drm/i915: Use for_each_connector_in_state helper macro
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
107 struct intel_crtc_state *crtc_state);
108 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
109 int num_connectors);
110 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
111 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
112
113 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
114 {
115 if (!connector->mst_port)
116 return connector->encoder;
117 else
118 return &connector->mst_port->mst_encoders[pipe]->base;
119 }
120
121 typedef struct {
122 int min, max;
123 } intel_range_t;
124
125 typedef struct {
126 int dot_limit;
127 int p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
134 };
135
136 int
137 intel_pch_rawclk(struct drm_device *dev)
138 {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140
141 WARN_ON(!HAS_PCH_SPLIT(dev));
142
143 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
144 }
145
146 static inline u32 /* units of 100MHz */
147 intel_fdi_link_freq(struct drm_device *dev)
148 {
149 if (IS_GEN5(dev)) {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
152 } else
153 return 27;
154 }
155
156 static const intel_limit_t intel_limits_i8xx_dac = {
157 .dot = { .min = 25000, .max = 350000 },
158 .vco = { .min = 908000, .max = 1512000 },
159 .n = { .min = 2, .max = 16 },
160 .m = { .min = 96, .max = 140 },
161 .m1 = { .min = 18, .max = 26 },
162 .m2 = { .min = 6, .max = 16 },
163 .p = { .min = 4, .max = 128 },
164 .p1 = { .min = 2, .max = 33 },
165 .p2 = { .dot_limit = 165000,
166 .p2_slow = 4, .p2_fast = 2 },
167 };
168
169 static const intel_limit_t intel_limits_i8xx_dvo = {
170 .dot = { .min = 25000, .max = 350000 },
171 .vco = { .min = 908000, .max = 1512000 },
172 .n = { .min = 2, .max = 16 },
173 .m = { .min = 96, .max = 140 },
174 .m1 = { .min = 18, .max = 26 },
175 .m2 = { .min = 6, .max = 16 },
176 .p = { .min = 4, .max = 128 },
177 .p1 = { .min = 2, .max = 33 },
178 .p2 = { .dot_limit = 165000,
179 .p2_slow = 4, .p2_fast = 4 },
180 };
181
182 static const intel_limit_t intel_limits_i8xx_lvds = {
183 .dot = { .min = 25000, .max = 350000 },
184 .vco = { .min = 908000, .max = 1512000 },
185 .n = { .min = 2, .max = 16 },
186 .m = { .min = 96, .max = 140 },
187 .m1 = { .min = 18, .max = 26 },
188 .m2 = { .min = 6, .max = 16 },
189 .p = { .min = 4, .max = 128 },
190 .p1 = { .min = 1, .max = 6 },
191 .p2 = { .dot_limit = 165000,
192 .p2_slow = 14, .p2_fast = 7 },
193 };
194
195 static const intel_limit_t intel_limits_i9xx_sdvo = {
196 .dot = { .min = 20000, .max = 400000 },
197 .vco = { .min = 1400000, .max = 2800000 },
198 .n = { .min = 1, .max = 6 },
199 .m = { .min = 70, .max = 120 },
200 .m1 = { .min = 8, .max = 18 },
201 .m2 = { .min = 3, .max = 7 },
202 .p = { .min = 5, .max = 80 },
203 .p1 = { .min = 1, .max = 8 },
204 .p2 = { .dot_limit = 200000,
205 .p2_slow = 10, .p2_fast = 5 },
206 };
207
208 static const intel_limit_t intel_limits_i9xx_lvds = {
209 .dot = { .min = 20000, .max = 400000 },
210 .vco = { .min = 1400000, .max = 2800000 },
211 .n = { .min = 1, .max = 6 },
212 .m = { .min = 70, .max = 120 },
213 .m1 = { .min = 8, .max = 18 },
214 .m2 = { .min = 3, .max = 7 },
215 .p = { .min = 7, .max = 98 },
216 .p1 = { .min = 1, .max = 8 },
217 .p2 = { .dot_limit = 112000,
218 .p2_slow = 14, .p2_fast = 7 },
219 };
220
221
222 static const intel_limit_t intel_limits_g4x_sdvo = {
223 .dot = { .min = 25000, .max = 270000 },
224 .vco = { .min = 1750000, .max = 3500000},
225 .n = { .min = 1, .max = 4 },
226 .m = { .min = 104, .max = 138 },
227 .m1 = { .min = 17, .max = 23 },
228 .m2 = { .min = 5, .max = 11 },
229 .p = { .min = 10, .max = 30 },
230 .p1 = { .min = 1, .max = 3},
231 .p2 = { .dot_limit = 270000,
232 .p2_slow = 10,
233 .p2_fast = 10
234 },
235 };
236
237 static const intel_limit_t intel_limits_g4x_hdmi = {
238 .dot = { .min = 22000, .max = 400000 },
239 .vco = { .min = 1750000, .max = 3500000},
240 .n = { .min = 1, .max = 4 },
241 .m = { .min = 104, .max = 138 },
242 .m1 = { .min = 16, .max = 23 },
243 .m2 = { .min = 5, .max = 11 },
244 .p = { .min = 5, .max = 80 },
245 .p1 = { .min = 1, .max = 8},
246 .p2 = { .dot_limit = 165000,
247 .p2_slow = 10, .p2_fast = 5 },
248 };
249
250 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
251 .dot = { .min = 20000, .max = 115000 },
252 .vco = { .min = 1750000, .max = 3500000 },
253 .n = { .min = 1, .max = 3 },
254 .m = { .min = 104, .max = 138 },
255 .m1 = { .min = 17, .max = 23 },
256 .m2 = { .min = 5, .max = 11 },
257 .p = { .min = 28, .max = 112 },
258 .p1 = { .min = 2, .max = 8 },
259 .p2 = { .dot_limit = 0,
260 .p2_slow = 14, .p2_fast = 14
261 },
262 };
263
264 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
265 .dot = { .min = 80000, .max = 224000 },
266 .vco = { .min = 1750000, .max = 3500000 },
267 .n = { .min = 1, .max = 3 },
268 .m = { .min = 104, .max = 138 },
269 .m1 = { .min = 17, .max = 23 },
270 .m2 = { .min = 5, .max = 11 },
271 .p = { .min = 14, .max = 42 },
272 .p1 = { .min = 2, .max = 6 },
273 .p2 = { .dot_limit = 0,
274 .p2_slow = 7, .p2_fast = 7
275 },
276 };
277
278 static const intel_limit_t intel_limits_pineview_sdvo = {
279 .dot = { .min = 20000, .max = 400000},
280 .vco = { .min = 1700000, .max = 3500000 },
281 /* Pineview's Ncounter is a ring counter */
282 .n = { .min = 3, .max = 6 },
283 .m = { .min = 2, .max = 256 },
284 /* Pineview only has one combined m divider, which we treat as m2. */
285 .m1 = { .min = 0, .max = 0 },
286 .m2 = { .min = 0, .max = 254 },
287 .p = { .min = 5, .max = 80 },
288 .p1 = { .min = 1, .max = 8 },
289 .p2 = { .dot_limit = 200000,
290 .p2_slow = 10, .p2_fast = 5 },
291 };
292
293 static const intel_limit_t intel_limits_pineview_lvds = {
294 .dot = { .min = 20000, .max = 400000 },
295 .vco = { .min = 1700000, .max = 3500000 },
296 .n = { .min = 3, .max = 6 },
297 .m = { .min = 2, .max = 256 },
298 .m1 = { .min = 0, .max = 0 },
299 .m2 = { .min = 0, .max = 254 },
300 .p = { .min = 7, .max = 112 },
301 .p1 = { .min = 1, .max = 8 },
302 .p2 = { .dot_limit = 112000,
303 .p2_slow = 14, .p2_fast = 14 },
304 };
305
306 /* Ironlake / Sandybridge
307 *
308 * We calculate clock using (register_value + 2) for N/M1/M2, so here
309 * the range value for them is (actual_value - 2).
310 */
311 static const intel_limit_t intel_limits_ironlake_dac = {
312 .dot = { .min = 25000, .max = 350000 },
313 .vco = { .min = 1760000, .max = 3510000 },
314 .n = { .min = 1, .max = 5 },
315 .m = { .min = 79, .max = 127 },
316 .m1 = { .min = 12, .max = 22 },
317 .m2 = { .min = 5, .max = 9 },
318 .p = { .min = 5, .max = 80 },
319 .p1 = { .min = 1, .max = 8 },
320 .p2 = { .dot_limit = 225000,
321 .p2_slow = 10, .p2_fast = 5 },
322 };
323
324 static const intel_limit_t intel_limits_ironlake_single_lvds = {
325 .dot = { .min = 25000, .max = 350000 },
326 .vco = { .min = 1760000, .max = 3510000 },
327 .n = { .min = 1, .max = 3 },
328 .m = { .min = 79, .max = 118 },
329 .m1 = { .min = 12, .max = 22 },
330 .m2 = { .min = 5, .max = 9 },
331 .p = { .min = 28, .max = 112 },
332 .p1 = { .min = 2, .max = 8 },
333 .p2 = { .dot_limit = 225000,
334 .p2_slow = 14, .p2_fast = 14 },
335 };
336
337 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
338 .dot = { .min = 25000, .max = 350000 },
339 .vco = { .min = 1760000, .max = 3510000 },
340 .n = { .min = 1, .max = 3 },
341 .m = { .min = 79, .max = 127 },
342 .m1 = { .min = 12, .max = 22 },
343 .m2 = { .min = 5, .max = 9 },
344 .p = { .min = 14, .max = 56 },
345 .p1 = { .min = 2, .max = 8 },
346 .p2 = { .dot_limit = 225000,
347 .p2_slow = 7, .p2_fast = 7 },
348 };
349
350 /* LVDS 100mhz refclk limits. */
351 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
352 .dot = { .min = 25000, .max = 350000 },
353 .vco = { .min = 1760000, .max = 3510000 },
354 .n = { .min = 1, .max = 2 },
355 .m = { .min = 79, .max = 126 },
356 .m1 = { .min = 12, .max = 22 },
357 .m2 = { .min = 5, .max = 9 },
358 .p = { .min = 28, .max = 112 },
359 .p1 = { .min = 2, .max = 8 },
360 .p2 = { .dot_limit = 225000,
361 .p2_slow = 14, .p2_fast = 14 },
362 };
363
364 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
365 .dot = { .min = 25000, .max = 350000 },
366 .vco = { .min = 1760000, .max = 3510000 },
367 .n = { .min = 1, .max = 3 },
368 .m = { .min = 79, .max = 126 },
369 .m1 = { .min = 12, .max = 22 },
370 .m2 = { .min = 5, .max = 9 },
371 .p = { .min = 14, .max = 42 },
372 .p1 = { .min = 2, .max = 6 },
373 .p2 = { .dot_limit = 225000,
374 .p2_slow = 7, .p2_fast = 7 },
375 };
376
377 static const intel_limit_t intel_limits_vlv = {
378 /*
379 * These are the data rate limits (measured in fast clocks)
380 * since those are the strictest limits we have. The fast
381 * clock and actual rate limits are more relaxed, so checking
382 * them would make no difference.
383 */
384 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
385 .vco = { .min = 4000000, .max = 6000000 },
386 .n = { .min = 1, .max = 7 },
387 .m1 = { .min = 2, .max = 3 },
388 .m2 = { .min = 11, .max = 156 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
391 };
392
393 static const intel_limit_t intel_limits_chv = {
394 /*
395 * These are the data rate limits (measured in fast clocks)
396 * since those are the strictest limits we have. The fast
397 * clock and actual rate limits are more relaxed, so checking
398 * them would make no difference.
399 */
400 .dot = { .min = 25000 * 5, .max = 540000 * 5},
401 .vco = { .min = 4800000, .max = 6480000 },
402 .n = { .min = 1, .max = 1 },
403 .m1 = { .min = 2, .max = 2 },
404 .m2 = { .min = 24 << 22, .max = 175 << 22 },
405 .p1 = { .min = 2, .max = 4 },
406 .p2 = { .p2_slow = 1, .p2_fast = 14 },
407 };
408
409 static const intel_limit_t intel_limits_bxt = {
410 /* FIXME: find real dot limits */
411 .dot = { .min = 0, .max = INT_MAX },
412 .vco = { .min = 4800000, .max = 6480000 },
413 .n = { .min = 1, .max = 1 },
414 .m1 = { .min = 2, .max = 2 },
415 /* FIXME: find real m2 limits */
416 .m2 = { .min = 2 << 22, .max = 255 << 22 },
417 .p1 = { .min = 2, .max = 4 },
418 .p2 = { .p2_slow = 1, .p2_fast = 20 },
419 };
420
421 static void vlv_clock(int refclk, intel_clock_t *clock)
422 {
423 clock->m = clock->m1 * clock->m2;
424 clock->p = clock->p1 * clock->p2;
425 if (WARN_ON(clock->n == 0 || clock->p == 0))
426 return;
427 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
428 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
429 }
430
431 /**
432 * Returns whether any output on the specified pipe is of the specified type
433 */
434 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
435 {
436 struct drm_device *dev = crtc->base.dev;
437 struct intel_encoder *encoder;
438
439 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
440 if (encoder->type == type)
441 return true;
442
443 return false;
444 }
445
446 /**
447 * Returns whether any output on the specified pipe will have the specified
448 * type after a staged modeset is complete, i.e., the same as
449 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
450 * encoder->crtc.
451 */
452 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
453 int type)
454 {
455 struct drm_atomic_state *state = crtc_state->base.state;
456 struct drm_connector *connector;
457 struct drm_connector_state *connector_state;
458 struct intel_encoder *encoder;
459 int i, num_connectors = 0;
460
461 for_each_connector_in_state(state, connector, connector_state, i) {
462 if (connector_state->crtc != crtc_state->base.crtc)
463 continue;
464
465 num_connectors++;
466
467 encoder = to_intel_encoder(connector_state->best_encoder);
468 if (encoder->type == type)
469 return true;
470 }
471
472 WARN_ON(num_connectors == 0);
473
474 return false;
475 }
476
477 static const intel_limit_t *
478 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
479 {
480 struct drm_device *dev = crtc_state->base.crtc->dev;
481 const intel_limit_t *limit;
482
483 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
484 if (intel_is_dual_link_lvds(dev)) {
485 if (refclk == 100000)
486 limit = &intel_limits_ironlake_dual_lvds_100m;
487 else
488 limit = &intel_limits_ironlake_dual_lvds;
489 } else {
490 if (refclk == 100000)
491 limit = &intel_limits_ironlake_single_lvds_100m;
492 else
493 limit = &intel_limits_ironlake_single_lvds;
494 }
495 } else
496 limit = &intel_limits_ironlake_dac;
497
498 return limit;
499 }
500
501 static const intel_limit_t *
502 intel_g4x_limit(struct intel_crtc_state *crtc_state)
503 {
504 struct drm_device *dev = crtc_state->base.crtc->dev;
505 const intel_limit_t *limit;
506
507 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
508 if (intel_is_dual_link_lvds(dev))
509 limit = &intel_limits_g4x_dual_channel_lvds;
510 else
511 limit = &intel_limits_g4x_single_channel_lvds;
512 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
513 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
514 limit = &intel_limits_g4x_hdmi;
515 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
516 limit = &intel_limits_g4x_sdvo;
517 } else /* The option is for other outputs */
518 limit = &intel_limits_i9xx_sdvo;
519
520 return limit;
521 }
522
523 static const intel_limit_t *
524 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
525 {
526 struct drm_device *dev = crtc_state->base.crtc->dev;
527 const intel_limit_t *limit;
528
529 if (IS_BROXTON(dev))
530 limit = &intel_limits_bxt;
531 else if (HAS_PCH_SPLIT(dev))
532 limit = intel_ironlake_limit(crtc_state, refclk);
533 else if (IS_G4X(dev)) {
534 limit = intel_g4x_limit(crtc_state);
535 } else if (IS_PINEVIEW(dev)) {
536 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
537 limit = &intel_limits_pineview_lvds;
538 else
539 limit = &intel_limits_pineview_sdvo;
540 } else if (IS_CHERRYVIEW(dev)) {
541 limit = &intel_limits_chv;
542 } else if (IS_VALLEYVIEW(dev)) {
543 limit = &intel_limits_vlv;
544 } else if (!IS_GEN2(dev)) {
545 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
546 limit = &intel_limits_i9xx_lvds;
547 else
548 limit = &intel_limits_i9xx_sdvo;
549 } else {
550 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
551 limit = &intel_limits_i8xx_lvds;
552 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
553 limit = &intel_limits_i8xx_dvo;
554 else
555 limit = &intel_limits_i8xx_dac;
556 }
557 return limit;
558 }
559
560 /* m1 is reserved as 0 in Pineview, n is a ring counter */
561 static void pineview_clock(int refclk, intel_clock_t *clock)
562 {
563 clock->m = clock->m2 + 2;
564 clock->p = clock->p1 * clock->p2;
565 if (WARN_ON(clock->n == 0 || clock->p == 0))
566 return;
567 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
568 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
569 }
570
571 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
572 {
573 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
574 }
575
576 static void i9xx_clock(int refclk, intel_clock_t *clock)
577 {
578 clock->m = i9xx_dpll_compute_m(clock);
579 clock->p = clock->p1 * clock->p2;
580 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
581 return;
582 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
583 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
584 }
585
586 static void chv_clock(int refclk, intel_clock_t *clock)
587 {
588 clock->m = clock->m1 * clock->m2;
589 clock->p = clock->p1 * clock->p2;
590 if (WARN_ON(clock->n == 0 || clock->p == 0))
591 return;
592 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
593 clock->n << 22);
594 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_device *dev,
604 const intel_limit_t *limit,
605 const intel_clock_t *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
617 if (clock->m1 <= clock->m2)
618 INTELPllInvalid("m1 <= m2\n");
619
620 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
621 if (clock->p < limit->p.min || limit->p.max < clock->p)
622 INTELPllInvalid("p out of range\n");
623 if (clock->m < limit->m.min || limit->m.max < clock->m)
624 INTELPllInvalid("m out of range\n");
625 }
626
627 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 INTELPllInvalid("vco out of range\n");
629 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 * connector, etc., rather than just a single range.
631 */
632 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 INTELPllInvalid("dot out of range\n");
634
635 return true;
636 }
637
638 static bool
639 i9xx_find_best_dpll(const intel_limit_t *limit,
640 struct intel_crtc_state *crtc_state,
641 int target, int refclk, intel_clock_t *match_clock,
642 intel_clock_t *best_clock)
643 {
644 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
645 struct drm_device *dev = crtc->base.dev;
646 intel_clock_t clock;
647 int err = target;
648
649 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
650 /*
651 * For LVDS just rely on its current settings for dual-channel.
652 * We haven't figured out how to reliably set up different
653 * single/dual channel state, if we even can.
654 */
655 if (intel_is_dual_link_lvds(dev))
656 clock.p2 = limit->p2.p2_fast;
657 else
658 clock.p2 = limit->p2.p2_slow;
659 } else {
660 if (target < limit->p2.dot_limit)
661 clock.p2 = limit->p2.p2_slow;
662 else
663 clock.p2 = limit->p2.p2_fast;
664 }
665
666 memset(best_clock, 0, sizeof(*best_clock));
667
668 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
669 clock.m1++) {
670 for (clock.m2 = limit->m2.min;
671 clock.m2 <= limit->m2.max; clock.m2++) {
672 if (clock.m2 >= clock.m1)
673 break;
674 for (clock.n = limit->n.min;
675 clock.n <= limit->n.max; clock.n++) {
676 for (clock.p1 = limit->p1.min;
677 clock.p1 <= limit->p1.max; clock.p1++) {
678 int this_err;
679
680 i9xx_clock(refclk, &clock);
681 if (!intel_PLL_is_valid(dev, limit,
682 &clock))
683 continue;
684 if (match_clock &&
685 clock.p != match_clock->p)
686 continue;
687
688 this_err = abs(clock.dot - target);
689 if (this_err < err) {
690 *best_clock = clock;
691 err = this_err;
692 }
693 }
694 }
695 }
696 }
697
698 return (err != target);
699 }
700
701 static bool
702 pnv_find_best_dpll(const intel_limit_t *limit,
703 struct intel_crtc_state *crtc_state,
704 int target, int refclk, intel_clock_t *match_clock,
705 intel_clock_t *best_clock)
706 {
707 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
708 struct drm_device *dev = crtc->base.dev;
709 intel_clock_t clock;
710 int err = target;
711
712 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
713 /*
714 * For LVDS just rely on its current settings for dual-channel.
715 * We haven't figured out how to reliably set up different
716 * single/dual channel state, if we even can.
717 */
718 if (intel_is_dual_link_lvds(dev))
719 clock.p2 = limit->p2.p2_fast;
720 else
721 clock.p2 = limit->p2.p2_slow;
722 } else {
723 if (target < limit->p2.dot_limit)
724 clock.p2 = limit->p2.p2_slow;
725 else
726 clock.p2 = limit->p2.p2_fast;
727 }
728
729 memset(best_clock, 0, sizeof(*best_clock));
730
731 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
732 clock.m1++) {
733 for (clock.m2 = limit->m2.min;
734 clock.m2 <= limit->m2.max; clock.m2++) {
735 for (clock.n = limit->n.min;
736 clock.n <= limit->n.max; clock.n++) {
737 for (clock.p1 = limit->p1.min;
738 clock.p1 <= limit->p1.max; clock.p1++) {
739 int this_err;
740
741 pineview_clock(refclk, &clock);
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
744 continue;
745 if (match_clock &&
746 clock.p != match_clock->p)
747 continue;
748
749 this_err = abs(clock.dot - target);
750 if (this_err < err) {
751 *best_clock = clock;
752 err = this_err;
753 }
754 }
755 }
756 }
757 }
758
759 return (err != target);
760 }
761
762 static bool
763 g4x_find_best_dpll(const intel_limit_t *limit,
764 struct intel_crtc_state *crtc_state,
765 int target, int refclk, intel_clock_t *match_clock,
766 intel_clock_t *best_clock)
767 {
768 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
769 struct drm_device *dev = crtc->base.dev;
770 intel_clock_t clock;
771 int max_n;
772 bool found;
773 /* approximately equals target * 0.00585 */
774 int err_most = (target >> 8) + (target >> 9);
775 found = false;
776
777 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
778 if (intel_is_dual_link_lvds(dev))
779 clock.p2 = limit->p2.p2_fast;
780 else
781 clock.p2 = limit->p2.p2_slow;
782 } else {
783 if (target < limit->p2.dot_limit)
784 clock.p2 = limit->p2.p2_slow;
785 else
786 clock.p2 = limit->p2.p2_fast;
787 }
788
789 memset(best_clock, 0, sizeof(*best_clock));
790 max_n = limit->n.max;
791 /* based on hardware requirement, prefer smaller n to precision */
792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793 /* based on hardware requirement, prefere larger m1,m2 */
794 for (clock.m1 = limit->m1.max;
795 clock.m1 >= limit->m1.min; clock.m1--) {
796 for (clock.m2 = limit->m2.max;
797 clock.m2 >= limit->m2.min; clock.m2--) {
798 for (clock.p1 = limit->p1.max;
799 clock.p1 >= limit->p1.min; clock.p1--) {
800 int this_err;
801
802 i9xx_clock(refclk, &clock);
803 if (!intel_PLL_is_valid(dev, limit,
804 &clock))
805 continue;
806
807 this_err = abs(clock.dot - target);
808 if (this_err < err_most) {
809 *best_clock = clock;
810 err_most = this_err;
811 max_n = clock.n;
812 found = true;
813 }
814 }
815 }
816 }
817 }
818 return found;
819 }
820
821 /*
822 * Check if the calculated PLL configuration is more optimal compared to the
823 * best configuration and error found so far. Return the calculated error.
824 */
825 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
826 const intel_clock_t *calculated_clock,
827 const intel_clock_t *best_clock,
828 unsigned int best_error_ppm,
829 unsigned int *error_ppm)
830 {
831 /*
832 * For CHV ignore the error and consider only the P value.
833 * Prefer a bigger P value based on HW requirements.
834 */
835 if (IS_CHERRYVIEW(dev)) {
836 *error_ppm = 0;
837
838 return calculated_clock->p > best_clock->p;
839 }
840
841 if (WARN_ON_ONCE(!target_freq))
842 return false;
843
844 *error_ppm = div_u64(1000000ULL *
845 abs(target_freq - calculated_clock->dot),
846 target_freq);
847 /*
848 * Prefer a better P value over a better (smaller) error if the error
849 * is small. Ensure this preference for future configurations too by
850 * setting the error to 0.
851 */
852 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
853 *error_ppm = 0;
854
855 return true;
856 }
857
858 return *error_ppm + 10 < best_error_ppm;
859 }
860
861 static bool
862 vlv_find_best_dpll(const intel_limit_t *limit,
863 struct intel_crtc_state *crtc_state,
864 int target, int refclk, intel_clock_t *match_clock,
865 intel_clock_t *best_clock)
866 {
867 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
868 struct drm_device *dev = crtc->base.dev;
869 intel_clock_t clock;
870 unsigned int bestppm = 1000000;
871 /* min update 19.2 MHz */
872 int max_n = min(limit->n.max, refclk / 19200);
873 bool found = false;
874
875 target *= 5; /* fast clock */
876
877 memset(best_clock, 0, sizeof(*best_clock));
878
879 /* based on hardware requirement, prefer smaller n to precision */
880 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
881 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
882 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
883 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
884 clock.p = clock.p1 * clock.p2;
885 /* based on hardware requirement, prefer bigger m1,m2 values */
886 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
887 unsigned int ppm;
888
889 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
890 refclk * clock.m1);
891
892 vlv_clock(refclk, &clock);
893
894 if (!intel_PLL_is_valid(dev, limit,
895 &clock))
896 continue;
897
898 if (!vlv_PLL_is_optimal(dev, target,
899 &clock,
900 best_clock,
901 bestppm, &ppm))
902 continue;
903
904 *best_clock = clock;
905 bestppm = ppm;
906 found = true;
907 }
908 }
909 }
910 }
911
912 return found;
913 }
914
915 static bool
916 chv_find_best_dpll(const intel_limit_t *limit,
917 struct intel_crtc_state *crtc_state,
918 int target, int refclk, intel_clock_t *match_clock,
919 intel_clock_t *best_clock)
920 {
921 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
922 struct drm_device *dev = crtc->base.dev;
923 unsigned int best_error_ppm;
924 intel_clock_t clock;
925 uint64_t m2;
926 int found = false;
927
928 memset(best_clock, 0, sizeof(*best_clock));
929 best_error_ppm = 1000000;
930
931 /*
932 * Based on hardware doc, the n always set to 1, and m1 always
933 * set to 2. If requires to support 200Mhz refclk, we need to
934 * revisit this because n may not 1 anymore.
935 */
936 clock.n = 1, clock.m1 = 2;
937 target *= 5; /* fast clock */
938
939 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
940 for (clock.p2 = limit->p2.p2_fast;
941 clock.p2 >= limit->p2.p2_slow;
942 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
943 unsigned int error_ppm;
944
945 clock.p = clock.p1 * clock.p2;
946
947 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
948 clock.n) << 22, refclk * clock.m1);
949
950 if (m2 > INT_MAX/clock.m1)
951 continue;
952
953 clock.m2 = m2;
954
955 chv_clock(refclk, &clock);
956
957 if (!intel_PLL_is_valid(dev, limit, &clock))
958 continue;
959
960 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
961 best_error_ppm, &error_ppm))
962 continue;
963
964 *best_clock = clock;
965 best_error_ppm = error_ppm;
966 found = true;
967 }
968 }
969
970 return found;
971 }
972
973 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
974 intel_clock_t *best_clock)
975 {
976 int refclk = i9xx_get_refclk(crtc_state, 0);
977
978 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
979 target_clock, refclk, NULL, best_clock);
980 }
981
982 bool intel_crtc_active(struct drm_crtc *crtc)
983 {
984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
985
986 /* Be paranoid as we can arrive here with only partial
987 * state retrieved from the hardware during setup.
988 *
989 * We can ditch the adjusted_mode.crtc_clock check as soon
990 * as Haswell has gained clock readout/fastboot support.
991 *
992 * We can ditch the crtc->primary->fb check as soon as we can
993 * properly reconstruct framebuffers.
994 *
995 * FIXME: The intel_crtc->active here should be switched to
996 * crtc->state->active once we have proper CRTC states wired up
997 * for atomic.
998 */
999 return intel_crtc->active && crtc->primary->state->fb &&
1000 intel_crtc->config->base.adjusted_mode.crtc_clock;
1001 }
1002
1003 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1004 enum pipe pipe)
1005 {
1006 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008
1009 return intel_crtc->config->cpu_transcoder;
1010 }
1011
1012 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1013 {
1014 struct drm_i915_private *dev_priv = dev->dev_private;
1015 u32 reg = PIPEDSL(pipe);
1016 u32 line1, line2;
1017 u32 line_mask;
1018
1019 if (IS_GEN2(dev))
1020 line_mask = DSL_LINEMASK_GEN2;
1021 else
1022 line_mask = DSL_LINEMASK_GEN3;
1023
1024 line1 = I915_READ(reg) & line_mask;
1025 mdelay(5);
1026 line2 = I915_READ(reg) & line_mask;
1027
1028 return line1 == line2;
1029 }
1030
1031 /*
1032 * intel_wait_for_pipe_off - wait for pipe to turn off
1033 * @crtc: crtc whose pipe to wait for
1034 *
1035 * After disabling a pipe, we can't wait for vblank in the usual way,
1036 * spinning on the vblank interrupt status bit, since we won't actually
1037 * see an interrupt when the pipe is disabled.
1038 *
1039 * On Gen4 and above:
1040 * wait for the pipe register state bit to turn off
1041 *
1042 * Otherwise:
1043 * wait for the display line value to settle (it usually
1044 * ends up stopping at the start of the next frame).
1045 *
1046 */
1047 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1048 {
1049 struct drm_device *dev = crtc->base.dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1052 enum pipe pipe = crtc->pipe;
1053
1054 if (INTEL_INFO(dev)->gen >= 4) {
1055 int reg = PIPECONF(cpu_transcoder);
1056
1057 /* Wait for the Pipe State to go off */
1058 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1059 100))
1060 WARN(1, "pipe_off wait timed out\n");
1061 } else {
1062 /* Wait for the display line to settle */
1063 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1064 WARN(1, "pipe_off wait timed out\n");
1065 }
1066 }
1067
1068 /*
1069 * ibx_digital_port_connected - is the specified port connected?
1070 * @dev_priv: i915 private structure
1071 * @port: the port to test
1072 *
1073 * Returns true if @port is connected, false otherwise.
1074 */
1075 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1076 struct intel_digital_port *port)
1077 {
1078 u32 bit;
1079
1080 if (HAS_PCH_IBX(dev_priv->dev)) {
1081 switch (port->port) {
1082 case PORT_B:
1083 bit = SDE_PORTB_HOTPLUG;
1084 break;
1085 case PORT_C:
1086 bit = SDE_PORTC_HOTPLUG;
1087 break;
1088 case PORT_D:
1089 bit = SDE_PORTD_HOTPLUG;
1090 break;
1091 default:
1092 return true;
1093 }
1094 } else {
1095 switch (port->port) {
1096 case PORT_B:
1097 bit = SDE_PORTB_HOTPLUG_CPT;
1098 break;
1099 case PORT_C:
1100 bit = SDE_PORTC_HOTPLUG_CPT;
1101 break;
1102 case PORT_D:
1103 bit = SDE_PORTD_HOTPLUG_CPT;
1104 break;
1105 default:
1106 return true;
1107 }
1108 }
1109
1110 return I915_READ(SDEISR) & bit;
1111 }
1112
1113 static const char *state_string(bool enabled)
1114 {
1115 return enabled ? "on" : "off";
1116 }
1117
1118 /* Only for pre-ILK configs */
1119 void assert_pll(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121 {
1122 int reg;
1123 u32 val;
1124 bool cur_state;
1125
1126 reg = DPLL(pipe);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & DPLL_VCO_ENABLE);
1129 I915_STATE_WARN(cur_state != state,
1130 "PLL state assertion failure (expected %s, current %s)\n",
1131 state_string(state), state_string(cur_state));
1132 }
1133
1134 /* XXX: the dsi pll is shared between MIPI DSI ports */
1135 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1136 {
1137 u32 val;
1138 bool cur_state;
1139
1140 mutex_lock(&dev_priv->dpio_lock);
1141 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1142 mutex_unlock(&dev_priv->dpio_lock);
1143
1144 cur_state = val & DSI_PLL_VCO_EN;
1145 I915_STATE_WARN(cur_state != state,
1146 "DSI PLL state assertion failure (expected %s, current %s)\n",
1147 state_string(state), state_string(cur_state));
1148 }
1149 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1150 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1151
1152 struct intel_shared_dpll *
1153 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1154 {
1155 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1156
1157 if (crtc->config->shared_dpll < 0)
1158 return NULL;
1159
1160 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1161 }
1162
1163 /* For ILK+ */
1164 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1165 struct intel_shared_dpll *pll,
1166 bool state)
1167 {
1168 bool cur_state;
1169 struct intel_dpll_hw_state hw_state;
1170
1171 if (WARN (!pll,
1172 "asserting DPLL %s with no DPLL\n", state_string(state)))
1173 return;
1174
1175 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1176 I915_STATE_WARN(cur_state != state,
1177 "%s assertion failure (expected %s, current %s)\n",
1178 pll->name, state_string(state), state_string(cur_state));
1179 }
1180
1181 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1182 enum pipe pipe, bool state)
1183 {
1184 int reg;
1185 u32 val;
1186 bool cur_state;
1187 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1188 pipe);
1189
1190 if (HAS_DDI(dev_priv->dev)) {
1191 /* DDI does not have a specific FDI_TX register */
1192 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1193 val = I915_READ(reg);
1194 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1195 } else {
1196 reg = FDI_TX_CTL(pipe);
1197 val = I915_READ(reg);
1198 cur_state = !!(val & FDI_TX_ENABLE);
1199 }
1200 I915_STATE_WARN(cur_state != state,
1201 "FDI TX state assertion failure (expected %s, current %s)\n",
1202 state_string(state), state_string(cur_state));
1203 }
1204 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1205 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1206
1207 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1208 enum pipe pipe, bool state)
1209 {
1210 int reg;
1211 u32 val;
1212 bool cur_state;
1213
1214 reg = FDI_RX_CTL(pipe);
1215 val = I915_READ(reg);
1216 cur_state = !!(val & FDI_RX_ENABLE);
1217 I915_STATE_WARN(cur_state != state,
1218 "FDI RX state assertion failure (expected %s, current %s)\n",
1219 state_string(state), state_string(cur_state));
1220 }
1221 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1222 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1223
1224 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1225 enum pipe pipe)
1226 {
1227 int reg;
1228 u32 val;
1229
1230 /* ILK FDI PLL is always enabled */
1231 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1232 return;
1233
1234 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1235 if (HAS_DDI(dev_priv->dev))
1236 return;
1237
1238 reg = FDI_TX_CTL(pipe);
1239 val = I915_READ(reg);
1240 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1241 }
1242
1243 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1244 enum pipe pipe, bool state)
1245 {
1246 int reg;
1247 u32 val;
1248 bool cur_state;
1249
1250 reg = FDI_RX_CTL(pipe);
1251 val = I915_READ(reg);
1252 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1253 I915_STATE_WARN(cur_state != state,
1254 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1255 state_string(state), state_string(cur_state));
1256 }
1257
1258 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1259 enum pipe pipe)
1260 {
1261 struct drm_device *dev = dev_priv->dev;
1262 int pp_reg;
1263 u32 val;
1264 enum pipe panel_pipe = PIPE_A;
1265 bool locked = true;
1266
1267 if (WARN_ON(HAS_DDI(dev)))
1268 return;
1269
1270 if (HAS_PCH_SPLIT(dev)) {
1271 u32 port_sel;
1272
1273 pp_reg = PCH_PP_CONTROL;
1274 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1275
1276 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1277 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1278 panel_pipe = PIPE_B;
1279 /* XXX: else fix for eDP */
1280 } else if (IS_VALLEYVIEW(dev)) {
1281 /* presumably write lock depends on pipe, not port select */
1282 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1283 panel_pipe = pipe;
1284 } else {
1285 pp_reg = PP_CONTROL;
1286 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1287 panel_pipe = PIPE_B;
1288 }
1289
1290 val = I915_READ(pp_reg);
1291 if (!(val & PANEL_POWER_ON) ||
1292 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1293 locked = false;
1294
1295 I915_STATE_WARN(panel_pipe == pipe && locked,
1296 "panel assertion failure, pipe %c regs locked\n",
1297 pipe_name(pipe));
1298 }
1299
1300 static void assert_cursor(struct drm_i915_private *dev_priv,
1301 enum pipe pipe, bool state)
1302 {
1303 struct drm_device *dev = dev_priv->dev;
1304 bool cur_state;
1305
1306 if (IS_845G(dev) || IS_I865G(dev))
1307 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1308 else
1309 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1310
1311 I915_STATE_WARN(cur_state != state,
1312 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1313 pipe_name(pipe), state_string(state), state_string(cur_state));
1314 }
1315 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1316 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1317
1318 void assert_pipe(struct drm_i915_private *dev_priv,
1319 enum pipe pipe, bool state)
1320 {
1321 int reg;
1322 u32 val;
1323 bool cur_state;
1324 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1325 pipe);
1326
1327 /* if we need the pipe quirk it must be always on */
1328 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1329 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1330 state = true;
1331
1332 if (!intel_display_power_is_enabled(dev_priv,
1333 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1334 cur_state = false;
1335 } else {
1336 reg = PIPECONF(cpu_transcoder);
1337 val = I915_READ(reg);
1338 cur_state = !!(val & PIPECONF_ENABLE);
1339 }
1340
1341 I915_STATE_WARN(cur_state != state,
1342 "pipe %c assertion failure (expected %s, current %s)\n",
1343 pipe_name(pipe), state_string(state), state_string(cur_state));
1344 }
1345
1346 static void assert_plane(struct drm_i915_private *dev_priv,
1347 enum plane plane, bool state)
1348 {
1349 int reg;
1350 u32 val;
1351 bool cur_state;
1352
1353 reg = DSPCNTR(plane);
1354 val = I915_READ(reg);
1355 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1356 I915_STATE_WARN(cur_state != state,
1357 "plane %c assertion failure (expected %s, current %s)\n",
1358 plane_name(plane), state_string(state), state_string(cur_state));
1359 }
1360
1361 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1362 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1363
1364 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1365 enum pipe pipe)
1366 {
1367 struct drm_device *dev = dev_priv->dev;
1368 int reg, i;
1369 u32 val;
1370 int cur_pipe;
1371
1372 /* Primary planes are fixed to pipes on gen4+ */
1373 if (INTEL_INFO(dev)->gen >= 4) {
1374 reg = DSPCNTR(pipe);
1375 val = I915_READ(reg);
1376 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1377 "plane %c assertion failure, should be disabled but not\n",
1378 plane_name(pipe));
1379 return;
1380 }
1381
1382 /* Need to check both planes against the pipe */
1383 for_each_pipe(dev_priv, i) {
1384 reg = DSPCNTR(i);
1385 val = I915_READ(reg);
1386 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1387 DISPPLANE_SEL_PIPE_SHIFT;
1388 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1389 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1390 plane_name(i), pipe_name(pipe));
1391 }
1392 }
1393
1394 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1395 enum pipe pipe)
1396 {
1397 struct drm_device *dev = dev_priv->dev;
1398 int reg, sprite;
1399 u32 val;
1400
1401 if (INTEL_INFO(dev)->gen >= 9) {
1402 for_each_sprite(dev_priv, pipe, sprite) {
1403 val = I915_READ(PLANE_CTL(pipe, sprite));
1404 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1405 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1406 sprite, pipe_name(pipe));
1407 }
1408 } else if (IS_VALLEYVIEW(dev)) {
1409 for_each_sprite(dev_priv, pipe, sprite) {
1410 reg = SPCNTR(pipe, sprite);
1411 val = I915_READ(reg);
1412 I915_STATE_WARN(val & SP_ENABLE,
1413 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1414 sprite_name(pipe, sprite), pipe_name(pipe));
1415 }
1416 } else if (INTEL_INFO(dev)->gen >= 7) {
1417 reg = SPRCTL(pipe);
1418 val = I915_READ(reg);
1419 I915_STATE_WARN(val & SPRITE_ENABLE,
1420 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1421 plane_name(pipe), pipe_name(pipe));
1422 } else if (INTEL_INFO(dev)->gen >= 5) {
1423 reg = DVSCNTR(pipe);
1424 val = I915_READ(reg);
1425 I915_STATE_WARN(val & DVS_ENABLE,
1426 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1427 plane_name(pipe), pipe_name(pipe));
1428 }
1429 }
1430
1431 static void assert_vblank_disabled(struct drm_crtc *crtc)
1432 {
1433 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1434 drm_crtc_vblank_put(crtc);
1435 }
1436
1437 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1438 {
1439 u32 val;
1440 bool enabled;
1441
1442 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1443
1444 val = I915_READ(PCH_DREF_CONTROL);
1445 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1446 DREF_SUPERSPREAD_SOURCE_MASK));
1447 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1448 }
1449
1450 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe)
1452 {
1453 int reg;
1454 u32 val;
1455 bool enabled;
1456
1457 reg = PCH_TRANSCONF(pipe);
1458 val = I915_READ(reg);
1459 enabled = !!(val & TRANS_ENABLE);
1460 I915_STATE_WARN(enabled,
1461 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1462 pipe_name(pipe));
1463 }
1464
1465 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1466 enum pipe pipe, u32 port_sel, u32 val)
1467 {
1468 if ((val & DP_PORT_EN) == 0)
1469 return false;
1470
1471 if (HAS_PCH_CPT(dev_priv->dev)) {
1472 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1473 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1474 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1475 return false;
1476 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1477 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1478 return false;
1479 } else {
1480 if ((val & DP_PIPE_MASK) != (pipe << 30))
1481 return false;
1482 }
1483 return true;
1484 }
1485
1486 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1487 enum pipe pipe, u32 val)
1488 {
1489 if ((val & SDVO_ENABLE) == 0)
1490 return false;
1491
1492 if (HAS_PCH_CPT(dev_priv->dev)) {
1493 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1494 return false;
1495 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1496 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1497 return false;
1498 } else {
1499 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1500 return false;
1501 }
1502 return true;
1503 }
1504
1505 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1506 enum pipe pipe, u32 val)
1507 {
1508 if ((val & LVDS_PORT_EN) == 0)
1509 return false;
1510
1511 if (HAS_PCH_CPT(dev_priv->dev)) {
1512 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1513 return false;
1514 } else {
1515 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1516 return false;
1517 }
1518 return true;
1519 }
1520
1521 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1522 enum pipe pipe, u32 val)
1523 {
1524 if ((val & ADPA_DAC_ENABLE) == 0)
1525 return false;
1526 if (HAS_PCH_CPT(dev_priv->dev)) {
1527 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1528 return false;
1529 } else {
1530 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1531 return false;
1532 }
1533 return true;
1534 }
1535
1536 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1537 enum pipe pipe, int reg, u32 port_sel)
1538 {
1539 u32 val = I915_READ(reg);
1540 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1541 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1542 reg, pipe_name(pipe));
1543
1544 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1545 && (val & DP_PIPEB_SELECT),
1546 "IBX PCH dp port still using transcoder B\n");
1547 }
1548
1549 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1550 enum pipe pipe, int reg)
1551 {
1552 u32 val = I915_READ(reg);
1553 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1554 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1555 reg, pipe_name(pipe));
1556
1557 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1558 && (val & SDVO_PIPE_B_SELECT),
1559 "IBX PCH hdmi port still using transcoder B\n");
1560 }
1561
1562 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1563 enum pipe pipe)
1564 {
1565 int reg;
1566 u32 val;
1567
1568 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1569 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1570 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1571
1572 reg = PCH_ADPA;
1573 val = I915_READ(reg);
1574 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1575 "PCH VGA enabled on transcoder %c, should be disabled\n",
1576 pipe_name(pipe));
1577
1578 reg = PCH_LVDS;
1579 val = I915_READ(reg);
1580 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1581 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1582 pipe_name(pipe));
1583
1584 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1585 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1586 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1587 }
1588
1589 static void intel_init_dpio(struct drm_device *dev)
1590 {
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592
1593 if (!IS_VALLEYVIEW(dev))
1594 return;
1595
1596 /*
1597 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1598 * CHV x1 PHY (DP/HDMI D)
1599 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1600 */
1601 if (IS_CHERRYVIEW(dev)) {
1602 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1603 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1604 } else {
1605 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1606 }
1607 }
1608
1609 static void vlv_enable_pll(struct intel_crtc *crtc,
1610 const struct intel_crtc_state *pipe_config)
1611 {
1612 struct drm_device *dev = crtc->base.dev;
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 int reg = DPLL(crtc->pipe);
1615 u32 dpll = pipe_config->dpll_hw_state.dpll;
1616
1617 assert_pipe_disabled(dev_priv, crtc->pipe);
1618
1619 /* No really, not for ILK+ */
1620 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1621
1622 /* PLL is protected by panel, make sure we can write it */
1623 if (IS_MOBILE(dev_priv->dev))
1624 assert_panel_unlocked(dev_priv, crtc->pipe);
1625
1626 I915_WRITE(reg, dpll);
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1631 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1632
1633 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1634 POSTING_READ(DPLL_MD(crtc->pipe));
1635
1636 /* We do this three times for luck */
1637 I915_WRITE(reg, dpll);
1638 POSTING_READ(reg);
1639 udelay(150); /* wait for warmup */
1640 I915_WRITE(reg, dpll);
1641 POSTING_READ(reg);
1642 udelay(150); /* wait for warmup */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 }
1647
1648 static void chv_enable_pll(struct intel_crtc *crtc,
1649 const struct intel_crtc_state *pipe_config)
1650 {
1651 struct drm_device *dev = crtc->base.dev;
1652 struct drm_i915_private *dev_priv = dev->dev_private;
1653 int pipe = crtc->pipe;
1654 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1655 u32 tmp;
1656
1657 assert_pipe_disabled(dev_priv, crtc->pipe);
1658
1659 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1660
1661 mutex_lock(&dev_priv->dpio_lock);
1662
1663 /* Enable back the 10bit clock to display controller */
1664 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1665 tmp |= DPIO_DCLKP_EN;
1666 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1667
1668 /*
1669 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1670 */
1671 udelay(1);
1672
1673 /* Enable PLL */
1674 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1675
1676 /* Check PLL is locked */
1677 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1678 DRM_ERROR("PLL %d failed to lock\n", pipe);
1679
1680 /* not sure when this should be written */
1681 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1682 POSTING_READ(DPLL_MD(pipe));
1683
1684 mutex_unlock(&dev_priv->dpio_lock);
1685 }
1686
1687 static int intel_num_dvo_pipes(struct drm_device *dev)
1688 {
1689 struct intel_crtc *crtc;
1690 int count = 0;
1691
1692 for_each_intel_crtc(dev, crtc)
1693 count += crtc->active &&
1694 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1695
1696 return count;
1697 }
1698
1699 static void i9xx_enable_pll(struct intel_crtc *crtc)
1700 {
1701 struct drm_device *dev = crtc->base.dev;
1702 struct drm_i915_private *dev_priv = dev->dev_private;
1703 int reg = DPLL(crtc->pipe);
1704 u32 dpll = crtc->config->dpll_hw_state.dpll;
1705
1706 assert_pipe_disabled(dev_priv, crtc->pipe);
1707
1708 /* No really, not for ILK+ */
1709 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1710
1711 /* PLL is protected by panel, make sure we can write it */
1712 if (IS_MOBILE(dev) && !IS_I830(dev))
1713 assert_panel_unlocked(dev_priv, crtc->pipe);
1714
1715 /* Enable DVO 2x clock on both PLLs if necessary */
1716 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1717 /*
1718 * It appears to be important that we don't enable this
1719 * for the current pipe before otherwise configuring the
1720 * PLL. No idea how this should be handled if multiple
1721 * DVO outputs are enabled simultaneosly.
1722 */
1723 dpll |= DPLL_DVO_2X_MODE;
1724 I915_WRITE(DPLL(!crtc->pipe),
1725 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1726 }
1727
1728 /* Wait for the clocks to stabilize. */
1729 POSTING_READ(reg);
1730 udelay(150);
1731
1732 if (INTEL_INFO(dev)->gen >= 4) {
1733 I915_WRITE(DPLL_MD(crtc->pipe),
1734 crtc->config->dpll_hw_state.dpll_md);
1735 } else {
1736 /* The pixel multiplier can only be updated once the
1737 * DPLL is enabled and the clocks are stable.
1738 *
1739 * So write it again.
1740 */
1741 I915_WRITE(reg, dpll);
1742 }
1743
1744 /* We do this three times for luck */
1745 I915_WRITE(reg, dpll);
1746 POSTING_READ(reg);
1747 udelay(150); /* wait for warmup */
1748 I915_WRITE(reg, dpll);
1749 POSTING_READ(reg);
1750 udelay(150); /* wait for warmup */
1751 I915_WRITE(reg, dpll);
1752 POSTING_READ(reg);
1753 udelay(150); /* wait for warmup */
1754 }
1755
1756 /**
1757 * i9xx_disable_pll - disable a PLL
1758 * @dev_priv: i915 private structure
1759 * @pipe: pipe PLL to disable
1760 *
1761 * Disable the PLL for @pipe, making sure the pipe is off first.
1762 *
1763 * Note! This is for pre-ILK only.
1764 */
1765 static void i9xx_disable_pll(struct intel_crtc *crtc)
1766 {
1767 struct drm_device *dev = crtc->base.dev;
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 enum pipe pipe = crtc->pipe;
1770
1771 /* Disable DVO 2x clock on both PLLs if necessary */
1772 if (IS_I830(dev) &&
1773 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1774 intel_num_dvo_pipes(dev) == 1) {
1775 I915_WRITE(DPLL(PIPE_B),
1776 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1777 I915_WRITE(DPLL(PIPE_A),
1778 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1779 }
1780
1781 /* Don't disable pipe or pipe PLLs if needed */
1782 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1783 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1784 return;
1785
1786 /* Make sure the pipe isn't still relying on us */
1787 assert_pipe_disabled(dev_priv, pipe);
1788
1789 I915_WRITE(DPLL(pipe), 0);
1790 POSTING_READ(DPLL(pipe));
1791 }
1792
1793 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1794 {
1795 u32 val = 0;
1796
1797 /* Make sure the pipe isn't still relying on us */
1798 assert_pipe_disabled(dev_priv, pipe);
1799
1800 /*
1801 * Leave integrated clock source and reference clock enabled for pipe B.
1802 * The latter is needed for VGA hotplug / manual detection.
1803 */
1804 if (pipe == PIPE_B)
1805 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1806 I915_WRITE(DPLL(pipe), val);
1807 POSTING_READ(DPLL(pipe));
1808
1809 }
1810
1811 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1812 {
1813 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1814 u32 val;
1815
1816 /* Make sure the pipe isn't still relying on us */
1817 assert_pipe_disabled(dev_priv, pipe);
1818
1819 /* Set PLL en = 0 */
1820 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1821 if (pipe != PIPE_A)
1822 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823 I915_WRITE(DPLL(pipe), val);
1824 POSTING_READ(DPLL(pipe));
1825
1826 mutex_lock(&dev_priv->dpio_lock);
1827
1828 /* Disable 10bit clock to display controller */
1829 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830 val &= ~DPIO_DCLKP_EN;
1831 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1832
1833 /* disable left/right clock distribution */
1834 if (pipe != PIPE_B) {
1835 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1836 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1837 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1838 } else {
1839 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1840 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1841 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1842 }
1843
1844 mutex_unlock(&dev_priv->dpio_lock);
1845 }
1846
1847 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1848 struct intel_digital_port *dport)
1849 {
1850 u32 port_mask;
1851 int dpll_reg;
1852
1853 switch (dport->port) {
1854 case PORT_B:
1855 port_mask = DPLL_PORTB_READY_MASK;
1856 dpll_reg = DPLL(0);
1857 break;
1858 case PORT_C:
1859 port_mask = DPLL_PORTC_READY_MASK;
1860 dpll_reg = DPLL(0);
1861 break;
1862 case PORT_D:
1863 port_mask = DPLL_PORTD_READY_MASK;
1864 dpll_reg = DPIO_PHY_STATUS;
1865 break;
1866 default:
1867 BUG();
1868 }
1869
1870 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1871 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1872 port_name(dport->port), I915_READ(dpll_reg));
1873 }
1874
1875 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876 {
1877 struct drm_device *dev = crtc->base.dev;
1878 struct drm_i915_private *dev_priv = dev->dev_private;
1879 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
1881 if (WARN_ON(pll == NULL))
1882 return;
1883
1884 WARN_ON(!pll->config.crtc_mask);
1885 if (pll->active == 0) {
1886 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887 WARN_ON(pll->on);
1888 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890 pll->mode_set(dev_priv, pll);
1891 }
1892 }
1893
1894 /**
1895 * intel_enable_shared_dpll - enable PCH PLL
1896 * @dev_priv: i915 private structure
1897 * @pipe: pipe PLL to enable
1898 *
1899 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900 * drives the transcoder clock.
1901 */
1902 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1903 {
1904 struct drm_device *dev = crtc->base.dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1907
1908 if (WARN_ON(pll == NULL))
1909 return;
1910
1911 if (WARN_ON(pll->config.crtc_mask == 0))
1912 return;
1913
1914 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1915 pll->name, pll->active, pll->on,
1916 crtc->base.base.id);
1917
1918 if (pll->active++) {
1919 WARN_ON(!pll->on);
1920 assert_shared_dpll_enabled(dev_priv, pll);
1921 return;
1922 }
1923 WARN_ON(pll->on);
1924
1925 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
1927 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1928 pll->enable(dev_priv, pll);
1929 pll->on = true;
1930 }
1931
1932 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1933 {
1934 struct drm_device *dev = crtc->base.dev;
1935 struct drm_i915_private *dev_priv = dev->dev_private;
1936 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1937
1938 /* PCH only available on ILK+ */
1939 BUG_ON(INTEL_INFO(dev)->gen < 5);
1940 if (WARN_ON(pll == NULL))
1941 return;
1942
1943 if (WARN_ON(pll->config.crtc_mask == 0))
1944 return;
1945
1946 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1947 pll->name, pll->active, pll->on,
1948 crtc->base.base.id);
1949
1950 if (WARN_ON(pll->active == 0)) {
1951 assert_shared_dpll_disabled(dev_priv, pll);
1952 return;
1953 }
1954
1955 assert_shared_dpll_enabled(dev_priv, pll);
1956 WARN_ON(!pll->on);
1957 if (--pll->active)
1958 return;
1959
1960 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1961 pll->disable(dev_priv, pll);
1962 pll->on = false;
1963
1964 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1965 }
1966
1967 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1968 enum pipe pipe)
1969 {
1970 struct drm_device *dev = dev_priv->dev;
1971 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1973 uint32_t reg, val, pipeconf_val;
1974
1975 /* PCH only available on ILK+ */
1976 BUG_ON(!HAS_PCH_SPLIT(dev));
1977
1978 /* Make sure PCH DPLL is enabled */
1979 assert_shared_dpll_enabled(dev_priv,
1980 intel_crtc_to_shared_dpll(intel_crtc));
1981
1982 /* FDI must be feeding us bits for PCH ports */
1983 assert_fdi_tx_enabled(dev_priv, pipe);
1984 assert_fdi_rx_enabled(dev_priv, pipe);
1985
1986 if (HAS_PCH_CPT(dev)) {
1987 /* Workaround: Set the timing override bit before enabling the
1988 * pch transcoder. */
1989 reg = TRANS_CHICKEN2(pipe);
1990 val = I915_READ(reg);
1991 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1992 I915_WRITE(reg, val);
1993 }
1994
1995 reg = PCH_TRANSCONF(pipe);
1996 val = I915_READ(reg);
1997 pipeconf_val = I915_READ(PIPECONF(pipe));
1998
1999 if (HAS_PCH_IBX(dev_priv->dev)) {
2000 /*
2001 * make the BPC in transcoder be consistent with
2002 * that in pipeconf reg.
2003 */
2004 val &= ~PIPECONF_BPC_MASK;
2005 val |= pipeconf_val & PIPECONF_BPC_MASK;
2006 }
2007
2008 val &= ~TRANS_INTERLACE_MASK;
2009 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2010 if (HAS_PCH_IBX(dev_priv->dev) &&
2011 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2012 val |= TRANS_LEGACY_INTERLACED_ILK;
2013 else
2014 val |= TRANS_INTERLACED;
2015 else
2016 val |= TRANS_PROGRESSIVE;
2017
2018 I915_WRITE(reg, val | TRANS_ENABLE);
2019 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2020 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2021 }
2022
2023 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2024 enum transcoder cpu_transcoder)
2025 {
2026 u32 val, pipeconf_val;
2027
2028 /* PCH only available on ILK+ */
2029 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2030
2031 /* FDI must be feeding us bits for PCH ports */
2032 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2033 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2034
2035 /* Workaround: set timing override bit. */
2036 val = I915_READ(_TRANSA_CHICKEN2);
2037 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2038 I915_WRITE(_TRANSA_CHICKEN2, val);
2039
2040 val = TRANS_ENABLE;
2041 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2042
2043 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2044 PIPECONF_INTERLACED_ILK)
2045 val |= TRANS_INTERLACED;
2046 else
2047 val |= TRANS_PROGRESSIVE;
2048
2049 I915_WRITE(LPT_TRANSCONF, val);
2050 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2051 DRM_ERROR("Failed to enable PCH transcoder\n");
2052 }
2053
2054 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2055 enum pipe pipe)
2056 {
2057 struct drm_device *dev = dev_priv->dev;
2058 uint32_t reg, val;
2059
2060 /* FDI relies on the transcoder */
2061 assert_fdi_tx_disabled(dev_priv, pipe);
2062 assert_fdi_rx_disabled(dev_priv, pipe);
2063
2064 /* Ports must be off as well */
2065 assert_pch_ports_disabled(dev_priv, pipe);
2066
2067 reg = PCH_TRANSCONF(pipe);
2068 val = I915_READ(reg);
2069 val &= ~TRANS_ENABLE;
2070 I915_WRITE(reg, val);
2071 /* wait for PCH transcoder off, transcoder state */
2072 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2073 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2074
2075 if (!HAS_PCH_IBX(dev)) {
2076 /* Workaround: Clear the timing override chicken bit again. */
2077 reg = TRANS_CHICKEN2(pipe);
2078 val = I915_READ(reg);
2079 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2080 I915_WRITE(reg, val);
2081 }
2082 }
2083
2084 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2085 {
2086 u32 val;
2087
2088 val = I915_READ(LPT_TRANSCONF);
2089 val &= ~TRANS_ENABLE;
2090 I915_WRITE(LPT_TRANSCONF, val);
2091 /* wait for PCH transcoder off, transcoder state */
2092 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2093 DRM_ERROR("Failed to disable PCH transcoder\n");
2094
2095 /* Workaround: clear timing override bit. */
2096 val = I915_READ(_TRANSA_CHICKEN2);
2097 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2098 I915_WRITE(_TRANSA_CHICKEN2, val);
2099 }
2100
2101 /**
2102 * intel_enable_pipe - enable a pipe, asserting requirements
2103 * @crtc: crtc responsible for the pipe
2104 *
2105 * Enable @crtc's pipe, making sure that various hardware specific requirements
2106 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2107 */
2108 static void intel_enable_pipe(struct intel_crtc *crtc)
2109 {
2110 struct drm_device *dev = crtc->base.dev;
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112 enum pipe pipe = crtc->pipe;
2113 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2114 pipe);
2115 enum pipe pch_transcoder;
2116 int reg;
2117 u32 val;
2118
2119 assert_planes_disabled(dev_priv, pipe);
2120 assert_cursor_disabled(dev_priv, pipe);
2121 assert_sprites_disabled(dev_priv, pipe);
2122
2123 if (HAS_PCH_LPT(dev_priv->dev))
2124 pch_transcoder = TRANSCODER_A;
2125 else
2126 pch_transcoder = pipe;
2127
2128 /*
2129 * A pipe without a PLL won't actually be able to drive bits from
2130 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2131 * need the check.
2132 */
2133 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2134 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2135 assert_dsi_pll_enabled(dev_priv);
2136 else
2137 assert_pll_enabled(dev_priv, pipe);
2138 else {
2139 if (crtc->config->has_pch_encoder) {
2140 /* if driving the PCH, we need FDI enabled */
2141 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2142 assert_fdi_tx_pll_enabled(dev_priv,
2143 (enum pipe) cpu_transcoder);
2144 }
2145 /* FIXME: assert CPU port conditions for SNB+ */
2146 }
2147
2148 reg = PIPECONF(cpu_transcoder);
2149 val = I915_READ(reg);
2150 if (val & PIPECONF_ENABLE) {
2151 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2152 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2153 return;
2154 }
2155
2156 I915_WRITE(reg, val | PIPECONF_ENABLE);
2157 POSTING_READ(reg);
2158 }
2159
2160 /**
2161 * intel_disable_pipe - disable a pipe, asserting requirements
2162 * @crtc: crtc whose pipes is to be disabled
2163 *
2164 * Disable the pipe of @crtc, making sure that various hardware
2165 * specific requirements are met, if applicable, e.g. plane
2166 * disabled, panel fitter off, etc.
2167 *
2168 * Will wait until the pipe has shut down before returning.
2169 */
2170 static void intel_disable_pipe(struct intel_crtc *crtc)
2171 {
2172 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2173 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2174 enum pipe pipe = crtc->pipe;
2175 int reg;
2176 u32 val;
2177
2178 /*
2179 * Make sure planes won't keep trying to pump pixels to us,
2180 * or we might hang the display.
2181 */
2182 assert_planes_disabled(dev_priv, pipe);
2183 assert_cursor_disabled(dev_priv, pipe);
2184 assert_sprites_disabled(dev_priv, pipe);
2185
2186 reg = PIPECONF(cpu_transcoder);
2187 val = I915_READ(reg);
2188 if ((val & PIPECONF_ENABLE) == 0)
2189 return;
2190
2191 /*
2192 * Double wide has implications for planes
2193 * so best keep it disabled when not needed.
2194 */
2195 if (crtc->config->double_wide)
2196 val &= ~PIPECONF_DOUBLE_WIDE;
2197
2198 /* Don't disable pipe or pipe PLLs if needed */
2199 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2200 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2201 val &= ~PIPECONF_ENABLE;
2202
2203 I915_WRITE(reg, val);
2204 if ((val & PIPECONF_ENABLE) == 0)
2205 intel_wait_for_pipe_off(crtc);
2206 }
2207
2208 /*
2209 * Plane regs are double buffered, going from enabled->disabled needs a
2210 * trigger in order to latch. The display address reg provides this.
2211 */
2212 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2213 enum plane plane)
2214 {
2215 struct drm_device *dev = dev_priv->dev;
2216 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2217
2218 I915_WRITE(reg, I915_READ(reg));
2219 POSTING_READ(reg);
2220 }
2221
2222 /**
2223 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2224 * @plane: plane to be enabled
2225 * @crtc: crtc for the plane
2226 *
2227 * Enable @plane on @crtc, making sure that the pipe is running first.
2228 */
2229 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2230 struct drm_crtc *crtc)
2231 {
2232 struct drm_device *dev = plane->dev;
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2235
2236 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2237 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2238 to_intel_plane_state(plane->state)->visible = true;
2239
2240 dev_priv->display.update_primary_plane(crtc, plane->fb,
2241 crtc->x, crtc->y);
2242 }
2243
2244 static bool need_vtd_wa(struct drm_device *dev)
2245 {
2246 #ifdef CONFIG_INTEL_IOMMU
2247 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2248 return true;
2249 #endif
2250 return false;
2251 }
2252
2253 unsigned int
2254 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2255 uint64_t fb_format_modifier)
2256 {
2257 unsigned int tile_height;
2258 uint32_t pixel_bytes;
2259
2260 switch (fb_format_modifier) {
2261 case DRM_FORMAT_MOD_NONE:
2262 tile_height = 1;
2263 break;
2264 case I915_FORMAT_MOD_X_TILED:
2265 tile_height = IS_GEN2(dev) ? 16 : 8;
2266 break;
2267 case I915_FORMAT_MOD_Y_TILED:
2268 tile_height = 32;
2269 break;
2270 case I915_FORMAT_MOD_Yf_TILED:
2271 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2272 switch (pixel_bytes) {
2273 default:
2274 case 1:
2275 tile_height = 64;
2276 break;
2277 case 2:
2278 case 4:
2279 tile_height = 32;
2280 break;
2281 case 8:
2282 tile_height = 16;
2283 break;
2284 case 16:
2285 WARN_ONCE(1,
2286 "128-bit pixels are not supported for display!");
2287 tile_height = 16;
2288 break;
2289 }
2290 break;
2291 default:
2292 MISSING_CASE(fb_format_modifier);
2293 tile_height = 1;
2294 break;
2295 }
2296
2297 return tile_height;
2298 }
2299
2300 unsigned int
2301 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2302 uint32_t pixel_format, uint64_t fb_format_modifier)
2303 {
2304 return ALIGN(height, intel_tile_height(dev, pixel_format,
2305 fb_format_modifier));
2306 }
2307
2308 static int
2309 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2310 const struct drm_plane_state *plane_state)
2311 {
2312 struct intel_rotation_info *info = &view->rotation_info;
2313
2314 *view = i915_ggtt_view_normal;
2315
2316 if (!plane_state)
2317 return 0;
2318
2319 if (!intel_rotation_90_or_270(plane_state->rotation))
2320 return 0;
2321
2322 *view = i915_ggtt_view_rotated;
2323
2324 info->height = fb->height;
2325 info->pixel_format = fb->pixel_format;
2326 info->pitch = fb->pitches[0];
2327 info->fb_modifier = fb->modifier[0];
2328
2329 return 0;
2330 }
2331
2332 int
2333 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2334 struct drm_framebuffer *fb,
2335 const struct drm_plane_state *plane_state,
2336 struct intel_engine_cs *pipelined)
2337 {
2338 struct drm_device *dev = fb->dev;
2339 struct drm_i915_private *dev_priv = dev->dev_private;
2340 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2341 struct i915_ggtt_view view;
2342 u32 alignment;
2343 int ret;
2344
2345 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2346
2347 switch (fb->modifier[0]) {
2348 case DRM_FORMAT_MOD_NONE:
2349 if (INTEL_INFO(dev)->gen >= 9)
2350 alignment = 256 * 1024;
2351 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2352 alignment = 128 * 1024;
2353 else if (INTEL_INFO(dev)->gen >= 4)
2354 alignment = 4 * 1024;
2355 else
2356 alignment = 64 * 1024;
2357 break;
2358 case I915_FORMAT_MOD_X_TILED:
2359 if (INTEL_INFO(dev)->gen >= 9)
2360 alignment = 256 * 1024;
2361 else {
2362 /* pin() will align the object as required by fence */
2363 alignment = 0;
2364 }
2365 break;
2366 case I915_FORMAT_MOD_Y_TILED:
2367 case I915_FORMAT_MOD_Yf_TILED:
2368 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2369 "Y tiling bo slipped through, driver bug!\n"))
2370 return -EINVAL;
2371 alignment = 1 * 1024 * 1024;
2372 break;
2373 default:
2374 MISSING_CASE(fb->modifier[0]);
2375 return -EINVAL;
2376 }
2377
2378 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2379 if (ret)
2380 return ret;
2381
2382 /* Note that the w/a also requires 64 PTE of padding following the
2383 * bo. We currently fill all unused PTE with the shadow page and so
2384 * we should always have valid PTE following the scanout preventing
2385 * the VT-d warning.
2386 */
2387 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2388 alignment = 256 * 1024;
2389
2390 /*
2391 * Global gtt pte registers are special registers which actually forward
2392 * writes to a chunk of system memory. Which means that there is no risk
2393 * that the register values disappear as soon as we call
2394 * intel_runtime_pm_put(), so it is correct to wrap only the
2395 * pin/unpin/fence and not more.
2396 */
2397 intel_runtime_pm_get(dev_priv);
2398
2399 dev_priv->mm.interruptible = false;
2400 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2401 &view);
2402 if (ret)
2403 goto err_interruptible;
2404
2405 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2406 * fence, whereas 965+ only requires a fence if using
2407 * framebuffer compression. For simplicity, we always install
2408 * a fence as the cost is not that onerous.
2409 */
2410 ret = i915_gem_object_get_fence(obj);
2411 if (ret)
2412 goto err_unpin;
2413
2414 i915_gem_object_pin_fence(obj);
2415
2416 dev_priv->mm.interruptible = true;
2417 intel_runtime_pm_put(dev_priv);
2418 return 0;
2419
2420 err_unpin:
2421 i915_gem_object_unpin_from_display_plane(obj, &view);
2422 err_interruptible:
2423 dev_priv->mm.interruptible = true;
2424 intel_runtime_pm_put(dev_priv);
2425 return ret;
2426 }
2427
2428 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2429 const struct drm_plane_state *plane_state)
2430 {
2431 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2432 struct i915_ggtt_view view;
2433 int ret;
2434
2435 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2436
2437 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2438 WARN_ONCE(ret, "Couldn't get view from plane state!");
2439
2440 i915_gem_object_unpin_fence(obj);
2441 i915_gem_object_unpin_from_display_plane(obj, &view);
2442 }
2443
2444 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2445 * is assumed to be a power-of-two. */
2446 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2447 unsigned int tiling_mode,
2448 unsigned int cpp,
2449 unsigned int pitch)
2450 {
2451 if (tiling_mode != I915_TILING_NONE) {
2452 unsigned int tile_rows, tiles;
2453
2454 tile_rows = *y / 8;
2455 *y %= 8;
2456
2457 tiles = *x / (512/cpp);
2458 *x %= 512/cpp;
2459
2460 return tile_rows * pitch * 8 + tiles * 4096;
2461 } else {
2462 unsigned int offset;
2463
2464 offset = *y * pitch + *x * cpp;
2465 *y = 0;
2466 *x = (offset & 4095) / cpp;
2467 return offset & -4096;
2468 }
2469 }
2470
2471 static int i9xx_format_to_fourcc(int format)
2472 {
2473 switch (format) {
2474 case DISPPLANE_8BPP:
2475 return DRM_FORMAT_C8;
2476 case DISPPLANE_BGRX555:
2477 return DRM_FORMAT_XRGB1555;
2478 case DISPPLANE_BGRX565:
2479 return DRM_FORMAT_RGB565;
2480 default:
2481 case DISPPLANE_BGRX888:
2482 return DRM_FORMAT_XRGB8888;
2483 case DISPPLANE_RGBX888:
2484 return DRM_FORMAT_XBGR8888;
2485 case DISPPLANE_BGRX101010:
2486 return DRM_FORMAT_XRGB2101010;
2487 case DISPPLANE_RGBX101010:
2488 return DRM_FORMAT_XBGR2101010;
2489 }
2490 }
2491
2492 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2493 {
2494 switch (format) {
2495 case PLANE_CTL_FORMAT_RGB_565:
2496 return DRM_FORMAT_RGB565;
2497 default:
2498 case PLANE_CTL_FORMAT_XRGB_8888:
2499 if (rgb_order) {
2500 if (alpha)
2501 return DRM_FORMAT_ABGR8888;
2502 else
2503 return DRM_FORMAT_XBGR8888;
2504 } else {
2505 if (alpha)
2506 return DRM_FORMAT_ARGB8888;
2507 else
2508 return DRM_FORMAT_XRGB8888;
2509 }
2510 case PLANE_CTL_FORMAT_XRGB_2101010:
2511 if (rgb_order)
2512 return DRM_FORMAT_XBGR2101010;
2513 else
2514 return DRM_FORMAT_XRGB2101010;
2515 }
2516 }
2517
2518 static bool
2519 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2520 struct intel_initial_plane_config *plane_config)
2521 {
2522 struct drm_device *dev = crtc->base.dev;
2523 struct drm_i915_gem_object *obj = NULL;
2524 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2525 struct drm_framebuffer *fb = &plane_config->fb->base;
2526 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2527 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2528 PAGE_SIZE);
2529
2530 size_aligned -= base_aligned;
2531
2532 if (plane_config->size == 0)
2533 return false;
2534
2535 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2536 base_aligned,
2537 base_aligned,
2538 size_aligned);
2539 if (!obj)
2540 return false;
2541
2542 obj->tiling_mode = plane_config->tiling;
2543 if (obj->tiling_mode == I915_TILING_X)
2544 obj->stride = fb->pitches[0];
2545
2546 mode_cmd.pixel_format = fb->pixel_format;
2547 mode_cmd.width = fb->width;
2548 mode_cmd.height = fb->height;
2549 mode_cmd.pitches[0] = fb->pitches[0];
2550 mode_cmd.modifier[0] = fb->modifier[0];
2551 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2552
2553 mutex_lock(&dev->struct_mutex);
2554 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2555 &mode_cmd, obj)) {
2556 DRM_DEBUG_KMS("intel fb init failed\n");
2557 goto out_unref_obj;
2558 }
2559 mutex_unlock(&dev->struct_mutex);
2560
2561 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2562 return true;
2563
2564 out_unref_obj:
2565 drm_gem_object_unreference(&obj->base);
2566 mutex_unlock(&dev->struct_mutex);
2567 return false;
2568 }
2569
2570 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2571 static void
2572 update_state_fb(struct drm_plane *plane)
2573 {
2574 if (plane->fb == plane->state->fb)
2575 return;
2576
2577 if (plane->state->fb)
2578 drm_framebuffer_unreference(plane->state->fb);
2579 plane->state->fb = plane->fb;
2580 if (plane->state->fb)
2581 drm_framebuffer_reference(plane->state->fb);
2582 }
2583
2584 static void
2585 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2586 struct intel_initial_plane_config *plane_config)
2587 {
2588 struct drm_device *dev = intel_crtc->base.dev;
2589 struct drm_i915_private *dev_priv = dev->dev_private;
2590 struct drm_crtc *c;
2591 struct intel_crtc *i;
2592 struct drm_i915_gem_object *obj;
2593 struct drm_plane *primary = intel_crtc->base.primary;
2594 struct drm_framebuffer *fb;
2595
2596 if (!plane_config->fb)
2597 return;
2598
2599 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2600 fb = &plane_config->fb->base;
2601 goto valid_fb;
2602 }
2603
2604 kfree(plane_config->fb);
2605
2606 /*
2607 * Failed to alloc the obj, check to see if we should share
2608 * an fb with another CRTC instead
2609 */
2610 for_each_crtc(dev, c) {
2611 i = to_intel_crtc(c);
2612
2613 if (c == &intel_crtc->base)
2614 continue;
2615
2616 if (!i->active)
2617 continue;
2618
2619 fb = c->primary->fb;
2620 if (!fb)
2621 continue;
2622
2623 obj = intel_fb_obj(fb);
2624 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2625 drm_framebuffer_reference(fb);
2626 goto valid_fb;
2627 }
2628 }
2629
2630 return;
2631
2632 valid_fb:
2633 obj = intel_fb_obj(fb);
2634 if (obj->tiling_mode != I915_TILING_NONE)
2635 dev_priv->preserve_bios_swizzle = true;
2636
2637 primary->fb = fb;
2638 primary->state->crtc = &intel_crtc->base;
2639 primary->crtc = &intel_crtc->base;
2640 update_state_fb(primary);
2641 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2642 }
2643
2644 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2645 struct drm_framebuffer *fb,
2646 int x, int y)
2647 {
2648 struct drm_device *dev = crtc->dev;
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651 struct drm_plane *primary = crtc->primary;
2652 bool visible = to_intel_plane_state(primary->state)->visible;
2653 struct drm_i915_gem_object *obj;
2654 int plane = intel_crtc->plane;
2655 unsigned long linear_offset;
2656 u32 dspcntr;
2657 u32 reg = DSPCNTR(plane);
2658 int pixel_size;
2659
2660 if (!visible || !fb) {
2661 I915_WRITE(reg, 0);
2662 if (INTEL_INFO(dev)->gen >= 4)
2663 I915_WRITE(DSPSURF(plane), 0);
2664 else
2665 I915_WRITE(DSPADDR(plane), 0);
2666 POSTING_READ(reg);
2667 return;
2668 }
2669
2670 obj = intel_fb_obj(fb);
2671 if (WARN_ON(obj == NULL))
2672 return;
2673
2674 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2675
2676 dspcntr = DISPPLANE_GAMMA_ENABLE;
2677
2678 dspcntr |= DISPLAY_PLANE_ENABLE;
2679
2680 if (INTEL_INFO(dev)->gen < 4) {
2681 if (intel_crtc->pipe == PIPE_B)
2682 dspcntr |= DISPPLANE_SEL_PIPE_B;
2683
2684 /* pipesrc and dspsize control the size that is scaled from,
2685 * which should always be the user's requested size.
2686 */
2687 I915_WRITE(DSPSIZE(plane),
2688 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2689 (intel_crtc->config->pipe_src_w - 1));
2690 I915_WRITE(DSPPOS(plane), 0);
2691 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2692 I915_WRITE(PRIMSIZE(plane),
2693 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2694 (intel_crtc->config->pipe_src_w - 1));
2695 I915_WRITE(PRIMPOS(plane), 0);
2696 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2697 }
2698
2699 switch (fb->pixel_format) {
2700 case DRM_FORMAT_C8:
2701 dspcntr |= DISPPLANE_8BPP;
2702 break;
2703 case DRM_FORMAT_XRGB1555:
2704 case DRM_FORMAT_ARGB1555:
2705 dspcntr |= DISPPLANE_BGRX555;
2706 break;
2707 case DRM_FORMAT_RGB565:
2708 dspcntr |= DISPPLANE_BGRX565;
2709 break;
2710 case DRM_FORMAT_XRGB8888:
2711 case DRM_FORMAT_ARGB8888:
2712 dspcntr |= DISPPLANE_BGRX888;
2713 break;
2714 case DRM_FORMAT_XBGR8888:
2715 case DRM_FORMAT_ABGR8888:
2716 dspcntr |= DISPPLANE_RGBX888;
2717 break;
2718 case DRM_FORMAT_XRGB2101010:
2719 case DRM_FORMAT_ARGB2101010:
2720 dspcntr |= DISPPLANE_BGRX101010;
2721 break;
2722 case DRM_FORMAT_XBGR2101010:
2723 case DRM_FORMAT_ABGR2101010:
2724 dspcntr |= DISPPLANE_RGBX101010;
2725 break;
2726 default:
2727 BUG();
2728 }
2729
2730 if (INTEL_INFO(dev)->gen >= 4 &&
2731 obj->tiling_mode != I915_TILING_NONE)
2732 dspcntr |= DISPPLANE_TILED;
2733
2734 if (IS_G4X(dev))
2735 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2736
2737 linear_offset = y * fb->pitches[0] + x * pixel_size;
2738
2739 if (INTEL_INFO(dev)->gen >= 4) {
2740 intel_crtc->dspaddr_offset =
2741 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2742 pixel_size,
2743 fb->pitches[0]);
2744 linear_offset -= intel_crtc->dspaddr_offset;
2745 } else {
2746 intel_crtc->dspaddr_offset = linear_offset;
2747 }
2748
2749 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2750 dspcntr |= DISPPLANE_ROTATE_180;
2751
2752 x += (intel_crtc->config->pipe_src_w - 1);
2753 y += (intel_crtc->config->pipe_src_h - 1);
2754
2755 /* Finding the last pixel of the last line of the display
2756 data and adding to linear_offset*/
2757 linear_offset +=
2758 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2759 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2760 }
2761
2762 I915_WRITE(reg, dspcntr);
2763
2764 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2765 if (INTEL_INFO(dev)->gen >= 4) {
2766 I915_WRITE(DSPSURF(plane),
2767 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2768 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2769 I915_WRITE(DSPLINOFF(plane), linear_offset);
2770 } else
2771 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2772 POSTING_READ(reg);
2773 }
2774
2775 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2776 struct drm_framebuffer *fb,
2777 int x, int y)
2778 {
2779 struct drm_device *dev = crtc->dev;
2780 struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782 struct drm_plane *primary = crtc->primary;
2783 bool visible = to_intel_plane_state(primary->state)->visible;
2784 struct drm_i915_gem_object *obj;
2785 int plane = intel_crtc->plane;
2786 unsigned long linear_offset;
2787 u32 dspcntr;
2788 u32 reg = DSPCNTR(plane);
2789 int pixel_size;
2790
2791 if (!visible || !fb) {
2792 I915_WRITE(reg, 0);
2793 I915_WRITE(DSPSURF(plane), 0);
2794 POSTING_READ(reg);
2795 return;
2796 }
2797
2798 obj = intel_fb_obj(fb);
2799 if (WARN_ON(obj == NULL))
2800 return;
2801
2802 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2803
2804 dspcntr = DISPPLANE_GAMMA_ENABLE;
2805
2806 dspcntr |= DISPLAY_PLANE_ENABLE;
2807
2808 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2809 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2810
2811 switch (fb->pixel_format) {
2812 case DRM_FORMAT_C8:
2813 dspcntr |= DISPPLANE_8BPP;
2814 break;
2815 case DRM_FORMAT_RGB565:
2816 dspcntr |= DISPPLANE_BGRX565;
2817 break;
2818 case DRM_FORMAT_XRGB8888:
2819 case DRM_FORMAT_ARGB8888:
2820 dspcntr |= DISPPLANE_BGRX888;
2821 break;
2822 case DRM_FORMAT_XBGR8888:
2823 case DRM_FORMAT_ABGR8888:
2824 dspcntr |= DISPPLANE_RGBX888;
2825 break;
2826 case DRM_FORMAT_XRGB2101010:
2827 case DRM_FORMAT_ARGB2101010:
2828 dspcntr |= DISPPLANE_BGRX101010;
2829 break;
2830 case DRM_FORMAT_XBGR2101010:
2831 case DRM_FORMAT_ABGR2101010:
2832 dspcntr |= DISPPLANE_RGBX101010;
2833 break;
2834 default:
2835 BUG();
2836 }
2837
2838 if (obj->tiling_mode != I915_TILING_NONE)
2839 dspcntr |= DISPPLANE_TILED;
2840
2841 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2842 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2843
2844 linear_offset = y * fb->pitches[0] + x * pixel_size;
2845 intel_crtc->dspaddr_offset =
2846 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2847 pixel_size,
2848 fb->pitches[0]);
2849 linear_offset -= intel_crtc->dspaddr_offset;
2850 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2851 dspcntr |= DISPPLANE_ROTATE_180;
2852
2853 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2854 x += (intel_crtc->config->pipe_src_w - 1);
2855 y += (intel_crtc->config->pipe_src_h - 1);
2856
2857 /* Finding the last pixel of the last line of the display
2858 data and adding to linear_offset*/
2859 linear_offset +=
2860 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2861 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2862 }
2863 }
2864
2865 I915_WRITE(reg, dspcntr);
2866
2867 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2868 I915_WRITE(DSPSURF(plane),
2869 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2870 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2871 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2872 } else {
2873 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2874 I915_WRITE(DSPLINOFF(plane), linear_offset);
2875 }
2876 POSTING_READ(reg);
2877 }
2878
2879 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2880 uint32_t pixel_format)
2881 {
2882 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2883
2884 /*
2885 * The stride is either expressed as a multiple of 64 bytes
2886 * chunks for linear buffers or in number of tiles for tiled
2887 * buffers.
2888 */
2889 switch (fb_modifier) {
2890 case DRM_FORMAT_MOD_NONE:
2891 return 64;
2892 case I915_FORMAT_MOD_X_TILED:
2893 if (INTEL_INFO(dev)->gen == 2)
2894 return 128;
2895 return 512;
2896 case I915_FORMAT_MOD_Y_TILED:
2897 /* No need to check for old gens and Y tiling since this is
2898 * about the display engine and those will be blocked before
2899 * we get here.
2900 */
2901 return 128;
2902 case I915_FORMAT_MOD_Yf_TILED:
2903 if (bits_per_pixel == 8)
2904 return 64;
2905 else
2906 return 128;
2907 default:
2908 MISSING_CASE(fb_modifier);
2909 return 64;
2910 }
2911 }
2912
2913 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2914 struct drm_i915_gem_object *obj)
2915 {
2916 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2917
2918 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2919 view = &i915_ggtt_view_rotated;
2920
2921 return i915_gem_obj_ggtt_offset_view(obj, view);
2922 }
2923
2924 /*
2925 * This function detaches (aka. unbinds) unused scalers in hardware
2926 */
2927 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2928 {
2929 struct drm_device *dev;
2930 struct drm_i915_private *dev_priv;
2931 struct intel_crtc_scaler_state *scaler_state;
2932 int i;
2933
2934 if (!intel_crtc || !intel_crtc->config)
2935 return;
2936
2937 dev = intel_crtc->base.dev;
2938 dev_priv = dev->dev_private;
2939 scaler_state = &intel_crtc->config->scaler_state;
2940
2941 /* loop through and disable scalers that aren't in use */
2942 for (i = 0; i < intel_crtc->num_scalers; i++) {
2943 if (!scaler_state->scalers[i].in_use) {
2944 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2945 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2946 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2947 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2948 intel_crtc->base.base.id, intel_crtc->pipe, i);
2949 }
2950 }
2951 }
2952
2953 u32 skl_plane_ctl_format(uint32_t pixel_format)
2954 {
2955 u32 plane_ctl_format = 0;
2956 switch (pixel_format) {
2957 case DRM_FORMAT_RGB565:
2958 plane_ctl_format = PLANE_CTL_FORMAT_RGB_565;
2959 break;
2960 case DRM_FORMAT_XBGR8888:
2961 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2962 break;
2963 case DRM_FORMAT_XRGB8888:
2964 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888;
2965 break;
2966 /*
2967 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2968 * to be already pre-multiplied. We need to add a knob (or a different
2969 * DRM_FORMAT) for user-space to configure that.
2970 */
2971 case DRM_FORMAT_ABGR8888:
2972 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2973 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2974 break;
2975 case DRM_FORMAT_ARGB8888:
2976 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 |
2977 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2978 break;
2979 case DRM_FORMAT_XRGB2101010:
2980 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_2101010;
2981 break;
2982 case DRM_FORMAT_XBGR2101010:
2983 plane_ctl_format = PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2984 break;
2985 case DRM_FORMAT_YUYV:
2986 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2987 break;
2988 case DRM_FORMAT_YVYU:
2989 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2990 break;
2991 case DRM_FORMAT_UYVY:
2992 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2993 break;
2994 case DRM_FORMAT_VYUY:
2995 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2996 break;
2997 default:
2998 BUG();
2999 }
3000 return plane_ctl_format;
3001 }
3002
3003 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3004 {
3005 u32 plane_ctl_tiling = 0;
3006 switch (fb_modifier) {
3007 case DRM_FORMAT_MOD_NONE:
3008 break;
3009 case I915_FORMAT_MOD_X_TILED:
3010 plane_ctl_tiling = PLANE_CTL_TILED_X;
3011 break;
3012 case I915_FORMAT_MOD_Y_TILED:
3013 plane_ctl_tiling = PLANE_CTL_TILED_Y;
3014 break;
3015 case I915_FORMAT_MOD_Yf_TILED:
3016 plane_ctl_tiling = PLANE_CTL_TILED_YF;
3017 break;
3018 default:
3019 MISSING_CASE(fb_modifier);
3020 }
3021 return plane_ctl_tiling;
3022 }
3023
3024 u32 skl_plane_ctl_rotation(unsigned int rotation)
3025 {
3026 u32 plane_ctl_rotation = 0;
3027 switch (rotation) {
3028 case BIT(DRM_ROTATE_0):
3029 break;
3030 case BIT(DRM_ROTATE_90):
3031 plane_ctl_rotation = PLANE_CTL_ROTATE_90;
3032 break;
3033 case BIT(DRM_ROTATE_180):
3034 plane_ctl_rotation = PLANE_CTL_ROTATE_180;
3035 break;
3036 case BIT(DRM_ROTATE_270):
3037 plane_ctl_rotation = PLANE_CTL_ROTATE_270;
3038 break;
3039 default:
3040 MISSING_CASE(rotation);
3041 }
3042
3043 return plane_ctl_rotation;
3044 }
3045
3046 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3047 struct drm_framebuffer *fb,
3048 int x, int y)
3049 {
3050 struct drm_device *dev = crtc->dev;
3051 struct drm_i915_private *dev_priv = dev->dev_private;
3052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3053 struct drm_plane *plane = crtc->primary;
3054 bool visible = to_intel_plane_state(plane->state)->visible;
3055 struct drm_i915_gem_object *obj;
3056 int pipe = intel_crtc->pipe;
3057 u32 plane_ctl, stride_div, stride;
3058 u32 tile_height, plane_offset, plane_size;
3059 unsigned int rotation;
3060 int x_offset, y_offset;
3061 unsigned long surf_addr;
3062 struct intel_crtc_state *crtc_state = intel_crtc->config;
3063 struct intel_plane_state *plane_state;
3064 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3065 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3066 int scaler_id = -1;
3067
3068 plane_state = to_intel_plane_state(plane->state);
3069
3070 if (!visible || !fb) {
3071 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3072 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3073 POSTING_READ(PLANE_CTL(pipe, 0));
3074 return;
3075 }
3076
3077 plane_ctl = PLANE_CTL_ENABLE |
3078 PLANE_CTL_PIPE_GAMMA_ENABLE |
3079 PLANE_CTL_PIPE_CSC_ENABLE;
3080
3081 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3082 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3083 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3084
3085 rotation = plane->state->rotation;
3086 plane_ctl |= skl_plane_ctl_rotation(rotation);
3087
3088 obj = intel_fb_obj(fb);
3089 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3090 fb->pixel_format);
3091 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3092
3093 /*
3094 * FIXME: intel_plane_state->src, dst aren't set when transitional
3095 * update_plane helpers are called from legacy paths.
3096 * Once full atomic crtc is available, below check can be avoided.
3097 */
3098 if (drm_rect_width(&plane_state->src)) {
3099 scaler_id = plane_state->scaler_id;
3100 src_x = plane_state->src.x1 >> 16;
3101 src_y = plane_state->src.y1 >> 16;
3102 src_w = drm_rect_width(&plane_state->src) >> 16;
3103 src_h = drm_rect_height(&plane_state->src) >> 16;
3104 dst_x = plane_state->dst.x1;
3105 dst_y = plane_state->dst.y1;
3106 dst_w = drm_rect_width(&plane_state->dst);
3107 dst_h = drm_rect_height(&plane_state->dst);
3108
3109 WARN_ON(x != src_x || y != src_y);
3110 } else {
3111 src_w = intel_crtc->config->pipe_src_w;
3112 src_h = intel_crtc->config->pipe_src_h;
3113 }
3114
3115 if (intel_rotation_90_or_270(rotation)) {
3116 /* stride = Surface height in tiles */
3117 tile_height = intel_tile_height(dev, fb->bits_per_pixel,
3118 fb->modifier[0]);
3119 stride = DIV_ROUND_UP(fb->height, tile_height);
3120 x_offset = stride * tile_height - y - src_h;
3121 y_offset = x;
3122 plane_size = (src_w - 1) << 16 | (src_h - 1);
3123 } else {
3124 stride = fb->pitches[0] / stride_div;
3125 x_offset = x;
3126 y_offset = y;
3127 plane_size = (src_h - 1) << 16 | (src_w - 1);
3128 }
3129 plane_offset = y_offset << 16 | x_offset;
3130
3131 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3132 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3133 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3134 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3135
3136 if (scaler_id >= 0) {
3137 uint32_t ps_ctrl = 0;
3138
3139 WARN_ON(!dst_w || !dst_h);
3140 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3141 crtc_state->scaler_state.scalers[scaler_id].mode;
3142 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3143 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3144 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3145 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3146 I915_WRITE(PLANE_POS(pipe, 0), 0);
3147 } else {
3148 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3149 }
3150
3151 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3152
3153 POSTING_READ(PLANE_SURF(pipe, 0));
3154 }
3155
3156 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3157 static int
3158 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3159 int x, int y, enum mode_set_atomic state)
3160 {
3161 struct drm_device *dev = crtc->dev;
3162 struct drm_i915_private *dev_priv = dev->dev_private;
3163
3164 if (dev_priv->display.disable_fbc)
3165 dev_priv->display.disable_fbc(dev);
3166
3167 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3168
3169 return 0;
3170 }
3171
3172 static void intel_complete_page_flips(struct drm_device *dev)
3173 {
3174 struct drm_crtc *crtc;
3175
3176 for_each_crtc(dev, crtc) {
3177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3178 enum plane plane = intel_crtc->plane;
3179
3180 intel_prepare_page_flip(dev, plane);
3181 intel_finish_page_flip_plane(dev, plane);
3182 }
3183 }
3184
3185 static void intel_update_primary_planes(struct drm_device *dev)
3186 {
3187 struct drm_i915_private *dev_priv = dev->dev_private;
3188 struct drm_crtc *crtc;
3189
3190 for_each_crtc(dev, crtc) {
3191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3192
3193 drm_modeset_lock(&crtc->mutex, NULL);
3194 /*
3195 * FIXME: Once we have proper support for primary planes (and
3196 * disabling them without disabling the entire crtc) allow again
3197 * a NULL crtc->primary->fb.
3198 */
3199 if (intel_crtc->active && crtc->primary->fb)
3200 dev_priv->display.update_primary_plane(crtc,
3201 crtc->primary->fb,
3202 crtc->x,
3203 crtc->y);
3204 drm_modeset_unlock(&crtc->mutex);
3205 }
3206 }
3207
3208 void intel_crtc_reset(struct intel_crtc *crtc)
3209 {
3210 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3211
3212 if (!crtc->active)
3213 return;
3214
3215 intel_crtc_disable_planes(&crtc->base);
3216 dev_priv->display.crtc_disable(&crtc->base);
3217 dev_priv->display.crtc_enable(&crtc->base);
3218 intel_crtc_enable_planes(&crtc->base);
3219 }
3220
3221 void intel_prepare_reset(struct drm_device *dev)
3222 {
3223 struct drm_i915_private *dev_priv = to_i915(dev);
3224 struct intel_crtc *crtc;
3225
3226 /* no reset support for gen2 */
3227 if (IS_GEN2(dev))
3228 return;
3229
3230 /* reset doesn't touch the display */
3231 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3232 return;
3233
3234 drm_modeset_lock_all(dev);
3235
3236 /*
3237 * Disabling the crtcs gracefully seems nicer. Also the
3238 * g33 docs say we should at least disable all the planes.
3239 */
3240 for_each_intel_crtc(dev, crtc) {
3241 if (!crtc->active)
3242 continue;
3243
3244 intel_crtc_disable_planes(&crtc->base);
3245 dev_priv->display.crtc_disable(&crtc->base);
3246 }
3247 }
3248
3249 void intel_finish_reset(struct drm_device *dev)
3250 {
3251 struct drm_i915_private *dev_priv = to_i915(dev);
3252
3253 /*
3254 * Flips in the rings will be nuked by the reset,
3255 * so complete all pending flips so that user space
3256 * will get its events and not get stuck.
3257 */
3258 intel_complete_page_flips(dev);
3259
3260 /* no reset support for gen2 */
3261 if (IS_GEN2(dev))
3262 return;
3263
3264 /* reset doesn't touch the display */
3265 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3266 /*
3267 * Flips in the rings have been nuked by the reset,
3268 * so update the base address of all primary
3269 * planes to the the last fb to make sure we're
3270 * showing the correct fb after a reset.
3271 */
3272 intel_update_primary_planes(dev);
3273 return;
3274 }
3275
3276 /*
3277 * The display has been reset as well,
3278 * so need a full re-initialization.
3279 */
3280 intel_runtime_pm_disable_interrupts(dev_priv);
3281 intel_runtime_pm_enable_interrupts(dev_priv);
3282
3283 intel_modeset_init_hw(dev);
3284
3285 spin_lock_irq(&dev_priv->irq_lock);
3286 if (dev_priv->display.hpd_irq_setup)
3287 dev_priv->display.hpd_irq_setup(dev);
3288 spin_unlock_irq(&dev_priv->irq_lock);
3289
3290 intel_modeset_setup_hw_state(dev, true);
3291
3292 intel_hpd_init(dev_priv);
3293
3294 drm_modeset_unlock_all(dev);
3295 }
3296
3297 static int
3298 intel_finish_fb(struct drm_framebuffer *old_fb)
3299 {
3300 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3301 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3302 bool was_interruptible = dev_priv->mm.interruptible;
3303 int ret;
3304
3305 /* Big Hammer, we also need to ensure that any pending
3306 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3307 * current scanout is retired before unpinning the old
3308 * framebuffer.
3309 *
3310 * This should only fail upon a hung GPU, in which case we
3311 * can safely continue.
3312 */
3313 dev_priv->mm.interruptible = false;
3314 ret = i915_gem_object_finish_gpu(obj);
3315 dev_priv->mm.interruptible = was_interruptible;
3316
3317 return ret;
3318 }
3319
3320 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3321 {
3322 struct drm_device *dev = crtc->dev;
3323 struct drm_i915_private *dev_priv = dev->dev_private;
3324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3325 bool pending;
3326
3327 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3328 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3329 return false;
3330
3331 spin_lock_irq(&dev->event_lock);
3332 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3333 spin_unlock_irq(&dev->event_lock);
3334
3335 return pending;
3336 }
3337
3338 static void intel_update_pipe_size(struct intel_crtc *crtc)
3339 {
3340 struct drm_device *dev = crtc->base.dev;
3341 struct drm_i915_private *dev_priv = dev->dev_private;
3342 const struct drm_display_mode *adjusted_mode;
3343
3344 if (!i915.fastboot)
3345 return;
3346
3347 /*
3348 * Update pipe size and adjust fitter if needed: the reason for this is
3349 * that in compute_mode_changes we check the native mode (not the pfit
3350 * mode) to see if we can flip rather than do a full mode set. In the
3351 * fastboot case, we'll flip, but if we don't update the pipesrc and
3352 * pfit state, we'll end up with a big fb scanned out into the wrong
3353 * sized surface.
3354 *
3355 * To fix this properly, we need to hoist the checks up into
3356 * compute_mode_changes (or above), check the actual pfit state and
3357 * whether the platform allows pfit disable with pipe active, and only
3358 * then update the pipesrc and pfit state, even on the flip path.
3359 */
3360
3361 adjusted_mode = &crtc->config->base.adjusted_mode;
3362
3363 I915_WRITE(PIPESRC(crtc->pipe),
3364 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3365 (adjusted_mode->crtc_vdisplay - 1));
3366 if (!crtc->config->pch_pfit.enabled &&
3367 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3368 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3369 I915_WRITE(PF_CTL(crtc->pipe), 0);
3370 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3371 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3372 }
3373 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3374 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3375 }
3376
3377 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3378 {
3379 struct drm_device *dev = crtc->dev;
3380 struct drm_i915_private *dev_priv = dev->dev_private;
3381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3382 int pipe = intel_crtc->pipe;
3383 u32 reg, temp;
3384
3385 /* enable normal train */
3386 reg = FDI_TX_CTL(pipe);
3387 temp = I915_READ(reg);
3388 if (IS_IVYBRIDGE(dev)) {
3389 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3390 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3391 } else {
3392 temp &= ~FDI_LINK_TRAIN_NONE;
3393 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3394 }
3395 I915_WRITE(reg, temp);
3396
3397 reg = FDI_RX_CTL(pipe);
3398 temp = I915_READ(reg);
3399 if (HAS_PCH_CPT(dev)) {
3400 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3401 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3402 } else {
3403 temp &= ~FDI_LINK_TRAIN_NONE;
3404 temp |= FDI_LINK_TRAIN_NONE;
3405 }
3406 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3407
3408 /* wait one idle pattern time */
3409 POSTING_READ(reg);
3410 udelay(1000);
3411
3412 /* IVB wants error correction enabled */
3413 if (IS_IVYBRIDGE(dev))
3414 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3415 FDI_FE_ERRC_ENABLE);
3416 }
3417
3418 /* The FDI link training functions for ILK/Ibexpeak. */
3419 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3420 {
3421 struct drm_device *dev = crtc->dev;
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3424 int pipe = intel_crtc->pipe;
3425 u32 reg, temp, tries;
3426
3427 /* FDI needs bits from pipe first */
3428 assert_pipe_enabled(dev_priv, pipe);
3429
3430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3431 for train result */
3432 reg = FDI_RX_IMR(pipe);
3433 temp = I915_READ(reg);
3434 temp &= ~FDI_RX_SYMBOL_LOCK;
3435 temp &= ~FDI_RX_BIT_LOCK;
3436 I915_WRITE(reg, temp);
3437 I915_READ(reg);
3438 udelay(150);
3439
3440 /* enable CPU FDI TX and PCH FDI RX */
3441 reg = FDI_TX_CTL(pipe);
3442 temp = I915_READ(reg);
3443 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3444 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3445 temp &= ~FDI_LINK_TRAIN_NONE;
3446 temp |= FDI_LINK_TRAIN_PATTERN_1;
3447 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3448
3449 reg = FDI_RX_CTL(pipe);
3450 temp = I915_READ(reg);
3451 temp &= ~FDI_LINK_TRAIN_NONE;
3452 temp |= FDI_LINK_TRAIN_PATTERN_1;
3453 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3454
3455 POSTING_READ(reg);
3456 udelay(150);
3457
3458 /* Ironlake workaround, enable clock pointer after FDI enable*/
3459 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3460 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3461 FDI_RX_PHASE_SYNC_POINTER_EN);
3462
3463 reg = FDI_RX_IIR(pipe);
3464 for (tries = 0; tries < 5; tries++) {
3465 temp = I915_READ(reg);
3466 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3467
3468 if ((temp & FDI_RX_BIT_LOCK)) {
3469 DRM_DEBUG_KMS("FDI train 1 done.\n");
3470 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3471 break;
3472 }
3473 }
3474 if (tries == 5)
3475 DRM_ERROR("FDI train 1 fail!\n");
3476
3477 /* Train 2 */
3478 reg = FDI_TX_CTL(pipe);
3479 temp = I915_READ(reg);
3480 temp &= ~FDI_LINK_TRAIN_NONE;
3481 temp |= FDI_LINK_TRAIN_PATTERN_2;
3482 I915_WRITE(reg, temp);
3483
3484 reg = FDI_RX_CTL(pipe);
3485 temp = I915_READ(reg);
3486 temp &= ~FDI_LINK_TRAIN_NONE;
3487 temp |= FDI_LINK_TRAIN_PATTERN_2;
3488 I915_WRITE(reg, temp);
3489
3490 POSTING_READ(reg);
3491 udelay(150);
3492
3493 reg = FDI_RX_IIR(pipe);
3494 for (tries = 0; tries < 5; tries++) {
3495 temp = I915_READ(reg);
3496 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3497
3498 if (temp & FDI_RX_SYMBOL_LOCK) {
3499 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3500 DRM_DEBUG_KMS("FDI train 2 done.\n");
3501 break;
3502 }
3503 }
3504 if (tries == 5)
3505 DRM_ERROR("FDI train 2 fail!\n");
3506
3507 DRM_DEBUG_KMS("FDI train done\n");
3508
3509 }
3510
3511 static const int snb_b_fdi_train_param[] = {
3512 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3513 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3514 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3515 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3516 };
3517
3518 /* The FDI link training functions for SNB/Cougarpoint. */
3519 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3520 {
3521 struct drm_device *dev = crtc->dev;
3522 struct drm_i915_private *dev_priv = dev->dev_private;
3523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3524 int pipe = intel_crtc->pipe;
3525 u32 reg, temp, i, retry;
3526
3527 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3528 for train result */
3529 reg = FDI_RX_IMR(pipe);
3530 temp = I915_READ(reg);
3531 temp &= ~FDI_RX_SYMBOL_LOCK;
3532 temp &= ~FDI_RX_BIT_LOCK;
3533 I915_WRITE(reg, temp);
3534
3535 POSTING_READ(reg);
3536 udelay(150);
3537
3538 /* enable CPU FDI TX and PCH FDI RX */
3539 reg = FDI_TX_CTL(pipe);
3540 temp = I915_READ(reg);
3541 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3542 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3543 temp &= ~FDI_LINK_TRAIN_NONE;
3544 temp |= FDI_LINK_TRAIN_PATTERN_1;
3545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3546 /* SNB-B */
3547 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3548 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3549
3550 I915_WRITE(FDI_RX_MISC(pipe),
3551 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3552
3553 reg = FDI_RX_CTL(pipe);
3554 temp = I915_READ(reg);
3555 if (HAS_PCH_CPT(dev)) {
3556 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3557 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3558 } else {
3559 temp &= ~FDI_LINK_TRAIN_NONE;
3560 temp |= FDI_LINK_TRAIN_PATTERN_1;
3561 }
3562 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3563
3564 POSTING_READ(reg);
3565 udelay(150);
3566
3567 for (i = 0; i < 4; i++) {
3568 reg = FDI_TX_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3571 temp |= snb_b_fdi_train_param[i];
3572 I915_WRITE(reg, temp);
3573
3574 POSTING_READ(reg);
3575 udelay(500);
3576
3577 for (retry = 0; retry < 5; retry++) {
3578 reg = FDI_RX_IIR(pipe);
3579 temp = I915_READ(reg);
3580 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3581 if (temp & FDI_RX_BIT_LOCK) {
3582 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3583 DRM_DEBUG_KMS("FDI train 1 done.\n");
3584 break;
3585 }
3586 udelay(50);
3587 }
3588 if (retry < 5)
3589 break;
3590 }
3591 if (i == 4)
3592 DRM_ERROR("FDI train 1 fail!\n");
3593
3594 /* Train 2 */
3595 reg = FDI_TX_CTL(pipe);
3596 temp = I915_READ(reg);
3597 temp &= ~FDI_LINK_TRAIN_NONE;
3598 temp |= FDI_LINK_TRAIN_PATTERN_2;
3599 if (IS_GEN6(dev)) {
3600 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3601 /* SNB-B */
3602 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3603 }
3604 I915_WRITE(reg, temp);
3605
3606 reg = FDI_RX_CTL(pipe);
3607 temp = I915_READ(reg);
3608 if (HAS_PCH_CPT(dev)) {
3609 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3610 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3611 } else {
3612 temp &= ~FDI_LINK_TRAIN_NONE;
3613 temp |= FDI_LINK_TRAIN_PATTERN_2;
3614 }
3615 I915_WRITE(reg, temp);
3616
3617 POSTING_READ(reg);
3618 udelay(150);
3619
3620 for (i = 0; i < 4; i++) {
3621 reg = FDI_TX_CTL(pipe);
3622 temp = I915_READ(reg);
3623 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3624 temp |= snb_b_fdi_train_param[i];
3625 I915_WRITE(reg, temp);
3626
3627 POSTING_READ(reg);
3628 udelay(500);
3629
3630 for (retry = 0; retry < 5; retry++) {
3631 reg = FDI_RX_IIR(pipe);
3632 temp = I915_READ(reg);
3633 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3634 if (temp & FDI_RX_SYMBOL_LOCK) {
3635 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3636 DRM_DEBUG_KMS("FDI train 2 done.\n");
3637 break;
3638 }
3639 udelay(50);
3640 }
3641 if (retry < 5)
3642 break;
3643 }
3644 if (i == 4)
3645 DRM_ERROR("FDI train 2 fail!\n");
3646
3647 DRM_DEBUG_KMS("FDI train done.\n");
3648 }
3649
3650 /* Manual link training for Ivy Bridge A0 parts */
3651 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3652 {
3653 struct drm_device *dev = crtc->dev;
3654 struct drm_i915_private *dev_priv = dev->dev_private;
3655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3656 int pipe = intel_crtc->pipe;
3657 u32 reg, temp, i, j;
3658
3659 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3660 for train result */
3661 reg = FDI_RX_IMR(pipe);
3662 temp = I915_READ(reg);
3663 temp &= ~FDI_RX_SYMBOL_LOCK;
3664 temp &= ~FDI_RX_BIT_LOCK;
3665 I915_WRITE(reg, temp);
3666
3667 POSTING_READ(reg);
3668 udelay(150);
3669
3670 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3671 I915_READ(FDI_RX_IIR(pipe)));
3672
3673 /* Try each vswing and preemphasis setting twice before moving on */
3674 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3675 /* disable first in case we need to retry */
3676 reg = FDI_TX_CTL(pipe);
3677 temp = I915_READ(reg);
3678 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3679 temp &= ~FDI_TX_ENABLE;
3680 I915_WRITE(reg, temp);
3681
3682 reg = FDI_RX_CTL(pipe);
3683 temp = I915_READ(reg);
3684 temp &= ~FDI_LINK_TRAIN_AUTO;
3685 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3686 temp &= ~FDI_RX_ENABLE;
3687 I915_WRITE(reg, temp);
3688
3689 /* enable CPU FDI TX and PCH FDI RX */
3690 reg = FDI_TX_CTL(pipe);
3691 temp = I915_READ(reg);
3692 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3693 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3694 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3695 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3696 temp |= snb_b_fdi_train_param[j/2];
3697 temp |= FDI_COMPOSITE_SYNC;
3698 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3699
3700 I915_WRITE(FDI_RX_MISC(pipe),
3701 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3702
3703 reg = FDI_RX_CTL(pipe);
3704 temp = I915_READ(reg);
3705 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3706 temp |= FDI_COMPOSITE_SYNC;
3707 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3708
3709 POSTING_READ(reg);
3710 udelay(1); /* should be 0.5us */
3711
3712 for (i = 0; i < 4; i++) {
3713 reg = FDI_RX_IIR(pipe);
3714 temp = I915_READ(reg);
3715 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3716
3717 if (temp & FDI_RX_BIT_LOCK ||
3718 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3719 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3720 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3721 i);
3722 break;
3723 }
3724 udelay(1); /* should be 0.5us */
3725 }
3726 if (i == 4) {
3727 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3728 continue;
3729 }
3730
3731 /* Train 2 */
3732 reg = FDI_TX_CTL(pipe);
3733 temp = I915_READ(reg);
3734 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3735 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3736 I915_WRITE(reg, temp);
3737
3738 reg = FDI_RX_CTL(pipe);
3739 temp = I915_READ(reg);
3740 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3741 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3742 I915_WRITE(reg, temp);
3743
3744 POSTING_READ(reg);
3745 udelay(2); /* should be 1.5us */
3746
3747 for (i = 0; i < 4; i++) {
3748 reg = FDI_RX_IIR(pipe);
3749 temp = I915_READ(reg);
3750 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3751
3752 if (temp & FDI_RX_SYMBOL_LOCK ||
3753 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3754 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3755 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3756 i);
3757 goto train_done;
3758 }
3759 udelay(2); /* should be 1.5us */
3760 }
3761 if (i == 4)
3762 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3763 }
3764
3765 train_done:
3766 DRM_DEBUG_KMS("FDI train done.\n");
3767 }
3768
3769 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3770 {
3771 struct drm_device *dev = intel_crtc->base.dev;
3772 struct drm_i915_private *dev_priv = dev->dev_private;
3773 int pipe = intel_crtc->pipe;
3774 u32 reg, temp;
3775
3776
3777 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3778 reg = FDI_RX_CTL(pipe);
3779 temp = I915_READ(reg);
3780 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3781 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3782 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3783 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3784
3785 POSTING_READ(reg);
3786 udelay(200);
3787
3788 /* Switch from Rawclk to PCDclk */
3789 temp = I915_READ(reg);
3790 I915_WRITE(reg, temp | FDI_PCDCLK);
3791
3792 POSTING_READ(reg);
3793 udelay(200);
3794
3795 /* Enable CPU FDI TX PLL, always on for Ironlake */
3796 reg = FDI_TX_CTL(pipe);
3797 temp = I915_READ(reg);
3798 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3799 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3800
3801 POSTING_READ(reg);
3802 udelay(100);
3803 }
3804 }
3805
3806 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3807 {
3808 struct drm_device *dev = intel_crtc->base.dev;
3809 struct drm_i915_private *dev_priv = dev->dev_private;
3810 int pipe = intel_crtc->pipe;
3811 u32 reg, temp;
3812
3813 /* Switch from PCDclk to Rawclk */
3814 reg = FDI_RX_CTL(pipe);
3815 temp = I915_READ(reg);
3816 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3817
3818 /* Disable CPU FDI TX PLL */
3819 reg = FDI_TX_CTL(pipe);
3820 temp = I915_READ(reg);
3821 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3822
3823 POSTING_READ(reg);
3824 udelay(100);
3825
3826 reg = FDI_RX_CTL(pipe);
3827 temp = I915_READ(reg);
3828 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3829
3830 /* Wait for the clocks to turn off. */
3831 POSTING_READ(reg);
3832 udelay(100);
3833 }
3834
3835 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3836 {
3837 struct drm_device *dev = crtc->dev;
3838 struct drm_i915_private *dev_priv = dev->dev_private;
3839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3840 int pipe = intel_crtc->pipe;
3841 u32 reg, temp;
3842
3843 /* disable CPU FDI tx and PCH FDI rx */
3844 reg = FDI_TX_CTL(pipe);
3845 temp = I915_READ(reg);
3846 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3847 POSTING_READ(reg);
3848
3849 reg = FDI_RX_CTL(pipe);
3850 temp = I915_READ(reg);
3851 temp &= ~(0x7 << 16);
3852 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3853 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3854
3855 POSTING_READ(reg);
3856 udelay(100);
3857
3858 /* Ironlake workaround, disable clock pointer after downing FDI */
3859 if (HAS_PCH_IBX(dev))
3860 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3861
3862 /* still set train pattern 1 */
3863 reg = FDI_TX_CTL(pipe);
3864 temp = I915_READ(reg);
3865 temp &= ~FDI_LINK_TRAIN_NONE;
3866 temp |= FDI_LINK_TRAIN_PATTERN_1;
3867 I915_WRITE(reg, temp);
3868
3869 reg = FDI_RX_CTL(pipe);
3870 temp = I915_READ(reg);
3871 if (HAS_PCH_CPT(dev)) {
3872 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3873 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3874 } else {
3875 temp &= ~FDI_LINK_TRAIN_NONE;
3876 temp |= FDI_LINK_TRAIN_PATTERN_1;
3877 }
3878 /* BPC in FDI rx is consistent with that in PIPECONF */
3879 temp &= ~(0x07 << 16);
3880 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3881 I915_WRITE(reg, temp);
3882
3883 POSTING_READ(reg);
3884 udelay(100);
3885 }
3886
3887 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3888 {
3889 struct intel_crtc *crtc;
3890
3891 /* Note that we don't need to be called with mode_config.lock here
3892 * as our list of CRTC objects is static for the lifetime of the
3893 * device and so cannot disappear as we iterate. Similarly, we can
3894 * happily treat the predicates as racy, atomic checks as userspace
3895 * cannot claim and pin a new fb without at least acquring the
3896 * struct_mutex and so serialising with us.
3897 */
3898 for_each_intel_crtc(dev, crtc) {
3899 if (atomic_read(&crtc->unpin_work_count) == 0)
3900 continue;
3901
3902 if (crtc->unpin_work)
3903 intel_wait_for_vblank(dev, crtc->pipe);
3904
3905 return true;
3906 }
3907
3908 return false;
3909 }
3910
3911 static void page_flip_completed(struct intel_crtc *intel_crtc)
3912 {
3913 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3914 struct intel_unpin_work *work = intel_crtc->unpin_work;
3915
3916 /* ensure that the unpin work is consistent wrt ->pending. */
3917 smp_rmb();
3918 intel_crtc->unpin_work = NULL;
3919
3920 if (work->event)
3921 drm_send_vblank_event(intel_crtc->base.dev,
3922 intel_crtc->pipe,
3923 work->event);
3924
3925 drm_crtc_vblank_put(&intel_crtc->base);
3926
3927 wake_up_all(&dev_priv->pending_flip_queue);
3928 queue_work(dev_priv->wq, &work->work);
3929
3930 trace_i915_flip_complete(intel_crtc->plane,
3931 work->pending_flip_obj);
3932 }
3933
3934 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3935 {
3936 struct drm_device *dev = crtc->dev;
3937 struct drm_i915_private *dev_priv = dev->dev_private;
3938
3939 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3940 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3941 !intel_crtc_has_pending_flip(crtc),
3942 60*HZ) == 0)) {
3943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3944
3945 spin_lock_irq(&dev->event_lock);
3946 if (intel_crtc->unpin_work) {
3947 WARN_ONCE(1, "Removing stuck page flip\n");
3948 page_flip_completed(intel_crtc);
3949 }
3950 spin_unlock_irq(&dev->event_lock);
3951 }
3952
3953 if (crtc->primary->fb) {
3954 mutex_lock(&dev->struct_mutex);
3955 intel_finish_fb(crtc->primary->fb);
3956 mutex_unlock(&dev->struct_mutex);
3957 }
3958 }
3959
3960 /* Program iCLKIP clock to the desired frequency */
3961 static void lpt_program_iclkip(struct drm_crtc *crtc)
3962 {
3963 struct drm_device *dev = crtc->dev;
3964 struct drm_i915_private *dev_priv = dev->dev_private;
3965 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3966 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3967 u32 temp;
3968
3969 mutex_lock(&dev_priv->dpio_lock);
3970
3971 /* It is necessary to ungate the pixclk gate prior to programming
3972 * the divisors, and gate it back when it is done.
3973 */
3974 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3975
3976 /* Disable SSCCTL */
3977 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3978 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3979 SBI_SSCCTL_DISABLE,
3980 SBI_ICLK);
3981
3982 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3983 if (clock == 20000) {
3984 auxdiv = 1;
3985 divsel = 0x41;
3986 phaseinc = 0x20;
3987 } else {
3988 /* The iCLK virtual clock root frequency is in MHz,
3989 * but the adjusted_mode->crtc_clock in in KHz. To get the
3990 * divisors, it is necessary to divide one by another, so we
3991 * convert the virtual clock precision to KHz here for higher
3992 * precision.
3993 */
3994 u32 iclk_virtual_root_freq = 172800 * 1000;
3995 u32 iclk_pi_range = 64;
3996 u32 desired_divisor, msb_divisor_value, pi_value;
3997
3998 desired_divisor = (iclk_virtual_root_freq / clock);
3999 msb_divisor_value = desired_divisor / iclk_pi_range;
4000 pi_value = desired_divisor % iclk_pi_range;
4001
4002 auxdiv = 0;
4003 divsel = msb_divisor_value - 2;
4004 phaseinc = pi_value;
4005 }
4006
4007 /* This should not happen with any sane values */
4008 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4009 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4010 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4011 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4012
4013 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4014 clock,
4015 auxdiv,
4016 divsel,
4017 phasedir,
4018 phaseinc);
4019
4020 /* Program SSCDIVINTPHASE6 */
4021 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4022 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4023 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4024 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4025 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4026 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4027 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4028 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4029
4030 /* Program SSCAUXDIV */
4031 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4032 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4033 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4034 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4035
4036 /* Enable modulator and associated divider */
4037 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4038 temp &= ~SBI_SSCCTL_DISABLE;
4039 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4040
4041 /* Wait for initialization time */
4042 udelay(24);
4043
4044 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4045
4046 mutex_unlock(&dev_priv->dpio_lock);
4047 }
4048
4049 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4050 enum pipe pch_transcoder)
4051 {
4052 struct drm_device *dev = crtc->base.dev;
4053 struct drm_i915_private *dev_priv = dev->dev_private;
4054 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4055
4056 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4057 I915_READ(HTOTAL(cpu_transcoder)));
4058 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4059 I915_READ(HBLANK(cpu_transcoder)));
4060 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4061 I915_READ(HSYNC(cpu_transcoder)));
4062
4063 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4064 I915_READ(VTOTAL(cpu_transcoder)));
4065 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4066 I915_READ(VBLANK(cpu_transcoder)));
4067 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4068 I915_READ(VSYNC(cpu_transcoder)));
4069 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4070 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4071 }
4072
4073 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4074 {
4075 struct drm_i915_private *dev_priv = dev->dev_private;
4076 uint32_t temp;
4077
4078 temp = I915_READ(SOUTH_CHICKEN1);
4079 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4080 return;
4081
4082 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4083 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4084
4085 temp &= ~FDI_BC_BIFURCATION_SELECT;
4086 if (enable)
4087 temp |= FDI_BC_BIFURCATION_SELECT;
4088
4089 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4090 I915_WRITE(SOUTH_CHICKEN1, temp);
4091 POSTING_READ(SOUTH_CHICKEN1);
4092 }
4093
4094 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4095 {
4096 struct drm_device *dev = intel_crtc->base.dev;
4097
4098 switch (intel_crtc->pipe) {
4099 case PIPE_A:
4100 break;
4101 case PIPE_B:
4102 if (intel_crtc->config->fdi_lanes > 2)
4103 cpt_set_fdi_bc_bifurcation(dev, false);
4104 else
4105 cpt_set_fdi_bc_bifurcation(dev, true);
4106
4107 break;
4108 case PIPE_C:
4109 cpt_set_fdi_bc_bifurcation(dev, true);
4110
4111 break;
4112 default:
4113 BUG();
4114 }
4115 }
4116
4117 /*
4118 * Enable PCH resources required for PCH ports:
4119 * - PCH PLLs
4120 * - FDI training & RX/TX
4121 * - update transcoder timings
4122 * - DP transcoding bits
4123 * - transcoder
4124 */
4125 static void ironlake_pch_enable(struct drm_crtc *crtc)
4126 {
4127 struct drm_device *dev = crtc->dev;
4128 struct drm_i915_private *dev_priv = dev->dev_private;
4129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4130 int pipe = intel_crtc->pipe;
4131 u32 reg, temp;
4132
4133 assert_pch_transcoder_disabled(dev_priv, pipe);
4134
4135 if (IS_IVYBRIDGE(dev))
4136 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4137
4138 /* Write the TU size bits before fdi link training, so that error
4139 * detection works. */
4140 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4141 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4142
4143 /* For PCH output, training FDI link */
4144 dev_priv->display.fdi_link_train(crtc);
4145
4146 /* We need to program the right clock selection before writing the pixel
4147 * mutliplier into the DPLL. */
4148 if (HAS_PCH_CPT(dev)) {
4149 u32 sel;
4150
4151 temp = I915_READ(PCH_DPLL_SEL);
4152 temp |= TRANS_DPLL_ENABLE(pipe);
4153 sel = TRANS_DPLLB_SEL(pipe);
4154 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4155 temp |= sel;
4156 else
4157 temp &= ~sel;
4158 I915_WRITE(PCH_DPLL_SEL, temp);
4159 }
4160
4161 /* XXX: pch pll's can be enabled any time before we enable the PCH
4162 * transcoder, and we actually should do this to not upset any PCH
4163 * transcoder that already use the clock when we share it.
4164 *
4165 * Note that enable_shared_dpll tries to do the right thing, but
4166 * get_shared_dpll unconditionally resets the pll - we need that to have
4167 * the right LVDS enable sequence. */
4168 intel_enable_shared_dpll(intel_crtc);
4169
4170 /* set transcoder timing, panel must allow it */
4171 assert_panel_unlocked(dev_priv, pipe);
4172 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4173
4174 intel_fdi_normal_train(crtc);
4175
4176 /* For PCH DP, enable TRANS_DP_CTL */
4177 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4178 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4179 reg = TRANS_DP_CTL(pipe);
4180 temp = I915_READ(reg);
4181 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4182 TRANS_DP_SYNC_MASK |
4183 TRANS_DP_BPC_MASK);
4184 temp |= (TRANS_DP_OUTPUT_ENABLE |
4185 TRANS_DP_ENH_FRAMING);
4186 temp |= bpc << 9; /* same format but at 11:9 */
4187
4188 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4189 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4190 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4191 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4192
4193 switch (intel_trans_dp_port_sel(crtc)) {
4194 case PCH_DP_B:
4195 temp |= TRANS_DP_PORT_SEL_B;
4196 break;
4197 case PCH_DP_C:
4198 temp |= TRANS_DP_PORT_SEL_C;
4199 break;
4200 case PCH_DP_D:
4201 temp |= TRANS_DP_PORT_SEL_D;
4202 break;
4203 default:
4204 BUG();
4205 }
4206
4207 I915_WRITE(reg, temp);
4208 }
4209
4210 ironlake_enable_pch_transcoder(dev_priv, pipe);
4211 }
4212
4213 static void lpt_pch_enable(struct drm_crtc *crtc)
4214 {
4215 struct drm_device *dev = crtc->dev;
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4218 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4219
4220 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4221
4222 lpt_program_iclkip(crtc);
4223
4224 /* Set transcoder timing. */
4225 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4226
4227 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4228 }
4229
4230 void intel_put_shared_dpll(struct intel_crtc *crtc)
4231 {
4232 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4233
4234 if (pll == NULL)
4235 return;
4236
4237 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4238 WARN(1, "bad %s crtc mask\n", pll->name);
4239 return;
4240 }
4241
4242 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4243 if (pll->config.crtc_mask == 0) {
4244 WARN_ON(pll->on);
4245 WARN_ON(pll->active);
4246 }
4247
4248 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4249 }
4250
4251 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4252 struct intel_crtc_state *crtc_state)
4253 {
4254 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4255 struct intel_shared_dpll *pll;
4256 enum intel_dpll_id i;
4257
4258 if (HAS_PCH_IBX(dev_priv->dev)) {
4259 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4260 i = (enum intel_dpll_id) crtc->pipe;
4261 pll = &dev_priv->shared_dplls[i];
4262
4263 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4264 crtc->base.base.id, pll->name);
4265
4266 WARN_ON(pll->new_config->crtc_mask);
4267
4268 goto found;
4269 }
4270
4271 if (IS_BROXTON(dev_priv->dev)) {
4272 /* PLL is attached to port in bxt */
4273 struct intel_encoder *encoder;
4274 struct intel_digital_port *intel_dig_port;
4275
4276 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4277 if (WARN_ON(!encoder))
4278 return NULL;
4279
4280 intel_dig_port = enc_to_dig_port(&encoder->base);
4281 /* 1:1 mapping between ports and PLLs */
4282 i = (enum intel_dpll_id)intel_dig_port->port;
4283 pll = &dev_priv->shared_dplls[i];
4284 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4285 crtc->base.base.id, pll->name);
4286 WARN_ON(pll->new_config->crtc_mask);
4287
4288 goto found;
4289 }
4290
4291 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4292 pll = &dev_priv->shared_dplls[i];
4293
4294 /* Only want to check enabled timings first */
4295 if (pll->new_config->crtc_mask == 0)
4296 continue;
4297
4298 if (memcmp(&crtc_state->dpll_hw_state,
4299 &pll->new_config->hw_state,
4300 sizeof(pll->new_config->hw_state)) == 0) {
4301 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4302 crtc->base.base.id, pll->name,
4303 pll->new_config->crtc_mask,
4304 pll->active);
4305 goto found;
4306 }
4307 }
4308
4309 /* Ok no matching timings, maybe there's a free one? */
4310 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4311 pll = &dev_priv->shared_dplls[i];
4312 if (pll->new_config->crtc_mask == 0) {
4313 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4314 crtc->base.base.id, pll->name);
4315 goto found;
4316 }
4317 }
4318
4319 return NULL;
4320
4321 found:
4322 if (pll->new_config->crtc_mask == 0)
4323 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4324
4325 crtc_state->shared_dpll = i;
4326 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4327 pipe_name(crtc->pipe));
4328
4329 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4330
4331 return pll;
4332 }
4333
4334 /**
4335 * intel_shared_dpll_start_config - start a new PLL staged config
4336 * @dev_priv: DRM device
4337 * @clear_pipes: mask of pipes that will have their PLLs freed
4338 *
4339 * Starts a new PLL staged config, copying the current config but
4340 * releasing the references of pipes specified in clear_pipes.
4341 */
4342 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4343 unsigned clear_pipes)
4344 {
4345 struct intel_shared_dpll *pll;
4346 enum intel_dpll_id i;
4347
4348 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4349 pll = &dev_priv->shared_dplls[i];
4350
4351 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4352 GFP_KERNEL);
4353 if (!pll->new_config)
4354 goto cleanup;
4355
4356 pll->new_config->crtc_mask &= ~clear_pipes;
4357 }
4358
4359 return 0;
4360
4361 cleanup:
4362 while (--i >= 0) {
4363 pll = &dev_priv->shared_dplls[i];
4364 kfree(pll->new_config);
4365 pll->new_config = NULL;
4366 }
4367
4368 return -ENOMEM;
4369 }
4370
4371 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4372 {
4373 struct intel_shared_dpll *pll;
4374 enum intel_dpll_id i;
4375
4376 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4377 pll = &dev_priv->shared_dplls[i];
4378
4379 WARN_ON(pll->new_config == &pll->config);
4380
4381 pll->config = *pll->new_config;
4382 kfree(pll->new_config);
4383 pll->new_config = NULL;
4384 }
4385 }
4386
4387 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4388 {
4389 struct intel_shared_dpll *pll;
4390 enum intel_dpll_id i;
4391
4392 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4393 pll = &dev_priv->shared_dplls[i];
4394
4395 WARN_ON(pll->new_config == &pll->config);
4396
4397 kfree(pll->new_config);
4398 pll->new_config = NULL;
4399 }
4400 }
4401
4402 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4403 {
4404 struct drm_i915_private *dev_priv = dev->dev_private;
4405 int dslreg = PIPEDSL(pipe);
4406 u32 temp;
4407
4408 temp = I915_READ(dslreg);
4409 udelay(500);
4410 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4411 if (wait_for(I915_READ(dslreg) != temp, 5))
4412 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4413 }
4414 }
4415
4416 /**
4417 * skl_update_scaler_users - Stages update to crtc's scaler state
4418 * @intel_crtc: crtc
4419 * @crtc_state: crtc_state
4420 * @plane: plane (NULL indicates crtc is requesting update)
4421 * @plane_state: plane's state
4422 * @force_detach: request unconditional detachment of scaler
4423 *
4424 * This function updates scaler state for requested plane or crtc.
4425 * To request scaler usage update for a plane, caller shall pass plane pointer.
4426 * To request scaler usage update for crtc, caller shall pass plane pointer
4427 * as NULL.
4428 *
4429 * Return
4430 * 0 - scaler_usage updated successfully
4431 * error - requested scaling cannot be supported or other error condition
4432 */
4433 int
4434 skl_update_scaler_users(
4435 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4436 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4437 int force_detach)
4438 {
4439 int need_scaling;
4440 int idx;
4441 int src_w, src_h, dst_w, dst_h;
4442 int *scaler_id;
4443 struct drm_framebuffer *fb;
4444 struct intel_crtc_scaler_state *scaler_state;
4445 unsigned int rotation;
4446
4447 if (!intel_crtc || !crtc_state)
4448 return 0;
4449
4450 scaler_state = &crtc_state->scaler_state;
4451
4452 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4453 fb = intel_plane ? plane_state->base.fb : NULL;
4454
4455 if (intel_plane) {
4456 src_w = drm_rect_width(&plane_state->src) >> 16;
4457 src_h = drm_rect_height(&plane_state->src) >> 16;
4458 dst_w = drm_rect_width(&plane_state->dst);
4459 dst_h = drm_rect_height(&plane_state->dst);
4460 scaler_id = &plane_state->scaler_id;
4461 rotation = plane_state->base.rotation;
4462 } else {
4463 struct drm_display_mode *adjusted_mode =
4464 &crtc_state->base.adjusted_mode;
4465 src_w = crtc_state->pipe_src_w;
4466 src_h = crtc_state->pipe_src_h;
4467 dst_w = adjusted_mode->hdisplay;
4468 dst_h = adjusted_mode->vdisplay;
4469 scaler_id = &scaler_state->scaler_id;
4470 rotation = DRM_ROTATE_0;
4471 }
4472
4473 need_scaling = intel_rotation_90_or_270(rotation) ?
4474 (src_h != dst_w || src_w != dst_h):
4475 (src_w != dst_w || src_h != dst_h);
4476
4477 /*
4478 * if plane is being disabled or scaler is no more required or force detach
4479 * - free scaler binded to this plane/crtc
4480 * - in order to do this, update crtc->scaler_usage
4481 *
4482 * Here scaler state in crtc_state is set free so that
4483 * scaler can be assigned to other user. Actual register
4484 * update to free the scaler is done in plane/panel-fit programming.
4485 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4486 */
4487 if (force_detach || !need_scaling || (intel_plane &&
4488 (!fb || !plane_state->visible))) {
4489 if (*scaler_id >= 0) {
4490 scaler_state->scaler_users &= ~(1 << idx);
4491 scaler_state->scalers[*scaler_id].in_use = 0;
4492
4493 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4494 "crtc_state = %p scaler_users = 0x%x\n",
4495 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4496 intel_plane ? intel_plane->base.base.id :
4497 intel_crtc->base.base.id, crtc_state,
4498 scaler_state->scaler_users);
4499 *scaler_id = -1;
4500 }
4501 return 0;
4502 }
4503
4504 /* range checks */
4505 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4506 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4507
4508 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4509 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4510 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4511 "size is out of scaler range\n",
4512 intel_plane ? "PLANE" : "CRTC",
4513 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4514 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4515 return -EINVAL;
4516 }
4517
4518 /* check colorkey */
4519 if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
4520 DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
4521 intel_plane->base.base.id);
4522 return -EINVAL;
4523 }
4524
4525 /* Check src format */
4526 if (intel_plane) {
4527 switch (fb->pixel_format) {
4528 case DRM_FORMAT_RGB565:
4529 case DRM_FORMAT_XBGR8888:
4530 case DRM_FORMAT_XRGB8888:
4531 case DRM_FORMAT_ABGR8888:
4532 case DRM_FORMAT_ARGB8888:
4533 case DRM_FORMAT_XRGB2101010:
4534 case DRM_FORMAT_ARGB2101010:
4535 case DRM_FORMAT_XBGR2101010:
4536 case DRM_FORMAT_ABGR2101010:
4537 case DRM_FORMAT_YUYV:
4538 case DRM_FORMAT_YVYU:
4539 case DRM_FORMAT_UYVY:
4540 case DRM_FORMAT_VYUY:
4541 break;
4542 default:
4543 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4544 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4545 return -EINVAL;
4546 }
4547 }
4548
4549 /* mark this plane as a scaler user in crtc_state */
4550 scaler_state->scaler_users |= (1 << idx);
4551 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4552 "crtc_state = %p scaler_users = 0x%x\n",
4553 intel_plane ? "PLANE" : "CRTC",
4554 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4555 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4556 return 0;
4557 }
4558
4559 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4560 {
4561 struct drm_device *dev = crtc->base.dev;
4562 struct drm_i915_private *dev_priv = dev->dev_private;
4563 int pipe = crtc->pipe;
4564 struct intel_crtc_scaler_state *scaler_state =
4565 &crtc->config->scaler_state;
4566
4567 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4568
4569 /* To update pfit, first update scaler state */
4570 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4571 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4572 skl_detach_scalers(crtc);
4573 if (!enable)
4574 return;
4575
4576 if (crtc->config->pch_pfit.enabled) {
4577 int id;
4578
4579 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4580 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4581 return;
4582 }
4583
4584 id = scaler_state->scaler_id;
4585 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4586 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4587 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4588 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4589
4590 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4591 }
4592 }
4593
4594 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4595 {
4596 struct drm_device *dev = crtc->base.dev;
4597 struct drm_i915_private *dev_priv = dev->dev_private;
4598 int pipe = crtc->pipe;
4599
4600 if (crtc->config->pch_pfit.enabled) {
4601 /* Force use of hard-coded filter coefficients
4602 * as some pre-programmed values are broken,
4603 * e.g. x201.
4604 */
4605 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4606 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4607 PF_PIPE_SEL_IVB(pipe));
4608 else
4609 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4610 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4611 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4612 }
4613 }
4614
4615 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4616 {
4617 struct drm_device *dev = crtc->dev;
4618 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4619 struct drm_plane *plane;
4620 struct intel_plane *intel_plane;
4621
4622 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4623 intel_plane = to_intel_plane(plane);
4624 if (intel_plane->pipe == pipe)
4625 intel_plane_restore(&intel_plane->base);
4626 }
4627 }
4628
4629 void hsw_enable_ips(struct intel_crtc *crtc)
4630 {
4631 struct drm_device *dev = crtc->base.dev;
4632 struct drm_i915_private *dev_priv = dev->dev_private;
4633
4634 if (!crtc->config->ips_enabled)
4635 return;
4636
4637 /* We can only enable IPS after we enable a plane and wait for a vblank */
4638 intel_wait_for_vblank(dev, crtc->pipe);
4639
4640 assert_plane_enabled(dev_priv, crtc->plane);
4641 if (IS_BROADWELL(dev)) {
4642 mutex_lock(&dev_priv->rps.hw_lock);
4643 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4644 mutex_unlock(&dev_priv->rps.hw_lock);
4645 /* Quoting Art Runyan: "its not safe to expect any particular
4646 * value in IPS_CTL bit 31 after enabling IPS through the
4647 * mailbox." Moreover, the mailbox may return a bogus state,
4648 * so we need to just enable it and continue on.
4649 */
4650 } else {
4651 I915_WRITE(IPS_CTL, IPS_ENABLE);
4652 /* The bit only becomes 1 in the next vblank, so this wait here
4653 * is essentially intel_wait_for_vblank. If we don't have this
4654 * and don't wait for vblanks until the end of crtc_enable, then
4655 * the HW state readout code will complain that the expected
4656 * IPS_CTL value is not the one we read. */
4657 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4658 DRM_ERROR("Timed out waiting for IPS enable\n");
4659 }
4660 }
4661
4662 void hsw_disable_ips(struct intel_crtc *crtc)
4663 {
4664 struct drm_device *dev = crtc->base.dev;
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666
4667 if (!crtc->config->ips_enabled)
4668 return;
4669
4670 assert_plane_enabled(dev_priv, crtc->plane);
4671 if (IS_BROADWELL(dev)) {
4672 mutex_lock(&dev_priv->rps.hw_lock);
4673 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4674 mutex_unlock(&dev_priv->rps.hw_lock);
4675 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4676 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4677 DRM_ERROR("Timed out waiting for IPS disable\n");
4678 } else {
4679 I915_WRITE(IPS_CTL, 0);
4680 POSTING_READ(IPS_CTL);
4681 }
4682
4683 /* We need to wait for a vblank before we can disable the plane. */
4684 intel_wait_for_vblank(dev, crtc->pipe);
4685 }
4686
4687 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4688 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4689 {
4690 struct drm_device *dev = crtc->dev;
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4692 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4693 enum pipe pipe = intel_crtc->pipe;
4694 int palreg = PALETTE(pipe);
4695 int i;
4696 bool reenable_ips = false;
4697
4698 /* The clocks have to be on to load the palette. */
4699 if (!crtc->state->enable || !intel_crtc->active)
4700 return;
4701
4702 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4703 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4704 assert_dsi_pll_enabled(dev_priv);
4705 else
4706 assert_pll_enabled(dev_priv, pipe);
4707 }
4708
4709 /* use legacy palette for Ironlake */
4710 if (!HAS_GMCH_DISPLAY(dev))
4711 palreg = LGC_PALETTE(pipe);
4712
4713 /* Workaround : Do not read or write the pipe palette/gamma data while
4714 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4715 */
4716 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4717 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4718 GAMMA_MODE_MODE_SPLIT)) {
4719 hsw_disable_ips(intel_crtc);
4720 reenable_ips = true;
4721 }
4722
4723 for (i = 0; i < 256; i++) {
4724 I915_WRITE(palreg + 4 * i,
4725 (intel_crtc->lut_r[i] << 16) |
4726 (intel_crtc->lut_g[i] << 8) |
4727 intel_crtc->lut_b[i]);
4728 }
4729
4730 if (reenable_ips)
4731 hsw_enable_ips(intel_crtc);
4732 }
4733
4734 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4735 {
4736 if (intel_crtc->overlay) {
4737 struct drm_device *dev = intel_crtc->base.dev;
4738 struct drm_i915_private *dev_priv = dev->dev_private;
4739
4740 mutex_lock(&dev->struct_mutex);
4741 dev_priv->mm.interruptible = false;
4742 (void) intel_overlay_switch_off(intel_crtc->overlay);
4743 dev_priv->mm.interruptible = true;
4744 mutex_unlock(&dev->struct_mutex);
4745 }
4746
4747 /* Let userspace switch the overlay on again. In most cases userspace
4748 * has to recompute where to put it anyway.
4749 */
4750 }
4751
4752 /**
4753 * intel_post_enable_primary - Perform operations after enabling primary plane
4754 * @crtc: the CRTC whose primary plane was just enabled
4755 *
4756 * Performs potentially sleeping operations that must be done after the primary
4757 * plane is enabled, such as updating FBC and IPS. Note that this may be
4758 * called due to an explicit primary plane update, or due to an implicit
4759 * re-enable that is caused when a sprite plane is updated to no longer
4760 * completely hide the primary plane.
4761 */
4762 static void
4763 intel_post_enable_primary(struct drm_crtc *crtc)
4764 {
4765 struct drm_device *dev = crtc->dev;
4766 struct drm_i915_private *dev_priv = dev->dev_private;
4767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4768 int pipe = intel_crtc->pipe;
4769
4770 /*
4771 * BDW signals flip done immediately if the plane
4772 * is disabled, even if the plane enable is already
4773 * armed to occur at the next vblank :(
4774 */
4775 if (IS_BROADWELL(dev))
4776 intel_wait_for_vblank(dev, pipe);
4777
4778 /*
4779 * FIXME IPS should be fine as long as one plane is
4780 * enabled, but in practice it seems to have problems
4781 * when going from primary only to sprite only and vice
4782 * versa.
4783 */
4784 hsw_enable_ips(intel_crtc);
4785
4786 mutex_lock(&dev->struct_mutex);
4787 intel_fbc_update(dev);
4788 mutex_unlock(&dev->struct_mutex);
4789
4790 /*
4791 * Gen2 reports pipe underruns whenever all planes are disabled.
4792 * So don't enable underrun reporting before at least some planes
4793 * are enabled.
4794 * FIXME: Need to fix the logic to work when we turn off all planes
4795 * but leave the pipe running.
4796 */
4797 if (IS_GEN2(dev))
4798 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4799
4800 /* Underruns don't raise interrupts, so check manually. */
4801 if (HAS_GMCH_DISPLAY(dev))
4802 i9xx_check_fifo_underruns(dev_priv);
4803 }
4804
4805 /**
4806 * intel_pre_disable_primary - Perform operations before disabling primary plane
4807 * @crtc: the CRTC whose primary plane is to be disabled
4808 *
4809 * Performs potentially sleeping operations that must be done before the
4810 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4811 * be called due to an explicit primary plane update, or due to an implicit
4812 * disable that is caused when a sprite plane completely hides the primary
4813 * plane.
4814 */
4815 static void
4816 intel_pre_disable_primary(struct drm_crtc *crtc)
4817 {
4818 struct drm_device *dev = crtc->dev;
4819 struct drm_i915_private *dev_priv = dev->dev_private;
4820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4821 int pipe = intel_crtc->pipe;
4822
4823 /*
4824 * Gen2 reports pipe underruns whenever all planes are disabled.
4825 * So diasble underrun reporting before all the planes get disabled.
4826 * FIXME: Need to fix the logic to work when we turn off all planes
4827 * but leave the pipe running.
4828 */
4829 if (IS_GEN2(dev))
4830 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4831
4832 /*
4833 * Vblank time updates from the shadow to live plane control register
4834 * are blocked if the memory self-refresh mode is active at that
4835 * moment. So to make sure the plane gets truly disabled, disable
4836 * first the self-refresh mode. The self-refresh enable bit in turn
4837 * will be checked/applied by the HW only at the next frame start
4838 * event which is after the vblank start event, so we need to have a
4839 * wait-for-vblank between disabling the plane and the pipe.
4840 */
4841 if (HAS_GMCH_DISPLAY(dev))
4842 intel_set_memory_cxsr(dev_priv, false);
4843
4844 mutex_lock(&dev->struct_mutex);
4845 if (dev_priv->fbc.crtc == intel_crtc)
4846 intel_fbc_disable(dev);
4847 mutex_unlock(&dev->struct_mutex);
4848
4849 /*
4850 * FIXME IPS should be fine as long as one plane is
4851 * enabled, but in practice it seems to have problems
4852 * when going from primary only to sprite only and vice
4853 * versa.
4854 */
4855 hsw_disable_ips(intel_crtc);
4856 }
4857
4858 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4859 {
4860 intel_enable_primary_hw_plane(crtc->primary, crtc);
4861 intel_enable_sprite_planes(crtc);
4862 intel_crtc_update_cursor(crtc, true);
4863
4864 intel_post_enable_primary(crtc);
4865 }
4866
4867 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4868 {
4869 struct drm_device *dev = crtc->dev;
4870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4871 struct intel_plane *intel_plane;
4872 int pipe = intel_crtc->pipe;
4873
4874 intel_crtc_wait_for_pending_flips(crtc);
4875
4876 intel_pre_disable_primary(crtc);
4877
4878 intel_crtc_dpms_overlay_disable(intel_crtc);
4879 for_each_intel_plane(dev, intel_plane) {
4880 if (intel_plane->pipe == pipe) {
4881 struct drm_crtc *from = intel_plane->base.crtc;
4882
4883 intel_plane->disable_plane(&intel_plane->base,
4884 from ?: crtc, true);
4885 }
4886 }
4887
4888 /*
4889 * FIXME: Once we grow proper nuclear flip support out of this we need
4890 * to compute the mask of flip planes precisely. For the time being
4891 * consider this a flip to a NULL plane.
4892 */
4893 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4894 }
4895
4896 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4897 {
4898 struct drm_device *dev = crtc->dev;
4899 struct drm_i915_private *dev_priv = dev->dev_private;
4900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4901 struct intel_encoder *encoder;
4902 int pipe = intel_crtc->pipe;
4903
4904 WARN_ON(!crtc->state->enable);
4905
4906 if (intel_crtc->active)
4907 return;
4908
4909 if (intel_crtc->config->has_pch_encoder)
4910 intel_prepare_shared_dpll(intel_crtc);
4911
4912 if (intel_crtc->config->has_dp_encoder)
4913 intel_dp_set_m_n(intel_crtc, M1_N1);
4914
4915 intel_set_pipe_timings(intel_crtc);
4916
4917 if (intel_crtc->config->has_pch_encoder) {
4918 intel_cpu_transcoder_set_m_n(intel_crtc,
4919 &intel_crtc->config->fdi_m_n, NULL);
4920 }
4921
4922 ironlake_set_pipeconf(crtc);
4923
4924 intel_crtc->active = true;
4925
4926 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4927 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4928
4929 for_each_encoder_on_crtc(dev, crtc, encoder)
4930 if (encoder->pre_enable)
4931 encoder->pre_enable(encoder);
4932
4933 if (intel_crtc->config->has_pch_encoder) {
4934 /* Note: FDI PLL enabling _must_ be done before we enable the
4935 * cpu pipes, hence this is separate from all the other fdi/pch
4936 * enabling. */
4937 ironlake_fdi_pll_enable(intel_crtc);
4938 } else {
4939 assert_fdi_tx_disabled(dev_priv, pipe);
4940 assert_fdi_rx_disabled(dev_priv, pipe);
4941 }
4942
4943 ironlake_pfit_enable(intel_crtc);
4944
4945 /*
4946 * On ILK+ LUT must be loaded before the pipe is running but with
4947 * clocks enabled
4948 */
4949 intel_crtc_load_lut(crtc);
4950
4951 intel_update_watermarks(crtc);
4952 intel_enable_pipe(intel_crtc);
4953
4954 if (intel_crtc->config->has_pch_encoder)
4955 ironlake_pch_enable(crtc);
4956
4957 assert_vblank_disabled(crtc);
4958 drm_crtc_vblank_on(crtc);
4959
4960 for_each_encoder_on_crtc(dev, crtc, encoder)
4961 encoder->enable(encoder);
4962
4963 if (HAS_PCH_CPT(dev))
4964 cpt_verify_modeset(dev, intel_crtc->pipe);
4965 }
4966
4967 /* IPS only exists on ULT machines and is tied to pipe A. */
4968 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4969 {
4970 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4971 }
4972
4973 /*
4974 * This implements the workaround described in the "notes" section of the mode
4975 * set sequence documentation. When going from no pipes or single pipe to
4976 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4977 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4978 */
4979 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4980 {
4981 struct drm_device *dev = crtc->base.dev;
4982 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4983
4984 /* We want to get the other_active_crtc only if there's only 1 other
4985 * active crtc. */
4986 for_each_intel_crtc(dev, crtc_it) {
4987 if (!crtc_it->active || crtc_it == crtc)
4988 continue;
4989
4990 if (other_active_crtc)
4991 return;
4992
4993 other_active_crtc = crtc_it;
4994 }
4995 if (!other_active_crtc)
4996 return;
4997
4998 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4999 intel_wait_for_vblank(dev, other_active_crtc->pipe);
5000 }
5001
5002 static void haswell_crtc_enable(struct drm_crtc *crtc)
5003 {
5004 struct drm_device *dev = crtc->dev;
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5007 struct intel_encoder *encoder;
5008 int pipe = intel_crtc->pipe;
5009
5010 WARN_ON(!crtc->state->enable);
5011
5012 if (intel_crtc->active)
5013 return;
5014
5015 if (intel_crtc_to_shared_dpll(intel_crtc))
5016 intel_enable_shared_dpll(intel_crtc);
5017
5018 if (intel_crtc->config->has_dp_encoder)
5019 intel_dp_set_m_n(intel_crtc, M1_N1);
5020
5021 intel_set_pipe_timings(intel_crtc);
5022
5023 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5024 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5025 intel_crtc->config->pixel_multiplier - 1);
5026 }
5027
5028 if (intel_crtc->config->has_pch_encoder) {
5029 intel_cpu_transcoder_set_m_n(intel_crtc,
5030 &intel_crtc->config->fdi_m_n, NULL);
5031 }
5032
5033 haswell_set_pipeconf(crtc);
5034
5035 intel_set_pipe_csc(crtc);
5036
5037 intel_crtc->active = true;
5038
5039 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5040 for_each_encoder_on_crtc(dev, crtc, encoder)
5041 if (encoder->pre_enable)
5042 encoder->pre_enable(encoder);
5043
5044 if (intel_crtc->config->has_pch_encoder) {
5045 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5046 true);
5047 dev_priv->display.fdi_link_train(crtc);
5048 }
5049
5050 intel_ddi_enable_pipe_clock(intel_crtc);
5051
5052 if (INTEL_INFO(dev)->gen == 9)
5053 skylake_pfit_update(intel_crtc, 1);
5054 else if (INTEL_INFO(dev)->gen < 9)
5055 ironlake_pfit_enable(intel_crtc);
5056 else
5057 MISSING_CASE(INTEL_INFO(dev)->gen);
5058
5059 /*
5060 * On ILK+ LUT must be loaded before the pipe is running but with
5061 * clocks enabled
5062 */
5063 intel_crtc_load_lut(crtc);
5064
5065 intel_ddi_set_pipe_settings(crtc);
5066 intel_ddi_enable_transcoder_func(crtc);
5067
5068 intel_update_watermarks(crtc);
5069 intel_enable_pipe(intel_crtc);
5070
5071 if (intel_crtc->config->has_pch_encoder)
5072 lpt_pch_enable(crtc);
5073
5074 if (intel_crtc->config->dp_encoder_is_mst)
5075 intel_ddi_set_vc_payload_alloc(crtc, true);
5076
5077 assert_vblank_disabled(crtc);
5078 drm_crtc_vblank_on(crtc);
5079
5080 for_each_encoder_on_crtc(dev, crtc, encoder) {
5081 encoder->enable(encoder);
5082 intel_opregion_notify_encoder(encoder, true);
5083 }
5084
5085 /* If we change the relative order between pipe/planes enabling, we need
5086 * to change the workaround. */
5087 haswell_mode_set_planes_workaround(intel_crtc);
5088 }
5089
5090 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5091 {
5092 struct drm_device *dev = crtc->base.dev;
5093 struct drm_i915_private *dev_priv = dev->dev_private;
5094 int pipe = crtc->pipe;
5095
5096 /* To avoid upsetting the power well on haswell only disable the pfit if
5097 * it's in use. The hw state code will make sure we get this right. */
5098 if (crtc->config->pch_pfit.enabled) {
5099 I915_WRITE(PF_CTL(pipe), 0);
5100 I915_WRITE(PF_WIN_POS(pipe), 0);
5101 I915_WRITE(PF_WIN_SZ(pipe), 0);
5102 }
5103 }
5104
5105 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5106 {
5107 struct drm_device *dev = crtc->dev;
5108 struct drm_i915_private *dev_priv = dev->dev_private;
5109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5110 struct intel_encoder *encoder;
5111 int pipe = intel_crtc->pipe;
5112 u32 reg, temp;
5113
5114 if (!intel_crtc->active)
5115 return;
5116
5117 for_each_encoder_on_crtc(dev, crtc, encoder)
5118 encoder->disable(encoder);
5119
5120 drm_crtc_vblank_off(crtc);
5121 assert_vblank_disabled(crtc);
5122
5123 if (intel_crtc->config->has_pch_encoder)
5124 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5125
5126 intel_disable_pipe(intel_crtc);
5127
5128 ironlake_pfit_disable(intel_crtc);
5129
5130 for_each_encoder_on_crtc(dev, crtc, encoder)
5131 if (encoder->post_disable)
5132 encoder->post_disable(encoder);
5133
5134 if (intel_crtc->config->has_pch_encoder) {
5135 ironlake_fdi_disable(crtc);
5136
5137 ironlake_disable_pch_transcoder(dev_priv, pipe);
5138
5139 if (HAS_PCH_CPT(dev)) {
5140 /* disable TRANS_DP_CTL */
5141 reg = TRANS_DP_CTL(pipe);
5142 temp = I915_READ(reg);
5143 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5144 TRANS_DP_PORT_SEL_MASK);
5145 temp |= TRANS_DP_PORT_SEL_NONE;
5146 I915_WRITE(reg, temp);
5147
5148 /* disable DPLL_SEL */
5149 temp = I915_READ(PCH_DPLL_SEL);
5150 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5151 I915_WRITE(PCH_DPLL_SEL, temp);
5152 }
5153
5154 /* disable PCH DPLL */
5155 intel_disable_shared_dpll(intel_crtc);
5156
5157 ironlake_fdi_pll_disable(intel_crtc);
5158 }
5159
5160 intel_crtc->active = false;
5161 intel_update_watermarks(crtc);
5162
5163 mutex_lock(&dev->struct_mutex);
5164 intel_fbc_update(dev);
5165 mutex_unlock(&dev->struct_mutex);
5166 }
5167
5168 static void haswell_crtc_disable(struct drm_crtc *crtc)
5169 {
5170 struct drm_device *dev = crtc->dev;
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5173 struct intel_encoder *encoder;
5174 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5175
5176 if (!intel_crtc->active)
5177 return;
5178
5179 for_each_encoder_on_crtc(dev, crtc, encoder) {
5180 intel_opregion_notify_encoder(encoder, false);
5181 encoder->disable(encoder);
5182 }
5183
5184 drm_crtc_vblank_off(crtc);
5185 assert_vblank_disabled(crtc);
5186
5187 if (intel_crtc->config->has_pch_encoder)
5188 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5189 false);
5190 intel_disable_pipe(intel_crtc);
5191
5192 if (intel_crtc->config->dp_encoder_is_mst)
5193 intel_ddi_set_vc_payload_alloc(crtc, false);
5194
5195 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5196
5197 if (INTEL_INFO(dev)->gen == 9)
5198 skylake_pfit_update(intel_crtc, 0);
5199 else if (INTEL_INFO(dev)->gen < 9)
5200 ironlake_pfit_disable(intel_crtc);
5201 else
5202 MISSING_CASE(INTEL_INFO(dev)->gen);
5203
5204 intel_ddi_disable_pipe_clock(intel_crtc);
5205
5206 if (intel_crtc->config->has_pch_encoder) {
5207 lpt_disable_pch_transcoder(dev_priv);
5208 intel_ddi_fdi_disable(crtc);
5209 }
5210
5211 for_each_encoder_on_crtc(dev, crtc, encoder)
5212 if (encoder->post_disable)
5213 encoder->post_disable(encoder);
5214
5215 intel_crtc->active = false;
5216 intel_update_watermarks(crtc);
5217
5218 mutex_lock(&dev->struct_mutex);
5219 intel_fbc_update(dev);
5220 mutex_unlock(&dev->struct_mutex);
5221
5222 if (intel_crtc_to_shared_dpll(intel_crtc))
5223 intel_disable_shared_dpll(intel_crtc);
5224 }
5225
5226 static void ironlake_crtc_off(struct drm_crtc *crtc)
5227 {
5228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5229 intel_put_shared_dpll(intel_crtc);
5230 }
5231
5232
5233 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5234 {
5235 struct drm_device *dev = crtc->base.dev;
5236 struct drm_i915_private *dev_priv = dev->dev_private;
5237 struct intel_crtc_state *pipe_config = crtc->config;
5238
5239 if (!pipe_config->gmch_pfit.control)
5240 return;
5241
5242 /*
5243 * The panel fitter should only be adjusted whilst the pipe is disabled,
5244 * according to register description and PRM.
5245 */
5246 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5247 assert_pipe_disabled(dev_priv, crtc->pipe);
5248
5249 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5250 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5251
5252 /* Border color in case we don't scale up to the full screen. Black by
5253 * default, change to something else for debugging. */
5254 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5255 }
5256
5257 static enum intel_display_power_domain port_to_power_domain(enum port port)
5258 {
5259 switch (port) {
5260 case PORT_A:
5261 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5262 case PORT_B:
5263 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5264 case PORT_C:
5265 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5266 case PORT_D:
5267 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5268 default:
5269 WARN_ON_ONCE(1);
5270 return POWER_DOMAIN_PORT_OTHER;
5271 }
5272 }
5273
5274 #define for_each_power_domain(domain, mask) \
5275 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5276 if ((1 << (domain)) & (mask))
5277
5278 enum intel_display_power_domain
5279 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5280 {
5281 struct drm_device *dev = intel_encoder->base.dev;
5282 struct intel_digital_port *intel_dig_port;
5283
5284 switch (intel_encoder->type) {
5285 case INTEL_OUTPUT_UNKNOWN:
5286 /* Only DDI platforms should ever use this output type */
5287 WARN_ON_ONCE(!HAS_DDI(dev));
5288 case INTEL_OUTPUT_DISPLAYPORT:
5289 case INTEL_OUTPUT_HDMI:
5290 case INTEL_OUTPUT_EDP:
5291 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5292 return port_to_power_domain(intel_dig_port->port);
5293 case INTEL_OUTPUT_DP_MST:
5294 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5295 return port_to_power_domain(intel_dig_port->port);
5296 case INTEL_OUTPUT_ANALOG:
5297 return POWER_DOMAIN_PORT_CRT;
5298 case INTEL_OUTPUT_DSI:
5299 return POWER_DOMAIN_PORT_DSI;
5300 default:
5301 return POWER_DOMAIN_PORT_OTHER;
5302 }
5303 }
5304
5305 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5306 {
5307 struct drm_device *dev = crtc->dev;
5308 struct intel_encoder *intel_encoder;
5309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5310 enum pipe pipe = intel_crtc->pipe;
5311 unsigned long mask;
5312 enum transcoder transcoder;
5313
5314 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5315
5316 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5317 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5318 if (intel_crtc->config->pch_pfit.enabled ||
5319 intel_crtc->config->pch_pfit.force_thru)
5320 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5321
5322 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5323 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5324
5325 return mask;
5326 }
5327
5328 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5329 {
5330 struct drm_device *dev = state->dev;
5331 struct drm_i915_private *dev_priv = dev->dev_private;
5332 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5333 struct intel_crtc *crtc;
5334
5335 /*
5336 * First get all needed power domains, then put all unneeded, to avoid
5337 * any unnecessary toggling of the power wells.
5338 */
5339 for_each_intel_crtc(dev, crtc) {
5340 enum intel_display_power_domain domain;
5341
5342 if (!crtc->base.state->enable)
5343 continue;
5344
5345 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5346
5347 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5348 intel_display_power_get(dev_priv, domain);
5349 }
5350
5351 if (dev_priv->display.modeset_global_resources)
5352 dev_priv->display.modeset_global_resources(state);
5353
5354 for_each_intel_crtc(dev, crtc) {
5355 enum intel_display_power_domain domain;
5356
5357 for_each_power_domain(domain, crtc->enabled_power_domains)
5358 intel_display_power_put(dev_priv, domain);
5359
5360 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5361 }
5362
5363 intel_display_set_init_power(dev_priv, false);
5364 }
5365
5366 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5367 {
5368 struct drm_i915_private *dev_priv = dev->dev_private;
5369 uint32_t divider;
5370 uint32_t ratio;
5371 uint32_t current_freq;
5372 int ret;
5373
5374 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5375 switch (frequency) {
5376 case 144000:
5377 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5378 ratio = BXT_DE_PLL_RATIO(60);
5379 break;
5380 case 288000:
5381 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5382 ratio = BXT_DE_PLL_RATIO(60);
5383 break;
5384 case 384000:
5385 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5386 ratio = BXT_DE_PLL_RATIO(60);
5387 break;
5388 case 576000:
5389 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5390 ratio = BXT_DE_PLL_RATIO(60);
5391 break;
5392 case 624000:
5393 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5394 ratio = BXT_DE_PLL_RATIO(65);
5395 break;
5396 case 19200:
5397 /*
5398 * Bypass frequency with DE PLL disabled. Init ratio, divider
5399 * to suppress GCC warning.
5400 */
5401 ratio = 0;
5402 divider = 0;
5403 break;
5404 default:
5405 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5406
5407 return;
5408 }
5409
5410 mutex_lock(&dev_priv->rps.hw_lock);
5411 /* Inform power controller of upcoming frequency change */
5412 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5413 0x80000000);
5414 mutex_unlock(&dev_priv->rps.hw_lock);
5415
5416 if (ret) {
5417 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5418 ret, frequency);
5419 return;
5420 }
5421
5422 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5423 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5424 current_freq = current_freq * 500 + 1000;
5425
5426 /*
5427 * DE PLL has to be disabled when
5428 * - setting to 19.2MHz (bypass, PLL isn't used)
5429 * - before setting to 624MHz (PLL needs toggling)
5430 * - before setting to any frequency from 624MHz (PLL needs toggling)
5431 */
5432 if (frequency == 19200 || frequency == 624000 ||
5433 current_freq == 624000) {
5434 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5435 /* Timeout 200us */
5436 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5437 1))
5438 DRM_ERROR("timout waiting for DE PLL unlock\n");
5439 }
5440
5441 if (frequency != 19200) {
5442 uint32_t val;
5443
5444 val = I915_READ(BXT_DE_PLL_CTL);
5445 val &= ~BXT_DE_PLL_RATIO_MASK;
5446 val |= ratio;
5447 I915_WRITE(BXT_DE_PLL_CTL, val);
5448
5449 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5450 /* Timeout 200us */
5451 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5452 DRM_ERROR("timeout waiting for DE PLL lock\n");
5453
5454 val = I915_READ(CDCLK_CTL);
5455 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5456 val |= divider;
5457 /*
5458 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5459 * enable otherwise.
5460 */
5461 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5462 if (frequency >= 500000)
5463 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5464
5465 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5466 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5467 val |= (frequency - 1000) / 500;
5468 I915_WRITE(CDCLK_CTL, val);
5469 }
5470
5471 mutex_lock(&dev_priv->rps.hw_lock);
5472 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5473 DIV_ROUND_UP(frequency, 25000));
5474 mutex_unlock(&dev_priv->rps.hw_lock);
5475
5476 if (ret) {
5477 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5478 ret, frequency);
5479 return;
5480 }
5481
5482 dev_priv->cdclk_freq = frequency;
5483 }
5484
5485 void broxton_init_cdclk(struct drm_device *dev)
5486 {
5487 struct drm_i915_private *dev_priv = dev->dev_private;
5488 uint32_t val;
5489
5490 /*
5491 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5492 * or else the reset will hang because there is no PCH to respond.
5493 * Move the handshake programming to initialization sequence.
5494 * Previously was left up to BIOS.
5495 */
5496 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5497 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5498 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5499
5500 /* Enable PG1 for cdclk */
5501 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5502
5503 /* check if cd clock is enabled */
5504 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5505 DRM_DEBUG_KMS("Display already initialized\n");
5506 return;
5507 }
5508
5509 /*
5510 * FIXME:
5511 * - The initial CDCLK needs to be read from VBT.
5512 * Need to make this change after VBT has changes for BXT.
5513 * - check if setting the max (or any) cdclk freq is really necessary
5514 * here, it belongs to modeset time
5515 */
5516 broxton_set_cdclk(dev, 624000);
5517
5518 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5519 POSTING_READ(DBUF_CTL);
5520
5521 udelay(10);
5522
5523 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5524 DRM_ERROR("DBuf power enable timeout!\n");
5525 }
5526
5527 void broxton_uninit_cdclk(struct drm_device *dev)
5528 {
5529 struct drm_i915_private *dev_priv = dev->dev_private;
5530
5531 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5532 POSTING_READ(DBUF_CTL);
5533
5534 udelay(10);
5535
5536 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5537 DRM_ERROR("DBuf power disable timeout!\n");
5538
5539 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5540 broxton_set_cdclk(dev, 19200);
5541
5542 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5543 }
5544
5545 /* returns HPLL frequency in kHz */
5546 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5547 {
5548 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5549
5550 /* Obtain SKU information */
5551 mutex_lock(&dev_priv->dpio_lock);
5552 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5553 CCK_FUSE_HPLL_FREQ_MASK;
5554 mutex_unlock(&dev_priv->dpio_lock);
5555
5556 return vco_freq[hpll_freq] * 1000;
5557 }
5558
5559 static void vlv_update_cdclk(struct drm_device *dev)
5560 {
5561 struct drm_i915_private *dev_priv = dev->dev_private;
5562
5563 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5564 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5565 dev_priv->cdclk_freq);
5566
5567 /*
5568 * Program the gmbus_freq based on the cdclk frequency.
5569 * BSpec erroneously claims we should aim for 4MHz, but
5570 * in fact 1MHz is the correct frequency.
5571 */
5572 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5573 }
5574
5575 /* Adjust CDclk dividers to allow high res or save power if possible */
5576 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5577 {
5578 struct drm_i915_private *dev_priv = dev->dev_private;
5579 u32 val, cmd;
5580
5581 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5582 != dev_priv->cdclk_freq);
5583
5584 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5585 cmd = 2;
5586 else if (cdclk == 266667)
5587 cmd = 1;
5588 else
5589 cmd = 0;
5590
5591 mutex_lock(&dev_priv->rps.hw_lock);
5592 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5593 val &= ~DSPFREQGUAR_MASK;
5594 val |= (cmd << DSPFREQGUAR_SHIFT);
5595 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5596 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5597 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5598 50)) {
5599 DRM_ERROR("timed out waiting for CDclk change\n");
5600 }
5601 mutex_unlock(&dev_priv->rps.hw_lock);
5602
5603 if (cdclk == 400000) {
5604 u32 divider;
5605
5606 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5607
5608 mutex_lock(&dev_priv->dpio_lock);
5609 /* adjust cdclk divider */
5610 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5611 val &= ~DISPLAY_FREQUENCY_VALUES;
5612 val |= divider;
5613 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5614
5615 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5616 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5617 50))
5618 DRM_ERROR("timed out waiting for CDclk change\n");
5619 mutex_unlock(&dev_priv->dpio_lock);
5620 }
5621
5622 mutex_lock(&dev_priv->dpio_lock);
5623 /* adjust self-refresh exit latency value */
5624 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5625 val &= ~0x7f;
5626
5627 /*
5628 * For high bandwidth configs, we set a higher latency in the bunit
5629 * so that the core display fetch happens in time to avoid underruns.
5630 */
5631 if (cdclk == 400000)
5632 val |= 4500 / 250; /* 4.5 usec */
5633 else
5634 val |= 3000 / 250; /* 3.0 usec */
5635 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5636 mutex_unlock(&dev_priv->dpio_lock);
5637
5638 vlv_update_cdclk(dev);
5639 }
5640
5641 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5642 {
5643 struct drm_i915_private *dev_priv = dev->dev_private;
5644 u32 val, cmd;
5645
5646 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5647 != dev_priv->cdclk_freq);
5648
5649 switch (cdclk) {
5650 case 333333:
5651 case 320000:
5652 case 266667:
5653 case 200000:
5654 break;
5655 default:
5656 MISSING_CASE(cdclk);
5657 return;
5658 }
5659
5660 /*
5661 * Specs are full of misinformation, but testing on actual
5662 * hardware has shown that we just need to write the desired
5663 * CCK divider into the Punit register.
5664 */
5665 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5666
5667 mutex_lock(&dev_priv->rps.hw_lock);
5668 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5669 val &= ~DSPFREQGUAR_MASK_CHV;
5670 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5671 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5672 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5673 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5674 50)) {
5675 DRM_ERROR("timed out waiting for CDclk change\n");
5676 }
5677 mutex_unlock(&dev_priv->rps.hw_lock);
5678
5679 vlv_update_cdclk(dev);
5680 }
5681
5682 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5683 int max_pixclk)
5684 {
5685 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5686 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5687
5688 /*
5689 * Really only a few cases to deal with, as only 4 CDclks are supported:
5690 * 200MHz
5691 * 267MHz
5692 * 320/333MHz (depends on HPLL freq)
5693 * 400MHz (VLV only)
5694 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5695 * of the lower bin and adjust if needed.
5696 *
5697 * We seem to get an unstable or solid color picture at 200MHz.
5698 * Not sure what's wrong. For now use 200MHz only when all pipes
5699 * are off.
5700 */
5701 if (!IS_CHERRYVIEW(dev_priv) &&
5702 max_pixclk > freq_320*limit/100)
5703 return 400000;
5704 else if (max_pixclk > 266667*limit/100)
5705 return freq_320;
5706 else if (max_pixclk > 0)
5707 return 266667;
5708 else
5709 return 200000;
5710 }
5711
5712 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5713 int max_pixclk)
5714 {
5715 /*
5716 * FIXME:
5717 * - remove the guardband, it's not needed on BXT
5718 * - set 19.2MHz bypass frequency if there are no active pipes
5719 */
5720 if (max_pixclk > 576000*9/10)
5721 return 624000;
5722 else if (max_pixclk > 384000*9/10)
5723 return 576000;
5724 else if (max_pixclk > 288000*9/10)
5725 return 384000;
5726 else if (max_pixclk > 144000*9/10)
5727 return 288000;
5728 else
5729 return 144000;
5730 }
5731
5732 /* compute the max pixel clock for new configuration */
5733 static int intel_mode_max_pixclk(struct drm_atomic_state *state)
5734 {
5735 struct drm_device *dev = state->dev;
5736 struct intel_crtc *intel_crtc;
5737 struct intel_crtc_state *crtc_state;
5738 int max_pixclk = 0;
5739
5740 for_each_intel_crtc(dev, intel_crtc) {
5741 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5742 if (IS_ERR(crtc_state))
5743 return PTR_ERR(crtc_state);
5744
5745 if (!crtc_state->base.enable)
5746 continue;
5747
5748 max_pixclk = max(max_pixclk,
5749 crtc_state->base.adjusted_mode.crtc_clock);
5750 }
5751
5752 return max_pixclk;
5753 }
5754
5755 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state,
5756 unsigned *prepare_pipes)
5757 {
5758 struct drm_i915_private *dev_priv = to_i915(state->dev);
5759 struct intel_crtc *intel_crtc;
5760 int max_pixclk = intel_mode_max_pixclk(state);
5761 int cdclk;
5762
5763 if (max_pixclk < 0)
5764 return max_pixclk;
5765
5766 if (IS_VALLEYVIEW(dev_priv))
5767 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5768 else
5769 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5770
5771 if (cdclk == dev_priv->cdclk_freq)
5772 return 0;
5773
5774 /* disable/enable all currently active pipes while we change cdclk */
5775 for_each_intel_crtc(state->dev, intel_crtc)
5776 if (intel_crtc->base.state->enable)
5777 *prepare_pipes |= (1 << intel_crtc->pipe);
5778
5779 return 0;
5780 }
5781
5782 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5783 {
5784 unsigned int credits, default_credits;
5785
5786 if (IS_CHERRYVIEW(dev_priv))
5787 default_credits = PFI_CREDIT(12);
5788 else
5789 default_credits = PFI_CREDIT(8);
5790
5791 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5792 /* CHV suggested value is 31 or 63 */
5793 if (IS_CHERRYVIEW(dev_priv))
5794 credits = PFI_CREDIT_31;
5795 else
5796 credits = PFI_CREDIT(15);
5797 } else {
5798 credits = default_credits;
5799 }
5800
5801 /*
5802 * WA - write default credits before re-programming
5803 * FIXME: should we also set the resend bit here?
5804 */
5805 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5806 default_credits);
5807
5808 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5809 credits | PFI_CREDIT_RESEND);
5810
5811 /*
5812 * FIXME is this guaranteed to clear
5813 * immediately or should we poll for it?
5814 */
5815 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5816 }
5817
5818 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5819 {
5820 struct drm_device *dev = state->dev;
5821 struct drm_i915_private *dev_priv = dev->dev_private;
5822 int max_pixclk = intel_mode_max_pixclk(state);
5823 int req_cdclk;
5824
5825 /* The only reason this can fail is if we fail to add the crtc_state
5826 * to the atomic state. But that can't happen since the call to
5827 * intel_mode_max_pixclk() in valleyview_modeset_global_pipes() (which
5828 * can't have failed otherwise the mode set would be aborted) added all
5829 * the states already. */
5830 if (WARN_ON(max_pixclk < 0))
5831 return;
5832
5833 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5834
5835 if (req_cdclk != dev_priv->cdclk_freq) {
5836 /*
5837 * FIXME: We can end up here with all power domains off, yet
5838 * with a CDCLK frequency other than the minimum. To account
5839 * for this take the PIPE-A power domain, which covers the HW
5840 * blocks needed for the following programming. This can be
5841 * removed once it's guaranteed that we get here either with
5842 * the minimum CDCLK set, or the required power domains
5843 * enabled.
5844 */
5845 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5846
5847 if (IS_CHERRYVIEW(dev))
5848 cherryview_set_cdclk(dev, req_cdclk);
5849 else
5850 valleyview_set_cdclk(dev, req_cdclk);
5851
5852 vlv_program_pfi_credits(dev_priv);
5853
5854 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5855 }
5856 }
5857
5858 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5859 {
5860 struct drm_device *dev = crtc->dev;
5861 struct drm_i915_private *dev_priv = to_i915(dev);
5862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5863 struct intel_encoder *encoder;
5864 int pipe = intel_crtc->pipe;
5865 bool is_dsi;
5866
5867 WARN_ON(!crtc->state->enable);
5868
5869 if (intel_crtc->active)
5870 return;
5871
5872 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5873
5874 if (!is_dsi) {
5875 if (IS_CHERRYVIEW(dev))
5876 chv_prepare_pll(intel_crtc, intel_crtc->config);
5877 else
5878 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5879 }
5880
5881 if (intel_crtc->config->has_dp_encoder)
5882 intel_dp_set_m_n(intel_crtc, M1_N1);
5883
5884 intel_set_pipe_timings(intel_crtc);
5885
5886 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5887 struct drm_i915_private *dev_priv = dev->dev_private;
5888
5889 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5890 I915_WRITE(CHV_CANVAS(pipe), 0);
5891 }
5892
5893 i9xx_set_pipeconf(intel_crtc);
5894
5895 intel_crtc->active = true;
5896
5897 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5898
5899 for_each_encoder_on_crtc(dev, crtc, encoder)
5900 if (encoder->pre_pll_enable)
5901 encoder->pre_pll_enable(encoder);
5902
5903 if (!is_dsi) {
5904 if (IS_CHERRYVIEW(dev))
5905 chv_enable_pll(intel_crtc, intel_crtc->config);
5906 else
5907 vlv_enable_pll(intel_crtc, intel_crtc->config);
5908 }
5909
5910 for_each_encoder_on_crtc(dev, crtc, encoder)
5911 if (encoder->pre_enable)
5912 encoder->pre_enable(encoder);
5913
5914 i9xx_pfit_enable(intel_crtc);
5915
5916 intel_crtc_load_lut(crtc);
5917
5918 intel_update_watermarks(crtc);
5919 intel_enable_pipe(intel_crtc);
5920
5921 assert_vblank_disabled(crtc);
5922 drm_crtc_vblank_on(crtc);
5923
5924 for_each_encoder_on_crtc(dev, crtc, encoder)
5925 encoder->enable(encoder);
5926 }
5927
5928 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5929 {
5930 struct drm_device *dev = crtc->base.dev;
5931 struct drm_i915_private *dev_priv = dev->dev_private;
5932
5933 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5934 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5935 }
5936
5937 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5938 {
5939 struct drm_device *dev = crtc->dev;
5940 struct drm_i915_private *dev_priv = to_i915(dev);
5941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5942 struct intel_encoder *encoder;
5943 int pipe = intel_crtc->pipe;
5944
5945 WARN_ON(!crtc->state->enable);
5946
5947 if (intel_crtc->active)
5948 return;
5949
5950 i9xx_set_pll_dividers(intel_crtc);
5951
5952 if (intel_crtc->config->has_dp_encoder)
5953 intel_dp_set_m_n(intel_crtc, M1_N1);
5954
5955 intel_set_pipe_timings(intel_crtc);
5956
5957 i9xx_set_pipeconf(intel_crtc);
5958
5959 intel_crtc->active = true;
5960
5961 if (!IS_GEN2(dev))
5962 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5963
5964 for_each_encoder_on_crtc(dev, crtc, encoder)
5965 if (encoder->pre_enable)
5966 encoder->pre_enable(encoder);
5967
5968 i9xx_enable_pll(intel_crtc);
5969
5970 i9xx_pfit_enable(intel_crtc);
5971
5972 intel_crtc_load_lut(crtc);
5973
5974 intel_update_watermarks(crtc);
5975 intel_enable_pipe(intel_crtc);
5976
5977 assert_vblank_disabled(crtc);
5978 drm_crtc_vblank_on(crtc);
5979
5980 for_each_encoder_on_crtc(dev, crtc, encoder)
5981 encoder->enable(encoder);
5982 }
5983
5984 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5985 {
5986 struct drm_device *dev = crtc->base.dev;
5987 struct drm_i915_private *dev_priv = dev->dev_private;
5988
5989 if (!crtc->config->gmch_pfit.control)
5990 return;
5991
5992 assert_pipe_disabled(dev_priv, crtc->pipe);
5993
5994 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5995 I915_READ(PFIT_CONTROL));
5996 I915_WRITE(PFIT_CONTROL, 0);
5997 }
5998
5999 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6000 {
6001 struct drm_device *dev = crtc->dev;
6002 struct drm_i915_private *dev_priv = dev->dev_private;
6003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6004 struct intel_encoder *encoder;
6005 int pipe = intel_crtc->pipe;
6006
6007 if (!intel_crtc->active)
6008 return;
6009
6010 /*
6011 * On gen2 planes are double buffered but the pipe isn't, so we must
6012 * wait for planes to fully turn off before disabling the pipe.
6013 * We also need to wait on all gmch platforms because of the
6014 * self-refresh mode constraint explained above.
6015 */
6016 intel_wait_for_vblank(dev, pipe);
6017
6018 for_each_encoder_on_crtc(dev, crtc, encoder)
6019 encoder->disable(encoder);
6020
6021 drm_crtc_vblank_off(crtc);
6022 assert_vblank_disabled(crtc);
6023
6024 intel_disable_pipe(intel_crtc);
6025
6026 i9xx_pfit_disable(intel_crtc);
6027
6028 for_each_encoder_on_crtc(dev, crtc, encoder)
6029 if (encoder->post_disable)
6030 encoder->post_disable(encoder);
6031
6032 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6033 if (IS_CHERRYVIEW(dev))
6034 chv_disable_pll(dev_priv, pipe);
6035 else if (IS_VALLEYVIEW(dev))
6036 vlv_disable_pll(dev_priv, pipe);
6037 else
6038 i9xx_disable_pll(intel_crtc);
6039 }
6040
6041 if (!IS_GEN2(dev))
6042 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6043
6044 intel_crtc->active = false;
6045 intel_update_watermarks(crtc);
6046
6047 mutex_lock(&dev->struct_mutex);
6048 intel_fbc_update(dev);
6049 mutex_unlock(&dev->struct_mutex);
6050 }
6051
6052 static void i9xx_crtc_off(struct drm_crtc *crtc)
6053 {
6054 }
6055
6056 /* Master function to enable/disable CRTC and corresponding power wells */
6057 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6058 {
6059 struct drm_device *dev = crtc->dev;
6060 struct drm_i915_private *dev_priv = dev->dev_private;
6061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6062 enum intel_display_power_domain domain;
6063 unsigned long domains;
6064
6065 if (enable) {
6066 if (!intel_crtc->active) {
6067 domains = get_crtc_power_domains(crtc);
6068 for_each_power_domain(domain, domains)
6069 intel_display_power_get(dev_priv, domain);
6070 intel_crtc->enabled_power_domains = domains;
6071
6072 dev_priv->display.crtc_enable(crtc);
6073 intel_crtc_enable_planes(crtc);
6074 }
6075 } else {
6076 if (intel_crtc->active) {
6077 intel_crtc_disable_planes(crtc);
6078 dev_priv->display.crtc_disable(crtc);
6079
6080 domains = intel_crtc->enabled_power_domains;
6081 for_each_power_domain(domain, domains)
6082 intel_display_power_put(dev_priv, domain);
6083 intel_crtc->enabled_power_domains = 0;
6084 }
6085 }
6086 }
6087
6088 /**
6089 * Sets the power management mode of the pipe and plane.
6090 */
6091 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6092 {
6093 struct drm_device *dev = crtc->dev;
6094 struct intel_encoder *intel_encoder;
6095 bool enable = false;
6096
6097 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6098 enable |= intel_encoder->connectors_active;
6099
6100 intel_crtc_control(crtc, enable);
6101 }
6102
6103 static void intel_crtc_disable(struct drm_crtc *crtc)
6104 {
6105 struct drm_device *dev = crtc->dev;
6106 struct drm_connector *connector;
6107 struct drm_i915_private *dev_priv = dev->dev_private;
6108
6109 /* crtc should still be enabled when we disable it. */
6110 WARN_ON(!crtc->state->enable);
6111
6112 intel_crtc_disable_planes(crtc);
6113 dev_priv->display.crtc_disable(crtc);
6114 dev_priv->display.off(crtc);
6115
6116 drm_plane_helper_disable(crtc->primary);
6117
6118 /* Update computed state. */
6119 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6120 if (!connector->encoder || !connector->encoder->crtc)
6121 continue;
6122
6123 if (connector->encoder->crtc != crtc)
6124 continue;
6125
6126 connector->dpms = DRM_MODE_DPMS_OFF;
6127 to_intel_encoder(connector->encoder)->connectors_active = false;
6128 }
6129 }
6130
6131 void intel_encoder_destroy(struct drm_encoder *encoder)
6132 {
6133 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6134
6135 drm_encoder_cleanup(encoder);
6136 kfree(intel_encoder);
6137 }
6138
6139 /* Simple dpms helper for encoders with just one connector, no cloning and only
6140 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6141 * state of the entire output pipe. */
6142 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6143 {
6144 if (mode == DRM_MODE_DPMS_ON) {
6145 encoder->connectors_active = true;
6146
6147 intel_crtc_update_dpms(encoder->base.crtc);
6148 } else {
6149 encoder->connectors_active = false;
6150
6151 intel_crtc_update_dpms(encoder->base.crtc);
6152 }
6153 }
6154
6155 /* Cross check the actual hw state with our own modeset state tracking (and it's
6156 * internal consistency). */
6157 static void intel_connector_check_state(struct intel_connector *connector)
6158 {
6159 if (connector->get_hw_state(connector)) {
6160 struct intel_encoder *encoder = connector->encoder;
6161 struct drm_crtc *crtc;
6162 bool encoder_enabled;
6163 enum pipe pipe;
6164
6165 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6166 connector->base.base.id,
6167 connector->base.name);
6168
6169 /* there is no real hw state for MST connectors */
6170 if (connector->mst_port)
6171 return;
6172
6173 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6174 "wrong connector dpms state\n");
6175 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6176 "active connector not linked to encoder\n");
6177
6178 if (encoder) {
6179 I915_STATE_WARN(!encoder->connectors_active,
6180 "encoder->connectors_active not set\n");
6181
6182 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6183 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6184 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6185 return;
6186
6187 crtc = encoder->base.crtc;
6188
6189 I915_STATE_WARN(!crtc->state->enable,
6190 "crtc not enabled\n");
6191 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6192 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6193 "encoder active on the wrong pipe\n");
6194 }
6195 }
6196 }
6197
6198 int intel_connector_init(struct intel_connector *connector)
6199 {
6200 struct drm_connector_state *connector_state;
6201
6202 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6203 if (!connector_state)
6204 return -ENOMEM;
6205
6206 connector->base.state = connector_state;
6207 return 0;
6208 }
6209
6210 struct intel_connector *intel_connector_alloc(void)
6211 {
6212 struct intel_connector *connector;
6213
6214 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6215 if (!connector)
6216 return NULL;
6217
6218 if (intel_connector_init(connector) < 0) {
6219 kfree(connector);
6220 return NULL;
6221 }
6222
6223 return connector;
6224 }
6225
6226 /* Even simpler default implementation, if there's really no special case to
6227 * consider. */
6228 void intel_connector_dpms(struct drm_connector *connector, int mode)
6229 {
6230 /* All the simple cases only support two dpms states. */
6231 if (mode != DRM_MODE_DPMS_ON)
6232 mode = DRM_MODE_DPMS_OFF;
6233
6234 if (mode == connector->dpms)
6235 return;
6236
6237 connector->dpms = mode;
6238
6239 /* Only need to change hw state when actually enabled */
6240 if (connector->encoder)
6241 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6242
6243 intel_modeset_check_state(connector->dev);
6244 }
6245
6246 /* Simple connector->get_hw_state implementation for encoders that support only
6247 * one connector and no cloning and hence the encoder state determines the state
6248 * of the connector. */
6249 bool intel_connector_get_hw_state(struct intel_connector *connector)
6250 {
6251 enum pipe pipe = 0;
6252 struct intel_encoder *encoder = connector->encoder;
6253
6254 return encoder->get_hw_state(encoder, &pipe);
6255 }
6256
6257 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6258 {
6259 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6260 return crtc_state->fdi_lanes;
6261
6262 return 0;
6263 }
6264
6265 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6266 struct intel_crtc_state *pipe_config)
6267 {
6268 struct drm_atomic_state *state = pipe_config->base.state;
6269 struct intel_crtc *other_crtc;
6270 struct intel_crtc_state *other_crtc_state;
6271
6272 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6273 pipe_name(pipe), pipe_config->fdi_lanes);
6274 if (pipe_config->fdi_lanes > 4) {
6275 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6276 pipe_name(pipe), pipe_config->fdi_lanes);
6277 return -EINVAL;
6278 }
6279
6280 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6281 if (pipe_config->fdi_lanes > 2) {
6282 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6283 pipe_config->fdi_lanes);
6284 return -EINVAL;
6285 } else {
6286 return 0;
6287 }
6288 }
6289
6290 if (INTEL_INFO(dev)->num_pipes == 2)
6291 return 0;
6292
6293 /* Ivybridge 3 pipe is really complicated */
6294 switch (pipe) {
6295 case PIPE_A:
6296 return 0;
6297 case PIPE_B:
6298 if (pipe_config->fdi_lanes <= 2)
6299 return 0;
6300
6301 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6302 other_crtc_state =
6303 intel_atomic_get_crtc_state(state, other_crtc);
6304 if (IS_ERR(other_crtc_state))
6305 return PTR_ERR(other_crtc_state);
6306
6307 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6308 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6309 pipe_name(pipe), pipe_config->fdi_lanes);
6310 return -EINVAL;
6311 }
6312 return 0;
6313 case PIPE_C:
6314 if (pipe_config->fdi_lanes > 2) {
6315 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6316 pipe_name(pipe), pipe_config->fdi_lanes);
6317 return -EINVAL;
6318 }
6319
6320 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6321 other_crtc_state =
6322 intel_atomic_get_crtc_state(state, other_crtc);
6323 if (IS_ERR(other_crtc_state))
6324 return PTR_ERR(other_crtc_state);
6325
6326 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6327 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6328 return -EINVAL;
6329 }
6330 return 0;
6331 default:
6332 BUG();
6333 }
6334 }
6335
6336 #define RETRY 1
6337 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6338 struct intel_crtc_state *pipe_config)
6339 {
6340 struct drm_device *dev = intel_crtc->base.dev;
6341 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6342 int lane, link_bw, fdi_dotclock, ret;
6343 bool needs_recompute = false;
6344
6345 retry:
6346 /* FDI is a binary signal running at ~2.7GHz, encoding
6347 * each output octet as 10 bits. The actual frequency
6348 * is stored as a divider into a 100MHz clock, and the
6349 * mode pixel clock is stored in units of 1KHz.
6350 * Hence the bw of each lane in terms of the mode signal
6351 * is:
6352 */
6353 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6354
6355 fdi_dotclock = adjusted_mode->crtc_clock;
6356
6357 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6358 pipe_config->pipe_bpp);
6359
6360 pipe_config->fdi_lanes = lane;
6361
6362 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6363 link_bw, &pipe_config->fdi_m_n);
6364
6365 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6366 intel_crtc->pipe, pipe_config);
6367 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6368 pipe_config->pipe_bpp -= 2*3;
6369 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6370 pipe_config->pipe_bpp);
6371 needs_recompute = true;
6372 pipe_config->bw_constrained = true;
6373
6374 goto retry;
6375 }
6376
6377 if (needs_recompute)
6378 return RETRY;
6379
6380 return ret;
6381 }
6382
6383 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6384 struct intel_crtc_state *pipe_config)
6385 {
6386 pipe_config->ips_enabled = i915.enable_ips &&
6387 hsw_crtc_supports_ips(crtc) &&
6388 pipe_config->pipe_bpp <= 24;
6389 }
6390
6391 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6392 struct intel_crtc_state *pipe_config)
6393 {
6394 struct drm_device *dev = crtc->base.dev;
6395 struct drm_i915_private *dev_priv = dev->dev_private;
6396 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6397 int ret;
6398
6399 /* FIXME should check pixel clock limits on all platforms */
6400 if (INTEL_INFO(dev)->gen < 4) {
6401 int clock_limit =
6402 dev_priv->display.get_display_clock_speed(dev);
6403
6404 /*
6405 * Enable pixel doubling when the dot clock
6406 * is > 90% of the (display) core speed.
6407 *
6408 * GDG double wide on either pipe,
6409 * otherwise pipe A only.
6410 */
6411 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6412 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6413 clock_limit *= 2;
6414 pipe_config->double_wide = true;
6415 }
6416
6417 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6418 return -EINVAL;
6419 }
6420
6421 /*
6422 * Pipe horizontal size must be even in:
6423 * - DVO ganged mode
6424 * - LVDS dual channel mode
6425 * - Double wide pipe
6426 */
6427 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6428 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6429 pipe_config->pipe_src_w &= ~1;
6430
6431 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6432 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6433 */
6434 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6435 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6436 return -EINVAL;
6437
6438 if (HAS_IPS(dev))
6439 hsw_compute_ips_config(crtc, pipe_config);
6440
6441 if (pipe_config->has_pch_encoder)
6442 return ironlake_fdi_compute_config(crtc, pipe_config);
6443
6444 /* FIXME: remove below call once atomic mode set is place and all crtc
6445 * related checks called from atomic_crtc_check function */
6446 ret = 0;
6447 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6448 crtc, pipe_config->base.state);
6449 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6450
6451 return ret;
6452 }
6453
6454 static int skylake_get_display_clock_speed(struct drm_device *dev)
6455 {
6456 struct drm_i915_private *dev_priv = to_i915(dev);
6457 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6458 uint32_t cdctl = I915_READ(CDCLK_CTL);
6459 uint32_t linkrate;
6460
6461 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6462 WARN(1, "LCPLL1 not enabled\n");
6463 return 24000; /* 24MHz is the cd freq with NSSC ref */
6464 }
6465
6466 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6467 return 540000;
6468
6469 linkrate = (I915_READ(DPLL_CTRL1) &
6470 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6471
6472 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6473 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6474 /* vco 8640 */
6475 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6476 case CDCLK_FREQ_450_432:
6477 return 432000;
6478 case CDCLK_FREQ_337_308:
6479 return 308570;
6480 case CDCLK_FREQ_675_617:
6481 return 617140;
6482 default:
6483 WARN(1, "Unknown cd freq selection\n");
6484 }
6485 } else {
6486 /* vco 8100 */
6487 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6488 case CDCLK_FREQ_450_432:
6489 return 450000;
6490 case CDCLK_FREQ_337_308:
6491 return 337500;
6492 case CDCLK_FREQ_675_617:
6493 return 675000;
6494 default:
6495 WARN(1, "Unknown cd freq selection\n");
6496 }
6497 }
6498
6499 /* error case, do as if DPLL0 isn't enabled */
6500 return 24000;
6501 }
6502
6503 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6504 {
6505 struct drm_i915_private *dev_priv = dev->dev_private;
6506 uint32_t lcpll = I915_READ(LCPLL_CTL);
6507 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6508
6509 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6510 return 800000;
6511 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6512 return 450000;
6513 else if (freq == LCPLL_CLK_FREQ_450)
6514 return 450000;
6515 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6516 return 540000;
6517 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6518 return 337500;
6519 else
6520 return 675000;
6521 }
6522
6523 static int haswell_get_display_clock_speed(struct drm_device *dev)
6524 {
6525 struct drm_i915_private *dev_priv = dev->dev_private;
6526 uint32_t lcpll = I915_READ(LCPLL_CTL);
6527 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6528
6529 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6530 return 800000;
6531 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6532 return 450000;
6533 else if (freq == LCPLL_CLK_FREQ_450)
6534 return 450000;
6535 else if (IS_HSW_ULT(dev))
6536 return 337500;
6537 else
6538 return 540000;
6539 }
6540
6541 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6542 {
6543 struct drm_i915_private *dev_priv = dev->dev_private;
6544 u32 val;
6545 int divider;
6546
6547 if (dev_priv->hpll_freq == 0)
6548 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6549
6550 mutex_lock(&dev_priv->dpio_lock);
6551 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6552 mutex_unlock(&dev_priv->dpio_lock);
6553
6554 divider = val & DISPLAY_FREQUENCY_VALUES;
6555
6556 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6557 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6558 "cdclk change in progress\n");
6559
6560 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6561 }
6562
6563 static int ilk_get_display_clock_speed(struct drm_device *dev)
6564 {
6565 return 450000;
6566 }
6567
6568 static int i945_get_display_clock_speed(struct drm_device *dev)
6569 {
6570 return 400000;
6571 }
6572
6573 static int i915_get_display_clock_speed(struct drm_device *dev)
6574 {
6575 return 333333;
6576 }
6577
6578 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6579 {
6580 return 200000;
6581 }
6582
6583 static int pnv_get_display_clock_speed(struct drm_device *dev)
6584 {
6585 u16 gcfgc = 0;
6586
6587 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6588
6589 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6590 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6591 return 266667;
6592 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6593 return 333333;
6594 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6595 return 444444;
6596 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6597 return 200000;
6598 default:
6599 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6600 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6601 return 133333;
6602 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6603 return 166667;
6604 }
6605 }
6606
6607 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6608 {
6609 u16 gcfgc = 0;
6610
6611 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6612
6613 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6614 return 133333;
6615 else {
6616 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6617 case GC_DISPLAY_CLOCK_333_MHZ:
6618 return 333333;
6619 default:
6620 case GC_DISPLAY_CLOCK_190_200_MHZ:
6621 return 190000;
6622 }
6623 }
6624 }
6625
6626 static int i865_get_display_clock_speed(struct drm_device *dev)
6627 {
6628 return 266667;
6629 }
6630
6631 static int i855_get_display_clock_speed(struct drm_device *dev)
6632 {
6633 u16 hpllcc = 0;
6634 /* Assume that the hardware is in the high speed state. This
6635 * should be the default.
6636 */
6637 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6638 case GC_CLOCK_133_200:
6639 case GC_CLOCK_100_200:
6640 return 200000;
6641 case GC_CLOCK_166_250:
6642 return 250000;
6643 case GC_CLOCK_100_133:
6644 return 133333;
6645 }
6646
6647 /* Shouldn't happen */
6648 return 0;
6649 }
6650
6651 static int i830_get_display_clock_speed(struct drm_device *dev)
6652 {
6653 return 133333;
6654 }
6655
6656 static void
6657 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6658 {
6659 while (*num > DATA_LINK_M_N_MASK ||
6660 *den > DATA_LINK_M_N_MASK) {
6661 *num >>= 1;
6662 *den >>= 1;
6663 }
6664 }
6665
6666 static void compute_m_n(unsigned int m, unsigned int n,
6667 uint32_t *ret_m, uint32_t *ret_n)
6668 {
6669 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6670 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6671 intel_reduce_m_n_ratio(ret_m, ret_n);
6672 }
6673
6674 void
6675 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6676 int pixel_clock, int link_clock,
6677 struct intel_link_m_n *m_n)
6678 {
6679 m_n->tu = 64;
6680
6681 compute_m_n(bits_per_pixel * pixel_clock,
6682 link_clock * nlanes * 8,
6683 &m_n->gmch_m, &m_n->gmch_n);
6684
6685 compute_m_n(pixel_clock, link_clock,
6686 &m_n->link_m, &m_n->link_n);
6687 }
6688
6689 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6690 {
6691 if (i915.panel_use_ssc >= 0)
6692 return i915.panel_use_ssc != 0;
6693 return dev_priv->vbt.lvds_use_ssc
6694 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6695 }
6696
6697 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6698 int num_connectors)
6699 {
6700 struct drm_device *dev = crtc_state->base.crtc->dev;
6701 struct drm_i915_private *dev_priv = dev->dev_private;
6702 int refclk;
6703
6704 WARN_ON(!crtc_state->base.state);
6705
6706 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6707 refclk = 100000;
6708 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6709 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6710 refclk = dev_priv->vbt.lvds_ssc_freq;
6711 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6712 } else if (!IS_GEN2(dev)) {
6713 refclk = 96000;
6714 } else {
6715 refclk = 48000;
6716 }
6717
6718 return refclk;
6719 }
6720
6721 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6722 {
6723 return (1 << dpll->n) << 16 | dpll->m2;
6724 }
6725
6726 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6727 {
6728 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6729 }
6730
6731 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6732 struct intel_crtc_state *crtc_state,
6733 intel_clock_t *reduced_clock)
6734 {
6735 struct drm_device *dev = crtc->base.dev;
6736 u32 fp, fp2 = 0;
6737
6738 if (IS_PINEVIEW(dev)) {
6739 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6740 if (reduced_clock)
6741 fp2 = pnv_dpll_compute_fp(reduced_clock);
6742 } else {
6743 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6744 if (reduced_clock)
6745 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6746 }
6747
6748 crtc_state->dpll_hw_state.fp0 = fp;
6749
6750 crtc->lowfreq_avail = false;
6751 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6752 reduced_clock) {
6753 crtc_state->dpll_hw_state.fp1 = fp2;
6754 crtc->lowfreq_avail = true;
6755 } else {
6756 crtc_state->dpll_hw_state.fp1 = fp;
6757 }
6758 }
6759
6760 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6761 pipe)
6762 {
6763 u32 reg_val;
6764
6765 /*
6766 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6767 * and set it to a reasonable value instead.
6768 */
6769 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6770 reg_val &= 0xffffff00;
6771 reg_val |= 0x00000030;
6772 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6773
6774 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6775 reg_val &= 0x8cffffff;
6776 reg_val = 0x8c000000;
6777 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6778
6779 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6780 reg_val &= 0xffffff00;
6781 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6782
6783 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6784 reg_val &= 0x00ffffff;
6785 reg_val |= 0xb0000000;
6786 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6787 }
6788
6789 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6790 struct intel_link_m_n *m_n)
6791 {
6792 struct drm_device *dev = crtc->base.dev;
6793 struct drm_i915_private *dev_priv = dev->dev_private;
6794 int pipe = crtc->pipe;
6795
6796 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6797 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6798 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6799 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6800 }
6801
6802 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6803 struct intel_link_m_n *m_n,
6804 struct intel_link_m_n *m2_n2)
6805 {
6806 struct drm_device *dev = crtc->base.dev;
6807 struct drm_i915_private *dev_priv = dev->dev_private;
6808 int pipe = crtc->pipe;
6809 enum transcoder transcoder = crtc->config->cpu_transcoder;
6810
6811 if (INTEL_INFO(dev)->gen >= 5) {
6812 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6813 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6814 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6815 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6816 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6817 * for gen < 8) and if DRRS is supported (to make sure the
6818 * registers are not unnecessarily accessed).
6819 */
6820 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6821 crtc->config->has_drrs) {
6822 I915_WRITE(PIPE_DATA_M2(transcoder),
6823 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6824 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6825 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6826 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6827 }
6828 } else {
6829 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6830 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6831 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6832 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6833 }
6834 }
6835
6836 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6837 {
6838 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6839
6840 if (m_n == M1_N1) {
6841 dp_m_n = &crtc->config->dp_m_n;
6842 dp_m2_n2 = &crtc->config->dp_m2_n2;
6843 } else if (m_n == M2_N2) {
6844
6845 /*
6846 * M2_N2 registers are not supported. Hence m2_n2 divider value
6847 * needs to be programmed into M1_N1.
6848 */
6849 dp_m_n = &crtc->config->dp_m2_n2;
6850 } else {
6851 DRM_ERROR("Unsupported divider value\n");
6852 return;
6853 }
6854
6855 if (crtc->config->has_pch_encoder)
6856 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6857 else
6858 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6859 }
6860
6861 static void vlv_update_pll(struct intel_crtc *crtc,
6862 struct intel_crtc_state *pipe_config)
6863 {
6864 u32 dpll, dpll_md;
6865
6866 /*
6867 * Enable DPIO clock input. We should never disable the reference
6868 * clock for pipe B, since VGA hotplug / manual detection depends
6869 * on it.
6870 */
6871 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6872 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6873 /* We should never disable this, set it here for state tracking */
6874 if (crtc->pipe == PIPE_B)
6875 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6876 dpll |= DPLL_VCO_ENABLE;
6877 pipe_config->dpll_hw_state.dpll = dpll;
6878
6879 dpll_md = (pipe_config->pixel_multiplier - 1)
6880 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6881 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6882 }
6883
6884 static void vlv_prepare_pll(struct intel_crtc *crtc,
6885 const struct intel_crtc_state *pipe_config)
6886 {
6887 struct drm_device *dev = crtc->base.dev;
6888 struct drm_i915_private *dev_priv = dev->dev_private;
6889 int pipe = crtc->pipe;
6890 u32 mdiv;
6891 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6892 u32 coreclk, reg_val;
6893
6894 mutex_lock(&dev_priv->dpio_lock);
6895
6896 bestn = pipe_config->dpll.n;
6897 bestm1 = pipe_config->dpll.m1;
6898 bestm2 = pipe_config->dpll.m2;
6899 bestp1 = pipe_config->dpll.p1;
6900 bestp2 = pipe_config->dpll.p2;
6901
6902 /* See eDP HDMI DPIO driver vbios notes doc */
6903
6904 /* PLL B needs special handling */
6905 if (pipe == PIPE_B)
6906 vlv_pllb_recal_opamp(dev_priv, pipe);
6907
6908 /* Set up Tx target for periodic Rcomp update */
6909 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6910
6911 /* Disable target IRef on PLL */
6912 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6913 reg_val &= 0x00ffffff;
6914 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6915
6916 /* Disable fast lock */
6917 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6918
6919 /* Set idtafcrecal before PLL is enabled */
6920 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6921 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6922 mdiv |= ((bestn << DPIO_N_SHIFT));
6923 mdiv |= (1 << DPIO_K_SHIFT);
6924
6925 /*
6926 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6927 * but we don't support that).
6928 * Note: don't use the DAC post divider as it seems unstable.
6929 */
6930 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6931 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6932
6933 mdiv |= DPIO_ENABLE_CALIBRATION;
6934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6935
6936 /* Set HBR and RBR LPF coefficients */
6937 if (pipe_config->port_clock == 162000 ||
6938 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6939 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6940 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6941 0x009f0003);
6942 else
6943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6944 0x00d0000f);
6945
6946 if (pipe_config->has_dp_encoder) {
6947 /* Use SSC source */
6948 if (pipe == PIPE_A)
6949 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6950 0x0df40000);
6951 else
6952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6953 0x0df70000);
6954 } else { /* HDMI or VGA */
6955 /* Use bend source */
6956 if (pipe == PIPE_A)
6957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6958 0x0df70000);
6959 else
6960 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6961 0x0df40000);
6962 }
6963
6964 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6965 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6966 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6967 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6968 coreclk |= 0x01000000;
6969 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6970
6971 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6972 mutex_unlock(&dev_priv->dpio_lock);
6973 }
6974
6975 static void chv_update_pll(struct intel_crtc *crtc,
6976 struct intel_crtc_state *pipe_config)
6977 {
6978 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6979 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6980 DPLL_VCO_ENABLE;
6981 if (crtc->pipe != PIPE_A)
6982 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6983
6984 pipe_config->dpll_hw_state.dpll_md =
6985 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6986 }
6987
6988 static void chv_prepare_pll(struct intel_crtc *crtc,
6989 const struct intel_crtc_state *pipe_config)
6990 {
6991 struct drm_device *dev = crtc->base.dev;
6992 struct drm_i915_private *dev_priv = dev->dev_private;
6993 int pipe = crtc->pipe;
6994 int dpll_reg = DPLL(crtc->pipe);
6995 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6996 u32 loopfilter, tribuf_calcntr;
6997 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6998 u32 dpio_val;
6999 int vco;
7000
7001 bestn = pipe_config->dpll.n;
7002 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7003 bestm1 = pipe_config->dpll.m1;
7004 bestm2 = pipe_config->dpll.m2 >> 22;
7005 bestp1 = pipe_config->dpll.p1;
7006 bestp2 = pipe_config->dpll.p2;
7007 vco = pipe_config->dpll.vco;
7008 dpio_val = 0;
7009 loopfilter = 0;
7010
7011 /*
7012 * Enable Refclk and SSC
7013 */
7014 I915_WRITE(dpll_reg,
7015 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7016
7017 mutex_lock(&dev_priv->dpio_lock);
7018
7019 /* p1 and p2 divider */
7020 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7021 5 << DPIO_CHV_S1_DIV_SHIFT |
7022 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7023 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7024 1 << DPIO_CHV_K_DIV_SHIFT);
7025
7026 /* Feedback post-divider - m2 */
7027 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7028
7029 /* Feedback refclk divider - n and m1 */
7030 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7031 DPIO_CHV_M1_DIV_BY_2 |
7032 1 << DPIO_CHV_N_DIV_SHIFT);
7033
7034 /* M2 fraction division */
7035 if (bestm2_frac)
7036 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7037
7038 /* M2 fraction division enable */
7039 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7040 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7041 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7042 if (bestm2_frac)
7043 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7044 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7045
7046 /* Program digital lock detect threshold */
7047 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7048 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7049 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7050 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7051 if (!bestm2_frac)
7052 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7053 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7054
7055 /* Loop filter */
7056 if (vco == 5400000) {
7057 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7058 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7059 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7060 tribuf_calcntr = 0x9;
7061 } else if (vco <= 6200000) {
7062 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7063 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7064 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7065 tribuf_calcntr = 0x9;
7066 } else if (vco <= 6480000) {
7067 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7068 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7069 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7070 tribuf_calcntr = 0x8;
7071 } else {
7072 /* Not supported. Apply the same limits as in the max case */
7073 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7074 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7075 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7076 tribuf_calcntr = 0;
7077 }
7078 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7079
7080 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7081 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7082 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7083 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7084
7085 /* AFC Recal */
7086 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7087 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7088 DPIO_AFC_RECAL);
7089
7090 mutex_unlock(&dev_priv->dpio_lock);
7091 }
7092
7093 /**
7094 * vlv_force_pll_on - forcibly enable just the PLL
7095 * @dev_priv: i915 private structure
7096 * @pipe: pipe PLL to enable
7097 * @dpll: PLL configuration
7098 *
7099 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7100 * in cases where we need the PLL enabled even when @pipe is not going to
7101 * be enabled.
7102 */
7103 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7104 const struct dpll *dpll)
7105 {
7106 struct intel_crtc *crtc =
7107 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7108 struct intel_crtc_state pipe_config = {
7109 .base.crtc = &crtc->base,
7110 .pixel_multiplier = 1,
7111 .dpll = *dpll,
7112 };
7113
7114 if (IS_CHERRYVIEW(dev)) {
7115 chv_update_pll(crtc, &pipe_config);
7116 chv_prepare_pll(crtc, &pipe_config);
7117 chv_enable_pll(crtc, &pipe_config);
7118 } else {
7119 vlv_update_pll(crtc, &pipe_config);
7120 vlv_prepare_pll(crtc, &pipe_config);
7121 vlv_enable_pll(crtc, &pipe_config);
7122 }
7123 }
7124
7125 /**
7126 * vlv_force_pll_off - forcibly disable just the PLL
7127 * @dev_priv: i915 private structure
7128 * @pipe: pipe PLL to disable
7129 *
7130 * Disable the PLL for @pipe. To be used in cases where we need
7131 * the PLL enabled even when @pipe is not going to be enabled.
7132 */
7133 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7134 {
7135 if (IS_CHERRYVIEW(dev))
7136 chv_disable_pll(to_i915(dev), pipe);
7137 else
7138 vlv_disable_pll(to_i915(dev), pipe);
7139 }
7140
7141 static void i9xx_update_pll(struct intel_crtc *crtc,
7142 struct intel_crtc_state *crtc_state,
7143 intel_clock_t *reduced_clock,
7144 int num_connectors)
7145 {
7146 struct drm_device *dev = crtc->base.dev;
7147 struct drm_i915_private *dev_priv = dev->dev_private;
7148 u32 dpll;
7149 bool is_sdvo;
7150 struct dpll *clock = &crtc_state->dpll;
7151
7152 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7153
7154 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7155 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7156
7157 dpll = DPLL_VGA_MODE_DIS;
7158
7159 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7160 dpll |= DPLLB_MODE_LVDS;
7161 else
7162 dpll |= DPLLB_MODE_DAC_SERIAL;
7163
7164 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7165 dpll |= (crtc_state->pixel_multiplier - 1)
7166 << SDVO_MULTIPLIER_SHIFT_HIRES;
7167 }
7168
7169 if (is_sdvo)
7170 dpll |= DPLL_SDVO_HIGH_SPEED;
7171
7172 if (crtc_state->has_dp_encoder)
7173 dpll |= DPLL_SDVO_HIGH_SPEED;
7174
7175 /* compute bitmask from p1 value */
7176 if (IS_PINEVIEW(dev))
7177 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7178 else {
7179 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7180 if (IS_G4X(dev) && reduced_clock)
7181 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7182 }
7183 switch (clock->p2) {
7184 case 5:
7185 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7186 break;
7187 case 7:
7188 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7189 break;
7190 case 10:
7191 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7192 break;
7193 case 14:
7194 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7195 break;
7196 }
7197 if (INTEL_INFO(dev)->gen >= 4)
7198 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7199
7200 if (crtc_state->sdvo_tv_clock)
7201 dpll |= PLL_REF_INPUT_TVCLKINBC;
7202 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7203 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7204 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7205 else
7206 dpll |= PLL_REF_INPUT_DREFCLK;
7207
7208 dpll |= DPLL_VCO_ENABLE;
7209 crtc_state->dpll_hw_state.dpll = dpll;
7210
7211 if (INTEL_INFO(dev)->gen >= 4) {
7212 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7213 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7214 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7215 }
7216 }
7217
7218 static void i8xx_update_pll(struct intel_crtc *crtc,
7219 struct intel_crtc_state *crtc_state,
7220 intel_clock_t *reduced_clock,
7221 int num_connectors)
7222 {
7223 struct drm_device *dev = crtc->base.dev;
7224 struct drm_i915_private *dev_priv = dev->dev_private;
7225 u32 dpll;
7226 struct dpll *clock = &crtc_state->dpll;
7227
7228 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7229
7230 dpll = DPLL_VGA_MODE_DIS;
7231
7232 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7233 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7234 } else {
7235 if (clock->p1 == 2)
7236 dpll |= PLL_P1_DIVIDE_BY_TWO;
7237 else
7238 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7239 if (clock->p2 == 4)
7240 dpll |= PLL_P2_DIVIDE_BY_4;
7241 }
7242
7243 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7244 dpll |= DPLL_DVO_2X_MODE;
7245
7246 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7247 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7248 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7249 else
7250 dpll |= PLL_REF_INPUT_DREFCLK;
7251
7252 dpll |= DPLL_VCO_ENABLE;
7253 crtc_state->dpll_hw_state.dpll = dpll;
7254 }
7255
7256 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7257 {
7258 struct drm_device *dev = intel_crtc->base.dev;
7259 struct drm_i915_private *dev_priv = dev->dev_private;
7260 enum pipe pipe = intel_crtc->pipe;
7261 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7262 struct drm_display_mode *adjusted_mode =
7263 &intel_crtc->config->base.adjusted_mode;
7264 uint32_t crtc_vtotal, crtc_vblank_end;
7265 int vsyncshift = 0;
7266
7267 /* We need to be careful not to changed the adjusted mode, for otherwise
7268 * the hw state checker will get angry at the mismatch. */
7269 crtc_vtotal = adjusted_mode->crtc_vtotal;
7270 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7271
7272 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7273 /* the chip adds 2 halflines automatically */
7274 crtc_vtotal -= 1;
7275 crtc_vblank_end -= 1;
7276
7277 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7278 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7279 else
7280 vsyncshift = adjusted_mode->crtc_hsync_start -
7281 adjusted_mode->crtc_htotal / 2;
7282 if (vsyncshift < 0)
7283 vsyncshift += adjusted_mode->crtc_htotal;
7284 }
7285
7286 if (INTEL_INFO(dev)->gen > 3)
7287 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7288
7289 I915_WRITE(HTOTAL(cpu_transcoder),
7290 (adjusted_mode->crtc_hdisplay - 1) |
7291 ((adjusted_mode->crtc_htotal - 1) << 16));
7292 I915_WRITE(HBLANK(cpu_transcoder),
7293 (adjusted_mode->crtc_hblank_start - 1) |
7294 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7295 I915_WRITE(HSYNC(cpu_transcoder),
7296 (adjusted_mode->crtc_hsync_start - 1) |
7297 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7298
7299 I915_WRITE(VTOTAL(cpu_transcoder),
7300 (adjusted_mode->crtc_vdisplay - 1) |
7301 ((crtc_vtotal - 1) << 16));
7302 I915_WRITE(VBLANK(cpu_transcoder),
7303 (adjusted_mode->crtc_vblank_start - 1) |
7304 ((crtc_vblank_end - 1) << 16));
7305 I915_WRITE(VSYNC(cpu_transcoder),
7306 (adjusted_mode->crtc_vsync_start - 1) |
7307 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7308
7309 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7310 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7311 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7312 * bits. */
7313 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7314 (pipe == PIPE_B || pipe == PIPE_C))
7315 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7316
7317 /* pipesrc controls the size that is scaled from, which should
7318 * always be the user's requested size.
7319 */
7320 I915_WRITE(PIPESRC(pipe),
7321 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7322 (intel_crtc->config->pipe_src_h - 1));
7323 }
7324
7325 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7326 struct intel_crtc_state *pipe_config)
7327 {
7328 struct drm_device *dev = crtc->base.dev;
7329 struct drm_i915_private *dev_priv = dev->dev_private;
7330 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7331 uint32_t tmp;
7332
7333 tmp = I915_READ(HTOTAL(cpu_transcoder));
7334 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7335 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7336 tmp = I915_READ(HBLANK(cpu_transcoder));
7337 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7338 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7339 tmp = I915_READ(HSYNC(cpu_transcoder));
7340 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7341 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7342
7343 tmp = I915_READ(VTOTAL(cpu_transcoder));
7344 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7345 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7346 tmp = I915_READ(VBLANK(cpu_transcoder));
7347 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7348 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7349 tmp = I915_READ(VSYNC(cpu_transcoder));
7350 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7351 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7352
7353 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7354 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7355 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7356 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7357 }
7358
7359 tmp = I915_READ(PIPESRC(crtc->pipe));
7360 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7361 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7362
7363 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7364 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7365 }
7366
7367 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7368 struct intel_crtc_state *pipe_config)
7369 {
7370 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7371 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7372 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7373 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7374
7375 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7376 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7377 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7378 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7379
7380 mode->flags = pipe_config->base.adjusted_mode.flags;
7381
7382 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7383 mode->flags |= pipe_config->base.adjusted_mode.flags;
7384 }
7385
7386 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7387 {
7388 struct drm_device *dev = intel_crtc->base.dev;
7389 struct drm_i915_private *dev_priv = dev->dev_private;
7390 uint32_t pipeconf;
7391
7392 pipeconf = 0;
7393
7394 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7395 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7396 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7397
7398 if (intel_crtc->config->double_wide)
7399 pipeconf |= PIPECONF_DOUBLE_WIDE;
7400
7401 /* only g4x and later have fancy bpc/dither controls */
7402 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7403 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7404 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7405 pipeconf |= PIPECONF_DITHER_EN |
7406 PIPECONF_DITHER_TYPE_SP;
7407
7408 switch (intel_crtc->config->pipe_bpp) {
7409 case 18:
7410 pipeconf |= PIPECONF_6BPC;
7411 break;
7412 case 24:
7413 pipeconf |= PIPECONF_8BPC;
7414 break;
7415 case 30:
7416 pipeconf |= PIPECONF_10BPC;
7417 break;
7418 default:
7419 /* Case prevented by intel_choose_pipe_bpp_dither. */
7420 BUG();
7421 }
7422 }
7423
7424 if (HAS_PIPE_CXSR(dev)) {
7425 if (intel_crtc->lowfreq_avail) {
7426 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7427 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7428 } else {
7429 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7430 }
7431 }
7432
7433 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7434 if (INTEL_INFO(dev)->gen < 4 ||
7435 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7436 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7437 else
7438 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7439 } else
7440 pipeconf |= PIPECONF_PROGRESSIVE;
7441
7442 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7443 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7444
7445 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7446 POSTING_READ(PIPECONF(intel_crtc->pipe));
7447 }
7448
7449 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7450 struct intel_crtc_state *crtc_state)
7451 {
7452 struct drm_device *dev = crtc->base.dev;
7453 struct drm_i915_private *dev_priv = dev->dev_private;
7454 int refclk, num_connectors = 0;
7455 intel_clock_t clock, reduced_clock;
7456 bool ok, has_reduced_clock = false;
7457 bool is_lvds = false, is_dsi = false;
7458 struct intel_encoder *encoder;
7459 const intel_limit_t *limit;
7460 struct drm_atomic_state *state = crtc_state->base.state;
7461 struct drm_connector *connector;
7462 struct drm_connector_state *connector_state;
7463 int i;
7464
7465 for_each_connector_in_state(state, connector, connector_state, i) {
7466 if (connector_state->crtc != &crtc->base)
7467 continue;
7468
7469 encoder = to_intel_encoder(connector_state->best_encoder);
7470
7471 switch (encoder->type) {
7472 case INTEL_OUTPUT_LVDS:
7473 is_lvds = true;
7474 break;
7475 case INTEL_OUTPUT_DSI:
7476 is_dsi = true;
7477 break;
7478 default:
7479 break;
7480 }
7481
7482 num_connectors++;
7483 }
7484
7485 if (is_dsi)
7486 return 0;
7487
7488 if (!crtc_state->clock_set) {
7489 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7490
7491 /*
7492 * Returns a set of divisors for the desired target clock with
7493 * the given refclk, or FALSE. The returned values represent
7494 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7495 * 2) / p1 / p2.
7496 */
7497 limit = intel_limit(crtc_state, refclk);
7498 ok = dev_priv->display.find_dpll(limit, crtc_state,
7499 crtc_state->port_clock,
7500 refclk, NULL, &clock);
7501 if (!ok) {
7502 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7503 return -EINVAL;
7504 }
7505
7506 if (is_lvds && dev_priv->lvds_downclock_avail) {
7507 /*
7508 * Ensure we match the reduced clock's P to the target
7509 * clock. If the clocks don't match, we can't switch
7510 * the display clock by using the FP0/FP1. In such case
7511 * we will disable the LVDS downclock feature.
7512 */
7513 has_reduced_clock =
7514 dev_priv->display.find_dpll(limit, crtc_state,
7515 dev_priv->lvds_downclock,
7516 refclk, &clock,
7517 &reduced_clock);
7518 }
7519 /* Compat-code for transition, will disappear. */
7520 crtc_state->dpll.n = clock.n;
7521 crtc_state->dpll.m1 = clock.m1;
7522 crtc_state->dpll.m2 = clock.m2;
7523 crtc_state->dpll.p1 = clock.p1;
7524 crtc_state->dpll.p2 = clock.p2;
7525 }
7526
7527 if (IS_GEN2(dev)) {
7528 i8xx_update_pll(crtc, crtc_state,
7529 has_reduced_clock ? &reduced_clock : NULL,
7530 num_connectors);
7531 } else if (IS_CHERRYVIEW(dev)) {
7532 chv_update_pll(crtc, crtc_state);
7533 } else if (IS_VALLEYVIEW(dev)) {
7534 vlv_update_pll(crtc, crtc_state);
7535 } else {
7536 i9xx_update_pll(crtc, crtc_state,
7537 has_reduced_clock ? &reduced_clock : NULL,
7538 num_connectors);
7539 }
7540
7541 return 0;
7542 }
7543
7544 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7545 struct intel_crtc_state *pipe_config)
7546 {
7547 struct drm_device *dev = crtc->base.dev;
7548 struct drm_i915_private *dev_priv = dev->dev_private;
7549 uint32_t tmp;
7550
7551 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7552 return;
7553
7554 tmp = I915_READ(PFIT_CONTROL);
7555 if (!(tmp & PFIT_ENABLE))
7556 return;
7557
7558 /* Check whether the pfit is attached to our pipe. */
7559 if (INTEL_INFO(dev)->gen < 4) {
7560 if (crtc->pipe != PIPE_B)
7561 return;
7562 } else {
7563 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7564 return;
7565 }
7566
7567 pipe_config->gmch_pfit.control = tmp;
7568 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7569 if (INTEL_INFO(dev)->gen < 5)
7570 pipe_config->gmch_pfit.lvds_border_bits =
7571 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7572 }
7573
7574 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7575 struct intel_crtc_state *pipe_config)
7576 {
7577 struct drm_device *dev = crtc->base.dev;
7578 struct drm_i915_private *dev_priv = dev->dev_private;
7579 int pipe = pipe_config->cpu_transcoder;
7580 intel_clock_t clock;
7581 u32 mdiv;
7582 int refclk = 100000;
7583
7584 /* In case of MIPI DPLL will not even be used */
7585 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7586 return;
7587
7588 mutex_lock(&dev_priv->dpio_lock);
7589 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7590 mutex_unlock(&dev_priv->dpio_lock);
7591
7592 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7593 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7594 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7595 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7596 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7597
7598 vlv_clock(refclk, &clock);
7599
7600 /* clock.dot is the fast clock */
7601 pipe_config->port_clock = clock.dot / 5;
7602 }
7603
7604 static void
7605 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7606 struct intel_initial_plane_config *plane_config)
7607 {
7608 struct drm_device *dev = crtc->base.dev;
7609 struct drm_i915_private *dev_priv = dev->dev_private;
7610 u32 val, base, offset;
7611 int pipe = crtc->pipe, plane = crtc->plane;
7612 int fourcc, pixel_format;
7613 unsigned int aligned_height;
7614 struct drm_framebuffer *fb;
7615 struct intel_framebuffer *intel_fb;
7616
7617 val = I915_READ(DSPCNTR(plane));
7618 if (!(val & DISPLAY_PLANE_ENABLE))
7619 return;
7620
7621 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7622 if (!intel_fb) {
7623 DRM_DEBUG_KMS("failed to alloc fb\n");
7624 return;
7625 }
7626
7627 fb = &intel_fb->base;
7628
7629 if (INTEL_INFO(dev)->gen >= 4) {
7630 if (val & DISPPLANE_TILED) {
7631 plane_config->tiling = I915_TILING_X;
7632 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7633 }
7634 }
7635
7636 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7637 fourcc = i9xx_format_to_fourcc(pixel_format);
7638 fb->pixel_format = fourcc;
7639 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7640
7641 if (INTEL_INFO(dev)->gen >= 4) {
7642 if (plane_config->tiling)
7643 offset = I915_READ(DSPTILEOFF(plane));
7644 else
7645 offset = I915_READ(DSPLINOFF(plane));
7646 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7647 } else {
7648 base = I915_READ(DSPADDR(plane));
7649 }
7650 plane_config->base = base;
7651
7652 val = I915_READ(PIPESRC(pipe));
7653 fb->width = ((val >> 16) & 0xfff) + 1;
7654 fb->height = ((val >> 0) & 0xfff) + 1;
7655
7656 val = I915_READ(DSPSTRIDE(pipe));
7657 fb->pitches[0] = val & 0xffffffc0;
7658
7659 aligned_height = intel_fb_align_height(dev, fb->height,
7660 fb->pixel_format,
7661 fb->modifier[0]);
7662
7663 plane_config->size = fb->pitches[0] * aligned_height;
7664
7665 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7666 pipe_name(pipe), plane, fb->width, fb->height,
7667 fb->bits_per_pixel, base, fb->pitches[0],
7668 plane_config->size);
7669
7670 plane_config->fb = intel_fb;
7671 }
7672
7673 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7674 struct intel_crtc_state *pipe_config)
7675 {
7676 struct drm_device *dev = crtc->base.dev;
7677 struct drm_i915_private *dev_priv = dev->dev_private;
7678 int pipe = pipe_config->cpu_transcoder;
7679 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7680 intel_clock_t clock;
7681 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7682 int refclk = 100000;
7683
7684 mutex_lock(&dev_priv->dpio_lock);
7685 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7686 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7687 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7688 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7689 mutex_unlock(&dev_priv->dpio_lock);
7690
7691 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7692 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7693 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7694 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7695 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7696
7697 chv_clock(refclk, &clock);
7698
7699 /* clock.dot is the fast clock */
7700 pipe_config->port_clock = clock.dot / 5;
7701 }
7702
7703 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7704 struct intel_crtc_state *pipe_config)
7705 {
7706 struct drm_device *dev = crtc->base.dev;
7707 struct drm_i915_private *dev_priv = dev->dev_private;
7708 uint32_t tmp;
7709
7710 if (!intel_display_power_is_enabled(dev_priv,
7711 POWER_DOMAIN_PIPE(crtc->pipe)))
7712 return false;
7713
7714 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7715 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7716
7717 tmp = I915_READ(PIPECONF(crtc->pipe));
7718 if (!(tmp & PIPECONF_ENABLE))
7719 return false;
7720
7721 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7722 switch (tmp & PIPECONF_BPC_MASK) {
7723 case PIPECONF_6BPC:
7724 pipe_config->pipe_bpp = 18;
7725 break;
7726 case PIPECONF_8BPC:
7727 pipe_config->pipe_bpp = 24;
7728 break;
7729 case PIPECONF_10BPC:
7730 pipe_config->pipe_bpp = 30;
7731 break;
7732 default:
7733 break;
7734 }
7735 }
7736
7737 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7738 pipe_config->limited_color_range = true;
7739
7740 if (INTEL_INFO(dev)->gen < 4)
7741 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7742
7743 intel_get_pipe_timings(crtc, pipe_config);
7744
7745 i9xx_get_pfit_config(crtc, pipe_config);
7746
7747 if (INTEL_INFO(dev)->gen >= 4) {
7748 tmp = I915_READ(DPLL_MD(crtc->pipe));
7749 pipe_config->pixel_multiplier =
7750 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7751 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7752 pipe_config->dpll_hw_state.dpll_md = tmp;
7753 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7754 tmp = I915_READ(DPLL(crtc->pipe));
7755 pipe_config->pixel_multiplier =
7756 ((tmp & SDVO_MULTIPLIER_MASK)
7757 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7758 } else {
7759 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7760 * port and will be fixed up in the encoder->get_config
7761 * function. */
7762 pipe_config->pixel_multiplier = 1;
7763 }
7764 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7765 if (!IS_VALLEYVIEW(dev)) {
7766 /*
7767 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7768 * on 830. Filter it out here so that we don't
7769 * report errors due to that.
7770 */
7771 if (IS_I830(dev))
7772 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7773
7774 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7775 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7776 } else {
7777 /* Mask out read-only status bits. */
7778 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7779 DPLL_PORTC_READY_MASK |
7780 DPLL_PORTB_READY_MASK);
7781 }
7782
7783 if (IS_CHERRYVIEW(dev))
7784 chv_crtc_clock_get(crtc, pipe_config);
7785 else if (IS_VALLEYVIEW(dev))
7786 vlv_crtc_clock_get(crtc, pipe_config);
7787 else
7788 i9xx_crtc_clock_get(crtc, pipe_config);
7789
7790 return true;
7791 }
7792
7793 static void ironlake_init_pch_refclk(struct drm_device *dev)
7794 {
7795 struct drm_i915_private *dev_priv = dev->dev_private;
7796 struct intel_encoder *encoder;
7797 u32 val, final;
7798 bool has_lvds = false;
7799 bool has_cpu_edp = false;
7800 bool has_panel = false;
7801 bool has_ck505 = false;
7802 bool can_ssc = false;
7803
7804 /* We need to take the global config into account */
7805 for_each_intel_encoder(dev, encoder) {
7806 switch (encoder->type) {
7807 case INTEL_OUTPUT_LVDS:
7808 has_panel = true;
7809 has_lvds = true;
7810 break;
7811 case INTEL_OUTPUT_EDP:
7812 has_panel = true;
7813 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7814 has_cpu_edp = true;
7815 break;
7816 default:
7817 break;
7818 }
7819 }
7820
7821 if (HAS_PCH_IBX(dev)) {
7822 has_ck505 = dev_priv->vbt.display_clock_mode;
7823 can_ssc = has_ck505;
7824 } else {
7825 has_ck505 = false;
7826 can_ssc = true;
7827 }
7828
7829 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7830 has_panel, has_lvds, has_ck505);
7831
7832 /* Ironlake: try to setup display ref clock before DPLL
7833 * enabling. This is only under driver's control after
7834 * PCH B stepping, previous chipset stepping should be
7835 * ignoring this setting.
7836 */
7837 val = I915_READ(PCH_DREF_CONTROL);
7838
7839 /* As we must carefully and slowly disable/enable each source in turn,
7840 * compute the final state we want first and check if we need to
7841 * make any changes at all.
7842 */
7843 final = val;
7844 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7845 if (has_ck505)
7846 final |= DREF_NONSPREAD_CK505_ENABLE;
7847 else
7848 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7849
7850 final &= ~DREF_SSC_SOURCE_MASK;
7851 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7852 final &= ~DREF_SSC1_ENABLE;
7853
7854 if (has_panel) {
7855 final |= DREF_SSC_SOURCE_ENABLE;
7856
7857 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7858 final |= DREF_SSC1_ENABLE;
7859
7860 if (has_cpu_edp) {
7861 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7862 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7863 else
7864 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7865 } else
7866 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7867 } else {
7868 final |= DREF_SSC_SOURCE_DISABLE;
7869 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7870 }
7871
7872 if (final == val)
7873 return;
7874
7875 /* Always enable nonspread source */
7876 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7877
7878 if (has_ck505)
7879 val |= DREF_NONSPREAD_CK505_ENABLE;
7880 else
7881 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7882
7883 if (has_panel) {
7884 val &= ~DREF_SSC_SOURCE_MASK;
7885 val |= DREF_SSC_SOURCE_ENABLE;
7886
7887 /* SSC must be turned on before enabling the CPU output */
7888 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7889 DRM_DEBUG_KMS("Using SSC on panel\n");
7890 val |= DREF_SSC1_ENABLE;
7891 } else
7892 val &= ~DREF_SSC1_ENABLE;
7893
7894 /* Get SSC going before enabling the outputs */
7895 I915_WRITE(PCH_DREF_CONTROL, val);
7896 POSTING_READ(PCH_DREF_CONTROL);
7897 udelay(200);
7898
7899 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7900
7901 /* Enable CPU source on CPU attached eDP */
7902 if (has_cpu_edp) {
7903 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7904 DRM_DEBUG_KMS("Using SSC on eDP\n");
7905 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7906 } else
7907 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7908 } else
7909 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7910
7911 I915_WRITE(PCH_DREF_CONTROL, val);
7912 POSTING_READ(PCH_DREF_CONTROL);
7913 udelay(200);
7914 } else {
7915 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7916
7917 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7918
7919 /* Turn off CPU output */
7920 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7921
7922 I915_WRITE(PCH_DREF_CONTROL, val);
7923 POSTING_READ(PCH_DREF_CONTROL);
7924 udelay(200);
7925
7926 /* Turn off the SSC source */
7927 val &= ~DREF_SSC_SOURCE_MASK;
7928 val |= DREF_SSC_SOURCE_DISABLE;
7929
7930 /* Turn off SSC1 */
7931 val &= ~DREF_SSC1_ENABLE;
7932
7933 I915_WRITE(PCH_DREF_CONTROL, val);
7934 POSTING_READ(PCH_DREF_CONTROL);
7935 udelay(200);
7936 }
7937
7938 BUG_ON(val != final);
7939 }
7940
7941 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7942 {
7943 uint32_t tmp;
7944
7945 tmp = I915_READ(SOUTH_CHICKEN2);
7946 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7947 I915_WRITE(SOUTH_CHICKEN2, tmp);
7948
7949 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7950 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7951 DRM_ERROR("FDI mPHY reset assert timeout\n");
7952
7953 tmp = I915_READ(SOUTH_CHICKEN2);
7954 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7955 I915_WRITE(SOUTH_CHICKEN2, tmp);
7956
7957 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7958 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7959 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7960 }
7961
7962 /* WaMPhyProgramming:hsw */
7963 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7964 {
7965 uint32_t tmp;
7966
7967 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7968 tmp &= ~(0xFF << 24);
7969 tmp |= (0x12 << 24);
7970 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7971
7972 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7973 tmp |= (1 << 11);
7974 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7975
7976 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7977 tmp |= (1 << 11);
7978 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7979
7980 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7981 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7982 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7983
7984 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7985 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7986 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7987
7988 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7989 tmp &= ~(7 << 13);
7990 tmp |= (5 << 13);
7991 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7992
7993 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7994 tmp &= ~(7 << 13);
7995 tmp |= (5 << 13);
7996 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7997
7998 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7999 tmp &= ~0xFF;
8000 tmp |= 0x1C;
8001 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8002
8003 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8004 tmp &= ~0xFF;
8005 tmp |= 0x1C;
8006 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8007
8008 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8009 tmp &= ~(0xFF << 16);
8010 tmp |= (0x1C << 16);
8011 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8012
8013 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8014 tmp &= ~(0xFF << 16);
8015 tmp |= (0x1C << 16);
8016 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8017
8018 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8019 tmp |= (1 << 27);
8020 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8021
8022 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8023 tmp |= (1 << 27);
8024 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8025
8026 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8027 tmp &= ~(0xF << 28);
8028 tmp |= (4 << 28);
8029 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8030
8031 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8032 tmp &= ~(0xF << 28);
8033 tmp |= (4 << 28);
8034 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8035 }
8036
8037 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8038 * Programming" based on the parameters passed:
8039 * - Sequence to enable CLKOUT_DP
8040 * - Sequence to enable CLKOUT_DP without spread
8041 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8042 */
8043 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8044 bool with_fdi)
8045 {
8046 struct drm_i915_private *dev_priv = dev->dev_private;
8047 uint32_t reg, tmp;
8048
8049 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8050 with_spread = true;
8051 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8052 with_fdi, "LP PCH doesn't have FDI\n"))
8053 with_fdi = false;
8054
8055 mutex_lock(&dev_priv->dpio_lock);
8056
8057 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8058 tmp &= ~SBI_SSCCTL_DISABLE;
8059 tmp |= SBI_SSCCTL_PATHALT;
8060 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8061
8062 udelay(24);
8063
8064 if (with_spread) {
8065 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8066 tmp &= ~SBI_SSCCTL_PATHALT;
8067 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8068
8069 if (with_fdi) {
8070 lpt_reset_fdi_mphy(dev_priv);
8071 lpt_program_fdi_mphy(dev_priv);
8072 }
8073 }
8074
8075 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8076 SBI_GEN0 : SBI_DBUFF0;
8077 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8078 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8079 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8080
8081 mutex_unlock(&dev_priv->dpio_lock);
8082 }
8083
8084 /* Sequence to disable CLKOUT_DP */
8085 static void lpt_disable_clkout_dp(struct drm_device *dev)
8086 {
8087 struct drm_i915_private *dev_priv = dev->dev_private;
8088 uint32_t reg, tmp;
8089
8090 mutex_lock(&dev_priv->dpio_lock);
8091
8092 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8093 SBI_GEN0 : SBI_DBUFF0;
8094 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8095 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8096 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8097
8098 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8099 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8100 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8101 tmp |= SBI_SSCCTL_PATHALT;
8102 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8103 udelay(32);
8104 }
8105 tmp |= SBI_SSCCTL_DISABLE;
8106 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8107 }
8108
8109 mutex_unlock(&dev_priv->dpio_lock);
8110 }
8111
8112 static void lpt_init_pch_refclk(struct drm_device *dev)
8113 {
8114 struct intel_encoder *encoder;
8115 bool has_vga = false;
8116
8117 for_each_intel_encoder(dev, encoder) {
8118 switch (encoder->type) {
8119 case INTEL_OUTPUT_ANALOG:
8120 has_vga = true;
8121 break;
8122 default:
8123 break;
8124 }
8125 }
8126
8127 if (has_vga)
8128 lpt_enable_clkout_dp(dev, true, true);
8129 else
8130 lpt_disable_clkout_dp(dev);
8131 }
8132
8133 /*
8134 * Initialize reference clocks when the driver loads
8135 */
8136 void intel_init_pch_refclk(struct drm_device *dev)
8137 {
8138 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8139 ironlake_init_pch_refclk(dev);
8140 else if (HAS_PCH_LPT(dev))
8141 lpt_init_pch_refclk(dev);
8142 }
8143
8144 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8145 {
8146 struct drm_device *dev = crtc_state->base.crtc->dev;
8147 struct drm_i915_private *dev_priv = dev->dev_private;
8148 struct drm_atomic_state *state = crtc_state->base.state;
8149 struct drm_connector *connector;
8150 struct drm_connector_state *connector_state;
8151 struct intel_encoder *encoder;
8152 int num_connectors = 0, i;
8153 bool is_lvds = false;
8154
8155 for_each_connector_in_state(state, connector, connector_state, i) {
8156 if (connector_state->crtc != crtc_state->base.crtc)
8157 continue;
8158
8159 encoder = to_intel_encoder(connector_state->best_encoder);
8160
8161 switch (encoder->type) {
8162 case INTEL_OUTPUT_LVDS:
8163 is_lvds = true;
8164 break;
8165 default:
8166 break;
8167 }
8168 num_connectors++;
8169 }
8170
8171 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8172 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8173 dev_priv->vbt.lvds_ssc_freq);
8174 return dev_priv->vbt.lvds_ssc_freq;
8175 }
8176
8177 return 120000;
8178 }
8179
8180 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8181 {
8182 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8184 int pipe = intel_crtc->pipe;
8185 uint32_t val;
8186
8187 val = 0;
8188
8189 switch (intel_crtc->config->pipe_bpp) {
8190 case 18:
8191 val |= PIPECONF_6BPC;
8192 break;
8193 case 24:
8194 val |= PIPECONF_8BPC;
8195 break;
8196 case 30:
8197 val |= PIPECONF_10BPC;
8198 break;
8199 case 36:
8200 val |= PIPECONF_12BPC;
8201 break;
8202 default:
8203 /* Case prevented by intel_choose_pipe_bpp_dither. */
8204 BUG();
8205 }
8206
8207 if (intel_crtc->config->dither)
8208 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8209
8210 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8211 val |= PIPECONF_INTERLACED_ILK;
8212 else
8213 val |= PIPECONF_PROGRESSIVE;
8214
8215 if (intel_crtc->config->limited_color_range)
8216 val |= PIPECONF_COLOR_RANGE_SELECT;
8217
8218 I915_WRITE(PIPECONF(pipe), val);
8219 POSTING_READ(PIPECONF(pipe));
8220 }
8221
8222 /*
8223 * Set up the pipe CSC unit.
8224 *
8225 * Currently only full range RGB to limited range RGB conversion
8226 * is supported, but eventually this should handle various
8227 * RGB<->YCbCr scenarios as well.
8228 */
8229 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8230 {
8231 struct drm_device *dev = crtc->dev;
8232 struct drm_i915_private *dev_priv = dev->dev_private;
8233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8234 int pipe = intel_crtc->pipe;
8235 uint16_t coeff = 0x7800; /* 1.0 */
8236
8237 /*
8238 * TODO: Check what kind of values actually come out of the pipe
8239 * with these coeff/postoff values and adjust to get the best
8240 * accuracy. Perhaps we even need to take the bpc value into
8241 * consideration.
8242 */
8243
8244 if (intel_crtc->config->limited_color_range)
8245 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8246
8247 /*
8248 * GY/GU and RY/RU should be the other way around according
8249 * to BSpec, but reality doesn't agree. Just set them up in
8250 * a way that results in the correct picture.
8251 */
8252 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8253 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8254
8255 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8256 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8257
8258 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8259 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8260
8261 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8262 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8263 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8264
8265 if (INTEL_INFO(dev)->gen > 6) {
8266 uint16_t postoff = 0;
8267
8268 if (intel_crtc->config->limited_color_range)
8269 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8270
8271 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8272 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8273 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8274
8275 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8276 } else {
8277 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8278
8279 if (intel_crtc->config->limited_color_range)
8280 mode |= CSC_BLACK_SCREEN_OFFSET;
8281
8282 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8283 }
8284 }
8285
8286 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8287 {
8288 struct drm_device *dev = crtc->dev;
8289 struct drm_i915_private *dev_priv = dev->dev_private;
8290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8291 enum pipe pipe = intel_crtc->pipe;
8292 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8293 uint32_t val;
8294
8295 val = 0;
8296
8297 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8298 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8299
8300 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8301 val |= PIPECONF_INTERLACED_ILK;
8302 else
8303 val |= PIPECONF_PROGRESSIVE;
8304
8305 I915_WRITE(PIPECONF(cpu_transcoder), val);
8306 POSTING_READ(PIPECONF(cpu_transcoder));
8307
8308 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8309 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8310
8311 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8312 val = 0;
8313
8314 switch (intel_crtc->config->pipe_bpp) {
8315 case 18:
8316 val |= PIPEMISC_DITHER_6_BPC;
8317 break;
8318 case 24:
8319 val |= PIPEMISC_DITHER_8_BPC;
8320 break;
8321 case 30:
8322 val |= PIPEMISC_DITHER_10_BPC;
8323 break;
8324 case 36:
8325 val |= PIPEMISC_DITHER_12_BPC;
8326 break;
8327 default:
8328 /* Case prevented by pipe_config_set_bpp. */
8329 BUG();
8330 }
8331
8332 if (intel_crtc->config->dither)
8333 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8334
8335 I915_WRITE(PIPEMISC(pipe), val);
8336 }
8337 }
8338
8339 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8340 struct intel_crtc_state *crtc_state,
8341 intel_clock_t *clock,
8342 bool *has_reduced_clock,
8343 intel_clock_t *reduced_clock)
8344 {
8345 struct drm_device *dev = crtc->dev;
8346 struct drm_i915_private *dev_priv = dev->dev_private;
8347 int refclk;
8348 const intel_limit_t *limit;
8349 bool ret, is_lvds = false;
8350
8351 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8352
8353 refclk = ironlake_get_refclk(crtc_state);
8354
8355 /*
8356 * Returns a set of divisors for the desired target clock with the given
8357 * refclk, or FALSE. The returned values represent the clock equation:
8358 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8359 */
8360 limit = intel_limit(crtc_state, refclk);
8361 ret = dev_priv->display.find_dpll(limit, crtc_state,
8362 crtc_state->port_clock,
8363 refclk, NULL, clock);
8364 if (!ret)
8365 return false;
8366
8367 if (is_lvds && dev_priv->lvds_downclock_avail) {
8368 /*
8369 * Ensure we match the reduced clock's P to the target clock.
8370 * If the clocks don't match, we can't switch the display clock
8371 * by using the FP0/FP1. In such case we will disable the LVDS
8372 * downclock feature.
8373 */
8374 *has_reduced_clock =
8375 dev_priv->display.find_dpll(limit, crtc_state,
8376 dev_priv->lvds_downclock,
8377 refclk, clock,
8378 reduced_clock);
8379 }
8380
8381 return true;
8382 }
8383
8384 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8385 {
8386 /*
8387 * Account for spread spectrum to avoid
8388 * oversubscribing the link. Max center spread
8389 * is 2.5%; use 5% for safety's sake.
8390 */
8391 u32 bps = target_clock * bpp * 21 / 20;
8392 return DIV_ROUND_UP(bps, link_bw * 8);
8393 }
8394
8395 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8396 {
8397 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8398 }
8399
8400 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8401 struct intel_crtc_state *crtc_state,
8402 u32 *fp,
8403 intel_clock_t *reduced_clock, u32 *fp2)
8404 {
8405 struct drm_crtc *crtc = &intel_crtc->base;
8406 struct drm_device *dev = crtc->dev;
8407 struct drm_i915_private *dev_priv = dev->dev_private;
8408 struct drm_atomic_state *state = crtc_state->base.state;
8409 struct drm_connector *connector;
8410 struct drm_connector_state *connector_state;
8411 struct intel_encoder *encoder;
8412 uint32_t dpll;
8413 int factor, num_connectors = 0, i;
8414 bool is_lvds = false, is_sdvo = false;
8415
8416 for_each_connector_in_state(state, connector, connector_state, i) {
8417 if (connector_state->crtc != crtc_state->base.crtc)
8418 continue;
8419
8420 encoder = to_intel_encoder(connector_state->best_encoder);
8421
8422 switch (encoder->type) {
8423 case INTEL_OUTPUT_LVDS:
8424 is_lvds = true;
8425 break;
8426 case INTEL_OUTPUT_SDVO:
8427 case INTEL_OUTPUT_HDMI:
8428 is_sdvo = true;
8429 break;
8430 default:
8431 break;
8432 }
8433
8434 num_connectors++;
8435 }
8436
8437 /* Enable autotuning of the PLL clock (if permissible) */
8438 factor = 21;
8439 if (is_lvds) {
8440 if ((intel_panel_use_ssc(dev_priv) &&
8441 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8442 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8443 factor = 25;
8444 } else if (crtc_state->sdvo_tv_clock)
8445 factor = 20;
8446
8447 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8448 *fp |= FP_CB_TUNE;
8449
8450 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8451 *fp2 |= FP_CB_TUNE;
8452
8453 dpll = 0;
8454
8455 if (is_lvds)
8456 dpll |= DPLLB_MODE_LVDS;
8457 else
8458 dpll |= DPLLB_MODE_DAC_SERIAL;
8459
8460 dpll |= (crtc_state->pixel_multiplier - 1)
8461 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8462
8463 if (is_sdvo)
8464 dpll |= DPLL_SDVO_HIGH_SPEED;
8465 if (crtc_state->has_dp_encoder)
8466 dpll |= DPLL_SDVO_HIGH_SPEED;
8467
8468 /* compute bitmask from p1 value */
8469 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8470 /* also FPA1 */
8471 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8472
8473 switch (crtc_state->dpll.p2) {
8474 case 5:
8475 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8476 break;
8477 case 7:
8478 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8479 break;
8480 case 10:
8481 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8482 break;
8483 case 14:
8484 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8485 break;
8486 }
8487
8488 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8489 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8490 else
8491 dpll |= PLL_REF_INPUT_DREFCLK;
8492
8493 return dpll | DPLL_VCO_ENABLE;
8494 }
8495
8496 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8497 struct intel_crtc_state *crtc_state)
8498 {
8499 struct drm_device *dev = crtc->base.dev;
8500 intel_clock_t clock, reduced_clock;
8501 u32 dpll = 0, fp = 0, fp2 = 0;
8502 bool ok, has_reduced_clock = false;
8503 bool is_lvds = false;
8504 struct intel_shared_dpll *pll;
8505
8506 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8507
8508 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8509 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8510
8511 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8512 &has_reduced_clock, &reduced_clock);
8513 if (!ok && !crtc_state->clock_set) {
8514 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8515 return -EINVAL;
8516 }
8517 /* Compat-code for transition, will disappear. */
8518 if (!crtc_state->clock_set) {
8519 crtc_state->dpll.n = clock.n;
8520 crtc_state->dpll.m1 = clock.m1;
8521 crtc_state->dpll.m2 = clock.m2;
8522 crtc_state->dpll.p1 = clock.p1;
8523 crtc_state->dpll.p2 = clock.p2;
8524 }
8525
8526 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8527 if (crtc_state->has_pch_encoder) {
8528 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8529 if (has_reduced_clock)
8530 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8531
8532 dpll = ironlake_compute_dpll(crtc, crtc_state,
8533 &fp, &reduced_clock,
8534 has_reduced_clock ? &fp2 : NULL);
8535
8536 crtc_state->dpll_hw_state.dpll = dpll;
8537 crtc_state->dpll_hw_state.fp0 = fp;
8538 if (has_reduced_clock)
8539 crtc_state->dpll_hw_state.fp1 = fp2;
8540 else
8541 crtc_state->dpll_hw_state.fp1 = fp;
8542
8543 pll = intel_get_shared_dpll(crtc, crtc_state);
8544 if (pll == NULL) {
8545 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8546 pipe_name(crtc->pipe));
8547 return -EINVAL;
8548 }
8549 }
8550
8551 if (is_lvds && has_reduced_clock)
8552 crtc->lowfreq_avail = true;
8553 else
8554 crtc->lowfreq_avail = false;
8555
8556 return 0;
8557 }
8558
8559 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8560 struct intel_link_m_n *m_n)
8561 {
8562 struct drm_device *dev = crtc->base.dev;
8563 struct drm_i915_private *dev_priv = dev->dev_private;
8564 enum pipe pipe = crtc->pipe;
8565
8566 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8567 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8568 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8569 & ~TU_SIZE_MASK;
8570 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8571 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8572 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8573 }
8574
8575 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8576 enum transcoder transcoder,
8577 struct intel_link_m_n *m_n,
8578 struct intel_link_m_n *m2_n2)
8579 {
8580 struct drm_device *dev = crtc->base.dev;
8581 struct drm_i915_private *dev_priv = dev->dev_private;
8582 enum pipe pipe = crtc->pipe;
8583
8584 if (INTEL_INFO(dev)->gen >= 5) {
8585 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8586 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8587 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8588 & ~TU_SIZE_MASK;
8589 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8590 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8591 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8592 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8593 * gen < 8) and if DRRS is supported (to make sure the
8594 * registers are not unnecessarily read).
8595 */
8596 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8597 crtc->config->has_drrs) {
8598 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8599 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8600 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8601 & ~TU_SIZE_MASK;
8602 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8603 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8604 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8605 }
8606 } else {
8607 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8608 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8609 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8610 & ~TU_SIZE_MASK;
8611 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8612 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8613 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8614 }
8615 }
8616
8617 void intel_dp_get_m_n(struct intel_crtc *crtc,
8618 struct intel_crtc_state *pipe_config)
8619 {
8620 if (pipe_config->has_pch_encoder)
8621 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8622 else
8623 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8624 &pipe_config->dp_m_n,
8625 &pipe_config->dp_m2_n2);
8626 }
8627
8628 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8629 struct intel_crtc_state *pipe_config)
8630 {
8631 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8632 &pipe_config->fdi_m_n, NULL);
8633 }
8634
8635 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8636 struct intel_crtc_state *pipe_config)
8637 {
8638 struct drm_device *dev = crtc->base.dev;
8639 struct drm_i915_private *dev_priv = dev->dev_private;
8640 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8641 uint32_t ps_ctrl = 0;
8642 int id = -1;
8643 int i;
8644
8645 /* find scaler attached to this pipe */
8646 for (i = 0; i < crtc->num_scalers; i++) {
8647 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8648 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8649 id = i;
8650 pipe_config->pch_pfit.enabled = true;
8651 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8652 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8653 break;
8654 }
8655 }
8656
8657 scaler_state->scaler_id = id;
8658 if (id >= 0) {
8659 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8660 } else {
8661 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8662 }
8663 }
8664
8665 static void
8666 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8667 struct intel_initial_plane_config *plane_config)
8668 {
8669 struct drm_device *dev = crtc->base.dev;
8670 struct drm_i915_private *dev_priv = dev->dev_private;
8671 u32 val, base, offset, stride_mult, tiling;
8672 int pipe = crtc->pipe;
8673 int fourcc, pixel_format;
8674 unsigned int aligned_height;
8675 struct drm_framebuffer *fb;
8676 struct intel_framebuffer *intel_fb;
8677
8678 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8679 if (!intel_fb) {
8680 DRM_DEBUG_KMS("failed to alloc fb\n");
8681 return;
8682 }
8683
8684 fb = &intel_fb->base;
8685
8686 val = I915_READ(PLANE_CTL(pipe, 0));
8687 if (!(val & PLANE_CTL_ENABLE))
8688 goto error;
8689
8690 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8691 fourcc = skl_format_to_fourcc(pixel_format,
8692 val & PLANE_CTL_ORDER_RGBX,
8693 val & PLANE_CTL_ALPHA_MASK);
8694 fb->pixel_format = fourcc;
8695 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8696
8697 tiling = val & PLANE_CTL_TILED_MASK;
8698 switch (tiling) {
8699 case PLANE_CTL_TILED_LINEAR:
8700 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8701 break;
8702 case PLANE_CTL_TILED_X:
8703 plane_config->tiling = I915_TILING_X;
8704 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8705 break;
8706 case PLANE_CTL_TILED_Y:
8707 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8708 break;
8709 case PLANE_CTL_TILED_YF:
8710 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8711 break;
8712 default:
8713 MISSING_CASE(tiling);
8714 goto error;
8715 }
8716
8717 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8718 plane_config->base = base;
8719
8720 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8721
8722 val = I915_READ(PLANE_SIZE(pipe, 0));
8723 fb->height = ((val >> 16) & 0xfff) + 1;
8724 fb->width = ((val >> 0) & 0x1fff) + 1;
8725
8726 val = I915_READ(PLANE_STRIDE(pipe, 0));
8727 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8728 fb->pixel_format);
8729 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8730
8731 aligned_height = intel_fb_align_height(dev, fb->height,
8732 fb->pixel_format,
8733 fb->modifier[0]);
8734
8735 plane_config->size = fb->pitches[0] * aligned_height;
8736
8737 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8738 pipe_name(pipe), fb->width, fb->height,
8739 fb->bits_per_pixel, base, fb->pitches[0],
8740 plane_config->size);
8741
8742 plane_config->fb = intel_fb;
8743 return;
8744
8745 error:
8746 kfree(fb);
8747 }
8748
8749 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8750 struct intel_crtc_state *pipe_config)
8751 {
8752 struct drm_device *dev = crtc->base.dev;
8753 struct drm_i915_private *dev_priv = dev->dev_private;
8754 uint32_t tmp;
8755
8756 tmp = I915_READ(PF_CTL(crtc->pipe));
8757
8758 if (tmp & PF_ENABLE) {
8759 pipe_config->pch_pfit.enabled = true;
8760 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8761 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8762
8763 /* We currently do not free assignements of panel fitters on
8764 * ivb/hsw (since we don't use the higher upscaling modes which
8765 * differentiates them) so just WARN about this case for now. */
8766 if (IS_GEN7(dev)) {
8767 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8768 PF_PIPE_SEL_IVB(crtc->pipe));
8769 }
8770 }
8771 }
8772
8773 static void
8774 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8775 struct intel_initial_plane_config *plane_config)
8776 {
8777 struct drm_device *dev = crtc->base.dev;
8778 struct drm_i915_private *dev_priv = dev->dev_private;
8779 u32 val, base, offset;
8780 int pipe = crtc->pipe;
8781 int fourcc, pixel_format;
8782 unsigned int aligned_height;
8783 struct drm_framebuffer *fb;
8784 struct intel_framebuffer *intel_fb;
8785
8786 val = I915_READ(DSPCNTR(pipe));
8787 if (!(val & DISPLAY_PLANE_ENABLE))
8788 return;
8789
8790 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8791 if (!intel_fb) {
8792 DRM_DEBUG_KMS("failed to alloc fb\n");
8793 return;
8794 }
8795
8796 fb = &intel_fb->base;
8797
8798 if (INTEL_INFO(dev)->gen >= 4) {
8799 if (val & DISPPLANE_TILED) {
8800 plane_config->tiling = I915_TILING_X;
8801 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8802 }
8803 }
8804
8805 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8806 fourcc = i9xx_format_to_fourcc(pixel_format);
8807 fb->pixel_format = fourcc;
8808 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8809
8810 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8811 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8812 offset = I915_READ(DSPOFFSET(pipe));
8813 } else {
8814 if (plane_config->tiling)
8815 offset = I915_READ(DSPTILEOFF(pipe));
8816 else
8817 offset = I915_READ(DSPLINOFF(pipe));
8818 }
8819 plane_config->base = base;
8820
8821 val = I915_READ(PIPESRC(pipe));
8822 fb->width = ((val >> 16) & 0xfff) + 1;
8823 fb->height = ((val >> 0) & 0xfff) + 1;
8824
8825 val = I915_READ(DSPSTRIDE(pipe));
8826 fb->pitches[0] = val & 0xffffffc0;
8827
8828 aligned_height = intel_fb_align_height(dev, fb->height,
8829 fb->pixel_format,
8830 fb->modifier[0]);
8831
8832 plane_config->size = fb->pitches[0] * aligned_height;
8833
8834 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8835 pipe_name(pipe), fb->width, fb->height,
8836 fb->bits_per_pixel, base, fb->pitches[0],
8837 plane_config->size);
8838
8839 plane_config->fb = intel_fb;
8840 }
8841
8842 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8843 struct intel_crtc_state *pipe_config)
8844 {
8845 struct drm_device *dev = crtc->base.dev;
8846 struct drm_i915_private *dev_priv = dev->dev_private;
8847 uint32_t tmp;
8848
8849 if (!intel_display_power_is_enabled(dev_priv,
8850 POWER_DOMAIN_PIPE(crtc->pipe)))
8851 return false;
8852
8853 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8854 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8855
8856 tmp = I915_READ(PIPECONF(crtc->pipe));
8857 if (!(tmp & PIPECONF_ENABLE))
8858 return false;
8859
8860 switch (tmp & PIPECONF_BPC_MASK) {
8861 case PIPECONF_6BPC:
8862 pipe_config->pipe_bpp = 18;
8863 break;
8864 case PIPECONF_8BPC:
8865 pipe_config->pipe_bpp = 24;
8866 break;
8867 case PIPECONF_10BPC:
8868 pipe_config->pipe_bpp = 30;
8869 break;
8870 case PIPECONF_12BPC:
8871 pipe_config->pipe_bpp = 36;
8872 break;
8873 default:
8874 break;
8875 }
8876
8877 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8878 pipe_config->limited_color_range = true;
8879
8880 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8881 struct intel_shared_dpll *pll;
8882
8883 pipe_config->has_pch_encoder = true;
8884
8885 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8886 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8887 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8888
8889 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8890
8891 if (HAS_PCH_IBX(dev_priv->dev)) {
8892 pipe_config->shared_dpll =
8893 (enum intel_dpll_id) crtc->pipe;
8894 } else {
8895 tmp = I915_READ(PCH_DPLL_SEL);
8896 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8897 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8898 else
8899 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8900 }
8901
8902 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8903
8904 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8905 &pipe_config->dpll_hw_state));
8906
8907 tmp = pipe_config->dpll_hw_state.dpll;
8908 pipe_config->pixel_multiplier =
8909 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8910 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8911
8912 ironlake_pch_clock_get(crtc, pipe_config);
8913 } else {
8914 pipe_config->pixel_multiplier = 1;
8915 }
8916
8917 intel_get_pipe_timings(crtc, pipe_config);
8918
8919 ironlake_get_pfit_config(crtc, pipe_config);
8920
8921 return true;
8922 }
8923
8924 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8925 {
8926 struct drm_device *dev = dev_priv->dev;
8927 struct intel_crtc *crtc;
8928
8929 for_each_intel_crtc(dev, crtc)
8930 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8931 pipe_name(crtc->pipe));
8932
8933 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8934 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8935 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8936 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8937 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8938 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8939 "CPU PWM1 enabled\n");
8940 if (IS_HASWELL(dev))
8941 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8942 "CPU PWM2 enabled\n");
8943 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8944 "PCH PWM1 enabled\n");
8945 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8946 "Utility pin enabled\n");
8947 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8948
8949 /*
8950 * In theory we can still leave IRQs enabled, as long as only the HPD
8951 * interrupts remain enabled. We used to check for that, but since it's
8952 * gen-specific and since we only disable LCPLL after we fully disable
8953 * the interrupts, the check below should be enough.
8954 */
8955 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8956 }
8957
8958 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8959 {
8960 struct drm_device *dev = dev_priv->dev;
8961
8962 if (IS_HASWELL(dev))
8963 return I915_READ(D_COMP_HSW);
8964 else
8965 return I915_READ(D_COMP_BDW);
8966 }
8967
8968 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8969 {
8970 struct drm_device *dev = dev_priv->dev;
8971
8972 if (IS_HASWELL(dev)) {
8973 mutex_lock(&dev_priv->rps.hw_lock);
8974 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8975 val))
8976 DRM_ERROR("Failed to write to D_COMP\n");
8977 mutex_unlock(&dev_priv->rps.hw_lock);
8978 } else {
8979 I915_WRITE(D_COMP_BDW, val);
8980 POSTING_READ(D_COMP_BDW);
8981 }
8982 }
8983
8984 /*
8985 * This function implements pieces of two sequences from BSpec:
8986 * - Sequence for display software to disable LCPLL
8987 * - Sequence for display software to allow package C8+
8988 * The steps implemented here are just the steps that actually touch the LCPLL
8989 * register. Callers should take care of disabling all the display engine
8990 * functions, doing the mode unset, fixing interrupts, etc.
8991 */
8992 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8993 bool switch_to_fclk, bool allow_power_down)
8994 {
8995 uint32_t val;
8996
8997 assert_can_disable_lcpll(dev_priv);
8998
8999 val = I915_READ(LCPLL_CTL);
9000
9001 if (switch_to_fclk) {
9002 val |= LCPLL_CD_SOURCE_FCLK;
9003 I915_WRITE(LCPLL_CTL, val);
9004
9005 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9006 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9007 DRM_ERROR("Switching to FCLK failed\n");
9008
9009 val = I915_READ(LCPLL_CTL);
9010 }
9011
9012 val |= LCPLL_PLL_DISABLE;
9013 I915_WRITE(LCPLL_CTL, val);
9014 POSTING_READ(LCPLL_CTL);
9015
9016 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9017 DRM_ERROR("LCPLL still locked\n");
9018
9019 val = hsw_read_dcomp(dev_priv);
9020 val |= D_COMP_COMP_DISABLE;
9021 hsw_write_dcomp(dev_priv, val);
9022 ndelay(100);
9023
9024 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9025 1))
9026 DRM_ERROR("D_COMP RCOMP still in progress\n");
9027
9028 if (allow_power_down) {
9029 val = I915_READ(LCPLL_CTL);
9030 val |= LCPLL_POWER_DOWN_ALLOW;
9031 I915_WRITE(LCPLL_CTL, val);
9032 POSTING_READ(LCPLL_CTL);
9033 }
9034 }
9035
9036 /*
9037 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9038 * source.
9039 */
9040 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9041 {
9042 uint32_t val;
9043
9044 val = I915_READ(LCPLL_CTL);
9045
9046 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9047 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9048 return;
9049
9050 /*
9051 * Make sure we're not on PC8 state before disabling PC8, otherwise
9052 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9053 */
9054 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9055
9056 if (val & LCPLL_POWER_DOWN_ALLOW) {
9057 val &= ~LCPLL_POWER_DOWN_ALLOW;
9058 I915_WRITE(LCPLL_CTL, val);
9059 POSTING_READ(LCPLL_CTL);
9060 }
9061
9062 val = hsw_read_dcomp(dev_priv);
9063 val |= D_COMP_COMP_FORCE;
9064 val &= ~D_COMP_COMP_DISABLE;
9065 hsw_write_dcomp(dev_priv, val);
9066
9067 val = I915_READ(LCPLL_CTL);
9068 val &= ~LCPLL_PLL_DISABLE;
9069 I915_WRITE(LCPLL_CTL, val);
9070
9071 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9072 DRM_ERROR("LCPLL not locked yet\n");
9073
9074 if (val & LCPLL_CD_SOURCE_FCLK) {
9075 val = I915_READ(LCPLL_CTL);
9076 val &= ~LCPLL_CD_SOURCE_FCLK;
9077 I915_WRITE(LCPLL_CTL, val);
9078
9079 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9080 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9081 DRM_ERROR("Switching back to LCPLL failed\n");
9082 }
9083
9084 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9085 }
9086
9087 /*
9088 * Package states C8 and deeper are really deep PC states that can only be
9089 * reached when all the devices on the system allow it, so even if the graphics
9090 * device allows PC8+, it doesn't mean the system will actually get to these
9091 * states. Our driver only allows PC8+ when going into runtime PM.
9092 *
9093 * The requirements for PC8+ are that all the outputs are disabled, the power
9094 * well is disabled and most interrupts are disabled, and these are also
9095 * requirements for runtime PM. When these conditions are met, we manually do
9096 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9097 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9098 * hang the machine.
9099 *
9100 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9101 * the state of some registers, so when we come back from PC8+ we need to
9102 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9103 * need to take care of the registers kept by RC6. Notice that this happens even
9104 * if we don't put the device in PCI D3 state (which is what currently happens
9105 * because of the runtime PM support).
9106 *
9107 * For more, read "Display Sequences for Package C8" on the hardware
9108 * documentation.
9109 */
9110 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9111 {
9112 struct drm_device *dev = dev_priv->dev;
9113 uint32_t val;
9114
9115 DRM_DEBUG_KMS("Enabling package C8+\n");
9116
9117 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9118 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9119 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9120 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9121 }
9122
9123 lpt_disable_clkout_dp(dev);
9124 hsw_disable_lcpll(dev_priv, true, true);
9125 }
9126
9127 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9128 {
9129 struct drm_device *dev = dev_priv->dev;
9130 uint32_t val;
9131
9132 DRM_DEBUG_KMS("Disabling package C8+\n");
9133
9134 hsw_restore_lcpll(dev_priv);
9135 lpt_init_pch_refclk(dev);
9136
9137 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9138 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9139 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9140 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9141 }
9142
9143 intel_prepare_ddi(dev);
9144 }
9145
9146 static void broxton_modeset_global_resources(struct drm_atomic_state *state)
9147 {
9148 struct drm_device *dev = state->dev;
9149 struct drm_i915_private *dev_priv = dev->dev_private;
9150 int max_pixclk = intel_mode_max_pixclk(state);
9151 int req_cdclk;
9152
9153 /* see the comment in valleyview_modeset_global_resources */
9154 if (WARN_ON(max_pixclk < 0))
9155 return;
9156
9157 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9158
9159 if (req_cdclk != dev_priv->cdclk_freq)
9160 broxton_set_cdclk(dev, req_cdclk);
9161 }
9162
9163 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9164 struct intel_crtc_state *crtc_state)
9165 {
9166 if (!intel_ddi_pll_select(crtc, crtc_state))
9167 return -EINVAL;
9168
9169 crtc->lowfreq_avail = false;
9170
9171 return 0;
9172 }
9173
9174 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9175 enum port port,
9176 struct intel_crtc_state *pipe_config)
9177 {
9178 switch (port) {
9179 case PORT_A:
9180 pipe_config->ddi_pll_sel = SKL_DPLL0;
9181 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9182 break;
9183 case PORT_B:
9184 pipe_config->ddi_pll_sel = SKL_DPLL1;
9185 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9186 break;
9187 case PORT_C:
9188 pipe_config->ddi_pll_sel = SKL_DPLL2;
9189 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9190 break;
9191 default:
9192 DRM_ERROR("Incorrect port type\n");
9193 }
9194 }
9195
9196 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9197 enum port port,
9198 struct intel_crtc_state *pipe_config)
9199 {
9200 u32 temp, dpll_ctl1;
9201
9202 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9203 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9204
9205 switch (pipe_config->ddi_pll_sel) {
9206 case SKL_DPLL0:
9207 /*
9208 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9209 * of the shared DPLL framework and thus needs to be read out
9210 * separately
9211 */
9212 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9213 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9214 break;
9215 case SKL_DPLL1:
9216 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9217 break;
9218 case SKL_DPLL2:
9219 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9220 break;
9221 case SKL_DPLL3:
9222 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9223 break;
9224 }
9225 }
9226
9227 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9228 enum port port,
9229 struct intel_crtc_state *pipe_config)
9230 {
9231 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9232
9233 switch (pipe_config->ddi_pll_sel) {
9234 case PORT_CLK_SEL_WRPLL1:
9235 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9236 break;
9237 case PORT_CLK_SEL_WRPLL2:
9238 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9239 break;
9240 }
9241 }
9242
9243 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9244 struct intel_crtc_state *pipe_config)
9245 {
9246 struct drm_device *dev = crtc->base.dev;
9247 struct drm_i915_private *dev_priv = dev->dev_private;
9248 struct intel_shared_dpll *pll;
9249 enum port port;
9250 uint32_t tmp;
9251
9252 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9253
9254 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9255
9256 if (IS_SKYLAKE(dev))
9257 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9258 else if (IS_BROXTON(dev))
9259 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9260 else
9261 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9262
9263 if (pipe_config->shared_dpll >= 0) {
9264 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9265
9266 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9267 &pipe_config->dpll_hw_state));
9268 }
9269
9270 /*
9271 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9272 * DDI E. So just check whether this pipe is wired to DDI E and whether
9273 * the PCH transcoder is on.
9274 */
9275 if (INTEL_INFO(dev)->gen < 9 &&
9276 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9277 pipe_config->has_pch_encoder = true;
9278
9279 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9280 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9281 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9282
9283 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9284 }
9285 }
9286
9287 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9288 struct intel_crtc_state *pipe_config)
9289 {
9290 struct drm_device *dev = crtc->base.dev;
9291 struct drm_i915_private *dev_priv = dev->dev_private;
9292 enum intel_display_power_domain pfit_domain;
9293 uint32_t tmp;
9294
9295 if (!intel_display_power_is_enabled(dev_priv,
9296 POWER_DOMAIN_PIPE(crtc->pipe)))
9297 return false;
9298
9299 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9300 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9301
9302 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9303 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9304 enum pipe trans_edp_pipe;
9305 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9306 default:
9307 WARN(1, "unknown pipe linked to edp transcoder\n");
9308 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9309 case TRANS_DDI_EDP_INPUT_A_ON:
9310 trans_edp_pipe = PIPE_A;
9311 break;
9312 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9313 trans_edp_pipe = PIPE_B;
9314 break;
9315 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9316 trans_edp_pipe = PIPE_C;
9317 break;
9318 }
9319
9320 if (trans_edp_pipe == crtc->pipe)
9321 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9322 }
9323
9324 if (!intel_display_power_is_enabled(dev_priv,
9325 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9326 return false;
9327
9328 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9329 if (!(tmp & PIPECONF_ENABLE))
9330 return false;
9331
9332 haswell_get_ddi_port_state(crtc, pipe_config);
9333
9334 intel_get_pipe_timings(crtc, pipe_config);
9335
9336 if (INTEL_INFO(dev)->gen >= 9) {
9337 skl_init_scalers(dev, crtc, pipe_config);
9338 }
9339
9340 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9341 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9342 if (INTEL_INFO(dev)->gen == 9)
9343 skylake_get_pfit_config(crtc, pipe_config);
9344 else if (INTEL_INFO(dev)->gen < 9)
9345 ironlake_get_pfit_config(crtc, pipe_config);
9346 else
9347 MISSING_CASE(INTEL_INFO(dev)->gen);
9348
9349 } else {
9350 pipe_config->scaler_state.scaler_id = -1;
9351 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9352 }
9353
9354 if (IS_HASWELL(dev))
9355 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9356 (I915_READ(IPS_CTL) & IPS_ENABLE);
9357
9358 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9359 pipe_config->pixel_multiplier =
9360 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9361 } else {
9362 pipe_config->pixel_multiplier = 1;
9363 }
9364
9365 return true;
9366 }
9367
9368 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9369 {
9370 struct drm_device *dev = crtc->dev;
9371 struct drm_i915_private *dev_priv = dev->dev_private;
9372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9373 uint32_t cntl = 0, size = 0;
9374
9375 if (base) {
9376 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9377 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9378 unsigned int stride = roundup_pow_of_two(width) * 4;
9379
9380 switch (stride) {
9381 default:
9382 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9383 width, stride);
9384 stride = 256;
9385 /* fallthrough */
9386 case 256:
9387 case 512:
9388 case 1024:
9389 case 2048:
9390 break;
9391 }
9392
9393 cntl |= CURSOR_ENABLE |
9394 CURSOR_GAMMA_ENABLE |
9395 CURSOR_FORMAT_ARGB |
9396 CURSOR_STRIDE(stride);
9397
9398 size = (height << 12) | width;
9399 }
9400
9401 if (intel_crtc->cursor_cntl != 0 &&
9402 (intel_crtc->cursor_base != base ||
9403 intel_crtc->cursor_size != size ||
9404 intel_crtc->cursor_cntl != cntl)) {
9405 /* On these chipsets we can only modify the base/size/stride
9406 * whilst the cursor is disabled.
9407 */
9408 I915_WRITE(_CURACNTR, 0);
9409 POSTING_READ(_CURACNTR);
9410 intel_crtc->cursor_cntl = 0;
9411 }
9412
9413 if (intel_crtc->cursor_base != base) {
9414 I915_WRITE(_CURABASE, base);
9415 intel_crtc->cursor_base = base;
9416 }
9417
9418 if (intel_crtc->cursor_size != size) {
9419 I915_WRITE(CURSIZE, size);
9420 intel_crtc->cursor_size = size;
9421 }
9422
9423 if (intel_crtc->cursor_cntl != cntl) {
9424 I915_WRITE(_CURACNTR, cntl);
9425 POSTING_READ(_CURACNTR);
9426 intel_crtc->cursor_cntl = cntl;
9427 }
9428 }
9429
9430 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9431 {
9432 struct drm_device *dev = crtc->dev;
9433 struct drm_i915_private *dev_priv = dev->dev_private;
9434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9435 int pipe = intel_crtc->pipe;
9436 uint32_t cntl;
9437
9438 cntl = 0;
9439 if (base) {
9440 cntl = MCURSOR_GAMMA_ENABLE;
9441 switch (intel_crtc->base.cursor->state->crtc_w) {
9442 case 64:
9443 cntl |= CURSOR_MODE_64_ARGB_AX;
9444 break;
9445 case 128:
9446 cntl |= CURSOR_MODE_128_ARGB_AX;
9447 break;
9448 case 256:
9449 cntl |= CURSOR_MODE_256_ARGB_AX;
9450 break;
9451 default:
9452 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9453 return;
9454 }
9455 cntl |= pipe << 28; /* Connect to correct pipe */
9456
9457 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9458 cntl |= CURSOR_PIPE_CSC_ENABLE;
9459 }
9460
9461 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9462 cntl |= CURSOR_ROTATE_180;
9463
9464 if (intel_crtc->cursor_cntl != cntl) {
9465 I915_WRITE(CURCNTR(pipe), cntl);
9466 POSTING_READ(CURCNTR(pipe));
9467 intel_crtc->cursor_cntl = cntl;
9468 }
9469
9470 /* and commit changes on next vblank */
9471 I915_WRITE(CURBASE(pipe), base);
9472 POSTING_READ(CURBASE(pipe));
9473
9474 intel_crtc->cursor_base = base;
9475 }
9476
9477 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9478 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9479 bool on)
9480 {
9481 struct drm_device *dev = crtc->dev;
9482 struct drm_i915_private *dev_priv = dev->dev_private;
9483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9484 int pipe = intel_crtc->pipe;
9485 int x = crtc->cursor_x;
9486 int y = crtc->cursor_y;
9487 u32 base = 0, pos = 0;
9488
9489 if (on)
9490 base = intel_crtc->cursor_addr;
9491
9492 if (x >= intel_crtc->config->pipe_src_w)
9493 base = 0;
9494
9495 if (y >= intel_crtc->config->pipe_src_h)
9496 base = 0;
9497
9498 if (x < 0) {
9499 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9500 base = 0;
9501
9502 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9503 x = -x;
9504 }
9505 pos |= x << CURSOR_X_SHIFT;
9506
9507 if (y < 0) {
9508 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9509 base = 0;
9510
9511 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9512 y = -y;
9513 }
9514 pos |= y << CURSOR_Y_SHIFT;
9515
9516 if (base == 0 && intel_crtc->cursor_base == 0)
9517 return;
9518
9519 I915_WRITE(CURPOS(pipe), pos);
9520
9521 /* ILK+ do this automagically */
9522 if (HAS_GMCH_DISPLAY(dev) &&
9523 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9524 base += (intel_crtc->base.cursor->state->crtc_h *
9525 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9526 }
9527
9528 if (IS_845G(dev) || IS_I865G(dev))
9529 i845_update_cursor(crtc, base);
9530 else
9531 i9xx_update_cursor(crtc, base);
9532 }
9533
9534 static bool cursor_size_ok(struct drm_device *dev,
9535 uint32_t width, uint32_t height)
9536 {
9537 if (width == 0 || height == 0)
9538 return false;
9539
9540 /*
9541 * 845g/865g are special in that they are only limited by
9542 * the width of their cursors, the height is arbitrary up to
9543 * the precision of the register. Everything else requires
9544 * square cursors, limited to a few power-of-two sizes.
9545 */
9546 if (IS_845G(dev) || IS_I865G(dev)) {
9547 if ((width & 63) != 0)
9548 return false;
9549
9550 if (width > (IS_845G(dev) ? 64 : 512))
9551 return false;
9552
9553 if (height > 1023)
9554 return false;
9555 } else {
9556 switch (width | height) {
9557 case 256:
9558 case 128:
9559 if (IS_GEN2(dev))
9560 return false;
9561 case 64:
9562 break;
9563 default:
9564 return false;
9565 }
9566 }
9567
9568 return true;
9569 }
9570
9571 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9572 u16 *blue, uint32_t start, uint32_t size)
9573 {
9574 int end = (start + size > 256) ? 256 : start + size, i;
9575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9576
9577 for (i = start; i < end; i++) {
9578 intel_crtc->lut_r[i] = red[i] >> 8;
9579 intel_crtc->lut_g[i] = green[i] >> 8;
9580 intel_crtc->lut_b[i] = blue[i] >> 8;
9581 }
9582
9583 intel_crtc_load_lut(crtc);
9584 }
9585
9586 /* VESA 640x480x72Hz mode to set on the pipe */
9587 static struct drm_display_mode load_detect_mode = {
9588 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9589 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9590 };
9591
9592 struct drm_framebuffer *
9593 __intel_framebuffer_create(struct drm_device *dev,
9594 struct drm_mode_fb_cmd2 *mode_cmd,
9595 struct drm_i915_gem_object *obj)
9596 {
9597 struct intel_framebuffer *intel_fb;
9598 int ret;
9599
9600 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9601 if (!intel_fb) {
9602 drm_gem_object_unreference(&obj->base);
9603 return ERR_PTR(-ENOMEM);
9604 }
9605
9606 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9607 if (ret)
9608 goto err;
9609
9610 return &intel_fb->base;
9611 err:
9612 drm_gem_object_unreference(&obj->base);
9613 kfree(intel_fb);
9614
9615 return ERR_PTR(ret);
9616 }
9617
9618 static struct drm_framebuffer *
9619 intel_framebuffer_create(struct drm_device *dev,
9620 struct drm_mode_fb_cmd2 *mode_cmd,
9621 struct drm_i915_gem_object *obj)
9622 {
9623 struct drm_framebuffer *fb;
9624 int ret;
9625
9626 ret = i915_mutex_lock_interruptible(dev);
9627 if (ret)
9628 return ERR_PTR(ret);
9629 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9630 mutex_unlock(&dev->struct_mutex);
9631
9632 return fb;
9633 }
9634
9635 static u32
9636 intel_framebuffer_pitch_for_width(int width, int bpp)
9637 {
9638 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9639 return ALIGN(pitch, 64);
9640 }
9641
9642 static u32
9643 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9644 {
9645 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9646 return PAGE_ALIGN(pitch * mode->vdisplay);
9647 }
9648
9649 static struct drm_framebuffer *
9650 intel_framebuffer_create_for_mode(struct drm_device *dev,
9651 struct drm_display_mode *mode,
9652 int depth, int bpp)
9653 {
9654 struct drm_i915_gem_object *obj;
9655 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9656
9657 obj = i915_gem_alloc_object(dev,
9658 intel_framebuffer_size_for_mode(mode, bpp));
9659 if (obj == NULL)
9660 return ERR_PTR(-ENOMEM);
9661
9662 mode_cmd.width = mode->hdisplay;
9663 mode_cmd.height = mode->vdisplay;
9664 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9665 bpp);
9666 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9667
9668 return intel_framebuffer_create(dev, &mode_cmd, obj);
9669 }
9670
9671 static struct drm_framebuffer *
9672 mode_fits_in_fbdev(struct drm_device *dev,
9673 struct drm_display_mode *mode)
9674 {
9675 #ifdef CONFIG_DRM_I915_FBDEV
9676 struct drm_i915_private *dev_priv = dev->dev_private;
9677 struct drm_i915_gem_object *obj;
9678 struct drm_framebuffer *fb;
9679
9680 if (!dev_priv->fbdev)
9681 return NULL;
9682
9683 if (!dev_priv->fbdev->fb)
9684 return NULL;
9685
9686 obj = dev_priv->fbdev->fb->obj;
9687 BUG_ON(!obj);
9688
9689 fb = &dev_priv->fbdev->fb->base;
9690 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9691 fb->bits_per_pixel))
9692 return NULL;
9693
9694 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9695 return NULL;
9696
9697 return fb;
9698 #else
9699 return NULL;
9700 #endif
9701 }
9702
9703 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9704 struct drm_display_mode *mode,
9705 struct intel_load_detect_pipe *old,
9706 struct drm_modeset_acquire_ctx *ctx)
9707 {
9708 struct intel_crtc *intel_crtc;
9709 struct intel_encoder *intel_encoder =
9710 intel_attached_encoder(connector);
9711 struct drm_crtc *possible_crtc;
9712 struct drm_encoder *encoder = &intel_encoder->base;
9713 struct drm_crtc *crtc = NULL;
9714 struct drm_device *dev = encoder->dev;
9715 struct drm_framebuffer *fb;
9716 struct drm_mode_config *config = &dev->mode_config;
9717 struct drm_atomic_state *state = NULL;
9718 struct drm_connector_state *connector_state;
9719 int ret, i = -1;
9720
9721 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9722 connector->base.id, connector->name,
9723 encoder->base.id, encoder->name);
9724
9725 retry:
9726 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9727 if (ret)
9728 goto fail_unlock;
9729
9730 /*
9731 * Algorithm gets a little messy:
9732 *
9733 * - if the connector already has an assigned crtc, use it (but make
9734 * sure it's on first)
9735 *
9736 * - try to find the first unused crtc that can drive this connector,
9737 * and use that if we find one
9738 */
9739
9740 /* See if we already have a CRTC for this connector */
9741 if (encoder->crtc) {
9742 crtc = encoder->crtc;
9743
9744 ret = drm_modeset_lock(&crtc->mutex, ctx);
9745 if (ret)
9746 goto fail_unlock;
9747 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9748 if (ret)
9749 goto fail_unlock;
9750
9751 old->dpms_mode = connector->dpms;
9752 old->load_detect_temp = false;
9753
9754 /* Make sure the crtc and connector are running */
9755 if (connector->dpms != DRM_MODE_DPMS_ON)
9756 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9757
9758 return true;
9759 }
9760
9761 /* Find an unused one (if possible) */
9762 for_each_crtc(dev, possible_crtc) {
9763 i++;
9764 if (!(encoder->possible_crtcs & (1 << i)))
9765 continue;
9766 if (possible_crtc->state->enable)
9767 continue;
9768 /* This can occur when applying the pipe A quirk on resume. */
9769 if (to_intel_crtc(possible_crtc)->new_enabled)
9770 continue;
9771
9772 crtc = possible_crtc;
9773 break;
9774 }
9775
9776 /*
9777 * If we didn't find an unused CRTC, don't use any.
9778 */
9779 if (!crtc) {
9780 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9781 goto fail_unlock;
9782 }
9783
9784 ret = drm_modeset_lock(&crtc->mutex, ctx);
9785 if (ret)
9786 goto fail_unlock;
9787 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9788 if (ret)
9789 goto fail_unlock;
9790 intel_encoder->new_crtc = to_intel_crtc(crtc);
9791 to_intel_connector(connector)->new_encoder = intel_encoder;
9792
9793 intel_crtc = to_intel_crtc(crtc);
9794 intel_crtc->new_enabled = true;
9795 old->dpms_mode = connector->dpms;
9796 old->load_detect_temp = true;
9797 old->release_fb = NULL;
9798
9799 state = drm_atomic_state_alloc(dev);
9800 if (!state)
9801 return false;
9802
9803 state->acquire_ctx = ctx;
9804
9805 connector_state = drm_atomic_get_connector_state(state, connector);
9806 if (IS_ERR(connector_state)) {
9807 ret = PTR_ERR(connector_state);
9808 goto fail;
9809 }
9810
9811 connector_state->crtc = crtc;
9812 connector_state->best_encoder = &intel_encoder->base;
9813
9814 if (!mode)
9815 mode = &load_detect_mode;
9816
9817 /* We need a framebuffer large enough to accommodate all accesses
9818 * that the plane may generate whilst we perform load detection.
9819 * We can not rely on the fbcon either being present (we get called
9820 * during its initialisation to detect all boot displays, or it may
9821 * not even exist) or that it is large enough to satisfy the
9822 * requested mode.
9823 */
9824 fb = mode_fits_in_fbdev(dev, mode);
9825 if (fb == NULL) {
9826 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9827 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9828 old->release_fb = fb;
9829 } else
9830 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9831 if (IS_ERR(fb)) {
9832 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9833 goto fail;
9834 }
9835
9836 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9837 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9838 if (old->release_fb)
9839 old->release_fb->funcs->destroy(old->release_fb);
9840 goto fail;
9841 }
9842 crtc->primary->crtc = crtc;
9843
9844 /* let the connector get through one full cycle before testing */
9845 intel_wait_for_vblank(dev, intel_crtc->pipe);
9846 return true;
9847
9848 fail:
9849 intel_crtc->new_enabled = crtc->state->enable;
9850 fail_unlock:
9851 drm_atomic_state_free(state);
9852 state = NULL;
9853
9854 if (ret == -EDEADLK) {
9855 drm_modeset_backoff(ctx);
9856 goto retry;
9857 }
9858
9859 return false;
9860 }
9861
9862 void intel_release_load_detect_pipe(struct drm_connector *connector,
9863 struct intel_load_detect_pipe *old,
9864 struct drm_modeset_acquire_ctx *ctx)
9865 {
9866 struct drm_device *dev = connector->dev;
9867 struct intel_encoder *intel_encoder =
9868 intel_attached_encoder(connector);
9869 struct drm_encoder *encoder = &intel_encoder->base;
9870 struct drm_crtc *crtc = encoder->crtc;
9871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9872 struct drm_atomic_state *state;
9873 struct drm_connector_state *connector_state;
9874
9875 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9876 connector->base.id, connector->name,
9877 encoder->base.id, encoder->name);
9878
9879 if (old->load_detect_temp) {
9880 state = drm_atomic_state_alloc(dev);
9881 if (!state)
9882 goto fail;
9883
9884 state->acquire_ctx = ctx;
9885
9886 connector_state = drm_atomic_get_connector_state(state, connector);
9887 if (IS_ERR(connector_state))
9888 goto fail;
9889
9890 to_intel_connector(connector)->new_encoder = NULL;
9891 intel_encoder->new_crtc = NULL;
9892 intel_crtc->new_enabled = false;
9893
9894 connector_state->best_encoder = NULL;
9895 connector_state->crtc = NULL;
9896
9897 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9898
9899 drm_atomic_state_free(state);
9900
9901 if (old->release_fb) {
9902 drm_framebuffer_unregister_private(old->release_fb);
9903 drm_framebuffer_unreference(old->release_fb);
9904 }
9905
9906 return;
9907 }
9908
9909 /* Switch crtc and encoder back off if necessary */
9910 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9911 connector->funcs->dpms(connector, old->dpms_mode);
9912
9913 return;
9914 fail:
9915 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9916 drm_atomic_state_free(state);
9917 }
9918
9919 static int i9xx_pll_refclk(struct drm_device *dev,
9920 const struct intel_crtc_state *pipe_config)
9921 {
9922 struct drm_i915_private *dev_priv = dev->dev_private;
9923 u32 dpll = pipe_config->dpll_hw_state.dpll;
9924
9925 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9926 return dev_priv->vbt.lvds_ssc_freq;
9927 else if (HAS_PCH_SPLIT(dev))
9928 return 120000;
9929 else if (!IS_GEN2(dev))
9930 return 96000;
9931 else
9932 return 48000;
9933 }
9934
9935 /* Returns the clock of the currently programmed mode of the given pipe. */
9936 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9937 struct intel_crtc_state *pipe_config)
9938 {
9939 struct drm_device *dev = crtc->base.dev;
9940 struct drm_i915_private *dev_priv = dev->dev_private;
9941 int pipe = pipe_config->cpu_transcoder;
9942 u32 dpll = pipe_config->dpll_hw_state.dpll;
9943 u32 fp;
9944 intel_clock_t clock;
9945 int refclk = i9xx_pll_refclk(dev, pipe_config);
9946
9947 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9948 fp = pipe_config->dpll_hw_state.fp0;
9949 else
9950 fp = pipe_config->dpll_hw_state.fp1;
9951
9952 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9953 if (IS_PINEVIEW(dev)) {
9954 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9955 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9956 } else {
9957 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9958 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9959 }
9960
9961 if (!IS_GEN2(dev)) {
9962 if (IS_PINEVIEW(dev))
9963 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9964 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9965 else
9966 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9967 DPLL_FPA01_P1_POST_DIV_SHIFT);
9968
9969 switch (dpll & DPLL_MODE_MASK) {
9970 case DPLLB_MODE_DAC_SERIAL:
9971 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9972 5 : 10;
9973 break;
9974 case DPLLB_MODE_LVDS:
9975 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9976 7 : 14;
9977 break;
9978 default:
9979 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9980 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9981 return;
9982 }
9983
9984 if (IS_PINEVIEW(dev))
9985 pineview_clock(refclk, &clock);
9986 else
9987 i9xx_clock(refclk, &clock);
9988 } else {
9989 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9990 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9991
9992 if (is_lvds) {
9993 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9994 DPLL_FPA01_P1_POST_DIV_SHIFT);
9995
9996 if (lvds & LVDS_CLKB_POWER_UP)
9997 clock.p2 = 7;
9998 else
9999 clock.p2 = 14;
10000 } else {
10001 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10002 clock.p1 = 2;
10003 else {
10004 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10005 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10006 }
10007 if (dpll & PLL_P2_DIVIDE_BY_4)
10008 clock.p2 = 4;
10009 else
10010 clock.p2 = 2;
10011 }
10012
10013 i9xx_clock(refclk, &clock);
10014 }
10015
10016 /*
10017 * This value includes pixel_multiplier. We will use
10018 * port_clock to compute adjusted_mode.crtc_clock in the
10019 * encoder's get_config() function.
10020 */
10021 pipe_config->port_clock = clock.dot;
10022 }
10023
10024 int intel_dotclock_calculate(int link_freq,
10025 const struct intel_link_m_n *m_n)
10026 {
10027 /*
10028 * The calculation for the data clock is:
10029 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10030 * But we want to avoid losing precison if possible, so:
10031 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10032 *
10033 * and the link clock is simpler:
10034 * link_clock = (m * link_clock) / n
10035 */
10036
10037 if (!m_n->link_n)
10038 return 0;
10039
10040 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10041 }
10042
10043 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10044 struct intel_crtc_state *pipe_config)
10045 {
10046 struct drm_device *dev = crtc->base.dev;
10047
10048 /* read out port_clock from the DPLL */
10049 i9xx_crtc_clock_get(crtc, pipe_config);
10050
10051 /*
10052 * This value does not include pixel_multiplier.
10053 * We will check that port_clock and adjusted_mode.crtc_clock
10054 * agree once we know their relationship in the encoder's
10055 * get_config() function.
10056 */
10057 pipe_config->base.adjusted_mode.crtc_clock =
10058 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10059 &pipe_config->fdi_m_n);
10060 }
10061
10062 /** Returns the currently programmed mode of the given pipe. */
10063 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10064 struct drm_crtc *crtc)
10065 {
10066 struct drm_i915_private *dev_priv = dev->dev_private;
10067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10068 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10069 struct drm_display_mode *mode;
10070 struct intel_crtc_state pipe_config;
10071 int htot = I915_READ(HTOTAL(cpu_transcoder));
10072 int hsync = I915_READ(HSYNC(cpu_transcoder));
10073 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10074 int vsync = I915_READ(VSYNC(cpu_transcoder));
10075 enum pipe pipe = intel_crtc->pipe;
10076
10077 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10078 if (!mode)
10079 return NULL;
10080
10081 /*
10082 * Construct a pipe_config sufficient for getting the clock info
10083 * back out of crtc_clock_get.
10084 *
10085 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10086 * to use a real value here instead.
10087 */
10088 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10089 pipe_config.pixel_multiplier = 1;
10090 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10091 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10092 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10093 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10094
10095 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10096 mode->hdisplay = (htot & 0xffff) + 1;
10097 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10098 mode->hsync_start = (hsync & 0xffff) + 1;
10099 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10100 mode->vdisplay = (vtot & 0xffff) + 1;
10101 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10102 mode->vsync_start = (vsync & 0xffff) + 1;
10103 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10104
10105 drm_mode_set_name(mode);
10106
10107 return mode;
10108 }
10109
10110 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10111 {
10112 struct drm_device *dev = crtc->dev;
10113 struct drm_i915_private *dev_priv = dev->dev_private;
10114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10115
10116 if (!HAS_GMCH_DISPLAY(dev))
10117 return;
10118
10119 if (!dev_priv->lvds_downclock_avail)
10120 return;
10121
10122 /*
10123 * Since this is called by a timer, we should never get here in
10124 * the manual case.
10125 */
10126 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10127 int pipe = intel_crtc->pipe;
10128 int dpll_reg = DPLL(pipe);
10129 int dpll;
10130
10131 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10132
10133 assert_panel_unlocked(dev_priv, pipe);
10134
10135 dpll = I915_READ(dpll_reg);
10136 dpll |= DISPLAY_RATE_SELECT_FPA1;
10137 I915_WRITE(dpll_reg, dpll);
10138 intel_wait_for_vblank(dev, pipe);
10139 dpll = I915_READ(dpll_reg);
10140 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10141 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10142 }
10143
10144 }
10145
10146 void intel_mark_busy(struct drm_device *dev)
10147 {
10148 struct drm_i915_private *dev_priv = dev->dev_private;
10149
10150 if (dev_priv->mm.busy)
10151 return;
10152
10153 intel_runtime_pm_get(dev_priv);
10154 i915_update_gfx_val(dev_priv);
10155 if (INTEL_INFO(dev)->gen >= 6)
10156 gen6_rps_busy(dev_priv);
10157 dev_priv->mm.busy = true;
10158 }
10159
10160 void intel_mark_idle(struct drm_device *dev)
10161 {
10162 struct drm_i915_private *dev_priv = dev->dev_private;
10163 struct drm_crtc *crtc;
10164
10165 if (!dev_priv->mm.busy)
10166 return;
10167
10168 dev_priv->mm.busy = false;
10169
10170 for_each_crtc(dev, crtc) {
10171 if (!crtc->primary->fb)
10172 continue;
10173
10174 intel_decrease_pllclock(crtc);
10175 }
10176
10177 if (INTEL_INFO(dev)->gen >= 6)
10178 gen6_rps_idle(dev->dev_private);
10179
10180 intel_runtime_pm_put(dev_priv);
10181 }
10182
10183 static void intel_crtc_set_state(struct intel_crtc *crtc,
10184 struct intel_crtc_state *crtc_state)
10185 {
10186 kfree(crtc->config);
10187 crtc->config = crtc_state;
10188 crtc->base.state = &crtc_state->base;
10189 }
10190
10191 static void intel_crtc_destroy(struct drm_crtc *crtc)
10192 {
10193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10194 struct drm_device *dev = crtc->dev;
10195 struct intel_unpin_work *work;
10196
10197 spin_lock_irq(&dev->event_lock);
10198 work = intel_crtc->unpin_work;
10199 intel_crtc->unpin_work = NULL;
10200 spin_unlock_irq(&dev->event_lock);
10201
10202 if (work) {
10203 cancel_work_sync(&work->work);
10204 kfree(work);
10205 }
10206
10207 intel_crtc_set_state(intel_crtc, NULL);
10208 drm_crtc_cleanup(crtc);
10209
10210 kfree(intel_crtc);
10211 }
10212
10213 static void intel_unpin_work_fn(struct work_struct *__work)
10214 {
10215 struct intel_unpin_work *work =
10216 container_of(__work, struct intel_unpin_work, work);
10217 struct drm_device *dev = work->crtc->dev;
10218 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10219
10220 mutex_lock(&dev->struct_mutex);
10221 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10222 drm_gem_object_unreference(&work->pending_flip_obj->base);
10223
10224 intel_fbc_update(dev);
10225
10226 if (work->flip_queued_req)
10227 i915_gem_request_assign(&work->flip_queued_req, NULL);
10228 mutex_unlock(&dev->struct_mutex);
10229
10230 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10231 drm_framebuffer_unreference(work->old_fb);
10232
10233 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10234 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10235
10236 kfree(work);
10237 }
10238
10239 static void do_intel_finish_page_flip(struct drm_device *dev,
10240 struct drm_crtc *crtc)
10241 {
10242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10243 struct intel_unpin_work *work;
10244 unsigned long flags;
10245
10246 /* Ignore early vblank irqs */
10247 if (intel_crtc == NULL)
10248 return;
10249
10250 /*
10251 * This is called both by irq handlers and the reset code (to complete
10252 * lost pageflips) so needs the full irqsave spinlocks.
10253 */
10254 spin_lock_irqsave(&dev->event_lock, flags);
10255 work = intel_crtc->unpin_work;
10256
10257 /* Ensure we don't miss a work->pending update ... */
10258 smp_rmb();
10259
10260 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10261 spin_unlock_irqrestore(&dev->event_lock, flags);
10262 return;
10263 }
10264
10265 page_flip_completed(intel_crtc);
10266
10267 spin_unlock_irqrestore(&dev->event_lock, flags);
10268 }
10269
10270 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10271 {
10272 struct drm_i915_private *dev_priv = dev->dev_private;
10273 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10274
10275 do_intel_finish_page_flip(dev, crtc);
10276 }
10277
10278 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10279 {
10280 struct drm_i915_private *dev_priv = dev->dev_private;
10281 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10282
10283 do_intel_finish_page_flip(dev, crtc);
10284 }
10285
10286 /* Is 'a' after or equal to 'b'? */
10287 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10288 {
10289 return !((a - b) & 0x80000000);
10290 }
10291
10292 static bool page_flip_finished(struct intel_crtc *crtc)
10293 {
10294 struct drm_device *dev = crtc->base.dev;
10295 struct drm_i915_private *dev_priv = dev->dev_private;
10296
10297 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10298 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10299 return true;
10300
10301 /*
10302 * The relevant registers doen't exist on pre-ctg.
10303 * As the flip done interrupt doesn't trigger for mmio
10304 * flips on gmch platforms, a flip count check isn't
10305 * really needed there. But since ctg has the registers,
10306 * include it in the check anyway.
10307 */
10308 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10309 return true;
10310
10311 /*
10312 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10313 * used the same base address. In that case the mmio flip might
10314 * have completed, but the CS hasn't even executed the flip yet.
10315 *
10316 * A flip count check isn't enough as the CS might have updated
10317 * the base address just after start of vblank, but before we
10318 * managed to process the interrupt. This means we'd complete the
10319 * CS flip too soon.
10320 *
10321 * Combining both checks should get us a good enough result. It may
10322 * still happen that the CS flip has been executed, but has not
10323 * yet actually completed. But in case the base address is the same
10324 * anyway, we don't really care.
10325 */
10326 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10327 crtc->unpin_work->gtt_offset &&
10328 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10329 crtc->unpin_work->flip_count);
10330 }
10331
10332 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10333 {
10334 struct drm_i915_private *dev_priv = dev->dev_private;
10335 struct intel_crtc *intel_crtc =
10336 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10337 unsigned long flags;
10338
10339
10340 /*
10341 * This is called both by irq handlers and the reset code (to complete
10342 * lost pageflips) so needs the full irqsave spinlocks.
10343 *
10344 * NB: An MMIO update of the plane base pointer will also
10345 * generate a page-flip completion irq, i.e. every modeset
10346 * is also accompanied by a spurious intel_prepare_page_flip().
10347 */
10348 spin_lock_irqsave(&dev->event_lock, flags);
10349 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10350 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10351 spin_unlock_irqrestore(&dev->event_lock, flags);
10352 }
10353
10354 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10355 {
10356 /* Ensure that the work item is consistent when activating it ... */
10357 smp_wmb();
10358 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10359 /* and that it is marked active as soon as the irq could fire. */
10360 smp_wmb();
10361 }
10362
10363 static int intel_gen2_queue_flip(struct drm_device *dev,
10364 struct drm_crtc *crtc,
10365 struct drm_framebuffer *fb,
10366 struct drm_i915_gem_object *obj,
10367 struct intel_engine_cs *ring,
10368 uint32_t flags)
10369 {
10370 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10371 u32 flip_mask;
10372 int ret;
10373
10374 ret = intel_ring_begin(ring, 6);
10375 if (ret)
10376 return ret;
10377
10378 /* Can't queue multiple flips, so wait for the previous
10379 * one to finish before executing the next.
10380 */
10381 if (intel_crtc->plane)
10382 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10383 else
10384 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10385 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10386 intel_ring_emit(ring, MI_NOOP);
10387 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10388 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10389 intel_ring_emit(ring, fb->pitches[0]);
10390 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10391 intel_ring_emit(ring, 0); /* aux display base address, unused */
10392
10393 intel_mark_page_flip_active(intel_crtc);
10394 __intel_ring_advance(ring);
10395 return 0;
10396 }
10397
10398 static int intel_gen3_queue_flip(struct drm_device *dev,
10399 struct drm_crtc *crtc,
10400 struct drm_framebuffer *fb,
10401 struct drm_i915_gem_object *obj,
10402 struct intel_engine_cs *ring,
10403 uint32_t flags)
10404 {
10405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10406 u32 flip_mask;
10407 int ret;
10408
10409 ret = intel_ring_begin(ring, 6);
10410 if (ret)
10411 return ret;
10412
10413 if (intel_crtc->plane)
10414 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10415 else
10416 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10417 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10418 intel_ring_emit(ring, MI_NOOP);
10419 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10420 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10421 intel_ring_emit(ring, fb->pitches[0]);
10422 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10423 intel_ring_emit(ring, MI_NOOP);
10424
10425 intel_mark_page_flip_active(intel_crtc);
10426 __intel_ring_advance(ring);
10427 return 0;
10428 }
10429
10430 static int intel_gen4_queue_flip(struct drm_device *dev,
10431 struct drm_crtc *crtc,
10432 struct drm_framebuffer *fb,
10433 struct drm_i915_gem_object *obj,
10434 struct intel_engine_cs *ring,
10435 uint32_t flags)
10436 {
10437 struct drm_i915_private *dev_priv = dev->dev_private;
10438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10439 uint32_t pf, pipesrc;
10440 int ret;
10441
10442 ret = intel_ring_begin(ring, 4);
10443 if (ret)
10444 return ret;
10445
10446 /* i965+ uses the linear or tiled offsets from the
10447 * Display Registers (which do not change across a page-flip)
10448 * so we need only reprogram the base address.
10449 */
10450 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10451 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10452 intel_ring_emit(ring, fb->pitches[0]);
10453 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10454 obj->tiling_mode);
10455
10456 /* XXX Enabling the panel-fitter across page-flip is so far
10457 * untested on non-native modes, so ignore it for now.
10458 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10459 */
10460 pf = 0;
10461 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10462 intel_ring_emit(ring, pf | pipesrc);
10463
10464 intel_mark_page_flip_active(intel_crtc);
10465 __intel_ring_advance(ring);
10466 return 0;
10467 }
10468
10469 static int intel_gen6_queue_flip(struct drm_device *dev,
10470 struct drm_crtc *crtc,
10471 struct drm_framebuffer *fb,
10472 struct drm_i915_gem_object *obj,
10473 struct intel_engine_cs *ring,
10474 uint32_t flags)
10475 {
10476 struct drm_i915_private *dev_priv = dev->dev_private;
10477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10478 uint32_t pf, pipesrc;
10479 int ret;
10480
10481 ret = intel_ring_begin(ring, 4);
10482 if (ret)
10483 return ret;
10484
10485 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10486 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10487 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10488 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10489
10490 /* Contrary to the suggestions in the documentation,
10491 * "Enable Panel Fitter" does not seem to be required when page
10492 * flipping with a non-native mode, and worse causes a normal
10493 * modeset to fail.
10494 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10495 */
10496 pf = 0;
10497 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10498 intel_ring_emit(ring, pf | pipesrc);
10499
10500 intel_mark_page_flip_active(intel_crtc);
10501 __intel_ring_advance(ring);
10502 return 0;
10503 }
10504
10505 static int intel_gen7_queue_flip(struct drm_device *dev,
10506 struct drm_crtc *crtc,
10507 struct drm_framebuffer *fb,
10508 struct drm_i915_gem_object *obj,
10509 struct intel_engine_cs *ring,
10510 uint32_t flags)
10511 {
10512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10513 uint32_t plane_bit = 0;
10514 int len, ret;
10515
10516 switch (intel_crtc->plane) {
10517 case PLANE_A:
10518 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10519 break;
10520 case PLANE_B:
10521 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10522 break;
10523 case PLANE_C:
10524 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10525 break;
10526 default:
10527 WARN_ONCE(1, "unknown plane in flip command\n");
10528 return -ENODEV;
10529 }
10530
10531 len = 4;
10532 if (ring->id == RCS) {
10533 len += 6;
10534 /*
10535 * On Gen 8, SRM is now taking an extra dword to accommodate
10536 * 48bits addresses, and we need a NOOP for the batch size to
10537 * stay even.
10538 */
10539 if (IS_GEN8(dev))
10540 len += 2;
10541 }
10542
10543 /*
10544 * BSpec MI_DISPLAY_FLIP for IVB:
10545 * "The full packet must be contained within the same cache line."
10546 *
10547 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10548 * cacheline, if we ever start emitting more commands before
10549 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10550 * then do the cacheline alignment, and finally emit the
10551 * MI_DISPLAY_FLIP.
10552 */
10553 ret = intel_ring_cacheline_align(ring);
10554 if (ret)
10555 return ret;
10556
10557 ret = intel_ring_begin(ring, len);
10558 if (ret)
10559 return ret;
10560
10561 /* Unmask the flip-done completion message. Note that the bspec says that
10562 * we should do this for both the BCS and RCS, and that we must not unmask
10563 * more than one flip event at any time (or ensure that one flip message
10564 * can be sent by waiting for flip-done prior to queueing new flips).
10565 * Experimentation says that BCS works despite DERRMR masking all
10566 * flip-done completion events and that unmasking all planes at once
10567 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10568 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10569 */
10570 if (ring->id == RCS) {
10571 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10572 intel_ring_emit(ring, DERRMR);
10573 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10574 DERRMR_PIPEB_PRI_FLIP_DONE |
10575 DERRMR_PIPEC_PRI_FLIP_DONE));
10576 if (IS_GEN8(dev))
10577 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10578 MI_SRM_LRM_GLOBAL_GTT);
10579 else
10580 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10581 MI_SRM_LRM_GLOBAL_GTT);
10582 intel_ring_emit(ring, DERRMR);
10583 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10584 if (IS_GEN8(dev)) {
10585 intel_ring_emit(ring, 0);
10586 intel_ring_emit(ring, MI_NOOP);
10587 }
10588 }
10589
10590 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10591 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10592 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10593 intel_ring_emit(ring, (MI_NOOP));
10594
10595 intel_mark_page_flip_active(intel_crtc);
10596 __intel_ring_advance(ring);
10597 return 0;
10598 }
10599
10600 static bool use_mmio_flip(struct intel_engine_cs *ring,
10601 struct drm_i915_gem_object *obj)
10602 {
10603 /*
10604 * This is not being used for older platforms, because
10605 * non-availability of flip done interrupt forces us to use
10606 * CS flips. Older platforms derive flip done using some clever
10607 * tricks involving the flip_pending status bits and vblank irqs.
10608 * So using MMIO flips there would disrupt this mechanism.
10609 */
10610
10611 if (ring == NULL)
10612 return true;
10613
10614 if (INTEL_INFO(ring->dev)->gen < 5)
10615 return false;
10616
10617 if (i915.use_mmio_flip < 0)
10618 return false;
10619 else if (i915.use_mmio_flip > 0)
10620 return true;
10621 else if (i915.enable_execlists)
10622 return true;
10623 else
10624 return ring != i915_gem_request_get_ring(obj->last_read_req);
10625 }
10626
10627 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10628 {
10629 struct drm_device *dev = intel_crtc->base.dev;
10630 struct drm_i915_private *dev_priv = dev->dev_private;
10631 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10632 const enum pipe pipe = intel_crtc->pipe;
10633 u32 ctl, stride;
10634
10635 ctl = I915_READ(PLANE_CTL(pipe, 0));
10636 ctl &= ~PLANE_CTL_TILED_MASK;
10637 switch (fb->modifier[0]) {
10638 case DRM_FORMAT_MOD_NONE:
10639 break;
10640 case I915_FORMAT_MOD_X_TILED:
10641 ctl |= PLANE_CTL_TILED_X;
10642 break;
10643 case I915_FORMAT_MOD_Y_TILED:
10644 ctl |= PLANE_CTL_TILED_Y;
10645 break;
10646 case I915_FORMAT_MOD_Yf_TILED:
10647 ctl |= PLANE_CTL_TILED_YF;
10648 break;
10649 default:
10650 MISSING_CASE(fb->modifier[0]);
10651 }
10652
10653 /*
10654 * The stride is either expressed as a multiple of 64 bytes chunks for
10655 * linear buffers or in number of tiles for tiled buffers.
10656 */
10657 stride = fb->pitches[0] /
10658 intel_fb_stride_alignment(dev, fb->modifier[0],
10659 fb->pixel_format);
10660
10661 /*
10662 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10663 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10664 */
10665 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10666 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10667
10668 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10669 POSTING_READ(PLANE_SURF(pipe, 0));
10670 }
10671
10672 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10673 {
10674 struct drm_device *dev = intel_crtc->base.dev;
10675 struct drm_i915_private *dev_priv = dev->dev_private;
10676 struct intel_framebuffer *intel_fb =
10677 to_intel_framebuffer(intel_crtc->base.primary->fb);
10678 struct drm_i915_gem_object *obj = intel_fb->obj;
10679 u32 dspcntr;
10680 u32 reg;
10681
10682 reg = DSPCNTR(intel_crtc->plane);
10683 dspcntr = I915_READ(reg);
10684
10685 if (obj->tiling_mode != I915_TILING_NONE)
10686 dspcntr |= DISPPLANE_TILED;
10687 else
10688 dspcntr &= ~DISPPLANE_TILED;
10689
10690 I915_WRITE(reg, dspcntr);
10691
10692 I915_WRITE(DSPSURF(intel_crtc->plane),
10693 intel_crtc->unpin_work->gtt_offset);
10694 POSTING_READ(DSPSURF(intel_crtc->plane));
10695
10696 }
10697
10698 /*
10699 * XXX: This is the temporary way to update the plane registers until we get
10700 * around to using the usual plane update functions for MMIO flips
10701 */
10702 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10703 {
10704 struct drm_device *dev = intel_crtc->base.dev;
10705 bool atomic_update;
10706 u32 start_vbl_count;
10707
10708 intel_mark_page_flip_active(intel_crtc);
10709
10710 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10711
10712 if (INTEL_INFO(dev)->gen >= 9)
10713 skl_do_mmio_flip(intel_crtc);
10714 else
10715 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10716 ilk_do_mmio_flip(intel_crtc);
10717
10718 if (atomic_update)
10719 intel_pipe_update_end(intel_crtc, start_vbl_count);
10720 }
10721
10722 static void intel_mmio_flip_work_func(struct work_struct *work)
10723 {
10724 struct intel_crtc *crtc =
10725 container_of(work, struct intel_crtc, mmio_flip.work);
10726 struct intel_mmio_flip *mmio_flip;
10727
10728 mmio_flip = &crtc->mmio_flip;
10729 if (mmio_flip->req)
10730 WARN_ON(__i915_wait_request(mmio_flip->req,
10731 crtc->reset_counter,
10732 false, NULL, NULL) != 0);
10733
10734 intel_do_mmio_flip(crtc);
10735 if (mmio_flip->req) {
10736 mutex_lock(&crtc->base.dev->struct_mutex);
10737 i915_gem_request_assign(&mmio_flip->req, NULL);
10738 mutex_unlock(&crtc->base.dev->struct_mutex);
10739 }
10740 }
10741
10742 static int intel_queue_mmio_flip(struct drm_device *dev,
10743 struct drm_crtc *crtc,
10744 struct drm_framebuffer *fb,
10745 struct drm_i915_gem_object *obj,
10746 struct intel_engine_cs *ring,
10747 uint32_t flags)
10748 {
10749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10750
10751 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10752 obj->last_write_req);
10753
10754 schedule_work(&intel_crtc->mmio_flip.work);
10755
10756 return 0;
10757 }
10758
10759 static int intel_default_queue_flip(struct drm_device *dev,
10760 struct drm_crtc *crtc,
10761 struct drm_framebuffer *fb,
10762 struct drm_i915_gem_object *obj,
10763 struct intel_engine_cs *ring,
10764 uint32_t flags)
10765 {
10766 return -ENODEV;
10767 }
10768
10769 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10770 struct drm_crtc *crtc)
10771 {
10772 struct drm_i915_private *dev_priv = dev->dev_private;
10773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10774 struct intel_unpin_work *work = intel_crtc->unpin_work;
10775 u32 addr;
10776
10777 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10778 return true;
10779
10780 if (!work->enable_stall_check)
10781 return false;
10782
10783 if (work->flip_ready_vblank == 0) {
10784 if (work->flip_queued_req &&
10785 !i915_gem_request_completed(work->flip_queued_req, true))
10786 return false;
10787
10788 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10789 }
10790
10791 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10792 return false;
10793
10794 /* Potential stall - if we see that the flip has happened,
10795 * assume a missed interrupt. */
10796 if (INTEL_INFO(dev)->gen >= 4)
10797 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10798 else
10799 addr = I915_READ(DSPADDR(intel_crtc->plane));
10800
10801 /* There is a potential issue here with a false positive after a flip
10802 * to the same address. We could address this by checking for a
10803 * non-incrementing frame counter.
10804 */
10805 return addr == work->gtt_offset;
10806 }
10807
10808 void intel_check_page_flip(struct drm_device *dev, int pipe)
10809 {
10810 struct drm_i915_private *dev_priv = dev->dev_private;
10811 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10813 struct intel_unpin_work *work;
10814
10815 WARN_ON(!in_interrupt());
10816
10817 if (crtc == NULL)
10818 return;
10819
10820 spin_lock(&dev->event_lock);
10821 work = intel_crtc->unpin_work;
10822 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
10823 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10824 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
10825 page_flip_completed(intel_crtc);
10826 work = NULL;
10827 }
10828 if (work != NULL &&
10829 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
10830 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
10831 spin_unlock(&dev->event_lock);
10832 }
10833
10834 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10835 struct drm_framebuffer *fb,
10836 struct drm_pending_vblank_event *event,
10837 uint32_t page_flip_flags)
10838 {
10839 struct drm_device *dev = crtc->dev;
10840 struct drm_i915_private *dev_priv = dev->dev_private;
10841 struct drm_framebuffer *old_fb = crtc->primary->fb;
10842 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10844 struct drm_plane *primary = crtc->primary;
10845 enum pipe pipe = intel_crtc->pipe;
10846 struct intel_unpin_work *work;
10847 struct intel_engine_cs *ring;
10848 bool mmio_flip;
10849 int ret;
10850
10851 /*
10852 * drm_mode_page_flip_ioctl() should already catch this, but double
10853 * check to be safe. In the future we may enable pageflipping from
10854 * a disabled primary plane.
10855 */
10856 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10857 return -EBUSY;
10858
10859 /* Can't change pixel format via MI display flips. */
10860 if (fb->pixel_format != crtc->primary->fb->pixel_format)
10861 return -EINVAL;
10862
10863 /*
10864 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10865 * Note that pitch changes could also affect these register.
10866 */
10867 if (INTEL_INFO(dev)->gen > 3 &&
10868 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10869 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10870 return -EINVAL;
10871
10872 if (i915_terminally_wedged(&dev_priv->gpu_error))
10873 goto out_hang;
10874
10875 work = kzalloc(sizeof(*work), GFP_KERNEL);
10876 if (work == NULL)
10877 return -ENOMEM;
10878
10879 work->event = event;
10880 work->crtc = crtc;
10881 work->old_fb = old_fb;
10882 INIT_WORK(&work->work, intel_unpin_work_fn);
10883
10884 ret = drm_crtc_vblank_get(crtc);
10885 if (ret)
10886 goto free_work;
10887
10888 /* We borrow the event spin lock for protecting unpin_work */
10889 spin_lock_irq(&dev->event_lock);
10890 if (intel_crtc->unpin_work) {
10891 /* Before declaring the flip queue wedged, check if
10892 * the hardware completed the operation behind our backs.
10893 */
10894 if (__intel_pageflip_stall_check(dev, crtc)) {
10895 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10896 page_flip_completed(intel_crtc);
10897 } else {
10898 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10899 spin_unlock_irq(&dev->event_lock);
10900
10901 drm_crtc_vblank_put(crtc);
10902 kfree(work);
10903 return -EBUSY;
10904 }
10905 }
10906 intel_crtc->unpin_work = work;
10907 spin_unlock_irq(&dev->event_lock);
10908
10909 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10910 flush_workqueue(dev_priv->wq);
10911
10912 /* Reference the objects for the scheduled work. */
10913 drm_framebuffer_reference(work->old_fb);
10914 drm_gem_object_reference(&obj->base);
10915
10916 crtc->primary->fb = fb;
10917 update_state_fb(crtc->primary);
10918
10919 work->pending_flip_obj = obj;
10920
10921 ret = i915_mutex_lock_interruptible(dev);
10922 if (ret)
10923 goto cleanup;
10924
10925 atomic_inc(&intel_crtc->unpin_work_count);
10926 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10927
10928 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10929 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10930
10931 if (IS_VALLEYVIEW(dev)) {
10932 ring = &dev_priv->ring[BCS];
10933 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10934 /* vlv: DISPLAY_FLIP fails to change tiling */
10935 ring = NULL;
10936 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10937 ring = &dev_priv->ring[BCS];
10938 } else if (INTEL_INFO(dev)->gen >= 7) {
10939 ring = i915_gem_request_get_ring(obj->last_read_req);
10940 if (ring == NULL || ring->id != RCS)
10941 ring = &dev_priv->ring[BCS];
10942 } else {
10943 ring = &dev_priv->ring[RCS];
10944 }
10945
10946 mmio_flip = use_mmio_flip(ring, obj);
10947
10948 /* When using CS flips, we want to emit semaphores between rings.
10949 * However, when using mmio flips we will create a task to do the
10950 * synchronisation, so all we want here is to pin the framebuffer
10951 * into the display plane and skip any waits.
10952 */
10953 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10954 crtc->primary->state,
10955 mmio_flip ? i915_gem_request_get_ring(obj->last_read_req) : ring);
10956 if (ret)
10957 goto cleanup_pending;
10958
10959 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10960 + intel_crtc->dspaddr_offset;
10961
10962 if (mmio_flip) {
10963 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10964 page_flip_flags);
10965 if (ret)
10966 goto cleanup_unpin;
10967
10968 i915_gem_request_assign(&work->flip_queued_req,
10969 obj->last_write_req);
10970 } else {
10971 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10972 page_flip_flags);
10973 if (ret)
10974 goto cleanup_unpin;
10975
10976 i915_gem_request_assign(&work->flip_queued_req,
10977 intel_ring_get_request(ring));
10978 }
10979
10980 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10981 work->enable_stall_check = true;
10982
10983 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10984 INTEL_FRONTBUFFER_PRIMARY(pipe));
10985
10986 intel_fbc_disable(dev);
10987 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10988 mutex_unlock(&dev->struct_mutex);
10989
10990 trace_i915_flip_request(intel_crtc->plane, obj);
10991
10992 return 0;
10993
10994 cleanup_unpin:
10995 intel_unpin_fb_obj(fb, crtc->primary->state);
10996 cleanup_pending:
10997 atomic_dec(&intel_crtc->unpin_work_count);
10998 mutex_unlock(&dev->struct_mutex);
10999 cleanup:
11000 crtc->primary->fb = old_fb;
11001 update_state_fb(crtc->primary);
11002
11003 drm_gem_object_unreference_unlocked(&obj->base);
11004 drm_framebuffer_unreference(work->old_fb);
11005
11006 spin_lock_irq(&dev->event_lock);
11007 intel_crtc->unpin_work = NULL;
11008 spin_unlock_irq(&dev->event_lock);
11009
11010 drm_crtc_vblank_put(crtc);
11011 free_work:
11012 kfree(work);
11013
11014 if (ret == -EIO) {
11015 out_hang:
11016 ret = intel_plane_restore(primary);
11017 if (ret == 0 && event) {
11018 spin_lock_irq(&dev->event_lock);
11019 drm_send_vblank_event(dev, pipe, event);
11020 spin_unlock_irq(&dev->event_lock);
11021 }
11022 }
11023 return ret;
11024 }
11025
11026 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11027 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11028 .load_lut = intel_crtc_load_lut,
11029 .atomic_begin = intel_begin_crtc_commit,
11030 .atomic_flush = intel_finish_crtc_commit,
11031 };
11032
11033 /**
11034 * intel_modeset_update_staged_output_state
11035 *
11036 * Updates the staged output configuration state, e.g. after we've read out the
11037 * current hw state.
11038 */
11039 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11040 {
11041 struct intel_crtc *crtc;
11042 struct intel_encoder *encoder;
11043 struct intel_connector *connector;
11044
11045 for_each_intel_connector(dev, connector) {
11046 connector->new_encoder =
11047 to_intel_encoder(connector->base.encoder);
11048 }
11049
11050 for_each_intel_encoder(dev, encoder) {
11051 encoder->new_crtc =
11052 to_intel_crtc(encoder->base.crtc);
11053 }
11054
11055 for_each_intel_crtc(dev, crtc) {
11056 crtc->new_enabled = crtc->base.state->enable;
11057 }
11058 }
11059
11060 /* Transitional helper to copy current connector/encoder state to
11061 * connector->state. This is needed so that code that is partially
11062 * converted to atomic does the right thing.
11063 */
11064 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11065 {
11066 struct intel_connector *connector;
11067
11068 for_each_intel_connector(dev, connector) {
11069 if (connector->base.encoder) {
11070 connector->base.state->best_encoder =
11071 connector->base.encoder;
11072 connector->base.state->crtc =
11073 connector->base.encoder->crtc;
11074 } else {
11075 connector->base.state->best_encoder = NULL;
11076 connector->base.state->crtc = NULL;
11077 }
11078 }
11079 }
11080
11081 /**
11082 * intel_modeset_commit_output_state
11083 *
11084 * This function copies the stage display pipe configuration to the real one.
11085 */
11086 static void intel_modeset_commit_output_state(struct drm_device *dev)
11087 {
11088 struct intel_crtc *crtc;
11089 struct intel_encoder *encoder;
11090 struct intel_connector *connector;
11091
11092 for_each_intel_connector(dev, connector) {
11093 connector->base.encoder = &connector->new_encoder->base;
11094 }
11095
11096 for_each_intel_encoder(dev, encoder) {
11097 encoder->base.crtc = &encoder->new_crtc->base;
11098 }
11099
11100 for_each_intel_crtc(dev, crtc) {
11101 crtc->base.state->enable = crtc->new_enabled;
11102 crtc->base.enabled = crtc->new_enabled;
11103 }
11104
11105 intel_modeset_update_connector_atomic_state(dev);
11106 }
11107
11108 static void
11109 connected_sink_compute_bpp(struct intel_connector *connector,
11110 struct intel_crtc_state *pipe_config)
11111 {
11112 int bpp = pipe_config->pipe_bpp;
11113
11114 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11115 connector->base.base.id,
11116 connector->base.name);
11117
11118 /* Don't use an invalid EDID bpc value */
11119 if (connector->base.display_info.bpc &&
11120 connector->base.display_info.bpc * 3 < bpp) {
11121 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11122 bpp, connector->base.display_info.bpc*3);
11123 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11124 }
11125
11126 /* Clamp bpp to 8 on screens without EDID 1.4 */
11127 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11128 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11129 bpp);
11130 pipe_config->pipe_bpp = 24;
11131 }
11132 }
11133
11134 static int
11135 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11136 struct intel_crtc_state *pipe_config)
11137 {
11138 struct drm_device *dev = crtc->base.dev;
11139 struct drm_atomic_state *state;
11140 struct drm_connector *connector;
11141 struct drm_connector_state *connector_state;
11142 int bpp, i;
11143
11144 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11145 bpp = 10*3;
11146 else if (INTEL_INFO(dev)->gen >= 5)
11147 bpp = 12*3;
11148 else
11149 bpp = 8*3;
11150
11151
11152 pipe_config->pipe_bpp = bpp;
11153
11154 state = pipe_config->base.state;
11155
11156 /* Clamp display bpp to EDID value */
11157 for_each_connector_in_state(state, connector, connector_state, i) {
11158 if (connector_state->crtc != &crtc->base)
11159 continue;
11160
11161 connected_sink_compute_bpp(to_intel_connector(connector),
11162 pipe_config);
11163 }
11164
11165 return bpp;
11166 }
11167
11168 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11169 {
11170 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11171 "type: 0x%x flags: 0x%x\n",
11172 mode->crtc_clock,
11173 mode->crtc_hdisplay, mode->crtc_hsync_start,
11174 mode->crtc_hsync_end, mode->crtc_htotal,
11175 mode->crtc_vdisplay, mode->crtc_vsync_start,
11176 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11177 }
11178
11179 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11180 struct intel_crtc_state *pipe_config,
11181 const char *context)
11182 {
11183 struct drm_device *dev = crtc->base.dev;
11184 struct drm_plane *plane;
11185 struct intel_plane *intel_plane;
11186 struct intel_plane_state *state;
11187 struct drm_framebuffer *fb;
11188
11189 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11190 context, pipe_config, pipe_name(crtc->pipe));
11191
11192 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11193 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11194 pipe_config->pipe_bpp, pipe_config->dither);
11195 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11196 pipe_config->has_pch_encoder,
11197 pipe_config->fdi_lanes,
11198 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11199 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11200 pipe_config->fdi_m_n.tu);
11201 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11202 pipe_config->has_dp_encoder,
11203 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11204 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11205 pipe_config->dp_m_n.tu);
11206
11207 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11208 pipe_config->has_dp_encoder,
11209 pipe_config->dp_m2_n2.gmch_m,
11210 pipe_config->dp_m2_n2.gmch_n,
11211 pipe_config->dp_m2_n2.link_m,
11212 pipe_config->dp_m2_n2.link_n,
11213 pipe_config->dp_m2_n2.tu);
11214
11215 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11216 pipe_config->has_audio,
11217 pipe_config->has_infoframe);
11218
11219 DRM_DEBUG_KMS("requested mode:\n");
11220 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11221 DRM_DEBUG_KMS("adjusted mode:\n");
11222 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11223 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11224 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11225 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11226 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11227 DRM_DEBUG_KMS("num_scalers: %d\n", crtc->num_scalers);
11228 DRM_DEBUG_KMS("scaler_users: 0x%x\n", pipe_config->scaler_state.scaler_users);
11229 DRM_DEBUG_KMS("scaler id: %d\n", pipe_config->scaler_state.scaler_id);
11230 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11231 pipe_config->gmch_pfit.control,
11232 pipe_config->gmch_pfit.pgm_ratios,
11233 pipe_config->gmch_pfit.lvds_border_bits);
11234 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11235 pipe_config->pch_pfit.pos,
11236 pipe_config->pch_pfit.size,
11237 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11238 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11239 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11240
11241 DRM_DEBUG_KMS("planes on this crtc\n");
11242 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11243 intel_plane = to_intel_plane(plane);
11244 if (intel_plane->pipe != crtc->pipe)
11245 continue;
11246
11247 state = to_intel_plane_state(plane->state);
11248 fb = state->base.fb;
11249 if (!fb) {
11250 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11251 "disabled, scaler_id = %d\n",
11252 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11253 plane->base.id, intel_plane->pipe,
11254 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11255 drm_plane_index(plane), state->scaler_id);
11256 continue;
11257 }
11258
11259 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11260 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11261 plane->base.id, intel_plane->pipe,
11262 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11263 drm_plane_index(plane));
11264 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11265 fb->base.id, fb->width, fb->height, fb->pixel_format);
11266 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11267 state->scaler_id,
11268 state->src.x1 >> 16, state->src.y1 >> 16,
11269 drm_rect_width(&state->src) >> 16,
11270 drm_rect_height(&state->src) >> 16,
11271 state->dst.x1, state->dst.y1,
11272 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11273 }
11274 }
11275
11276 static bool encoders_cloneable(const struct intel_encoder *a,
11277 const struct intel_encoder *b)
11278 {
11279 /* masks could be asymmetric, so check both ways */
11280 return a == b || (a->cloneable & (1 << b->type) &&
11281 b->cloneable & (1 << a->type));
11282 }
11283
11284 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11285 struct intel_crtc *crtc,
11286 struct intel_encoder *encoder)
11287 {
11288 struct intel_encoder *source_encoder;
11289 struct drm_connector *connector;
11290 struct drm_connector_state *connector_state;
11291 int i;
11292
11293 for_each_connector_in_state(state, connector, connector_state, i) {
11294 if (connector_state->crtc != &crtc->base)
11295 continue;
11296
11297 source_encoder =
11298 to_intel_encoder(connector_state->best_encoder);
11299 if (!encoders_cloneable(encoder, source_encoder))
11300 return false;
11301 }
11302
11303 return true;
11304 }
11305
11306 static bool check_encoder_cloning(struct drm_atomic_state *state,
11307 struct intel_crtc *crtc)
11308 {
11309 struct intel_encoder *encoder;
11310 struct drm_connector *connector;
11311 struct drm_connector_state *connector_state;
11312 int i;
11313
11314 for_each_connector_in_state(state, connector, connector_state, i) {
11315 if (connector_state->crtc != &crtc->base)
11316 continue;
11317
11318 encoder = to_intel_encoder(connector_state->best_encoder);
11319 if (!check_single_encoder_cloning(state, crtc, encoder))
11320 return false;
11321 }
11322
11323 return true;
11324 }
11325
11326 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11327 {
11328 struct drm_device *dev = state->dev;
11329 struct intel_encoder *encoder;
11330 struct drm_connector *connector;
11331 struct drm_connector_state *connector_state;
11332 unsigned int used_ports = 0;
11333 int i;
11334
11335 /*
11336 * Walk the connector list instead of the encoder
11337 * list to detect the problem on ddi platforms
11338 * where there's just one encoder per digital port.
11339 */
11340 for_each_connector_in_state(state, connector, connector_state, i) {
11341 if (!connector_state->best_encoder)
11342 continue;
11343
11344 encoder = to_intel_encoder(connector_state->best_encoder);
11345
11346 WARN_ON(!connector_state->crtc);
11347
11348 switch (encoder->type) {
11349 unsigned int port_mask;
11350 case INTEL_OUTPUT_UNKNOWN:
11351 if (WARN_ON(!HAS_DDI(dev)))
11352 break;
11353 case INTEL_OUTPUT_DISPLAYPORT:
11354 case INTEL_OUTPUT_HDMI:
11355 case INTEL_OUTPUT_EDP:
11356 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11357
11358 /* the same port mustn't appear more than once */
11359 if (used_ports & port_mask)
11360 return false;
11361
11362 used_ports |= port_mask;
11363 default:
11364 break;
11365 }
11366 }
11367
11368 return true;
11369 }
11370
11371 static void
11372 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11373 {
11374 struct drm_crtc_state tmp_state;
11375 struct intel_crtc_scaler_state scaler_state;
11376
11377 /* Clear only the intel specific part of the crtc state excluding scalers */
11378 tmp_state = crtc_state->base;
11379 scaler_state = crtc_state->scaler_state;
11380 memset(crtc_state, 0, sizeof *crtc_state);
11381 crtc_state->base = tmp_state;
11382 crtc_state->scaler_state = scaler_state;
11383 }
11384
11385 static struct intel_crtc_state *
11386 intel_modeset_pipe_config(struct drm_crtc *crtc,
11387 struct drm_display_mode *mode,
11388 struct drm_atomic_state *state)
11389 {
11390 struct intel_encoder *encoder;
11391 struct drm_connector *connector;
11392 struct drm_connector_state *connector_state;
11393 struct intel_crtc_state *pipe_config;
11394 int base_bpp, ret = -EINVAL;
11395 int i;
11396 bool retry = true;
11397
11398 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11399 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11400 return ERR_PTR(-EINVAL);
11401 }
11402
11403 if (!check_digital_port_conflicts(state)) {
11404 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11405 return ERR_PTR(-EINVAL);
11406 }
11407
11408 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
11409 if (IS_ERR(pipe_config))
11410 return pipe_config;
11411
11412 clear_intel_crtc_state(pipe_config);
11413
11414 pipe_config->base.crtc = crtc;
11415 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
11416 drm_mode_copy(&pipe_config->base.mode, mode);
11417
11418 pipe_config->cpu_transcoder =
11419 (enum transcoder) to_intel_crtc(crtc)->pipe;
11420 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
11421
11422 /*
11423 * Sanitize sync polarity flags based on requested ones. If neither
11424 * positive or negative polarity is requested, treat this as meaning
11425 * negative polarity.
11426 */
11427 if (!(pipe_config->base.adjusted_mode.flags &
11428 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11429 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11430
11431 if (!(pipe_config->base.adjusted_mode.flags &
11432 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11433 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11434
11435 /* Compute a starting value for pipe_config->pipe_bpp taking the source
11436 * plane pixel format and any sink constraints into account. Returns the
11437 * source plane bpp so that dithering can be selected on mismatches
11438 * after encoders and crtc also have had their say. */
11439 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11440 pipe_config);
11441 if (base_bpp < 0)
11442 goto fail;
11443
11444 /*
11445 * Determine the real pipe dimensions. Note that stereo modes can
11446 * increase the actual pipe size due to the frame doubling and
11447 * insertion of additional space for blanks between the frame. This
11448 * is stored in the crtc timings. We use the requested mode to do this
11449 * computation to clearly distinguish it from the adjusted mode, which
11450 * can be changed by the connectors in the below retry loop.
11451 */
11452 drm_crtc_get_hv_timing(&pipe_config->base.mode,
11453 &pipe_config->pipe_src_w,
11454 &pipe_config->pipe_src_h);
11455
11456 encoder_retry:
11457 /* Ensure the port clock defaults are reset when retrying. */
11458 pipe_config->port_clock = 0;
11459 pipe_config->pixel_multiplier = 1;
11460
11461 /* Fill in default crtc timings, allow encoders to overwrite them. */
11462 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11463 CRTC_STEREO_DOUBLE);
11464
11465 /* Pass our mode to the connectors and the CRTC to give them a chance to
11466 * adjust it according to limitations or connector properties, and also
11467 * a chance to reject the mode entirely.
11468 */
11469 for_each_connector_in_state(state, connector, connector_state, i) {
11470 if (connector_state->crtc != crtc)
11471 continue;
11472
11473 encoder = to_intel_encoder(connector_state->best_encoder);
11474
11475 if (!(encoder->compute_config(encoder, pipe_config))) {
11476 DRM_DEBUG_KMS("Encoder config failure\n");
11477 goto fail;
11478 }
11479 }
11480
11481 /* Set default port clock if not overwritten by the encoder. Needs to be
11482 * done afterwards in case the encoder adjusts the mode. */
11483 if (!pipe_config->port_clock)
11484 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11485 * pipe_config->pixel_multiplier;
11486
11487 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11488 if (ret < 0) {
11489 DRM_DEBUG_KMS("CRTC fixup failed\n");
11490 goto fail;
11491 }
11492
11493 if (ret == RETRY) {
11494 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11495 ret = -EINVAL;
11496 goto fail;
11497 }
11498
11499 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11500 retry = false;
11501 goto encoder_retry;
11502 }
11503
11504 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11505 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11506 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11507
11508 return pipe_config;
11509 fail:
11510 return ERR_PTR(ret);
11511 }
11512
11513 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
11514 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
11515 static void
11516 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
11517 unsigned *prepare_pipes, unsigned *disable_pipes)
11518 {
11519 struct intel_crtc *intel_crtc;
11520 struct drm_device *dev = crtc->dev;
11521 struct intel_encoder *encoder;
11522 struct intel_connector *connector;
11523 struct drm_crtc *tmp_crtc;
11524
11525 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
11526
11527 /* Check which crtcs have changed outputs connected to them, these need
11528 * to be part of the prepare_pipes mask. We don't (yet) support global
11529 * modeset across multiple crtcs, so modeset_pipes will only have one
11530 * bit set at most. */
11531 for_each_intel_connector(dev, connector) {
11532 if (connector->base.encoder == &connector->new_encoder->base)
11533 continue;
11534
11535 if (connector->base.encoder) {
11536 tmp_crtc = connector->base.encoder->crtc;
11537
11538 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11539 }
11540
11541 if (connector->new_encoder)
11542 *prepare_pipes |=
11543 1 << connector->new_encoder->new_crtc->pipe;
11544 }
11545
11546 for_each_intel_encoder(dev, encoder) {
11547 if (encoder->base.crtc == &encoder->new_crtc->base)
11548 continue;
11549
11550 if (encoder->base.crtc) {
11551 tmp_crtc = encoder->base.crtc;
11552
11553 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11554 }
11555
11556 if (encoder->new_crtc)
11557 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
11558 }
11559
11560 /* Check for pipes that will be enabled/disabled ... */
11561 for_each_intel_crtc(dev, intel_crtc) {
11562 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
11563 continue;
11564
11565 if (!intel_crtc->new_enabled)
11566 *disable_pipes |= 1 << intel_crtc->pipe;
11567 else
11568 *prepare_pipes |= 1 << intel_crtc->pipe;
11569 }
11570
11571
11572 /* set_mode is also used to update properties on life display pipes. */
11573 intel_crtc = to_intel_crtc(crtc);
11574 if (intel_crtc->new_enabled)
11575 *prepare_pipes |= 1 << intel_crtc->pipe;
11576
11577 /*
11578 * For simplicity do a full modeset on any pipe where the output routing
11579 * changed. We could be more clever, but that would require us to be
11580 * more careful with calling the relevant encoder->mode_set functions.
11581 */
11582 if (*prepare_pipes)
11583 *modeset_pipes = *prepare_pipes;
11584
11585 /* ... and mask these out. */
11586 *modeset_pipes &= ~(*disable_pipes);
11587 *prepare_pipes &= ~(*disable_pipes);
11588
11589 /*
11590 * HACK: We don't (yet) fully support global modesets. intel_set_config
11591 * obies this rule, but the modeset restore mode of
11592 * intel_modeset_setup_hw_state does not.
11593 */
11594 *modeset_pipes &= 1 << intel_crtc->pipe;
11595 *prepare_pipes &= 1 << intel_crtc->pipe;
11596
11597 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
11598 *modeset_pipes, *prepare_pipes, *disable_pipes);
11599 }
11600
11601 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11602 {
11603 struct drm_encoder *encoder;
11604 struct drm_device *dev = crtc->dev;
11605
11606 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11607 if (encoder->crtc == crtc)
11608 return true;
11609
11610 return false;
11611 }
11612
11613 static void
11614 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
11615 {
11616 struct drm_i915_private *dev_priv = dev->dev_private;
11617 struct intel_encoder *intel_encoder;
11618 struct intel_crtc *intel_crtc;
11619 struct drm_connector *connector;
11620
11621 intel_shared_dpll_commit(dev_priv);
11622
11623 for_each_intel_encoder(dev, intel_encoder) {
11624 if (!intel_encoder->base.crtc)
11625 continue;
11626
11627 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
11628
11629 if (prepare_pipes & (1 << intel_crtc->pipe))
11630 intel_encoder->connectors_active = false;
11631 }
11632
11633 intel_modeset_commit_output_state(dev);
11634
11635 /* Double check state. */
11636 for_each_intel_crtc(dev, intel_crtc) {
11637 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
11638 }
11639
11640 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11641 if (!connector->encoder || !connector->encoder->crtc)
11642 continue;
11643
11644 intel_crtc = to_intel_crtc(connector->encoder->crtc);
11645
11646 if (prepare_pipes & (1 << intel_crtc->pipe)) {
11647 struct drm_property *dpms_property =
11648 dev->mode_config.dpms_property;
11649
11650 connector->dpms = DRM_MODE_DPMS_ON;
11651 drm_object_property_set_value(&connector->base,
11652 dpms_property,
11653 DRM_MODE_DPMS_ON);
11654
11655 intel_encoder = to_intel_encoder(connector->encoder);
11656 intel_encoder->connectors_active = true;
11657 }
11658 }
11659
11660 }
11661
11662 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11663 {
11664 int diff;
11665
11666 if (clock1 == clock2)
11667 return true;
11668
11669 if (!clock1 || !clock2)
11670 return false;
11671
11672 diff = abs(clock1 - clock2);
11673
11674 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11675 return true;
11676
11677 return false;
11678 }
11679
11680 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11681 list_for_each_entry((intel_crtc), \
11682 &(dev)->mode_config.crtc_list, \
11683 base.head) \
11684 if (mask & (1 <<(intel_crtc)->pipe))
11685
11686 static bool
11687 intel_pipe_config_compare(struct drm_device *dev,
11688 struct intel_crtc_state *current_config,
11689 struct intel_crtc_state *pipe_config)
11690 {
11691 #define PIPE_CONF_CHECK_X(name) \
11692 if (current_config->name != pipe_config->name) { \
11693 DRM_ERROR("mismatch in " #name " " \
11694 "(expected 0x%08x, found 0x%08x)\n", \
11695 current_config->name, \
11696 pipe_config->name); \
11697 return false; \
11698 }
11699
11700 #define PIPE_CONF_CHECK_I(name) \
11701 if (current_config->name != pipe_config->name) { \
11702 DRM_ERROR("mismatch in " #name " " \
11703 "(expected %i, found %i)\n", \
11704 current_config->name, \
11705 pipe_config->name); \
11706 return false; \
11707 }
11708
11709 /* This is required for BDW+ where there is only one set of registers for
11710 * switching between high and low RR.
11711 * This macro can be used whenever a comparison has to be made between one
11712 * hw state and multiple sw state variables.
11713 */
11714 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11715 if ((current_config->name != pipe_config->name) && \
11716 (current_config->alt_name != pipe_config->name)) { \
11717 DRM_ERROR("mismatch in " #name " " \
11718 "(expected %i or %i, found %i)\n", \
11719 current_config->name, \
11720 current_config->alt_name, \
11721 pipe_config->name); \
11722 return false; \
11723 }
11724
11725 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11726 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11727 DRM_ERROR("mismatch in " #name "(" #mask ") " \
11728 "(expected %i, found %i)\n", \
11729 current_config->name & (mask), \
11730 pipe_config->name & (mask)); \
11731 return false; \
11732 }
11733
11734 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11735 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11736 DRM_ERROR("mismatch in " #name " " \
11737 "(expected %i, found %i)\n", \
11738 current_config->name, \
11739 pipe_config->name); \
11740 return false; \
11741 }
11742
11743 #define PIPE_CONF_QUIRK(quirk) \
11744 ((current_config->quirks | pipe_config->quirks) & (quirk))
11745
11746 PIPE_CONF_CHECK_I(cpu_transcoder);
11747
11748 PIPE_CONF_CHECK_I(has_pch_encoder);
11749 PIPE_CONF_CHECK_I(fdi_lanes);
11750 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11751 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11752 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11753 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11754 PIPE_CONF_CHECK_I(fdi_m_n.tu);
11755
11756 PIPE_CONF_CHECK_I(has_dp_encoder);
11757
11758 if (INTEL_INFO(dev)->gen < 8) {
11759 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11760 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11761 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11762 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11763 PIPE_CONF_CHECK_I(dp_m_n.tu);
11764
11765 if (current_config->has_drrs) {
11766 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11767 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11768 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11769 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11770 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11771 }
11772 } else {
11773 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11774 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11775 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11776 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11777 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11778 }
11779
11780 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11781 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11782 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11783 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11784 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11785 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11786
11787 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11788 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11789 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11790 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11791 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11792 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11793
11794 PIPE_CONF_CHECK_I(pixel_multiplier);
11795 PIPE_CONF_CHECK_I(has_hdmi_sink);
11796 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11797 IS_VALLEYVIEW(dev))
11798 PIPE_CONF_CHECK_I(limited_color_range);
11799 PIPE_CONF_CHECK_I(has_infoframe);
11800
11801 PIPE_CONF_CHECK_I(has_audio);
11802
11803 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11804 DRM_MODE_FLAG_INTERLACE);
11805
11806 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11807 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11808 DRM_MODE_FLAG_PHSYNC);
11809 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11810 DRM_MODE_FLAG_NHSYNC);
11811 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11812 DRM_MODE_FLAG_PVSYNC);
11813 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11814 DRM_MODE_FLAG_NVSYNC);
11815 }
11816
11817 PIPE_CONF_CHECK_I(pipe_src_w);
11818 PIPE_CONF_CHECK_I(pipe_src_h);
11819
11820 /*
11821 * FIXME: BIOS likes to set up a cloned config with lvds+external
11822 * screen. Since we don't yet re-compute the pipe config when moving
11823 * just the lvds port away to another pipe the sw tracking won't match.
11824 *
11825 * Proper atomic modesets with recomputed global state will fix this.
11826 * Until then just don't check gmch state for inherited modes.
11827 */
11828 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11829 PIPE_CONF_CHECK_I(gmch_pfit.control);
11830 /* pfit ratios are autocomputed by the hw on gen4+ */
11831 if (INTEL_INFO(dev)->gen < 4)
11832 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11833 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11834 }
11835
11836 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11837 if (current_config->pch_pfit.enabled) {
11838 PIPE_CONF_CHECK_I(pch_pfit.pos);
11839 PIPE_CONF_CHECK_I(pch_pfit.size);
11840 }
11841
11842 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11843
11844 /* BDW+ don't expose a synchronous way to read the state */
11845 if (IS_HASWELL(dev))
11846 PIPE_CONF_CHECK_I(ips_enabled);
11847
11848 PIPE_CONF_CHECK_I(double_wide);
11849
11850 PIPE_CONF_CHECK_X(ddi_pll_sel);
11851
11852 PIPE_CONF_CHECK_I(shared_dpll);
11853 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11854 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11855 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11856 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11857 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11858 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11859 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11860 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11861
11862 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11863 PIPE_CONF_CHECK_I(pipe_bpp);
11864
11865 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11866 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11867
11868 #undef PIPE_CONF_CHECK_X
11869 #undef PIPE_CONF_CHECK_I
11870 #undef PIPE_CONF_CHECK_I_ALT
11871 #undef PIPE_CONF_CHECK_FLAGS
11872 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11873 #undef PIPE_CONF_QUIRK
11874
11875 return true;
11876 }
11877
11878 static void check_wm_state(struct drm_device *dev)
11879 {
11880 struct drm_i915_private *dev_priv = dev->dev_private;
11881 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11882 struct intel_crtc *intel_crtc;
11883 int plane;
11884
11885 if (INTEL_INFO(dev)->gen < 9)
11886 return;
11887
11888 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11889 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11890
11891 for_each_intel_crtc(dev, intel_crtc) {
11892 struct skl_ddb_entry *hw_entry, *sw_entry;
11893 const enum pipe pipe = intel_crtc->pipe;
11894
11895 if (!intel_crtc->active)
11896 continue;
11897
11898 /* planes */
11899 for_each_plane(dev_priv, pipe, plane) {
11900 hw_entry = &hw_ddb.plane[pipe][plane];
11901 sw_entry = &sw_ddb->plane[pipe][plane];
11902
11903 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11904 continue;
11905
11906 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11907 "(expected (%u,%u), found (%u,%u))\n",
11908 pipe_name(pipe), plane + 1,
11909 sw_entry->start, sw_entry->end,
11910 hw_entry->start, hw_entry->end);
11911 }
11912
11913 /* cursor */
11914 hw_entry = &hw_ddb.cursor[pipe];
11915 sw_entry = &sw_ddb->cursor[pipe];
11916
11917 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11918 continue;
11919
11920 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11921 "(expected (%u,%u), found (%u,%u))\n",
11922 pipe_name(pipe),
11923 sw_entry->start, sw_entry->end,
11924 hw_entry->start, hw_entry->end);
11925 }
11926 }
11927
11928 static void
11929 check_connector_state(struct drm_device *dev)
11930 {
11931 struct intel_connector *connector;
11932
11933 for_each_intel_connector(dev, connector) {
11934 /* This also checks the encoder/connector hw state with the
11935 * ->get_hw_state callbacks. */
11936 intel_connector_check_state(connector);
11937
11938 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11939 "connector's staged encoder doesn't match current encoder\n");
11940 }
11941 }
11942
11943 static void
11944 check_encoder_state(struct drm_device *dev)
11945 {
11946 struct intel_encoder *encoder;
11947 struct intel_connector *connector;
11948
11949 for_each_intel_encoder(dev, encoder) {
11950 bool enabled = false;
11951 bool active = false;
11952 enum pipe pipe, tracked_pipe;
11953
11954 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11955 encoder->base.base.id,
11956 encoder->base.name);
11957
11958 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11959 "encoder's stage crtc doesn't match current crtc\n");
11960 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11961 "encoder's active_connectors set, but no crtc\n");
11962
11963 for_each_intel_connector(dev, connector) {
11964 if (connector->base.encoder != &encoder->base)
11965 continue;
11966 enabled = true;
11967 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11968 active = true;
11969 }
11970 /*
11971 * for MST connectors if we unplug the connector is gone
11972 * away but the encoder is still connected to a crtc
11973 * until a modeset happens in response to the hotplug.
11974 */
11975 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11976 continue;
11977
11978 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11979 "encoder's enabled state mismatch "
11980 "(expected %i, found %i)\n",
11981 !!encoder->base.crtc, enabled);
11982 I915_STATE_WARN(active && !encoder->base.crtc,
11983 "active encoder with no crtc\n");
11984
11985 I915_STATE_WARN(encoder->connectors_active != active,
11986 "encoder's computed active state doesn't match tracked active state "
11987 "(expected %i, found %i)\n", active, encoder->connectors_active);
11988
11989 active = encoder->get_hw_state(encoder, &pipe);
11990 I915_STATE_WARN(active != encoder->connectors_active,
11991 "encoder's hw state doesn't match sw tracking "
11992 "(expected %i, found %i)\n",
11993 encoder->connectors_active, active);
11994
11995 if (!encoder->base.crtc)
11996 continue;
11997
11998 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11999 I915_STATE_WARN(active && pipe != tracked_pipe,
12000 "active encoder's pipe doesn't match"
12001 "(expected %i, found %i)\n",
12002 tracked_pipe, pipe);
12003
12004 }
12005 }
12006
12007 static void
12008 check_crtc_state(struct drm_device *dev)
12009 {
12010 struct drm_i915_private *dev_priv = dev->dev_private;
12011 struct intel_crtc *crtc;
12012 struct intel_encoder *encoder;
12013 struct intel_crtc_state pipe_config;
12014
12015 for_each_intel_crtc(dev, crtc) {
12016 bool enabled = false;
12017 bool active = false;
12018
12019 memset(&pipe_config, 0, sizeof(pipe_config));
12020
12021 DRM_DEBUG_KMS("[CRTC:%d]\n",
12022 crtc->base.base.id);
12023
12024 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12025 "active crtc, but not enabled in sw tracking\n");
12026
12027 for_each_intel_encoder(dev, encoder) {
12028 if (encoder->base.crtc != &crtc->base)
12029 continue;
12030 enabled = true;
12031 if (encoder->connectors_active)
12032 active = true;
12033 }
12034
12035 I915_STATE_WARN(active != crtc->active,
12036 "crtc's computed active state doesn't match tracked active state "
12037 "(expected %i, found %i)\n", active, crtc->active);
12038 I915_STATE_WARN(enabled != crtc->base.state->enable,
12039 "crtc's computed enabled state doesn't match tracked enabled state "
12040 "(expected %i, found %i)\n", enabled,
12041 crtc->base.state->enable);
12042
12043 active = dev_priv->display.get_pipe_config(crtc,
12044 &pipe_config);
12045
12046 /* hw state is inconsistent with the pipe quirk */
12047 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12048 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12049 active = crtc->active;
12050
12051 for_each_intel_encoder(dev, encoder) {
12052 enum pipe pipe;
12053 if (encoder->base.crtc != &crtc->base)
12054 continue;
12055 if (encoder->get_hw_state(encoder, &pipe))
12056 encoder->get_config(encoder, &pipe_config);
12057 }
12058
12059 I915_STATE_WARN(crtc->active != active,
12060 "crtc active state doesn't match with hw state "
12061 "(expected %i, found %i)\n", crtc->active, active);
12062
12063 if (active &&
12064 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12065 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12066 intel_dump_pipe_config(crtc, &pipe_config,
12067 "[hw state]");
12068 intel_dump_pipe_config(crtc, crtc->config,
12069 "[sw state]");
12070 }
12071 }
12072 }
12073
12074 static void
12075 check_shared_dpll_state(struct drm_device *dev)
12076 {
12077 struct drm_i915_private *dev_priv = dev->dev_private;
12078 struct intel_crtc *crtc;
12079 struct intel_dpll_hw_state dpll_hw_state;
12080 int i;
12081
12082 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12083 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12084 int enabled_crtcs = 0, active_crtcs = 0;
12085 bool active;
12086
12087 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12088
12089 DRM_DEBUG_KMS("%s\n", pll->name);
12090
12091 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12092
12093 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12094 "more active pll users than references: %i vs %i\n",
12095 pll->active, hweight32(pll->config.crtc_mask));
12096 I915_STATE_WARN(pll->active && !pll->on,
12097 "pll in active use but not on in sw tracking\n");
12098 I915_STATE_WARN(pll->on && !pll->active,
12099 "pll in on but not on in use in sw tracking\n");
12100 I915_STATE_WARN(pll->on != active,
12101 "pll on state mismatch (expected %i, found %i)\n",
12102 pll->on, active);
12103
12104 for_each_intel_crtc(dev, crtc) {
12105 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12106 enabled_crtcs++;
12107 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12108 active_crtcs++;
12109 }
12110 I915_STATE_WARN(pll->active != active_crtcs,
12111 "pll active crtcs mismatch (expected %i, found %i)\n",
12112 pll->active, active_crtcs);
12113 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12114 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12115 hweight32(pll->config.crtc_mask), enabled_crtcs);
12116
12117 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12118 sizeof(dpll_hw_state)),
12119 "pll hw state mismatch\n");
12120 }
12121 }
12122
12123 void
12124 intel_modeset_check_state(struct drm_device *dev)
12125 {
12126 check_wm_state(dev);
12127 check_connector_state(dev);
12128 check_encoder_state(dev);
12129 check_crtc_state(dev);
12130 check_shared_dpll_state(dev);
12131 }
12132
12133 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12134 int dotclock)
12135 {
12136 /*
12137 * FDI already provided one idea for the dotclock.
12138 * Yell if the encoder disagrees.
12139 */
12140 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12141 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12142 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12143 }
12144
12145 static void update_scanline_offset(struct intel_crtc *crtc)
12146 {
12147 struct drm_device *dev = crtc->base.dev;
12148
12149 /*
12150 * The scanline counter increments at the leading edge of hsync.
12151 *
12152 * On most platforms it starts counting from vtotal-1 on the
12153 * first active line. That means the scanline counter value is
12154 * always one less than what we would expect. Ie. just after
12155 * start of vblank, which also occurs at start of hsync (on the
12156 * last active line), the scanline counter will read vblank_start-1.
12157 *
12158 * On gen2 the scanline counter starts counting from 1 instead
12159 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12160 * to keep the value positive), instead of adding one.
12161 *
12162 * On HSW+ the behaviour of the scanline counter depends on the output
12163 * type. For DP ports it behaves like most other platforms, but on HDMI
12164 * there's an extra 1 line difference. So we need to add two instead of
12165 * one to the value.
12166 */
12167 if (IS_GEN2(dev)) {
12168 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12169 int vtotal;
12170
12171 vtotal = mode->crtc_vtotal;
12172 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12173 vtotal /= 2;
12174
12175 crtc->scanline_offset = vtotal - 1;
12176 } else if (HAS_DDI(dev) &&
12177 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12178 crtc->scanline_offset = 2;
12179 } else
12180 crtc->scanline_offset = 1;
12181 }
12182
12183 static struct intel_crtc_state *
12184 intel_modeset_compute_config(struct drm_crtc *crtc,
12185 struct drm_display_mode *mode,
12186 struct drm_atomic_state *state,
12187 unsigned *modeset_pipes,
12188 unsigned *prepare_pipes,
12189 unsigned *disable_pipes)
12190 {
12191 struct drm_device *dev = crtc->dev;
12192 struct intel_crtc_state *pipe_config = NULL;
12193 struct intel_crtc *intel_crtc;
12194 int ret = 0;
12195
12196 ret = drm_atomic_add_affected_connectors(state, crtc);
12197 if (ret)
12198 return ERR_PTR(ret);
12199
12200 intel_modeset_affected_pipes(crtc, modeset_pipes,
12201 prepare_pipes, disable_pipes);
12202
12203 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
12204 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12205 if (IS_ERR(pipe_config))
12206 return pipe_config;
12207
12208 pipe_config->base.enable = false;
12209 }
12210
12211 /*
12212 * Note this needs changes when we start tracking multiple modes
12213 * and crtcs. At that point we'll need to compute the whole config
12214 * (i.e. one pipe_config for each crtc) rather than just the one
12215 * for this crtc.
12216 */
12217 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
12218 /* FIXME: For now we still expect modeset_pipes has at most
12219 * one bit set. */
12220 if (WARN_ON(&intel_crtc->base != crtc))
12221 continue;
12222
12223 pipe_config = intel_modeset_pipe_config(crtc, mode, state);
12224 if (IS_ERR(pipe_config))
12225 return pipe_config;
12226
12227 pipe_config->base.enable = true;
12228
12229 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12230 "[modeset]");
12231 }
12232
12233 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
12234 }
12235
12236 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state,
12237 unsigned modeset_pipes,
12238 unsigned disable_pipes)
12239 {
12240 struct drm_device *dev = state->dev;
12241 struct drm_i915_private *dev_priv = to_i915(dev);
12242 unsigned clear_pipes = modeset_pipes | disable_pipes;
12243 struct intel_crtc *intel_crtc;
12244 int ret = 0;
12245
12246 if (!dev_priv->display.crtc_compute_clock)
12247 return 0;
12248
12249 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12250 if (ret)
12251 goto done;
12252
12253 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
12254 struct intel_crtc_state *crtc_state =
12255 intel_atomic_get_crtc_state(state, intel_crtc);
12256
12257 /* Modeset pipes should have a new state by now */
12258 if (WARN_ON(IS_ERR(crtc_state)))
12259 continue;
12260
12261 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12262 crtc_state);
12263 if (ret) {
12264 intel_shared_dpll_abort_config(dev_priv);
12265 goto done;
12266 }
12267 }
12268
12269 done:
12270 return ret;
12271 }
12272
12273 static int __intel_set_mode(struct drm_crtc *crtc,
12274 struct drm_display_mode *mode,
12275 int x, int y, struct drm_framebuffer *fb,
12276 struct intel_crtc_state *pipe_config,
12277 unsigned modeset_pipes,
12278 unsigned prepare_pipes,
12279 unsigned disable_pipes)
12280 {
12281 struct drm_device *dev = crtc->dev;
12282 struct drm_i915_private *dev_priv = dev->dev_private;
12283 struct drm_display_mode *saved_mode;
12284 struct drm_atomic_state *state = pipe_config->base.state;
12285 struct intel_crtc_state *crtc_state_copy = NULL;
12286 struct intel_crtc *intel_crtc;
12287 int ret = 0;
12288
12289 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
12290 if (!saved_mode)
12291 return -ENOMEM;
12292
12293 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
12294 if (!crtc_state_copy) {
12295 ret = -ENOMEM;
12296 goto done;
12297 }
12298
12299 *saved_mode = crtc->mode;
12300
12301 /*
12302 * See if the config requires any additional preparation, e.g.
12303 * to adjust global state with pipes off. We need to do this
12304 * here so we can get the modeset_pipe updated config for the new
12305 * mode set on this crtc. For other crtcs we need to use the
12306 * adjusted_mode bits in the crtc directly.
12307 */
12308 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12309 ret = valleyview_modeset_global_pipes(state, &prepare_pipes);
12310 if (ret)
12311 goto done;
12312
12313 /* may have added more to prepare_pipes than we should */
12314 prepare_pipes &= ~disable_pipes;
12315 }
12316
12317 ret = __intel_set_mode_setup_plls(state, modeset_pipes, disable_pipes);
12318 if (ret)
12319 goto done;
12320
12321 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
12322 intel_crtc_disable(&intel_crtc->base);
12323
12324 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
12325 if (intel_crtc->base.state->enable) {
12326 intel_crtc_disable_planes(&intel_crtc->base);
12327 dev_priv->display.crtc_disable(&intel_crtc->base);
12328 }
12329 }
12330
12331 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12332 * to set it here already despite that we pass it down the callchain.
12333 *
12334 * Note we'll need to fix this up when we start tracking multiple
12335 * pipes; here we assume a single modeset_pipe and only track the
12336 * single crtc and mode.
12337 */
12338 if (modeset_pipes) {
12339 crtc->mode = *mode;
12340 /* mode_set/enable/disable functions rely on a correct pipe
12341 * config. */
12342 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
12343
12344 /*
12345 * Calculate and store various constants which
12346 * are later needed by vblank and swap-completion
12347 * timestamping. They are derived from true hwmode.
12348 */
12349 drm_calc_timestamping_constants(crtc,
12350 &pipe_config->base.adjusted_mode);
12351 }
12352
12353 /* Only after disabling all output pipelines that will be changed can we
12354 * update the the output configuration. */
12355 intel_modeset_update_state(dev, prepare_pipes);
12356
12357 modeset_update_crtc_power_domains(state);
12358
12359 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
12360 struct drm_plane *primary = intel_crtc->base.primary;
12361 int vdisplay, hdisplay;
12362
12363 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
12364 ret = drm_plane_helper_update(primary, &intel_crtc->base,
12365 fb, 0, 0,
12366 hdisplay, vdisplay,
12367 x << 16, y << 16,
12368 hdisplay << 16, vdisplay << 16);
12369 }
12370
12371 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12372 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
12373 update_scanline_offset(intel_crtc);
12374
12375 dev_priv->display.crtc_enable(&intel_crtc->base);
12376 intel_crtc_enable_planes(&intel_crtc->base);
12377 }
12378
12379 /* FIXME: add subpixel order */
12380 done:
12381 if (ret && crtc->state->enable)
12382 crtc->mode = *saved_mode;
12383
12384 if (ret == 0 && pipe_config) {
12385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12386
12387 /* The pipe_config will be freed with the atomic state, so
12388 * make a copy. */
12389 memcpy(crtc_state_copy, intel_crtc->config,
12390 sizeof *crtc_state_copy);
12391 intel_crtc->config = crtc_state_copy;
12392 intel_crtc->base.state = &crtc_state_copy->base;
12393 } else {
12394 kfree(crtc_state_copy);
12395 }
12396
12397 kfree(saved_mode);
12398 return ret;
12399 }
12400
12401 static int intel_set_mode_pipes(struct drm_crtc *crtc,
12402 struct drm_display_mode *mode,
12403 int x, int y, struct drm_framebuffer *fb,
12404 struct intel_crtc_state *pipe_config,
12405 unsigned modeset_pipes,
12406 unsigned prepare_pipes,
12407 unsigned disable_pipes)
12408 {
12409 int ret;
12410
12411 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
12412 prepare_pipes, disable_pipes);
12413
12414 if (ret == 0)
12415 intel_modeset_check_state(crtc->dev);
12416
12417 return ret;
12418 }
12419
12420 static int intel_set_mode(struct drm_crtc *crtc,
12421 struct drm_display_mode *mode,
12422 int x, int y, struct drm_framebuffer *fb,
12423 struct drm_atomic_state *state)
12424 {
12425 struct intel_crtc_state *pipe_config;
12426 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12427 int ret = 0;
12428
12429 pipe_config = intel_modeset_compute_config(crtc, mode, state,
12430 &modeset_pipes,
12431 &prepare_pipes,
12432 &disable_pipes);
12433
12434 if (IS_ERR(pipe_config)) {
12435 ret = PTR_ERR(pipe_config);
12436 goto out;
12437 }
12438
12439 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
12440 modeset_pipes, prepare_pipes,
12441 disable_pipes);
12442 if (ret)
12443 goto out;
12444
12445 out:
12446 return ret;
12447 }
12448
12449 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12450 {
12451 struct drm_device *dev = crtc->dev;
12452 struct drm_atomic_state *state;
12453 struct intel_encoder *encoder;
12454 struct intel_connector *connector;
12455 struct drm_connector_state *connector_state;
12456
12457 state = drm_atomic_state_alloc(dev);
12458 if (!state) {
12459 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12460 crtc->base.id);
12461 return;
12462 }
12463
12464 state->acquire_ctx = dev->mode_config.acquire_ctx;
12465
12466 /* The force restore path in the HW readout code relies on the staged
12467 * config still keeping the user requested config while the actual
12468 * state has been overwritten by the configuration read from HW. We
12469 * need to copy the staged config to the atomic state, otherwise the
12470 * mode set will just reapply the state the HW is already in. */
12471 for_each_intel_encoder(dev, encoder) {
12472 if (&encoder->new_crtc->base != crtc)
12473 continue;
12474
12475 for_each_intel_connector(dev, connector) {
12476 if (connector->new_encoder != encoder)
12477 continue;
12478
12479 connector_state = drm_atomic_get_connector_state(state, &connector->base);
12480 if (IS_ERR(connector_state)) {
12481 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12482 connector->base.base.id,
12483 connector->base.name,
12484 PTR_ERR(connector_state));
12485 continue;
12486 }
12487
12488 connector_state->crtc = crtc;
12489 connector_state->best_encoder = &encoder->base;
12490 }
12491 }
12492
12493 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
12494 state);
12495
12496 drm_atomic_state_free(state);
12497 }
12498
12499 #undef for_each_intel_crtc_masked
12500
12501 static void intel_set_config_free(struct intel_set_config *config)
12502 {
12503 if (!config)
12504 return;
12505
12506 kfree(config->save_connector_encoders);
12507 kfree(config->save_encoder_crtcs);
12508 kfree(config->save_crtc_enabled);
12509 kfree(config);
12510 }
12511
12512 static int intel_set_config_save_state(struct drm_device *dev,
12513 struct intel_set_config *config)
12514 {
12515 struct drm_crtc *crtc;
12516 struct drm_encoder *encoder;
12517 struct drm_connector *connector;
12518 int count;
12519
12520 config->save_crtc_enabled =
12521 kcalloc(dev->mode_config.num_crtc,
12522 sizeof(bool), GFP_KERNEL);
12523 if (!config->save_crtc_enabled)
12524 return -ENOMEM;
12525
12526 config->save_encoder_crtcs =
12527 kcalloc(dev->mode_config.num_encoder,
12528 sizeof(struct drm_crtc *), GFP_KERNEL);
12529 if (!config->save_encoder_crtcs)
12530 return -ENOMEM;
12531
12532 config->save_connector_encoders =
12533 kcalloc(dev->mode_config.num_connector,
12534 sizeof(struct drm_encoder *), GFP_KERNEL);
12535 if (!config->save_connector_encoders)
12536 return -ENOMEM;
12537
12538 /* Copy data. Note that driver private data is not affected.
12539 * Should anything bad happen only the expected state is
12540 * restored, not the drivers personal bookkeeping.
12541 */
12542 count = 0;
12543 for_each_crtc(dev, crtc) {
12544 config->save_crtc_enabled[count++] = crtc->state->enable;
12545 }
12546
12547 count = 0;
12548 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
12549 config->save_encoder_crtcs[count++] = encoder->crtc;
12550 }
12551
12552 count = 0;
12553 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12554 config->save_connector_encoders[count++] = connector->encoder;
12555 }
12556
12557 return 0;
12558 }
12559
12560 static void intel_set_config_restore_state(struct drm_device *dev,
12561 struct intel_set_config *config)
12562 {
12563 struct intel_crtc *crtc;
12564 struct intel_encoder *encoder;
12565 struct intel_connector *connector;
12566 int count;
12567
12568 count = 0;
12569 for_each_intel_crtc(dev, crtc) {
12570 crtc->new_enabled = config->save_crtc_enabled[count++];
12571 }
12572
12573 count = 0;
12574 for_each_intel_encoder(dev, encoder) {
12575 encoder->new_crtc =
12576 to_intel_crtc(config->save_encoder_crtcs[count++]);
12577 }
12578
12579 count = 0;
12580 for_each_intel_connector(dev, connector) {
12581 connector->new_encoder =
12582 to_intel_encoder(config->save_connector_encoders[count++]);
12583 }
12584 }
12585
12586 static bool
12587 is_crtc_connector_off(struct drm_mode_set *set)
12588 {
12589 int i;
12590
12591 if (set->num_connectors == 0)
12592 return false;
12593
12594 if (WARN_ON(set->connectors == NULL))
12595 return false;
12596
12597 for (i = 0; i < set->num_connectors; i++)
12598 if (set->connectors[i]->encoder &&
12599 set->connectors[i]->encoder->crtc == set->crtc &&
12600 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
12601 return true;
12602
12603 return false;
12604 }
12605
12606 static void
12607 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
12608 struct intel_set_config *config)
12609 {
12610
12611 /* We should be able to check here if the fb has the same properties
12612 * and then just flip_or_move it */
12613 if (is_crtc_connector_off(set)) {
12614 config->mode_changed = true;
12615 } else if (set->crtc->primary->fb != set->fb) {
12616 /*
12617 * If we have no fb, we can only flip as long as the crtc is
12618 * active, otherwise we need a full mode set. The crtc may
12619 * be active if we've only disabled the primary plane, or
12620 * in fastboot situations.
12621 */
12622 if (set->crtc->primary->fb == NULL) {
12623 struct intel_crtc *intel_crtc =
12624 to_intel_crtc(set->crtc);
12625
12626 if (intel_crtc->active) {
12627 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
12628 config->fb_changed = true;
12629 } else {
12630 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
12631 config->mode_changed = true;
12632 }
12633 } else if (set->fb == NULL) {
12634 config->mode_changed = true;
12635 } else if (set->fb->pixel_format !=
12636 set->crtc->primary->fb->pixel_format) {
12637 config->mode_changed = true;
12638 } else {
12639 config->fb_changed = true;
12640 }
12641 }
12642
12643 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
12644 config->fb_changed = true;
12645
12646 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
12647 DRM_DEBUG_KMS("modes are different, full mode set\n");
12648 drm_mode_debug_printmodeline(&set->crtc->mode);
12649 drm_mode_debug_printmodeline(set->mode);
12650 config->mode_changed = true;
12651 }
12652
12653 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
12654 set->crtc->base.id, config->mode_changed, config->fb_changed);
12655 }
12656
12657 static int
12658 intel_modeset_stage_output_state(struct drm_device *dev,
12659 struct drm_mode_set *set,
12660 struct intel_set_config *config,
12661 struct drm_atomic_state *state)
12662 {
12663 struct intel_connector *connector;
12664 struct drm_connector_state *connector_state;
12665 struct intel_encoder *encoder;
12666 struct intel_crtc *crtc;
12667 int ro;
12668
12669 /* The upper layers ensure that we either disable a crtc or have a list
12670 * of connectors. For paranoia, double-check this. */
12671 WARN_ON(!set->fb && (set->num_connectors != 0));
12672 WARN_ON(set->fb && (set->num_connectors == 0));
12673
12674 for_each_intel_connector(dev, connector) {
12675 /* Otherwise traverse passed in connector list and get encoders
12676 * for them. */
12677 for (ro = 0; ro < set->num_connectors; ro++) {
12678 if (set->connectors[ro] == &connector->base) {
12679 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
12680 break;
12681 }
12682 }
12683
12684 /* If we disable the crtc, disable all its connectors. Also, if
12685 * the connector is on the changing crtc but not on the new
12686 * connector list, disable it. */
12687 if ((!set->fb || ro == set->num_connectors) &&
12688 connector->base.encoder &&
12689 connector->base.encoder->crtc == set->crtc) {
12690 connector->new_encoder = NULL;
12691
12692 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12693 connector->base.base.id,
12694 connector->base.name);
12695 }
12696
12697
12698 if (&connector->new_encoder->base != connector->base.encoder) {
12699 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
12700 connector->base.base.id,
12701 connector->base.name);
12702 config->mode_changed = true;
12703 }
12704 }
12705 /* connector->new_encoder is now updated for all connectors. */
12706
12707 /* Update crtc of enabled connectors. */
12708 for_each_intel_connector(dev, connector) {
12709 struct drm_crtc *new_crtc;
12710
12711 if (!connector->new_encoder)
12712 continue;
12713
12714 new_crtc = connector->new_encoder->base.crtc;
12715
12716 for (ro = 0; ro < set->num_connectors; ro++) {
12717 if (set->connectors[ro] == &connector->base)
12718 new_crtc = set->crtc;
12719 }
12720
12721 /* Make sure the new CRTC will work with the encoder */
12722 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
12723 new_crtc)) {
12724 return -EINVAL;
12725 }
12726 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
12727
12728 connector_state =
12729 drm_atomic_get_connector_state(state, &connector->base);
12730 if (IS_ERR(connector_state))
12731 return PTR_ERR(connector_state);
12732
12733 connector_state->crtc = new_crtc;
12734 connector_state->best_encoder = &connector->new_encoder->base;
12735
12736 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12737 connector->base.base.id,
12738 connector->base.name,
12739 new_crtc->base.id);
12740 }
12741
12742 /* Check for any encoders that needs to be disabled. */
12743 for_each_intel_encoder(dev, encoder) {
12744 int num_connectors = 0;
12745 for_each_intel_connector(dev, connector) {
12746 if (connector->new_encoder == encoder) {
12747 WARN_ON(!connector->new_encoder->new_crtc);
12748 num_connectors++;
12749 }
12750 }
12751
12752 if (num_connectors == 0)
12753 encoder->new_crtc = NULL;
12754 else if (num_connectors > 1)
12755 return -EINVAL;
12756
12757 /* Only now check for crtc changes so we don't miss encoders
12758 * that will be disabled. */
12759 if (&encoder->new_crtc->base != encoder->base.crtc) {
12760 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
12761 encoder->base.base.id,
12762 encoder->base.name);
12763 config->mode_changed = true;
12764 }
12765 }
12766 /* Now we've also updated encoder->new_crtc for all encoders. */
12767 for_each_intel_connector(dev, connector) {
12768 connector_state =
12769 drm_atomic_get_connector_state(state, &connector->base);
12770 if (IS_ERR(connector_state))
12771 return PTR_ERR(connector_state);
12772
12773 if (connector->new_encoder) {
12774 if (connector->new_encoder != connector->encoder)
12775 connector->encoder = connector->new_encoder;
12776 } else {
12777 connector_state->crtc = NULL;
12778 connector_state->best_encoder = NULL;
12779 }
12780 }
12781 for_each_intel_crtc(dev, crtc) {
12782 crtc->new_enabled = false;
12783
12784 for_each_intel_encoder(dev, encoder) {
12785 if (encoder->new_crtc == crtc) {
12786 crtc->new_enabled = true;
12787 break;
12788 }
12789 }
12790
12791 if (crtc->new_enabled != crtc->base.state->enable) {
12792 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12793 crtc->base.base.id,
12794 crtc->new_enabled ? "en" : "dis");
12795 config->mode_changed = true;
12796 }
12797 }
12798
12799 return 0;
12800 }
12801
12802 static void disable_crtc_nofb(struct intel_crtc *crtc)
12803 {
12804 struct drm_device *dev = crtc->base.dev;
12805 struct intel_encoder *encoder;
12806 struct intel_connector *connector;
12807
12808 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12809 pipe_name(crtc->pipe));
12810
12811 for_each_intel_connector(dev, connector) {
12812 if (connector->new_encoder &&
12813 connector->new_encoder->new_crtc == crtc)
12814 connector->new_encoder = NULL;
12815 }
12816
12817 for_each_intel_encoder(dev, encoder) {
12818 if (encoder->new_crtc == crtc)
12819 encoder->new_crtc = NULL;
12820 }
12821
12822 crtc->new_enabled = false;
12823 }
12824
12825 static int intel_crtc_set_config(struct drm_mode_set *set)
12826 {
12827 struct drm_device *dev;
12828 struct drm_mode_set save_set;
12829 struct drm_atomic_state *state = NULL;
12830 struct intel_set_config *config;
12831 struct intel_crtc_state *pipe_config;
12832 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12833 int ret;
12834
12835 BUG_ON(!set);
12836 BUG_ON(!set->crtc);
12837 BUG_ON(!set->crtc->helper_private);
12838
12839 /* Enforce sane interface api - has been abused by the fb helper. */
12840 BUG_ON(!set->mode && set->fb);
12841 BUG_ON(set->fb && set->num_connectors == 0);
12842
12843 if (set->fb) {
12844 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12845 set->crtc->base.id, set->fb->base.id,
12846 (int)set->num_connectors, set->x, set->y);
12847 } else {
12848 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12849 }
12850
12851 dev = set->crtc->dev;
12852
12853 ret = -ENOMEM;
12854 config = kzalloc(sizeof(*config), GFP_KERNEL);
12855 if (!config)
12856 goto out_config;
12857
12858 ret = intel_set_config_save_state(dev, config);
12859 if (ret)
12860 goto out_config;
12861
12862 save_set.crtc = set->crtc;
12863 save_set.mode = &set->crtc->mode;
12864 save_set.x = set->crtc->x;
12865 save_set.y = set->crtc->y;
12866 save_set.fb = set->crtc->primary->fb;
12867
12868 /* Compute whether we need a full modeset, only an fb base update or no
12869 * change at all. In the future we might also check whether only the
12870 * mode changed, e.g. for LVDS where we only change the panel fitter in
12871 * such cases. */
12872 intel_set_config_compute_mode_changes(set, config);
12873
12874 state = drm_atomic_state_alloc(dev);
12875 if (!state) {
12876 ret = -ENOMEM;
12877 goto out_config;
12878 }
12879
12880 state->acquire_ctx = dev->mode_config.acquire_ctx;
12881
12882 ret = intel_modeset_stage_output_state(dev, set, config, state);
12883 if (ret)
12884 goto fail;
12885
12886 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12887 state,
12888 &modeset_pipes,
12889 &prepare_pipes,
12890 &disable_pipes);
12891 if (IS_ERR(pipe_config)) {
12892 ret = PTR_ERR(pipe_config);
12893 goto fail;
12894 } else if (pipe_config) {
12895 if (pipe_config->has_audio !=
12896 to_intel_crtc(set->crtc)->config->has_audio)
12897 config->mode_changed = true;
12898
12899 /*
12900 * Note we have an issue here with infoframes: current code
12901 * only updates them on the full mode set path per hw
12902 * requirements. So here we should be checking for any
12903 * required changes and forcing a mode set.
12904 */
12905 }
12906
12907 intel_update_pipe_size(to_intel_crtc(set->crtc));
12908
12909 if (config->mode_changed) {
12910 ret = intel_set_mode_pipes(set->crtc, set->mode,
12911 set->x, set->y, set->fb, pipe_config,
12912 modeset_pipes, prepare_pipes,
12913 disable_pipes);
12914 } else if (config->fb_changed) {
12915 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12916 struct drm_plane *primary = set->crtc->primary;
12917 struct intel_plane_state *plane_state =
12918 to_intel_plane_state(primary->state);
12919 bool was_visible = plane_state->visible;
12920 int vdisplay, hdisplay;
12921
12922 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12923 ret = drm_plane_helper_update(primary, set->crtc, set->fb,
12924 0, 0, hdisplay, vdisplay,
12925 set->x << 16, set->y << 16,
12926 hdisplay << 16, vdisplay << 16);
12927
12928 /*
12929 * We need to make sure the primary plane is re-enabled if it
12930 * has previously been turned off.
12931 */
12932 plane_state = to_intel_plane_state(primary->state);
12933 if (ret == 0 && !was_visible && plane_state->visible) {
12934 WARN_ON(!intel_crtc->active);
12935 intel_post_enable_primary(set->crtc);
12936 }
12937
12938 /*
12939 * In the fastboot case this may be our only check of the
12940 * state after boot. It would be better to only do it on
12941 * the first update, but we don't have a nice way of doing that
12942 * (and really, set_config isn't used much for high freq page
12943 * flipping, so increasing its cost here shouldn't be a big
12944 * deal).
12945 */
12946 if (i915.fastboot && ret == 0)
12947 intel_modeset_check_state(set->crtc->dev);
12948 }
12949
12950 if (ret) {
12951 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12952 set->crtc->base.id, ret);
12953 fail:
12954 intel_set_config_restore_state(dev, config);
12955
12956 drm_atomic_state_clear(state);
12957
12958 /*
12959 * HACK: if the pipe was on, but we didn't have a framebuffer,
12960 * force the pipe off to avoid oopsing in the modeset code
12961 * due to fb==NULL. This should only happen during boot since
12962 * we don't yet reconstruct the FB from the hardware state.
12963 */
12964 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12965 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12966
12967 /* Try to restore the config */
12968 if (config->mode_changed &&
12969 intel_set_mode(save_set.crtc, save_set.mode,
12970 save_set.x, save_set.y, save_set.fb,
12971 state))
12972 DRM_ERROR("failed to restore config after modeset failure\n");
12973 }
12974
12975 out_config:
12976 drm_atomic_state_free(state);
12977
12978 intel_set_config_free(config);
12979 return ret;
12980 }
12981
12982 static const struct drm_crtc_funcs intel_crtc_funcs = {
12983 .gamma_set = intel_crtc_gamma_set,
12984 .set_config = intel_crtc_set_config,
12985 .destroy = intel_crtc_destroy,
12986 .page_flip = intel_crtc_page_flip,
12987 .atomic_duplicate_state = intel_crtc_duplicate_state,
12988 .atomic_destroy_state = intel_crtc_destroy_state,
12989 };
12990
12991 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12992 struct intel_shared_dpll *pll,
12993 struct intel_dpll_hw_state *hw_state)
12994 {
12995 uint32_t val;
12996
12997 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12998 return false;
12999
13000 val = I915_READ(PCH_DPLL(pll->id));
13001 hw_state->dpll = val;
13002 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13003 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13004
13005 return val & DPLL_VCO_ENABLE;
13006 }
13007
13008 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13009 struct intel_shared_dpll *pll)
13010 {
13011 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13012 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13013 }
13014
13015 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13016 struct intel_shared_dpll *pll)
13017 {
13018 /* PCH refclock must be enabled first */
13019 ibx_assert_pch_refclk_enabled(dev_priv);
13020
13021 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13022
13023 /* Wait for the clocks to stabilize. */
13024 POSTING_READ(PCH_DPLL(pll->id));
13025 udelay(150);
13026
13027 /* The pixel multiplier can only be updated once the
13028 * DPLL is enabled and the clocks are stable.
13029 *
13030 * So write it again.
13031 */
13032 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13033 POSTING_READ(PCH_DPLL(pll->id));
13034 udelay(200);
13035 }
13036
13037 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13038 struct intel_shared_dpll *pll)
13039 {
13040 struct drm_device *dev = dev_priv->dev;
13041 struct intel_crtc *crtc;
13042
13043 /* Make sure no transcoder isn't still depending on us. */
13044 for_each_intel_crtc(dev, crtc) {
13045 if (intel_crtc_to_shared_dpll(crtc) == pll)
13046 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13047 }
13048
13049 I915_WRITE(PCH_DPLL(pll->id), 0);
13050 POSTING_READ(PCH_DPLL(pll->id));
13051 udelay(200);
13052 }
13053
13054 static char *ibx_pch_dpll_names[] = {
13055 "PCH DPLL A",
13056 "PCH DPLL B",
13057 };
13058
13059 static void ibx_pch_dpll_init(struct drm_device *dev)
13060 {
13061 struct drm_i915_private *dev_priv = dev->dev_private;
13062 int i;
13063
13064 dev_priv->num_shared_dpll = 2;
13065
13066 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13067 dev_priv->shared_dplls[i].id = i;
13068 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13069 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13070 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13071 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13072 dev_priv->shared_dplls[i].get_hw_state =
13073 ibx_pch_dpll_get_hw_state;
13074 }
13075 }
13076
13077 static void intel_shared_dpll_init(struct drm_device *dev)
13078 {
13079 struct drm_i915_private *dev_priv = dev->dev_private;
13080
13081 if (HAS_DDI(dev))
13082 intel_ddi_pll_init(dev);
13083 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13084 ibx_pch_dpll_init(dev);
13085 else
13086 dev_priv->num_shared_dpll = 0;
13087
13088 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13089 }
13090
13091 /**
13092 * intel_wm_need_update - Check whether watermarks need updating
13093 * @plane: drm plane
13094 * @state: new plane state
13095 *
13096 * Check current plane state versus the new one to determine whether
13097 * watermarks need to be recalculated.
13098 *
13099 * Returns true or false.
13100 */
13101 bool intel_wm_need_update(struct drm_plane *plane,
13102 struct drm_plane_state *state)
13103 {
13104 /* Update watermarks on tiling changes. */
13105 if (!plane->state->fb || !state->fb ||
13106 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13107 plane->state->rotation != state->rotation)
13108 return true;
13109
13110 return false;
13111 }
13112
13113 /**
13114 * intel_prepare_plane_fb - Prepare fb for usage on plane
13115 * @plane: drm plane to prepare for
13116 * @fb: framebuffer to prepare for presentation
13117 *
13118 * Prepares a framebuffer for usage on a display plane. Generally this
13119 * involves pinning the underlying object and updating the frontbuffer tracking
13120 * bits. Some older platforms need special physical address handling for
13121 * cursor planes.
13122 *
13123 * Returns 0 on success, negative error code on failure.
13124 */
13125 int
13126 intel_prepare_plane_fb(struct drm_plane *plane,
13127 struct drm_framebuffer *fb,
13128 const struct drm_plane_state *new_state)
13129 {
13130 struct drm_device *dev = plane->dev;
13131 struct intel_plane *intel_plane = to_intel_plane(plane);
13132 enum pipe pipe = intel_plane->pipe;
13133 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13134 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13135 unsigned frontbuffer_bits = 0;
13136 int ret = 0;
13137
13138 if (!obj)
13139 return 0;
13140
13141 switch (plane->type) {
13142 case DRM_PLANE_TYPE_PRIMARY:
13143 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13144 break;
13145 case DRM_PLANE_TYPE_CURSOR:
13146 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13147 break;
13148 case DRM_PLANE_TYPE_OVERLAY:
13149 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13150 break;
13151 }
13152
13153 mutex_lock(&dev->struct_mutex);
13154
13155 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13156 INTEL_INFO(dev)->cursor_needs_physical) {
13157 int align = IS_I830(dev) ? 16 * 1024 : 256;
13158 ret = i915_gem_object_attach_phys(obj, align);
13159 if (ret)
13160 DRM_DEBUG_KMS("failed to attach phys object\n");
13161 } else {
13162 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13163 }
13164
13165 if (ret == 0)
13166 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13167
13168 mutex_unlock(&dev->struct_mutex);
13169
13170 return ret;
13171 }
13172
13173 /**
13174 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13175 * @plane: drm plane to clean up for
13176 * @fb: old framebuffer that was on plane
13177 *
13178 * Cleans up a framebuffer that has just been removed from a plane.
13179 */
13180 void
13181 intel_cleanup_plane_fb(struct drm_plane *plane,
13182 struct drm_framebuffer *fb,
13183 const struct drm_plane_state *old_state)
13184 {
13185 struct drm_device *dev = plane->dev;
13186 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13187
13188 if (WARN_ON(!obj))
13189 return;
13190
13191 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13192 !INTEL_INFO(dev)->cursor_needs_physical) {
13193 mutex_lock(&dev->struct_mutex);
13194 intel_unpin_fb_obj(fb, old_state);
13195 mutex_unlock(&dev->struct_mutex);
13196 }
13197 }
13198
13199 int
13200 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13201 {
13202 int max_scale;
13203 struct drm_device *dev;
13204 struct drm_i915_private *dev_priv;
13205 int crtc_clock, cdclk;
13206
13207 if (!intel_crtc || !crtc_state)
13208 return DRM_PLANE_HELPER_NO_SCALING;
13209
13210 dev = intel_crtc->base.dev;
13211 dev_priv = dev->dev_private;
13212 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13213 cdclk = dev_priv->display.get_display_clock_speed(dev);
13214
13215 if (!crtc_clock || !cdclk)
13216 return DRM_PLANE_HELPER_NO_SCALING;
13217
13218 /*
13219 * skl max scale is lower of:
13220 * close to 3 but not 3, -1 is for that purpose
13221 * or
13222 * cdclk/crtc_clock
13223 */
13224 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13225
13226 return max_scale;
13227 }
13228
13229 static int
13230 intel_check_primary_plane(struct drm_plane *plane,
13231 struct intel_plane_state *state)
13232 {
13233 struct drm_device *dev = plane->dev;
13234 struct drm_i915_private *dev_priv = dev->dev_private;
13235 struct drm_crtc *crtc = state->base.crtc;
13236 struct intel_crtc *intel_crtc;
13237 struct intel_crtc_state *crtc_state;
13238 struct drm_framebuffer *fb = state->base.fb;
13239 struct drm_rect *dest = &state->dst;
13240 struct drm_rect *src = &state->src;
13241 const struct drm_rect *clip = &state->clip;
13242 bool can_position = false;
13243 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13244 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13245 int ret;
13246
13247 crtc = crtc ? crtc : plane->crtc;
13248 intel_crtc = to_intel_crtc(crtc);
13249 crtc_state = state->base.state ?
13250 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13251
13252 if (INTEL_INFO(dev)->gen >= 9) {
13253 min_scale = 1;
13254 max_scale = skl_max_scale(intel_crtc, crtc_state);
13255 can_position = true;
13256 }
13257
13258 ret = drm_plane_helper_check_update(plane, crtc, fb,
13259 src, dest, clip,
13260 min_scale,
13261 max_scale,
13262 can_position, true,
13263 &state->visible);
13264 if (ret)
13265 return ret;
13266
13267 if (intel_crtc->active) {
13268 struct intel_plane_state *old_state =
13269 to_intel_plane_state(plane->state);
13270
13271 intel_crtc->atomic.wait_for_flips = true;
13272
13273 /*
13274 * FBC does not work on some platforms for rotated
13275 * planes, so disable it when rotation is not 0 and
13276 * update it when rotation is set back to 0.
13277 *
13278 * FIXME: This is redundant with the fbc update done in
13279 * the primary plane enable function except that that
13280 * one is done too late. We eventually need to unify
13281 * this.
13282 */
13283 if (state->visible &&
13284 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13285 dev_priv->fbc.crtc == intel_crtc &&
13286 state->base.rotation != BIT(DRM_ROTATE_0)) {
13287 intel_crtc->atomic.disable_fbc = true;
13288 }
13289
13290 if (state->visible && !old_state->visible) {
13291 /*
13292 * BDW signals flip done immediately if the plane
13293 * is disabled, even if the plane enable is already
13294 * armed to occur at the next vblank :(
13295 */
13296 if (IS_BROADWELL(dev))
13297 intel_crtc->atomic.wait_vblank = true;
13298 }
13299
13300 intel_crtc->atomic.fb_bits |=
13301 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13302
13303 intel_crtc->atomic.update_fbc = true;
13304
13305 if (intel_wm_need_update(plane, &state->base))
13306 intel_crtc->atomic.update_wm = true;
13307 }
13308
13309 if (INTEL_INFO(dev)->gen >= 9) {
13310 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13311 to_intel_plane(plane), state, 0);
13312 if (ret)
13313 return ret;
13314 }
13315
13316 return 0;
13317 }
13318
13319 static void
13320 intel_commit_primary_plane(struct drm_plane *plane,
13321 struct intel_plane_state *state)
13322 {
13323 struct drm_crtc *crtc = state->base.crtc;
13324 struct drm_framebuffer *fb = state->base.fb;
13325 struct drm_device *dev = plane->dev;
13326 struct drm_i915_private *dev_priv = dev->dev_private;
13327 struct intel_crtc *intel_crtc;
13328 struct drm_rect *src = &state->src;
13329
13330 crtc = crtc ? crtc : plane->crtc;
13331 intel_crtc = to_intel_crtc(crtc);
13332
13333 plane->fb = fb;
13334 crtc->x = src->x1 >> 16;
13335 crtc->y = src->y1 >> 16;
13336
13337 if (intel_crtc->active) {
13338 if (state->visible)
13339 /* FIXME: kill this fastboot hack */
13340 intel_update_pipe_size(intel_crtc);
13341
13342 dev_priv->display.update_primary_plane(crtc, plane->fb,
13343 crtc->x, crtc->y);
13344 }
13345 }
13346
13347 static void
13348 intel_disable_primary_plane(struct drm_plane *plane,
13349 struct drm_crtc *crtc,
13350 bool force)
13351 {
13352 struct drm_device *dev = plane->dev;
13353 struct drm_i915_private *dev_priv = dev->dev_private;
13354
13355 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13356 }
13357
13358 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13359 {
13360 struct drm_device *dev = crtc->dev;
13361 struct drm_i915_private *dev_priv = dev->dev_private;
13362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13363 struct intel_plane *intel_plane;
13364 struct drm_plane *p;
13365 unsigned fb_bits = 0;
13366
13367 /* Track fb's for any planes being disabled */
13368 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13369 intel_plane = to_intel_plane(p);
13370
13371 if (intel_crtc->atomic.disabled_planes &
13372 (1 << drm_plane_index(p))) {
13373 switch (p->type) {
13374 case DRM_PLANE_TYPE_PRIMARY:
13375 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13376 break;
13377 case DRM_PLANE_TYPE_CURSOR:
13378 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13379 break;
13380 case DRM_PLANE_TYPE_OVERLAY:
13381 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13382 break;
13383 }
13384
13385 mutex_lock(&dev->struct_mutex);
13386 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13387 mutex_unlock(&dev->struct_mutex);
13388 }
13389 }
13390
13391 if (intel_crtc->atomic.wait_for_flips)
13392 intel_crtc_wait_for_pending_flips(crtc);
13393
13394 if (intel_crtc->atomic.disable_fbc)
13395 intel_fbc_disable(dev);
13396
13397 if (intel_crtc->atomic.pre_disable_primary)
13398 intel_pre_disable_primary(crtc);
13399
13400 if (intel_crtc->atomic.update_wm)
13401 intel_update_watermarks(crtc);
13402
13403 intel_runtime_pm_get(dev_priv);
13404
13405 /* Perform vblank evasion around commit operation */
13406 if (intel_crtc->active)
13407 intel_crtc->atomic.evade =
13408 intel_pipe_update_start(intel_crtc,
13409 &intel_crtc->atomic.start_vbl_count);
13410 }
13411
13412 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13413 {
13414 struct drm_device *dev = crtc->dev;
13415 struct drm_i915_private *dev_priv = dev->dev_private;
13416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13417 struct drm_plane *p;
13418
13419 if (intel_crtc->atomic.evade)
13420 intel_pipe_update_end(intel_crtc,
13421 intel_crtc->atomic.start_vbl_count);
13422
13423 intel_runtime_pm_put(dev_priv);
13424
13425 if (intel_crtc->atomic.wait_vblank)
13426 intel_wait_for_vblank(dev, intel_crtc->pipe);
13427
13428 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13429
13430 if (intel_crtc->atomic.update_fbc) {
13431 mutex_lock(&dev->struct_mutex);
13432 intel_fbc_update(dev);
13433 mutex_unlock(&dev->struct_mutex);
13434 }
13435
13436 if (intel_crtc->atomic.post_enable_primary)
13437 intel_post_enable_primary(crtc);
13438
13439 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13440 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13441 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13442 false, false);
13443
13444 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13445 }
13446
13447 /**
13448 * intel_plane_destroy - destroy a plane
13449 * @plane: plane to destroy
13450 *
13451 * Common destruction function for all types of planes (primary, cursor,
13452 * sprite).
13453 */
13454 void intel_plane_destroy(struct drm_plane *plane)
13455 {
13456 struct intel_plane *intel_plane = to_intel_plane(plane);
13457 drm_plane_cleanup(plane);
13458 kfree(intel_plane);
13459 }
13460
13461 const struct drm_plane_funcs intel_plane_funcs = {
13462 .update_plane = drm_atomic_helper_update_plane,
13463 .disable_plane = drm_atomic_helper_disable_plane,
13464 .destroy = intel_plane_destroy,
13465 .set_property = drm_atomic_helper_plane_set_property,
13466 .atomic_get_property = intel_plane_atomic_get_property,
13467 .atomic_set_property = intel_plane_atomic_set_property,
13468 .atomic_duplicate_state = intel_plane_duplicate_state,
13469 .atomic_destroy_state = intel_plane_destroy_state,
13470
13471 };
13472
13473 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13474 int pipe)
13475 {
13476 struct intel_plane *primary;
13477 struct intel_plane_state *state;
13478 const uint32_t *intel_primary_formats;
13479 int num_formats;
13480
13481 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13482 if (primary == NULL)
13483 return NULL;
13484
13485 state = intel_create_plane_state(&primary->base);
13486 if (!state) {
13487 kfree(primary);
13488 return NULL;
13489 }
13490 primary->base.state = &state->base;
13491
13492 primary->can_scale = false;
13493 primary->max_downscale = 1;
13494 if (INTEL_INFO(dev)->gen >= 9) {
13495 primary->can_scale = true;
13496 }
13497 state->scaler_id = -1;
13498 primary->pipe = pipe;
13499 primary->plane = pipe;
13500 primary->check_plane = intel_check_primary_plane;
13501 primary->commit_plane = intel_commit_primary_plane;
13502 primary->disable_plane = intel_disable_primary_plane;
13503 primary->ckey.flags = I915_SET_COLORKEY_NONE;
13504 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13505 primary->plane = !pipe;
13506
13507 if (INTEL_INFO(dev)->gen <= 3) {
13508 intel_primary_formats = intel_primary_formats_gen2;
13509 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
13510 } else {
13511 intel_primary_formats = intel_primary_formats_gen4;
13512 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
13513 }
13514
13515 drm_universal_plane_init(dev, &primary->base, 0,
13516 &intel_plane_funcs,
13517 intel_primary_formats, num_formats,
13518 DRM_PLANE_TYPE_PRIMARY);
13519
13520 if (INTEL_INFO(dev)->gen >= 4)
13521 intel_create_rotation_property(dev, primary);
13522
13523 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13524
13525 return &primary->base;
13526 }
13527
13528 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13529 {
13530 if (!dev->mode_config.rotation_property) {
13531 unsigned long flags = BIT(DRM_ROTATE_0) |
13532 BIT(DRM_ROTATE_180);
13533
13534 if (INTEL_INFO(dev)->gen >= 9)
13535 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13536
13537 dev->mode_config.rotation_property =
13538 drm_mode_create_rotation_property(dev, flags);
13539 }
13540 if (dev->mode_config.rotation_property)
13541 drm_object_attach_property(&plane->base.base,
13542 dev->mode_config.rotation_property,
13543 plane->base.state->rotation);
13544 }
13545
13546 static int
13547 intel_check_cursor_plane(struct drm_plane *plane,
13548 struct intel_plane_state *state)
13549 {
13550 struct drm_crtc *crtc = state->base.crtc;
13551 struct drm_device *dev = plane->dev;
13552 struct drm_framebuffer *fb = state->base.fb;
13553 struct drm_rect *dest = &state->dst;
13554 struct drm_rect *src = &state->src;
13555 const struct drm_rect *clip = &state->clip;
13556 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13557 struct intel_crtc *intel_crtc;
13558 unsigned stride;
13559 int ret;
13560
13561 crtc = crtc ? crtc : plane->crtc;
13562 intel_crtc = to_intel_crtc(crtc);
13563
13564 ret = drm_plane_helper_check_update(plane, crtc, fb,
13565 src, dest, clip,
13566 DRM_PLANE_HELPER_NO_SCALING,
13567 DRM_PLANE_HELPER_NO_SCALING,
13568 true, true, &state->visible);
13569 if (ret)
13570 return ret;
13571
13572
13573 /* if we want to turn off the cursor ignore width and height */
13574 if (!obj)
13575 goto finish;
13576
13577 /* Check for which cursor types we support */
13578 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13579 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13580 state->base.crtc_w, state->base.crtc_h);
13581 return -EINVAL;
13582 }
13583
13584 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13585 if (obj->base.size < stride * state->base.crtc_h) {
13586 DRM_DEBUG_KMS("buffer is too small\n");
13587 return -ENOMEM;
13588 }
13589
13590 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13591 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13592 ret = -EINVAL;
13593 }
13594
13595 finish:
13596 if (intel_crtc->active) {
13597 if (plane->state->crtc_w != state->base.crtc_w)
13598 intel_crtc->atomic.update_wm = true;
13599
13600 intel_crtc->atomic.fb_bits |=
13601 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13602 }
13603
13604 return ret;
13605 }
13606
13607 static void
13608 intel_disable_cursor_plane(struct drm_plane *plane,
13609 struct drm_crtc *crtc,
13610 bool force)
13611 {
13612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13613
13614 if (!force) {
13615 plane->fb = NULL;
13616 intel_crtc->cursor_bo = NULL;
13617 intel_crtc->cursor_addr = 0;
13618 }
13619
13620 intel_crtc_update_cursor(crtc, false);
13621 }
13622
13623 static void
13624 intel_commit_cursor_plane(struct drm_plane *plane,
13625 struct intel_plane_state *state)
13626 {
13627 struct drm_crtc *crtc = state->base.crtc;
13628 struct drm_device *dev = plane->dev;
13629 struct intel_crtc *intel_crtc;
13630 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13631 uint32_t addr;
13632
13633 crtc = crtc ? crtc : plane->crtc;
13634 intel_crtc = to_intel_crtc(crtc);
13635
13636 plane->fb = state->base.fb;
13637 crtc->cursor_x = state->base.crtc_x;
13638 crtc->cursor_y = state->base.crtc_y;
13639
13640 if (intel_crtc->cursor_bo == obj)
13641 goto update;
13642
13643 if (!obj)
13644 addr = 0;
13645 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13646 addr = i915_gem_obj_ggtt_offset(obj);
13647 else
13648 addr = obj->phys_handle->busaddr;
13649
13650 intel_crtc->cursor_addr = addr;
13651 intel_crtc->cursor_bo = obj;
13652 update:
13653
13654 if (intel_crtc->active)
13655 intel_crtc_update_cursor(crtc, state->visible);
13656 }
13657
13658 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13659 int pipe)
13660 {
13661 struct intel_plane *cursor;
13662 struct intel_plane_state *state;
13663
13664 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13665 if (cursor == NULL)
13666 return NULL;
13667
13668 state = intel_create_plane_state(&cursor->base);
13669 if (!state) {
13670 kfree(cursor);
13671 return NULL;
13672 }
13673 cursor->base.state = &state->base;
13674
13675 cursor->can_scale = false;
13676 cursor->max_downscale = 1;
13677 cursor->pipe = pipe;
13678 cursor->plane = pipe;
13679 state->scaler_id = -1;
13680 cursor->check_plane = intel_check_cursor_plane;
13681 cursor->commit_plane = intel_commit_cursor_plane;
13682 cursor->disable_plane = intel_disable_cursor_plane;
13683
13684 drm_universal_plane_init(dev, &cursor->base, 0,
13685 &intel_plane_funcs,
13686 intel_cursor_formats,
13687 ARRAY_SIZE(intel_cursor_formats),
13688 DRM_PLANE_TYPE_CURSOR);
13689
13690 if (INTEL_INFO(dev)->gen >= 4) {
13691 if (!dev->mode_config.rotation_property)
13692 dev->mode_config.rotation_property =
13693 drm_mode_create_rotation_property(dev,
13694 BIT(DRM_ROTATE_0) |
13695 BIT(DRM_ROTATE_180));
13696 if (dev->mode_config.rotation_property)
13697 drm_object_attach_property(&cursor->base.base,
13698 dev->mode_config.rotation_property,
13699 state->base.rotation);
13700 }
13701
13702 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13703
13704 return &cursor->base;
13705 }
13706
13707 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13708 struct intel_crtc_state *crtc_state)
13709 {
13710 int i;
13711 struct intel_scaler *intel_scaler;
13712 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13713
13714 for (i = 0; i < intel_crtc->num_scalers; i++) {
13715 intel_scaler = &scaler_state->scalers[i];
13716 intel_scaler->in_use = 0;
13717 intel_scaler->id = i;
13718
13719 intel_scaler->mode = PS_SCALER_MODE_DYN;
13720 }
13721
13722 scaler_state->scaler_id = -1;
13723 }
13724
13725 static void intel_crtc_init(struct drm_device *dev, int pipe)
13726 {
13727 struct drm_i915_private *dev_priv = dev->dev_private;
13728 struct intel_crtc *intel_crtc;
13729 struct intel_crtc_state *crtc_state = NULL;
13730 struct drm_plane *primary = NULL;
13731 struct drm_plane *cursor = NULL;
13732 int i, ret;
13733
13734 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13735 if (intel_crtc == NULL)
13736 return;
13737
13738 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13739 if (!crtc_state)
13740 goto fail;
13741 intel_crtc_set_state(intel_crtc, crtc_state);
13742 crtc_state->base.crtc = &intel_crtc->base;
13743
13744 /* initialize shared scalers */
13745 if (INTEL_INFO(dev)->gen >= 9) {
13746 if (pipe == PIPE_C)
13747 intel_crtc->num_scalers = 1;
13748 else
13749 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13750
13751 skl_init_scalers(dev, intel_crtc, crtc_state);
13752 }
13753
13754 primary = intel_primary_plane_create(dev, pipe);
13755 if (!primary)
13756 goto fail;
13757
13758 cursor = intel_cursor_plane_create(dev, pipe);
13759 if (!cursor)
13760 goto fail;
13761
13762 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13763 cursor, &intel_crtc_funcs);
13764 if (ret)
13765 goto fail;
13766
13767 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13768 for (i = 0; i < 256; i++) {
13769 intel_crtc->lut_r[i] = i;
13770 intel_crtc->lut_g[i] = i;
13771 intel_crtc->lut_b[i] = i;
13772 }
13773
13774 /*
13775 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13776 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13777 */
13778 intel_crtc->pipe = pipe;
13779 intel_crtc->plane = pipe;
13780 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13781 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13782 intel_crtc->plane = !pipe;
13783 }
13784
13785 intel_crtc->cursor_base = ~0;
13786 intel_crtc->cursor_cntl = ~0;
13787 intel_crtc->cursor_size = ~0;
13788
13789 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13790 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13791 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13792 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13793
13794 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
13795
13796 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13797
13798 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13799 return;
13800
13801 fail:
13802 if (primary)
13803 drm_plane_cleanup(primary);
13804 if (cursor)
13805 drm_plane_cleanup(cursor);
13806 kfree(crtc_state);
13807 kfree(intel_crtc);
13808 }
13809
13810 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13811 {
13812 struct drm_encoder *encoder = connector->base.encoder;
13813 struct drm_device *dev = connector->base.dev;
13814
13815 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13816
13817 if (!encoder || WARN_ON(!encoder->crtc))
13818 return INVALID_PIPE;
13819
13820 return to_intel_crtc(encoder->crtc)->pipe;
13821 }
13822
13823 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13824 struct drm_file *file)
13825 {
13826 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13827 struct drm_crtc *drmmode_crtc;
13828 struct intel_crtc *crtc;
13829
13830 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13831
13832 if (!drmmode_crtc) {
13833 DRM_ERROR("no such CRTC id\n");
13834 return -ENOENT;
13835 }
13836
13837 crtc = to_intel_crtc(drmmode_crtc);
13838 pipe_from_crtc_id->pipe = crtc->pipe;
13839
13840 return 0;
13841 }
13842
13843 static int intel_encoder_clones(struct intel_encoder *encoder)
13844 {
13845 struct drm_device *dev = encoder->base.dev;
13846 struct intel_encoder *source_encoder;
13847 int index_mask = 0;
13848 int entry = 0;
13849
13850 for_each_intel_encoder(dev, source_encoder) {
13851 if (encoders_cloneable(encoder, source_encoder))
13852 index_mask |= (1 << entry);
13853
13854 entry++;
13855 }
13856
13857 return index_mask;
13858 }
13859
13860 static bool has_edp_a(struct drm_device *dev)
13861 {
13862 struct drm_i915_private *dev_priv = dev->dev_private;
13863
13864 if (!IS_MOBILE(dev))
13865 return false;
13866
13867 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13868 return false;
13869
13870 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13871 return false;
13872
13873 return true;
13874 }
13875
13876 static bool intel_crt_present(struct drm_device *dev)
13877 {
13878 struct drm_i915_private *dev_priv = dev->dev_private;
13879
13880 if (INTEL_INFO(dev)->gen >= 9)
13881 return false;
13882
13883 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13884 return false;
13885
13886 if (IS_CHERRYVIEW(dev))
13887 return false;
13888
13889 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13890 return false;
13891
13892 return true;
13893 }
13894
13895 static void intel_setup_outputs(struct drm_device *dev)
13896 {
13897 struct drm_i915_private *dev_priv = dev->dev_private;
13898 struct intel_encoder *encoder;
13899 bool dpd_is_edp = false;
13900
13901 intel_lvds_init(dev);
13902
13903 if (intel_crt_present(dev))
13904 intel_crt_init(dev);
13905
13906 if (IS_BROXTON(dev)) {
13907 /*
13908 * FIXME: Broxton doesn't support port detection via the
13909 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13910 * detect the ports.
13911 */
13912 intel_ddi_init(dev, PORT_A);
13913 intel_ddi_init(dev, PORT_B);
13914 intel_ddi_init(dev, PORT_C);
13915 } else if (HAS_DDI(dev)) {
13916 int found;
13917
13918 /*
13919 * Haswell uses DDI functions to detect digital outputs.
13920 * On SKL pre-D0 the strap isn't connected, so we assume
13921 * it's there.
13922 */
13923 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13924 /* WaIgnoreDDIAStrap: skl */
13925 if (found ||
13926 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13927 intel_ddi_init(dev, PORT_A);
13928
13929 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13930 * register */
13931 found = I915_READ(SFUSE_STRAP);
13932
13933 if (found & SFUSE_STRAP_DDIB_DETECTED)
13934 intel_ddi_init(dev, PORT_B);
13935 if (found & SFUSE_STRAP_DDIC_DETECTED)
13936 intel_ddi_init(dev, PORT_C);
13937 if (found & SFUSE_STRAP_DDID_DETECTED)
13938 intel_ddi_init(dev, PORT_D);
13939 } else if (HAS_PCH_SPLIT(dev)) {
13940 int found;
13941 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13942
13943 if (has_edp_a(dev))
13944 intel_dp_init(dev, DP_A, PORT_A);
13945
13946 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13947 /* PCH SDVOB multiplex with HDMIB */
13948 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13949 if (!found)
13950 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13951 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13952 intel_dp_init(dev, PCH_DP_B, PORT_B);
13953 }
13954
13955 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13956 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13957
13958 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13959 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13960
13961 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13962 intel_dp_init(dev, PCH_DP_C, PORT_C);
13963
13964 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13965 intel_dp_init(dev, PCH_DP_D, PORT_D);
13966 } else if (IS_VALLEYVIEW(dev)) {
13967 /*
13968 * The DP_DETECTED bit is the latched state of the DDC
13969 * SDA pin at boot. However since eDP doesn't require DDC
13970 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13971 * eDP ports may have been muxed to an alternate function.
13972 * Thus we can't rely on the DP_DETECTED bit alone to detect
13973 * eDP ports. Consult the VBT as well as DP_DETECTED to
13974 * detect eDP ports.
13975 */
13976 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13977 !intel_dp_is_edp(dev, PORT_B))
13978 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13979 PORT_B);
13980 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13981 intel_dp_is_edp(dev, PORT_B))
13982 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13983
13984 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13985 !intel_dp_is_edp(dev, PORT_C))
13986 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13987 PORT_C);
13988 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13989 intel_dp_is_edp(dev, PORT_C))
13990 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13991
13992 if (IS_CHERRYVIEW(dev)) {
13993 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13994 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13995 PORT_D);
13996 /* eDP not supported on port D, so don't check VBT */
13997 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13998 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13999 }
14000
14001 intel_dsi_init(dev);
14002 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14003 bool found = false;
14004
14005 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14006 DRM_DEBUG_KMS("probing SDVOB\n");
14007 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14008 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14009 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14010 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14011 }
14012
14013 if (!found && SUPPORTS_INTEGRATED_DP(dev))
14014 intel_dp_init(dev, DP_B, PORT_B);
14015 }
14016
14017 /* Before G4X SDVOC doesn't have its own detect register */
14018
14019 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14020 DRM_DEBUG_KMS("probing SDVOC\n");
14021 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14022 }
14023
14024 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14025
14026 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14027 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14028 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14029 }
14030 if (SUPPORTS_INTEGRATED_DP(dev))
14031 intel_dp_init(dev, DP_C, PORT_C);
14032 }
14033
14034 if (SUPPORTS_INTEGRATED_DP(dev) &&
14035 (I915_READ(DP_D) & DP_DETECTED))
14036 intel_dp_init(dev, DP_D, PORT_D);
14037 } else if (IS_GEN2(dev))
14038 intel_dvo_init(dev);
14039
14040 if (SUPPORTS_TV(dev))
14041 intel_tv_init(dev);
14042
14043 intel_psr_init(dev);
14044
14045 for_each_intel_encoder(dev, encoder) {
14046 encoder->base.possible_crtcs = encoder->crtc_mask;
14047 encoder->base.possible_clones =
14048 intel_encoder_clones(encoder);
14049 }
14050
14051 intel_init_pch_refclk(dev);
14052
14053 drm_helper_move_panel_connectors_to_head(dev);
14054 }
14055
14056 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14057 {
14058 struct drm_device *dev = fb->dev;
14059 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14060
14061 drm_framebuffer_cleanup(fb);
14062 mutex_lock(&dev->struct_mutex);
14063 WARN_ON(!intel_fb->obj->framebuffer_references--);
14064 drm_gem_object_unreference(&intel_fb->obj->base);
14065 mutex_unlock(&dev->struct_mutex);
14066 kfree(intel_fb);
14067 }
14068
14069 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14070 struct drm_file *file,
14071 unsigned int *handle)
14072 {
14073 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14074 struct drm_i915_gem_object *obj = intel_fb->obj;
14075
14076 return drm_gem_handle_create(file, &obj->base, handle);
14077 }
14078
14079 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14080 .destroy = intel_user_framebuffer_destroy,
14081 .create_handle = intel_user_framebuffer_create_handle,
14082 };
14083
14084 static
14085 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14086 uint32_t pixel_format)
14087 {
14088 u32 gen = INTEL_INFO(dev)->gen;
14089
14090 if (gen >= 9) {
14091 /* "The stride in bytes must not exceed the of the size of 8K
14092 * pixels and 32K bytes."
14093 */
14094 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14095 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14096 return 32*1024;
14097 } else if (gen >= 4) {
14098 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14099 return 16*1024;
14100 else
14101 return 32*1024;
14102 } else if (gen >= 3) {
14103 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14104 return 8*1024;
14105 else
14106 return 16*1024;
14107 } else {
14108 /* XXX DSPC is limited to 4k tiled */
14109 return 8*1024;
14110 }
14111 }
14112
14113 static int intel_framebuffer_init(struct drm_device *dev,
14114 struct intel_framebuffer *intel_fb,
14115 struct drm_mode_fb_cmd2 *mode_cmd,
14116 struct drm_i915_gem_object *obj)
14117 {
14118 unsigned int aligned_height;
14119 int ret;
14120 u32 pitch_limit, stride_alignment;
14121
14122 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14123
14124 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14125 /* Enforce that fb modifier and tiling mode match, but only for
14126 * X-tiled. This is needed for FBC. */
14127 if (!!(obj->tiling_mode == I915_TILING_X) !=
14128 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14129 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14130 return -EINVAL;
14131 }
14132 } else {
14133 if (obj->tiling_mode == I915_TILING_X)
14134 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14135 else if (obj->tiling_mode == I915_TILING_Y) {
14136 DRM_DEBUG("No Y tiling for legacy addfb\n");
14137 return -EINVAL;
14138 }
14139 }
14140
14141 /* Passed in modifier sanity checking. */
14142 switch (mode_cmd->modifier[0]) {
14143 case I915_FORMAT_MOD_Y_TILED:
14144 case I915_FORMAT_MOD_Yf_TILED:
14145 if (INTEL_INFO(dev)->gen < 9) {
14146 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14147 mode_cmd->modifier[0]);
14148 return -EINVAL;
14149 }
14150 case DRM_FORMAT_MOD_NONE:
14151 case I915_FORMAT_MOD_X_TILED:
14152 break;
14153 default:
14154 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14155 mode_cmd->modifier[0]);
14156 return -EINVAL;
14157 }
14158
14159 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14160 mode_cmd->pixel_format);
14161 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14162 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14163 mode_cmd->pitches[0], stride_alignment);
14164 return -EINVAL;
14165 }
14166
14167 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14168 mode_cmd->pixel_format);
14169 if (mode_cmd->pitches[0] > pitch_limit) {
14170 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14171 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14172 "tiled" : "linear",
14173 mode_cmd->pitches[0], pitch_limit);
14174 return -EINVAL;
14175 }
14176
14177 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14178 mode_cmd->pitches[0] != obj->stride) {
14179 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14180 mode_cmd->pitches[0], obj->stride);
14181 return -EINVAL;
14182 }
14183
14184 /* Reject formats not supported by any plane early. */
14185 switch (mode_cmd->pixel_format) {
14186 case DRM_FORMAT_C8:
14187 case DRM_FORMAT_RGB565:
14188 case DRM_FORMAT_XRGB8888:
14189 case DRM_FORMAT_ARGB8888:
14190 break;
14191 case DRM_FORMAT_XRGB1555:
14192 case DRM_FORMAT_ARGB1555:
14193 if (INTEL_INFO(dev)->gen > 3) {
14194 DRM_DEBUG("unsupported pixel format: %s\n",
14195 drm_get_format_name(mode_cmd->pixel_format));
14196 return -EINVAL;
14197 }
14198 break;
14199 case DRM_FORMAT_XBGR8888:
14200 case DRM_FORMAT_ABGR8888:
14201 case DRM_FORMAT_XRGB2101010:
14202 case DRM_FORMAT_ARGB2101010:
14203 case DRM_FORMAT_XBGR2101010:
14204 case DRM_FORMAT_ABGR2101010:
14205 if (INTEL_INFO(dev)->gen < 4) {
14206 DRM_DEBUG("unsupported pixel format: %s\n",
14207 drm_get_format_name(mode_cmd->pixel_format));
14208 return -EINVAL;
14209 }
14210 break;
14211 case DRM_FORMAT_YUYV:
14212 case DRM_FORMAT_UYVY:
14213 case DRM_FORMAT_YVYU:
14214 case DRM_FORMAT_VYUY:
14215 if (INTEL_INFO(dev)->gen < 5) {
14216 DRM_DEBUG("unsupported pixel format: %s\n",
14217 drm_get_format_name(mode_cmd->pixel_format));
14218 return -EINVAL;
14219 }
14220 break;
14221 default:
14222 DRM_DEBUG("unsupported pixel format: %s\n",
14223 drm_get_format_name(mode_cmd->pixel_format));
14224 return -EINVAL;
14225 }
14226
14227 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14228 if (mode_cmd->offsets[0] != 0)
14229 return -EINVAL;
14230
14231 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14232 mode_cmd->pixel_format,
14233 mode_cmd->modifier[0]);
14234 /* FIXME drm helper for size checks (especially planar formats)? */
14235 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14236 return -EINVAL;
14237
14238 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14239 intel_fb->obj = obj;
14240 intel_fb->obj->framebuffer_references++;
14241
14242 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14243 if (ret) {
14244 DRM_ERROR("framebuffer init failed %d\n", ret);
14245 return ret;
14246 }
14247
14248 return 0;
14249 }
14250
14251 static struct drm_framebuffer *
14252 intel_user_framebuffer_create(struct drm_device *dev,
14253 struct drm_file *filp,
14254 struct drm_mode_fb_cmd2 *mode_cmd)
14255 {
14256 struct drm_i915_gem_object *obj;
14257
14258 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14259 mode_cmd->handles[0]));
14260 if (&obj->base == NULL)
14261 return ERR_PTR(-ENOENT);
14262
14263 return intel_framebuffer_create(dev, mode_cmd, obj);
14264 }
14265
14266 #ifndef CONFIG_DRM_I915_FBDEV
14267 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14268 {
14269 }
14270 #endif
14271
14272 static const struct drm_mode_config_funcs intel_mode_funcs = {
14273 .fb_create = intel_user_framebuffer_create,
14274 .output_poll_changed = intel_fbdev_output_poll_changed,
14275 .atomic_check = intel_atomic_check,
14276 .atomic_commit = intel_atomic_commit,
14277 };
14278
14279 /* Set up chip specific display functions */
14280 static void intel_init_display(struct drm_device *dev)
14281 {
14282 struct drm_i915_private *dev_priv = dev->dev_private;
14283
14284 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14285 dev_priv->display.find_dpll = g4x_find_best_dpll;
14286 else if (IS_CHERRYVIEW(dev))
14287 dev_priv->display.find_dpll = chv_find_best_dpll;
14288 else if (IS_VALLEYVIEW(dev))
14289 dev_priv->display.find_dpll = vlv_find_best_dpll;
14290 else if (IS_PINEVIEW(dev))
14291 dev_priv->display.find_dpll = pnv_find_best_dpll;
14292 else
14293 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14294
14295 if (INTEL_INFO(dev)->gen >= 9) {
14296 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14297 dev_priv->display.get_initial_plane_config =
14298 skylake_get_initial_plane_config;
14299 dev_priv->display.crtc_compute_clock =
14300 haswell_crtc_compute_clock;
14301 dev_priv->display.crtc_enable = haswell_crtc_enable;
14302 dev_priv->display.crtc_disable = haswell_crtc_disable;
14303 dev_priv->display.off = ironlake_crtc_off;
14304 dev_priv->display.update_primary_plane =
14305 skylake_update_primary_plane;
14306 } else if (HAS_DDI(dev)) {
14307 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14308 dev_priv->display.get_initial_plane_config =
14309 ironlake_get_initial_plane_config;
14310 dev_priv->display.crtc_compute_clock =
14311 haswell_crtc_compute_clock;
14312 dev_priv->display.crtc_enable = haswell_crtc_enable;
14313 dev_priv->display.crtc_disable = haswell_crtc_disable;
14314 dev_priv->display.off = ironlake_crtc_off;
14315 dev_priv->display.update_primary_plane =
14316 ironlake_update_primary_plane;
14317 } else if (HAS_PCH_SPLIT(dev)) {
14318 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14319 dev_priv->display.get_initial_plane_config =
14320 ironlake_get_initial_plane_config;
14321 dev_priv->display.crtc_compute_clock =
14322 ironlake_crtc_compute_clock;
14323 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14324 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14325 dev_priv->display.off = ironlake_crtc_off;
14326 dev_priv->display.update_primary_plane =
14327 ironlake_update_primary_plane;
14328 } else if (IS_VALLEYVIEW(dev)) {
14329 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14330 dev_priv->display.get_initial_plane_config =
14331 i9xx_get_initial_plane_config;
14332 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14333 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14334 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14335 dev_priv->display.off = i9xx_crtc_off;
14336 dev_priv->display.update_primary_plane =
14337 i9xx_update_primary_plane;
14338 } else {
14339 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14340 dev_priv->display.get_initial_plane_config =
14341 i9xx_get_initial_plane_config;
14342 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14343 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14344 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14345 dev_priv->display.off = i9xx_crtc_off;
14346 dev_priv->display.update_primary_plane =
14347 i9xx_update_primary_plane;
14348 }
14349
14350 /* Returns the core display clock speed */
14351 if (IS_SKYLAKE(dev))
14352 dev_priv->display.get_display_clock_speed =
14353 skylake_get_display_clock_speed;
14354 else if (IS_BROADWELL(dev))
14355 dev_priv->display.get_display_clock_speed =
14356 broadwell_get_display_clock_speed;
14357 else if (IS_HASWELL(dev))
14358 dev_priv->display.get_display_clock_speed =
14359 haswell_get_display_clock_speed;
14360 else if (IS_VALLEYVIEW(dev))
14361 dev_priv->display.get_display_clock_speed =
14362 valleyview_get_display_clock_speed;
14363 else if (IS_GEN5(dev))
14364 dev_priv->display.get_display_clock_speed =
14365 ilk_get_display_clock_speed;
14366 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14367 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14368 dev_priv->display.get_display_clock_speed =
14369 i945_get_display_clock_speed;
14370 else if (IS_I915G(dev))
14371 dev_priv->display.get_display_clock_speed =
14372 i915_get_display_clock_speed;
14373 else if (IS_I945GM(dev) || IS_845G(dev))
14374 dev_priv->display.get_display_clock_speed =
14375 i9xx_misc_get_display_clock_speed;
14376 else if (IS_PINEVIEW(dev))
14377 dev_priv->display.get_display_clock_speed =
14378 pnv_get_display_clock_speed;
14379 else if (IS_I915GM(dev))
14380 dev_priv->display.get_display_clock_speed =
14381 i915gm_get_display_clock_speed;
14382 else if (IS_I865G(dev))
14383 dev_priv->display.get_display_clock_speed =
14384 i865_get_display_clock_speed;
14385 else if (IS_I85X(dev))
14386 dev_priv->display.get_display_clock_speed =
14387 i855_get_display_clock_speed;
14388 else /* 852, 830 */
14389 dev_priv->display.get_display_clock_speed =
14390 i830_get_display_clock_speed;
14391
14392 if (IS_GEN5(dev)) {
14393 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14394 } else if (IS_GEN6(dev)) {
14395 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14396 } else if (IS_IVYBRIDGE(dev)) {
14397 /* FIXME: detect B0+ stepping and use auto training */
14398 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14399 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14400 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14401 } else if (IS_VALLEYVIEW(dev)) {
14402 dev_priv->display.modeset_global_resources =
14403 valleyview_modeset_global_resources;
14404 } else if (IS_BROXTON(dev)) {
14405 dev_priv->display.modeset_global_resources =
14406 broxton_modeset_global_resources;
14407 }
14408
14409 switch (INTEL_INFO(dev)->gen) {
14410 case 2:
14411 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14412 break;
14413
14414 case 3:
14415 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14416 break;
14417
14418 case 4:
14419 case 5:
14420 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14421 break;
14422
14423 case 6:
14424 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14425 break;
14426 case 7:
14427 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14428 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14429 break;
14430 case 9:
14431 /* Drop through - unsupported since execlist only. */
14432 default:
14433 /* Default just returns -ENODEV to indicate unsupported */
14434 dev_priv->display.queue_flip = intel_default_queue_flip;
14435 }
14436
14437 intel_panel_init_backlight_funcs(dev);
14438
14439 mutex_init(&dev_priv->pps_mutex);
14440 }
14441
14442 /*
14443 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14444 * resume, or other times. This quirk makes sure that's the case for
14445 * affected systems.
14446 */
14447 static void quirk_pipea_force(struct drm_device *dev)
14448 {
14449 struct drm_i915_private *dev_priv = dev->dev_private;
14450
14451 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14452 DRM_INFO("applying pipe a force quirk\n");
14453 }
14454
14455 static void quirk_pipeb_force(struct drm_device *dev)
14456 {
14457 struct drm_i915_private *dev_priv = dev->dev_private;
14458
14459 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14460 DRM_INFO("applying pipe b force quirk\n");
14461 }
14462
14463 /*
14464 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14465 */
14466 static void quirk_ssc_force_disable(struct drm_device *dev)
14467 {
14468 struct drm_i915_private *dev_priv = dev->dev_private;
14469 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14470 DRM_INFO("applying lvds SSC disable quirk\n");
14471 }
14472
14473 /*
14474 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14475 * brightness value
14476 */
14477 static void quirk_invert_brightness(struct drm_device *dev)
14478 {
14479 struct drm_i915_private *dev_priv = dev->dev_private;
14480 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14481 DRM_INFO("applying inverted panel brightness quirk\n");
14482 }
14483
14484 /* Some VBT's incorrectly indicate no backlight is present */
14485 static void quirk_backlight_present(struct drm_device *dev)
14486 {
14487 struct drm_i915_private *dev_priv = dev->dev_private;
14488 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14489 DRM_INFO("applying backlight present quirk\n");
14490 }
14491
14492 struct intel_quirk {
14493 int device;
14494 int subsystem_vendor;
14495 int subsystem_device;
14496 void (*hook)(struct drm_device *dev);
14497 };
14498
14499 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14500 struct intel_dmi_quirk {
14501 void (*hook)(struct drm_device *dev);
14502 const struct dmi_system_id (*dmi_id_list)[];
14503 };
14504
14505 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14506 {
14507 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14508 return 1;
14509 }
14510
14511 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14512 {
14513 .dmi_id_list = &(const struct dmi_system_id[]) {
14514 {
14515 .callback = intel_dmi_reverse_brightness,
14516 .ident = "NCR Corporation",
14517 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14518 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14519 },
14520 },
14521 { } /* terminating entry */
14522 },
14523 .hook = quirk_invert_brightness,
14524 },
14525 };
14526
14527 static struct intel_quirk intel_quirks[] = {
14528 /* HP Mini needs pipe A force quirk (LP: #322104) */
14529 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
14530
14531 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14532 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14533
14534 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14535 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14536
14537 /* 830 needs to leave pipe A & dpll A up */
14538 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14539
14540 /* 830 needs to leave pipe B & dpll B up */
14541 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14542
14543 /* Lenovo U160 cannot use SSC on LVDS */
14544 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14545
14546 /* Sony Vaio Y cannot use SSC on LVDS */
14547 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14548
14549 /* Acer Aspire 5734Z must invert backlight brightness */
14550 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14551
14552 /* Acer/eMachines G725 */
14553 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14554
14555 /* Acer/eMachines e725 */
14556 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14557
14558 /* Acer/Packard Bell NCL20 */
14559 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14560
14561 /* Acer Aspire 4736Z */
14562 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14563
14564 /* Acer Aspire 5336 */
14565 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14566
14567 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14568 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14569
14570 /* Acer C720 Chromebook (Core i3 4005U) */
14571 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14572
14573 /* Apple Macbook 2,1 (Core 2 T7400) */
14574 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14575
14576 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14577 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14578
14579 /* HP Chromebook 14 (Celeron 2955U) */
14580 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14581
14582 /* Dell Chromebook 11 */
14583 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14584 };
14585
14586 static void intel_init_quirks(struct drm_device *dev)
14587 {
14588 struct pci_dev *d = dev->pdev;
14589 int i;
14590
14591 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14592 struct intel_quirk *q = &intel_quirks[i];
14593
14594 if (d->device == q->device &&
14595 (d->subsystem_vendor == q->subsystem_vendor ||
14596 q->subsystem_vendor == PCI_ANY_ID) &&
14597 (d->subsystem_device == q->subsystem_device ||
14598 q->subsystem_device == PCI_ANY_ID))
14599 q->hook(dev);
14600 }
14601 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14602 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14603 intel_dmi_quirks[i].hook(dev);
14604 }
14605 }
14606
14607 /* Disable the VGA plane that we never use */
14608 static void i915_disable_vga(struct drm_device *dev)
14609 {
14610 struct drm_i915_private *dev_priv = dev->dev_private;
14611 u8 sr1;
14612 u32 vga_reg = i915_vgacntrl_reg(dev);
14613
14614 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14615 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14616 outb(SR01, VGA_SR_INDEX);
14617 sr1 = inb(VGA_SR_DATA);
14618 outb(sr1 | 1<<5, VGA_SR_DATA);
14619 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14620 udelay(300);
14621
14622 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14623 POSTING_READ(vga_reg);
14624 }
14625
14626 void intel_modeset_init_hw(struct drm_device *dev)
14627 {
14628 intel_prepare_ddi(dev);
14629
14630 if (IS_VALLEYVIEW(dev))
14631 vlv_update_cdclk(dev);
14632
14633 intel_init_clock_gating(dev);
14634
14635 intel_enable_gt_powersave(dev);
14636 }
14637
14638 void intel_modeset_init(struct drm_device *dev)
14639 {
14640 struct drm_i915_private *dev_priv = dev->dev_private;
14641 int sprite, ret;
14642 enum pipe pipe;
14643 struct intel_crtc *crtc;
14644
14645 drm_mode_config_init(dev);
14646
14647 dev->mode_config.min_width = 0;
14648 dev->mode_config.min_height = 0;
14649
14650 dev->mode_config.preferred_depth = 24;
14651 dev->mode_config.prefer_shadow = 1;
14652
14653 dev->mode_config.allow_fb_modifiers = true;
14654
14655 dev->mode_config.funcs = &intel_mode_funcs;
14656
14657 intel_init_quirks(dev);
14658
14659 intel_init_pm(dev);
14660
14661 if (INTEL_INFO(dev)->num_pipes == 0)
14662 return;
14663
14664 intel_init_display(dev);
14665 intel_init_audio(dev);
14666
14667 if (IS_GEN2(dev)) {
14668 dev->mode_config.max_width = 2048;
14669 dev->mode_config.max_height = 2048;
14670 } else if (IS_GEN3(dev)) {
14671 dev->mode_config.max_width = 4096;
14672 dev->mode_config.max_height = 4096;
14673 } else {
14674 dev->mode_config.max_width = 8192;
14675 dev->mode_config.max_height = 8192;
14676 }
14677
14678 if (IS_845G(dev) || IS_I865G(dev)) {
14679 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14680 dev->mode_config.cursor_height = 1023;
14681 } else if (IS_GEN2(dev)) {
14682 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14683 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14684 } else {
14685 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14686 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14687 }
14688
14689 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14690
14691 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14692 INTEL_INFO(dev)->num_pipes,
14693 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14694
14695 for_each_pipe(dev_priv, pipe) {
14696 intel_crtc_init(dev, pipe);
14697 for_each_sprite(dev_priv, pipe, sprite) {
14698 ret = intel_plane_init(dev, pipe, sprite);
14699 if (ret)
14700 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14701 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14702 }
14703 }
14704
14705 intel_init_dpio(dev);
14706
14707 intel_shared_dpll_init(dev);
14708
14709 /* Just disable it once at startup */
14710 i915_disable_vga(dev);
14711 intel_setup_outputs(dev);
14712
14713 /* Just in case the BIOS is doing something questionable. */
14714 intel_fbc_disable(dev);
14715
14716 drm_modeset_lock_all(dev);
14717 intel_modeset_setup_hw_state(dev, false);
14718 drm_modeset_unlock_all(dev);
14719
14720 for_each_intel_crtc(dev, crtc) {
14721 if (!crtc->active)
14722 continue;
14723
14724 /*
14725 * Note that reserving the BIOS fb up front prevents us
14726 * from stuffing other stolen allocations like the ring
14727 * on top. This prevents some ugliness at boot time, and
14728 * can even allow for smooth boot transitions if the BIOS
14729 * fb is large enough for the active pipe configuration.
14730 */
14731 if (dev_priv->display.get_initial_plane_config) {
14732 dev_priv->display.get_initial_plane_config(crtc,
14733 &crtc->plane_config);
14734 /*
14735 * If the fb is shared between multiple heads, we'll
14736 * just get the first one.
14737 */
14738 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14739 }
14740 }
14741 }
14742
14743 static void intel_enable_pipe_a(struct drm_device *dev)
14744 {
14745 struct intel_connector *connector;
14746 struct drm_connector *crt = NULL;
14747 struct intel_load_detect_pipe load_detect_temp;
14748 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14749
14750 /* We can't just switch on the pipe A, we need to set things up with a
14751 * proper mode and output configuration. As a gross hack, enable pipe A
14752 * by enabling the load detect pipe once. */
14753 for_each_intel_connector(dev, connector) {
14754 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14755 crt = &connector->base;
14756 break;
14757 }
14758 }
14759
14760 if (!crt)
14761 return;
14762
14763 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14764 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14765 }
14766
14767 static bool
14768 intel_check_plane_mapping(struct intel_crtc *crtc)
14769 {
14770 struct drm_device *dev = crtc->base.dev;
14771 struct drm_i915_private *dev_priv = dev->dev_private;
14772 u32 reg, val;
14773
14774 if (INTEL_INFO(dev)->num_pipes == 1)
14775 return true;
14776
14777 reg = DSPCNTR(!crtc->plane);
14778 val = I915_READ(reg);
14779
14780 if ((val & DISPLAY_PLANE_ENABLE) &&
14781 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14782 return false;
14783
14784 return true;
14785 }
14786
14787 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14788 {
14789 struct drm_device *dev = crtc->base.dev;
14790 struct drm_i915_private *dev_priv = dev->dev_private;
14791 u32 reg;
14792
14793 /* Clear any frame start delays used for debugging left by the BIOS */
14794 reg = PIPECONF(crtc->config->cpu_transcoder);
14795 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14796
14797 /* restore vblank interrupts to correct state */
14798 drm_crtc_vblank_reset(&crtc->base);
14799 if (crtc->active) {
14800 update_scanline_offset(crtc);
14801 drm_crtc_vblank_on(&crtc->base);
14802 }
14803
14804 /* We need to sanitize the plane -> pipe mapping first because this will
14805 * disable the crtc (and hence change the state) if it is wrong. Note
14806 * that gen4+ has a fixed plane -> pipe mapping. */
14807 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14808 struct intel_connector *connector;
14809 bool plane;
14810
14811 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14812 crtc->base.base.id);
14813
14814 /* Pipe has the wrong plane attached and the plane is active.
14815 * Temporarily change the plane mapping and disable everything
14816 * ... */
14817 plane = crtc->plane;
14818 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14819 crtc->plane = !plane;
14820 intel_crtc_disable_planes(&crtc->base);
14821 dev_priv->display.crtc_disable(&crtc->base);
14822 crtc->plane = plane;
14823
14824 /* ... and break all links. */
14825 for_each_intel_connector(dev, connector) {
14826 if (connector->encoder->base.crtc != &crtc->base)
14827 continue;
14828
14829 connector->base.dpms = DRM_MODE_DPMS_OFF;
14830 connector->base.encoder = NULL;
14831 }
14832 /* multiple connectors may have the same encoder:
14833 * handle them and break crtc link separately */
14834 for_each_intel_connector(dev, connector)
14835 if (connector->encoder->base.crtc == &crtc->base) {
14836 connector->encoder->base.crtc = NULL;
14837 connector->encoder->connectors_active = false;
14838 }
14839
14840 WARN_ON(crtc->active);
14841 crtc->base.state->enable = false;
14842 crtc->base.enabled = false;
14843 }
14844
14845 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14846 crtc->pipe == PIPE_A && !crtc->active) {
14847 /* BIOS forgot to enable pipe A, this mostly happens after
14848 * resume. Force-enable the pipe to fix this, the update_dpms
14849 * call below we restore the pipe to the right state, but leave
14850 * the required bits on. */
14851 intel_enable_pipe_a(dev);
14852 }
14853
14854 /* Adjust the state of the output pipe according to whether we
14855 * have active connectors/encoders. */
14856 intel_crtc_update_dpms(&crtc->base);
14857
14858 if (crtc->active != crtc->base.state->enable) {
14859 struct intel_encoder *encoder;
14860
14861 /* This can happen either due to bugs in the get_hw_state
14862 * functions or because the pipe is force-enabled due to the
14863 * pipe A quirk. */
14864 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14865 crtc->base.base.id,
14866 crtc->base.state->enable ? "enabled" : "disabled",
14867 crtc->active ? "enabled" : "disabled");
14868
14869 crtc->base.state->enable = crtc->active;
14870 crtc->base.enabled = crtc->active;
14871
14872 /* Because we only establish the connector -> encoder ->
14873 * crtc links if something is active, this means the
14874 * crtc is now deactivated. Break the links. connector
14875 * -> encoder links are only establish when things are
14876 * actually up, hence no need to break them. */
14877 WARN_ON(crtc->active);
14878
14879 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14880 WARN_ON(encoder->connectors_active);
14881 encoder->base.crtc = NULL;
14882 }
14883 }
14884
14885 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14886 /*
14887 * We start out with underrun reporting disabled to avoid races.
14888 * For correct bookkeeping mark this on active crtcs.
14889 *
14890 * Also on gmch platforms we dont have any hardware bits to
14891 * disable the underrun reporting. Which means we need to start
14892 * out with underrun reporting disabled also on inactive pipes,
14893 * since otherwise we'll complain about the garbage we read when
14894 * e.g. coming up after runtime pm.
14895 *
14896 * No protection against concurrent access is required - at
14897 * worst a fifo underrun happens which also sets this to false.
14898 */
14899 crtc->cpu_fifo_underrun_disabled = true;
14900 crtc->pch_fifo_underrun_disabled = true;
14901 }
14902 }
14903
14904 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14905 {
14906 struct intel_connector *connector;
14907 struct drm_device *dev = encoder->base.dev;
14908
14909 /* We need to check both for a crtc link (meaning that the
14910 * encoder is active and trying to read from a pipe) and the
14911 * pipe itself being active. */
14912 bool has_active_crtc = encoder->base.crtc &&
14913 to_intel_crtc(encoder->base.crtc)->active;
14914
14915 if (encoder->connectors_active && !has_active_crtc) {
14916 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14917 encoder->base.base.id,
14918 encoder->base.name);
14919
14920 /* Connector is active, but has no active pipe. This is
14921 * fallout from our resume register restoring. Disable
14922 * the encoder manually again. */
14923 if (encoder->base.crtc) {
14924 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14925 encoder->base.base.id,
14926 encoder->base.name);
14927 encoder->disable(encoder);
14928 if (encoder->post_disable)
14929 encoder->post_disable(encoder);
14930 }
14931 encoder->base.crtc = NULL;
14932 encoder->connectors_active = false;
14933
14934 /* Inconsistent output/port/pipe state happens presumably due to
14935 * a bug in one of the get_hw_state functions. Or someplace else
14936 * in our code, like the register restore mess on resume. Clamp
14937 * things to off as a safer default. */
14938 for_each_intel_connector(dev, connector) {
14939 if (connector->encoder != encoder)
14940 continue;
14941 connector->base.dpms = DRM_MODE_DPMS_OFF;
14942 connector->base.encoder = NULL;
14943 }
14944 }
14945 /* Enabled encoders without active connectors will be fixed in
14946 * the crtc fixup. */
14947 }
14948
14949 void i915_redisable_vga_power_on(struct drm_device *dev)
14950 {
14951 struct drm_i915_private *dev_priv = dev->dev_private;
14952 u32 vga_reg = i915_vgacntrl_reg(dev);
14953
14954 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14955 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14956 i915_disable_vga(dev);
14957 }
14958 }
14959
14960 void i915_redisable_vga(struct drm_device *dev)
14961 {
14962 struct drm_i915_private *dev_priv = dev->dev_private;
14963
14964 /* This function can be called both from intel_modeset_setup_hw_state or
14965 * at a very early point in our resume sequence, where the power well
14966 * structures are not yet restored. Since this function is at a very
14967 * paranoid "someone might have enabled VGA while we were not looking"
14968 * level, just check if the power well is enabled instead of trying to
14969 * follow the "don't touch the power well if we don't need it" policy
14970 * the rest of the driver uses. */
14971 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14972 return;
14973
14974 i915_redisable_vga_power_on(dev);
14975 }
14976
14977 static bool primary_get_hw_state(struct intel_crtc *crtc)
14978 {
14979 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14980
14981 if (!crtc->active)
14982 return false;
14983
14984 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14985 }
14986
14987 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14988 {
14989 struct drm_i915_private *dev_priv = dev->dev_private;
14990 enum pipe pipe;
14991 struct intel_crtc *crtc;
14992 struct intel_encoder *encoder;
14993 struct intel_connector *connector;
14994 int i;
14995
14996 for_each_intel_crtc(dev, crtc) {
14997 struct drm_plane *primary = crtc->base.primary;
14998 struct intel_plane_state *plane_state;
14999
15000 memset(crtc->config, 0, sizeof(*crtc->config));
15001
15002 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15003
15004 crtc->active = dev_priv->display.get_pipe_config(crtc,
15005 crtc->config);
15006
15007 crtc->base.state->enable = crtc->active;
15008 crtc->base.enabled = crtc->active;
15009
15010 plane_state = to_intel_plane_state(primary->state);
15011 plane_state->visible = primary_get_hw_state(crtc);
15012
15013 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15014 crtc->base.base.id,
15015 crtc->active ? "enabled" : "disabled");
15016 }
15017
15018 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15019 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15020
15021 pll->on = pll->get_hw_state(dev_priv, pll,
15022 &pll->config.hw_state);
15023 pll->active = 0;
15024 pll->config.crtc_mask = 0;
15025 for_each_intel_crtc(dev, crtc) {
15026 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15027 pll->active++;
15028 pll->config.crtc_mask |= 1 << crtc->pipe;
15029 }
15030 }
15031
15032 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15033 pll->name, pll->config.crtc_mask, pll->on);
15034
15035 if (pll->config.crtc_mask)
15036 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15037 }
15038
15039 for_each_intel_encoder(dev, encoder) {
15040 pipe = 0;
15041
15042 if (encoder->get_hw_state(encoder, &pipe)) {
15043 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15044 encoder->base.crtc = &crtc->base;
15045 encoder->get_config(encoder, crtc->config);
15046 } else {
15047 encoder->base.crtc = NULL;
15048 }
15049
15050 encoder->connectors_active = false;
15051 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15052 encoder->base.base.id,
15053 encoder->base.name,
15054 encoder->base.crtc ? "enabled" : "disabled",
15055 pipe_name(pipe));
15056 }
15057
15058 for_each_intel_connector(dev, connector) {
15059 if (connector->get_hw_state(connector)) {
15060 connector->base.dpms = DRM_MODE_DPMS_ON;
15061 connector->encoder->connectors_active = true;
15062 connector->base.encoder = &connector->encoder->base;
15063 } else {
15064 connector->base.dpms = DRM_MODE_DPMS_OFF;
15065 connector->base.encoder = NULL;
15066 }
15067 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15068 connector->base.base.id,
15069 connector->base.name,
15070 connector->base.encoder ? "enabled" : "disabled");
15071 }
15072 }
15073
15074 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15075 * and i915 state tracking structures. */
15076 void intel_modeset_setup_hw_state(struct drm_device *dev,
15077 bool force_restore)
15078 {
15079 struct drm_i915_private *dev_priv = dev->dev_private;
15080 enum pipe pipe;
15081 struct intel_crtc *crtc;
15082 struct intel_encoder *encoder;
15083 int i;
15084
15085 intel_modeset_readout_hw_state(dev);
15086
15087 /*
15088 * Now that we have the config, copy it to each CRTC struct
15089 * Note that this could go away if we move to using crtc_config
15090 * checking everywhere.
15091 */
15092 for_each_intel_crtc(dev, crtc) {
15093 if (crtc->active && i915.fastboot) {
15094 intel_mode_from_pipe_config(&crtc->base.mode,
15095 crtc->config);
15096 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15097 crtc->base.base.id);
15098 drm_mode_debug_printmodeline(&crtc->base.mode);
15099 }
15100 }
15101
15102 /* HW state is read out, now we need to sanitize this mess. */
15103 for_each_intel_encoder(dev, encoder) {
15104 intel_sanitize_encoder(encoder);
15105 }
15106
15107 for_each_pipe(dev_priv, pipe) {
15108 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15109 intel_sanitize_crtc(crtc);
15110 intel_dump_pipe_config(crtc, crtc->config,
15111 "[setup_hw_state]");
15112 }
15113
15114 intel_modeset_update_connector_atomic_state(dev);
15115
15116 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15117 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15118
15119 if (!pll->on || pll->active)
15120 continue;
15121
15122 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15123
15124 pll->disable(dev_priv, pll);
15125 pll->on = false;
15126 }
15127
15128 if (IS_GEN9(dev))
15129 skl_wm_get_hw_state(dev);
15130 else if (HAS_PCH_SPLIT(dev))
15131 ilk_wm_get_hw_state(dev);
15132
15133 if (force_restore) {
15134 i915_redisable_vga(dev);
15135
15136 /*
15137 * We need to use raw interfaces for restoring state to avoid
15138 * checking (bogus) intermediate states.
15139 */
15140 for_each_pipe(dev_priv, pipe) {
15141 struct drm_crtc *crtc =
15142 dev_priv->pipe_to_crtc_mapping[pipe];
15143
15144 intel_crtc_restore_mode(crtc);
15145 }
15146 } else {
15147 intel_modeset_update_staged_output_state(dev);
15148 }
15149
15150 intel_modeset_check_state(dev);
15151 }
15152
15153 void intel_modeset_gem_init(struct drm_device *dev)
15154 {
15155 struct drm_i915_private *dev_priv = dev->dev_private;
15156 struct drm_crtc *c;
15157 struct drm_i915_gem_object *obj;
15158 int ret;
15159
15160 mutex_lock(&dev->struct_mutex);
15161 intel_init_gt_powersave(dev);
15162 mutex_unlock(&dev->struct_mutex);
15163
15164 /*
15165 * There may be no VBT; and if the BIOS enabled SSC we can
15166 * just keep using it to avoid unnecessary flicker. Whereas if the
15167 * BIOS isn't using it, don't assume it will work even if the VBT
15168 * indicates as much.
15169 */
15170 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15171 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15172 DREF_SSC1_ENABLE);
15173
15174 intel_modeset_init_hw(dev);
15175
15176 intel_setup_overlay(dev);
15177
15178 /*
15179 * Make sure any fbs we allocated at startup are properly
15180 * pinned & fenced. When we do the allocation it's too early
15181 * for this.
15182 */
15183 for_each_crtc(dev, c) {
15184 obj = intel_fb_obj(c->primary->fb);
15185 if (obj == NULL)
15186 continue;
15187
15188 mutex_lock(&dev->struct_mutex);
15189 ret = intel_pin_and_fence_fb_obj(c->primary,
15190 c->primary->fb,
15191 c->primary->state,
15192 NULL);
15193 mutex_unlock(&dev->struct_mutex);
15194 if (ret) {
15195 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15196 to_intel_crtc(c)->pipe);
15197 drm_framebuffer_unreference(c->primary->fb);
15198 c->primary->fb = NULL;
15199 update_state_fb(c->primary);
15200 }
15201 }
15202
15203 intel_backlight_register(dev);
15204 }
15205
15206 void intel_connector_unregister(struct intel_connector *intel_connector)
15207 {
15208 struct drm_connector *connector = &intel_connector->base;
15209
15210 intel_panel_destroy_backlight(connector);
15211 drm_connector_unregister(connector);
15212 }
15213
15214 void intel_modeset_cleanup(struct drm_device *dev)
15215 {
15216 struct drm_i915_private *dev_priv = dev->dev_private;
15217 struct drm_connector *connector;
15218
15219 intel_disable_gt_powersave(dev);
15220
15221 intel_backlight_unregister(dev);
15222
15223 /*
15224 * Interrupts and polling as the first thing to avoid creating havoc.
15225 * Too much stuff here (turning of connectors, ...) would
15226 * experience fancy races otherwise.
15227 */
15228 intel_irq_uninstall(dev_priv);
15229
15230 /*
15231 * Due to the hpd irq storm handling the hotplug work can re-arm the
15232 * poll handlers. Hence disable polling after hpd handling is shut down.
15233 */
15234 drm_kms_helper_poll_fini(dev);
15235
15236 mutex_lock(&dev->struct_mutex);
15237
15238 intel_unregister_dsm_handler();
15239
15240 intel_fbc_disable(dev);
15241
15242 mutex_unlock(&dev->struct_mutex);
15243
15244 /* flush any delayed tasks or pending work */
15245 flush_scheduled_work();
15246
15247 /* destroy the backlight and sysfs files before encoders/connectors */
15248 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15249 struct intel_connector *intel_connector;
15250
15251 intel_connector = to_intel_connector(connector);
15252 intel_connector->unregister(intel_connector);
15253 }
15254
15255 drm_mode_config_cleanup(dev);
15256
15257 intel_cleanup_overlay(dev);
15258
15259 mutex_lock(&dev->struct_mutex);
15260 intel_cleanup_gt_powersave(dev);
15261 mutex_unlock(&dev->struct_mutex);
15262 }
15263
15264 /*
15265 * Return which encoder is currently attached for connector.
15266 */
15267 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15268 {
15269 return &intel_attached_encoder(connector)->base;
15270 }
15271
15272 void intel_connector_attach_encoder(struct intel_connector *connector,
15273 struct intel_encoder *encoder)
15274 {
15275 connector->encoder = encoder;
15276 drm_mode_connector_attach_encoder(&connector->base,
15277 &encoder->base);
15278 }
15279
15280 /*
15281 * set vga decode state - true == enable VGA decode
15282 */
15283 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15284 {
15285 struct drm_i915_private *dev_priv = dev->dev_private;
15286 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15287 u16 gmch_ctrl;
15288
15289 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15290 DRM_ERROR("failed to read control word\n");
15291 return -EIO;
15292 }
15293
15294 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15295 return 0;
15296
15297 if (state)
15298 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15299 else
15300 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15301
15302 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15303 DRM_ERROR("failed to write control word\n");
15304 return -EIO;
15305 }
15306
15307 return 0;
15308 }
15309
15310 struct intel_display_error_state {
15311
15312 u32 power_well_driver;
15313
15314 int num_transcoders;
15315
15316 struct intel_cursor_error_state {
15317 u32 control;
15318 u32 position;
15319 u32 base;
15320 u32 size;
15321 } cursor[I915_MAX_PIPES];
15322
15323 struct intel_pipe_error_state {
15324 bool power_domain_on;
15325 u32 source;
15326 u32 stat;
15327 } pipe[I915_MAX_PIPES];
15328
15329 struct intel_plane_error_state {
15330 u32 control;
15331 u32 stride;
15332 u32 size;
15333 u32 pos;
15334 u32 addr;
15335 u32 surface;
15336 u32 tile_offset;
15337 } plane[I915_MAX_PIPES];
15338
15339 struct intel_transcoder_error_state {
15340 bool power_domain_on;
15341 enum transcoder cpu_transcoder;
15342
15343 u32 conf;
15344
15345 u32 htotal;
15346 u32 hblank;
15347 u32 hsync;
15348 u32 vtotal;
15349 u32 vblank;
15350 u32 vsync;
15351 } transcoder[4];
15352 };
15353
15354 struct intel_display_error_state *
15355 intel_display_capture_error_state(struct drm_device *dev)
15356 {
15357 struct drm_i915_private *dev_priv = dev->dev_private;
15358 struct intel_display_error_state *error;
15359 int transcoders[] = {
15360 TRANSCODER_A,
15361 TRANSCODER_B,
15362 TRANSCODER_C,
15363 TRANSCODER_EDP,
15364 };
15365 int i;
15366
15367 if (INTEL_INFO(dev)->num_pipes == 0)
15368 return NULL;
15369
15370 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15371 if (error == NULL)
15372 return NULL;
15373
15374 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15375 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15376
15377 for_each_pipe(dev_priv, i) {
15378 error->pipe[i].power_domain_on =
15379 __intel_display_power_is_enabled(dev_priv,
15380 POWER_DOMAIN_PIPE(i));
15381 if (!error->pipe[i].power_domain_on)
15382 continue;
15383
15384 error->cursor[i].control = I915_READ(CURCNTR(i));
15385 error->cursor[i].position = I915_READ(CURPOS(i));
15386 error->cursor[i].base = I915_READ(CURBASE(i));
15387
15388 error->plane[i].control = I915_READ(DSPCNTR(i));
15389 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15390 if (INTEL_INFO(dev)->gen <= 3) {
15391 error->plane[i].size = I915_READ(DSPSIZE(i));
15392 error->plane[i].pos = I915_READ(DSPPOS(i));
15393 }
15394 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15395 error->plane[i].addr = I915_READ(DSPADDR(i));
15396 if (INTEL_INFO(dev)->gen >= 4) {
15397 error->plane[i].surface = I915_READ(DSPSURF(i));
15398 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15399 }
15400
15401 error->pipe[i].source = I915_READ(PIPESRC(i));
15402
15403 if (HAS_GMCH_DISPLAY(dev))
15404 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15405 }
15406
15407 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15408 if (HAS_DDI(dev_priv->dev))
15409 error->num_transcoders++; /* Account for eDP. */
15410
15411 for (i = 0; i < error->num_transcoders; i++) {
15412 enum transcoder cpu_transcoder = transcoders[i];
15413
15414 error->transcoder[i].power_domain_on =
15415 __intel_display_power_is_enabled(dev_priv,
15416 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15417 if (!error->transcoder[i].power_domain_on)
15418 continue;
15419
15420 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15421
15422 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15423 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15424 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15425 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15426 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15427 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15428 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15429 }
15430
15431 return error;
15432 }
15433
15434 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15435
15436 void
15437 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15438 struct drm_device *dev,
15439 struct intel_display_error_state *error)
15440 {
15441 struct drm_i915_private *dev_priv = dev->dev_private;
15442 int i;
15443
15444 if (!error)
15445 return;
15446
15447 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15448 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15449 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15450 error->power_well_driver);
15451 for_each_pipe(dev_priv, i) {
15452 err_printf(m, "Pipe [%d]:\n", i);
15453 err_printf(m, " Power: %s\n",
15454 error->pipe[i].power_domain_on ? "on" : "off");
15455 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15456 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15457
15458 err_printf(m, "Plane [%d]:\n", i);
15459 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15460 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15461 if (INTEL_INFO(dev)->gen <= 3) {
15462 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15463 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15464 }
15465 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15466 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15467 if (INTEL_INFO(dev)->gen >= 4) {
15468 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15469 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15470 }
15471
15472 err_printf(m, "Cursor [%d]:\n", i);
15473 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15474 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15475 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15476 }
15477
15478 for (i = 0; i < error->num_transcoders; i++) {
15479 err_printf(m, "CPU transcoder: %c\n",
15480 transcoder_name(error->transcoder[i].cpu_transcoder));
15481 err_printf(m, " Power: %s\n",
15482 error->transcoder[i].power_domain_on ? "on" : "off");
15483 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15484 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15485 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15486 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15487 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15488 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15489 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15490 }
15491 }
15492
15493 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15494 {
15495 struct intel_crtc *crtc;
15496
15497 for_each_intel_crtc(dev, crtc) {
15498 struct intel_unpin_work *work;
15499
15500 spin_lock_irq(&dev->event_lock);
15501
15502 work = crtc->unpin_work;
15503
15504 if (work && work->event &&
15505 work->event->base.file_priv == file) {
15506 kfree(work->event);
15507 work->event = NULL;
15508 }
15509
15510 spin_unlock_irq(&dev->event_lock);
15511 }
15512 }
This page took 0.385234 seconds and 5 git commands to generate.