Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
100
101 static inline u32 /* units of 100MHz */
102 intel_fdi_link_freq(struct drm_device *dev)
103 {
104 if (IS_GEN5(dev)) {
105 struct drm_i915_private *dev_priv = dev->dev_private;
106 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
107 } else
108 return 27;
109 }
110
111 static const intel_limit_t intel_limits_i8xx_dvo = {
112 .dot = { .min = 25000, .max = 350000 },
113 .vco = { .min = 930000, .max = 1400000 },
114 .n = { .min = 3, .max = 16 },
115 .m = { .min = 96, .max = 140 },
116 .m1 = { .min = 18, .max = 26 },
117 .m2 = { .min = 6, .max = 16 },
118 .p = { .min = 4, .max = 128 },
119 .p1 = { .min = 2, .max = 33 },
120 .p2 = { .dot_limit = 165000,
121 .p2_slow = 4, .p2_fast = 2 },
122 .find_pll = intel_find_best_PLL,
123 };
124
125 static const intel_limit_t intel_limits_i8xx_lvds = {
126 .dot = { .min = 25000, .max = 350000 },
127 .vco = { .min = 930000, .max = 1400000 },
128 .n = { .min = 3, .max = 16 },
129 .m = { .min = 96, .max = 140 },
130 .m1 = { .min = 18, .max = 26 },
131 .m2 = { .min = 6, .max = 16 },
132 .p = { .min = 4, .max = 128 },
133 .p1 = { .min = 1, .max = 6 },
134 .p2 = { .dot_limit = 165000,
135 .p2_slow = 14, .p2_fast = 7 },
136 .find_pll = intel_find_best_PLL,
137 };
138
139 static const intel_limit_t intel_limits_i9xx_sdvo = {
140 .dot = { .min = 20000, .max = 400000 },
141 .vco = { .min = 1400000, .max = 2800000 },
142 .n = { .min = 1, .max = 6 },
143 .m = { .min = 70, .max = 120 },
144 .m1 = { .min = 10, .max = 22 },
145 .m2 = { .min = 5, .max = 9 },
146 .p = { .min = 5, .max = 80 },
147 .p1 = { .min = 1, .max = 8 },
148 .p2 = { .dot_limit = 200000,
149 .p2_slow = 10, .p2_fast = 5 },
150 .find_pll = intel_find_best_PLL,
151 };
152
153 static const intel_limit_t intel_limits_i9xx_lvds = {
154 .dot = { .min = 20000, .max = 400000 },
155 .vco = { .min = 1400000, .max = 2800000 },
156 .n = { .min = 1, .max = 6 },
157 .m = { .min = 70, .max = 120 },
158 .m1 = { .min = 10, .max = 22 },
159 .m2 = { .min = 5, .max = 9 },
160 .p = { .min = 7, .max = 98 },
161 .p1 = { .min = 1, .max = 8 },
162 .p2 = { .dot_limit = 112000,
163 .p2_slow = 14, .p2_fast = 7 },
164 .find_pll = intel_find_best_PLL,
165 };
166
167
168 static const intel_limit_t intel_limits_g4x_sdvo = {
169 .dot = { .min = 25000, .max = 270000 },
170 .vco = { .min = 1750000, .max = 3500000},
171 .n = { .min = 1, .max = 4 },
172 .m = { .min = 104, .max = 138 },
173 .m1 = { .min = 17, .max = 23 },
174 .m2 = { .min = 5, .max = 11 },
175 .p = { .min = 10, .max = 30 },
176 .p1 = { .min = 1, .max = 3},
177 .p2 = { .dot_limit = 270000,
178 .p2_slow = 10,
179 .p2_fast = 10
180 },
181 .find_pll = intel_g4x_find_best_PLL,
182 };
183
184 static const intel_limit_t intel_limits_g4x_hdmi = {
185 .dot = { .min = 22000, .max = 400000 },
186 .vco = { .min = 1750000, .max = 3500000},
187 .n = { .min = 1, .max = 4 },
188 .m = { .min = 104, .max = 138 },
189 .m1 = { .min = 16, .max = 23 },
190 .m2 = { .min = 5, .max = 11 },
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8},
193 .p2 = { .dot_limit = 165000,
194 .p2_slow = 10, .p2_fast = 5 },
195 .find_pll = intel_g4x_find_best_PLL,
196 };
197
198 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
199 .dot = { .min = 20000, .max = 115000 },
200 .vco = { .min = 1750000, .max = 3500000 },
201 .n = { .min = 1, .max = 3 },
202 .m = { .min = 104, .max = 138 },
203 .m1 = { .min = 17, .max = 23 },
204 .m2 = { .min = 5, .max = 11 },
205 .p = { .min = 28, .max = 112 },
206 .p1 = { .min = 2, .max = 8 },
207 .p2 = { .dot_limit = 0,
208 .p2_slow = 14, .p2_fast = 14
209 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
214 .dot = { .min = 80000, .max = 224000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 14, .max = 42 },
221 .p1 = { .min = 2, .max = 6 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 7, .p2_fast = 7
224 },
225 .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_display_port = {
229 .dot = { .min = 161670, .max = 227000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 2 },
232 .m = { .min = 97, .max = 108 },
233 .m1 = { .min = 0x10, .max = 0x12 },
234 .m2 = { .min = 0x05, .max = 0x06 },
235 .p = { .min = 10, .max = 20 },
236 .p1 = { .min = 1, .max = 2},
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 10, .p2_fast = 10 },
239 .find_pll = intel_find_pll_g4x_dp,
240 };
241
242 static const intel_limit_t intel_limits_pineview_sdvo = {
243 .dot = { .min = 20000, .max = 400000},
244 .vco = { .min = 1700000, .max = 3500000 },
245 /* Pineview's Ncounter is a ring counter */
246 .n = { .min = 3, .max = 6 },
247 .m = { .min = 2, .max = 256 },
248 /* Pineview only has one combined m divider, which we treat as m2. */
249 .m1 = { .min = 0, .max = 0 },
250 .m2 = { .min = 0, .max = 254 },
251 .p = { .min = 5, .max = 80 },
252 .p1 = { .min = 1, .max = 8 },
253 .p2 = { .dot_limit = 200000,
254 .p2_slow = 10, .p2_fast = 5 },
255 .find_pll = intel_find_best_PLL,
256 };
257
258 static const intel_limit_t intel_limits_pineview_lvds = {
259 .dot = { .min = 20000, .max = 400000 },
260 .vco = { .min = 1700000, .max = 3500000 },
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
263 .m1 = { .min = 0, .max = 0 },
264 .m2 = { .min = 0, .max = 254 },
265 .p = { .min = 7, .max = 112 },
266 .p1 = { .min = 1, .max = 8 },
267 .p2 = { .dot_limit = 112000,
268 .p2_slow = 14, .p2_fast = 14 },
269 .find_pll = intel_find_best_PLL,
270 };
271
272 /* Ironlake / Sandybridge
273 *
274 * We calculate clock using (register_value + 2) for N/M1/M2, so here
275 * the range value for them is (actual_value - 2).
276 */
277 static const intel_limit_t intel_limits_ironlake_dac = {
278 .dot = { .min = 25000, .max = 350000 },
279 .vco = { .min = 1760000, .max = 3510000 },
280 .n = { .min = 1, .max = 5 },
281 .m = { .min = 79, .max = 127 },
282 .m1 = { .min = 12, .max = 22 },
283 .m2 = { .min = 5, .max = 9 },
284 .p = { .min = 5, .max = 80 },
285 .p1 = { .min = 1, .max = 8 },
286 .p2 = { .dot_limit = 225000,
287 .p2_slow = 10, .p2_fast = 5 },
288 .find_pll = intel_g4x_find_best_PLL,
289 };
290
291 static const intel_limit_t intel_limits_ironlake_single_lvds = {
292 .dot = { .min = 25000, .max = 350000 },
293 .vco = { .min = 1760000, .max = 3510000 },
294 .n = { .min = 1, .max = 3 },
295 .m = { .min = 79, .max = 118 },
296 .m1 = { .min = 12, .max = 22 },
297 .m2 = { .min = 5, .max = 9 },
298 .p = { .min = 28, .max = 112 },
299 .p1 = { .min = 2, .max = 8 },
300 .p2 = { .dot_limit = 225000,
301 .p2_slow = 14, .p2_fast = 14 },
302 .find_pll = intel_g4x_find_best_PLL,
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 3 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 14, .max = 56 },
313 .p1 = { .min = 2, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 7, .p2_fast = 7 },
316 .find_pll = intel_g4x_find_best_PLL,
317 };
318
319 /* LVDS 100mhz refclk limits. */
320 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 2 },
324 .m = { .min = 79, .max = 126 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 28, .max = 112 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 14, .p2_fast = 14 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 3 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 14, .max = 42 },
342 .p1 = { .min = 2, .max = 6 },
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 7, .p2_fast = 7 },
345 .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 static const intel_limit_t intel_limits_ironlake_display_port = {
349 .dot = { .min = 25000, .max = 350000 },
350 .vco = { .min = 1760000, .max = 3510000},
351 .n = { .min = 1, .max = 2 },
352 .m = { .min = 81, .max = 90 },
353 .m1 = { .min = 12, .max = 22 },
354 .m2 = { .min = 5, .max = 9 },
355 .p = { .min = 10, .max = 20 },
356 .p1 = { .min = 1, .max = 2},
357 .p2 = { .dot_limit = 0,
358 .p2_slow = 10, .p2_fast = 10 },
359 .find_pll = intel_find_pll_ironlake_dp,
360 };
361
362 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
363 {
364 unsigned long flags;
365 u32 val = 0;
366
367 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
368 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
369 DRM_ERROR("DPIO idle wait timed out\n");
370 goto out_unlock;
371 }
372
373 I915_WRITE(DPIO_REG, reg);
374 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
375 DPIO_BYTE);
376 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
377 DRM_ERROR("DPIO read wait timed out\n");
378 goto out_unlock;
379 }
380 val = I915_READ(DPIO_DATA);
381
382 out_unlock:
383 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
384 return val;
385 }
386
387 static void vlv_init_dpio(struct drm_device *dev)
388 {
389 struct drm_i915_private *dev_priv = dev->dev_private;
390
391 /* Reset the DPIO config */
392 I915_WRITE(DPIO_CTL, 0);
393 POSTING_READ(DPIO_CTL);
394 I915_WRITE(DPIO_CTL, 1);
395 POSTING_READ(DPIO_CTL);
396 }
397
398 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
399 {
400 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
401 return 1;
402 }
403
404 static const struct dmi_system_id intel_dual_link_lvds[] = {
405 {
406 .callback = intel_dual_link_lvds_callback,
407 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
408 .matches = {
409 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
410 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
411 },
412 },
413 { } /* terminating entry */
414 };
415
416 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
417 unsigned int reg)
418 {
419 unsigned int val;
420
421 /* use the module option value if specified */
422 if (i915_lvds_channel_mode > 0)
423 return i915_lvds_channel_mode == 2;
424
425 if (dmi_check_system(intel_dual_link_lvds))
426 return true;
427
428 if (dev_priv->lvds_val)
429 val = dev_priv->lvds_val;
430 else {
431 /* BIOS should set the proper LVDS register value at boot, but
432 * in reality, it doesn't set the value when the lid is closed;
433 * we need to check "the value to be set" in VBT when LVDS
434 * register is uninitialized.
435 */
436 val = I915_READ(reg);
437 if (!(val & ~LVDS_DETECTED))
438 val = dev_priv->bios_lvds_val;
439 dev_priv->lvds_val = val;
440 }
441 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
442 }
443
444 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
445 int refclk)
446 {
447 struct drm_device *dev = crtc->dev;
448 struct drm_i915_private *dev_priv = dev->dev_private;
449 const intel_limit_t *limit;
450
451 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
452 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
453 /* LVDS dual channel */
454 if (refclk == 100000)
455 limit = &intel_limits_ironlake_dual_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_dual_lvds;
458 } else {
459 if (refclk == 100000)
460 limit = &intel_limits_ironlake_single_lvds_100m;
461 else
462 limit = &intel_limits_ironlake_single_lvds;
463 }
464 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
465 HAS_eDP)
466 limit = &intel_limits_ironlake_display_port;
467 else
468 limit = &intel_limits_ironlake_dac;
469
470 return limit;
471 }
472
473 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
474 {
475 struct drm_device *dev = crtc->dev;
476 struct drm_i915_private *dev_priv = dev->dev_private;
477 const intel_limit_t *limit;
478
479 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
480 if (is_dual_link_lvds(dev_priv, LVDS))
481 /* LVDS with dual channel */
482 limit = &intel_limits_g4x_dual_channel_lvds;
483 else
484 /* LVDS with dual channel */
485 limit = &intel_limits_g4x_single_channel_lvds;
486 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
487 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
488 limit = &intel_limits_g4x_hdmi;
489 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
490 limit = &intel_limits_g4x_sdvo;
491 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
492 limit = &intel_limits_g4x_display_port;
493 } else /* The option is for other outputs */
494 limit = &intel_limits_i9xx_sdvo;
495
496 return limit;
497 }
498
499 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
500 {
501 struct drm_device *dev = crtc->dev;
502 const intel_limit_t *limit;
503
504 if (HAS_PCH_SPLIT(dev))
505 limit = intel_ironlake_limit(crtc, refclk);
506 else if (IS_G4X(dev)) {
507 limit = intel_g4x_limit(crtc);
508 } else if (IS_PINEVIEW(dev)) {
509 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
510 limit = &intel_limits_pineview_lvds;
511 else
512 limit = &intel_limits_pineview_sdvo;
513 } else if (!IS_GEN2(dev)) {
514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
515 limit = &intel_limits_i9xx_lvds;
516 else
517 limit = &intel_limits_i9xx_sdvo;
518 } else {
519 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
520 limit = &intel_limits_i8xx_lvds;
521 else
522 limit = &intel_limits_i8xx_dvo;
523 }
524 return limit;
525 }
526
527 /* m1 is reserved as 0 in Pineview, n is a ring counter */
528 static void pineview_clock(int refclk, intel_clock_t *clock)
529 {
530 clock->m = clock->m2 + 2;
531 clock->p = clock->p1 * clock->p2;
532 clock->vco = refclk * clock->m / clock->n;
533 clock->dot = clock->vco / clock->p;
534 }
535
536 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
537 {
538 if (IS_PINEVIEW(dev)) {
539 pineview_clock(refclk, clock);
540 return;
541 }
542 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
543 clock->p = clock->p1 * clock->p2;
544 clock->vco = refclk * clock->m / (clock->n + 2);
545 clock->dot = clock->vco / clock->p;
546 }
547
548 /**
549 * Returns whether any output on the specified pipe is of the specified type
550 */
551 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
552 {
553 struct drm_device *dev = crtc->dev;
554 struct drm_mode_config *mode_config = &dev->mode_config;
555 struct intel_encoder *encoder;
556
557 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
558 if (encoder->base.crtc == crtc && encoder->type == type)
559 return true;
560
561 return false;
562 }
563
564 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
565 /**
566 * Returns whether the given set of divisors are valid for a given refclk with
567 * the given connectors.
568 */
569
570 static bool intel_PLL_is_valid(struct drm_device *dev,
571 const intel_limit_t *limit,
572 const intel_clock_t *clock)
573 {
574 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
575 INTELPllInvalid("p1 out of range\n");
576 if (clock->p < limit->p.min || limit->p.max < clock->p)
577 INTELPllInvalid("p out of range\n");
578 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
579 INTELPllInvalid("m2 out of range\n");
580 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
581 INTELPllInvalid("m1 out of range\n");
582 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
583 INTELPllInvalid("m1 <= m2\n");
584 if (clock->m < limit->m.min || limit->m.max < clock->m)
585 INTELPllInvalid("m out of range\n");
586 if (clock->n < limit->n.min || limit->n.max < clock->n)
587 INTELPllInvalid("n out of range\n");
588 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
589 INTELPllInvalid("vco out of range\n");
590 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
591 * connector, etc., rather than just a single range.
592 */
593 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
594 INTELPllInvalid("dot out of range\n");
595
596 return true;
597 }
598
599 static bool
600 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
601 int target, int refclk, intel_clock_t *match_clock,
602 intel_clock_t *best_clock)
603
604 {
605 struct drm_device *dev = crtc->dev;
606 struct drm_i915_private *dev_priv = dev->dev_private;
607 intel_clock_t clock;
608 int err = target;
609
610 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
611 (I915_READ(LVDS)) != 0) {
612 /*
613 * For LVDS, if the panel is on, just rely on its current
614 * settings for dual-channel. We haven't figured out how to
615 * reliably set up different single/dual channel state, if we
616 * even can.
617 */
618 if (is_dual_link_lvds(dev_priv, LVDS))
619 clock.p2 = limit->p2.p2_fast;
620 else
621 clock.p2 = limit->p2.p2_slow;
622 } else {
623 if (target < limit->p2.dot_limit)
624 clock.p2 = limit->p2.p2_slow;
625 else
626 clock.p2 = limit->p2.p2_fast;
627 }
628
629 memset(best_clock, 0, sizeof(*best_clock));
630
631 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
632 clock.m1++) {
633 for (clock.m2 = limit->m2.min;
634 clock.m2 <= limit->m2.max; clock.m2++) {
635 /* m1 is always 0 in Pineview */
636 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
637 break;
638 for (clock.n = limit->n.min;
639 clock.n <= limit->n.max; clock.n++) {
640 for (clock.p1 = limit->p1.min;
641 clock.p1 <= limit->p1.max; clock.p1++) {
642 int this_err;
643
644 intel_clock(dev, refclk, &clock);
645 if (!intel_PLL_is_valid(dev, limit,
646 &clock))
647 continue;
648 if (match_clock &&
649 clock.p != match_clock->p)
650 continue;
651
652 this_err = abs(clock.dot - target);
653 if (this_err < err) {
654 *best_clock = clock;
655 err = this_err;
656 }
657 }
658 }
659 }
660 }
661
662 return (err != target);
663 }
664
665 static bool
666 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
667 int target, int refclk, intel_clock_t *match_clock,
668 intel_clock_t *best_clock)
669 {
670 struct drm_device *dev = crtc->dev;
671 struct drm_i915_private *dev_priv = dev->dev_private;
672 intel_clock_t clock;
673 int max_n;
674 bool found;
675 /* approximately equals target * 0.00585 */
676 int err_most = (target >> 8) + (target >> 9);
677 found = false;
678
679 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
680 int lvds_reg;
681
682 if (HAS_PCH_SPLIT(dev))
683 lvds_reg = PCH_LVDS;
684 else
685 lvds_reg = LVDS;
686 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
687 LVDS_CLKB_POWER_UP)
688 clock.p2 = limit->p2.p2_fast;
689 else
690 clock.p2 = limit->p2.p2_slow;
691 } else {
692 if (target < limit->p2.dot_limit)
693 clock.p2 = limit->p2.p2_slow;
694 else
695 clock.p2 = limit->p2.p2_fast;
696 }
697
698 memset(best_clock, 0, sizeof(*best_clock));
699 max_n = limit->n.max;
700 /* based on hardware requirement, prefer smaller n to precision */
701 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
702 /* based on hardware requirement, prefere larger m1,m2 */
703 for (clock.m1 = limit->m1.max;
704 clock.m1 >= limit->m1.min; clock.m1--) {
705 for (clock.m2 = limit->m2.max;
706 clock.m2 >= limit->m2.min; clock.m2--) {
707 for (clock.p1 = limit->p1.max;
708 clock.p1 >= limit->p1.min; clock.p1--) {
709 int this_err;
710
711 intel_clock(dev, refclk, &clock);
712 if (!intel_PLL_is_valid(dev, limit,
713 &clock))
714 continue;
715 if (match_clock &&
716 clock.p != match_clock->p)
717 continue;
718
719 this_err = abs(clock.dot - target);
720 if (this_err < err_most) {
721 *best_clock = clock;
722 err_most = this_err;
723 max_n = clock.n;
724 found = true;
725 }
726 }
727 }
728 }
729 }
730 return found;
731 }
732
733 static bool
734 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
735 int target, int refclk, intel_clock_t *match_clock,
736 intel_clock_t *best_clock)
737 {
738 struct drm_device *dev = crtc->dev;
739 intel_clock_t clock;
740
741 if (target < 200000) {
742 clock.n = 1;
743 clock.p1 = 2;
744 clock.p2 = 10;
745 clock.m1 = 12;
746 clock.m2 = 9;
747 } else {
748 clock.n = 2;
749 clock.p1 = 1;
750 clock.p2 = 10;
751 clock.m1 = 14;
752 clock.m2 = 8;
753 }
754 intel_clock(dev, refclk, &clock);
755 memcpy(best_clock, &clock, sizeof(intel_clock_t));
756 return true;
757 }
758
759 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
760 static bool
761 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
764 {
765 intel_clock_t clock;
766 if (target < 200000) {
767 clock.p1 = 2;
768 clock.p2 = 10;
769 clock.n = 2;
770 clock.m1 = 23;
771 clock.m2 = 8;
772 } else {
773 clock.p1 = 1;
774 clock.p2 = 10;
775 clock.n = 1;
776 clock.m1 = 14;
777 clock.m2 = 2;
778 }
779 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
780 clock.p = (clock.p1 * clock.p2);
781 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
782 clock.vco = 0;
783 memcpy(best_clock, &clock, sizeof(intel_clock_t));
784 return true;
785 }
786
787 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
788 {
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 u32 frame, frame_reg = PIPEFRAME(pipe);
791
792 frame = I915_READ(frame_reg);
793
794 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
795 DRM_DEBUG_KMS("vblank wait timed out\n");
796 }
797
798 /**
799 * intel_wait_for_vblank - wait for vblank on a given pipe
800 * @dev: drm device
801 * @pipe: pipe to wait for
802 *
803 * Wait for vblank to occur on a given pipe. Needed for various bits of
804 * mode setting code.
805 */
806 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
807 {
808 struct drm_i915_private *dev_priv = dev->dev_private;
809 int pipestat_reg = PIPESTAT(pipe);
810
811 if (INTEL_INFO(dev)->gen >= 5) {
812 ironlake_wait_for_vblank(dev, pipe);
813 return;
814 }
815
816 /* Clear existing vblank status. Note this will clear any other
817 * sticky status fields as well.
818 *
819 * This races with i915_driver_irq_handler() with the result
820 * that either function could miss a vblank event. Here it is not
821 * fatal, as we will either wait upon the next vblank interrupt or
822 * timeout. Generally speaking intel_wait_for_vblank() is only
823 * called during modeset at which time the GPU should be idle and
824 * should *not* be performing page flips and thus not waiting on
825 * vblanks...
826 * Currently, the result of us stealing a vblank from the irq
827 * handler is that a single frame will be skipped during swapbuffers.
828 */
829 I915_WRITE(pipestat_reg,
830 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
831
832 /* Wait for vblank interrupt bit to set */
833 if (wait_for(I915_READ(pipestat_reg) &
834 PIPE_VBLANK_INTERRUPT_STATUS,
835 50))
836 DRM_DEBUG_KMS("vblank wait timed out\n");
837 }
838
839 /*
840 * intel_wait_for_pipe_off - wait for pipe to turn off
841 * @dev: drm device
842 * @pipe: pipe to wait for
843 *
844 * After disabling a pipe, we can't wait for vblank in the usual way,
845 * spinning on the vblank interrupt status bit, since we won't actually
846 * see an interrupt when the pipe is disabled.
847 *
848 * On Gen4 and above:
849 * wait for the pipe register state bit to turn off
850 *
851 * Otherwise:
852 * wait for the display line value to settle (it usually
853 * ends up stopping at the start of the next frame).
854 *
855 */
856 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
857 {
858 struct drm_i915_private *dev_priv = dev->dev_private;
859
860 if (INTEL_INFO(dev)->gen >= 4) {
861 int reg = PIPECONF(pipe);
862
863 /* Wait for the Pipe State to go off */
864 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
865 100))
866 DRM_DEBUG_KMS("pipe_off wait timed out\n");
867 } else {
868 u32 last_line, line_mask;
869 int reg = PIPEDSL(pipe);
870 unsigned long timeout = jiffies + msecs_to_jiffies(100);
871
872 if (IS_GEN2(dev))
873 line_mask = DSL_LINEMASK_GEN2;
874 else
875 line_mask = DSL_LINEMASK_GEN3;
876
877 /* Wait for the display line to settle */
878 do {
879 last_line = I915_READ(reg) & line_mask;
880 mdelay(5);
881 } while (((I915_READ(reg) & line_mask) != last_line) &&
882 time_after(timeout, jiffies));
883 if (time_after(jiffies, timeout))
884 DRM_DEBUG_KMS("pipe_off wait timed out\n");
885 }
886 }
887
888 static const char *state_string(bool enabled)
889 {
890 return enabled ? "on" : "off";
891 }
892
893 /* Only for pre-ILK configs */
894 static void assert_pll(struct drm_i915_private *dev_priv,
895 enum pipe pipe, bool state)
896 {
897 int reg;
898 u32 val;
899 bool cur_state;
900
901 reg = DPLL(pipe);
902 val = I915_READ(reg);
903 cur_state = !!(val & DPLL_VCO_ENABLE);
904 WARN(cur_state != state,
905 "PLL state assertion failure (expected %s, current %s)\n",
906 state_string(state), state_string(cur_state));
907 }
908 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
909 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
910
911 /* For ILK+ */
912 static void assert_pch_pll(struct drm_i915_private *dev_priv,
913 struct intel_pch_pll *pll,
914 struct intel_crtc *crtc,
915 bool state)
916 {
917 u32 val;
918 bool cur_state;
919
920 if (HAS_PCH_LPT(dev_priv->dev)) {
921 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
922 return;
923 }
924
925 if (WARN (!pll,
926 "asserting PCH PLL %s with no PLL\n", state_string(state)))
927 return;
928
929 val = I915_READ(pll->pll_reg);
930 cur_state = !!(val & DPLL_VCO_ENABLE);
931 WARN(cur_state != state,
932 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
933 pll->pll_reg, state_string(state), state_string(cur_state), val);
934
935 /* Make sure the selected PLL is correctly attached to the transcoder */
936 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
937 u32 pch_dpll;
938
939 pch_dpll = I915_READ(PCH_DPLL_SEL);
940 cur_state = pll->pll_reg == _PCH_DPLL_B;
941 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
942 "PLL[%d] not attached to this transcoder %d: %08x\n",
943 cur_state, crtc->pipe, pch_dpll)) {
944 cur_state = !!(val >> (4*crtc->pipe + 3));
945 WARN(cur_state != state,
946 "PLL[%d] not %s on this transcoder %d: %08x\n",
947 pll->pll_reg == _PCH_DPLL_B,
948 state_string(state),
949 crtc->pipe,
950 val);
951 }
952 }
953 }
954 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
955 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
956
957 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
958 enum pipe pipe, bool state)
959 {
960 int reg;
961 u32 val;
962 bool cur_state;
963
964 if (IS_HASWELL(dev_priv->dev)) {
965 /* On Haswell, DDI is used instead of FDI_TX_CTL */
966 reg = DDI_FUNC_CTL(pipe);
967 val = I915_READ(reg);
968 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
969 } else {
970 reg = FDI_TX_CTL(pipe);
971 val = I915_READ(reg);
972 cur_state = !!(val & FDI_TX_ENABLE);
973 }
974 WARN(cur_state != state,
975 "FDI TX state assertion failure (expected %s, current %s)\n",
976 state_string(state), state_string(cur_state));
977 }
978 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
979 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
980
981 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
982 enum pipe pipe, bool state)
983 {
984 int reg;
985 u32 val;
986 bool cur_state;
987
988 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
989 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
990 return;
991 } else {
992 reg = FDI_RX_CTL(pipe);
993 val = I915_READ(reg);
994 cur_state = !!(val & FDI_RX_ENABLE);
995 }
996 WARN(cur_state != state,
997 "FDI RX state assertion failure (expected %s, current %s)\n",
998 state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1001 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1002
1003 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1004 enum pipe pipe)
1005 {
1006 int reg;
1007 u32 val;
1008
1009 /* ILK FDI PLL is always enabled */
1010 if (dev_priv->info->gen == 5)
1011 return;
1012
1013 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1014 if (IS_HASWELL(dev_priv->dev))
1015 return;
1016
1017 reg = FDI_TX_CTL(pipe);
1018 val = I915_READ(reg);
1019 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1020 }
1021
1022 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1023 enum pipe pipe)
1024 {
1025 int reg;
1026 u32 val;
1027
1028 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1029 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1030 return;
1031 }
1032 reg = FDI_RX_CTL(pipe);
1033 val = I915_READ(reg);
1034 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1035 }
1036
1037 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1038 enum pipe pipe)
1039 {
1040 int pp_reg, lvds_reg;
1041 u32 val;
1042 enum pipe panel_pipe = PIPE_A;
1043 bool locked = true;
1044
1045 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1046 pp_reg = PCH_PP_CONTROL;
1047 lvds_reg = PCH_LVDS;
1048 } else {
1049 pp_reg = PP_CONTROL;
1050 lvds_reg = LVDS;
1051 }
1052
1053 val = I915_READ(pp_reg);
1054 if (!(val & PANEL_POWER_ON) ||
1055 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1056 locked = false;
1057
1058 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1059 panel_pipe = PIPE_B;
1060
1061 WARN(panel_pipe == pipe && locked,
1062 "panel assertion failure, pipe %c regs locked\n",
1063 pipe_name(pipe));
1064 }
1065
1066 void assert_pipe(struct drm_i915_private *dev_priv,
1067 enum pipe pipe, bool state)
1068 {
1069 int reg;
1070 u32 val;
1071 bool cur_state;
1072
1073 /* if we need the pipe A quirk it must be always on */
1074 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1075 state = true;
1076
1077 reg = PIPECONF(pipe);
1078 val = I915_READ(reg);
1079 cur_state = !!(val & PIPECONF_ENABLE);
1080 WARN(cur_state != state,
1081 "pipe %c assertion failure (expected %s, current %s)\n",
1082 pipe_name(pipe), state_string(state), state_string(cur_state));
1083 }
1084
1085 static void assert_plane(struct drm_i915_private *dev_priv,
1086 enum plane plane, bool state)
1087 {
1088 int reg;
1089 u32 val;
1090 bool cur_state;
1091
1092 reg = DSPCNTR(plane);
1093 val = I915_READ(reg);
1094 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1095 WARN(cur_state != state,
1096 "plane %c assertion failure (expected %s, current %s)\n",
1097 plane_name(plane), state_string(state), state_string(cur_state));
1098 }
1099
1100 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1101 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1102
1103 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1104 enum pipe pipe)
1105 {
1106 int reg, i;
1107 u32 val;
1108 int cur_pipe;
1109
1110 /* Planes are fixed to pipes on ILK+ */
1111 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1112 reg = DSPCNTR(pipe);
1113 val = I915_READ(reg);
1114 WARN((val & DISPLAY_PLANE_ENABLE),
1115 "plane %c assertion failure, should be disabled but not\n",
1116 plane_name(pipe));
1117 return;
1118 }
1119
1120 /* Need to check both planes against the pipe */
1121 for (i = 0; i < 2; i++) {
1122 reg = DSPCNTR(i);
1123 val = I915_READ(reg);
1124 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1125 DISPPLANE_SEL_PIPE_SHIFT;
1126 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1127 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1128 plane_name(i), pipe_name(pipe));
1129 }
1130 }
1131
1132 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1133 {
1134 u32 val;
1135 bool enabled;
1136
1137 if (HAS_PCH_LPT(dev_priv->dev)) {
1138 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1139 return;
1140 }
1141
1142 val = I915_READ(PCH_DREF_CONTROL);
1143 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1144 DREF_SUPERSPREAD_SOURCE_MASK));
1145 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1146 }
1147
1148 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1149 enum pipe pipe)
1150 {
1151 int reg;
1152 u32 val;
1153 bool enabled;
1154
1155 reg = TRANSCONF(pipe);
1156 val = I915_READ(reg);
1157 enabled = !!(val & TRANS_ENABLE);
1158 WARN(enabled,
1159 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1160 pipe_name(pipe));
1161 }
1162
1163 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1164 enum pipe pipe, u32 port_sel, u32 val)
1165 {
1166 if ((val & DP_PORT_EN) == 0)
1167 return false;
1168
1169 if (HAS_PCH_CPT(dev_priv->dev)) {
1170 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1171 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1172 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1173 return false;
1174 } else {
1175 if ((val & DP_PIPE_MASK) != (pipe << 30))
1176 return false;
1177 }
1178 return true;
1179 }
1180
1181 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1182 enum pipe pipe, u32 val)
1183 {
1184 if ((val & PORT_ENABLE) == 0)
1185 return false;
1186
1187 if (HAS_PCH_CPT(dev_priv->dev)) {
1188 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1189 return false;
1190 } else {
1191 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1192 return false;
1193 }
1194 return true;
1195 }
1196
1197 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1198 enum pipe pipe, u32 val)
1199 {
1200 if ((val & LVDS_PORT_EN) == 0)
1201 return false;
1202
1203 if (HAS_PCH_CPT(dev_priv->dev)) {
1204 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1205 return false;
1206 } else {
1207 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1208 return false;
1209 }
1210 return true;
1211 }
1212
1213 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1214 enum pipe pipe, u32 val)
1215 {
1216 if ((val & ADPA_DAC_ENABLE) == 0)
1217 return false;
1218 if (HAS_PCH_CPT(dev_priv->dev)) {
1219 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1220 return false;
1221 } else {
1222 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1223 return false;
1224 }
1225 return true;
1226 }
1227
1228 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1229 enum pipe pipe, int reg, u32 port_sel)
1230 {
1231 u32 val = I915_READ(reg);
1232 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1233 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1234 reg, pipe_name(pipe));
1235 }
1236
1237 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, int reg)
1239 {
1240 u32 val = I915_READ(reg);
1241 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1242 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1243 reg, pipe_name(pipe));
1244 }
1245
1246 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248 {
1249 int reg;
1250 u32 val;
1251
1252 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1253 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1254 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1255
1256 reg = PCH_ADPA;
1257 val = I915_READ(reg);
1258 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1259 "PCH VGA enabled on transcoder %c, should be disabled\n",
1260 pipe_name(pipe));
1261
1262 reg = PCH_LVDS;
1263 val = I915_READ(reg);
1264 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1265 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1266 pipe_name(pipe));
1267
1268 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1269 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1270 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1271 }
1272
1273 /**
1274 * intel_enable_pll - enable a PLL
1275 * @dev_priv: i915 private structure
1276 * @pipe: pipe PLL to enable
1277 *
1278 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1279 * make sure the PLL reg is writable first though, since the panel write
1280 * protect mechanism may be enabled.
1281 *
1282 * Note! This is for pre-ILK only.
1283 */
1284 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1285 {
1286 int reg;
1287 u32 val;
1288
1289 /* No really, not for ILK+ */
1290 BUG_ON(dev_priv->info->gen >= 5);
1291
1292 /* PLL is protected by panel, make sure we can write it */
1293 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1294 assert_panel_unlocked(dev_priv, pipe);
1295
1296 reg = DPLL(pipe);
1297 val = I915_READ(reg);
1298 val |= DPLL_VCO_ENABLE;
1299
1300 /* We do this three times for luck */
1301 I915_WRITE(reg, val);
1302 POSTING_READ(reg);
1303 udelay(150); /* wait for warmup */
1304 I915_WRITE(reg, val);
1305 POSTING_READ(reg);
1306 udelay(150); /* wait for warmup */
1307 I915_WRITE(reg, val);
1308 POSTING_READ(reg);
1309 udelay(150); /* wait for warmup */
1310 }
1311
1312 /**
1313 * intel_disable_pll - disable a PLL
1314 * @dev_priv: i915 private structure
1315 * @pipe: pipe PLL to disable
1316 *
1317 * Disable the PLL for @pipe, making sure the pipe is off first.
1318 *
1319 * Note! This is for pre-ILK only.
1320 */
1321 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1322 {
1323 int reg;
1324 u32 val;
1325
1326 /* Don't disable pipe A or pipe A PLLs if needed */
1327 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1328 return;
1329
1330 /* Make sure the pipe isn't still relying on us */
1331 assert_pipe_disabled(dev_priv, pipe);
1332
1333 reg = DPLL(pipe);
1334 val = I915_READ(reg);
1335 val &= ~DPLL_VCO_ENABLE;
1336 I915_WRITE(reg, val);
1337 POSTING_READ(reg);
1338 }
1339
1340 /* SBI access */
1341 static void
1342 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1343 {
1344 unsigned long flags;
1345
1346 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1347 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_READY) == 0,
1348 100)) {
1349 DRM_ERROR("timeout waiting for SBI to become ready\n");
1350 goto out_unlock;
1351 }
1352
1353 I915_WRITE(SBI_ADDR,
1354 (reg << 16));
1355 I915_WRITE(SBI_DATA,
1356 value);
1357 I915_WRITE(SBI_CTL_STAT,
1358 SBI_BUSY |
1359 SBI_CTL_OP_CRWR);
1360
1361 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_READY | SBI_RESPONSE_SUCCESS)) == 0,
1362 100)) {
1363 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1364 goto out_unlock;
1365 }
1366
1367 out_unlock:
1368 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1369 }
1370
1371 static u32
1372 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1373 {
1374 unsigned long flags;
1375 u32 value;
1376
1377 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1378 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_READY) == 0,
1379 100)) {
1380 DRM_ERROR("timeout waiting for SBI to become ready\n");
1381 goto out_unlock;
1382 }
1383
1384 I915_WRITE(SBI_ADDR,
1385 (reg << 16));
1386 I915_WRITE(SBI_CTL_STAT,
1387 SBI_BUSY |
1388 SBI_CTL_OP_CRRD);
1389
1390 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_READY | SBI_RESPONSE_SUCCESS)) == 0,
1391 100)) {
1392 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1393 goto out_unlock;
1394 }
1395
1396 value = I915_READ(SBI_DATA);
1397
1398 out_unlock:
1399 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1400 return value;
1401 }
1402
1403 /**
1404 * intel_enable_pch_pll - enable PCH PLL
1405 * @dev_priv: i915 private structure
1406 * @pipe: pipe PLL to enable
1407 *
1408 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1409 * drives the transcoder clock.
1410 */
1411 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1412 {
1413 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1414 struct intel_pch_pll *pll;
1415 int reg;
1416 u32 val;
1417
1418 /* PCH PLLs only available on ILK, SNB and IVB */
1419 BUG_ON(dev_priv->info->gen < 5);
1420 pll = intel_crtc->pch_pll;
1421 if (pll == NULL)
1422 return;
1423
1424 if (WARN_ON(pll->refcount == 0))
1425 return;
1426
1427 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1428 pll->pll_reg, pll->active, pll->on,
1429 intel_crtc->base.base.id);
1430
1431 /* PCH refclock must be enabled first */
1432 assert_pch_refclk_enabled(dev_priv);
1433
1434 if (pll->active++ && pll->on) {
1435 assert_pch_pll_enabled(dev_priv, pll, NULL);
1436 return;
1437 }
1438
1439 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1440
1441 reg = pll->pll_reg;
1442 val = I915_READ(reg);
1443 val |= DPLL_VCO_ENABLE;
1444 I915_WRITE(reg, val);
1445 POSTING_READ(reg);
1446 udelay(200);
1447
1448 pll->on = true;
1449 }
1450
1451 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1452 {
1453 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1454 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1455 int reg;
1456 u32 val;
1457
1458 /* PCH only available on ILK+ */
1459 BUG_ON(dev_priv->info->gen < 5);
1460 if (pll == NULL)
1461 return;
1462
1463 if (WARN_ON(pll->refcount == 0))
1464 return;
1465
1466 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1467 pll->pll_reg, pll->active, pll->on,
1468 intel_crtc->base.base.id);
1469
1470 if (WARN_ON(pll->active == 0)) {
1471 assert_pch_pll_disabled(dev_priv, pll, NULL);
1472 return;
1473 }
1474
1475 if (--pll->active) {
1476 assert_pch_pll_enabled(dev_priv, pll, NULL);
1477 return;
1478 }
1479
1480 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1481
1482 /* Make sure transcoder isn't still depending on us */
1483 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1484
1485 reg = pll->pll_reg;
1486 val = I915_READ(reg);
1487 val &= ~DPLL_VCO_ENABLE;
1488 I915_WRITE(reg, val);
1489 POSTING_READ(reg);
1490 udelay(200);
1491
1492 pll->on = false;
1493 }
1494
1495 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1496 enum pipe pipe)
1497 {
1498 int reg;
1499 u32 val, pipeconf_val;
1500 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1501
1502 /* PCH only available on ILK+ */
1503 BUG_ON(dev_priv->info->gen < 5);
1504
1505 /* Make sure PCH DPLL is enabled */
1506 assert_pch_pll_enabled(dev_priv,
1507 to_intel_crtc(crtc)->pch_pll,
1508 to_intel_crtc(crtc));
1509
1510 /* FDI must be feeding us bits for PCH ports */
1511 assert_fdi_tx_enabled(dev_priv, pipe);
1512 assert_fdi_rx_enabled(dev_priv, pipe);
1513
1514 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1515 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1516 return;
1517 }
1518 reg = TRANSCONF(pipe);
1519 val = I915_READ(reg);
1520 pipeconf_val = I915_READ(PIPECONF(pipe));
1521
1522 if (HAS_PCH_IBX(dev_priv->dev)) {
1523 /*
1524 * make the BPC in transcoder be consistent with
1525 * that in pipeconf reg.
1526 */
1527 val &= ~PIPE_BPC_MASK;
1528 val |= pipeconf_val & PIPE_BPC_MASK;
1529 }
1530
1531 val &= ~TRANS_INTERLACE_MASK;
1532 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1533 if (HAS_PCH_IBX(dev_priv->dev) &&
1534 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1535 val |= TRANS_LEGACY_INTERLACED_ILK;
1536 else
1537 val |= TRANS_INTERLACED;
1538 else
1539 val |= TRANS_PROGRESSIVE;
1540
1541 I915_WRITE(reg, val | TRANS_ENABLE);
1542 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1543 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1544 }
1545
1546 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1547 enum pipe pipe)
1548 {
1549 int reg;
1550 u32 val;
1551
1552 /* FDI relies on the transcoder */
1553 assert_fdi_tx_disabled(dev_priv, pipe);
1554 assert_fdi_rx_disabled(dev_priv, pipe);
1555
1556 /* Ports must be off as well */
1557 assert_pch_ports_disabled(dev_priv, pipe);
1558
1559 reg = TRANSCONF(pipe);
1560 val = I915_READ(reg);
1561 val &= ~TRANS_ENABLE;
1562 I915_WRITE(reg, val);
1563 /* wait for PCH transcoder off, transcoder state */
1564 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1565 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1566 }
1567
1568 /**
1569 * intel_enable_pipe - enable a pipe, asserting requirements
1570 * @dev_priv: i915 private structure
1571 * @pipe: pipe to enable
1572 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1573 *
1574 * Enable @pipe, making sure that various hardware specific requirements
1575 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1576 *
1577 * @pipe should be %PIPE_A or %PIPE_B.
1578 *
1579 * Will wait until the pipe is actually running (i.e. first vblank) before
1580 * returning.
1581 */
1582 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1583 bool pch_port)
1584 {
1585 int reg;
1586 u32 val;
1587
1588 /*
1589 * A pipe without a PLL won't actually be able to drive bits from
1590 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1591 * need the check.
1592 */
1593 if (!HAS_PCH_SPLIT(dev_priv->dev))
1594 assert_pll_enabled(dev_priv, pipe);
1595 else {
1596 if (pch_port) {
1597 /* if driving the PCH, we need FDI enabled */
1598 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1599 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1600 }
1601 /* FIXME: assert CPU port conditions for SNB+ */
1602 }
1603
1604 reg = PIPECONF(pipe);
1605 val = I915_READ(reg);
1606 if (val & PIPECONF_ENABLE)
1607 return;
1608
1609 I915_WRITE(reg, val | PIPECONF_ENABLE);
1610 intel_wait_for_vblank(dev_priv->dev, pipe);
1611 }
1612
1613 /**
1614 * intel_disable_pipe - disable a pipe, asserting requirements
1615 * @dev_priv: i915 private structure
1616 * @pipe: pipe to disable
1617 *
1618 * Disable @pipe, making sure that various hardware specific requirements
1619 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1620 *
1621 * @pipe should be %PIPE_A or %PIPE_B.
1622 *
1623 * Will wait until the pipe has shut down before returning.
1624 */
1625 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1626 enum pipe pipe)
1627 {
1628 int reg;
1629 u32 val;
1630
1631 /*
1632 * Make sure planes won't keep trying to pump pixels to us,
1633 * or we might hang the display.
1634 */
1635 assert_planes_disabled(dev_priv, pipe);
1636
1637 /* Don't disable pipe A or pipe A PLLs if needed */
1638 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1639 return;
1640
1641 reg = PIPECONF(pipe);
1642 val = I915_READ(reg);
1643 if ((val & PIPECONF_ENABLE) == 0)
1644 return;
1645
1646 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1647 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1648 }
1649
1650 /*
1651 * Plane regs are double buffered, going from enabled->disabled needs a
1652 * trigger in order to latch. The display address reg provides this.
1653 */
1654 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1655 enum plane plane)
1656 {
1657 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1658 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1659 }
1660
1661 /**
1662 * intel_enable_plane - enable a display plane on a given pipe
1663 * @dev_priv: i915 private structure
1664 * @plane: plane to enable
1665 * @pipe: pipe being fed
1666 *
1667 * Enable @plane on @pipe, making sure that @pipe is running first.
1668 */
1669 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1670 enum plane plane, enum pipe pipe)
1671 {
1672 int reg;
1673 u32 val;
1674
1675 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1676 assert_pipe_enabled(dev_priv, pipe);
1677
1678 reg = DSPCNTR(plane);
1679 val = I915_READ(reg);
1680 if (val & DISPLAY_PLANE_ENABLE)
1681 return;
1682
1683 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1684 intel_flush_display_plane(dev_priv, plane);
1685 intel_wait_for_vblank(dev_priv->dev, pipe);
1686 }
1687
1688 /**
1689 * intel_disable_plane - disable a display plane
1690 * @dev_priv: i915 private structure
1691 * @plane: plane to disable
1692 * @pipe: pipe consuming the data
1693 *
1694 * Disable @plane; should be an independent operation.
1695 */
1696 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1697 enum plane plane, enum pipe pipe)
1698 {
1699 int reg;
1700 u32 val;
1701
1702 reg = DSPCNTR(plane);
1703 val = I915_READ(reg);
1704 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1705 return;
1706
1707 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1708 intel_flush_display_plane(dev_priv, plane);
1709 intel_wait_for_vblank(dev_priv->dev, pipe);
1710 }
1711
1712 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1713 enum pipe pipe, int reg, u32 port_sel)
1714 {
1715 u32 val = I915_READ(reg);
1716 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1717 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1718 I915_WRITE(reg, val & ~DP_PORT_EN);
1719 }
1720 }
1721
1722 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1723 enum pipe pipe, int reg)
1724 {
1725 u32 val = I915_READ(reg);
1726 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1727 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1728 reg, pipe);
1729 I915_WRITE(reg, val & ~PORT_ENABLE);
1730 }
1731 }
1732
1733 /* Disable any ports connected to this transcoder */
1734 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1735 enum pipe pipe)
1736 {
1737 u32 reg, val;
1738
1739 val = I915_READ(PCH_PP_CONTROL);
1740 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1741
1742 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1743 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1744 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1745
1746 reg = PCH_ADPA;
1747 val = I915_READ(reg);
1748 if (adpa_pipe_enabled(dev_priv, val, pipe))
1749 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1750
1751 reg = PCH_LVDS;
1752 val = I915_READ(reg);
1753 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1754 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1755 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1756 POSTING_READ(reg);
1757 udelay(100);
1758 }
1759
1760 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1761 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1762 disable_pch_hdmi(dev_priv, pipe, HDMID);
1763 }
1764
1765 int
1766 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1767 struct drm_i915_gem_object *obj,
1768 struct intel_ring_buffer *pipelined)
1769 {
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 u32 alignment;
1772 int ret;
1773
1774 switch (obj->tiling_mode) {
1775 case I915_TILING_NONE:
1776 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1777 alignment = 128 * 1024;
1778 else if (INTEL_INFO(dev)->gen >= 4)
1779 alignment = 4 * 1024;
1780 else
1781 alignment = 64 * 1024;
1782 break;
1783 case I915_TILING_X:
1784 /* pin() will align the object as required by fence */
1785 alignment = 0;
1786 break;
1787 case I915_TILING_Y:
1788 /* FIXME: Is this true? */
1789 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1790 return -EINVAL;
1791 default:
1792 BUG();
1793 }
1794
1795 dev_priv->mm.interruptible = false;
1796 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1797 if (ret)
1798 goto err_interruptible;
1799
1800 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1801 * fence, whereas 965+ only requires a fence if using
1802 * framebuffer compression. For simplicity, we always install
1803 * a fence as the cost is not that onerous.
1804 */
1805 ret = i915_gem_object_get_fence(obj);
1806 if (ret)
1807 goto err_unpin;
1808
1809 i915_gem_object_pin_fence(obj);
1810
1811 dev_priv->mm.interruptible = true;
1812 return 0;
1813
1814 err_unpin:
1815 i915_gem_object_unpin(obj);
1816 err_interruptible:
1817 dev_priv->mm.interruptible = true;
1818 return ret;
1819 }
1820
1821 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1822 {
1823 i915_gem_object_unpin_fence(obj);
1824 i915_gem_object_unpin(obj);
1825 }
1826
1827 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1828 int x, int y)
1829 {
1830 struct drm_device *dev = crtc->dev;
1831 struct drm_i915_private *dev_priv = dev->dev_private;
1832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1833 struct intel_framebuffer *intel_fb;
1834 struct drm_i915_gem_object *obj;
1835 int plane = intel_crtc->plane;
1836 unsigned long Start, Offset;
1837 u32 dspcntr;
1838 u32 reg;
1839
1840 switch (plane) {
1841 case 0:
1842 case 1:
1843 break;
1844 default:
1845 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1846 return -EINVAL;
1847 }
1848
1849 intel_fb = to_intel_framebuffer(fb);
1850 obj = intel_fb->obj;
1851
1852 reg = DSPCNTR(plane);
1853 dspcntr = I915_READ(reg);
1854 /* Mask out pixel format bits in case we change it */
1855 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1856 switch (fb->bits_per_pixel) {
1857 case 8:
1858 dspcntr |= DISPPLANE_8BPP;
1859 break;
1860 case 16:
1861 if (fb->depth == 15)
1862 dspcntr |= DISPPLANE_15_16BPP;
1863 else
1864 dspcntr |= DISPPLANE_16BPP;
1865 break;
1866 case 24:
1867 case 32:
1868 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1869 break;
1870 default:
1871 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1872 return -EINVAL;
1873 }
1874 if (INTEL_INFO(dev)->gen >= 4) {
1875 if (obj->tiling_mode != I915_TILING_NONE)
1876 dspcntr |= DISPPLANE_TILED;
1877 else
1878 dspcntr &= ~DISPPLANE_TILED;
1879 }
1880
1881 I915_WRITE(reg, dspcntr);
1882
1883 Start = obj->gtt_offset;
1884 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1885
1886 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1887 Start, Offset, x, y, fb->pitches[0]);
1888 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1889 if (INTEL_INFO(dev)->gen >= 4) {
1890 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1891 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1892 I915_WRITE(DSPADDR(plane), Offset);
1893 } else
1894 I915_WRITE(DSPADDR(plane), Start + Offset);
1895 POSTING_READ(reg);
1896
1897 return 0;
1898 }
1899
1900 static int ironlake_update_plane(struct drm_crtc *crtc,
1901 struct drm_framebuffer *fb, int x, int y)
1902 {
1903 struct drm_device *dev = crtc->dev;
1904 struct drm_i915_private *dev_priv = dev->dev_private;
1905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1906 struct intel_framebuffer *intel_fb;
1907 struct drm_i915_gem_object *obj;
1908 int plane = intel_crtc->plane;
1909 unsigned long Start, Offset;
1910 u32 dspcntr;
1911 u32 reg;
1912
1913 switch (plane) {
1914 case 0:
1915 case 1:
1916 case 2:
1917 break;
1918 default:
1919 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1920 return -EINVAL;
1921 }
1922
1923 intel_fb = to_intel_framebuffer(fb);
1924 obj = intel_fb->obj;
1925
1926 reg = DSPCNTR(plane);
1927 dspcntr = I915_READ(reg);
1928 /* Mask out pixel format bits in case we change it */
1929 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1930 switch (fb->bits_per_pixel) {
1931 case 8:
1932 dspcntr |= DISPPLANE_8BPP;
1933 break;
1934 case 16:
1935 if (fb->depth != 16)
1936 return -EINVAL;
1937
1938 dspcntr |= DISPPLANE_16BPP;
1939 break;
1940 case 24:
1941 case 32:
1942 if (fb->depth == 24)
1943 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1944 else if (fb->depth == 30)
1945 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1946 else
1947 return -EINVAL;
1948 break;
1949 default:
1950 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1951 return -EINVAL;
1952 }
1953
1954 if (obj->tiling_mode != I915_TILING_NONE)
1955 dspcntr |= DISPPLANE_TILED;
1956 else
1957 dspcntr &= ~DISPPLANE_TILED;
1958
1959 /* must disable */
1960 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1961
1962 I915_WRITE(reg, dspcntr);
1963
1964 Start = obj->gtt_offset;
1965 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1966
1967 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1968 Start, Offset, x, y, fb->pitches[0]);
1969 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1970 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1971 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1972 I915_WRITE(DSPADDR(plane), Offset);
1973 POSTING_READ(reg);
1974
1975 return 0;
1976 }
1977
1978 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1979 static int
1980 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1981 int x, int y, enum mode_set_atomic state)
1982 {
1983 struct drm_device *dev = crtc->dev;
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986 if (dev_priv->display.disable_fbc)
1987 dev_priv->display.disable_fbc(dev);
1988 intel_increase_pllclock(crtc);
1989
1990 return dev_priv->display.update_plane(crtc, fb, x, y);
1991 }
1992
1993 static int
1994 intel_finish_fb(struct drm_framebuffer *old_fb)
1995 {
1996 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1997 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1998 bool was_interruptible = dev_priv->mm.interruptible;
1999 int ret;
2000
2001 wait_event(dev_priv->pending_flip_queue,
2002 atomic_read(&dev_priv->mm.wedged) ||
2003 atomic_read(&obj->pending_flip) == 0);
2004
2005 /* Big Hammer, we also need to ensure that any pending
2006 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2007 * current scanout is retired before unpinning the old
2008 * framebuffer.
2009 *
2010 * This should only fail upon a hung GPU, in which case we
2011 * can safely continue.
2012 */
2013 dev_priv->mm.interruptible = false;
2014 ret = i915_gem_object_finish_gpu(obj);
2015 dev_priv->mm.interruptible = was_interruptible;
2016
2017 return ret;
2018 }
2019
2020 static int
2021 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2022 struct drm_framebuffer *old_fb)
2023 {
2024 struct drm_device *dev = crtc->dev;
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 struct drm_i915_master_private *master_priv;
2027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2028 int ret;
2029
2030 /* no fb bound */
2031 if (!crtc->fb) {
2032 DRM_ERROR("No FB bound\n");
2033 return 0;
2034 }
2035
2036 if(intel_crtc->plane > dev_priv->num_pipe) {
2037 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2038 intel_crtc->plane,
2039 dev_priv->num_pipe);
2040 return -EINVAL;
2041 }
2042
2043 mutex_lock(&dev->struct_mutex);
2044 ret = intel_pin_and_fence_fb_obj(dev,
2045 to_intel_framebuffer(crtc->fb)->obj,
2046 NULL);
2047 if (ret != 0) {
2048 mutex_unlock(&dev->struct_mutex);
2049 DRM_ERROR("pin & fence failed\n");
2050 return ret;
2051 }
2052
2053 if (old_fb)
2054 intel_finish_fb(old_fb);
2055
2056 ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2057 if (ret) {
2058 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2059 mutex_unlock(&dev->struct_mutex);
2060 DRM_ERROR("failed to update base address\n");
2061 return ret;
2062 }
2063
2064 if (old_fb) {
2065 intel_wait_for_vblank(dev, intel_crtc->pipe);
2066 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2067 }
2068
2069 intel_update_fbc(dev);
2070 mutex_unlock(&dev->struct_mutex);
2071
2072 if (!dev->primary->master)
2073 return 0;
2074
2075 master_priv = dev->primary->master->driver_priv;
2076 if (!master_priv->sarea_priv)
2077 return 0;
2078
2079 if (intel_crtc->pipe) {
2080 master_priv->sarea_priv->pipeB_x = x;
2081 master_priv->sarea_priv->pipeB_y = y;
2082 } else {
2083 master_priv->sarea_priv->pipeA_x = x;
2084 master_priv->sarea_priv->pipeA_y = y;
2085 }
2086
2087 return 0;
2088 }
2089
2090 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2091 {
2092 struct drm_device *dev = crtc->dev;
2093 struct drm_i915_private *dev_priv = dev->dev_private;
2094 u32 dpa_ctl;
2095
2096 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2097 dpa_ctl = I915_READ(DP_A);
2098 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2099
2100 if (clock < 200000) {
2101 u32 temp;
2102 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2103 /* workaround for 160Mhz:
2104 1) program 0x4600c bits 15:0 = 0x8124
2105 2) program 0x46010 bit 0 = 1
2106 3) program 0x46034 bit 24 = 1
2107 4) program 0x64000 bit 14 = 1
2108 */
2109 temp = I915_READ(0x4600c);
2110 temp &= 0xffff0000;
2111 I915_WRITE(0x4600c, temp | 0x8124);
2112
2113 temp = I915_READ(0x46010);
2114 I915_WRITE(0x46010, temp | 1);
2115
2116 temp = I915_READ(0x46034);
2117 I915_WRITE(0x46034, temp | (1 << 24));
2118 } else {
2119 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2120 }
2121 I915_WRITE(DP_A, dpa_ctl);
2122
2123 POSTING_READ(DP_A);
2124 udelay(500);
2125 }
2126
2127 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2128 {
2129 struct drm_device *dev = crtc->dev;
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2132 int pipe = intel_crtc->pipe;
2133 u32 reg, temp;
2134
2135 /* enable normal train */
2136 reg = FDI_TX_CTL(pipe);
2137 temp = I915_READ(reg);
2138 if (IS_IVYBRIDGE(dev)) {
2139 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2140 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2141 } else {
2142 temp &= ~FDI_LINK_TRAIN_NONE;
2143 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2144 }
2145 I915_WRITE(reg, temp);
2146
2147 reg = FDI_RX_CTL(pipe);
2148 temp = I915_READ(reg);
2149 if (HAS_PCH_CPT(dev)) {
2150 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2151 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2152 } else {
2153 temp &= ~FDI_LINK_TRAIN_NONE;
2154 temp |= FDI_LINK_TRAIN_NONE;
2155 }
2156 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2157
2158 /* wait one idle pattern time */
2159 POSTING_READ(reg);
2160 udelay(1000);
2161
2162 /* IVB wants error correction enabled */
2163 if (IS_IVYBRIDGE(dev))
2164 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2165 FDI_FE_ERRC_ENABLE);
2166 }
2167
2168 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2169 {
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 u32 flags = I915_READ(SOUTH_CHICKEN1);
2172
2173 flags |= FDI_PHASE_SYNC_OVR(pipe);
2174 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2175 flags |= FDI_PHASE_SYNC_EN(pipe);
2176 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2177 POSTING_READ(SOUTH_CHICKEN1);
2178 }
2179
2180 /* The FDI link training functions for ILK/Ibexpeak. */
2181 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2182 {
2183 struct drm_device *dev = crtc->dev;
2184 struct drm_i915_private *dev_priv = dev->dev_private;
2185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2186 int pipe = intel_crtc->pipe;
2187 int plane = intel_crtc->plane;
2188 u32 reg, temp, tries;
2189
2190 /* FDI needs bits from pipe & plane first */
2191 assert_pipe_enabled(dev_priv, pipe);
2192 assert_plane_enabled(dev_priv, plane);
2193
2194 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2195 for train result */
2196 reg = FDI_RX_IMR(pipe);
2197 temp = I915_READ(reg);
2198 temp &= ~FDI_RX_SYMBOL_LOCK;
2199 temp &= ~FDI_RX_BIT_LOCK;
2200 I915_WRITE(reg, temp);
2201 I915_READ(reg);
2202 udelay(150);
2203
2204 /* enable CPU FDI TX and PCH FDI RX */
2205 reg = FDI_TX_CTL(pipe);
2206 temp = I915_READ(reg);
2207 temp &= ~(7 << 19);
2208 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2209 temp &= ~FDI_LINK_TRAIN_NONE;
2210 temp |= FDI_LINK_TRAIN_PATTERN_1;
2211 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2212
2213 reg = FDI_RX_CTL(pipe);
2214 temp = I915_READ(reg);
2215 temp &= ~FDI_LINK_TRAIN_NONE;
2216 temp |= FDI_LINK_TRAIN_PATTERN_1;
2217 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2218
2219 POSTING_READ(reg);
2220 udelay(150);
2221
2222 /* Ironlake workaround, enable clock pointer after FDI enable*/
2223 if (HAS_PCH_IBX(dev)) {
2224 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2225 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2226 FDI_RX_PHASE_SYNC_POINTER_EN);
2227 }
2228
2229 reg = FDI_RX_IIR(pipe);
2230 for (tries = 0; tries < 5; tries++) {
2231 temp = I915_READ(reg);
2232 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2233
2234 if ((temp & FDI_RX_BIT_LOCK)) {
2235 DRM_DEBUG_KMS("FDI train 1 done.\n");
2236 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2237 break;
2238 }
2239 }
2240 if (tries == 5)
2241 DRM_ERROR("FDI train 1 fail!\n");
2242
2243 /* Train 2 */
2244 reg = FDI_TX_CTL(pipe);
2245 temp = I915_READ(reg);
2246 temp &= ~FDI_LINK_TRAIN_NONE;
2247 temp |= FDI_LINK_TRAIN_PATTERN_2;
2248 I915_WRITE(reg, temp);
2249
2250 reg = FDI_RX_CTL(pipe);
2251 temp = I915_READ(reg);
2252 temp &= ~FDI_LINK_TRAIN_NONE;
2253 temp |= FDI_LINK_TRAIN_PATTERN_2;
2254 I915_WRITE(reg, temp);
2255
2256 POSTING_READ(reg);
2257 udelay(150);
2258
2259 reg = FDI_RX_IIR(pipe);
2260 for (tries = 0; tries < 5; tries++) {
2261 temp = I915_READ(reg);
2262 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2263
2264 if (temp & FDI_RX_SYMBOL_LOCK) {
2265 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2266 DRM_DEBUG_KMS("FDI train 2 done.\n");
2267 break;
2268 }
2269 }
2270 if (tries == 5)
2271 DRM_ERROR("FDI train 2 fail!\n");
2272
2273 DRM_DEBUG_KMS("FDI train done\n");
2274
2275 }
2276
2277 static const int snb_b_fdi_train_param[] = {
2278 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2279 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2280 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2281 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2282 };
2283
2284 /* The FDI link training functions for SNB/Cougarpoint. */
2285 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2286 {
2287 struct drm_device *dev = crtc->dev;
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290 int pipe = intel_crtc->pipe;
2291 u32 reg, temp, i, retry;
2292
2293 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2294 for train result */
2295 reg = FDI_RX_IMR(pipe);
2296 temp = I915_READ(reg);
2297 temp &= ~FDI_RX_SYMBOL_LOCK;
2298 temp &= ~FDI_RX_BIT_LOCK;
2299 I915_WRITE(reg, temp);
2300
2301 POSTING_READ(reg);
2302 udelay(150);
2303
2304 /* enable CPU FDI TX and PCH FDI RX */
2305 reg = FDI_TX_CTL(pipe);
2306 temp = I915_READ(reg);
2307 temp &= ~(7 << 19);
2308 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2309 temp &= ~FDI_LINK_TRAIN_NONE;
2310 temp |= FDI_LINK_TRAIN_PATTERN_1;
2311 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2312 /* SNB-B */
2313 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2314 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2315
2316 reg = FDI_RX_CTL(pipe);
2317 temp = I915_READ(reg);
2318 if (HAS_PCH_CPT(dev)) {
2319 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2320 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2321 } else {
2322 temp &= ~FDI_LINK_TRAIN_NONE;
2323 temp |= FDI_LINK_TRAIN_PATTERN_1;
2324 }
2325 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2326
2327 POSTING_READ(reg);
2328 udelay(150);
2329
2330 if (HAS_PCH_CPT(dev))
2331 cpt_phase_pointer_enable(dev, pipe);
2332
2333 for (i = 0; i < 4; i++) {
2334 reg = FDI_TX_CTL(pipe);
2335 temp = I915_READ(reg);
2336 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2337 temp |= snb_b_fdi_train_param[i];
2338 I915_WRITE(reg, temp);
2339
2340 POSTING_READ(reg);
2341 udelay(500);
2342
2343 for (retry = 0; retry < 5; retry++) {
2344 reg = FDI_RX_IIR(pipe);
2345 temp = I915_READ(reg);
2346 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2347 if (temp & FDI_RX_BIT_LOCK) {
2348 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2349 DRM_DEBUG_KMS("FDI train 1 done.\n");
2350 break;
2351 }
2352 udelay(50);
2353 }
2354 if (retry < 5)
2355 break;
2356 }
2357 if (i == 4)
2358 DRM_ERROR("FDI train 1 fail!\n");
2359
2360 /* Train 2 */
2361 reg = FDI_TX_CTL(pipe);
2362 temp = I915_READ(reg);
2363 temp &= ~FDI_LINK_TRAIN_NONE;
2364 temp |= FDI_LINK_TRAIN_PATTERN_2;
2365 if (IS_GEN6(dev)) {
2366 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2367 /* SNB-B */
2368 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2369 }
2370 I915_WRITE(reg, temp);
2371
2372 reg = FDI_RX_CTL(pipe);
2373 temp = I915_READ(reg);
2374 if (HAS_PCH_CPT(dev)) {
2375 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2376 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2377 } else {
2378 temp &= ~FDI_LINK_TRAIN_NONE;
2379 temp |= FDI_LINK_TRAIN_PATTERN_2;
2380 }
2381 I915_WRITE(reg, temp);
2382
2383 POSTING_READ(reg);
2384 udelay(150);
2385
2386 for (i = 0; i < 4; i++) {
2387 reg = FDI_TX_CTL(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2390 temp |= snb_b_fdi_train_param[i];
2391 I915_WRITE(reg, temp);
2392
2393 POSTING_READ(reg);
2394 udelay(500);
2395
2396 for (retry = 0; retry < 5; retry++) {
2397 reg = FDI_RX_IIR(pipe);
2398 temp = I915_READ(reg);
2399 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400 if (temp & FDI_RX_SYMBOL_LOCK) {
2401 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2402 DRM_DEBUG_KMS("FDI train 2 done.\n");
2403 break;
2404 }
2405 udelay(50);
2406 }
2407 if (retry < 5)
2408 break;
2409 }
2410 if (i == 4)
2411 DRM_ERROR("FDI train 2 fail!\n");
2412
2413 DRM_DEBUG_KMS("FDI train done.\n");
2414 }
2415
2416 /* Manual link training for Ivy Bridge A0 parts */
2417 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2418 {
2419 struct drm_device *dev = crtc->dev;
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422 int pipe = intel_crtc->pipe;
2423 u32 reg, temp, i;
2424
2425 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2426 for train result */
2427 reg = FDI_RX_IMR(pipe);
2428 temp = I915_READ(reg);
2429 temp &= ~FDI_RX_SYMBOL_LOCK;
2430 temp &= ~FDI_RX_BIT_LOCK;
2431 I915_WRITE(reg, temp);
2432
2433 POSTING_READ(reg);
2434 udelay(150);
2435
2436 /* enable CPU FDI TX and PCH FDI RX */
2437 reg = FDI_TX_CTL(pipe);
2438 temp = I915_READ(reg);
2439 temp &= ~(7 << 19);
2440 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2441 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2442 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2443 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2444 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2445 temp |= FDI_COMPOSITE_SYNC;
2446 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2447
2448 reg = FDI_RX_CTL(pipe);
2449 temp = I915_READ(reg);
2450 temp &= ~FDI_LINK_TRAIN_AUTO;
2451 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2452 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2453 temp |= FDI_COMPOSITE_SYNC;
2454 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2455
2456 POSTING_READ(reg);
2457 udelay(150);
2458
2459 if (HAS_PCH_CPT(dev))
2460 cpt_phase_pointer_enable(dev, pipe);
2461
2462 for (i = 0; i < 4; i++) {
2463 reg = FDI_TX_CTL(pipe);
2464 temp = I915_READ(reg);
2465 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2466 temp |= snb_b_fdi_train_param[i];
2467 I915_WRITE(reg, temp);
2468
2469 POSTING_READ(reg);
2470 udelay(500);
2471
2472 reg = FDI_RX_IIR(pipe);
2473 temp = I915_READ(reg);
2474 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2475
2476 if (temp & FDI_RX_BIT_LOCK ||
2477 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2478 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2479 DRM_DEBUG_KMS("FDI train 1 done.\n");
2480 break;
2481 }
2482 }
2483 if (i == 4)
2484 DRM_ERROR("FDI train 1 fail!\n");
2485
2486 /* Train 2 */
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2490 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2491 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2492 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493 I915_WRITE(reg, temp);
2494
2495 reg = FDI_RX_CTL(pipe);
2496 temp = I915_READ(reg);
2497 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2498 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2499 I915_WRITE(reg, temp);
2500
2501 POSTING_READ(reg);
2502 udelay(150);
2503
2504 for (i = 0; i < 4; i++) {
2505 reg = FDI_TX_CTL(pipe);
2506 temp = I915_READ(reg);
2507 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2508 temp |= snb_b_fdi_train_param[i];
2509 I915_WRITE(reg, temp);
2510
2511 POSTING_READ(reg);
2512 udelay(500);
2513
2514 reg = FDI_RX_IIR(pipe);
2515 temp = I915_READ(reg);
2516 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2517
2518 if (temp & FDI_RX_SYMBOL_LOCK) {
2519 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2520 DRM_DEBUG_KMS("FDI train 2 done.\n");
2521 break;
2522 }
2523 }
2524 if (i == 4)
2525 DRM_ERROR("FDI train 2 fail!\n");
2526
2527 DRM_DEBUG_KMS("FDI train done.\n");
2528 }
2529
2530 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2531 {
2532 struct drm_device *dev = crtc->dev;
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2535 int pipe = intel_crtc->pipe;
2536 u32 reg, temp;
2537
2538 /* Write the TU size bits so error detection works */
2539 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2540 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2541
2542 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2543 reg = FDI_RX_CTL(pipe);
2544 temp = I915_READ(reg);
2545 temp &= ~((0x7 << 19) | (0x7 << 16));
2546 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2547 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2548 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2549
2550 POSTING_READ(reg);
2551 udelay(200);
2552
2553 /* Switch from Rawclk to PCDclk */
2554 temp = I915_READ(reg);
2555 I915_WRITE(reg, temp | FDI_PCDCLK);
2556
2557 POSTING_READ(reg);
2558 udelay(200);
2559
2560 /* On Haswell, the PLL configuration for ports and pipes is handled
2561 * separately, as part of DDI setup */
2562 if (!IS_HASWELL(dev)) {
2563 /* Enable CPU FDI TX PLL, always on for Ironlake */
2564 reg = FDI_TX_CTL(pipe);
2565 temp = I915_READ(reg);
2566 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2567 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2568
2569 POSTING_READ(reg);
2570 udelay(100);
2571 }
2572 }
2573 }
2574
2575 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2576 {
2577 struct drm_i915_private *dev_priv = dev->dev_private;
2578 u32 flags = I915_READ(SOUTH_CHICKEN1);
2579
2580 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2581 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2582 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2583 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2584 POSTING_READ(SOUTH_CHICKEN1);
2585 }
2586 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2587 {
2588 struct drm_device *dev = crtc->dev;
2589 struct drm_i915_private *dev_priv = dev->dev_private;
2590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2591 int pipe = intel_crtc->pipe;
2592 u32 reg, temp;
2593
2594 /* disable CPU FDI tx and PCH FDI rx */
2595 reg = FDI_TX_CTL(pipe);
2596 temp = I915_READ(reg);
2597 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2598 POSTING_READ(reg);
2599
2600 reg = FDI_RX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~(0x7 << 16);
2603 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2604 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2605
2606 POSTING_READ(reg);
2607 udelay(100);
2608
2609 /* Ironlake workaround, disable clock pointer after downing FDI */
2610 if (HAS_PCH_IBX(dev)) {
2611 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2612 I915_WRITE(FDI_RX_CHICKEN(pipe),
2613 I915_READ(FDI_RX_CHICKEN(pipe) &
2614 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2615 } else if (HAS_PCH_CPT(dev)) {
2616 cpt_phase_pointer_disable(dev, pipe);
2617 }
2618
2619 /* still set train pattern 1 */
2620 reg = FDI_TX_CTL(pipe);
2621 temp = I915_READ(reg);
2622 temp &= ~FDI_LINK_TRAIN_NONE;
2623 temp |= FDI_LINK_TRAIN_PATTERN_1;
2624 I915_WRITE(reg, temp);
2625
2626 reg = FDI_RX_CTL(pipe);
2627 temp = I915_READ(reg);
2628 if (HAS_PCH_CPT(dev)) {
2629 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2630 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2631 } else {
2632 temp &= ~FDI_LINK_TRAIN_NONE;
2633 temp |= FDI_LINK_TRAIN_PATTERN_1;
2634 }
2635 /* BPC in FDI rx is consistent with that in PIPECONF */
2636 temp &= ~(0x07 << 16);
2637 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2638 I915_WRITE(reg, temp);
2639
2640 POSTING_READ(reg);
2641 udelay(100);
2642 }
2643
2644 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2645 {
2646 struct drm_device *dev = crtc->dev;
2647
2648 if (crtc->fb == NULL)
2649 return;
2650
2651 mutex_lock(&dev->struct_mutex);
2652 intel_finish_fb(crtc->fb);
2653 mutex_unlock(&dev->struct_mutex);
2654 }
2655
2656 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2657 {
2658 struct drm_device *dev = crtc->dev;
2659 struct drm_mode_config *mode_config = &dev->mode_config;
2660 struct intel_encoder *encoder;
2661
2662 /*
2663 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2664 * must be driven by its own crtc; no sharing is possible.
2665 */
2666 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2667 if (encoder->base.crtc != crtc)
2668 continue;
2669
2670 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2671 * CPU handles all others */
2672 if (IS_HASWELL(dev)) {
2673 /* It is still unclear how this will work on PPT, so throw up a warning */
2674 WARN_ON(!HAS_PCH_LPT(dev));
2675
2676 if (encoder->type == DRM_MODE_ENCODER_DAC) {
2677 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2678 return true;
2679 } else {
2680 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2681 encoder->type);
2682 return false;
2683 }
2684 }
2685
2686 switch (encoder->type) {
2687 case INTEL_OUTPUT_EDP:
2688 if (!intel_encoder_is_pch_edp(&encoder->base))
2689 return false;
2690 continue;
2691 }
2692 }
2693
2694 return true;
2695 }
2696
2697 /* Program iCLKIP clock to the desired frequency */
2698 static void lpt_program_iclkip(struct drm_crtc *crtc)
2699 {
2700 struct drm_device *dev = crtc->dev;
2701 struct drm_i915_private *dev_priv = dev->dev_private;
2702 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2703 u32 temp;
2704
2705 /* It is necessary to ungate the pixclk gate prior to programming
2706 * the divisors, and gate it back when it is done.
2707 */
2708 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2709
2710 /* Disable SSCCTL */
2711 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2712 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2713 SBI_SSCCTL_DISABLE);
2714
2715 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2716 if (crtc->mode.clock == 20000) {
2717 auxdiv = 1;
2718 divsel = 0x41;
2719 phaseinc = 0x20;
2720 } else {
2721 /* The iCLK virtual clock root frequency is in MHz,
2722 * but the crtc->mode.clock in in KHz. To get the divisors,
2723 * it is necessary to divide one by another, so we
2724 * convert the virtual clock precision to KHz here for higher
2725 * precision.
2726 */
2727 u32 iclk_virtual_root_freq = 172800 * 1000;
2728 u32 iclk_pi_range = 64;
2729 u32 desired_divisor, msb_divisor_value, pi_value;
2730
2731 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2732 msb_divisor_value = desired_divisor / iclk_pi_range;
2733 pi_value = desired_divisor % iclk_pi_range;
2734
2735 auxdiv = 0;
2736 divsel = msb_divisor_value - 2;
2737 phaseinc = pi_value;
2738 }
2739
2740 /* This should not happen with any sane values */
2741 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2742 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2743 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2744 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2745
2746 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2747 crtc->mode.clock,
2748 auxdiv,
2749 divsel,
2750 phasedir,
2751 phaseinc);
2752
2753 /* Program SSCDIVINTPHASE6 */
2754 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2755 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2756 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2757 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2758 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2759 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2760 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2761
2762 intel_sbi_write(dev_priv,
2763 SBI_SSCDIVINTPHASE6,
2764 temp);
2765
2766 /* Program SSCAUXDIV */
2767 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2768 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2769 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2770 intel_sbi_write(dev_priv,
2771 SBI_SSCAUXDIV6,
2772 temp);
2773
2774
2775 /* Enable modulator and associated divider */
2776 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2777 temp &= ~SBI_SSCCTL_DISABLE;
2778 intel_sbi_write(dev_priv,
2779 SBI_SSCCTL6,
2780 temp);
2781
2782 /* Wait for initialization time */
2783 udelay(24);
2784
2785 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2786 }
2787
2788 /*
2789 * Enable PCH resources required for PCH ports:
2790 * - PCH PLLs
2791 * - FDI training & RX/TX
2792 * - update transcoder timings
2793 * - DP transcoding bits
2794 * - transcoder
2795 */
2796 static void ironlake_pch_enable(struct drm_crtc *crtc)
2797 {
2798 struct drm_device *dev = crtc->dev;
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2801 int pipe = intel_crtc->pipe;
2802 u32 reg, temp;
2803
2804 assert_transcoder_disabled(dev_priv, pipe);
2805
2806 /* For PCH output, training FDI link */
2807 dev_priv->display.fdi_link_train(crtc);
2808
2809 intel_enable_pch_pll(intel_crtc);
2810
2811 if (HAS_PCH_LPT(dev)) {
2812 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2813 lpt_program_iclkip(crtc);
2814 } else if (HAS_PCH_CPT(dev)) {
2815 u32 sel;
2816
2817 temp = I915_READ(PCH_DPLL_SEL);
2818 switch (pipe) {
2819 default:
2820 case 0:
2821 temp |= TRANSA_DPLL_ENABLE;
2822 sel = TRANSA_DPLLB_SEL;
2823 break;
2824 case 1:
2825 temp |= TRANSB_DPLL_ENABLE;
2826 sel = TRANSB_DPLLB_SEL;
2827 break;
2828 case 2:
2829 temp |= TRANSC_DPLL_ENABLE;
2830 sel = TRANSC_DPLLB_SEL;
2831 break;
2832 }
2833 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2834 temp |= sel;
2835 else
2836 temp &= ~sel;
2837 I915_WRITE(PCH_DPLL_SEL, temp);
2838 }
2839
2840 /* set transcoder timing, panel must allow it */
2841 assert_panel_unlocked(dev_priv, pipe);
2842 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2843 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2844 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2845
2846 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2847 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2848 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2849 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
2850
2851 if (!IS_HASWELL(dev))
2852 intel_fdi_normal_train(crtc);
2853
2854 /* For PCH DP, enable TRANS_DP_CTL */
2855 if (HAS_PCH_CPT(dev) &&
2856 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2857 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2858 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2859 reg = TRANS_DP_CTL(pipe);
2860 temp = I915_READ(reg);
2861 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2862 TRANS_DP_SYNC_MASK |
2863 TRANS_DP_BPC_MASK);
2864 temp |= (TRANS_DP_OUTPUT_ENABLE |
2865 TRANS_DP_ENH_FRAMING);
2866 temp |= bpc << 9; /* same format but at 11:9 */
2867
2868 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2869 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2870 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2871 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2872
2873 switch (intel_trans_dp_port_sel(crtc)) {
2874 case PCH_DP_B:
2875 temp |= TRANS_DP_PORT_SEL_B;
2876 break;
2877 case PCH_DP_C:
2878 temp |= TRANS_DP_PORT_SEL_C;
2879 break;
2880 case PCH_DP_D:
2881 temp |= TRANS_DP_PORT_SEL_D;
2882 break;
2883 default:
2884 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2885 temp |= TRANS_DP_PORT_SEL_B;
2886 break;
2887 }
2888
2889 I915_WRITE(reg, temp);
2890 }
2891
2892 intel_enable_transcoder(dev_priv, pipe);
2893 }
2894
2895 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
2896 {
2897 struct intel_pch_pll *pll = intel_crtc->pch_pll;
2898
2899 if (pll == NULL)
2900 return;
2901
2902 if (pll->refcount == 0) {
2903 WARN(1, "bad PCH PLL refcount\n");
2904 return;
2905 }
2906
2907 --pll->refcount;
2908 intel_crtc->pch_pll = NULL;
2909 }
2910
2911 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
2912 {
2913 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2914 struct intel_pch_pll *pll;
2915 int i;
2916
2917 pll = intel_crtc->pch_pll;
2918 if (pll) {
2919 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
2920 intel_crtc->base.base.id, pll->pll_reg);
2921 goto prepare;
2922 }
2923
2924 if (HAS_PCH_IBX(dev_priv->dev)) {
2925 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
2926 i = intel_crtc->pipe;
2927 pll = &dev_priv->pch_plls[i];
2928
2929 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
2930 intel_crtc->base.base.id, pll->pll_reg);
2931
2932 goto found;
2933 }
2934
2935 for (i = 0; i < dev_priv->num_pch_pll; i++) {
2936 pll = &dev_priv->pch_plls[i];
2937
2938 /* Only want to check enabled timings first */
2939 if (pll->refcount == 0)
2940 continue;
2941
2942 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
2943 fp == I915_READ(pll->fp0_reg)) {
2944 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
2945 intel_crtc->base.base.id,
2946 pll->pll_reg, pll->refcount, pll->active);
2947
2948 goto found;
2949 }
2950 }
2951
2952 /* Ok no matching timings, maybe there's a free one? */
2953 for (i = 0; i < dev_priv->num_pch_pll; i++) {
2954 pll = &dev_priv->pch_plls[i];
2955 if (pll->refcount == 0) {
2956 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
2957 intel_crtc->base.base.id, pll->pll_reg);
2958 goto found;
2959 }
2960 }
2961
2962 return NULL;
2963
2964 found:
2965 intel_crtc->pch_pll = pll;
2966 pll->refcount++;
2967 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
2968 prepare: /* separate function? */
2969 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
2970
2971 /* Wait for the clocks to stabilize before rewriting the regs */
2972 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2973 POSTING_READ(pll->pll_reg);
2974 udelay(150);
2975
2976 I915_WRITE(pll->fp0_reg, fp);
2977 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2978 pll->on = false;
2979 return pll;
2980 }
2981
2982 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2983 {
2984 struct drm_i915_private *dev_priv = dev->dev_private;
2985 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2986 u32 temp;
2987
2988 temp = I915_READ(dslreg);
2989 udelay(500);
2990 if (wait_for(I915_READ(dslreg) != temp, 5)) {
2991 /* Without this, mode sets may fail silently on FDI */
2992 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2993 udelay(250);
2994 I915_WRITE(tc2reg, 0);
2995 if (wait_for(I915_READ(dslreg) != temp, 5))
2996 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2997 }
2998 }
2999
3000 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3001 {
3002 struct drm_device *dev = crtc->dev;
3003 struct drm_i915_private *dev_priv = dev->dev_private;
3004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3005 int pipe = intel_crtc->pipe;
3006 int plane = intel_crtc->plane;
3007 u32 temp;
3008 bool is_pch_port;
3009
3010 if (intel_crtc->active)
3011 return;
3012
3013 intel_crtc->active = true;
3014 intel_update_watermarks(dev);
3015
3016 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3017 temp = I915_READ(PCH_LVDS);
3018 if ((temp & LVDS_PORT_EN) == 0)
3019 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3020 }
3021
3022 is_pch_port = intel_crtc_driving_pch(crtc);
3023
3024 if (is_pch_port)
3025 ironlake_fdi_pll_enable(crtc);
3026 else
3027 ironlake_fdi_disable(crtc);
3028
3029 /* Enable panel fitting for LVDS */
3030 if (dev_priv->pch_pf_size &&
3031 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3032 /* Force use of hard-coded filter coefficients
3033 * as some pre-programmed values are broken,
3034 * e.g. x201.
3035 */
3036 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3037 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3038 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3039 }
3040
3041 /*
3042 * On ILK+ LUT must be loaded before the pipe is running but with
3043 * clocks enabled
3044 */
3045 intel_crtc_load_lut(crtc);
3046
3047 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3048 intel_enable_plane(dev_priv, plane, pipe);
3049
3050 if (is_pch_port)
3051 ironlake_pch_enable(crtc);
3052
3053 mutex_lock(&dev->struct_mutex);
3054 intel_update_fbc(dev);
3055 mutex_unlock(&dev->struct_mutex);
3056
3057 intel_crtc_update_cursor(crtc, true);
3058 }
3059
3060 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3061 {
3062 struct drm_device *dev = crtc->dev;
3063 struct drm_i915_private *dev_priv = dev->dev_private;
3064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3065 int pipe = intel_crtc->pipe;
3066 int plane = intel_crtc->plane;
3067 u32 reg, temp;
3068
3069 if (!intel_crtc->active)
3070 return;
3071
3072 intel_crtc_wait_for_pending_flips(crtc);
3073 drm_vblank_off(dev, pipe);
3074 intel_crtc_update_cursor(crtc, false);
3075
3076 intel_disable_plane(dev_priv, plane, pipe);
3077
3078 if (dev_priv->cfb_plane == plane)
3079 intel_disable_fbc(dev);
3080
3081 intel_disable_pipe(dev_priv, pipe);
3082
3083 /* Disable PF */
3084 I915_WRITE(PF_CTL(pipe), 0);
3085 I915_WRITE(PF_WIN_SZ(pipe), 0);
3086
3087 ironlake_fdi_disable(crtc);
3088
3089 /* This is a horrible layering violation; we should be doing this in
3090 * the connector/encoder ->prepare instead, but we don't always have
3091 * enough information there about the config to know whether it will
3092 * actually be necessary or just cause undesired flicker.
3093 */
3094 intel_disable_pch_ports(dev_priv, pipe);
3095
3096 intel_disable_transcoder(dev_priv, pipe);
3097
3098 if (HAS_PCH_CPT(dev)) {
3099 /* disable TRANS_DP_CTL */
3100 reg = TRANS_DP_CTL(pipe);
3101 temp = I915_READ(reg);
3102 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3103 temp |= TRANS_DP_PORT_SEL_NONE;
3104 I915_WRITE(reg, temp);
3105
3106 /* disable DPLL_SEL */
3107 temp = I915_READ(PCH_DPLL_SEL);
3108 switch (pipe) {
3109 case 0:
3110 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3111 break;
3112 case 1:
3113 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3114 break;
3115 case 2:
3116 /* C shares PLL A or B */
3117 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3118 break;
3119 default:
3120 BUG(); /* wtf */
3121 }
3122 I915_WRITE(PCH_DPLL_SEL, temp);
3123 }
3124
3125 /* disable PCH DPLL */
3126 intel_disable_pch_pll(intel_crtc);
3127
3128 /* Switch from PCDclk to Rawclk */
3129 reg = FDI_RX_CTL(pipe);
3130 temp = I915_READ(reg);
3131 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3132
3133 /* Disable CPU FDI TX PLL */
3134 reg = FDI_TX_CTL(pipe);
3135 temp = I915_READ(reg);
3136 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3137
3138 POSTING_READ(reg);
3139 udelay(100);
3140
3141 reg = FDI_RX_CTL(pipe);
3142 temp = I915_READ(reg);
3143 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3144
3145 /* Wait for the clocks to turn off. */
3146 POSTING_READ(reg);
3147 udelay(100);
3148
3149 intel_crtc->active = false;
3150 intel_update_watermarks(dev);
3151
3152 mutex_lock(&dev->struct_mutex);
3153 intel_update_fbc(dev);
3154 mutex_unlock(&dev->struct_mutex);
3155 }
3156
3157 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3158 {
3159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3160 int pipe = intel_crtc->pipe;
3161 int plane = intel_crtc->plane;
3162
3163 /* XXX: When our outputs are all unaware of DPMS modes other than off
3164 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3165 */
3166 switch (mode) {
3167 case DRM_MODE_DPMS_ON:
3168 case DRM_MODE_DPMS_STANDBY:
3169 case DRM_MODE_DPMS_SUSPEND:
3170 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3171 ironlake_crtc_enable(crtc);
3172 break;
3173
3174 case DRM_MODE_DPMS_OFF:
3175 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3176 ironlake_crtc_disable(crtc);
3177 break;
3178 }
3179 }
3180
3181 static void ironlake_crtc_off(struct drm_crtc *crtc)
3182 {
3183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184 intel_put_pch_pll(intel_crtc);
3185 }
3186
3187 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3188 {
3189 if (!enable && intel_crtc->overlay) {
3190 struct drm_device *dev = intel_crtc->base.dev;
3191 struct drm_i915_private *dev_priv = dev->dev_private;
3192
3193 mutex_lock(&dev->struct_mutex);
3194 dev_priv->mm.interruptible = false;
3195 (void) intel_overlay_switch_off(intel_crtc->overlay);
3196 dev_priv->mm.interruptible = true;
3197 mutex_unlock(&dev->struct_mutex);
3198 }
3199
3200 /* Let userspace switch the overlay on again. In most cases userspace
3201 * has to recompute where to put it anyway.
3202 */
3203 }
3204
3205 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3206 {
3207 struct drm_device *dev = crtc->dev;
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3210 int pipe = intel_crtc->pipe;
3211 int plane = intel_crtc->plane;
3212
3213 if (intel_crtc->active)
3214 return;
3215
3216 intel_crtc->active = true;
3217 intel_update_watermarks(dev);
3218
3219 intel_enable_pll(dev_priv, pipe);
3220 intel_enable_pipe(dev_priv, pipe, false);
3221 intel_enable_plane(dev_priv, plane, pipe);
3222
3223 intel_crtc_load_lut(crtc);
3224 intel_update_fbc(dev);
3225
3226 /* Give the overlay scaler a chance to enable if it's on this pipe */
3227 intel_crtc_dpms_overlay(intel_crtc, true);
3228 intel_crtc_update_cursor(crtc, true);
3229 }
3230
3231 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3232 {
3233 struct drm_device *dev = crtc->dev;
3234 struct drm_i915_private *dev_priv = dev->dev_private;
3235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3236 int pipe = intel_crtc->pipe;
3237 int plane = intel_crtc->plane;
3238
3239 if (!intel_crtc->active)
3240 return;
3241
3242 /* Give the overlay scaler a chance to disable if it's on this pipe */
3243 intel_crtc_wait_for_pending_flips(crtc);
3244 drm_vblank_off(dev, pipe);
3245 intel_crtc_dpms_overlay(intel_crtc, false);
3246 intel_crtc_update_cursor(crtc, false);
3247
3248 if (dev_priv->cfb_plane == plane)
3249 intel_disable_fbc(dev);
3250
3251 intel_disable_plane(dev_priv, plane, pipe);
3252 intel_disable_pipe(dev_priv, pipe);
3253 intel_disable_pll(dev_priv, pipe);
3254
3255 intel_crtc->active = false;
3256 intel_update_fbc(dev);
3257 intel_update_watermarks(dev);
3258 }
3259
3260 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3261 {
3262 /* XXX: When our outputs are all unaware of DPMS modes other than off
3263 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3264 */
3265 switch (mode) {
3266 case DRM_MODE_DPMS_ON:
3267 case DRM_MODE_DPMS_STANDBY:
3268 case DRM_MODE_DPMS_SUSPEND:
3269 i9xx_crtc_enable(crtc);
3270 break;
3271 case DRM_MODE_DPMS_OFF:
3272 i9xx_crtc_disable(crtc);
3273 break;
3274 }
3275 }
3276
3277 static void i9xx_crtc_off(struct drm_crtc *crtc)
3278 {
3279 }
3280
3281 /**
3282 * Sets the power management mode of the pipe and plane.
3283 */
3284 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3285 {
3286 struct drm_device *dev = crtc->dev;
3287 struct drm_i915_private *dev_priv = dev->dev_private;
3288 struct drm_i915_master_private *master_priv;
3289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290 int pipe = intel_crtc->pipe;
3291 bool enabled;
3292
3293 if (intel_crtc->dpms_mode == mode)
3294 return;
3295
3296 intel_crtc->dpms_mode = mode;
3297
3298 dev_priv->display.dpms(crtc, mode);
3299
3300 if (!dev->primary->master)
3301 return;
3302
3303 master_priv = dev->primary->master->driver_priv;
3304 if (!master_priv->sarea_priv)
3305 return;
3306
3307 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3308
3309 switch (pipe) {
3310 case 0:
3311 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3312 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3313 break;
3314 case 1:
3315 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3316 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3317 break;
3318 default:
3319 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3320 break;
3321 }
3322 }
3323
3324 static void intel_crtc_disable(struct drm_crtc *crtc)
3325 {
3326 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3327 struct drm_device *dev = crtc->dev;
3328 struct drm_i915_private *dev_priv = dev->dev_private;
3329
3330 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3331 dev_priv->display.off(crtc);
3332
3333 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3334 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3335
3336 if (crtc->fb) {
3337 mutex_lock(&dev->struct_mutex);
3338 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3339 mutex_unlock(&dev->struct_mutex);
3340 }
3341 }
3342
3343 /* Prepare for a mode set.
3344 *
3345 * Note we could be a lot smarter here. We need to figure out which outputs
3346 * will be enabled, which disabled (in short, how the config will changes)
3347 * and perform the minimum necessary steps to accomplish that, e.g. updating
3348 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3349 * panel fitting is in the proper state, etc.
3350 */
3351 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3352 {
3353 i9xx_crtc_disable(crtc);
3354 }
3355
3356 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3357 {
3358 i9xx_crtc_enable(crtc);
3359 }
3360
3361 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3362 {
3363 ironlake_crtc_disable(crtc);
3364 }
3365
3366 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3367 {
3368 ironlake_crtc_enable(crtc);
3369 }
3370
3371 void intel_encoder_prepare(struct drm_encoder *encoder)
3372 {
3373 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3374 /* lvds has its own version of prepare see intel_lvds_prepare */
3375 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3376 }
3377
3378 void intel_encoder_commit(struct drm_encoder *encoder)
3379 {
3380 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3381 struct drm_device *dev = encoder->dev;
3382 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3383
3384 /* lvds has its own version of commit see intel_lvds_commit */
3385 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3386
3387 if (HAS_PCH_CPT(dev))
3388 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3389 }
3390
3391 void intel_encoder_destroy(struct drm_encoder *encoder)
3392 {
3393 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3394
3395 drm_encoder_cleanup(encoder);
3396 kfree(intel_encoder);
3397 }
3398
3399 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3400 struct drm_display_mode *mode,
3401 struct drm_display_mode *adjusted_mode)
3402 {
3403 struct drm_device *dev = crtc->dev;
3404
3405 if (HAS_PCH_SPLIT(dev)) {
3406 /* FDI link clock is fixed at 2.7G */
3407 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3408 return false;
3409 }
3410
3411 /* All interlaced capable intel hw wants timings in frames. Note though
3412 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3413 * timings, so we need to be careful not to clobber these.*/
3414 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3415 drm_mode_set_crtcinfo(adjusted_mode, 0);
3416
3417 return true;
3418 }
3419
3420 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3421 {
3422 return 400000; /* FIXME */
3423 }
3424
3425 static int i945_get_display_clock_speed(struct drm_device *dev)
3426 {
3427 return 400000;
3428 }
3429
3430 static int i915_get_display_clock_speed(struct drm_device *dev)
3431 {
3432 return 333000;
3433 }
3434
3435 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3436 {
3437 return 200000;
3438 }
3439
3440 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3441 {
3442 u16 gcfgc = 0;
3443
3444 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3445
3446 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3447 return 133000;
3448 else {
3449 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3450 case GC_DISPLAY_CLOCK_333_MHZ:
3451 return 333000;
3452 default:
3453 case GC_DISPLAY_CLOCK_190_200_MHZ:
3454 return 190000;
3455 }
3456 }
3457 }
3458
3459 static int i865_get_display_clock_speed(struct drm_device *dev)
3460 {
3461 return 266000;
3462 }
3463
3464 static int i855_get_display_clock_speed(struct drm_device *dev)
3465 {
3466 u16 hpllcc = 0;
3467 /* Assume that the hardware is in the high speed state. This
3468 * should be the default.
3469 */
3470 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3471 case GC_CLOCK_133_200:
3472 case GC_CLOCK_100_200:
3473 return 200000;
3474 case GC_CLOCK_166_250:
3475 return 250000;
3476 case GC_CLOCK_100_133:
3477 return 133000;
3478 }
3479
3480 /* Shouldn't happen */
3481 return 0;
3482 }
3483
3484 static int i830_get_display_clock_speed(struct drm_device *dev)
3485 {
3486 return 133000;
3487 }
3488
3489 struct fdi_m_n {
3490 u32 tu;
3491 u32 gmch_m;
3492 u32 gmch_n;
3493 u32 link_m;
3494 u32 link_n;
3495 };
3496
3497 static void
3498 fdi_reduce_ratio(u32 *num, u32 *den)
3499 {
3500 while (*num > 0xffffff || *den > 0xffffff) {
3501 *num >>= 1;
3502 *den >>= 1;
3503 }
3504 }
3505
3506 static void
3507 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3508 int link_clock, struct fdi_m_n *m_n)
3509 {
3510 m_n->tu = 64; /* default size */
3511
3512 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3513 m_n->gmch_m = bits_per_pixel * pixel_clock;
3514 m_n->gmch_n = link_clock * nlanes * 8;
3515 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3516
3517 m_n->link_m = pixel_clock;
3518 m_n->link_n = link_clock;
3519 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3520 }
3521
3522 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3523 {
3524 if (i915_panel_use_ssc >= 0)
3525 return i915_panel_use_ssc != 0;
3526 return dev_priv->lvds_use_ssc
3527 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3528 }
3529
3530 /**
3531 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3532 * @crtc: CRTC structure
3533 * @mode: requested mode
3534 *
3535 * A pipe may be connected to one or more outputs. Based on the depth of the
3536 * attached framebuffer, choose a good color depth to use on the pipe.
3537 *
3538 * If possible, match the pipe depth to the fb depth. In some cases, this
3539 * isn't ideal, because the connected output supports a lesser or restricted
3540 * set of depths. Resolve that here:
3541 * LVDS typically supports only 6bpc, so clamp down in that case
3542 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3543 * Displays may support a restricted set as well, check EDID and clamp as
3544 * appropriate.
3545 * DP may want to dither down to 6bpc to fit larger modes
3546 *
3547 * RETURNS:
3548 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3549 * true if they don't match).
3550 */
3551 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3552 unsigned int *pipe_bpp,
3553 struct drm_display_mode *mode)
3554 {
3555 struct drm_device *dev = crtc->dev;
3556 struct drm_i915_private *dev_priv = dev->dev_private;
3557 struct drm_encoder *encoder;
3558 struct drm_connector *connector;
3559 unsigned int display_bpc = UINT_MAX, bpc;
3560
3561 /* Walk the encoders & connectors on this crtc, get min bpc */
3562 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3563 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3564
3565 if (encoder->crtc != crtc)
3566 continue;
3567
3568 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3569 unsigned int lvds_bpc;
3570
3571 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3572 LVDS_A3_POWER_UP)
3573 lvds_bpc = 8;
3574 else
3575 lvds_bpc = 6;
3576
3577 if (lvds_bpc < display_bpc) {
3578 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3579 display_bpc = lvds_bpc;
3580 }
3581 continue;
3582 }
3583
3584 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3585 /* Use VBT settings if we have an eDP panel */
3586 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3587
3588 if (edp_bpc < display_bpc) {
3589 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3590 display_bpc = edp_bpc;
3591 }
3592 continue;
3593 }
3594
3595 /* Not one of the known troublemakers, check the EDID */
3596 list_for_each_entry(connector, &dev->mode_config.connector_list,
3597 head) {
3598 if (connector->encoder != encoder)
3599 continue;
3600
3601 /* Don't use an invalid EDID bpc value */
3602 if (connector->display_info.bpc &&
3603 connector->display_info.bpc < display_bpc) {
3604 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3605 display_bpc = connector->display_info.bpc;
3606 }
3607 }
3608
3609 /*
3610 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3611 * through, clamp it down. (Note: >12bpc will be caught below.)
3612 */
3613 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3614 if (display_bpc > 8 && display_bpc < 12) {
3615 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3616 display_bpc = 12;
3617 } else {
3618 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3619 display_bpc = 8;
3620 }
3621 }
3622 }
3623
3624 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3625 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3626 display_bpc = 6;
3627 }
3628
3629 /*
3630 * We could just drive the pipe at the highest bpc all the time and
3631 * enable dithering as needed, but that costs bandwidth. So choose
3632 * the minimum value that expresses the full color range of the fb but
3633 * also stays within the max display bpc discovered above.
3634 */
3635
3636 switch (crtc->fb->depth) {
3637 case 8:
3638 bpc = 8; /* since we go through a colormap */
3639 break;
3640 case 15:
3641 case 16:
3642 bpc = 6; /* min is 18bpp */
3643 break;
3644 case 24:
3645 bpc = 8;
3646 break;
3647 case 30:
3648 bpc = 10;
3649 break;
3650 case 48:
3651 bpc = 12;
3652 break;
3653 default:
3654 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3655 bpc = min((unsigned int)8, display_bpc);
3656 break;
3657 }
3658
3659 display_bpc = min(display_bpc, bpc);
3660
3661 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3662 bpc, display_bpc);
3663
3664 *pipe_bpp = display_bpc * 3;
3665
3666 return display_bpc != bpc;
3667 }
3668
3669 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3670 {
3671 struct drm_device *dev = crtc->dev;
3672 struct drm_i915_private *dev_priv = dev->dev_private;
3673 int refclk;
3674
3675 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3676 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3677 refclk = dev_priv->lvds_ssc_freq * 1000;
3678 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3679 refclk / 1000);
3680 } else if (!IS_GEN2(dev)) {
3681 refclk = 96000;
3682 } else {
3683 refclk = 48000;
3684 }
3685
3686 return refclk;
3687 }
3688
3689 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3690 intel_clock_t *clock)
3691 {
3692 /* SDVO TV has fixed PLL values depend on its clock range,
3693 this mirrors vbios setting. */
3694 if (adjusted_mode->clock >= 100000
3695 && adjusted_mode->clock < 140500) {
3696 clock->p1 = 2;
3697 clock->p2 = 10;
3698 clock->n = 3;
3699 clock->m1 = 16;
3700 clock->m2 = 8;
3701 } else if (adjusted_mode->clock >= 140500
3702 && adjusted_mode->clock <= 200000) {
3703 clock->p1 = 1;
3704 clock->p2 = 10;
3705 clock->n = 6;
3706 clock->m1 = 12;
3707 clock->m2 = 8;
3708 }
3709 }
3710
3711 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3712 intel_clock_t *clock,
3713 intel_clock_t *reduced_clock)
3714 {
3715 struct drm_device *dev = crtc->dev;
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3718 int pipe = intel_crtc->pipe;
3719 u32 fp, fp2 = 0;
3720
3721 if (IS_PINEVIEW(dev)) {
3722 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3723 if (reduced_clock)
3724 fp2 = (1 << reduced_clock->n) << 16 |
3725 reduced_clock->m1 << 8 | reduced_clock->m2;
3726 } else {
3727 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3728 if (reduced_clock)
3729 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3730 reduced_clock->m2;
3731 }
3732
3733 I915_WRITE(FP0(pipe), fp);
3734
3735 intel_crtc->lowfreq_avail = false;
3736 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3737 reduced_clock && i915_powersave) {
3738 I915_WRITE(FP1(pipe), fp2);
3739 intel_crtc->lowfreq_avail = true;
3740 } else {
3741 I915_WRITE(FP1(pipe), fp);
3742 }
3743 }
3744
3745 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3746 struct drm_display_mode *adjusted_mode)
3747 {
3748 struct drm_device *dev = crtc->dev;
3749 struct drm_i915_private *dev_priv = dev->dev_private;
3750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751 int pipe = intel_crtc->pipe;
3752 u32 temp;
3753
3754 temp = I915_READ(LVDS);
3755 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3756 if (pipe == 1) {
3757 temp |= LVDS_PIPEB_SELECT;
3758 } else {
3759 temp &= ~LVDS_PIPEB_SELECT;
3760 }
3761 /* set the corresponsding LVDS_BORDER bit */
3762 temp |= dev_priv->lvds_border_bits;
3763 /* Set the B0-B3 data pairs corresponding to whether we're going to
3764 * set the DPLLs for dual-channel mode or not.
3765 */
3766 if (clock->p2 == 7)
3767 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3768 else
3769 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3770
3771 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3772 * appropriately here, but we need to look more thoroughly into how
3773 * panels behave in the two modes.
3774 */
3775 /* set the dithering flag on LVDS as needed */
3776 if (INTEL_INFO(dev)->gen >= 4) {
3777 if (dev_priv->lvds_dither)
3778 temp |= LVDS_ENABLE_DITHER;
3779 else
3780 temp &= ~LVDS_ENABLE_DITHER;
3781 }
3782 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3783 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3784 temp |= LVDS_HSYNC_POLARITY;
3785 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3786 temp |= LVDS_VSYNC_POLARITY;
3787 I915_WRITE(LVDS, temp);
3788 }
3789
3790 static void i9xx_update_pll(struct drm_crtc *crtc,
3791 struct drm_display_mode *mode,
3792 struct drm_display_mode *adjusted_mode,
3793 intel_clock_t *clock, intel_clock_t *reduced_clock,
3794 int num_connectors)
3795 {
3796 struct drm_device *dev = crtc->dev;
3797 struct drm_i915_private *dev_priv = dev->dev_private;
3798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3799 int pipe = intel_crtc->pipe;
3800 u32 dpll;
3801 bool is_sdvo;
3802
3803 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
3804 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3805
3806 dpll = DPLL_VGA_MODE_DIS;
3807
3808 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3809 dpll |= DPLLB_MODE_LVDS;
3810 else
3811 dpll |= DPLLB_MODE_DAC_SERIAL;
3812 if (is_sdvo) {
3813 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3814 if (pixel_multiplier > 1) {
3815 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3816 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3817 }
3818 dpll |= DPLL_DVO_HIGH_SPEED;
3819 }
3820 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3821 dpll |= DPLL_DVO_HIGH_SPEED;
3822
3823 /* compute bitmask from p1 value */
3824 if (IS_PINEVIEW(dev))
3825 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3826 else {
3827 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3828 if (IS_G4X(dev) && reduced_clock)
3829 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3830 }
3831 switch (clock->p2) {
3832 case 5:
3833 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3834 break;
3835 case 7:
3836 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3837 break;
3838 case 10:
3839 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3840 break;
3841 case 14:
3842 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3843 break;
3844 }
3845 if (INTEL_INFO(dev)->gen >= 4)
3846 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3847
3848 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3849 dpll |= PLL_REF_INPUT_TVCLKINBC;
3850 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3851 /* XXX: just matching BIOS for now */
3852 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3853 dpll |= 3;
3854 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3855 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3856 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3857 else
3858 dpll |= PLL_REF_INPUT_DREFCLK;
3859
3860 dpll |= DPLL_VCO_ENABLE;
3861 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3862 POSTING_READ(DPLL(pipe));
3863 udelay(150);
3864
3865 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3866 * This is an exception to the general rule that mode_set doesn't turn
3867 * things on.
3868 */
3869 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3870 intel_update_lvds(crtc, clock, adjusted_mode);
3871
3872 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3873 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3874
3875 I915_WRITE(DPLL(pipe), dpll);
3876
3877 /* Wait for the clocks to stabilize. */
3878 POSTING_READ(DPLL(pipe));
3879 udelay(150);
3880
3881 if (INTEL_INFO(dev)->gen >= 4) {
3882 u32 temp = 0;
3883 if (is_sdvo) {
3884 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3885 if (temp > 1)
3886 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3887 else
3888 temp = 0;
3889 }
3890 I915_WRITE(DPLL_MD(pipe), temp);
3891 } else {
3892 /* The pixel multiplier can only be updated once the
3893 * DPLL is enabled and the clocks are stable.
3894 *
3895 * So write it again.
3896 */
3897 I915_WRITE(DPLL(pipe), dpll);
3898 }
3899 }
3900
3901 static void i8xx_update_pll(struct drm_crtc *crtc,
3902 struct drm_display_mode *adjusted_mode,
3903 intel_clock_t *clock,
3904 int num_connectors)
3905 {
3906 struct drm_device *dev = crtc->dev;
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3909 int pipe = intel_crtc->pipe;
3910 u32 dpll;
3911
3912 dpll = DPLL_VGA_MODE_DIS;
3913
3914 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3915 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3916 } else {
3917 if (clock->p1 == 2)
3918 dpll |= PLL_P1_DIVIDE_BY_TWO;
3919 else
3920 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3921 if (clock->p2 == 4)
3922 dpll |= PLL_P2_DIVIDE_BY_4;
3923 }
3924
3925 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3926 /* XXX: just matching BIOS for now */
3927 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3928 dpll |= 3;
3929 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3930 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3931 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3932 else
3933 dpll |= PLL_REF_INPUT_DREFCLK;
3934
3935 dpll |= DPLL_VCO_ENABLE;
3936 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3937 POSTING_READ(DPLL(pipe));
3938 udelay(150);
3939
3940 I915_WRITE(DPLL(pipe), dpll);
3941
3942 /* Wait for the clocks to stabilize. */
3943 POSTING_READ(DPLL(pipe));
3944 udelay(150);
3945
3946 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3947 * This is an exception to the general rule that mode_set doesn't turn
3948 * things on.
3949 */
3950 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3951 intel_update_lvds(crtc, clock, adjusted_mode);
3952
3953 /* The pixel multiplier can only be updated once the
3954 * DPLL is enabled and the clocks are stable.
3955 *
3956 * So write it again.
3957 */
3958 I915_WRITE(DPLL(pipe), dpll);
3959 }
3960
3961 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3962 struct drm_display_mode *mode,
3963 struct drm_display_mode *adjusted_mode,
3964 int x, int y,
3965 struct drm_framebuffer *old_fb)
3966 {
3967 struct drm_device *dev = crtc->dev;
3968 struct drm_i915_private *dev_priv = dev->dev_private;
3969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3970 int pipe = intel_crtc->pipe;
3971 int plane = intel_crtc->plane;
3972 int refclk, num_connectors = 0;
3973 intel_clock_t clock, reduced_clock;
3974 u32 dspcntr, pipeconf, vsyncshift;
3975 bool ok, has_reduced_clock = false, is_sdvo = false;
3976 bool is_lvds = false, is_tv = false, is_dp = false;
3977 struct drm_mode_config *mode_config = &dev->mode_config;
3978 struct intel_encoder *encoder;
3979 const intel_limit_t *limit;
3980 int ret;
3981
3982 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3983 if (encoder->base.crtc != crtc)
3984 continue;
3985
3986 switch (encoder->type) {
3987 case INTEL_OUTPUT_LVDS:
3988 is_lvds = true;
3989 break;
3990 case INTEL_OUTPUT_SDVO:
3991 case INTEL_OUTPUT_HDMI:
3992 is_sdvo = true;
3993 if (encoder->needs_tv_clock)
3994 is_tv = true;
3995 break;
3996 case INTEL_OUTPUT_TVOUT:
3997 is_tv = true;
3998 break;
3999 case INTEL_OUTPUT_DISPLAYPORT:
4000 is_dp = true;
4001 break;
4002 }
4003
4004 num_connectors++;
4005 }
4006
4007 refclk = i9xx_get_refclk(crtc, num_connectors);
4008
4009 /*
4010 * Returns a set of divisors for the desired target clock with the given
4011 * refclk, or FALSE. The returned values represent the clock equation:
4012 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4013 */
4014 limit = intel_limit(crtc, refclk);
4015 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4016 &clock);
4017 if (!ok) {
4018 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4019 return -EINVAL;
4020 }
4021
4022 /* Ensure that the cursor is valid for the new mode before changing... */
4023 intel_crtc_update_cursor(crtc, true);
4024
4025 if (is_lvds && dev_priv->lvds_downclock_avail) {
4026 /*
4027 * Ensure we match the reduced clock's P to the target clock.
4028 * If the clocks don't match, we can't switch the display clock
4029 * by using the FP0/FP1. In such case we will disable the LVDS
4030 * downclock feature.
4031 */
4032 has_reduced_clock = limit->find_pll(limit, crtc,
4033 dev_priv->lvds_downclock,
4034 refclk,
4035 &clock,
4036 &reduced_clock);
4037 }
4038
4039 if (is_sdvo && is_tv)
4040 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4041
4042 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4043 &reduced_clock : NULL);
4044
4045 if (IS_GEN2(dev))
4046 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4047 else
4048 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4049 has_reduced_clock ? &reduced_clock : NULL,
4050 num_connectors);
4051
4052 /* setup pipeconf */
4053 pipeconf = I915_READ(PIPECONF(pipe));
4054
4055 /* Set up the display plane register */
4056 dspcntr = DISPPLANE_GAMMA_ENABLE;
4057
4058 if (pipe == 0)
4059 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4060 else
4061 dspcntr |= DISPPLANE_SEL_PIPE_B;
4062
4063 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4064 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4065 * core speed.
4066 *
4067 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4068 * pipe == 0 check?
4069 */
4070 if (mode->clock >
4071 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4072 pipeconf |= PIPECONF_DOUBLE_WIDE;
4073 else
4074 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4075 }
4076
4077 /* default to 8bpc */
4078 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4079 if (is_dp) {
4080 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4081 pipeconf |= PIPECONF_BPP_6 |
4082 PIPECONF_DITHER_EN |
4083 PIPECONF_DITHER_TYPE_SP;
4084 }
4085 }
4086
4087 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4088 drm_mode_debug_printmodeline(mode);
4089
4090 if (HAS_PIPE_CXSR(dev)) {
4091 if (intel_crtc->lowfreq_avail) {
4092 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4093 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4094 } else {
4095 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4096 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4097 }
4098 }
4099
4100 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4101 if (!IS_GEN2(dev) &&
4102 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4103 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4104 /* the chip adds 2 halflines automatically */
4105 adjusted_mode->crtc_vtotal -= 1;
4106 adjusted_mode->crtc_vblank_end -= 1;
4107 vsyncshift = adjusted_mode->crtc_hsync_start
4108 - adjusted_mode->crtc_htotal/2;
4109 } else {
4110 pipeconf |= PIPECONF_PROGRESSIVE;
4111 vsyncshift = 0;
4112 }
4113
4114 if (!IS_GEN3(dev))
4115 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4116
4117 I915_WRITE(HTOTAL(pipe),
4118 (adjusted_mode->crtc_hdisplay - 1) |
4119 ((adjusted_mode->crtc_htotal - 1) << 16));
4120 I915_WRITE(HBLANK(pipe),
4121 (adjusted_mode->crtc_hblank_start - 1) |
4122 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4123 I915_WRITE(HSYNC(pipe),
4124 (adjusted_mode->crtc_hsync_start - 1) |
4125 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4126
4127 I915_WRITE(VTOTAL(pipe),
4128 (adjusted_mode->crtc_vdisplay - 1) |
4129 ((adjusted_mode->crtc_vtotal - 1) << 16));
4130 I915_WRITE(VBLANK(pipe),
4131 (adjusted_mode->crtc_vblank_start - 1) |
4132 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4133 I915_WRITE(VSYNC(pipe),
4134 (adjusted_mode->crtc_vsync_start - 1) |
4135 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4136
4137 /* pipesrc and dspsize control the size that is scaled from,
4138 * which should always be the user's requested size.
4139 */
4140 I915_WRITE(DSPSIZE(plane),
4141 ((mode->vdisplay - 1) << 16) |
4142 (mode->hdisplay - 1));
4143 I915_WRITE(DSPPOS(plane), 0);
4144 I915_WRITE(PIPESRC(pipe),
4145 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4146
4147 I915_WRITE(PIPECONF(pipe), pipeconf);
4148 POSTING_READ(PIPECONF(pipe));
4149 intel_enable_pipe(dev_priv, pipe, false);
4150
4151 intel_wait_for_vblank(dev, pipe);
4152
4153 I915_WRITE(DSPCNTR(plane), dspcntr);
4154 POSTING_READ(DSPCNTR(plane));
4155
4156 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4157
4158 intel_update_watermarks(dev);
4159
4160 return ret;
4161 }
4162
4163 /*
4164 * Initialize reference clocks when the driver loads
4165 */
4166 void ironlake_init_pch_refclk(struct drm_device *dev)
4167 {
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169 struct drm_mode_config *mode_config = &dev->mode_config;
4170 struct intel_encoder *encoder;
4171 u32 temp;
4172 bool has_lvds = false;
4173 bool has_cpu_edp = false;
4174 bool has_pch_edp = false;
4175 bool has_panel = false;
4176 bool has_ck505 = false;
4177 bool can_ssc = false;
4178
4179 /* We need to take the global config into account */
4180 list_for_each_entry(encoder, &mode_config->encoder_list,
4181 base.head) {
4182 switch (encoder->type) {
4183 case INTEL_OUTPUT_LVDS:
4184 has_panel = true;
4185 has_lvds = true;
4186 break;
4187 case INTEL_OUTPUT_EDP:
4188 has_panel = true;
4189 if (intel_encoder_is_pch_edp(&encoder->base))
4190 has_pch_edp = true;
4191 else
4192 has_cpu_edp = true;
4193 break;
4194 }
4195 }
4196
4197 if (HAS_PCH_IBX(dev)) {
4198 has_ck505 = dev_priv->display_clock_mode;
4199 can_ssc = has_ck505;
4200 } else {
4201 has_ck505 = false;
4202 can_ssc = true;
4203 }
4204
4205 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4206 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4207 has_ck505);
4208
4209 /* Ironlake: try to setup display ref clock before DPLL
4210 * enabling. This is only under driver's control after
4211 * PCH B stepping, previous chipset stepping should be
4212 * ignoring this setting.
4213 */
4214 temp = I915_READ(PCH_DREF_CONTROL);
4215 /* Always enable nonspread source */
4216 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4217
4218 if (has_ck505)
4219 temp |= DREF_NONSPREAD_CK505_ENABLE;
4220 else
4221 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4222
4223 if (has_panel) {
4224 temp &= ~DREF_SSC_SOURCE_MASK;
4225 temp |= DREF_SSC_SOURCE_ENABLE;
4226
4227 /* SSC must be turned on before enabling the CPU output */
4228 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4229 DRM_DEBUG_KMS("Using SSC on panel\n");
4230 temp |= DREF_SSC1_ENABLE;
4231 } else
4232 temp &= ~DREF_SSC1_ENABLE;
4233
4234 /* Get SSC going before enabling the outputs */
4235 I915_WRITE(PCH_DREF_CONTROL, temp);
4236 POSTING_READ(PCH_DREF_CONTROL);
4237 udelay(200);
4238
4239 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4240
4241 /* Enable CPU source on CPU attached eDP */
4242 if (has_cpu_edp) {
4243 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4244 DRM_DEBUG_KMS("Using SSC on eDP\n");
4245 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4246 }
4247 else
4248 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4249 } else
4250 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4251
4252 I915_WRITE(PCH_DREF_CONTROL, temp);
4253 POSTING_READ(PCH_DREF_CONTROL);
4254 udelay(200);
4255 } else {
4256 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4257
4258 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4259
4260 /* Turn off CPU output */
4261 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4262
4263 I915_WRITE(PCH_DREF_CONTROL, temp);
4264 POSTING_READ(PCH_DREF_CONTROL);
4265 udelay(200);
4266
4267 /* Turn off the SSC source */
4268 temp &= ~DREF_SSC_SOURCE_MASK;
4269 temp |= DREF_SSC_SOURCE_DISABLE;
4270
4271 /* Turn off SSC1 */
4272 temp &= ~ DREF_SSC1_ENABLE;
4273
4274 I915_WRITE(PCH_DREF_CONTROL, temp);
4275 POSTING_READ(PCH_DREF_CONTROL);
4276 udelay(200);
4277 }
4278 }
4279
4280 static int ironlake_get_refclk(struct drm_crtc *crtc)
4281 {
4282 struct drm_device *dev = crtc->dev;
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 struct intel_encoder *encoder;
4285 struct drm_mode_config *mode_config = &dev->mode_config;
4286 struct intel_encoder *edp_encoder = NULL;
4287 int num_connectors = 0;
4288 bool is_lvds = false;
4289
4290 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4291 if (encoder->base.crtc != crtc)
4292 continue;
4293
4294 switch (encoder->type) {
4295 case INTEL_OUTPUT_LVDS:
4296 is_lvds = true;
4297 break;
4298 case INTEL_OUTPUT_EDP:
4299 edp_encoder = encoder;
4300 break;
4301 }
4302 num_connectors++;
4303 }
4304
4305 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4306 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4307 dev_priv->lvds_ssc_freq);
4308 return dev_priv->lvds_ssc_freq * 1000;
4309 }
4310
4311 return 120000;
4312 }
4313
4314 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4315 struct drm_display_mode *mode,
4316 struct drm_display_mode *adjusted_mode,
4317 int x, int y,
4318 struct drm_framebuffer *old_fb)
4319 {
4320 struct drm_device *dev = crtc->dev;
4321 struct drm_i915_private *dev_priv = dev->dev_private;
4322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4323 int pipe = intel_crtc->pipe;
4324 int plane = intel_crtc->plane;
4325 int refclk, num_connectors = 0;
4326 intel_clock_t clock, reduced_clock;
4327 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4328 bool ok, has_reduced_clock = false, is_sdvo = false;
4329 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4330 struct drm_mode_config *mode_config = &dev->mode_config;
4331 struct intel_encoder *encoder, *edp_encoder = NULL;
4332 const intel_limit_t *limit;
4333 int ret;
4334 struct fdi_m_n m_n = {0};
4335 u32 temp;
4336 int target_clock, pixel_multiplier, lane, link_bw, factor;
4337 unsigned int pipe_bpp;
4338 bool dither;
4339 bool is_cpu_edp = false, is_pch_edp = false;
4340
4341 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4342 if (encoder->base.crtc != crtc)
4343 continue;
4344
4345 switch (encoder->type) {
4346 case INTEL_OUTPUT_LVDS:
4347 is_lvds = true;
4348 break;
4349 case INTEL_OUTPUT_SDVO:
4350 case INTEL_OUTPUT_HDMI:
4351 is_sdvo = true;
4352 if (encoder->needs_tv_clock)
4353 is_tv = true;
4354 break;
4355 case INTEL_OUTPUT_TVOUT:
4356 is_tv = true;
4357 break;
4358 case INTEL_OUTPUT_ANALOG:
4359 is_crt = true;
4360 break;
4361 case INTEL_OUTPUT_DISPLAYPORT:
4362 is_dp = true;
4363 break;
4364 case INTEL_OUTPUT_EDP:
4365 is_dp = true;
4366 if (intel_encoder_is_pch_edp(&encoder->base))
4367 is_pch_edp = true;
4368 else
4369 is_cpu_edp = true;
4370 edp_encoder = encoder;
4371 break;
4372 }
4373
4374 num_connectors++;
4375 }
4376
4377 refclk = ironlake_get_refclk(crtc);
4378
4379 /*
4380 * Returns a set of divisors for the desired target clock with the given
4381 * refclk, or FALSE. The returned values represent the clock equation:
4382 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4383 */
4384 limit = intel_limit(crtc, refclk);
4385 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4386 &clock);
4387 if (!ok) {
4388 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4389 return -EINVAL;
4390 }
4391
4392 /* Ensure that the cursor is valid for the new mode before changing... */
4393 intel_crtc_update_cursor(crtc, true);
4394
4395 if (is_lvds && dev_priv->lvds_downclock_avail) {
4396 /*
4397 * Ensure we match the reduced clock's P to the target clock.
4398 * If the clocks don't match, we can't switch the display clock
4399 * by using the FP0/FP1. In such case we will disable the LVDS
4400 * downclock feature.
4401 */
4402 has_reduced_clock = limit->find_pll(limit, crtc,
4403 dev_priv->lvds_downclock,
4404 refclk,
4405 &clock,
4406 &reduced_clock);
4407 }
4408 /* SDVO TV has fixed PLL values depend on its clock range,
4409 this mirrors vbios setting. */
4410 if (is_sdvo && is_tv) {
4411 if (adjusted_mode->clock >= 100000
4412 && adjusted_mode->clock < 140500) {
4413 clock.p1 = 2;
4414 clock.p2 = 10;
4415 clock.n = 3;
4416 clock.m1 = 16;
4417 clock.m2 = 8;
4418 } else if (adjusted_mode->clock >= 140500
4419 && adjusted_mode->clock <= 200000) {
4420 clock.p1 = 1;
4421 clock.p2 = 10;
4422 clock.n = 6;
4423 clock.m1 = 12;
4424 clock.m2 = 8;
4425 }
4426 }
4427
4428 /* FDI link */
4429 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4430 lane = 0;
4431 /* CPU eDP doesn't require FDI link, so just set DP M/N
4432 according to current link config */
4433 if (is_cpu_edp) {
4434 target_clock = mode->clock;
4435 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4436 } else {
4437 /* [e]DP over FDI requires target mode clock
4438 instead of link clock */
4439 if (is_dp)
4440 target_clock = mode->clock;
4441 else
4442 target_clock = adjusted_mode->clock;
4443
4444 /* FDI is a binary signal running at ~2.7GHz, encoding
4445 * each output octet as 10 bits. The actual frequency
4446 * is stored as a divider into a 100MHz clock, and the
4447 * mode pixel clock is stored in units of 1KHz.
4448 * Hence the bw of each lane in terms of the mode signal
4449 * is:
4450 */
4451 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4452 }
4453
4454 /* determine panel color depth */
4455 temp = I915_READ(PIPECONF(pipe));
4456 temp &= ~PIPE_BPC_MASK;
4457 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4458 switch (pipe_bpp) {
4459 case 18:
4460 temp |= PIPE_6BPC;
4461 break;
4462 case 24:
4463 temp |= PIPE_8BPC;
4464 break;
4465 case 30:
4466 temp |= PIPE_10BPC;
4467 break;
4468 case 36:
4469 temp |= PIPE_12BPC;
4470 break;
4471 default:
4472 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4473 pipe_bpp);
4474 temp |= PIPE_8BPC;
4475 pipe_bpp = 24;
4476 break;
4477 }
4478
4479 intel_crtc->bpp = pipe_bpp;
4480 I915_WRITE(PIPECONF(pipe), temp);
4481
4482 if (!lane) {
4483 /*
4484 * Account for spread spectrum to avoid
4485 * oversubscribing the link. Max center spread
4486 * is 2.5%; use 5% for safety's sake.
4487 */
4488 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4489 lane = bps / (link_bw * 8) + 1;
4490 }
4491
4492 intel_crtc->fdi_lanes = lane;
4493
4494 if (pixel_multiplier > 1)
4495 link_bw *= pixel_multiplier;
4496 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4497 &m_n);
4498
4499 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4500 if (has_reduced_clock)
4501 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4502 reduced_clock.m2;
4503
4504 /* Enable autotuning of the PLL clock (if permissible) */
4505 factor = 21;
4506 if (is_lvds) {
4507 if ((intel_panel_use_ssc(dev_priv) &&
4508 dev_priv->lvds_ssc_freq == 100) ||
4509 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4510 factor = 25;
4511 } else if (is_sdvo && is_tv)
4512 factor = 20;
4513
4514 if (clock.m < factor * clock.n)
4515 fp |= FP_CB_TUNE;
4516
4517 dpll = 0;
4518
4519 if (is_lvds)
4520 dpll |= DPLLB_MODE_LVDS;
4521 else
4522 dpll |= DPLLB_MODE_DAC_SERIAL;
4523 if (is_sdvo) {
4524 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4525 if (pixel_multiplier > 1) {
4526 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4527 }
4528 dpll |= DPLL_DVO_HIGH_SPEED;
4529 }
4530 if (is_dp && !is_cpu_edp)
4531 dpll |= DPLL_DVO_HIGH_SPEED;
4532
4533 /* compute bitmask from p1 value */
4534 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4535 /* also FPA1 */
4536 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4537
4538 switch (clock.p2) {
4539 case 5:
4540 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4541 break;
4542 case 7:
4543 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4544 break;
4545 case 10:
4546 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4547 break;
4548 case 14:
4549 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4550 break;
4551 }
4552
4553 if (is_sdvo && is_tv)
4554 dpll |= PLL_REF_INPUT_TVCLKINBC;
4555 else if (is_tv)
4556 /* XXX: just matching BIOS for now */
4557 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4558 dpll |= 3;
4559 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4560 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4561 else
4562 dpll |= PLL_REF_INPUT_DREFCLK;
4563
4564 /* setup pipeconf */
4565 pipeconf = I915_READ(PIPECONF(pipe));
4566
4567 /* Set up the display plane register */
4568 dspcntr = DISPPLANE_GAMMA_ENABLE;
4569
4570 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4571 drm_mode_debug_printmodeline(mode);
4572
4573 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4574 * pre-Haswell/LPT generation */
4575 if (HAS_PCH_LPT(dev)) {
4576 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4577 pipe);
4578 } else if (!is_cpu_edp) {
4579 struct intel_pch_pll *pll;
4580
4581 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4582 if (pll == NULL) {
4583 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4584 pipe);
4585 return -EINVAL;
4586 }
4587 } else
4588 intel_put_pch_pll(intel_crtc);
4589
4590 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4591 * This is an exception to the general rule that mode_set doesn't turn
4592 * things on.
4593 */
4594 if (is_lvds) {
4595 temp = I915_READ(PCH_LVDS);
4596 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4597 if (HAS_PCH_CPT(dev)) {
4598 temp &= ~PORT_TRANS_SEL_MASK;
4599 temp |= PORT_TRANS_SEL_CPT(pipe);
4600 } else {
4601 if (pipe == 1)
4602 temp |= LVDS_PIPEB_SELECT;
4603 else
4604 temp &= ~LVDS_PIPEB_SELECT;
4605 }
4606
4607 /* set the corresponsding LVDS_BORDER bit */
4608 temp |= dev_priv->lvds_border_bits;
4609 /* Set the B0-B3 data pairs corresponding to whether we're going to
4610 * set the DPLLs for dual-channel mode or not.
4611 */
4612 if (clock.p2 == 7)
4613 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4614 else
4615 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4616
4617 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4618 * appropriately here, but we need to look more thoroughly into how
4619 * panels behave in the two modes.
4620 */
4621 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4622 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4623 temp |= LVDS_HSYNC_POLARITY;
4624 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4625 temp |= LVDS_VSYNC_POLARITY;
4626 I915_WRITE(PCH_LVDS, temp);
4627 }
4628
4629 pipeconf &= ~PIPECONF_DITHER_EN;
4630 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4631 if ((is_lvds && dev_priv->lvds_dither) || dither) {
4632 pipeconf |= PIPECONF_DITHER_EN;
4633 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4634 }
4635 if (is_dp && !is_cpu_edp) {
4636 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4637 } else {
4638 /* For non-DP output, clear any trans DP clock recovery setting.*/
4639 I915_WRITE(TRANSDATA_M1(pipe), 0);
4640 I915_WRITE(TRANSDATA_N1(pipe), 0);
4641 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4642 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4643 }
4644
4645 if (intel_crtc->pch_pll) {
4646 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4647
4648 /* Wait for the clocks to stabilize. */
4649 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4650 udelay(150);
4651
4652 /* The pixel multiplier can only be updated once the
4653 * DPLL is enabled and the clocks are stable.
4654 *
4655 * So write it again.
4656 */
4657 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4658 }
4659
4660 intel_crtc->lowfreq_avail = false;
4661 if (intel_crtc->pch_pll) {
4662 if (is_lvds && has_reduced_clock && i915_powersave) {
4663 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4664 intel_crtc->lowfreq_avail = true;
4665 if (HAS_PIPE_CXSR(dev)) {
4666 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4667 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4668 }
4669 } else {
4670 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4671 if (HAS_PIPE_CXSR(dev)) {
4672 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4673 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4674 }
4675 }
4676 }
4677
4678 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4679 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4680 pipeconf |= PIPECONF_INTERLACED_ILK;
4681 /* the chip adds 2 halflines automatically */
4682 adjusted_mode->crtc_vtotal -= 1;
4683 adjusted_mode->crtc_vblank_end -= 1;
4684 I915_WRITE(VSYNCSHIFT(pipe),
4685 adjusted_mode->crtc_hsync_start
4686 - adjusted_mode->crtc_htotal/2);
4687 } else {
4688 pipeconf |= PIPECONF_PROGRESSIVE;
4689 I915_WRITE(VSYNCSHIFT(pipe), 0);
4690 }
4691
4692 I915_WRITE(HTOTAL(pipe),
4693 (adjusted_mode->crtc_hdisplay - 1) |
4694 ((adjusted_mode->crtc_htotal - 1) << 16));
4695 I915_WRITE(HBLANK(pipe),
4696 (adjusted_mode->crtc_hblank_start - 1) |
4697 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4698 I915_WRITE(HSYNC(pipe),
4699 (adjusted_mode->crtc_hsync_start - 1) |
4700 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4701
4702 I915_WRITE(VTOTAL(pipe),
4703 (adjusted_mode->crtc_vdisplay - 1) |
4704 ((adjusted_mode->crtc_vtotal - 1) << 16));
4705 I915_WRITE(VBLANK(pipe),
4706 (adjusted_mode->crtc_vblank_start - 1) |
4707 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4708 I915_WRITE(VSYNC(pipe),
4709 (adjusted_mode->crtc_vsync_start - 1) |
4710 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4711
4712 /* pipesrc controls the size that is scaled from, which should
4713 * always be the user's requested size.
4714 */
4715 I915_WRITE(PIPESRC(pipe),
4716 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4717
4718 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4719 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4720 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4721 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4722
4723 if (is_cpu_edp)
4724 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4725
4726 I915_WRITE(PIPECONF(pipe), pipeconf);
4727 POSTING_READ(PIPECONF(pipe));
4728
4729 intel_wait_for_vblank(dev, pipe);
4730
4731 I915_WRITE(DSPCNTR(plane), dspcntr);
4732 POSTING_READ(DSPCNTR(plane));
4733
4734 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4735
4736 intel_update_watermarks(dev);
4737
4738 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4739
4740 return ret;
4741 }
4742
4743 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4744 struct drm_display_mode *mode,
4745 struct drm_display_mode *adjusted_mode,
4746 int x, int y,
4747 struct drm_framebuffer *old_fb)
4748 {
4749 struct drm_device *dev = crtc->dev;
4750 struct drm_i915_private *dev_priv = dev->dev_private;
4751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4752 int pipe = intel_crtc->pipe;
4753 int ret;
4754
4755 drm_vblank_pre_modeset(dev, pipe);
4756
4757 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4758 x, y, old_fb);
4759 drm_vblank_post_modeset(dev, pipe);
4760
4761 if (ret)
4762 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4763 else
4764 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4765
4766 return ret;
4767 }
4768
4769 static bool intel_eld_uptodate(struct drm_connector *connector,
4770 int reg_eldv, uint32_t bits_eldv,
4771 int reg_elda, uint32_t bits_elda,
4772 int reg_edid)
4773 {
4774 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4775 uint8_t *eld = connector->eld;
4776 uint32_t i;
4777
4778 i = I915_READ(reg_eldv);
4779 i &= bits_eldv;
4780
4781 if (!eld[0])
4782 return !i;
4783
4784 if (!i)
4785 return false;
4786
4787 i = I915_READ(reg_elda);
4788 i &= ~bits_elda;
4789 I915_WRITE(reg_elda, i);
4790
4791 for (i = 0; i < eld[2]; i++)
4792 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4793 return false;
4794
4795 return true;
4796 }
4797
4798 static void g4x_write_eld(struct drm_connector *connector,
4799 struct drm_crtc *crtc)
4800 {
4801 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4802 uint8_t *eld = connector->eld;
4803 uint32_t eldv;
4804 uint32_t len;
4805 uint32_t i;
4806
4807 i = I915_READ(G4X_AUD_VID_DID);
4808
4809 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4810 eldv = G4X_ELDV_DEVCL_DEVBLC;
4811 else
4812 eldv = G4X_ELDV_DEVCTG;
4813
4814 if (intel_eld_uptodate(connector,
4815 G4X_AUD_CNTL_ST, eldv,
4816 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4817 G4X_HDMIW_HDMIEDID))
4818 return;
4819
4820 i = I915_READ(G4X_AUD_CNTL_ST);
4821 i &= ~(eldv | G4X_ELD_ADDR);
4822 len = (i >> 9) & 0x1f; /* ELD buffer size */
4823 I915_WRITE(G4X_AUD_CNTL_ST, i);
4824
4825 if (!eld[0])
4826 return;
4827
4828 len = min_t(uint8_t, eld[2], len);
4829 DRM_DEBUG_DRIVER("ELD size %d\n", len);
4830 for (i = 0; i < len; i++)
4831 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4832
4833 i = I915_READ(G4X_AUD_CNTL_ST);
4834 i |= eldv;
4835 I915_WRITE(G4X_AUD_CNTL_ST, i);
4836 }
4837
4838 static void ironlake_write_eld(struct drm_connector *connector,
4839 struct drm_crtc *crtc)
4840 {
4841 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4842 uint8_t *eld = connector->eld;
4843 uint32_t eldv;
4844 uint32_t i;
4845 int len;
4846 int hdmiw_hdmiedid;
4847 int aud_config;
4848 int aud_cntl_st;
4849 int aud_cntrl_st2;
4850
4851 if (HAS_PCH_IBX(connector->dev)) {
4852 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4853 aud_config = IBX_AUD_CONFIG_A;
4854 aud_cntl_st = IBX_AUD_CNTL_ST_A;
4855 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4856 } else {
4857 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4858 aud_config = CPT_AUD_CONFIG_A;
4859 aud_cntl_st = CPT_AUD_CNTL_ST_A;
4860 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4861 }
4862
4863 i = to_intel_crtc(crtc)->pipe;
4864 hdmiw_hdmiedid += i * 0x100;
4865 aud_cntl_st += i * 0x100;
4866 aud_config += i * 0x100;
4867
4868 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
4869
4870 i = I915_READ(aud_cntl_st);
4871 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
4872 if (!i) {
4873 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
4874 /* operate blindly on all ports */
4875 eldv = IBX_ELD_VALIDB;
4876 eldv |= IBX_ELD_VALIDB << 4;
4877 eldv |= IBX_ELD_VALIDB << 8;
4878 } else {
4879 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
4880 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4881 }
4882
4883 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4884 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4885 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
4886 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4887 } else
4888 I915_WRITE(aud_config, 0);
4889
4890 if (intel_eld_uptodate(connector,
4891 aud_cntrl_st2, eldv,
4892 aud_cntl_st, IBX_ELD_ADDRESS,
4893 hdmiw_hdmiedid))
4894 return;
4895
4896 i = I915_READ(aud_cntrl_st2);
4897 i &= ~eldv;
4898 I915_WRITE(aud_cntrl_st2, i);
4899
4900 if (!eld[0])
4901 return;
4902
4903 i = I915_READ(aud_cntl_st);
4904 i &= ~IBX_ELD_ADDRESS;
4905 I915_WRITE(aud_cntl_st, i);
4906
4907 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
4908 DRM_DEBUG_DRIVER("ELD size %d\n", len);
4909 for (i = 0; i < len; i++)
4910 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4911
4912 i = I915_READ(aud_cntrl_st2);
4913 i |= eldv;
4914 I915_WRITE(aud_cntrl_st2, i);
4915 }
4916
4917 void intel_write_eld(struct drm_encoder *encoder,
4918 struct drm_display_mode *mode)
4919 {
4920 struct drm_crtc *crtc = encoder->crtc;
4921 struct drm_connector *connector;
4922 struct drm_device *dev = encoder->dev;
4923 struct drm_i915_private *dev_priv = dev->dev_private;
4924
4925 connector = drm_select_eld(encoder, mode);
4926 if (!connector)
4927 return;
4928
4929 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4930 connector->base.id,
4931 drm_get_connector_name(connector),
4932 connector->encoder->base.id,
4933 drm_get_encoder_name(connector->encoder));
4934
4935 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4936
4937 if (dev_priv->display.write_eld)
4938 dev_priv->display.write_eld(connector, crtc);
4939 }
4940
4941 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4942 void intel_crtc_load_lut(struct drm_crtc *crtc)
4943 {
4944 struct drm_device *dev = crtc->dev;
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4947 int palreg = PALETTE(intel_crtc->pipe);
4948 int i;
4949
4950 /* The clocks have to be on to load the palette. */
4951 if (!crtc->enabled || !intel_crtc->active)
4952 return;
4953
4954 /* use legacy palette for Ironlake */
4955 if (HAS_PCH_SPLIT(dev))
4956 palreg = LGC_PALETTE(intel_crtc->pipe);
4957
4958 for (i = 0; i < 256; i++) {
4959 I915_WRITE(palreg + 4 * i,
4960 (intel_crtc->lut_r[i] << 16) |
4961 (intel_crtc->lut_g[i] << 8) |
4962 intel_crtc->lut_b[i]);
4963 }
4964 }
4965
4966 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4967 {
4968 struct drm_device *dev = crtc->dev;
4969 struct drm_i915_private *dev_priv = dev->dev_private;
4970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971 bool visible = base != 0;
4972 u32 cntl;
4973
4974 if (intel_crtc->cursor_visible == visible)
4975 return;
4976
4977 cntl = I915_READ(_CURACNTR);
4978 if (visible) {
4979 /* On these chipsets we can only modify the base whilst
4980 * the cursor is disabled.
4981 */
4982 I915_WRITE(_CURABASE, base);
4983
4984 cntl &= ~(CURSOR_FORMAT_MASK);
4985 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4986 cntl |= CURSOR_ENABLE |
4987 CURSOR_GAMMA_ENABLE |
4988 CURSOR_FORMAT_ARGB;
4989 } else
4990 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4991 I915_WRITE(_CURACNTR, cntl);
4992
4993 intel_crtc->cursor_visible = visible;
4994 }
4995
4996 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4997 {
4998 struct drm_device *dev = crtc->dev;
4999 struct drm_i915_private *dev_priv = dev->dev_private;
5000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5001 int pipe = intel_crtc->pipe;
5002 bool visible = base != 0;
5003
5004 if (intel_crtc->cursor_visible != visible) {
5005 uint32_t cntl = I915_READ(CURCNTR(pipe));
5006 if (base) {
5007 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5008 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5009 cntl |= pipe << 28; /* Connect to correct pipe */
5010 } else {
5011 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5012 cntl |= CURSOR_MODE_DISABLE;
5013 }
5014 I915_WRITE(CURCNTR(pipe), cntl);
5015
5016 intel_crtc->cursor_visible = visible;
5017 }
5018 /* and commit changes on next vblank */
5019 I915_WRITE(CURBASE(pipe), base);
5020 }
5021
5022 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5023 {
5024 struct drm_device *dev = crtc->dev;
5025 struct drm_i915_private *dev_priv = dev->dev_private;
5026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5027 int pipe = intel_crtc->pipe;
5028 bool visible = base != 0;
5029
5030 if (intel_crtc->cursor_visible != visible) {
5031 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5032 if (base) {
5033 cntl &= ~CURSOR_MODE;
5034 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5035 } else {
5036 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5037 cntl |= CURSOR_MODE_DISABLE;
5038 }
5039 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5040
5041 intel_crtc->cursor_visible = visible;
5042 }
5043 /* and commit changes on next vblank */
5044 I915_WRITE(CURBASE_IVB(pipe), base);
5045 }
5046
5047 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5048 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5049 bool on)
5050 {
5051 struct drm_device *dev = crtc->dev;
5052 struct drm_i915_private *dev_priv = dev->dev_private;
5053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5054 int pipe = intel_crtc->pipe;
5055 int x = intel_crtc->cursor_x;
5056 int y = intel_crtc->cursor_y;
5057 u32 base, pos;
5058 bool visible;
5059
5060 pos = 0;
5061
5062 if (on && crtc->enabled && crtc->fb) {
5063 base = intel_crtc->cursor_addr;
5064 if (x > (int) crtc->fb->width)
5065 base = 0;
5066
5067 if (y > (int) crtc->fb->height)
5068 base = 0;
5069 } else
5070 base = 0;
5071
5072 if (x < 0) {
5073 if (x + intel_crtc->cursor_width < 0)
5074 base = 0;
5075
5076 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5077 x = -x;
5078 }
5079 pos |= x << CURSOR_X_SHIFT;
5080
5081 if (y < 0) {
5082 if (y + intel_crtc->cursor_height < 0)
5083 base = 0;
5084
5085 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5086 y = -y;
5087 }
5088 pos |= y << CURSOR_Y_SHIFT;
5089
5090 visible = base != 0;
5091 if (!visible && !intel_crtc->cursor_visible)
5092 return;
5093
5094 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5095 I915_WRITE(CURPOS_IVB(pipe), pos);
5096 ivb_update_cursor(crtc, base);
5097 } else {
5098 I915_WRITE(CURPOS(pipe), pos);
5099 if (IS_845G(dev) || IS_I865G(dev))
5100 i845_update_cursor(crtc, base);
5101 else
5102 i9xx_update_cursor(crtc, base);
5103 }
5104 }
5105
5106 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5107 struct drm_file *file,
5108 uint32_t handle,
5109 uint32_t width, uint32_t height)
5110 {
5111 struct drm_device *dev = crtc->dev;
5112 struct drm_i915_private *dev_priv = dev->dev_private;
5113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5114 struct drm_i915_gem_object *obj;
5115 uint32_t addr;
5116 int ret;
5117
5118 DRM_DEBUG_KMS("\n");
5119
5120 /* if we want to turn off the cursor ignore width and height */
5121 if (!handle) {
5122 DRM_DEBUG_KMS("cursor off\n");
5123 addr = 0;
5124 obj = NULL;
5125 mutex_lock(&dev->struct_mutex);
5126 goto finish;
5127 }
5128
5129 /* Currently we only support 64x64 cursors */
5130 if (width != 64 || height != 64) {
5131 DRM_ERROR("we currently only support 64x64 cursors\n");
5132 return -EINVAL;
5133 }
5134
5135 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5136 if (&obj->base == NULL)
5137 return -ENOENT;
5138
5139 if (obj->base.size < width * height * 4) {
5140 DRM_ERROR("buffer is to small\n");
5141 ret = -ENOMEM;
5142 goto fail;
5143 }
5144
5145 /* we only need to pin inside GTT if cursor is non-phy */
5146 mutex_lock(&dev->struct_mutex);
5147 if (!dev_priv->info->cursor_needs_physical) {
5148 if (obj->tiling_mode) {
5149 DRM_ERROR("cursor cannot be tiled\n");
5150 ret = -EINVAL;
5151 goto fail_locked;
5152 }
5153
5154 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5155 if (ret) {
5156 DRM_ERROR("failed to move cursor bo into the GTT\n");
5157 goto fail_locked;
5158 }
5159
5160 ret = i915_gem_object_put_fence(obj);
5161 if (ret) {
5162 DRM_ERROR("failed to release fence for cursor");
5163 goto fail_unpin;
5164 }
5165
5166 addr = obj->gtt_offset;
5167 } else {
5168 int align = IS_I830(dev) ? 16 * 1024 : 256;
5169 ret = i915_gem_attach_phys_object(dev, obj,
5170 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5171 align);
5172 if (ret) {
5173 DRM_ERROR("failed to attach phys object\n");
5174 goto fail_locked;
5175 }
5176 addr = obj->phys_obj->handle->busaddr;
5177 }
5178
5179 if (IS_GEN2(dev))
5180 I915_WRITE(CURSIZE, (height << 12) | width);
5181
5182 finish:
5183 if (intel_crtc->cursor_bo) {
5184 if (dev_priv->info->cursor_needs_physical) {
5185 if (intel_crtc->cursor_bo != obj)
5186 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5187 } else
5188 i915_gem_object_unpin(intel_crtc->cursor_bo);
5189 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5190 }
5191
5192 mutex_unlock(&dev->struct_mutex);
5193
5194 intel_crtc->cursor_addr = addr;
5195 intel_crtc->cursor_bo = obj;
5196 intel_crtc->cursor_width = width;
5197 intel_crtc->cursor_height = height;
5198
5199 intel_crtc_update_cursor(crtc, true);
5200
5201 return 0;
5202 fail_unpin:
5203 i915_gem_object_unpin(obj);
5204 fail_locked:
5205 mutex_unlock(&dev->struct_mutex);
5206 fail:
5207 drm_gem_object_unreference_unlocked(&obj->base);
5208 return ret;
5209 }
5210
5211 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5212 {
5213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5214
5215 intel_crtc->cursor_x = x;
5216 intel_crtc->cursor_y = y;
5217
5218 intel_crtc_update_cursor(crtc, true);
5219
5220 return 0;
5221 }
5222
5223 /** Sets the color ramps on behalf of RandR */
5224 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5225 u16 blue, int regno)
5226 {
5227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5228
5229 intel_crtc->lut_r[regno] = red >> 8;
5230 intel_crtc->lut_g[regno] = green >> 8;
5231 intel_crtc->lut_b[regno] = blue >> 8;
5232 }
5233
5234 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5235 u16 *blue, int regno)
5236 {
5237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238
5239 *red = intel_crtc->lut_r[regno] << 8;
5240 *green = intel_crtc->lut_g[regno] << 8;
5241 *blue = intel_crtc->lut_b[regno] << 8;
5242 }
5243
5244 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5245 u16 *blue, uint32_t start, uint32_t size)
5246 {
5247 int end = (start + size > 256) ? 256 : start + size, i;
5248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5249
5250 for (i = start; i < end; i++) {
5251 intel_crtc->lut_r[i] = red[i] >> 8;
5252 intel_crtc->lut_g[i] = green[i] >> 8;
5253 intel_crtc->lut_b[i] = blue[i] >> 8;
5254 }
5255
5256 intel_crtc_load_lut(crtc);
5257 }
5258
5259 /**
5260 * Get a pipe with a simple mode set on it for doing load-based monitor
5261 * detection.
5262 *
5263 * It will be up to the load-detect code to adjust the pipe as appropriate for
5264 * its requirements. The pipe will be connected to no other encoders.
5265 *
5266 * Currently this code will only succeed if there is a pipe with no encoders
5267 * configured for it. In the future, it could choose to temporarily disable
5268 * some outputs to free up a pipe for its use.
5269 *
5270 * \return crtc, or NULL if no pipes are available.
5271 */
5272
5273 /* VESA 640x480x72Hz mode to set on the pipe */
5274 static struct drm_display_mode load_detect_mode = {
5275 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5276 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5277 };
5278
5279 static struct drm_framebuffer *
5280 intel_framebuffer_create(struct drm_device *dev,
5281 struct drm_mode_fb_cmd2 *mode_cmd,
5282 struct drm_i915_gem_object *obj)
5283 {
5284 struct intel_framebuffer *intel_fb;
5285 int ret;
5286
5287 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5288 if (!intel_fb) {
5289 drm_gem_object_unreference_unlocked(&obj->base);
5290 return ERR_PTR(-ENOMEM);
5291 }
5292
5293 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5294 if (ret) {
5295 drm_gem_object_unreference_unlocked(&obj->base);
5296 kfree(intel_fb);
5297 return ERR_PTR(ret);
5298 }
5299
5300 return &intel_fb->base;
5301 }
5302
5303 static u32
5304 intel_framebuffer_pitch_for_width(int width, int bpp)
5305 {
5306 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5307 return ALIGN(pitch, 64);
5308 }
5309
5310 static u32
5311 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5312 {
5313 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5314 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5315 }
5316
5317 static struct drm_framebuffer *
5318 intel_framebuffer_create_for_mode(struct drm_device *dev,
5319 struct drm_display_mode *mode,
5320 int depth, int bpp)
5321 {
5322 struct drm_i915_gem_object *obj;
5323 struct drm_mode_fb_cmd2 mode_cmd;
5324
5325 obj = i915_gem_alloc_object(dev,
5326 intel_framebuffer_size_for_mode(mode, bpp));
5327 if (obj == NULL)
5328 return ERR_PTR(-ENOMEM);
5329
5330 mode_cmd.width = mode->hdisplay;
5331 mode_cmd.height = mode->vdisplay;
5332 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5333 bpp);
5334 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5335
5336 return intel_framebuffer_create(dev, &mode_cmd, obj);
5337 }
5338
5339 static struct drm_framebuffer *
5340 mode_fits_in_fbdev(struct drm_device *dev,
5341 struct drm_display_mode *mode)
5342 {
5343 struct drm_i915_private *dev_priv = dev->dev_private;
5344 struct drm_i915_gem_object *obj;
5345 struct drm_framebuffer *fb;
5346
5347 if (dev_priv->fbdev == NULL)
5348 return NULL;
5349
5350 obj = dev_priv->fbdev->ifb.obj;
5351 if (obj == NULL)
5352 return NULL;
5353
5354 fb = &dev_priv->fbdev->ifb.base;
5355 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5356 fb->bits_per_pixel))
5357 return NULL;
5358
5359 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5360 return NULL;
5361
5362 return fb;
5363 }
5364
5365 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5366 struct drm_connector *connector,
5367 struct drm_display_mode *mode,
5368 struct intel_load_detect_pipe *old)
5369 {
5370 struct intel_crtc *intel_crtc;
5371 struct drm_crtc *possible_crtc;
5372 struct drm_encoder *encoder = &intel_encoder->base;
5373 struct drm_crtc *crtc = NULL;
5374 struct drm_device *dev = encoder->dev;
5375 struct drm_framebuffer *old_fb;
5376 int i = -1;
5377
5378 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5379 connector->base.id, drm_get_connector_name(connector),
5380 encoder->base.id, drm_get_encoder_name(encoder));
5381
5382 /*
5383 * Algorithm gets a little messy:
5384 *
5385 * - if the connector already has an assigned crtc, use it (but make
5386 * sure it's on first)
5387 *
5388 * - try to find the first unused crtc that can drive this connector,
5389 * and use that if we find one
5390 */
5391
5392 /* See if we already have a CRTC for this connector */
5393 if (encoder->crtc) {
5394 crtc = encoder->crtc;
5395
5396 intel_crtc = to_intel_crtc(crtc);
5397 old->dpms_mode = intel_crtc->dpms_mode;
5398 old->load_detect_temp = false;
5399
5400 /* Make sure the crtc and connector are running */
5401 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5402 struct drm_encoder_helper_funcs *encoder_funcs;
5403 struct drm_crtc_helper_funcs *crtc_funcs;
5404
5405 crtc_funcs = crtc->helper_private;
5406 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5407
5408 encoder_funcs = encoder->helper_private;
5409 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5410 }
5411
5412 return true;
5413 }
5414
5415 /* Find an unused one (if possible) */
5416 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5417 i++;
5418 if (!(encoder->possible_crtcs & (1 << i)))
5419 continue;
5420 if (!possible_crtc->enabled) {
5421 crtc = possible_crtc;
5422 break;
5423 }
5424 }
5425
5426 /*
5427 * If we didn't find an unused CRTC, don't use any.
5428 */
5429 if (!crtc) {
5430 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5431 return false;
5432 }
5433
5434 encoder->crtc = crtc;
5435 connector->encoder = encoder;
5436
5437 intel_crtc = to_intel_crtc(crtc);
5438 old->dpms_mode = intel_crtc->dpms_mode;
5439 old->load_detect_temp = true;
5440 old->release_fb = NULL;
5441
5442 if (!mode)
5443 mode = &load_detect_mode;
5444
5445 old_fb = crtc->fb;
5446
5447 /* We need a framebuffer large enough to accommodate all accesses
5448 * that the plane may generate whilst we perform load detection.
5449 * We can not rely on the fbcon either being present (we get called
5450 * during its initialisation to detect all boot displays, or it may
5451 * not even exist) or that it is large enough to satisfy the
5452 * requested mode.
5453 */
5454 crtc->fb = mode_fits_in_fbdev(dev, mode);
5455 if (crtc->fb == NULL) {
5456 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5457 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5458 old->release_fb = crtc->fb;
5459 } else
5460 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5461 if (IS_ERR(crtc->fb)) {
5462 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5463 crtc->fb = old_fb;
5464 return false;
5465 }
5466
5467 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5468 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5469 if (old->release_fb)
5470 old->release_fb->funcs->destroy(old->release_fb);
5471 crtc->fb = old_fb;
5472 return false;
5473 }
5474
5475 /* let the connector get through one full cycle before testing */
5476 intel_wait_for_vblank(dev, intel_crtc->pipe);
5477
5478 return true;
5479 }
5480
5481 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5482 struct drm_connector *connector,
5483 struct intel_load_detect_pipe *old)
5484 {
5485 struct drm_encoder *encoder = &intel_encoder->base;
5486 struct drm_device *dev = encoder->dev;
5487 struct drm_crtc *crtc = encoder->crtc;
5488 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5489 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5490
5491 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5492 connector->base.id, drm_get_connector_name(connector),
5493 encoder->base.id, drm_get_encoder_name(encoder));
5494
5495 if (old->load_detect_temp) {
5496 connector->encoder = NULL;
5497 drm_helper_disable_unused_functions(dev);
5498
5499 if (old->release_fb)
5500 old->release_fb->funcs->destroy(old->release_fb);
5501
5502 return;
5503 }
5504
5505 /* Switch crtc and encoder back off if necessary */
5506 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5507 encoder_funcs->dpms(encoder, old->dpms_mode);
5508 crtc_funcs->dpms(crtc, old->dpms_mode);
5509 }
5510 }
5511
5512 /* Returns the clock of the currently programmed mode of the given pipe. */
5513 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5514 {
5515 struct drm_i915_private *dev_priv = dev->dev_private;
5516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5517 int pipe = intel_crtc->pipe;
5518 u32 dpll = I915_READ(DPLL(pipe));
5519 u32 fp;
5520 intel_clock_t clock;
5521
5522 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5523 fp = I915_READ(FP0(pipe));
5524 else
5525 fp = I915_READ(FP1(pipe));
5526
5527 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5528 if (IS_PINEVIEW(dev)) {
5529 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5530 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5531 } else {
5532 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5533 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5534 }
5535
5536 if (!IS_GEN2(dev)) {
5537 if (IS_PINEVIEW(dev))
5538 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5539 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5540 else
5541 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5542 DPLL_FPA01_P1_POST_DIV_SHIFT);
5543
5544 switch (dpll & DPLL_MODE_MASK) {
5545 case DPLLB_MODE_DAC_SERIAL:
5546 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5547 5 : 10;
5548 break;
5549 case DPLLB_MODE_LVDS:
5550 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5551 7 : 14;
5552 break;
5553 default:
5554 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5555 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5556 return 0;
5557 }
5558
5559 /* XXX: Handle the 100Mhz refclk */
5560 intel_clock(dev, 96000, &clock);
5561 } else {
5562 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5563
5564 if (is_lvds) {
5565 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5566 DPLL_FPA01_P1_POST_DIV_SHIFT);
5567 clock.p2 = 14;
5568
5569 if ((dpll & PLL_REF_INPUT_MASK) ==
5570 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5571 /* XXX: might not be 66MHz */
5572 intel_clock(dev, 66000, &clock);
5573 } else
5574 intel_clock(dev, 48000, &clock);
5575 } else {
5576 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5577 clock.p1 = 2;
5578 else {
5579 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5580 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5581 }
5582 if (dpll & PLL_P2_DIVIDE_BY_4)
5583 clock.p2 = 4;
5584 else
5585 clock.p2 = 2;
5586
5587 intel_clock(dev, 48000, &clock);
5588 }
5589 }
5590
5591 /* XXX: It would be nice to validate the clocks, but we can't reuse
5592 * i830PllIsValid() because it relies on the xf86_config connector
5593 * configuration being accurate, which it isn't necessarily.
5594 */
5595
5596 return clock.dot;
5597 }
5598
5599 /** Returns the currently programmed mode of the given pipe. */
5600 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5601 struct drm_crtc *crtc)
5602 {
5603 struct drm_i915_private *dev_priv = dev->dev_private;
5604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5605 int pipe = intel_crtc->pipe;
5606 struct drm_display_mode *mode;
5607 int htot = I915_READ(HTOTAL(pipe));
5608 int hsync = I915_READ(HSYNC(pipe));
5609 int vtot = I915_READ(VTOTAL(pipe));
5610 int vsync = I915_READ(VSYNC(pipe));
5611
5612 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5613 if (!mode)
5614 return NULL;
5615
5616 mode->clock = intel_crtc_clock_get(dev, crtc);
5617 mode->hdisplay = (htot & 0xffff) + 1;
5618 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5619 mode->hsync_start = (hsync & 0xffff) + 1;
5620 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5621 mode->vdisplay = (vtot & 0xffff) + 1;
5622 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5623 mode->vsync_start = (vsync & 0xffff) + 1;
5624 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5625
5626 drm_mode_set_name(mode);
5627
5628 return mode;
5629 }
5630
5631 #define GPU_IDLE_TIMEOUT 500 /* ms */
5632
5633 /* When this timer fires, we've been idle for awhile */
5634 static void intel_gpu_idle_timer(unsigned long arg)
5635 {
5636 struct drm_device *dev = (struct drm_device *)arg;
5637 drm_i915_private_t *dev_priv = dev->dev_private;
5638
5639 if (!list_empty(&dev_priv->mm.active_list)) {
5640 /* Still processing requests, so just re-arm the timer. */
5641 mod_timer(&dev_priv->idle_timer, jiffies +
5642 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5643 return;
5644 }
5645
5646 dev_priv->busy = false;
5647 queue_work(dev_priv->wq, &dev_priv->idle_work);
5648 }
5649
5650 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5651
5652 static void intel_crtc_idle_timer(unsigned long arg)
5653 {
5654 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5655 struct drm_crtc *crtc = &intel_crtc->base;
5656 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5657 struct intel_framebuffer *intel_fb;
5658
5659 intel_fb = to_intel_framebuffer(crtc->fb);
5660 if (intel_fb && intel_fb->obj->active) {
5661 /* The framebuffer is still being accessed by the GPU. */
5662 mod_timer(&intel_crtc->idle_timer, jiffies +
5663 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5664 return;
5665 }
5666
5667 intel_crtc->busy = false;
5668 queue_work(dev_priv->wq, &dev_priv->idle_work);
5669 }
5670
5671 static void intel_increase_pllclock(struct drm_crtc *crtc)
5672 {
5673 struct drm_device *dev = crtc->dev;
5674 drm_i915_private_t *dev_priv = dev->dev_private;
5675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5676 int pipe = intel_crtc->pipe;
5677 int dpll_reg = DPLL(pipe);
5678 int dpll;
5679
5680 if (HAS_PCH_SPLIT(dev))
5681 return;
5682
5683 if (!dev_priv->lvds_downclock_avail)
5684 return;
5685
5686 dpll = I915_READ(dpll_reg);
5687 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5688 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5689
5690 assert_panel_unlocked(dev_priv, pipe);
5691
5692 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5693 I915_WRITE(dpll_reg, dpll);
5694 intel_wait_for_vblank(dev, pipe);
5695
5696 dpll = I915_READ(dpll_reg);
5697 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5698 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5699 }
5700
5701 /* Schedule downclock */
5702 mod_timer(&intel_crtc->idle_timer, jiffies +
5703 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5704 }
5705
5706 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5707 {
5708 struct drm_device *dev = crtc->dev;
5709 drm_i915_private_t *dev_priv = dev->dev_private;
5710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5711
5712 if (HAS_PCH_SPLIT(dev))
5713 return;
5714
5715 if (!dev_priv->lvds_downclock_avail)
5716 return;
5717
5718 /*
5719 * Since this is called by a timer, we should never get here in
5720 * the manual case.
5721 */
5722 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5723 int pipe = intel_crtc->pipe;
5724 int dpll_reg = DPLL(pipe);
5725 int dpll;
5726
5727 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5728
5729 assert_panel_unlocked(dev_priv, pipe);
5730
5731 dpll = I915_READ(dpll_reg);
5732 dpll |= DISPLAY_RATE_SELECT_FPA1;
5733 I915_WRITE(dpll_reg, dpll);
5734 intel_wait_for_vblank(dev, pipe);
5735 dpll = I915_READ(dpll_reg);
5736 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5737 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5738 }
5739
5740 }
5741
5742 /**
5743 * intel_idle_update - adjust clocks for idleness
5744 * @work: work struct
5745 *
5746 * Either the GPU or display (or both) went idle. Check the busy status
5747 * here and adjust the CRTC and GPU clocks as necessary.
5748 */
5749 static void intel_idle_update(struct work_struct *work)
5750 {
5751 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5752 idle_work);
5753 struct drm_device *dev = dev_priv->dev;
5754 struct drm_crtc *crtc;
5755 struct intel_crtc *intel_crtc;
5756
5757 if (!i915_powersave)
5758 return;
5759
5760 mutex_lock(&dev->struct_mutex);
5761
5762 i915_update_gfx_val(dev_priv);
5763
5764 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5765 /* Skip inactive CRTCs */
5766 if (!crtc->fb)
5767 continue;
5768
5769 intel_crtc = to_intel_crtc(crtc);
5770 if (!intel_crtc->busy)
5771 intel_decrease_pllclock(crtc);
5772 }
5773
5774
5775 mutex_unlock(&dev->struct_mutex);
5776 }
5777
5778 /**
5779 * intel_mark_busy - mark the GPU and possibly the display busy
5780 * @dev: drm device
5781 * @obj: object we're operating on
5782 *
5783 * Callers can use this function to indicate that the GPU is busy processing
5784 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
5785 * buffer), we'll also mark the display as busy, so we know to increase its
5786 * clock frequency.
5787 */
5788 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5789 {
5790 drm_i915_private_t *dev_priv = dev->dev_private;
5791 struct drm_crtc *crtc = NULL;
5792 struct intel_framebuffer *intel_fb;
5793 struct intel_crtc *intel_crtc;
5794
5795 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5796 return;
5797
5798 if (!dev_priv->busy) {
5799 intel_sanitize_pm(dev);
5800 dev_priv->busy = true;
5801 } else
5802 mod_timer(&dev_priv->idle_timer, jiffies +
5803 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5804
5805 if (obj == NULL)
5806 return;
5807
5808 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5809 if (!crtc->fb)
5810 continue;
5811
5812 intel_crtc = to_intel_crtc(crtc);
5813 intel_fb = to_intel_framebuffer(crtc->fb);
5814 if (intel_fb->obj == obj) {
5815 if (!intel_crtc->busy) {
5816 /* Non-busy -> busy, upclock */
5817 intel_increase_pllclock(crtc);
5818 intel_crtc->busy = true;
5819 } else {
5820 /* Busy -> busy, put off timer */
5821 mod_timer(&intel_crtc->idle_timer, jiffies +
5822 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5823 }
5824 }
5825 }
5826 }
5827
5828 static void intel_crtc_destroy(struct drm_crtc *crtc)
5829 {
5830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5831 struct drm_device *dev = crtc->dev;
5832 struct intel_unpin_work *work;
5833 unsigned long flags;
5834
5835 spin_lock_irqsave(&dev->event_lock, flags);
5836 work = intel_crtc->unpin_work;
5837 intel_crtc->unpin_work = NULL;
5838 spin_unlock_irqrestore(&dev->event_lock, flags);
5839
5840 if (work) {
5841 cancel_work_sync(&work->work);
5842 kfree(work);
5843 }
5844
5845 drm_crtc_cleanup(crtc);
5846
5847 kfree(intel_crtc);
5848 }
5849
5850 static void intel_unpin_work_fn(struct work_struct *__work)
5851 {
5852 struct intel_unpin_work *work =
5853 container_of(__work, struct intel_unpin_work, work);
5854
5855 mutex_lock(&work->dev->struct_mutex);
5856 intel_unpin_fb_obj(work->old_fb_obj);
5857 drm_gem_object_unreference(&work->pending_flip_obj->base);
5858 drm_gem_object_unreference(&work->old_fb_obj->base);
5859
5860 intel_update_fbc(work->dev);
5861 mutex_unlock(&work->dev->struct_mutex);
5862 kfree(work);
5863 }
5864
5865 static void do_intel_finish_page_flip(struct drm_device *dev,
5866 struct drm_crtc *crtc)
5867 {
5868 drm_i915_private_t *dev_priv = dev->dev_private;
5869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5870 struct intel_unpin_work *work;
5871 struct drm_i915_gem_object *obj;
5872 struct drm_pending_vblank_event *e;
5873 struct timeval tnow, tvbl;
5874 unsigned long flags;
5875
5876 /* Ignore early vblank irqs */
5877 if (intel_crtc == NULL)
5878 return;
5879
5880 do_gettimeofday(&tnow);
5881
5882 spin_lock_irqsave(&dev->event_lock, flags);
5883 work = intel_crtc->unpin_work;
5884 if (work == NULL || !work->pending) {
5885 spin_unlock_irqrestore(&dev->event_lock, flags);
5886 return;
5887 }
5888
5889 intel_crtc->unpin_work = NULL;
5890
5891 if (work->event) {
5892 e = work->event;
5893 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5894
5895 /* Called before vblank count and timestamps have
5896 * been updated for the vblank interval of flip
5897 * completion? Need to increment vblank count and
5898 * add one videorefresh duration to returned timestamp
5899 * to account for this. We assume this happened if we
5900 * get called over 0.9 frame durations after the last
5901 * timestamped vblank.
5902 *
5903 * This calculation can not be used with vrefresh rates
5904 * below 5Hz (10Hz to be on the safe side) without
5905 * promoting to 64 integers.
5906 */
5907 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5908 9 * crtc->framedur_ns) {
5909 e->event.sequence++;
5910 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5911 crtc->framedur_ns);
5912 }
5913
5914 e->event.tv_sec = tvbl.tv_sec;
5915 e->event.tv_usec = tvbl.tv_usec;
5916
5917 list_add_tail(&e->base.link,
5918 &e->base.file_priv->event_list);
5919 wake_up_interruptible(&e->base.file_priv->event_wait);
5920 }
5921
5922 drm_vblank_put(dev, intel_crtc->pipe);
5923
5924 spin_unlock_irqrestore(&dev->event_lock, flags);
5925
5926 obj = work->old_fb_obj;
5927
5928 atomic_clear_mask(1 << intel_crtc->plane,
5929 &obj->pending_flip.counter);
5930 if (atomic_read(&obj->pending_flip) == 0)
5931 wake_up(&dev_priv->pending_flip_queue);
5932
5933 schedule_work(&work->work);
5934
5935 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5936 }
5937
5938 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5939 {
5940 drm_i915_private_t *dev_priv = dev->dev_private;
5941 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5942
5943 do_intel_finish_page_flip(dev, crtc);
5944 }
5945
5946 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5947 {
5948 drm_i915_private_t *dev_priv = dev->dev_private;
5949 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5950
5951 do_intel_finish_page_flip(dev, crtc);
5952 }
5953
5954 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5955 {
5956 drm_i915_private_t *dev_priv = dev->dev_private;
5957 struct intel_crtc *intel_crtc =
5958 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5959 unsigned long flags;
5960
5961 spin_lock_irqsave(&dev->event_lock, flags);
5962 if (intel_crtc->unpin_work) {
5963 if ((++intel_crtc->unpin_work->pending) > 1)
5964 DRM_ERROR("Prepared flip multiple times\n");
5965 } else {
5966 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5967 }
5968 spin_unlock_irqrestore(&dev->event_lock, flags);
5969 }
5970
5971 static int intel_gen2_queue_flip(struct drm_device *dev,
5972 struct drm_crtc *crtc,
5973 struct drm_framebuffer *fb,
5974 struct drm_i915_gem_object *obj)
5975 {
5976 struct drm_i915_private *dev_priv = dev->dev_private;
5977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5978 unsigned long offset;
5979 u32 flip_mask;
5980 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5981 int ret;
5982
5983 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5984 if (ret)
5985 goto err;
5986
5987 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5988 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5989
5990 ret = intel_ring_begin(ring, 6);
5991 if (ret)
5992 goto err_unpin;
5993
5994 /* Can't queue multiple flips, so wait for the previous
5995 * one to finish before executing the next.
5996 */
5997 if (intel_crtc->plane)
5998 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5999 else
6000 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6001 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6002 intel_ring_emit(ring, MI_NOOP);
6003 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6004 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6005 intel_ring_emit(ring, fb->pitches[0]);
6006 intel_ring_emit(ring, obj->gtt_offset + offset);
6007 intel_ring_emit(ring, 0); /* aux display base address, unused */
6008 intel_ring_advance(ring);
6009 return 0;
6010
6011 err_unpin:
6012 intel_unpin_fb_obj(obj);
6013 err:
6014 return ret;
6015 }
6016
6017 static int intel_gen3_queue_flip(struct drm_device *dev,
6018 struct drm_crtc *crtc,
6019 struct drm_framebuffer *fb,
6020 struct drm_i915_gem_object *obj)
6021 {
6022 struct drm_i915_private *dev_priv = dev->dev_private;
6023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6024 unsigned long offset;
6025 u32 flip_mask;
6026 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6027 int ret;
6028
6029 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6030 if (ret)
6031 goto err;
6032
6033 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6034 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
6035
6036 ret = intel_ring_begin(ring, 6);
6037 if (ret)
6038 goto err_unpin;
6039
6040 if (intel_crtc->plane)
6041 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6042 else
6043 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6044 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6045 intel_ring_emit(ring, MI_NOOP);
6046 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6047 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6048 intel_ring_emit(ring, fb->pitches[0]);
6049 intel_ring_emit(ring, obj->gtt_offset + offset);
6050 intel_ring_emit(ring, MI_NOOP);
6051
6052 intel_ring_advance(ring);
6053 return 0;
6054
6055 err_unpin:
6056 intel_unpin_fb_obj(obj);
6057 err:
6058 return ret;
6059 }
6060
6061 static int intel_gen4_queue_flip(struct drm_device *dev,
6062 struct drm_crtc *crtc,
6063 struct drm_framebuffer *fb,
6064 struct drm_i915_gem_object *obj)
6065 {
6066 struct drm_i915_private *dev_priv = dev->dev_private;
6067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6068 uint32_t pf, pipesrc;
6069 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6070 int ret;
6071
6072 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6073 if (ret)
6074 goto err;
6075
6076 ret = intel_ring_begin(ring, 4);
6077 if (ret)
6078 goto err_unpin;
6079
6080 /* i965+ uses the linear or tiled offsets from the
6081 * Display Registers (which do not change across a page-flip)
6082 * so we need only reprogram the base address.
6083 */
6084 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6085 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6086 intel_ring_emit(ring, fb->pitches[0]);
6087 intel_ring_emit(ring, obj->gtt_offset | obj->tiling_mode);
6088
6089 /* XXX Enabling the panel-fitter across page-flip is so far
6090 * untested on non-native modes, so ignore it for now.
6091 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6092 */
6093 pf = 0;
6094 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6095 intel_ring_emit(ring, pf | pipesrc);
6096 intel_ring_advance(ring);
6097 return 0;
6098
6099 err_unpin:
6100 intel_unpin_fb_obj(obj);
6101 err:
6102 return ret;
6103 }
6104
6105 static int intel_gen6_queue_flip(struct drm_device *dev,
6106 struct drm_crtc *crtc,
6107 struct drm_framebuffer *fb,
6108 struct drm_i915_gem_object *obj)
6109 {
6110 struct drm_i915_private *dev_priv = dev->dev_private;
6111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6112 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6113 uint32_t pf, pipesrc;
6114 int ret;
6115
6116 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6117 if (ret)
6118 goto err;
6119
6120 ret = intel_ring_begin(ring, 4);
6121 if (ret)
6122 goto err_unpin;
6123
6124 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6125 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6126 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6127 intel_ring_emit(ring, obj->gtt_offset);
6128
6129 /* Contrary to the suggestions in the documentation,
6130 * "Enable Panel Fitter" does not seem to be required when page
6131 * flipping with a non-native mode, and worse causes a normal
6132 * modeset to fail.
6133 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6134 */
6135 pf = 0;
6136 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6137 intel_ring_emit(ring, pf | pipesrc);
6138 intel_ring_advance(ring);
6139 return 0;
6140
6141 err_unpin:
6142 intel_unpin_fb_obj(obj);
6143 err:
6144 return ret;
6145 }
6146
6147 /*
6148 * On gen7 we currently use the blit ring because (in early silicon at least)
6149 * the render ring doesn't give us interrpts for page flip completion, which
6150 * means clients will hang after the first flip is queued. Fortunately the
6151 * blit ring generates interrupts properly, so use it instead.
6152 */
6153 static int intel_gen7_queue_flip(struct drm_device *dev,
6154 struct drm_crtc *crtc,
6155 struct drm_framebuffer *fb,
6156 struct drm_i915_gem_object *obj)
6157 {
6158 struct drm_i915_private *dev_priv = dev->dev_private;
6159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6160 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6161 uint32_t plane_bit = 0;
6162 int ret;
6163
6164 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6165 if (ret)
6166 goto err;
6167
6168 switch(intel_crtc->plane) {
6169 case PLANE_A:
6170 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6171 break;
6172 case PLANE_B:
6173 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6174 break;
6175 case PLANE_C:
6176 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6177 break;
6178 default:
6179 WARN_ONCE(1, "unknown plane in flip command\n");
6180 ret = -ENODEV;
6181 goto err;
6182 }
6183
6184 ret = intel_ring_begin(ring, 4);
6185 if (ret)
6186 goto err_unpin;
6187
6188 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6189 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6190 intel_ring_emit(ring, (obj->gtt_offset));
6191 intel_ring_emit(ring, (MI_NOOP));
6192 intel_ring_advance(ring);
6193 return 0;
6194
6195 err_unpin:
6196 intel_unpin_fb_obj(obj);
6197 err:
6198 return ret;
6199 }
6200
6201 static int intel_default_queue_flip(struct drm_device *dev,
6202 struct drm_crtc *crtc,
6203 struct drm_framebuffer *fb,
6204 struct drm_i915_gem_object *obj)
6205 {
6206 return -ENODEV;
6207 }
6208
6209 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6210 struct drm_framebuffer *fb,
6211 struct drm_pending_vblank_event *event)
6212 {
6213 struct drm_device *dev = crtc->dev;
6214 struct drm_i915_private *dev_priv = dev->dev_private;
6215 struct intel_framebuffer *intel_fb;
6216 struct drm_i915_gem_object *obj;
6217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6218 struct intel_unpin_work *work;
6219 unsigned long flags;
6220 int ret;
6221
6222 work = kzalloc(sizeof *work, GFP_KERNEL);
6223 if (work == NULL)
6224 return -ENOMEM;
6225
6226 work->event = event;
6227 work->dev = crtc->dev;
6228 intel_fb = to_intel_framebuffer(crtc->fb);
6229 work->old_fb_obj = intel_fb->obj;
6230 INIT_WORK(&work->work, intel_unpin_work_fn);
6231
6232 ret = drm_vblank_get(dev, intel_crtc->pipe);
6233 if (ret)
6234 goto free_work;
6235
6236 /* We borrow the event spin lock for protecting unpin_work */
6237 spin_lock_irqsave(&dev->event_lock, flags);
6238 if (intel_crtc->unpin_work) {
6239 spin_unlock_irqrestore(&dev->event_lock, flags);
6240 kfree(work);
6241 drm_vblank_put(dev, intel_crtc->pipe);
6242
6243 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6244 return -EBUSY;
6245 }
6246 intel_crtc->unpin_work = work;
6247 spin_unlock_irqrestore(&dev->event_lock, flags);
6248
6249 intel_fb = to_intel_framebuffer(fb);
6250 obj = intel_fb->obj;
6251
6252 mutex_lock(&dev->struct_mutex);
6253
6254 /* Reference the objects for the scheduled work. */
6255 drm_gem_object_reference(&work->old_fb_obj->base);
6256 drm_gem_object_reference(&obj->base);
6257
6258 crtc->fb = fb;
6259
6260 work->pending_flip_obj = obj;
6261
6262 work->enable_stall_check = true;
6263
6264 /* Block clients from rendering to the new back buffer until
6265 * the flip occurs and the object is no longer visible.
6266 */
6267 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6268
6269 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6270 if (ret)
6271 goto cleanup_pending;
6272
6273 intel_disable_fbc(dev);
6274 intel_mark_busy(dev, obj);
6275 mutex_unlock(&dev->struct_mutex);
6276
6277 trace_i915_flip_request(intel_crtc->plane, obj);
6278
6279 return 0;
6280
6281 cleanup_pending:
6282 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6283 drm_gem_object_unreference(&work->old_fb_obj->base);
6284 drm_gem_object_unreference(&obj->base);
6285 mutex_unlock(&dev->struct_mutex);
6286
6287 spin_lock_irqsave(&dev->event_lock, flags);
6288 intel_crtc->unpin_work = NULL;
6289 spin_unlock_irqrestore(&dev->event_lock, flags);
6290
6291 drm_vblank_put(dev, intel_crtc->pipe);
6292 free_work:
6293 kfree(work);
6294
6295 return ret;
6296 }
6297
6298 static void intel_sanitize_modesetting(struct drm_device *dev,
6299 int pipe, int plane)
6300 {
6301 struct drm_i915_private *dev_priv = dev->dev_private;
6302 u32 reg, val;
6303 int i;
6304
6305 /* Clear any frame start delays used for debugging left by the BIOS */
6306 for_each_pipe(i) {
6307 reg = PIPECONF(i);
6308 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6309 }
6310
6311 if (HAS_PCH_SPLIT(dev))
6312 return;
6313
6314 /* Who knows what state these registers were left in by the BIOS or
6315 * grub?
6316 *
6317 * If we leave the registers in a conflicting state (e.g. with the
6318 * display plane reading from the other pipe than the one we intend
6319 * to use) then when we attempt to teardown the active mode, we will
6320 * not disable the pipes and planes in the correct order -- leaving
6321 * a plane reading from a disabled pipe and possibly leading to
6322 * undefined behaviour.
6323 */
6324
6325 reg = DSPCNTR(plane);
6326 val = I915_READ(reg);
6327
6328 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6329 return;
6330 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6331 return;
6332
6333 /* This display plane is active and attached to the other CPU pipe. */
6334 pipe = !pipe;
6335
6336 /* Disable the plane and wait for it to stop reading from the pipe. */
6337 intel_disable_plane(dev_priv, plane, pipe);
6338 intel_disable_pipe(dev_priv, pipe);
6339 }
6340
6341 static void intel_crtc_reset(struct drm_crtc *crtc)
6342 {
6343 struct drm_device *dev = crtc->dev;
6344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6345
6346 /* Reset flags back to the 'unknown' status so that they
6347 * will be correctly set on the initial modeset.
6348 */
6349 intel_crtc->dpms_mode = -1;
6350
6351 /* We need to fix up any BIOS configuration that conflicts with
6352 * our expectations.
6353 */
6354 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6355 }
6356
6357 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6358 .dpms = intel_crtc_dpms,
6359 .mode_fixup = intel_crtc_mode_fixup,
6360 .mode_set = intel_crtc_mode_set,
6361 .mode_set_base = intel_pipe_set_base,
6362 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6363 .load_lut = intel_crtc_load_lut,
6364 .disable = intel_crtc_disable,
6365 };
6366
6367 static const struct drm_crtc_funcs intel_crtc_funcs = {
6368 .reset = intel_crtc_reset,
6369 .cursor_set = intel_crtc_cursor_set,
6370 .cursor_move = intel_crtc_cursor_move,
6371 .gamma_set = intel_crtc_gamma_set,
6372 .set_config = drm_crtc_helper_set_config,
6373 .destroy = intel_crtc_destroy,
6374 .page_flip = intel_crtc_page_flip,
6375 };
6376
6377 static void intel_pch_pll_init(struct drm_device *dev)
6378 {
6379 drm_i915_private_t *dev_priv = dev->dev_private;
6380 int i;
6381
6382 if (dev_priv->num_pch_pll == 0) {
6383 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6384 return;
6385 }
6386
6387 for (i = 0; i < dev_priv->num_pch_pll; i++) {
6388 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6389 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6390 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6391 }
6392 }
6393
6394 static void intel_crtc_init(struct drm_device *dev, int pipe)
6395 {
6396 drm_i915_private_t *dev_priv = dev->dev_private;
6397 struct intel_crtc *intel_crtc;
6398 int i;
6399
6400 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6401 if (intel_crtc == NULL)
6402 return;
6403
6404 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6405
6406 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6407 for (i = 0; i < 256; i++) {
6408 intel_crtc->lut_r[i] = i;
6409 intel_crtc->lut_g[i] = i;
6410 intel_crtc->lut_b[i] = i;
6411 }
6412
6413 /* Swap pipes & planes for FBC on pre-965 */
6414 intel_crtc->pipe = pipe;
6415 intel_crtc->plane = pipe;
6416 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6417 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6418 intel_crtc->plane = !pipe;
6419 }
6420
6421 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6422 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6423 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6424 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6425
6426 intel_crtc_reset(&intel_crtc->base);
6427 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6428 intel_crtc->bpp = 24; /* default for pre-Ironlake */
6429
6430 if (HAS_PCH_SPLIT(dev)) {
6431 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6432 intel_helper_funcs.commit = ironlake_crtc_commit;
6433 } else {
6434 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6435 intel_helper_funcs.commit = i9xx_crtc_commit;
6436 }
6437
6438 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6439
6440 intel_crtc->busy = false;
6441
6442 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6443 (unsigned long)intel_crtc);
6444 }
6445
6446 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6447 struct drm_file *file)
6448 {
6449 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6450 struct drm_mode_object *drmmode_obj;
6451 struct intel_crtc *crtc;
6452
6453 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6454 return -ENODEV;
6455
6456 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6457 DRM_MODE_OBJECT_CRTC);
6458
6459 if (!drmmode_obj) {
6460 DRM_ERROR("no such CRTC id\n");
6461 return -EINVAL;
6462 }
6463
6464 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6465 pipe_from_crtc_id->pipe = crtc->pipe;
6466
6467 return 0;
6468 }
6469
6470 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6471 {
6472 struct intel_encoder *encoder;
6473 int index_mask = 0;
6474 int entry = 0;
6475
6476 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6477 if (type_mask & encoder->clone_mask)
6478 index_mask |= (1 << entry);
6479 entry++;
6480 }
6481
6482 return index_mask;
6483 }
6484
6485 static bool has_edp_a(struct drm_device *dev)
6486 {
6487 struct drm_i915_private *dev_priv = dev->dev_private;
6488
6489 if (!IS_MOBILE(dev))
6490 return false;
6491
6492 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6493 return false;
6494
6495 if (IS_GEN5(dev) &&
6496 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6497 return false;
6498
6499 return true;
6500 }
6501
6502 static void intel_setup_outputs(struct drm_device *dev)
6503 {
6504 struct drm_i915_private *dev_priv = dev->dev_private;
6505 struct intel_encoder *encoder;
6506 bool dpd_is_edp = false;
6507 bool has_lvds;
6508
6509 has_lvds = intel_lvds_init(dev);
6510 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6511 /* disable the panel fitter on everything but LVDS */
6512 I915_WRITE(PFIT_CONTROL, 0);
6513 }
6514
6515 if (HAS_PCH_SPLIT(dev)) {
6516 dpd_is_edp = intel_dpd_is_edp(dev);
6517
6518 if (has_edp_a(dev))
6519 intel_dp_init(dev, DP_A);
6520
6521 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6522 intel_dp_init(dev, PCH_DP_D);
6523 }
6524
6525 intel_crt_init(dev);
6526
6527 if (IS_HASWELL(dev)) {
6528 int found;
6529
6530 /* Haswell uses DDI functions to detect digital outputs */
6531 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
6532 /* DDI A only supports eDP */
6533 if (found)
6534 intel_ddi_init(dev, PORT_A);
6535
6536 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
6537 * register */
6538 found = I915_READ(SFUSE_STRAP);
6539
6540 if (found & SFUSE_STRAP_DDIB_DETECTED)
6541 intel_ddi_init(dev, PORT_B);
6542 if (found & SFUSE_STRAP_DDIC_DETECTED)
6543 intel_ddi_init(dev, PORT_C);
6544 if (found & SFUSE_STRAP_DDID_DETECTED)
6545 intel_ddi_init(dev, PORT_D);
6546 } else if (HAS_PCH_SPLIT(dev)) {
6547 int found;
6548
6549 if (I915_READ(HDMIB) & PORT_DETECTED) {
6550 /* PCH SDVOB multiplex with HDMIB */
6551 found = intel_sdvo_init(dev, PCH_SDVOB, true);
6552 if (!found)
6553 intel_hdmi_init(dev, HDMIB);
6554 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6555 intel_dp_init(dev, PCH_DP_B);
6556 }
6557
6558 if (I915_READ(HDMIC) & PORT_DETECTED)
6559 intel_hdmi_init(dev, HDMIC);
6560
6561 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
6562 intel_hdmi_init(dev, HDMID);
6563
6564 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6565 intel_dp_init(dev, PCH_DP_C);
6566
6567 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6568 intel_dp_init(dev, PCH_DP_D);
6569
6570 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6571 bool found = false;
6572
6573 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6574 DRM_DEBUG_KMS("probing SDVOB\n");
6575 found = intel_sdvo_init(dev, SDVOB, true);
6576 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6577 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6578 intel_hdmi_init(dev, SDVOB);
6579 }
6580
6581 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6582 DRM_DEBUG_KMS("probing DP_B\n");
6583 intel_dp_init(dev, DP_B);
6584 }
6585 }
6586
6587 /* Before G4X SDVOC doesn't have its own detect register */
6588
6589 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6590 DRM_DEBUG_KMS("probing SDVOC\n");
6591 found = intel_sdvo_init(dev, SDVOC, false);
6592 }
6593
6594 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6595
6596 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6597 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6598 intel_hdmi_init(dev, SDVOC);
6599 }
6600 if (SUPPORTS_INTEGRATED_DP(dev)) {
6601 DRM_DEBUG_KMS("probing DP_C\n");
6602 intel_dp_init(dev, DP_C);
6603 }
6604 }
6605
6606 if (SUPPORTS_INTEGRATED_DP(dev) &&
6607 (I915_READ(DP_D) & DP_DETECTED)) {
6608 DRM_DEBUG_KMS("probing DP_D\n");
6609 intel_dp_init(dev, DP_D);
6610 }
6611 } else if (IS_GEN2(dev))
6612 intel_dvo_init(dev);
6613
6614 if (SUPPORTS_TV(dev))
6615 intel_tv_init(dev);
6616
6617 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6618 encoder->base.possible_crtcs = encoder->crtc_mask;
6619 encoder->base.possible_clones =
6620 intel_encoder_clones(dev, encoder->clone_mask);
6621 }
6622
6623 /* disable all the possible outputs/crtcs before entering KMS mode */
6624 drm_helper_disable_unused_functions(dev);
6625
6626 if (HAS_PCH_SPLIT(dev))
6627 ironlake_init_pch_refclk(dev);
6628 }
6629
6630 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6631 {
6632 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6633
6634 drm_framebuffer_cleanup(fb);
6635 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6636
6637 kfree(intel_fb);
6638 }
6639
6640 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6641 struct drm_file *file,
6642 unsigned int *handle)
6643 {
6644 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6645 struct drm_i915_gem_object *obj = intel_fb->obj;
6646
6647 return drm_gem_handle_create(file, &obj->base, handle);
6648 }
6649
6650 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6651 .destroy = intel_user_framebuffer_destroy,
6652 .create_handle = intel_user_framebuffer_create_handle,
6653 };
6654
6655 int intel_framebuffer_init(struct drm_device *dev,
6656 struct intel_framebuffer *intel_fb,
6657 struct drm_mode_fb_cmd2 *mode_cmd,
6658 struct drm_i915_gem_object *obj)
6659 {
6660 int ret;
6661
6662 if (obj->tiling_mode == I915_TILING_Y)
6663 return -EINVAL;
6664
6665 if (mode_cmd->pitches[0] & 63)
6666 return -EINVAL;
6667
6668 switch (mode_cmd->pixel_format) {
6669 case DRM_FORMAT_RGB332:
6670 case DRM_FORMAT_RGB565:
6671 case DRM_FORMAT_XRGB8888:
6672 case DRM_FORMAT_XBGR8888:
6673 case DRM_FORMAT_ARGB8888:
6674 case DRM_FORMAT_XRGB2101010:
6675 case DRM_FORMAT_ARGB2101010:
6676 /* RGB formats are common across chipsets */
6677 break;
6678 case DRM_FORMAT_YUYV:
6679 case DRM_FORMAT_UYVY:
6680 case DRM_FORMAT_YVYU:
6681 case DRM_FORMAT_VYUY:
6682 break;
6683 default:
6684 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6685 mode_cmd->pixel_format);
6686 return -EINVAL;
6687 }
6688
6689 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6690 if (ret) {
6691 DRM_ERROR("framebuffer init failed %d\n", ret);
6692 return ret;
6693 }
6694
6695 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6696 intel_fb->obj = obj;
6697 return 0;
6698 }
6699
6700 static struct drm_framebuffer *
6701 intel_user_framebuffer_create(struct drm_device *dev,
6702 struct drm_file *filp,
6703 struct drm_mode_fb_cmd2 *mode_cmd)
6704 {
6705 struct drm_i915_gem_object *obj;
6706
6707 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6708 mode_cmd->handles[0]));
6709 if (&obj->base == NULL)
6710 return ERR_PTR(-ENOENT);
6711
6712 return intel_framebuffer_create(dev, mode_cmd, obj);
6713 }
6714
6715 static const struct drm_mode_config_funcs intel_mode_funcs = {
6716 .fb_create = intel_user_framebuffer_create,
6717 .output_poll_changed = intel_fb_output_poll_changed,
6718 };
6719
6720 /* Set up chip specific display functions */
6721 static void intel_init_display(struct drm_device *dev)
6722 {
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724
6725 /* We always want a DPMS function */
6726 if (HAS_PCH_SPLIT(dev)) {
6727 dev_priv->display.dpms = ironlake_crtc_dpms;
6728 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6729 dev_priv->display.off = ironlake_crtc_off;
6730 dev_priv->display.update_plane = ironlake_update_plane;
6731 } else {
6732 dev_priv->display.dpms = i9xx_crtc_dpms;
6733 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6734 dev_priv->display.off = i9xx_crtc_off;
6735 dev_priv->display.update_plane = i9xx_update_plane;
6736 }
6737
6738 /* Returns the core display clock speed */
6739 if (IS_VALLEYVIEW(dev))
6740 dev_priv->display.get_display_clock_speed =
6741 valleyview_get_display_clock_speed;
6742 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6743 dev_priv->display.get_display_clock_speed =
6744 i945_get_display_clock_speed;
6745 else if (IS_I915G(dev))
6746 dev_priv->display.get_display_clock_speed =
6747 i915_get_display_clock_speed;
6748 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6749 dev_priv->display.get_display_clock_speed =
6750 i9xx_misc_get_display_clock_speed;
6751 else if (IS_I915GM(dev))
6752 dev_priv->display.get_display_clock_speed =
6753 i915gm_get_display_clock_speed;
6754 else if (IS_I865G(dev))
6755 dev_priv->display.get_display_clock_speed =
6756 i865_get_display_clock_speed;
6757 else if (IS_I85X(dev))
6758 dev_priv->display.get_display_clock_speed =
6759 i855_get_display_clock_speed;
6760 else /* 852, 830 */
6761 dev_priv->display.get_display_clock_speed =
6762 i830_get_display_clock_speed;
6763
6764 if (HAS_PCH_SPLIT(dev)) {
6765 if (IS_GEN5(dev)) {
6766 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6767 dev_priv->display.write_eld = ironlake_write_eld;
6768 } else if (IS_GEN6(dev)) {
6769 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6770 dev_priv->display.write_eld = ironlake_write_eld;
6771 } else if (IS_IVYBRIDGE(dev)) {
6772 /* FIXME: detect B0+ stepping and use auto training */
6773 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6774 dev_priv->display.write_eld = ironlake_write_eld;
6775 } else if (IS_HASWELL(dev)) {
6776 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
6777 dev_priv->display.write_eld = ironlake_write_eld;
6778 } else
6779 dev_priv->display.update_wm = NULL;
6780 } else if (IS_VALLEYVIEW(dev)) {
6781 dev_priv->display.force_wake_get = vlv_force_wake_get;
6782 dev_priv->display.force_wake_put = vlv_force_wake_put;
6783 } else if (IS_G4X(dev)) {
6784 dev_priv->display.write_eld = g4x_write_eld;
6785 }
6786
6787 /* Default just returns -ENODEV to indicate unsupported */
6788 dev_priv->display.queue_flip = intel_default_queue_flip;
6789
6790 switch (INTEL_INFO(dev)->gen) {
6791 case 2:
6792 dev_priv->display.queue_flip = intel_gen2_queue_flip;
6793 break;
6794
6795 case 3:
6796 dev_priv->display.queue_flip = intel_gen3_queue_flip;
6797 break;
6798
6799 case 4:
6800 case 5:
6801 dev_priv->display.queue_flip = intel_gen4_queue_flip;
6802 break;
6803
6804 case 6:
6805 dev_priv->display.queue_flip = intel_gen6_queue_flip;
6806 break;
6807 case 7:
6808 dev_priv->display.queue_flip = intel_gen7_queue_flip;
6809 break;
6810 }
6811 }
6812
6813 /*
6814 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6815 * resume, or other times. This quirk makes sure that's the case for
6816 * affected systems.
6817 */
6818 static void quirk_pipea_force(struct drm_device *dev)
6819 {
6820 struct drm_i915_private *dev_priv = dev->dev_private;
6821
6822 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6823 DRM_INFO("applying pipe a force quirk\n");
6824 }
6825
6826 /*
6827 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6828 */
6829 static void quirk_ssc_force_disable(struct drm_device *dev)
6830 {
6831 struct drm_i915_private *dev_priv = dev->dev_private;
6832 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6833 DRM_INFO("applying lvds SSC disable quirk\n");
6834 }
6835
6836 /*
6837 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
6838 * brightness value
6839 */
6840 static void quirk_invert_brightness(struct drm_device *dev)
6841 {
6842 struct drm_i915_private *dev_priv = dev->dev_private;
6843 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
6844 DRM_INFO("applying inverted panel brightness quirk\n");
6845 }
6846
6847 struct intel_quirk {
6848 int device;
6849 int subsystem_vendor;
6850 int subsystem_device;
6851 void (*hook)(struct drm_device *dev);
6852 };
6853
6854 static struct intel_quirk intel_quirks[] = {
6855 /* HP Mini needs pipe A force quirk (LP: #322104) */
6856 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6857
6858 /* Thinkpad R31 needs pipe A force quirk */
6859 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6860 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6861 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6862
6863 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6864 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6865 /* ThinkPad X40 needs pipe A force quirk */
6866
6867 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6868 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6869
6870 /* 855 & before need to leave pipe A & dpll A up */
6871 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6872 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6873
6874 /* Lenovo U160 cannot use SSC on LVDS */
6875 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6876
6877 /* Sony Vaio Y cannot use SSC on LVDS */
6878 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6879
6880 /* Acer Aspire 5734Z must invert backlight brightness */
6881 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
6882 };
6883
6884 static void intel_init_quirks(struct drm_device *dev)
6885 {
6886 struct pci_dev *d = dev->pdev;
6887 int i;
6888
6889 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6890 struct intel_quirk *q = &intel_quirks[i];
6891
6892 if (d->device == q->device &&
6893 (d->subsystem_vendor == q->subsystem_vendor ||
6894 q->subsystem_vendor == PCI_ANY_ID) &&
6895 (d->subsystem_device == q->subsystem_device ||
6896 q->subsystem_device == PCI_ANY_ID))
6897 q->hook(dev);
6898 }
6899 }
6900
6901 /* Disable the VGA plane that we never use */
6902 static void i915_disable_vga(struct drm_device *dev)
6903 {
6904 struct drm_i915_private *dev_priv = dev->dev_private;
6905 u8 sr1;
6906 u32 vga_reg;
6907
6908 if (HAS_PCH_SPLIT(dev))
6909 vga_reg = CPU_VGACNTRL;
6910 else
6911 vga_reg = VGACNTRL;
6912
6913 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6914 outb(SR01, VGA_SR_INDEX);
6915 sr1 = inb(VGA_SR_DATA);
6916 outb(sr1 | 1<<5, VGA_SR_DATA);
6917 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6918 udelay(300);
6919
6920 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6921 POSTING_READ(vga_reg);
6922 }
6923
6924 void intel_modeset_init_hw(struct drm_device *dev)
6925 {
6926 struct drm_i915_private *dev_priv = dev->dev_private;
6927
6928 intel_init_clock_gating(dev);
6929
6930 if (IS_IRONLAKE_M(dev)) {
6931 ironlake_enable_drps(dev);
6932 ironlake_enable_rc6(dev);
6933 intel_init_emon(dev);
6934 }
6935
6936 if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
6937 gen6_enable_rps(dev_priv);
6938 gen6_update_ring_freq(dev_priv);
6939 }
6940 }
6941
6942 void intel_modeset_init(struct drm_device *dev)
6943 {
6944 struct drm_i915_private *dev_priv = dev->dev_private;
6945 int i, ret;
6946
6947 drm_mode_config_init(dev);
6948
6949 dev->mode_config.min_width = 0;
6950 dev->mode_config.min_height = 0;
6951
6952 dev->mode_config.preferred_depth = 24;
6953 dev->mode_config.prefer_shadow = 1;
6954
6955 dev->mode_config.funcs = &intel_mode_funcs;
6956
6957 intel_init_quirks(dev);
6958
6959 intel_init_pm(dev);
6960
6961 intel_prepare_ddi(dev);
6962
6963 intel_init_display(dev);
6964
6965 if (IS_GEN2(dev)) {
6966 dev->mode_config.max_width = 2048;
6967 dev->mode_config.max_height = 2048;
6968 } else if (IS_GEN3(dev)) {
6969 dev->mode_config.max_width = 4096;
6970 dev->mode_config.max_height = 4096;
6971 } else {
6972 dev->mode_config.max_width = 8192;
6973 dev->mode_config.max_height = 8192;
6974 }
6975 dev->mode_config.fb_base = dev->agp->base;
6976
6977 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6978 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6979
6980 for (i = 0; i < dev_priv->num_pipe; i++) {
6981 intel_crtc_init(dev, i);
6982 ret = intel_plane_init(dev, i);
6983 if (ret)
6984 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6985 }
6986
6987 intel_pch_pll_init(dev);
6988
6989 /* Just disable it once at startup */
6990 i915_disable_vga(dev);
6991 intel_setup_outputs(dev);
6992
6993 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6994 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6995 (unsigned long)dev);
6996 }
6997
6998 void intel_modeset_gem_init(struct drm_device *dev)
6999 {
7000 intel_modeset_init_hw(dev);
7001
7002 intel_setup_overlay(dev);
7003 }
7004
7005 void intel_modeset_cleanup(struct drm_device *dev)
7006 {
7007 struct drm_i915_private *dev_priv = dev->dev_private;
7008 struct drm_crtc *crtc;
7009 struct intel_crtc *intel_crtc;
7010
7011 drm_kms_helper_poll_fini(dev);
7012 mutex_lock(&dev->struct_mutex);
7013
7014 intel_unregister_dsm_handler();
7015
7016
7017 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7018 /* Skip inactive CRTCs */
7019 if (!crtc->fb)
7020 continue;
7021
7022 intel_crtc = to_intel_crtc(crtc);
7023 intel_increase_pllclock(crtc);
7024 }
7025
7026 intel_disable_fbc(dev);
7027
7028 if (IS_IRONLAKE_M(dev))
7029 ironlake_disable_drps(dev);
7030 if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
7031 gen6_disable_rps(dev);
7032
7033 if (IS_IRONLAKE_M(dev))
7034 ironlake_disable_rc6(dev);
7035
7036 if (IS_VALLEYVIEW(dev))
7037 vlv_init_dpio(dev);
7038
7039 mutex_unlock(&dev->struct_mutex);
7040
7041 /* Disable the irq before mode object teardown, for the irq might
7042 * enqueue unpin/hotplug work. */
7043 drm_irq_uninstall(dev);
7044 cancel_work_sync(&dev_priv->hotplug_work);
7045 cancel_work_sync(&dev_priv->rps_work);
7046
7047 /* flush any delayed tasks or pending work */
7048 flush_scheduled_work();
7049
7050 /* Shut off idle work before the crtcs get freed. */
7051 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7052 intel_crtc = to_intel_crtc(crtc);
7053 del_timer_sync(&intel_crtc->idle_timer);
7054 }
7055 del_timer_sync(&dev_priv->idle_timer);
7056 cancel_work_sync(&dev_priv->idle_work);
7057
7058 drm_mode_config_cleanup(dev);
7059 }
7060
7061 /*
7062 * Return which encoder is currently attached for connector.
7063 */
7064 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7065 {
7066 return &intel_attached_encoder(connector)->base;
7067 }
7068
7069 void intel_connector_attach_encoder(struct intel_connector *connector,
7070 struct intel_encoder *encoder)
7071 {
7072 connector->encoder = encoder;
7073 drm_mode_connector_attach_encoder(&connector->base,
7074 &encoder->base);
7075 }
7076
7077 /*
7078 * set vga decode state - true == enable VGA decode
7079 */
7080 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7081 {
7082 struct drm_i915_private *dev_priv = dev->dev_private;
7083 u16 gmch_ctrl;
7084
7085 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7086 if (state)
7087 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7088 else
7089 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7090 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7091 return 0;
7092 }
7093
7094 #ifdef CONFIG_DEBUG_FS
7095 #include <linux/seq_file.h>
7096
7097 struct intel_display_error_state {
7098 struct intel_cursor_error_state {
7099 u32 control;
7100 u32 position;
7101 u32 base;
7102 u32 size;
7103 } cursor[2];
7104
7105 struct intel_pipe_error_state {
7106 u32 conf;
7107 u32 source;
7108
7109 u32 htotal;
7110 u32 hblank;
7111 u32 hsync;
7112 u32 vtotal;
7113 u32 vblank;
7114 u32 vsync;
7115 } pipe[2];
7116
7117 struct intel_plane_error_state {
7118 u32 control;
7119 u32 stride;
7120 u32 size;
7121 u32 pos;
7122 u32 addr;
7123 u32 surface;
7124 u32 tile_offset;
7125 } plane[2];
7126 };
7127
7128 struct intel_display_error_state *
7129 intel_display_capture_error_state(struct drm_device *dev)
7130 {
7131 drm_i915_private_t *dev_priv = dev->dev_private;
7132 struct intel_display_error_state *error;
7133 int i;
7134
7135 error = kmalloc(sizeof(*error), GFP_ATOMIC);
7136 if (error == NULL)
7137 return NULL;
7138
7139 for (i = 0; i < 2; i++) {
7140 error->cursor[i].control = I915_READ(CURCNTR(i));
7141 error->cursor[i].position = I915_READ(CURPOS(i));
7142 error->cursor[i].base = I915_READ(CURBASE(i));
7143
7144 error->plane[i].control = I915_READ(DSPCNTR(i));
7145 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7146 error->plane[i].size = I915_READ(DSPSIZE(i));
7147 error->plane[i].pos = I915_READ(DSPPOS(i));
7148 error->plane[i].addr = I915_READ(DSPADDR(i));
7149 if (INTEL_INFO(dev)->gen >= 4) {
7150 error->plane[i].surface = I915_READ(DSPSURF(i));
7151 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7152 }
7153
7154 error->pipe[i].conf = I915_READ(PIPECONF(i));
7155 error->pipe[i].source = I915_READ(PIPESRC(i));
7156 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7157 error->pipe[i].hblank = I915_READ(HBLANK(i));
7158 error->pipe[i].hsync = I915_READ(HSYNC(i));
7159 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7160 error->pipe[i].vblank = I915_READ(VBLANK(i));
7161 error->pipe[i].vsync = I915_READ(VSYNC(i));
7162 }
7163
7164 return error;
7165 }
7166
7167 void
7168 intel_display_print_error_state(struct seq_file *m,
7169 struct drm_device *dev,
7170 struct intel_display_error_state *error)
7171 {
7172 int i;
7173
7174 for (i = 0; i < 2; i++) {
7175 seq_printf(m, "Pipe [%d]:\n", i);
7176 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
7177 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
7178 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
7179 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
7180 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
7181 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
7182 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
7183 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
7184
7185 seq_printf(m, "Plane [%d]:\n", i);
7186 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
7187 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
7188 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
7189 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
7190 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
7191 if (INTEL_INFO(dev)->gen >= 4) {
7192 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
7193 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
7194 }
7195
7196 seq_printf(m, "Cursor [%d]:\n", i);
7197 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
7198 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
7199 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
7200 }
7201 }
7202 #endif
This page took 0.350212 seconds and 5 git commands to generate.