drm/i915: Check pixel clock limits on pre-gen4
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54 int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68 intel_range_t dot, vco, n, m, m1, m2, p, p1;
69 intel_p2_t p2;
70 };
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75 struct drm_i915_private *dev_priv = dev->dev_private;
76
77 WARN_ON(!HAS_PCH_SPLIT(dev));
78
79 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85 if (IS_GEN5(dev)) {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88 } else
89 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93 .dot = { .min = 25000, .max = 350000 },
94 .vco = { .min = 930000, .max = 1400000 },
95 .n = { .min = 3, .max = 16 },
96 .m = { .min = 96, .max = 140 },
97 .m1 = { .min = 18, .max = 26 },
98 .m2 = { .min = 6, .max = 16 },
99 .p = { .min = 4, .max = 128 },
100 .p1 = { .min = 2, .max = 33 },
101 .p2 = { .dot_limit = 165000,
102 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106 .dot = { .min = 25000, .max = 350000 },
107 .vco = { .min = 930000, .max = 1400000 },
108 .n = { .min = 3, .max = 16 },
109 .m = { .min = 96, .max = 140 },
110 .m1 = { .min = 18, .max = 26 },
111 .m2 = { .min = 6, .max = 16 },
112 .p = { .min = 4, .max = 128 },
113 .p1 = { .min = 2, .max = 33 },
114 .p2 = { .dot_limit = 165000,
115 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119 .dot = { .min = 25000, .max = 350000 },
120 .vco = { .min = 930000, .max = 1400000 },
121 .n = { .min = 3, .max = 16 },
122 .m = { .min = 96, .max = 140 },
123 .m1 = { .min = 18, .max = 26 },
124 .m2 = { .min = 6, .max = 16 },
125 .p = { .min = 4, .max = 128 },
126 .p1 = { .min = 1, .max = 6 },
127 .p2 = { .dot_limit = 165000,
128 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132 .dot = { .min = 20000, .max = 400000 },
133 .vco = { .min = 1400000, .max = 2800000 },
134 .n = { .min = 1, .max = 6 },
135 .m = { .min = 70, .max = 120 },
136 .m1 = { .min = 8, .max = 18 },
137 .m2 = { .min = 3, .max = 7 },
138 .p = { .min = 5, .max = 80 },
139 .p1 = { .min = 1, .max = 8 },
140 .p2 = { .dot_limit = 200000,
141 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 8, .max = 18 },
150 .m2 = { .min = 3, .max = 7 },
151 .p = { .min = 7, .max = 98 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 112000,
154 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159 .dot = { .min = 25000, .max = 270000 },
160 .vco = { .min = 1750000, .max = 3500000},
161 .n = { .min = 1, .max = 4 },
162 .m = { .min = 104, .max = 138 },
163 .m1 = { .min = 17, .max = 23 },
164 .m2 = { .min = 5, .max = 11 },
165 .p = { .min = 10, .max = 30 },
166 .p1 = { .min = 1, .max = 3},
167 .p2 = { .dot_limit = 270000,
168 .p2_slow = 10,
169 .p2_fast = 10
170 },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174 .dot = { .min = 22000, .max = 400000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 16, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 5, .max = 80 },
181 .p1 = { .min = 1, .max = 8},
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187 .dot = { .min = 20000, .max = 115000 },
188 .vco = { .min = 1750000, .max = 3500000 },
189 .n = { .min = 1, .max = 3 },
190 .m = { .min = 104, .max = 138 },
191 .m1 = { .min = 17, .max = 23 },
192 .m2 = { .min = 5, .max = 11 },
193 .p = { .min = 28, .max = 112 },
194 .p1 = { .min = 2, .max = 8 },
195 .p2 = { .dot_limit = 0,
196 .p2_slow = 14, .p2_fast = 14
197 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201 .dot = { .min = 80000, .max = 224000 },
202 .vco = { .min = 1750000, .max = 3500000 },
203 .n = { .min = 1, .max = 3 },
204 .m = { .min = 104, .max = 138 },
205 .m1 = { .min = 17, .max = 23 },
206 .m2 = { .min = 5, .max = 11 },
207 .p = { .min = 14, .max = 42 },
208 .p1 = { .min = 2, .max = 6 },
209 .p2 = { .dot_limit = 0,
210 .p2_slow = 7, .p2_fast = 7
211 },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215 .dot = { .min = 20000, .max = 400000},
216 .vco = { .min = 1700000, .max = 3500000 },
217 /* Pineview's Ncounter is a ring counter */
218 .n = { .min = 3, .max = 6 },
219 .m = { .min = 2, .max = 256 },
220 /* Pineview only has one combined m divider, which we treat as m2. */
221 .m1 = { .min = 0, .max = 0 },
222 .m2 = { .min = 0, .max = 254 },
223 .p = { .min = 5, .max = 80 },
224 .p1 = { .min = 1, .max = 8 },
225 .p2 = { .dot_limit = 200000,
226 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230 .dot = { .min = 20000, .max = 400000 },
231 .vco = { .min = 1700000, .max = 3500000 },
232 .n = { .min = 3, .max = 6 },
233 .m = { .min = 2, .max = 256 },
234 .m1 = { .min = 0, .max = 0 },
235 .m2 = { .min = 0, .max = 254 },
236 .p = { .min = 7, .max = 112 },
237 .p1 = { .min = 1, .max = 8 },
238 .p2 = { .dot_limit = 112000,
239 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243 *
244 * We calculate clock using (register_value + 2) for N/M1/M2, so here
245 * the range value for them is (actual_value - 2).
246 */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248 .dot = { .min = 25000, .max = 350000 },
249 .vco = { .min = 1760000, .max = 3510000 },
250 .n = { .min = 1, .max = 5 },
251 .m = { .min = 79, .max = 127 },
252 .m1 = { .min = 12, .max = 22 },
253 .m2 = { .min = 5, .max = 9 },
254 .p = { .min = 5, .max = 80 },
255 .p1 = { .min = 1, .max = 8 },
256 .p2 = { .dot_limit = 225000,
257 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261 .dot = { .min = 25000, .max = 350000 },
262 .vco = { .min = 1760000, .max = 3510000 },
263 .n = { .min = 1, .max = 3 },
264 .m = { .min = 79, .max = 118 },
265 .m1 = { .min = 12, .max = 22 },
266 .m2 = { .min = 5, .max = 9 },
267 .p = { .min = 28, .max = 112 },
268 .p1 = { .min = 2, .max = 8 },
269 .p2 = { .dot_limit = 225000,
270 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 3 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 14, .max = 56 },
281 .p1 = { .min = 2, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 2 },
291 .m = { .min = 79, .max = 126 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 3 },
304 .m = { .min = 79, .max = 126 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 14, .max = 42 },
308 .p1 = { .min = 2, .max = 6 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314 .dot = { .min = 25000, .max = 270000 },
315 .vco = { .min = 4000000, .max = 6000000 },
316 .n = { .min = 1, .max = 7 },
317 .m = { .min = 22, .max = 450 }, /* guess */
318 .m1 = { .min = 2, .max = 3 },
319 .m2 = { .min = 11, .max = 156 },
320 .p = { .min = 10, .max = 30 },
321 .p1 = { .min = 1, .max = 3 },
322 .p2 = { .dot_limit = 270000,
323 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327 .dot = { .min = 25000, .max = 270000 },
328 .vco = { .min = 4000000, .max = 6000000 },
329 .n = { .min = 1, .max = 7 },
330 .m = { .min = 60, .max = 300 }, /* guess */
331 .m1 = { .min = 2, .max = 3 },
332 .m2 = { .min = 11, .max = 156 },
333 .p = { .min = 10, .max = 30 },
334 .p1 = { .min = 2, .max = 3 },
335 .p2 = { .dot_limit = 270000,
336 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
340 int refclk)
341 {
342 struct drm_device *dev = crtc->dev;
343 const intel_limit_t *limit;
344
345 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
346 if (intel_is_dual_link_lvds(dev)) {
347 if (refclk == 100000)
348 limit = &intel_limits_ironlake_dual_lvds_100m;
349 else
350 limit = &intel_limits_ironlake_dual_lvds;
351 } else {
352 if (refclk == 100000)
353 limit = &intel_limits_ironlake_single_lvds_100m;
354 else
355 limit = &intel_limits_ironlake_single_lvds;
356 }
357 } else
358 limit = &intel_limits_ironlake_dac;
359
360 return limit;
361 }
362
363 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
364 {
365 struct drm_device *dev = crtc->dev;
366 const intel_limit_t *limit;
367
368 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369 if (intel_is_dual_link_lvds(dev))
370 limit = &intel_limits_g4x_dual_channel_lvds;
371 else
372 limit = &intel_limits_g4x_single_channel_lvds;
373 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
374 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
375 limit = &intel_limits_g4x_hdmi;
376 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
377 limit = &intel_limits_g4x_sdvo;
378 } else /* The option is for other outputs */
379 limit = &intel_limits_i9xx_sdvo;
380
381 return limit;
382 }
383
384 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
385 {
386 struct drm_device *dev = crtc->dev;
387 const intel_limit_t *limit;
388
389 if (HAS_PCH_SPLIT(dev))
390 limit = intel_ironlake_limit(crtc, refclk);
391 else if (IS_G4X(dev)) {
392 limit = intel_g4x_limit(crtc);
393 } else if (IS_PINEVIEW(dev)) {
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
395 limit = &intel_limits_pineview_lvds;
396 else
397 limit = &intel_limits_pineview_sdvo;
398 } else if (IS_VALLEYVIEW(dev)) {
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
400 limit = &intel_limits_vlv_dac;
401 else
402 limit = &intel_limits_vlv_hdmi;
403 } else if (!IS_GEN2(dev)) {
404 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
405 limit = &intel_limits_i9xx_lvds;
406 else
407 limit = &intel_limits_i9xx_sdvo;
408 } else {
409 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
410 limit = &intel_limits_i8xx_lvds;
411 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
412 limit = &intel_limits_i8xx_dvo;
413 else
414 limit = &intel_limits_i8xx_dac;
415 }
416 return limit;
417 }
418
419 /* m1 is reserved as 0 in Pineview, n is a ring counter */
420 static void pineview_clock(int refclk, intel_clock_t *clock)
421 {
422 clock->m = clock->m2 + 2;
423 clock->p = clock->p1 * clock->p2;
424 clock->vco = refclk * clock->m / clock->n;
425 clock->dot = clock->vco / clock->p;
426 }
427
428 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
429 {
430 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
431 }
432
433 static void i9xx_clock(int refclk, intel_clock_t *clock)
434 {
435 clock->m = i9xx_dpll_compute_m(clock);
436 clock->p = clock->p1 * clock->p2;
437 clock->vco = refclk * clock->m / (clock->n + 2);
438 clock->dot = clock->vco / clock->p;
439 }
440
441 /**
442 * Returns whether any output on the specified pipe is of the specified type
443 */
444 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
445 {
446 struct drm_device *dev = crtc->dev;
447 struct intel_encoder *encoder;
448
449 for_each_encoder_on_crtc(dev, crtc, encoder)
450 if (encoder->type == type)
451 return true;
452
453 return false;
454 }
455
456 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458 * Returns whether the given set of divisors are valid for a given refclk with
459 * the given connectors.
460 */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463 const intel_limit_t *limit,
464 const intel_clock_t *clock)
465 {
466 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
467 INTELPllInvalid("p1 out of range\n");
468 if (clock->p < limit->p.min || limit->p.max < clock->p)
469 INTELPllInvalid("p out of range\n");
470 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
471 INTELPllInvalid("m2 out of range\n");
472 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
473 INTELPllInvalid("m1 out of range\n");
474 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
475 INTELPllInvalid("m1 <= m2\n");
476 if (clock->m < limit->m.min || limit->m.max < clock->m)
477 INTELPllInvalid("m out of range\n");
478 if (clock->n < limit->n.min || limit->n.max < clock->n)
479 INTELPllInvalid("n out of range\n");
480 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481 INTELPllInvalid("vco out of range\n");
482 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483 * connector, etc., rather than just a single range.
484 */
485 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486 INTELPllInvalid("dot out of range\n");
487
488 return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493 int target, int refclk, intel_clock_t *match_clock,
494 intel_clock_t *best_clock)
495 {
496 struct drm_device *dev = crtc->dev;
497 intel_clock_t clock;
498 int err = target;
499
500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501 /*
502 * For LVDS just rely on its current settings for dual-channel.
503 * We haven't figured out how to reliably set up different
504 * single/dual channel state, if we even can.
505 */
506 if (intel_is_dual_link_lvds(dev))
507 clock.p2 = limit->p2.p2_fast;
508 else
509 clock.p2 = limit->p2.p2_slow;
510 } else {
511 if (target < limit->p2.dot_limit)
512 clock.p2 = limit->p2.p2_slow;
513 else
514 clock.p2 = limit->p2.p2_fast;
515 }
516
517 memset(best_clock, 0, sizeof(*best_clock));
518
519 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520 clock.m1++) {
521 for (clock.m2 = limit->m2.min;
522 clock.m2 <= limit->m2.max; clock.m2++) {
523 if (clock.m2 >= clock.m1)
524 break;
525 for (clock.n = limit->n.min;
526 clock.n <= limit->n.max; clock.n++) {
527 for (clock.p1 = limit->p1.min;
528 clock.p1 <= limit->p1.max; clock.p1++) {
529 int this_err;
530
531 i9xx_clock(refclk, &clock);
532 if (!intel_PLL_is_valid(dev, limit,
533 &clock))
534 continue;
535 if (match_clock &&
536 clock.p != match_clock->p)
537 continue;
538
539 this_err = abs(clock.dot - target);
540 if (this_err < err) {
541 *best_clock = clock;
542 err = this_err;
543 }
544 }
545 }
546 }
547 }
548
549 return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554 int target, int refclk, intel_clock_t *match_clock,
555 intel_clock_t *best_clock)
556 {
557 struct drm_device *dev = crtc->dev;
558 intel_clock_t clock;
559 int err = target;
560
561 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562 /*
563 * For LVDS just rely on its current settings for dual-channel.
564 * We haven't figured out how to reliably set up different
565 * single/dual channel state, if we even can.
566 */
567 if (intel_is_dual_link_lvds(dev))
568 clock.p2 = limit->p2.p2_fast;
569 else
570 clock.p2 = limit->p2.p2_slow;
571 } else {
572 if (target < limit->p2.dot_limit)
573 clock.p2 = limit->p2.p2_slow;
574 else
575 clock.p2 = limit->p2.p2_fast;
576 }
577
578 memset(best_clock, 0, sizeof(*best_clock));
579
580 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581 clock.m1++) {
582 for (clock.m2 = limit->m2.min;
583 clock.m2 <= limit->m2.max; clock.m2++) {
584 for (clock.n = limit->n.min;
585 clock.n <= limit->n.max; clock.n++) {
586 for (clock.p1 = limit->p1.min;
587 clock.p1 <= limit->p1.max; clock.p1++) {
588 int this_err;
589
590 pineview_clock(refclk, &clock);
591 if (!intel_PLL_is_valid(dev, limit,
592 &clock))
593 continue;
594 if (match_clock &&
595 clock.p != match_clock->p)
596 continue;
597
598 this_err = abs(clock.dot - target);
599 if (this_err < err) {
600 *best_clock = clock;
601 err = this_err;
602 }
603 }
604 }
605 }
606 }
607
608 return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613 int target, int refclk, intel_clock_t *match_clock,
614 intel_clock_t *best_clock)
615 {
616 struct drm_device *dev = crtc->dev;
617 intel_clock_t clock;
618 int max_n;
619 bool found;
620 /* approximately equals target * 0.00585 */
621 int err_most = (target >> 8) + (target >> 9);
622 found = false;
623
624 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625 if (intel_is_dual_link_lvds(dev))
626 clock.p2 = limit->p2.p2_fast;
627 else
628 clock.p2 = limit->p2.p2_slow;
629 } else {
630 if (target < limit->p2.dot_limit)
631 clock.p2 = limit->p2.p2_slow;
632 else
633 clock.p2 = limit->p2.p2_fast;
634 }
635
636 memset(best_clock, 0, sizeof(*best_clock));
637 max_n = limit->n.max;
638 /* based on hardware requirement, prefer smaller n to precision */
639 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640 /* based on hardware requirement, prefere larger m1,m2 */
641 for (clock.m1 = limit->m1.max;
642 clock.m1 >= limit->m1.min; clock.m1--) {
643 for (clock.m2 = limit->m2.max;
644 clock.m2 >= limit->m2.min; clock.m2--) {
645 for (clock.p1 = limit->p1.max;
646 clock.p1 >= limit->p1.min; clock.p1--) {
647 int this_err;
648
649 i9xx_clock(refclk, &clock);
650 if (!intel_PLL_is_valid(dev, limit,
651 &clock))
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err_most) {
656 *best_clock = clock;
657 err_most = this_err;
658 max_n = clock.n;
659 found = true;
660 }
661 }
662 }
663 }
664 }
665 return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *match_clock,
671 intel_clock_t *best_clock)
672 {
673 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
674 u32 m, n, fastclk;
675 u32 updrate, minupdate, p;
676 unsigned long bestppm, ppm, absppm;
677 int dotclk, flag;
678
679 flag = 0;
680 dotclk = target * 1000;
681 bestppm = 1000000;
682 ppm = absppm = 0;
683 fastclk = dotclk / (2*100);
684 updrate = 0;
685 minupdate = 19200;
686 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
687 bestm1 = bestm2 = bestp1 = bestp2 = 0;
688
689 /* based on hardware requirement, prefer smaller n to precision */
690 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
691 updrate = refclk / n;
692 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
693 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
694 if (p2 > 10)
695 p2 = p2 - 1;
696 p = p1 * p2;
697 /* based on hardware requirement, prefer bigger m1,m2 values */
698 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
699 m2 = (((2*(fastclk * p * n / m1 )) +
700 refclk) / (2*refclk));
701 m = m1 * m2;
702 vco = updrate * m;
703 if (vco >= limit->vco.min && vco < limit->vco.max) {
704 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
705 absppm = (ppm > 0) ? ppm : (-ppm);
706 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
707 bestppm = 0;
708 flag = 1;
709 }
710 if (absppm < bestppm - 10) {
711 bestppm = absppm;
712 flag = 1;
713 }
714 if (flag) {
715 bestn = n;
716 bestm1 = m1;
717 bestm2 = m2;
718 bestp1 = p1;
719 bestp2 = p2;
720 flag = 0;
721 }
722 }
723 }
724 }
725 }
726 }
727 best_clock->n = bestn;
728 best_clock->m1 = bestm1;
729 best_clock->m2 = bestm2;
730 best_clock->p1 = bestp1;
731 best_clock->p2 = bestp2;
732
733 return true;
734 }
735
736 bool intel_crtc_active(struct drm_crtc *crtc)
737 {
738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
739
740 /* Be paranoid as we can arrive here with only partial
741 * state retrieved from the hardware during setup.
742 *
743 * We can ditch the adjusted_mode.clock check as soon
744 * as Haswell has gained clock readout/fastboot support.
745 *
746 * We can ditch the crtc->fb check as soon as we can
747 * properly reconstruct framebuffers.
748 */
749 return intel_crtc->active && crtc->fb &&
750 intel_crtc->config.adjusted_mode.clock;
751 }
752
753 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
754 enum pipe pipe)
755 {
756 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
758
759 return intel_crtc->config.cpu_transcoder;
760 }
761
762 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765 u32 frame, frame_reg = PIPEFRAME(pipe);
766
767 frame = I915_READ(frame_reg);
768
769 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
770 DRM_DEBUG_KMS("vblank wait timed out\n");
771 }
772
773 /**
774 * intel_wait_for_vblank - wait for vblank on a given pipe
775 * @dev: drm device
776 * @pipe: pipe to wait for
777 *
778 * Wait for vblank to occur on a given pipe. Needed for various bits of
779 * mode setting code.
780 */
781 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783 struct drm_i915_private *dev_priv = dev->dev_private;
784 int pipestat_reg = PIPESTAT(pipe);
785
786 if (INTEL_INFO(dev)->gen >= 5) {
787 ironlake_wait_for_vblank(dev, pipe);
788 return;
789 }
790
791 /* Clear existing vblank status. Note this will clear any other
792 * sticky status fields as well.
793 *
794 * This races with i915_driver_irq_handler() with the result
795 * that either function could miss a vblank event. Here it is not
796 * fatal, as we will either wait upon the next vblank interrupt or
797 * timeout. Generally speaking intel_wait_for_vblank() is only
798 * called during modeset at which time the GPU should be idle and
799 * should *not* be performing page flips and thus not waiting on
800 * vblanks...
801 * Currently, the result of us stealing a vblank from the irq
802 * handler is that a single frame will be skipped during swapbuffers.
803 */
804 I915_WRITE(pipestat_reg,
805 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
806
807 /* Wait for vblank interrupt bit to set */
808 if (wait_for(I915_READ(pipestat_reg) &
809 PIPE_VBLANK_INTERRUPT_STATUS,
810 50))
811 DRM_DEBUG_KMS("vblank wait timed out\n");
812 }
813
814 /*
815 * intel_wait_for_pipe_off - wait for pipe to turn off
816 * @dev: drm device
817 * @pipe: pipe to wait for
818 *
819 * After disabling a pipe, we can't wait for vblank in the usual way,
820 * spinning on the vblank interrupt status bit, since we won't actually
821 * see an interrupt when the pipe is disabled.
822 *
823 * On Gen4 and above:
824 * wait for the pipe register state bit to turn off
825 *
826 * Otherwise:
827 * wait for the display line value to settle (it usually
828 * ends up stopping at the start of the next frame).
829 *
830 */
831 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
832 {
833 struct drm_i915_private *dev_priv = dev->dev_private;
834 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
835 pipe);
836
837 if (INTEL_INFO(dev)->gen >= 4) {
838 int reg = PIPECONF(cpu_transcoder);
839
840 /* Wait for the Pipe State to go off */
841 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
842 100))
843 WARN(1, "pipe_off wait timed out\n");
844 } else {
845 u32 last_line, line_mask;
846 int reg = PIPEDSL(pipe);
847 unsigned long timeout = jiffies + msecs_to_jiffies(100);
848
849 if (IS_GEN2(dev))
850 line_mask = DSL_LINEMASK_GEN2;
851 else
852 line_mask = DSL_LINEMASK_GEN3;
853
854 /* Wait for the display line to settle */
855 do {
856 last_line = I915_READ(reg) & line_mask;
857 mdelay(5);
858 } while (((I915_READ(reg) & line_mask) != last_line) &&
859 time_after(timeout, jiffies));
860 if (time_after(jiffies, timeout))
861 WARN(1, "pipe_off wait timed out\n");
862 }
863 }
864
865 /*
866 * ibx_digital_port_connected - is the specified port connected?
867 * @dev_priv: i915 private structure
868 * @port: the port to test
869 *
870 * Returns true if @port is connected, false otherwise.
871 */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873 struct intel_digital_port *port)
874 {
875 u32 bit;
876
877 if (HAS_PCH_IBX(dev_priv->dev)) {
878 switch(port->port) {
879 case PORT_B:
880 bit = SDE_PORTB_HOTPLUG;
881 break;
882 case PORT_C:
883 bit = SDE_PORTC_HOTPLUG;
884 break;
885 case PORT_D:
886 bit = SDE_PORTD_HOTPLUG;
887 break;
888 default:
889 return true;
890 }
891 } else {
892 switch(port->port) {
893 case PORT_B:
894 bit = SDE_PORTB_HOTPLUG_CPT;
895 break;
896 case PORT_C:
897 bit = SDE_PORTC_HOTPLUG_CPT;
898 break;
899 case PORT_D:
900 bit = SDE_PORTD_HOTPLUG_CPT;
901 break;
902 default:
903 return true;
904 }
905 }
906
907 return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912 return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917 enum pipe pipe, bool state)
918 {
919 int reg;
920 u32 val;
921 bool cur_state;
922
923 reg = DPLL(pipe);
924 val = I915_READ(reg);
925 cur_state = !!(val & DPLL_VCO_ENABLE);
926 WARN(cur_state != state,
927 "PLL state assertion failure (expected %s, current %s)\n",
928 state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934 u32 val;
935 bool cur_state;
936
937 mutex_lock(&dev_priv->dpio_lock);
938 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939 mutex_unlock(&dev_priv->dpio_lock);
940
941 cur_state = val & DSI_PLL_VCO_EN;
942 WARN(cur_state != state,
943 "DSI PLL state assertion failure (expected %s, current %s)\n",
944 state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954 if (crtc->config.shared_dpll < 0)
955 return NULL;
956
957 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962 struct intel_shared_dpll *pll,
963 bool state)
964 {
965 bool cur_state;
966 struct intel_dpll_hw_state hw_state;
967
968 if (HAS_PCH_LPT(dev_priv->dev)) {
969 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970 return;
971 }
972
973 if (WARN (!pll,
974 "asserting DPLL %s with no DPLL\n", state_string(state)))
975 return;
976
977 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978 WARN(cur_state != state,
979 "%s assertion failure (expected %s, current %s)\n",
980 pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984 enum pipe pipe, bool state)
985 {
986 int reg;
987 u32 val;
988 bool cur_state;
989 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990 pipe);
991
992 if (HAS_DDI(dev_priv->dev)) {
993 /* DDI does not have a specific FDI_TX register */
994 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995 val = I915_READ(reg);
996 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997 } else {
998 reg = FDI_TX_CTL(pipe);
999 val = I915_READ(reg);
1000 cur_state = !!(val & FDI_TX_ENABLE);
1001 }
1002 WARN(cur_state != state,
1003 "FDI TX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010 enum pipe pipe, bool state)
1011 {
1012 int reg;
1013 u32 val;
1014 bool cur_state;
1015
1016 reg = FDI_RX_CTL(pipe);
1017 val = I915_READ(reg);
1018 cur_state = !!(val & FDI_RX_ENABLE);
1019 WARN(cur_state != state,
1020 "FDI RX state assertion failure (expected %s, current %s)\n",
1021 state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 int reg;
1030 u32 val;
1031
1032 /* ILK FDI PLL is always enabled */
1033 if (dev_priv->info->gen == 5)
1034 return;
1035
1036 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037 if (HAS_DDI(dev_priv->dev))
1038 return;
1039
1040 reg = FDI_TX_CTL(pipe);
1041 val = I915_READ(reg);
1042 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
1047 {
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = FDI_RX_CTL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055 WARN(cur_state != state,
1056 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061 enum pipe pipe)
1062 {
1063 int pp_reg, lvds_reg;
1064 u32 val;
1065 enum pipe panel_pipe = PIPE_A;
1066 bool locked = true;
1067
1068 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069 pp_reg = PCH_PP_CONTROL;
1070 lvds_reg = PCH_LVDS;
1071 } else {
1072 pp_reg = PP_CONTROL;
1073 lvds_reg = LVDS;
1074 }
1075
1076 val = I915_READ(pp_reg);
1077 if (!(val & PANEL_POWER_ON) ||
1078 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079 locked = false;
1080
1081 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082 panel_pipe = PIPE_B;
1083
1084 WARN(panel_pipe == pipe && locked,
1085 "panel assertion failure, pipe %c regs locked\n",
1086 pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, bool state)
1091 {
1092 struct drm_device *dev = dev_priv->dev;
1093 bool cur_state;
1094
1095 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097 else if (IS_845G(dev) || IS_I865G(dev))
1098 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099 else
1100 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102 WARN(cur_state != state,
1103 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104 pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110 enum pipe pipe, bool state)
1111 {
1112 int reg;
1113 u32 val;
1114 bool cur_state;
1115 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116 pipe);
1117
1118 /* if we need the pipe A quirk it must be always on */
1119 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120 state = true;
1121
1122 if (!intel_display_power_enabled(dev_priv->dev,
1123 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124 cur_state = false;
1125 } else {
1126 reg = PIPECONF(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & PIPECONF_ENABLE);
1129 }
1130
1131 WARN(cur_state != state,
1132 "pipe %c assertion failure (expected %s, current %s)\n",
1133 pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137 enum plane plane, bool state)
1138 {
1139 int reg;
1140 u32 val;
1141 bool cur_state;
1142
1143 reg = DSPCNTR(plane);
1144 val = I915_READ(reg);
1145 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146 WARN(cur_state != state,
1147 "plane %c assertion failure (expected %s, current %s)\n",
1148 plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155 enum pipe pipe)
1156 {
1157 struct drm_device *dev = dev_priv->dev;
1158 int reg, i;
1159 u32 val;
1160 int cur_pipe;
1161
1162 /* Primary planes are fixed to pipes on gen4+ */
1163 if (INTEL_INFO(dev)->gen >= 4) {
1164 reg = DSPCNTR(pipe);
1165 val = I915_READ(reg);
1166 WARN((val & DISPLAY_PLANE_ENABLE),
1167 "plane %c assertion failure, should be disabled but not\n",
1168 plane_name(pipe));
1169 return;
1170 }
1171
1172 /* Need to check both planes against the pipe */
1173 for_each_pipe(i) {
1174 reg = DSPCNTR(i);
1175 val = I915_READ(reg);
1176 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177 DISPPLANE_SEL_PIPE_SHIFT;
1178 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180 plane_name(i), pipe_name(pipe));
1181 }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186 {
1187 struct drm_device *dev = dev_priv->dev;
1188 int reg, i;
1189 u32 val;
1190
1191 if (IS_VALLEYVIEW(dev)) {
1192 for (i = 0; i < dev_priv->num_plane; i++) {
1193 reg = SPCNTR(pipe, i);
1194 val = I915_READ(reg);
1195 WARN((val & SP_ENABLE),
1196 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197 sprite_name(pipe, i), pipe_name(pipe));
1198 }
1199 } else if (INTEL_INFO(dev)->gen >= 7) {
1200 reg = SPRCTL(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & SPRITE_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 } else if (INTEL_INFO(dev)->gen >= 5) {
1206 reg = DVSCNTR(pipe);
1207 val = I915_READ(reg);
1208 WARN((val & DVS_ENABLE),
1209 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210 plane_name(pipe), pipe_name(pipe));
1211 }
1212 }
1213
1214 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216 u32 val;
1217 bool enabled;
1218
1219 if (HAS_PCH_LPT(dev_priv->dev)) {
1220 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1221 return;
1222 }
1223
1224 val = I915_READ(PCH_DREF_CONTROL);
1225 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226 DREF_SUPERSPREAD_SOURCE_MASK));
1227 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231 enum pipe pipe)
1232 {
1233 int reg;
1234 u32 val;
1235 bool enabled;
1236
1237 reg = PCH_TRANSCONF(pipe);
1238 val = I915_READ(reg);
1239 enabled = !!(val & TRANS_ENABLE);
1240 WARN(enabled,
1241 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242 pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246 enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248 if ((val & DP_PORT_EN) == 0)
1249 return false;
1250
1251 if (HAS_PCH_CPT(dev_priv->dev)) {
1252 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255 return false;
1256 } else {
1257 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258 return false;
1259 }
1260 return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264 enum pipe pipe, u32 val)
1265 {
1266 if ((val & SDVO_ENABLE) == 0)
1267 return false;
1268
1269 if (HAS_PCH_CPT(dev_priv->dev)) {
1270 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271 return false;
1272 } else {
1273 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274 return false;
1275 }
1276 return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280 enum pipe pipe, u32 val)
1281 {
1282 if ((val & LVDS_PORT_EN) == 0)
1283 return false;
1284
1285 if (HAS_PCH_CPT(dev_priv->dev)) {
1286 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287 return false;
1288 } else {
1289 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290 return false;
1291 }
1292 return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe, u32 val)
1297 {
1298 if ((val & ADPA_DAC_ENABLE) == 0)
1299 return false;
1300 if (HAS_PCH_CPT(dev_priv->dev)) {
1301 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302 return false;
1303 } else {
1304 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305 return false;
1306 }
1307 return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe, int reg, u32 port_sel)
1312 {
1313 u32 val = I915_READ(reg);
1314 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316 reg, pipe_name(pipe));
1317
1318 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319 && (val & DP_PIPEB_SELECT),
1320 "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324 enum pipe pipe, int reg)
1325 {
1326 u32 val = I915_READ(reg);
1327 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329 reg, pipe_name(pipe));
1330
1331 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332 && (val & SDVO_PIPE_B_SELECT),
1333 "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe)
1338 {
1339 int reg;
1340 u32 val;
1341
1342 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346 reg = PCH_ADPA;
1347 val = I915_READ(reg);
1348 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349 "PCH VGA enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 reg = PCH_LVDS;
1353 val = I915_READ(reg);
1354 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356 pipe_name(pipe));
1357
1358 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void vlv_enable_pll(struct intel_crtc *crtc)
1364 {
1365 struct drm_device *dev = crtc->base.dev;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 int reg = DPLL(crtc->pipe);
1368 u32 dpll = crtc->config.dpll_hw_state.dpll;
1369
1370 assert_pipe_disabled(dev_priv, crtc->pipe);
1371
1372 /* No really, not for ILK+ */
1373 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1374
1375 /* PLL is protected by panel, make sure we can write it */
1376 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1377 assert_panel_unlocked(dev_priv, crtc->pipe);
1378
1379 I915_WRITE(reg, dpll);
1380 POSTING_READ(reg);
1381 udelay(150);
1382
1383 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1384 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1385
1386 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1387 POSTING_READ(DPLL_MD(crtc->pipe));
1388
1389 /* We do this three times for luck */
1390 I915_WRITE(reg, dpll);
1391 POSTING_READ(reg);
1392 udelay(150); /* wait for warmup */
1393 I915_WRITE(reg, dpll);
1394 POSTING_READ(reg);
1395 udelay(150); /* wait for warmup */
1396 I915_WRITE(reg, dpll);
1397 POSTING_READ(reg);
1398 udelay(150); /* wait for warmup */
1399 }
1400
1401 static void i9xx_enable_pll(struct intel_crtc *crtc)
1402 {
1403 struct drm_device *dev = crtc->base.dev;
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405 int reg = DPLL(crtc->pipe);
1406 u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408 assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410 /* No really, not for ILK+ */
1411 BUG_ON(dev_priv->info->gen >= 5);
1412
1413 /* PLL is protected by panel, make sure we can write it */
1414 if (IS_MOBILE(dev) && !IS_I830(dev))
1415 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417 I915_WRITE(reg, dpll);
1418
1419 /* Wait for the clocks to stabilize. */
1420 POSTING_READ(reg);
1421 udelay(150);
1422
1423 if (INTEL_INFO(dev)->gen >= 4) {
1424 I915_WRITE(DPLL_MD(crtc->pipe),
1425 crtc->config.dpll_hw_state.dpll_md);
1426 } else {
1427 /* The pixel multiplier can only be updated once the
1428 * DPLL is enabled and the clocks are stable.
1429 *
1430 * So write it again.
1431 */
1432 I915_WRITE(reg, dpll);
1433 }
1434
1435 /* We do this three times for luck */
1436 I915_WRITE(reg, dpll);
1437 POSTING_READ(reg);
1438 udelay(150); /* wait for warmup */
1439 I915_WRITE(reg, dpll);
1440 POSTING_READ(reg);
1441 udelay(150); /* wait for warmup */
1442 I915_WRITE(reg, dpll);
1443 POSTING_READ(reg);
1444 udelay(150); /* wait for warmup */
1445 }
1446
1447 /**
1448 * i9xx_disable_pll - disable a PLL
1449 * @dev_priv: i915 private structure
1450 * @pipe: pipe PLL to disable
1451 *
1452 * Disable the PLL for @pipe, making sure the pipe is off first.
1453 *
1454 * Note! This is for pre-ILK only.
1455 */
1456 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1457 {
1458 /* Don't disable pipe A or pipe A PLLs if needed */
1459 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1460 return;
1461
1462 /* Make sure the pipe isn't still relying on us */
1463 assert_pipe_disabled(dev_priv, pipe);
1464
1465 I915_WRITE(DPLL(pipe), 0);
1466 POSTING_READ(DPLL(pipe));
1467 }
1468
1469 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1470 {
1471 u32 port_mask;
1472
1473 if (!port)
1474 port_mask = DPLL_PORTB_READY_MASK;
1475 else
1476 port_mask = DPLL_PORTC_READY_MASK;
1477
1478 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1479 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1480 'B' + port, I915_READ(DPLL(0)));
1481 }
1482
1483 /**
1484 * ironlake_enable_shared_dpll - enable PCH PLL
1485 * @dev_priv: i915 private structure
1486 * @pipe: pipe PLL to enable
1487 *
1488 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1489 * drives the transcoder clock.
1490 */
1491 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1492 {
1493 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1494 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1495
1496 /* PCH PLLs only available on ILK, SNB and IVB */
1497 BUG_ON(dev_priv->info->gen < 5);
1498 if (WARN_ON(pll == NULL))
1499 return;
1500
1501 if (WARN_ON(pll->refcount == 0))
1502 return;
1503
1504 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1505 pll->name, pll->active, pll->on,
1506 crtc->base.base.id);
1507
1508 if (pll->active++) {
1509 WARN_ON(!pll->on);
1510 assert_shared_dpll_enabled(dev_priv, pll);
1511 return;
1512 }
1513 WARN_ON(pll->on);
1514
1515 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1516 pll->enable(dev_priv, pll);
1517 pll->on = true;
1518 }
1519
1520 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1521 {
1522 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1523 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1524
1525 /* PCH only available on ILK+ */
1526 BUG_ON(dev_priv->info->gen < 5);
1527 if (WARN_ON(pll == NULL))
1528 return;
1529
1530 if (WARN_ON(pll->refcount == 0))
1531 return;
1532
1533 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1534 pll->name, pll->active, pll->on,
1535 crtc->base.base.id);
1536
1537 if (WARN_ON(pll->active == 0)) {
1538 assert_shared_dpll_disabled(dev_priv, pll);
1539 return;
1540 }
1541
1542 assert_shared_dpll_enabled(dev_priv, pll);
1543 WARN_ON(!pll->on);
1544 if (--pll->active)
1545 return;
1546
1547 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1548 pll->disable(dev_priv, pll);
1549 pll->on = false;
1550 }
1551
1552 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1553 enum pipe pipe)
1554 {
1555 struct drm_device *dev = dev_priv->dev;
1556 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1558 uint32_t reg, val, pipeconf_val;
1559
1560 /* PCH only available on ILK+ */
1561 BUG_ON(dev_priv->info->gen < 5);
1562
1563 /* Make sure PCH DPLL is enabled */
1564 assert_shared_dpll_enabled(dev_priv,
1565 intel_crtc_to_shared_dpll(intel_crtc));
1566
1567 /* FDI must be feeding us bits for PCH ports */
1568 assert_fdi_tx_enabled(dev_priv, pipe);
1569 assert_fdi_rx_enabled(dev_priv, pipe);
1570
1571 if (HAS_PCH_CPT(dev)) {
1572 /* Workaround: Set the timing override bit before enabling the
1573 * pch transcoder. */
1574 reg = TRANS_CHICKEN2(pipe);
1575 val = I915_READ(reg);
1576 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1577 I915_WRITE(reg, val);
1578 }
1579
1580 reg = PCH_TRANSCONF(pipe);
1581 val = I915_READ(reg);
1582 pipeconf_val = I915_READ(PIPECONF(pipe));
1583
1584 if (HAS_PCH_IBX(dev_priv->dev)) {
1585 /*
1586 * make the BPC in transcoder be consistent with
1587 * that in pipeconf reg.
1588 */
1589 val &= ~PIPECONF_BPC_MASK;
1590 val |= pipeconf_val & PIPECONF_BPC_MASK;
1591 }
1592
1593 val &= ~TRANS_INTERLACE_MASK;
1594 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1595 if (HAS_PCH_IBX(dev_priv->dev) &&
1596 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1597 val |= TRANS_LEGACY_INTERLACED_ILK;
1598 else
1599 val |= TRANS_INTERLACED;
1600 else
1601 val |= TRANS_PROGRESSIVE;
1602
1603 I915_WRITE(reg, val | TRANS_ENABLE);
1604 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1605 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1606 }
1607
1608 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1609 enum transcoder cpu_transcoder)
1610 {
1611 u32 val, pipeconf_val;
1612
1613 /* PCH only available on ILK+ */
1614 BUG_ON(dev_priv->info->gen < 5);
1615
1616 /* FDI must be feeding us bits for PCH ports */
1617 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1618 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1619
1620 /* Workaround: set timing override bit. */
1621 val = I915_READ(_TRANSA_CHICKEN2);
1622 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1623 I915_WRITE(_TRANSA_CHICKEN2, val);
1624
1625 val = TRANS_ENABLE;
1626 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1627
1628 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1629 PIPECONF_INTERLACED_ILK)
1630 val |= TRANS_INTERLACED;
1631 else
1632 val |= TRANS_PROGRESSIVE;
1633
1634 I915_WRITE(LPT_TRANSCONF, val);
1635 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1636 DRM_ERROR("Failed to enable PCH transcoder\n");
1637 }
1638
1639 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1640 enum pipe pipe)
1641 {
1642 struct drm_device *dev = dev_priv->dev;
1643 uint32_t reg, val;
1644
1645 /* FDI relies on the transcoder */
1646 assert_fdi_tx_disabled(dev_priv, pipe);
1647 assert_fdi_rx_disabled(dev_priv, pipe);
1648
1649 /* Ports must be off as well */
1650 assert_pch_ports_disabled(dev_priv, pipe);
1651
1652 reg = PCH_TRANSCONF(pipe);
1653 val = I915_READ(reg);
1654 val &= ~TRANS_ENABLE;
1655 I915_WRITE(reg, val);
1656 /* wait for PCH transcoder off, transcoder state */
1657 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1658 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1659
1660 if (!HAS_PCH_IBX(dev)) {
1661 /* Workaround: Clear the timing override chicken bit again. */
1662 reg = TRANS_CHICKEN2(pipe);
1663 val = I915_READ(reg);
1664 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1665 I915_WRITE(reg, val);
1666 }
1667 }
1668
1669 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1670 {
1671 u32 val;
1672
1673 val = I915_READ(LPT_TRANSCONF);
1674 val &= ~TRANS_ENABLE;
1675 I915_WRITE(LPT_TRANSCONF, val);
1676 /* wait for PCH transcoder off, transcoder state */
1677 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1678 DRM_ERROR("Failed to disable PCH transcoder\n");
1679
1680 /* Workaround: clear timing override bit. */
1681 val = I915_READ(_TRANSA_CHICKEN2);
1682 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1683 I915_WRITE(_TRANSA_CHICKEN2, val);
1684 }
1685
1686 /**
1687 * intel_enable_pipe - enable a pipe, asserting requirements
1688 * @dev_priv: i915 private structure
1689 * @pipe: pipe to enable
1690 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1691 *
1692 * Enable @pipe, making sure that various hardware specific requirements
1693 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1694 *
1695 * @pipe should be %PIPE_A or %PIPE_B.
1696 *
1697 * Will wait until the pipe is actually running (i.e. first vblank) before
1698 * returning.
1699 */
1700 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1701 bool pch_port, bool dsi)
1702 {
1703 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1704 pipe);
1705 enum pipe pch_transcoder;
1706 int reg;
1707 u32 val;
1708
1709 assert_planes_disabled(dev_priv, pipe);
1710 assert_cursor_disabled(dev_priv, pipe);
1711 assert_sprites_disabled(dev_priv, pipe);
1712
1713 if (HAS_PCH_LPT(dev_priv->dev))
1714 pch_transcoder = TRANSCODER_A;
1715 else
1716 pch_transcoder = pipe;
1717
1718 /*
1719 * A pipe without a PLL won't actually be able to drive bits from
1720 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1721 * need the check.
1722 */
1723 if (!HAS_PCH_SPLIT(dev_priv->dev))
1724 if (dsi)
1725 assert_dsi_pll_enabled(dev_priv);
1726 else
1727 assert_pll_enabled(dev_priv, pipe);
1728 else {
1729 if (pch_port) {
1730 /* if driving the PCH, we need FDI enabled */
1731 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1732 assert_fdi_tx_pll_enabled(dev_priv,
1733 (enum pipe) cpu_transcoder);
1734 }
1735 /* FIXME: assert CPU port conditions for SNB+ */
1736 }
1737
1738 reg = PIPECONF(cpu_transcoder);
1739 val = I915_READ(reg);
1740 if (val & PIPECONF_ENABLE)
1741 return;
1742
1743 I915_WRITE(reg, val | PIPECONF_ENABLE);
1744 intel_wait_for_vblank(dev_priv->dev, pipe);
1745 }
1746
1747 /**
1748 * intel_disable_pipe - disable a pipe, asserting requirements
1749 * @dev_priv: i915 private structure
1750 * @pipe: pipe to disable
1751 *
1752 * Disable @pipe, making sure that various hardware specific requirements
1753 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1754 *
1755 * @pipe should be %PIPE_A or %PIPE_B.
1756 *
1757 * Will wait until the pipe has shut down before returning.
1758 */
1759 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1760 enum pipe pipe)
1761 {
1762 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763 pipe);
1764 int reg;
1765 u32 val;
1766
1767 /*
1768 * Make sure planes won't keep trying to pump pixels to us,
1769 * or we might hang the display.
1770 */
1771 assert_planes_disabled(dev_priv, pipe);
1772 assert_cursor_disabled(dev_priv, pipe);
1773 assert_sprites_disabled(dev_priv, pipe);
1774
1775 /* Don't disable pipe A or pipe A PLLs if needed */
1776 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1777 return;
1778
1779 reg = PIPECONF(cpu_transcoder);
1780 val = I915_READ(reg);
1781 if ((val & PIPECONF_ENABLE) == 0)
1782 return;
1783
1784 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1785 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1786 }
1787
1788 /*
1789 * Plane regs are double buffered, going from enabled->disabled needs a
1790 * trigger in order to latch. The display address reg provides this.
1791 */
1792 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1793 enum plane plane)
1794 {
1795 if (dev_priv->info->gen >= 4)
1796 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1797 else
1798 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1799 }
1800
1801 /**
1802 * intel_enable_plane - enable a display plane on a given pipe
1803 * @dev_priv: i915 private structure
1804 * @plane: plane to enable
1805 * @pipe: pipe being fed
1806 *
1807 * Enable @plane on @pipe, making sure that @pipe is running first.
1808 */
1809 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1810 enum plane plane, enum pipe pipe)
1811 {
1812 int reg;
1813 u32 val;
1814
1815 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1816 assert_pipe_enabled(dev_priv, pipe);
1817
1818 reg = DSPCNTR(plane);
1819 val = I915_READ(reg);
1820 if (val & DISPLAY_PLANE_ENABLE)
1821 return;
1822
1823 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1824 intel_flush_display_plane(dev_priv, plane);
1825 intel_wait_for_vblank(dev_priv->dev, pipe);
1826 }
1827
1828 /**
1829 * intel_disable_plane - disable a display plane
1830 * @dev_priv: i915 private structure
1831 * @plane: plane to disable
1832 * @pipe: pipe consuming the data
1833 *
1834 * Disable @plane; should be an independent operation.
1835 */
1836 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1837 enum plane plane, enum pipe pipe)
1838 {
1839 int reg;
1840 u32 val;
1841
1842 reg = DSPCNTR(plane);
1843 val = I915_READ(reg);
1844 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1845 return;
1846
1847 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1848 intel_flush_display_plane(dev_priv, plane);
1849 intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 static bool need_vtd_wa(struct drm_device *dev)
1853 {
1854 #ifdef CONFIG_INTEL_IOMMU
1855 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1856 return true;
1857 #endif
1858 return false;
1859 }
1860
1861 int
1862 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1863 struct drm_i915_gem_object *obj,
1864 struct intel_ring_buffer *pipelined)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 u32 alignment;
1868 int ret;
1869
1870 switch (obj->tiling_mode) {
1871 case I915_TILING_NONE:
1872 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1873 alignment = 128 * 1024;
1874 else if (INTEL_INFO(dev)->gen >= 4)
1875 alignment = 4 * 1024;
1876 else
1877 alignment = 64 * 1024;
1878 break;
1879 case I915_TILING_X:
1880 /* pin() will align the object as required by fence */
1881 alignment = 0;
1882 break;
1883 case I915_TILING_Y:
1884 /* Despite that we check this in framebuffer_init userspace can
1885 * screw us over and change the tiling after the fact. Only
1886 * pinned buffers can't change their tiling. */
1887 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1888 return -EINVAL;
1889 default:
1890 BUG();
1891 }
1892
1893 /* Note that the w/a also requires 64 PTE of padding following the
1894 * bo. We currently fill all unused PTE with the shadow page and so
1895 * we should always have valid PTE following the scanout preventing
1896 * the VT-d warning.
1897 */
1898 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1899 alignment = 256 * 1024;
1900
1901 dev_priv->mm.interruptible = false;
1902 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1903 if (ret)
1904 goto err_interruptible;
1905
1906 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1907 * fence, whereas 965+ only requires a fence if using
1908 * framebuffer compression. For simplicity, we always install
1909 * a fence as the cost is not that onerous.
1910 */
1911 ret = i915_gem_object_get_fence(obj);
1912 if (ret)
1913 goto err_unpin;
1914
1915 i915_gem_object_pin_fence(obj);
1916
1917 dev_priv->mm.interruptible = true;
1918 return 0;
1919
1920 err_unpin:
1921 i915_gem_object_unpin_from_display_plane(obj);
1922 err_interruptible:
1923 dev_priv->mm.interruptible = true;
1924 return ret;
1925 }
1926
1927 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1928 {
1929 i915_gem_object_unpin_fence(obj);
1930 i915_gem_object_unpin_from_display_plane(obj);
1931 }
1932
1933 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1934 * is assumed to be a power-of-two. */
1935 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1936 unsigned int tiling_mode,
1937 unsigned int cpp,
1938 unsigned int pitch)
1939 {
1940 if (tiling_mode != I915_TILING_NONE) {
1941 unsigned int tile_rows, tiles;
1942
1943 tile_rows = *y / 8;
1944 *y %= 8;
1945
1946 tiles = *x / (512/cpp);
1947 *x %= 512/cpp;
1948
1949 return tile_rows * pitch * 8 + tiles * 4096;
1950 } else {
1951 unsigned int offset;
1952
1953 offset = *y * pitch + *x * cpp;
1954 *y = 0;
1955 *x = (offset & 4095) / cpp;
1956 return offset & -4096;
1957 }
1958 }
1959
1960 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1961 int x, int y)
1962 {
1963 struct drm_device *dev = crtc->dev;
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966 struct intel_framebuffer *intel_fb;
1967 struct drm_i915_gem_object *obj;
1968 int plane = intel_crtc->plane;
1969 unsigned long linear_offset;
1970 u32 dspcntr;
1971 u32 reg;
1972
1973 switch (plane) {
1974 case 0:
1975 case 1:
1976 break;
1977 default:
1978 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1979 return -EINVAL;
1980 }
1981
1982 intel_fb = to_intel_framebuffer(fb);
1983 obj = intel_fb->obj;
1984
1985 reg = DSPCNTR(plane);
1986 dspcntr = I915_READ(reg);
1987 /* Mask out pixel format bits in case we change it */
1988 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1989 switch (fb->pixel_format) {
1990 case DRM_FORMAT_C8:
1991 dspcntr |= DISPPLANE_8BPP;
1992 break;
1993 case DRM_FORMAT_XRGB1555:
1994 case DRM_FORMAT_ARGB1555:
1995 dspcntr |= DISPPLANE_BGRX555;
1996 break;
1997 case DRM_FORMAT_RGB565:
1998 dspcntr |= DISPPLANE_BGRX565;
1999 break;
2000 case DRM_FORMAT_XRGB8888:
2001 case DRM_FORMAT_ARGB8888:
2002 dspcntr |= DISPPLANE_BGRX888;
2003 break;
2004 case DRM_FORMAT_XBGR8888:
2005 case DRM_FORMAT_ABGR8888:
2006 dspcntr |= DISPPLANE_RGBX888;
2007 break;
2008 case DRM_FORMAT_XRGB2101010:
2009 case DRM_FORMAT_ARGB2101010:
2010 dspcntr |= DISPPLANE_BGRX101010;
2011 break;
2012 case DRM_FORMAT_XBGR2101010:
2013 case DRM_FORMAT_ABGR2101010:
2014 dspcntr |= DISPPLANE_RGBX101010;
2015 break;
2016 default:
2017 BUG();
2018 }
2019
2020 if (INTEL_INFO(dev)->gen >= 4) {
2021 if (obj->tiling_mode != I915_TILING_NONE)
2022 dspcntr |= DISPPLANE_TILED;
2023 else
2024 dspcntr &= ~DISPPLANE_TILED;
2025 }
2026
2027 if (IS_G4X(dev))
2028 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2029
2030 I915_WRITE(reg, dspcntr);
2031
2032 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2033
2034 if (INTEL_INFO(dev)->gen >= 4) {
2035 intel_crtc->dspaddr_offset =
2036 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2037 fb->bits_per_pixel / 8,
2038 fb->pitches[0]);
2039 linear_offset -= intel_crtc->dspaddr_offset;
2040 } else {
2041 intel_crtc->dspaddr_offset = linear_offset;
2042 }
2043
2044 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2045 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2046 fb->pitches[0]);
2047 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2048 if (INTEL_INFO(dev)->gen >= 4) {
2049 I915_MODIFY_DISPBASE(DSPSURF(plane),
2050 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2051 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2052 I915_WRITE(DSPLINOFF(plane), linear_offset);
2053 } else
2054 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2055 POSTING_READ(reg);
2056
2057 return 0;
2058 }
2059
2060 static int ironlake_update_plane(struct drm_crtc *crtc,
2061 struct drm_framebuffer *fb, int x, int y)
2062 {
2063 struct drm_device *dev = crtc->dev;
2064 struct drm_i915_private *dev_priv = dev->dev_private;
2065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2066 struct intel_framebuffer *intel_fb;
2067 struct drm_i915_gem_object *obj;
2068 int plane = intel_crtc->plane;
2069 unsigned long linear_offset;
2070 u32 dspcntr;
2071 u32 reg;
2072
2073 switch (plane) {
2074 case 0:
2075 case 1:
2076 case 2:
2077 break;
2078 default:
2079 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2080 return -EINVAL;
2081 }
2082
2083 intel_fb = to_intel_framebuffer(fb);
2084 obj = intel_fb->obj;
2085
2086 reg = DSPCNTR(plane);
2087 dspcntr = I915_READ(reg);
2088 /* Mask out pixel format bits in case we change it */
2089 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2090 switch (fb->pixel_format) {
2091 case DRM_FORMAT_C8:
2092 dspcntr |= DISPPLANE_8BPP;
2093 break;
2094 case DRM_FORMAT_RGB565:
2095 dspcntr |= DISPPLANE_BGRX565;
2096 break;
2097 case DRM_FORMAT_XRGB8888:
2098 case DRM_FORMAT_ARGB8888:
2099 dspcntr |= DISPPLANE_BGRX888;
2100 break;
2101 case DRM_FORMAT_XBGR8888:
2102 case DRM_FORMAT_ABGR8888:
2103 dspcntr |= DISPPLANE_RGBX888;
2104 break;
2105 case DRM_FORMAT_XRGB2101010:
2106 case DRM_FORMAT_ARGB2101010:
2107 dspcntr |= DISPPLANE_BGRX101010;
2108 break;
2109 case DRM_FORMAT_XBGR2101010:
2110 case DRM_FORMAT_ABGR2101010:
2111 dspcntr |= DISPPLANE_RGBX101010;
2112 break;
2113 default:
2114 BUG();
2115 }
2116
2117 if (obj->tiling_mode != I915_TILING_NONE)
2118 dspcntr |= DISPPLANE_TILED;
2119 else
2120 dspcntr &= ~DISPPLANE_TILED;
2121
2122 if (IS_HASWELL(dev))
2123 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2124 else
2125 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2126
2127 I915_WRITE(reg, dspcntr);
2128
2129 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2130 intel_crtc->dspaddr_offset =
2131 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2132 fb->bits_per_pixel / 8,
2133 fb->pitches[0]);
2134 linear_offset -= intel_crtc->dspaddr_offset;
2135
2136 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2137 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2138 fb->pitches[0]);
2139 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2140 I915_MODIFY_DISPBASE(DSPSURF(plane),
2141 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2142 if (IS_HASWELL(dev)) {
2143 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2144 } else {
2145 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2146 I915_WRITE(DSPLINOFF(plane), linear_offset);
2147 }
2148 POSTING_READ(reg);
2149
2150 return 0;
2151 }
2152
2153 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2154 static int
2155 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2156 int x, int y, enum mode_set_atomic state)
2157 {
2158 struct drm_device *dev = crtc->dev;
2159 struct drm_i915_private *dev_priv = dev->dev_private;
2160
2161 if (dev_priv->display.disable_fbc)
2162 dev_priv->display.disable_fbc(dev);
2163 intel_increase_pllclock(crtc);
2164
2165 return dev_priv->display.update_plane(crtc, fb, x, y);
2166 }
2167
2168 void intel_display_handle_reset(struct drm_device *dev)
2169 {
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 struct drm_crtc *crtc;
2172
2173 /*
2174 * Flips in the rings have been nuked by the reset,
2175 * so complete all pending flips so that user space
2176 * will get its events and not get stuck.
2177 *
2178 * Also update the base address of all primary
2179 * planes to the the last fb to make sure we're
2180 * showing the correct fb after a reset.
2181 *
2182 * Need to make two loops over the crtcs so that we
2183 * don't try to grab a crtc mutex before the
2184 * pending_flip_queue really got woken up.
2185 */
2186
2187 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2189 enum plane plane = intel_crtc->plane;
2190
2191 intel_prepare_page_flip(dev, plane);
2192 intel_finish_page_flip_plane(dev, plane);
2193 }
2194
2195 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198 mutex_lock(&crtc->mutex);
2199 if (intel_crtc->active)
2200 dev_priv->display.update_plane(crtc, crtc->fb,
2201 crtc->x, crtc->y);
2202 mutex_unlock(&crtc->mutex);
2203 }
2204 }
2205
2206 static int
2207 intel_finish_fb(struct drm_framebuffer *old_fb)
2208 {
2209 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2210 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2211 bool was_interruptible = dev_priv->mm.interruptible;
2212 int ret;
2213
2214 /* Big Hammer, we also need to ensure that any pending
2215 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2216 * current scanout is retired before unpinning the old
2217 * framebuffer.
2218 *
2219 * This should only fail upon a hung GPU, in which case we
2220 * can safely continue.
2221 */
2222 dev_priv->mm.interruptible = false;
2223 ret = i915_gem_object_finish_gpu(obj);
2224 dev_priv->mm.interruptible = was_interruptible;
2225
2226 return ret;
2227 }
2228
2229 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2230 {
2231 struct drm_device *dev = crtc->dev;
2232 struct drm_i915_master_private *master_priv;
2233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235 if (!dev->primary->master)
2236 return;
2237
2238 master_priv = dev->primary->master->driver_priv;
2239 if (!master_priv->sarea_priv)
2240 return;
2241
2242 switch (intel_crtc->pipe) {
2243 case 0:
2244 master_priv->sarea_priv->pipeA_x = x;
2245 master_priv->sarea_priv->pipeA_y = y;
2246 break;
2247 case 1:
2248 master_priv->sarea_priv->pipeB_x = x;
2249 master_priv->sarea_priv->pipeB_y = y;
2250 break;
2251 default:
2252 break;
2253 }
2254 }
2255
2256 static int
2257 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2258 struct drm_framebuffer *fb)
2259 {
2260 struct drm_device *dev = crtc->dev;
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263 struct drm_framebuffer *old_fb;
2264 int ret;
2265
2266 /* no fb bound */
2267 if (!fb) {
2268 DRM_ERROR("No FB bound\n");
2269 return 0;
2270 }
2271
2272 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2273 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2274 plane_name(intel_crtc->plane),
2275 INTEL_INFO(dev)->num_pipes);
2276 return -EINVAL;
2277 }
2278
2279 mutex_lock(&dev->struct_mutex);
2280 ret = intel_pin_and_fence_fb_obj(dev,
2281 to_intel_framebuffer(fb)->obj,
2282 NULL);
2283 if (ret != 0) {
2284 mutex_unlock(&dev->struct_mutex);
2285 DRM_ERROR("pin & fence failed\n");
2286 return ret;
2287 }
2288
2289 /* Update pipe size and adjust fitter if needed */
2290 if (i915_fastboot) {
2291 I915_WRITE(PIPESRC(intel_crtc->pipe),
2292 ((crtc->mode.hdisplay - 1) << 16) |
2293 (crtc->mode.vdisplay - 1));
2294 if (!intel_crtc->config.pch_pfit.size &&
2295 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2296 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2297 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2298 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2299 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2300 }
2301 }
2302
2303 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2304 if (ret) {
2305 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2306 mutex_unlock(&dev->struct_mutex);
2307 DRM_ERROR("failed to update base address\n");
2308 return ret;
2309 }
2310
2311 old_fb = crtc->fb;
2312 crtc->fb = fb;
2313 crtc->x = x;
2314 crtc->y = y;
2315
2316 if (old_fb) {
2317 if (intel_crtc->active && old_fb != fb)
2318 intel_wait_for_vblank(dev, intel_crtc->pipe);
2319 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2320 }
2321
2322 intel_update_fbc(dev);
2323 intel_edp_psr_update(dev);
2324 mutex_unlock(&dev->struct_mutex);
2325
2326 intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328 return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333 struct drm_device *dev = crtc->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336 int pipe = intel_crtc->pipe;
2337 u32 reg, temp;
2338
2339 /* enable normal train */
2340 reg = FDI_TX_CTL(pipe);
2341 temp = I915_READ(reg);
2342 if (IS_IVYBRIDGE(dev)) {
2343 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345 } else {
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348 }
2349 I915_WRITE(reg, temp);
2350
2351 reg = FDI_RX_CTL(pipe);
2352 temp = I915_READ(reg);
2353 if (HAS_PCH_CPT(dev)) {
2354 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356 } else {
2357 temp &= ~FDI_LINK_TRAIN_NONE;
2358 temp |= FDI_LINK_TRAIN_NONE;
2359 }
2360 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362 /* wait one idle pattern time */
2363 POSTING_READ(reg);
2364 udelay(1000);
2365
2366 /* IVB wants error correction enabled */
2367 if (IS_IVYBRIDGE(dev))
2368 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369 FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2373 {
2374 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2375 }
2376
2377 static void ivb_modeset_global_resources(struct drm_device *dev)
2378 {
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380 struct intel_crtc *pipe_B_crtc =
2381 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2382 struct intel_crtc *pipe_C_crtc =
2383 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2384 uint32_t temp;
2385
2386 /*
2387 * When everything is off disable fdi C so that we could enable fdi B
2388 * with all lanes. Note that we don't care about enabled pipes without
2389 * an enabled pch encoder.
2390 */
2391 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2392 !pipe_has_enabled_pch(pipe_C_crtc)) {
2393 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2394 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2395
2396 temp = I915_READ(SOUTH_CHICKEN1);
2397 temp &= ~FDI_BC_BIFURCATION_SELECT;
2398 DRM_DEBUG_KMS("disabling fdi C rx\n");
2399 I915_WRITE(SOUTH_CHICKEN1, temp);
2400 }
2401 }
2402
2403 /* The FDI link training functions for ILK/Ibexpeak. */
2404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2405 {
2406 struct drm_device *dev = crtc->dev;
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409 int pipe = intel_crtc->pipe;
2410 int plane = intel_crtc->plane;
2411 u32 reg, temp, tries;
2412
2413 /* FDI needs bits from pipe & plane first */
2414 assert_pipe_enabled(dev_priv, pipe);
2415 assert_plane_enabled(dev_priv, plane);
2416
2417 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2418 for train result */
2419 reg = FDI_RX_IMR(pipe);
2420 temp = I915_READ(reg);
2421 temp &= ~FDI_RX_SYMBOL_LOCK;
2422 temp &= ~FDI_RX_BIT_LOCK;
2423 I915_WRITE(reg, temp);
2424 I915_READ(reg);
2425 udelay(150);
2426
2427 /* enable CPU FDI TX and PCH FDI RX */
2428 reg = FDI_TX_CTL(pipe);
2429 temp = I915_READ(reg);
2430 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2431 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2432 temp &= ~FDI_LINK_TRAIN_NONE;
2433 temp |= FDI_LINK_TRAIN_PATTERN_1;
2434 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2435
2436 reg = FDI_RX_CTL(pipe);
2437 temp = I915_READ(reg);
2438 temp &= ~FDI_LINK_TRAIN_NONE;
2439 temp |= FDI_LINK_TRAIN_PATTERN_1;
2440 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2441
2442 POSTING_READ(reg);
2443 udelay(150);
2444
2445 /* Ironlake workaround, enable clock pointer after FDI enable*/
2446 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2447 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2448 FDI_RX_PHASE_SYNC_POINTER_EN);
2449
2450 reg = FDI_RX_IIR(pipe);
2451 for (tries = 0; tries < 5; tries++) {
2452 temp = I915_READ(reg);
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455 if ((temp & FDI_RX_BIT_LOCK)) {
2456 DRM_DEBUG_KMS("FDI train 1 done.\n");
2457 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2458 break;
2459 }
2460 }
2461 if (tries == 5)
2462 DRM_ERROR("FDI train 1 fail!\n");
2463
2464 /* Train 2 */
2465 reg = FDI_TX_CTL(pipe);
2466 temp = I915_READ(reg);
2467 temp &= ~FDI_LINK_TRAIN_NONE;
2468 temp |= FDI_LINK_TRAIN_PATTERN_2;
2469 I915_WRITE(reg, temp);
2470
2471 reg = FDI_RX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~FDI_LINK_TRAIN_NONE;
2474 temp |= FDI_LINK_TRAIN_PATTERN_2;
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
2478 udelay(150);
2479
2480 reg = FDI_RX_IIR(pipe);
2481 for (tries = 0; tries < 5; tries++) {
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484
2485 if (temp & FDI_RX_SYMBOL_LOCK) {
2486 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2487 DRM_DEBUG_KMS("FDI train 2 done.\n");
2488 break;
2489 }
2490 }
2491 if (tries == 5)
2492 DRM_ERROR("FDI train 2 fail!\n");
2493
2494 DRM_DEBUG_KMS("FDI train done\n");
2495
2496 }
2497
2498 static const int snb_b_fdi_train_param[] = {
2499 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2500 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2501 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2502 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2503 };
2504
2505 /* The FDI link training functions for SNB/Cougarpoint. */
2506 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2507 {
2508 struct drm_device *dev = crtc->dev;
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511 int pipe = intel_crtc->pipe;
2512 u32 reg, temp, i, retry;
2513
2514 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2515 for train result */
2516 reg = FDI_RX_IMR(pipe);
2517 temp = I915_READ(reg);
2518 temp &= ~FDI_RX_SYMBOL_LOCK;
2519 temp &= ~FDI_RX_BIT_LOCK;
2520 I915_WRITE(reg, temp);
2521
2522 POSTING_READ(reg);
2523 udelay(150);
2524
2525 /* enable CPU FDI TX and PCH FDI RX */
2526 reg = FDI_TX_CTL(pipe);
2527 temp = I915_READ(reg);
2528 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2529 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2530 temp &= ~FDI_LINK_TRAIN_NONE;
2531 temp |= FDI_LINK_TRAIN_PATTERN_1;
2532 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533 /* SNB-B */
2534 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2536
2537 I915_WRITE(FDI_RX_MISC(pipe),
2538 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2539
2540 reg = FDI_RX_CTL(pipe);
2541 temp = I915_READ(reg);
2542 if (HAS_PCH_CPT(dev)) {
2543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545 } else {
2546 temp &= ~FDI_LINK_TRAIN_NONE;
2547 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548 }
2549 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551 POSTING_READ(reg);
2552 udelay(150);
2553
2554 for (i = 0; i < 4; i++) {
2555 reg = FDI_TX_CTL(pipe);
2556 temp = I915_READ(reg);
2557 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2558 temp |= snb_b_fdi_train_param[i];
2559 I915_WRITE(reg, temp);
2560
2561 POSTING_READ(reg);
2562 udelay(500);
2563
2564 for (retry = 0; retry < 5; retry++) {
2565 reg = FDI_RX_IIR(pipe);
2566 temp = I915_READ(reg);
2567 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568 if (temp & FDI_RX_BIT_LOCK) {
2569 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2570 DRM_DEBUG_KMS("FDI train 1 done.\n");
2571 break;
2572 }
2573 udelay(50);
2574 }
2575 if (retry < 5)
2576 break;
2577 }
2578 if (i == 4)
2579 DRM_ERROR("FDI train 1 fail!\n");
2580
2581 /* Train 2 */
2582 reg = FDI_TX_CTL(pipe);
2583 temp = I915_READ(reg);
2584 temp &= ~FDI_LINK_TRAIN_NONE;
2585 temp |= FDI_LINK_TRAIN_PATTERN_2;
2586 if (IS_GEN6(dev)) {
2587 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588 /* SNB-B */
2589 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590 }
2591 I915_WRITE(reg, temp);
2592
2593 reg = FDI_RX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 if (HAS_PCH_CPT(dev)) {
2596 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2598 } else {
2599 temp &= ~FDI_LINK_TRAIN_NONE;
2600 temp |= FDI_LINK_TRAIN_PATTERN_2;
2601 }
2602 I915_WRITE(reg, temp);
2603
2604 POSTING_READ(reg);
2605 udelay(150);
2606
2607 for (i = 0; i < 4; i++) {
2608 reg = FDI_TX_CTL(pipe);
2609 temp = I915_READ(reg);
2610 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611 temp |= snb_b_fdi_train_param[i];
2612 I915_WRITE(reg, temp);
2613
2614 POSTING_READ(reg);
2615 udelay(500);
2616
2617 for (retry = 0; retry < 5; retry++) {
2618 reg = FDI_RX_IIR(pipe);
2619 temp = I915_READ(reg);
2620 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621 if (temp & FDI_RX_SYMBOL_LOCK) {
2622 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2623 DRM_DEBUG_KMS("FDI train 2 done.\n");
2624 break;
2625 }
2626 udelay(50);
2627 }
2628 if (retry < 5)
2629 break;
2630 }
2631 if (i == 4)
2632 DRM_ERROR("FDI train 2 fail!\n");
2633
2634 DRM_DEBUG_KMS("FDI train done.\n");
2635 }
2636
2637 /* Manual link training for Ivy Bridge A0 parts */
2638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2639 {
2640 struct drm_device *dev = crtc->dev;
2641 struct drm_i915_private *dev_priv = dev->dev_private;
2642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643 int pipe = intel_crtc->pipe;
2644 u32 reg, temp, i, j;
2645
2646 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2647 for train result */
2648 reg = FDI_RX_IMR(pipe);
2649 temp = I915_READ(reg);
2650 temp &= ~FDI_RX_SYMBOL_LOCK;
2651 temp &= ~FDI_RX_BIT_LOCK;
2652 I915_WRITE(reg, temp);
2653
2654 POSTING_READ(reg);
2655 udelay(150);
2656
2657 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2658 I915_READ(FDI_RX_IIR(pipe)));
2659
2660 /* Try each vswing and preemphasis setting twice before moving on */
2661 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2662 /* disable first in case we need to retry */
2663 reg = FDI_TX_CTL(pipe);
2664 temp = I915_READ(reg);
2665 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2666 temp &= ~FDI_TX_ENABLE;
2667 I915_WRITE(reg, temp);
2668
2669 reg = FDI_RX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~FDI_LINK_TRAIN_AUTO;
2672 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2673 temp &= ~FDI_RX_ENABLE;
2674 I915_WRITE(reg, temp);
2675
2676 /* enable CPU FDI TX and PCH FDI RX */
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2680 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2681 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2682 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683 temp |= snb_b_fdi_train_param[j/2];
2684 temp |= FDI_COMPOSITE_SYNC;
2685 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2686
2687 I915_WRITE(FDI_RX_MISC(pipe),
2688 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2689
2690 reg = FDI_RX_CTL(pipe);
2691 temp = I915_READ(reg);
2692 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2693 temp |= FDI_COMPOSITE_SYNC;
2694 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2695
2696 POSTING_READ(reg);
2697 udelay(1); /* should be 0.5us */
2698
2699 for (i = 0; i < 4; i++) {
2700 reg = FDI_RX_IIR(pipe);
2701 temp = I915_READ(reg);
2702 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2703
2704 if (temp & FDI_RX_BIT_LOCK ||
2705 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2706 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2708 i);
2709 break;
2710 }
2711 udelay(1); /* should be 0.5us */
2712 }
2713 if (i == 4) {
2714 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2715 continue;
2716 }
2717
2718 /* Train 2 */
2719 reg = FDI_TX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2722 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2723 I915_WRITE(reg, temp);
2724
2725 reg = FDI_RX_CTL(pipe);
2726 temp = I915_READ(reg);
2727 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2728 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2729 I915_WRITE(reg, temp);
2730
2731 POSTING_READ(reg);
2732 udelay(2); /* should be 1.5us */
2733
2734 for (i = 0; i < 4; i++) {
2735 reg = FDI_RX_IIR(pipe);
2736 temp = I915_READ(reg);
2737 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2738
2739 if (temp & FDI_RX_SYMBOL_LOCK ||
2740 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2741 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2742 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2743 i);
2744 goto train_done;
2745 }
2746 udelay(2); /* should be 1.5us */
2747 }
2748 if (i == 4)
2749 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2750 }
2751
2752 train_done:
2753 DRM_DEBUG_KMS("FDI train done.\n");
2754 }
2755
2756 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2757 {
2758 struct drm_device *dev = intel_crtc->base.dev;
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 int pipe = intel_crtc->pipe;
2761 u32 reg, temp;
2762
2763
2764 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2768 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2769 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2770 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2771
2772 POSTING_READ(reg);
2773 udelay(200);
2774
2775 /* Switch from Rawclk to PCDclk */
2776 temp = I915_READ(reg);
2777 I915_WRITE(reg, temp | FDI_PCDCLK);
2778
2779 POSTING_READ(reg);
2780 udelay(200);
2781
2782 /* Enable CPU FDI TX PLL, always on for Ironlake */
2783 reg = FDI_TX_CTL(pipe);
2784 temp = I915_READ(reg);
2785 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2786 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2787
2788 POSTING_READ(reg);
2789 udelay(100);
2790 }
2791 }
2792
2793 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2794 {
2795 struct drm_device *dev = intel_crtc->base.dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 int pipe = intel_crtc->pipe;
2798 u32 reg, temp;
2799
2800 /* Switch from PCDclk to Rawclk */
2801 reg = FDI_RX_CTL(pipe);
2802 temp = I915_READ(reg);
2803 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2804
2805 /* Disable CPU FDI TX PLL */
2806 reg = FDI_TX_CTL(pipe);
2807 temp = I915_READ(reg);
2808 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2809
2810 POSTING_READ(reg);
2811 udelay(100);
2812
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2816
2817 /* Wait for the clocks to turn off. */
2818 POSTING_READ(reg);
2819 udelay(100);
2820 }
2821
2822 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2823 {
2824 struct drm_device *dev = crtc->dev;
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2827 int pipe = intel_crtc->pipe;
2828 u32 reg, temp;
2829
2830 /* disable CPU FDI tx and PCH FDI rx */
2831 reg = FDI_TX_CTL(pipe);
2832 temp = I915_READ(reg);
2833 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2834 POSTING_READ(reg);
2835
2836 reg = FDI_RX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 temp &= ~(0x7 << 16);
2839 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2840 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2841
2842 POSTING_READ(reg);
2843 udelay(100);
2844
2845 /* Ironlake workaround, disable clock pointer after downing FDI */
2846 if (HAS_PCH_IBX(dev)) {
2847 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2848 }
2849
2850 /* still set train pattern 1 */
2851 reg = FDI_TX_CTL(pipe);
2852 temp = I915_READ(reg);
2853 temp &= ~FDI_LINK_TRAIN_NONE;
2854 temp |= FDI_LINK_TRAIN_PATTERN_1;
2855 I915_WRITE(reg, temp);
2856
2857 reg = FDI_RX_CTL(pipe);
2858 temp = I915_READ(reg);
2859 if (HAS_PCH_CPT(dev)) {
2860 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2861 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2862 } else {
2863 temp &= ~FDI_LINK_TRAIN_NONE;
2864 temp |= FDI_LINK_TRAIN_PATTERN_1;
2865 }
2866 /* BPC in FDI rx is consistent with that in PIPECONF */
2867 temp &= ~(0x07 << 16);
2868 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2869 I915_WRITE(reg, temp);
2870
2871 POSTING_READ(reg);
2872 udelay(100);
2873 }
2874
2875 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2876 {
2877 struct drm_device *dev = crtc->dev;
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880 unsigned long flags;
2881 bool pending;
2882
2883 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2884 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2885 return false;
2886
2887 spin_lock_irqsave(&dev->event_lock, flags);
2888 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2889 spin_unlock_irqrestore(&dev->event_lock, flags);
2890
2891 return pending;
2892 }
2893
2894 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2895 {
2896 struct drm_device *dev = crtc->dev;
2897 struct drm_i915_private *dev_priv = dev->dev_private;
2898
2899 if (crtc->fb == NULL)
2900 return;
2901
2902 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2903
2904 wait_event(dev_priv->pending_flip_queue,
2905 !intel_crtc_has_pending_flip(crtc));
2906
2907 mutex_lock(&dev->struct_mutex);
2908 intel_finish_fb(crtc->fb);
2909 mutex_unlock(&dev->struct_mutex);
2910 }
2911
2912 /* Program iCLKIP clock to the desired frequency */
2913 static void lpt_program_iclkip(struct drm_crtc *crtc)
2914 {
2915 struct drm_device *dev = crtc->dev;
2916 struct drm_i915_private *dev_priv = dev->dev_private;
2917 int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2918 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2919 u32 temp;
2920
2921 mutex_lock(&dev_priv->dpio_lock);
2922
2923 /* It is necessary to ungate the pixclk gate prior to programming
2924 * the divisors, and gate it back when it is done.
2925 */
2926 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2927
2928 /* Disable SSCCTL */
2929 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2930 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2931 SBI_SSCCTL_DISABLE,
2932 SBI_ICLK);
2933
2934 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2935 if (clock == 20000) {
2936 auxdiv = 1;
2937 divsel = 0x41;
2938 phaseinc = 0x20;
2939 } else {
2940 /* The iCLK virtual clock root frequency is in MHz,
2941 * but the adjusted_mode->clock in in KHz. To get the divisors,
2942 * it is necessary to divide one by another, so we
2943 * convert the virtual clock precision to KHz here for higher
2944 * precision.
2945 */
2946 u32 iclk_virtual_root_freq = 172800 * 1000;
2947 u32 iclk_pi_range = 64;
2948 u32 desired_divisor, msb_divisor_value, pi_value;
2949
2950 desired_divisor = (iclk_virtual_root_freq / clock);
2951 msb_divisor_value = desired_divisor / iclk_pi_range;
2952 pi_value = desired_divisor % iclk_pi_range;
2953
2954 auxdiv = 0;
2955 divsel = msb_divisor_value - 2;
2956 phaseinc = pi_value;
2957 }
2958
2959 /* This should not happen with any sane values */
2960 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2961 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2962 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2963 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2964
2965 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2966 clock,
2967 auxdiv,
2968 divsel,
2969 phasedir,
2970 phaseinc);
2971
2972 /* Program SSCDIVINTPHASE6 */
2973 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2974 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2975 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2976 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2977 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2978 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2979 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2980 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2981
2982 /* Program SSCAUXDIV */
2983 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2984 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2985 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2986 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2987
2988 /* Enable modulator and associated divider */
2989 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2990 temp &= ~SBI_SSCCTL_DISABLE;
2991 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2992
2993 /* Wait for initialization time */
2994 udelay(24);
2995
2996 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2997
2998 mutex_unlock(&dev_priv->dpio_lock);
2999 }
3000
3001 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3002 enum pipe pch_transcoder)
3003 {
3004 struct drm_device *dev = crtc->base.dev;
3005 struct drm_i915_private *dev_priv = dev->dev_private;
3006 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3007
3008 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3009 I915_READ(HTOTAL(cpu_transcoder)));
3010 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3011 I915_READ(HBLANK(cpu_transcoder)));
3012 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3013 I915_READ(HSYNC(cpu_transcoder)));
3014
3015 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3016 I915_READ(VTOTAL(cpu_transcoder)));
3017 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3018 I915_READ(VBLANK(cpu_transcoder)));
3019 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3020 I915_READ(VSYNC(cpu_transcoder)));
3021 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3022 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3023 }
3024
3025 /*
3026 * Enable PCH resources required for PCH ports:
3027 * - PCH PLLs
3028 * - FDI training & RX/TX
3029 * - update transcoder timings
3030 * - DP transcoding bits
3031 * - transcoder
3032 */
3033 static void ironlake_pch_enable(struct drm_crtc *crtc)
3034 {
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038 int pipe = intel_crtc->pipe;
3039 u32 reg, temp;
3040
3041 assert_pch_transcoder_disabled(dev_priv, pipe);
3042
3043 /* Write the TU size bits before fdi link training, so that error
3044 * detection works. */
3045 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3046 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3047
3048 /* For PCH output, training FDI link */
3049 dev_priv->display.fdi_link_train(crtc);
3050
3051 /* We need to program the right clock selection before writing the pixel
3052 * mutliplier into the DPLL. */
3053 if (HAS_PCH_CPT(dev)) {
3054 u32 sel;
3055
3056 temp = I915_READ(PCH_DPLL_SEL);
3057 temp |= TRANS_DPLL_ENABLE(pipe);
3058 sel = TRANS_DPLLB_SEL(pipe);
3059 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3060 temp |= sel;
3061 else
3062 temp &= ~sel;
3063 I915_WRITE(PCH_DPLL_SEL, temp);
3064 }
3065
3066 /* XXX: pch pll's can be enabled any time before we enable the PCH
3067 * transcoder, and we actually should do this to not upset any PCH
3068 * transcoder that already use the clock when we share it.
3069 *
3070 * Note that enable_shared_dpll tries to do the right thing, but
3071 * get_shared_dpll unconditionally resets the pll - we need that to have
3072 * the right LVDS enable sequence. */
3073 ironlake_enable_shared_dpll(intel_crtc);
3074
3075 /* set transcoder timing, panel must allow it */
3076 assert_panel_unlocked(dev_priv, pipe);
3077 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3078
3079 intel_fdi_normal_train(crtc);
3080
3081 /* For PCH DP, enable TRANS_DP_CTL */
3082 if (HAS_PCH_CPT(dev) &&
3083 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3084 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3085 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3086 reg = TRANS_DP_CTL(pipe);
3087 temp = I915_READ(reg);
3088 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3089 TRANS_DP_SYNC_MASK |
3090 TRANS_DP_BPC_MASK);
3091 temp |= (TRANS_DP_OUTPUT_ENABLE |
3092 TRANS_DP_ENH_FRAMING);
3093 temp |= bpc << 9; /* same format but at 11:9 */
3094
3095 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3096 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3097 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3098 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3099
3100 switch (intel_trans_dp_port_sel(crtc)) {
3101 case PCH_DP_B:
3102 temp |= TRANS_DP_PORT_SEL_B;
3103 break;
3104 case PCH_DP_C:
3105 temp |= TRANS_DP_PORT_SEL_C;
3106 break;
3107 case PCH_DP_D:
3108 temp |= TRANS_DP_PORT_SEL_D;
3109 break;
3110 default:
3111 BUG();
3112 }
3113
3114 I915_WRITE(reg, temp);
3115 }
3116
3117 ironlake_enable_pch_transcoder(dev_priv, pipe);
3118 }
3119
3120 static void lpt_pch_enable(struct drm_crtc *crtc)
3121 {
3122 struct drm_device *dev = crtc->dev;
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3126
3127 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3128
3129 lpt_program_iclkip(crtc);
3130
3131 /* Set transcoder timing. */
3132 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3133
3134 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3135 }
3136
3137 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3138 {
3139 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3140
3141 if (pll == NULL)
3142 return;
3143
3144 if (pll->refcount == 0) {
3145 WARN(1, "bad %s refcount\n", pll->name);
3146 return;
3147 }
3148
3149 if (--pll->refcount == 0) {
3150 WARN_ON(pll->on);
3151 WARN_ON(pll->active);
3152 }
3153
3154 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3155 }
3156
3157 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3158 {
3159 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3160 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3161 enum intel_dpll_id i;
3162
3163 if (pll) {
3164 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3165 crtc->base.base.id, pll->name);
3166 intel_put_shared_dpll(crtc);
3167 }
3168
3169 if (HAS_PCH_IBX(dev_priv->dev)) {
3170 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3171 i = (enum intel_dpll_id) crtc->pipe;
3172 pll = &dev_priv->shared_dplls[i];
3173
3174 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3175 crtc->base.base.id, pll->name);
3176
3177 goto found;
3178 }
3179
3180 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3181 pll = &dev_priv->shared_dplls[i];
3182
3183 /* Only want to check enabled timings first */
3184 if (pll->refcount == 0)
3185 continue;
3186
3187 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3188 sizeof(pll->hw_state)) == 0) {
3189 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3190 crtc->base.base.id,
3191 pll->name, pll->refcount, pll->active);
3192
3193 goto found;
3194 }
3195 }
3196
3197 /* Ok no matching timings, maybe there's a free one? */
3198 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3199 pll = &dev_priv->shared_dplls[i];
3200 if (pll->refcount == 0) {
3201 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3202 crtc->base.base.id, pll->name);
3203 goto found;
3204 }
3205 }
3206
3207 return NULL;
3208
3209 found:
3210 crtc->config.shared_dpll = i;
3211 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3212 pipe_name(crtc->pipe));
3213
3214 if (pll->active == 0) {
3215 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3216 sizeof(pll->hw_state));
3217
3218 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3219 WARN_ON(pll->on);
3220 assert_shared_dpll_disabled(dev_priv, pll);
3221
3222 pll->mode_set(dev_priv, pll);
3223 }
3224 pll->refcount++;
3225
3226 return pll;
3227 }
3228
3229 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3230 {
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 int dslreg = PIPEDSL(pipe);
3233 u32 temp;
3234
3235 temp = I915_READ(dslreg);
3236 udelay(500);
3237 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3238 if (wait_for(I915_READ(dslreg) != temp, 5))
3239 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3240 }
3241 }
3242
3243 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3244 {
3245 struct drm_device *dev = crtc->base.dev;
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 int pipe = crtc->pipe;
3248
3249 if (crtc->config.pch_pfit.size) {
3250 /* Force use of hard-coded filter coefficients
3251 * as some pre-programmed values are broken,
3252 * e.g. x201.
3253 */
3254 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3255 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3256 PF_PIPE_SEL_IVB(pipe));
3257 else
3258 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3259 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3260 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3261 }
3262 }
3263
3264 static void intel_enable_planes(struct drm_crtc *crtc)
3265 {
3266 struct drm_device *dev = crtc->dev;
3267 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3268 struct intel_plane *intel_plane;
3269
3270 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3271 if (intel_plane->pipe == pipe)
3272 intel_plane_restore(&intel_plane->base);
3273 }
3274
3275 static void intel_disable_planes(struct drm_crtc *crtc)
3276 {
3277 struct drm_device *dev = crtc->dev;
3278 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3279 struct intel_plane *intel_plane;
3280
3281 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3282 if (intel_plane->pipe == pipe)
3283 intel_plane_disable(&intel_plane->base);
3284 }
3285
3286 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3287 {
3288 struct drm_device *dev = crtc->dev;
3289 struct drm_i915_private *dev_priv = dev->dev_private;
3290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3291 struct intel_encoder *encoder;
3292 int pipe = intel_crtc->pipe;
3293 int plane = intel_crtc->plane;
3294
3295 WARN_ON(!crtc->enabled);
3296
3297 if (intel_crtc->active)
3298 return;
3299
3300 intel_crtc->active = true;
3301
3302 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3303 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3304
3305 for_each_encoder_on_crtc(dev, crtc, encoder)
3306 if (encoder->pre_enable)
3307 encoder->pre_enable(encoder);
3308
3309 if (intel_crtc->config.has_pch_encoder) {
3310 /* Note: FDI PLL enabling _must_ be done before we enable the
3311 * cpu pipes, hence this is separate from all the other fdi/pch
3312 * enabling. */
3313 ironlake_fdi_pll_enable(intel_crtc);
3314 } else {
3315 assert_fdi_tx_disabled(dev_priv, pipe);
3316 assert_fdi_rx_disabled(dev_priv, pipe);
3317 }
3318
3319 ironlake_pfit_enable(intel_crtc);
3320
3321 /*
3322 * On ILK+ LUT must be loaded before the pipe is running but with
3323 * clocks enabled
3324 */
3325 intel_crtc_load_lut(crtc);
3326
3327 intel_update_watermarks(crtc);
3328 intel_enable_pipe(dev_priv, pipe,
3329 intel_crtc->config.has_pch_encoder, false);
3330 intel_enable_plane(dev_priv, plane, pipe);
3331 intel_enable_planes(crtc);
3332 intel_crtc_update_cursor(crtc, true);
3333
3334 if (intel_crtc->config.has_pch_encoder)
3335 ironlake_pch_enable(crtc);
3336
3337 mutex_lock(&dev->struct_mutex);
3338 intel_update_fbc(dev);
3339 mutex_unlock(&dev->struct_mutex);
3340
3341 for_each_encoder_on_crtc(dev, crtc, encoder)
3342 encoder->enable(encoder);
3343
3344 if (HAS_PCH_CPT(dev))
3345 cpt_verify_modeset(dev, intel_crtc->pipe);
3346
3347 /*
3348 * There seems to be a race in PCH platform hw (at least on some
3349 * outputs) where an enabled pipe still completes any pageflip right
3350 * away (as if the pipe is off) instead of waiting for vblank. As soon
3351 * as the first vblank happend, everything works as expected. Hence just
3352 * wait for one vblank before returning to avoid strange things
3353 * happening.
3354 */
3355 intel_wait_for_vblank(dev, intel_crtc->pipe);
3356 }
3357
3358 /* IPS only exists on ULT machines and is tied to pipe A. */
3359 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3360 {
3361 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3362 }
3363
3364 static void hsw_enable_ips(struct intel_crtc *crtc)
3365 {
3366 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3367
3368 if (!crtc->config.ips_enabled)
3369 return;
3370
3371 /* We can only enable IPS after we enable a plane and wait for a vblank.
3372 * We guarantee that the plane is enabled by calling intel_enable_ips
3373 * only after intel_enable_plane. And intel_enable_plane already waits
3374 * for a vblank, so all we need to do here is to enable the IPS bit. */
3375 assert_plane_enabled(dev_priv, crtc->plane);
3376 I915_WRITE(IPS_CTL, IPS_ENABLE);
3377 }
3378
3379 static void hsw_disable_ips(struct intel_crtc *crtc)
3380 {
3381 struct drm_device *dev = crtc->base.dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384 if (!crtc->config.ips_enabled)
3385 return;
3386
3387 assert_plane_enabled(dev_priv, crtc->plane);
3388 I915_WRITE(IPS_CTL, 0);
3389
3390 /* We need to wait for a vblank before we can disable the plane. */
3391 intel_wait_for_vblank(dev, crtc->pipe);
3392 }
3393
3394 static void haswell_crtc_enable(struct drm_crtc *crtc)
3395 {
3396 struct drm_device *dev = crtc->dev;
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399 struct intel_encoder *encoder;
3400 int pipe = intel_crtc->pipe;
3401 int plane = intel_crtc->plane;
3402
3403 WARN_ON(!crtc->enabled);
3404
3405 if (intel_crtc->active)
3406 return;
3407
3408 intel_crtc->active = true;
3409
3410 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3411 if (intel_crtc->config.has_pch_encoder)
3412 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3413
3414 if (intel_crtc->config.has_pch_encoder)
3415 dev_priv->display.fdi_link_train(crtc);
3416
3417 for_each_encoder_on_crtc(dev, crtc, encoder)
3418 if (encoder->pre_enable)
3419 encoder->pre_enable(encoder);
3420
3421 intel_ddi_enable_pipe_clock(intel_crtc);
3422
3423 ironlake_pfit_enable(intel_crtc);
3424
3425 /*
3426 * On ILK+ LUT must be loaded before the pipe is running but with
3427 * clocks enabled
3428 */
3429 intel_crtc_load_lut(crtc);
3430
3431 intel_ddi_set_pipe_settings(crtc);
3432 intel_ddi_enable_transcoder_func(crtc);
3433
3434 intel_update_watermarks(crtc);
3435 intel_enable_pipe(dev_priv, pipe,
3436 intel_crtc->config.has_pch_encoder, false);
3437 intel_enable_plane(dev_priv, plane, pipe);
3438 intel_enable_planes(crtc);
3439 intel_crtc_update_cursor(crtc, true);
3440
3441 hsw_enable_ips(intel_crtc);
3442
3443 if (intel_crtc->config.has_pch_encoder)
3444 lpt_pch_enable(crtc);
3445
3446 mutex_lock(&dev->struct_mutex);
3447 intel_update_fbc(dev);
3448 mutex_unlock(&dev->struct_mutex);
3449
3450 for_each_encoder_on_crtc(dev, crtc, encoder) {
3451 encoder->enable(encoder);
3452 intel_opregion_notify_encoder(encoder, true);
3453 }
3454
3455 /*
3456 * There seems to be a race in PCH platform hw (at least on some
3457 * outputs) where an enabled pipe still completes any pageflip right
3458 * away (as if the pipe is off) instead of waiting for vblank. As soon
3459 * as the first vblank happend, everything works as expected. Hence just
3460 * wait for one vblank before returning to avoid strange things
3461 * happening.
3462 */
3463 intel_wait_for_vblank(dev, intel_crtc->pipe);
3464 }
3465
3466 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3467 {
3468 struct drm_device *dev = crtc->base.dev;
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 int pipe = crtc->pipe;
3471
3472 /* To avoid upsetting the power well on haswell only disable the pfit if
3473 * it's in use. The hw state code will make sure we get this right. */
3474 if (crtc->config.pch_pfit.size) {
3475 I915_WRITE(PF_CTL(pipe), 0);
3476 I915_WRITE(PF_WIN_POS(pipe), 0);
3477 I915_WRITE(PF_WIN_SZ(pipe), 0);
3478 }
3479 }
3480
3481 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3482 {
3483 struct drm_device *dev = crtc->dev;
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3486 struct intel_encoder *encoder;
3487 int pipe = intel_crtc->pipe;
3488 int plane = intel_crtc->plane;
3489 u32 reg, temp;
3490
3491
3492 if (!intel_crtc->active)
3493 return;
3494
3495 for_each_encoder_on_crtc(dev, crtc, encoder)
3496 encoder->disable(encoder);
3497
3498 intel_crtc_wait_for_pending_flips(crtc);
3499 drm_vblank_off(dev, pipe);
3500
3501 if (dev_priv->fbc.plane == plane)
3502 intel_disable_fbc(dev);
3503
3504 intel_crtc_update_cursor(crtc, false);
3505 intel_disable_planes(crtc);
3506 intel_disable_plane(dev_priv, plane, pipe);
3507
3508 if (intel_crtc->config.has_pch_encoder)
3509 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3510
3511 intel_disable_pipe(dev_priv, pipe);
3512
3513 ironlake_pfit_disable(intel_crtc);
3514
3515 for_each_encoder_on_crtc(dev, crtc, encoder)
3516 if (encoder->post_disable)
3517 encoder->post_disable(encoder);
3518
3519 if (intel_crtc->config.has_pch_encoder) {
3520 ironlake_fdi_disable(crtc);
3521
3522 ironlake_disable_pch_transcoder(dev_priv, pipe);
3523 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3524
3525 if (HAS_PCH_CPT(dev)) {
3526 /* disable TRANS_DP_CTL */
3527 reg = TRANS_DP_CTL(pipe);
3528 temp = I915_READ(reg);
3529 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3530 TRANS_DP_PORT_SEL_MASK);
3531 temp |= TRANS_DP_PORT_SEL_NONE;
3532 I915_WRITE(reg, temp);
3533
3534 /* disable DPLL_SEL */
3535 temp = I915_READ(PCH_DPLL_SEL);
3536 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3537 I915_WRITE(PCH_DPLL_SEL, temp);
3538 }
3539
3540 /* disable PCH DPLL */
3541 intel_disable_shared_dpll(intel_crtc);
3542
3543 ironlake_fdi_pll_disable(intel_crtc);
3544 }
3545
3546 intel_crtc->active = false;
3547 intel_update_watermarks(crtc);
3548
3549 mutex_lock(&dev->struct_mutex);
3550 intel_update_fbc(dev);
3551 mutex_unlock(&dev->struct_mutex);
3552 }
3553
3554 static void haswell_crtc_disable(struct drm_crtc *crtc)
3555 {
3556 struct drm_device *dev = crtc->dev;
3557 struct drm_i915_private *dev_priv = dev->dev_private;
3558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559 struct intel_encoder *encoder;
3560 int pipe = intel_crtc->pipe;
3561 int plane = intel_crtc->plane;
3562 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3563
3564 if (!intel_crtc->active)
3565 return;
3566
3567 for_each_encoder_on_crtc(dev, crtc, encoder) {
3568 intel_opregion_notify_encoder(encoder, false);
3569 encoder->disable(encoder);
3570 }
3571
3572 intel_crtc_wait_for_pending_flips(crtc);
3573 drm_vblank_off(dev, pipe);
3574
3575 /* FBC must be disabled before disabling the plane on HSW. */
3576 if (dev_priv->fbc.plane == plane)
3577 intel_disable_fbc(dev);
3578
3579 hsw_disable_ips(intel_crtc);
3580
3581 intel_crtc_update_cursor(crtc, false);
3582 intel_disable_planes(crtc);
3583 intel_disable_plane(dev_priv, plane, pipe);
3584
3585 if (intel_crtc->config.has_pch_encoder)
3586 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3587 intel_disable_pipe(dev_priv, pipe);
3588
3589 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3590
3591 ironlake_pfit_disable(intel_crtc);
3592
3593 intel_ddi_disable_pipe_clock(intel_crtc);
3594
3595 for_each_encoder_on_crtc(dev, crtc, encoder)
3596 if (encoder->post_disable)
3597 encoder->post_disable(encoder);
3598
3599 if (intel_crtc->config.has_pch_encoder) {
3600 lpt_disable_pch_transcoder(dev_priv);
3601 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3602 intel_ddi_fdi_disable(crtc);
3603 }
3604
3605 intel_crtc->active = false;
3606 intel_update_watermarks(crtc);
3607
3608 mutex_lock(&dev->struct_mutex);
3609 intel_update_fbc(dev);
3610 mutex_unlock(&dev->struct_mutex);
3611 }
3612
3613 static void ironlake_crtc_off(struct drm_crtc *crtc)
3614 {
3615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616 intel_put_shared_dpll(intel_crtc);
3617 }
3618
3619 static void haswell_crtc_off(struct drm_crtc *crtc)
3620 {
3621 intel_ddi_put_crtc_pll(crtc);
3622 }
3623
3624 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3625 {
3626 if (!enable && intel_crtc->overlay) {
3627 struct drm_device *dev = intel_crtc->base.dev;
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629
3630 mutex_lock(&dev->struct_mutex);
3631 dev_priv->mm.interruptible = false;
3632 (void) intel_overlay_switch_off(intel_crtc->overlay);
3633 dev_priv->mm.interruptible = true;
3634 mutex_unlock(&dev->struct_mutex);
3635 }
3636
3637 /* Let userspace switch the overlay on again. In most cases userspace
3638 * has to recompute where to put it anyway.
3639 */
3640 }
3641
3642 /**
3643 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3644 * cursor plane briefly if not already running after enabling the display
3645 * plane.
3646 * This workaround avoids occasional blank screens when self refresh is
3647 * enabled.
3648 */
3649 static void
3650 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3651 {
3652 u32 cntl = I915_READ(CURCNTR(pipe));
3653
3654 if ((cntl & CURSOR_MODE) == 0) {
3655 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3656
3657 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3658 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3659 intel_wait_for_vblank(dev_priv->dev, pipe);
3660 I915_WRITE(CURCNTR(pipe), cntl);
3661 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3662 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3663 }
3664 }
3665
3666 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3667 {
3668 struct drm_device *dev = crtc->base.dev;
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3670 struct intel_crtc_config *pipe_config = &crtc->config;
3671
3672 if (!crtc->config.gmch_pfit.control)
3673 return;
3674
3675 /*
3676 * The panel fitter should only be adjusted whilst the pipe is disabled,
3677 * according to register description and PRM.
3678 */
3679 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3680 assert_pipe_disabled(dev_priv, crtc->pipe);
3681
3682 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3683 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3684
3685 /* Border color in case we don't scale up to the full screen. Black by
3686 * default, change to something else for debugging. */
3687 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3688 }
3689
3690 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3691 {
3692 struct drm_device *dev = crtc->dev;
3693 struct drm_i915_private *dev_priv = dev->dev_private;
3694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695 struct intel_encoder *encoder;
3696 int pipe = intel_crtc->pipe;
3697 int plane = intel_crtc->plane;
3698 bool is_dsi;
3699
3700 WARN_ON(!crtc->enabled);
3701
3702 if (intel_crtc->active)
3703 return;
3704
3705 intel_crtc->active = true;
3706
3707 for_each_encoder_on_crtc(dev, crtc, encoder)
3708 if (encoder->pre_pll_enable)
3709 encoder->pre_pll_enable(encoder);
3710
3711 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3712
3713 if (!is_dsi)
3714 vlv_enable_pll(intel_crtc);
3715
3716 for_each_encoder_on_crtc(dev, crtc, encoder)
3717 if (encoder->pre_enable)
3718 encoder->pre_enable(encoder);
3719
3720 i9xx_pfit_enable(intel_crtc);
3721
3722 intel_crtc_load_lut(crtc);
3723
3724 intel_update_watermarks(crtc);
3725 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3726 intel_enable_plane(dev_priv, plane, pipe);
3727 intel_enable_planes(crtc);
3728 intel_crtc_update_cursor(crtc, true);
3729
3730 intel_update_fbc(dev);
3731
3732 for_each_encoder_on_crtc(dev, crtc, encoder)
3733 encoder->enable(encoder);
3734 }
3735
3736 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3737 {
3738 struct drm_device *dev = crtc->dev;
3739 struct drm_i915_private *dev_priv = dev->dev_private;
3740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741 struct intel_encoder *encoder;
3742 int pipe = intel_crtc->pipe;
3743 int plane = intel_crtc->plane;
3744
3745 WARN_ON(!crtc->enabled);
3746
3747 if (intel_crtc->active)
3748 return;
3749
3750 intel_crtc->active = true;
3751
3752 for_each_encoder_on_crtc(dev, crtc, encoder)
3753 if (encoder->pre_enable)
3754 encoder->pre_enable(encoder);
3755
3756 i9xx_enable_pll(intel_crtc);
3757
3758 i9xx_pfit_enable(intel_crtc);
3759
3760 intel_crtc_load_lut(crtc);
3761
3762 intel_update_watermarks(crtc);
3763 intel_enable_pipe(dev_priv, pipe, false, false);
3764 intel_enable_plane(dev_priv, plane, pipe);
3765 intel_enable_planes(crtc);
3766 /* The fixup needs to happen before cursor is enabled */
3767 if (IS_G4X(dev))
3768 g4x_fixup_plane(dev_priv, pipe);
3769 intel_crtc_update_cursor(crtc, true);
3770
3771 /* Give the overlay scaler a chance to enable if it's on this pipe */
3772 intel_crtc_dpms_overlay(intel_crtc, true);
3773
3774 intel_update_fbc(dev);
3775
3776 for_each_encoder_on_crtc(dev, crtc, encoder)
3777 encoder->enable(encoder);
3778 }
3779
3780 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3781 {
3782 struct drm_device *dev = crtc->base.dev;
3783 struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785 if (!crtc->config.gmch_pfit.control)
3786 return;
3787
3788 assert_pipe_disabled(dev_priv, crtc->pipe);
3789
3790 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3791 I915_READ(PFIT_CONTROL));
3792 I915_WRITE(PFIT_CONTROL, 0);
3793 }
3794
3795 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3796 {
3797 struct drm_device *dev = crtc->dev;
3798 struct drm_i915_private *dev_priv = dev->dev_private;
3799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3800 struct intel_encoder *encoder;
3801 int pipe = intel_crtc->pipe;
3802 int plane = intel_crtc->plane;
3803
3804 if (!intel_crtc->active)
3805 return;
3806
3807 for_each_encoder_on_crtc(dev, crtc, encoder)
3808 encoder->disable(encoder);
3809
3810 /* Give the overlay scaler a chance to disable if it's on this pipe */
3811 intel_crtc_wait_for_pending_flips(crtc);
3812 drm_vblank_off(dev, pipe);
3813
3814 if (dev_priv->fbc.plane == plane)
3815 intel_disable_fbc(dev);
3816
3817 intel_crtc_dpms_overlay(intel_crtc, false);
3818 intel_crtc_update_cursor(crtc, false);
3819 intel_disable_planes(crtc);
3820 intel_disable_plane(dev_priv, plane, pipe);
3821
3822 intel_disable_pipe(dev_priv, pipe);
3823
3824 i9xx_pfit_disable(intel_crtc);
3825
3826 for_each_encoder_on_crtc(dev, crtc, encoder)
3827 if (encoder->post_disable)
3828 encoder->post_disable(encoder);
3829
3830 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3831 i9xx_disable_pll(dev_priv, pipe);
3832
3833 intel_crtc->active = false;
3834 intel_update_watermarks(crtc);
3835
3836 intel_update_fbc(dev);
3837 }
3838
3839 static void i9xx_crtc_off(struct drm_crtc *crtc)
3840 {
3841 }
3842
3843 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3844 bool enabled)
3845 {
3846 struct drm_device *dev = crtc->dev;
3847 struct drm_i915_master_private *master_priv;
3848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849 int pipe = intel_crtc->pipe;
3850
3851 if (!dev->primary->master)
3852 return;
3853
3854 master_priv = dev->primary->master->driver_priv;
3855 if (!master_priv->sarea_priv)
3856 return;
3857
3858 switch (pipe) {
3859 case 0:
3860 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3861 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3862 break;
3863 case 1:
3864 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3865 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3866 break;
3867 default:
3868 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3869 break;
3870 }
3871 }
3872
3873 /**
3874 * Sets the power management mode of the pipe and plane.
3875 */
3876 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3877 {
3878 struct drm_device *dev = crtc->dev;
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880 struct intel_encoder *intel_encoder;
3881 bool enable = false;
3882
3883 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3884 enable |= intel_encoder->connectors_active;
3885
3886 if (enable)
3887 dev_priv->display.crtc_enable(crtc);
3888 else
3889 dev_priv->display.crtc_disable(crtc);
3890
3891 intel_crtc_update_sarea(crtc, enable);
3892 }
3893
3894 static void intel_crtc_disable(struct drm_crtc *crtc)
3895 {
3896 struct drm_device *dev = crtc->dev;
3897 struct drm_connector *connector;
3898 struct drm_i915_private *dev_priv = dev->dev_private;
3899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3900
3901 /* crtc should still be enabled when we disable it. */
3902 WARN_ON(!crtc->enabled);
3903
3904 dev_priv->display.crtc_disable(crtc);
3905 intel_crtc->eld_vld = false;
3906 intel_crtc_update_sarea(crtc, false);
3907 dev_priv->display.off(crtc);
3908
3909 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3910 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3911 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3912
3913 if (crtc->fb) {
3914 mutex_lock(&dev->struct_mutex);
3915 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3916 mutex_unlock(&dev->struct_mutex);
3917 crtc->fb = NULL;
3918 }
3919
3920 /* Update computed state. */
3921 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3922 if (!connector->encoder || !connector->encoder->crtc)
3923 continue;
3924
3925 if (connector->encoder->crtc != crtc)
3926 continue;
3927
3928 connector->dpms = DRM_MODE_DPMS_OFF;
3929 to_intel_encoder(connector->encoder)->connectors_active = false;
3930 }
3931 }
3932
3933 void intel_encoder_destroy(struct drm_encoder *encoder)
3934 {
3935 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3936
3937 drm_encoder_cleanup(encoder);
3938 kfree(intel_encoder);
3939 }
3940
3941 /* Simple dpms helper for encoders with just one connector, no cloning and only
3942 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3943 * state of the entire output pipe. */
3944 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3945 {
3946 if (mode == DRM_MODE_DPMS_ON) {
3947 encoder->connectors_active = true;
3948
3949 intel_crtc_update_dpms(encoder->base.crtc);
3950 } else {
3951 encoder->connectors_active = false;
3952
3953 intel_crtc_update_dpms(encoder->base.crtc);
3954 }
3955 }
3956
3957 /* Cross check the actual hw state with our own modeset state tracking (and it's
3958 * internal consistency). */
3959 static void intel_connector_check_state(struct intel_connector *connector)
3960 {
3961 if (connector->get_hw_state(connector)) {
3962 struct intel_encoder *encoder = connector->encoder;
3963 struct drm_crtc *crtc;
3964 bool encoder_enabled;
3965 enum pipe pipe;
3966
3967 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3968 connector->base.base.id,
3969 drm_get_connector_name(&connector->base));
3970
3971 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3972 "wrong connector dpms state\n");
3973 WARN(connector->base.encoder != &encoder->base,
3974 "active connector not linked to encoder\n");
3975 WARN(!encoder->connectors_active,
3976 "encoder->connectors_active not set\n");
3977
3978 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3979 WARN(!encoder_enabled, "encoder not enabled\n");
3980 if (WARN_ON(!encoder->base.crtc))
3981 return;
3982
3983 crtc = encoder->base.crtc;
3984
3985 WARN(!crtc->enabled, "crtc not enabled\n");
3986 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3987 WARN(pipe != to_intel_crtc(crtc)->pipe,
3988 "encoder active on the wrong pipe\n");
3989 }
3990 }
3991
3992 /* Even simpler default implementation, if there's really no special case to
3993 * consider. */
3994 void intel_connector_dpms(struct drm_connector *connector, int mode)
3995 {
3996 struct intel_encoder *encoder = intel_attached_encoder(connector);
3997
3998 /* All the simple cases only support two dpms states. */
3999 if (mode != DRM_MODE_DPMS_ON)
4000 mode = DRM_MODE_DPMS_OFF;
4001
4002 if (mode == connector->dpms)
4003 return;
4004
4005 connector->dpms = mode;
4006
4007 /* Only need to change hw state when actually enabled */
4008 if (encoder->base.crtc)
4009 intel_encoder_dpms(encoder, mode);
4010 else
4011 WARN_ON(encoder->connectors_active != false);
4012
4013 intel_modeset_check_state(connector->dev);
4014 }
4015
4016 /* Simple connector->get_hw_state implementation for encoders that support only
4017 * one connector and no cloning and hence the encoder state determines the state
4018 * of the connector. */
4019 bool intel_connector_get_hw_state(struct intel_connector *connector)
4020 {
4021 enum pipe pipe = 0;
4022 struct intel_encoder *encoder = connector->encoder;
4023
4024 return encoder->get_hw_state(encoder, &pipe);
4025 }
4026
4027 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4028 struct intel_crtc_config *pipe_config)
4029 {
4030 struct drm_i915_private *dev_priv = dev->dev_private;
4031 struct intel_crtc *pipe_B_crtc =
4032 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4033
4034 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4035 pipe_name(pipe), pipe_config->fdi_lanes);
4036 if (pipe_config->fdi_lanes > 4) {
4037 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4038 pipe_name(pipe), pipe_config->fdi_lanes);
4039 return false;
4040 }
4041
4042 if (IS_HASWELL(dev)) {
4043 if (pipe_config->fdi_lanes > 2) {
4044 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4045 pipe_config->fdi_lanes);
4046 return false;
4047 } else {
4048 return true;
4049 }
4050 }
4051
4052 if (INTEL_INFO(dev)->num_pipes == 2)
4053 return true;
4054
4055 /* Ivybridge 3 pipe is really complicated */
4056 switch (pipe) {
4057 case PIPE_A:
4058 return true;
4059 case PIPE_B:
4060 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4061 pipe_config->fdi_lanes > 2) {
4062 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4063 pipe_name(pipe), pipe_config->fdi_lanes);
4064 return false;
4065 }
4066 return true;
4067 case PIPE_C:
4068 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4069 pipe_B_crtc->config.fdi_lanes <= 2) {
4070 if (pipe_config->fdi_lanes > 2) {
4071 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4072 pipe_name(pipe), pipe_config->fdi_lanes);
4073 return false;
4074 }
4075 } else {
4076 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4077 return false;
4078 }
4079 return true;
4080 default:
4081 BUG();
4082 }
4083 }
4084
4085 #define RETRY 1
4086 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4087 struct intel_crtc_config *pipe_config)
4088 {
4089 struct drm_device *dev = intel_crtc->base.dev;
4090 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4091 int lane, link_bw, fdi_dotclock;
4092 bool setup_ok, needs_recompute = false;
4093
4094 retry:
4095 /* FDI is a binary signal running at ~2.7GHz, encoding
4096 * each output octet as 10 bits. The actual frequency
4097 * is stored as a divider into a 100MHz clock, and the
4098 * mode pixel clock is stored in units of 1KHz.
4099 * Hence the bw of each lane in terms of the mode signal
4100 * is:
4101 */
4102 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4103
4104 fdi_dotclock = adjusted_mode->clock;
4105
4106 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4107 pipe_config->pipe_bpp);
4108
4109 pipe_config->fdi_lanes = lane;
4110
4111 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4112 link_bw, &pipe_config->fdi_m_n);
4113
4114 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4115 intel_crtc->pipe, pipe_config);
4116 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4117 pipe_config->pipe_bpp -= 2*3;
4118 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4119 pipe_config->pipe_bpp);
4120 needs_recompute = true;
4121 pipe_config->bw_constrained = true;
4122
4123 goto retry;
4124 }
4125
4126 if (needs_recompute)
4127 return RETRY;
4128
4129 return setup_ok ? 0 : -EINVAL;
4130 }
4131
4132 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4133 struct intel_crtc_config *pipe_config)
4134 {
4135 pipe_config->ips_enabled = i915_enable_ips &&
4136 hsw_crtc_supports_ips(crtc) &&
4137 pipe_config->pipe_bpp <= 24;
4138 }
4139
4140 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4141 struct intel_crtc_config *pipe_config)
4142 {
4143 struct drm_device *dev = crtc->base.dev;
4144 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4145
4146 /* FIXME should check pixel clock limits on all platforms */
4147 if (INTEL_INFO(dev)->gen < 4) {
4148 struct drm_i915_private *dev_priv = dev->dev_private;
4149 int clock_limit =
4150 dev_priv->display.get_display_clock_speed(dev);
4151
4152 /*
4153 * Enable pixel doubling when the dot clock
4154 * is > 90% of the (display) core speed.
4155 *
4156 * XXX: No double-wide on 915GM pipe B. Is that
4157 * the only reason for the pipe == PIPE_A check?
4158 */
4159 if (crtc->pipe == PIPE_A &&
4160 adjusted_mode->clock > clock_limit * 9 / 10) {
4161 clock_limit *= 2;
4162 pipe_config->double_wide = true;
4163 }
4164
4165 if (adjusted_mode->clock > clock_limit * 9 / 10)
4166 return -EINVAL;
4167 }
4168
4169 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4170 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4171 */
4172 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4173 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4174 return -EINVAL;
4175
4176 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4177 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4178 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4179 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4180 * for lvds. */
4181 pipe_config->pipe_bpp = 8*3;
4182 }
4183
4184 if (HAS_IPS(dev))
4185 hsw_compute_ips_config(crtc, pipe_config);
4186
4187 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4188 * clock survives for now. */
4189 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4190 pipe_config->shared_dpll = crtc->config.shared_dpll;
4191
4192 if (pipe_config->has_pch_encoder)
4193 return ironlake_fdi_compute_config(crtc, pipe_config);
4194
4195 return 0;
4196 }
4197
4198 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4199 {
4200 return 400000; /* FIXME */
4201 }
4202
4203 static int i945_get_display_clock_speed(struct drm_device *dev)
4204 {
4205 return 400000;
4206 }
4207
4208 static int i915_get_display_clock_speed(struct drm_device *dev)
4209 {
4210 return 333000;
4211 }
4212
4213 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4214 {
4215 return 200000;
4216 }
4217
4218 static int pnv_get_display_clock_speed(struct drm_device *dev)
4219 {
4220 u16 gcfgc = 0;
4221
4222 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4223
4224 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4225 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4226 return 267000;
4227 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4228 return 333000;
4229 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4230 return 444000;
4231 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4232 return 200000;
4233 default:
4234 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4235 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4236 return 133000;
4237 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4238 return 167000;
4239 }
4240 }
4241
4242 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4243 {
4244 u16 gcfgc = 0;
4245
4246 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4247
4248 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4249 return 133000;
4250 else {
4251 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4252 case GC_DISPLAY_CLOCK_333_MHZ:
4253 return 333000;
4254 default:
4255 case GC_DISPLAY_CLOCK_190_200_MHZ:
4256 return 190000;
4257 }
4258 }
4259 }
4260
4261 static int i865_get_display_clock_speed(struct drm_device *dev)
4262 {
4263 return 266000;
4264 }
4265
4266 static int i855_get_display_clock_speed(struct drm_device *dev)
4267 {
4268 u16 hpllcc = 0;
4269 /* Assume that the hardware is in the high speed state. This
4270 * should be the default.
4271 */
4272 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4273 case GC_CLOCK_133_200:
4274 case GC_CLOCK_100_200:
4275 return 200000;
4276 case GC_CLOCK_166_250:
4277 return 250000;
4278 case GC_CLOCK_100_133:
4279 return 133000;
4280 }
4281
4282 /* Shouldn't happen */
4283 return 0;
4284 }
4285
4286 static int i830_get_display_clock_speed(struct drm_device *dev)
4287 {
4288 return 133000;
4289 }
4290
4291 static void
4292 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4293 {
4294 while (*num > DATA_LINK_M_N_MASK ||
4295 *den > DATA_LINK_M_N_MASK) {
4296 *num >>= 1;
4297 *den >>= 1;
4298 }
4299 }
4300
4301 static void compute_m_n(unsigned int m, unsigned int n,
4302 uint32_t *ret_m, uint32_t *ret_n)
4303 {
4304 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4305 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4306 intel_reduce_m_n_ratio(ret_m, ret_n);
4307 }
4308
4309 void
4310 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4311 int pixel_clock, int link_clock,
4312 struct intel_link_m_n *m_n)
4313 {
4314 m_n->tu = 64;
4315
4316 compute_m_n(bits_per_pixel * pixel_clock,
4317 link_clock * nlanes * 8,
4318 &m_n->gmch_m, &m_n->gmch_n);
4319
4320 compute_m_n(pixel_clock, link_clock,
4321 &m_n->link_m, &m_n->link_n);
4322 }
4323
4324 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4325 {
4326 if (i915_panel_use_ssc >= 0)
4327 return i915_panel_use_ssc != 0;
4328 return dev_priv->vbt.lvds_use_ssc
4329 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4330 }
4331
4332 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4333 {
4334 struct drm_device *dev = crtc->dev;
4335 struct drm_i915_private *dev_priv = dev->dev_private;
4336 int refclk;
4337
4338 if (IS_VALLEYVIEW(dev)) {
4339 refclk = 100000;
4340 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4341 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4342 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4343 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4344 refclk / 1000);
4345 } else if (!IS_GEN2(dev)) {
4346 refclk = 96000;
4347 } else {
4348 refclk = 48000;
4349 }
4350
4351 return refclk;
4352 }
4353
4354 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4355 {
4356 return (1 << dpll->n) << 16 | dpll->m2;
4357 }
4358
4359 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4360 {
4361 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4362 }
4363
4364 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4365 intel_clock_t *reduced_clock)
4366 {
4367 struct drm_device *dev = crtc->base.dev;
4368 struct drm_i915_private *dev_priv = dev->dev_private;
4369 int pipe = crtc->pipe;
4370 u32 fp, fp2 = 0;
4371
4372 if (IS_PINEVIEW(dev)) {
4373 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4374 if (reduced_clock)
4375 fp2 = pnv_dpll_compute_fp(reduced_clock);
4376 } else {
4377 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4378 if (reduced_clock)
4379 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4380 }
4381
4382 I915_WRITE(FP0(pipe), fp);
4383 crtc->config.dpll_hw_state.fp0 = fp;
4384
4385 crtc->lowfreq_avail = false;
4386 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4387 reduced_clock && i915_powersave) {
4388 I915_WRITE(FP1(pipe), fp2);
4389 crtc->config.dpll_hw_state.fp1 = fp2;
4390 crtc->lowfreq_avail = true;
4391 } else {
4392 I915_WRITE(FP1(pipe), fp);
4393 crtc->config.dpll_hw_state.fp1 = fp;
4394 }
4395 }
4396
4397 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4398 pipe)
4399 {
4400 u32 reg_val;
4401
4402 /*
4403 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4404 * and set it to a reasonable value instead.
4405 */
4406 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4407 reg_val &= 0xffffff00;
4408 reg_val |= 0x00000030;
4409 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4410
4411 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4412 reg_val &= 0x8cffffff;
4413 reg_val = 0x8c000000;
4414 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4415
4416 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4417 reg_val &= 0xffffff00;
4418 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4419
4420 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4421 reg_val &= 0x00ffffff;
4422 reg_val |= 0xb0000000;
4423 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4424 }
4425
4426 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4427 struct intel_link_m_n *m_n)
4428 {
4429 struct drm_device *dev = crtc->base.dev;
4430 struct drm_i915_private *dev_priv = dev->dev_private;
4431 int pipe = crtc->pipe;
4432
4433 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4434 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4435 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4436 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4437 }
4438
4439 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4440 struct intel_link_m_n *m_n)
4441 {
4442 struct drm_device *dev = crtc->base.dev;
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444 int pipe = crtc->pipe;
4445 enum transcoder transcoder = crtc->config.cpu_transcoder;
4446
4447 if (INTEL_INFO(dev)->gen >= 5) {
4448 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4449 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4450 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4451 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4452 } else {
4453 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4454 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4455 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4456 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4457 }
4458 }
4459
4460 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4461 {
4462 if (crtc->config.has_pch_encoder)
4463 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4464 else
4465 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4466 }
4467
4468 static void vlv_update_pll(struct intel_crtc *crtc)
4469 {
4470 struct drm_device *dev = crtc->base.dev;
4471 struct drm_i915_private *dev_priv = dev->dev_private;
4472 int pipe = crtc->pipe;
4473 u32 dpll, mdiv;
4474 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4475 u32 coreclk, reg_val, dpll_md;
4476
4477 mutex_lock(&dev_priv->dpio_lock);
4478
4479 bestn = crtc->config.dpll.n;
4480 bestm1 = crtc->config.dpll.m1;
4481 bestm2 = crtc->config.dpll.m2;
4482 bestp1 = crtc->config.dpll.p1;
4483 bestp2 = crtc->config.dpll.p2;
4484
4485 /* See eDP HDMI DPIO driver vbios notes doc */
4486
4487 /* PLL B needs special handling */
4488 if (pipe)
4489 vlv_pllb_recal_opamp(dev_priv, pipe);
4490
4491 /* Set up Tx target for periodic Rcomp update */
4492 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4493
4494 /* Disable target IRef on PLL */
4495 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4496 reg_val &= 0x00ffffff;
4497 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4498
4499 /* Disable fast lock */
4500 vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4501
4502 /* Set idtafcrecal before PLL is enabled */
4503 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4504 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4505 mdiv |= ((bestn << DPIO_N_SHIFT));
4506 mdiv |= (1 << DPIO_K_SHIFT);
4507
4508 /*
4509 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4510 * but we don't support that).
4511 * Note: don't use the DAC post divider as it seems unstable.
4512 */
4513 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4514 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4515
4516 mdiv |= DPIO_ENABLE_CALIBRATION;
4517 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4518
4519 /* Set HBR and RBR LPF coefficients */
4520 if (crtc->config.port_clock == 162000 ||
4521 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4522 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4523 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4524 0x009f0003);
4525 else
4526 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4527 0x00d0000f);
4528
4529 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4530 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4531 /* Use SSC source */
4532 if (!pipe)
4533 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4534 0x0df40000);
4535 else
4536 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4537 0x0df70000);
4538 } else { /* HDMI or VGA */
4539 /* Use bend source */
4540 if (!pipe)
4541 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4542 0x0df70000);
4543 else
4544 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4545 0x0df40000);
4546 }
4547
4548 coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4549 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4550 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4551 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4552 coreclk |= 0x01000000;
4553 vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4554
4555 vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4556
4557 /* Enable DPIO clock input */
4558 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4559 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4560 if (pipe)
4561 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4562
4563 dpll |= DPLL_VCO_ENABLE;
4564 crtc->config.dpll_hw_state.dpll = dpll;
4565
4566 dpll_md = (crtc->config.pixel_multiplier - 1)
4567 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4568 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4569
4570 if (crtc->config.has_dp_encoder)
4571 intel_dp_set_m_n(crtc);
4572
4573 mutex_unlock(&dev_priv->dpio_lock);
4574 }
4575
4576 static void i9xx_update_pll(struct intel_crtc *crtc,
4577 intel_clock_t *reduced_clock,
4578 int num_connectors)
4579 {
4580 struct drm_device *dev = crtc->base.dev;
4581 struct drm_i915_private *dev_priv = dev->dev_private;
4582 u32 dpll;
4583 bool is_sdvo;
4584 struct dpll *clock = &crtc->config.dpll;
4585
4586 i9xx_update_pll_dividers(crtc, reduced_clock);
4587
4588 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4589 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4590
4591 dpll = DPLL_VGA_MODE_DIS;
4592
4593 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4594 dpll |= DPLLB_MODE_LVDS;
4595 else
4596 dpll |= DPLLB_MODE_DAC_SERIAL;
4597
4598 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4599 dpll |= (crtc->config.pixel_multiplier - 1)
4600 << SDVO_MULTIPLIER_SHIFT_HIRES;
4601 }
4602
4603 if (is_sdvo)
4604 dpll |= DPLL_SDVO_HIGH_SPEED;
4605
4606 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4607 dpll |= DPLL_SDVO_HIGH_SPEED;
4608
4609 /* compute bitmask from p1 value */
4610 if (IS_PINEVIEW(dev))
4611 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4612 else {
4613 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4614 if (IS_G4X(dev) && reduced_clock)
4615 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4616 }
4617 switch (clock->p2) {
4618 case 5:
4619 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4620 break;
4621 case 7:
4622 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4623 break;
4624 case 10:
4625 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4626 break;
4627 case 14:
4628 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4629 break;
4630 }
4631 if (INTEL_INFO(dev)->gen >= 4)
4632 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4633
4634 if (crtc->config.sdvo_tv_clock)
4635 dpll |= PLL_REF_INPUT_TVCLKINBC;
4636 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4637 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4638 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4639 else
4640 dpll |= PLL_REF_INPUT_DREFCLK;
4641
4642 dpll |= DPLL_VCO_ENABLE;
4643 crtc->config.dpll_hw_state.dpll = dpll;
4644
4645 if (INTEL_INFO(dev)->gen >= 4) {
4646 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4647 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4648 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4649 }
4650
4651 if (crtc->config.has_dp_encoder)
4652 intel_dp_set_m_n(crtc);
4653 }
4654
4655 static void i8xx_update_pll(struct intel_crtc *crtc,
4656 intel_clock_t *reduced_clock,
4657 int num_connectors)
4658 {
4659 struct drm_device *dev = crtc->base.dev;
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661 u32 dpll;
4662 struct dpll *clock = &crtc->config.dpll;
4663
4664 i9xx_update_pll_dividers(crtc, reduced_clock);
4665
4666 dpll = DPLL_VGA_MODE_DIS;
4667
4668 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4669 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4670 } else {
4671 if (clock->p1 == 2)
4672 dpll |= PLL_P1_DIVIDE_BY_TWO;
4673 else
4674 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4675 if (clock->p2 == 4)
4676 dpll |= PLL_P2_DIVIDE_BY_4;
4677 }
4678
4679 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4680 dpll |= DPLL_DVO_2X_MODE;
4681
4682 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4683 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4684 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4685 else
4686 dpll |= PLL_REF_INPUT_DREFCLK;
4687
4688 dpll |= DPLL_VCO_ENABLE;
4689 crtc->config.dpll_hw_state.dpll = dpll;
4690 }
4691
4692 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4693 {
4694 struct drm_device *dev = intel_crtc->base.dev;
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 enum pipe pipe = intel_crtc->pipe;
4697 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4698 struct drm_display_mode *adjusted_mode =
4699 &intel_crtc->config.adjusted_mode;
4700 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4701
4702 /* We need to be careful not to changed the adjusted mode, for otherwise
4703 * the hw state checker will get angry at the mismatch. */
4704 crtc_vtotal = adjusted_mode->crtc_vtotal;
4705 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4706
4707 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4708 /* the chip adds 2 halflines automatically */
4709 crtc_vtotal -= 1;
4710 crtc_vblank_end -= 1;
4711 vsyncshift = adjusted_mode->crtc_hsync_start
4712 - adjusted_mode->crtc_htotal / 2;
4713 } else {
4714 vsyncshift = 0;
4715 }
4716
4717 if (INTEL_INFO(dev)->gen > 3)
4718 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4719
4720 I915_WRITE(HTOTAL(cpu_transcoder),
4721 (adjusted_mode->crtc_hdisplay - 1) |
4722 ((adjusted_mode->crtc_htotal - 1) << 16));
4723 I915_WRITE(HBLANK(cpu_transcoder),
4724 (adjusted_mode->crtc_hblank_start - 1) |
4725 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4726 I915_WRITE(HSYNC(cpu_transcoder),
4727 (adjusted_mode->crtc_hsync_start - 1) |
4728 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4729
4730 I915_WRITE(VTOTAL(cpu_transcoder),
4731 (adjusted_mode->crtc_vdisplay - 1) |
4732 ((crtc_vtotal - 1) << 16));
4733 I915_WRITE(VBLANK(cpu_transcoder),
4734 (adjusted_mode->crtc_vblank_start - 1) |
4735 ((crtc_vblank_end - 1) << 16));
4736 I915_WRITE(VSYNC(cpu_transcoder),
4737 (adjusted_mode->crtc_vsync_start - 1) |
4738 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4739
4740 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4741 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4742 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4743 * bits. */
4744 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4745 (pipe == PIPE_B || pipe == PIPE_C))
4746 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4747
4748 /* pipesrc controls the size that is scaled from, which should
4749 * always be the user's requested size.
4750 */
4751 I915_WRITE(PIPESRC(pipe),
4752 ((intel_crtc->config.pipe_src_w - 1) << 16) |
4753 (intel_crtc->config.pipe_src_h - 1));
4754 }
4755
4756 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4757 struct intel_crtc_config *pipe_config)
4758 {
4759 struct drm_device *dev = crtc->base.dev;
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4762 uint32_t tmp;
4763
4764 tmp = I915_READ(HTOTAL(cpu_transcoder));
4765 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4766 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4767 tmp = I915_READ(HBLANK(cpu_transcoder));
4768 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4769 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4770 tmp = I915_READ(HSYNC(cpu_transcoder));
4771 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4772 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4773
4774 tmp = I915_READ(VTOTAL(cpu_transcoder));
4775 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4776 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4777 tmp = I915_READ(VBLANK(cpu_transcoder));
4778 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4779 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4780 tmp = I915_READ(VSYNC(cpu_transcoder));
4781 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4782 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4783
4784 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4785 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4786 pipe_config->adjusted_mode.crtc_vtotal += 1;
4787 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4788 }
4789
4790 tmp = I915_READ(PIPESRC(crtc->pipe));
4791 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4792 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4793
4794 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4795 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4796 }
4797
4798 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4799 struct intel_crtc_config *pipe_config)
4800 {
4801 struct drm_crtc *crtc = &intel_crtc->base;
4802
4803 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4804 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4805 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4806 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4807
4808 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4809 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4810 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4811 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4812
4813 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4814
4815 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4816 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4817 }
4818
4819 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4820 {
4821 struct drm_device *dev = intel_crtc->base.dev;
4822 struct drm_i915_private *dev_priv = dev->dev_private;
4823 uint32_t pipeconf;
4824
4825 pipeconf = 0;
4826
4827 if (intel_crtc->config.double_wide)
4828 pipeconf |= PIPECONF_DOUBLE_WIDE;
4829
4830 /* only g4x and later have fancy bpc/dither controls */
4831 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4832 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4833 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4834 pipeconf |= PIPECONF_DITHER_EN |
4835 PIPECONF_DITHER_TYPE_SP;
4836
4837 switch (intel_crtc->config.pipe_bpp) {
4838 case 18:
4839 pipeconf |= PIPECONF_6BPC;
4840 break;
4841 case 24:
4842 pipeconf |= PIPECONF_8BPC;
4843 break;
4844 case 30:
4845 pipeconf |= PIPECONF_10BPC;
4846 break;
4847 default:
4848 /* Case prevented by intel_choose_pipe_bpp_dither. */
4849 BUG();
4850 }
4851 }
4852
4853 if (HAS_PIPE_CXSR(dev)) {
4854 if (intel_crtc->lowfreq_avail) {
4855 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4856 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4857 } else {
4858 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4859 }
4860 }
4861
4862 if (!IS_GEN2(dev) &&
4863 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4864 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4865 else
4866 pipeconf |= PIPECONF_PROGRESSIVE;
4867
4868 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4869 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4870
4871 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4872 POSTING_READ(PIPECONF(intel_crtc->pipe));
4873 }
4874
4875 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4876 int x, int y,
4877 struct drm_framebuffer *fb)
4878 {
4879 struct drm_device *dev = crtc->dev;
4880 struct drm_i915_private *dev_priv = dev->dev_private;
4881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4882 int pipe = intel_crtc->pipe;
4883 int plane = intel_crtc->plane;
4884 int refclk, num_connectors = 0;
4885 intel_clock_t clock, reduced_clock;
4886 u32 dspcntr;
4887 bool ok, has_reduced_clock = false;
4888 bool is_lvds = false, is_dsi = false;
4889 struct intel_encoder *encoder;
4890 const intel_limit_t *limit;
4891 int ret;
4892
4893 for_each_encoder_on_crtc(dev, crtc, encoder) {
4894 switch (encoder->type) {
4895 case INTEL_OUTPUT_LVDS:
4896 is_lvds = true;
4897 break;
4898 case INTEL_OUTPUT_DSI:
4899 is_dsi = true;
4900 break;
4901 }
4902
4903 num_connectors++;
4904 }
4905
4906 refclk = i9xx_get_refclk(crtc, num_connectors);
4907
4908 if (!is_dsi && !intel_crtc->config.clock_set) {
4909 /*
4910 * Returns a set of divisors for the desired target clock with
4911 * the given refclk, or FALSE. The returned values represent
4912 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
4913 * 2) / p1 / p2.
4914 */
4915 limit = intel_limit(crtc, refclk);
4916 ok = dev_priv->display.find_dpll(limit, crtc,
4917 intel_crtc->config.port_clock,
4918 refclk, NULL, &clock);
4919 if (!ok && !intel_crtc->config.clock_set) {
4920 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4921 return -EINVAL;
4922 }
4923 }
4924
4925 /* Ensure that the cursor is valid for the new mode before changing... */
4926 intel_crtc_update_cursor(crtc, true);
4927
4928 if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
4929 /*
4930 * Ensure we match the reduced clock's P to the target clock.
4931 * If the clocks don't match, we can't switch the display clock
4932 * by using the FP0/FP1. In such case we will disable the LVDS
4933 * downclock feature.
4934 */
4935 limit = intel_limit(crtc, refclk);
4936 has_reduced_clock =
4937 dev_priv->display.find_dpll(limit, crtc,
4938 dev_priv->lvds_downclock,
4939 refclk, &clock,
4940 &reduced_clock);
4941 }
4942 /* Compat-code for transition, will disappear. */
4943 if (!intel_crtc->config.clock_set) {
4944 intel_crtc->config.dpll.n = clock.n;
4945 intel_crtc->config.dpll.m1 = clock.m1;
4946 intel_crtc->config.dpll.m2 = clock.m2;
4947 intel_crtc->config.dpll.p1 = clock.p1;
4948 intel_crtc->config.dpll.p2 = clock.p2;
4949 }
4950
4951 if (IS_GEN2(dev)) {
4952 i8xx_update_pll(intel_crtc,
4953 has_reduced_clock ? &reduced_clock : NULL,
4954 num_connectors);
4955 } else if (IS_VALLEYVIEW(dev)) {
4956 if (!is_dsi)
4957 vlv_update_pll(intel_crtc);
4958 } else {
4959 i9xx_update_pll(intel_crtc,
4960 has_reduced_clock ? &reduced_clock : NULL,
4961 num_connectors);
4962 }
4963
4964 /* Set up the display plane register */
4965 dspcntr = DISPPLANE_GAMMA_ENABLE;
4966
4967 if (!IS_VALLEYVIEW(dev)) {
4968 if (pipe == 0)
4969 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4970 else
4971 dspcntr |= DISPPLANE_SEL_PIPE_B;
4972 }
4973
4974 intel_set_pipe_timings(intel_crtc);
4975
4976 /* pipesrc and dspsize control the size that is scaled from,
4977 * which should always be the user's requested size.
4978 */
4979 I915_WRITE(DSPSIZE(plane),
4980 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4981 (intel_crtc->config.pipe_src_w - 1));
4982 I915_WRITE(DSPPOS(plane), 0);
4983
4984 i9xx_set_pipeconf(intel_crtc);
4985
4986 I915_WRITE(DSPCNTR(plane), dspcntr);
4987 POSTING_READ(DSPCNTR(plane));
4988
4989 ret = intel_pipe_set_base(crtc, x, y, fb);
4990
4991 return ret;
4992 }
4993
4994 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4995 struct intel_crtc_config *pipe_config)
4996 {
4997 struct drm_device *dev = crtc->base.dev;
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999 uint32_t tmp;
5000
5001 tmp = I915_READ(PFIT_CONTROL);
5002 if (!(tmp & PFIT_ENABLE))
5003 return;
5004
5005 /* Check whether the pfit is attached to our pipe. */
5006 if (INTEL_INFO(dev)->gen < 4) {
5007 if (crtc->pipe != PIPE_B)
5008 return;
5009 } else {
5010 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5011 return;
5012 }
5013
5014 pipe_config->gmch_pfit.control = tmp;
5015 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5016 if (INTEL_INFO(dev)->gen < 5)
5017 pipe_config->gmch_pfit.lvds_border_bits =
5018 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5019 }
5020
5021 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5022 struct intel_crtc_config *pipe_config)
5023 {
5024 struct drm_device *dev = crtc->base.dev;
5025 struct drm_i915_private *dev_priv = dev->dev_private;
5026 uint32_t tmp;
5027
5028 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5029 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5030
5031 tmp = I915_READ(PIPECONF(crtc->pipe));
5032 if (!(tmp & PIPECONF_ENABLE))
5033 return false;
5034
5035 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5036 switch (tmp & PIPECONF_BPC_MASK) {
5037 case PIPECONF_6BPC:
5038 pipe_config->pipe_bpp = 18;
5039 break;
5040 case PIPECONF_8BPC:
5041 pipe_config->pipe_bpp = 24;
5042 break;
5043 case PIPECONF_10BPC:
5044 pipe_config->pipe_bpp = 30;
5045 break;
5046 default:
5047 break;
5048 }
5049 }
5050
5051 if (INTEL_INFO(dev)->gen < 4)
5052 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5053
5054 intel_get_pipe_timings(crtc, pipe_config);
5055
5056 i9xx_get_pfit_config(crtc, pipe_config);
5057
5058 if (INTEL_INFO(dev)->gen >= 4) {
5059 tmp = I915_READ(DPLL_MD(crtc->pipe));
5060 pipe_config->pixel_multiplier =
5061 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5062 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5063 pipe_config->dpll_hw_state.dpll_md = tmp;
5064 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5065 tmp = I915_READ(DPLL(crtc->pipe));
5066 pipe_config->pixel_multiplier =
5067 ((tmp & SDVO_MULTIPLIER_MASK)
5068 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5069 } else {
5070 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5071 * port and will be fixed up in the encoder->get_config
5072 * function. */
5073 pipe_config->pixel_multiplier = 1;
5074 }
5075 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5076 if (!IS_VALLEYVIEW(dev)) {
5077 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5078 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5079 } else {
5080 /* Mask out read-only status bits. */
5081 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5082 DPLL_PORTC_READY_MASK |
5083 DPLL_PORTB_READY_MASK);
5084 }
5085
5086 i9xx_crtc_clock_get(crtc, pipe_config);
5087
5088 return true;
5089 }
5090
5091 static void ironlake_init_pch_refclk(struct drm_device *dev)
5092 {
5093 struct drm_i915_private *dev_priv = dev->dev_private;
5094 struct drm_mode_config *mode_config = &dev->mode_config;
5095 struct intel_encoder *encoder;
5096 u32 val, final;
5097 bool has_lvds = false;
5098 bool has_cpu_edp = false;
5099 bool has_panel = false;
5100 bool has_ck505 = false;
5101 bool can_ssc = false;
5102
5103 /* We need to take the global config into account */
5104 list_for_each_entry(encoder, &mode_config->encoder_list,
5105 base.head) {
5106 switch (encoder->type) {
5107 case INTEL_OUTPUT_LVDS:
5108 has_panel = true;
5109 has_lvds = true;
5110 break;
5111 case INTEL_OUTPUT_EDP:
5112 has_panel = true;
5113 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5114 has_cpu_edp = true;
5115 break;
5116 }
5117 }
5118
5119 if (HAS_PCH_IBX(dev)) {
5120 has_ck505 = dev_priv->vbt.display_clock_mode;
5121 can_ssc = has_ck505;
5122 } else {
5123 has_ck505 = false;
5124 can_ssc = true;
5125 }
5126
5127 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5128 has_panel, has_lvds, has_ck505);
5129
5130 /* Ironlake: try to setup display ref clock before DPLL
5131 * enabling. This is only under driver's control after
5132 * PCH B stepping, previous chipset stepping should be
5133 * ignoring this setting.
5134 */
5135 val = I915_READ(PCH_DREF_CONTROL);
5136
5137 /* As we must carefully and slowly disable/enable each source in turn,
5138 * compute the final state we want first and check if we need to
5139 * make any changes at all.
5140 */
5141 final = val;
5142 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5143 if (has_ck505)
5144 final |= DREF_NONSPREAD_CK505_ENABLE;
5145 else
5146 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5147
5148 final &= ~DREF_SSC_SOURCE_MASK;
5149 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5150 final &= ~DREF_SSC1_ENABLE;
5151
5152 if (has_panel) {
5153 final |= DREF_SSC_SOURCE_ENABLE;
5154
5155 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5156 final |= DREF_SSC1_ENABLE;
5157
5158 if (has_cpu_edp) {
5159 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5160 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5161 else
5162 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5163 } else
5164 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5165 } else {
5166 final |= DREF_SSC_SOURCE_DISABLE;
5167 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5168 }
5169
5170 if (final == val)
5171 return;
5172
5173 /* Always enable nonspread source */
5174 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5175
5176 if (has_ck505)
5177 val |= DREF_NONSPREAD_CK505_ENABLE;
5178 else
5179 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5180
5181 if (has_panel) {
5182 val &= ~DREF_SSC_SOURCE_MASK;
5183 val |= DREF_SSC_SOURCE_ENABLE;
5184
5185 /* SSC must be turned on before enabling the CPU output */
5186 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5187 DRM_DEBUG_KMS("Using SSC on panel\n");
5188 val |= DREF_SSC1_ENABLE;
5189 } else
5190 val &= ~DREF_SSC1_ENABLE;
5191
5192 /* Get SSC going before enabling the outputs */
5193 I915_WRITE(PCH_DREF_CONTROL, val);
5194 POSTING_READ(PCH_DREF_CONTROL);
5195 udelay(200);
5196
5197 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5198
5199 /* Enable CPU source on CPU attached eDP */
5200 if (has_cpu_edp) {
5201 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5202 DRM_DEBUG_KMS("Using SSC on eDP\n");
5203 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5204 }
5205 else
5206 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5207 } else
5208 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5209
5210 I915_WRITE(PCH_DREF_CONTROL, val);
5211 POSTING_READ(PCH_DREF_CONTROL);
5212 udelay(200);
5213 } else {
5214 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5215
5216 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5217
5218 /* Turn off CPU output */
5219 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5220
5221 I915_WRITE(PCH_DREF_CONTROL, val);
5222 POSTING_READ(PCH_DREF_CONTROL);
5223 udelay(200);
5224
5225 /* Turn off the SSC source */
5226 val &= ~DREF_SSC_SOURCE_MASK;
5227 val |= DREF_SSC_SOURCE_DISABLE;
5228
5229 /* Turn off SSC1 */
5230 val &= ~DREF_SSC1_ENABLE;
5231
5232 I915_WRITE(PCH_DREF_CONTROL, val);
5233 POSTING_READ(PCH_DREF_CONTROL);
5234 udelay(200);
5235 }
5236
5237 BUG_ON(val != final);
5238 }
5239
5240 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5241 {
5242 uint32_t tmp;
5243
5244 tmp = I915_READ(SOUTH_CHICKEN2);
5245 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5246 I915_WRITE(SOUTH_CHICKEN2, tmp);
5247
5248 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5249 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5250 DRM_ERROR("FDI mPHY reset assert timeout\n");
5251
5252 tmp = I915_READ(SOUTH_CHICKEN2);
5253 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5254 I915_WRITE(SOUTH_CHICKEN2, tmp);
5255
5256 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5257 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5258 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5259 }
5260
5261 /* WaMPhyProgramming:hsw */
5262 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5263 {
5264 uint32_t tmp;
5265
5266 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5267 tmp &= ~(0xFF << 24);
5268 tmp |= (0x12 << 24);
5269 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5270
5271 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5272 tmp |= (1 << 11);
5273 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5274
5275 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5276 tmp |= (1 << 11);
5277 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5278
5279 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5280 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5281 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5282
5283 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5284 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5285 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5286
5287 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5288 tmp &= ~(7 << 13);
5289 tmp |= (5 << 13);
5290 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5291
5292 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5293 tmp &= ~(7 << 13);
5294 tmp |= (5 << 13);
5295 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5296
5297 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5298 tmp &= ~0xFF;
5299 tmp |= 0x1C;
5300 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5301
5302 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5303 tmp &= ~0xFF;
5304 tmp |= 0x1C;
5305 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5306
5307 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5308 tmp &= ~(0xFF << 16);
5309 tmp |= (0x1C << 16);
5310 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5311
5312 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5313 tmp &= ~(0xFF << 16);
5314 tmp |= (0x1C << 16);
5315 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5316
5317 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5318 tmp |= (1 << 27);
5319 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5320
5321 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5322 tmp |= (1 << 27);
5323 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5324
5325 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5326 tmp &= ~(0xF << 28);
5327 tmp |= (4 << 28);
5328 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5329
5330 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5331 tmp &= ~(0xF << 28);
5332 tmp |= (4 << 28);
5333 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5334 }
5335
5336 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5337 * Programming" based on the parameters passed:
5338 * - Sequence to enable CLKOUT_DP
5339 * - Sequence to enable CLKOUT_DP without spread
5340 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5341 */
5342 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5343 bool with_fdi)
5344 {
5345 struct drm_i915_private *dev_priv = dev->dev_private;
5346 uint32_t reg, tmp;
5347
5348 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5349 with_spread = true;
5350 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5351 with_fdi, "LP PCH doesn't have FDI\n"))
5352 with_fdi = false;
5353
5354 mutex_lock(&dev_priv->dpio_lock);
5355
5356 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5357 tmp &= ~SBI_SSCCTL_DISABLE;
5358 tmp |= SBI_SSCCTL_PATHALT;
5359 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5360
5361 udelay(24);
5362
5363 if (with_spread) {
5364 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5365 tmp &= ~SBI_SSCCTL_PATHALT;
5366 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5367
5368 if (with_fdi) {
5369 lpt_reset_fdi_mphy(dev_priv);
5370 lpt_program_fdi_mphy(dev_priv);
5371 }
5372 }
5373
5374 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5375 SBI_GEN0 : SBI_DBUFF0;
5376 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5377 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5378 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5379
5380 mutex_unlock(&dev_priv->dpio_lock);
5381 }
5382
5383 /* Sequence to disable CLKOUT_DP */
5384 static void lpt_disable_clkout_dp(struct drm_device *dev)
5385 {
5386 struct drm_i915_private *dev_priv = dev->dev_private;
5387 uint32_t reg, tmp;
5388
5389 mutex_lock(&dev_priv->dpio_lock);
5390
5391 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5392 SBI_GEN0 : SBI_DBUFF0;
5393 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5394 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5395 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5396
5397 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5398 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5399 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5400 tmp |= SBI_SSCCTL_PATHALT;
5401 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5402 udelay(32);
5403 }
5404 tmp |= SBI_SSCCTL_DISABLE;
5405 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5406 }
5407
5408 mutex_unlock(&dev_priv->dpio_lock);
5409 }
5410
5411 static void lpt_init_pch_refclk(struct drm_device *dev)
5412 {
5413 struct drm_mode_config *mode_config = &dev->mode_config;
5414 struct intel_encoder *encoder;
5415 bool has_vga = false;
5416
5417 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5418 switch (encoder->type) {
5419 case INTEL_OUTPUT_ANALOG:
5420 has_vga = true;
5421 break;
5422 }
5423 }
5424
5425 if (has_vga)
5426 lpt_enable_clkout_dp(dev, true, true);
5427 else
5428 lpt_disable_clkout_dp(dev);
5429 }
5430
5431 /*
5432 * Initialize reference clocks when the driver loads
5433 */
5434 void intel_init_pch_refclk(struct drm_device *dev)
5435 {
5436 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5437 ironlake_init_pch_refclk(dev);
5438 else if (HAS_PCH_LPT(dev))
5439 lpt_init_pch_refclk(dev);
5440 }
5441
5442 static int ironlake_get_refclk(struct drm_crtc *crtc)
5443 {
5444 struct drm_device *dev = crtc->dev;
5445 struct drm_i915_private *dev_priv = dev->dev_private;
5446 struct intel_encoder *encoder;
5447 int num_connectors = 0;
5448 bool is_lvds = false;
5449
5450 for_each_encoder_on_crtc(dev, crtc, encoder) {
5451 switch (encoder->type) {
5452 case INTEL_OUTPUT_LVDS:
5453 is_lvds = true;
5454 break;
5455 }
5456 num_connectors++;
5457 }
5458
5459 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5460 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5461 dev_priv->vbt.lvds_ssc_freq);
5462 return dev_priv->vbt.lvds_ssc_freq * 1000;
5463 }
5464
5465 return 120000;
5466 }
5467
5468 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5469 {
5470 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5472 int pipe = intel_crtc->pipe;
5473 uint32_t val;
5474
5475 val = 0;
5476
5477 switch (intel_crtc->config.pipe_bpp) {
5478 case 18:
5479 val |= PIPECONF_6BPC;
5480 break;
5481 case 24:
5482 val |= PIPECONF_8BPC;
5483 break;
5484 case 30:
5485 val |= PIPECONF_10BPC;
5486 break;
5487 case 36:
5488 val |= PIPECONF_12BPC;
5489 break;
5490 default:
5491 /* Case prevented by intel_choose_pipe_bpp_dither. */
5492 BUG();
5493 }
5494
5495 if (intel_crtc->config.dither)
5496 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5497
5498 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5499 val |= PIPECONF_INTERLACED_ILK;
5500 else
5501 val |= PIPECONF_PROGRESSIVE;
5502
5503 if (intel_crtc->config.limited_color_range)
5504 val |= PIPECONF_COLOR_RANGE_SELECT;
5505
5506 I915_WRITE(PIPECONF(pipe), val);
5507 POSTING_READ(PIPECONF(pipe));
5508 }
5509
5510 /*
5511 * Set up the pipe CSC unit.
5512 *
5513 * Currently only full range RGB to limited range RGB conversion
5514 * is supported, but eventually this should handle various
5515 * RGB<->YCbCr scenarios as well.
5516 */
5517 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5518 {
5519 struct drm_device *dev = crtc->dev;
5520 struct drm_i915_private *dev_priv = dev->dev_private;
5521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5522 int pipe = intel_crtc->pipe;
5523 uint16_t coeff = 0x7800; /* 1.0 */
5524
5525 /*
5526 * TODO: Check what kind of values actually come out of the pipe
5527 * with these coeff/postoff values and adjust to get the best
5528 * accuracy. Perhaps we even need to take the bpc value into
5529 * consideration.
5530 */
5531
5532 if (intel_crtc->config.limited_color_range)
5533 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5534
5535 /*
5536 * GY/GU and RY/RU should be the other way around according
5537 * to BSpec, but reality doesn't agree. Just set them up in
5538 * a way that results in the correct picture.
5539 */
5540 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5541 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5542
5543 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5544 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5545
5546 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5547 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5548
5549 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5550 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5551 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5552
5553 if (INTEL_INFO(dev)->gen > 6) {
5554 uint16_t postoff = 0;
5555
5556 if (intel_crtc->config.limited_color_range)
5557 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5558
5559 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5560 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5561 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5562
5563 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5564 } else {
5565 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5566
5567 if (intel_crtc->config.limited_color_range)
5568 mode |= CSC_BLACK_SCREEN_OFFSET;
5569
5570 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5571 }
5572 }
5573
5574 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5575 {
5576 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5578 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5579 uint32_t val;
5580
5581 val = 0;
5582
5583 if (intel_crtc->config.dither)
5584 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5585
5586 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5587 val |= PIPECONF_INTERLACED_ILK;
5588 else
5589 val |= PIPECONF_PROGRESSIVE;
5590
5591 I915_WRITE(PIPECONF(cpu_transcoder), val);
5592 POSTING_READ(PIPECONF(cpu_transcoder));
5593
5594 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5595 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5596 }
5597
5598 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5599 intel_clock_t *clock,
5600 bool *has_reduced_clock,
5601 intel_clock_t *reduced_clock)
5602 {
5603 struct drm_device *dev = crtc->dev;
5604 struct drm_i915_private *dev_priv = dev->dev_private;
5605 struct intel_encoder *intel_encoder;
5606 int refclk;
5607 const intel_limit_t *limit;
5608 bool ret, is_lvds = false;
5609
5610 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5611 switch (intel_encoder->type) {
5612 case INTEL_OUTPUT_LVDS:
5613 is_lvds = true;
5614 break;
5615 }
5616 }
5617
5618 refclk = ironlake_get_refclk(crtc);
5619
5620 /*
5621 * Returns a set of divisors for the desired target clock with the given
5622 * refclk, or FALSE. The returned values represent the clock equation:
5623 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5624 */
5625 limit = intel_limit(crtc, refclk);
5626 ret = dev_priv->display.find_dpll(limit, crtc,
5627 to_intel_crtc(crtc)->config.port_clock,
5628 refclk, NULL, clock);
5629 if (!ret)
5630 return false;
5631
5632 if (is_lvds && dev_priv->lvds_downclock_avail) {
5633 /*
5634 * Ensure we match the reduced clock's P to the target clock.
5635 * If the clocks don't match, we can't switch the display clock
5636 * by using the FP0/FP1. In such case we will disable the LVDS
5637 * downclock feature.
5638 */
5639 *has_reduced_clock =
5640 dev_priv->display.find_dpll(limit, crtc,
5641 dev_priv->lvds_downclock,
5642 refclk, clock,
5643 reduced_clock);
5644 }
5645
5646 return true;
5647 }
5648
5649 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5650 {
5651 struct drm_i915_private *dev_priv = dev->dev_private;
5652 uint32_t temp;
5653
5654 temp = I915_READ(SOUTH_CHICKEN1);
5655 if (temp & FDI_BC_BIFURCATION_SELECT)
5656 return;
5657
5658 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5659 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5660
5661 temp |= FDI_BC_BIFURCATION_SELECT;
5662 DRM_DEBUG_KMS("enabling fdi C rx\n");
5663 I915_WRITE(SOUTH_CHICKEN1, temp);
5664 POSTING_READ(SOUTH_CHICKEN1);
5665 }
5666
5667 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5668 {
5669 struct drm_device *dev = intel_crtc->base.dev;
5670 struct drm_i915_private *dev_priv = dev->dev_private;
5671
5672 switch (intel_crtc->pipe) {
5673 case PIPE_A:
5674 break;
5675 case PIPE_B:
5676 if (intel_crtc->config.fdi_lanes > 2)
5677 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5678 else
5679 cpt_enable_fdi_bc_bifurcation(dev);
5680
5681 break;
5682 case PIPE_C:
5683 cpt_enable_fdi_bc_bifurcation(dev);
5684
5685 break;
5686 default:
5687 BUG();
5688 }
5689 }
5690
5691 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5692 {
5693 /*
5694 * Account for spread spectrum to avoid
5695 * oversubscribing the link. Max center spread
5696 * is 2.5%; use 5% for safety's sake.
5697 */
5698 u32 bps = target_clock * bpp * 21 / 20;
5699 return bps / (link_bw * 8) + 1;
5700 }
5701
5702 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5703 {
5704 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5705 }
5706
5707 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5708 u32 *fp,
5709 intel_clock_t *reduced_clock, u32 *fp2)
5710 {
5711 struct drm_crtc *crtc = &intel_crtc->base;
5712 struct drm_device *dev = crtc->dev;
5713 struct drm_i915_private *dev_priv = dev->dev_private;
5714 struct intel_encoder *intel_encoder;
5715 uint32_t dpll;
5716 int factor, num_connectors = 0;
5717 bool is_lvds = false, is_sdvo = false;
5718
5719 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5720 switch (intel_encoder->type) {
5721 case INTEL_OUTPUT_LVDS:
5722 is_lvds = true;
5723 break;
5724 case INTEL_OUTPUT_SDVO:
5725 case INTEL_OUTPUT_HDMI:
5726 is_sdvo = true;
5727 break;
5728 }
5729
5730 num_connectors++;
5731 }
5732
5733 /* Enable autotuning of the PLL clock (if permissible) */
5734 factor = 21;
5735 if (is_lvds) {
5736 if ((intel_panel_use_ssc(dev_priv) &&
5737 dev_priv->vbt.lvds_ssc_freq == 100) ||
5738 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5739 factor = 25;
5740 } else if (intel_crtc->config.sdvo_tv_clock)
5741 factor = 20;
5742
5743 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5744 *fp |= FP_CB_TUNE;
5745
5746 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5747 *fp2 |= FP_CB_TUNE;
5748
5749 dpll = 0;
5750
5751 if (is_lvds)
5752 dpll |= DPLLB_MODE_LVDS;
5753 else
5754 dpll |= DPLLB_MODE_DAC_SERIAL;
5755
5756 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5757 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5758
5759 if (is_sdvo)
5760 dpll |= DPLL_SDVO_HIGH_SPEED;
5761 if (intel_crtc->config.has_dp_encoder)
5762 dpll |= DPLL_SDVO_HIGH_SPEED;
5763
5764 /* compute bitmask from p1 value */
5765 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5766 /* also FPA1 */
5767 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5768
5769 switch (intel_crtc->config.dpll.p2) {
5770 case 5:
5771 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5772 break;
5773 case 7:
5774 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5775 break;
5776 case 10:
5777 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5778 break;
5779 case 14:
5780 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5781 break;
5782 }
5783
5784 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5785 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5786 else
5787 dpll |= PLL_REF_INPUT_DREFCLK;
5788
5789 return dpll | DPLL_VCO_ENABLE;
5790 }
5791
5792 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5793 int x, int y,
5794 struct drm_framebuffer *fb)
5795 {
5796 struct drm_device *dev = crtc->dev;
5797 struct drm_i915_private *dev_priv = dev->dev_private;
5798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5799 int pipe = intel_crtc->pipe;
5800 int plane = intel_crtc->plane;
5801 int num_connectors = 0;
5802 intel_clock_t clock, reduced_clock;
5803 u32 dpll = 0, fp = 0, fp2 = 0;
5804 bool ok, has_reduced_clock = false;
5805 bool is_lvds = false;
5806 struct intel_encoder *encoder;
5807 struct intel_shared_dpll *pll;
5808 int ret;
5809
5810 for_each_encoder_on_crtc(dev, crtc, encoder) {
5811 switch (encoder->type) {
5812 case INTEL_OUTPUT_LVDS:
5813 is_lvds = true;
5814 break;
5815 }
5816
5817 num_connectors++;
5818 }
5819
5820 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5821 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5822
5823 ok = ironlake_compute_clocks(crtc, &clock,
5824 &has_reduced_clock, &reduced_clock);
5825 if (!ok && !intel_crtc->config.clock_set) {
5826 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5827 return -EINVAL;
5828 }
5829 /* Compat-code for transition, will disappear. */
5830 if (!intel_crtc->config.clock_set) {
5831 intel_crtc->config.dpll.n = clock.n;
5832 intel_crtc->config.dpll.m1 = clock.m1;
5833 intel_crtc->config.dpll.m2 = clock.m2;
5834 intel_crtc->config.dpll.p1 = clock.p1;
5835 intel_crtc->config.dpll.p2 = clock.p2;
5836 }
5837
5838 /* Ensure that the cursor is valid for the new mode before changing... */
5839 intel_crtc_update_cursor(crtc, true);
5840
5841 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5842 if (intel_crtc->config.has_pch_encoder) {
5843 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5844 if (has_reduced_clock)
5845 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5846
5847 dpll = ironlake_compute_dpll(intel_crtc,
5848 &fp, &reduced_clock,
5849 has_reduced_clock ? &fp2 : NULL);
5850
5851 intel_crtc->config.dpll_hw_state.dpll = dpll;
5852 intel_crtc->config.dpll_hw_state.fp0 = fp;
5853 if (has_reduced_clock)
5854 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5855 else
5856 intel_crtc->config.dpll_hw_state.fp1 = fp;
5857
5858 pll = intel_get_shared_dpll(intel_crtc);
5859 if (pll == NULL) {
5860 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5861 pipe_name(pipe));
5862 return -EINVAL;
5863 }
5864 } else
5865 intel_put_shared_dpll(intel_crtc);
5866
5867 if (intel_crtc->config.has_dp_encoder)
5868 intel_dp_set_m_n(intel_crtc);
5869
5870 if (is_lvds && has_reduced_clock && i915_powersave)
5871 intel_crtc->lowfreq_avail = true;
5872 else
5873 intel_crtc->lowfreq_avail = false;
5874
5875 if (intel_crtc->config.has_pch_encoder) {
5876 pll = intel_crtc_to_shared_dpll(intel_crtc);
5877
5878 }
5879
5880 intel_set_pipe_timings(intel_crtc);
5881
5882 if (intel_crtc->config.has_pch_encoder) {
5883 intel_cpu_transcoder_set_m_n(intel_crtc,
5884 &intel_crtc->config.fdi_m_n);
5885 }
5886
5887 if (IS_IVYBRIDGE(dev))
5888 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5889
5890 ironlake_set_pipeconf(crtc);
5891
5892 /* Set up the display plane register */
5893 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5894 POSTING_READ(DSPCNTR(plane));
5895
5896 ret = intel_pipe_set_base(crtc, x, y, fb);
5897
5898 return ret;
5899 }
5900
5901 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
5902 struct intel_link_m_n *m_n)
5903 {
5904 struct drm_device *dev = crtc->base.dev;
5905 struct drm_i915_private *dev_priv = dev->dev_private;
5906 enum pipe pipe = crtc->pipe;
5907
5908 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
5909 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
5910 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
5911 & ~TU_SIZE_MASK;
5912 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
5913 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
5914 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5915 }
5916
5917 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
5918 enum transcoder transcoder,
5919 struct intel_link_m_n *m_n)
5920 {
5921 struct drm_device *dev = crtc->base.dev;
5922 struct drm_i915_private *dev_priv = dev->dev_private;
5923 enum pipe pipe = crtc->pipe;
5924
5925 if (INTEL_INFO(dev)->gen >= 5) {
5926 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
5927 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
5928 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5929 & ~TU_SIZE_MASK;
5930 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5931 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5932 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5933 } else {
5934 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
5935 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
5936 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
5937 & ~TU_SIZE_MASK;
5938 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
5939 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
5940 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5941 }
5942 }
5943
5944 void intel_dp_get_m_n(struct intel_crtc *crtc,
5945 struct intel_crtc_config *pipe_config)
5946 {
5947 if (crtc->config.has_pch_encoder)
5948 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
5949 else
5950 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5951 &pipe_config->dp_m_n);
5952 }
5953
5954 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5955 struct intel_crtc_config *pipe_config)
5956 {
5957 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5958 &pipe_config->fdi_m_n);
5959 }
5960
5961 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5962 struct intel_crtc_config *pipe_config)
5963 {
5964 struct drm_device *dev = crtc->base.dev;
5965 struct drm_i915_private *dev_priv = dev->dev_private;
5966 uint32_t tmp;
5967
5968 tmp = I915_READ(PF_CTL(crtc->pipe));
5969
5970 if (tmp & PF_ENABLE) {
5971 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5972 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5973
5974 /* We currently do not free assignements of panel fitters on
5975 * ivb/hsw (since we don't use the higher upscaling modes which
5976 * differentiates them) so just WARN about this case for now. */
5977 if (IS_GEN7(dev)) {
5978 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5979 PF_PIPE_SEL_IVB(crtc->pipe));
5980 }
5981 }
5982 }
5983
5984 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5985 struct intel_crtc_config *pipe_config)
5986 {
5987 struct drm_device *dev = crtc->base.dev;
5988 struct drm_i915_private *dev_priv = dev->dev_private;
5989 uint32_t tmp;
5990
5991 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5992 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5993
5994 tmp = I915_READ(PIPECONF(crtc->pipe));
5995 if (!(tmp & PIPECONF_ENABLE))
5996 return false;
5997
5998 switch (tmp & PIPECONF_BPC_MASK) {
5999 case PIPECONF_6BPC:
6000 pipe_config->pipe_bpp = 18;
6001 break;
6002 case PIPECONF_8BPC:
6003 pipe_config->pipe_bpp = 24;
6004 break;
6005 case PIPECONF_10BPC:
6006 pipe_config->pipe_bpp = 30;
6007 break;
6008 case PIPECONF_12BPC:
6009 pipe_config->pipe_bpp = 36;
6010 break;
6011 default:
6012 break;
6013 }
6014
6015 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6016 struct intel_shared_dpll *pll;
6017
6018 pipe_config->has_pch_encoder = true;
6019
6020 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6021 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6022 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6023
6024 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6025
6026 if (HAS_PCH_IBX(dev_priv->dev)) {
6027 pipe_config->shared_dpll =
6028 (enum intel_dpll_id) crtc->pipe;
6029 } else {
6030 tmp = I915_READ(PCH_DPLL_SEL);
6031 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6032 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6033 else
6034 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6035 }
6036
6037 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6038
6039 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6040 &pipe_config->dpll_hw_state));
6041
6042 tmp = pipe_config->dpll_hw_state.dpll;
6043 pipe_config->pixel_multiplier =
6044 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6045 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6046
6047 ironlake_pch_clock_get(crtc, pipe_config);
6048 } else {
6049 pipe_config->pixel_multiplier = 1;
6050 }
6051
6052 intel_get_pipe_timings(crtc, pipe_config);
6053
6054 ironlake_get_pfit_config(crtc, pipe_config);
6055
6056 return true;
6057 }
6058
6059 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6060 {
6061 struct drm_device *dev = dev_priv->dev;
6062 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6063 struct intel_crtc *crtc;
6064 unsigned long irqflags;
6065 uint32_t val;
6066
6067 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6068 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6069 pipe_name(crtc->pipe));
6070
6071 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6072 WARN(plls->spll_refcount, "SPLL enabled\n");
6073 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6074 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6075 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6076 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6077 "CPU PWM1 enabled\n");
6078 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6079 "CPU PWM2 enabled\n");
6080 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6081 "PCH PWM1 enabled\n");
6082 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6083 "Utility pin enabled\n");
6084 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6085
6086 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6087 val = I915_READ(DEIMR);
6088 WARN((val & ~DE_PCH_EVENT_IVB) != val,
6089 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6090 val = I915_READ(SDEIMR);
6091 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6092 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6093 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6094 }
6095
6096 /*
6097 * This function implements pieces of two sequences from BSpec:
6098 * - Sequence for display software to disable LCPLL
6099 * - Sequence for display software to allow package C8+
6100 * The steps implemented here are just the steps that actually touch the LCPLL
6101 * register. Callers should take care of disabling all the display engine
6102 * functions, doing the mode unset, fixing interrupts, etc.
6103 */
6104 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6105 bool switch_to_fclk, bool allow_power_down)
6106 {
6107 uint32_t val;
6108
6109 assert_can_disable_lcpll(dev_priv);
6110
6111 val = I915_READ(LCPLL_CTL);
6112
6113 if (switch_to_fclk) {
6114 val |= LCPLL_CD_SOURCE_FCLK;
6115 I915_WRITE(LCPLL_CTL, val);
6116
6117 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6118 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6119 DRM_ERROR("Switching to FCLK failed\n");
6120
6121 val = I915_READ(LCPLL_CTL);
6122 }
6123
6124 val |= LCPLL_PLL_DISABLE;
6125 I915_WRITE(LCPLL_CTL, val);
6126 POSTING_READ(LCPLL_CTL);
6127
6128 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6129 DRM_ERROR("LCPLL still locked\n");
6130
6131 val = I915_READ(D_COMP);
6132 val |= D_COMP_COMP_DISABLE;
6133 I915_WRITE(D_COMP, val);
6134 POSTING_READ(D_COMP);
6135 ndelay(100);
6136
6137 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6138 DRM_ERROR("D_COMP RCOMP still in progress\n");
6139
6140 if (allow_power_down) {
6141 val = I915_READ(LCPLL_CTL);
6142 val |= LCPLL_POWER_DOWN_ALLOW;
6143 I915_WRITE(LCPLL_CTL, val);
6144 POSTING_READ(LCPLL_CTL);
6145 }
6146 }
6147
6148 /*
6149 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6150 * source.
6151 */
6152 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6153 {
6154 uint32_t val;
6155
6156 val = I915_READ(LCPLL_CTL);
6157
6158 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6159 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6160 return;
6161
6162 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6163 * we'll hang the machine! */
6164 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6165
6166 if (val & LCPLL_POWER_DOWN_ALLOW) {
6167 val &= ~LCPLL_POWER_DOWN_ALLOW;
6168 I915_WRITE(LCPLL_CTL, val);
6169 POSTING_READ(LCPLL_CTL);
6170 }
6171
6172 val = I915_READ(D_COMP);
6173 val |= D_COMP_COMP_FORCE;
6174 val &= ~D_COMP_COMP_DISABLE;
6175 I915_WRITE(D_COMP, val);
6176 POSTING_READ(D_COMP);
6177
6178 val = I915_READ(LCPLL_CTL);
6179 val &= ~LCPLL_PLL_DISABLE;
6180 I915_WRITE(LCPLL_CTL, val);
6181
6182 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6183 DRM_ERROR("LCPLL not locked yet\n");
6184
6185 if (val & LCPLL_CD_SOURCE_FCLK) {
6186 val = I915_READ(LCPLL_CTL);
6187 val &= ~LCPLL_CD_SOURCE_FCLK;
6188 I915_WRITE(LCPLL_CTL, val);
6189
6190 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6191 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6192 DRM_ERROR("Switching back to LCPLL failed\n");
6193 }
6194
6195 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6196 }
6197
6198 void hsw_enable_pc8_work(struct work_struct *__work)
6199 {
6200 struct drm_i915_private *dev_priv =
6201 container_of(to_delayed_work(__work), struct drm_i915_private,
6202 pc8.enable_work);
6203 struct drm_device *dev = dev_priv->dev;
6204 uint32_t val;
6205
6206 if (dev_priv->pc8.enabled)
6207 return;
6208
6209 DRM_DEBUG_KMS("Enabling package C8+\n");
6210
6211 dev_priv->pc8.enabled = true;
6212
6213 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6214 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6215 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6216 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6217 }
6218
6219 lpt_disable_clkout_dp(dev);
6220 hsw_pc8_disable_interrupts(dev);
6221 hsw_disable_lcpll(dev_priv, true, true);
6222 }
6223
6224 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6225 {
6226 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6227 WARN(dev_priv->pc8.disable_count < 1,
6228 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6229
6230 dev_priv->pc8.disable_count--;
6231 if (dev_priv->pc8.disable_count != 0)
6232 return;
6233
6234 schedule_delayed_work(&dev_priv->pc8.enable_work,
6235 msecs_to_jiffies(i915_pc8_timeout));
6236 }
6237
6238 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6239 {
6240 struct drm_device *dev = dev_priv->dev;
6241 uint32_t val;
6242
6243 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6244 WARN(dev_priv->pc8.disable_count < 0,
6245 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6246
6247 dev_priv->pc8.disable_count++;
6248 if (dev_priv->pc8.disable_count != 1)
6249 return;
6250
6251 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6252 if (!dev_priv->pc8.enabled)
6253 return;
6254
6255 DRM_DEBUG_KMS("Disabling package C8+\n");
6256
6257 hsw_restore_lcpll(dev_priv);
6258 hsw_pc8_restore_interrupts(dev);
6259 lpt_init_pch_refclk(dev);
6260
6261 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6262 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6263 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6264 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6265 }
6266
6267 intel_prepare_ddi(dev);
6268 i915_gem_init_swizzling(dev);
6269 mutex_lock(&dev_priv->rps.hw_lock);
6270 gen6_update_ring_freq(dev);
6271 mutex_unlock(&dev_priv->rps.hw_lock);
6272 dev_priv->pc8.enabled = false;
6273 }
6274
6275 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6276 {
6277 mutex_lock(&dev_priv->pc8.lock);
6278 __hsw_enable_package_c8(dev_priv);
6279 mutex_unlock(&dev_priv->pc8.lock);
6280 }
6281
6282 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6283 {
6284 mutex_lock(&dev_priv->pc8.lock);
6285 __hsw_disable_package_c8(dev_priv);
6286 mutex_unlock(&dev_priv->pc8.lock);
6287 }
6288
6289 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6290 {
6291 struct drm_device *dev = dev_priv->dev;
6292 struct intel_crtc *crtc;
6293 uint32_t val;
6294
6295 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6296 if (crtc->base.enabled)
6297 return false;
6298
6299 /* This case is still possible since we have the i915.disable_power_well
6300 * parameter and also the KVMr or something else might be requesting the
6301 * power well. */
6302 val = I915_READ(HSW_PWR_WELL_DRIVER);
6303 if (val != 0) {
6304 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6305 return false;
6306 }
6307
6308 return true;
6309 }
6310
6311 /* Since we're called from modeset_global_resources there's no way to
6312 * symmetrically increase and decrease the refcount, so we use
6313 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6314 * or not.
6315 */
6316 static void hsw_update_package_c8(struct drm_device *dev)
6317 {
6318 struct drm_i915_private *dev_priv = dev->dev_private;
6319 bool allow;
6320
6321 if (!i915_enable_pc8)
6322 return;
6323
6324 mutex_lock(&dev_priv->pc8.lock);
6325
6326 allow = hsw_can_enable_package_c8(dev_priv);
6327
6328 if (allow == dev_priv->pc8.requirements_met)
6329 goto done;
6330
6331 dev_priv->pc8.requirements_met = allow;
6332
6333 if (allow)
6334 __hsw_enable_package_c8(dev_priv);
6335 else
6336 __hsw_disable_package_c8(dev_priv);
6337
6338 done:
6339 mutex_unlock(&dev_priv->pc8.lock);
6340 }
6341
6342 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6343 {
6344 if (!dev_priv->pc8.gpu_idle) {
6345 dev_priv->pc8.gpu_idle = true;
6346 hsw_enable_package_c8(dev_priv);
6347 }
6348 }
6349
6350 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6351 {
6352 if (dev_priv->pc8.gpu_idle) {
6353 dev_priv->pc8.gpu_idle = false;
6354 hsw_disable_package_c8(dev_priv);
6355 }
6356 }
6357
6358 static void haswell_modeset_global_resources(struct drm_device *dev)
6359 {
6360 bool enable = false;
6361 struct intel_crtc *crtc;
6362
6363 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6364 if (!crtc->base.enabled)
6365 continue;
6366
6367 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6368 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6369 enable = true;
6370 }
6371
6372 intel_set_power_well(dev, enable);
6373
6374 hsw_update_package_c8(dev);
6375 }
6376
6377 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6378 int x, int y,
6379 struct drm_framebuffer *fb)
6380 {
6381 struct drm_device *dev = crtc->dev;
6382 struct drm_i915_private *dev_priv = dev->dev_private;
6383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6384 int plane = intel_crtc->plane;
6385 int ret;
6386
6387 if (!intel_ddi_pll_mode_set(crtc))
6388 return -EINVAL;
6389
6390 /* Ensure that the cursor is valid for the new mode before changing... */
6391 intel_crtc_update_cursor(crtc, true);
6392
6393 if (intel_crtc->config.has_dp_encoder)
6394 intel_dp_set_m_n(intel_crtc);
6395
6396 intel_crtc->lowfreq_avail = false;
6397
6398 intel_set_pipe_timings(intel_crtc);
6399
6400 if (intel_crtc->config.has_pch_encoder) {
6401 intel_cpu_transcoder_set_m_n(intel_crtc,
6402 &intel_crtc->config.fdi_m_n);
6403 }
6404
6405 haswell_set_pipeconf(crtc);
6406
6407 intel_set_pipe_csc(crtc);
6408
6409 /* Set up the display plane register */
6410 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6411 POSTING_READ(DSPCNTR(plane));
6412
6413 ret = intel_pipe_set_base(crtc, x, y, fb);
6414
6415 return ret;
6416 }
6417
6418 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6419 struct intel_crtc_config *pipe_config)
6420 {
6421 struct drm_device *dev = crtc->base.dev;
6422 struct drm_i915_private *dev_priv = dev->dev_private;
6423 enum intel_display_power_domain pfit_domain;
6424 uint32_t tmp;
6425
6426 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6427 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6428
6429 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6430 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6431 enum pipe trans_edp_pipe;
6432 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6433 default:
6434 WARN(1, "unknown pipe linked to edp transcoder\n");
6435 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6436 case TRANS_DDI_EDP_INPUT_A_ON:
6437 trans_edp_pipe = PIPE_A;
6438 break;
6439 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6440 trans_edp_pipe = PIPE_B;
6441 break;
6442 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6443 trans_edp_pipe = PIPE_C;
6444 break;
6445 }
6446
6447 if (trans_edp_pipe == crtc->pipe)
6448 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6449 }
6450
6451 if (!intel_display_power_enabled(dev,
6452 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6453 return false;
6454
6455 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6456 if (!(tmp & PIPECONF_ENABLE))
6457 return false;
6458
6459 /*
6460 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6461 * DDI E. So just check whether this pipe is wired to DDI E and whether
6462 * the PCH transcoder is on.
6463 */
6464 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6465 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6466 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6467 pipe_config->has_pch_encoder = true;
6468
6469 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6470 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6471 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6472
6473 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6474 }
6475
6476 intel_get_pipe_timings(crtc, pipe_config);
6477
6478 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6479 if (intel_display_power_enabled(dev, pfit_domain))
6480 ironlake_get_pfit_config(crtc, pipe_config);
6481
6482 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6483 (I915_READ(IPS_CTL) & IPS_ENABLE);
6484
6485 pipe_config->pixel_multiplier = 1;
6486
6487 return true;
6488 }
6489
6490 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6491 int x, int y,
6492 struct drm_framebuffer *fb)
6493 {
6494 struct drm_device *dev = crtc->dev;
6495 struct drm_i915_private *dev_priv = dev->dev_private;
6496 struct intel_encoder *encoder;
6497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6498 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6499 int pipe = intel_crtc->pipe;
6500 int ret;
6501
6502 drm_vblank_pre_modeset(dev, pipe);
6503
6504 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6505
6506 drm_vblank_post_modeset(dev, pipe);
6507
6508 if (ret != 0)
6509 return ret;
6510
6511 for_each_encoder_on_crtc(dev, crtc, encoder) {
6512 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6513 encoder->base.base.id,
6514 drm_get_encoder_name(&encoder->base),
6515 mode->base.id, mode->name);
6516 encoder->mode_set(encoder);
6517 }
6518
6519 return 0;
6520 }
6521
6522 static bool intel_eld_uptodate(struct drm_connector *connector,
6523 int reg_eldv, uint32_t bits_eldv,
6524 int reg_elda, uint32_t bits_elda,
6525 int reg_edid)
6526 {
6527 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6528 uint8_t *eld = connector->eld;
6529 uint32_t i;
6530
6531 i = I915_READ(reg_eldv);
6532 i &= bits_eldv;
6533
6534 if (!eld[0])
6535 return !i;
6536
6537 if (!i)
6538 return false;
6539
6540 i = I915_READ(reg_elda);
6541 i &= ~bits_elda;
6542 I915_WRITE(reg_elda, i);
6543
6544 for (i = 0; i < eld[2]; i++)
6545 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6546 return false;
6547
6548 return true;
6549 }
6550
6551 static void g4x_write_eld(struct drm_connector *connector,
6552 struct drm_crtc *crtc)
6553 {
6554 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6555 uint8_t *eld = connector->eld;
6556 uint32_t eldv;
6557 uint32_t len;
6558 uint32_t i;
6559
6560 i = I915_READ(G4X_AUD_VID_DID);
6561
6562 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6563 eldv = G4X_ELDV_DEVCL_DEVBLC;
6564 else
6565 eldv = G4X_ELDV_DEVCTG;
6566
6567 if (intel_eld_uptodate(connector,
6568 G4X_AUD_CNTL_ST, eldv,
6569 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6570 G4X_HDMIW_HDMIEDID))
6571 return;
6572
6573 i = I915_READ(G4X_AUD_CNTL_ST);
6574 i &= ~(eldv | G4X_ELD_ADDR);
6575 len = (i >> 9) & 0x1f; /* ELD buffer size */
6576 I915_WRITE(G4X_AUD_CNTL_ST, i);
6577
6578 if (!eld[0])
6579 return;
6580
6581 len = min_t(uint8_t, eld[2], len);
6582 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6583 for (i = 0; i < len; i++)
6584 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6585
6586 i = I915_READ(G4X_AUD_CNTL_ST);
6587 i |= eldv;
6588 I915_WRITE(G4X_AUD_CNTL_ST, i);
6589 }
6590
6591 static void haswell_write_eld(struct drm_connector *connector,
6592 struct drm_crtc *crtc)
6593 {
6594 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6595 uint8_t *eld = connector->eld;
6596 struct drm_device *dev = crtc->dev;
6597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6598 uint32_t eldv;
6599 uint32_t i;
6600 int len;
6601 int pipe = to_intel_crtc(crtc)->pipe;
6602 int tmp;
6603
6604 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6605 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6606 int aud_config = HSW_AUD_CFG(pipe);
6607 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6608
6609
6610 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6611
6612 /* Audio output enable */
6613 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6614 tmp = I915_READ(aud_cntrl_st2);
6615 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6616 I915_WRITE(aud_cntrl_st2, tmp);
6617
6618 /* Wait for 1 vertical blank */
6619 intel_wait_for_vblank(dev, pipe);
6620
6621 /* Set ELD valid state */
6622 tmp = I915_READ(aud_cntrl_st2);
6623 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6624 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6625 I915_WRITE(aud_cntrl_st2, tmp);
6626 tmp = I915_READ(aud_cntrl_st2);
6627 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6628
6629 /* Enable HDMI mode */
6630 tmp = I915_READ(aud_config);
6631 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6632 /* clear N_programing_enable and N_value_index */
6633 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6634 I915_WRITE(aud_config, tmp);
6635
6636 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6637
6638 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6639 intel_crtc->eld_vld = true;
6640
6641 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6642 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6643 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6644 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6645 } else
6646 I915_WRITE(aud_config, 0);
6647
6648 if (intel_eld_uptodate(connector,
6649 aud_cntrl_st2, eldv,
6650 aud_cntl_st, IBX_ELD_ADDRESS,
6651 hdmiw_hdmiedid))
6652 return;
6653
6654 i = I915_READ(aud_cntrl_st2);
6655 i &= ~eldv;
6656 I915_WRITE(aud_cntrl_st2, i);
6657
6658 if (!eld[0])
6659 return;
6660
6661 i = I915_READ(aud_cntl_st);
6662 i &= ~IBX_ELD_ADDRESS;
6663 I915_WRITE(aud_cntl_st, i);
6664 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6665 DRM_DEBUG_DRIVER("port num:%d\n", i);
6666
6667 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6668 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6669 for (i = 0; i < len; i++)
6670 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6671
6672 i = I915_READ(aud_cntrl_st2);
6673 i |= eldv;
6674 I915_WRITE(aud_cntrl_st2, i);
6675
6676 }
6677
6678 static void ironlake_write_eld(struct drm_connector *connector,
6679 struct drm_crtc *crtc)
6680 {
6681 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6682 uint8_t *eld = connector->eld;
6683 uint32_t eldv;
6684 uint32_t i;
6685 int len;
6686 int hdmiw_hdmiedid;
6687 int aud_config;
6688 int aud_cntl_st;
6689 int aud_cntrl_st2;
6690 int pipe = to_intel_crtc(crtc)->pipe;
6691
6692 if (HAS_PCH_IBX(connector->dev)) {
6693 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6694 aud_config = IBX_AUD_CFG(pipe);
6695 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6696 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6697 } else {
6698 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6699 aud_config = CPT_AUD_CFG(pipe);
6700 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6701 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6702 }
6703
6704 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6705
6706 i = I915_READ(aud_cntl_st);
6707 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6708 if (!i) {
6709 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6710 /* operate blindly on all ports */
6711 eldv = IBX_ELD_VALIDB;
6712 eldv |= IBX_ELD_VALIDB << 4;
6713 eldv |= IBX_ELD_VALIDB << 8;
6714 } else {
6715 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6716 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6717 }
6718
6719 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6720 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6721 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6722 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6723 } else
6724 I915_WRITE(aud_config, 0);
6725
6726 if (intel_eld_uptodate(connector,
6727 aud_cntrl_st2, eldv,
6728 aud_cntl_st, IBX_ELD_ADDRESS,
6729 hdmiw_hdmiedid))
6730 return;
6731
6732 i = I915_READ(aud_cntrl_st2);
6733 i &= ~eldv;
6734 I915_WRITE(aud_cntrl_st2, i);
6735
6736 if (!eld[0])
6737 return;
6738
6739 i = I915_READ(aud_cntl_st);
6740 i &= ~IBX_ELD_ADDRESS;
6741 I915_WRITE(aud_cntl_st, i);
6742
6743 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6744 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6745 for (i = 0; i < len; i++)
6746 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6747
6748 i = I915_READ(aud_cntrl_st2);
6749 i |= eldv;
6750 I915_WRITE(aud_cntrl_st2, i);
6751 }
6752
6753 void intel_write_eld(struct drm_encoder *encoder,
6754 struct drm_display_mode *mode)
6755 {
6756 struct drm_crtc *crtc = encoder->crtc;
6757 struct drm_connector *connector;
6758 struct drm_device *dev = encoder->dev;
6759 struct drm_i915_private *dev_priv = dev->dev_private;
6760
6761 connector = drm_select_eld(encoder, mode);
6762 if (!connector)
6763 return;
6764
6765 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6766 connector->base.id,
6767 drm_get_connector_name(connector),
6768 connector->encoder->base.id,
6769 drm_get_encoder_name(connector->encoder));
6770
6771 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6772
6773 if (dev_priv->display.write_eld)
6774 dev_priv->display.write_eld(connector, crtc);
6775 }
6776
6777 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6778 void intel_crtc_load_lut(struct drm_crtc *crtc)
6779 {
6780 struct drm_device *dev = crtc->dev;
6781 struct drm_i915_private *dev_priv = dev->dev_private;
6782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6783 enum pipe pipe = intel_crtc->pipe;
6784 int palreg = PALETTE(pipe);
6785 int i;
6786 bool reenable_ips = false;
6787
6788 /* The clocks have to be on to load the palette. */
6789 if (!crtc->enabled || !intel_crtc->active)
6790 return;
6791
6792 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
6793 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
6794 assert_dsi_pll_enabled(dev_priv);
6795 else
6796 assert_pll_enabled(dev_priv, pipe);
6797 }
6798
6799 /* use legacy palette for Ironlake */
6800 if (HAS_PCH_SPLIT(dev))
6801 palreg = LGC_PALETTE(pipe);
6802
6803 /* Workaround : Do not read or write the pipe palette/gamma data while
6804 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6805 */
6806 if (intel_crtc->config.ips_enabled &&
6807 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6808 GAMMA_MODE_MODE_SPLIT)) {
6809 hsw_disable_ips(intel_crtc);
6810 reenable_ips = true;
6811 }
6812
6813 for (i = 0; i < 256; i++) {
6814 I915_WRITE(palreg + 4 * i,
6815 (intel_crtc->lut_r[i] << 16) |
6816 (intel_crtc->lut_g[i] << 8) |
6817 intel_crtc->lut_b[i]);
6818 }
6819
6820 if (reenable_ips)
6821 hsw_enable_ips(intel_crtc);
6822 }
6823
6824 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6825 {
6826 struct drm_device *dev = crtc->dev;
6827 struct drm_i915_private *dev_priv = dev->dev_private;
6828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6829 bool visible = base != 0;
6830 u32 cntl;
6831
6832 if (intel_crtc->cursor_visible == visible)
6833 return;
6834
6835 cntl = I915_READ(_CURACNTR);
6836 if (visible) {
6837 /* On these chipsets we can only modify the base whilst
6838 * the cursor is disabled.
6839 */
6840 I915_WRITE(_CURABASE, base);
6841
6842 cntl &= ~(CURSOR_FORMAT_MASK);
6843 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6844 cntl |= CURSOR_ENABLE |
6845 CURSOR_GAMMA_ENABLE |
6846 CURSOR_FORMAT_ARGB;
6847 } else
6848 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6849 I915_WRITE(_CURACNTR, cntl);
6850
6851 intel_crtc->cursor_visible = visible;
6852 }
6853
6854 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6855 {
6856 struct drm_device *dev = crtc->dev;
6857 struct drm_i915_private *dev_priv = dev->dev_private;
6858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6859 int pipe = intel_crtc->pipe;
6860 bool visible = base != 0;
6861
6862 if (intel_crtc->cursor_visible != visible) {
6863 uint32_t cntl = I915_READ(CURCNTR(pipe));
6864 if (base) {
6865 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6866 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6867 cntl |= pipe << 28; /* Connect to correct pipe */
6868 } else {
6869 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6870 cntl |= CURSOR_MODE_DISABLE;
6871 }
6872 I915_WRITE(CURCNTR(pipe), cntl);
6873
6874 intel_crtc->cursor_visible = visible;
6875 }
6876 /* and commit changes on next vblank */
6877 I915_WRITE(CURBASE(pipe), base);
6878 }
6879
6880 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6881 {
6882 struct drm_device *dev = crtc->dev;
6883 struct drm_i915_private *dev_priv = dev->dev_private;
6884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6885 int pipe = intel_crtc->pipe;
6886 bool visible = base != 0;
6887
6888 if (intel_crtc->cursor_visible != visible) {
6889 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6890 if (base) {
6891 cntl &= ~CURSOR_MODE;
6892 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6893 } else {
6894 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6895 cntl |= CURSOR_MODE_DISABLE;
6896 }
6897 if (IS_HASWELL(dev)) {
6898 cntl |= CURSOR_PIPE_CSC_ENABLE;
6899 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6900 }
6901 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6902
6903 intel_crtc->cursor_visible = visible;
6904 }
6905 /* and commit changes on next vblank */
6906 I915_WRITE(CURBASE_IVB(pipe), base);
6907 }
6908
6909 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6910 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6911 bool on)
6912 {
6913 struct drm_device *dev = crtc->dev;
6914 struct drm_i915_private *dev_priv = dev->dev_private;
6915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6916 int pipe = intel_crtc->pipe;
6917 int x = intel_crtc->cursor_x;
6918 int y = intel_crtc->cursor_y;
6919 u32 base = 0, pos = 0;
6920 bool visible;
6921
6922 if (on)
6923 base = intel_crtc->cursor_addr;
6924
6925 if (x >= intel_crtc->config.pipe_src_w)
6926 base = 0;
6927
6928 if (y >= intel_crtc->config.pipe_src_h)
6929 base = 0;
6930
6931 if (x < 0) {
6932 if (x + intel_crtc->cursor_width <= 0)
6933 base = 0;
6934
6935 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6936 x = -x;
6937 }
6938 pos |= x << CURSOR_X_SHIFT;
6939
6940 if (y < 0) {
6941 if (y + intel_crtc->cursor_height <= 0)
6942 base = 0;
6943
6944 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6945 y = -y;
6946 }
6947 pos |= y << CURSOR_Y_SHIFT;
6948
6949 visible = base != 0;
6950 if (!visible && !intel_crtc->cursor_visible)
6951 return;
6952
6953 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6954 I915_WRITE(CURPOS_IVB(pipe), pos);
6955 ivb_update_cursor(crtc, base);
6956 } else {
6957 I915_WRITE(CURPOS(pipe), pos);
6958 if (IS_845G(dev) || IS_I865G(dev))
6959 i845_update_cursor(crtc, base);
6960 else
6961 i9xx_update_cursor(crtc, base);
6962 }
6963 }
6964
6965 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6966 struct drm_file *file,
6967 uint32_t handle,
6968 uint32_t width, uint32_t height)
6969 {
6970 struct drm_device *dev = crtc->dev;
6971 struct drm_i915_private *dev_priv = dev->dev_private;
6972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6973 struct drm_i915_gem_object *obj;
6974 uint32_t addr;
6975 int ret;
6976
6977 /* if we want to turn off the cursor ignore width and height */
6978 if (!handle) {
6979 DRM_DEBUG_KMS("cursor off\n");
6980 addr = 0;
6981 obj = NULL;
6982 mutex_lock(&dev->struct_mutex);
6983 goto finish;
6984 }
6985
6986 /* Currently we only support 64x64 cursors */
6987 if (width != 64 || height != 64) {
6988 DRM_ERROR("we currently only support 64x64 cursors\n");
6989 return -EINVAL;
6990 }
6991
6992 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6993 if (&obj->base == NULL)
6994 return -ENOENT;
6995
6996 if (obj->base.size < width * height * 4) {
6997 DRM_ERROR("buffer is to small\n");
6998 ret = -ENOMEM;
6999 goto fail;
7000 }
7001
7002 /* we only need to pin inside GTT if cursor is non-phy */
7003 mutex_lock(&dev->struct_mutex);
7004 if (!dev_priv->info->cursor_needs_physical) {
7005 unsigned alignment;
7006
7007 if (obj->tiling_mode) {
7008 DRM_ERROR("cursor cannot be tiled\n");
7009 ret = -EINVAL;
7010 goto fail_locked;
7011 }
7012
7013 /* Note that the w/a also requires 2 PTE of padding following
7014 * the bo. We currently fill all unused PTE with the shadow
7015 * page and so we should always have valid PTE following the
7016 * cursor preventing the VT-d warning.
7017 */
7018 alignment = 0;
7019 if (need_vtd_wa(dev))
7020 alignment = 64*1024;
7021
7022 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7023 if (ret) {
7024 DRM_ERROR("failed to move cursor bo into the GTT\n");
7025 goto fail_locked;
7026 }
7027
7028 ret = i915_gem_object_put_fence(obj);
7029 if (ret) {
7030 DRM_ERROR("failed to release fence for cursor");
7031 goto fail_unpin;
7032 }
7033
7034 addr = i915_gem_obj_ggtt_offset(obj);
7035 } else {
7036 int align = IS_I830(dev) ? 16 * 1024 : 256;
7037 ret = i915_gem_attach_phys_object(dev, obj,
7038 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7039 align);
7040 if (ret) {
7041 DRM_ERROR("failed to attach phys object\n");
7042 goto fail_locked;
7043 }
7044 addr = obj->phys_obj->handle->busaddr;
7045 }
7046
7047 if (IS_GEN2(dev))
7048 I915_WRITE(CURSIZE, (height << 12) | width);
7049
7050 finish:
7051 if (intel_crtc->cursor_bo) {
7052 if (dev_priv->info->cursor_needs_physical) {
7053 if (intel_crtc->cursor_bo != obj)
7054 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7055 } else
7056 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7057 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7058 }
7059
7060 mutex_unlock(&dev->struct_mutex);
7061
7062 intel_crtc->cursor_addr = addr;
7063 intel_crtc->cursor_bo = obj;
7064 intel_crtc->cursor_width = width;
7065 intel_crtc->cursor_height = height;
7066
7067 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7068
7069 return 0;
7070 fail_unpin:
7071 i915_gem_object_unpin_from_display_plane(obj);
7072 fail_locked:
7073 mutex_unlock(&dev->struct_mutex);
7074 fail:
7075 drm_gem_object_unreference_unlocked(&obj->base);
7076 return ret;
7077 }
7078
7079 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7080 {
7081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7082
7083 intel_crtc->cursor_x = x;
7084 intel_crtc->cursor_y = y;
7085
7086 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7087
7088 return 0;
7089 }
7090
7091 /** Sets the color ramps on behalf of RandR */
7092 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
7093 u16 blue, int regno)
7094 {
7095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7096
7097 intel_crtc->lut_r[regno] = red >> 8;
7098 intel_crtc->lut_g[regno] = green >> 8;
7099 intel_crtc->lut_b[regno] = blue >> 8;
7100 }
7101
7102 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
7103 u16 *blue, int regno)
7104 {
7105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7106
7107 *red = intel_crtc->lut_r[regno] << 8;
7108 *green = intel_crtc->lut_g[regno] << 8;
7109 *blue = intel_crtc->lut_b[regno] << 8;
7110 }
7111
7112 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7113 u16 *blue, uint32_t start, uint32_t size)
7114 {
7115 int end = (start + size > 256) ? 256 : start + size, i;
7116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7117
7118 for (i = start; i < end; i++) {
7119 intel_crtc->lut_r[i] = red[i] >> 8;
7120 intel_crtc->lut_g[i] = green[i] >> 8;
7121 intel_crtc->lut_b[i] = blue[i] >> 8;
7122 }
7123
7124 intel_crtc_load_lut(crtc);
7125 }
7126
7127 /* VESA 640x480x72Hz mode to set on the pipe */
7128 static struct drm_display_mode load_detect_mode = {
7129 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7130 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7131 };
7132
7133 static struct drm_framebuffer *
7134 intel_framebuffer_create(struct drm_device *dev,
7135 struct drm_mode_fb_cmd2 *mode_cmd,
7136 struct drm_i915_gem_object *obj)
7137 {
7138 struct intel_framebuffer *intel_fb;
7139 int ret;
7140
7141 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7142 if (!intel_fb) {
7143 drm_gem_object_unreference_unlocked(&obj->base);
7144 return ERR_PTR(-ENOMEM);
7145 }
7146
7147 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7148 if (ret) {
7149 drm_gem_object_unreference_unlocked(&obj->base);
7150 kfree(intel_fb);
7151 return ERR_PTR(ret);
7152 }
7153
7154 return &intel_fb->base;
7155 }
7156
7157 static u32
7158 intel_framebuffer_pitch_for_width(int width, int bpp)
7159 {
7160 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7161 return ALIGN(pitch, 64);
7162 }
7163
7164 static u32
7165 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7166 {
7167 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7168 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7169 }
7170
7171 static struct drm_framebuffer *
7172 intel_framebuffer_create_for_mode(struct drm_device *dev,
7173 struct drm_display_mode *mode,
7174 int depth, int bpp)
7175 {
7176 struct drm_i915_gem_object *obj;
7177 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7178
7179 obj = i915_gem_alloc_object(dev,
7180 intel_framebuffer_size_for_mode(mode, bpp));
7181 if (obj == NULL)
7182 return ERR_PTR(-ENOMEM);
7183
7184 mode_cmd.width = mode->hdisplay;
7185 mode_cmd.height = mode->vdisplay;
7186 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7187 bpp);
7188 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7189
7190 return intel_framebuffer_create(dev, &mode_cmd, obj);
7191 }
7192
7193 static struct drm_framebuffer *
7194 mode_fits_in_fbdev(struct drm_device *dev,
7195 struct drm_display_mode *mode)
7196 {
7197 struct drm_i915_private *dev_priv = dev->dev_private;
7198 struct drm_i915_gem_object *obj;
7199 struct drm_framebuffer *fb;
7200
7201 if (dev_priv->fbdev == NULL)
7202 return NULL;
7203
7204 obj = dev_priv->fbdev->ifb.obj;
7205 if (obj == NULL)
7206 return NULL;
7207
7208 fb = &dev_priv->fbdev->ifb.base;
7209 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7210 fb->bits_per_pixel))
7211 return NULL;
7212
7213 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7214 return NULL;
7215
7216 return fb;
7217 }
7218
7219 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7220 struct drm_display_mode *mode,
7221 struct intel_load_detect_pipe *old)
7222 {
7223 struct intel_crtc *intel_crtc;
7224 struct intel_encoder *intel_encoder =
7225 intel_attached_encoder(connector);
7226 struct drm_crtc *possible_crtc;
7227 struct drm_encoder *encoder = &intel_encoder->base;
7228 struct drm_crtc *crtc = NULL;
7229 struct drm_device *dev = encoder->dev;
7230 struct drm_framebuffer *fb;
7231 int i = -1;
7232
7233 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7234 connector->base.id, drm_get_connector_name(connector),
7235 encoder->base.id, drm_get_encoder_name(encoder));
7236
7237 /*
7238 * Algorithm gets a little messy:
7239 *
7240 * - if the connector already has an assigned crtc, use it (but make
7241 * sure it's on first)
7242 *
7243 * - try to find the first unused crtc that can drive this connector,
7244 * and use that if we find one
7245 */
7246
7247 /* See if we already have a CRTC for this connector */
7248 if (encoder->crtc) {
7249 crtc = encoder->crtc;
7250
7251 mutex_lock(&crtc->mutex);
7252
7253 old->dpms_mode = connector->dpms;
7254 old->load_detect_temp = false;
7255
7256 /* Make sure the crtc and connector are running */
7257 if (connector->dpms != DRM_MODE_DPMS_ON)
7258 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7259
7260 return true;
7261 }
7262
7263 /* Find an unused one (if possible) */
7264 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7265 i++;
7266 if (!(encoder->possible_crtcs & (1 << i)))
7267 continue;
7268 if (!possible_crtc->enabled) {
7269 crtc = possible_crtc;
7270 break;
7271 }
7272 }
7273
7274 /*
7275 * If we didn't find an unused CRTC, don't use any.
7276 */
7277 if (!crtc) {
7278 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7279 return false;
7280 }
7281
7282 mutex_lock(&crtc->mutex);
7283 intel_encoder->new_crtc = to_intel_crtc(crtc);
7284 to_intel_connector(connector)->new_encoder = intel_encoder;
7285
7286 intel_crtc = to_intel_crtc(crtc);
7287 old->dpms_mode = connector->dpms;
7288 old->load_detect_temp = true;
7289 old->release_fb = NULL;
7290
7291 if (!mode)
7292 mode = &load_detect_mode;
7293
7294 /* We need a framebuffer large enough to accommodate all accesses
7295 * that the plane may generate whilst we perform load detection.
7296 * We can not rely on the fbcon either being present (we get called
7297 * during its initialisation to detect all boot displays, or it may
7298 * not even exist) or that it is large enough to satisfy the
7299 * requested mode.
7300 */
7301 fb = mode_fits_in_fbdev(dev, mode);
7302 if (fb == NULL) {
7303 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7304 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7305 old->release_fb = fb;
7306 } else
7307 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7308 if (IS_ERR(fb)) {
7309 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7310 mutex_unlock(&crtc->mutex);
7311 return false;
7312 }
7313
7314 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7315 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7316 if (old->release_fb)
7317 old->release_fb->funcs->destroy(old->release_fb);
7318 mutex_unlock(&crtc->mutex);
7319 return false;
7320 }
7321
7322 /* let the connector get through one full cycle before testing */
7323 intel_wait_for_vblank(dev, intel_crtc->pipe);
7324 return true;
7325 }
7326
7327 void intel_release_load_detect_pipe(struct drm_connector *connector,
7328 struct intel_load_detect_pipe *old)
7329 {
7330 struct intel_encoder *intel_encoder =
7331 intel_attached_encoder(connector);
7332 struct drm_encoder *encoder = &intel_encoder->base;
7333 struct drm_crtc *crtc = encoder->crtc;
7334
7335 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7336 connector->base.id, drm_get_connector_name(connector),
7337 encoder->base.id, drm_get_encoder_name(encoder));
7338
7339 if (old->load_detect_temp) {
7340 to_intel_connector(connector)->new_encoder = NULL;
7341 intel_encoder->new_crtc = NULL;
7342 intel_set_mode(crtc, NULL, 0, 0, NULL);
7343
7344 if (old->release_fb) {
7345 drm_framebuffer_unregister_private(old->release_fb);
7346 drm_framebuffer_unreference(old->release_fb);
7347 }
7348
7349 mutex_unlock(&crtc->mutex);
7350 return;
7351 }
7352
7353 /* Switch crtc and encoder back off if necessary */
7354 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7355 connector->funcs->dpms(connector, old->dpms_mode);
7356
7357 mutex_unlock(&crtc->mutex);
7358 }
7359
7360 static int i9xx_pll_refclk(struct drm_device *dev,
7361 const struct intel_crtc_config *pipe_config)
7362 {
7363 struct drm_i915_private *dev_priv = dev->dev_private;
7364 u32 dpll = pipe_config->dpll_hw_state.dpll;
7365
7366 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7367 return dev_priv->vbt.lvds_ssc_freq * 1000;
7368 else if (HAS_PCH_SPLIT(dev))
7369 return 120000;
7370 else if (!IS_GEN2(dev))
7371 return 96000;
7372 else
7373 return 48000;
7374 }
7375
7376 /* Returns the clock of the currently programmed mode of the given pipe. */
7377 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7378 struct intel_crtc_config *pipe_config)
7379 {
7380 struct drm_device *dev = crtc->base.dev;
7381 struct drm_i915_private *dev_priv = dev->dev_private;
7382 int pipe = pipe_config->cpu_transcoder;
7383 u32 dpll = pipe_config->dpll_hw_state.dpll;
7384 u32 fp;
7385 intel_clock_t clock;
7386 int refclk = i9xx_pll_refclk(dev, pipe_config);
7387
7388 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7389 fp = pipe_config->dpll_hw_state.fp0;
7390 else
7391 fp = pipe_config->dpll_hw_state.fp1;
7392
7393 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7394 if (IS_PINEVIEW(dev)) {
7395 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7396 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7397 } else {
7398 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7399 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7400 }
7401
7402 if (!IS_GEN2(dev)) {
7403 if (IS_PINEVIEW(dev))
7404 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7405 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7406 else
7407 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7408 DPLL_FPA01_P1_POST_DIV_SHIFT);
7409
7410 switch (dpll & DPLL_MODE_MASK) {
7411 case DPLLB_MODE_DAC_SERIAL:
7412 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7413 5 : 10;
7414 break;
7415 case DPLLB_MODE_LVDS:
7416 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7417 7 : 14;
7418 break;
7419 default:
7420 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7421 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7422 return;
7423 }
7424
7425 if (IS_PINEVIEW(dev))
7426 pineview_clock(refclk, &clock);
7427 else
7428 i9xx_clock(refclk, &clock);
7429 } else {
7430 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7431
7432 if (is_lvds) {
7433 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7434 DPLL_FPA01_P1_POST_DIV_SHIFT);
7435 clock.p2 = 14;
7436 } else {
7437 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7438 clock.p1 = 2;
7439 else {
7440 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7441 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7442 }
7443 if (dpll & PLL_P2_DIVIDE_BY_4)
7444 clock.p2 = 4;
7445 else
7446 clock.p2 = 2;
7447 }
7448
7449 i9xx_clock(refclk, &clock);
7450 }
7451
7452 /*
7453 * This value includes pixel_multiplier. We will use
7454 * port_clock to compute adjusted_mode.clock in the
7455 * encoder's get_config() function.
7456 */
7457 pipe_config->port_clock = clock.dot;
7458 }
7459
7460 int intel_dotclock_calculate(int link_freq,
7461 const struct intel_link_m_n *m_n)
7462 {
7463 /*
7464 * The calculation for the data clock is:
7465 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7466 * But we want to avoid losing precison if possible, so:
7467 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7468 *
7469 * and the link clock is simpler:
7470 * link_clock = (m * link_clock) / n
7471 */
7472
7473 if (!m_n->link_n)
7474 return 0;
7475
7476 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7477 }
7478
7479 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7480 struct intel_crtc_config *pipe_config)
7481 {
7482 struct drm_device *dev = crtc->base.dev;
7483
7484 /* read out port_clock from the DPLL */
7485 i9xx_crtc_clock_get(crtc, pipe_config);
7486
7487 /*
7488 * This value does not include pixel_multiplier.
7489 * We will check that port_clock and adjusted_mode.clock
7490 * agree once we know their relationship in the encoder's
7491 * get_config() function.
7492 */
7493 pipe_config->adjusted_mode.clock =
7494 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7495 &pipe_config->fdi_m_n);
7496 }
7497
7498 /** Returns the currently programmed mode of the given pipe. */
7499 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7500 struct drm_crtc *crtc)
7501 {
7502 struct drm_i915_private *dev_priv = dev->dev_private;
7503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7504 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7505 struct drm_display_mode *mode;
7506 struct intel_crtc_config pipe_config;
7507 int htot = I915_READ(HTOTAL(cpu_transcoder));
7508 int hsync = I915_READ(HSYNC(cpu_transcoder));
7509 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7510 int vsync = I915_READ(VSYNC(cpu_transcoder));
7511 enum pipe pipe = intel_crtc->pipe;
7512
7513 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7514 if (!mode)
7515 return NULL;
7516
7517 /*
7518 * Construct a pipe_config sufficient for getting the clock info
7519 * back out of crtc_clock_get.
7520 *
7521 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7522 * to use a real value here instead.
7523 */
7524 pipe_config.cpu_transcoder = (enum transcoder) pipe;
7525 pipe_config.pixel_multiplier = 1;
7526 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7527 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7528 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7529 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7530
7531 mode->clock = pipe_config.adjusted_mode.clock;
7532 mode->hdisplay = (htot & 0xffff) + 1;
7533 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7534 mode->hsync_start = (hsync & 0xffff) + 1;
7535 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7536 mode->vdisplay = (vtot & 0xffff) + 1;
7537 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7538 mode->vsync_start = (vsync & 0xffff) + 1;
7539 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7540
7541 drm_mode_set_name(mode);
7542
7543 return mode;
7544 }
7545
7546 static void intel_increase_pllclock(struct drm_crtc *crtc)
7547 {
7548 struct drm_device *dev = crtc->dev;
7549 drm_i915_private_t *dev_priv = dev->dev_private;
7550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7551 int pipe = intel_crtc->pipe;
7552 int dpll_reg = DPLL(pipe);
7553 int dpll;
7554
7555 if (HAS_PCH_SPLIT(dev))
7556 return;
7557
7558 if (!dev_priv->lvds_downclock_avail)
7559 return;
7560
7561 dpll = I915_READ(dpll_reg);
7562 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7563 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7564
7565 assert_panel_unlocked(dev_priv, pipe);
7566
7567 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7568 I915_WRITE(dpll_reg, dpll);
7569 intel_wait_for_vblank(dev, pipe);
7570
7571 dpll = I915_READ(dpll_reg);
7572 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7573 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7574 }
7575 }
7576
7577 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7578 {
7579 struct drm_device *dev = crtc->dev;
7580 drm_i915_private_t *dev_priv = dev->dev_private;
7581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7582
7583 if (HAS_PCH_SPLIT(dev))
7584 return;
7585
7586 if (!dev_priv->lvds_downclock_avail)
7587 return;
7588
7589 /*
7590 * Since this is called by a timer, we should never get here in
7591 * the manual case.
7592 */
7593 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7594 int pipe = intel_crtc->pipe;
7595 int dpll_reg = DPLL(pipe);
7596 int dpll;
7597
7598 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7599
7600 assert_panel_unlocked(dev_priv, pipe);
7601
7602 dpll = I915_READ(dpll_reg);
7603 dpll |= DISPLAY_RATE_SELECT_FPA1;
7604 I915_WRITE(dpll_reg, dpll);
7605 intel_wait_for_vblank(dev, pipe);
7606 dpll = I915_READ(dpll_reg);
7607 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7608 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7609 }
7610
7611 }
7612
7613 void intel_mark_busy(struct drm_device *dev)
7614 {
7615 struct drm_i915_private *dev_priv = dev->dev_private;
7616
7617 hsw_package_c8_gpu_busy(dev_priv);
7618 i915_update_gfx_val(dev_priv);
7619 }
7620
7621 void intel_mark_idle(struct drm_device *dev)
7622 {
7623 struct drm_i915_private *dev_priv = dev->dev_private;
7624 struct drm_crtc *crtc;
7625
7626 hsw_package_c8_gpu_idle(dev_priv);
7627
7628 if (!i915_powersave)
7629 return;
7630
7631 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7632 if (!crtc->fb)
7633 continue;
7634
7635 intel_decrease_pllclock(crtc);
7636 }
7637 }
7638
7639 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7640 struct intel_ring_buffer *ring)
7641 {
7642 struct drm_device *dev = obj->base.dev;
7643 struct drm_crtc *crtc;
7644
7645 if (!i915_powersave)
7646 return;
7647
7648 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7649 if (!crtc->fb)
7650 continue;
7651
7652 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7653 continue;
7654
7655 intel_increase_pllclock(crtc);
7656 if (ring && intel_fbc_enabled(dev))
7657 ring->fbc_dirty = true;
7658 }
7659 }
7660
7661 static void intel_crtc_destroy(struct drm_crtc *crtc)
7662 {
7663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7664 struct drm_device *dev = crtc->dev;
7665 struct intel_unpin_work *work;
7666 unsigned long flags;
7667
7668 spin_lock_irqsave(&dev->event_lock, flags);
7669 work = intel_crtc->unpin_work;
7670 intel_crtc->unpin_work = NULL;
7671 spin_unlock_irqrestore(&dev->event_lock, flags);
7672
7673 if (work) {
7674 cancel_work_sync(&work->work);
7675 kfree(work);
7676 }
7677
7678 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7679
7680 drm_crtc_cleanup(crtc);
7681
7682 kfree(intel_crtc);
7683 }
7684
7685 static void intel_unpin_work_fn(struct work_struct *__work)
7686 {
7687 struct intel_unpin_work *work =
7688 container_of(__work, struct intel_unpin_work, work);
7689 struct drm_device *dev = work->crtc->dev;
7690
7691 mutex_lock(&dev->struct_mutex);
7692 intel_unpin_fb_obj(work->old_fb_obj);
7693 drm_gem_object_unreference(&work->pending_flip_obj->base);
7694 drm_gem_object_unreference(&work->old_fb_obj->base);
7695
7696 intel_update_fbc(dev);
7697 mutex_unlock(&dev->struct_mutex);
7698
7699 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7700 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7701
7702 kfree(work);
7703 }
7704
7705 static void do_intel_finish_page_flip(struct drm_device *dev,
7706 struct drm_crtc *crtc)
7707 {
7708 drm_i915_private_t *dev_priv = dev->dev_private;
7709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7710 struct intel_unpin_work *work;
7711 unsigned long flags;
7712
7713 /* Ignore early vblank irqs */
7714 if (intel_crtc == NULL)
7715 return;
7716
7717 spin_lock_irqsave(&dev->event_lock, flags);
7718 work = intel_crtc->unpin_work;
7719
7720 /* Ensure we don't miss a work->pending update ... */
7721 smp_rmb();
7722
7723 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7724 spin_unlock_irqrestore(&dev->event_lock, flags);
7725 return;
7726 }
7727
7728 /* and that the unpin work is consistent wrt ->pending. */
7729 smp_rmb();
7730
7731 intel_crtc->unpin_work = NULL;
7732
7733 if (work->event)
7734 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7735
7736 drm_vblank_put(dev, intel_crtc->pipe);
7737
7738 spin_unlock_irqrestore(&dev->event_lock, flags);
7739
7740 wake_up_all(&dev_priv->pending_flip_queue);
7741
7742 queue_work(dev_priv->wq, &work->work);
7743
7744 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7745 }
7746
7747 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7748 {
7749 drm_i915_private_t *dev_priv = dev->dev_private;
7750 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7751
7752 do_intel_finish_page_flip(dev, crtc);
7753 }
7754
7755 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7756 {
7757 drm_i915_private_t *dev_priv = dev->dev_private;
7758 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7759
7760 do_intel_finish_page_flip(dev, crtc);
7761 }
7762
7763 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7764 {
7765 drm_i915_private_t *dev_priv = dev->dev_private;
7766 struct intel_crtc *intel_crtc =
7767 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7768 unsigned long flags;
7769
7770 /* NB: An MMIO update of the plane base pointer will also
7771 * generate a page-flip completion irq, i.e. every modeset
7772 * is also accompanied by a spurious intel_prepare_page_flip().
7773 */
7774 spin_lock_irqsave(&dev->event_lock, flags);
7775 if (intel_crtc->unpin_work)
7776 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7777 spin_unlock_irqrestore(&dev->event_lock, flags);
7778 }
7779
7780 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7781 {
7782 /* Ensure that the work item is consistent when activating it ... */
7783 smp_wmb();
7784 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7785 /* and that it is marked active as soon as the irq could fire. */
7786 smp_wmb();
7787 }
7788
7789 static int intel_gen2_queue_flip(struct drm_device *dev,
7790 struct drm_crtc *crtc,
7791 struct drm_framebuffer *fb,
7792 struct drm_i915_gem_object *obj,
7793 uint32_t flags)
7794 {
7795 struct drm_i915_private *dev_priv = dev->dev_private;
7796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7797 u32 flip_mask;
7798 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7799 int ret;
7800
7801 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7802 if (ret)
7803 goto err;
7804
7805 ret = intel_ring_begin(ring, 6);
7806 if (ret)
7807 goto err_unpin;
7808
7809 /* Can't queue multiple flips, so wait for the previous
7810 * one to finish before executing the next.
7811 */
7812 if (intel_crtc->plane)
7813 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7814 else
7815 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7816 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7817 intel_ring_emit(ring, MI_NOOP);
7818 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7819 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7820 intel_ring_emit(ring, fb->pitches[0]);
7821 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7822 intel_ring_emit(ring, 0); /* aux display base address, unused */
7823
7824 intel_mark_page_flip_active(intel_crtc);
7825 __intel_ring_advance(ring);
7826 return 0;
7827
7828 err_unpin:
7829 intel_unpin_fb_obj(obj);
7830 err:
7831 return ret;
7832 }
7833
7834 static int intel_gen3_queue_flip(struct drm_device *dev,
7835 struct drm_crtc *crtc,
7836 struct drm_framebuffer *fb,
7837 struct drm_i915_gem_object *obj,
7838 uint32_t flags)
7839 {
7840 struct drm_i915_private *dev_priv = dev->dev_private;
7841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7842 u32 flip_mask;
7843 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7844 int ret;
7845
7846 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7847 if (ret)
7848 goto err;
7849
7850 ret = intel_ring_begin(ring, 6);
7851 if (ret)
7852 goto err_unpin;
7853
7854 if (intel_crtc->plane)
7855 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7856 else
7857 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7858 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7859 intel_ring_emit(ring, MI_NOOP);
7860 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7861 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7862 intel_ring_emit(ring, fb->pitches[0]);
7863 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7864 intel_ring_emit(ring, MI_NOOP);
7865
7866 intel_mark_page_flip_active(intel_crtc);
7867 __intel_ring_advance(ring);
7868 return 0;
7869
7870 err_unpin:
7871 intel_unpin_fb_obj(obj);
7872 err:
7873 return ret;
7874 }
7875
7876 static int intel_gen4_queue_flip(struct drm_device *dev,
7877 struct drm_crtc *crtc,
7878 struct drm_framebuffer *fb,
7879 struct drm_i915_gem_object *obj,
7880 uint32_t flags)
7881 {
7882 struct drm_i915_private *dev_priv = dev->dev_private;
7883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7884 uint32_t pf, pipesrc;
7885 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7886 int ret;
7887
7888 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7889 if (ret)
7890 goto err;
7891
7892 ret = intel_ring_begin(ring, 4);
7893 if (ret)
7894 goto err_unpin;
7895
7896 /* i965+ uses the linear or tiled offsets from the
7897 * Display Registers (which do not change across a page-flip)
7898 * so we need only reprogram the base address.
7899 */
7900 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7901 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7902 intel_ring_emit(ring, fb->pitches[0]);
7903 intel_ring_emit(ring,
7904 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7905 obj->tiling_mode);
7906
7907 /* XXX Enabling the panel-fitter across page-flip is so far
7908 * untested on non-native modes, so ignore it for now.
7909 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7910 */
7911 pf = 0;
7912 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7913 intel_ring_emit(ring, pf | pipesrc);
7914
7915 intel_mark_page_flip_active(intel_crtc);
7916 __intel_ring_advance(ring);
7917 return 0;
7918
7919 err_unpin:
7920 intel_unpin_fb_obj(obj);
7921 err:
7922 return ret;
7923 }
7924
7925 static int intel_gen6_queue_flip(struct drm_device *dev,
7926 struct drm_crtc *crtc,
7927 struct drm_framebuffer *fb,
7928 struct drm_i915_gem_object *obj,
7929 uint32_t flags)
7930 {
7931 struct drm_i915_private *dev_priv = dev->dev_private;
7932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7933 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7934 uint32_t pf, pipesrc;
7935 int ret;
7936
7937 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7938 if (ret)
7939 goto err;
7940
7941 ret = intel_ring_begin(ring, 4);
7942 if (ret)
7943 goto err_unpin;
7944
7945 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7946 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7947 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7948 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7949
7950 /* Contrary to the suggestions in the documentation,
7951 * "Enable Panel Fitter" does not seem to be required when page
7952 * flipping with a non-native mode, and worse causes a normal
7953 * modeset to fail.
7954 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7955 */
7956 pf = 0;
7957 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7958 intel_ring_emit(ring, pf | pipesrc);
7959
7960 intel_mark_page_flip_active(intel_crtc);
7961 __intel_ring_advance(ring);
7962 return 0;
7963
7964 err_unpin:
7965 intel_unpin_fb_obj(obj);
7966 err:
7967 return ret;
7968 }
7969
7970 static int intel_gen7_queue_flip(struct drm_device *dev,
7971 struct drm_crtc *crtc,
7972 struct drm_framebuffer *fb,
7973 struct drm_i915_gem_object *obj,
7974 uint32_t flags)
7975 {
7976 struct drm_i915_private *dev_priv = dev->dev_private;
7977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7978 struct intel_ring_buffer *ring;
7979 uint32_t plane_bit = 0;
7980 int len, ret;
7981
7982 ring = obj->ring;
7983 if (ring == NULL || ring->id != RCS)
7984 ring = &dev_priv->ring[BCS];
7985
7986 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7987 if (ret)
7988 goto err;
7989
7990 switch(intel_crtc->plane) {
7991 case PLANE_A:
7992 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7993 break;
7994 case PLANE_B:
7995 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7996 break;
7997 case PLANE_C:
7998 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7999 break;
8000 default:
8001 WARN_ONCE(1, "unknown plane in flip command\n");
8002 ret = -ENODEV;
8003 goto err_unpin;
8004 }
8005
8006 len = 4;
8007 if (ring->id == RCS)
8008 len += 6;
8009
8010 ret = intel_ring_begin(ring, len);
8011 if (ret)
8012 goto err_unpin;
8013
8014 /* Unmask the flip-done completion message. Note that the bspec says that
8015 * we should do this for both the BCS and RCS, and that we must not unmask
8016 * more than one flip event at any time (or ensure that one flip message
8017 * can be sent by waiting for flip-done prior to queueing new flips).
8018 * Experimentation says that BCS works despite DERRMR masking all
8019 * flip-done completion events and that unmasking all planes at once
8020 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8021 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8022 */
8023 if (ring->id == RCS) {
8024 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8025 intel_ring_emit(ring, DERRMR);
8026 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8027 DERRMR_PIPEB_PRI_FLIP_DONE |
8028 DERRMR_PIPEC_PRI_FLIP_DONE));
8029 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8030 intel_ring_emit(ring, DERRMR);
8031 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8032 }
8033
8034 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8035 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8036 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8037 intel_ring_emit(ring, (MI_NOOP));
8038
8039 intel_mark_page_flip_active(intel_crtc);
8040 __intel_ring_advance(ring);
8041 return 0;
8042
8043 err_unpin:
8044 intel_unpin_fb_obj(obj);
8045 err:
8046 return ret;
8047 }
8048
8049 static int intel_default_queue_flip(struct drm_device *dev,
8050 struct drm_crtc *crtc,
8051 struct drm_framebuffer *fb,
8052 struct drm_i915_gem_object *obj,
8053 uint32_t flags)
8054 {
8055 return -ENODEV;
8056 }
8057
8058 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8059 struct drm_framebuffer *fb,
8060 struct drm_pending_vblank_event *event,
8061 uint32_t page_flip_flags)
8062 {
8063 struct drm_device *dev = crtc->dev;
8064 struct drm_i915_private *dev_priv = dev->dev_private;
8065 struct drm_framebuffer *old_fb = crtc->fb;
8066 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8068 struct intel_unpin_work *work;
8069 unsigned long flags;
8070 int ret;
8071
8072 /* Can't change pixel format via MI display flips. */
8073 if (fb->pixel_format != crtc->fb->pixel_format)
8074 return -EINVAL;
8075
8076 /*
8077 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8078 * Note that pitch changes could also affect these register.
8079 */
8080 if (INTEL_INFO(dev)->gen > 3 &&
8081 (fb->offsets[0] != crtc->fb->offsets[0] ||
8082 fb->pitches[0] != crtc->fb->pitches[0]))
8083 return -EINVAL;
8084
8085 work = kzalloc(sizeof *work, GFP_KERNEL);
8086 if (work == NULL)
8087 return -ENOMEM;
8088
8089 work->event = event;
8090 work->crtc = crtc;
8091 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8092 INIT_WORK(&work->work, intel_unpin_work_fn);
8093
8094 ret = drm_vblank_get(dev, intel_crtc->pipe);
8095 if (ret)
8096 goto free_work;
8097
8098 /* We borrow the event spin lock for protecting unpin_work */
8099 spin_lock_irqsave(&dev->event_lock, flags);
8100 if (intel_crtc->unpin_work) {
8101 spin_unlock_irqrestore(&dev->event_lock, flags);
8102 kfree(work);
8103 drm_vblank_put(dev, intel_crtc->pipe);
8104
8105 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8106 return -EBUSY;
8107 }
8108 intel_crtc->unpin_work = work;
8109 spin_unlock_irqrestore(&dev->event_lock, flags);
8110
8111 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8112 flush_workqueue(dev_priv->wq);
8113
8114 ret = i915_mutex_lock_interruptible(dev);
8115 if (ret)
8116 goto cleanup;
8117
8118 /* Reference the objects for the scheduled work. */
8119 drm_gem_object_reference(&work->old_fb_obj->base);
8120 drm_gem_object_reference(&obj->base);
8121
8122 crtc->fb = fb;
8123
8124 work->pending_flip_obj = obj;
8125
8126 work->enable_stall_check = true;
8127
8128 atomic_inc(&intel_crtc->unpin_work_count);
8129 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8130
8131 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8132 if (ret)
8133 goto cleanup_pending;
8134
8135 intel_disable_fbc(dev);
8136 intel_mark_fb_busy(obj, NULL);
8137 mutex_unlock(&dev->struct_mutex);
8138
8139 trace_i915_flip_request(intel_crtc->plane, obj);
8140
8141 return 0;
8142
8143 cleanup_pending:
8144 atomic_dec(&intel_crtc->unpin_work_count);
8145 crtc->fb = old_fb;
8146 drm_gem_object_unreference(&work->old_fb_obj->base);
8147 drm_gem_object_unreference(&obj->base);
8148 mutex_unlock(&dev->struct_mutex);
8149
8150 cleanup:
8151 spin_lock_irqsave(&dev->event_lock, flags);
8152 intel_crtc->unpin_work = NULL;
8153 spin_unlock_irqrestore(&dev->event_lock, flags);
8154
8155 drm_vblank_put(dev, intel_crtc->pipe);
8156 free_work:
8157 kfree(work);
8158
8159 return ret;
8160 }
8161
8162 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8163 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8164 .load_lut = intel_crtc_load_lut,
8165 };
8166
8167 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8168 struct drm_crtc *crtc)
8169 {
8170 struct drm_device *dev;
8171 struct drm_crtc *tmp;
8172 int crtc_mask = 1;
8173
8174 WARN(!crtc, "checking null crtc?\n");
8175
8176 dev = crtc->dev;
8177
8178 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8179 if (tmp == crtc)
8180 break;
8181 crtc_mask <<= 1;
8182 }
8183
8184 if (encoder->possible_crtcs & crtc_mask)
8185 return true;
8186 return false;
8187 }
8188
8189 /**
8190 * intel_modeset_update_staged_output_state
8191 *
8192 * Updates the staged output configuration state, e.g. after we've read out the
8193 * current hw state.
8194 */
8195 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8196 {
8197 struct intel_encoder *encoder;
8198 struct intel_connector *connector;
8199
8200 list_for_each_entry(connector, &dev->mode_config.connector_list,
8201 base.head) {
8202 connector->new_encoder =
8203 to_intel_encoder(connector->base.encoder);
8204 }
8205
8206 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8207 base.head) {
8208 encoder->new_crtc =
8209 to_intel_crtc(encoder->base.crtc);
8210 }
8211 }
8212
8213 /**
8214 * intel_modeset_commit_output_state
8215 *
8216 * This function copies the stage display pipe configuration to the real one.
8217 */
8218 static void intel_modeset_commit_output_state(struct drm_device *dev)
8219 {
8220 struct intel_encoder *encoder;
8221 struct intel_connector *connector;
8222
8223 list_for_each_entry(connector, &dev->mode_config.connector_list,
8224 base.head) {
8225 connector->base.encoder = &connector->new_encoder->base;
8226 }
8227
8228 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8229 base.head) {
8230 encoder->base.crtc = &encoder->new_crtc->base;
8231 }
8232 }
8233
8234 static void
8235 connected_sink_compute_bpp(struct intel_connector * connector,
8236 struct intel_crtc_config *pipe_config)
8237 {
8238 int bpp = pipe_config->pipe_bpp;
8239
8240 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8241 connector->base.base.id,
8242 drm_get_connector_name(&connector->base));
8243
8244 /* Don't use an invalid EDID bpc value */
8245 if (connector->base.display_info.bpc &&
8246 connector->base.display_info.bpc * 3 < bpp) {
8247 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8248 bpp, connector->base.display_info.bpc*3);
8249 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8250 }
8251
8252 /* Clamp bpp to 8 on screens without EDID 1.4 */
8253 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8254 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8255 bpp);
8256 pipe_config->pipe_bpp = 24;
8257 }
8258 }
8259
8260 static int
8261 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8262 struct drm_framebuffer *fb,
8263 struct intel_crtc_config *pipe_config)
8264 {
8265 struct drm_device *dev = crtc->base.dev;
8266 struct intel_connector *connector;
8267 int bpp;
8268
8269 switch (fb->pixel_format) {
8270 case DRM_FORMAT_C8:
8271 bpp = 8*3; /* since we go through a colormap */
8272 break;
8273 case DRM_FORMAT_XRGB1555:
8274 case DRM_FORMAT_ARGB1555:
8275 /* checked in intel_framebuffer_init already */
8276 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8277 return -EINVAL;
8278 case DRM_FORMAT_RGB565:
8279 bpp = 6*3; /* min is 18bpp */
8280 break;
8281 case DRM_FORMAT_XBGR8888:
8282 case DRM_FORMAT_ABGR8888:
8283 /* checked in intel_framebuffer_init already */
8284 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8285 return -EINVAL;
8286 case DRM_FORMAT_XRGB8888:
8287 case DRM_FORMAT_ARGB8888:
8288 bpp = 8*3;
8289 break;
8290 case DRM_FORMAT_XRGB2101010:
8291 case DRM_FORMAT_ARGB2101010:
8292 case DRM_FORMAT_XBGR2101010:
8293 case DRM_FORMAT_ABGR2101010:
8294 /* checked in intel_framebuffer_init already */
8295 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8296 return -EINVAL;
8297 bpp = 10*3;
8298 break;
8299 /* TODO: gen4+ supports 16 bpc floating point, too. */
8300 default:
8301 DRM_DEBUG_KMS("unsupported depth\n");
8302 return -EINVAL;
8303 }
8304
8305 pipe_config->pipe_bpp = bpp;
8306
8307 /* Clamp display bpp to EDID value */
8308 list_for_each_entry(connector, &dev->mode_config.connector_list,
8309 base.head) {
8310 if (!connector->new_encoder ||
8311 connector->new_encoder->new_crtc != crtc)
8312 continue;
8313
8314 connected_sink_compute_bpp(connector, pipe_config);
8315 }
8316
8317 return bpp;
8318 }
8319
8320 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8321 struct intel_crtc_config *pipe_config,
8322 const char *context)
8323 {
8324 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8325 context, pipe_name(crtc->pipe));
8326
8327 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8328 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8329 pipe_config->pipe_bpp, pipe_config->dither);
8330 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8331 pipe_config->has_pch_encoder,
8332 pipe_config->fdi_lanes,
8333 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8334 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8335 pipe_config->fdi_m_n.tu);
8336 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8337 pipe_config->has_dp_encoder,
8338 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8339 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8340 pipe_config->dp_m_n.tu);
8341 DRM_DEBUG_KMS("requested mode:\n");
8342 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8343 DRM_DEBUG_KMS("adjusted mode:\n");
8344 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8345 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8346 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8347 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8348 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8349 pipe_config->gmch_pfit.control,
8350 pipe_config->gmch_pfit.pgm_ratios,
8351 pipe_config->gmch_pfit.lvds_border_bits);
8352 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8353 pipe_config->pch_pfit.pos,
8354 pipe_config->pch_pfit.size);
8355 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8356 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8357 }
8358
8359 static bool check_encoder_cloning(struct drm_crtc *crtc)
8360 {
8361 int num_encoders = 0;
8362 bool uncloneable_encoders = false;
8363 struct intel_encoder *encoder;
8364
8365 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8366 base.head) {
8367 if (&encoder->new_crtc->base != crtc)
8368 continue;
8369
8370 num_encoders++;
8371 if (!encoder->cloneable)
8372 uncloneable_encoders = true;
8373 }
8374
8375 return !(num_encoders > 1 && uncloneable_encoders);
8376 }
8377
8378 static struct intel_crtc_config *
8379 intel_modeset_pipe_config(struct drm_crtc *crtc,
8380 struct drm_framebuffer *fb,
8381 struct drm_display_mode *mode)
8382 {
8383 struct drm_device *dev = crtc->dev;
8384 struct intel_encoder *encoder;
8385 struct intel_crtc_config *pipe_config;
8386 int plane_bpp, ret = -EINVAL;
8387 bool retry = true;
8388
8389 if (!check_encoder_cloning(crtc)) {
8390 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8391 return ERR_PTR(-EINVAL);
8392 }
8393
8394 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8395 if (!pipe_config)
8396 return ERR_PTR(-ENOMEM);
8397
8398 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8399 drm_mode_copy(&pipe_config->requested_mode, mode);
8400
8401 pipe_config->pipe_src_w = mode->hdisplay;
8402 pipe_config->pipe_src_h = mode->vdisplay;
8403
8404 pipe_config->cpu_transcoder =
8405 (enum transcoder) to_intel_crtc(crtc)->pipe;
8406 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8407
8408 /*
8409 * Sanitize sync polarity flags based on requested ones. If neither
8410 * positive or negative polarity is requested, treat this as meaning
8411 * negative polarity.
8412 */
8413 if (!(pipe_config->adjusted_mode.flags &
8414 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8415 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8416
8417 if (!(pipe_config->adjusted_mode.flags &
8418 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8419 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8420
8421 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8422 * plane pixel format and any sink constraints into account. Returns the
8423 * source plane bpp so that dithering can be selected on mismatches
8424 * after encoders and crtc also have had their say. */
8425 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8426 fb, pipe_config);
8427 if (plane_bpp < 0)
8428 goto fail;
8429
8430 encoder_retry:
8431 /* Ensure the port clock defaults are reset when retrying. */
8432 pipe_config->port_clock = 0;
8433 pipe_config->pixel_multiplier = 1;
8434
8435 /* Fill in default crtc timings, allow encoders to overwrite them. */
8436 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8437
8438 /* Pass our mode to the connectors and the CRTC to give them a chance to
8439 * adjust it according to limitations or connector properties, and also
8440 * a chance to reject the mode entirely.
8441 */
8442 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8443 base.head) {
8444
8445 if (&encoder->new_crtc->base != crtc)
8446 continue;
8447
8448 if (!(encoder->compute_config(encoder, pipe_config))) {
8449 DRM_DEBUG_KMS("Encoder config failure\n");
8450 goto fail;
8451 }
8452 }
8453
8454 /* Set default port clock if not overwritten by the encoder. Needs to be
8455 * done afterwards in case the encoder adjusts the mode. */
8456 if (!pipe_config->port_clock)
8457 pipe_config->port_clock = pipe_config->adjusted_mode.clock *
8458 pipe_config->pixel_multiplier;
8459
8460 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8461 if (ret < 0) {
8462 DRM_DEBUG_KMS("CRTC fixup failed\n");
8463 goto fail;
8464 }
8465
8466 if (ret == RETRY) {
8467 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8468 ret = -EINVAL;
8469 goto fail;
8470 }
8471
8472 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8473 retry = false;
8474 goto encoder_retry;
8475 }
8476
8477 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8478 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8479 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8480
8481 return pipe_config;
8482 fail:
8483 kfree(pipe_config);
8484 return ERR_PTR(ret);
8485 }
8486
8487 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8488 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8489 static void
8490 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8491 unsigned *prepare_pipes, unsigned *disable_pipes)
8492 {
8493 struct intel_crtc *intel_crtc;
8494 struct drm_device *dev = crtc->dev;
8495 struct intel_encoder *encoder;
8496 struct intel_connector *connector;
8497 struct drm_crtc *tmp_crtc;
8498
8499 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8500
8501 /* Check which crtcs have changed outputs connected to them, these need
8502 * to be part of the prepare_pipes mask. We don't (yet) support global
8503 * modeset across multiple crtcs, so modeset_pipes will only have one
8504 * bit set at most. */
8505 list_for_each_entry(connector, &dev->mode_config.connector_list,
8506 base.head) {
8507 if (connector->base.encoder == &connector->new_encoder->base)
8508 continue;
8509
8510 if (connector->base.encoder) {
8511 tmp_crtc = connector->base.encoder->crtc;
8512
8513 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8514 }
8515
8516 if (connector->new_encoder)
8517 *prepare_pipes |=
8518 1 << connector->new_encoder->new_crtc->pipe;
8519 }
8520
8521 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8522 base.head) {
8523 if (encoder->base.crtc == &encoder->new_crtc->base)
8524 continue;
8525
8526 if (encoder->base.crtc) {
8527 tmp_crtc = encoder->base.crtc;
8528
8529 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8530 }
8531
8532 if (encoder->new_crtc)
8533 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8534 }
8535
8536 /* Check for any pipes that will be fully disabled ... */
8537 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8538 base.head) {
8539 bool used = false;
8540
8541 /* Don't try to disable disabled crtcs. */
8542 if (!intel_crtc->base.enabled)
8543 continue;
8544
8545 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8546 base.head) {
8547 if (encoder->new_crtc == intel_crtc)
8548 used = true;
8549 }
8550
8551 if (!used)
8552 *disable_pipes |= 1 << intel_crtc->pipe;
8553 }
8554
8555
8556 /* set_mode is also used to update properties on life display pipes. */
8557 intel_crtc = to_intel_crtc(crtc);
8558 if (crtc->enabled)
8559 *prepare_pipes |= 1 << intel_crtc->pipe;
8560
8561 /*
8562 * For simplicity do a full modeset on any pipe where the output routing
8563 * changed. We could be more clever, but that would require us to be
8564 * more careful with calling the relevant encoder->mode_set functions.
8565 */
8566 if (*prepare_pipes)
8567 *modeset_pipes = *prepare_pipes;
8568
8569 /* ... and mask these out. */
8570 *modeset_pipes &= ~(*disable_pipes);
8571 *prepare_pipes &= ~(*disable_pipes);
8572
8573 /*
8574 * HACK: We don't (yet) fully support global modesets. intel_set_config
8575 * obies this rule, but the modeset restore mode of
8576 * intel_modeset_setup_hw_state does not.
8577 */
8578 *modeset_pipes &= 1 << intel_crtc->pipe;
8579 *prepare_pipes &= 1 << intel_crtc->pipe;
8580
8581 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8582 *modeset_pipes, *prepare_pipes, *disable_pipes);
8583 }
8584
8585 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8586 {
8587 struct drm_encoder *encoder;
8588 struct drm_device *dev = crtc->dev;
8589
8590 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8591 if (encoder->crtc == crtc)
8592 return true;
8593
8594 return false;
8595 }
8596
8597 static void
8598 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8599 {
8600 struct intel_encoder *intel_encoder;
8601 struct intel_crtc *intel_crtc;
8602 struct drm_connector *connector;
8603
8604 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8605 base.head) {
8606 if (!intel_encoder->base.crtc)
8607 continue;
8608
8609 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8610
8611 if (prepare_pipes & (1 << intel_crtc->pipe))
8612 intel_encoder->connectors_active = false;
8613 }
8614
8615 intel_modeset_commit_output_state(dev);
8616
8617 /* Update computed state. */
8618 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8619 base.head) {
8620 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8621 }
8622
8623 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8624 if (!connector->encoder || !connector->encoder->crtc)
8625 continue;
8626
8627 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8628
8629 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8630 struct drm_property *dpms_property =
8631 dev->mode_config.dpms_property;
8632
8633 connector->dpms = DRM_MODE_DPMS_ON;
8634 drm_object_property_set_value(&connector->base,
8635 dpms_property,
8636 DRM_MODE_DPMS_ON);
8637
8638 intel_encoder = to_intel_encoder(connector->encoder);
8639 intel_encoder->connectors_active = true;
8640 }
8641 }
8642
8643 }
8644
8645 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8646 {
8647 int diff;
8648
8649 if (clock1 == clock2)
8650 return true;
8651
8652 if (!clock1 || !clock2)
8653 return false;
8654
8655 diff = abs(clock1 - clock2);
8656
8657 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8658 return true;
8659
8660 return false;
8661 }
8662
8663 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8664 list_for_each_entry((intel_crtc), \
8665 &(dev)->mode_config.crtc_list, \
8666 base.head) \
8667 if (mask & (1 <<(intel_crtc)->pipe))
8668
8669 static bool
8670 intel_pipe_config_compare(struct drm_device *dev,
8671 struct intel_crtc_config *current_config,
8672 struct intel_crtc_config *pipe_config)
8673 {
8674 #define PIPE_CONF_CHECK_X(name) \
8675 if (current_config->name != pipe_config->name) { \
8676 DRM_ERROR("mismatch in " #name " " \
8677 "(expected 0x%08x, found 0x%08x)\n", \
8678 current_config->name, \
8679 pipe_config->name); \
8680 return false; \
8681 }
8682
8683 #define PIPE_CONF_CHECK_I(name) \
8684 if (current_config->name != pipe_config->name) { \
8685 DRM_ERROR("mismatch in " #name " " \
8686 "(expected %i, found %i)\n", \
8687 current_config->name, \
8688 pipe_config->name); \
8689 return false; \
8690 }
8691
8692 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8693 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8694 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8695 "(expected %i, found %i)\n", \
8696 current_config->name & (mask), \
8697 pipe_config->name & (mask)); \
8698 return false; \
8699 }
8700
8701 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8702 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8703 DRM_ERROR("mismatch in " #name " " \
8704 "(expected %i, found %i)\n", \
8705 current_config->name, \
8706 pipe_config->name); \
8707 return false; \
8708 }
8709
8710 #define PIPE_CONF_QUIRK(quirk) \
8711 ((current_config->quirks | pipe_config->quirks) & (quirk))
8712
8713 PIPE_CONF_CHECK_I(cpu_transcoder);
8714
8715 PIPE_CONF_CHECK_I(has_pch_encoder);
8716 PIPE_CONF_CHECK_I(fdi_lanes);
8717 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8718 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8719 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8720 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8721 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8722
8723 PIPE_CONF_CHECK_I(has_dp_encoder);
8724 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8725 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8726 PIPE_CONF_CHECK_I(dp_m_n.link_m);
8727 PIPE_CONF_CHECK_I(dp_m_n.link_n);
8728 PIPE_CONF_CHECK_I(dp_m_n.tu);
8729
8730 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8731 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8732 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8733 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8734 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8735 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8736
8737 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8738 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8739 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8740 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8741 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8742 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8743
8744 PIPE_CONF_CHECK_I(pixel_multiplier);
8745
8746 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8747 DRM_MODE_FLAG_INTERLACE);
8748
8749 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8750 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8751 DRM_MODE_FLAG_PHSYNC);
8752 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8753 DRM_MODE_FLAG_NHSYNC);
8754 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8755 DRM_MODE_FLAG_PVSYNC);
8756 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8757 DRM_MODE_FLAG_NVSYNC);
8758 }
8759
8760 PIPE_CONF_CHECK_I(pipe_src_w);
8761 PIPE_CONF_CHECK_I(pipe_src_h);
8762
8763 PIPE_CONF_CHECK_I(gmch_pfit.control);
8764 /* pfit ratios are autocomputed by the hw on gen4+ */
8765 if (INTEL_INFO(dev)->gen < 4)
8766 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8767 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8768 PIPE_CONF_CHECK_I(pch_pfit.pos);
8769 PIPE_CONF_CHECK_I(pch_pfit.size);
8770
8771 PIPE_CONF_CHECK_I(ips_enabled);
8772
8773 PIPE_CONF_CHECK_I(double_wide);
8774
8775 PIPE_CONF_CHECK_I(shared_dpll);
8776 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8777 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8778 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8779 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8780
8781 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8782 PIPE_CONF_CHECK_I(pipe_bpp);
8783
8784 if (!IS_HASWELL(dev)) {
8785 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
8786 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8787 }
8788
8789 #undef PIPE_CONF_CHECK_X
8790 #undef PIPE_CONF_CHECK_I
8791 #undef PIPE_CONF_CHECK_FLAGS
8792 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8793 #undef PIPE_CONF_QUIRK
8794
8795 return true;
8796 }
8797
8798 static void
8799 check_connector_state(struct drm_device *dev)
8800 {
8801 struct intel_connector *connector;
8802
8803 list_for_each_entry(connector, &dev->mode_config.connector_list,
8804 base.head) {
8805 /* This also checks the encoder/connector hw state with the
8806 * ->get_hw_state callbacks. */
8807 intel_connector_check_state(connector);
8808
8809 WARN(&connector->new_encoder->base != connector->base.encoder,
8810 "connector's staged encoder doesn't match current encoder\n");
8811 }
8812 }
8813
8814 static void
8815 check_encoder_state(struct drm_device *dev)
8816 {
8817 struct intel_encoder *encoder;
8818 struct intel_connector *connector;
8819
8820 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8821 base.head) {
8822 bool enabled = false;
8823 bool active = false;
8824 enum pipe pipe, tracked_pipe;
8825
8826 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8827 encoder->base.base.id,
8828 drm_get_encoder_name(&encoder->base));
8829
8830 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8831 "encoder's stage crtc doesn't match current crtc\n");
8832 WARN(encoder->connectors_active && !encoder->base.crtc,
8833 "encoder's active_connectors set, but no crtc\n");
8834
8835 list_for_each_entry(connector, &dev->mode_config.connector_list,
8836 base.head) {
8837 if (connector->base.encoder != &encoder->base)
8838 continue;
8839 enabled = true;
8840 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8841 active = true;
8842 }
8843 WARN(!!encoder->base.crtc != enabled,
8844 "encoder's enabled state mismatch "
8845 "(expected %i, found %i)\n",
8846 !!encoder->base.crtc, enabled);
8847 WARN(active && !encoder->base.crtc,
8848 "active encoder with no crtc\n");
8849
8850 WARN(encoder->connectors_active != active,
8851 "encoder's computed active state doesn't match tracked active state "
8852 "(expected %i, found %i)\n", active, encoder->connectors_active);
8853
8854 active = encoder->get_hw_state(encoder, &pipe);
8855 WARN(active != encoder->connectors_active,
8856 "encoder's hw state doesn't match sw tracking "
8857 "(expected %i, found %i)\n",
8858 encoder->connectors_active, active);
8859
8860 if (!encoder->base.crtc)
8861 continue;
8862
8863 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8864 WARN(active && pipe != tracked_pipe,
8865 "active encoder's pipe doesn't match"
8866 "(expected %i, found %i)\n",
8867 tracked_pipe, pipe);
8868
8869 }
8870 }
8871
8872 static void
8873 check_crtc_state(struct drm_device *dev)
8874 {
8875 drm_i915_private_t *dev_priv = dev->dev_private;
8876 struct intel_crtc *crtc;
8877 struct intel_encoder *encoder;
8878 struct intel_crtc_config pipe_config;
8879
8880 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8881 base.head) {
8882 bool enabled = false;
8883 bool active = false;
8884
8885 memset(&pipe_config, 0, sizeof(pipe_config));
8886
8887 DRM_DEBUG_KMS("[CRTC:%d]\n",
8888 crtc->base.base.id);
8889
8890 WARN(crtc->active && !crtc->base.enabled,
8891 "active crtc, but not enabled in sw tracking\n");
8892
8893 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8894 base.head) {
8895 if (encoder->base.crtc != &crtc->base)
8896 continue;
8897 enabled = true;
8898 if (encoder->connectors_active)
8899 active = true;
8900 }
8901
8902 WARN(active != crtc->active,
8903 "crtc's computed active state doesn't match tracked active state "
8904 "(expected %i, found %i)\n", active, crtc->active);
8905 WARN(enabled != crtc->base.enabled,
8906 "crtc's computed enabled state doesn't match tracked enabled state "
8907 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8908
8909 active = dev_priv->display.get_pipe_config(crtc,
8910 &pipe_config);
8911
8912 /* hw state is inconsistent with the pipe A quirk */
8913 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8914 active = crtc->active;
8915
8916 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8917 base.head) {
8918 enum pipe pipe;
8919 if (encoder->base.crtc != &crtc->base)
8920 continue;
8921 if (encoder->get_config &&
8922 encoder->get_hw_state(encoder, &pipe))
8923 encoder->get_config(encoder, &pipe_config);
8924 }
8925
8926 WARN(crtc->active != active,
8927 "crtc active state doesn't match with hw state "
8928 "(expected %i, found %i)\n", crtc->active, active);
8929
8930 if (active &&
8931 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8932 WARN(1, "pipe state doesn't match!\n");
8933 intel_dump_pipe_config(crtc, &pipe_config,
8934 "[hw state]");
8935 intel_dump_pipe_config(crtc, &crtc->config,
8936 "[sw state]");
8937 }
8938 }
8939 }
8940
8941 static void
8942 check_shared_dpll_state(struct drm_device *dev)
8943 {
8944 drm_i915_private_t *dev_priv = dev->dev_private;
8945 struct intel_crtc *crtc;
8946 struct intel_dpll_hw_state dpll_hw_state;
8947 int i;
8948
8949 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8950 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8951 int enabled_crtcs = 0, active_crtcs = 0;
8952 bool active;
8953
8954 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8955
8956 DRM_DEBUG_KMS("%s\n", pll->name);
8957
8958 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8959
8960 WARN(pll->active > pll->refcount,
8961 "more active pll users than references: %i vs %i\n",
8962 pll->active, pll->refcount);
8963 WARN(pll->active && !pll->on,
8964 "pll in active use but not on in sw tracking\n");
8965 WARN(pll->on && !pll->active,
8966 "pll in on but not on in use in sw tracking\n");
8967 WARN(pll->on != active,
8968 "pll on state mismatch (expected %i, found %i)\n",
8969 pll->on, active);
8970
8971 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8972 base.head) {
8973 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8974 enabled_crtcs++;
8975 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8976 active_crtcs++;
8977 }
8978 WARN(pll->active != active_crtcs,
8979 "pll active crtcs mismatch (expected %i, found %i)\n",
8980 pll->active, active_crtcs);
8981 WARN(pll->refcount != enabled_crtcs,
8982 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8983 pll->refcount, enabled_crtcs);
8984
8985 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8986 sizeof(dpll_hw_state)),
8987 "pll hw state mismatch\n");
8988 }
8989 }
8990
8991 void
8992 intel_modeset_check_state(struct drm_device *dev)
8993 {
8994 check_connector_state(dev);
8995 check_encoder_state(dev);
8996 check_crtc_state(dev);
8997 check_shared_dpll_state(dev);
8998 }
8999
9000 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9001 int dotclock)
9002 {
9003 /*
9004 * FDI already provided one idea for the dotclock.
9005 * Yell if the encoder disagrees.
9006 */
9007 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
9008 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9009 pipe_config->adjusted_mode.clock, dotclock);
9010 }
9011
9012 static int __intel_set_mode(struct drm_crtc *crtc,
9013 struct drm_display_mode *mode,
9014 int x, int y, struct drm_framebuffer *fb)
9015 {
9016 struct drm_device *dev = crtc->dev;
9017 drm_i915_private_t *dev_priv = dev->dev_private;
9018 struct drm_display_mode *saved_mode, *saved_hwmode;
9019 struct intel_crtc_config *pipe_config = NULL;
9020 struct intel_crtc *intel_crtc;
9021 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9022 int ret = 0;
9023
9024 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
9025 if (!saved_mode)
9026 return -ENOMEM;
9027 saved_hwmode = saved_mode + 1;
9028
9029 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9030 &prepare_pipes, &disable_pipes);
9031
9032 *saved_hwmode = crtc->hwmode;
9033 *saved_mode = crtc->mode;
9034
9035 /* Hack: Because we don't (yet) support global modeset on multiple
9036 * crtcs, we don't keep track of the new mode for more than one crtc.
9037 * Hence simply check whether any bit is set in modeset_pipes in all the
9038 * pieces of code that are not yet converted to deal with mutliple crtcs
9039 * changing their mode at the same time. */
9040 if (modeset_pipes) {
9041 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9042 if (IS_ERR(pipe_config)) {
9043 ret = PTR_ERR(pipe_config);
9044 pipe_config = NULL;
9045
9046 goto out;
9047 }
9048 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9049 "[modeset]");
9050 }
9051
9052 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9053 intel_crtc_disable(&intel_crtc->base);
9054
9055 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9056 if (intel_crtc->base.enabled)
9057 dev_priv->display.crtc_disable(&intel_crtc->base);
9058 }
9059
9060 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9061 * to set it here already despite that we pass it down the callchain.
9062 */
9063 if (modeset_pipes) {
9064 crtc->mode = *mode;
9065 /* mode_set/enable/disable functions rely on a correct pipe
9066 * config. */
9067 to_intel_crtc(crtc)->config = *pipe_config;
9068 }
9069
9070 /* Only after disabling all output pipelines that will be changed can we
9071 * update the the output configuration. */
9072 intel_modeset_update_state(dev, prepare_pipes);
9073
9074 if (dev_priv->display.modeset_global_resources)
9075 dev_priv->display.modeset_global_resources(dev);
9076
9077 /* Set up the DPLL and any encoders state that needs to adjust or depend
9078 * on the DPLL.
9079 */
9080 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9081 ret = intel_crtc_mode_set(&intel_crtc->base,
9082 x, y, fb);
9083 if (ret)
9084 goto done;
9085 }
9086
9087 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9088 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9089 dev_priv->display.crtc_enable(&intel_crtc->base);
9090
9091 if (modeset_pipes) {
9092 /* Store real post-adjustment hardware mode. */
9093 crtc->hwmode = pipe_config->adjusted_mode;
9094
9095 /* Calculate and store various constants which
9096 * are later needed by vblank and swap-completion
9097 * timestamping. They are derived from true hwmode.
9098 */
9099 drm_calc_timestamping_constants(crtc);
9100 }
9101
9102 /* FIXME: add subpixel order */
9103 done:
9104 if (ret && crtc->enabled) {
9105 crtc->hwmode = *saved_hwmode;
9106 crtc->mode = *saved_mode;
9107 }
9108
9109 out:
9110 kfree(pipe_config);
9111 kfree(saved_mode);
9112 return ret;
9113 }
9114
9115 static int intel_set_mode(struct drm_crtc *crtc,
9116 struct drm_display_mode *mode,
9117 int x, int y, struct drm_framebuffer *fb)
9118 {
9119 int ret;
9120
9121 ret = __intel_set_mode(crtc, mode, x, y, fb);
9122
9123 if (ret == 0)
9124 intel_modeset_check_state(crtc->dev);
9125
9126 return ret;
9127 }
9128
9129 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9130 {
9131 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9132 }
9133
9134 #undef for_each_intel_crtc_masked
9135
9136 static void intel_set_config_free(struct intel_set_config *config)
9137 {
9138 if (!config)
9139 return;
9140
9141 kfree(config->save_connector_encoders);
9142 kfree(config->save_encoder_crtcs);
9143 kfree(config);
9144 }
9145
9146 static int intel_set_config_save_state(struct drm_device *dev,
9147 struct intel_set_config *config)
9148 {
9149 struct drm_encoder *encoder;
9150 struct drm_connector *connector;
9151 int count;
9152
9153 config->save_encoder_crtcs =
9154 kcalloc(dev->mode_config.num_encoder,
9155 sizeof(struct drm_crtc *), GFP_KERNEL);
9156 if (!config->save_encoder_crtcs)
9157 return -ENOMEM;
9158
9159 config->save_connector_encoders =
9160 kcalloc(dev->mode_config.num_connector,
9161 sizeof(struct drm_encoder *), GFP_KERNEL);
9162 if (!config->save_connector_encoders)
9163 return -ENOMEM;
9164
9165 /* Copy data. Note that driver private data is not affected.
9166 * Should anything bad happen only the expected state is
9167 * restored, not the drivers personal bookkeeping.
9168 */
9169 count = 0;
9170 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9171 config->save_encoder_crtcs[count++] = encoder->crtc;
9172 }
9173
9174 count = 0;
9175 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9176 config->save_connector_encoders[count++] = connector->encoder;
9177 }
9178
9179 return 0;
9180 }
9181
9182 static void intel_set_config_restore_state(struct drm_device *dev,
9183 struct intel_set_config *config)
9184 {
9185 struct intel_encoder *encoder;
9186 struct intel_connector *connector;
9187 int count;
9188
9189 count = 0;
9190 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9191 encoder->new_crtc =
9192 to_intel_crtc(config->save_encoder_crtcs[count++]);
9193 }
9194
9195 count = 0;
9196 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9197 connector->new_encoder =
9198 to_intel_encoder(config->save_connector_encoders[count++]);
9199 }
9200 }
9201
9202 static bool
9203 is_crtc_connector_off(struct drm_mode_set *set)
9204 {
9205 int i;
9206
9207 if (set->num_connectors == 0)
9208 return false;
9209
9210 if (WARN_ON(set->connectors == NULL))
9211 return false;
9212
9213 for (i = 0; i < set->num_connectors; i++)
9214 if (set->connectors[i]->encoder &&
9215 set->connectors[i]->encoder->crtc == set->crtc &&
9216 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9217 return true;
9218
9219 return false;
9220 }
9221
9222 static void
9223 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9224 struct intel_set_config *config)
9225 {
9226
9227 /* We should be able to check here if the fb has the same properties
9228 * and then just flip_or_move it */
9229 if (is_crtc_connector_off(set)) {
9230 config->mode_changed = true;
9231 } else if (set->crtc->fb != set->fb) {
9232 /* If we have no fb then treat it as a full mode set */
9233 if (set->crtc->fb == NULL) {
9234 struct intel_crtc *intel_crtc =
9235 to_intel_crtc(set->crtc);
9236
9237 if (intel_crtc->active && i915_fastboot) {
9238 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9239 config->fb_changed = true;
9240 } else {
9241 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9242 config->mode_changed = true;
9243 }
9244 } else if (set->fb == NULL) {
9245 config->mode_changed = true;
9246 } else if (set->fb->pixel_format !=
9247 set->crtc->fb->pixel_format) {
9248 config->mode_changed = true;
9249 } else {
9250 config->fb_changed = true;
9251 }
9252 }
9253
9254 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9255 config->fb_changed = true;
9256
9257 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9258 DRM_DEBUG_KMS("modes are different, full mode set\n");
9259 drm_mode_debug_printmodeline(&set->crtc->mode);
9260 drm_mode_debug_printmodeline(set->mode);
9261 config->mode_changed = true;
9262 }
9263
9264 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9265 set->crtc->base.id, config->mode_changed, config->fb_changed);
9266 }
9267
9268 static int
9269 intel_modeset_stage_output_state(struct drm_device *dev,
9270 struct drm_mode_set *set,
9271 struct intel_set_config *config)
9272 {
9273 struct drm_crtc *new_crtc;
9274 struct intel_connector *connector;
9275 struct intel_encoder *encoder;
9276 int ro;
9277
9278 /* The upper layers ensure that we either disable a crtc or have a list
9279 * of connectors. For paranoia, double-check this. */
9280 WARN_ON(!set->fb && (set->num_connectors != 0));
9281 WARN_ON(set->fb && (set->num_connectors == 0));
9282
9283 list_for_each_entry(connector, &dev->mode_config.connector_list,
9284 base.head) {
9285 /* Otherwise traverse passed in connector list and get encoders
9286 * for them. */
9287 for (ro = 0; ro < set->num_connectors; ro++) {
9288 if (set->connectors[ro] == &connector->base) {
9289 connector->new_encoder = connector->encoder;
9290 break;
9291 }
9292 }
9293
9294 /* If we disable the crtc, disable all its connectors. Also, if
9295 * the connector is on the changing crtc but not on the new
9296 * connector list, disable it. */
9297 if ((!set->fb || ro == set->num_connectors) &&
9298 connector->base.encoder &&
9299 connector->base.encoder->crtc == set->crtc) {
9300 connector->new_encoder = NULL;
9301
9302 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9303 connector->base.base.id,
9304 drm_get_connector_name(&connector->base));
9305 }
9306
9307
9308 if (&connector->new_encoder->base != connector->base.encoder) {
9309 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9310 config->mode_changed = true;
9311 }
9312 }
9313 /* connector->new_encoder is now updated for all connectors. */
9314
9315 /* Update crtc of enabled connectors. */
9316 list_for_each_entry(connector, &dev->mode_config.connector_list,
9317 base.head) {
9318 if (!connector->new_encoder)
9319 continue;
9320
9321 new_crtc = connector->new_encoder->base.crtc;
9322
9323 for (ro = 0; ro < set->num_connectors; ro++) {
9324 if (set->connectors[ro] == &connector->base)
9325 new_crtc = set->crtc;
9326 }
9327
9328 /* Make sure the new CRTC will work with the encoder */
9329 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9330 new_crtc)) {
9331 return -EINVAL;
9332 }
9333 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9334
9335 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9336 connector->base.base.id,
9337 drm_get_connector_name(&connector->base),
9338 new_crtc->base.id);
9339 }
9340
9341 /* Check for any encoders that needs to be disabled. */
9342 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9343 base.head) {
9344 list_for_each_entry(connector,
9345 &dev->mode_config.connector_list,
9346 base.head) {
9347 if (connector->new_encoder == encoder) {
9348 WARN_ON(!connector->new_encoder->new_crtc);
9349
9350 goto next_encoder;
9351 }
9352 }
9353 encoder->new_crtc = NULL;
9354 next_encoder:
9355 /* Only now check for crtc changes so we don't miss encoders
9356 * that will be disabled. */
9357 if (&encoder->new_crtc->base != encoder->base.crtc) {
9358 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9359 config->mode_changed = true;
9360 }
9361 }
9362 /* Now we've also updated encoder->new_crtc for all encoders. */
9363
9364 return 0;
9365 }
9366
9367 static int intel_crtc_set_config(struct drm_mode_set *set)
9368 {
9369 struct drm_device *dev;
9370 struct drm_mode_set save_set;
9371 struct intel_set_config *config;
9372 int ret;
9373
9374 BUG_ON(!set);
9375 BUG_ON(!set->crtc);
9376 BUG_ON(!set->crtc->helper_private);
9377
9378 /* Enforce sane interface api - has been abused by the fb helper. */
9379 BUG_ON(!set->mode && set->fb);
9380 BUG_ON(set->fb && set->num_connectors == 0);
9381
9382 if (set->fb) {
9383 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9384 set->crtc->base.id, set->fb->base.id,
9385 (int)set->num_connectors, set->x, set->y);
9386 } else {
9387 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9388 }
9389
9390 dev = set->crtc->dev;
9391
9392 ret = -ENOMEM;
9393 config = kzalloc(sizeof(*config), GFP_KERNEL);
9394 if (!config)
9395 goto out_config;
9396
9397 ret = intel_set_config_save_state(dev, config);
9398 if (ret)
9399 goto out_config;
9400
9401 save_set.crtc = set->crtc;
9402 save_set.mode = &set->crtc->mode;
9403 save_set.x = set->crtc->x;
9404 save_set.y = set->crtc->y;
9405 save_set.fb = set->crtc->fb;
9406
9407 /* Compute whether we need a full modeset, only an fb base update or no
9408 * change at all. In the future we might also check whether only the
9409 * mode changed, e.g. for LVDS where we only change the panel fitter in
9410 * such cases. */
9411 intel_set_config_compute_mode_changes(set, config);
9412
9413 ret = intel_modeset_stage_output_state(dev, set, config);
9414 if (ret)
9415 goto fail;
9416
9417 if (config->mode_changed) {
9418 ret = intel_set_mode(set->crtc, set->mode,
9419 set->x, set->y, set->fb);
9420 } else if (config->fb_changed) {
9421 intel_crtc_wait_for_pending_flips(set->crtc);
9422
9423 ret = intel_pipe_set_base(set->crtc,
9424 set->x, set->y, set->fb);
9425 }
9426
9427 if (ret) {
9428 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9429 set->crtc->base.id, ret);
9430 fail:
9431 intel_set_config_restore_state(dev, config);
9432
9433 /* Try to restore the config */
9434 if (config->mode_changed &&
9435 intel_set_mode(save_set.crtc, save_set.mode,
9436 save_set.x, save_set.y, save_set.fb))
9437 DRM_ERROR("failed to restore config after modeset failure\n");
9438 }
9439
9440 out_config:
9441 intel_set_config_free(config);
9442 return ret;
9443 }
9444
9445 static const struct drm_crtc_funcs intel_crtc_funcs = {
9446 .cursor_set = intel_crtc_cursor_set,
9447 .cursor_move = intel_crtc_cursor_move,
9448 .gamma_set = intel_crtc_gamma_set,
9449 .set_config = intel_crtc_set_config,
9450 .destroy = intel_crtc_destroy,
9451 .page_flip = intel_crtc_page_flip,
9452 };
9453
9454 static void intel_cpu_pll_init(struct drm_device *dev)
9455 {
9456 if (HAS_DDI(dev))
9457 intel_ddi_pll_init(dev);
9458 }
9459
9460 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9461 struct intel_shared_dpll *pll,
9462 struct intel_dpll_hw_state *hw_state)
9463 {
9464 uint32_t val;
9465
9466 val = I915_READ(PCH_DPLL(pll->id));
9467 hw_state->dpll = val;
9468 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9469 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9470
9471 return val & DPLL_VCO_ENABLE;
9472 }
9473
9474 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9475 struct intel_shared_dpll *pll)
9476 {
9477 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9478 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9479 }
9480
9481 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9482 struct intel_shared_dpll *pll)
9483 {
9484 /* PCH refclock must be enabled first */
9485 assert_pch_refclk_enabled(dev_priv);
9486
9487 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9488
9489 /* Wait for the clocks to stabilize. */
9490 POSTING_READ(PCH_DPLL(pll->id));
9491 udelay(150);
9492
9493 /* The pixel multiplier can only be updated once the
9494 * DPLL is enabled and the clocks are stable.
9495 *
9496 * So write it again.
9497 */
9498 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9499 POSTING_READ(PCH_DPLL(pll->id));
9500 udelay(200);
9501 }
9502
9503 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9504 struct intel_shared_dpll *pll)
9505 {
9506 struct drm_device *dev = dev_priv->dev;
9507 struct intel_crtc *crtc;
9508
9509 /* Make sure no transcoder isn't still depending on us. */
9510 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9511 if (intel_crtc_to_shared_dpll(crtc) == pll)
9512 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9513 }
9514
9515 I915_WRITE(PCH_DPLL(pll->id), 0);
9516 POSTING_READ(PCH_DPLL(pll->id));
9517 udelay(200);
9518 }
9519
9520 static char *ibx_pch_dpll_names[] = {
9521 "PCH DPLL A",
9522 "PCH DPLL B",
9523 };
9524
9525 static void ibx_pch_dpll_init(struct drm_device *dev)
9526 {
9527 struct drm_i915_private *dev_priv = dev->dev_private;
9528 int i;
9529
9530 dev_priv->num_shared_dpll = 2;
9531
9532 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9533 dev_priv->shared_dplls[i].id = i;
9534 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9535 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9536 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9537 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9538 dev_priv->shared_dplls[i].get_hw_state =
9539 ibx_pch_dpll_get_hw_state;
9540 }
9541 }
9542
9543 static void intel_shared_dpll_init(struct drm_device *dev)
9544 {
9545 struct drm_i915_private *dev_priv = dev->dev_private;
9546
9547 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9548 ibx_pch_dpll_init(dev);
9549 else
9550 dev_priv->num_shared_dpll = 0;
9551
9552 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9553 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9554 dev_priv->num_shared_dpll);
9555 }
9556
9557 static void intel_crtc_init(struct drm_device *dev, int pipe)
9558 {
9559 drm_i915_private_t *dev_priv = dev->dev_private;
9560 struct intel_crtc *intel_crtc;
9561 int i;
9562
9563 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9564 if (intel_crtc == NULL)
9565 return;
9566
9567 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9568
9569 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9570 for (i = 0; i < 256; i++) {
9571 intel_crtc->lut_r[i] = i;
9572 intel_crtc->lut_g[i] = i;
9573 intel_crtc->lut_b[i] = i;
9574 }
9575
9576 /* Swap pipes & planes for FBC on pre-965 */
9577 intel_crtc->pipe = pipe;
9578 intel_crtc->plane = pipe;
9579 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9580 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9581 intel_crtc->plane = !pipe;
9582 }
9583
9584 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9585 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9586 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9587 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9588
9589 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9590 }
9591
9592 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9593 struct drm_file *file)
9594 {
9595 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9596 struct drm_mode_object *drmmode_obj;
9597 struct intel_crtc *crtc;
9598
9599 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9600 return -ENODEV;
9601
9602 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9603 DRM_MODE_OBJECT_CRTC);
9604
9605 if (!drmmode_obj) {
9606 DRM_ERROR("no such CRTC id\n");
9607 return -EINVAL;
9608 }
9609
9610 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9611 pipe_from_crtc_id->pipe = crtc->pipe;
9612
9613 return 0;
9614 }
9615
9616 static int intel_encoder_clones(struct intel_encoder *encoder)
9617 {
9618 struct drm_device *dev = encoder->base.dev;
9619 struct intel_encoder *source_encoder;
9620 int index_mask = 0;
9621 int entry = 0;
9622
9623 list_for_each_entry(source_encoder,
9624 &dev->mode_config.encoder_list, base.head) {
9625
9626 if (encoder == source_encoder)
9627 index_mask |= (1 << entry);
9628
9629 /* Intel hw has only one MUX where enocoders could be cloned. */
9630 if (encoder->cloneable && source_encoder->cloneable)
9631 index_mask |= (1 << entry);
9632
9633 entry++;
9634 }
9635
9636 return index_mask;
9637 }
9638
9639 static bool has_edp_a(struct drm_device *dev)
9640 {
9641 struct drm_i915_private *dev_priv = dev->dev_private;
9642
9643 if (!IS_MOBILE(dev))
9644 return false;
9645
9646 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9647 return false;
9648
9649 if (IS_GEN5(dev) &&
9650 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9651 return false;
9652
9653 return true;
9654 }
9655
9656 static void intel_setup_outputs(struct drm_device *dev)
9657 {
9658 struct drm_i915_private *dev_priv = dev->dev_private;
9659 struct intel_encoder *encoder;
9660 bool dpd_is_edp = false;
9661
9662 intel_lvds_init(dev);
9663
9664 if (!IS_ULT(dev))
9665 intel_crt_init(dev);
9666
9667 if (HAS_DDI(dev)) {
9668 int found;
9669
9670 /* Haswell uses DDI functions to detect digital outputs */
9671 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9672 /* DDI A only supports eDP */
9673 if (found)
9674 intel_ddi_init(dev, PORT_A);
9675
9676 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9677 * register */
9678 found = I915_READ(SFUSE_STRAP);
9679
9680 if (found & SFUSE_STRAP_DDIB_DETECTED)
9681 intel_ddi_init(dev, PORT_B);
9682 if (found & SFUSE_STRAP_DDIC_DETECTED)
9683 intel_ddi_init(dev, PORT_C);
9684 if (found & SFUSE_STRAP_DDID_DETECTED)
9685 intel_ddi_init(dev, PORT_D);
9686 } else if (HAS_PCH_SPLIT(dev)) {
9687 int found;
9688 dpd_is_edp = intel_dpd_is_edp(dev);
9689
9690 if (has_edp_a(dev))
9691 intel_dp_init(dev, DP_A, PORT_A);
9692
9693 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9694 /* PCH SDVOB multiplex with HDMIB */
9695 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9696 if (!found)
9697 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9698 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9699 intel_dp_init(dev, PCH_DP_B, PORT_B);
9700 }
9701
9702 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9703 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9704
9705 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9706 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9707
9708 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9709 intel_dp_init(dev, PCH_DP_C, PORT_C);
9710
9711 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9712 intel_dp_init(dev, PCH_DP_D, PORT_D);
9713 } else if (IS_VALLEYVIEW(dev)) {
9714 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9715 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9716 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9717 PORT_C);
9718 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9719 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9720 PORT_C);
9721 }
9722
9723 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9724 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9725 PORT_B);
9726 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9727 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9728 }
9729
9730 intel_dsi_init(dev);
9731 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9732 bool found = false;
9733
9734 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9735 DRM_DEBUG_KMS("probing SDVOB\n");
9736 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9737 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9738 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9739 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9740 }
9741
9742 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9743 intel_dp_init(dev, DP_B, PORT_B);
9744 }
9745
9746 /* Before G4X SDVOC doesn't have its own detect register */
9747
9748 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9749 DRM_DEBUG_KMS("probing SDVOC\n");
9750 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9751 }
9752
9753 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9754
9755 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9756 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9757 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9758 }
9759 if (SUPPORTS_INTEGRATED_DP(dev))
9760 intel_dp_init(dev, DP_C, PORT_C);
9761 }
9762
9763 if (SUPPORTS_INTEGRATED_DP(dev) &&
9764 (I915_READ(DP_D) & DP_DETECTED))
9765 intel_dp_init(dev, DP_D, PORT_D);
9766 } else if (IS_GEN2(dev))
9767 intel_dvo_init(dev);
9768
9769 if (SUPPORTS_TV(dev))
9770 intel_tv_init(dev);
9771
9772 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9773 encoder->base.possible_crtcs = encoder->crtc_mask;
9774 encoder->base.possible_clones =
9775 intel_encoder_clones(encoder);
9776 }
9777
9778 intel_init_pch_refclk(dev);
9779
9780 drm_helper_move_panel_connectors_to_head(dev);
9781 }
9782
9783 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9784 {
9785 drm_framebuffer_cleanup(&fb->base);
9786 drm_gem_object_unreference_unlocked(&fb->obj->base);
9787 }
9788
9789 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9790 {
9791 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9792
9793 intel_framebuffer_fini(intel_fb);
9794 kfree(intel_fb);
9795 }
9796
9797 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9798 struct drm_file *file,
9799 unsigned int *handle)
9800 {
9801 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9802 struct drm_i915_gem_object *obj = intel_fb->obj;
9803
9804 return drm_gem_handle_create(file, &obj->base, handle);
9805 }
9806
9807 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9808 .destroy = intel_user_framebuffer_destroy,
9809 .create_handle = intel_user_framebuffer_create_handle,
9810 };
9811
9812 int intel_framebuffer_init(struct drm_device *dev,
9813 struct intel_framebuffer *intel_fb,
9814 struct drm_mode_fb_cmd2 *mode_cmd,
9815 struct drm_i915_gem_object *obj)
9816 {
9817 int pitch_limit;
9818 int ret;
9819
9820 if (obj->tiling_mode == I915_TILING_Y) {
9821 DRM_DEBUG("hardware does not support tiling Y\n");
9822 return -EINVAL;
9823 }
9824
9825 if (mode_cmd->pitches[0] & 63) {
9826 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9827 mode_cmd->pitches[0]);
9828 return -EINVAL;
9829 }
9830
9831 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9832 pitch_limit = 32*1024;
9833 } else if (INTEL_INFO(dev)->gen >= 4) {
9834 if (obj->tiling_mode)
9835 pitch_limit = 16*1024;
9836 else
9837 pitch_limit = 32*1024;
9838 } else if (INTEL_INFO(dev)->gen >= 3) {
9839 if (obj->tiling_mode)
9840 pitch_limit = 8*1024;
9841 else
9842 pitch_limit = 16*1024;
9843 } else
9844 /* XXX DSPC is limited to 4k tiled */
9845 pitch_limit = 8*1024;
9846
9847 if (mode_cmd->pitches[0] > pitch_limit) {
9848 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9849 obj->tiling_mode ? "tiled" : "linear",
9850 mode_cmd->pitches[0], pitch_limit);
9851 return -EINVAL;
9852 }
9853
9854 if (obj->tiling_mode != I915_TILING_NONE &&
9855 mode_cmd->pitches[0] != obj->stride) {
9856 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9857 mode_cmd->pitches[0], obj->stride);
9858 return -EINVAL;
9859 }
9860
9861 /* Reject formats not supported by any plane early. */
9862 switch (mode_cmd->pixel_format) {
9863 case DRM_FORMAT_C8:
9864 case DRM_FORMAT_RGB565:
9865 case DRM_FORMAT_XRGB8888:
9866 case DRM_FORMAT_ARGB8888:
9867 break;
9868 case DRM_FORMAT_XRGB1555:
9869 case DRM_FORMAT_ARGB1555:
9870 if (INTEL_INFO(dev)->gen > 3) {
9871 DRM_DEBUG("unsupported pixel format: %s\n",
9872 drm_get_format_name(mode_cmd->pixel_format));
9873 return -EINVAL;
9874 }
9875 break;
9876 case DRM_FORMAT_XBGR8888:
9877 case DRM_FORMAT_ABGR8888:
9878 case DRM_FORMAT_XRGB2101010:
9879 case DRM_FORMAT_ARGB2101010:
9880 case DRM_FORMAT_XBGR2101010:
9881 case DRM_FORMAT_ABGR2101010:
9882 if (INTEL_INFO(dev)->gen < 4) {
9883 DRM_DEBUG("unsupported pixel format: %s\n",
9884 drm_get_format_name(mode_cmd->pixel_format));
9885 return -EINVAL;
9886 }
9887 break;
9888 case DRM_FORMAT_YUYV:
9889 case DRM_FORMAT_UYVY:
9890 case DRM_FORMAT_YVYU:
9891 case DRM_FORMAT_VYUY:
9892 if (INTEL_INFO(dev)->gen < 5) {
9893 DRM_DEBUG("unsupported pixel format: %s\n",
9894 drm_get_format_name(mode_cmd->pixel_format));
9895 return -EINVAL;
9896 }
9897 break;
9898 default:
9899 DRM_DEBUG("unsupported pixel format: %s\n",
9900 drm_get_format_name(mode_cmd->pixel_format));
9901 return -EINVAL;
9902 }
9903
9904 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9905 if (mode_cmd->offsets[0] != 0)
9906 return -EINVAL;
9907
9908 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9909 intel_fb->obj = obj;
9910
9911 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9912 if (ret) {
9913 DRM_ERROR("framebuffer init failed %d\n", ret);
9914 return ret;
9915 }
9916
9917 return 0;
9918 }
9919
9920 static struct drm_framebuffer *
9921 intel_user_framebuffer_create(struct drm_device *dev,
9922 struct drm_file *filp,
9923 struct drm_mode_fb_cmd2 *mode_cmd)
9924 {
9925 struct drm_i915_gem_object *obj;
9926
9927 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9928 mode_cmd->handles[0]));
9929 if (&obj->base == NULL)
9930 return ERR_PTR(-ENOENT);
9931
9932 return intel_framebuffer_create(dev, mode_cmd, obj);
9933 }
9934
9935 static const struct drm_mode_config_funcs intel_mode_funcs = {
9936 .fb_create = intel_user_framebuffer_create,
9937 .output_poll_changed = intel_fb_output_poll_changed,
9938 };
9939
9940 /* Set up chip specific display functions */
9941 static void intel_init_display(struct drm_device *dev)
9942 {
9943 struct drm_i915_private *dev_priv = dev->dev_private;
9944
9945 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9946 dev_priv->display.find_dpll = g4x_find_best_dpll;
9947 else if (IS_VALLEYVIEW(dev))
9948 dev_priv->display.find_dpll = vlv_find_best_dpll;
9949 else if (IS_PINEVIEW(dev))
9950 dev_priv->display.find_dpll = pnv_find_best_dpll;
9951 else
9952 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9953
9954 if (HAS_DDI(dev)) {
9955 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9956 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9957 dev_priv->display.crtc_enable = haswell_crtc_enable;
9958 dev_priv->display.crtc_disable = haswell_crtc_disable;
9959 dev_priv->display.off = haswell_crtc_off;
9960 dev_priv->display.update_plane = ironlake_update_plane;
9961 } else if (HAS_PCH_SPLIT(dev)) {
9962 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9963 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9964 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9965 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9966 dev_priv->display.off = ironlake_crtc_off;
9967 dev_priv->display.update_plane = ironlake_update_plane;
9968 } else if (IS_VALLEYVIEW(dev)) {
9969 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9970 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9971 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9972 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9973 dev_priv->display.off = i9xx_crtc_off;
9974 dev_priv->display.update_plane = i9xx_update_plane;
9975 } else {
9976 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9977 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9978 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9979 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9980 dev_priv->display.off = i9xx_crtc_off;
9981 dev_priv->display.update_plane = i9xx_update_plane;
9982 }
9983
9984 /* Returns the core display clock speed */
9985 if (IS_VALLEYVIEW(dev))
9986 dev_priv->display.get_display_clock_speed =
9987 valleyview_get_display_clock_speed;
9988 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9989 dev_priv->display.get_display_clock_speed =
9990 i945_get_display_clock_speed;
9991 else if (IS_I915G(dev))
9992 dev_priv->display.get_display_clock_speed =
9993 i915_get_display_clock_speed;
9994 else if (IS_I945GM(dev) || IS_845G(dev))
9995 dev_priv->display.get_display_clock_speed =
9996 i9xx_misc_get_display_clock_speed;
9997 else if (IS_PINEVIEW(dev))
9998 dev_priv->display.get_display_clock_speed =
9999 pnv_get_display_clock_speed;
10000 else if (IS_I915GM(dev))
10001 dev_priv->display.get_display_clock_speed =
10002 i915gm_get_display_clock_speed;
10003 else if (IS_I865G(dev))
10004 dev_priv->display.get_display_clock_speed =
10005 i865_get_display_clock_speed;
10006 else if (IS_I85X(dev))
10007 dev_priv->display.get_display_clock_speed =
10008 i855_get_display_clock_speed;
10009 else /* 852, 830 */
10010 dev_priv->display.get_display_clock_speed =
10011 i830_get_display_clock_speed;
10012
10013 if (HAS_PCH_SPLIT(dev)) {
10014 if (IS_GEN5(dev)) {
10015 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10016 dev_priv->display.write_eld = ironlake_write_eld;
10017 } else if (IS_GEN6(dev)) {
10018 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10019 dev_priv->display.write_eld = ironlake_write_eld;
10020 } else if (IS_IVYBRIDGE(dev)) {
10021 /* FIXME: detect B0+ stepping and use auto training */
10022 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10023 dev_priv->display.write_eld = ironlake_write_eld;
10024 dev_priv->display.modeset_global_resources =
10025 ivb_modeset_global_resources;
10026 } else if (IS_HASWELL(dev)) {
10027 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10028 dev_priv->display.write_eld = haswell_write_eld;
10029 dev_priv->display.modeset_global_resources =
10030 haswell_modeset_global_resources;
10031 }
10032 } else if (IS_G4X(dev)) {
10033 dev_priv->display.write_eld = g4x_write_eld;
10034 }
10035
10036 /* Default just returns -ENODEV to indicate unsupported */
10037 dev_priv->display.queue_flip = intel_default_queue_flip;
10038
10039 switch (INTEL_INFO(dev)->gen) {
10040 case 2:
10041 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10042 break;
10043
10044 case 3:
10045 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10046 break;
10047
10048 case 4:
10049 case 5:
10050 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10051 break;
10052
10053 case 6:
10054 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10055 break;
10056 case 7:
10057 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10058 break;
10059 }
10060 }
10061
10062 /*
10063 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10064 * resume, or other times. This quirk makes sure that's the case for
10065 * affected systems.
10066 */
10067 static void quirk_pipea_force(struct drm_device *dev)
10068 {
10069 struct drm_i915_private *dev_priv = dev->dev_private;
10070
10071 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10072 DRM_INFO("applying pipe a force quirk\n");
10073 }
10074
10075 /*
10076 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10077 */
10078 static void quirk_ssc_force_disable(struct drm_device *dev)
10079 {
10080 struct drm_i915_private *dev_priv = dev->dev_private;
10081 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10082 DRM_INFO("applying lvds SSC disable quirk\n");
10083 }
10084
10085 /*
10086 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10087 * brightness value
10088 */
10089 static void quirk_invert_brightness(struct drm_device *dev)
10090 {
10091 struct drm_i915_private *dev_priv = dev->dev_private;
10092 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10093 DRM_INFO("applying inverted panel brightness quirk\n");
10094 }
10095
10096 /*
10097 * Some machines (Dell XPS13) suffer broken backlight controls if
10098 * BLM_PCH_PWM_ENABLE is set.
10099 */
10100 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10101 {
10102 struct drm_i915_private *dev_priv = dev->dev_private;
10103 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10104 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10105 }
10106
10107 struct intel_quirk {
10108 int device;
10109 int subsystem_vendor;
10110 int subsystem_device;
10111 void (*hook)(struct drm_device *dev);
10112 };
10113
10114 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10115 struct intel_dmi_quirk {
10116 void (*hook)(struct drm_device *dev);
10117 const struct dmi_system_id (*dmi_id_list)[];
10118 };
10119
10120 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10121 {
10122 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10123 return 1;
10124 }
10125
10126 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10127 {
10128 .dmi_id_list = &(const struct dmi_system_id[]) {
10129 {
10130 .callback = intel_dmi_reverse_brightness,
10131 .ident = "NCR Corporation",
10132 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10133 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10134 },
10135 },
10136 { } /* terminating entry */
10137 },
10138 .hook = quirk_invert_brightness,
10139 },
10140 };
10141
10142 static struct intel_quirk intel_quirks[] = {
10143 /* HP Mini needs pipe A force quirk (LP: #322104) */
10144 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10145
10146 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10147 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10148
10149 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10150 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10151
10152 /* 830/845 need to leave pipe A & dpll A up */
10153 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10154 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10155
10156 /* Lenovo U160 cannot use SSC on LVDS */
10157 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10158
10159 /* Sony Vaio Y cannot use SSC on LVDS */
10160 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10161
10162 /* Acer Aspire 5734Z must invert backlight brightness */
10163 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
10164
10165 /* Acer/eMachines G725 */
10166 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10167
10168 /* Acer/eMachines e725 */
10169 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10170
10171 /* Acer/Packard Bell NCL20 */
10172 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10173
10174 /* Acer Aspire 4736Z */
10175 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10176
10177 /* Dell XPS13 HD Sandy Bridge */
10178 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10179 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10180 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10181 };
10182
10183 static void intel_init_quirks(struct drm_device *dev)
10184 {
10185 struct pci_dev *d = dev->pdev;
10186 int i;
10187
10188 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10189 struct intel_quirk *q = &intel_quirks[i];
10190
10191 if (d->device == q->device &&
10192 (d->subsystem_vendor == q->subsystem_vendor ||
10193 q->subsystem_vendor == PCI_ANY_ID) &&
10194 (d->subsystem_device == q->subsystem_device ||
10195 q->subsystem_device == PCI_ANY_ID))
10196 q->hook(dev);
10197 }
10198 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10199 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10200 intel_dmi_quirks[i].hook(dev);
10201 }
10202 }
10203
10204 /* Disable the VGA plane that we never use */
10205 static void i915_disable_vga(struct drm_device *dev)
10206 {
10207 struct drm_i915_private *dev_priv = dev->dev_private;
10208 u8 sr1;
10209 u32 vga_reg = i915_vgacntrl_reg(dev);
10210
10211 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10212 outb(SR01, VGA_SR_INDEX);
10213 sr1 = inb(VGA_SR_DATA);
10214 outb(sr1 | 1<<5, VGA_SR_DATA);
10215
10216 /* Disable VGA memory on Intel HD */
10217 if (HAS_PCH_SPLIT(dev)) {
10218 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10219 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10220 VGA_RSRC_NORMAL_IO |
10221 VGA_RSRC_NORMAL_MEM);
10222 }
10223
10224 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10225 udelay(300);
10226
10227 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10228 POSTING_READ(vga_reg);
10229 }
10230
10231 static void i915_enable_vga(struct drm_device *dev)
10232 {
10233 /* Enable VGA memory on Intel HD */
10234 if (HAS_PCH_SPLIT(dev)) {
10235 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10236 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10237 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10238 VGA_RSRC_LEGACY_MEM |
10239 VGA_RSRC_NORMAL_IO |
10240 VGA_RSRC_NORMAL_MEM);
10241 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10242 }
10243 }
10244
10245 void intel_modeset_init_hw(struct drm_device *dev)
10246 {
10247 intel_init_power_well(dev);
10248
10249 intel_prepare_ddi(dev);
10250
10251 intel_init_clock_gating(dev);
10252
10253 mutex_lock(&dev->struct_mutex);
10254 intel_enable_gt_powersave(dev);
10255 mutex_unlock(&dev->struct_mutex);
10256 }
10257
10258 void intel_modeset_suspend_hw(struct drm_device *dev)
10259 {
10260 intel_suspend_hw(dev);
10261 }
10262
10263 void intel_modeset_init(struct drm_device *dev)
10264 {
10265 struct drm_i915_private *dev_priv = dev->dev_private;
10266 int i, j, ret;
10267
10268 drm_mode_config_init(dev);
10269
10270 dev->mode_config.min_width = 0;
10271 dev->mode_config.min_height = 0;
10272
10273 dev->mode_config.preferred_depth = 24;
10274 dev->mode_config.prefer_shadow = 1;
10275
10276 dev->mode_config.funcs = &intel_mode_funcs;
10277
10278 intel_init_quirks(dev);
10279
10280 intel_init_pm(dev);
10281
10282 if (INTEL_INFO(dev)->num_pipes == 0)
10283 return;
10284
10285 intel_init_display(dev);
10286
10287 if (IS_GEN2(dev)) {
10288 dev->mode_config.max_width = 2048;
10289 dev->mode_config.max_height = 2048;
10290 } else if (IS_GEN3(dev)) {
10291 dev->mode_config.max_width = 4096;
10292 dev->mode_config.max_height = 4096;
10293 } else {
10294 dev->mode_config.max_width = 8192;
10295 dev->mode_config.max_height = 8192;
10296 }
10297 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10298
10299 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10300 INTEL_INFO(dev)->num_pipes,
10301 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10302
10303 for_each_pipe(i) {
10304 intel_crtc_init(dev, i);
10305 for (j = 0; j < dev_priv->num_plane; j++) {
10306 ret = intel_plane_init(dev, i, j);
10307 if (ret)
10308 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10309 pipe_name(i), sprite_name(i, j), ret);
10310 }
10311 }
10312
10313 intel_cpu_pll_init(dev);
10314 intel_shared_dpll_init(dev);
10315
10316 /* Just disable it once at startup */
10317 i915_disable_vga(dev);
10318 intel_setup_outputs(dev);
10319
10320 /* Just in case the BIOS is doing something questionable. */
10321 intel_disable_fbc(dev);
10322 }
10323
10324 static void
10325 intel_connector_break_all_links(struct intel_connector *connector)
10326 {
10327 connector->base.dpms = DRM_MODE_DPMS_OFF;
10328 connector->base.encoder = NULL;
10329 connector->encoder->connectors_active = false;
10330 connector->encoder->base.crtc = NULL;
10331 }
10332
10333 static void intel_enable_pipe_a(struct drm_device *dev)
10334 {
10335 struct intel_connector *connector;
10336 struct drm_connector *crt = NULL;
10337 struct intel_load_detect_pipe load_detect_temp;
10338
10339 /* We can't just switch on the pipe A, we need to set things up with a
10340 * proper mode and output configuration. As a gross hack, enable pipe A
10341 * by enabling the load detect pipe once. */
10342 list_for_each_entry(connector,
10343 &dev->mode_config.connector_list,
10344 base.head) {
10345 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10346 crt = &connector->base;
10347 break;
10348 }
10349 }
10350
10351 if (!crt)
10352 return;
10353
10354 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10355 intel_release_load_detect_pipe(crt, &load_detect_temp);
10356
10357
10358 }
10359
10360 static bool
10361 intel_check_plane_mapping(struct intel_crtc *crtc)
10362 {
10363 struct drm_device *dev = crtc->base.dev;
10364 struct drm_i915_private *dev_priv = dev->dev_private;
10365 u32 reg, val;
10366
10367 if (INTEL_INFO(dev)->num_pipes == 1)
10368 return true;
10369
10370 reg = DSPCNTR(!crtc->plane);
10371 val = I915_READ(reg);
10372
10373 if ((val & DISPLAY_PLANE_ENABLE) &&
10374 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10375 return false;
10376
10377 return true;
10378 }
10379
10380 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10381 {
10382 struct drm_device *dev = crtc->base.dev;
10383 struct drm_i915_private *dev_priv = dev->dev_private;
10384 u32 reg;
10385
10386 /* Clear any frame start delays used for debugging left by the BIOS */
10387 reg = PIPECONF(crtc->config.cpu_transcoder);
10388 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10389
10390 /* We need to sanitize the plane -> pipe mapping first because this will
10391 * disable the crtc (and hence change the state) if it is wrong. Note
10392 * that gen4+ has a fixed plane -> pipe mapping. */
10393 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10394 struct intel_connector *connector;
10395 bool plane;
10396
10397 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10398 crtc->base.base.id);
10399
10400 /* Pipe has the wrong plane attached and the plane is active.
10401 * Temporarily change the plane mapping and disable everything
10402 * ... */
10403 plane = crtc->plane;
10404 crtc->plane = !plane;
10405 dev_priv->display.crtc_disable(&crtc->base);
10406 crtc->plane = plane;
10407
10408 /* ... and break all links. */
10409 list_for_each_entry(connector, &dev->mode_config.connector_list,
10410 base.head) {
10411 if (connector->encoder->base.crtc != &crtc->base)
10412 continue;
10413
10414 intel_connector_break_all_links(connector);
10415 }
10416
10417 WARN_ON(crtc->active);
10418 crtc->base.enabled = false;
10419 }
10420
10421 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10422 crtc->pipe == PIPE_A && !crtc->active) {
10423 /* BIOS forgot to enable pipe A, this mostly happens after
10424 * resume. Force-enable the pipe to fix this, the update_dpms
10425 * call below we restore the pipe to the right state, but leave
10426 * the required bits on. */
10427 intel_enable_pipe_a(dev);
10428 }
10429
10430 /* Adjust the state of the output pipe according to whether we
10431 * have active connectors/encoders. */
10432 intel_crtc_update_dpms(&crtc->base);
10433
10434 if (crtc->active != crtc->base.enabled) {
10435 struct intel_encoder *encoder;
10436
10437 /* This can happen either due to bugs in the get_hw_state
10438 * functions or because the pipe is force-enabled due to the
10439 * pipe A quirk. */
10440 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10441 crtc->base.base.id,
10442 crtc->base.enabled ? "enabled" : "disabled",
10443 crtc->active ? "enabled" : "disabled");
10444
10445 crtc->base.enabled = crtc->active;
10446
10447 /* Because we only establish the connector -> encoder ->
10448 * crtc links if something is active, this means the
10449 * crtc is now deactivated. Break the links. connector
10450 * -> encoder links are only establish when things are
10451 * actually up, hence no need to break them. */
10452 WARN_ON(crtc->active);
10453
10454 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10455 WARN_ON(encoder->connectors_active);
10456 encoder->base.crtc = NULL;
10457 }
10458 }
10459 }
10460
10461 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10462 {
10463 struct intel_connector *connector;
10464 struct drm_device *dev = encoder->base.dev;
10465
10466 /* We need to check both for a crtc link (meaning that the
10467 * encoder is active and trying to read from a pipe) and the
10468 * pipe itself being active. */
10469 bool has_active_crtc = encoder->base.crtc &&
10470 to_intel_crtc(encoder->base.crtc)->active;
10471
10472 if (encoder->connectors_active && !has_active_crtc) {
10473 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10474 encoder->base.base.id,
10475 drm_get_encoder_name(&encoder->base));
10476
10477 /* Connector is active, but has no active pipe. This is
10478 * fallout from our resume register restoring. Disable
10479 * the encoder manually again. */
10480 if (encoder->base.crtc) {
10481 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10482 encoder->base.base.id,
10483 drm_get_encoder_name(&encoder->base));
10484 encoder->disable(encoder);
10485 }
10486
10487 /* Inconsistent output/port/pipe state happens presumably due to
10488 * a bug in one of the get_hw_state functions. Or someplace else
10489 * in our code, like the register restore mess on resume. Clamp
10490 * things to off as a safer default. */
10491 list_for_each_entry(connector,
10492 &dev->mode_config.connector_list,
10493 base.head) {
10494 if (connector->encoder != encoder)
10495 continue;
10496
10497 intel_connector_break_all_links(connector);
10498 }
10499 }
10500 /* Enabled encoders without active connectors will be fixed in
10501 * the crtc fixup. */
10502 }
10503
10504 void i915_redisable_vga(struct drm_device *dev)
10505 {
10506 struct drm_i915_private *dev_priv = dev->dev_private;
10507 u32 vga_reg = i915_vgacntrl_reg(dev);
10508
10509 /* This function can be called both from intel_modeset_setup_hw_state or
10510 * at a very early point in our resume sequence, where the power well
10511 * structures are not yet restored. Since this function is at a very
10512 * paranoid "someone might have enabled VGA while we were not looking"
10513 * level, just check if the power well is enabled instead of trying to
10514 * follow the "don't touch the power well if we don't need it" policy
10515 * the rest of the driver uses. */
10516 if (HAS_POWER_WELL(dev) &&
10517 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10518 return;
10519
10520 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10521 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10522 i915_disable_vga(dev);
10523 }
10524 }
10525
10526 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10527 {
10528 struct drm_i915_private *dev_priv = dev->dev_private;
10529 enum pipe pipe;
10530 struct intel_crtc *crtc;
10531 struct intel_encoder *encoder;
10532 struct intel_connector *connector;
10533 int i;
10534
10535 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10536 base.head) {
10537 memset(&crtc->config, 0, sizeof(crtc->config));
10538
10539 crtc->active = dev_priv->display.get_pipe_config(crtc,
10540 &crtc->config);
10541
10542 crtc->base.enabled = crtc->active;
10543
10544 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10545 crtc->base.base.id,
10546 crtc->active ? "enabled" : "disabled");
10547 }
10548
10549 /* FIXME: Smash this into the new shared dpll infrastructure. */
10550 if (HAS_DDI(dev))
10551 intel_ddi_setup_hw_pll_state(dev);
10552
10553 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10554 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10555
10556 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10557 pll->active = 0;
10558 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10559 base.head) {
10560 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10561 pll->active++;
10562 }
10563 pll->refcount = pll->active;
10564
10565 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10566 pll->name, pll->refcount, pll->on);
10567 }
10568
10569 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10570 base.head) {
10571 pipe = 0;
10572
10573 if (encoder->get_hw_state(encoder, &pipe)) {
10574 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10575 encoder->base.crtc = &crtc->base;
10576 if (encoder->get_config)
10577 encoder->get_config(encoder, &crtc->config);
10578 } else {
10579 encoder->base.crtc = NULL;
10580 }
10581
10582 encoder->connectors_active = false;
10583 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10584 encoder->base.base.id,
10585 drm_get_encoder_name(&encoder->base),
10586 encoder->base.crtc ? "enabled" : "disabled",
10587 pipe);
10588 }
10589
10590 list_for_each_entry(connector, &dev->mode_config.connector_list,
10591 base.head) {
10592 if (connector->get_hw_state(connector)) {
10593 connector->base.dpms = DRM_MODE_DPMS_ON;
10594 connector->encoder->connectors_active = true;
10595 connector->base.encoder = &connector->encoder->base;
10596 } else {
10597 connector->base.dpms = DRM_MODE_DPMS_OFF;
10598 connector->base.encoder = NULL;
10599 }
10600 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10601 connector->base.base.id,
10602 drm_get_connector_name(&connector->base),
10603 connector->base.encoder ? "enabled" : "disabled");
10604 }
10605 }
10606
10607 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10608 * and i915 state tracking structures. */
10609 void intel_modeset_setup_hw_state(struct drm_device *dev,
10610 bool force_restore)
10611 {
10612 struct drm_i915_private *dev_priv = dev->dev_private;
10613 enum pipe pipe;
10614 struct drm_plane *plane;
10615 struct intel_crtc *crtc;
10616 struct intel_encoder *encoder;
10617 int i;
10618
10619 intel_modeset_readout_hw_state(dev);
10620
10621 /*
10622 * Now that we have the config, copy it to each CRTC struct
10623 * Note that this could go away if we move to using crtc_config
10624 * checking everywhere.
10625 */
10626 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10627 base.head) {
10628 if (crtc->active && i915_fastboot) {
10629 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10630
10631 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10632 crtc->base.base.id);
10633 drm_mode_debug_printmodeline(&crtc->base.mode);
10634 }
10635 }
10636
10637 /* HW state is read out, now we need to sanitize this mess. */
10638 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10639 base.head) {
10640 intel_sanitize_encoder(encoder);
10641 }
10642
10643 for_each_pipe(pipe) {
10644 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10645 intel_sanitize_crtc(crtc);
10646 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10647 }
10648
10649 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10650 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10651
10652 if (!pll->on || pll->active)
10653 continue;
10654
10655 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10656
10657 pll->disable(dev_priv, pll);
10658 pll->on = false;
10659 }
10660
10661 if (force_restore) {
10662 /*
10663 * We need to use raw interfaces for restoring state to avoid
10664 * checking (bogus) intermediate states.
10665 */
10666 for_each_pipe(pipe) {
10667 struct drm_crtc *crtc =
10668 dev_priv->pipe_to_crtc_mapping[pipe];
10669
10670 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10671 crtc->fb);
10672 }
10673 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10674 intel_plane_restore(plane);
10675
10676 i915_redisable_vga(dev);
10677 } else {
10678 intel_modeset_update_staged_output_state(dev);
10679 }
10680
10681 intel_modeset_check_state(dev);
10682
10683 drm_mode_config_reset(dev);
10684 }
10685
10686 void intel_modeset_gem_init(struct drm_device *dev)
10687 {
10688 intel_modeset_init_hw(dev);
10689
10690 intel_setup_overlay(dev);
10691
10692 intel_modeset_setup_hw_state(dev, false);
10693 }
10694
10695 void intel_modeset_cleanup(struct drm_device *dev)
10696 {
10697 struct drm_i915_private *dev_priv = dev->dev_private;
10698 struct drm_crtc *crtc;
10699
10700 /*
10701 * Interrupts and polling as the first thing to avoid creating havoc.
10702 * Too much stuff here (turning of rps, connectors, ...) would
10703 * experience fancy races otherwise.
10704 */
10705 drm_irq_uninstall(dev);
10706 cancel_work_sync(&dev_priv->hotplug_work);
10707 /*
10708 * Due to the hpd irq storm handling the hotplug work can re-arm the
10709 * poll handlers. Hence disable polling after hpd handling is shut down.
10710 */
10711 drm_kms_helper_poll_fini(dev);
10712
10713 mutex_lock(&dev->struct_mutex);
10714
10715 intel_unregister_dsm_handler();
10716
10717 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10718 /* Skip inactive CRTCs */
10719 if (!crtc->fb)
10720 continue;
10721
10722 intel_increase_pllclock(crtc);
10723 }
10724
10725 intel_disable_fbc(dev);
10726
10727 i915_enable_vga(dev);
10728
10729 intel_disable_gt_powersave(dev);
10730
10731 ironlake_teardown_rc6(dev);
10732
10733 mutex_unlock(&dev->struct_mutex);
10734
10735 /* flush any delayed tasks or pending work */
10736 flush_scheduled_work();
10737
10738 /* destroy backlight, if any, before the connectors */
10739 intel_panel_destroy_backlight(dev);
10740
10741 drm_mode_config_cleanup(dev);
10742
10743 intel_cleanup_overlay(dev);
10744 }
10745
10746 /*
10747 * Return which encoder is currently attached for connector.
10748 */
10749 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10750 {
10751 return &intel_attached_encoder(connector)->base;
10752 }
10753
10754 void intel_connector_attach_encoder(struct intel_connector *connector,
10755 struct intel_encoder *encoder)
10756 {
10757 connector->encoder = encoder;
10758 drm_mode_connector_attach_encoder(&connector->base,
10759 &encoder->base);
10760 }
10761
10762 /*
10763 * set vga decode state - true == enable VGA decode
10764 */
10765 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10766 {
10767 struct drm_i915_private *dev_priv = dev->dev_private;
10768 u16 gmch_ctrl;
10769
10770 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10771 if (state)
10772 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10773 else
10774 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10775 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10776 return 0;
10777 }
10778
10779 struct intel_display_error_state {
10780
10781 u32 power_well_driver;
10782
10783 int num_transcoders;
10784
10785 struct intel_cursor_error_state {
10786 u32 control;
10787 u32 position;
10788 u32 base;
10789 u32 size;
10790 } cursor[I915_MAX_PIPES];
10791
10792 struct intel_pipe_error_state {
10793 u32 source;
10794 } pipe[I915_MAX_PIPES];
10795
10796 struct intel_plane_error_state {
10797 u32 control;
10798 u32 stride;
10799 u32 size;
10800 u32 pos;
10801 u32 addr;
10802 u32 surface;
10803 u32 tile_offset;
10804 } plane[I915_MAX_PIPES];
10805
10806 struct intel_transcoder_error_state {
10807 enum transcoder cpu_transcoder;
10808
10809 u32 conf;
10810
10811 u32 htotal;
10812 u32 hblank;
10813 u32 hsync;
10814 u32 vtotal;
10815 u32 vblank;
10816 u32 vsync;
10817 } transcoder[4];
10818 };
10819
10820 struct intel_display_error_state *
10821 intel_display_capture_error_state(struct drm_device *dev)
10822 {
10823 drm_i915_private_t *dev_priv = dev->dev_private;
10824 struct intel_display_error_state *error;
10825 int transcoders[] = {
10826 TRANSCODER_A,
10827 TRANSCODER_B,
10828 TRANSCODER_C,
10829 TRANSCODER_EDP,
10830 };
10831 int i;
10832
10833 if (INTEL_INFO(dev)->num_pipes == 0)
10834 return NULL;
10835
10836 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10837 if (error == NULL)
10838 return NULL;
10839
10840 if (HAS_POWER_WELL(dev))
10841 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10842
10843 for_each_pipe(i) {
10844 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10845 error->cursor[i].control = I915_READ(CURCNTR(i));
10846 error->cursor[i].position = I915_READ(CURPOS(i));
10847 error->cursor[i].base = I915_READ(CURBASE(i));
10848 } else {
10849 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10850 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10851 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10852 }
10853
10854 error->plane[i].control = I915_READ(DSPCNTR(i));
10855 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10856 if (INTEL_INFO(dev)->gen <= 3) {
10857 error->plane[i].size = I915_READ(DSPSIZE(i));
10858 error->plane[i].pos = I915_READ(DSPPOS(i));
10859 }
10860 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10861 error->plane[i].addr = I915_READ(DSPADDR(i));
10862 if (INTEL_INFO(dev)->gen >= 4) {
10863 error->plane[i].surface = I915_READ(DSPSURF(i));
10864 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10865 }
10866
10867 error->pipe[i].source = I915_READ(PIPESRC(i));
10868 }
10869
10870 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10871 if (HAS_DDI(dev_priv->dev))
10872 error->num_transcoders++; /* Account for eDP. */
10873
10874 for (i = 0; i < error->num_transcoders; i++) {
10875 enum transcoder cpu_transcoder = transcoders[i];
10876
10877 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10878
10879 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10880 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10881 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10882 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10883 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10884 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10885 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10886 }
10887
10888 /* In the code above we read the registers without checking if the power
10889 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10890 * prevent the next I915_WRITE from detecting it and printing an error
10891 * message. */
10892 intel_uncore_clear_errors(dev);
10893
10894 return error;
10895 }
10896
10897 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10898
10899 void
10900 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10901 struct drm_device *dev,
10902 struct intel_display_error_state *error)
10903 {
10904 int i;
10905
10906 if (!error)
10907 return;
10908
10909 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10910 if (HAS_POWER_WELL(dev))
10911 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10912 error->power_well_driver);
10913 for_each_pipe(i) {
10914 err_printf(m, "Pipe [%d]:\n", i);
10915 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10916
10917 err_printf(m, "Plane [%d]:\n", i);
10918 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10919 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10920 if (INTEL_INFO(dev)->gen <= 3) {
10921 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10922 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10923 }
10924 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10925 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10926 if (INTEL_INFO(dev)->gen >= 4) {
10927 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10928 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10929 }
10930
10931 err_printf(m, "Cursor [%d]:\n", i);
10932 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10933 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10934 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10935 }
10936
10937 for (i = 0; i < error->num_transcoders; i++) {
10938 err_printf(m, " CPU transcoder: %c\n",
10939 transcoder_name(error->transcoder[i].cpu_transcoder));
10940 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
10941 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
10942 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
10943 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
10944 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
10945 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
10946 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
10947 }
10948 }
This page took 0.330367 seconds and 5 git commands to generate.