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3322 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3323 FDI_RX_PHASE_SYNC_POINTER_EN);
3324
3325 reg = FDI_RX_IIR(pipe);
3326 for (tries = 0; tries < 5; tries++) {
3327 temp = I915_READ(reg);
3328 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330 if ((temp & FDI_RX_BIT_LOCK)) {
3331 DRM_DEBUG_KMS("FDI train 1 done.\n");
3332 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3333 break;
3334 }
3335 }
3336 if (tries == 5)
3337 DRM_ERROR("FDI train 1 fail!\n");
3338
3339 /* Train 2 */
3340 reg = FDI_TX_CTL(pipe);
3341 temp = I915_READ(reg);
3342 temp &= ~FDI_LINK_TRAIN_NONE;
3343 temp |= FDI_LINK_TRAIN_PATTERN_2;
3344 I915_WRITE(reg, temp);
3345
3346 reg = FDI_RX_CTL(pipe);
3347 temp = I915_READ(reg);
3348 temp &= ~FDI_LINK_TRAIN_NONE;
3349 temp |= FDI_LINK_TRAIN_PATTERN_2;
3350 I915_WRITE(reg, temp);
3351
3352 POSTING_READ(reg);
3353 udelay(150);
3354
3355 reg = FDI_RX_IIR(pipe);
3356 for (tries = 0; tries < 5; tries++) {
3357 temp = I915_READ(reg);
3358 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3359
3360 if (temp & FDI_RX_SYMBOL_LOCK) {
3361 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3362 DRM_DEBUG_KMS("FDI train 2 done.\n");
3363 break;
3364 }
3365 }
3366 if (tries == 5)
3367 DRM_ERROR("FDI train 2 fail!\n");
3368
3369 DRM_DEBUG_KMS("FDI train done\n");
3370
3371 }
3372
3373 static const int snb_b_fdi_train_param[] = {
3374 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3375 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3376 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3377 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3378 };
3379
3380 /* The FDI link training functions for SNB/Cougarpoint. */
3381 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3382 {
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = to_i915(dev);
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386 int pipe = intel_crtc->pipe;
3387 i915_reg_t reg;
3388 u32 temp, i, retry;
3389
3390 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3391 for train result */
3392 reg = FDI_RX_IMR(pipe);
3393 temp = I915_READ(reg);
3394 temp &= ~FDI_RX_SYMBOL_LOCK;
3395 temp &= ~FDI_RX_BIT_LOCK;
3396 I915_WRITE(reg, temp);
3397
3398 POSTING_READ(reg);
3399 udelay(150);
3400
3401 /* enable CPU FDI TX and PCH FDI RX */
3402 reg = FDI_TX_CTL(pipe);
3403 temp = I915_READ(reg);
3404 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3405 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3406 temp &= ~FDI_LINK_TRAIN_NONE;
3407 temp |= FDI_LINK_TRAIN_PATTERN_1;
3408 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3409 /* SNB-B */
3410 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3411 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3412
3413 I915_WRITE(FDI_RX_MISC(pipe),
3414 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3415
3416 reg = FDI_RX_CTL(pipe);
3417 temp = I915_READ(reg);
3418 if (HAS_PCH_CPT(dev)) {
3419 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3420 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3421 } else {
3422 temp &= ~FDI_LINK_TRAIN_NONE;
3423 temp |= FDI_LINK_TRAIN_PATTERN_1;
3424 }
3425 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427 POSTING_READ(reg);
3428 udelay(150);
3429
3430 for (i = 0; i < 4; i++) {
3431 reg = FDI_TX_CTL(pipe);
3432 temp = I915_READ(reg);
3433 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3434 temp |= snb_b_fdi_train_param[i];
3435 I915_WRITE(reg, temp);
3436
3437 POSTING_READ(reg);
3438 udelay(500);
3439
3440 for (retry = 0; retry < 5; retry++) {
3441 reg = FDI_RX_IIR(pipe);
3442 temp = I915_READ(reg);
3443 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3444 if (temp & FDI_RX_BIT_LOCK) {
3445 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3446 DRM_DEBUG_KMS("FDI train 1 done.\n");
3447 break;
3448 }
3449 udelay(50);
3450 }
3451 if (retry < 5)
3452 break;
3453 }
3454 if (i == 4)
3455 DRM_ERROR("FDI train 1 fail!\n");
3456
3457 /* Train 2 */
3458 reg = FDI_TX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 temp &= ~FDI_LINK_TRAIN_NONE;
3461 temp |= FDI_LINK_TRAIN_PATTERN_2;
3462 if (IS_GEN6(dev)) {
3463 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3464 /* SNB-B */
3465 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3466 }
3467 I915_WRITE(reg, temp);
3468
3469 reg = FDI_RX_CTL(pipe);
3470 temp = I915_READ(reg);
3471 if (HAS_PCH_CPT(dev)) {
3472 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3473 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3474 } else {
3475 temp &= ~FDI_LINK_TRAIN_NONE;
3476 temp |= FDI_LINK_TRAIN_PATTERN_2;
3477 }
3478 I915_WRITE(reg, temp);
3479
3480 POSTING_READ(reg);
3481 udelay(150);
3482
3483 for (i = 0; i < 4; i++) {
3484 reg = FDI_TX_CTL(pipe);
3485 temp = I915_READ(reg);
3486 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3487 temp |= snb_b_fdi_train_param[i];
3488 I915_WRITE(reg, temp);
3489
3490 POSTING_READ(reg);
3491 udelay(500);
3492
3493 for (retry = 0; retry < 5; retry++) {
3494 reg = FDI_RX_IIR(pipe);
3495 temp = I915_READ(reg);
3496 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3497 if (temp & FDI_RX_SYMBOL_LOCK) {
3498 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3499 DRM_DEBUG_KMS("FDI train 2 done.\n");
3500 break;
3501 }
3502 udelay(50);
3503 }
3504 if (retry < 5)
3505 break;
3506 }
3507 if (i == 4)
3508 DRM_ERROR("FDI train 2 fail!\n");
3509
3510 DRM_DEBUG_KMS("FDI train done.\n");
3511 }
3512
3513 /* Manual link training for Ivy Bridge A0 parts */
3514 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3515 {
3516 struct drm_device *dev = crtc->dev;
3517 struct drm_i915_private *dev_priv = to_i915(dev);
3518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3519 int pipe = intel_crtc->pipe;
3520 i915_reg_t reg;
3521 u32 temp, i, j;
3522
3523 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3524 for train result */
3525 reg = FDI_RX_IMR(pipe);
3526 temp = I915_READ(reg);
3527 temp &= ~FDI_RX_SYMBOL_LOCK;
3528 temp &= ~FDI_RX_BIT_LOCK;
3529 I915_WRITE(reg, temp);
3530
3531 POSTING_READ(reg);
3532 udelay(150);
3533
3534 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3535 I915_READ(FDI_RX_IIR(pipe)));
3536
3537 /* Try each vswing and preemphasis setting twice before moving on */
3538 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3539 /* disable first in case we need to retry */
3540 reg = FDI_TX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3543 temp &= ~FDI_TX_ENABLE;
3544 I915_WRITE(reg, temp);
3545
3546 reg = FDI_RX_CTL(pipe);
3547 temp = I915_READ(reg);
3548 temp &= ~FDI_LINK_TRAIN_AUTO;
3549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550 temp &= ~FDI_RX_ENABLE;
3551 I915_WRITE(reg, temp);
3552
3553 /* enable CPU FDI TX and PCH FDI RX */
3554 reg = FDI_TX_CTL(pipe);
3555 temp = I915_READ(reg);
3556 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3557 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3558 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3559 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560 temp |= snb_b_fdi_train_param[j/2];
3561 temp |= FDI_COMPOSITE_SYNC;
3562 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3563
3564 I915_WRITE(FDI_RX_MISC(pipe),
3565 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3566
3567 reg = FDI_RX_CTL(pipe);
3568 temp = I915_READ(reg);
3569 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3570 temp |= FDI_COMPOSITE_SYNC;
3571 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3572
3573 POSTING_READ(reg);
3574 udelay(1); /* should be 0.5us */
3575
3576 for (i = 0; i < 4; i++) {
3577 reg = FDI_RX_IIR(pipe);
3578 temp = I915_READ(reg);
3579 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3580
3581 if (temp & FDI_RX_BIT_LOCK ||
3582 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3583 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3584 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3585 i);
3586 break;
3587 }
3588 udelay(1); /* should be 0.5us */
3589 }
3590 if (i == 4) {
3591 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3592 continue;
3593 }
3594
3595 /* Train 2 */
3596 reg = FDI_TX_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3599 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3600 I915_WRITE(reg, temp);
3601
3602 reg = FDI_RX_CTL(pipe);
3603 temp = I915_READ(reg);
3604 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3605 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3606 I915_WRITE(reg, temp);
3607
3608 POSTING_READ(reg);
3609 udelay(2); /* should be 1.5us */
3610
3611 for (i = 0; i < 4; i++) {
3612 reg = FDI_RX_IIR(pipe);
3613 temp = I915_READ(reg);
3614 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3615
3616 if (temp & FDI_RX_SYMBOL_LOCK ||
3617 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3618 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3619 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3620 i);
3621 goto train_done;
3622 }
3623 udelay(2); /* should be 1.5us */
3624 }
3625 if (i == 4)
3626 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3627 }
3628
3629 train_done:
3630 DRM_DEBUG_KMS("FDI train done.\n");
3631 }
3632
3633 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3634 {
3635 struct drm_device *dev = intel_crtc->base.dev;
3636 struct drm_i915_private *dev_priv = to_i915(dev);
3637 int pipe = intel_crtc->pipe;
3638 i915_reg_t reg;
3639 u32 temp;
3640
3641 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3642 reg = FDI_RX_CTL(pipe);
3643 temp = I915_READ(reg);
3644 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3645 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3646 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3647 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3648
3649 POSTING_READ(reg);
3650 udelay(200);
3651
3652 /* Switch from Rawclk to PCDclk */
3653 temp = I915_READ(reg);
3654 I915_WRITE(reg, temp | FDI_PCDCLK);
3655
3656 POSTING_READ(reg);
3657 udelay(200);
3658
3659 /* Enable CPU FDI TX PLL, always on for Ironlake */
3660 reg = FDI_TX_CTL(pipe);
3661 temp = I915_READ(reg);
3662 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3663 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3664
3665 POSTING_READ(reg);
3666 udelay(100);
3667 }
3668 }
3669
3670 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3671 {
3672 struct drm_device *dev = intel_crtc->base.dev;
3673 struct drm_i915_private *dev_priv = to_i915(dev);
3674 int pipe = intel_crtc->pipe;
3675 i915_reg_t reg;
3676 u32 temp;
3677
3678 /* Switch from PCDclk to Rawclk */
3679 reg = FDI_RX_CTL(pipe);
3680 temp = I915_READ(reg);
3681 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3682
3683 /* Disable CPU FDI TX PLL */
3684 reg = FDI_TX_CTL(pipe);
3685 temp = I915_READ(reg);
3686 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3687
3688 POSTING_READ(reg);
3689 udelay(100);
3690
3691 reg = FDI_RX_CTL(pipe);
3692 temp = I915_READ(reg);
3693 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3694
3695 /* Wait for the clocks to turn off. */
3696 POSTING_READ(reg);
3697 udelay(100);
3698 }
3699
3700 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3701 {
3702 struct drm_device *dev = crtc->dev;
3703 struct drm_i915_private *dev_priv = to_i915(dev);
3704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3705 int pipe = intel_crtc->pipe;
3706 i915_reg_t reg;
3707 u32 temp;
3708
3709 /* disable CPU FDI tx and PCH FDI rx */
3710 reg = FDI_TX_CTL(pipe);
3711 temp = I915_READ(reg);
3712 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3713 POSTING_READ(reg);
3714
3715 reg = FDI_RX_CTL(pipe);
3716 temp = I915_READ(reg);
3717 temp &= ~(0x7 << 16);
3718 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3719 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3720
3721 POSTING_READ(reg);
3722 udelay(100);
3723
3724 /* Ironlake workaround, disable clock pointer after downing FDI */
3725 if (HAS_PCH_IBX(dev))
3726 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3727
3728 /* still set train pattern 1 */
3729 reg = FDI_TX_CTL(pipe);
3730 temp = I915_READ(reg);
3731 temp &= ~FDI_LINK_TRAIN_NONE;
3732 temp |= FDI_LINK_TRAIN_PATTERN_1;
3733 I915_WRITE(reg, temp);
3734
3735 reg = FDI_RX_CTL(pipe);
3736 temp = I915_READ(reg);
3737 if (HAS_PCH_CPT(dev)) {
3738 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3739 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3740 } else {
3741 temp &= ~FDI_LINK_TRAIN_NONE;
3742 temp |= FDI_LINK_TRAIN_PATTERN_1;
3743 }
3744 /* BPC in FDI rx is consistent with that in PIPECONF */
3745 temp &= ~(0x07 << 16);
3746 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3747 I915_WRITE(reg, temp);
3748
3749 POSTING_READ(reg);
3750 udelay(100);
3751 }
3752
3753 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3754 {
3755 struct intel_crtc *crtc;
3756
3757 /* Note that we don't need to be called with mode_config.lock here
3758 * as our list of CRTC objects is static for the lifetime of the
3759 * device and so cannot disappear as we iterate. Similarly, we can
3760 * happily treat the predicates as racy, atomic checks as userspace
3761 * cannot claim and pin a new fb without at least acquring the
3762 * struct_mutex and so serialising with us.
3763 */
3764 for_each_intel_crtc(dev, crtc) {
3765 if (atomic_read(&crtc->unpin_work_count) == 0)
3766 continue;
3767
3768 if (crtc->flip_work)
3769 intel_wait_for_vblank(dev, crtc->pipe);
3770
3771 return true;
3772 }
3773
3774 return false;
3775 }
3776
3777 static void page_flip_completed(struct intel_crtc *intel_crtc)
3778 {
3779 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3780 struct intel_flip_work *work = intel_crtc->flip_work;
3781
3782 intel_crtc->flip_work = NULL;
3783
3784 if (work->event)
3785 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3786
3787 drm_crtc_vblank_put(&intel_crtc->base);
3788
3789 wake_up_all(&dev_priv->pending_flip_queue);
3790 queue_work(dev_priv->wq, &work->unpin_work);
3791
3792 trace_i915_flip_complete(intel_crtc->plane,
3793 work->pending_flip_obj);
3794 }
3795
3796 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3797 {
3798 struct drm_device *dev = crtc->dev;
3799 struct drm_i915_private *dev_priv = to_i915(dev);
3800 long ret;
3801
3802 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3803
3804 ret = wait_event_interruptible_timeout(
3805 dev_priv->pending_flip_queue,
3806 !intel_crtc_has_pending_flip(crtc),
3807 60*HZ);
3808
3809 if (ret < 0)
3810 return ret;
3811
3812 if (ret == 0) {
3813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814 struct intel_flip_work *work;
3815
3816 spin_lock_irq(&dev->event_lock);
3817 work = intel_crtc->flip_work;
3818 if (work && !is_mmio_work(work)) {
3819 WARN_ONCE(1, "Removing stuck page flip\n");
3820 page_flip_completed(intel_crtc);
3821 }
3822 spin_unlock_irq(&dev->event_lock);
3823 }
3824
3825 return 0;
3826 }
3827
3828 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3829 {
3830 u32 temp;
3831
3832 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833
3834 mutex_lock(&dev_priv->sb_lock);
3835
3836 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3837 temp |= SBI_SSCCTL_DISABLE;
3838 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3839
3840 mutex_unlock(&dev_priv->sb_lock);
3841 }
3842
3843 /* Program iCLKIP clock to the desired frequency */
3844 static void lpt_program_iclkip(struct drm_crtc *crtc)
3845 {
3846 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3847 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3848 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3849 u32 temp;
3850
3851 lpt_disable_iclkip(dev_priv);
3852
3853 /* The iCLK virtual clock root frequency is in MHz,
3854 * but the adjusted_mode->crtc_clock in in KHz. To get the
3855 * divisors, it is necessary to divide one by another, so we
3856 * convert the virtual clock precision to KHz here for higher
3857 * precision.
3858 */
3859 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3860 u32 iclk_virtual_root_freq = 172800 * 1000;
3861 u32 iclk_pi_range = 64;
3862 u32 desired_divisor;
3863
3864 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3865 clock << auxdiv);
3866 divsel = (desired_divisor / iclk_pi_range) - 2;
3867 phaseinc = desired_divisor % iclk_pi_range;
3868
3869 /*
3870 * Near 20MHz is a corner case which is
3871 * out of range for the 7-bit divisor
3872 */
3873 if (divsel <= 0x7f)
3874 break;
3875 }
3876
3877 /* This should not happen with any sane values */
3878 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3879 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3880 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3881 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3882
3883 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3884 clock,
3885 auxdiv,
3886 divsel,
3887 phasedir,
3888 phaseinc);
3889
3890 mutex_lock(&dev_priv->sb_lock);
3891
3892 /* Program SSCDIVINTPHASE6 */
3893 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3894 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3895 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3896 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3897 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3898 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3899 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3900 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3901
3902 /* Program SSCAUXDIV */
3903 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3904 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3905 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3906 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3907
3908 /* Enable modulator and associated divider */
3909 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3910 temp &= ~SBI_SSCCTL_DISABLE;
3911 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3912
3913 mutex_unlock(&dev_priv->sb_lock);
3914
3915 /* Wait for initialization time */
3916 udelay(24);
3917
3918 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3919 }
3920
3921 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3922 {
3923 u32 divsel, phaseinc, auxdiv;
3924 u32 iclk_virtual_root_freq = 172800 * 1000;
3925 u32 iclk_pi_range = 64;
3926 u32 desired_divisor;
3927 u32 temp;
3928
3929 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3930 return 0;
3931
3932 mutex_lock(&dev_priv->sb_lock);
3933
3934 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3935 if (temp & SBI_SSCCTL_DISABLE) {
3936 mutex_unlock(&dev_priv->sb_lock);
3937 return 0;
3938 }
3939
3940 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3941 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3942 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3943 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3944 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3945
3946 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3947 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3948 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3949
3950 mutex_unlock(&dev_priv->sb_lock);
3951
3952 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3953
3954 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3955 desired_divisor << auxdiv);
3956 }
3957
3958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3959 enum pipe pch_transcoder)
3960 {
3961 struct drm_device *dev = crtc->base.dev;
3962 struct drm_i915_private *dev_priv = to_i915(dev);
3963 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3964
3965 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3966 I915_READ(HTOTAL(cpu_transcoder)));
3967 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3968 I915_READ(HBLANK(cpu_transcoder)));
3969 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3970 I915_READ(HSYNC(cpu_transcoder)));
3971
3972 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3973 I915_READ(VTOTAL(cpu_transcoder)));
3974 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3975 I915_READ(VBLANK(cpu_transcoder)));
3976 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3977 I915_READ(VSYNC(cpu_transcoder)));
3978 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3979 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3980 }
3981
3982 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3983 {
3984 struct drm_i915_private *dev_priv = to_i915(dev);
3985 uint32_t temp;
3986
3987 temp = I915_READ(SOUTH_CHICKEN1);
3988 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3989 return;
3990
3991 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3992 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3993
3994 temp &= ~FDI_BC_BIFURCATION_SELECT;
3995 if (enable)
3996 temp |= FDI_BC_BIFURCATION_SELECT;
3997
3998 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3999 I915_WRITE(SOUTH_CHICKEN1, temp);
4000 POSTING_READ(SOUTH_CHICKEN1);
4001 }
4002
4003 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4004 {
4005 struct drm_device *dev = intel_crtc->base.dev;
4006
4007 switch (intel_crtc->pipe) {
4008 case PIPE_A:
4009 break;
4010 case PIPE_B:
4011 if (intel_crtc->config->fdi_lanes > 2)
4012 cpt_set_fdi_bc_bifurcation(dev, false);
4013 else
4014 cpt_set_fdi_bc_bifurcation(dev, true);
4015
4016 break;
4017 case PIPE_C:
4018 cpt_set_fdi_bc_bifurcation(dev, true);
4019
4020 break;
4021 default:
4022 BUG();
4023 }
4024 }
4025
4026 /* Return which DP Port should be selected for Transcoder DP control */
4027 static enum port
4028 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4029 {
4030 struct drm_device *dev = crtc->dev;
4031 struct intel_encoder *encoder;
4032
4033 for_each_encoder_on_crtc(dev, crtc, encoder) {
4034 if (encoder->type == INTEL_OUTPUT_DP ||
4035 encoder->type == INTEL_OUTPUT_EDP)
4036 return enc_to_dig_port(&encoder->base)->port;
4037 }
4038
4039 return -1;
4040 }
4041
4042 /*
4043 * Enable PCH resources required for PCH ports:
4044 * - PCH PLLs
4045 * - FDI training & RX/TX
4046 * - update transcoder timings
4047 * - DP transcoding bits
4048 * - transcoder
4049 */
4050 static void ironlake_pch_enable(struct drm_crtc *crtc)
4051 {
4052 struct drm_device *dev = crtc->dev;
4053 struct drm_i915_private *dev_priv = to_i915(dev);
4054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055 int pipe = intel_crtc->pipe;
4056 u32 temp;
4057
4058 assert_pch_transcoder_disabled(dev_priv, pipe);
4059
4060 if (IS_IVYBRIDGE(dev))
4061 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4062
4063 /* Write the TU size bits before fdi link training, so that error
4064 * detection works. */
4065 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4066 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4067
4068 /* For PCH output, training FDI link */
4069 dev_priv->display.fdi_link_train(crtc);
4070
4071 /* We need to program the right clock selection before writing the pixel
4072 * mutliplier into the DPLL. */
4073 if (HAS_PCH_CPT(dev)) {
4074 u32 sel;
4075
4076 temp = I915_READ(PCH_DPLL_SEL);
4077 temp |= TRANS_DPLL_ENABLE(pipe);
4078 sel = TRANS_DPLLB_SEL(pipe);
4079 if (intel_crtc->config->shared_dpll ==
4080 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4081 temp |= sel;
4082 else
4083 temp &= ~sel;
4084 I915_WRITE(PCH_DPLL_SEL, temp);
4085 }
4086
4087 /* XXX: pch pll's can be enabled any time before we enable the PCH
4088 * transcoder, and we actually should do this to not upset any PCH
4089 * transcoder that already use the clock when we share it.
4090 *
4091 * Note that enable_shared_dpll tries to do the right thing, but
4092 * get_shared_dpll unconditionally resets the pll - we need that to have
4093 * the right LVDS enable sequence. */
4094 intel_enable_shared_dpll(intel_crtc);
4095
4096 /* set transcoder timing, panel must allow it */
4097 assert_panel_unlocked(dev_priv, pipe);
4098 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4099
4100 intel_fdi_normal_train(crtc);
4101
4102 /* For PCH DP, enable TRANS_DP_CTL */
4103 if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4104 const struct drm_display_mode *adjusted_mode =
4105 &intel_crtc->config->base.adjusted_mode;
4106 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4107 i915_reg_t reg = TRANS_DP_CTL(pipe);
4108 temp = I915_READ(reg);
4109 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4110 TRANS_DP_SYNC_MASK |
4111 TRANS_DP_BPC_MASK);
4112 temp |= TRANS_DP_OUTPUT_ENABLE;
4113 temp |= bpc << 9; /* same format but at 11:9 */
4114
4115 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4116 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4117 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4118 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4119
4120 switch (intel_trans_dp_port_sel(crtc)) {
4121 case PORT_B:
4122 temp |= TRANS_DP_PORT_SEL_B;
4123 break;
4124 case PORT_C:
4125 temp |= TRANS_DP_PORT_SEL_C;
4126 break;
4127 case PORT_D:
4128 temp |= TRANS_DP_PORT_SEL_D;
4129 break;
4130 default:
4131 BUG();
4132 }
4133
4134 I915_WRITE(reg, temp);
4135 }
4136
4137 ironlake_enable_pch_transcoder(dev_priv, pipe);
4138 }
4139
4140 static void lpt_pch_enable(struct drm_crtc *crtc)
4141 {
4142 struct drm_device *dev = crtc->dev;
4143 struct drm_i915_private *dev_priv = to_i915(dev);
4144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4146
4147 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4148
4149 lpt_program_iclkip(crtc);
4150
4151 /* Set transcoder timing. */
4152 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4153
4154 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4155 }
4156
4157 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4158 {
4159 struct drm_i915_private *dev_priv = to_i915(dev);
4160 i915_reg_t dslreg = PIPEDSL(pipe);
4161 u32 temp;
4162
4163 temp = I915_READ(dslreg);
4164 udelay(500);
4165 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4166 if (wait_for(I915_READ(dslreg) != temp, 5))
4167 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4168 }
4169 }
4170
4171 static int
4172 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4173 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4174 int src_w, int src_h, int dst_w, int dst_h)
4175 {
4176 struct intel_crtc_scaler_state *scaler_state =
4177 &crtc_state->scaler_state;
4178 struct intel_crtc *intel_crtc =
4179 to_intel_crtc(crtc_state->base.crtc);
4180 int need_scaling;
4181
4182 need_scaling = intel_rotation_90_or_270(rotation) ?
4183 (src_h != dst_w || src_w != dst_h):
4184 (src_w != dst_w || src_h != dst_h);
4185
4186 /*
4187 * if plane is being disabled or scaler is no more required or force detach
4188 * - free scaler binded to this plane/crtc
4189 * - in order to do this, update crtc->scaler_usage
4190 *
4191 * Here scaler state in crtc_state is set free so that
4192 * scaler can be assigned to other user. Actual register
4193 * update to free the scaler is done in plane/panel-fit programming.
4194 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4195 */
4196 if (force_detach || !need_scaling) {
4197 if (*scaler_id >= 0) {
4198 scaler_state->scaler_users &= ~(1 << scaler_user);
4199 scaler_state->scalers[*scaler_id].in_use = 0;
4200
4201 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4202 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4203 intel_crtc->pipe, scaler_user, *scaler_id,
4204 scaler_state->scaler_users);
4205 *scaler_id = -1;
4206 }
4207 return 0;
4208 }
4209
4210 /* range checks */
4211 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4212 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4213
4214 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4215 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4216 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4217 "size is out of scaler range\n",
4218 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4219 return -EINVAL;
4220 }
4221
4222 /* mark this plane as a scaler user in crtc_state */
4223 scaler_state->scaler_users |= (1 << scaler_user);
4224 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4225 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4226 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4227 scaler_state->scaler_users);
4228
4229 return 0;
4230 }
4231
4232 /**
4233 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4234 *
4235 * @state: crtc's scaler state
4236 *
4237 * Return
4238 * 0 - scaler_usage updated successfully
4239 * error - requested scaling cannot be supported or other error condition
4240 */
4241 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4242 {
4243 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4244 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4245
4246 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4247 intel_crtc->base.base.id, intel_crtc->base.name,
4248 intel_crtc->pipe, SKL_CRTC_INDEX);
4249
4250 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4251 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4252 state->pipe_src_w, state->pipe_src_h,
4253 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4254 }
4255
4256 /**
4257 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4258 *
4259 * @state: crtc's scaler state
4260 * @plane_state: atomic plane state to update
4261 *
4262 * Return
4263 * 0 - scaler_usage updated successfully
4264 * error - requested scaling cannot be supported or other error condition
4265 */
4266 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4267 struct intel_plane_state *plane_state)
4268 {
4269
4270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4271 struct intel_plane *intel_plane =
4272 to_intel_plane(plane_state->base.plane);
4273 struct drm_framebuffer *fb = plane_state->base.fb;
4274 int ret;
4275
4276 bool force_detach = !fb || !plane_state->visible;
4277
4278 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4279 intel_plane->base.base.id, intel_plane->base.name,
4280 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4281
4282 ret = skl_update_scaler(crtc_state, force_detach,
4283 drm_plane_index(&intel_plane->base),
4284 &plane_state->scaler_id,
4285 plane_state->base.rotation,
4286 drm_rect_width(&plane_state->src) >> 16,
4287 drm_rect_height(&plane_state->src) >> 16,
4288 drm_rect_width(&plane_state->dst),
4289 drm_rect_height(&plane_state->dst));
4290
4291 if (ret || plane_state->scaler_id < 0)
4292 return ret;
4293
4294 /* check colorkey */
4295 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4296 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4297 intel_plane->base.base.id,
4298 intel_plane->base.name);
4299 return -EINVAL;
4300 }
4301
4302 /* Check src format */
4303 switch (fb->pixel_format) {
4304 case DRM_FORMAT_RGB565:
4305 case DRM_FORMAT_XBGR8888:
4306 case DRM_FORMAT_XRGB8888:
4307 case DRM_FORMAT_ABGR8888:
4308 case DRM_FORMAT_ARGB8888:
4309 case DRM_FORMAT_XRGB2101010:
4310 case DRM_FORMAT_XBGR2101010:
4311 case DRM_FORMAT_YUYV:
4312 case DRM_FORMAT_YVYU:
4313 case DRM_FORMAT_UYVY:
4314 case DRM_FORMAT_VYUY:
4315 break;
4316 default:
4317 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4318 intel_plane->base.base.id, intel_plane->base.name,
4319 fb->base.id, fb->pixel_format);
4320 return -EINVAL;
4321 }
4322
4323 return 0;
4324 }
4325
4326 static void skylake_scaler_disable(struct intel_crtc *crtc)
4327 {
4328 int i;
4329
4330 for (i = 0; i < crtc->num_scalers; i++)
4331 skl_detach_scaler(crtc, i);
4332 }
4333
4334 static void skylake_pfit_enable(struct intel_crtc *crtc)
4335 {
4336 struct drm_device *dev = crtc->base.dev;
4337 struct drm_i915_private *dev_priv = to_i915(dev);
4338 int pipe = crtc->pipe;
4339 struct intel_crtc_scaler_state *scaler_state =
4340 &crtc->config->scaler_state;
4341
4342 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4343
4344 if (crtc->config->pch_pfit.enabled) {
4345 int id;
4346
4347 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4348 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4349 return;
4350 }
4351
4352 id = scaler_state->scaler_id;
4353 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4354 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4355 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4356 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4357
4358 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4359 }
4360 }
4361
4362 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4363 {
4364 struct drm_device *dev = crtc->base.dev;
4365 struct drm_i915_private *dev_priv = to_i915(dev);
4366 int pipe = crtc->pipe;
4367
4368 if (crtc->config->pch_pfit.enabled) {
4369 /* Force use of hard-coded filter coefficients
4370 * as some pre-programmed values are broken,
4371 * e.g. x201.
4372 */
4373 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4374 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4375 PF_PIPE_SEL_IVB(pipe));
4376 else
4377 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4378 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4379 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4380 }
4381 }
4382
4383 void hsw_enable_ips(struct intel_crtc *crtc)
4384 {
4385 struct drm_device *dev = crtc->base.dev;
4386 struct drm_i915_private *dev_priv = to_i915(dev);
4387
4388 if (!crtc->config->ips_enabled)
4389 return;
4390
4391 /*
4392 * We can only enable IPS after we enable a plane and wait for a vblank
4393 * This function is called from post_plane_update, which is run after
4394 * a vblank wait.
4395 */
4396
4397 assert_plane_enabled(dev_priv, crtc->plane);
4398 if (IS_BROADWELL(dev)) {
4399 mutex_lock(&dev_priv->rps.hw_lock);
4400 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4401 mutex_unlock(&dev_priv->rps.hw_lock);
4402 /* Quoting Art Runyan: "its not safe to expect any particular
4403 * value in IPS_CTL bit 31 after enabling IPS through the
4404 * mailbox." Moreover, the mailbox may return a bogus state,
4405 * so we need to just enable it and continue on.
4406 */
4407 } else {
4408 I915_WRITE(IPS_CTL, IPS_ENABLE);
4409 /* The bit only becomes 1 in the next vblank, so this wait here
4410 * is essentially intel_wait_for_vblank. If we don't have this
4411 * and don't wait for vblanks until the end of crtc_enable, then
4412 * the HW state readout code will complain that the expected
4413 * IPS_CTL value is not the one we read. */
4414 if (intel_wait_for_register(dev_priv,
4415 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4416 50))
4417 DRM_ERROR("Timed out waiting for IPS enable\n");
4418 }
4419 }
4420
4421 void hsw_disable_ips(struct intel_crtc *crtc)
4422 {
4423 struct drm_device *dev = crtc->base.dev;
4424 struct drm_i915_private *dev_priv = to_i915(dev);
4425
4426 if (!crtc->config->ips_enabled)
4427 return;
4428
4429 assert_plane_enabled(dev_priv, crtc->plane);
4430 if (IS_BROADWELL(dev)) {
4431 mutex_lock(&dev_priv->rps.hw_lock);
4432 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4433 mutex_unlock(&dev_priv->rps.hw_lock);
4434 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4435 if (intel_wait_for_register(dev_priv,
4436 IPS_CTL, IPS_ENABLE, 0,
4437 42))
4438 DRM_ERROR("Timed out waiting for IPS disable\n");
4439 } else {
4440 I915_WRITE(IPS_CTL, 0);
4441 POSTING_READ(IPS_CTL);
4442 }
4443
4444 /* We need to wait for a vblank before we can disable the plane. */
4445 intel_wait_for_vblank(dev, crtc->pipe);
4446 }
4447
4448 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4449 {
4450 if (intel_crtc->overlay) {
4451 struct drm_device *dev = intel_crtc->base.dev;
4452 struct drm_i915_private *dev_priv = to_i915(dev);
4453
4454 mutex_lock(&dev->struct_mutex);
4455 dev_priv->mm.interruptible = false;
4456 (void) intel_overlay_switch_off(intel_crtc->overlay);
4457 dev_priv->mm.interruptible = true;
4458 mutex_unlock(&dev->struct_mutex);
4459 }
4460
4461 /* Let userspace switch the overlay on again. In most cases userspace
4462 * has to recompute where to put it anyway.
4463 */
4464 }
4465
4466 /**
4467 * intel_post_enable_primary - Perform operations after enabling primary plane
4468 * @crtc: the CRTC whose primary plane was just enabled
4469 *
4470 * Performs potentially sleeping operations that must be done after the primary
4471 * plane is enabled, such as updating FBC and IPS. Note that this may be
4472 * called due to an explicit primary plane update, or due to an implicit
4473 * re-enable that is caused when a sprite plane is updated to no longer
4474 * completely hide the primary plane.
4475 */
4476 static void
4477 intel_post_enable_primary(struct drm_crtc *crtc)
4478 {
4479 struct drm_device *dev = crtc->dev;
4480 struct drm_i915_private *dev_priv = to_i915(dev);
4481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4482 int pipe = intel_crtc->pipe;
4483
4484 /*
4485 * FIXME IPS should be fine as long as one plane is
4486 * enabled, but in practice it seems to have problems
4487 * when going from primary only to sprite only and vice
4488 * versa.
4489 */
4490 hsw_enable_ips(intel_crtc);
4491
4492 /*
4493 * Gen2 reports pipe underruns whenever all planes are disabled.
4494 * So don't enable underrun reporting before at least some planes
4495 * are enabled.
4496 * FIXME: Need to fix the logic to work when we turn off all planes
4497 * but leave the pipe running.
4498 */
4499 if (IS_GEN2(dev))
4500 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4501
4502 /* Underruns don't always raise interrupts, so check manually. */
4503 intel_check_cpu_fifo_underruns(dev_priv);
4504 intel_check_pch_fifo_underruns(dev_priv);
4505 }
4506
4507 /* FIXME move all this to pre_plane_update() with proper state tracking */
4508 static void
4509 intel_pre_disable_primary(struct drm_crtc *crtc)
4510 {
4511 struct drm_device *dev = crtc->dev;
4512 struct drm_i915_private *dev_priv = to_i915(dev);
4513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514 int pipe = intel_crtc->pipe;
4515
4516 /*
4517 * Gen2 reports pipe underruns whenever all planes are disabled.
4518 * So diasble underrun reporting before all the planes get disabled.
4519 * FIXME: Need to fix the logic to work when we turn off all planes
4520 * but leave the pipe running.
4521 */
4522 if (IS_GEN2(dev))
4523 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4524
4525 /*
4526 * FIXME IPS should be fine as long as one plane is
4527 * enabled, but in practice it seems to have problems
4528 * when going from primary only to sprite only and vice
4529 * versa.
4530 */
4531 hsw_disable_ips(intel_crtc);
4532 }
4533
4534 /* FIXME get rid of this and use pre_plane_update */
4535 static void
4536 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4537 {
4538 struct drm_device *dev = crtc->dev;
4539 struct drm_i915_private *dev_priv = to_i915(dev);
4540 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541 int pipe = intel_crtc->pipe;
4542
4543 intel_pre_disable_primary(crtc);
4544
4545 /*
4546 * Vblank time updates from the shadow to live plane control register
4547 * are blocked if the memory self-refresh mode is active at that
4548 * moment. So to make sure the plane gets truly disabled, disable
4549 * first the self-refresh mode. The self-refresh enable bit in turn
4550 * will be checked/applied by the HW only at the next frame start
4551 * event which is after the vblank start event, so we need to have a
4552 * wait-for-vblank between disabling the plane and the pipe.
4553 */
4554 if (HAS_GMCH_DISPLAY(dev)) {
4555 intel_set_memory_cxsr(dev_priv, false);
4556 dev_priv->wm.vlv.cxsr = false;
4557 intel_wait_for_vblank(dev, pipe);
4558 }
4559 }
4560
4561 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4562 {
4563 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4564 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4565 struct intel_crtc_state *pipe_config =
4566 to_intel_crtc_state(crtc->base.state);
4567 struct drm_device *dev = crtc->base.dev;
4568 struct drm_plane *primary = crtc->base.primary;
4569 struct drm_plane_state *old_pri_state =
4570 drm_atomic_get_existing_plane_state(old_state, primary);
4571
4572 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4573
4574 crtc->wm.cxsr_allowed = true;
4575
4576 if (pipe_config->update_wm_post && pipe_config->base.active)
4577 intel_update_watermarks(&crtc->base);
4578
4579 if (old_pri_state) {
4580 struct intel_plane_state *primary_state =
4581 to_intel_plane_state(primary->state);
4582 struct intel_plane_state *old_primary_state =
4583 to_intel_plane_state(old_pri_state);
4584
4585 intel_fbc_post_update(crtc);
4586
4587 if (primary_state->visible &&
4588 (needs_modeset(&pipe_config->base) ||
4589 !old_primary_state->visible))
4590 intel_post_enable_primary(&crtc->base);
4591 }
4592 }
4593
4594 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4595 {
4596 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4597 struct drm_device *dev = crtc->base.dev;
4598 struct drm_i915_private *dev_priv = to_i915(dev);
4599 struct intel_crtc_state *pipe_config =
4600 to_intel_crtc_state(crtc->base.state);
4601 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4602 struct drm_plane *primary = crtc->base.primary;
4603 struct drm_plane_state *old_pri_state =
4604 drm_atomic_get_existing_plane_state(old_state, primary);
4605 bool modeset = needs_modeset(&pipe_config->base);
4606
4607 if (old_pri_state) {
4608 struct intel_plane_state *primary_state =
4609 to_intel_plane_state(primary->state);
4610 struct intel_plane_state *old_primary_state =
4611 to_intel_plane_state(old_pri_state);
4612
4613 intel_fbc_pre_update(crtc, pipe_config, primary_state);
4614
4615 if (old_primary_state->visible &&
4616 (modeset || !primary_state->visible))
4617 intel_pre_disable_primary(&crtc->base);
4618 }
4619
4620 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4621 crtc->wm.cxsr_allowed = false;
4622
4623 /*
4624 * Vblank time updates from the shadow to live plane control register
4625 * are blocked if the memory self-refresh mode is active at that
4626 * moment. So to make sure the plane gets truly disabled, disable
4627 * first the self-refresh mode. The self-refresh enable bit in turn
4628 * will be checked/applied by the HW only at the next frame start
4629 * event which is after the vblank start event, so we need to have a
4630 * wait-for-vblank between disabling the plane and the pipe.
4631 */
4632 if (old_crtc_state->base.active) {
4633 intel_set_memory_cxsr(dev_priv, false);
4634 dev_priv->wm.vlv.cxsr = false;
4635 intel_wait_for_vblank(dev, crtc->pipe);
4636 }
4637 }
4638
4639 /*
4640 * IVB workaround: must disable low power watermarks for at least
4641 * one frame before enabling scaling. LP watermarks can be re-enabled
4642 * when scaling is disabled.
4643 *
4644 * WaCxSRDisabledForSpriteScaling:ivb
4645 */
4646 if (pipe_config->disable_lp_wm) {
4647 ilk_disable_lp_wm(dev);
4648 intel_wait_for_vblank(dev, crtc->pipe);
4649 }
4650
4651 /*
4652 * If we're doing a modeset, we're done. No need to do any pre-vblank
4653 * watermark programming here.
4654 */
4655 if (needs_modeset(&pipe_config->base))
4656 return;
4657
4658 /*
4659 * For platforms that support atomic watermarks, program the
4660 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4661 * will be the intermediate values that are safe for both pre- and
4662 * post- vblank; when vblank happens, the 'active' values will be set
4663 * to the final 'target' values and we'll do this again to get the
4664 * optimal watermarks. For gen9+ platforms, the values we program here
4665 * will be the final target values which will get automatically latched
4666 * at vblank time; no further programming will be necessary.
4667 *
4668 * If a platform hasn't been transitioned to atomic watermarks yet,
4669 * we'll continue to update watermarks the old way, if flags tell
4670 * us to.
4671 */
4672 if (dev_priv->display.initial_watermarks != NULL)
4673 dev_priv->display.initial_watermarks(pipe_config);
4674 else if (pipe_config->update_wm_pre)
4675 intel_update_watermarks(&crtc->base);
4676 }
4677
4678 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4679 {
4680 struct drm_device *dev = crtc->dev;
4681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4682 struct drm_plane *p;
4683 int pipe = intel_crtc->pipe;
4684
4685 intel_crtc_dpms_overlay_disable(intel_crtc);
4686
4687 drm_for_each_plane_mask(p, dev, plane_mask)
4688 to_intel_plane(p)->disable_plane(p, crtc);
4689
4690 /*
4691 * FIXME: Once we grow proper nuclear flip support out of this we need
4692 * to compute the mask of flip planes precisely. For the time being
4693 * consider this a flip to a NULL plane.
4694 */
4695 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4696 }
4697
4698 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4699 {
4700 struct drm_device *dev = crtc->dev;
4701 struct drm_i915_private *dev_priv = to_i915(dev);
4702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4703 struct intel_encoder *encoder;
4704 int pipe = intel_crtc->pipe;
4705 struct intel_crtc_state *pipe_config =
4706 to_intel_crtc_state(crtc->state);
4707
4708 if (WARN_ON(intel_crtc->active))
4709 return;
4710
4711 /*
4712 * Sometimes spurious CPU pipe underruns happen during FDI
4713 * training, at least with VGA+HDMI cloning. Suppress them.
4714 *
4715 * On ILK we get an occasional spurious CPU pipe underruns
4716 * between eDP port A enable and vdd enable. Also PCH port
4717 * enable seems to result in the occasional CPU pipe underrun.
4718 *
4719 * Spurious PCH underruns also occur during PCH enabling.
4720 */
4721 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4722 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4723 if (intel_crtc->config->has_pch_encoder)
4724 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4725
4726 if (intel_crtc->config->has_pch_encoder)
4727 intel_prepare_shared_dpll(intel_crtc);
4728
4729 if (intel_crtc_has_dp_encoder(intel_crtc->config))
4730 intel_dp_set_m_n(intel_crtc, M1_N1);
4731
4732 intel_set_pipe_timings(intel_crtc);
4733 intel_set_pipe_src_size(intel_crtc);
4734
4735 if (intel_crtc->config->has_pch_encoder) {
4736 intel_cpu_transcoder_set_m_n(intel_crtc,
4737 &intel_crtc->config->fdi_m_n, NULL);
4738 }
4739
4740 ironlake_set_pipeconf(crtc);
4741
4742 intel_crtc->active = true;
4743
4744 for_each_encoder_on_crtc(dev, crtc, encoder)
4745 if (encoder->pre_enable)
4746 encoder->pre_enable(encoder);
4747
4748 if (intel_crtc->config->has_pch_encoder) {
4749 /* Note: FDI PLL enabling _must_ be done before we enable the
4750 * cpu pipes, hence this is separate from all the other fdi/pch
4751 * enabling. */
4752 ironlake_fdi_pll_enable(intel_crtc);
4753 } else {
4754 assert_fdi_tx_disabled(dev_priv, pipe);
4755 assert_fdi_rx_disabled(dev_priv, pipe);
4756 }
4757
4758 ironlake_pfit_enable(intel_crtc);
4759
4760 /*
4761 * On ILK+ LUT must be loaded before the pipe is running but with
4762 * clocks enabled
4763 */
4764 intel_color_load_luts(&pipe_config->base);
4765
4766 if (dev_priv->display.initial_watermarks != NULL)
4767 dev_priv->display.initial_watermarks(intel_crtc->config);
4768 intel_enable_pipe(intel_crtc);
4769
4770 if (intel_crtc->config->has_pch_encoder)
4771 ironlake_pch_enable(crtc);
4772
4773 assert_vblank_disabled(crtc);
4774 drm_crtc_vblank_on(crtc);
4775
4776 for_each_encoder_on_crtc(dev, crtc, encoder)
4777 encoder->enable(encoder);
4778
4779 if (HAS_PCH_CPT(dev))
4780 cpt_verify_modeset(dev, intel_crtc->pipe);
4781
4782 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4783 if (intel_crtc->config->has_pch_encoder)
4784 intel_wait_for_vblank(dev, pipe);
4785 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4786 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4787 }
4788
4789 /* IPS only exists on ULT machines and is tied to pipe A. */
4790 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4791 {
4792 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4793 }
4794
4795 static void haswell_crtc_enable(struct drm_crtc *crtc)
4796 {
4797 struct drm_device *dev = crtc->dev;
4798 struct drm_i915_private *dev_priv = to_i915(dev);
4799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4800 struct intel_encoder *encoder;
4801 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4802 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4803 struct intel_crtc_state *pipe_config =
4804 to_intel_crtc_state(crtc->state);
4805
4806 if (WARN_ON(intel_crtc->active))
4807 return;
4808
4809 if (intel_crtc->config->has_pch_encoder)
4810 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4811 false);
4812
4813 for_each_encoder_on_crtc(dev, crtc, encoder)
4814 if (encoder->pre_pll_enable)
4815 encoder->pre_pll_enable(encoder);
4816
4817 if (intel_crtc->config->shared_dpll)
4818 intel_enable_shared_dpll(intel_crtc);
4819
4820 if (intel_crtc_has_dp_encoder(intel_crtc->config))
4821 intel_dp_set_m_n(intel_crtc, M1_N1);
4822
4823 if (!transcoder_is_dsi(cpu_transcoder))
4824 intel_set_pipe_timings(intel_crtc);
4825
4826 intel_set_pipe_src_size(intel_crtc);
4827
4828 if (cpu_transcoder != TRANSCODER_EDP &&
4829 !transcoder_is_dsi(cpu_transcoder)) {
4830 I915_WRITE(PIPE_MULT(cpu_transcoder),
4831 intel_crtc->config->pixel_multiplier - 1);
4832 }
4833
4834 if (intel_crtc->config->has_pch_encoder) {
4835 intel_cpu_transcoder_set_m_n(intel_crtc,
4836 &intel_crtc->config->fdi_m_n, NULL);
4837 }
4838
4839 if (!transcoder_is_dsi(cpu_transcoder))
4840 haswell_set_pipeconf(crtc);
4841
4842 haswell_set_pipemisc(crtc);
4843
4844 intel_color_set_csc(&pipe_config->base);
4845
4846 intel_crtc->active = true;
4847
4848 if (intel_crtc->config->has_pch_encoder)
4849 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4850 else
4851 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4852
4853 for_each_encoder_on_crtc(dev, crtc, encoder) {
4854 if (encoder->pre_enable)
4855 encoder->pre_enable(encoder);
4856 }
4857
4858 if (intel_crtc->config->has_pch_encoder)
4859 dev_priv->display.fdi_link_train(crtc);
4860
4861 if (!transcoder_is_dsi(cpu_transcoder))
4862 intel_ddi_enable_pipe_clock(intel_crtc);
4863
4864 if (INTEL_INFO(dev)->gen >= 9)
4865 skylake_pfit_enable(intel_crtc);
4866 else
4867 ironlake_pfit_enable(intel_crtc);
4868
4869 /*
4870 * On ILK+ LUT must be loaded before the pipe is running but with
4871 * clocks enabled
4872 */
4873 intel_color_load_luts(&pipe_config->base);
4874
4875 intel_ddi_set_pipe_settings(crtc);
4876 if (!transcoder_is_dsi(cpu_transcoder))
4877 intel_ddi_enable_transcoder_func(crtc);
4878
4879 if (dev_priv->display.initial_watermarks != NULL)
4880 dev_priv->display.initial_watermarks(pipe_config);
4881 else
4882 intel_update_watermarks(crtc);
4883
4884 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4885 if (!transcoder_is_dsi(cpu_transcoder))
4886 intel_enable_pipe(intel_crtc);
4887
4888 if (intel_crtc->config->has_pch_encoder)
4889 lpt_pch_enable(crtc);
4890
4891 if (intel_crtc->config->dp_encoder_is_mst)
4892 intel_ddi_set_vc_payload_alloc(crtc, true);
4893
4894 assert_vblank_disabled(crtc);
4895 drm_crtc_vblank_on(crtc);
4896
4897 for_each_encoder_on_crtc(dev, crtc, encoder) {
4898 encoder->enable(encoder);
4899 intel_opregion_notify_encoder(encoder, true);
4900 }
4901
4902 if (intel_crtc->config->has_pch_encoder) {
4903 intel_wait_for_vblank(dev, pipe);
4904 intel_wait_for_vblank(dev, pipe);
4905 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4906 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4907 true);
4908 }
4909
4910 /* If we change the relative order between pipe/planes enabling, we need
4911 * to change the workaround. */
4912 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4913 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4914 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4915 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4916 }
4917 }
4918
4919 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4920 {
4921 struct drm_device *dev = crtc->base.dev;
4922 struct drm_i915_private *dev_priv = to_i915(dev);
4923 int pipe = crtc->pipe;
4924
4925 /* To avoid upsetting the power well on haswell only disable the pfit if
4926 * it's in use. The hw state code will make sure we get this right. */
4927 if (force || crtc->config->pch_pfit.enabled) {
4928 I915_WRITE(PF_CTL(pipe), 0);
4929 I915_WRITE(PF_WIN_POS(pipe), 0);
4930 I915_WRITE(PF_WIN_SZ(pipe), 0);
4931 }
4932 }
4933
4934 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4935 {
4936 struct drm_device *dev = crtc->dev;
4937 struct drm_i915_private *dev_priv = to_i915(dev);
4938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4939 struct intel_encoder *encoder;
4940 int pipe = intel_crtc->pipe;
4941
4942 /*
4943 * Sometimes spurious CPU pipe underruns happen when the
4944 * pipe is already disabled, but FDI RX/TX is still enabled.
4945 * Happens at least with VGA+HDMI cloning. Suppress them.
4946 */
4947 if (intel_crtc->config->has_pch_encoder) {
4948 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4949 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4950 }
4951
4952 for_each_encoder_on_crtc(dev, crtc, encoder)
4953 encoder->disable(encoder);
4954
4955 drm_crtc_vblank_off(crtc);
4956 assert_vblank_disabled(crtc);
4957
4958 intel_disable_pipe(intel_crtc);
4959
4960 ironlake_pfit_disable(intel_crtc, false);
4961
4962 if (intel_crtc->config->has_pch_encoder)
4963 ironlake_fdi_disable(crtc);
4964
4965 for_each_encoder_on_crtc(dev, crtc, encoder)
4966 if (encoder->post_disable)
4967 encoder->post_disable(encoder);
4968
4969 if (intel_crtc->config->has_pch_encoder) {
4970 ironlake_disable_pch_transcoder(dev_priv, pipe);
4971
4972 if (HAS_PCH_CPT(dev)) {
4973 i915_reg_t reg;
4974 u32 temp;
4975
4976 /* disable TRANS_DP_CTL */
4977 reg = TRANS_DP_CTL(pipe);
4978 temp = I915_READ(reg);
4979 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4980 TRANS_DP_PORT_SEL_MASK);
4981 temp |= TRANS_DP_PORT_SEL_NONE;
4982 I915_WRITE(reg, temp);
4983
4984 /* disable DPLL_SEL */
4985 temp = I915_READ(PCH_DPLL_SEL);
4986 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4987 I915_WRITE(PCH_DPLL_SEL, temp);
4988 }
4989
4990 ironlake_fdi_pll_disable(intel_crtc);
4991 }
4992
4993 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4994 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4995 }
4996
4997 static void haswell_crtc_disable(struct drm_crtc *crtc)
4998 {
4999 struct drm_device *dev = crtc->dev;
5000 struct drm_i915_private *dev_priv = to_i915(dev);
5001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5002 struct intel_encoder *encoder;
5003 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5004
5005 if (intel_crtc->config->has_pch_encoder)
5006 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5007 false);
5008
5009 for_each_encoder_on_crtc(dev, crtc, encoder) {
5010 intel_opregion_notify_encoder(encoder, false);
5011 encoder->disable(encoder);
5012 }
5013
5014 drm_crtc_vblank_off(crtc);
5015 assert_vblank_disabled(crtc);
5016
5017 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5018 if (!transcoder_is_dsi(cpu_transcoder))
5019 intel_disable_pipe(intel_crtc);
5020
5021 if (intel_crtc->config->dp_encoder_is_mst)
5022 intel_ddi_set_vc_payload_alloc(crtc, false);
5023
5024 if (!transcoder_is_dsi(cpu_transcoder))
5025 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5026
5027 if (INTEL_INFO(dev)->gen >= 9)
5028 skylake_scaler_disable(intel_crtc);
5029 else
5030 ironlake_pfit_disable(intel_crtc, false);
5031
5032 if (!transcoder_is_dsi(cpu_transcoder))
5033 intel_ddi_disable_pipe_clock(intel_crtc);
5034
5035 for_each_encoder_on_crtc(dev, crtc, encoder)
5036 if (encoder->post_disable)
5037 encoder->post_disable(encoder);
5038
5039 if (intel_crtc->config->has_pch_encoder) {
5040 lpt_disable_pch_transcoder(dev_priv);
5041 lpt_disable_iclkip(dev_priv);
5042 intel_ddi_fdi_disable(crtc);
5043
5044 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5045 true);
5046 }
5047 }
5048
5049 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5050 {
5051 struct drm_device *dev = crtc->base.dev;
5052 struct drm_i915_private *dev_priv = to_i915(dev);
5053 struct intel_crtc_state *pipe_config = crtc->config;
5054
5055 if (!pipe_config->gmch_pfit.control)
5056 return;
5057
5058 /*
5059 * The panel fitter should only be adjusted whilst the pipe is disabled,
5060 * according to register description and PRM.
5061 */
5062 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5063 assert_pipe_disabled(dev_priv, crtc->pipe);
5064
5065 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5066 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5067
5068 /* Border color in case we don't scale up to the full screen. Black by
5069 * default, change to something else for debugging. */
5070 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5071 }
5072
5073 static enum intel_display_power_domain port_to_power_domain(enum port port)
5074 {
5075 switch (port) {
5076 case PORT_A:
5077 return POWER_DOMAIN_PORT_DDI_A_LANES;
5078 case PORT_B:
5079 return POWER_DOMAIN_PORT_DDI_B_LANES;
5080 case PORT_C:
5081 return POWER_DOMAIN_PORT_DDI_C_LANES;
5082 case PORT_D:
5083 return POWER_DOMAIN_PORT_DDI_D_LANES;
5084 case PORT_E:
5085 return POWER_DOMAIN_PORT_DDI_E_LANES;
5086 default:
5087 MISSING_CASE(port);
5088 return POWER_DOMAIN_PORT_OTHER;
5089 }
5090 }
5091
5092 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5093 {
5094 switch (port) {
5095 case PORT_A:
5096 return POWER_DOMAIN_AUX_A;
5097 case PORT_B:
5098 return POWER_DOMAIN_AUX_B;
5099 case PORT_C:
5100 return POWER_DOMAIN_AUX_C;
5101 case PORT_D:
5102 return POWER_DOMAIN_AUX_D;
5103 case PORT_E:
5104 /* FIXME: Check VBT for actual wiring of PORT E */
5105 return POWER_DOMAIN_AUX_D;
5106 default:
5107 MISSING_CASE(port);
5108 return POWER_DOMAIN_AUX_A;
5109 }
5110 }
5111
5112 enum intel_display_power_domain
5113 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5114 {
5115 struct drm_device *dev = intel_encoder->base.dev;
5116 struct intel_digital_port *intel_dig_port;
5117
5118 switch (intel_encoder->type) {
5119 case INTEL_OUTPUT_UNKNOWN:
5120 /* Only DDI platforms should ever use this output type */
5121 WARN_ON_ONCE(!HAS_DDI(dev));
5122 case INTEL_OUTPUT_DP:
5123 case INTEL_OUTPUT_HDMI:
5124 case INTEL_OUTPUT_EDP:
5125 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5126 return port_to_power_domain(intel_dig_port->port);
5127 case INTEL_OUTPUT_DP_MST:
5128 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5129 return port_to_power_domain(intel_dig_port->port);
5130 case INTEL_OUTPUT_ANALOG:
5131 return POWER_DOMAIN_PORT_CRT;
5132 case INTEL_OUTPUT_DSI:
5133 return POWER_DOMAIN_PORT_DSI;
5134 default:
5135 return POWER_DOMAIN_PORT_OTHER;
5136 }
5137 }
5138
5139 enum intel_display_power_domain
5140 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5141 {
5142 struct drm_device *dev = intel_encoder->base.dev;
5143 struct intel_digital_port *intel_dig_port;
5144
5145 switch (intel_encoder->type) {
5146 case INTEL_OUTPUT_UNKNOWN:
5147 case INTEL_OUTPUT_HDMI:
5148 /*
5149 * Only DDI platforms should ever use these output types.
5150 * We can get here after the HDMI detect code has already set
5151 * the type of the shared encoder. Since we can't be sure
5152 * what's the status of the given connectors, play safe and
5153 * run the DP detection too.
5154 */
5155 WARN_ON_ONCE(!HAS_DDI(dev));
5156 case INTEL_OUTPUT_DP:
5157 case INTEL_OUTPUT_EDP:
5158 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5159 return port_to_aux_power_domain(intel_dig_port->port);
5160 case INTEL_OUTPUT_DP_MST:
5161 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5162 return port_to_aux_power_domain(intel_dig_port->port);
5163 default:
5164 MISSING_CASE(intel_encoder->type);
5165 return POWER_DOMAIN_AUX_A;
5166 }
5167 }
5168
5169 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5170 struct intel_crtc_state *crtc_state)
5171 {
5172 struct drm_device *dev = crtc->dev;
5173 struct drm_encoder *encoder;
5174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5175 enum pipe pipe = intel_crtc->pipe;
5176 unsigned long mask;
5177 enum transcoder transcoder = crtc_state->cpu_transcoder;
5178
5179 if (!crtc_state->base.active)
5180 return 0;
5181
5182 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5183 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5184 if (crtc_state->pch_pfit.enabled ||
5185 crtc_state->pch_pfit.force_thru)
5186 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5187
5188 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5189 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5190
5191 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5192 }
5193
5194 if (crtc_state->shared_dpll)
5195 mask |= BIT(POWER_DOMAIN_PLLS);
5196
5197 return mask;
5198 }
5199
5200 static unsigned long
5201 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5202 struct intel_crtc_state *crtc_state)
5203 {
5204 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206 enum intel_display_power_domain domain;
5207 unsigned long domains, new_domains, old_domains;
5208
5209 old_domains = intel_crtc->enabled_power_domains;
5210 intel_crtc->enabled_power_domains = new_domains =
5211 get_crtc_power_domains(crtc, crtc_state);
5212
5213 domains = new_domains & ~old_domains;
5214
5215 for_each_power_domain(domain, domains)
5216 intel_display_power_get(dev_priv, domain);
5217
5218 return old_domains & ~new_domains;
5219 }
5220
5221 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5222 unsigned long domains)
5223 {
5224 enum intel_display_power_domain domain;
5225
5226 for_each_power_domain(domain, domains)
5227 intel_display_power_put(dev_priv, domain);
5228 }
5229
5230 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5231 {
5232 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5233
5234 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5235 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5236 return max_cdclk_freq;
5237 else if (IS_CHERRYVIEW(dev_priv))
5238 return max_cdclk_freq*95/100;
5239 else if (INTEL_INFO(dev_priv)->gen < 4)
5240 return 2*max_cdclk_freq*90/100;
5241 else
5242 return max_cdclk_freq*90/100;
5243 }
5244
5245 static int skl_calc_cdclk(int max_pixclk, int vco);
5246
5247 static void intel_update_max_cdclk(struct drm_device *dev)
5248 {
5249 struct drm_i915_private *dev_priv = to_i915(dev);
5250
5251 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5252 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5253 int max_cdclk, vco;
5254
5255 vco = dev_priv->skl_preferred_vco_freq;
5256 WARN_ON(vco != 8100000 && vco != 8640000);
5257
5258 /*
5259 * Use the lower (vco 8640) cdclk values as a
5260 * first guess. skl_calc_cdclk() will correct it
5261 * if the preferred vco is 8100 instead.
5262 */
5263 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5264 max_cdclk = 617143;
5265 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5266 max_cdclk = 540000;
5267 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5268 max_cdclk = 432000;
5269 else
5270 max_cdclk = 308571;
5271
5272 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5273 } else if (IS_BROXTON(dev)) {
5274 dev_priv->max_cdclk_freq = 624000;
5275 } else if (IS_BROADWELL(dev)) {
5276 /*
5277 * FIXME with extra cooling we can allow
5278 * 540 MHz for ULX and 675 Mhz for ULT.
5279 * How can we know if extra cooling is
5280 * available? PCI ID, VTB, something else?
5281 */
5282 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5283 dev_priv->max_cdclk_freq = 450000;
5284 else if (IS_BDW_ULX(dev))
5285 dev_priv->max_cdclk_freq = 450000;
5286 else if (IS_BDW_ULT(dev))
5287 dev_priv->max_cdclk_freq = 540000;
5288 else
5289 dev_priv->max_cdclk_freq = 675000;
5290 } else if (IS_CHERRYVIEW(dev)) {
5291 dev_priv->max_cdclk_freq = 320000;
5292 } else if (IS_VALLEYVIEW(dev)) {
5293 dev_priv->max_cdclk_freq = 400000;
5294 } else {
5295 /* otherwise assume cdclk is fixed */
5296 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5297 }
5298
5299 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5300
5301 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5302 dev_priv->max_cdclk_freq);
5303
5304 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5305 dev_priv->max_dotclk_freq);
5306 }
5307
5308 static void intel_update_cdclk(struct drm_device *dev)
5309 {
5310 struct drm_i915_private *dev_priv = to_i915(dev);
5311
5312 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5313
5314 if (INTEL_GEN(dev_priv) >= 9)
5315 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5316 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5317 dev_priv->cdclk_pll.ref);
5318 else
5319 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5320 dev_priv->cdclk_freq);
5321
5322 /*
5323 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5324 * Programmng [sic] note: bit[9:2] should be programmed to the number
5325 * of cdclk that generates 4MHz reference clock freq which is used to
5326 * generate GMBus clock. This will vary with the cdclk freq.
5327 */
5328 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5329 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5330 }
5331
5332 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5333 static int skl_cdclk_decimal(int cdclk)
5334 {
5335 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5336 }
5337
5338 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5339 {
5340 int ratio;
5341
5342 if (cdclk == dev_priv->cdclk_pll.ref)
5343 return 0;
5344
5345 switch (cdclk) {
5346 default:
5347 MISSING_CASE(cdclk);
5348 case 144000:
5349 case 288000:
5350 case 384000:
5351 case 576000:
5352 ratio = 60;
5353 break;
5354 case 624000:
5355 ratio = 65;
5356 break;
5357 }
5358
5359 return dev_priv->cdclk_pll.ref * ratio;
5360 }
5361
5362 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5363 {
5364 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5365
5366 /* Timeout 200us */
5367 if (intel_wait_for_register(dev_priv,
5368 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5369 1))
5370 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5371
5372 dev_priv->cdclk_pll.vco = 0;
5373 }
5374
5375 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5376 {
5377 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5378 u32 val;
5379
5380 val = I915_READ(BXT_DE_PLL_CTL);
5381 val &= ~BXT_DE_PLL_RATIO_MASK;
5382 val |= BXT_DE_PLL_RATIO(ratio);
5383 I915_WRITE(BXT_DE_PLL_CTL, val);
5384
5385 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5386
5387 /* Timeout 200us */
5388 if (intel_wait_for_register(dev_priv,
5389 BXT_DE_PLL_ENABLE,
5390 BXT_DE_PLL_LOCK,
5391 BXT_DE_PLL_LOCK,
5392 1))
5393 DRM_ERROR("timeout waiting for DE PLL lock\n");
5394
5395 dev_priv->cdclk_pll.vco = vco;
5396 }
5397
5398 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5399 {
5400 u32 val, divider;
5401 int vco, ret;
5402
5403 vco = bxt_de_pll_vco(dev_priv, cdclk);
5404
5405 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5406
5407 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5408 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5409 case 8:
5410 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5411 break;
5412 case 4:
5413 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5414 break;
5415 case 3:
5416 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5417 break;
5418 case 2:
5419 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5420 break;
5421 default:
5422 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5423 WARN_ON(vco != 0);
5424
5425 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5426 break;
5427 }
5428
5429 /* Inform power controller of upcoming frequency change */
5430 mutex_lock(&dev_priv->rps.hw_lock);
5431 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5432 0x80000000);
5433 mutex_unlock(&dev_priv->rps.hw_lock);
5434
5435 if (ret) {
5436 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5437 ret, cdclk);
5438 return;
5439 }
5440
5441 if (dev_priv->cdclk_pll.vco != 0 &&
5442 dev_priv->cdclk_pll.vco != vco)
5443 bxt_de_pll_disable(dev_priv);
5444
5445 if (dev_priv->cdclk_pll.vco != vco)
5446 bxt_de_pll_enable(dev_priv, vco);
5447
5448 val = divider | skl_cdclk_decimal(cdclk);
5449 /*
5450 * FIXME if only the cd2x divider needs changing, it could be done
5451 * without shutting off the pipe (if only one pipe is active).
5452 */
5453 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5454 /*
5455 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5456 * enable otherwise.
5457 */
5458 if (cdclk >= 500000)
5459 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5460 I915_WRITE(CDCLK_CTL, val);
5461
5462 mutex_lock(&dev_priv->rps.hw_lock);
5463 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5464 DIV_ROUND_UP(cdclk, 25000));
5465 mutex_unlock(&dev_priv->rps.hw_lock);
5466
5467 if (ret) {
5468 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5469 ret, cdclk);
5470 return;
5471 }
5472
5473 intel_update_cdclk(&dev_priv->drm);
5474 }
5475
5476 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5477 {
5478 u32 cdctl, expected;
5479
5480 intel_update_cdclk(&dev_priv->drm);
5481
5482 if (dev_priv->cdclk_pll.vco == 0 ||
5483 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5484 goto sanitize;
5485
5486 /* DPLL okay; verify the cdclock
5487 *
5488 * Some BIOS versions leave an incorrect decimal frequency value and
5489 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5490 * so sanitize this register.
5491 */
5492 cdctl = I915_READ(CDCLK_CTL);
5493 /*
5494 * Let's ignore the pipe field, since BIOS could have configured the
5495 * dividers both synching to an active pipe, or asynchronously
5496 * (PIPE_NONE).
5497 */
5498 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5499
5500 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5501 skl_cdclk_decimal(dev_priv->cdclk_freq);
5502 /*
5503 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5504 * enable otherwise.
5505 */
5506 if (dev_priv->cdclk_freq >= 500000)
5507 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5508
5509 if (cdctl == expected)
5510 /* All well; nothing to sanitize */
5511 return;
5512
5513 sanitize:
5514 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5515
5516 /* force cdclk programming */
5517 dev_priv->cdclk_freq = 0;
5518
5519 /* force full PLL disable + enable */
5520 dev_priv->cdclk_pll.vco = -1;
5521 }
5522
5523 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5524 {
5525 bxt_sanitize_cdclk(dev_priv);
5526
5527 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5528 return;
5529
5530 /*
5531 * FIXME:
5532 * - The initial CDCLK needs to be read from VBT.
5533 * Need to make this change after VBT has changes for BXT.
5534 */
5535 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5536 }
5537
5538 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5539 {
5540 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5541 }
5542
5543 static int skl_calc_cdclk(int max_pixclk, int vco)
5544 {
5545 if (vco == 8640000) {
5546 if (max_pixclk > 540000)
5547 return 617143;
5548 else if (max_pixclk > 432000)
5549 return 540000;
5550 else if (max_pixclk > 308571)
5551 return 432000;
5552 else
5553 return 308571;
5554 } else {
5555 if (max_pixclk > 540000)
5556 return 675000;
5557 else if (max_pixclk > 450000)
5558 return 540000;
5559 else if (max_pixclk > 337500)
5560 return 450000;
5561 else
5562 return 337500;
5563 }
5564 }
5565
5566 static void
5567 skl_dpll0_update(struct drm_i915_private *dev_priv)
5568 {
5569 u32 val;
5570
5571 dev_priv->cdclk_pll.ref = 24000;
5572 dev_priv->cdclk_pll.vco = 0;
5573
5574 val = I915_READ(LCPLL1_CTL);
5575 if ((val & LCPLL_PLL_ENABLE) == 0)
5576 return;
5577
5578 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5579 return;
5580
5581 val = I915_READ(DPLL_CTRL1);
5582
5583 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5584 DPLL_CTRL1_SSC(SKL_DPLL0) |
5585 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5586 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5587 return;
5588
5589 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5590 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5591 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5592 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5593 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5594 dev_priv->cdclk_pll.vco = 8100000;
5595 break;
5596 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5597 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5598 dev_priv->cdclk_pll.vco = 8640000;
5599 break;
5600 default:
5601 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5602 break;
5603 }
5604 }
5605
5606 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5607 {
5608 bool changed = dev_priv->skl_preferred_vco_freq != vco;
5609
5610 dev_priv->skl_preferred_vco_freq = vco;
5611
5612 if (changed)
5613 intel_update_max_cdclk(&dev_priv->drm);
5614 }
5615
5616 static void
5617 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5618 {
5619 int min_cdclk = skl_calc_cdclk(0, vco);
5620 u32 val;
5621
5622 WARN_ON(vco != 8100000 && vco != 8640000);
5623
5624 /* select the minimum CDCLK before enabling DPLL 0 */
5625 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5626 I915_WRITE(CDCLK_CTL, val);
5627 POSTING_READ(CDCLK_CTL);
5628
5629 /*
5630 * We always enable DPLL0 with the lowest link rate possible, but still
5631 * taking into account the VCO required to operate the eDP panel at the
5632 * desired frequency. The usual DP link rates operate with a VCO of
5633 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5634 * The modeset code is responsible for the selection of the exact link
5635 * rate later on, with the constraint of choosing a frequency that
5636 * works with vco.
5637 */
5638 val = I915_READ(DPLL_CTRL1);
5639
5640 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5641 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5642 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5643 if (vco == 8640000)
5644 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5645 SKL_DPLL0);
5646 else
5647 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5648 SKL_DPLL0);
5649
5650 I915_WRITE(DPLL_CTRL1, val);
5651 POSTING_READ(DPLL_CTRL1);
5652
5653 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5654
5655 if (intel_wait_for_register(dev_priv,
5656 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5657 5))
5658 DRM_ERROR("DPLL0 not locked\n");
5659
5660 dev_priv->cdclk_pll.vco = vco;
5661
5662 /* We'll want to keep using the current vco from now on. */
5663 skl_set_preferred_cdclk_vco(dev_priv, vco);
5664 }
5665
5666 static void
5667 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5668 {
5669 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5670 if (intel_wait_for_register(dev_priv,
5671 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5672 1))
5673 DRM_ERROR("Couldn't disable DPLL0\n");
5674
5675 dev_priv->cdclk_pll.vco = 0;
5676 }
5677
5678 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5679 {
5680 int ret;
5681 u32 val;
5682
5683 /* inform PCU we want to change CDCLK */
5684 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5685 mutex_lock(&dev_priv->rps.hw_lock);
5686 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5687 mutex_unlock(&dev_priv->rps.hw_lock);
5688
5689 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5690 }
5691
5692 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5693 {
5694 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
5695 }
5696
5697 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5698 {
5699 struct drm_device *dev = &dev_priv->drm;
5700 u32 freq_select, pcu_ack;
5701
5702 WARN_ON((cdclk == 24000) != (vco == 0));
5703
5704 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5705
5706 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5707 DRM_ERROR("failed to inform PCU about cdclk change\n");
5708 return;
5709 }
5710
5711 /* set CDCLK_CTL */
5712 switch (cdclk) {
5713 case 450000:
5714 case 432000:
5715 freq_select = CDCLK_FREQ_450_432;
5716 pcu_ack = 1;
5717 break;
5718 case 540000:
5719 freq_select = CDCLK_FREQ_540;
5720 pcu_ack = 2;
5721 break;
5722 case 308571:
5723 case 337500:
5724 default:
5725 freq_select = CDCLK_FREQ_337_308;
5726 pcu_ack = 0;
5727 break;
5728 case 617143:
5729 case 675000:
5730 freq_select = CDCLK_FREQ_675_617;
5731 pcu_ack = 3;
5732 break;
5733 }
5734
5735 if (dev_priv->cdclk_pll.vco != 0 &&
5736 dev_priv->cdclk_pll.vco != vco)
5737 skl_dpll0_disable(dev_priv);
5738
5739 if (dev_priv->cdclk_pll.vco != vco)
5740 skl_dpll0_enable(dev_priv, vco);
5741
5742 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5743 POSTING_READ(CDCLK_CTL);
5744
5745 /* inform PCU of the change */
5746 mutex_lock(&dev_priv->rps.hw_lock);
5747 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5748 mutex_unlock(&dev_priv->rps.hw_lock);
5749
5750 intel_update_cdclk(dev);
5751 }
5752
5753 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5754
5755 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5756 {
5757 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5758 }
5759
5760 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5761 {
5762 int cdclk, vco;
5763
5764 skl_sanitize_cdclk(dev_priv);
5765
5766 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5767 /*
5768 * Use the current vco as our initial
5769 * guess as to what the preferred vco is.
5770 */
5771 if (dev_priv->skl_preferred_vco_freq == 0)
5772 skl_set_preferred_cdclk_vco(dev_priv,
5773 dev_priv->cdclk_pll.vco);
5774 return;
5775 }
5776
5777 vco = dev_priv->skl_preferred_vco_freq;
5778 if (vco == 0)
5779 vco = 8100000;
5780 cdclk = skl_calc_cdclk(0, vco);
5781
5782 skl_set_cdclk(dev_priv, cdclk, vco);
5783 }
5784
5785 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5786 {
5787 uint32_t cdctl, expected;
5788
5789 /*
5790 * check if the pre-os intialized the display
5791 * There is SWF18 scratchpad register defined which is set by the
5792 * pre-os which can be used by the OS drivers to check the status
5793 */
5794 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5795 goto sanitize;
5796
5797 intel_update_cdclk(&dev_priv->drm);
5798 /* Is PLL enabled and locked ? */
5799 if (dev_priv->cdclk_pll.vco == 0 ||
5800 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5801 goto sanitize;
5802
5803 /* DPLL okay; verify the cdclock
5804 *
5805 * Noticed in some instances that the freq selection is correct but
5806 * decimal part is programmed wrong from BIOS where pre-os does not
5807 * enable display. Verify the same as well.
5808 */
5809 cdctl = I915_READ(CDCLK_CTL);
5810 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5811 skl_cdclk_decimal(dev_priv->cdclk_freq);
5812 if (cdctl == expected)
5813 /* All well; nothing to sanitize */
5814 return;
5815
5816 sanitize:
5817 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5818
5819 /* force cdclk programming */
5820 dev_priv->cdclk_freq = 0;
5821 /* force full PLL disable + enable */
5822 dev_priv->cdclk_pll.vco = -1;
5823 }
5824
5825 /* Adjust CDclk dividers to allow high res or save power if possible */
5826 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5827 {
5828 struct drm_i915_private *dev_priv = to_i915(dev);
5829 u32 val, cmd;
5830
5831 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5832 != dev_priv->cdclk_freq);
5833
5834 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5835 cmd = 2;
5836 else if (cdclk == 266667)
5837 cmd = 1;
5838 else
5839 cmd = 0;
5840
5841 mutex_lock(&dev_priv->rps.hw_lock);
5842 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5843 val &= ~DSPFREQGUAR_MASK;
5844 val |= (cmd << DSPFREQGUAR_SHIFT);
5845 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5846 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5847 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5848 50)) {
5849 DRM_ERROR("timed out waiting for CDclk change\n");
5850 }
5851 mutex_unlock(&dev_priv->rps.hw_lock);
5852
5853 mutex_lock(&dev_priv->sb_lock);
5854
5855 if (cdclk == 400000) {
5856 u32 divider;
5857
5858 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5859
5860 /* adjust cdclk divider */
5861 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5862 val &= ~CCK_FREQUENCY_VALUES;
5863 val |= divider;
5864 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5865
5866 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5867 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5868 50))
5869 DRM_ERROR("timed out waiting for CDclk change\n");
5870 }
5871
5872 /* adjust self-refresh exit latency value */
5873 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5874 val &= ~0x7f;
5875
5876 /*
5877 * For high bandwidth configs, we set a higher latency in the bunit
5878 * so that the core display fetch happens in time to avoid underruns.
5879 */
5880 if (cdclk == 400000)
5881 val |= 4500 / 250; /* 4.5 usec */
5882 else
5883 val |= 3000 / 250; /* 3.0 usec */
5884 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5885
5886 mutex_unlock(&dev_priv->sb_lock);
5887
5888 intel_update_cdclk(dev);
5889 }
5890
5891 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5892 {
5893 struct drm_i915_private *dev_priv = to_i915(dev);
5894 u32 val, cmd;
5895
5896 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5897 != dev_priv->cdclk_freq);
5898
5899 switch (cdclk) {
5900 case 333333:
5901 case 320000:
5902 case 266667:
5903 case 200000:
5904 break;
5905 default:
5906 MISSING_CASE(cdclk);
5907 return;
5908 }
5909
5910 /*
5911 * Specs are full of misinformation, but testing on actual
5912 * hardware has shown that we just need to write the desired
5913 * CCK divider into the Punit register.
5914 */
5915 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5916
5917 mutex_lock(&dev_priv->rps.hw_lock);
5918 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5919 val &= ~DSPFREQGUAR_MASK_CHV;
5920 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5921 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5922 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5923 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5924 50)) {
5925 DRM_ERROR("timed out waiting for CDclk change\n");
5926 }
5927 mutex_unlock(&dev_priv->rps.hw_lock);
5928
5929 intel_update_cdclk(dev);
5930 }
5931
5932 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5933 int max_pixclk)
5934 {
5935 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5936 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5937
5938 /*
5939 * Really only a few cases to deal with, as only 4 CDclks are supported:
5940 * 200MHz
5941 * 267MHz
5942 * 320/333MHz (depends on HPLL freq)
5943 * 400MHz (VLV only)
5944 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5945 * of the lower bin and adjust if needed.
5946 *
5947 * We seem to get an unstable or solid color picture at 200MHz.
5948 * Not sure what's wrong. For now use 200MHz only when all pipes
5949 * are off.
5950 */
5951 if (!IS_CHERRYVIEW(dev_priv) &&
5952 max_pixclk > freq_320*limit/100)
5953 return 400000;
5954 else if (max_pixclk > 266667*limit/100)
5955 return freq_320;
5956 else if (max_pixclk > 0)
5957 return 266667;
5958 else
5959 return 200000;
5960 }
5961
5962 static int bxt_calc_cdclk(int max_pixclk)
5963 {
5964 if (max_pixclk > 576000)
5965 return 624000;
5966 else if (max_pixclk > 384000)
5967 return 576000;
5968 else if (max_pixclk > 288000)
5969 return 384000;
5970 else if (max_pixclk > 144000)
5971 return 288000;
5972 else
5973 return 144000;
5974 }
5975
5976 /* Compute the max pixel clock for new configuration. */
5977 static int intel_mode_max_pixclk(struct drm_device *dev,
5978 struct drm_atomic_state *state)
5979 {
5980 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5981 struct drm_i915_private *dev_priv = to_i915(dev);
5982 struct drm_crtc *crtc;
5983 struct drm_crtc_state *crtc_state;
5984 unsigned max_pixclk = 0, i;
5985 enum pipe pipe;
5986
5987 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5988 sizeof(intel_state->min_pixclk));
5989
5990 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5991 int pixclk = 0;
5992
5993 if (crtc_state->enable)
5994 pixclk = crtc_state->adjusted_mode.crtc_clock;
5995
5996 intel_state->min_pixclk[i] = pixclk;
5997 }
5998
5999 for_each_pipe(dev_priv, pipe)
6000 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6001
6002 return max_pixclk;
6003 }
6004
6005 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6006 {
6007 struct drm_device *dev = state->dev;
6008 struct drm_i915_private *dev_priv = to_i915(dev);
6009 int max_pixclk = intel_mode_max_pixclk(dev, state);
6010 struct intel_atomic_state *intel_state =
6011 to_intel_atomic_state(state);
6012
6013 intel_state->cdclk = intel_state->dev_cdclk =
6014 valleyview_calc_cdclk(dev_priv, max_pixclk);
6015
6016 if (!intel_state->active_crtcs)
6017 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6018
6019 return 0;
6020 }
6021
6022 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6023 {
6024 int max_pixclk = ilk_max_pixel_rate(state);
6025 struct intel_atomic_state *intel_state =
6026 to_intel_atomic_state(state);
6027
6028 intel_state->cdclk = intel_state->dev_cdclk =
6029 bxt_calc_cdclk(max_pixclk);
6030
6031 if (!intel_state->active_crtcs)
6032 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6033
6034 return 0;
6035 }
6036
6037 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6038 {
6039 unsigned int credits, default_credits;
6040
6041 if (IS_CHERRYVIEW(dev_priv))
6042 default_credits = PFI_CREDIT(12);
6043 else
6044 default_credits = PFI_CREDIT(8);
6045
6046 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6047 /* CHV suggested value is 31 or 63 */
6048 if (IS_CHERRYVIEW(dev_priv))
6049 credits = PFI_CREDIT_63;
6050 else
6051 credits = PFI_CREDIT(15);
6052 } else {
6053 credits = default_credits;
6054 }
6055
6056 /*
6057 * WA - write default credits before re-programming
6058 * FIXME: should we also set the resend bit here?
6059 */
6060 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6061 default_credits);
6062
6063 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6064 credits | PFI_CREDIT_RESEND);
6065
6066 /*
6067 * FIXME is this guaranteed to clear
6068 * immediately or should we poll for it?
6069 */
6070 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6071 }
6072
6073 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6074 {
6075 struct drm_device *dev = old_state->dev;
6076 struct drm_i915_private *dev_priv = to_i915(dev);
6077 struct intel_atomic_state *old_intel_state =
6078 to_intel_atomic_state(old_state);
6079 unsigned req_cdclk = old_intel_state->dev_cdclk;
6080
6081 /*
6082 * FIXME: We can end up here with all power domains off, yet
6083 * with a CDCLK frequency other than the minimum. To account
6084 * for this take the PIPE-A power domain, which covers the HW
6085 * blocks needed for the following programming. This can be
6086 * removed once it's guaranteed that we get here either with
6087 * the minimum CDCLK set, or the required power domains
6088 * enabled.
6089 */
6090 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6091
6092 if (IS_CHERRYVIEW(dev))
6093 cherryview_set_cdclk(dev, req_cdclk);
6094 else
6095 valleyview_set_cdclk(dev, req_cdclk);
6096
6097 vlv_program_pfi_credits(dev_priv);
6098
6099 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6100 }
6101
6102 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6103 {
6104 struct drm_device *dev = crtc->dev;
6105 struct drm_i915_private *dev_priv = to_i915(dev);
6106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6107 struct intel_encoder *encoder;
6108 struct intel_crtc_state *pipe_config =
6109 to_intel_crtc_state(crtc->state);
6110 int pipe = intel_crtc->pipe;
6111
6112 if (WARN_ON(intel_crtc->active))
6113 return;
6114
6115 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6116 intel_dp_set_m_n(intel_crtc, M1_N1);
6117
6118 intel_set_pipe_timings(intel_crtc);
6119 intel_set_pipe_src_size(intel_crtc);
6120
6121 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6122 struct drm_i915_private *dev_priv = to_i915(dev);
6123
6124 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6125 I915_WRITE(CHV_CANVAS(pipe), 0);
6126 }
6127
6128 i9xx_set_pipeconf(intel_crtc);
6129
6130 intel_crtc->active = true;
6131
6132 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6133
6134 for_each_encoder_on_crtc(dev, crtc, encoder)
6135 if (encoder->pre_pll_enable)
6136 encoder->pre_pll_enable(encoder);
6137
6138 if (IS_CHERRYVIEW(dev)) {
6139 chv_prepare_pll(intel_crtc, intel_crtc->config);
6140 chv_enable_pll(intel_crtc, intel_crtc->config);
6141 } else {
6142 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6143 vlv_enable_pll(intel_crtc, intel_crtc->config);
6144 }
6145
6146 for_each_encoder_on_crtc(dev, crtc, encoder)
6147 if (encoder->pre_enable)
6148 encoder->pre_enable(encoder);
6149
6150 i9xx_pfit_enable(intel_crtc);
6151
6152 intel_color_load_luts(&pipe_config->base);
6153
6154 intel_update_watermarks(crtc);
6155 intel_enable_pipe(intel_crtc);
6156
6157 assert_vblank_disabled(crtc);
6158 drm_crtc_vblank_on(crtc);
6159
6160 for_each_encoder_on_crtc(dev, crtc, encoder)
6161 encoder->enable(encoder);
6162 }
6163
6164 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6165 {
6166 struct drm_device *dev = crtc->base.dev;
6167 struct drm_i915_private *dev_priv = to_i915(dev);
6168
6169 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6170 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6171 }
6172
6173 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6174 {
6175 struct drm_device *dev = crtc->dev;
6176 struct drm_i915_private *dev_priv = to_i915(dev);
6177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6178 struct intel_encoder *encoder;
6179 struct intel_crtc_state *pipe_config =
6180 to_intel_crtc_state(crtc->state);
6181 enum pipe pipe = intel_crtc->pipe;
6182
6183 if (WARN_ON(intel_crtc->active))
6184 return;
6185
6186 i9xx_set_pll_dividers(intel_crtc);
6187
6188 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6189 intel_dp_set_m_n(intel_crtc, M1_N1);
6190
6191 intel_set_pipe_timings(intel_crtc);
6192 intel_set_pipe_src_size(intel_crtc);
6193
6194 i9xx_set_pipeconf(intel_crtc);
6195
6196 intel_crtc->active = true;
6197
6198 if (!IS_GEN2(dev))
6199 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6200
6201 for_each_encoder_on_crtc(dev, crtc, encoder)
6202 if (encoder->pre_enable)
6203 encoder->pre_enable(encoder);
6204
6205 i9xx_enable_pll(intel_crtc);
6206
6207 i9xx_pfit_enable(intel_crtc);
6208
6209 intel_color_load_luts(&pipe_config->base);
6210
6211 intel_update_watermarks(crtc);
6212 intel_enable_pipe(intel_crtc);
6213
6214 assert_vblank_disabled(crtc);
6215 drm_crtc_vblank_on(crtc);
6216
6217 for_each_encoder_on_crtc(dev, crtc, encoder)
6218 encoder->enable(encoder);
6219 }
6220
6221 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6222 {
6223 struct drm_device *dev = crtc->base.dev;
6224 struct drm_i915_private *dev_priv = to_i915(dev);
6225
6226 if (!crtc->config->gmch_pfit.control)
6227 return;
6228
6229 assert_pipe_disabled(dev_priv, crtc->pipe);
6230
6231 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6232 I915_READ(PFIT_CONTROL));
6233 I915_WRITE(PFIT_CONTROL, 0);
6234 }
6235
6236 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6237 {
6238 struct drm_device *dev = crtc->dev;
6239 struct drm_i915_private *dev_priv = to_i915(dev);
6240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6241 struct intel_encoder *encoder;
6242 int pipe = intel_crtc->pipe;
6243
6244 /*
6245 * On gen2 planes are double buffered but the pipe isn't, so we must
6246 * wait for planes to fully turn off before disabling the pipe.
6247 */
6248 if (IS_GEN2(dev))
6249 intel_wait_for_vblank(dev, pipe);
6250
6251 for_each_encoder_on_crtc(dev, crtc, encoder)
6252 encoder->disable(encoder);
6253
6254 drm_crtc_vblank_off(crtc);
6255 assert_vblank_disabled(crtc);
6256
6257 intel_disable_pipe(intel_crtc);
6258
6259 i9xx_pfit_disable(intel_crtc);
6260
6261 for_each_encoder_on_crtc(dev, crtc, encoder)
6262 if (encoder->post_disable)
6263 encoder->post_disable(encoder);
6264
6265 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6266 if (IS_CHERRYVIEW(dev))
6267 chv_disable_pll(dev_priv, pipe);
6268 else if (IS_VALLEYVIEW(dev))
6269 vlv_disable_pll(dev_priv, pipe);
6270 else
6271 i9xx_disable_pll(intel_crtc);
6272 }
6273
6274 for_each_encoder_on_crtc(dev, crtc, encoder)
6275 if (encoder->post_pll_disable)
6276 encoder->post_pll_disable(encoder);
6277
6278 if (!IS_GEN2(dev))
6279 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6280 }
6281
6282 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6283 {
6284 struct intel_encoder *encoder;
6285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6286 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6287 enum intel_display_power_domain domain;
6288 unsigned long domains;
6289
6290 if (!intel_crtc->active)
6291 return;
6292
6293 if (to_intel_plane_state(crtc->primary->state)->visible) {
6294 WARN_ON(intel_crtc->flip_work);
6295
6296 intel_pre_disable_primary_noatomic(crtc);
6297
6298 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6299 to_intel_plane_state(crtc->primary->state)->visible = false;
6300 }
6301
6302 dev_priv->display.crtc_disable(crtc);
6303
6304 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6305 crtc->base.id, crtc->name);
6306
6307 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6308 crtc->state->active = false;
6309 intel_crtc->active = false;
6310 crtc->enabled = false;
6311 crtc->state->connector_mask = 0;
6312 crtc->state->encoder_mask = 0;
6313
6314 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6315 encoder->base.crtc = NULL;
6316
6317 intel_fbc_disable(intel_crtc);
6318 intel_update_watermarks(crtc);
6319 intel_disable_shared_dpll(intel_crtc);
6320
6321 domains = intel_crtc->enabled_power_domains;
6322 for_each_power_domain(domain, domains)
6323 intel_display_power_put(dev_priv, domain);
6324 intel_crtc->enabled_power_domains = 0;
6325
6326 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6327 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6328 }
6329
6330 /*
6331 * turn all crtc's off, but do not adjust state
6332 * This has to be paired with a call to intel_modeset_setup_hw_state.
6333 */
6334 int intel_display_suspend(struct drm_device *dev)
6335 {
6336 struct drm_i915_private *dev_priv = to_i915(dev);
6337 struct drm_atomic_state *state;
6338 int ret;
6339
6340 state = drm_atomic_helper_suspend(dev);
6341 ret = PTR_ERR_OR_ZERO(state);
6342 if (ret)
6343 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6344 else
6345 dev_priv->modeset_restore_state = state;
6346 return ret;
6347 }
6348
6349 void intel_encoder_destroy(struct drm_encoder *encoder)
6350 {
6351 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6352
6353 drm_encoder_cleanup(encoder);
6354 kfree(intel_encoder);
6355 }
6356
6357 /* Cross check the actual hw state with our own modeset state tracking (and it's
6358 * internal consistency). */
6359 static void intel_connector_verify_state(struct intel_connector *connector)
6360 {
6361 struct drm_crtc *crtc = connector->base.state->crtc;
6362
6363 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6364 connector->base.base.id,
6365 connector->base.name);
6366
6367 if (connector->get_hw_state(connector)) {
6368 struct intel_encoder *encoder = connector->encoder;
6369 struct drm_connector_state *conn_state = connector->base.state;
6370
6371 I915_STATE_WARN(!crtc,
6372 "connector enabled without attached crtc\n");
6373
6374 if (!crtc)
6375 return;
6376
6377 I915_STATE_WARN(!crtc->state->active,
6378 "connector is active, but attached crtc isn't\n");
6379
6380 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6381 return;
6382
6383 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6384 "atomic encoder doesn't match attached encoder\n");
6385
6386 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6387 "attached encoder crtc differs from connector crtc\n");
6388 } else {
6389 I915_STATE_WARN(crtc && crtc->state->active,
6390 "attached crtc is active, but connector isn't\n");
6391 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6392 "best encoder set without crtc!\n");
6393 }
6394 }
6395
6396 int intel_connector_init(struct intel_connector *connector)
6397 {
6398 drm_atomic_helper_connector_reset(&connector->base);
6399
6400 if (!connector->base.state)
6401 return -ENOMEM;
6402
6403 return 0;
6404 }
6405
6406 struct intel_connector *intel_connector_alloc(void)
6407 {
6408 struct intel_connector *connector;
6409
6410 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6411 if (!connector)
6412 return NULL;
6413
6414 if (intel_connector_init(connector) < 0) {
6415 kfree(connector);
6416 return NULL;
6417 }
6418
6419 return connector;
6420 }
6421
6422 /* Simple connector->get_hw_state implementation for encoders that support only
6423 * one connector and no cloning and hence the encoder state determines the state
6424 * of the connector. */
6425 bool intel_connector_get_hw_state(struct intel_connector *connector)
6426 {
6427 enum pipe pipe = 0;
6428 struct intel_encoder *encoder = connector->encoder;
6429
6430 return encoder->get_hw_state(encoder, &pipe);
6431 }
6432
6433 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6434 {
6435 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6436 return crtc_state->fdi_lanes;
6437
6438 return 0;
6439 }
6440
6441 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6442 struct intel_crtc_state *pipe_config)
6443 {
6444 struct drm_atomic_state *state = pipe_config->base.state;
6445 struct intel_crtc *other_crtc;
6446 struct intel_crtc_state *other_crtc_state;
6447
6448 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6449 pipe_name(pipe), pipe_config->fdi_lanes);
6450 if (pipe_config->fdi_lanes > 4) {
6451 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6452 pipe_name(pipe), pipe_config->fdi_lanes);
6453 return -EINVAL;
6454 }
6455
6456 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6457 if (pipe_config->fdi_lanes > 2) {
6458 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6459 pipe_config->fdi_lanes);
6460 return -EINVAL;
6461 } else {
6462 return 0;
6463 }
6464 }
6465
6466 if (INTEL_INFO(dev)->num_pipes == 2)
6467 return 0;
6468
6469 /* Ivybridge 3 pipe is really complicated */
6470 switch (pipe) {
6471 case PIPE_A:
6472 return 0;
6473 case PIPE_B:
6474 if (pipe_config->fdi_lanes <= 2)
6475 return 0;
6476
6477 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6478 other_crtc_state =
6479 intel_atomic_get_crtc_state(state, other_crtc);
6480 if (IS_ERR(other_crtc_state))
6481 return PTR_ERR(other_crtc_state);
6482
6483 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6484 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6485 pipe_name(pipe), pipe_config->fdi_lanes);
6486 return -EINVAL;
6487 }
6488 return 0;
6489 case PIPE_C:
6490 if (pipe_config->fdi_lanes > 2) {
6491 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6492 pipe_name(pipe), pipe_config->fdi_lanes);
6493 return -EINVAL;
6494 }
6495
6496 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6497 other_crtc_state =
6498 intel_atomic_get_crtc_state(state, other_crtc);
6499 if (IS_ERR(other_crtc_state))
6500 return PTR_ERR(other_crtc_state);
6501
6502 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6503 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6504 return -EINVAL;
6505 }
6506 return 0;
6507 default:
6508 BUG();
6509 }
6510 }
6511
6512 #define RETRY 1
6513 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6514 struct intel_crtc_state *pipe_config)
6515 {
6516 struct drm_device *dev = intel_crtc->base.dev;
6517 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6518 int lane, link_bw, fdi_dotclock, ret;
6519 bool needs_recompute = false;
6520
6521 retry:
6522 /* FDI is a binary signal running at ~2.7GHz, encoding
6523 * each output octet as 10 bits. The actual frequency
6524 * is stored as a divider into a 100MHz clock, and the
6525 * mode pixel clock is stored in units of 1KHz.
6526 * Hence the bw of each lane in terms of the mode signal
6527 * is:
6528 */
6529 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6530
6531 fdi_dotclock = adjusted_mode->crtc_clock;
6532
6533 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6534 pipe_config->pipe_bpp);
6535
6536 pipe_config->fdi_lanes = lane;
6537
6538 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6539 link_bw, &pipe_config->fdi_m_n);
6540
6541 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6542 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6543 pipe_config->pipe_bpp -= 2*3;
6544 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6545 pipe_config->pipe_bpp);
6546 needs_recompute = true;
6547 pipe_config->bw_constrained = true;
6548
6549 goto retry;
6550 }
6551
6552 if (needs_recompute)
6553 return RETRY;
6554
6555 return ret;
6556 }
6557
6558 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6559 struct intel_crtc_state *pipe_config)
6560 {
6561 if (pipe_config->pipe_bpp > 24)
6562 return false;
6563
6564 /* HSW can handle pixel rate up to cdclk? */
6565 if (IS_HASWELL(dev_priv))
6566 return true;
6567
6568 /*
6569 * We compare against max which means we must take
6570 * the increased cdclk requirement into account when
6571 * calculating the new cdclk.
6572 *
6573 * Should measure whether using a lower cdclk w/o IPS
6574 */
6575 return ilk_pipe_pixel_rate(pipe_config) <=
6576 dev_priv->max_cdclk_freq * 95 / 100;
6577 }
6578
6579 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6580 struct intel_crtc_state *pipe_config)
6581 {
6582 struct drm_device *dev = crtc->base.dev;
6583 struct drm_i915_private *dev_priv = to_i915(dev);
6584
6585 pipe_config->ips_enabled = i915.enable_ips &&
6586 hsw_crtc_supports_ips(crtc) &&
6587 pipe_config_supports_ips(dev_priv, pipe_config);
6588 }
6589
6590 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6591 {
6592 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6593
6594 /* GDG double wide on either pipe, otherwise pipe A only */
6595 return INTEL_INFO(dev_priv)->gen < 4 &&
6596 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6597 }
6598
6599 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6600 struct intel_crtc_state *pipe_config)
6601 {
6602 struct drm_device *dev = crtc->base.dev;
6603 struct drm_i915_private *dev_priv = to_i915(dev);
6604 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6605 int clock_limit = dev_priv->max_dotclk_freq;
6606
6607 if (INTEL_INFO(dev)->gen < 4) {
6608 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6609
6610 /*
6611 * Enable double wide mode when the dot clock
6612 * is > 90% of the (display) core speed.
6613 */
6614 if (intel_crtc_supports_double_wide(crtc) &&
6615 adjusted_mode->crtc_clock > clock_limit) {
6616 clock_limit = dev_priv->max_dotclk_freq;
6617 pipe_config->double_wide = true;
6618 }
6619 }
6620
6621 if (adjusted_mode->crtc_clock > clock_limit) {
6622 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6623 adjusted_mode->crtc_clock, clock_limit,
6624 yesno(pipe_config->double_wide));
6625 return -EINVAL;
6626 }
6627
6628 /*
6629 * Pipe horizontal size must be even in:
6630 * - DVO ganged mode
6631 * - LVDS dual channel mode
6632 * - Double wide pipe
6633 */
6634 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6635 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6636 pipe_config->pipe_src_w &= ~1;
6637
6638 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6639 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6640 */
6641 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6642 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6643 return -EINVAL;
6644
6645 if (HAS_IPS(dev))
6646 hsw_compute_ips_config(crtc, pipe_config);
6647
6648 if (pipe_config->has_pch_encoder)
6649 return ironlake_fdi_compute_config(crtc, pipe_config);
6650
6651 return 0;
6652 }
6653
6654 static int skylake_get_display_clock_speed(struct drm_device *dev)
6655 {
6656 struct drm_i915_private *dev_priv = to_i915(dev);
6657 uint32_t cdctl;
6658
6659 skl_dpll0_update(dev_priv);
6660
6661 if (dev_priv->cdclk_pll.vco == 0)
6662 return dev_priv->cdclk_pll.ref;
6663
6664 cdctl = I915_READ(CDCLK_CTL);
6665
6666 if (dev_priv->cdclk_pll.vco == 8640000) {
6667 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6668 case CDCLK_FREQ_450_432:
6669 return 432000;
6670 case CDCLK_FREQ_337_308:
6671 return 308571;
6672 case CDCLK_FREQ_540:
6673 return 540000;
6674 case CDCLK_FREQ_675_617:
6675 return 617143;
6676 default:
6677 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6678 }
6679 } else {
6680 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6681 case CDCLK_FREQ_450_432:
6682 return 450000;
6683 case CDCLK_FREQ_337_308:
6684 return 337500;
6685 case CDCLK_FREQ_540:
6686 return 540000;
6687 case CDCLK_FREQ_675_617:
6688 return 675000;
6689 default:
6690 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6691 }
6692 }
6693
6694 return dev_priv->cdclk_pll.ref;
6695 }
6696
6697 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6698 {
6699 u32 val;
6700
6701 dev_priv->cdclk_pll.ref = 19200;
6702 dev_priv->cdclk_pll.vco = 0;
6703
6704 val = I915_READ(BXT_DE_PLL_ENABLE);
6705 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6706 return;
6707
6708 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6709 return;
6710
6711 val = I915_READ(BXT_DE_PLL_CTL);
6712 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6713 dev_priv->cdclk_pll.ref;
6714 }
6715
6716 static int broxton_get_display_clock_speed(struct drm_device *dev)
6717 {
6718 struct drm_i915_private *dev_priv = to_i915(dev);
6719 u32 divider;
6720 int div, vco;
6721
6722 bxt_de_pll_update(dev_priv);
6723
6724 vco = dev_priv->cdclk_pll.vco;
6725 if (vco == 0)
6726 return dev_priv->cdclk_pll.ref;
6727
6728 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6729
6730 switch (divider) {
6731 case BXT_CDCLK_CD2X_DIV_SEL_1:
6732 div = 2;
6733 break;
6734 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6735 div = 3;
6736 break;
6737 case BXT_CDCLK_CD2X_DIV_SEL_2:
6738 div = 4;
6739 break;
6740 case BXT_CDCLK_CD2X_DIV_SEL_4:
6741 div = 8;
6742 break;
6743 default:
6744 MISSING_CASE(divider);
6745 return dev_priv->cdclk_pll.ref;
6746 }
6747
6748 return DIV_ROUND_CLOSEST(vco, div);
6749 }
6750
6751 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6752 {
6753 struct drm_i915_private *dev_priv = to_i915(dev);
6754 uint32_t lcpll = I915_READ(LCPLL_CTL);
6755 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6756
6757 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6758 return 800000;
6759 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6760 return 450000;
6761 else if (freq == LCPLL_CLK_FREQ_450)
6762 return 450000;
6763 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6764 return 540000;
6765 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6766 return 337500;
6767 else
6768 return 675000;
6769 }
6770
6771 static int haswell_get_display_clock_speed(struct drm_device *dev)
6772 {
6773 struct drm_i915_private *dev_priv = to_i915(dev);
6774 uint32_t lcpll = I915_READ(LCPLL_CTL);
6775 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6776
6777 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6778 return 800000;
6779 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6780 return 450000;
6781 else if (freq == LCPLL_CLK_FREQ_450)
6782 return 450000;
6783 else if (IS_HSW_ULT(dev))
6784 return 337500;
6785 else
6786 return 540000;
6787 }
6788
6789 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6790 {
6791 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6792 CCK_DISPLAY_CLOCK_CONTROL);
6793 }
6794
6795 static int ilk_get_display_clock_speed(struct drm_device *dev)
6796 {
6797 return 450000;
6798 }
6799
6800 static int i945_get_display_clock_speed(struct drm_device *dev)
6801 {
6802 return 400000;
6803 }
6804
6805 static int i915_get_display_clock_speed(struct drm_device *dev)
6806 {
6807 return 333333;
6808 }
6809
6810 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6811 {
6812 return 200000;
6813 }
6814
6815 static int pnv_get_display_clock_speed(struct drm_device *dev)
6816 {
6817 u16 gcfgc = 0;
6818
6819 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6820
6821 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6822 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6823 return 266667;
6824 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6825 return 333333;
6826 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6827 return 444444;
6828 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6829 return 200000;
6830 default:
6831 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6832 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6833 return 133333;
6834 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6835 return 166667;
6836 }
6837 }
6838
6839 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6840 {
6841 u16 gcfgc = 0;
6842
6843 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6844
6845 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6846 return 133333;
6847 else {
6848 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6849 case GC_DISPLAY_CLOCK_333_MHZ:
6850 return 333333;
6851 default:
6852 case GC_DISPLAY_CLOCK_190_200_MHZ:
6853 return 190000;
6854 }
6855 }
6856 }
6857
6858 static int i865_get_display_clock_speed(struct drm_device *dev)
6859 {
6860 return 266667;
6861 }
6862
6863 static int i85x_get_display_clock_speed(struct drm_device *dev)
6864 {
6865 u16 hpllcc = 0;
6866
6867 /*
6868 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6869 * encoding is different :(
6870 * FIXME is this the right way to detect 852GM/852GMV?
6871 */
6872 if (dev->pdev->revision == 0x1)
6873 return 133333;
6874
6875 pci_bus_read_config_word(dev->pdev->bus,
6876 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6877
6878 /* Assume that the hardware is in the high speed state. This
6879 * should be the default.
6880 */
6881 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6882 case GC_CLOCK_133_200:
6883 case GC_CLOCK_133_200_2:
6884 case GC_CLOCK_100_200:
6885 return 200000;
6886 case GC_CLOCK_166_250:
6887 return 250000;
6888 case GC_CLOCK_100_133:
6889 return 133333;
6890 case GC_CLOCK_133_266:
6891 case GC_CLOCK_133_266_2:
6892 case GC_CLOCK_166_266:
6893 return 266667;
6894 }
6895
6896 /* Shouldn't happen */
6897 return 0;
6898 }
6899
6900 static int i830_get_display_clock_speed(struct drm_device *dev)
6901 {
6902 return 133333;
6903 }
6904
6905 static unsigned int intel_hpll_vco(struct drm_device *dev)
6906 {
6907 struct drm_i915_private *dev_priv = to_i915(dev);
6908 static const unsigned int blb_vco[8] = {
6909 [0] = 3200000,
6910 [1] = 4000000,
6911 [2] = 5333333,
6912 [3] = 4800000,
6913 [4] = 6400000,
6914 };
6915 static const unsigned int pnv_vco[8] = {
6916 [0] = 3200000,
6917 [1] = 4000000,
6918 [2] = 5333333,
6919 [3] = 4800000,
6920 [4] = 2666667,
6921 };
6922 static const unsigned int cl_vco[8] = {
6923 [0] = 3200000,
6924 [1] = 4000000,
6925 [2] = 5333333,
6926 [3] = 6400000,
6927 [4] = 3333333,
6928 [5] = 3566667,
6929 [6] = 4266667,
6930 };
6931 static const unsigned int elk_vco[8] = {
6932 [0] = 3200000,
6933 [1] = 4000000,
6934 [2] = 5333333,
6935 [3] = 4800000,
6936 };
6937 static const unsigned int ctg_vco[8] = {
6938 [0] = 3200000,
6939 [1] = 4000000,
6940 [2] = 5333333,
6941 [3] = 6400000,
6942 [4] = 2666667,
6943 [5] = 4266667,
6944 };
6945 const unsigned int *vco_table;
6946 unsigned int vco;
6947 uint8_t tmp = 0;
6948
6949 /* FIXME other chipsets? */
6950 if (IS_GM45(dev))
6951 vco_table = ctg_vco;
6952 else if (IS_G4X(dev))
6953 vco_table = elk_vco;
6954 else if (IS_CRESTLINE(dev))
6955 vco_table = cl_vco;
6956 else if (IS_PINEVIEW(dev))
6957 vco_table = pnv_vco;
6958 else if (IS_G33(dev))
6959 vco_table = blb_vco;
6960 else
6961 return 0;
6962
6963 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6964
6965 vco = vco_table[tmp & 0x7];
6966 if (vco == 0)
6967 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6968 else
6969 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6970
6971 return vco;
6972 }
6973
6974 static int gm45_get_display_clock_speed(struct drm_device *dev)
6975 {
6976 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6977 uint16_t tmp = 0;
6978
6979 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6980
6981 cdclk_sel = (tmp >> 12) & 0x1;
6982
6983 switch (vco) {
6984 case 2666667:
6985 case 4000000:
6986 case 5333333:
6987 return cdclk_sel ? 333333 : 222222;
6988 case 3200000:
6989 return cdclk_sel ? 320000 : 228571;
6990 default:
6991 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6992 return 222222;
6993 }
6994 }
6995
6996 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6997 {
6998 static const uint8_t div_3200[] = { 16, 10, 8 };
6999 static const uint8_t div_4000[] = { 20, 12, 10 };
7000 static const uint8_t div_5333[] = { 24, 16, 14 };
7001 const uint8_t *div_table;
7002 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7003 uint16_t tmp = 0;
7004
7005 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7006
7007 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7008
7009 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7010 goto fail;
7011
7012 switch (vco) {
7013 case 3200000:
7014 div_table = div_3200;
7015 break;
7016 case 4000000:
7017 div_table = div_4000;
7018 break;
7019 case 5333333:
7020 div_table = div_5333;
7021 break;
7022 default:
7023 goto fail;
7024 }
7025
7026 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7027
7028 fail:
7029 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7030 return 200000;
7031 }
7032
7033 static int g33_get_display_clock_speed(struct drm_device *dev)
7034 {
7035 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7036 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7037 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7038 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7039 const uint8_t *div_table;
7040 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7041 uint16_t tmp = 0;
7042
7043 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7044
7045 cdclk_sel = (tmp >> 4) & 0x7;
7046
7047 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7048 goto fail;
7049
7050 switch (vco) {
7051 case 3200000:
7052 div_table = div_3200;
7053 break;
7054 case 4000000:
7055 div_table = div_4000;
7056 break;
7057 case 4800000:
7058 div_table = div_4800;
7059 break;
7060 case 5333333:
7061 div_table = div_5333;
7062 break;
7063 default:
7064 goto fail;
7065 }
7066
7067 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7068
7069 fail:
7070 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7071 return 190476;
7072 }
7073
7074 static void
7075 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7076 {
7077 while (*num > DATA_LINK_M_N_MASK ||
7078 *den > DATA_LINK_M_N_MASK) {
7079 *num >>= 1;
7080 *den >>= 1;
7081 }
7082 }
7083
7084 static void compute_m_n(unsigned int m, unsigned int n,
7085 uint32_t *ret_m, uint32_t *ret_n)
7086 {
7087 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7088 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7089 intel_reduce_m_n_ratio(ret_m, ret_n);
7090 }
7091
7092 void
7093 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7094 int pixel_clock, int link_clock,
7095 struct intel_link_m_n *m_n)
7096 {
7097 m_n->tu = 64;
7098
7099 compute_m_n(bits_per_pixel * pixel_clock,
7100 link_clock * nlanes * 8,
7101 &m_n->gmch_m, &m_n->gmch_n);
7102
7103 compute_m_n(pixel_clock, link_clock,
7104 &m_n->link_m, &m_n->link_n);
7105 }
7106
7107 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7108 {
7109 if (i915.panel_use_ssc >= 0)
7110 return i915.panel_use_ssc != 0;
7111 return dev_priv->vbt.lvds_use_ssc
7112 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7113 }
7114
7115 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7116 {
7117 return (1 << dpll->n) << 16 | dpll->m2;
7118 }
7119
7120 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7121 {
7122 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7123 }
7124
7125 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7126 struct intel_crtc_state *crtc_state,
7127 struct dpll *reduced_clock)
7128 {
7129 struct drm_device *dev = crtc->base.dev;
7130 u32 fp, fp2 = 0;
7131
7132 if (IS_PINEVIEW(dev)) {
7133 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7134 if (reduced_clock)
7135 fp2 = pnv_dpll_compute_fp(reduced_clock);
7136 } else {
7137 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7138 if (reduced_clock)
7139 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7140 }
7141
7142 crtc_state->dpll_hw_state.fp0 = fp;
7143
7144 crtc->lowfreq_avail = false;
7145 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7146 reduced_clock) {
7147 crtc_state->dpll_hw_state.fp1 = fp2;
7148 crtc->lowfreq_avail = true;
7149 } else {
7150 crtc_state->dpll_hw_state.fp1 = fp;
7151 }
7152 }
7153
7154 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7155 pipe)
7156 {
7157 u32 reg_val;
7158
7159 /*
7160 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7161 * and set it to a reasonable value instead.
7162 */
7163 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7164 reg_val &= 0xffffff00;
7165 reg_val |= 0x00000030;
7166 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7167
7168 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7169 reg_val &= 0x8cffffff;
7170 reg_val = 0x8c000000;
7171 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7172
7173 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7174 reg_val &= 0xffffff00;
7175 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7176
7177 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7178 reg_val &= 0x00ffffff;
7179 reg_val |= 0xb0000000;
7180 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7181 }
7182
7183 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7184 struct intel_link_m_n *m_n)
7185 {
7186 struct drm_device *dev = crtc->base.dev;
7187 struct drm_i915_private *dev_priv = to_i915(dev);
7188 int pipe = crtc->pipe;
7189
7190 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7191 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7192 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7193 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7194 }
7195
7196 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7197 struct intel_link_m_n *m_n,
7198 struct intel_link_m_n *m2_n2)
7199 {
7200 struct drm_device *dev = crtc->base.dev;
7201 struct drm_i915_private *dev_priv = to_i915(dev);
7202 int pipe = crtc->pipe;
7203 enum transcoder transcoder = crtc->config->cpu_transcoder;
7204
7205 if (INTEL_INFO(dev)->gen >= 5) {
7206 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7207 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7208 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7209 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7210 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7211 * for gen < 8) and if DRRS is supported (to make sure the
7212 * registers are not unnecessarily accessed).
7213 */
7214 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7215 crtc->config->has_drrs) {
7216 I915_WRITE(PIPE_DATA_M2(transcoder),
7217 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7218 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7219 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7220 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7221 }
7222 } else {
7223 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7224 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7225 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7226 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7227 }
7228 }
7229
7230 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7231 {
7232 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7233
7234 if (m_n == M1_N1) {
7235 dp_m_n = &crtc->config->dp_m_n;
7236 dp_m2_n2 = &crtc->config->dp_m2_n2;
7237 } else if (m_n == M2_N2) {
7238
7239 /*
7240 * M2_N2 registers are not supported. Hence m2_n2 divider value
7241 * needs to be programmed into M1_N1.
7242 */
7243 dp_m_n = &crtc->config->dp_m2_n2;
7244 } else {
7245 DRM_ERROR("Unsupported divider value\n");
7246 return;
7247 }
7248
7249 if (crtc->config->has_pch_encoder)
7250 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7251 else
7252 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7253 }
7254
7255 static void vlv_compute_dpll(struct intel_crtc *crtc,
7256 struct intel_crtc_state *pipe_config)
7257 {
7258 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7259 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7260 if (crtc->pipe != PIPE_A)
7261 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7262
7263 /* DPLL not used with DSI, but still need the rest set up */
7264 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7265 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7266 DPLL_EXT_BUFFER_ENABLE_VLV;
7267
7268 pipe_config->dpll_hw_state.dpll_md =
7269 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7270 }
7271
7272 static void chv_compute_dpll(struct intel_crtc *crtc,
7273 struct intel_crtc_state *pipe_config)
7274 {
7275 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7276 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7277 if (crtc->pipe != PIPE_A)
7278 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7279
7280 /* DPLL not used with DSI, but still need the rest set up */
7281 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7282 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7283
7284 pipe_config->dpll_hw_state.dpll_md =
7285 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7286 }
7287
7288 static void vlv_prepare_pll(struct intel_crtc *crtc,
7289 const struct intel_crtc_state *pipe_config)
7290 {
7291 struct drm_device *dev = crtc->base.dev;
7292 struct drm_i915_private *dev_priv = to_i915(dev);
7293 enum pipe pipe = crtc->pipe;
7294 u32 mdiv;
7295 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7296 u32 coreclk, reg_val;
7297
7298 /* Enable Refclk */
7299 I915_WRITE(DPLL(pipe),
7300 pipe_config->dpll_hw_state.dpll &
7301 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7302
7303 /* No need to actually set up the DPLL with DSI */
7304 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7305 return;
7306
7307 mutex_lock(&dev_priv->sb_lock);
7308
7309 bestn = pipe_config->dpll.n;
7310 bestm1 = pipe_config->dpll.m1;
7311 bestm2 = pipe_config->dpll.m2;
7312 bestp1 = pipe_config->dpll.p1;
7313 bestp2 = pipe_config->dpll.p2;
7314
7315 /* See eDP HDMI DPIO driver vbios notes doc */
7316
7317 /* PLL B needs special handling */
7318 if (pipe == PIPE_B)
7319 vlv_pllb_recal_opamp(dev_priv, pipe);
7320
7321 /* Set up Tx target for periodic Rcomp update */
7322 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7323
7324 /* Disable target IRef on PLL */
7325 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7326 reg_val &= 0x00ffffff;
7327 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7328
7329 /* Disable fast lock */
7330 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7331
7332 /* Set idtafcrecal before PLL is enabled */
7333 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7334 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7335 mdiv |= ((bestn << DPIO_N_SHIFT));
7336 mdiv |= (1 << DPIO_K_SHIFT);
7337
7338 /*
7339 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7340 * but we don't support that).
7341 * Note: don't use the DAC post divider as it seems unstable.
7342 */
7343 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7344 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7345
7346 mdiv |= DPIO_ENABLE_CALIBRATION;
7347 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7348
7349 /* Set HBR and RBR LPF coefficients */
7350 if (pipe_config->port_clock == 162000 ||
7351 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7352 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7353 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7354 0x009f0003);
7355 else
7356 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7357 0x00d0000f);
7358
7359 if (intel_crtc_has_dp_encoder(pipe_config)) {
7360 /* Use SSC source */
7361 if (pipe == PIPE_A)
7362 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7363 0x0df40000);
7364 else
7365 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7366 0x0df70000);
7367 } else { /* HDMI or VGA */
7368 /* Use bend source */
7369 if (pipe == PIPE_A)
7370 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7371 0x0df70000);
7372 else
7373 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7374 0x0df40000);
7375 }
7376
7377 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7378 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7379 if (intel_crtc_has_dp_encoder(crtc->config))
7380 coreclk |= 0x01000000;
7381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7382
7383 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7384 mutex_unlock(&dev_priv->sb_lock);
7385 }
7386
7387 static void chv_prepare_pll(struct intel_crtc *crtc,
7388 const struct intel_crtc_state *pipe_config)
7389 {
7390 struct drm_device *dev = crtc->base.dev;
7391 struct drm_i915_private *dev_priv = to_i915(dev);
7392 enum pipe pipe = crtc->pipe;
7393 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7394 u32 loopfilter, tribuf_calcntr;
7395 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7396 u32 dpio_val;
7397 int vco;
7398
7399 /* Enable Refclk and SSC */
7400 I915_WRITE(DPLL(pipe),
7401 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7402
7403 /* No need to actually set up the DPLL with DSI */
7404 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7405 return;
7406
7407 bestn = pipe_config->dpll.n;
7408 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7409 bestm1 = pipe_config->dpll.m1;
7410 bestm2 = pipe_config->dpll.m2 >> 22;
7411 bestp1 = pipe_config->dpll.p1;
7412 bestp2 = pipe_config->dpll.p2;
7413 vco = pipe_config->dpll.vco;
7414 dpio_val = 0;
7415 loopfilter = 0;
7416
7417 mutex_lock(&dev_priv->sb_lock);
7418
7419 /* p1 and p2 divider */
7420 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7421 5 << DPIO_CHV_S1_DIV_SHIFT |
7422 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7423 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7424 1 << DPIO_CHV_K_DIV_SHIFT);
7425
7426 /* Feedback post-divider - m2 */
7427 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7428
7429 /* Feedback refclk divider - n and m1 */
7430 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7431 DPIO_CHV_M1_DIV_BY_2 |
7432 1 << DPIO_CHV_N_DIV_SHIFT);
7433
7434 /* M2 fraction division */
7435 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7436
7437 /* M2 fraction division enable */
7438 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7439 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7440 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7441 if (bestm2_frac)
7442 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7443 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7444
7445 /* Program digital lock detect threshold */
7446 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7447 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7448 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7449 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7450 if (!bestm2_frac)
7451 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7452 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7453
7454 /* Loop filter */
7455 if (vco == 5400000) {
7456 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7457 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7458 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7459 tribuf_calcntr = 0x9;
7460 } else if (vco <= 6200000) {
7461 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7462 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7463 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7464 tribuf_calcntr = 0x9;
7465 } else if (vco <= 6480000) {
7466 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7467 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7468 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7469 tribuf_calcntr = 0x8;
7470 } else {
7471 /* Not supported. Apply the same limits as in the max case */
7472 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7473 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7474 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7475 tribuf_calcntr = 0;
7476 }
7477 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7478
7479 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7480 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7481 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7482 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7483
7484 /* AFC Recal */
7485 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7486 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7487 DPIO_AFC_RECAL);
7488
7489 mutex_unlock(&dev_priv->sb_lock);
7490 }
7491
7492 /**
7493 * vlv_force_pll_on - forcibly enable just the PLL
7494 * @dev_priv: i915 private structure
7495 * @pipe: pipe PLL to enable
7496 * @dpll: PLL configuration
7497 *
7498 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7499 * in cases where we need the PLL enabled even when @pipe is not going to
7500 * be enabled.
7501 */
7502 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7503 const struct dpll *dpll)
7504 {
7505 struct intel_crtc *crtc =
7506 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7507 struct intel_crtc_state *pipe_config;
7508
7509 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7510 if (!pipe_config)
7511 return -ENOMEM;
7512
7513 pipe_config->base.crtc = &crtc->base;
7514 pipe_config->pixel_multiplier = 1;
7515 pipe_config->dpll = *dpll;
7516
7517 if (IS_CHERRYVIEW(dev)) {
7518 chv_compute_dpll(crtc, pipe_config);
7519 chv_prepare_pll(crtc, pipe_config);
7520 chv_enable_pll(crtc, pipe_config);
7521 } else {
7522 vlv_compute_dpll(crtc, pipe_config);
7523 vlv_prepare_pll(crtc, pipe_config);
7524 vlv_enable_pll(crtc, pipe_config);
7525 }
7526
7527 kfree(pipe_config);
7528
7529 return 0;
7530 }
7531
7532 /**
7533 * vlv_force_pll_off - forcibly disable just the PLL
7534 * @dev_priv: i915 private structure
7535 * @pipe: pipe PLL to disable
7536 *
7537 * Disable the PLL for @pipe. To be used in cases where we need
7538 * the PLL enabled even when @pipe is not going to be enabled.
7539 */
7540 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7541 {
7542 if (IS_CHERRYVIEW(dev))
7543 chv_disable_pll(to_i915(dev), pipe);
7544 else
7545 vlv_disable_pll(to_i915(dev), pipe);
7546 }
7547
7548 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7549 struct intel_crtc_state *crtc_state,
7550 struct dpll *reduced_clock)
7551 {
7552 struct drm_device *dev = crtc->base.dev;
7553 struct drm_i915_private *dev_priv = to_i915(dev);
7554 u32 dpll;
7555 struct dpll *clock = &crtc_state->dpll;
7556
7557 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7558
7559 dpll = DPLL_VGA_MODE_DIS;
7560
7561 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
7562 dpll |= DPLLB_MODE_LVDS;
7563 else
7564 dpll |= DPLLB_MODE_DAC_SERIAL;
7565
7566 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7567 dpll |= (crtc_state->pixel_multiplier - 1)
7568 << SDVO_MULTIPLIER_SHIFT_HIRES;
7569 }
7570
7571 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7572 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
7573 dpll |= DPLL_SDVO_HIGH_SPEED;
7574
7575 if (intel_crtc_has_dp_encoder(crtc_state))
7576 dpll |= DPLL_SDVO_HIGH_SPEED;
7577
7578 /* compute bitmask from p1 value */
7579 if (IS_PINEVIEW(dev))
7580 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7581 else {
7582 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7583 if (IS_G4X(dev) && reduced_clock)
7584 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7585 }
7586 switch (clock->p2) {
7587 case 5:
7588 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7589 break;
7590 case 7:
7591 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7592 break;
7593 case 10:
7594 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7595 break;
7596 case 14:
7597 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7598 break;
7599 }
7600 if (INTEL_INFO(dev)->gen >= 4)
7601 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7602
7603 if (crtc_state->sdvo_tv_clock)
7604 dpll |= PLL_REF_INPUT_TVCLKINBC;
7605 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7606 intel_panel_use_ssc(dev_priv))
7607 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7608 else
7609 dpll |= PLL_REF_INPUT_DREFCLK;
7610
7611 dpll |= DPLL_VCO_ENABLE;
7612 crtc_state->dpll_hw_state.dpll = dpll;
7613
7614 if (INTEL_INFO(dev)->gen >= 4) {
7615 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7616 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7617 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7618 }
7619 }
7620
7621 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7622 struct intel_crtc_state *crtc_state,
7623 struct dpll *reduced_clock)
7624 {
7625 struct drm_device *dev = crtc->base.dev;
7626 struct drm_i915_private *dev_priv = to_i915(dev);
7627 u32 dpll;
7628 struct dpll *clock = &crtc_state->dpll;
7629
7630 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7631
7632 dpll = DPLL_VGA_MODE_DIS;
7633
7634 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7635 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7636 } else {
7637 if (clock->p1 == 2)
7638 dpll |= PLL_P1_DIVIDE_BY_TWO;
7639 else
7640 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7641 if (clock->p2 == 4)
7642 dpll |= PLL_P2_DIVIDE_BY_4;
7643 }
7644
7645 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7646 dpll |= DPLL_DVO_2X_MODE;
7647
7648 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7649 intel_panel_use_ssc(dev_priv))
7650 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7651 else
7652 dpll |= PLL_REF_INPUT_DREFCLK;
7653
7654 dpll |= DPLL_VCO_ENABLE;
7655 crtc_state->dpll_hw_state.dpll = dpll;
7656 }
7657
7658 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7659 {
7660 struct drm_device *dev = intel_crtc->base.dev;
7661 struct drm_i915_private *dev_priv = to_i915(dev);
7662 enum pipe pipe = intel_crtc->pipe;
7663 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7664 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7665 uint32_t crtc_vtotal, crtc_vblank_end;
7666 int vsyncshift = 0;
7667
7668 /* We need to be careful not to changed the adjusted mode, for otherwise
7669 * the hw state checker will get angry at the mismatch. */
7670 crtc_vtotal = adjusted_mode->crtc_vtotal;
7671 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7672
7673 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7674 /* the chip adds 2 halflines automatically */
7675 crtc_vtotal -= 1;
7676 crtc_vblank_end -= 1;
7677
7678 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7679 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7680 else
7681 vsyncshift = adjusted_mode->crtc_hsync_start -
7682 adjusted_mode->crtc_htotal / 2;
7683 if (vsyncshift < 0)
7684 vsyncshift += adjusted_mode->crtc_htotal;
7685 }
7686
7687 if (INTEL_INFO(dev)->gen > 3)
7688 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7689
7690 I915_WRITE(HTOTAL(cpu_transcoder),
7691 (adjusted_mode->crtc_hdisplay - 1) |
7692 ((adjusted_mode->crtc_htotal - 1) << 16));
7693 I915_WRITE(HBLANK(cpu_transcoder),
7694 (adjusted_mode->crtc_hblank_start - 1) |
7695 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7696 I915_WRITE(HSYNC(cpu_transcoder),
7697 (adjusted_mode->crtc_hsync_start - 1) |
7698 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7699
7700 I915_WRITE(VTOTAL(cpu_transcoder),
7701 (adjusted_mode->crtc_vdisplay - 1) |
7702 ((crtc_vtotal - 1) << 16));
7703 I915_WRITE(VBLANK(cpu_transcoder),
7704 (adjusted_mode->crtc_vblank_start - 1) |
7705 ((crtc_vblank_end - 1) << 16));
7706 I915_WRITE(VSYNC(cpu_transcoder),
7707 (adjusted_mode->crtc_vsync_start - 1) |
7708 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7709
7710 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7711 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7712 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7713 * bits. */
7714 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7715 (pipe == PIPE_B || pipe == PIPE_C))
7716 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7717
7718 }
7719
7720 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7721 {
7722 struct drm_device *dev = intel_crtc->base.dev;
7723 struct drm_i915_private *dev_priv = to_i915(dev);
7724 enum pipe pipe = intel_crtc->pipe;
7725
7726 /* pipesrc controls the size that is scaled from, which should
7727 * always be the user's requested size.
7728 */
7729 I915_WRITE(PIPESRC(pipe),
7730 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7731 (intel_crtc->config->pipe_src_h - 1));
7732 }
7733
7734 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7735 struct intel_crtc_state *pipe_config)
7736 {
7737 struct drm_device *dev = crtc->base.dev;
7738 struct drm_i915_private *dev_priv = to_i915(dev);
7739 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7740 uint32_t tmp;
7741
7742 tmp = I915_READ(HTOTAL(cpu_transcoder));
7743 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7744 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7745 tmp = I915_READ(HBLANK(cpu_transcoder));
7746 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7747 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7748 tmp = I915_READ(HSYNC(cpu_transcoder));
7749 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7750 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7751
7752 tmp = I915_READ(VTOTAL(cpu_transcoder));
7753 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7754 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7755 tmp = I915_READ(VBLANK(cpu_transcoder));
7756 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7757 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7758 tmp = I915_READ(VSYNC(cpu_transcoder));
7759 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7760 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7761
7762 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7763 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7764 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7765 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7766 }
7767 }
7768
7769 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7770 struct intel_crtc_state *pipe_config)
7771 {
7772 struct drm_device *dev = crtc->base.dev;
7773 struct drm_i915_private *dev_priv = to_i915(dev);
7774 u32 tmp;
7775
7776 tmp = I915_READ(PIPESRC(crtc->pipe));
7777 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7778 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7779
7780 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7781 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7782 }
7783
7784 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7785 struct intel_crtc_state *pipe_config)
7786 {
7787 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7788 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7789 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7790 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7791
7792 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7793 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7794 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7795 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7796
7797 mode->flags = pipe_config->base.adjusted_mode.flags;
7798 mode->type = DRM_MODE_TYPE_DRIVER;
7799
7800 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7801 mode->flags |= pipe_config->base.adjusted_mode.flags;
7802
7803 mode->hsync = drm_mode_hsync(mode);
7804 mode->vrefresh = drm_mode_vrefresh(mode);
7805 drm_mode_set_name(mode);
7806 }
7807
7808 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7809 {
7810 struct drm_device *dev = intel_crtc->base.dev;
7811 struct drm_i915_private *dev_priv = to_i915(dev);
7812 uint32_t pipeconf;
7813
7814 pipeconf = 0;
7815
7816 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7817 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7818 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7819
7820 if (intel_crtc->config->double_wide)
7821 pipeconf |= PIPECONF_DOUBLE_WIDE;
7822
7823 /* only g4x and later have fancy bpc/dither controls */
7824 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7825 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7826 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7827 pipeconf |= PIPECONF_DITHER_EN |
7828 PIPECONF_DITHER_TYPE_SP;
7829
7830 switch (intel_crtc->config->pipe_bpp) {
7831 case 18:
7832 pipeconf |= PIPECONF_6BPC;
7833 break;
7834 case 24:
7835 pipeconf |= PIPECONF_8BPC;
7836 break;
7837 case 30:
7838 pipeconf |= PIPECONF_10BPC;
7839 break;
7840 default:
7841 /* Case prevented by intel_choose_pipe_bpp_dither. */
7842 BUG();
7843 }
7844 }
7845
7846 if (HAS_PIPE_CXSR(dev)) {
7847 if (intel_crtc->lowfreq_avail) {
7848 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7849 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7850 } else {
7851 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7852 }
7853 }
7854
7855 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7856 if (INTEL_INFO(dev)->gen < 4 ||
7857 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7858 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7859 else
7860 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7861 } else
7862 pipeconf |= PIPECONF_PROGRESSIVE;
7863
7864 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7865 intel_crtc->config->limited_color_range)
7866 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7867
7868 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7869 POSTING_READ(PIPECONF(intel_crtc->pipe));
7870 }
7871
7872 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7873 struct intel_crtc_state *crtc_state)
7874 {
7875 struct drm_device *dev = crtc->base.dev;
7876 struct drm_i915_private *dev_priv = to_i915(dev);
7877 const struct intel_limit *limit;
7878 int refclk = 48000;
7879
7880 memset(&crtc_state->dpll_hw_state, 0,
7881 sizeof(crtc_state->dpll_hw_state));
7882
7883 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7884 if (intel_panel_use_ssc(dev_priv)) {
7885 refclk = dev_priv->vbt.lvds_ssc_freq;
7886 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7887 }
7888
7889 limit = &intel_limits_i8xx_lvds;
7890 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7891 limit = &intel_limits_i8xx_dvo;
7892 } else {
7893 limit = &intel_limits_i8xx_dac;
7894 }
7895
7896 if (!crtc_state->clock_set &&
7897 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7898 refclk, NULL, &crtc_state->dpll)) {
7899 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7900 return -EINVAL;
7901 }
7902
7903 i8xx_compute_dpll(crtc, crtc_state, NULL);
7904
7905 return 0;
7906 }
7907
7908 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7909 struct intel_crtc_state *crtc_state)
7910 {
7911 struct drm_device *dev = crtc->base.dev;
7912 struct drm_i915_private *dev_priv = to_i915(dev);
7913 const struct intel_limit *limit;
7914 int refclk = 96000;
7915
7916 memset(&crtc_state->dpll_hw_state, 0,
7917 sizeof(crtc_state->dpll_hw_state));
7918
7919 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7920 if (intel_panel_use_ssc(dev_priv)) {
7921 refclk = dev_priv->vbt.lvds_ssc_freq;
7922 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7923 }
7924
7925 if (intel_is_dual_link_lvds(dev))
7926 limit = &intel_limits_g4x_dual_channel_lvds;
7927 else
7928 limit = &intel_limits_g4x_single_channel_lvds;
7929 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7930 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7931 limit = &intel_limits_g4x_hdmi;
7932 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7933 limit = &intel_limits_g4x_sdvo;
7934 } else {
7935 /* The option is for other outputs */
7936 limit = &intel_limits_i9xx_sdvo;
7937 }
7938
7939 if (!crtc_state->clock_set &&
7940 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7941 refclk, NULL, &crtc_state->dpll)) {
7942 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7943 return -EINVAL;
7944 }
7945
7946 i9xx_compute_dpll(crtc, crtc_state, NULL);
7947
7948 return 0;
7949 }
7950
7951 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7952 struct intel_crtc_state *crtc_state)
7953 {
7954 struct drm_device *dev = crtc->base.dev;
7955 struct drm_i915_private *dev_priv = to_i915(dev);
7956 const struct intel_limit *limit;
7957 int refclk = 96000;
7958
7959 memset(&crtc_state->dpll_hw_state, 0,
7960 sizeof(crtc_state->dpll_hw_state));
7961
7962 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7963 if (intel_panel_use_ssc(dev_priv)) {
7964 refclk = dev_priv->vbt.lvds_ssc_freq;
7965 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7966 }
7967
7968 limit = &intel_limits_pineview_lvds;
7969 } else {
7970 limit = &intel_limits_pineview_sdvo;
7971 }
7972
7973 if (!crtc_state->clock_set &&
7974 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7975 refclk, NULL, &crtc_state->dpll)) {
7976 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7977 return -EINVAL;
7978 }
7979
7980 i9xx_compute_dpll(crtc, crtc_state, NULL);
7981
7982 return 0;
7983 }
7984
7985 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7986 struct intel_crtc_state *crtc_state)
7987 {
7988 struct drm_device *dev = crtc->base.dev;
7989 struct drm_i915_private *dev_priv = to_i915(dev);
7990 const struct intel_limit *limit;
7991 int refclk = 96000;
7992
7993 memset(&crtc_state->dpll_hw_state, 0,
7994 sizeof(crtc_state->dpll_hw_state));
7995
7996 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7997 if (intel_panel_use_ssc(dev_priv)) {
7998 refclk = dev_priv->vbt.lvds_ssc_freq;
7999 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8000 }
8001
8002 limit = &intel_limits_i9xx_lvds;
8003 } else {
8004 limit = &intel_limits_i9xx_sdvo;
8005 }
8006
8007 if (!crtc_state->clock_set &&
8008 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8009 refclk, NULL, &crtc_state->dpll)) {
8010 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8011 return -EINVAL;
8012 }
8013
8014 i9xx_compute_dpll(crtc, crtc_state, NULL);
8015
8016 return 0;
8017 }
8018
8019 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8020 struct intel_crtc_state *crtc_state)
8021 {
8022 int refclk = 100000;
8023 const struct intel_limit *limit = &intel_limits_chv;
8024
8025 memset(&crtc_state->dpll_hw_state, 0,
8026 sizeof(crtc_state->dpll_hw_state));
8027
8028 if (!crtc_state->clock_set &&
8029 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8030 refclk, NULL, &crtc_state->dpll)) {
8031 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8032 return -EINVAL;
8033 }
8034
8035 chv_compute_dpll(crtc, crtc_state);
8036
8037 return 0;
8038 }
8039
8040 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8041 struct intel_crtc_state *crtc_state)
8042 {
8043 int refclk = 100000;
8044 const struct intel_limit *limit = &intel_limits_vlv;
8045
8046 memset(&crtc_state->dpll_hw_state, 0,
8047 sizeof(crtc_state->dpll_hw_state));
8048
8049 if (!crtc_state->clock_set &&
8050 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8051 refclk, NULL, &crtc_state->dpll)) {
8052 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8053 return -EINVAL;
8054 }
8055
8056 vlv_compute_dpll(crtc, crtc_state);
8057
8058 return 0;
8059 }
8060
8061 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8062 struct intel_crtc_state *pipe_config)
8063 {
8064 struct drm_device *dev = crtc->base.dev;
8065 struct drm_i915_private *dev_priv = to_i915(dev);
8066 uint32_t tmp;
8067
8068 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8069 return;
8070
8071 tmp = I915_READ(PFIT_CONTROL);
8072 if (!(tmp & PFIT_ENABLE))
8073 return;
8074
8075 /* Check whether the pfit is attached to our pipe. */
8076 if (INTEL_INFO(dev)->gen < 4) {
8077 if (crtc->pipe != PIPE_B)
8078 return;
8079 } else {
8080 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8081 return;
8082 }
8083
8084 pipe_config->gmch_pfit.control = tmp;
8085 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8086 }
8087
8088 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8089 struct intel_crtc_state *pipe_config)
8090 {
8091 struct drm_device *dev = crtc->base.dev;
8092 struct drm_i915_private *dev_priv = to_i915(dev);
8093 int pipe = pipe_config->cpu_transcoder;
8094 struct dpll clock;
8095 u32 mdiv;
8096 int refclk = 100000;
8097
8098 /* In case of DSI, DPLL will not be used */
8099 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8100 return;
8101
8102 mutex_lock(&dev_priv->sb_lock);
8103 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8104 mutex_unlock(&dev_priv->sb_lock);
8105
8106 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8107 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8108 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8109 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8110 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8111
8112 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8113 }
8114
8115 static void
8116 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8117 struct intel_initial_plane_config *plane_config)
8118 {
8119 struct drm_device *dev = crtc->base.dev;
8120 struct drm_i915_private *dev_priv = to_i915(dev);
8121 u32 val, base, offset;
8122 int pipe = crtc->pipe, plane = crtc->plane;
8123 int fourcc, pixel_format;
8124 unsigned int aligned_height;
8125 struct drm_framebuffer *fb;
8126 struct intel_framebuffer *intel_fb;
8127
8128 val = I915_READ(DSPCNTR(plane));
8129 if (!(val & DISPLAY_PLANE_ENABLE))
8130 return;
8131
8132 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8133 if (!intel_fb) {
8134 DRM_DEBUG_KMS("failed to alloc fb\n");
8135 return;
8136 }
8137
8138 fb = &intel_fb->base;
8139
8140 if (INTEL_INFO(dev)->gen >= 4) {
8141 if (val & DISPPLANE_TILED) {
8142 plane_config->tiling = I915_TILING_X;
8143 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8144 }
8145 }
8146
8147 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8148 fourcc = i9xx_format_to_fourcc(pixel_format);
8149 fb->pixel_format = fourcc;
8150 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8151
8152 if (INTEL_INFO(dev)->gen >= 4) {
8153 if (plane_config->tiling)
8154 offset = I915_READ(DSPTILEOFF(plane));
8155 else
8156 offset = I915_READ(DSPLINOFF(plane));
8157 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8158 } else {
8159 base = I915_READ(DSPADDR(plane));
8160 }
8161 plane_config->base = base;
8162
8163 val = I915_READ(PIPESRC(pipe));
8164 fb->width = ((val >> 16) & 0xfff) + 1;
8165 fb->height = ((val >> 0) & 0xfff) + 1;
8166
8167 val = I915_READ(DSPSTRIDE(pipe));
8168 fb->pitches[0] = val & 0xffffffc0;
8169
8170 aligned_height = intel_fb_align_height(dev, fb->height,
8171 fb->pixel_format,
8172 fb->modifier[0]);
8173
8174 plane_config->size = fb->pitches[0] * aligned_height;
8175
8176 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8177 pipe_name(pipe), plane, fb->width, fb->height,
8178 fb->bits_per_pixel, base, fb->pitches[0],
8179 plane_config->size);
8180
8181 plane_config->fb = intel_fb;
8182 }
8183
8184 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8185 struct intel_crtc_state *pipe_config)
8186 {
8187 struct drm_device *dev = crtc->base.dev;
8188 struct drm_i915_private *dev_priv = to_i915(dev);
8189 int pipe = pipe_config->cpu_transcoder;
8190 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8191 struct dpll clock;
8192 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8193 int refclk = 100000;
8194
8195 /* In case of DSI, DPLL will not be used */
8196 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8197 return;
8198
8199 mutex_lock(&dev_priv->sb_lock);
8200 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8201 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8202 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8203 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8204 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8205 mutex_unlock(&dev_priv->sb_lock);
8206
8207 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8208 clock.m2 = (pll_dw0 & 0xff) << 22;
8209 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8210 clock.m2 |= pll_dw2 & 0x3fffff;
8211 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8212 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8213 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8214
8215 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8216 }
8217
8218 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8219 struct intel_crtc_state *pipe_config)
8220 {
8221 struct drm_device *dev = crtc->base.dev;
8222 struct drm_i915_private *dev_priv = to_i915(dev);
8223 enum intel_display_power_domain power_domain;
8224 uint32_t tmp;
8225 bool ret;
8226
8227 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8228 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8229 return false;
8230
8231 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8232 pipe_config->shared_dpll = NULL;
8233
8234 ret = false;
8235
8236 tmp = I915_READ(PIPECONF(crtc->pipe));
8237 if (!(tmp & PIPECONF_ENABLE))
8238 goto out;
8239
8240 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8241 switch (tmp & PIPECONF_BPC_MASK) {
8242 case PIPECONF_6BPC:
8243 pipe_config->pipe_bpp = 18;
8244 break;
8245 case PIPECONF_8BPC:
8246 pipe_config->pipe_bpp = 24;
8247 break;
8248 case PIPECONF_10BPC:
8249 pipe_config->pipe_bpp = 30;
8250 break;
8251 default:
8252 break;
8253 }
8254 }
8255
8256 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8257 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8258 pipe_config->limited_color_range = true;
8259
8260 if (INTEL_INFO(dev)->gen < 4)
8261 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8262
8263 intel_get_pipe_timings(crtc, pipe_config);
8264 intel_get_pipe_src_size(crtc, pipe_config);
8265
8266 i9xx_get_pfit_config(crtc, pipe_config);
8267
8268 if (INTEL_INFO(dev)->gen >= 4) {
8269 /* No way to read it out on pipes B and C */
8270 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8271 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8272 else
8273 tmp = I915_READ(DPLL_MD(crtc->pipe));
8274 pipe_config->pixel_multiplier =
8275 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8276 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8277 pipe_config->dpll_hw_state.dpll_md = tmp;
8278 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8279 tmp = I915_READ(DPLL(crtc->pipe));
8280 pipe_config->pixel_multiplier =
8281 ((tmp & SDVO_MULTIPLIER_MASK)
8282 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8283 } else {
8284 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8285 * port and will be fixed up in the encoder->get_config
8286 * function. */
8287 pipe_config->pixel_multiplier = 1;
8288 }
8289 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8290 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8291 /*
8292 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8293 * on 830. Filter it out here so that we don't
8294 * report errors due to that.
8295 */
8296 if (IS_I830(dev))
8297 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8298
8299 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8300 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8301 } else {
8302 /* Mask out read-only status bits. */
8303 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8304 DPLL_PORTC_READY_MASK |
8305 DPLL_PORTB_READY_MASK);
8306 }
8307
8308 if (IS_CHERRYVIEW(dev))
8309 chv_crtc_clock_get(crtc, pipe_config);
8310 else if (IS_VALLEYVIEW(dev))
8311 vlv_crtc_clock_get(crtc, pipe_config);
8312 else
8313 i9xx_crtc_clock_get(crtc, pipe_config);
8314
8315 /*
8316 * Normally the dotclock is filled in by the encoder .get_config()
8317 * but in case the pipe is enabled w/o any ports we need a sane
8318 * default.
8319 */
8320 pipe_config->base.adjusted_mode.crtc_clock =
8321 pipe_config->port_clock / pipe_config->pixel_multiplier;
8322
8323 ret = true;
8324
8325 out:
8326 intel_display_power_put(dev_priv, power_domain);
8327
8328 return ret;
8329 }
8330
8331 static void ironlake_init_pch_refclk(struct drm_device *dev)
8332 {
8333 struct drm_i915_private *dev_priv = to_i915(dev);
8334 struct intel_encoder *encoder;
8335 int i;
8336 u32 val, final;
8337 bool has_lvds = false;
8338 bool has_cpu_edp = false;
8339 bool has_panel = false;
8340 bool has_ck505 = false;
8341 bool can_ssc = false;
8342 bool using_ssc_source = false;
8343
8344 /* We need to take the global config into account */
8345 for_each_intel_encoder(dev, encoder) {
8346 switch (encoder->type) {
8347 case INTEL_OUTPUT_LVDS:
8348 has_panel = true;
8349 has_lvds = true;
8350 break;
8351 case INTEL_OUTPUT_EDP:
8352 has_panel = true;
8353 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8354 has_cpu_edp = true;
8355 break;
8356 default:
8357 break;
8358 }
8359 }
8360
8361 if (HAS_PCH_IBX(dev)) {
8362 has_ck505 = dev_priv->vbt.display_clock_mode;
8363 can_ssc = has_ck505;
8364 } else {
8365 has_ck505 = false;
8366 can_ssc = true;
8367 }
8368
8369 /* Check if any DPLLs are using the SSC source */
8370 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8371 u32 temp = I915_READ(PCH_DPLL(i));
8372
8373 if (!(temp & DPLL_VCO_ENABLE))
8374 continue;
8375
8376 if ((temp & PLL_REF_INPUT_MASK) ==
8377 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8378 using_ssc_source = true;
8379 break;
8380 }
8381 }
8382
8383 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8384 has_panel, has_lvds, has_ck505, using_ssc_source);
8385
8386 /* Ironlake: try to setup display ref clock before DPLL
8387 * enabling. This is only under driver's control after
8388 * PCH B stepping, previous chipset stepping should be
8389 * ignoring this setting.
8390 */
8391 val = I915_READ(PCH_DREF_CONTROL);
8392
8393 /* As we must carefully and slowly disable/enable each source in turn,
8394 * compute the final state we want first and check if we need to
8395 * make any changes at all.
8396 */
8397 final = val;
8398 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8399 if (has_ck505)
8400 final |= DREF_NONSPREAD_CK505_ENABLE;
8401 else
8402 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8403
8404 final &= ~DREF_SSC_SOURCE_MASK;
8405 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8406 final &= ~DREF_SSC1_ENABLE;
8407
8408 if (has_panel) {
8409 final |= DREF_SSC_SOURCE_ENABLE;
8410
8411 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8412 final |= DREF_SSC1_ENABLE;
8413
8414 if (has_cpu_edp) {
8415 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8416 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8417 else
8418 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8419 } else
8420 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8421 } else if (using_ssc_source) {
8422 final |= DREF_SSC_SOURCE_ENABLE;
8423 final |= DREF_SSC1_ENABLE;
8424 }
8425
8426 if (final == val)
8427 return;
8428
8429 /* Always enable nonspread source */
8430 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8431
8432 if (has_ck505)
8433 val |= DREF_NONSPREAD_CK505_ENABLE;
8434 else
8435 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8436
8437 if (has_panel) {
8438 val &= ~DREF_SSC_SOURCE_MASK;
8439 val |= DREF_SSC_SOURCE_ENABLE;
8440
8441 /* SSC must be turned on before enabling the CPU output */
8442 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8443 DRM_DEBUG_KMS("Using SSC on panel\n");
8444 val |= DREF_SSC1_ENABLE;
8445 } else
8446 val &= ~DREF_SSC1_ENABLE;
8447
8448 /* Get SSC going before enabling the outputs */
8449 I915_WRITE(PCH_DREF_CONTROL, val);
8450 POSTING_READ(PCH_DREF_CONTROL);
8451 udelay(200);
8452
8453 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8454
8455 /* Enable CPU source on CPU attached eDP */
8456 if (has_cpu_edp) {
8457 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8458 DRM_DEBUG_KMS("Using SSC on eDP\n");
8459 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8460 } else
8461 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8462 } else
8463 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8464
8465 I915_WRITE(PCH_DREF_CONTROL, val);
8466 POSTING_READ(PCH_DREF_CONTROL);
8467 udelay(200);
8468 } else {
8469 DRM_DEBUG_KMS("Disabling CPU source output\n");
8470
8471 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8472
8473 /* Turn off CPU output */
8474 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8475
8476 I915_WRITE(PCH_DREF_CONTROL, val);
8477 POSTING_READ(PCH_DREF_CONTROL);
8478 udelay(200);
8479
8480 if (!using_ssc_source) {
8481 DRM_DEBUG_KMS("Disabling SSC source\n");
8482
8483 /* Turn off the SSC source */
8484 val &= ~DREF_SSC_SOURCE_MASK;
8485 val |= DREF_SSC_SOURCE_DISABLE;
8486
8487 /* Turn off SSC1 */
8488 val &= ~DREF_SSC1_ENABLE;
8489
8490 I915_WRITE(PCH_DREF_CONTROL, val);
8491 POSTING_READ(PCH_DREF_CONTROL);
8492 udelay(200);
8493 }
8494 }
8495
8496 BUG_ON(val != final);
8497 }
8498
8499 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8500 {
8501 uint32_t tmp;
8502
8503 tmp = I915_READ(SOUTH_CHICKEN2);
8504 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8505 I915_WRITE(SOUTH_CHICKEN2, tmp);
8506
8507 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8508 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8509 DRM_ERROR("FDI mPHY reset assert timeout\n");
8510
8511 tmp = I915_READ(SOUTH_CHICKEN2);
8512 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8513 I915_WRITE(SOUTH_CHICKEN2, tmp);
8514
8515 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8516 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8517 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8518 }
8519
8520 /* WaMPhyProgramming:hsw */
8521 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8522 {
8523 uint32_t tmp;
8524
8525 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8526 tmp &= ~(0xFF << 24);
8527 tmp |= (0x12 << 24);
8528 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8529
8530 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8531 tmp |= (1 << 11);
8532 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8533
8534 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8535 tmp |= (1 << 11);
8536 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8537
8538 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8539 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8540 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8541
8542 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8543 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8544 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8545
8546 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8547 tmp &= ~(7 << 13);
8548 tmp |= (5 << 13);
8549 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8550
8551 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8552 tmp &= ~(7 << 13);
8553 tmp |= (5 << 13);
8554 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8555
8556 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8557 tmp &= ~0xFF;
8558 tmp |= 0x1C;
8559 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8560
8561 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8562 tmp &= ~0xFF;
8563 tmp |= 0x1C;
8564 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8565
8566 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8567 tmp &= ~(0xFF << 16);
8568 tmp |= (0x1C << 16);
8569 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8570
8571 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8572 tmp &= ~(0xFF << 16);
8573 tmp |= (0x1C << 16);
8574 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8575
8576 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8577 tmp |= (1 << 27);
8578 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8579
8580 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8581 tmp |= (1 << 27);
8582 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8583
8584 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8585 tmp &= ~(0xF << 28);
8586 tmp |= (4 << 28);
8587 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8588
8589 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8590 tmp &= ~(0xF << 28);
8591 tmp |= (4 << 28);
8592 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8593 }
8594
8595 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8596 * Programming" based on the parameters passed:
8597 * - Sequence to enable CLKOUT_DP
8598 * - Sequence to enable CLKOUT_DP without spread
8599 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8600 */
8601 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8602 bool with_fdi)
8603 {
8604 struct drm_i915_private *dev_priv = to_i915(dev);
8605 uint32_t reg, tmp;
8606
8607 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8608 with_spread = true;
8609 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8610 with_fdi = false;
8611
8612 mutex_lock(&dev_priv->sb_lock);
8613
8614 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8615 tmp &= ~SBI_SSCCTL_DISABLE;
8616 tmp |= SBI_SSCCTL_PATHALT;
8617 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8618
8619 udelay(24);
8620
8621 if (with_spread) {
8622 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8623 tmp &= ~SBI_SSCCTL_PATHALT;
8624 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8625
8626 if (with_fdi) {
8627 lpt_reset_fdi_mphy(dev_priv);
8628 lpt_program_fdi_mphy(dev_priv);
8629 }
8630 }
8631
8632 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8633 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8634 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8635 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8636
8637 mutex_unlock(&dev_priv->sb_lock);
8638 }
8639
8640 /* Sequence to disable CLKOUT_DP */
8641 static void lpt_disable_clkout_dp(struct drm_device *dev)
8642 {
8643 struct drm_i915_private *dev_priv = to_i915(dev);
8644 uint32_t reg, tmp;
8645
8646 mutex_lock(&dev_priv->sb_lock);
8647
8648 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8649 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8650 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8651 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8652
8653 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8654 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8655 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8656 tmp |= SBI_SSCCTL_PATHALT;
8657 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8658 udelay(32);
8659 }
8660 tmp |= SBI_SSCCTL_DISABLE;
8661 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8662 }
8663
8664 mutex_unlock(&dev_priv->sb_lock);
8665 }
8666
8667 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8668
8669 static const uint16_t sscdivintphase[] = {
8670 [BEND_IDX( 50)] = 0x3B23,
8671 [BEND_IDX( 45)] = 0x3B23,
8672 [BEND_IDX( 40)] = 0x3C23,
8673 [BEND_IDX( 35)] = 0x3C23,
8674 [BEND_IDX( 30)] = 0x3D23,
8675 [BEND_IDX( 25)] = 0x3D23,
8676 [BEND_IDX( 20)] = 0x3E23,
8677 [BEND_IDX( 15)] = 0x3E23,
8678 [BEND_IDX( 10)] = 0x3F23,
8679 [BEND_IDX( 5)] = 0x3F23,
8680 [BEND_IDX( 0)] = 0x0025,
8681 [BEND_IDX( -5)] = 0x0025,
8682 [BEND_IDX(-10)] = 0x0125,
8683 [BEND_IDX(-15)] = 0x0125,
8684 [BEND_IDX(-20)] = 0x0225,
8685 [BEND_IDX(-25)] = 0x0225,
8686 [BEND_IDX(-30)] = 0x0325,
8687 [BEND_IDX(-35)] = 0x0325,
8688 [BEND_IDX(-40)] = 0x0425,
8689 [BEND_IDX(-45)] = 0x0425,
8690 [BEND_IDX(-50)] = 0x0525,
8691 };
8692
8693 /*
8694 * Bend CLKOUT_DP
8695 * steps -50 to 50 inclusive, in steps of 5
8696 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8697 * change in clock period = -(steps / 10) * 5.787 ps
8698 */
8699 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8700 {
8701 uint32_t tmp;
8702 int idx = BEND_IDX(steps);
8703
8704 if (WARN_ON(steps % 5 != 0))
8705 return;
8706
8707 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8708 return;
8709
8710 mutex_lock(&dev_priv->sb_lock);
8711
8712 if (steps % 10 != 0)
8713 tmp = 0xAAAAAAAB;
8714 else
8715 tmp = 0x00000000;
8716 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8717
8718 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8719 tmp &= 0xffff0000;
8720 tmp |= sscdivintphase[idx];
8721 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8722
8723 mutex_unlock(&dev_priv->sb_lock);
8724 }
8725
8726 #undef BEND_IDX
8727
8728 static void lpt_init_pch_refclk(struct drm_device *dev)
8729 {
8730 struct intel_encoder *encoder;
8731 bool has_vga = false;
8732
8733 for_each_intel_encoder(dev, encoder) {
8734 switch (encoder->type) {
8735 case INTEL_OUTPUT_ANALOG:
8736 has_vga = true;
8737 break;
8738 default:
8739 break;
8740 }
8741 }
8742
8743 if (has_vga) {
8744 lpt_bend_clkout_dp(to_i915(dev), 0);
8745 lpt_enable_clkout_dp(dev, true, true);
8746 } else {
8747 lpt_disable_clkout_dp(dev);
8748 }
8749 }
8750
8751 /*
8752 * Initialize reference clocks when the driver loads
8753 */
8754 void intel_init_pch_refclk(struct drm_device *dev)
8755 {
8756 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8757 ironlake_init_pch_refclk(dev);
8758 else if (HAS_PCH_LPT(dev))
8759 lpt_init_pch_refclk(dev);
8760 }
8761
8762 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8763 {
8764 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8766 int pipe = intel_crtc->pipe;
8767 uint32_t val;
8768
8769 val = 0;
8770
8771 switch (intel_crtc->config->pipe_bpp) {
8772 case 18:
8773 val |= PIPECONF_6BPC;
8774 break;
8775 case 24:
8776 val |= PIPECONF_8BPC;
8777 break;
8778 case 30:
8779 val |= PIPECONF_10BPC;
8780 break;
8781 case 36:
8782 val |= PIPECONF_12BPC;
8783 break;
8784 default:
8785 /* Case prevented by intel_choose_pipe_bpp_dither. */
8786 BUG();
8787 }
8788
8789 if (intel_crtc->config->dither)
8790 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8791
8792 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8793 val |= PIPECONF_INTERLACED_ILK;
8794 else
8795 val |= PIPECONF_PROGRESSIVE;
8796
8797 if (intel_crtc->config->limited_color_range)
8798 val |= PIPECONF_COLOR_RANGE_SELECT;
8799
8800 I915_WRITE(PIPECONF(pipe), val);
8801 POSTING_READ(PIPECONF(pipe));
8802 }
8803
8804 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8805 {
8806 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8807 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8808 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8809 u32 val = 0;
8810
8811 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8812 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8813
8814 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8815 val |= PIPECONF_INTERLACED_ILK;
8816 else
8817 val |= PIPECONF_PROGRESSIVE;
8818
8819 I915_WRITE(PIPECONF(cpu_transcoder), val);
8820 POSTING_READ(PIPECONF(cpu_transcoder));
8821 }
8822
8823 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8824 {
8825 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8827
8828 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8829 u32 val = 0;
8830
8831 switch (intel_crtc->config->pipe_bpp) {
8832 case 18:
8833 val |= PIPEMISC_DITHER_6_BPC;
8834 break;
8835 case 24:
8836 val |= PIPEMISC_DITHER_8_BPC;
8837 break;
8838 case 30:
8839 val |= PIPEMISC_DITHER_10_BPC;
8840 break;
8841 case 36:
8842 val |= PIPEMISC_DITHER_12_BPC;
8843 break;
8844 default:
8845 /* Case prevented by pipe_config_set_bpp. */
8846 BUG();
8847 }
8848
8849 if (intel_crtc->config->dither)
8850 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8851
8852 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8853 }
8854 }
8855
8856 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8857 {
8858 /*
8859 * Account for spread spectrum to avoid
8860 * oversubscribing the link. Max center spread
8861 * is 2.5%; use 5% for safety's sake.
8862 */
8863 u32 bps = target_clock * bpp * 21 / 20;
8864 return DIV_ROUND_UP(bps, link_bw * 8);
8865 }
8866
8867 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8868 {
8869 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8870 }
8871
8872 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8873 struct intel_crtc_state *crtc_state,
8874 struct dpll *reduced_clock)
8875 {
8876 struct drm_crtc *crtc = &intel_crtc->base;
8877 struct drm_device *dev = crtc->dev;
8878 struct drm_i915_private *dev_priv = to_i915(dev);
8879 u32 dpll, fp, fp2;
8880 int factor;
8881
8882 /* Enable autotuning of the PLL clock (if permissible) */
8883 factor = 21;
8884 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8885 if ((intel_panel_use_ssc(dev_priv) &&
8886 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8887 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8888 factor = 25;
8889 } else if (crtc_state->sdvo_tv_clock)
8890 factor = 20;
8891
8892 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8893
8894 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8895 fp |= FP_CB_TUNE;
8896
8897 if (reduced_clock) {
8898 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8899
8900 if (reduced_clock->m < factor * reduced_clock->n)
8901 fp2 |= FP_CB_TUNE;
8902 } else {
8903 fp2 = fp;
8904 }
8905
8906 dpll = 0;
8907
8908 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8909 dpll |= DPLLB_MODE_LVDS;
8910 else
8911 dpll |= DPLLB_MODE_DAC_SERIAL;
8912
8913 dpll |= (crtc_state->pixel_multiplier - 1)
8914 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8915
8916 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8917 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8918 dpll |= DPLL_SDVO_HIGH_SPEED;
8919
8920 if (intel_crtc_has_dp_encoder(crtc_state))
8921 dpll |= DPLL_SDVO_HIGH_SPEED;
8922
8923 /* compute bitmask from p1 value */
8924 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8925 /* also FPA1 */
8926 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8927
8928 switch (crtc_state->dpll.p2) {
8929 case 5:
8930 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8931 break;
8932 case 7:
8933 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8934 break;
8935 case 10:
8936 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8937 break;
8938 case 14:
8939 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8940 break;
8941 }
8942
8943 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8944 intel_panel_use_ssc(dev_priv))
8945 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8946 else
8947 dpll |= PLL_REF_INPUT_DREFCLK;
8948
8949 dpll |= DPLL_VCO_ENABLE;
8950
8951 crtc_state->dpll_hw_state.dpll = dpll;
8952 crtc_state->dpll_hw_state.fp0 = fp;
8953 crtc_state->dpll_hw_state.fp1 = fp2;
8954 }
8955
8956 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8957 struct intel_crtc_state *crtc_state)
8958 {
8959 struct drm_device *dev = crtc->base.dev;
8960 struct drm_i915_private *dev_priv = to_i915(dev);
8961 struct dpll reduced_clock;
8962 bool has_reduced_clock = false;
8963 struct intel_shared_dpll *pll;
8964 const struct intel_limit *limit;
8965 int refclk = 120000;
8966
8967 memset(&crtc_state->dpll_hw_state, 0,
8968 sizeof(crtc_state->dpll_hw_state));
8969
8970 crtc->lowfreq_avail = false;
8971
8972 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8973 if (!crtc_state->has_pch_encoder)
8974 return 0;
8975
8976 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8977 if (intel_panel_use_ssc(dev_priv)) {
8978 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8979 dev_priv->vbt.lvds_ssc_freq);
8980 refclk = dev_priv->vbt.lvds_ssc_freq;
8981 }
8982
8983 if (intel_is_dual_link_lvds(dev)) {
8984 if (refclk == 100000)
8985 limit = &intel_limits_ironlake_dual_lvds_100m;
8986 else
8987 limit = &intel_limits_ironlake_dual_lvds;
8988 } else {
8989 if (refclk == 100000)
8990 limit = &intel_limits_ironlake_single_lvds_100m;
8991 else
8992 limit = &intel_limits_ironlake_single_lvds;
8993 }
8994 } else {
8995 limit = &intel_limits_ironlake_dac;
8996 }
8997
8998 if (!crtc_state->clock_set &&
8999 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9000 refclk, NULL, &crtc_state->dpll)) {
9001 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9002 return -EINVAL;
9003 }
9004
9005 ironlake_compute_dpll(crtc, crtc_state,
9006 has_reduced_clock ? &reduced_clock : NULL);
9007
9008 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9009 if (pll == NULL) {
9010 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9011 pipe_name(crtc->pipe));
9012 return -EINVAL;
9013 }
9014
9015 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9016 has_reduced_clock)
9017 crtc->lowfreq_avail = true;
9018
9019 return 0;
9020 }
9021
9022 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9023 struct intel_link_m_n *m_n)
9024 {
9025 struct drm_device *dev = crtc->base.dev;
9026 struct drm_i915_private *dev_priv = to_i915(dev);
9027 enum pipe pipe = crtc->pipe;
9028
9029 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9030 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9031 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9032 & ~TU_SIZE_MASK;
9033 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9034 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9035 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9036 }
9037
9038 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9039 enum transcoder transcoder,
9040 struct intel_link_m_n *m_n,
9041 struct intel_link_m_n *m2_n2)
9042 {
9043 struct drm_device *dev = crtc->base.dev;
9044 struct drm_i915_private *dev_priv = to_i915(dev);
9045 enum pipe pipe = crtc->pipe;
9046
9047 if (INTEL_INFO(dev)->gen >= 5) {
9048 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9049 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9050 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9051 & ~TU_SIZE_MASK;
9052 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9053 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9054 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9055 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9056 * gen < 8) and if DRRS is supported (to make sure the
9057 * registers are not unnecessarily read).
9058 */
9059 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9060 crtc->config->has_drrs) {
9061 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9062 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9063 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9064 & ~TU_SIZE_MASK;
9065 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9066 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9067 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9068 }
9069 } else {
9070 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9071 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9072 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9073 & ~TU_SIZE_MASK;
9074 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9075 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9076 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9077 }
9078 }
9079
9080 void intel_dp_get_m_n(struct intel_crtc *crtc,
9081 struct intel_crtc_state *pipe_config)
9082 {
9083 if (pipe_config->has_pch_encoder)
9084 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9085 else
9086 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9087 &pipe_config->dp_m_n,
9088 &pipe_config->dp_m2_n2);
9089 }
9090
9091 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9092 struct intel_crtc_state *pipe_config)
9093 {
9094 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9095 &pipe_config->fdi_m_n, NULL);
9096 }
9097
9098 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9099 struct intel_crtc_state *pipe_config)
9100 {
9101 struct drm_device *dev = crtc->base.dev;
9102 struct drm_i915_private *dev_priv = to_i915(dev);
9103 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9104 uint32_t ps_ctrl = 0;
9105 int id = -1;
9106 int i;
9107
9108 /* find scaler attached to this pipe */
9109 for (i = 0; i < crtc->num_scalers; i++) {
9110 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9111 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9112 id = i;
9113 pipe_config->pch_pfit.enabled = true;
9114 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9115 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9116 break;
9117 }
9118 }
9119
9120 scaler_state->scaler_id = id;
9121 if (id >= 0) {
9122 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9123 } else {
9124 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9125 }
9126 }
9127
9128 static void
9129 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9130 struct intel_initial_plane_config *plane_config)
9131 {
9132 struct drm_device *dev = crtc->base.dev;
9133 struct drm_i915_private *dev_priv = to_i915(dev);
9134 u32 val, base, offset, stride_mult, tiling;
9135 int pipe = crtc->pipe;
9136 int fourcc, pixel_format;
9137 unsigned int aligned_height;
9138 struct drm_framebuffer *fb;
9139 struct intel_framebuffer *intel_fb;
9140
9141 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9142 if (!intel_fb) {
9143 DRM_DEBUG_KMS("failed to alloc fb\n");
9144 return;
9145 }
9146
9147 fb = &intel_fb->base;
9148
9149 val = I915_READ(PLANE_CTL(pipe, 0));
9150 if (!(val & PLANE_CTL_ENABLE))
9151 goto error;
9152
9153 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9154 fourcc = skl_format_to_fourcc(pixel_format,
9155 val & PLANE_CTL_ORDER_RGBX,
9156 val & PLANE_CTL_ALPHA_MASK);
9157 fb->pixel_format = fourcc;
9158 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9159
9160 tiling = val & PLANE_CTL_TILED_MASK;
9161 switch (tiling) {
9162 case PLANE_CTL_TILED_LINEAR:
9163 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9164 break;
9165 case PLANE_CTL_TILED_X:
9166 plane_config->tiling = I915_TILING_X;
9167 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9168 break;
9169 case PLANE_CTL_TILED_Y:
9170 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9171 break;
9172 case PLANE_CTL_TILED_YF:
9173 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9174 break;
9175 default:
9176 MISSING_CASE(tiling);
9177 goto error;
9178 }
9179
9180 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9181 plane_config->base = base;
9182
9183 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9184
9185 val = I915_READ(PLANE_SIZE(pipe, 0));
9186 fb->height = ((val >> 16) & 0xfff) + 1;
9187 fb->width = ((val >> 0) & 0x1fff) + 1;
9188
9189 val = I915_READ(PLANE_STRIDE(pipe, 0));
9190 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9191 fb->pixel_format);
9192 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9193
9194 aligned_height = intel_fb_align_height(dev, fb->height,
9195 fb->pixel_format,
9196 fb->modifier[0]);
9197
9198 plane_config->size = fb->pitches[0] * aligned_height;
9199
9200 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9201 pipe_name(pipe), fb->width, fb->height,
9202 fb->bits_per_pixel, base, fb->pitches[0],
9203 plane_config->size);
9204
9205 plane_config->fb = intel_fb;
9206 return;
9207
9208 error:
9209 kfree(fb);
9210 }
9211
9212 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9213 struct intel_crtc_state *pipe_config)
9214 {
9215 struct drm_device *dev = crtc->base.dev;
9216 struct drm_i915_private *dev_priv = to_i915(dev);
9217 uint32_t tmp;
9218
9219 tmp = I915_READ(PF_CTL(crtc->pipe));
9220
9221 if (tmp & PF_ENABLE) {
9222 pipe_config->pch_pfit.enabled = true;
9223 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9224 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9225
9226 /* We currently do not free assignements of panel fitters on
9227 * ivb/hsw (since we don't use the higher upscaling modes which
9228 * differentiates them) so just WARN about this case for now. */
9229 if (IS_GEN7(dev)) {
9230 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9231 PF_PIPE_SEL_IVB(crtc->pipe));
9232 }
9233 }
9234 }
9235
9236 static void
9237 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9238 struct intel_initial_plane_config *plane_config)
9239 {
9240 struct drm_device *dev = crtc->base.dev;
9241 struct drm_i915_private *dev_priv = to_i915(dev);
9242 u32 val, base, offset;
9243 int pipe = crtc->pipe;
9244 int fourcc, pixel_format;
9245 unsigned int aligned_height;
9246 struct drm_framebuffer *fb;
9247 struct intel_framebuffer *intel_fb;
9248
9249 val = I915_READ(DSPCNTR(pipe));
9250 if (!(val & DISPLAY_PLANE_ENABLE))
9251 return;
9252
9253 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9254 if (!intel_fb) {
9255 DRM_DEBUG_KMS("failed to alloc fb\n");
9256 return;
9257 }
9258
9259 fb = &intel_fb->base;
9260
9261 if (INTEL_INFO(dev)->gen >= 4) {
9262 if (val & DISPPLANE_TILED) {
9263 plane_config->tiling = I915_TILING_X;
9264 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9265 }
9266 }
9267
9268 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9269 fourcc = i9xx_format_to_fourcc(pixel_format);
9270 fb->pixel_format = fourcc;
9271 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9272
9273 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9274 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9275 offset = I915_READ(DSPOFFSET(pipe));
9276 } else {
9277 if (plane_config->tiling)
9278 offset = I915_READ(DSPTILEOFF(pipe));
9279 else
9280 offset = I915_READ(DSPLINOFF(pipe));
9281 }
9282 plane_config->base = base;
9283
9284 val = I915_READ(PIPESRC(pipe));
9285 fb->width = ((val >> 16) & 0xfff) + 1;
9286 fb->height = ((val >> 0) & 0xfff) + 1;
9287
9288 val = I915_READ(DSPSTRIDE(pipe));
9289 fb->pitches[0] = val & 0xffffffc0;
9290
9291 aligned_height = intel_fb_align_height(dev, fb->height,
9292 fb->pixel_format,
9293 fb->modifier[0]);
9294
9295 plane_config->size = fb->pitches[0] * aligned_height;
9296
9297 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9298 pipe_name(pipe), fb->width, fb->height,
9299 fb->bits_per_pixel, base, fb->pitches[0],
9300 plane_config->size);
9301
9302 plane_config->fb = intel_fb;
9303 }
9304
9305 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9306 struct intel_crtc_state *pipe_config)
9307 {
9308 struct drm_device *dev = crtc->base.dev;
9309 struct drm_i915_private *dev_priv = to_i915(dev);
9310 enum intel_display_power_domain power_domain;
9311 uint32_t tmp;
9312 bool ret;
9313
9314 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9315 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9316 return false;
9317
9318 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9319 pipe_config->shared_dpll = NULL;
9320
9321 ret = false;
9322 tmp = I915_READ(PIPECONF(crtc->pipe));
9323 if (!(tmp & PIPECONF_ENABLE))
9324 goto out;
9325
9326 switch (tmp & PIPECONF_BPC_MASK) {
9327 case PIPECONF_6BPC:
9328 pipe_config->pipe_bpp = 18;
9329 break;
9330 case PIPECONF_8BPC:
9331 pipe_config->pipe_bpp = 24;
9332 break;
9333 case PIPECONF_10BPC:
9334 pipe_config->pipe_bpp = 30;
9335 break;
9336 case PIPECONF_12BPC:
9337 pipe_config->pipe_bpp = 36;
9338 break;
9339 default:
9340 break;
9341 }
9342
9343 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9344 pipe_config->limited_color_range = true;
9345
9346 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9347 struct intel_shared_dpll *pll;
9348 enum intel_dpll_id pll_id;
9349
9350 pipe_config->has_pch_encoder = true;
9351
9352 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9353 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9354 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9355
9356 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9357
9358 if (HAS_PCH_IBX(dev_priv)) {
9359 /*
9360 * The pipe->pch transcoder and pch transcoder->pll
9361 * mapping is fixed.
9362 */
9363 pll_id = (enum intel_dpll_id) crtc->pipe;
9364 } else {
9365 tmp = I915_READ(PCH_DPLL_SEL);
9366 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9367 pll_id = DPLL_ID_PCH_PLL_B;
9368 else
9369 pll_id= DPLL_ID_PCH_PLL_A;
9370 }
9371
9372 pipe_config->shared_dpll =
9373 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9374 pll = pipe_config->shared_dpll;
9375
9376 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9377 &pipe_config->dpll_hw_state));
9378
9379 tmp = pipe_config->dpll_hw_state.dpll;
9380 pipe_config->pixel_multiplier =
9381 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9382 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9383
9384 ironlake_pch_clock_get(crtc, pipe_config);
9385 } else {
9386 pipe_config->pixel_multiplier = 1;
9387 }
9388
9389 intel_get_pipe_timings(crtc, pipe_config);
9390 intel_get_pipe_src_size(crtc, pipe_config);
9391
9392 ironlake_get_pfit_config(crtc, pipe_config);
9393
9394 ret = true;
9395
9396 out:
9397 intel_display_power_put(dev_priv, power_domain);
9398
9399 return ret;
9400 }
9401
9402 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9403 {
9404 struct drm_device *dev = &dev_priv->drm;
9405 struct intel_crtc *crtc;
9406
9407 for_each_intel_crtc(dev, crtc)
9408 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9409 pipe_name(crtc->pipe));
9410
9411 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9412 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9413 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9414 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9415 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9416 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9417 "CPU PWM1 enabled\n");
9418 if (IS_HASWELL(dev))
9419 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9420 "CPU PWM2 enabled\n");
9421 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9422 "PCH PWM1 enabled\n");
9423 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9424 "Utility pin enabled\n");
9425 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9426
9427 /*
9428 * In theory we can still leave IRQs enabled, as long as only the HPD
9429 * interrupts remain enabled. We used to check for that, but since it's
9430 * gen-specific and since we only disable LCPLL after we fully disable
9431 * the interrupts, the check below should be enough.
9432 */
9433 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9434 }
9435
9436 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9437 {
9438 struct drm_device *dev = &dev_priv->drm;
9439
9440 if (IS_HASWELL(dev))
9441 return I915_READ(D_COMP_HSW);
9442 else
9443 return I915_READ(D_COMP_BDW);
9444 }
9445
9446 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9447 {
9448 struct drm_device *dev = &dev_priv->drm;
9449
9450 if (IS_HASWELL(dev)) {
9451 mutex_lock(&dev_priv->rps.hw_lock);
9452 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9453 val))
9454 DRM_ERROR("Failed to write to D_COMP\n");
9455 mutex_unlock(&dev_priv->rps.hw_lock);
9456 } else {
9457 I915_WRITE(D_COMP_BDW, val);
9458 POSTING_READ(D_COMP_BDW);
9459 }
9460 }
9461
9462 /*
9463 * This function implements pieces of two sequences from BSpec:
9464 * - Sequence for display software to disable LCPLL
9465 * - Sequence for display software to allow package C8+
9466 * The steps implemented here are just the steps that actually touch the LCPLL
9467 * register. Callers should take care of disabling all the display engine
9468 * functions, doing the mode unset, fixing interrupts, etc.
9469 */
9470 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9471 bool switch_to_fclk, bool allow_power_down)
9472 {
9473 uint32_t val;
9474
9475 assert_can_disable_lcpll(dev_priv);
9476
9477 val = I915_READ(LCPLL_CTL);
9478
9479 if (switch_to_fclk) {
9480 val |= LCPLL_CD_SOURCE_FCLK;
9481 I915_WRITE(LCPLL_CTL, val);
9482
9483 if (wait_for_us(I915_READ(LCPLL_CTL) &
9484 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9485 DRM_ERROR("Switching to FCLK failed\n");
9486
9487 val = I915_READ(LCPLL_CTL);
9488 }
9489
9490 val |= LCPLL_PLL_DISABLE;
9491 I915_WRITE(LCPLL_CTL, val);
9492 POSTING_READ(LCPLL_CTL);
9493
9494 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9495 DRM_ERROR("LCPLL still locked\n");
9496
9497 val = hsw_read_dcomp(dev_priv);
9498 val |= D_COMP_COMP_DISABLE;
9499 hsw_write_dcomp(dev_priv, val);
9500 ndelay(100);
9501
9502 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9503 1))
9504 DRM_ERROR("D_COMP RCOMP still in progress\n");
9505
9506 if (allow_power_down) {
9507 val = I915_READ(LCPLL_CTL);
9508 val |= LCPLL_POWER_DOWN_ALLOW;
9509 I915_WRITE(LCPLL_CTL, val);
9510 POSTING_READ(LCPLL_CTL);
9511 }
9512 }
9513
9514 /*
9515 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9516 * source.
9517 */
9518 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9519 {
9520 uint32_t val;
9521
9522 val = I915_READ(LCPLL_CTL);
9523
9524 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9525 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9526 return;
9527
9528 /*
9529 * Make sure we're not on PC8 state before disabling PC8, otherwise
9530 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9531 */
9532 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9533
9534 if (val & LCPLL_POWER_DOWN_ALLOW) {
9535 val &= ~LCPLL_POWER_DOWN_ALLOW;
9536 I915_WRITE(LCPLL_CTL, val);
9537 POSTING_READ(LCPLL_CTL);
9538 }
9539
9540 val = hsw_read_dcomp(dev_priv);
9541 val |= D_COMP_COMP_FORCE;
9542 val &= ~D_COMP_COMP_DISABLE;
9543 hsw_write_dcomp(dev_priv, val);
9544
9545 val = I915_READ(LCPLL_CTL);
9546 val &= ~LCPLL_PLL_DISABLE;
9547 I915_WRITE(LCPLL_CTL, val);
9548
9549 if (intel_wait_for_register(dev_priv,
9550 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
9551 5))
9552 DRM_ERROR("LCPLL not locked yet\n");
9553
9554 if (val & LCPLL_CD_SOURCE_FCLK) {
9555 val = I915_READ(LCPLL_CTL);
9556 val &= ~LCPLL_CD_SOURCE_FCLK;
9557 I915_WRITE(LCPLL_CTL, val);
9558
9559 if (wait_for_us((I915_READ(LCPLL_CTL) &
9560 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9561 DRM_ERROR("Switching back to LCPLL failed\n");
9562 }
9563
9564 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9565 intel_update_cdclk(&dev_priv->drm);
9566 }
9567
9568 /*
9569 * Package states C8 and deeper are really deep PC states that can only be
9570 * reached when all the devices on the system allow it, so even if the graphics
9571 * device allows PC8+, it doesn't mean the system will actually get to these
9572 * states. Our driver only allows PC8+ when going into runtime PM.
9573 *
9574 * The requirements for PC8+ are that all the outputs are disabled, the power
9575 * well is disabled and most interrupts are disabled, and these are also
9576 * requirements for runtime PM. When these conditions are met, we manually do
9577 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9578 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9579 * hang the machine.
9580 *
9581 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9582 * the state of some registers, so when we come back from PC8+ we need to
9583 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9584 * need to take care of the registers kept by RC6. Notice that this happens even
9585 * if we don't put the device in PCI D3 state (which is what currently happens
9586 * because of the runtime PM support).
9587 *
9588 * For more, read "Display Sequences for Package C8" on the hardware
9589 * documentation.
9590 */
9591 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9592 {
9593 struct drm_device *dev = &dev_priv->drm;
9594 uint32_t val;
9595
9596 DRM_DEBUG_KMS("Enabling package C8+\n");
9597
9598 if (HAS_PCH_LPT_LP(dev)) {
9599 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9600 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9601 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9602 }
9603
9604 lpt_disable_clkout_dp(dev);
9605 hsw_disable_lcpll(dev_priv, true, true);
9606 }
9607
9608 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9609 {
9610 struct drm_device *dev = &dev_priv->drm;
9611 uint32_t val;
9612
9613 DRM_DEBUG_KMS("Disabling package C8+\n");
9614
9615 hsw_restore_lcpll(dev_priv);
9616 lpt_init_pch_refclk(dev);
9617
9618 if (HAS_PCH_LPT_LP(dev)) {
9619 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9620 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9621 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9622 }
9623 }
9624
9625 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9626 {
9627 struct drm_device *dev = old_state->dev;
9628 struct intel_atomic_state *old_intel_state =
9629 to_intel_atomic_state(old_state);
9630 unsigned int req_cdclk = old_intel_state->dev_cdclk;
9631
9632 bxt_set_cdclk(to_i915(dev), req_cdclk);
9633 }
9634
9635 /* compute the max rate for new configuration */
9636 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9637 {
9638 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9639 struct drm_i915_private *dev_priv = to_i915(state->dev);
9640 struct drm_crtc *crtc;
9641 struct drm_crtc_state *cstate;
9642 struct intel_crtc_state *crtc_state;
9643 unsigned max_pixel_rate = 0, i;
9644 enum pipe pipe;
9645
9646 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9647 sizeof(intel_state->min_pixclk));
9648
9649 for_each_crtc_in_state(state, crtc, cstate, i) {
9650 int pixel_rate;
9651
9652 crtc_state = to_intel_crtc_state(cstate);
9653 if (!crtc_state->base.enable) {
9654 intel_state->min_pixclk[i] = 0;
9655 continue;
9656 }
9657
9658 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9659
9660 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9661 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9662 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9663
9664 intel_state->min_pixclk[i] = pixel_rate;
9665 }
9666
9667 for_each_pipe(dev_priv, pipe)
9668 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9669
9670 return max_pixel_rate;
9671 }
9672
9673 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9674 {
9675 struct drm_i915_private *dev_priv = to_i915(dev);
9676 uint32_t val, data;
9677 int ret;
9678
9679 if (WARN((I915_READ(LCPLL_CTL) &
9680 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9681 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9682 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9683 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9684 "trying to change cdclk frequency with cdclk not enabled\n"))
9685 return;
9686
9687 mutex_lock(&dev_priv->rps.hw_lock);
9688 ret = sandybridge_pcode_write(dev_priv,
9689 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9690 mutex_unlock(&dev_priv->rps.hw_lock);
9691 if (ret) {
9692 DRM_ERROR("failed to inform pcode about cdclk change\n");
9693 return;
9694 }
9695
9696 val = I915_READ(LCPLL_CTL);
9697 val |= LCPLL_CD_SOURCE_FCLK;
9698 I915_WRITE(LCPLL_CTL, val);
9699
9700 if (wait_for_us(I915_READ(LCPLL_CTL) &
9701 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9702 DRM_ERROR("Switching to FCLK failed\n");
9703
9704 val = I915_READ(LCPLL_CTL);
9705 val &= ~LCPLL_CLK_FREQ_MASK;
9706
9707 switch (cdclk) {
9708 case 450000:
9709 val |= LCPLL_CLK_FREQ_450;
9710 data = 0;
9711 break;
9712 case 540000:
9713 val |= LCPLL_CLK_FREQ_54O_BDW;
9714 data = 1;
9715 break;
9716 case 337500:
9717 val |= LCPLL_CLK_FREQ_337_5_BDW;
9718 data = 2;
9719 break;
9720 case 675000:
9721 val |= LCPLL_CLK_FREQ_675_BDW;
9722 data = 3;
9723 break;
9724 default:
9725 WARN(1, "invalid cdclk frequency\n");
9726 return;
9727 }
9728
9729 I915_WRITE(LCPLL_CTL, val);
9730
9731 val = I915_READ(LCPLL_CTL);
9732 val &= ~LCPLL_CD_SOURCE_FCLK;
9733 I915_WRITE(LCPLL_CTL, val);
9734
9735 if (wait_for_us((I915_READ(LCPLL_CTL) &
9736 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9737 DRM_ERROR("Switching back to LCPLL failed\n");
9738
9739 mutex_lock(&dev_priv->rps.hw_lock);
9740 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9741 mutex_unlock(&dev_priv->rps.hw_lock);
9742
9743 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9744
9745 intel_update_cdclk(dev);
9746
9747 WARN(cdclk != dev_priv->cdclk_freq,
9748 "cdclk requested %d kHz but got %d kHz\n",
9749 cdclk, dev_priv->cdclk_freq);
9750 }
9751
9752 static int broadwell_calc_cdclk(int max_pixclk)
9753 {
9754 if (max_pixclk > 540000)
9755 return 675000;
9756 else if (max_pixclk > 450000)
9757 return 540000;
9758 else if (max_pixclk > 337500)
9759 return 450000;
9760 else
9761 return 337500;
9762 }
9763
9764 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9765 {
9766 struct drm_i915_private *dev_priv = to_i915(state->dev);
9767 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9768 int max_pixclk = ilk_max_pixel_rate(state);
9769 int cdclk;
9770
9771 /*
9772 * FIXME should also account for plane ratio
9773 * once 64bpp pixel formats are supported.
9774 */
9775 cdclk = broadwell_calc_cdclk(max_pixclk);
9776
9777 if (cdclk > dev_priv->max_cdclk_freq) {
9778 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9779 cdclk, dev_priv->max_cdclk_freq);
9780 return -EINVAL;
9781 }
9782
9783 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9784 if (!intel_state->active_crtcs)
9785 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9786
9787 return 0;
9788 }
9789
9790 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9791 {
9792 struct drm_device *dev = old_state->dev;
9793 struct intel_atomic_state *old_intel_state =
9794 to_intel_atomic_state(old_state);
9795 unsigned req_cdclk = old_intel_state->dev_cdclk;
9796
9797 broadwell_set_cdclk(dev, req_cdclk);
9798 }
9799
9800 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9801 {
9802 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9803 struct drm_i915_private *dev_priv = to_i915(state->dev);
9804 const int max_pixclk = ilk_max_pixel_rate(state);
9805 int vco = intel_state->cdclk_pll_vco;
9806 int cdclk;
9807
9808 /*
9809 * FIXME should also account for plane ratio
9810 * once 64bpp pixel formats are supported.
9811 */
9812 cdclk = skl_calc_cdclk(max_pixclk, vco);
9813
9814 /*
9815 * FIXME move the cdclk caclulation to
9816 * compute_config() so we can fail gracegully.
9817 */
9818 if (cdclk > dev_priv->max_cdclk_freq) {
9819 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9820 cdclk, dev_priv->max_cdclk_freq);
9821 cdclk = dev_priv->max_cdclk_freq;
9822 }
9823
9824 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9825 if (!intel_state->active_crtcs)
9826 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9827
9828 return 0;
9829 }
9830
9831 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9832 {
9833 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9834 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9835 unsigned int req_cdclk = intel_state->dev_cdclk;
9836 unsigned int req_vco = intel_state->cdclk_pll_vco;
9837
9838 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9839 }
9840
9841 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9842 struct intel_crtc_state *crtc_state)
9843 {
9844 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9845 if (!intel_ddi_pll_select(crtc, crtc_state))
9846 return -EINVAL;
9847 }
9848
9849 crtc->lowfreq_avail = false;
9850
9851 return 0;
9852 }
9853
9854 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9855 enum port port,
9856 struct intel_crtc_state *pipe_config)
9857 {
9858 enum intel_dpll_id id;
9859
9860 switch (port) {
9861 case PORT_A:
9862 pipe_config->ddi_pll_sel = SKL_DPLL0;
9863 id = DPLL_ID_SKL_DPLL0;
9864 break;
9865 case PORT_B:
9866 pipe_config->ddi_pll_sel = SKL_DPLL1;
9867 id = DPLL_ID_SKL_DPLL1;
9868 break;
9869 case PORT_C:
9870 pipe_config->ddi_pll_sel = SKL_DPLL2;
9871 id = DPLL_ID_SKL_DPLL2;
9872 break;
9873 default:
9874 DRM_ERROR("Incorrect port type\n");
9875 return;
9876 }
9877
9878 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9879 }
9880
9881 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9882 enum port port,
9883 struct intel_crtc_state *pipe_config)
9884 {
9885 enum intel_dpll_id id;
9886 u32 temp;
9887
9888 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9889 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9890
9891 switch (pipe_config->ddi_pll_sel) {
9892 case SKL_DPLL0:
9893 id = DPLL_ID_SKL_DPLL0;
9894 break;
9895 case SKL_DPLL1:
9896 id = DPLL_ID_SKL_DPLL1;
9897 break;
9898 case SKL_DPLL2:
9899 id = DPLL_ID_SKL_DPLL2;
9900 break;
9901 case SKL_DPLL3:
9902 id = DPLL_ID_SKL_DPLL3;
9903 break;
9904 default:
9905 MISSING_CASE(pipe_config->ddi_pll_sel);
9906 return;
9907 }
9908
9909 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9910 }
9911
9912 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9913 enum port port,
9914 struct intel_crtc_state *pipe_config)
9915 {
9916 enum intel_dpll_id id;
9917
9918 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9919
9920 switch (pipe_config->ddi_pll_sel) {
9921 case PORT_CLK_SEL_WRPLL1:
9922 id = DPLL_ID_WRPLL1;
9923 break;
9924 case PORT_CLK_SEL_WRPLL2:
9925 id = DPLL_ID_WRPLL2;
9926 break;
9927 case PORT_CLK_SEL_SPLL:
9928 id = DPLL_ID_SPLL;
9929 break;
9930 case PORT_CLK_SEL_LCPLL_810:
9931 id = DPLL_ID_LCPLL_810;
9932 break;
9933 case PORT_CLK_SEL_LCPLL_1350:
9934 id = DPLL_ID_LCPLL_1350;
9935 break;
9936 case PORT_CLK_SEL_LCPLL_2700:
9937 id = DPLL_ID_LCPLL_2700;
9938 break;
9939 default:
9940 MISSING_CASE(pipe_config->ddi_pll_sel);
9941 /* fall through */
9942 case PORT_CLK_SEL_NONE:
9943 return;
9944 }
9945
9946 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9947 }
9948
9949 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9950 struct intel_crtc_state *pipe_config,
9951 unsigned long *power_domain_mask)
9952 {
9953 struct drm_device *dev = crtc->base.dev;
9954 struct drm_i915_private *dev_priv = to_i915(dev);
9955 enum intel_display_power_domain power_domain;
9956 u32 tmp;
9957
9958 /*
9959 * The pipe->transcoder mapping is fixed with the exception of the eDP
9960 * transcoder handled below.
9961 */
9962 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9963
9964 /*
9965 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9966 * consistency and less surprising code; it's in always on power).
9967 */
9968 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9969 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9970 enum pipe trans_edp_pipe;
9971 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9972 default:
9973 WARN(1, "unknown pipe linked to edp transcoder\n");
9974 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9975 case TRANS_DDI_EDP_INPUT_A_ON:
9976 trans_edp_pipe = PIPE_A;
9977 break;
9978 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9979 trans_edp_pipe = PIPE_B;
9980 break;
9981 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9982 trans_edp_pipe = PIPE_C;
9983 break;
9984 }
9985
9986 if (trans_edp_pipe == crtc->pipe)
9987 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9988 }
9989
9990 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9991 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9992 return false;
9993 *power_domain_mask |= BIT(power_domain);
9994
9995 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9996
9997 return tmp & PIPECONF_ENABLE;
9998 }
9999
10000 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10001 struct intel_crtc_state *pipe_config,
10002 unsigned long *power_domain_mask)
10003 {
10004 struct drm_device *dev = crtc->base.dev;
10005 struct drm_i915_private *dev_priv = to_i915(dev);
10006 enum intel_display_power_domain power_domain;
10007 enum port port;
10008 enum transcoder cpu_transcoder;
10009 u32 tmp;
10010
10011 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10012 if (port == PORT_A)
10013 cpu_transcoder = TRANSCODER_DSI_A;
10014 else
10015 cpu_transcoder = TRANSCODER_DSI_C;
10016
10017 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10018 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10019 continue;
10020 *power_domain_mask |= BIT(power_domain);
10021
10022 /*
10023 * The PLL needs to be enabled with a valid divider
10024 * configuration, otherwise accessing DSI registers will hang
10025 * the machine. See BSpec North Display Engine
10026 * registers/MIPI[BXT]. We can break out here early, since we
10027 * need the same DSI PLL to be enabled for both DSI ports.
10028 */
10029 if (!intel_dsi_pll_is_enabled(dev_priv))
10030 break;
10031
10032 /* XXX: this works for video mode only */
10033 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10034 if (!(tmp & DPI_ENABLE))
10035 continue;
10036
10037 tmp = I915_READ(MIPI_CTRL(port));
10038 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10039 continue;
10040
10041 pipe_config->cpu_transcoder = cpu_transcoder;
10042 break;
10043 }
10044
10045 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10046 }
10047
10048 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10049 struct intel_crtc_state *pipe_config)
10050 {
10051 struct drm_device *dev = crtc->base.dev;
10052 struct drm_i915_private *dev_priv = to_i915(dev);
10053 struct intel_shared_dpll *pll;
10054 enum port port;
10055 uint32_t tmp;
10056
10057 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10058
10059 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10060
10061 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10062 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10063 else if (IS_BROXTON(dev))
10064 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10065 else
10066 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10067
10068 pll = pipe_config->shared_dpll;
10069 if (pll) {
10070 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10071 &pipe_config->dpll_hw_state));
10072 }
10073
10074 /*
10075 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10076 * DDI E. So just check whether this pipe is wired to DDI E and whether
10077 * the PCH transcoder is on.
10078 */
10079 if (INTEL_INFO(dev)->gen < 9 &&
10080 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10081 pipe_config->has_pch_encoder = true;
10082
10083 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10084 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10085 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10086
10087 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10088 }
10089 }
10090
10091 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10092 struct intel_crtc_state *pipe_config)
10093 {
10094 struct drm_device *dev = crtc->base.dev;
10095 struct drm_i915_private *dev_priv = to_i915(dev);
10096 enum intel_display_power_domain power_domain;
10097 unsigned long power_domain_mask;
10098 bool active;
10099
10100 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10101 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10102 return false;
10103 power_domain_mask = BIT(power_domain);
10104
10105 pipe_config->shared_dpll = NULL;
10106
10107 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10108
10109 if (IS_BROXTON(dev_priv) &&
10110 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10111 WARN_ON(active);
10112 active = true;
10113 }
10114
10115 if (!active)
10116 goto out;
10117
10118 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10119 haswell_get_ddi_port_state(crtc, pipe_config);
10120 intel_get_pipe_timings(crtc, pipe_config);
10121 }
10122
10123 intel_get_pipe_src_size(crtc, pipe_config);
10124
10125 pipe_config->gamma_mode =
10126 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10127
10128 if (INTEL_INFO(dev)->gen >= 9) {
10129 skl_init_scalers(dev, crtc, pipe_config);
10130 }
10131
10132 if (INTEL_INFO(dev)->gen >= 9) {
10133 pipe_config->scaler_state.scaler_id = -1;
10134 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10135 }
10136
10137 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10138 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10139 power_domain_mask |= BIT(power_domain);
10140 if (INTEL_INFO(dev)->gen >= 9)
10141 skylake_get_pfit_config(crtc, pipe_config);
10142 else
10143 ironlake_get_pfit_config(crtc, pipe_config);
10144 }
10145
10146 if (IS_HASWELL(dev))
10147 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10148 (I915_READ(IPS_CTL) & IPS_ENABLE);
10149
10150 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10151 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10152 pipe_config->pixel_multiplier =
10153 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10154 } else {
10155 pipe_config->pixel_multiplier = 1;
10156 }
10157
10158 out:
10159 for_each_power_domain(power_domain, power_domain_mask)
10160 intel_display_power_put(dev_priv, power_domain);
10161
10162 return active;
10163 }
10164
10165 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10166 const struct intel_plane_state *plane_state)
10167 {
10168 struct drm_device *dev = crtc->dev;
10169 struct drm_i915_private *dev_priv = to_i915(dev);
10170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10171 uint32_t cntl = 0, size = 0;
10172
10173 if (plane_state && plane_state->visible) {
10174 unsigned int width = plane_state->base.crtc_w;
10175 unsigned int height = plane_state->base.crtc_h;
10176 unsigned int stride = roundup_pow_of_two(width) * 4;
10177
10178 switch (stride) {
10179 default:
10180 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10181 width, stride);
10182 stride = 256;
10183 /* fallthrough */
10184 case 256:
10185 case 512:
10186 case 1024:
10187 case 2048:
10188 break;
10189 }
10190
10191 cntl |= CURSOR_ENABLE |
10192 CURSOR_GAMMA_ENABLE |
10193 CURSOR_FORMAT_ARGB |
10194 CURSOR_STRIDE(stride);
10195
10196 size = (height << 12) | width;
10197 }
10198
10199 if (intel_crtc->cursor_cntl != 0 &&
10200 (intel_crtc->cursor_base != base ||
10201 intel_crtc->cursor_size != size ||
10202 intel_crtc->cursor_cntl != cntl)) {
10203 /* On these chipsets we can only modify the base/size/stride
10204 * whilst the cursor is disabled.
10205 */
10206 I915_WRITE(CURCNTR(PIPE_A), 0);
10207 POSTING_READ(CURCNTR(PIPE_A));
10208 intel_crtc->cursor_cntl = 0;
10209 }
10210
10211 if (intel_crtc->cursor_base != base) {
10212 I915_WRITE(CURBASE(PIPE_A), base);
10213 intel_crtc->cursor_base = base;
10214 }
10215
10216 if (intel_crtc->cursor_size != size) {
10217 I915_WRITE(CURSIZE, size);
10218 intel_crtc->cursor_size = size;
10219 }
10220
10221 if (intel_crtc->cursor_cntl != cntl) {
10222 I915_WRITE(CURCNTR(PIPE_A), cntl);
10223 POSTING_READ(CURCNTR(PIPE_A));
10224 intel_crtc->cursor_cntl = cntl;
10225 }
10226 }
10227
10228 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10229 const struct intel_plane_state *plane_state)
10230 {
10231 struct drm_device *dev = crtc->dev;
10232 struct drm_i915_private *dev_priv = to_i915(dev);
10233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10234 int pipe = intel_crtc->pipe;
10235 uint32_t cntl = 0;
10236
10237 if (plane_state && plane_state->visible) {
10238 cntl = MCURSOR_GAMMA_ENABLE;
10239 switch (plane_state->base.crtc_w) {
10240 case 64:
10241 cntl |= CURSOR_MODE_64_ARGB_AX;
10242 break;
10243 case 128:
10244 cntl |= CURSOR_MODE_128_ARGB_AX;
10245 break;
10246 case 256:
10247 cntl |= CURSOR_MODE_256_ARGB_AX;
10248 break;
10249 default:
10250 MISSING_CASE(plane_state->base.crtc_w);
10251 return;
10252 }
10253 cntl |= pipe << 28; /* Connect to correct pipe */
10254
10255 if (HAS_DDI(dev))
10256 cntl |= CURSOR_PIPE_CSC_ENABLE;
10257
10258 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10259 cntl |= CURSOR_ROTATE_180;
10260 }
10261
10262 if (intel_crtc->cursor_cntl != cntl) {
10263 I915_WRITE(CURCNTR(pipe), cntl);
10264 POSTING_READ(CURCNTR(pipe));
10265 intel_crtc->cursor_cntl = cntl;
10266 }
10267
10268 /* and commit changes on next vblank */
10269 I915_WRITE(CURBASE(pipe), base);
10270 POSTING_READ(CURBASE(pipe));
10271
10272 intel_crtc->cursor_base = base;
10273 }
10274
10275 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10276 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10277 const struct intel_plane_state *plane_state)
10278 {
10279 struct drm_device *dev = crtc->dev;
10280 struct drm_i915_private *dev_priv = to_i915(dev);
10281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10282 int pipe = intel_crtc->pipe;
10283 u32 base = intel_crtc->cursor_addr;
10284 u32 pos = 0;
10285
10286 if (plane_state) {
10287 int x = plane_state->base.crtc_x;
10288 int y = plane_state->base.crtc_y;
10289
10290 if (x < 0) {
10291 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10292 x = -x;
10293 }
10294 pos |= x << CURSOR_X_SHIFT;
10295
10296 if (y < 0) {
10297 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10298 y = -y;
10299 }
10300 pos |= y << CURSOR_Y_SHIFT;
10301
10302 /* ILK+ do this automagically */
10303 if (HAS_GMCH_DISPLAY(dev) &&
10304 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10305 base += (plane_state->base.crtc_h *
10306 plane_state->base.crtc_w - 1) * 4;
10307 }
10308 }
10309
10310 I915_WRITE(CURPOS(pipe), pos);
10311
10312 if (IS_845G(dev) || IS_I865G(dev))
10313 i845_update_cursor(crtc, base, plane_state);
10314 else
10315 i9xx_update_cursor(crtc, base, plane_state);
10316 }
10317
10318 static bool cursor_size_ok(struct drm_device *dev,
10319 uint32_t width, uint32_t height)
10320 {
10321 if (width == 0 || height == 0)
10322 return false;
10323
10324 /*
10325 * 845g/865g are special in that they are only limited by
10326 * the width of their cursors, the height is arbitrary up to
10327 * the precision of the register. Everything else requires
10328 * square cursors, limited to a few power-of-two sizes.
10329 */
10330 if (IS_845G(dev) || IS_I865G(dev)) {
10331 if ((width & 63) != 0)
10332 return false;
10333
10334 if (width > (IS_845G(dev) ? 64 : 512))
10335 return false;
10336
10337 if (height > 1023)
10338 return false;
10339 } else {
10340 switch (width | height) {
10341 case 256:
10342 case 128:
10343 if (IS_GEN2(dev))
10344 return false;
10345 case 64:
10346 break;
10347 default:
10348 return false;
10349 }
10350 }
10351
10352 return true;
10353 }
10354
10355 /* VESA 640x480x72Hz mode to set on the pipe */
10356 static struct drm_display_mode load_detect_mode = {
10357 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10358 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10359 };
10360
10361 struct drm_framebuffer *
10362 __intel_framebuffer_create(struct drm_device *dev,
10363 struct drm_mode_fb_cmd2 *mode_cmd,
10364 struct drm_i915_gem_object *obj)
10365 {
10366 struct intel_framebuffer *intel_fb;
10367 int ret;
10368
10369 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10370 if (!intel_fb)
10371 return ERR_PTR(-ENOMEM);
10372
10373 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10374 if (ret)
10375 goto err;
10376
10377 return &intel_fb->base;
10378
10379 err:
10380 kfree(intel_fb);
10381 return ERR_PTR(ret);
10382 }
10383
10384 static struct drm_framebuffer *
10385 intel_framebuffer_create(struct drm_device *dev,
10386 struct drm_mode_fb_cmd2 *mode_cmd,
10387 struct drm_i915_gem_object *obj)
10388 {
10389 struct drm_framebuffer *fb;
10390 int ret;
10391
10392 ret = i915_mutex_lock_interruptible(dev);
10393 if (ret)
10394 return ERR_PTR(ret);
10395 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10396 mutex_unlock(&dev->struct_mutex);
10397
10398 return fb;
10399 }
10400
10401 static u32
10402 intel_framebuffer_pitch_for_width(int width, int bpp)
10403 {
10404 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10405 return ALIGN(pitch, 64);
10406 }
10407
10408 static u32
10409 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10410 {
10411 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10412 return PAGE_ALIGN(pitch * mode->vdisplay);
10413 }
10414
10415 static struct drm_framebuffer *
10416 intel_framebuffer_create_for_mode(struct drm_device *dev,
10417 struct drm_display_mode *mode,
10418 int depth, int bpp)
10419 {
10420 struct drm_framebuffer *fb;
10421 struct drm_i915_gem_object *obj;
10422 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10423
10424 obj = i915_gem_object_create(dev,
10425 intel_framebuffer_size_for_mode(mode, bpp));
10426 if (IS_ERR(obj))
10427 return ERR_CAST(obj);
10428
10429 mode_cmd.width = mode->hdisplay;
10430 mode_cmd.height = mode->vdisplay;
10431 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10432 bpp);
10433 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10434
10435 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10436 if (IS_ERR(fb))
10437 i915_gem_object_put_unlocked(obj);
10438
10439 return fb;
10440 }
10441
10442 static struct drm_framebuffer *
10443 mode_fits_in_fbdev(struct drm_device *dev,
10444 struct drm_display_mode *mode)
10445 {
10446 #ifdef CONFIG_DRM_FBDEV_EMULATION
10447 struct drm_i915_private *dev_priv = to_i915(dev);
10448 struct drm_i915_gem_object *obj;
10449 struct drm_framebuffer *fb;
10450
10451 if (!dev_priv->fbdev)
10452 return NULL;
10453
10454 if (!dev_priv->fbdev->fb)
10455 return NULL;
10456
10457 obj = dev_priv->fbdev->fb->obj;
10458 BUG_ON(!obj);
10459
10460 fb = &dev_priv->fbdev->fb->base;
10461 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10462 fb->bits_per_pixel))
10463 return NULL;
10464
10465 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10466 return NULL;
10467
10468 drm_framebuffer_reference(fb);
10469 return fb;
10470 #else
10471 return NULL;
10472 #endif
10473 }
10474
10475 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10476 struct drm_crtc *crtc,
10477 struct drm_display_mode *mode,
10478 struct drm_framebuffer *fb,
10479 int x, int y)
10480 {
10481 struct drm_plane_state *plane_state;
10482 int hdisplay, vdisplay;
10483 int ret;
10484
10485 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10486 if (IS_ERR(plane_state))
10487 return PTR_ERR(plane_state);
10488
10489 if (mode)
10490 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10491 else
10492 hdisplay = vdisplay = 0;
10493
10494 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10495 if (ret)
10496 return ret;
10497 drm_atomic_set_fb_for_plane(plane_state, fb);
10498 plane_state->crtc_x = 0;
10499 plane_state->crtc_y = 0;
10500 plane_state->crtc_w = hdisplay;
10501 plane_state->crtc_h = vdisplay;
10502 plane_state->src_x = x << 16;
10503 plane_state->src_y = y << 16;
10504 plane_state->src_w = hdisplay << 16;
10505 plane_state->src_h = vdisplay << 16;
10506
10507 return 0;
10508 }
10509
10510 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10511 struct drm_display_mode *mode,
10512 struct intel_load_detect_pipe *old,
10513 struct drm_modeset_acquire_ctx *ctx)
10514 {
10515 struct intel_crtc *intel_crtc;
10516 struct intel_encoder *intel_encoder =
10517 intel_attached_encoder(connector);
10518 struct drm_crtc *possible_crtc;
10519 struct drm_encoder *encoder = &intel_encoder->base;
10520 struct drm_crtc *crtc = NULL;
10521 struct drm_device *dev = encoder->dev;
10522 struct drm_framebuffer *fb;
10523 struct drm_mode_config *config = &dev->mode_config;
10524 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10525 struct drm_connector_state *connector_state;
10526 struct intel_crtc_state *crtc_state;
10527 int ret, i = -1;
10528
10529 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10530 connector->base.id, connector->name,
10531 encoder->base.id, encoder->name);
10532
10533 old->restore_state = NULL;
10534
10535 retry:
10536 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10537 if (ret)
10538 goto fail;
10539
10540 /*
10541 * Algorithm gets a little messy:
10542 *
10543 * - if the connector already has an assigned crtc, use it (but make
10544 * sure it's on first)
10545 *
10546 * - try to find the first unused crtc that can drive this connector,
10547 * and use that if we find one
10548 */
10549
10550 /* See if we already have a CRTC for this connector */
10551 if (connector->state->crtc) {
10552 crtc = connector->state->crtc;
10553
10554 ret = drm_modeset_lock(&crtc->mutex, ctx);
10555 if (ret)
10556 goto fail;
10557
10558 /* Make sure the crtc and connector are running */
10559 goto found;
10560 }
10561
10562 /* Find an unused one (if possible) */
10563 for_each_crtc(dev, possible_crtc) {
10564 i++;
10565 if (!(encoder->possible_crtcs & (1 << i)))
10566 continue;
10567
10568 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10569 if (ret)
10570 goto fail;
10571
10572 if (possible_crtc->state->enable) {
10573 drm_modeset_unlock(&possible_crtc->mutex);
10574 continue;
10575 }
10576
10577 crtc = possible_crtc;
10578 break;
10579 }
10580
10581 /*
10582 * If we didn't find an unused CRTC, don't use any.
10583 */
10584 if (!crtc) {
10585 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10586 goto fail;
10587 }
10588
10589 found:
10590 intel_crtc = to_intel_crtc(crtc);
10591
10592 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10593 if (ret)
10594 goto fail;
10595
10596 state = drm_atomic_state_alloc(dev);
10597 restore_state = drm_atomic_state_alloc(dev);
10598 if (!state || !restore_state) {
10599 ret = -ENOMEM;
10600 goto fail;
10601 }
10602
10603 state->acquire_ctx = ctx;
10604 restore_state->acquire_ctx = ctx;
10605
10606 connector_state = drm_atomic_get_connector_state(state, connector);
10607 if (IS_ERR(connector_state)) {
10608 ret = PTR_ERR(connector_state);
10609 goto fail;
10610 }
10611
10612 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10613 if (ret)
10614 goto fail;
10615
10616 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10617 if (IS_ERR(crtc_state)) {
10618 ret = PTR_ERR(crtc_state);
10619 goto fail;
10620 }
10621
10622 crtc_state->base.active = crtc_state->base.enable = true;
10623
10624 if (!mode)
10625 mode = &load_detect_mode;
10626
10627 /* We need a framebuffer large enough to accommodate all accesses
10628 * that the plane may generate whilst we perform load detection.
10629 * We can not rely on the fbcon either being present (we get called
10630 * during its initialisation to detect all boot displays, or it may
10631 * not even exist) or that it is large enough to satisfy the
10632 * requested mode.
10633 */
10634 fb = mode_fits_in_fbdev(dev, mode);
10635 if (fb == NULL) {
10636 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10637 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10638 } else
10639 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10640 if (IS_ERR(fb)) {
10641 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10642 goto fail;
10643 }
10644
10645 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10646 if (ret)
10647 goto fail;
10648
10649 drm_framebuffer_unreference(fb);
10650
10651 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10652 if (ret)
10653 goto fail;
10654
10655 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10656 if (!ret)
10657 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10658 if (!ret)
10659 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10660 if (ret) {
10661 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10662 goto fail;
10663 }
10664
10665 ret = drm_atomic_commit(state);
10666 if (ret) {
10667 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10668 goto fail;
10669 }
10670
10671 old->restore_state = restore_state;
10672
10673 /* let the connector get through one full cycle before testing */
10674 intel_wait_for_vblank(dev, intel_crtc->pipe);
10675 return true;
10676
10677 fail:
10678 drm_atomic_state_free(state);
10679 drm_atomic_state_free(restore_state);
10680 restore_state = state = NULL;
10681
10682 if (ret == -EDEADLK) {
10683 drm_modeset_backoff(ctx);
10684 goto retry;
10685 }
10686
10687 return false;
10688 }
10689
10690 void intel_release_load_detect_pipe(struct drm_connector *connector,
10691 struct intel_load_detect_pipe *old,
10692 struct drm_modeset_acquire_ctx *ctx)
10693 {
10694 struct intel_encoder *intel_encoder =
10695 intel_attached_encoder(connector);
10696 struct drm_encoder *encoder = &intel_encoder->base;
10697 struct drm_atomic_state *state = old->restore_state;
10698 int ret;
10699
10700 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10701 connector->base.id, connector->name,
10702 encoder->base.id, encoder->name);
10703
10704 if (!state)
10705 return;
10706
10707 ret = drm_atomic_commit(state);
10708 if (ret) {
10709 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10710 drm_atomic_state_free(state);
10711 }
10712 }
10713
10714 static int i9xx_pll_refclk(struct drm_device *dev,
10715 const struct intel_crtc_state *pipe_config)
10716 {
10717 struct drm_i915_private *dev_priv = to_i915(dev);
10718 u32 dpll = pipe_config->dpll_hw_state.dpll;
10719
10720 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10721 return dev_priv->vbt.lvds_ssc_freq;
10722 else if (HAS_PCH_SPLIT(dev))
10723 return 120000;
10724 else if (!IS_GEN2(dev))
10725 return 96000;
10726 else
10727 return 48000;
10728 }
10729
10730 /* Returns the clock of the currently programmed mode of the given pipe. */
10731 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10732 struct intel_crtc_state *pipe_config)
10733 {
10734 struct drm_device *dev = crtc->base.dev;
10735 struct drm_i915_private *dev_priv = to_i915(dev);
10736 int pipe = pipe_config->cpu_transcoder;
10737 u32 dpll = pipe_config->dpll_hw_state.dpll;
10738 u32 fp;
10739 struct dpll clock;
10740 int port_clock;
10741 int refclk = i9xx_pll_refclk(dev, pipe_config);
10742
10743 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10744 fp = pipe_config->dpll_hw_state.fp0;
10745 else
10746 fp = pipe_config->dpll_hw_state.fp1;
10747
10748 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10749 if (IS_PINEVIEW(dev)) {
10750 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10751 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10752 } else {
10753 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10754 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10755 }
10756
10757 if (!IS_GEN2(dev)) {
10758 if (IS_PINEVIEW(dev))
10759 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10760 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10761 else
10762 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10763 DPLL_FPA01_P1_POST_DIV_SHIFT);
10764
10765 switch (dpll & DPLL_MODE_MASK) {
10766 case DPLLB_MODE_DAC_SERIAL:
10767 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10768 5 : 10;
10769 break;
10770 case DPLLB_MODE_LVDS:
10771 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10772 7 : 14;
10773 break;
10774 default:
10775 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10776 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10777 return;
10778 }
10779
10780 if (IS_PINEVIEW(dev))
10781 port_clock = pnv_calc_dpll_params(refclk, &clock);
10782 else
10783 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10784 } else {
10785 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10786 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10787
10788 if (is_lvds) {
10789 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10790 DPLL_FPA01_P1_POST_DIV_SHIFT);
10791
10792 if (lvds & LVDS_CLKB_POWER_UP)
10793 clock.p2 = 7;
10794 else
10795 clock.p2 = 14;
10796 } else {
10797 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10798 clock.p1 = 2;
10799 else {
10800 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10801 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10802 }
10803 if (dpll & PLL_P2_DIVIDE_BY_4)
10804 clock.p2 = 4;
10805 else
10806 clock.p2 = 2;
10807 }
10808
10809 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10810 }
10811
10812 /*
10813 * This value includes pixel_multiplier. We will use
10814 * port_clock to compute adjusted_mode.crtc_clock in the
10815 * encoder's get_config() function.
10816 */
10817 pipe_config->port_clock = port_clock;
10818 }
10819
10820 int intel_dotclock_calculate(int link_freq,
10821 const struct intel_link_m_n *m_n)
10822 {
10823 /*
10824 * The calculation for the data clock is:
10825 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10826 * But we want to avoid losing precison if possible, so:
10827 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10828 *
10829 * and the link clock is simpler:
10830 * link_clock = (m * link_clock) / n
10831 */
10832
10833 if (!m_n->link_n)
10834 return 0;
10835
10836 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10837 }
10838
10839 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10840 struct intel_crtc_state *pipe_config)
10841 {
10842 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10843
10844 /* read out port_clock from the DPLL */
10845 i9xx_crtc_clock_get(crtc, pipe_config);
10846
10847 /*
10848 * In case there is an active pipe without active ports,
10849 * we may need some idea for the dotclock anyway.
10850 * Calculate one based on the FDI configuration.
10851 */
10852 pipe_config->base.adjusted_mode.crtc_clock =
10853 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10854 &pipe_config->fdi_m_n);
10855 }
10856
10857 /** Returns the currently programmed mode of the given pipe. */
10858 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10859 struct drm_crtc *crtc)
10860 {
10861 struct drm_i915_private *dev_priv = to_i915(dev);
10862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10863 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10864 struct drm_display_mode *mode;
10865 struct intel_crtc_state *pipe_config;
10866 int htot = I915_READ(HTOTAL(cpu_transcoder));
10867 int hsync = I915_READ(HSYNC(cpu_transcoder));
10868 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10869 int vsync = I915_READ(VSYNC(cpu_transcoder));
10870 enum pipe pipe = intel_crtc->pipe;
10871
10872 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10873 if (!mode)
10874 return NULL;
10875
10876 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10877 if (!pipe_config) {
10878 kfree(mode);
10879 return NULL;
10880 }
10881
10882 /*
10883 * Construct a pipe_config sufficient for getting the clock info
10884 * back out of crtc_clock_get.
10885 *
10886 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10887 * to use a real value here instead.
10888 */
10889 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10890 pipe_config->pixel_multiplier = 1;
10891 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10892 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10893 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10894 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10895
10896 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10897 mode->hdisplay = (htot & 0xffff) + 1;
10898 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10899 mode->hsync_start = (hsync & 0xffff) + 1;
10900 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10901 mode->vdisplay = (vtot & 0xffff) + 1;
10902 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10903 mode->vsync_start = (vsync & 0xffff) + 1;
10904 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10905
10906 drm_mode_set_name(mode);
10907
10908 kfree(pipe_config);
10909
10910 return mode;
10911 }
10912
10913 static void intel_crtc_destroy(struct drm_crtc *crtc)
10914 {
10915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10916 struct drm_device *dev = crtc->dev;
10917 struct intel_flip_work *work;
10918
10919 spin_lock_irq(&dev->event_lock);
10920 work = intel_crtc->flip_work;
10921 intel_crtc->flip_work = NULL;
10922 spin_unlock_irq(&dev->event_lock);
10923
10924 if (work) {
10925 cancel_work_sync(&work->mmio_work);
10926 cancel_work_sync(&work->unpin_work);
10927 kfree(work);
10928 }
10929
10930 drm_crtc_cleanup(crtc);
10931
10932 kfree(intel_crtc);
10933 }
10934
10935 static void intel_unpin_work_fn(struct work_struct *__work)
10936 {
10937 struct intel_flip_work *work =
10938 container_of(__work, struct intel_flip_work, unpin_work);
10939 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10940 struct drm_device *dev = crtc->base.dev;
10941 struct drm_plane *primary = crtc->base.primary;
10942
10943 if (is_mmio_work(work))
10944 flush_work(&work->mmio_work);
10945
10946 mutex_lock(&dev->struct_mutex);
10947 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10948 i915_gem_object_put(work->pending_flip_obj);
10949 mutex_unlock(&dev->struct_mutex);
10950
10951 i915_gem_request_put(work->flip_queued_req);
10952
10953 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10954 intel_fbc_post_update(crtc);
10955 drm_framebuffer_unreference(work->old_fb);
10956
10957 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10958 atomic_dec(&crtc->unpin_work_count);
10959
10960 kfree(work);
10961 }
10962
10963 /* Is 'a' after or equal to 'b'? */
10964 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10965 {
10966 return !((a - b) & 0x80000000);
10967 }
10968
10969 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10970 struct intel_flip_work *work)
10971 {
10972 struct drm_device *dev = crtc->base.dev;
10973 struct drm_i915_private *dev_priv = to_i915(dev);
10974 unsigned reset_counter;
10975
10976 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10977 if (crtc->reset_counter != reset_counter)
10978 return true;
10979
10980 /*
10981 * The relevant registers doen't exist on pre-ctg.
10982 * As the flip done interrupt doesn't trigger for mmio
10983 * flips on gmch platforms, a flip count check isn't
10984 * really needed there. But since ctg has the registers,
10985 * include it in the check anyway.
10986 */
10987 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10988 return true;
10989
10990 /*
10991 * BDW signals flip done immediately if the plane
10992 * is disabled, even if the plane enable is already
10993 * armed to occur at the next vblank :(
10994 */
10995
10996 /*
10997 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10998 * used the same base address. In that case the mmio flip might
10999 * have completed, but the CS hasn't even executed the flip yet.
11000 *
11001 * A flip count check isn't enough as the CS might have updated
11002 * the base address just after start of vblank, but before we
11003 * managed to process the interrupt. This means we'd complete the
11004 * CS flip too soon.
11005 *
11006 * Combining both checks should get us a good enough result. It may
11007 * still happen that the CS flip has been executed, but has not
11008 * yet actually completed. But in case the base address is the same
11009 * anyway, we don't really care.
11010 */
11011 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11012 crtc->flip_work->gtt_offset &&
11013 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11014 crtc->flip_work->flip_count);
11015 }
11016
11017 static bool
11018 __pageflip_finished_mmio(struct intel_crtc *crtc,
11019 struct intel_flip_work *work)
11020 {
11021 /*
11022 * MMIO work completes when vblank is different from
11023 * flip_queued_vblank.
11024 *
11025 * Reset counter value doesn't matter, this is handled by
11026 * i915_wait_request finishing early, so no need to handle
11027 * reset here.
11028 */
11029 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11030 }
11031
11032
11033 static bool pageflip_finished(struct intel_crtc *crtc,
11034 struct intel_flip_work *work)
11035 {
11036 if (!atomic_read(&work->pending))
11037 return false;
11038
11039 smp_rmb();
11040
11041 if (is_mmio_work(work))
11042 return __pageflip_finished_mmio(crtc, work);
11043 else
11044 return __pageflip_finished_cs(crtc, work);
11045 }
11046
11047 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11048 {
11049 struct drm_device *dev = &dev_priv->drm;
11050 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11052 struct intel_flip_work *work;
11053 unsigned long flags;
11054
11055 /* Ignore early vblank irqs */
11056 if (!crtc)
11057 return;
11058
11059 /*
11060 * This is called both by irq handlers and the reset code (to complete
11061 * lost pageflips) so needs the full irqsave spinlocks.
11062 */
11063 spin_lock_irqsave(&dev->event_lock, flags);
11064 work = intel_crtc->flip_work;
11065
11066 if (work != NULL &&
11067 !is_mmio_work(work) &&
11068 pageflip_finished(intel_crtc, work))
11069 page_flip_completed(intel_crtc);
11070
11071 spin_unlock_irqrestore(&dev->event_lock, flags);
11072 }
11073
11074 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11075 {
11076 struct drm_device *dev = &dev_priv->drm;
11077 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11079 struct intel_flip_work *work;
11080 unsigned long flags;
11081
11082 /* Ignore early vblank irqs */
11083 if (!crtc)
11084 return;
11085
11086 /*
11087 * This is called both by irq handlers and the reset code (to complete
11088 * lost pageflips) so needs the full irqsave spinlocks.
11089 */
11090 spin_lock_irqsave(&dev->event_lock, flags);
11091 work = intel_crtc->flip_work;
11092
11093 if (work != NULL &&
11094 is_mmio_work(work) &&
11095 pageflip_finished(intel_crtc, work))
11096 page_flip_completed(intel_crtc);
11097
11098 spin_unlock_irqrestore(&dev->event_lock, flags);
11099 }
11100
11101 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11102 struct intel_flip_work *work)
11103 {
11104 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11105
11106 /* Ensure that the work item is consistent when activating it ... */
11107 smp_mb__before_atomic();
11108 atomic_set(&work->pending, 1);
11109 }
11110
11111 static int intel_gen2_queue_flip(struct drm_device *dev,
11112 struct drm_crtc *crtc,
11113 struct drm_framebuffer *fb,
11114 struct drm_i915_gem_object *obj,
11115 struct drm_i915_gem_request *req,
11116 uint32_t flags)
11117 {
11118 struct intel_ringbuffer *ring = req->ring;
11119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11120 u32 flip_mask;
11121 int ret;
11122
11123 ret = intel_ring_begin(req, 6);
11124 if (ret)
11125 return ret;
11126
11127 /* Can't queue multiple flips, so wait for the previous
11128 * one to finish before executing the next.
11129 */
11130 if (intel_crtc->plane)
11131 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11132 else
11133 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11134 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11135 intel_ring_emit(ring, MI_NOOP);
11136 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11137 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11138 intel_ring_emit(ring, fb->pitches[0]);
11139 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11140 intel_ring_emit(ring, 0); /* aux display base address, unused */
11141
11142 return 0;
11143 }
11144
11145 static int intel_gen3_queue_flip(struct drm_device *dev,
11146 struct drm_crtc *crtc,
11147 struct drm_framebuffer *fb,
11148 struct drm_i915_gem_object *obj,
11149 struct drm_i915_gem_request *req,
11150 uint32_t flags)
11151 {
11152 struct intel_ringbuffer *ring = req->ring;
11153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11154 u32 flip_mask;
11155 int ret;
11156
11157 ret = intel_ring_begin(req, 6);
11158 if (ret)
11159 return ret;
11160
11161 if (intel_crtc->plane)
11162 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11163 else
11164 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11165 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11166 intel_ring_emit(ring, MI_NOOP);
11167 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11168 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11169 intel_ring_emit(ring, fb->pitches[0]);
11170 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11171 intel_ring_emit(ring, MI_NOOP);
11172
11173 return 0;
11174 }
11175
11176 static int intel_gen4_queue_flip(struct drm_device *dev,
11177 struct drm_crtc *crtc,
11178 struct drm_framebuffer *fb,
11179 struct drm_i915_gem_object *obj,
11180 struct drm_i915_gem_request *req,
11181 uint32_t flags)
11182 {
11183 struct intel_ringbuffer *ring = req->ring;
11184 struct drm_i915_private *dev_priv = to_i915(dev);
11185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11186 uint32_t pf, pipesrc;
11187 int ret;
11188
11189 ret = intel_ring_begin(req, 4);
11190 if (ret)
11191 return ret;
11192
11193 /* i965+ uses the linear or tiled offsets from the
11194 * Display Registers (which do not change across a page-flip)
11195 * so we need only reprogram the base address.
11196 */
11197 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11198 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11199 intel_ring_emit(ring, fb->pitches[0]);
11200 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11201 obj->tiling_mode);
11202
11203 /* XXX Enabling the panel-fitter across page-flip is so far
11204 * untested on non-native modes, so ignore it for now.
11205 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11206 */
11207 pf = 0;
11208 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11209 intel_ring_emit(ring, pf | pipesrc);
11210
11211 return 0;
11212 }
11213
11214 static int intel_gen6_queue_flip(struct drm_device *dev,
11215 struct drm_crtc *crtc,
11216 struct drm_framebuffer *fb,
11217 struct drm_i915_gem_object *obj,
11218 struct drm_i915_gem_request *req,
11219 uint32_t flags)
11220 {
11221 struct intel_ringbuffer *ring = req->ring;
11222 struct drm_i915_private *dev_priv = to_i915(dev);
11223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11224 uint32_t pf, pipesrc;
11225 int ret;
11226
11227 ret = intel_ring_begin(req, 4);
11228 if (ret)
11229 return ret;
11230
11231 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11232 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11233 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11234 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11235
11236 /* Contrary to the suggestions in the documentation,
11237 * "Enable Panel Fitter" does not seem to be required when page
11238 * flipping with a non-native mode, and worse causes a normal
11239 * modeset to fail.
11240 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11241 */
11242 pf = 0;
11243 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11244 intel_ring_emit(ring, pf | pipesrc);
11245
11246 return 0;
11247 }
11248
11249 static int intel_gen7_queue_flip(struct drm_device *dev,
11250 struct drm_crtc *crtc,
11251 struct drm_framebuffer *fb,
11252 struct drm_i915_gem_object *obj,
11253 struct drm_i915_gem_request *req,
11254 uint32_t flags)
11255 {
11256 struct intel_ringbuffer *ring = req->ring;
11257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11258 uint32_t plane_bit = 0;
11259 int len, ret;
11260
11261 switch (intel_crtc->plane) {
11262 case PLANE_A:
11263 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11264 break;
11265 case PLANE_B:
11266 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11267 break;
11268 case PLANE_C:
11269 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11270 break;
11271 default:
11272 WARN_ONCE(1, "unknown plane in flip command\n");
11273 return -ENODEV;
11274 }
11275
11276 len = 4;
11277 if (req->engine->id == RCS) {
11278 len += 6;
11279 /*
11280 * On Gen 8, SRM is now taking an extra dword to accommodate
11281 * 48bits addresses, and we need a NOOP for the batch size to
11282 * stay even.
11283 */
11284 if (IS_GEN8(dev))
11285 len += 2;
11286 }
11287
11288 /*
11289 * BSpec MI_DISPLAY_FLIP for IVB:
11290 * "The full packet must be contained within the same cache line."
11291 *
11292 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11293 * cacheline, if we ever start emitting more commands before
11294 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11295 * then do the cacheline alignment, and finally emit the
11296 * MI_DISPLAY_FLIP.
11297 */
11298 ret = intel_ring_cacheline_align(req);
11299 if (ret)
11300 return ret;
11301
11302 ret = intel_ring_begin(req, len);
11303 if (ret)
11304 return ret;
11305
11306 /* Unmask the flip-done completion message. Note that the bspec says that
11307 * we should do this for both the BCS and RCS, and that we must not unmask
11308 * more than one flip event at any time (or ensure that one flip message
11309 * can be sent by waiting for flip-done prior to queueing new flips).
11310 * Experimentation says that BCS works despite DERRMR masking all
11311 * flip-done completion events and that unmasking all planes at once
11312 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11313 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11314 */
11315 if (req->engine->id == RCS) {
11316 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11317 intel_ring_emit_reg(ring, DERRMR);
11318 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11319 DERRMR_PIPEB_PRI_FLIP_DONE |
11320 DERRMR_PIPEC_PRI_FLIP_DONE));
11321 if (IS_GEN8(dev))
11322 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11323 MI_SRM_LRM_GLOBAL_GTT);
11324 else
11325 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11326 MI_SRM_LRM_GLOBAL_GTT);
11327 intel_ring_emit_reg(ring, DERRMR);
11328 intel_ring_emit(ring, req->engine->scratch.gtt_offset + 256);
11329 if (IS_GEN8(dev)) {
11330 intel_ring_emit(ring, 0);
11331 intel_ring_emit(ring, MI_NOOP);
11332 }
11333 }
11334
11335 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11336 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11337 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11338 intel_ring_emit(ring, (MI_NOOP));
11339
11340 return 0;
11341 }
11342
11343 static bool use_mmio_flip(struct intel_engine_cs *engine,
11344 struct drm_i915_gem_object *obj)
11345 {
11346 struct reservation_object *resv;
11347
11348 /*
11349 * This is not being used for older platforms, because
11350 * non-availability of flip done interrupt forces us to use
11351 * CS flips. Older platforms derive flip done using some clever
11352 * tricks involving the flip_pending status bits and vblank irqs.
11353 * So using MMIO flips there would disrupt this mechanism.
11354 */
11355
11356 if (engine == NULL)
11357 return true;
11358
11359 if (INTEL_GEN(engine->i915) < 5)
11360 return false;
11361
11362 if (i915.use_mmio_flip < 0)
11363 return false;
11364 else if (i915.use_mmio_flip > 0)
11365 return true;
11366 else if (i915.enable_execlists)
11367 return true;
11368
11369 resv = i915_gem_object_get_dmabuf_resv(obj);
11370 if (resv && !reservation_object_test_signaled_rcu(resv, false))
11371 return true;
11372
11373 return engine != i915_gem_request_get_engine(obj->last_write_req);
11374 }
11375
11376 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11377 unsigned int rotation,
11378 struct intel_flip_work *work)
11379 {
11380 struct drm_device *dev = intel_crtc->base.dev;
11381 struct drm_i915_private *dev_priv = to_i915(dev);
11382 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11383 const enum pipe pipe = intel_crtc->pipe;
11384 u32 ctl, stride, tile_height;
11385
11386 ctl = I915_READ(PLANE_CTL(pipe, 0));
11387 ctl &= ~PLANE_CTL_TILED_MASK;
11388 switch (fb->modifier[0]) {
11389 case DRM_FORMAT_MOD_NONE:
11390 break;
11391 case I915_FORMAT_MOD_X_TILED:
11392 ctl |= PLANE_CTL_TILED_X;
11393 break;
11394 case I915_FORMAT_MOD_Y_TILED:
11395 ctl |= PLANE_CTL_TILED_Y;
11396 break;
11397 case I915_FORMAT_MOD_Yf_TILED:
11398 ctl |= PLANE_CTL_TILED_YF;
11399 break;
11400 default:
11401 MISSING_CASE(fb->modifier[0]);
11402 }
11403
11404 /*
11405 * The stride is either expressed as a multiple of 64 bytes chunks for
11406 * linear buffers or in number of tiles for tiled buffers.
11407 */
11408 if (intel_rotation_90_or_270(rotation)) {
11409 /* stride = Surface height in tiles */
11410 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11411 stride = DIV_ROUND_UP(fb->height, tile_height);
11412 } else {
11413 stride = fb->pitches[0] /
11414 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11415 fb->pixel_format);
11416 }
11417
11418 /*
11419 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11420 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11421 */
11422 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11423 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11424
11425 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11426 POSTING_READ(PLANE_SURF(pipe, 0));
11427 }
11428
11429 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11430 struct intel_flip_work *work)
11431 {
11432 struct drm_device *dev = intel_crtc->base.dev;
11433 struct drm_i915_private *dev_priv = to_i915(dev);
11434 struct intel_framebuffer *intel_fb =
11435 to_intel_framebuffer(intel_crtc->base.primary->fb);
11436 struct drm_i915_gem_object *obj = intel_fb->obj;
11437 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11438 u32 dspcntr;
11439
11440 dspcntr = I915_READ(reg);
11441
11442 if (obj->tiling_mode != I915_TILING_NONE)
11443 dspcntr |= DISPPLANE_TILED;
11444 else
11445 dspcntr &= ~DISPPLANE_TILED;
11446
11447 I915_WRITE(reg, dspcntr);
11448
11449 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11450 POSTING_READ(DSPSURF(intel_crtc->plane));
11451 }
11452
11453 static void intel_mmio_flip_work_func(struct work_struct *w)
11454 {
11455 struct intel_flip_work *work =
11456 container_of(w, struct intel_flip_work, mmio_work);
11457 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11458 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11459 struct intel_framebuffer *intel_fb =
11460 to_intel_framebuffer(crtc->base.primary->fb);
11461 struct drm_i915_gem_object *obj = intel_fb->obj;
11462 struct reservation_object *resv;
11463
11464 if (work->flip_queued_req)
11465 WARN_ON(__i915_wait_request(work->flip_queued_req,
11466 false, NULL,
11467 NO_WAITBOOST));
11468
11469 /* For framebuffer backed by dmabuf, wait for fence */
11470 resv = i915_gem_object_get_dmabuf_resv(obj);
11471 if (resv)
11472 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11473 MAX_SCHEDULE_TIMEOUT) < 0);
11474
11475 intel_pipe_update_start(crtc);
11476
11477 if (INTEL_GEN(dev_priv) >= 9)
11478 skl_do_mmio_flip(crtc, work->rotation, work);
11479 else
11480 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11481 ilk_do_mmio_flip(crtc, work);
11482
11483 intel_pipe_update_end(crtc, work);
11484 }
11485
11486 static int intel_default_queue_flip(struct drm_device *dev,
11487 struct drm_crtc *crtc,
11488 struct drm_framebuffer *fb,
11489 struct drm_i915_gem_object *obj,
11490 struct drm_i915_gem_request *req,
11491 uint32_t flags)
11492 {
11493 return -ENODEV;
11494 }
11495
11496 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11497 struct intel_crtc *intel_crtc,
11498 struct intel_flip_work *work)
11499 {
11500 u32 addr, vblank;
11501
11502 if (!atomic_read(&work->pending))
11503 return false;
11504
11505 smp_rmb();
11506
11507 vblank = intel_crtc_get_vblank_counter(intel_crtc);
11508 if (work->flip_ready_vblank == 0) {
11509 if (work->flip_queued_req &&
11510 !i915_gem_request_completed(work->flip_queued_req))
11511 return false;
11512
11513 work->flip_ready_vblank = vblank;
11514 }
11515
11516 if (vblank - work->flip_ready_vblank < 3)
11517 return false;
11518
11519 /* Potential stall - if we see that the flip has happened,
11520 * assume a missed interrupt. */
11521 if (INTEL_GEN(dev_priv) >= 4)
11522 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11523 else
11524 addr = I915_READ(DSPADDR(intel_crtc->plane));
11525
11526 /* There is a potential issue here with a false positive after a flip
11527 * to the same address. We could address this by checking for a
11528 * non-incrementing frame counter.
11529 */
11530 return addr == work->gtt_offset;
11531 }
11532
11533 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11534 {
11535 struct drm_device *dev = &dev_priv->drm;
11536 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11538 struct intel_flip_work *work;
11539
11540 WARN_ON(!in_interrupt());
11541
11542 if (crtc == NULL)
11543 return;
11544
11545 spin_lock(&dev->event_lock);
11546 work = intel_crtc->flip_work;
11547
11548 if (work != NULL && !is_mmio_work(work) &&
11549 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11550 WARN_ONCE(1,
11551 "Kicking stuck page flip: queued at %d, now %d\n",
11552 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11553 page_flip_completed(intel_crtc);
11554 work = NULL;
11555 }
11556
11557 if (work != NULL && !is_mmio_work(work) &&
11558 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11559 intel_queue_rps_boost_for_request(work->flip_queued_req);
11560 spin_unlock(&dev->event_lock);
11561 }
11562
11563 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11564 struct drm_framebuffer *fb,
11565 struct drm_pending_vblank_event *event,
11566 uint32_t page_flip_flags)
11567 {
11568 struct drm_device *dev = crtc->dev;
11569 struct drm_i915_private *dev_priv = to_i915(dev);
11570 struct drm_framebuffer *old_fb = crtc->primary->fb;
11571 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11573 struct drm_plane *primary = crtc->primary;
11574 enum pipe pipe = intel_crtc->pipe;
11575 struct intel_flip_work *work;
11576 struct intel_engine_cs *engine;
11577 bool mmio_flip;
11578 struct drm_i915_gem_request *request = NULL;
11579 int ret;
11580
11581 /*
11582 * drm_mode_page_flip_ioctl() should already catch this, but double
11583 * check to be safe. In the future we may enable pageflipping from
11584 * a disabled primary plane.
11585 */
11586 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11587 return -EBUSY;
11588
11589 /* Can't change pixel format via MI display flips. */
11590 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11591 return -EINVAL;
11592
11593 /*
11594 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11595 * Note that pitch changes could also affect these register.
11596 */
11597 if (INTEL_INFO(dev)->gen > 3 &&
11598 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11599 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11600 return -EINVAL;
11601
11602 if (i915_terminally_wedged(&dev_priv->gpu_error))
11603 goto out_hang;
11604
11605 work = kzalloc(sizeof(*work), GFP_KERNEL);
11606 if (work == NULL)
11607 return -ENOMEM;
11608
11609 work->event = event;
11610 work->crtc = crtc;
11611 work->old_fb = old_fb;
11612 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11613
11614 ret = drm_crtc_vblank_get(crtc);
11615 if (ret)
11616 goto free_work;
11617
11618 /* We borrow the event spin lock for protecting flip_work */
11619 spin_lock_irq(&dev->event_lock);
11620 if (intel_crtc->flip_work) {
11621 /* Before declaring the flip queue wedged, check if
11622 * the hardware completed the operation behind our backs.
11623 */
11624 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11625 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11626 page_flip_completed(intel_crtc);
11627 } else {
11628 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11629 spin_unlock_irq(&dev->event_lock);
11630
11631 drm_crtc_vblank_put(crtc);
11632 kfree(work);
11633 return -EBUSY;
11634 }
11635 }
11636 intel_crtc->flip_work = work;
11637 spin_unlock_irq(&dev->event_lock);
11638
11639 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11640 flush_workqueue(dev_priv->wq);
11641
11642 /* Reference the objects for the scheduled work. */
11643 drm_framebuffer_reference(work->old_fb);
11644
11645 crtc->primary->fb = fb;
11646 update_state_fb(crtc->primary);
11647
11648 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11649 to_intel_plane_state(primary->state));
11650
11651 work->pending_flip_obj = i915_gem_object_get(obj);
11652
11653 ret = i915_mutex_lock_interruptible(dev);
11654 if (ret)
11655 goto cleanup;
11656
11657 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11658 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11659 ret = -EIO;
11660 goto cleanup;
11661 }
11662
11663 atomic_inc(&intel_crtc->unpin_work_count);
11664
11665 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11666 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11667
11668 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11669 engine = &dev_priv->engine[BCS];
11670 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11671 /* vlv: DISPLAY_FLIP fails to change tiling */
11672 engine = NULL;
11673 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11674 engine = &dev_priv->engine[BCS];
11675 } else if (INTEL_INFO(dev)->gen >= 7) {
11676 engine = i915_gem_request_get_engine(obj->last_write_req);
11677 if (engine == NULL || engine->id != RCS)
11678 engine = &dev_priv->engine[BCS];
11679 } else {
11680 engine = &dev_priv->engine[RCS];
11681 }
11682
11683 mmio_flip = use_mmio_flip(engine, obj);
11684
11685 /* When using CS flips, we want to emit semaphores between rings.
11686 * However, when using mmio flips we will create a task to do the
11687 * synchronisation, so all we want here is to pin the framebuffer
11688 * into the display plane and skip any waits.
11689 */
11690 if (!mmio_flip) {
11691 ret = i915_gem_object_sync(obj, engine, &request);
11692 if (!ret && !request) {
11693 request = i915_gem_request_alloc(engine, NULL);
11694 ret = PTR_ERR_OR_ZERO(request);
11695 }
11696
11697 if (ret)
11698 goto cleanup_pending;
11699 }
11700
11701 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11702 if (ret)
11703 goto cleanup_pending;
11704
11705 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11706 obj, 0);
11707 work->gtt_offset += intel_crtc->dspaddr_offset;
11708 work->rotation = crtc->primary->state->rotation;
11709
11710 if (mmio_flip) {
11711 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11712
11713 i915_gem_request_assign(&work->flip_queued_req,
11714 obj->last_write_req);
11715
11716 schedule_work(&work->mmio_work);
11717 } else {
11718 i915_gem_request_assign(&work->flip_queued_req, request);
11719 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11720 page_flip_flags);
11721 if (ret)
11722 goto cleanup_unpin;
11723
11724 intel_mark_page_flip_active(intel_crtc, work);
11725
11726 i915_add_request_no_flush(request);
11727 }
11728
11729 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11730 to_intel_plane(primary)->frontbuffer_bit);
11731 mutex_unlock(&dev->struct_mutex);
11732
11733 intel_frontbuffer_flip_prepare(dev,
11734 to_intel_plane(primary)->frontbuffer_bit);
11735
11736 trace_i915_flip_request(intel_crtc->plane, obj);
11737
11738 return 0;
11739
11740 cleanup_unpin:
11741 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11742 cleanup_pending:
11743 if (!IS_ERR_OR_NULL(request))
11744 i915_add_request_no_flush(request);
11745 atomic_dec(&intel_crtc->unpin_work_count);
11746 mutex_unlock(&dev->struct_mutex);
11747 cleanup:
11748 crtc->primary->fb = old_fb;
11749 update_state_fb(crtc->primary);
11750
11751 i915_gem_object_put_unlocked(obj);
11752 drm_framebuffer_unreference(work->old_fb);
11753
11754 spin_lock_irq(&dev->event_lock);
11755 intel_crtc->flip_work = NULL;
11756 spin_unlock_irq(&dev->event_lock);
11757
11758 drm_crtc_vblank_put(crtc);
11759 free_work:
11760 kfree(work);
11761
11762 if (ret == -EIO) {
11763 struct drm_atomic_state *state;
11764 struct drm_plane_state *plane_state;
11765
11766 out_hang:
11767 state = drm_atomic_state_alloc(dev);
11768 if (!state)
11769 return -ENOMEM;
11770 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11771
11772 retry:
11773 plane_state = drm_atomic_get_plane_state(state, primary);
11774 ret = PTR_ERR_OR_ZERO(plane_state);
11775 if (!ret) {
11776 drm_atomic_set_fb_for_plane(plane_state, fb);
11777
11778 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11779 if (!ret)
11780 ret = drm_atomic_commit(state);
11781 }
11782
11783 if (ret == -EDEADLK) {
11784 drm_modeset_backoff(state->acquire_ctx);
11785 drm_atomic_state_clear(state);
11786 goto retry;
11787 }
11788
11789 if (ret)
11790 drm_atomic_state_free(state);
11791
11792 if (ret == 0 && event) {
11793 spin_lock_irq(&dev->event_lock);
11794 drm_crtc_send_vblank_event(crtc, event);
11795 spin_unlock_irq(&dev->event_lock);
11796 }
11797 }
11798 return ret;
11799 }
11800
11801
11802 /**
11803 * intel_wm_need_update - Check whether watermarks need updating
11804 * @plane: drm plane
11805 * @state: new plane state
11806 *
11807 * Check current plane state versus the new one to determine whether
11808 * watermarks need to be recalculated.
11809 *
11810 * Returns true or false.
11811 */
11812 static bool intel_wm_need_update(struct drm_plane *plane,
11813 struct drm_plane_state *state)
11814 {
11815 struct intel_plane_state *new = to_intel_plane_state(state);
11816 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11817
11818 /* Update watermarks on tiling or size changes. */
11819 if (new->visible != cur->visible)
11820 return true;
11821
11822 if (!cur->base.fb || !new->base.fb)
11823 return false;
11824
11825 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11826 cur->base.rotation != new->base.rotation ||
11827 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11828 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11829 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11830 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11831 return true;
11832
11833 return false;
11834 }
11835
11836 static bool needs_scaling(struct intel_plane_state *state)
11837 {
11838 int src_w = drm_rect_width(&state->src) >> 16;
11839 int src_h = drm_rect_height(&state->src) >> 16;
11840 int dst_w = drm_rect_width(&state->dst);
11841 int dst_h = drm_rect_height(&state->dst);
11842
11843 return (src_w != dst_w || src_h != dst_h);
11844 }
11845
11846 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11847 struct drm_plane_state *plane_state)
11848 {
11849 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11850 struct drm_crtc *crtc = crtc_state->crtc;
11851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11852 struct drm_plane *plane = plane_state->plane;
11853 struct drm_device *dev = crtc->dev;
11854 struct drm_i915_private *dev_priv = to_i915(dev);
11855 struct intel_plane_state *old_plane_state =
11856 to_intel_plane_state(plane->state);
11857 bool mode_changed = needs_modeset(crtc_state);
11858 bool was_crtc_enabled = crtc->state->active;
11859 bool is_crtc_enabled = crtc_state->active;
11860 bool turn_off, turn_on, visible, was_visible;
11861 struct drm_framebuffer *fb = plane_state->fb;
11862 int ret;
11863
11864 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
11865 ret = skl_update_scaler_plane(
11866 to_intel_crtc_state(crtc_state),
11867 to_intel_plane_state(plane_state));
11868 if (ret)
11869 return ret;
11870 }
11871
11872 was_visible = old_plane_state->visible;
11873 visible = to_intel_plane_state(plane_state)->visible;
11874
11875 if (!was_crtc_enabled && WARN_ON(was_visible))
11876 was_visible = false;
11877
11878 /*
11879 * Visibility is calculated as if the crtc was on, but
11880 * after scaler setup everything depends on it being off
11881 * when the crtc isn't active.
11882 *
11883 * FIXME this is wrong for watermarks. Watermarks should also
11884 * be computed as if the pipe would be active. Perhaps move
11885 * per-plane wm computation to the .check_plane() hook, and
11886 * only combine the results from all planes in the current place?
11887 */
11888 if (!is_crtc_enabled)
11889 to_intel_plane_state(plane_state)->visible = visible = false;
11890
11891 if (!was_visible && !visible)
11892 return 0;
11893
11894 if (fb != old_plane_state->base.fb)
11895 pipe_config->fb_changed = true;
11896
11897 turn_off = was_visible && (!visible || mode_changed);
11898 turn_on = visible && (!was_visible || mode_changed);
11899
11900 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11901 intel_crtc->base.base.id,
11902 intel_crtc->base.name,
11903 plane->base.id, plane->name,
11904 fb ? fb->base.id : -1);
11905
11906 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11907 plane->base.id, plane->name,
11908 was_visible, visible,
11909 turn_off, turn_on, mode_changed);
11910
11911 if (turn_on) {
11912 pipe_config->update_wm_pre = true;
11913
11914 /* must disable cxsr around plane enable/disable */
11915 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11916 pipe_config->disable_cxsr = true;
11917 } else if (turn_off) {
11918 pipe_config->update_wm_post = true;
11919
11920 /* must disable cxsr around plane enable/disable */
11921 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11922 pipe_config->disable_cxsr = true;
11923 } else if (intel_wm_need_update(plane, plane_state)) {
11924 /* FIXME bollocks */
11925 pipe_config->update_wm_pre = true;
11926 pipe_config->update_wm_post = true;
11927 }
11928
11929 /* Pre-gen9 platforms need two-step watermark updates */
11930 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11931 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11932 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11933
11934 if (visible || was_visible)
11935 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11936
11937 /*
11938 * WaCxSRDisabledForSpriteScaling:ivb
11939 *
11940 * cstate->update_wm was already set above, so this flag will
11941 * take effect when we commit and program watermarks.
11942 */
11943 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11944 needs_scaling(to_intel_plane_state(plane_state)) &&
11945 !needs_scaling(old_plane_state))
11946 pipe_config->disable_lp_wm = true;
11947
11948 return 0;
11949 }
11950
11951 static bool encoders_cloneable(const struct intel_encoder *a,
11952 const struct intel_encoder *b)
11953 {
11954 /* masks could be asymmetric, so check both ways */
11955 return a == b || (a->cloneable & (1 << b->type) &&
11956 b->cloneable & (1 << a->type));
11957 }
11958
11959 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11960 struct intel_crtc *crtc,
11961 struct intel_encoder *encoder)
11962 {
11963 struct intel_encoder *source_encoder;
11964 struct drm_connector *connector;
11965 struct drm_connector_state *connector_state;
11966 int i;
11967
11968 for_each_connector_in_state(state, connector, connector_state, i) {
11969 if (connector_state->crtc != &crtc->base)
11970 continue;
11971
11972 source_encoder =
11973 to_intel_encoder(connector_state->best_encoder);
11974 if (!encoders_cloneable(encoder, source_encoder))
11975 return false;
11976 }
11977
11978 return true;
11979 }
11980
11981 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11982 struct drm_crtc_state *crtc_state)
11983 {
11984 struct drm_device *dev = crtc->dev;
11985 struct drm_i915_private *dev_priv = to_i915(dev);
11986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11987 struct intel_crtc_state *pipe_config =
11988 to_intel_crtc_state(crtc_state);
11989 struct drm_atomic_state *state = crtc_state->state;
11990 int ret;
11991 bool mode_changed = needs_modeset(crtc_state);
11992
11993 if (mode_changed && !crtc_state->active)
11994 pipe_config->update_wm_post = true;
11995
11996 if (mode_changed && crtc_state->enable &&
11997 dev_priv->display.crtc_compute_clock &&
11998 !WARN_ON(pipe_config->shared_dpll)) {
11999 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12000 pipe_config);
12001 if (ret)
12002 return ret;
12003 }
12004
12005 if (crtc_state->color_mgmt_changed) {
12006 ret = intel_color_check(crtc, crtc_state);
12007 if (ret)
12008 return ret;
12009
12010 /*
12011 * Changing color management on Intel hardware is
12012 * handled as part of planes update.
12013 */
12014 crtc_state->planes_changed = true;
12015 }
12016
12017 ret = 0;
12018 if (dev_priv->display.compute_pipe_wm) {
12019 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12020 if (ret) {
12021 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12022 return ret;
12023 }
12024 }
12025
12026 if (dev_priv->display.compute_intermediate_wm &&
12027 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12028 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12029 return 0;
12030
12031 /*
12032 * Calculate 'intermediate' watermarks that satisfy both the
12033 * old state and the new state. We can program these
12034 * immediately.
12035 */
12036 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12037 intel_crtc,
12038 pipe_config);
12039 if (ret) {
12040 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12041 return ret;
12042 }
12043 } else if (dev_priv->display.compute_intermediate_wm) {
12044 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12045 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12046 }
12047
12048 if (INTEL_INFO(dev)->gen >= 9) {
12049 if (mode_changed)
12050 ret = skl_update_scaler_crtc(pipe_config);
12051
12052 if (!ret)
12053 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12054 pipe_config);
12055 }
12056
12057 return ret;
12058 }
12059
12060 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12061 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12062 .atomic_begin = intel_begin_crtc_commit,
12063 .atomic_flush = intel_finish_crtc_commit,
12064 .atomic_check = intel_crtc_atomic_check,
12065 };
12066
12067 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12068 {
12069 struct intel_connector *connector;
12070
12071 for_each_intel_connector(dev, connector) {
12072 if (connector->base.state->crtc)
12073 drm_connector_unreference(&connector->base);
12074
12075 if (connector->base.encoder) {
12076 connector->base.state->best_encoder =
12077 connector->base.encoder;
12078 connector->base.state->crtc =
12079 connector->base.encoder->crtc;
12080
12081 drm_connector_reference(&connector->base);
12082 } else {
12083 connector->base.state->best_encoder = NULL;
12084 connector->base.state->crtc = NULL;
12085 }
12086 }
12087 }
12088
12089 static void
12090 connected_sink_compute_bpp(struct intel_connector *connector,
12091 struct intel_crtc_state *pipe_config)
12092 {
12093 int bpp = pipe_config->pipe_bpp;
12094
12095 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12096 connector->base.base.id,
12097 connector->base.name);
12098
12099 /* Don't use an invalid EDID bpc value */
12100 if (connector->base.display_info.bpc &&
12101 connector->base.display_info.bpc * 3 < bpp) {
12102 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12103 bpp, connector->base.display_info.bpc*3);
12104 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12105 }
12106
12107 /* Clamp bpp to default limit on screens without EDID 1.4 */
12108 if (connector->base.display_info.bpc == 0) {
12109 int type = connector->base.connector_type;
12110 int clamp_bpp = 24;
12111
12112 /* Fall back to 18 bpp when DP sink capability is unknown. */
12113 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12114 type == DRM_MODE_CONNECTOR_eDP)
12115 clamp_bpp = 18;
12116
12117 if (bpp > clamp_bpp) {
12118 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12119 bpp, clamp_bpp);
12120 pipe_config->pipe_bpp = clamp_bpp;
12121 }
12122 }
12123 }
12124
12125 static int
12126 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12127 struct intel_crtc_state *pipe_config)
12128 {
12129 struct drm_device *dev = crtc->base.dev;
12130 struct drm_atomic_state *state;
12131 struct drm_connector *connector;
12132 struct drm_connector_state *connector_state;
12133 int bpp, i;
12134
12135 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12136 bpp = 10*3;
12137 else if (INTEL_INFO(dev)->gen >= 5)
12138 bpp = 12*3;
12139 else
12140 bpp = 8*3;
12141
12142
12143 pipe_config->pipe_bpp = bpp;
12144
12145 state = pipe_config->base.state;
12146
12147 /* Clamp display bpp to EDID value */
12148 for_each_connector_in_state(state, connector, connector_state, i) {
12149 if (connector_state->crtc != &crtc->base)
12150 continue;
12151
12152 connected_sink_compute_bpp(to_intel_connector(connector),
12153 pipe_config);
12154 }
12155
12156 return bpp;
12157 }
12158
12159 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12160 {
12161 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12162 "type: 0x%x flags: 0x%x\n",
12163 mode->crtc_clock,
12164 mode->crtc_hdisplay, mode->crtc_hsync_start,
12165 mode->crtc_hsync_end, mode->crtc_htotal,
12166 mode->crtc_vdisplay, mode->crtc_vsync_start,
12167 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12168 }
12169
12170 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12171 struct intel_crtc_state *pipe_config,
12172 const char *context)
12173 {
12174 struct drm_device *dev = crtc->base.dev;
12175 struct drm_plane *plane;
12176 struct intel_plane *intel_plane;
12177 struct intel_plane_state *state;
12178 struct drm_framebuffer *fb;
12179
12180 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12181 crtc->base.base.id, crtc->base.name,
12182 context, pipe_config, pipe_name(crtc->pipe));
12183
12184 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12185 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12186 pipe_config->pipe_bpp, pipe_config->dither);
12187 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12188 pipe_config->has_pch_encoder,
12189 pipe_config->fdi_lanes,
12190 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12191 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12192 pipe_config->fdi_m_n.tu);
12193 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12194 intel_crtc_has_dp_encoder(pipe_config),
12195 pipe_config->lane_count,
12196 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12197 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12198 pipe_config->dp_m_n.tu);
12199
12200 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12201 intel_crtc_has_dp_encoder(pipe_config),
12202 pipe_config->lane_count,
12203 pipe_config->dp_m2_n2.gmch_m,
12204 pipe_config->dp_m2_n2.gmch_n,
12205 pipe_config->dp_m2_n2.link_m,
12206 pipe_config->dp_m2_n2.link_n,
12207 pipe_config->dp_m2_n2.tu);
12208
12209 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12210 pipe_config->has_audio,
12211 pipe_config->has_infoframe);
12212
12213 DRM_DEBUG_KMS("requested mode:\n");
12214 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12215 DRM_DEBUG_KMS("adjusted mode:\n");
12216 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12217 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12218 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12219 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12220 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12221 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12222 crtc->num_scalers,
12223 pipe_config->scaler_state.scaler_users,
12224 pipe_config->scaler_state.scaler_id);
12225 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12226 pipe_config->gmch_pfit.control,
12227 pipe_config->gmch_pfit.pgm_ratios,
12228 pipe_config->gmch_pfit.lvds_border_bits);
12229 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12230 pipe_config->pch_pfit.pos,
12231 pipe_config->pch_pfit.size,
12232 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12233 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12234 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12235
12236 if (IS_BROXTON(dev)) {
12237 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12238 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12239 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12240 pipe_config->ddi_pll_sel,
12241 pipe_config->dpll_hw_state.ebb0,
12242 pipe_config->dpll_hw_state.ebb4,
12243 pipe_config->dpll_hw_state.pll0,
12244 pipe_config->dpll_hw_state.pll1,
12245 pipe_config->dpll_hw_state.pll2,
12246 pipe_config->dpll_hw_state.pll3,
12247 pipe_config->dpll_hw_state.pll6,
12248 pipe_config->dpll_hw_state.pll8,
12249 pipe_config->dpll_hw_state.pll9,
12250 pipe_config->dpll_hw_state.pll10,
12251 pipe_config->dpll_hw_state.pcsdw12);
12252 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12253 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12254 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12255 pipe_config->ddi_pll_sel,
12256 pipe_config->dpll_hw_state.ctrl1,
12257 pipe_config->dpll_hw_state.cfgcr1,
12258 pipe_config->dpll_hw_state.cfgcr2);
12259 } else if (HAS_DDI(dev)) {
12260 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12261 pipe_config->ddi_pll_sel,
12262 pipe_config->dpll_hw_state.wrpll,
12263 pipe_config->dpll_hw_state.spll);
12264 } else {
12265 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12266 "fp0: 0x%x, fp1: 0x%x\n",
12267 pipe_config->dpll_hw_state.dpll,
12268 pipe_config->dpll_hw_state.dpll_md,
12269 pipe_config->dpll_hw_state.fp0,
12270 pipe_config->dpll_hw_state.fp1);
12271 }
12272
12273 DRM_DEBUG_KMS("planes on this crtc\n");
12274 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12275 intel_plane = to_intel_plane(plane);
12276 if (intel_plane->pipe != crtc->pipe)
12277 continue;
12278
12279 state = to_intel_plane_state(plane->state);
12280 fb = state->base.fb;
12281 if (!fb) {
12282 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12283 plane->base.id, plane->name, state->scaler_id);
12284 continue;
12285 }
12286
12287 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12288 plane->base.id, plane->name);
12289 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12290 fb->base.id, fb->width, fb->height,
12291 drm_get_format_name(fb->pixel_format));
12292 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12293 state->scaler_id,
12294 state->src.x1 >> 16, state->src.y1 >> 16,
12295 drm_rect_width(&state->src) >> 16,
12296 drm_rect_height(&state->src) >> 16,
12297 state->dst.x1, state->dst.y1,
12298 drm_rect_width(&state->dst),
12299 drm_rect_height(&state->dst));
12300 }
12301 }
12302
12303 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12304 {
12305 struct drm_device *dev = state->dev;
12306 struct drm_connector *connector;
12307 unsigned int used_ports = 0;
12308
12309 /*
12310 * Walk the connector list instead of the encoder
12311 * list to detect the problem on ddi platforms
12312 * where there's just one encoder per digital port.
12313 */
12314 drm_for_each_connector(connector, dev) {
12315 struct drm_connector_state *connector_state;
12316 struct intel_encoder *encoder;
12317
12318 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12319 if (!connector_state)
12320 connector_state = connector->state;
12321
12322 if (!connector_state->best_encoder)
12323 continue;
12324
12325 encoder = to_intel_encoder(connector_state->best_encoder);
12326
12327 WARN_ON(!connector_state->crtc);
12328
12329 switch (encoder->type) {
12330 unsigned int port_mask;
12331 case INTEL_OUTPUT_UNKNOWN:
12332 if (WARN_ON(!HAS_DDI(dev)))
12333 break;
12334 case INTEL_OUTPUT_DP:
12335 case INTEL_OUTPUT_HDMI:
12336 case INTEL_OUTPUT_EDP:
12337 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12338
12339 /* the same port mustn't appear more than once */
12340 if (used_ports & port_mask)
12341 return false;
12342
12343 used_ports |= port_mask;
12344 default:
12345 break;
12346 }
12347 }
12348
12349 return true;
12350 }
12351
12352 static void
12353 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12354 {
12355 struct drm_crtc_state tmp_state;
12356 struct intel_crtc_scaler_state scaler_state;
12357 struct intel_dpll_hw_state dpll_hw_state;
12358 struct intel_shared_dpll *shared_dpll;
12359 uint32_t ddi_pll_sel;
12360 bool force_thru;
12361
12362 /* FIXME: before the switch to atomic started, a new pipe_config was
12363 * kzalloc'd. Code that depends on any field being zero should be
12364 * fixed, so that the crtc_state can be safely duplicated. For now,
12365 * only fields that are know to not cause problems are preserved. */
12366
12367 tmp_state = crtc_state->base;
12368 scaler_state = crtc_state->scaler_state;
12369 shared_dpll = crtc_state->shared_dpll;
12370 dpll_hw_state = crtc_state->dpll_hw_state;
12371 ddi_pll_sel = crtc_state->ddi_pll_sel;
12372 force_thru = crtc_state->pch_pfit.force_thru;
12373
12374 memset(crtc_state, 0, sizeof *crtc_state);
12375
12376 crtc_state->base = tmp_state;
12377 crtc_state->scaler_state = scaler_state;
12378 crtc_state->shared_dpll = shared_dpll;
12379 crtc_state->dpll_hw_state = dpll_hw_state;
12380 crtc_state->ddi_pll_sel = ddi_pll_sel;
12381 crtc_state->pch_pfit.force_thru = force_thru;
12382 }
12383
12384 static int
12385 intel_modeset_pipe_config(struct drm_crtc *crtc,
12386 struct intel_crtc_state *pipe_config)
12387 {
12388 struct drm_atomic_state *state = pipe_config->base.state;
12389 struct intel_encoder *encoder;
12390 struct drm_connector *connector;
12391 struct drm_connector_state *connector_state;
12392 int base_bpp, ret = -EINVAL;
12393 int i;
12394 bool retry = true;
12395
12396 clear_intel_crtc_state(pipe_config);
12397
12398 pipe_config->cpu_transcoder =
12399 (enum transcoder) to_intel_crtc(crtc)->pipe;
12400
12401 /*
12402 * Sanitize sync polarity flags based on requested ones. If neither
12403 * positive or negative polarity is requested, treat this as meaning
12404 * negative polarity.
12405 */
12406 if (!(pipe_config->base.adjusted_mode.flags &
12407 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12408 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12409
12410 if (!(pipe_config->base.adjusted_mode.flags &
12411 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12412 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12413
12414 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12415 pipe_config);
12416 if (base_bpp < 0)
12417 goto fail;
12418
12419 /*
12420 * Determine the real pipe dimensions. Note that stereo modes can
12421 * increase the actual pipe size due to the frame doubling and
12422 * insertion of additional space for blanks between the frame. This
12423 * is stored in the crtc timings. We use the requested mode to do this
12424 * computation to clearly distinguish it from the adjusted mode, which
12425 * can be changed by the connectors in the below retry loop.
12426 */
12427 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12428 &pipe_config->pipe_src_w,
12429 &pipe_config->pipe_src_h);
12430
12431 for_each_connector_in_state(state, connector, connector_state, i) {
12432 if (connector_state->crtc != crtc)
12433 continue;
12434
12435 encoder = to_intel_encoder(connector_state->best_encoder);
12436
12437 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12438 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12439 goto fail;
12440 }
12441
12442 /*
12443 * Determine output_types before calling the .compute_config()
12444 * hooks so that the hooks can use this information safely.
12445 */
12446 pipe_config->output_types |= 1 << encoder->type;
12447 }
12448
12449 encoder_retry:
12450 /* Ensure the port clock defaults are reset when retrying. */
12451 pipe_config->port_clock = 0;
12452 pipe_config->pixel_multiplier = 1;
12453
12454 /* Fill in default crtc timings, allow encoders to overwrite them. */
12455 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12456 CRTC_STEREO_DOUBLE);
12457
12458 /* Pass our mode to the connectors and the CRTC to give them a chance to
12459 * adjust it according to limitations or connector properties, and also
12460 * a chance to reject the mode entirely.
12461 */
12462 for_each_connector_in_state(state, connector, connector_state, i) {
12463 if (connector_state->crtc != crtc)
12464 continue;
12465
12466 encoder = to_intel_encoder(connector_state->best_encoder);
12467
12468 if (!(encoder->compute_config(encoder, pipe_config))) {
12469 DRM_DEBUG_KMS("Encoder config failure\n");
12470 goto fail;
12471 }
12472 }
12473
12474 /* Set default port clock if not overwritten by the encoder. Needs to be
12475 * done afterwards in case the encoder adjusts the mode. */
12476 if (!pipe_config->port_clock)
12477 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12478 * pipe_config->pixel_multiplier;
12479
12480 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12481 if (ret < 0) {
12482 DRM_DEBUG_KMS("CRTC fixup failed\n");
12483 goto fail;
12484 }
12485
12486 if (ret == RETRY) {
12487 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12488 ret = -EINVAL;
12489 goto fail;
12490 }
12491
12492 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12493 retry = false;
12494 goto encoder_retry;
12495 }
12496
12497 /* Dithering seems to not pass-through bits correctly when it should, so
12498 * only enable it on 6bpc panels. */
12499 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12500 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12501 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12502
12503 fail:
12504 return ret;
12505 }
12506
12507 static void
12508 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12509 {
12510 struct drm_crtc *crtc;
12511 struct drm_crtc_state *crtc_state;
12512 int i;
12513
12514 /* Double check state. */
12515 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12516 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12517
12518 /* Update hwmode for vblank functions */
12519 if (crtc->state->active)
12520 crtc->hwmode = crtc->state->adjusted_mode;
12521 else
12522 crtc->hwmode.crtc_clock = 0;
12523
12524 /*
12525 * Update legacy state to satisfy fbc code. This can
12526 * be removed when fbc uses the atomic state.
12527 */
12528 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12529 struct drm_plane_state *plane_state = crtc->primary->state;
12530
12531 crtc->primary->fb = plane_state->fb;
12532 crtc->x = plane_state->src_x >> 16;
12533 crtc->y = plane_state->src_y >> 16;
12534 }
12535 }
12536 }
12537
12538 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12539 {
12540 int diff;
12541
12542 if (clock1 == clock2)
12543 return true;
12544
12545 if (!clock1 || !clock2)
12546 return false;
12547
12548 diff = abs(clock1 - clock2);
12549
12550 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12551 return true;
12552
12553 return false;
12554 }
12555
12556 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12557 list_for_each_entry((intel_crtc), \
12558 &(dev)->mode_config.crtc_list, \
12559 base.head) \
12560 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12561
12562 static bool
12563 intel_compare_m_n(unsigned int m, unsigned int n,
12564 unsigned int m2, unsigned int n2,
12565 bool exact)
12566 {
12567 if (m == m2 && n == n2)
12568 return true;
12569
12570 if (exact || !m || !n || !m2 || !n2)
12571 return false;
12572
12573 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12574
12575 if (n > n2) {
12576 while (n > n2) {
12577 m2 <<= 1;
12578 n2 <<= 1;
12579 }
12580 } else if (n < n2) {
12581 while (n < n2) {
12582 m <<= 1;
12583 n <<= 1;
12584 }
12585 }
12586
12587 if (n != n2)
12588 return false;
12589
12590 return intel_fuzzy_clock_check(m, m2);
12591 }
12592
12593 static bool
12594 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12595 struct intel_link_m_n *m2_n2,
12596 bool adjust)
12597 {
12598 if (m_n->tu == m2_n2->tu &&
12599 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12600 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12601 intel_compare_m_n(m_n->link_m, m_n->link_n,
12602 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12603 if (adjust)
12604 *m2_n2 = *m_n;
12605
12606 return true;
12607 }
12608
12609 return false;
12610 }
12611
12612 static bool
12613 intel_pipe_config_compare(struct drm_device *dev,
12614 struct intel_crtc_state *current_config,
12615 struct intel_crtc_state *pipe_config,
12616 bool adjust)
12617 {
12618 bool ret = true;
12619
12620 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12621 do { \
12622 if (!adjust) \
12623 DRM_ERROR(fmt, ##__VA_ARGS__); \
12624 else \
12625 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12626 } while (0)
12627
12628 #define PIPE_CONF_CHECK_X(name) \
12629 if (current_config->name != pipe_config->name) { \
12630 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12631 "(expected 0x%08x, found 0x%08x)\n", \
12632 current_config->name, \
12633 pipe_config->name); \
12634 ret = false; \
12635 }
12636
12637 #define PIPE_CONF_CHECK_I(name) \
12638 if (current_config->name != pipe_config->name) { \
12639 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12640 "(expected %i, found %i)\n", \
12641 current_config->name, \
12642 pipe_config->name); \
12643 ret = false; \
12644 }
12645
12646 #define PIPE_CONF_CHECK_P(name) \
12647 if (current_config->name != pipe_config->name) { \
12648 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12649 "(expected %p, found %p)\n", \
12650 current_config->name, \
12651 pipe_config->name); \
12652 ret = false; \
12653 }
12654
12655 #define PIPE_CONF_CHECK_M_N(name) \
12656 if (!intel_compare_link_m_n(&current_config->name, \
12657 &pipe_config->name,\
12658 adjust)) { \
12659 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12660 "(expected tu %i gmch %i/%i link %i/%i, " \
12661 "found tu %i, gmch %i/%i link %i/%i)\n", \
12662 current_config->name.tu, \
12663 current_config->name.gmch_m, \
12664 current_config->name.gmch_n, \
12665 current_config->name.link_m, \
12666 current_config->name.link_n, \
12667 pipe_config->name.tu, \
12668 pipe_config->name.gmch_m, \
12669 pipe_config->name.gmch_n, \
12670 pipe_config->name.link_m, \
12671 pipe_config->name.link_n); \
12672 ret = false; \
12673 }
12674
12675 /* This is required for BDW+ where there is only one set of registers for
12676 * switching between high and low RR.
12677 * This macro can be used whenever a comparison has to be made between one
12678 * hw state and multiple sw state variables.
12679 */
12680 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12681 if (!intel_compare_link_m_n(&current_config->name, \
12682 &pipe_config->name, adjust) && \
12683 !intel_compare_link_m_n(&current_config->alt_name, \
12684 &pipe_config->name, adjust)) { \
12685 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12686 "(expected tu %i gmch %i/%i link %i/%i, " \
12687 "or tu %i gmch %i/%i link %i/%i, " \
12688 "found tu %i, gmch %i/%i link %i/%i)\n", \
12689 current_config->name.tu, \
12690 current_config->name.gmch_m, \
12691 current_config->name.gmch_n, \
12692 current_config->name.link_m, \
12693 current_config->name.link_n, \
12694 current_config->alt_name.tu, \
12695 current_config->alt_name.gmch_m, \
12696 current_config->alt_name.gmch_n, \
12697 current_config->alt_name.link_m, \
12698 current_config->alt_name.link_n, \
12699 pipe_config->name.tu, \
12700 pipe_config->name.gmch_m, \
12701 pipe_config->name.gmch_n, \
12702 pipe_config->name.link_m, \
12703 pipe_config->name.link_n); \
12704 ret = false; \
12705 }
12706
12707 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12708 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12709 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12710 "(expected %i, found %i)\n", \
12711 current_config->name & (mask), \
12712 pipe_config->name & (mask)); \
12713 ret = false; \
12714 }
12715
12716 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12717 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12718 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12719 "(expected %i, found %i)\n", \
12720 current_config->name, \
12721 pipe_config->name); \
12722 ret = false; \
12723 }
12724
12725 #define PIPE_CONF_QUIRK(quirk) \
12726 ((current_config->quirks | pipe_config->quirks) & (quirk))
12727
12728 PIPE_CONF_CHECK_I(cpu_transcoder);
12729
12730 PIPE_CONF_CHECK_I(has_pch_encoder);
12731 PIPE_CONF_CHECK_I(fdi_lanes);
12732 PIPE_CONF_CHECK_M_N(fdi_m_n);
12733
12734 PIPE_CONF_CHECK_I(lane_count);
12735 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12736
12737 if (INTEL_INFO(dev)->gen < 8) {
12738 PIPE_CONF_CHECK_M_N(dp_m_n);
12739
12740 if (current_config->has_drrs)
12741 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12742 } else
12743 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12744
12745 PIPE_CONF_CHECK_X(output_types);
12746
12747 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12748 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12749 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12750 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12751 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12752 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12753
12754 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12755 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12756 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12757 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12758 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12759 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12760
12761 PIPE_CONF_CHECK_I(pixel_multiplier);
12762 PIPE_CONF_CHECK_I(has_hdmi_sink);
12763 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12764 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12765 PIPE_CONF_CHECK_I(limited_color_range);
12766 PIPE_CONF_CHECK_I(has_infoframe);
12767
12768 PIPE_CONF_CHECK_I(has_audio);
12769
12770 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12771 DRM_MODE_FLAG_INTERLACE);
12772
12773 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12774 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12775 DRM_MODE_FLAG_PHSYNC);
12776 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12777 DRM_MODE_FLAG_NHSYNC);
12778 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12779 DRM_MODE_FLAG_PVSYNC);
12780 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12781 DRM_MODE_FLAG_NVSYNC);
12782 }
12783
12784 PIPE_CONF_CHECK_X(gmch_pfit.control);
12785 /* pfit ratios are autocomputed by the hw on gen4+ */
12786 if (INTEL_INFO(dev)->gen < 4)
12787 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12788 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12789
12790 if (!adjust) {
12791 PIPE_CONF_CHECK_I(pipe_src_w);
12792 PIPE_CONF_CHECK_I(pipe_src_h);
12793
12794 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12795 if (current_config->pch_pfit.enabled) {
12796 PIPE_CONF_CHECK_X(pch_pfit.pos);
12797 PIPE_CONF_CHECK_X(pch_pfit.size);
12798 }
12799
12800 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12801 }
12802
12803 /* BDW+ don't expose a synchronous way to read the state */
12804 if (IS_HASWELL(dev))
12805 PIPE_CONF_CHECK_I(ips_enabled);
12806
12807 PIPE_CONF_CHECK_I(double_wide);
12808
12809 PIPE_CONF_CHECK_X(ddi_pll_sel);
12810
12811 PIPE_CONF_CHECK_P(shared_dpll);
12812 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12813 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12814 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12815 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12816 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12817 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12818 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12819 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12820 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12821
12822 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12823 PIPE_CONF_CHECK_X(dsi_pll.div);
12824
12825 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12826 PIPE_CONF_CHECK_I(pipe_bpp);
12827
12828 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12829 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12830
12831 #undef PIPE_CONF_CHECK_X
12832 #undef PIPE_CONF_CHECK_I
12833 #undef PIPE_CONF_CHECK_P
12834 #undef PIPE_CONF_CHECK_FLAGS
12835 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12836 #undef PIPE_CONF_QUIRK
12837 #undef INTEL_ERR_OR_DBG_KMS
12838
12839 return ret;
12840 }
12841
12842 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12843 const struct intel_crtc_state *pipe_config)
12844 {
12845 if (pipe_config->has_pch_encoder) {
12846 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12847 &pipe_config->fdi_m_n);
12848 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12849
12850 /*
12851 * FDI already provided one idea for the dotclock.
12852 * Yell if the encoder disagrees.
12853 */
12854 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12855 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12856 fdi_dotclock, dotclock);
12857 }
12858 }
12859
12860 static void verify_wm_state(struct drm_crtc *crtc,
12861 struct drm_crtc_state *new_state)
12862 {
12863 struct drm_device *dev = crtc->dev;
12864 struct drm_i915_private *dev_priv = to_i915(dev);
12865 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12866 struct skl_ddb_entry *hw_entry, *sw_entry;
12867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12868 const enum pipe pipe = intel_crtc->pipe;
12869 int plane;
12870
12871 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12872 return;
12873
12874 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12875 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12876
12877 /* planes */
12878 for_each_plane(dev_priv, pipe, plane) {
12879 hw_entry = &hw_ddb.plane[pipe][plane];
12880 sw_entry = &sw_ddb->plane[pipe][plane];
12881
12882 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12883 continue;
12884
12885 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12886 "(expected (%u,%u), found (%u,%u))\n",
12887 pipe_name(pipe), plane + 1,
12888 sw_entry->start, sw_entry->end,
12889 hw_entry->start, hw_entry->end);
12890 }
12891
12892 /* cursor */
12893 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12894 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12895
12896 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12897 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12898 "(expected (%u,%u), found (%u,%u))\n",
12899 pipe_name(pipe),
12900 sw_entry->start, sw_entry->end,
12901 hw_entry->start, hw_entry->end);
12902 }
12903 }
12904
12905 static void
12906 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12907 {
12908 struct drm_connector *connector;
12909
12910 drm_for_each_connector(connector, dev) {
12911 struct drm_encoder *encoder = connector->encoder;
12912 struct drm_connector_state *state = connector->state;
12913
12914 if (state->crtc != crtc)
12915 continue;
12916
12917 intel_connector_verify_state(to_intel_connector(connector));
12918
12919 I915_STATE_WARN(state->best_encoder != encoder,
12920 "connector's atomic encoder doesn't match legacy encoder\n");
12921 }
12922 }
12923
12924 static void
12925 verify_encoder_state(struct drm_device *dev)
12926 {
12927 struct intel_encoder *encoder;
12928 struct intel_connector *connector;
12929
12930 for_each_intel_encoder(dev, encoder) {
12931 bool enabled = false;
12932 enum pipe pipe;
12933
12934 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12935 encoder->base.base.id,
12936 encoder->base.name);
12937
12938 for_each_intel_connector(dev, connector) {
12939 if (connector->base.state->best_encoder != &encoder->base)
12940 continue;
12941 enabled = true;
12942
12943 I915_STATE_WARN(connector->base.state->crtc !=
12944 encoder->base.crtc,
12945 "connector's crtc doesn't match encoder crtc\n");
12946 }
12947
12948 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12949 "encoder's enabled state mismatch "
12950 "(expected %i, found %i)\n",
12951 !!encoder->base.crtc, enabled);
12952
12953 if (!encoder->base.crtc) {
12954 bool active;
12955
12956 active = encoder->get_hw_state(encoder, &pipe);
12957 I915_STATE_WARN(active,
12958 "encoder detached but still enabled on pipe %c.\n",
12959 pipe_name(pipe));
12960 }
12961 }
12962 }
12963
12964 static void
12965 verify_crtc_state(struct drm_crtc *crtc,
12966 struct drm_crtc_state *old_crtc_state,
12967 struct drm_crtc_state *new_crtc_state)
12968 {
12969 struct drm_device *dev = crtc->dev;
12970 struct drm_i915_private *dev_priv = to_i915(dev);
12971 struct intel_encoder *encoder;
12972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12973 struct intel_crtc_state *pipe_config, *sw_config;
12974 struct drm_atomic_state *old_state;
12975 bool active;
12976
12977 old_state = old_crtc_state->state;
12978 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12979 pipe_config = to_intel_crtc_state(old_crtc_state);
12980 memset(pipe_config, 0, sizeof(*pipe_config));
12981 pipe_config->base.crtc = crtc;
12982 pipe_config->base.state = old_state;
12983
12984 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12985
12986 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12987
12988 /* hw state is inconsistent with the pipe quirk */
12989 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12990 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12991 active = new_crtc_state->active;
12992
12993 I915_STATE_WARN(new_crtc_state->active != active,
12994 "crtc active state doesn't match with hw state "
12995 "(expected %i, found %i)\n", new_crtc_state->active, active);
12996
12997 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12998 "transitional active state does not match atomic hw state "
12999 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13000
13001 for_each_encoder_on_crtc(dev, crtc, encoder) {
13002 enum pipe pipe;
13003
13004 active = encoder->get_hw_state(encoder, &pipe);
13005 I915_STATE_WARN(active != new_crtc_state->active,
13006 "[ENCODER:%i] active %i with crtc active %i\n",
13007 encoder->base.base.id, active, new_crtc_state->active);
13008
13009 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13010 "Encoder connected to wrong pipe %c\n",
13011 pipe_name(pipe));
13012
13013 if (active) {
13014 pipe_config->output_types |= 1 << encoder->type;
13015 encoder->get_config(encoder, pipe_config);
13016 }
13017 }
13018
13019 if (!new_crtc_state->active)
13020 return;
13021
13022 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13023
13024 sw_config = to_intel_crtc_state(crtc->state);
13025 if (!intel_pipe_config_compare(dev, sw_config,
13026 pipe_config, false)) {
13027 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13028 intel_dump_pipe_config(intel_crtc, pipe_config,
13029 "[hw state]");
13030 intel_dump_pipe_config(intel_crtc, sw_config,
13031 "[sw state]");
13032 }
13033 }
13034
13035 static void
13036 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13037 struct intel_shared_dpll *pll,
13038 struct drm_crtc *crtc,
13039 struct drm_crtc_state *new_state)
13040 {
13041 struct intel_dpll_hw_state dpll_hw_state;
13042 unsigned crtc_mask;
13043 bool active;
13044
13045 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13046
13047 DRM_DEBUG_KMS("%s\n", pll->name);
13048
13049 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13050
13051 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13052 I915_STATE_WARN(!pll->on && pll->active_mask,
13053 "pll in active use but not on in sw tracking\n");
13054 I915_STATE_WARN(pll->on && !pll->active_mask,
13055 "pll is on but not used by any active crtc\n");
13056 I915_STATE_WARN(pll->on != active,
13057 "pll on state mismatch (expected %i, found %i)\n",
13058 pll->on, active);
13059 }
13060
13061 if (!crtc) {
13062 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13063 "more active pll users than references: %x vs %x\n",
13064 pll->active_mask, pll->config.crtc_mask);
13065
13066 return;
13067 }
13068
13069 crtc_mask = 1 << drm_crtc_index(crtc);
13070
13071 if (new_state->active)
13072 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13073 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13074 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13075 else
13076 I915_STATE_WARN(pll->active_mask & crtc_mask,
13077 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13078 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13079
13080 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13081 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13082 crtc_mask, pll->config.crtc_mask);
13083
13084 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13085 &dpll_hw_state,
13086 sizeof(dpll_hw_state)),
13087 "pll hw state mismatch\n");
13088 }
13089
13090 static void
13091 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13092 struct drm_crtc_state *old_crtc_state,
13093 struct drm_crtc_state *new_crtc_state)
13094 {
13095 struct drm_i915_private *dev_priv = to_i915(dev);
13096 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13097 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13098
13099 if (new_state->shared_dpll)
13100 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13101
13102 if (old_state->shared_dpll &&
13103 old_state->shared_dpll != new_state->shared_dpll) {
13104 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13105 struct intel_shared_dpll *pll = old_state->shared_dpll;
13106
13107 I915_STATE_WARN(pll->active_mask & crtc_mask,
13108 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13109 pipe_name(drm_crtc_index(crtc)));
13110 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13111 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13112 pipe_name(drm_crtc_index(crtc)));
13113 }
13114 }
13115
13116 static void
13117 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13118 struct drm_crtc_state *old_state,
13119 struct drm_crtc_state *new_state)
13120 {
13121 if (!needs_modeset(new_state) &&
13122 !to_intel_crtc_state(new_state)->update_pipe)
13123 return;
13124
13125 verify_wm_state(crtc, new_state);
13126 verify_connector_state(crtc->dev, crtc);
13127 verify_crtc_state(crtc, old_state, new_state);
13128 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13129 }
13130
13131 static void
13132 verify_disabled_dpll_state(struct drm_device *dev)
13133 {
13134 struct drm_i915_private *dev_priv = to_i915(dev);
13135 int i;
13136
13137 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13138 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13139 }
13140
13141 static void
13142 intel_modeset_verify_disabled(struct drm_device *dev)
13143 {
13144 verify_encoder_state(dev);
13145 verify_connector_state(dev, NULL);
13146 verify_disabled_dpll_state(dev);
13147 }
13148
13149 static void update_scanline_offset(struct intel_crtc *crtc)
13150 {
13151 struct drm_device *dev = crtc->base.dev;
13152
13153 /*
13154 * The scanline counter increments at the leading edge of hsync.
13155 *
13156 * On most platforms it starts counting from vtotal-1 on the
13157 * first active line. That means the scanline counter value is
13158 * always one less than what we would expect. Ie. just after
13159 * start of vblank, which also occurs at start of hsync (on the
13160 * last active line), the scanline counter will read vblank_start-1.
13161 *
13162 * On gen2 the scanline counter starts counting from 1 instead
13163 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13164 * to keep the value positive), instead of adding one.
13165 *
13166 * On HSW+ the behaviour of the scanline counter depends on the output
13167 * type. For DP ports it behaves like most other platforms, but on HDMI
13168 * there's an extra 1 line difference. So we need to add two instead of
13169 * one to the value.
13170 */
13171 if (IS_GEN2(dev)) {
13172 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13173 int vtotal;
13174
13175 vtotal = adjusted_mode->crtc_vtotal;
13176 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13177 vtotal /= 2;
13178
13179 crtc->scanline_offset = vtotal - 1;
13180 } else if (HAS_DDI(dev) &&
13181 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13182 crtc->scanline_offset = 2;
13183 } else
13184 crtc->scanline_offset = 1;
13185 }
13186
13187 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13188 {
13189 struct drm_device *dev = state->dev;
13190 struct drm_i915_private *dev_priv = to_i915(dev);
13191 struct intel_shared_dpll_config *shared_dpll = NULL;
13192 struct drm_crtc *crtc;
13193 struct drm_crtc_state *crtc_state;
13194 int i;
13195
13196 if (!dev_priv->display.crtc_compute_clock)
13197 return;
13198
13199 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13201 struct intel_shared_dpll *old_dpll =
13202 to_intel_crtc_state(crtc->state)->shared_dpll;
13203
13204 if (!needs_modeset(crtc_state))
13205 continue;
13206
13207 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13208
13209 if (!old_dpll)
13210 continue;
13211
13212 if (!shared_dpll)
13213 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13214
13215 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13216 }
13217 }
13218
13219 /*
13220 * This implements the workaround described in the "notes" section of the mode
13221 * set sequence documentation. When going from no pipes or single pipe to
13222 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13223 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13224 */
13225 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13226 {
13227 struct drm_crtc_state *crtc_state;
13228 struct intel_crtc *intel_crtc;
13229 struct drm_crtc *crtc;
13230 struct intel_crtc_state *first_crtc_state = NULL;
13231 struct intel_crtc_state *other_crtc_state = NULL;
13232 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13233 int i;
13234
13235 /* look at all crtc's that are going to be enabled in during modeset */
13236 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13237 intel_crtc = to_intel_crtc(crtc);
13238
13239 if (!crtc_state->active || !needs_modeset(crtc_state))
13240 continue;
13241
13242 if (first_crtc_state) {
13243 other_crtc_state = to_intel_crtc_state(crtc_state);
13244 break;
13245 } else {
13246 first_crtc_state = to_intel_crtc_state(crtc_state);
13247 first_pipe = intel_crtc->pipe;
13248 }
13249 }
13250
13251 /* No workaround needed? */
13252 if (!first_crtc_state)
13253 return 0;
13254
13255 /* w/a possibly needed, check how many crtc's are already enabled. */
13256 for_each_intel_crtc(state->dev, intel_crtc) {
13257 struct intel_crtc_state *pipe_config;
13258
13259 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13260 if (IS_ERR(pipe_config))
13261 return PTR_ERR(pipe_config);
13262
13263 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13264
13265 if (!pipe_config->base.active ||
13266 needs_modeset(&pipe_config->base))
13267 continue;
13268
13269 /* 2 or more enabled crtcs means no need for w/a */
13270 if (enabled_pipe != INVALID_PIPE)
13271 return 0;
13272
13273 enabled_pipe = intel_crtc->pipe;
13274 }
13275
13276 if (enabled_pipe != INVALID_PIPE)
13277 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13278 else if (other_crtc_state)
13279 other_crtc_state->hsw_workaround_pipe = first_pipe;
13280
13281 return 0;
13282 }
13283
13284 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13285 {
13286 struct drm_crtc *crtc;
13287 struct drm_crtc_state *crtc_state;
13288 int ret = 0;
13289
13290 /* add all active pipes to the state */
13291 for_each_crtc(state->dev, crtc) {
13292 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13293 if (IS_ERR(crtc_state))
13294 return PTR_ERR(crtc_state);
13295
13296 if (!crtc_state->active || needs_modeset(crtc_state))
13297 continue;
13298
13299 crtc_state->mode_changed = true;
13300
13301 ret = drm_atomic_add_affected_connectors(state, crtc);
13302 if (ret)
13303 break;
13304
13305 ret = drm_atomic_add_affected_planes(state, crtc);
13306 if (ret)
13307 break;
13308 }
13309
13310 return ret;
13311 }
13312
13313 static int intel_modeset_checks(struct drm_atomic_state *state)
13314 {
13315 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13316 struct drm_i915_private *dev_priv = to_i915(state->dev);
13317 struct drm_crtc *crtc;
13318 struct drm_crtc_state *crtc_state;
13319 int ret = 0, i;
13320
13321 if (!check_digital_port_conflicts(state)) {
13322 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13323 return -EINVAL;
13324 }
13325
13326 intel_state->modeset = true;
13327 intel_state->active_crtcs = dev_priv->active_crtcs;
13328
13329 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13330 if (crtc_state->active)
13331 intel_state->active_crtcs |= 1 << i;
13332 else
13333 intel_state->active_crtcs &= ~(1 << i);
13334
13335 if (crtc_state->active != crtc->state->active)
13336 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13337 }
13338
13339 /*
13340 * See if the config requires any additional preparation, e.g.
13341 * to adjust global state with pipes off. We need to do this
13342 * here so we can get the modeset_pipe updated config for the new
13343 * mode set on this crtc. For other crtcs we need to use the
13344 * adjusted_mode bits in the crtc directly.
13345 */
13346 if (dev_priv->display.modeset_calc_cdclk) {
13347 if (!intel_state->cdclk_pll_vco)
13348 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13349 if (!intel_state->cdclk_pll_vco)
13350 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13351
13352 ret = dev_priv->display.modeset_calc_cdclk(state);
13353 if (ret < 0)
13354 return ret;
13355
13356 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13357 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13358 ret = intel_modeset_all_pipes(state);
13359
13360 if (ret < 0)
13361 return ret;
13362
13363 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13364 intel_state->cdclk, intel_state->dev_cdclk);
13365 } else
13366 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13367
13368 intel_modeset_clear_plls(state);
13369
13370 if (IS_HASWELL(dev_priv))
13371 return haswell_mode_set_planes_workaround(state);
13372
13373 return 0;
13374 }
13375
13376 /*
13377 * Handle calculation of various watermark data at the end of the atomic check
13378 * phase. The code here should be run after the per-crtc and per-plane 'check'
13379 * handlers to ensure that all derived state has been updated.
13380 */
13381 static int calc_watermark_data(struct drm_atomic_state *state)
13382 {
13383 struct drm_device *dev = state->dev;
13384 struct drm_i915_private *dev_priv = to_i915(dev);
13385
13386 /* Is there platform-specific watermark information to calculate? */
13387 if (dev_priv->display.compute_global_watermarks)
13388 return dev_priv->display.compute_global_watermarks(state);
13389
13390 return 0;
13391 }
13392
13393 /**
13394 * intel_atomic_check - validate state object
13395 * @dev: drm device
13396 * @state: state to validate
13397 */
13398 static int intel_atomic_check(struct drm_device *dev,
13399 struct drm_atomic_state *state)
13400 {
13401 struct drm_i915_private *dev_priv = to_i915(dev);
13402 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13403 struct drm_crtc *crtc;
13404 struct drm_crtc_state *crtc_state;
13405 int ret, i;
13406 bool any_ms = false;
13407
13408 ret = drm_atomic_helper_check_modeset(dev, state);
13409 if (ret)
13410 return ret;
13411
13412 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13413 struct intel_crtc_state *pipe_config =
13414 to_intel_crtc_state(crtc_state);
13415
13416 /* Catch I915_MODE_FLAG_INHERITED */
13417 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13418 crtc_state->mode_changed = true;
13419
13420 if (!needs_modeset(crtc_state))
13421 continue;
13422
13423 if (!crtc_state->enable) {
13424 any_ms = true;
13425 continue;
13426 }
13427
13428 /* FIXME: For only active_changed we shouldn't need to do any
13429 * state recomputation at all. */
13430
13431 ret = drm_atomic_add_affected_connectors(state, crtc);
13432 if (ret)
13433 return ret;
13434
13435 ret = intel_modeset_pipe_config(crtc, pipe_config);
13436 if (ret) {
13437 intel_dump_pipe_config(to_intel_crtc(crtc),
13438 pipe_config, "[failed]");
13439 return ret;
13440 }
13441
13442 if (i915.fastboot &&
13443 intel_pipe_config_compare(dev,
13444 to_intel_crtc_state(crtc->state),
13445 pipe_config, true)) {
13446 crtc_state->mode_changed = false;
13447 to_intel_crtc_state(crtc_state)->update_pipe = true;
13448 }
13449
13450 if (needs_modeset(crtc_state))
13451 any_ms = true;
13452
13453 ret = drm_atomic_add_affected_planes(state, crtc);
13454 if (ret)
13455 return ret;
13456
13457 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13458 needs_modeset(crtc_state) ?
13459 "[modeset]" : "[fastset]");
13460 }
13461
13462 if (any_ms) {
13463 ret = intel_modeset_checks(state);
13464
13465 if (ret)
13466 return ret;
13467 } else
13468 intel_state->cdclk = dev_priv->cdclk_freq;
13469
13470 ret = drm_atomic_helper_check_planes(dev, state);
13471 if (ret)
13472 return ret;
13473
13474 intel_fbc_choose_crtc(dev_priv, state);
13475 return calc_watermark_data(state);
13476 }
13477
13478 static int intel_atomic_prepare_commit(struct drm_device *dev,
13479 struct drm_atomic_state *state,
13480 bool nonblock)
13481 {
13482 struct drm_i915_private *dev_priv = to_i915(dev);
13483 struct drm_plane_state *plane_state;
13484 struct drm_crtc_state *crtc_state;
13485 struct drm_plane *plane;
13486 struct drm_crtc *crtc;
13487 int i, ret;
13488
13489 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13490 if (state->legacy_cursor_update)
13491 continue;
13492
13493 ret = intel_crtc_wait_for_pending_flips(crtc);
13494 if (ret)
13495 return ret;
13496
13497 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13498 flush_workqueue(dev_priv->wq);
13499 }
13500
13501 ret = mutex_lock_interruptible(&dev->struct_mutex);
13502 if (ret)
13503 return ret;
13504
13505 ret = drm_atomic_helper_prepare_planes(dev, state);
13506 mutex_unlock(&dev->struct_mutex);
13507
13508 if (!ret && !nonblock) {
13509 for_each_plane_in_state(state, plane, plane_state, i) {
13510 struct intel_plane_state *intel_plane_state =
13511 to_intel_plane_state(plane_state);
13512
13513 if (!intel_plane_state->wait_req)
13514 continue;
13515
13516 ret = __i915_wait_request(intel_plane_state->wait_req,
13517 true, NULL, NULL);
13518 if (ret) {
13519 /* Any hang should be swallowed by the wait */
13520 WARN_ON(ret == -EIO);
13521 mutex_lock(&dev->struct_mutex);
13522 drm_atomic_helper_cleanup_planes(dev, state);
13523 mutex_unlock(&dev->struct_mutex);
13524 break;
13525 }
13526 }
13527 }
13528
13529 return ret;
13530 }
13531
13532 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13533 {
13534 struct drm_device *dev = crtc->base.dev;
13535
13536 if (!dev->max_vblank_count)
13537 return drm_accurate_vblank_count(&crtc->base);
13538
13539 return dev->driver->get_vblank_counter(dev, crtc->pipe);
13540 }
13541
13542 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13543 struct drm_i915_private *dev_priv,
13544 unsigned crtc_mask)
13545 {
13546 unsigned last_vblank_count[I915_MAX_PIPES];
13547 enum pipe pipe;
13548 int ret;
13549
13550 if (!crtc_mask)
13551 return;
13552
13553 for_each_pipe(dev_priv, pipe) {
13554 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13555
13556 if (!((1 << pipe) & crtc_mask))
13557 continue;
13558
13559 ret = drm_crtc_vblank_get(crtc);
13560 if (WARN_ON(ret != 0)) {
13561 crtc_mask &= ~(1 << pipe);
13562 continue;
13563 }
13564
13565 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13566 }
13567
13568 for_each_pipe(dev_priv, pipe) {
13569 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13570 long lret;
13571
13572 if (!((1 << pipe) & crtc_mask))
13573 continue;
13574
13575 lret = wait_event_timeout(dev->vblank[pipe].queue,
13576 last_vblank_count[pipe] !=
13577 drm_crtc_vblank_count(crtc),
13578 msecs_to_jiffies(50));
13579
13580 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13581
13582 drm_crtc_vblank_put(crtc);
13583 }
13584 }
13585
13586 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13587 {
13588 /* fb updated, need to unpin old fb */
13589 if (crtc_state->fb_changed)
13590 return true;
13591
13592 /* wm changes, need vblank before final wm's */
13593 if (crtc_state->update_wm_post)
13594 return true;
13595
13596 /*
13597 * cxsr is re-enabled after vblank.
13598 * This is already handled by crtc_state->update_wm_post,
13599 * but added for clarity.
13600 */
13601 if (crtc_state->disable_cxsr)
13602 return true;
13603
13604 return false;
13605 }
13606
13607 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13608 {
13609 struct drm_device *dev = state->dev;
13610 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13611 struct drm_i915_private *dev_priv = to_i915(dev);
13612 struct drm_crtc_state *old_crtc_state;
13613 struct drm_crtc *crtc;
13614 struct intel_crtc_state *intel_cstate;
13615 struct drm_plane *plane;
13616 struct drm_plane_state *plane_state;
13617 bool hw_check = intel_state->modeset;
13618 unsigned long put_domains[I915_MAX_PIPES] = {};
13619 unsigned crtc_vblank_mask = 0;
13620 int i, ret;
13621
13622 for_each_plane_in_state(state, plane, plane_state, i) {
13623 struct intel_plane_state *intel_plane_state =
13624 to_intel_plane_state(plane_state);
13625
13626 if (!intel_plane_state->wait_req)
13627 continue;
13628
13629 ret = __i915_wait_request(intel_plane_state->wait_req,
13630 true, NULL, NULL);
13631 /* EIO should be eaten, and we can't get interrupted in the
13632 * worker, and blocking commits have waited already. */
13633 WARN_ON(ret);
13634 }
13635
13636 drm_atomic_helper_wait_for_dependencies(state);
13637
13638 if (intel_state->modeset) {
13639 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13640 sizeof(intel_state->min_pixclk));
13641 dev_priv->active_crtcs = intel_state->active_crtcs;
13642 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13643
13644 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13645 }
13646
13647 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13649
13650 if (needs_modeset(crtc->state) ||
13651 to_intel_crtc_state(crtc->state)->update_pipe) {
13652 hw_check = true;
13653
13654 put_domains[to_intel_crtc(crtc)->pipe] =
13655 modeset_get_crtc_power_domains(crtc,
13656 to_intel_crtc_state(crtc->state));
13657 }
13658
13659 if (!needs_modeset(crtc->state))
13660 continue;
13661
13662 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13663
13664 if (old_crtc_state->active) {
13665 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13666 dev_priv->display.crtc_disable(crtc);
13667 intel_crtc->active = false;
13668 intel_fbc_disable(intel_crtc);
13669 intel_disable_shared_dpll(intel_crtc);
13670
13671 /*
13672 * Underruns don't always raise
13673 * interrupts, so check manually.
13674 */
13675 intel_check_cpu_fifo_underruns(dev_priv);
13676 intel_check_pch_fifo_underruns(dev_priv);
13677
13678 if (!crtc->state->active)
13679 intel_update_watermarks(crtc);
13680 }
13681 }
13682
13683 /* Only after disabling all output pipelines that will be changed can we
13684 * update the the output configuration. */
13685 intel_modeset_update_crtc_state(state);
13686
13687 if (intel_state->modeset) {
13688 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13689
13690 if (dev_priv->display.modeset_commit_cdclk &&
13691 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13692 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13693 dev_priv->display.modeset_commit_cdclk(state);
13694
13695 intel_modeset_verify_disabled(dev);
13696 }
13697
13698 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13699 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13701 bool modeset = needs_modeset(crtc->state);
13702 struct intel_crtc_state *pipe_config =
13703 to_intel_crtc_state(crtc->state);
13704
13705 if (modeset && crtc->state->active) {
13706 update_scanline_offset(to_intel_crtc(crtc));
13707 dev_priv->display.crtc_enable(crtc);
13708 }
13709
13710 /* Complete events for now disable pipes here. */
13711 if (modeset && !crtc->state->active && crtc->state->event) {
13712 spin_lock_irq(&dev->event_lock);
13713 drm_crtc_send_vblank_event(crtc, crtc->state->event);
13714 spin_unlock_irq(&dev->event_lock);
13715
13716 crtc->state->event = NULL;
13717 }
13718
13719 if (!modeset)
13720 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13721
13722 if (crtc->state->active &&
13723 drm_atomic_get_existing_plane_state(state, crtc->primary))
13724 intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13725
13726 if (crtc->state->active)
13727 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13728
13729 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13730 crtc_vblank_mask |= 1 << i;
13731 }
13732
13733 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13734 * already, but still need the state for the delayed optimization. To
13735 * fix this:
13736 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13737 * - schedule that vblank worker _before_ calling hw_done
13738 * - at the start of commit_tail, cancel it _synchrously
13739 * - switch over to the vblank wait helper in the core after that since
13740 * we don't need out special handling any more.
13741 */
13742 if (!state->legacy_cursor_update)
13743 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13744
13745 /*
13746 * Now that the vblank has passed, we can go ahead and program the
13747 * optimal watermarks on platforms that need two-step watermark
13748 * programming.
13749 *
13750 * TODO: Move this (and other cleanup) to an async worker eventually.
13751 */
13752 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13753 intel_cstate = to_intel_crtc_state(crtc->state);
13754
13755 if (dev_priv->display.optimize_watermarks)
13756 dev_priv->display.optimize_watermarks(intel_cstate);
13757 }
13758
13759 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13760 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13761
13762 if (put_domains[i])
13763 modeset_put_power_domains(dev_priv, put_domains[i]);
13764
13765 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13766 }
13767
13768 drm_atomic_helper_commit_hw_done(state);
13769
13770 if (intel_state->modeset)
13771 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13772
13773 mutex_lock(&dev->struct_mutex);
13774 drm_atomic_helper_cleanup_planes(dev, state);
13775 mutex_unlock(&dev->struct_mutex);
13776
13777 drm_atomic_helper_commit_cleanup_done(state);
13778
13779 drm_atomic_state_free(state);
13780
13781 /* As one of the primary mmio accessors, KMS has a high likelihood
13782 * of triggering bugs in unclaimed access. After we finish
13783 * modesetting, see if an error has been flagged, and if so
13784 * enable debugging for the next modeset - and hope we catch
13785 * the culprit.
13786 *
13787 * XXX note that we assume display power is on at this point.
13788 * This might hold true now but we need to add pm helper to check
13789 * unclaimed only when the hardware is on, as atomic commits
13790 * can happen also when the device is completely off.
13791 */
13792 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13793 }
13794
13795 static void intel_atomic_commit_work(struct work_struct *work)
13796 {
13797 struct drm_atomic_state *state = container_of(work,
13798 struct drm_atomic_state,
13799 commit_work);
13800 intel_atomic_commit_tail(state);
13801 }
13802
13803 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13804 {
13805 struct drm_plane_state *old_plane_state;
13806 struct drm_plane *plane;
13807 struct drm_i915_gem_object *obj, *old_obj;
13808 struct intel_plane *intel_plane;
13809 int i;
13810
13811 mutex_lock(&state->dev->struct_mutex);
13812 for_each_plane_in_state(state, plane, old_plane_state, i) {
13813 obj = intel_fb_obj(plane->state->fb);
13814 old_obj = intel_fb_obj(old_plane_state->fb);
13815 intel_plane = to_intel_plane(plane);
13816
13817 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13818 }
13819 mutex_unlock(&state->dev->struct_mutex);
13820 }
13821
13822 /**
13823 * intel_atomic_commit - commit validated state object
13824 * @dev: DRM device
13825 * @state: the top-level driver state object
13826 * @nonblock: nonblocking commit
13827 *
13828 * This function commits a top-level state object that has been validated
13829 * with drm_atomic_helper_check().
13830 *
13831 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13832 * nonblocking commits are only safe for pure plane updates. Everything else
13833 * should work though.
13834 *
13835 * RETURNS
13836 * Zero for success or -errno.
13837 */
13838 static int intel_atomic_commit(struct drm_device *dev,
13839 struct drm_atomic_state *state,
13840 bool nonblock)
13841 {
13842 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13843 struct drm_i915_private *dev_priv = to_i915(dev);
13844 int ret = 0;
13845
13846 if (intel_state->modeset && nonblock) {
13847 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13848 return -EINVAL;
13849 }
13850
13851 ret = drm_atomic_helper_setup_commit(state, nonblock);
13852 if (ret)
13853 return ret;
13854
13855 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13856
13857 ret = intel_atomic_prepare_commit(dev, state, nonblock);
13858 if (ret) {
13859 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13860 return ret;
13861 }
13862
13863 drm_atomic_helper_swap_state(state, true);
13864 dev_priv->wm.distrust_bios_wm = false;
13865 dev_priv->wm.skl_results = intel_state->wm_results;
13866 intel_shared_dpll_commit(state);
13867 intel_atomic_track_fbs(state);
13868
13869 if (nonblock)
13870 queue_work(system_unbound_wq, &state->commit_work);
13871 else
13872 intel_atomic_commit_tail(state);
13873
13874 return 0;
13875 }
13876
13877 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13878 {
13879 struct drm_device *dev = crtc->dev;
13880 struct drm_atomic_state *state;
13881 struct drm_crtc_state *crtc_state;
13882 int ret;
13883
13884 state = drm_atomic_state_alloc(dev);
13885 if (!state) {
13886 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13887 crtc->base.id, crtc->name);
13888 return;
13889 }
13890
13891 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13892
13893 retry:
13894 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13895 ret = PTR_ERR_OR_ZERO(crtc_state);
13896 if (!ret) {
13897 if (!crtc_state->active)
13898 goto out;
13899
13900 crtc_state->mode_changed = true;
13901 ret = drm_atomic_commit(state);
13902 }
13903
13904 if (ret == -EDEADLK) {
13905 drm_atomic_state_clear(state);
13906 drm_modeset_backoff(state->acquire_ctx);
13907 goto retry;
13908 }
13909
13910 if (ret)
13911 out:
13912 drm_atomic_state_free(state);
13913 }
13914
13915 #undef for_each_intel_crtc_masked
13916
13917 /*
13918 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
13919 * drm_atomic_helper_legacy_gamma_set() directly.
13920 */
13921 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
13922 u16 *red, u16 *green, u16 *blue,
13923 uint32_t size)
13924 {
13925 struct drm_device *dev = crtc->dev;
13926 struct drm_mode_config *config = &dev->mode_config;
13927 struct drm_crtc_state *state;
13928 int ret;
13929
13930 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
13931 if (ret)
13932 return ret;
13933
13934 /*
13935 * Make sure we update the legacy properties so this works when
13936 * atomic is not enabled.
13937 */
13938
13939 state = crtc->state;
13940
13941 drm_object_property_set_value(&crtc->base,
13942 config->degamma_lut_property,
13943 (state->degamma_lut) ?
13944 state->degamma_lut->base.id : 0);
13945
13946 drm_object_property_set_value(&crtc->base,
13947 config->ctm_property,
13948 (state->ctm) ?
13949 state->ctm->base.id : 0);
13950
13951 drm_object_property_set_value(&crtc->base,
13952 config->gamma_lut_property,
13953 (state->gamma_lut) ?
13954 state->gamma_lut->base.id : 0);
13955
13956 return 0;
13957 }
13958
13959 static const struct drm_crtc_funcs intel_crtc_funcs = {
13960 .gamma_set = intel_atomic_legacy_gamma_set,
13961 .set_config = drm_atomic_helper_set_config,
13962 .set_property = drm_atomic_helper_crtc_set_property,
13963 .destroy = intel_crtc_destroy,
13964 .page_flip = intel_crtc_page_flip,
13965 .atomic_duplicate_state = intel_crtc_duplicate_state,
13966 .atomic_destroy_state = intel_crtc_destroy_state,
13967 };
13968
13969 /**
13970 * intel_prepare_plane_fb - Prepare fb for usage on plane
13971 * @plane: drm plane to prepare for
13972 * @fb: framebuffer to prepare for presentation
13973 *
13974 * Prepares a framebuffer for usage on a display plane. Generally this
13975 * involves pinning the underlying object and updating the frontbuffer tracking
13976 * bits. Some older platforms need special physical address handling for
13977 * cursor planes.
13978 *
13979 * Must be called with struct_mutex held.
13980 *
13981 * Returns 0 on success, negative error code on failure.
13982 */
13983 int
13984 intel_prepare_plane_fb(struct drm_plane *plane,
13985 const struct drm_plane_state *new_state)
13986 {
13987 struct drm_device *dev = plane->dev;
13988 struct drm_framebuffer *fb = new_state->fb;
13989 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13990 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13991 struct reservation_object *resv;
13992 int ret = 0;
13993
13994 if (!obj && !old_obj)
13995 return 0;
13996
13997 if (old_obj) {
13998 struct drm_crtc_state *crtc_state =
13999 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14000
14001 /* Big Hammer, we also need to ensure that any pending
14002 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14003 * current scanout is retired before unpinning the old
14004 * framebuffer. Note that we rely on userspace rendering
14005 * into the buffer attached to the pipe they are waiting
14006 * on. If not, userspace generates a GPU hang with IPEHR
14007 * point to the MI_WAIT_FOR_EVENT.
14008 *
14009 * This should only fail upon a hung GPU, in which case we
14010 * can safely continue.
14011 */
14012 if (needs_modeset(crtc_state))
14013 ret = i915_gem_object_wait_rendering(old_obj, true);
14014 if (ret) {
14015 /* GPU hangs should have been swallowed by the wait */
14016 WARN_ON(ret == -EIO);
14017 return ret;
14018 }
14019 }
14020
14021 if (!obj)
14022 return 0;
14023
14024 /* For framebuffer backed by dmabuf, wait for fence */
14025 resv = i915_gem_object_get_dmabuf_resv(obj);
14026 if (resv) {
14027 long lret;
14028
14029 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14030 MAX_SCHEDULE_TIMEOUT);
14031 if (lret == -ERESTARTSYS)
14032 return lret;
14033
14034 WARN(lret < 0, "waiting returns %li\n", lret);
14035 }
14036
14037 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14038 INTEL_INFO(dev)->cursor_needs_physical) {
14039 int align = IS_I830(dev) ? 16 * 1024 : 256;
14040 ret = i915_gem_object_attach_phys(obj, align);
14041 if (ret)
14042 DRM_DEBUG_KMS("failed to attach phys object\n");
14043 } else {
14044 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14045 }
14046
14047 if (ret == 0) {
14048 struct intel_plane_state *plane_state =
14049 to_intel_plane_state(new_state);
14050
14051 i915_gem_request_assign(&plane_state->wait_req,
14052 obj->last_write_req);
14053 }
14054
14055 return ret;
14056 }
14057
14058 /**
14059 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14060 * @plane: drm plane to clean up for
14061 * @fb: old framebuffer that was on plane
14062 *
14063 * Cleans up a framebuffer that has just been removed from a plane.
14064 *
14065 * Must be called with struct_mutex held.
14066 */
14067 void
14068 intel_cleanup_plane_fb(struct drm_plane *plane,
14069 const struct drm_plane_state *old_state)
14070 {
14071 struct drm_device *dev = plane->dev;
14072 struct intel_plane_state *old_intel_state;
14073 struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14074 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14075 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14076
14077 old_intel_state = to_intel_plane_state(old_state);
14078
14079 if (!obj && !old_obj)
14080 return;
14081
14082 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14083 !INTEL_INFO(dev)->cursor_needs_physical))
14084 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14085
14086 i915_gem_request_assign(&intel_state->wait_req, NULL);
14087 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14088 }
14089
14090 int
14091 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14092 {
14093 int max_scale;
14094 int crtc_clock, cdclk;
14095
14096 if (!intel_crtc || !crtc_state->base.enable)
14097 return DRM_PLANE_HELPER_NO_SCALING;
14098
14099 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14100 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14101
14102 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14103 return DRM_PLANE_HELPER_NO_SCALING;
14104
14105 /*
14106 * skl max scale is lower of:
14107 * close to 3 but not 3, -1 is for that purpose
14108 * or
14109 * cdclk/crtc_clock
14110 */
14111 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14112
14113 return max_scale;
14114 }
14115
14116 static int
14117 intel_check_primary_plane(struct drm_plane *plane,
14118 struct intel_crtc_state *crtc_state,
14119 struct intel_plane_state *state)
14120 {
14121 struct drm_crtc *crtc = state->base.crtc;
14122 struct drm_framebuffer *fb = state->base.fb;
14123 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14124 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14125 bool can_position = false;
14126
14127 if (INTEL_INFO(plane->dev)->gen >= 9) {
14128 /* use scaler when colorkey is not required */
14129 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14130 min_scale = 1;
14131 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14132 }
14133 can_position = true;
14134 }
14135
14136 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14137 &state->dst, &state->clip,
14138 state->base.rotation,
14139 min_scale, max_scale,
14140 can_position, true,
14141 &state->visible);
14142 }
14143
14144 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14145 struct drm_crtc_state *old_crtc_state)
14146 {
14147 struct drm_device *dev = crtc->dev;
14148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14149 struct intel_crtc_state *old_intel_state =
14150 to_intel_crtc_state(old_crtc_state);
14151 bool modeset = needs_modeset(crtc->state);
14152
14153 /* Perform vblank evasion around commit operation */
14154 intel_pipe_update_start(intel_crtc);
14155
14156 if (modeset)
14157 return;
14158
14159 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14160 intel_color_set_csc(crtc->state);
14161 intel_color_load_luts(crtc->state);
14162 }
14163
14164 if (to_intel_crtc_state(crtc->state)->update_pipe)
14165 intel_update_pipe_config(intel_crtc, old_intel_state);
14166 else if (INTEL_INFO(dev)->gen >= 9)
14167 skl_detach_scalers(intel_crtc);
14168 }
14169
14170 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14171 struct drm_crtc_state *old_crtc_state)
14172 {
14173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14174
14175 intel_pipe_update_end(intel_crtc, NULL);
14176 }
14177
14178 /**
14179 * intel_plane_destroy - destroy a plane
14180 * @plane: plane to destroy
14181 *
14182 * Common destruction function for all types of planes (primary, cursor,
14183 * sprite).
14184 */
14185 void intel_plane_destroy(struct drm_plane *plane)
14186 {
14187 if (!plane)
14188 return;
14189
14190 drm_plane_cleanup(plane);
14191 kfree(to_intel_plane(plane));
14192 }
14193
14194 const struct drm_plane_funcs intel_plane_funcs = {
14195 .update_plane = drm_atomic_helper_update_plane,
14196 .disable_plane = drm_atomic_helper_disable_plane,
14197 .destroy = intel_plane_destroy,
14198 .set_property = drm_atomic_helper_plane_set_property,
14199 .atomic_get_property = intel_plane_atomic_get_property,
14200 .atomic_set_property = intel_plane_atomic_set_property,
14201 .atomic_duplicate_state = intel_plane_duplicate_state,
14202 .atomic_destroy_state = intel_plane_destroy_state,
14203
14204 };
14205
14206 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14207 int pipe)
14208 {
14209 struct intel_plane *primary = NULL;
14210 struct intel_plane_state *state = NULL;
14211 const uint32_t *intel_primary_formats;
14212 unsigned int num_formats;
14213 int ret;
14214
14215 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14216 if (!primary)
14217 goto fail;
14218
14219 state = intel_create_plane_state(&primary->base);
14220 if (!state)
14221 goto fail;
14222 primary->base.state = &state->base;
14223
14224 primary->can_scale = false;
14225 primary->max_downscale = 1;
14226 if (INTEL_INFO(dev)->gen >= 9) {
14227 primary->can_scale = true;
14228 state->scaler_id = -1;
14229 }
14230 primary->pipe = pipe;
14231 primary->plane = pipe;
14232 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14233 primary->check_plane = intel_check_primary_plane;
14234 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14235 primary->plane = !pipe;
14236
14237 if (INTEL_INFO(dev)->gen >= 9) {
14238 intel_primary_formats = skl_primary_formats;
14239 num_formats = ARRAY_SIZE(skl_primary_formats);
14240
14241 primary->update_plane = skylake_update_primary_plane;
14242 primary->disable_plane = skylake_disable_primary_plane;
14243 } else if (HAS_PCH_SPLIT(dev)) {
14244 intel_primary_formats = i965_primary_formats;
14245 num_formats = ARRAY_SIZE(i965_primary_formats);
14246
14247 primary->update_plane = ironlake_update_primary_plane;
14248 primary->disable_plane = i9xx_disable_primary_plane;
14249 } else if (INTEL_INFO(dev)->gen >= 4) {
14250 intel_primary_formats = i965_primary_formats;
14251 num_formats = ARRAY_SIZE(i965_primary_formats);
14252
14253 primary->update_plane = i9xx_update_primary_plane;
14254 primary->disable_plane = i9xx_disable_primary_plane;
14255 } else {
14256 intel_primary_formats = i8xx_primary_formats;
14257 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14258
14259 primary->update_plane = i9xx_update_primary_plane;
14260 primary->disable_plane = i9xx_disable_primary_plane;
14261 }
14262
14263 if (INTEL_INFO(dev)->gen >= 9)
14264 ret = drm_universal_plane_init(dev, &primary->base, 0,
14265 &intel_plane_funcs,
14266 intel_primary_formats, num_formats,
14267 DRM_PLANE_TYPE_PRIMARY,
14268 "plane 1%c", pipe_name(pipe));
14269 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14270 ret = drm_universal_plane_init(dev, &primary->base, 0,
14271 &intel_plane_funcs,
14272 intel_primary_formats, num_formats,
14273 DRM_PLANE_TYPE_PRIMARY,
14274 "primary %c", pipe_name(pipe));
14275 else
14276 ret = drm_universal_plane_init(dev, &primary->base, 0,
14277 &intel_plane_funcs,
14278 intel_primary_formats, num_formats,
14279 DRM_PLANE_TYPE_PRIMARY,
14280 "plane %c", plane_name(primary->plane));
14281 if (ret)
14282 goto fail;
14283
14284 if (INTEL_INFO(dev)->gen >= 4)
14285 intel_create_rotation_property(dev, primary);
14286
14287 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14288
14289 return &primary->base;
14290
14291 fail:
14292 kfree(state);
14293 kfree(primary);
14294
14295 return NULL;
14296 }
14297
14298 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14299 {
14300 if (!dev->mode_config.rotation_property) {
14301 unsigned long flags = BIT(DRM_ROTATE_0) |
14302 BIT(DRM_ROTATE_180);
14303
14304 if (INTEL_INFO(dev)->gen >= 9)
14305 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14306
14307 dev->mode_config.rotation_property =
14308 drm_mode_create_rotation_property(dev, flags);
14309 }
14310 if (dev->mode_config.rotation_property)
14311 drm_object_attach_property(&plane->base.base,
14312 dev->mode_config.rotation_property,
14313 plane->base.state->rotation);
14314 }
14315
14316 static int
14317 intel_check_cursor_plane(struct drm_plane *plane,
14318 struct intel_crtc_state *crtc_state,
14319 struct intel_plane_state *state)
14320 {
14321 struct drm_crtc *crtc = crtc_state->base.crtc;
14322 struct drm_framebuffer *fb = state->base.fb;
14323 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14324 enum pipe pipe = to_intel_plane(plane)->pipe;
14325 unsigned stride;
14326 int ret;
14327
14328 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14329 &state->dst, &state->clip,
14330 state->base.rotation,
14331 DRM_PLANE_HELPER_NO_SCALING,
14332 DRM_PLANE_HELPER_NO_SCALING,
14333 true, true, &state->visible);
14334 if (ret)
14335 return ret;
14336
14337 /* if we want to turn off the cursor ignore width and height */
14338 if (!obj)
14339 return 0;
14340
14341 /* Check for which cursor types we support */
14342 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14343 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14344 state->base.crtc_w, state->base.crtc_h);
14345 return -EINVAL;
14346 }
14347
14348 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14349 if (obj->base.size < stride * state->base.crtc_h) {
14350 DRM_DEBUG_KMS("buffer is too small\n");
14351 return -ENOMEM;
14352 }
14353
14354 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14355 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14356 return -EINVAL;
14357 }
14358
14359 /*
14360 * There's something wrong with the cursor on CHV pipe C.
14361 * If it straddles the left edge of the screen then
14362 * moving it away from the edge or disabling it often
14363 * results in a pipe underrun, and often that can lead to
14364 * dead pipe (constant underrun reported, and it scans
14365 * out just a solid color). To recover from that, the
14366 * display power well must be turned off and on again.
14367 * Refuse the put the cursor into that compromised position.
14368 */
14369 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14370 state->visible && state->base.crtc_x < 0) {
14371 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14372 return -EINVAL;
14373 }
14374
14375 return 0;
14376 }
14377
14378 static void
14379 intel_disable_cursor_plane(struct drm_plane *plane,
14380 struct drm_crtc *crtc)
14381 {
14382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14383
14384 intel_crtc->cursor_addr = 0;
14385 intel_crtc_update_cursor(crtc, NULL);
14386 }
14387
14388 static void
14389 intel_update_cursor_plane(struct drm_plane *plane,
14390 const struct intel_crtc_state *crtc_state,
14391 const struct intel_plane_state *state)
14392 {
14393 struct drm_crtc *crtc = crtc_state->base.crtc;
14394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14395 struct drm_device *dev = plane->dev;
14396 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14397 uint32_t addr;
14398
14399 if (!obj)
14400 addr = 0;
14401 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14402 addr = i915_gem_obj_ggtt_offset(obj);
14403 else
14404 addr = obj->phys_handle->busaddr;
14405
14406 intel_crtc->cursor_addr = addr;
14407 intel_crtc_update_cursor(crtc, state);
14408 }
14409
14410 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14411 int pipe)
14412 {
14413 struct intel_plane *cursor = NULL;
14414 struct intel_plane_state *state = NULL;
14415 int ret;
14416
14417 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14418 if (!cursor)
14419 goto fail;
14420
14421 state = intel_create_plane_state(&cursor->base);
14422 if (!state)
14423 goto fail;
14424 cursor->base.state = &state->base;
14425
14426 cursor->can_scale = false;
14427 cursor->max_downscale = 1;
14428 cursor->pipe = pipe;
14429 cursor->plane = pipe;
14430 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14431 cursor->check_plane = intel_check_cursor_plane;
14432 cursor->update_plane = intel_update_cursor_plane;
14433 cursor->disable_plane = intel_disable_cursor_plane;
14434
14435 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14436 &intel_plane_funcs,
14437 intel_cursor_formats,
14438 ARRAY_SIZE(intel_cursor_formats),
14439 DRM_PLANE_TYPE_CURSOR,
14440 "cursor %c", pipe_name(pipe));
14441 if (ret)
14442 goto fail;
14443
14444 if (INTEL_INFO(dev)->gen >= 4) {
14445 if (!dev->mode_config.rotation_property)
14446 dev->mode_config.rotation_property =
14447 drm_mode_create_rotation_property(dev,
14448 BIT(DRM_ROTATE_0) |
14449 BIT(DRM_ROTATE_180));
14450 if (dev->mode_config.rotation_property)
14451 drm_object_attach_property(&cursor->base.base,
14452 dev->mode_config.rotation_property,
14453 state->base.rotation);
14454 }
14455
14456 if (INTEL_INFO(dev)->gen >=9)
14457 state->scaler_id = -1;
14458
14459 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14460
14461 return &cursor->base;
14462
14463 fail:
14464 kfree(state);
14465 kfree(cursor);
14466
14467 return NULL;
14468 }
14469
14470 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14471 struct intel_crtc_state *crtc_state)
14472 {
14473 int i;
14474 struct intel_scaler *intel_scaler;
14475 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14476
14477 for (i = 0; i < intel_crtc->num_scalers; i++) {
14478 intel_scaler = &scaler_state->scalers[i];
14479 intel_scaler->in_use = 0;
14480 intel_scaler->mode = PS_SCALER_MODE_DYN;
14481 }
14482
14483 scaler_state->scaler_id = -1;
14484 }
14485
14486 static void intel_crtc_init(struct drm_device *dev, int pipe)
14487 {
14488 struct drm_i915_private *dev_priv = to_i915(dev);
14489 struct intel_crtc *intel_crtc;
14490 struct intel_crtc_state *crtc_state = NULL;
14491 struct drm_plane *primary = NULL;
14492 struct drm_plane *cursor = NULL;
14493 int ret;
14494
14495 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14496 if (intel_crtc == NULL)
14497 return;
14498
14499 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14500 if (!crtc_state)
14501 goto fail;
14502 intel_crtc->config = crtc_state;
14503 intel_crtc->base.state = &crtc_state->base;
14504 crtc_state->base.crtc = &intel_crtc->base;
14505
14506 /* initialize shared scalers */
14507 if (INTEL_INFO(dev)->gen >= 9) {
14508 if (pipe == PIPE_C)
14509 intel_crtc->num_scalers = 1;
14510 else
14511 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14512
14513 skl_init_scalers(dev, intel_crtc, crtc_state);
14514 }
14515
14516 primary = intel_primary_plane_create(dev, pipe);
14517 if (!primary)
14518 goto fail;
14519
14520 cursor = intel_cursor_plane_create(dev, pipe);
14521 if (!cursor)
14522 goto fail;
14523
14524 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14525 cursor, &intel_crtc_funcs,
14526 "pipe %c", pipe_name(pipe));
14527 if (ret)
14528 goto fail;
14529
14530 /*
14531 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14532 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14533 */
14534 intel_crtc->pipe = pipe;
14535 intel_crtc->plane = pipe;
14536 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14537 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14538 intel_crtc->plane = !pipe;
14539 }
14540
14541 intel_crtc->cursor_base = ~0;
14542 intel_crtc->cursor_cntl = ~0;
14543 intel_crtc->cursor_size = ~0;
14544
14545 intel_crtc->wm.cxsr_allowed = true;
14546
14547 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14548 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14549 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14550 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14551
14552 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14553
14554 intel_color_init(&intel_crtc->base);
14555
14556 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14557 return;
14558
14559 fail:
14560 intel_plane_destroy(primary);
14561 intel_plane_destroy(cursor);
14562 kfree(crtc_state);
14563 kfree(intel_crtc);
14564 }
14565
14566 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14567 {
14568 struct drm_encoder *encoder = connector->base.encoder;
14569 struct drm_device *dev = connector->base.dev;
14570
14571 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14572
14573 if (!encoder || WARN_ON(!encoder->crtc))
14574 return INVALID_PIPE;
14575
14576 return to_intel_crtc(encoder->crtc)->pipe;
14577 }
14578
14579 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14580 struct drm_file *file)
14581 {
14582 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14583 struct drm_crtc *drmmode_crtc;
14584 struct intel_crtc *crtc;
14585
14586 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14587 if (!drmmode_crtc)
14588 return -ENOENT;
14589
14590 crtc = to_intel_crtc(drmmode_crtc);
14591 pipe_from_crtc_id->pipe = crtc->pipe;
14592
14593 return 0;
14594 }
14595
14596 static int intel_encoder_clones(struct intel_encoder *encoder)
14597 {
14598 struct drm_device *dev = encoder->base.dev;
14599 struct intel_encoder *source_encoder;
14600 int index_mask = 0;
14601 int entry = 0;
14602
14603 for_each_intel_encoder(dev, source_encoder) {
14604 if (encoders_cloneable(encoder, source_encoder))
14605 index_mask |= (1 << entry);
14606
14607 entry++;
14608 }
14609
14610 return index_mask;
14611 }
14612
14613 static bool has_edp_a(struct drm_device *dev)
14614 {
14615 struct drm_i915_private *dev_priv = to_i915(dev);
14616
14617 if (!IS_MOBILE(dev))
14618 return false;
14619
14620 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14621 return false;
14622
14623 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14624 return false;
14625
14626 return true;
14627 }
14628
14629 static bool intel_crt_present(struct drm_device *dev)
14630 {
14631 struct drm_i915_private *dev_priv = to_i915(dev);
14632
14633 if (INTEL_INFO(dev)->gen >= 9)
14634 return false;
14635
14636 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14637 return false;
14638
14639 if (IS_CHERRYVIEW(dev))
14640 return false;
14641
14642 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14643 return false;
14644
14645 /* DDI E can't be used if DDI A requires 4 lanes */
14646 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14647 return false;
14648
14649 if (!dev_priv->vbt.int_crt_support)
14650 return false;
14651
14652 return true;
14653 }
14654
14655 static void intel_setup_outputs(struct drm_device *dev)
14656 {
14657 struct drm_i915_private *dev_priv = to_i915(dev);
14658 struct intel_encoder *encoder;
14659 bool dpd_is_edp = false;
14660
14661 /*
14662 * intel_edp_init_connector() depends on this completing first, to
14663 * prevent the registeration of both eDP and LVDS and the incorrect
14664 * sharing of the PPS.
14665 */
14666 intel_lvds_init(dev);
14667
14668 if (intel_crt_present(dev))
14669 intel_crt_init(dev);
14670
14671 if (IS_BROXTON(dev)) {
14672 /*
14673 * FIXME: Broxton doesn't support port detection via the
14674 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14675 * detect the ports.
14676 */
14677 intel_ddi_init(dev, PORT_A);
14678 intel_ddi_init(dev, PORT_B);
14679 intel_ddi_init(dev, PORT_C);
14680
14681 intel_dsi_init(dev);
14682 } else if (HAS_DDI(dev)) {
14683 int found;
14684
14685 /*
14686 * Haswell uses DDI functions to detect digital outputs.
14687 * On SKL pre-D0 the strap isn't connected, so we assume
14688 * it's there.
14689 */
14690 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14691 /* WaIgnoreDDIAStrap: skl */
14692 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14693 intel_ddi_init(dev, PORT_A);
14694
14695 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14696 * register */
14697 found = I915_READ(SFUSE_STRAP);
14698
14699 if (found & SFUSE_STRAP_DDIB_DETECTED)
14700 intel_ddi_init(dev, PORT_B);
14701 if (found & SFUSE_STRAP_DDIC_DETECTED)
14702 intel_ddi_init(dev, PORT_C);
14703 if (found & SFUSE_STRAP_DDID_DETECTED)
14704 intel_ddi_init(dev, PORT_D);
14705 /*
14706 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14707 */
14708 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14709 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14710 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14711 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14712 intel_ddi_init(dev, PORT_E);
14713
14714 } else if (HAS_PCH_SPLIT(dev)) {
14715 int found;
14716 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14717
14718 if (has_edp_a(dev))
14719 intel_dp_init(dev, DP_A, PORT_A);
14720
14721 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14722 /* PCH SDVOB multiplex with HDMIB */
14723 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14724 if (!found)
14725 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14726 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14727 intel_dp_init(dev, PCH_DP_B, PORT_B);
14728 }
14729
14730 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14731 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14732
14733 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14734 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14735
14736 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14737 intel_dp_init(dev, PCH_DP_C, PORT_C);
14738
14739 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14740 intel_dp_init(dev, PCH_DP_D, PORT_D);
14741 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14742 bool has_edp, has_port;
14743
14744 /*
14745 * The DP_DETECTED bit is the latched state of the DDC
14746 * SDA pin at boot. However since eDP doesn't require DDC
14747 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14748 * eDP ports may have been muxed to an alternate function.
14749 * Thus we can't rely on the DP_DETECTED bit alone to detect
14750 * eDP ports. Consult the VBT as well as DP_DETECTED to
14751 * detect eDP ports.
14752 *
14753 * Sadly the straps seem to be missing sometimes even for HDMI
14754 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14755 * and VBT for the presence of the port. Additionally we can't
14756 * trust the port type the VBT declares as we've seen at least
14757 * HDMI ports that the VBT claim are DP or eDP.
14758 */
14759 has_edp = intel_dp_is_edp(dev, PORT_B);
14760 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14761 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14762 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14763 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14764 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14765
14766 has_edp = intel_dp_is_edp(dev, PORT_C);
14767 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14768 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14769 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14770 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14771 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14772
14773 if (IS_CHERRYVIEW(dev)) {
14774 /*
14775 * eDP not supported on port D,
14776 * so no need to worry about it
14777 */
14778 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14779 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14780 intel_dp_init(dev, CHV_DP_D, PORT_D);
14781 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14782 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14783 }
14784
14785 intel_dsi_init(dev);
14786 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14787 bool found = false;
14788
14789 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14790 DRM_DEBUG_KMS("probing SDVOB\n");
14791 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14792 if (!found && IS_G4X(dev)) {
14793 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14794 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14795 }
14796
14797 if (!found && IS_G4X(dev))
14798 intel_dp_init(dev, DP_B, PORT_B);
14799 }
14800
14801 /* Before G4X SDVOC doesn't have its own detect register */
14802
14803 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14804 DRM_DEBUG_KMS("probing SDVOC\n");
14805 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14806 }
14807
14808 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14809
14810 if (IS_G4X(dev)) {
14811 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14812 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14813 }
14814 if (IS_G4X(dev))
14815 intel_dp_init(dev, DP_C, PORT_C);
14816 }
14817
14818 if (IS_G4X(dev) &&
14819 (I915_READ(DP_D) & DP_DETECTED))
14820 intel_dp_init(dev, DP_D, PORT_D);
14821 } else if (IS_GEN2(dev))
14822 intel_dvo_init(dev);
14823
14824 if (SUPPORTS_TV(dev))
14825 intel_tv_init(dev);
14826
14827 intel_psr_init(dev);
14828
14829 for_each_intel_encoder(dev, encoder) {
14830 encoder->base.possible_crtcs = encoder->crtc_mask;
14831 encoder->base.possible_clones =
14832 intel_encoder_clones(encoder);
14833 }
14834
14835 intel_init_pch_refclk(dev);
14836
14837 drm_helper_move_panel_connectors_to_head(dev);
14838 }
14839
14840 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14841 {
14842 struct drm_device *dev = fb->dev;
14843 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14844
14845 drm_framebuffer_cleanup(fb);
14846 mutex_lock(&dev->struct_mutex);
14847 WARN_ON(!intel_fb->obj->framebuffer_references--);
14848 i915_gem_object_put(intel_fb->obj);
14849 mutex_unlock(&dev->struct_mutex);
14850 kfree(intel_fb);
14851 }
14852
14853 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14854 struct drm_file *file,
14855 unsigned int *handle)
14856 {
14857 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14858 struct drm_i915_gem_object *obj = intel_fb->obj;
14859
14860 if (obj->userptr.mm) {
14861 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14862 return -EINVAL;
14863 }
14864
14865 return drm_gem_handle_create(file, &obj->base, handle);
14866 }
14867
14868 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14869 struct drm_file *file,
14870 unsigned flags, unsigned color,
14871 struct drm_clip_rect *clips,
14872 unsigned num_clips)
14873 {
14874 struct drm_device *dev = fb->dev;
14875 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14876 struct drm_i915_gem_object *obj = intel_fb->obj;
14877
14878 mutex_lock(&dev->struct_mutex);
14879 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14880 mutex_unlock(&dev->struct_mutex);
14881
14882 return 0;
14883 }
14884
14885 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14886 .destroy = intel_user_framebuffer_destroy,
14887 .create_handle = intel_user_framebuffer_create_handle,
14888 .dirty = intel_user_framebuffer_dirty,
14889 };
14890
14891 static
14892 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14893 uint32_t pixel_format)
14894 {
14895 u32 gen = INTEL_INFO(dev)->gen;
14896
14897 if (gen >= 9) {
14898 int cpp = drm_format_plane_cpp(pixel_format, 0);
14899
14900 /* "The stride in bytes must not exceed the of the size of 8K
14901 * pixels and 32K bytes."
14902 */
14903 return min(8192 * cpp, 32768);
14904 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14905 return 32*1024;
14906 } else if (gen >= 4) {
14907 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14908 return 16*1024;
14909 else
14910 return 32*1024;
14911 } else if (gen >= 3) {
14912 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14913 return 8*1024;
14914 else
14915 return 16*1024;
14916 } else {
14917 /* XXX DSPC is limited to 4k tiled */
14918 return 8*1024;
14919 }
14920 }
14921
14922 static int intel_framebuffer_init(struct drm_device *dev,
14923 struct intel_framebuffer *intel_fb,
14924 struct drm_mode_fb_cmd2 *mode_cmd,
14925 struct drm_i915_gem_object *obj)
14926 {
14927 struct drm_i915_private *dev_priv = to_i915(dev);
14928 unsigned int aligned_height;
14929 int ret;
14930 u32 pitch_limit, stride_alignment;
14931
14932 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14933
14934 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14935 /* Enforce that fb modifier and tiling mode match, but only for
14936 * X-tiled. This is needed for FBC. */
14937 if (!!(obj->tiling_mode == I915_TILING_X) !=
14938 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14939 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14940 return -EINVAL;
14941 }
14942 } else {
14943 if (obj->tiling_mode == I915_TILING_X)
14944 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14945 else if (obj->tiling_mode == I915_TILING_Y) {
14946 DRM_DEBUG("No Y tiling for legacy addfb\n");
14947 return -EINVAL;
14948 }
14949 }
14950
14951 /* Passed in modifier sanity checking. */
14952 switch (mode_cmd->modifier[0]) {
14953 case I915_FORMAT_MOD_Y_TILED:
14954 case I915_FORMAT_MOD_Yf_TILED:
14955 if (INTEL_INFO(dev)->gen < 9) {
14956 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14957 mode_cmd->modifier[0]);
14958 return -EINVAL;
14959 }
14960 case DRM_FORMAT_MOD_NONE:
14961 case I915_FORMAT_MOD_X_TILED:
14962 break;
14963 default:
14964 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14965 mode_cmd->modifier[0]);
14966 return -EINVAL;
14967 }
14968
14969 stride_alignment = intel_fb_stride_alignment(dev_priv,
14970 mode_cmd->modifier[0],
14971 mode_cmd->pixel_format);
14972 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14973 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14974 mode_cmd->pitches[0], stride_alignment);
14975 return -EINVAL;
14976 }
14977
14978 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14979 mode_cmd->pixel_format);
14980 if (mode_cmd->pitches[0] > pitch_limit) {
14981 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14982 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14983 "tiled" : "linear",
14984 mode_cmd->pitches[0], pitch_limit);
14985 return -EINVAL;
14986 }
14987
14988 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14989 mode_cmd->pitches[0] != obj->stride) {
14990 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14991 mode_cmd->pitches[0], obj->stride);
14992 return -EINVAL;
14993 }
14994
14995 /* Reject formats not supported by any plane early. */
14996 switch (mode_cmd->pixel_format) {
14997 case DRM_FORMAT_C8:
14998 case DRM_FORMAT_RGB565:
14999 case DRM_FORMAT_XRGB8888:
15000 case DRM_FORMAT_ARGB8888:
15001 break;
15002 case DRM_FORMAT_XRGB1555:
15003 if (INTEL_INFO(dev)->gen > 3) {
15004 DRM_DEBUG("unsupported pixel format: %s\n",
15005 drm_get_format_name(mode_cmd->pixel_format));
15006 return -EINVAL;
15007 }
15008 break;
15009 case DRM_FORMAT_ABGR8888:
15010 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15011 INTEL_INFO(dev)->gen < 9) {
15012 DRM_DEBUG("unsupported pixel format: %s\n",
15013 drm_get_format_name(mode_cmd->pixel_format));
15014 return -EINVAL;
15015 }
15016 break;
15017 case DRM_FORMAT_XBGR8888:
15018 case DRM_FORMAT_XRGB2101010:
15019 case DRM_FORMAT_XBGR2101010:
15020 if (INTEL_INFO(dev)->gen < 4) {
15021 DRM_DEBUG("unsupported pixel format: %s\n",
15022 drm_get_format_name(mode_cmd->pixel_format));
15023 return -EINVAL;
15024 }
15025 break;
15026 case DRM_FORMAT_ABGR2101010:
15027 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15028 DRM_DEBUG("unsupported pixel format: %s\n",
15029 drm_get_format_name(mode_cmd->pixel_format));
15030 return -EINVAL;
15031 }
15032 break;
15033 case DRM_FORMAT_YUYV:
15034 case DRM_FORMAT_UYVY:
15035 case DRM_FORMAT_YVYU:
15036 case DRM_FORMAT_VYUY:
15037 if (INTEL_INFO(dev)->gen < 5) {
15038 DRM_DEBUG("unsupported pixel format: %s\n",
15039 drm_get_format_name(mode_cmd->pixel_format));
15040 return -EINVAL;
15041 }
15042 break;
15043 default:
15044 DRM_DEBUG("unsupported pixel format: %s\n",
15045 drm_get_format_name(mode_cmd->pixel_format));
15046 return -EINVAL;
15047 }
15048
15049 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15050 if (mode_cmd->offsets[0] != 0)
15051 return -EINVAL;
15052
15053 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15054 mode_cmd->pixel_format,
15055 mode_cmd->modifier[0]);
15056 /* FIXME drm helper for size checks (especially planar formats)? */
15057 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15058 return -EINVAL;
15059
15060 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15061 intel_fb->obj = obj;
15062
15063 intel_fill_fb_info(dev_priv, &intel_fb->base);
15064
15065 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15066 if (ret) {
15067 DRM_ERROR("framebuffer init failed %d\n", ret);
15068 return ret;
15069 }
15070
15071 intel_fb->obj->framebuffer_references++;
15072
15073 return 0;
15074 }
15075
15076 static struct drm_framebuffer *
15077 intel_user_framebuffer_create(struct drm_device *dev,
15078 struct drm_file *filp,
15079 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15080 {
15081 struct drm_framebuffer *fb;
15082 struct drm_i915_gem_object *obj;
15083 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15084
15085 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15086 if (!obj)
15087 return ERR_PTR(-ENOENT);
15088
15089 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15090 if (IS_ERR(fb))
15091 i915_gem_object_put_unlocked(obj);
15092
15093 return fb;
15094 }
15095
15096 #ifndef CONFIG_DRM_FBDEV_EMULATION
15097 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15098 {
15099 }
15100 #endif
15101
15102 static const struct drm_mode_config_funcs intel_mode_funcs = {
15103 .fb_create = intel_user_framebuffer_create,
15104 .output_poll_changed = intel_fbdev_output_poll_changed,
15105 .atomic_check = intel_atomic_check,
15106 .atomic_commit = intel_atomic_commit,
15107 .atomic_state_alloc = intel_atomic_state_alloc,
15108 .atomic_state_clear = intel_atomic_state_clear,
15109 };
15110
15111 /**
15112 * intel_init_display_hooks - initialize the display modesetting hooks
15113 * @dev_priv: device private
15114 */
15115 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15116 {
15117 if (INTEL_INFO(dev_priv)->gen >= 9) {
15118 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15119 dev_priv->display.get_initial_plane_config =
15120 skylake_get_initial_plane_config;
15121 dev_priv->display.crtc_compute_clock =
15122 haswell_crtc_compute_clock;
15123 dev_priv->display.crtc_enable = haswell_crtc_enable;
15124 dev_priv->display.crtc_disable = haswell_crtc_disable;
15125 } else if (HAS_DDI(dev_priv)) {
15126 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15127 dev_priv->display.get_initial_plane_config =
15128 ironlake_get_initial_plane_config;
15129 dev_priv->display.crtc_compute_clock =
15130 haswell_crtc_compute_clock;
15131 dev_priv->display.crtc_enable = haswell_crtc_enable;
15132 dev_priv->display.crtc_disable = haswell_crtc_disable;
15133 } else if (HAS_PCH_SPLIT(dev_priv)) {
15134 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15135 dev_priv->display.get_initial_plane_config =
15136 ironlake_get_initial_plane_config;
15137 dev_priv->display.crtc_compute_clock =
15138 ironlake_crtc_compute_clock;
15139 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15140 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15141 } else if (IS_CHERRYVIEW(dev_priv)) {
15142 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15143 dev_priv->display.get_initial_plane_config =
15144 i9xx_get_initial_plane_config;
15145 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15146 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15147 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15148 } else if (IS_VALLEYVIEW(dev_priv)) {
15149 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15150 dev_priv->display.get_initial_plane_config =
15151 i9xx_get_initial_plane_config;
15152 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15153 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15154 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15155 } else if (IS_G4X(dev_priv)) {
15156 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15157 dev_priv->display.get_initial_plane_config =
15158 i9xx_get_initial_plane_config;
15159 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15160 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15161 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15162 } else if (IS_PINEVIEW(dev_priv)) {
15163 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15164 dev_priv->display.get_initial_plane_config =
15165 i9xx_get_initial_plane_config;
15166 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15167 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15168 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15169 } else if (!IS_GEN2(dev_priv)) {
15170 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15171 dev_priv->display.get_initial_plane_config =
15172 i9xx_get_initial_plane_config;
15173 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15174 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15175 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15176 } else {
15177 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15178 dev_priv->display.get_initial_plane_config =
15179 i9xx_get_initial_plane_config;
15180 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15181 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15182 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15183 }
15184
15185 /* Returns the core display clock speed */
15186 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15187 dev_priv->display.get_display_clock_speed =
15188 skylake_get_display_clock_speed;
15189 else if (IS_BROXTON(dev_priv))
15190 dev_priv->display.get_display_clock_speed =
15191 broxton_get_display_clock_speed;
15192 else if (IS_BROADWELL(dev_priv))
15193 dev_priv->display.get_display_clock_speed =
15194 broadwell_get_display_clock_speed;
15195 else if (IS_HASWELL(dev_priv))
15196 dev_priv->display.get_display_clock_speed =
15197 haswell_get_display_clock_speed;
15198 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15199 dev_priv->display.get_display_clock_speed =
15200 valleyview_get_display_clock_speed;
15201 else if (IS_GEN5(dev_priv))
15202 dev_priv->display.get_display_clock_speed =
15203 ilk_get_display_clock_speed;
15204 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15205 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15206 dev_priv->display.get_display_clock_speed =
15207 i945_get_display_clock_speed;
15208 else if (IS_GM45(dev_priv))
15209 dev_priv->display.get_display_clock_speed =
15210 gm45_get_display_clock_speed;
15211 else if (IS_CRESTLINE(dev_priv))
15212 dev_priv->display.get_display_clock_speed =
15213 i965gm_get_display_clock_speed;
15214 else if (IS_PINEVIEW(dev_priv))
15215 dev_priv->display.get_display_clock_speed =
15216 pnv_get_display_clock_speed;
15217 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15218 dev_priv->display.get_display_clock_speed =
15219 g33_get_display_clock_speed;
15220 else if (IS_I915G(dev_priv))
15221 dev_priv->display.get_display_clock_speed =
15222 i915_get_display_clock_speed;
15223 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15224 dev_priv->display.get_display_clock_speed =
15225 i9xx_misc_get_display_clock_speed;
15226 else if (IS_I915GM(dev_priv))
15227 dev_priv->display.get_display_clock_speed =
15228 i915gm_get_display_clock_speed;
15229 else if (IS_I865G(dev_priv))
15230 dev_priv->display.get_display_clock_speed =
15231 i865_get_display_clock_speed;
15232 else if (IS_I85X(dev_priv))
15233 dev_priv->display.get_display_clock_speed =
15234 i85x_get_display_clock_speed;
15235 else { /* 830 */
15236 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15237 dev_priv->display.get_display_clock_speed =
15238 i830_get_display_clock_speed;
15239 }
15240
15241 if (IS_GEN5(dev_priv)) {
15242 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15243 } else if (IS_GEN6(dev_priv)) {
15244 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15245 } else if (IS_IVYBRIDGE(dev_priv)) {
15246 /* FIXME: detect B0+ stepping and use auto training */
15247 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15248 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15249 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15250 }
15251
15252 if (IS_BROADWELL(dev_priv)) {
15253 dev_priv->display.modeset_commit_cdclk =
15254 broadwell_modeset_commit_cdclk;
15255 dev_priv->display.modeset_calc_cdclk =
15256 broadwell_modeset_calc_cdclk;
15257 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15258 dev_priv->display.modeset_commit_cdclk =
15259 valleyview_modeset_commit_cdclk;
15260 dev_priv->display.modeset_calc_cdclk =
15261 valleyview_modeset_calc_cdclk;
15262 } else if (IS_BROXTON(dev_priv)) {
15263 dev_priv->display.modeset_commit_cdclk =
15264 bxt_modeset_commit_cdclk;
15265 dev_priv->display.modeset_calc_cdclk =
15266 bxt_modeset_calc_cdclk;
15267 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15268 dev_priv->display.modeset_commit_cdclk =
15269 skl_modeset_commit_cdclk;
15270 dev_priv->display.modeset_calc_cdclk =
15271 skl_modeset_calc_cdclk;
15272 }
15273
15274 switch (INTEL_INFO(dev_priv)->gen) {
15275 case 2:
15276 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15277 break;
15278
15279 case 3:
15280 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15281 break;
15282
15283 case 4:
15284 case 5:
15285 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15286 break;
15287
15288 case 6:
15289 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15290 break;
15291 case 7:
15292 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15293 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15294 break;
15295 case 9:
15296 /* Drop through - unsupported since execlist only. */
15297 default:
15298 /* Default just returns -ENODEV to indicate unsupported */
15299 dev_priv->display.queue_flip = intel_default_queue_flip;
15300 }
15301 }
15302
15303 /*
15304 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15305 * resume, or other times. This quirk makes sure that's the case for
15306 * affected systems.
15307 */
15308 static void quirk_pipea_force(struct drm_device *dev)
15309 {
15310 struct drm_i915_private *dev_priv = to_i915(dev);
15311
15312 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15313 DRM_INFO("applying pipe a force quirk\n");
15314 }
15315
15316 static void quirk_pipeb_force(struct drm_device *dev)
15317 {
15318 struct drm_i915_private *dev_priv = to_i915(dev);
15319
15320 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15321 DRM_INFO("applying pipe b force quirk\n");
15322 }
15323
15324 /*
15325 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15326 */
15327 static void quirk_ssc_force_disable(struct drm_device *dev)
15328 {
15329 struct drm_i915_private *dev_priv = to_i915(dev);
15330 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15331 DRM_INFO("applying lvds SSC disable quirk\n");
15332 }
15333
15334 /*
15335 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15336 * brightness value
15337 */
15338 static void quirk_invert_brightness(struct drm_device *dev)
15339 {
15340 struct drm_i915_private *dev_priv = to_i915(dev);
15341 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15342 DRM_INFO("applying inverted panel brightness quirk\n");
15343 }
15344
15345 /* Some VBT's incorrectly indicate no backlight is present */
15346 static void quirk_backlight_present(struct drm_device *dev)
15347 {
15348 struct drm_i915_private *dev_priv = to_i915(dev);
15349 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15350 DRM_INFO("applying backlight present quirk\n");
15351 }
15352
15353 struct intel_quirk {
15354 int device;
15355 int subsystem_vendor;
15356 int subsystem_device;
15357 void (*hook)(struct drm_device *dev);
15358 };
15359
15360 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15361 struct intel_dmi_quirk {
15362 void (*hook)(struct drm_device *dev);
15363 const struct dmi_system_id (*dmi_id_list)[];
15364 };
15365
15366 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15367 {
15368 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15369 return 1;
15370 }
15371
15372 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15373 {
15374 .dmi_id_list = &(const struct dmi_system_id[]) {
15375 {
15376 .callback = intel_dmi_reverse_brightness,
15377 .ident = "NCR Corporation",
15378 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15379 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15380 },
15381 },
15382 { } /* terminating entry */
15383 },
15384 .hook = quirk_invert_brightness,
15385 },
15386 };
15387
15388 static struct intel_quirk intel_quirks[] = {
15389 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15390 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15391
15392 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15393 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15394
15395 /* 830 needs to leave pipe A & dpll A up */
15396 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15397
15398 /* 830 needs to leave pipe B & dpll B up */
15399 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15400
15401 /* Lenovo U160 cannot use SSC on LVDS */
15402 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15403
15404 /* Sony Vaio Y cannot use SSC on LVDS */
15405 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15406
15407 /* Acer Aspire 5734Z must invert backlight brightness */
15408 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15409
15410 /* Acer/eMachines G725 */
15411 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15412
15413 /* Acer/eMachines e725 */
15414 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15415
15416 /* Acer/Packard Bell NCL20 */
15417 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15418
15419 /* Acer Aspire 4736Z */
15420 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15421
15422 /* Acer Aspire 5336 */
15423 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15424
15425 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15426 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15427
15428 /* Acer C720 Chromebook (Core i3 4005U) */
15429 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15430
15431 /* Apple Macbook 2,1 (Core 2 T7400) */
15432 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15433
15434 /* Apple Macbook 4,1 */
15435 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15436
15437 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15438 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15439
15440 /* HP Chromebook 14 (Celeron 2955U) */
15441 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15442
15443 /* Dell Chromebook 11 */
15444 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15445
15446 /* Dell Chromebook 11 (2015 version) */
15447 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15448 };
15449
15450 static void intel_init_quirks(struct drm_device *dev)
15451 {
15452 struct pci_dev *d = dev->pdev;
15453 int i;
15454
15455 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15456 struct intel_quirk *q = &intel_quirks[i];
15457
15458 if (d->device == q->device &&
15459 (d->subsystem_vendor == q->subsystem_vendor ||
15460 q->subsystem_vendor == PCI_ANY_ID) &&
15461 (d->subsystem_device == q->subsystem_device ||
15462 q->subsystem_device == PCI_ANY_ID))
15463 q->hook(dev);
15464 }
15465 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15466 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15467 intel_dmi_quirks[i].hook(dev);
15468 }
15469 }
15470
15471 /* Disable the VGA plane that we never use */
15472 static void i915_disable_vga(struct drm_device *dev)
15473 {
15474 struct drm_i915_private *dev_priv = to_i915(dev);
15475 u8 sr1;
15476 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15477
15478 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15479 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15480 outb(SR01, VGA_SR_INDEX);
15481 sr1 = inb(VGA_SR_DATA);
15482 outb(sr1 | 1<<5, VGA_SR_DATA);
15483 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15484 udelay(300);
15485
15486 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15487 POSTING_READ(vga_reg);
15488 }
15489
15490 void intel_modeset_init_hw(struct drm_device *dev)
15491 {
15492 struct drm_i915_private *dev_priv = to_i915(dev);
15493
15494 intel_update_cdclk(dev);
15495
15496 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15497
15498 intel_init_clock_gating(dev);
15499 }
15500
15501 /*
15502 * Calculate what we think the watermarks should be for the state we've read
15503 * out of the hardware and then immediately program those watermarks so that
15504 * we ensure the hardware settings match our internal state.
15505 *
15506 * We can calculate what we think WM's should be by creating a duplicate of the
15507 * current state (which was constructed during hardware readout) and running it
15508 * through the atomic check code to calculate new watermark values in the
15509 * state object.
15510 */
15511 static void sanitize_watermarks(struct drm_device *dev)
15512 {
15513 struct drm_i915_private *dev_priv = to_i915(dev);
15514 struct drm_atomic_state *state;
15515 struct drm_crtc *crtc;
15516 struct drm_crtc_state *cstate;
15517 struct drm_modeset_acquire_ctx ctx;
15518 int ret;
15519 int i;
15520
15521 /* Only supported on platforms that use atomic watermark design */
15522 if (!dev_priv->display.optimize_watermarks)
15523 return;
15524
15525 /*
15526 * We need to hold connection_mutex before calling duplicate_state so
15527 * that the connector loop is protected.
15528 */
15529 drm_modeset_acquire_init(&ctx, 0);
15530 retry:
15531 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15532 if (ret == -EDEADLK) {
15533 drm_modeset_backoff(&ctx);
15534 goto retry;
15535 } else if (WARN_ON(ret)) {
15536 goto fail;
15537 }
15538
15539 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15540 if (WARN_ON(IS_ERR(state)))
15541 goto fail;
15542
15543 /*
15544 * Hardware readout is the only time we don't want to calculate
15545 * intermediate watermarks (since we don't trust the current
15546 * watermarks).
15547 */
15548 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15549
15550 ret = intel_atomic_check(dev, state);
15551 if (ret) {
15552 /*
15553 * If we fail here, it means that the hardware appears to be
15554 * programmed in a way that shouldn't be possible, given our
15555 * understanding of watermark requirements. This might mean a
15556 * mistake in the hardware readout code or a mistake in the
15557 * watermark calculations for a given platform. Raise a WARN
15558 * so that this is noticeable.
15559 *
15560 * If this actually happens, we'll have to just leave the
15561 * BIOS-programmed watermarks untouched and hope for the best.
15562 */
15563 WARN(true, "Could not determine valid watermarks for inherited state\n");
15564 goto fail;
15565 }
15566
15567 /* Write calculated watermark values back */
15568 for_each_crtc_in_state(state, crtc, cstate, i) {
15569 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15570
15571 cs->wm.need_postvbl_update = true;
15572 dev_priv->display.optimize_watermarks(cs);
15573 }
15574
15575 drm_atomic_state_free(state);
15576 fail:
15577 drm_modeset_drop_locks(&ctx);
15578 drm_modeset_acquire_fini(&ctx);
15579 }
15580
15581 void intel_modeset_init(struct drm_device *dev)
15582 {
15583 struct drm_i915_private *dev_priv = to_i915(dev);
15584 struct i915_ggtt *ggtt = &dev_priv->ggtt;
15585 int sprite, ret;
15586 enum pipe pipe;
15587 struct intel_crtc *crtc;
15588
15589 drm_mode_config_init(dev);
15590
15591 dev->mode_config.min_width = 0;
15592 dev->mode_config.min_height = 0;
15593
15594 dev->mode_config.preferred_depth = 24;
15595 dev->mode_config.prefer_shadow = 1;
15596
15597 dev->mode_config.allow_fb_modifiers = true;
15598
15599 dev->mode_config.funcs = &intel_mode_funcs;
15600
15601 intel_init_quirks(dev);
15602
15603 intel_init_pm(dev);
15604
15605 if (INTEL_INFO(dev)->num_pipes == 0)
15606 return;
15607
15608 /*
15609 * There may be no VBT; and if the BIOS enabled SSC we can
15610 * just keep using it to avoid unnecessary flicker. Whereas if the
15611 * BIOS isn't using it, don't assume it will work even if the VBT
15612 * indicates as much.
15613 */
15614 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15615 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15616 DREF_SSC1_ENABLE);
15617
15618 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15619 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15620 bios_lvds_use_ssc ? "en" : "dis",
15621 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15622 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15623 }
15624 }
15625
15626 if (IS_GEN2(dev)) {
15627 dev->mode_config.max_width = 2048;
15628 dev->mode_config.max_height = 2048;
15629 } else if (IS_GEN3(dev)) {
15630 dev->mode_config.max_width = 4096;
15631 dev->mode_config.max_height = 4096;
15632 } else {
15633 dev->mode_config.max_width = 8192;
15634 dev->mode_config.max_height = 8192;
15635 }
15636
15637 if (IS_845G(dev) || IS_I865G(dev)) {
15638 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15639 dev->mode_config.cursor_height = 1023;
15640 } else if (IS_GEN2(dev)) {
15641 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15642 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15643 } else {
15644 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15645 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15646 }
15647
15648 dev->mode_config.fb_base = ggtt->mappable_base;
15649
15650 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15651 INTEL_INFO(dev)->num_pipes,
15652 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15653
15654 for_each_pipe(dev_priv, pipe) {
15655 intel_crtc_init(dev, pipe);
15656 for_each_sprite(dev_priv, pipe, sprite) {
15657 ret = intel_plane_init(dev, pipe, sprite);
15658 if (ret)
15659 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15660 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15661 }
15662 }
15663
15664 intel_update_czclk(dev_priv);
15665 intel_update_cdclk(dev);
15666
15667 intel_shared_dpll_init(dev);
15668
15669 if (dev_priv->max_cdclk_freq == 0)
15670 intel_update_max_cdclk(dev);
15671
15672 /* Just disable it once at startup */
15673 i915_disable_vga(dev);
15674 intel_setup_outputs(dev);
15675
15676 drm_modeset_lock_all(dev);
15677 intel_modeset_setup_hw_state(dev);
15678 drm_modeset_unlock_all(dev);
15679
15680 for_each_intel_crtc(dev, crtc) {
15681 struct intel_initial_plane_config plane_config = {};
15682
15683 if (!crtc->active)
15684 continue;
15685
15686 /*
15687 * Note that reserving the BIOS fb up front prevents us
15688 * from stuffing other stolen allocations like the ring
15689 * on top. This prevents some ugliness at boot time, and
15690 * can even allow for smooth boot transitions if the BIOS
15691 * fb is large enough for the active pipe configuration.
15692 */
15693 dev_priv->display.get_initial_plane_config(crtc,
15694 &plane_config);
15695
15696 /*
15697 * If the fb is shared between multiple heads, we'll
15698 * just get the first one.
15699 */
15700 intel_find_initial_plane_obj(crtc, &plane_config);
15701 }
15702
15703 /*
15704 * Make sure hardware watermarks really match the state we read out.
15705 * Note that we need to do this after reconstructing the BIOS fb's
15706 * since the watermark calculation done here will use pstate->fb.
15707 */
15708 sanitize_watermarks(dev);
15709 }
15710
15711 static void intel_enable_pipe_a(struct drm_device *dev)
15712 {
15713 struct intel_connector *connector;
15714 struct drm_connector *crt = NULL;
15715 struct intel_load_detect_pipe load_detect_temp;
15716 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15717
15718 /* We can't just switch on the pipe A, we need to set things up with a
15719 * proper mode and output configuration. As a gross hack, enable pipe A
15720 * by enabling the load detect pipe once. */
15721 for_each_intel_connector(dev, connector) {
15722 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15723 crt = &connector->base;
15724 break;
15725 }
15726 }
15727
15728 if (!crt)
15729 return;
15730
15731 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15732 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15733 }
15734
15735 static bool
15736 intel_check_plane_mapping(struct intel_crtc *crtc)
15737 {
15738 struct drm_device *dev = crtc->base.dev;
15739 struct drm_i915_private *dev_priv = to_i915(dev);
15740 u32 val;
15741
15742 if (INTEL_INFO(dev)->num_pipes == 1)
15743 return true;
15744
15745 val = I915_READ(DSPCNTR(!crtc->plane));
15746
15747 if ((val & DISPLAY_PLANE_ENABLE) &&
15748 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15749 return false;
15750
15751 return true;
15752 }
15753
15754 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15755 {
15756 struct drm_device *dev = crtc->base.dev;
15757 struct intel_encoder *encoder;
15758
15759 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15760 return true;
15761
15762 return false;
15763 }
15764
15765 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15766 {
15767 struct drm_device *dev = encoder->base.dev;
15768 struct intel_connector *connector;
15769
15770 for_each_connector_on_encoder(dev, &encoder->base, connector)
15771 return true;
15772
15773 return false;
15774 }
15775
15776 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15777 {
15778 struct drm_device *dev = crtc->base.dev;
15779 struct drm_i915_private *dev_priv = to_i915(dev);
15780 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15781
15782 /* Clear any frame start delays used for debugging left by the BIOS */
15783 if (!transcoder_is_dsi(cpu_transcoder)) {
15784 i915_reg_t reg = PIPECONF(cpu_transcoder);
15785
15786 I915_WRITE(reg,
15787 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15788 }
15789
15790 /* restore vblank interrupts to correct state */
15791 drm_crtc_vblank_reset(&crtc->base);
15792 if (crtc->active) {
15793 struct intel_plane *plane;
15794
15795 drm_crtc_vblank_on(&crtc->base);
15796
15797 /* Disable everything but the primary plane */
15798 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15799 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15800 continue;
15801
15802 plane->disable_plane(&plane->base, &crtc->base);
15803 }
15804 }
15805
15806 /* We need to sanitize the plane -> pipe mapping first because this will
15807 * disable the crtc (and hence change the state) if it is wrong. Note
15808 * that gen4+ has a fixed plane -> pipe mapping. */
15809 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15810 bool plane;
15811
15812 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15813 crtc->base.base.id, crtc->base.name);
15814
15815 /* Pipe has the wrong plane attached and the plane is active.
15816 * Temporarily change the plane mapping and disable everything
15817 * ... */
15818 plane = crtc->plane;
15819 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15820 crtc->plane = !plane;
15821 intel_crtc_disable_noatomic(&crtc->base);
15822 crtc->plane = plane;
15823 }
15824
15825 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15826 crtc->pipe == PIPE_A && !crtc->active) {
15827 /* BIOS forgot to enable pipe A, this mostly happens after
15828 * resume. Force-enable the pipe to fix this, the update_dpms
15829 * call below we restore the pipe to the right state, but leave
15830 * the required bits on. */
15831 intel_enable_pipe_a(dev);
15832 }
15833
15834 /* Adjust the state of the output pipe according to whether we
15835 * have active connectors/encoders. */
15836 if (crtc->active && !intel_crtc_has_encoders(crtc))
15837 intel_crtc_disable_noatomic(&crtc->base);
15838
15839 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15840 /*
15841 * We start out with underrun reporting disabled to avoid races.
15842 * For correct bookkeeping mark this on active crtcs.
15843 *
15844 * Also on gmch platforms we dont have any hardware bits to
15845 * disable the underrun reporting. Which means we need to start
15846 * out with underrun reporting disabled also on inactive pipes,
15847 * since otherwise we'll complain about the garbage we read when
15848 * e.g. coming up after runtime pm.
15849 *
15850 * No protection against concurrent access is required - at
15851 * worst a fifo underrun happens which also sets this to false.
15852 */
15853 crtc->cpu_fifo_underrun_disabled = true;
15854 crtc->pch_fifo_underrun_disabled = true;
15855 }
15856 }
15857
15858 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15859 {
15860 struct intel_connector *connector;
15861 struct drm_device *dev = encoder->base.dev;
15862
15863 /* We need to check both for a crtc link (meaning that the
15864 * encoder is active and trying to read from a pipe) and the
15865 * pipe itself being active. */
15866 bool has_active_crtc = encoder->base.crtc &&
15867 to_intel_crtc(encoder->base.crtc)->active;
15868
15869 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15870 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15871 encoder->base.base.id,
15872 encoder->base.name);
15873
15874 /* Connector is active, but has no active pipe. This is
15875 * fallout from our resume register restoring. Disable
15876 * the encoder manually again. */
15877 if (encoder->base.crtc) {
15878 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15879 encoder->base.base.id,
15880 encoder->base.name);
15881 encoder->disable(encoder);
15882 if (encoder->post_disable)
15883 encoder->post_disable(encoder);
15884 }
15885 encoder->base.crtc = NULL;
15886
15887 /* Inconsistent output/port/pipe state happens presumably due to
15888 * a bug in one of the get_hw_state functions. Or someplace else
15889 * in our code, like the register restore mess on resume. Clamp
15890 * things to off as a safer default. */
15891 for_each_intel_connector(dev, connector) {
15892 if (connector->encoder != encoder)
15893 continue;
15894 connector->base.dpms = DRM_MODE_DPMS_OFF;
15895 connector->base.encoder = NULL;
15896 }
15897 }
15898 /* Enabled encoders without active connectors will be fixed in
15899 * the crtc fixup. */
15900 }
15901
15902 void i915_redisable_vga_power_on(struct drm_device *dev)
15903 {
15904 struct drm_i915_private *dev_priv = to_i915(dev);
15905 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15906
15907 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15908 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15909 i915_disable_vga(dev);
15910 }
15911 }
15912
15913 void i915_redisable_vga(struct drm_device *dev)
15914 {
15915 struct drm_i915_private *dev_priv = to_i915(dev);
15916
15917 /* This function can be called both from intel_modeset_setup_hw_state or
15918 * at a very early point in our resume sequence, where the power well
15919 * structures are not yet restored. Since this function is at a very
15920 * paranoid "someone might have enabled VGA while we were not looking"
15921 * level, just check if the power well is enabled instead of trying to
15922 * follow the "don't touch the power well if we don't need it" policy
15923 * the rest of the driver uses. */
15924 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15925 return;
15926
15927 i915_redisable_vga_power_on(dev);
15928
15929 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15930 }
15931
15932 static bool primary_get_hw_state(struct intel_plane *plane)
15933 {
15934 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15935
15936 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15937 }
15938
15939 /* FIXME read out full plane state for all planes */
15940 static void readout_plane_state(struct intel_crtc *crtc)
15941 {
15942 struct drm_plane *primary = crtc->base.primary;
15943 struct intel_plane_state *plane_state =
15944 to_intel_plane_state(primary->state);
15945
15946 plane_state->visible = crtc->active &&
15947 primary_get_hw_state(to_intel_plane(primary));
15948
15949 if (plane_state->visible)
15950 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15951 }
15952
15953 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15954 {
15955 struct drm_i915_private *dev_priv = to_i915(dev);
15956 enum pipe pipe;
15957 struct intel_crtc *crtc;
15958 struct intel_encoder *encoder;
15959 struct intel_connector *connector;
15960 int i;
15961
15962 dev_priv->active_crtcs = 0;
15963
15964 for_each_intel_crtc(dev, crtc) {
15965 struct intel_crtc_state *crtc_state = crtc->config;
15966 int pixclk = 0;
15967
15968 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15969 memset(crtc_state, 0, sizeof(*crtc_state));
15970 crtc_state->base.crtc = &crtc->base;
15971
15972 crtc_state->base.active = crtc_state->base.enable =
15973 dev_priv->display.get_pipe_config(crtc, crtc_state);
15974
15975 crtc->base.enabled = crtc_state->base.enable;
15976 crtc->active = crtc_state->base.active;
15977
15978 if (crtc_state->base.active) {
15979 dev_priv->active_crtcs |= 1 << crtc->pipe;
15980
15981 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15982 pixclk = ilk_pipe_pixel_rate(crtc_state);
15983 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15984 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15985 else
15986 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15987
15988 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15989 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15990 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15991 }
15992
15993 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15994
15995 readout_plane_state(crtc);
15996
15997 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15998 crtc->base.base.id, crtc->base.name,
15999 crtc->active ? "enabled" : "disabled");
16000 }
16001
16002 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16003 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16004
16005 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16006 &pll->config.hw_state);
16007 pll->config.crtc_mask = 0;
16008 for_each_intel_crtc(dev, crtc) {
16009 if (crtc->active && crtc->config->shared_dpll == pll)
16010 pll->config.crtc_mask |= 1 << crtc->pipe;
16011 }
16012 pll->active_mask = pll->config.crtc_mask;
16013
16014 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16015 pll->name, pll->config.crtc_mask, pll->on);
16016 }
16017
16018 for_each_intel_encoder(dev, encoder) {
16019 pipe = 0;
16020
16021 if (encoder->get_hw_state(encoder, &pipe)) {
16022 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16023 encoder->base.crtc = &crtc->base;
16024 crtc->config->output_types |= 1 << encoder->type;
16025 encoder->get_config(encoder, crtc->config);
16026 } else {
16027 encoder->base.crtc = NULL;
16028 }
16029
16030 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16031 encoder->base.base.id,
16032 encoder->base.name,
16033 encoder->base.crtc ? "enabled" : "disabled",
16034 pipe_name(pipe));
16035 }
16036
16037 for_each_intel_connector(dev, connector) {
16038 if (connector->get_hw_state(connector)) {
16039 connector->base.dpms = DRM_MODE_DPMS_ON;
16040
16041 encoder = connector->encoder;
16042 connector->base.encoder = &encoder->base;
16043
16044 if (encoder->base.crtc &&
16045 encoder->base.crtc->state->active) {
16046 /*
16047 * This has to be done during hardware readout
16048 * because anything calling .crtc_disable may
16049 * rely on the connector_mask being accurate.
16050 */
16051 encoder->base.crtc->state->connector_mask |=
16052 1 << drm_connector_index(&connector->base);
16053 encoder->base.crtc->state->encoder_mask |=
16054 1 << drm_encoder_index(&encoder->base);
16055 }
16056
16057 } else {
16058 connector->base.dpms = DRM_MODE_DPMS_OFF;
16059 connector->base.encoder = NULL;
16060 }
16061 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16062 connector->base.base.id,
16063 connector->base.name,
16064 connector->base.encoder ? "enabled" : "disabled");
16065 }
16066
16067 for_each_intel_crtc(dev, crtc) {
16068 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16069
16070 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16071 if (crtc->base.state->active) {
16072 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16073 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16074 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16075
16076 /*
16077 * The initial mode needs to be set in order to keep
16078 * the atomic core happy. It wants a valid mode if the
16079 * crtc's enabled, so we do the above call.
16080 *
16081 * At this point some state updated by the connectors
16082 * in their ->detect() callback has not run yet, so
16083 * no recalculation can be done yet.
16084 *
16085 * Even if we could do a recalculation and modeset
16086 * right now it would cause a double modeset if
16087 * fbdev or userspace chooses a different initial mode.
16088 *
16089 * If that happens, someone indicated they wanted a
16090 * mode change, which means it's safe to do a full
16091 * recalculation.
16092 */
16093 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16094
16095 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16096 update_scanline_offset(crtc);
16097 }
16098
16099 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16100 }
16101 }
16102
16103 /* Scan out the current hw modeset state,
16104 * and sanitizes it to the current state
16105 */
16106 static void
16107 intel_modeset_setup_hw_state(struct drm_device *dev)
16108 {
16109 struct drm_i915_private *dev_priv = to_i915(dev);
16110 enum pipe pipe;
16111 struct intel_crtc *crtc;
16112 struct intel_encoder *encoder;
16113 int i;
16114
16115 intel_modeset_readout_hw_state(dev);
16116
16117 /* HW state is read out, now we need to sanitize this mess. */
16118 for_each_intel_encoder(dev, encoder) {
16119 intel_sanitize_encoder(encoder);
16120 }
16121
16122 for_each_pipe(dev_priv, pipe) {
16123 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16124 intel_sanitize_crtc(crtc);
16125 intel_dump_pipe_config(crtc, crtc->config,
16126 "[setup_hw_state]");
16127 }
16128
16129 intel_modeset_update_connector_atomic_state(dev);
16130
16131 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16132 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16133
16134 if (!pll->on || pll->active_mask)
16135 continue;
16136
16137 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16138
16139 pll->funcs.disable(dev_priv, pll);
16140 pll->on = false;
16141 }
16142
16143 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16144 vlv_wm_get_hw_state(dev);
16145 else if (IS_GEN9(dev))
16146 skl_wm_get_hw_state(dev);
16147 else if (HAS_PCH_SPLIT(dev))
16148 ilk_wm_get_hw_state(dev);
16149
16150 for_each_intel_crtc(dev, crtc) {
16151 unsigned long put_domains;
16152
16153 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16154 if (WARN_ON(put_domains))
16155 modeset_put_power_domains(dev_priv, put_domains);
16156 }
16157 intel_display_set_init_power(dev_priv, false);
16158
16159 intel_fbc_init_pipe_state(dev_priv);
16160 }
16161
16162 void intel_display_resume(struct drm_device *dev)
16163 {
16164 struct drm_i915_private *dev_priv = to_i915(dev);
16165 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16166 struct drm_modeset_acquire_ctx ctx;
16167 int ret;
16168 bool setup = false;
16169
16170 dev_priv->modeset_restore_state = NULL;
16171
16172 /*
16173 * This is a cludge because with real atomic modeset mode_config.mutex
16174 * won't be taken. Unfortunately some probed state like
16175 * audio_codec_enable is still protected by mode_config.mutex, so lock
16176 * it here for now.
16177 */
16178 mutex_lock(&dev->mode_config.mutex);
16179 drm_modeset_acquire_init(&ctx, 0);
16180
16181 retry:
16182 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16183
16184 if (ret == 0 && !setup) {
16185 setup = true;
16186
16187 intel_modeset_setup_hw_state(dev);
16188 i915_redisable_vga(dev);
16189 }
16190
16191 if (ret == 0 && state) {
16192 struct drm_crtc_state *crtc_state;
16193 struct drm_crtc *crtc;
16194 int i;
16195
16196 state->acquire_ctx = &ctx;
16197
16198 /* ignore any reset values/BIOS leftovers in the WM registers */
16199 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16200
16201 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16202 /*
16203 * Force recalculation even if we restore
16204 * current state. With fast modeset this may not result
16205 * in a modeset when the state is compatible.
16206 */
16207 crtc_state->mode_changed = true;
16208 }
16209
16210 ret = drm_atomic_commit(state);
16211 }
16212
16213 if (ret == -EDEADLK) {
16214 drm_modeset_backoff(&ctx);
16215 goto retry;
16216 }
16217
16218 drm_modeset_drop_locks(&ctx);
16219 drm_modeset_acquire_fini(&ctx);
16220 mutex_unlock(&dev->mode_config.mutex);
16221
16222 if (ret) {
16223 DRM_ERROR("Restoring old state failed with %i\n", ret);
16224 drm_atomic_state_free(state);
16225 }
16226 }
16227
16228 void intel_modeset_gem_init(struct drm_device *dev)
16229 {
16230 struct drm_i915_private *dev_priv = to_i915(dev);
16231 struct drm_crtc *c;
16232 struct drm_i915_gem_object *obj;
16233 int ret;
16234
16235 intel_init_gt_powersave(dev_priv);
16236
16237 intel_modeset_init_hw(dev);
16238
16239 intel_setup_overlay(dev_priv);
16240
16241 /*
16242 * Make sure any fbs we allocated at startup are properly
16243 * pinned & fenced. When we do the allocation it's too early
16244 * for this.
16245 */
16246 for_each_crtc(dev, c) {
16247 obj = intel_fb_obj(c->primary->fb);
16248 if (obj == NULL)
16249 continue;
16250
16251 mutex_lock(&dev->struct_mutex);
16252 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16253 c->primary->state->rotation);
16254 mutex_unlock(&dev->struct_mutex);
16255 if (ret) {
16256 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16257 to_intel_crtc(c)->pipe);
16258 drm_framebuffer_unreference(c->primary->fb);
16259 c->primary->fb = NULL;
16260 c->primary->crtc = c->primary->state->crtc = NULL;
16261 update_state_fb(c->primary);
16262 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16263 }
16264 }
16265 }
16266
16267 int intel_connector_register(struct drm_connector *connector)
16268 {
16269 struct intel_connector *intel_connector = to_intel_connector(connector);
16270 int ret;
16271
16272 ret = intel_backlight_device_register(intel_connector);
16273 if (ret)
16274 goto err;
16275
16276 return 0;
16277
16278 err:
16279 return ret;
16280 }
16281
16282 void intel_connector_unregister(struct drm_connector *connector)
16283 {
16284 struct intel_connector *intel_connector = to_intel_connector(connector);
16285
16286 intel_backlight_device_unregister(intel_connector);
16287 intel_panel_destroy_backlight(connector);
16288 }
16289
16290 void intel_modeset_cleanup(struct drm_device *dev)
16291 {
16292 struct drm_i915_private *dev_priv = to_i915(dev);
16293
16294 intel_disable_gt_powersave(dev_priv);
16295
16296 /*
16297 * Interrupts and polling as the first thing to avoid creating havoc.
16298 * Too much stuff here (turning of connectors, ...) would
16299 * experience fancy races otherwise.
16300 */
16301 intel_irq_uninstall(dev_priv);
16302
16303 /*
16304 * Due to the hpd irq storm handling the hotplug work can re-arm the
16305 * poll handlers. Hence disable polling after hpd handling is shut down.
16306 */
16307 drm_kms_helper_poll_fini(dev);
16308
16309 intel_unregister_dsm_handler();
16310
16311 intel_fbc_global_disable(dev_priv);
16312
16313 /* flush any delayed tasks or pending work */
16314 flush_scheduled_work();
16315
16316 drm_mode_config_cleanup(dev);
16317
16318 intel_cleanup_overlay(dev_priv);
16319
16320 intel_cleanup_gt_powersave(dev_priv);
16321
16322 intel_teardown_gmbus(dev);
16323 }
16324
16325 void intel_connector_attach_encoder(struct intel_connector *connector,
16326 struct intel_encoder *encoder)
16327 {
16328 connector->encoder = encoder;
16329 drm_mode_connector_attach_encoder(&connector->base,
16330 &encoder->base);
16331 }
16332
16333 /*
16334 * set vga decode state - true == enable VGA decode
16335 */
16336 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16337 {
16338 struct drm_i915_private *dev_priv = to_i915(dev);
16339 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16340 u16 gmch_ctrl;
16341
16342 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16343 DRM_ERROR("failed to read control word\n");
16344 return -EIO;
16345 }
16346
16347 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16348 return 0;
16349
16350 if (state)
16351 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16352 else
16353 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16354
16355 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16356 DRM_ERROR("failed to write control word\n");
16357 return -EIO;
16358 }
16359
16360 return 0;
16361 }
16362
16363 struct intel_display_error_state {
16364
16365 u32 power_well_driver;
16366
16367 int num_transcoders;
16368
16369 struct intel_cursor_error_state {
16370 u32 control;
16371 u32 position;
16372 u32 base;
16373 u32 size;
16374 } cursor[I915_MAX_PIPES];
16375
16376 struct intel_pipe_error_state {
16377 bool power_domain_on;
16378 u32 source;
16379 u32 stat;
16380 } pipe[I915_MAX_PIPES];
16381
16382 struct intel_plane_error_state {
16383 u32 control;
16384 u32 stride;
16385 u32 size;
16386 u32 pos;
16387 u32 addr;
16388 u32 surface;
16389 u32 tile_offset;
16390 } plane[I915_MAX_PIPES];
16391
16392 struct intel_transcoder_error_state {
16393 bool power_domain_on;
16394 enum transcoder cpu_transcoder;
16395
16396 u32 conf;
16397
16398 u32 htotal;
16399 u32 hblank;
16400 u32 hsync;
16401 u32 vtotal;
16402 u32 vblank;
16403 u32 vsync;
16404 } transcoder[4];
16405 };
16406
16407 struct intel_display_error_state *
16408 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16409 {
16410 struct intel_display_error_state *error;
16411 int transcoders[] = {
16412 TRANSCODER_A,
16413 TRANSCODER_B,
16414 TRANSCODER_C,
16415 TRANSCODER_EDP,
16416 };
16417 int i;
16418
16419 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16420 return NULL;
16421
16422 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16423 if (error == NULL)
16424 return NULL;
16425
16426 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16427 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16428
16429 for_each_pipe(dev_priv, i) {
16430 error->pipe[i].power_domain_on =
16431 __intel_display_power_is_enabled(dev_priv,
16432 POWER_DOMAIN_PIPE(i));
16433 if (!error->pipe[i].power_domain_on)
16434 continue;
16435
16436 error->cursor[i].control = I915_READ(CURCNTR(i));
16437 error->cursor[i].position = I915_READ(CURPOS(i));
16438 error->cursor[i].base = I915_READ(CURBASE(i));
16439
16440 error->plane[i].control = I915_READ(DSPCNTR(i));
16441 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16442 if (INTEL_GEN(dev_priv) <= 3) {
16443 error->plane[i].size = I915_READ(DSPSIZE(i));
16444 error->plane[i].pos = I915_READ(DSPPOS(i));
16445 }
16446 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16447 error->plane[i].addr = I915_READ(DSPADDR(i));
16448 if (INTEL_GEN(dev_priv) >= 4) {
16449 error->plane[i].surface = I915_READ(DSPSURF(i));
16450 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16451 }
16452
16453 error->pipe[i].source = I915_READ(PIPESRC(i));
16454
16455 if (HAS_GMCH_DISPLAY(dev_priv))
16456 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16457 }
16458
16459 /* Note: this does not include DSI transcoders. */
16460 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16461 if (HAS_DDI(dev_priv))
16462 error->num_transcoders++; /* Account for eDP. */
16463
16464 for (i = 0; i < error->num_transcoders; i++) {
16465 enum transcoder cpu_transcoder = transcoders[i];
16466
16467 error->transcoder[i].power_domain_on =
16468 __intel_display_power_is_enabled(dev_priv,
16469 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16470 if (!error->transcoder[i].power_domain_on)
16471 continue;
16472
16473 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16474
16475 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16476 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16477 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16478 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16479 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16480 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16481 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16482 }
16483
16484 return error;
16485 }
16486
16487 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16488
16489 void
16490 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16491 struct drm_device *dev,
16492 struct intel_display_error_state *error)
16493 {
16494 struct drm_i915_private *dev_priv = to_i915(dev);
16495 int i;
16496
16497 if (!error)
16498 return;
16499
16500 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16501 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16502 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16503 error->power_well_driver);
16504 for_each_pipe(dev_priv, i) {
16505 err_printf(m, "Pipe [%d]:\n", i);
16506 err_printf(m, " Power: %s\n",
16507 onoff(error->pipe[i].power_domain_on));
16508 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
16509 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
16510
16511 err_printf(m, "Plane [%d]:\n", i);
16512 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16513 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16514 if (INTEL_INFO(dev)->gen <= 3) {
16515 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16516 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16517 }
16518 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16519 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16520 if (INTEL_INFO(dev)->gen >= 4) {
16521 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16522 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16523 }
16524
16525 err_printf(m, "Cursor [%d]:\n", i);
16526 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16527 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16528 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16529 }
16530
16531 for (i = 0; i < error->num_transcoders; i++) {
16532 err_printf(m, "CPU transcoder: %s\n",
16533 transcoder_name(error->transcoder[i].cpu_transcoder));
16534 err_printf(m, " Power: %s\n",
16535 onoff(error->transcoder[i].power_domain_on));
16536 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16537 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16538 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16539 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16540 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16541 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16542 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16543 }
16544 }
This page took 0.389081 seconds and 5 git commands to generate.