Merge branch 'acpi-lpss'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
59
60 typedef struct {
61 int min, max;
62 } intel_range_t;
63
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75 int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
135 .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
149 .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 8, .max = 18 },
158 .m2 = { .min = 3, .max = 7 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
163 .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 8, .max = 18 },
172 .m2 = { .min = 3, .max = 7 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
177 .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
193 },
194 .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
208 .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
222 },
223 .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
237 },
238 .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 10, .p2_fast = 10 },
252 .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
258 /* Pineview's Ncounter is a ring counter */
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
261 /* Pineview only has one combined m divider, which we treat as m2. */
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
268 .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
282 .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
301 .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
315 .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
329 .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
341 .p1 = { .min = 2, .max = 8 },
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
344 .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
355 .p1 = { .min = 2, .max = 6 },
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
358 .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
371 .p2_slow = 10, .p2_fast = 10 },
372 .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
391 .vco = { .min = 4000000, .max = 5994000},
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
406 .n = { .min = 1, .max = 7 },
407 .m = { .min = 22, .max = 450 },
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
420
421 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
422 DRM_ERROR("DPIO idle wait timed out\n");
423 return 0;
424 }
425
426 I915_WRITE(DPIO_REG, reg);
427 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
428 DPIO_BYTE);
429 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
430 DRM_ERROR("DPIO read wait timed out\n");
431 return 0;
432 }
433
434 return I915_READ(DPIO_DATA);
435 }
436
437 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
438 u32 val)
439 {
440 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
441
442 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
443 DRM_ERROR("DPIO idle wait timed out\n");
444 return;
445 }
446
447 I915_WRITE(DPIO_DATA, val);
448 I915_WRITE(DPIO_REG, reg);
449 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
450 DPIO_BYTE);
451 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
452 DRM_ERROR("DPIO write wait timed out\n");
453 }
454
455 static void vlv_init_dpio(struct drm_device *dev)
456 {
457 struct drm_i915_private *dev_priv = dev->dev_private;
458
459 /* Reset the DPIO config */
460 I915_WRITE(DPIO_CTL, 0);
461 POSTING_READ(DPIO_CTL);
462 I915_WRITE(DPIO_CTL, 1);
463 POSTING_READ(DPIO_CTL);
464 }
465
466 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
467 int refclk)
468 {
469 struct drm_device *dev = crtc->dev;
470 const intel_limit_t *limit;
471
472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
473 if (intel_is_dual_link_lvds(dev)) {
474 /* LVDS dual channel */
475 if (refclk == 100000)
476 limit = &intel_limits_ironlake_dual_lvds_100m;
477 else
478 limit = &intel_limits_ironlake_dual_lvds;
479 } else {
480 if (refclk == 100000)
481 limit = &intel_limits_ironlake_single_lvds_100m;
482 else
483 limit = &intel_limits_ironlake_single_lvds;
484 }
485 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
486 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
487 limit = &intel_limits_ironlake_display_port;
488 else
489 limit = &intel_limits_ironlake_dac;
490
491 return limit;
492 }
493
494 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
495 {
496 struct drm_device *dev = crtc->dev;
497 const intel_limit_t *limit;
498
499 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
500 if (intel_is_dual_link_lvds(dev))
501 /* LVDS with dual channel */
502 limit = &intel_limits_g4x_dual_channel_lvds;
503 else
504 /* LVDS with dual channel */
505 limit = &intel_limits_g4x_single_channel_lvds;
506 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
507 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
508 limit = &intel_limits_g4x_hdmi;
509 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
510 limit = &intel_limits_g4x_sdvo;
511 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
512 limit = &intel_limits_g4x_display_port;
513 } else /* The option is for other outputs */
514 limit = &intel_limits_i9xx_sdvo;
515
516 return limit;
517 }
518
519 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
520 {
521 struct drm_device *dev = crtc->dev;
522 const intel_limit_t *limit;
523
524 if (HAS_PCH_SPLIT(dev))
525 limit = intel_ironlake_limit(crtc, refclk);
526 else if (IS_G4X(dev)) {
527 limit = intel_g4x_limit(crtc);
528 } else if (IS_PINEVIEW(dev)) {
529 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
530 limit = &intel_limits_pineview_lvds;
531 else
532 limit = &intel_limits_pineview_sdvo;
533 } else if (IS_VALLEYVIEW(dev)) {
534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
535 limit = &intel_limits_vlv_dac;
536 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
537 limit = &intel_limits_vlv_hdmi;
538 else
539 limit = &intel_limits_vlv_dp;
540 } else if (!IS_GEN2(dev)) {
541 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
542 limit = &intel_limits_i9xx_lvds;
543 else
544 limit = &intel_limits_i9xx_sdvo;
545 } else {
546 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
547 limit = &intel_limits_i8xx_lvds;
548 else
549 limit = &intel_limits_i8xx_dvo;
550 }
551 return limit;
552 }
553
554 /* m1 is reserved as 0 in Pineview, n is a ring counter */
555 static void pineview_clock(int refclk, intel_clock_t *clock)
556 {
557 clock->m = clock->m2 + 2;
558 clock->p = clock->p1 * clock->p2;
559 clock->vco = refclk * clock->m / clock->n;
560 clock->dot = clock->vco / clock->p;
561 }
562
563 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
564 {
565 if (IS_PINEVIEW(dev)) {
566 pineview_clock(refclk, clock);
567 return;
568 }
569 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
570 clock->p = clock->p1 * clock->p2;
571 clock->vco = refclk * clock->m / (clock->n + 2);
572 clock->dot = clock->vco / clock->p;
573 }
574
575 /**
576 * Returns whether any output on the specified pipe is of the specified type
577 */
578 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
579 {
580 struct drm_device *dev = crtc->dev;
581 struct intel_encoder *encoder;
582
583 for_each_encoder_on_crtc(dev, crtc, encoder)
584 if (encoder->type == type)
585 return true;
586
587 return false;
588 }
589
590 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
591 /**
592 * Returns whether the given set of divisors are valid for a given refclk with
593 * the given connectors.
594 */
595
596 static bool intel_PLL_is_valid(struct drm_device *dev,
597 const intel_limit_t *limit,
598 const intel_clock_t *clock)
599 {
600 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
601 INTELPllInvalid("p1 out of range\n");
602 if (clock->p < limit->p.min || limit->p.max < clock->p)
603 INTELPllInvalid("p out of range\n");
604 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
605 INTELPllInvalid("m2 out of range\n");
606 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
607 INTELPllInvalid("m1 out of range\n");
608 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
609 INTELPllInvalid("m1 <= m2\n");
610 if (clock->m < limit->m.min || limit->m.max < clock->m)
611 INTELPllInvalid("m out of range\n");
612 if (clock->n < limit->n.min || limit->n.max < clock->n)
613 INTELPllInvalid("n out of range\n");
614 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
615 INTELPllInvalid("vco out of range\n");
616 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
617 * connector, etc., rather than just a single range.
618 */
619 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
620 INTELPllInvalid("dot out of range\n");
621
622 return true;
623 }
624
625 static bool
626 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
627 int target, int refclk, intel_clock_t *match_clock,
628 intel_clock_t *best_clock)
629
630 {
631 struct drm_device *dev = crtc->dev;
632 intel_clock_t clock;
633 int err = target;
634
635 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
636 /*
637 * For LVDS just rely on its current settings for dual-channel.
638 * We haven't figured out how to reliably set up different
639 * single/dual channel state, if we even can.
640 */
641 if (intel_is_dual_link_lvds(dev))
642 clock.p2 = limit->p2.p2_fast;
643 else
644 clock.p2 = limit->p2.p2_slow;
645 } else {
646 if (target < limit->p2.dot_limit)
647 clock.p2 = limit->p2.p2_slow;
648 else
649 clock.p2 = limit->p2.p2_fast;
650 }
651
652 memset(best_clock, 0, sizeof(*best_clock));
653
654 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655 clock.m1++) {
656 for (clock.m2 = limit->m2.min;
657 clock.m2 <= limit->m2.max; clock.m2++) {
658 /* m1 is always 0 in Pineview */
659 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
660 break;
661 for (clock.n = limit->n.min;
662 clock.n <= limit->n.max; clock.n++) {
663 for (clock.p1 = limit->p1.min;
664 clock.p1 <= limit->p1.max; clock.p1++) {
665 int this_err;
666
667 intel_clock(dev, refclk, &clock);
668 if (!intel_PLL_is_valid(dev, limit,
669 &clock))
670 continue;
671 if (match_clock &&
672 clock.p != match_clock->p)
673 continue;
674
675 this_err = abs(clock.dot - target);
676 if (this_err < err) {
677 *best_clock = clock;
678 err = this_err;
679 }
680 }
681 }
682 }
683 }
684
685 return (err != target);
686 }
687
688 static bool
689 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
690 int target, int refclk, intel_clock_t *match_clock,
691 intel_clock_t *best_clock)
692 {
693 struct drm_device *dev = crtc->dev;
694 intel_clock_t clock;
695 int max_n;
696 bool found;
697 /* approximately equals target * 0.00585 */
698 int err_most = (target >> 8) + (target >> 9);
699 found = false;
700
701 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
702 int lvds_reg;
703
704 if (HAS_PCH_SPLIT(dev))
705 lvds_reg = PCH_LVDS;
706 else
707 lvds_reg = LVDS;
708 if (intel_is_dual_link_lvds(dev))
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
721 /* based on hardware requirement, prefer smaller n to precision */
722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
723 /* based on hardware requirement, prefere larger m1,m2 */
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
732 intel_clock(dev, refclk, &clock);
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
735 continue;
736 if (match_clock &&
737 clock.p != match_clock->p)
738 continue;
739
740 this_err = abs(clock.dot - target);
741 if (this_err < err_most) {
742 *best_clock = clock;
743 err_most = this_err;
744 max_n = clock.n;
745 found = true;
746 }
747 }
748 }
749 }
750 }
751 return found;
752 }
753
754 static bool
755 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
756 int target, int refclk, intel_clock_t *match_clock,
757 intel_clock_t *best_clock)
758 {
759 struct drm_device *dev = crtc->dev;
760 intel_clock_t clock;
761
762 if (target < 200000) {
763 clock.n = 1;
764 clock.p1 = 2;
765 clock.p2 = 10;
766 clock.m1 = 12;
767 clock.m2 = 9;
768 } else {
769 clock.n = 2;
770 clock.p1 = 1;
771 clock.p2 = 10;
772 clock.m1 = 14;
773 clock.m2 = 8;
774 }
775 intel_clock(dev, refclk, &clock);
776 memcpy(best_clock, &clock, sizeof(intel_clock_t));
777 return true;
778 }
779
780 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
781 static bool
782 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
783 int target, int refclk, intel_clock_t *match_clock,
784 intel_clock_t *best_clock)
785 {
786 intel_clock_t clock;
787 if (target < 200000) {
788 clock.p1 = 2;
789 clock.p2 = 10;
790 clock.n = 2;
791 clock.m1 = 23;
792 clock.m2 = 8;
793 } else {
794 clock.p1 = 1;
795 clock.p2 = 10;
796 clock.n = 1;
797 clock.m1 = 14;
798 clock.m2 = 2;
799 }
800 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
801 clock.p = (clock.p1 * clock.p2);
802 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
803 clock.vco = 0;
804 memcpy(best_clock, &clock, sizeof(intel_clock_t));
805 return true;
806 }
807 static bool
808 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
809 int target, int refclk, intel_clock_t *match_clock,
810 intel_clock_t *best_clock)
811 {
812 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
813 u32 m, n, fastclk;
814 u32 updrate, minupdate, fracbits, p;
815 unsigned long bestppm, ppm, absppm;
816 int dotclk, flag;
817
818 flag = 0;
819 dotclk = target * 1000;
820 bestppm = 1000000;
821 ppm = absppm = 0;
822 fastclk = dotclk / (2*100);
823 updrate = 0;
824 minupdate = 19200;
825 fracbits = 1;
826 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
827 bestm1 = bestm2 = bestp1 = bestp2 = 0;
828
829 /* based on hardware requirement, prefer smaller n to precision */
830 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
831 updrate = refclk / n;
832 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
833 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
834 if (p2 > 10)
835 p2 = p2 - 1;
836 p = p1 * p2;
837 /* based on hardware requirement, prefer bigger m1,m2 values */
838 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
839 m2 = (((2*(fastclk * p * n / m1 )) +
840 refclk) / (2*refclk));
841 m = m1 * m2;
842 vco = updrate * m;
843 if (vco >= limit->vco.min && vco < limit->vco.max) {
844 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
845 absppm = (ppm > 0) ? ppm : (-ppm);
846 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
847 bestppm = 0;
848 flag = 1;
849 }
850 if (absppm < bestppm - 10) {
851 bestppm = absppm;
852 flag = 1;
853 }
854 if (flag) {
855 bestn = n;
856 bestm1 = m1;
857 bestm2 = m2;
858 bestp1 = p1;
859 bestp2 = p2;
860 flag = 0;
861 }
862 }
863 }
864 }
865 }
866 }
867 best_clock->n = bestn;
868 best_clock->m1 = bestm1;
869 best_clock->m2 = bestm2;
870 best_clock->p1 = bestp1;
871 best_clock->p2 = bestp2;
872
873 return true;
874 }
875
876 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
877 enum pipe pipe)
878 {
879 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
880 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
881
882 return intel_crtc->cpu_transcoder;
883 }
884
885 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
886 {
887 struct drm_i915_private *dev_priv = dev->dev_private;
888 u32 frame, frame_reg = PIPEFRAME(pipe);
889
890 frame = I915_READ(frame_reg);
891
892 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
893 DRM_DEBUG_KMS("vblank wait timed out\n");
894 }
895
896 /**
897 * intel_wait_for_vblank - wait for vblank on a given pipe
898 * @dev: drm device
899 * @pipe: pipe to wait for
900 *
901 * Wait for vblank to occur on a given pipe. Needed for various bits of
902 * mode setting code.
903 */
904 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
905 {
906 struct drm_i915_private *dev_priv = dev->dev_private;
907 int pipestat_reg = PIPESTAT(pipe);
908
909 if (INTEL_INFO(dev)->gen >= 5) {
910 ironlake_wait_for_vblank(dev, pipe);
911 return;
912 }
913
914 /* Clear existing vblank status. Note this will clear any other
915 * sticky status fields as well.
916 *
917 * This races with i915_driver_irq_handler() with the result
918 * that either function could miss a vblank event. Here it is not
919 * fatal, as we will either wait upon the next vblank interrupt or
920 * timeout. Generally speaking intel_wait_for_vblank() is only
921 * called during modeset at which time the GPU should be idle and
922 * should *not* be performing page flips and thus not waiting on
923 * vblanks...
924 * Currently, the result of us stealing a vblank from the irq
925 * handler is that a single frame will be skipped during swapbuffers.
926 */
927 I915_WRITE(pipestat_reg,
928 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
929
930 /* Wait for vblank interrupt bit to set */
931 if (wait_for(I915_READ(pipestat_reg) &
932 PIPE_VBLANK_INTERRUPT_STATUS,
933 50))
934 DRM_DEBUG_KMS("vblank wait timed out\n");
935 }
936
937 /*
938 * intel_wait_for_pipe_off - wait for pipe to turn off
939 * @dev: drm device
940 * @pipe: pipe to wait for
941 *
942 * After disabling a pipe, we can't wait for vblank in the usual way,
943 * spinning on the vblank interrupt status bit, since we won't actually
944 * see an interrupt when the pipe is disabled.
945 *
946 * On Gen4 and above:
947 * wait for the pipe register state bit to turn off
948 *
949 * Otherwise:
950 * wait for the display line value to settle (it usually
951 * ends up stopping at the start of the next frame).
952 *
953 */
954 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
955 {
956 struct drm_i915_private *dev_priv = dev->dev_private;
957 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
958 pipe);
959
960 if (INTEL_INFO(dev)->gen >= 4) {
961 int reg = PIPECONF(cpu_transcoder);
962
963 /* Wait for the Pipe State to go off */
964 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
965 100))
966 WARN(1, "pipe_off wait timed out\n");
967 } else {
968 u32 last_line, line_mask;
969 int reg = PIPEDSL(pipe);
970 unsigned long timeout = jiffies + msecs_to_jiffies(100);
971
972 if (IS_GEN2(dev))
973 line_mask = DSL_LINEMASK_GEN2;
974 else
975 line_mask = DSL_LINEMASK_GEN3;
976
977 /* Wait for the display line to settle */
978 do {
979 last_line = I915_READ(reg) & line_mask;
980 mdelay(5);
981 } while (((I915_READ(reg) & line_mask) != last_line) &&
982 time_after(timeout, jiffies));
983 if (time_after(jiffies, timeout))
984 WARN(1, "pipe_off wait timed out\n");
985 }
986 }
987
988 /*
989 * ibx_digital_port_connected - is the specified port connected?
990 * @dev_priv: i915 private structure
991 * @port: the port to test
992 *
993 * Returns true if @port is connected, false otherwise.
994 */
995 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
996 struct intel_digital_port *port)
997 {
998 u32 bit;
999
1000 if (HAS_PCH_IBX(dev_priv->dev)) {
1001 switch(port->port) {
1002 case PORT_B:
1003 bit = SDE_PORTB_HOTPLUG;
1004 break;
1005 case PORT_C:
1006 bit = SDE_PORTC_HOTPLUG;
1007 break;
1008 case PORT_D:
1009 bit = SDE_PORTD_HOTPLUG;
1010 break;
1011 default:
1012 return true;
1013 }
1014 } else {
1015 switch(port->port) {
1016 case PORT_B:
1017 bit = SDE_PORTB_HOTPLUG_CPT;
1018 break;
1019 case PORT_C:
1020 bit = SDE_PORTC_HOTPLUG_CPT;
1021 break;
1022 case PORT_D:
1023 bit = SDE_PORTD_HOTPLUG_CPT;
1024 break;
1025 default:
1026 return true;
1027 }
1028 }
1029
1030 return I915_READ(SDEISR) & bit;
1031 }
1032
1033 static const char *state_string(bool enabled)
1034 {
1035 return enabled ? "on" : "off";
1036 }
1037
1038 /* Only for pre-ILK configs */
1039 static void assert_pll(struct drm_i915_private *dev_priv,
1040 enum pipe pipe, bool state)
1041 {
1042 int reg;
1043 u32 val;
1044 bool cur_state;
1045
1046 reg = DPLL(pipe);
1047 val = I915_READ(reg);
1048 cur_state = !!(val & DPLL_VCO_ENABLE);
1049 WARN(cur_state != state,
1050 "PLL state assertion failure (expected %s, current %s)\n",
1051 state_string(state), state_string(cur_state));
1052 }
1053 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1054 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1055
1056 /* For ILK+ */
1057 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1058 struct intel_pch_pll *pll,
1059 struct intel_crtc *crtc,
1060 bool state)
1061 {
1062 u32 val;
1063 bool cur_state;
1064
1065 if (HAS_PCH_LPT(dev_priv->dev)) {
1066 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1067 return;
1068 }
1069
1070 if (WARN (!pll,
1071 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1072 return;
1073
1074 val = I915_READ(pll->pll_reg);
1075 cur_state = !!(val & DPLL_VCO_ENABLE);
1076 WARN(cur_state != state,
1077 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1078 pll->pll_reg, state_string(state), state_string(cur_state), val);
1079
1080 /* Make sure the selected PLL is correctly attached to the transcoder */
1081 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1082 u32 pch_dpll;
1083
1084 pch_dpll = I915_READ(PCH_DPLL_SEL);
1085 cur_state = pll->pll_reg == _PCH_DPLL_B;
1086 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1087 "PLL[%d] not attached to this transcoder %d: %08x\n",
1088 cur_state, crtc->pipe, pch_dpll)) {
1089 cur_state = !!(val >> (4*crtc->pipe + 3));
1090 WARN(cur_state != state,
1091 "PLL[%d] not %s on this transcoder %d: %08x\n",
1092 pll->pll_reg == _PCH_DPLL_B,
1093 state_string(state),
1094 crtc->pipe,
1095 val);
1096 }
1097 }
1098 }
1099 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1100 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1101
1102 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1103 enum pipe pipe, bool state)
1104 {
1105 int reg;
1106 u32 val;
1107 bool cur_state;
1108 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1109 pipe);
1110
1111 if (HAS_DDI(dev_priv->dev)) {
1112 /* DDI does not have a specific FDI_TX register */
1113 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1116 } else {
1117 reg = FDI_TX_CTL(pipe);
1118 val = I915_READ(reg);
1119 cur_state = !!(val & FDI_TX_ENABLE);
1120 }
1121 WARN(cur_state != state,
1122 "FDI TX state assertion failure (expected %s, current %s)\n",
1123 state_string(state), state_string(cur_state));
1124 }
1125 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1126 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1127
1128 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1129 enum pipe pipe, bool state)
1130 {
1131 int reg;
1132 u32 val;
1133 bool cur_state;
1134
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 WARN(cur_state != state,
1139 "FDI RX state assertion failure (expected %s, current %s)\n",
1140 state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1143 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1144
1145 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1146 enum pipe pipe)
1147 {
1148 int reg;
1149 u32 val;
1150
1151 /* ILK FDI PLL is always enabled */
1152 if (dev_priv->info->gen == 5)
1153 return;
1154
1155 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1156 if (HAS_DDI(dev_priv->dev))
1157 return;
1158
1159 reg = FDI_TX_CTL(pipe);
1160 val = I915_READ(reg);
1161 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1162 }
1163
1164 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1165 enum pipe pipe)
1166 {
1167 int reg;
1168 u32 val;
1169
1170 reg = FDI_RX_CTL(pipe);
1171 val = I915_READ(reg);
1172 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1173 }
1174
1175 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1176 enum pipe pipe)
1177 {
1178 int pp_reg, lvds_reg;
1179 u32 val;
1180 enum pipe panel_pipe = PIPE_A;
1181 bool locked = true;
1182
1183 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1184 pp_reg = PCH_PP_CONTROL;
1185 lvds_reg = PCH_LVDS;
1186 } else {
1187 pp_reg = PP_CONTROL;
1188 lvds_reg = LVDS;
1189 }
1190
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
1193 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1194 locked = false;
1195
1196 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1197 panel_pipe = PIPE_B;
1198
1199 WARN(panel_pipe == pipe && locked,
1200 "panel assertion failure, pipe %c regs locked\n",
1201 pipe_name(pipe));
1202 }
1203
1204 void assert_pipe(struct drm_i915_private *dev_priv,
1205 enum pipe pipe, bool state)
1206 {
1207 int reg;
1208 u32 val;
1209 bool cur_state;
1210 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1211 pipe);
1212
1213 /* if we need the pipe A quirk it must be always on */
1214 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1215 state = true;
1216
1217 if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1218 !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1219 cur_state = false;
1220 } else {
1221 reg = PIPECONF(cpu_transcoder);
1222 val = I915_READ(reg);
1223 cur_state = !!(val & PIPECONF_ENABLE);
1224 }
1225
1226 WARN(cur_state != state,
1227 "pipe %c assertion failure (expected %s, current %s)\n",
1228 pipe_name(pipe), state_string(state), state_string(cur_state));
1229 }
1230
1231 static void assert_plane(struct drm_i915_private *dev_priv,
1232 enum plane plane, bool state)
1233 {
1234 int reg;
1235 u32 val;
1236 bool cur_state;
1237
1238 reg = DSPCNTR(plane);
1239 val = I915_READ(reg);
1240 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1241 WARN(cur_state != state,
1242 "plane %c assertion failure (expected %s, current %s)\n",
1243 plane_name(plane), state_string(state), state_string(cur_state));
1244 }
1245
1246 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1247 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1248
1249 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1250 enum pipe pipe)
1251 {
1252 int reg, i;
1253 u32 val;
1254 int cur_pipe;
1255
1256 /* Planes are fixed to pipes on ILK+ */
1257 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1258 reg = DSPCNTR(pipe);
1259 val = I915_READ(reg);
1260 WARN((val & DISPLAY_PLANE_ENABLE),
1261 "plane %c assertion failure, should be disabled but not\n",
1262 plane_name(pipe));
1263 return;
1264 }
1265
1266 /* Need to check both planes against the pipe */
1267 for (i = 0; i < 2; i++) {
1268 reg = DSPCNTR(i);
1269 val = I915_READ(reg);
1270 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1271 DISPPLANE_SEL_PIPE_SHIFT;
1272 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1273 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1274 plane_name(i), pipe_name(pipe));
1275 }
1276 }
1277
1278 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1279 {
1280 u32 val;
1281 bool enabled;
1282
1283 if (HAS_PCH_LPT(dev_priv->dev)) {
1284 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1285 return;
1286 }
1287
1288 val = I915_READ(PCH_DREF_CONTROL);
1289 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1290 DREF_SUPERSPREAD_SOURCE_MASK));
1291 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1292 }
1293
1294 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 int reg;
1298 u32 val;
1299 bool enabled;
1300
1301 reg = TRANSCONF(pipe);
1302 val = I915_READ(reg);
1303 enabled = !!(val & TRANS_ENABLE);
1304 WARN(enabled,
1305 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1306 pipe_name(pipe));
1307 }
1308
1309 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1310 enum pipe pipe, u32 port_sel, u32 val)
1311 {
1312 if ((val & DP_PORT_EN) == 0)
1313 return false;
1314
1315 if (HAS_PCH_CPT(dev_priv->dev)) {
1316 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1317 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1318 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1319 return false;
1320 } else {
1321 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322 return false;
1323 }
1324 return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, u32 val)
1329 {
1330 if ((val & PORT_ENABLE) == 0)
1331 return false;
1332
1333 if (HAS_PCH_CPT(dev_priv->dev)) {
1334 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1335 return false;
1336 } else {
1337 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1338 return false;
1339 }
1340 return true;
1341 }
1342
1343 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1344 enum pipe pipe, u32 val)
1345 {
1346 if ((val & LVDS_PORT_EN) == 0)
1347 return false;
1348
1349 if (HAS_PCH_CPT(dev_priv->dev)) {
1350 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1351 return false;
1352 } else {
1353 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1354 return false;
1355 }
1356 return true;
1357 }
1358
1359 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe, u32 val)
1361 {
1362 if ((val & ADPA_DAC_ENABLE) == 0)
1363 return false;
1364 if (HAS_PCH_CPT(dev_priv->dev)) {
1365 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1366 return false;
1367 } else {
1368 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1369 return false;
1370 }
1371 return true;
1372 }
1373
1374 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1375 enum pipe pipe, int reg, u32 port_sel)
1376 {
1377 u32 val = I915_READ(reg);
1378 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1379 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1380 reg, pipe_name(pipe));
1381
1382 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1383 && (val & DP_PIPEB_SELECT),
1384 "IBX PCH dp port still using transcoder B\n");
1385 }
1386
1387 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, int reg)
1389 {
1390 u32 val = I915_READ(reg);
1391 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1392 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1393 reg, pipe_name(pipe));
1394
1395 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1396 && (val & SDVO_PIPE_B_SELECT),
1397 "IBX PCH hdmi port still using transcoder B\n");
1398 }
1399
1400 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1401 enum pipe pipe)
1402 {
1403 int reg;
1404 u32 val;
1405
1406 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1407 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1408 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1409
1410 reg = PCH_ADPA;
1411 val = I915_READ(reg);
1412 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1413 "PCH VGA enabled on transcoder %c, should be disabled\n",
1414 pipe_name(pipe));
1415
1416 reg = PCH_LVDS;
1417 val = I915_READ(reg);
1418 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1419 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1420 pipe_name(pipe));
1421
1422 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1423 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1424 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1425 }
1426
1427 /**
1428 * intel_enable_pll - enable a PLL
1429 * @dev_priv: i915 private structure
1430 * @pipe: pipe PLL to enable
1431 *
1432 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1433 * make sure the PLL reg is writable first though, since the panel write
1434 * protect mechanism may be enabled.
1435 *
1436 * Note! This is for pre-ILK only.
1437 *
1438 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1439 */
1440 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1441 {
1442 int reg;
1443 u32 val;
1444
1445 /* No really, not for ILK+ */
1446 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1447
1448 /* PLL is protected by panel, make sure we can write it */
1449 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1450 assert_panel_unlocked(dev_priv, pipe);
1451
1452 reg = DPLL(pipe);
1453 val = I915_READ(reg);
1454 val |= DPLL_VCO_ENABLE;
1455
1456 /* We do this three times for luck */
1457 I915_WRITE(reg, val);
1458 POSTING_READ(reg);
1459 udelay(150); /* wait for warmup */
1460 I915_WRITE(reg, val);
1461 POSTING_READ(reg);
1462 udelay(150); /* wait for warmup */
1463 I915_WRITE(reg, val);
1464 POSTING_READ(reg);
1465 udelay(150); /* wait for warmup */
1466 }
1467
1468 /**
1469 * intel_disable_pll - disable a PLL
1470 * @dev_priv: i915 private structure
1471 * @pipe: pipe PLL to disable
1472 *
1473 * Disable the PLL for @pipe, making sure the pipe is off first.
1474 *
1475 * Note! This is for pre-ILK only.
1476 */
1477 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1478 {
1479 int reg;
1480 u32 val;
1481
1482 /* Don't disable pipe A or pipe A PLLs if needed */
1483 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1484 return;
1485
1486 /* Make sure the pipe isn't still relying on us */
1487 assert_pipe_disabled(dev_priv, pipe);
1488
1489 reg = DPLL(pipe);
1490 val = I915_READ(reg);
1491 val &= ~DPLL_VCO_ENABLE;
1492 I915_WRITE(reg, val);
1493 POSTING_READ(reg);
1494 }
1495
1496 /* SBI access */
1497 static void
1498 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1499 enum intel_sbi_destination destination)
1500 {
1501 u32 tmp;
1502
1503 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1504
1505 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1506 100)) {
1507 DRM_ERROR("timeout waiting for SBI to become ready\n");
1508 return;
1509 }
1510
1511 I915_WRITE(SBI_ADDR, (reg << 16));
1512 I915_WRITE(SBI_DATA, value);
1513
1514 if (destination == SBI_ICLK)
1515 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1516 else
1517 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1518 I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1519
1520 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1521 100)) {
1522 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1523 return;
1524 }
1525 }
1526
1527 static u32
1528 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1529 enum intel_sbi_destination destination)
1530 {
1531 u32 value = 0;
1532 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1533
1534 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1535 100)) {
1536 DRM_ERROR("timeout waiting for SBI to become ready\n");
1537 return 0;
1538 }
1539
1540 I915_WRITE(SBI_ADDR, (reg << 16));
1541
1542 if (destination == SBI_ICLK)
1543 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1544 else
1545 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1546 I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1547
1548 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1549 100)) {
1550 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1551 return 0;
1552 }
1553
1554 return I915_READ(SBI_DATA);
1555 }
1556
1557 /**
1558 * ironlake_enable_pch_pll - enable PCH PLL
1559 * @dev_priv: i915 private structure
1560 * @pipe: pipe PLL to enable
1561 *
1562 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1563 * drives the transcoder clock.
1564 */
1565 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1566 {
1567 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1568 struct intel_pch_pll *pll;
1569 int reg;
1570 u32 val;
1571
1572 /* PCH PLLs only available on ILK, SNB and IVB */
1573 BUG_ON(dev_priv->info->gen < 5);
1574 pll = intel_crtc->pch_pll;
1575 if (pll == NULL)
1576 return;
1577
1578 if (WARN_ON(pll->refcount == 0))
1579 return;
1580
1581 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1582 pll->pll_reg, pll->active, pll->on,
1583 intel_crtc->base.base.id);
1584
1585 /* PCH refclock must be enabled first */
1586 assert_pch_refclk_enabled(dev_priv);
1587
1588 if (pll->active++ && pll->on) {
1589 assert_pch_pll_enabled(dev_priv, pll, NULL);
1590 return;
1591 }
1592
1593 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1594
1595 reg = pll->pll_reg;
1596 val = I915_READ(reg);
1597 val |= DPLL_VCO_ENABLE;
1598 I915_WRITE(reg, val);
1599 POSTING_READ(reg);
1600 udelay(200);
1601
1602 pll->on = true;
1603 }
1604
1605 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1606 {
1607 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1608 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1609 int reg;
1610 u32 val;
1611
1612 /* PCH only available on ILK+ */
1613 BUG_ON(dev_priv->info->gen < 5);
1614 if (pll == NULL)
1615 return;
1616
1617 if (WARN_ON(pll->refcount == 0))
1618 return;
1619
1620 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1621 pll->pll_reg, pll->active, pll->on,
1622 intel_crtc->base.base.id);
1623
1624 if (WARN_ON(pll->active == 0)) {
1625 assert_pch_pll_disabled(dev_priv, pll, NULL);
1626 return;
1627 }
1628
1629 if (--pll->active) {
1630 assert_pch_pll_enabled(dev_priv, pll, NULL);
1631 return;
1632 }
1633
1634 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1635
1636 /* Make sure transcoder isn't still depending on us */
1637 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1638
1639 reg = pll->pll_reg;
1640 val = I915_READ(reg);
1641 val &= ~DPLL_VCO_ENABLE;
1642 I915_WRITE(reg, val);
1643 POSTING_READ(reg);
1644 udelay(200);
1645
1646 pll->on = false;
1647 }
1648
1649 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1650 enum pipe pipe)
1651 {
1652 struct drm_device *dev = dev_priv->dev;
1653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1654 uint32_t reg, val, pipeconf_val;
1655
1656 /* PCH only available on ILK+ */
1657 BUG_ON(dev_priv->info->gen < 5);
1658
1659 /* Make sure PCH DPLL is enabled */
1660 assert_pch_pll_enabled(dev_priv,
1661 to_intel_crtc(crtc)->pch_pll,
1662 to_intel_crtc(crtc));
1663
1664 /* FDI must be feeding us bits for PCH ports */
1665 assert_fdi_tx_enabled(dev_priv, pipe);
1666 assert_fdi_rx_enabled(dev_priv, pipe);
1667
1668 if (HAS_PCH_CPT(dev)) {
1669 /* Workaround: Set the timing override bit before enabling the
1670 * pch transcoder. */
1671 reg = TRANS_CHICKEN2(pipe);
1672 val = I915_READ(reg);
1673 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1674 I915_WRITE(reg, val);
1675 }
1676
1677 reg = TRANSCONF(pipe);
1678 val = I915_READ(reg);
1679 pipeconf_val = I915_READ(PIPECONF(pipe));
1680
1681 if (HAS_PCH_IBX(dev_priv->dev)) {
1682 /*
1683 * make the BPC in transcoder be consistent with
1684 * that in pipeconf reg.
1685 */
1686 val &= ~PIPECONF_BPC_MASK;
1687 val |= pipeconf_val & PIPECONF_BPC_MASK;
1688 }
1689
1690 val &= ~TRANS_INTERLACE_MASK;
1691 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1692 if (HAS_PCH_IBX(dev_priv->dev) &&
1693 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1694 val |= TRANS_LEGACY_INTERLACED_ILK;
1695 else
1696 val |= TRANS_INTERLACED;
1697 else
1698 val |= TRANS_PROGRESSIVE;
1699
1700 I915_WRITE(reg, val | TRANS_ENABLE);
1701 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1702 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1703 }
1704
1705 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1706 enum transcoder cpu_transcoder)
1707 {
1708 u32 val, pipeconf_val;
1709
1710 /* PCH only available on ILK+ */
1711 BUG_ON(dev_priv->info->gen < 5);
1712
1713 /* FDI must be feeding us bits for PCH ports */
1714 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1715 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1716
1717 /* Workaround: set timing override bit. */
1718 val = I915_READ(_TRANSA_CHICKEN2);
1719 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1720 I915_WRITE(_TRANSA_CHICKEN2, val);
1721
1722 val = TRANS_ENABLE;
1723 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1724
1725 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1726 PIPECONF_INTERLACED_ILK)
1727 val |= TRANS_INTERLACED;
1728 else
1729 val |= TRANS_PROGRESSIVE;
1730
1731 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1732 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1733 DRM_ERROR("Failed to enable PCH transcoder\n");
1734 }
1735
1736 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1737 enum pipe pipe)
1738 {
1739 struct drm_device *dev = dev_priv->dev;
1740 uint32_t reg, val;
1741
1742 /* FDI relies on the transcoder */
1743 assert_fdi_tx_disabled(dev_priv, pipe);
1744 assert_fdi_rx_disabled(dev_priv, pipe);
1745
1746 /* Ports must be off as well */
1747 assert_pch_ports_disabled(dev_priv, pipe);
1748
1749 reg = TRANSCONF(pipe);
1750 val = I915_READ(reg);
1751 val &= ~TRANS_ENABLE;
1752 I915_WRITE(reg, val);
1753 /* wait for PCH transcoder off, transcoder state */
1754 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1755 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1756
1757 if (!HAS_PCH_IBX(dev)) {
1758 /* Workaround: Clear the timing override chicken bit again. */
1759 reg = TRANS_CHICKEN2(pipe);
1760 val = I915_READ(reg);
1761 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1762 I915_WRITE(reg, val);
1763 }
1764 }
1765
1766 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1767 {
1768 u32 val;
1769
1770 val = I915_READ(_TRANSACONF);
1771 val &= ~TRANS_ENABLE;
1772 I915_WRITE(_TRANSACONF, val);
1773 /* wait for PCH transcoder off, transcoder state */
1774 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1775 DRM_ERROR("Failed to disable PCH transcoder\n");
1776
1777 /* Workaround: clear timing override bit. */
1778 val = I915_READ(_TRANSA_CHICKEN2);
1779 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1780 I915_WRITE(_TRANSA_CHICKEN2, val);
1781 }
1782
1783 /**
1784 * intel_enable_pipe - enable a pipe, asserting requirements
1785 * @dev_priv: i915 private structure
1786 * @pipe: pipe to enable
1787 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1788 *
1789 * Enable @pipe, making sure that various hardware specific requirements
1790 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1791 *
1792 * @pipe should be %PIPE_A or %PIPE_B.
1793 *
1794 * Will wait until the pipe is actually running (i.e. first vblank) before
1795 * returning.
1796 */
1797 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1798 bool pch_port)
1799 {
1800 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1801 pipe);
1802 enum pipe pch_transcoder;
1803 int reg;
1804 u32 val;
1805
1806 if (HAS_PCH_LPT(dev_priv->dev))
1807 pch_transcoder = TRANSCODER_A;
1808 else
1809 pch_transcoder = pipe;
1810
1811 /*
1812 * A pipe without a PLL won't actually be able to drive bits from
1813 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1814 * need the check.
1815 */
1816 if (!HAS_PCH_SPLIT(dev_priv->dev))
1817 assert_pll_enabled(dev_priv, pipe);
1818 else {
1819 if (pch_port) {
1820 /* if driving the PCH, we need FDI enabled */
1821 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1822 assert_fdi_tx_pll_enabled(dev_priv,
1823 (enum pipe) cpu_transcoder);
1824 }
1825 /* FIXME: assert CPU port conditions for SNB+ */
1826 }
1827
1828 reg = PIPECONF(cpu_transcoder);
1829 val = I915_READ(reg);
1830 if (val & PIPECONF_ENABLE)
1831 return;
1832
1833 I915_WRITE(reg, val | PIPECONF_ENABLE);
1834 intel_wait_for_vblank(dev_priv->dev, pipe);
1835 }
1836
1837 /**
1838 * intel_disable_pipe - disable a pipe, asserting requirements
1839 * @dev_priv: i915 private structure
1840 * @pipe: pipe to disable
1841 *
1842 * Disable @pipe, making sure that various hardware specific requirements
1843 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1844 *
1845 * @pipe should be %PIPE_A or %PIPE_B.
1846 *
1847 * Will wait until the pipe has shut down before returning.
1848 */
1849 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1850 enum pipe pipe)
1851 {
1852 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1853 pipe);
1854 int reg;
1855 u32 val;
1856
1857 /*
1858 * Make sure planes won't keep trying to pump pixels to us,
1859 * or we might hang the display.
1860 */
1861 assert_planes_disabled(dev_priv, pipe);
1862
1863 /* Don't disable pipe A or pipe A PLLs if needed */
1864 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1865 return;
1866
1867 reg = PIPECONF(cpu_transcoder);
1868 val = I915_READ(reg);
1869 if ((val & PIPECONF_ENABLE) == 0)
1870 return;
1871
1872 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1873 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1874 }
1875
1876 /*
1877 * Plane regs are double buffered, going from enabled->disabled needs a
1878 * trigger in order to latch. The display address reg provides this.
1879 */
1880 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1881 enum plane plane)
1882 {
1883 if (dev_priv->info->gen >= 4)
1884 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1885 else
1886 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1887 }
1888
1889 /**
1890 * intel_enable_plane - enable a display plane on a given pipe
1891 * @dev_priv: i915 private structure
1892 * @plane: plane to enable
1893 * @pipe: pipe being fed
1894 *
1895 * Enable @plane on @pipe, making sure that @pipe is running first.
1896 */
1897 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1898 enum plane plane, enum pipe pipe)
1899 {
1900 int reg;
1901 u32 val;
1902
1903 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1904 assert_pipe_enabled(dev_priv, pipe);
1905
1906 reg = DSPCNTR(plane);
1907 val = I915_READ(reg);
1908 if (val & DISPLAY_PLANE_ENABLE)
1909 return;
1910
1911 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1912 intel_flush_display_plane(dev_priv, plane);
1913 intel_wait_for_vblank(dev_priv->dev, pipe);
1914 }
1915
1916 /**
1917 * intel_disable_plane - disable a display plane
1918 * @dev_priv: i915 private structure
1919 * @plane: plane to disable
1920 * @pipe: pipe consuming the data
1921 *
1922 * Disable @plane; should be an independent operation.
1923 */
1924 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1925 enum plane plane, enum pipe pipe)
1926 {
1927 int reg;
1928 u32 val;
1929
1930 reg = DSPCNTR(plane);
1931 val = I915_READ(reg);
1932 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1933 return;
1934
1935 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1936 intel_flush_display_plane(dev_priv, plane);
1937 intel_wait_for_vblank(dev_priv->dev, pipe);
1938 }
1939
1940 int
1941 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1942 struct drm_i915_gem_object *obj,
1943 struct intel_ring_buffer *pipelined)
1944 {
1945 struct drm_i915_private *dev_priv = dev->dev_private;
1946 u32 alignment;
1947 int ret;
1948
1949 switch (obj->tiling_mode) {
1950 case I915_TILING_NONE:
1951 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1952 alignment = 128 * 1024;
1953 else if (INTEL_INFO(dev)->gen >= 4)
1954 alignment = 4 * 1024;
1955 else
1956 alignment = 64 * 1024;
1957 break;
1958 case I915_TILING_X:
1959 /* pin() will align the object as required by fence */
1960 alignment = 0;
1961 break;
1962 case I915_TILING_Y:
1963 /* FIXME: Is this true? */
1964 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1965 return -EINVAL;
1966 default:
1967 BUG();
1968 }
1969
1970 dev_priv->mm.interruptible = false;
1971 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1972 if (ret)
1973 goto err_interruptible;
1974
1975 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1976 * fence, whereas 965+ only requires a fence if using
1977 * framebuffer compression. For simplicity, we always install
1978 * a fence as the cost is not that onerous.
1979 */
1980 ret = i915_gem_object_get_fence(obj);
1981 if (ret)
1982 goto err_unpin;
1983
1984 i915_gem_object_pin_fence(obj);
1985
1986 dev_priv->mm.interruptible = true;
1987 return 0;
1988
1989 err_unpin:
1990 i915_gem_object_unpin(obj);
1991 err_interruptible:
1992 dev_priv->mm.interruptible = true;
1993 return ret;
1994 }
1995
1996 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1997 {
1998 i915_gem_object_unpin_fence(obj);
1999 i915_gem_object_unpin(obj);
2000 }
2001
2002 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2003 * is assumed to be a power-of-two. */
2004 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2005 unsigned int tiling_mode,
2006 unsigned int cpp,
2007 unsigned int pitch)
2008 {
2009 if (tiling_mode != I915_TILING_NONE) {
2010 unsigned int tile_rows, tiles;
2011
2012 tile_rows = *y / 8;
2013 *y %= 8;
2014
2015 tiles = *x / (512/cpp);
2016 *x %= 512/cpp;
2017
2018 return tile_rows * pitch * 8 + tiles * 4096;
2019 } else {
2020 unsigned int offset;
2021
2022 offset = *y * pitch + *x * cpp;
2023 *y = 0;
2024 *x = (offset & 4095) / cpp;
2025 return offset & -4096;
2026 }
2027 }
2028
2029 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2030 int x, int y)
2031 {
2032 struct drm_device *dev = crtc->dev;
2033 struct drm_i915_private *dev_priv = dev->dev_private;
2034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2035 struct intel_framebuffer *intel_fb;
2036 struct drm_i915_gem_object *obj;
2037 int plane = intel_crtc->plane;
2038 unsigned long linear_offset;
2039 u32 dspcntr;
2040 u32 reg;
2041
2042 switch (plane) {
2043 case 0:
2044 case 1:
2045 break;
2046 default:
2047 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2048 return -EINVAL;
2049 }
2050
2051 intel_fb = to_intel_framebuffer(fb);
2052 obj = intel_fb->obj;
2053
2054 reg = DSPCNTR(plane);
2055 dspcntr = I915_READ(reg);
2056 /* Mask out pixel format bits in case we change it */
2057 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2058 switch (fb->pixel_format) {
2059 case DRM_FORMAT_C8:
2060 dspcntr |= DISPPLANE_8BPP;
2061 break;
2062 case DRM_FORMAT_XRGB1555:
2063 case DRM_FORMAT_ARGB1555:
2064 dspcntr |= DISPPLANE_BGRX555;
2065 break;
2066 case DRM_FORMAT_RGB565:
2067 dspcntr |= DISPPLANE_BGRX565;
2068 break;
2069 case DRM_FORMAT_XRGB8888:
2070 case DRM_FORMAT_ARGB8888:
2071 dspcntr |= DISPPLANE_BGRX888;
2072 break;
2073 case DRM_FORMAT_XBGR8888:
2074 case DRM_FORMAT_ABGR8888:
2075 dspcntr |= DISPPLANE_RGBX888;
2076 break;
2077 case DRM_FORMAT_XRGB2101010:
2078 case DRM_FORMAT_ARGB2101010:
2079 dspcntr |= DISPPLANE_BGRX101010;
2080 break;
2081 case DRM_FORMAT_XBGR2101010:
2082 case DRM_FORMAT_ABGR2101010:
2083 dspcntr |= DISPPLANE_RGBX101010;
2084 break;
2085 default:
2086 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2087 return -EINVAL;
2088 }
2089
2090 if (INTEL_INFO(dev)->gen >= 4) {
2091 if (obj->tiling_mode != I915_TILING_NONE)
2092 dspcntr |= DISPPLANE_TILED;
2093 else
2094 dspcntr &= ~DISPPLANE_TILED;
2095 }
2096
2097 I915_WRITE(reg, dspcntr);
2098
2099 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2100
2101 if (INTEL_INFO(dev)->gen >= 4) {
2102 intel_crtc->dspaddr_offset =
2103 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2104 fb->bits_per_pixel / 8,
2105 fb->pitches[0]);
2106 linear_offset -= intel_crtc->dspaddr_offset;
2107 } else {
2108 intel_crtc->dspaddr_offset = linear_offset;
2109 }
2110
2111 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2112 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2113 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2114 if (INTEL_INFO(dev)->gen >= 4) {
2115 I915_MODIFY_DISPBASE(DSPSURF(plane),
2116 obj->gtt_offset + intel_crtc->dspaddr_offset);
2117 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2118 I915_WRITE(DSPLINOFF(plane), linear_offset);
2119 } else
2120 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2121 POSTING_READ(reg);
2122
2123 return 0;
2124 }
2125
2126 static int ironlake_update_plane(struct drm_crtc *crtc,
2127 struct drm_framebuffer *fb, int x, int y)
2128 {
2129 struct drm_device *dev = crtc->dev;
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2132 struct intel_framebuffer *intel_fb;
2133 struct drm_i915_gem_object *obj;
2134 int plane = intel_crtc->plane;
2135 unsigned long linear_offset;
2136 u32 dspcntr;
2137 u32 reg;
2138
2139 switch (plane) {
2140 case 0:
2141 case 1:
2142 case 2:
2143 break;
2144 default:
2145 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2146 return -EINVAL;
2147 }
2148
2149 intel_fb = to_intel_framebuffer(fb);
2150 obj = intel_fb->obj;
2151
2152 reg = DSPCNTR(plane);
2153 dspcntr = I915_READ(reg);
2154 /* Mask out pixel format bits in case we change it */
2155 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2156 switch (fb->pixel_format) {
2157 case DRM_FORMAT_C8:
2158 dspcntr |= DISPPLANE_8BPP;
2159 break;
2160 case DRM_FORMAT_RGB565:
2161 dspcntr |= DISPPLANE_BGRX565;
2162 break;
2163 case DRM_FORMAT_XRGB8888:
2164 case DRM_FORMAT_ARGB8888:
2165 dspcntr |= DISPPLANE_BGRX888;
2166 break;
2167 case DRM_FORMAT_XBGR8888:
2168 case DRM_FORMAT_ABGR8888:
2169 dspcntr |= DISPPLANE_RGBX888;
2170 break;
2171 case DRM_FORMAT_XRGB2101010:
2172 case DRM_FORMAT_ARGB2101010:
2173 dspcntr |= DISPPLANE_BGRX101010;
2174 break;
2175 case DRM_FORMAT_XBGR2101010:
2176 case DRM_FORMAT_ABGR2101010:
2177 dspcntr |= DISPPLANE_RGBX101010;
2178 break;
2179 default:
2180 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2181 return -EINVAL;
2182 }
2183
2184 if (obj->tiling_mode != I915_TILING_NONE)
2185 dspcntr |= DISPPLANE_TILED;
2186 else
2187 dspcntr &= ~DISPPLANE_TILED;
2188
2189 /* must disable */
2190 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2191
2192 I915_WRITE(reg, dspcntr);
2193
2194 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2195 intel_crtc->dspaddr_offset =
2196 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2197 fb->bits_per_pixel / 8,
2198 fb->pitches[0]);
2199 linear_offset -= intel_crtc->dspaddr_offset;
2200
2201 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2202 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2203 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2204 I915_MODIFY_DISPBASE(DSPSURF(plane),
2205 obj->gtt_offset + intel_crtc->dspaddr_offset);
2206 if (IS_HASWELL(dev)) {
2207 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2208 } else {
2209 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2210 I915_WRITE(DSPLINOFF(plane), linear_offset);
2211 }
2212 POSTING_READ(reg);
2213
2214 return 0;
2215 }
2216
2217 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2218 static int
2219 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2220 int x, int y, enum mode_set_atomic state)
2221 {
2222 struct drm_device *dev = crtc->dev;
2223 struct drm_i915_private *dev_priv = dev->dev_private;
2224
2225 if (dev_priv->display.disable_fbc)
2226 dev_priv->display.disable_fbc(dev);
2227 intel_increase_pllclock(crtc);
2228
2229 return dev_priv->display.update_plane(crtc, fb, x, y);
2230 }
2231
2232 static int
2233 intel_finish_fb(struct drm_framebuffer *old_fb)
2234 {
2235 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2236 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2237 bool was_interruptible = dev_priv->mm.interruptible;
2238 int ret;
2239
2240 /* Big Hammer, we also need to ensure that any pending
2241 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2242 * current scanout is retired before unpinning the old
2243 * framebuffer.
2244 *
2245 * This should only fail upon a hung GPU, in which case we
2246 * can safely continue.
2247 */
2248 dev_priv->mm.interruptible = false;
2249 ret = i915_gem_object_finish_gpu(obj);
2250 dev_priv->mm.interruptible = was_interruptible;
2251
2252 return ret;
2253 }
2254
2255 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2256 {
2257 struct drm_device *dev = crtc->dev;
2258 struct drm_i915_master_private *master_priv;
2259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2260
2261 if (!dev->primary->master)
2262 return;
2263
2264 master_priv = dev->primary->master->driver_priv;
2265 if (!master_priv->sarea_priv)
2266 return;
2267
2268 switch (intel_crtc->pipe) {
2269 case 0:
2270 master_priv->sarea_priv->pipeA_x = x;
2271 master_priv->sarea_priv->pipeA_y = y;
2272 break;
2273 case 1:
2274 master_priv->sarea_priv->pipeB_x = x;
2275 master_priv->sarea_priv->pipeB_y = y;
2276 break;
2277 default:
2278 break;
2279 }
2280 }
2281
2282 static int
2283 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2284 struct drm_framebuffer *fb)
2285 {
2286 struct drm_device *dev = crtc->dev;
2287 struct drm_i915_private *dev_priv = dev->dev_private;
2288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2289 struct drm_framebuffer *old_fb;
2290 int ret;
2291
2292 /* no fb bound */
2293 if (!fb) {
2294 DRM_ERROR("No FB bound\n");
2295 return 0;
2296 }
2297
2298 if(intel_crtc->plane > dev_priv->num_pipe) {
2299 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2300 intel_crtc->plane,
2301 dev_priv->num_pipe);
2302 return -EINVAL;
2303 }
2304
2305 mutex_lock(&dev->struct_mutex);
2306 ret = intel_pin_and_fence_fb_obj(dev,
2307 to_intel_framebuffer(fb)->obj,
2308 NULL);
2309 if (ret != 0) {
2310 mutex_unlock(&dev->struct_mutex);
2311 DRM_ERROR("pin & fence failed\n");
2312 return ret;
2313 }
2314
2315 if (crtc->fb)
2316 intel_finish_fb(crtc->fb);
2317
2318 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2319 if (ret) {
2320 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2321 mutex_unlock(&dev->struct_mutex);
2322 DRM_ERROR("failed to update base address\n");
2323 return ret;
2324 }
2325
2326 old_fb = crtc->fb;
2327 crtc->fb = fb;
2328 crtc->x = x;
2329 crtc->y = y;
2330
2331 if (old_fb) {
2332 intel_wait_for_vblank(dev, intel_crtc->pipe);
2333 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2334 }
2335
2336 intel_update_fbc(dev);
2337 mutex_unlock(&dev->struct_mutex);
2338
2339 intel_crtc_update_sarea_pos(crtc, x, y);
2340
2341 return 0;
2342 }
2343
2344 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2345 {
2346 struct drm_device *dev = crtc->dev;
2347 struct drm_i915_private *dev_priv = dev->dev_private;
2348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2349 int pipe = intel_crtc->pipe;
2350 u32 reg, temp;
2351
2352 /* enable normal train */
2353 reg = FDI_TX_CTL(pipe);
2354 temp = I915_READ(reg);
2355 if (IS_IVYBRIDGE(dev)) {
2356 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2357 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2358 } else {
2359 temp &= ~FDI_LINK_TRAIN_NONE;
2360 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2361 }
2362 I915_WRITE(reg, temp);
2363
2364 reg = FDI_RX_CTL(pipe);
2365 temp = I915_READ(reg);
2366 if (HAS_PCH_CPT(dev)) {
2367 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2368 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2369 } else {
2370 temp &= ~FDI_LINK_TRAIN_NONE;
2371 temp |= FDI_LINK_TRAIN_NONE;
2372 }
2373 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2374
2375 /* wait one idle pattern time */
2376 POSTING_READ(reg);
2377 udelay(1000);
2378
2379 /* IVB wants error correction enabled */
2380 if (IS_IVYBRIDGE(dev))
2381 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2382 FDI_FE_ERRC_ENABLE);
2383 }
2384
2385 static void ivb_modeset_global_resources(struct drm_device *dev)
2386 {
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 struct intel_crtc *pipe_B_crtc =
2389 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2390 struct intel_crtc *pipe_C_crtc =
2391 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2392 uint32_t temp;
2393
2394 /* When everything is off disable fdi C so that we could enable fdi B
2395 * with all lanes. XXX: This misses the case where a pipe is not using
2396 * any pch resources and so doesn't need any fdi lanes. */
2397 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2398 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2399 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2400
2401 temp = I915_READ(SOUTH_CHICKEN1);
2402 temp &= ~FDI_BC_BIFURCATION_SELECT;
2403 DRM_DEBUG_KMS("disabling fdi C rx\n");
2404 I915_WRITE(SOUTH_CHICKEN1, temp);
2405 }
2406 }
2407
2408 /* The FDI link training functions for ILK/Ibexpeak. */
2409 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2410 {
2411 struct drm_device *dev = crtc->dev;
2412 struct drm_i915_private *dev_priv = dev->dev_private;
2413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2414 int pipe = intel_crtc->pipe;
2415 int plane = intel_crtc->plane;
2416 u32 reg, temp, tries;
2417
2418 /* FDI needs bits from pipe & plane first */
2419 assert_pipe_enabled(dev_priv, pipe);
2420 assert_plane_enabled(dev_priv, plane);
2421
2422 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2423 for train result */
2424 reg = FDI_RX_IMR(pipe);
2425 temp = I915_READ(reg);
2426 temp &= ~FDI_RX_SYMBOL_LOCK;
2427 temp &= ~FDI_RX_BIT_LOCK;
2428 I915_WRITE(reg, temp);
2429 I915_READ(reg);
2430 udelay(150);
2431
2432 /* enable CPU FDI TX and PCH FDI RX */
2433 reg = FDI_TX_CTL(pipe);
2434 temp = I915_READ(reg);
2435 temp &= ~(7 << 19);
2436 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2437 temp &= ~FDI_LINK_TRAIN_NONE;
2438 temp |= FDI_LINK_TRAIN_PATTERN_1;
2439 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2440
2441 reg = FDI_RX_CTL(pipe);
2442 temp = I915_READ(reg);
2443 temp &= ~FDI_LINK_TRAIN_NONE;
2444 temp |= FDI_LINK_TRAIN_PATTERN_1;
2445 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2446
2447 POSTING_READ(reg);
2448 udelay(150);
2449
2450 /* Ironlake workaround, enable clock pointer after FDI enable*/
2451 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2452 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2453 FDI_RX_PHASE_SYNC_POINTER_EN);
2454
2455 reg = FDI_RX_IIR(pipe);
2456 for (tries = 0; tries < 5; tries++) {
2457 temp = I915_READ(reg);
2458 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2459
2460 if ((temp & FDI_RX_BIT_LOCK)) {
2461 DRM_DEBUG_KMS("FDI train 1 done.\n");
2462 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2463 break;
2464 }
2465 }
2466 if (tries == 5)
2467 DRM_ERROR("FDI train 1 fail!\n");
2468
2469 /* Train 2 */
2470 reg = FDI_TX_CTL(pipe);
2471 temp = I915_READ(reg);
2472 temp &= ~FDI_LINK_TRAIN_NONE;
2473 temp |= FDI_LINK_TRAIN_PATTERN_2;
2474 I915_WRITE(reg, temp);
2475
2476 reg = FDI_RX_CTL(pipe);
2477 temp = I915_READ(reg);
2478 temp &= ~FDI_LINK_TRAIN_NONE;
2479 temp |= FDI_LINK_TRAIN_PATTERN_2;
2480 I915_WRITE(reg, temp);
2481
2482 POSTING_READ(reg);
2483 udelay(150);
2484
2485 reg = FDI_RX_IIR(pipe);
2486 for (tries = 0; tries < 5; tries++) {
2487 temp = I915_READ(reg);
2488 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2489
2490 if (temp & FDI_RX_SYMBOL_LOCK) {
2491 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2492 DRM_DEBUG_KMS("FDI train 2 done.\n");
2493 break;
2494 }
2495 }
2496 if (tries == 5)
2497 DRM_ERROR("FDI train 2 fail!\n");
2498
2499 DRM_DEBUG_KMS("FDI train done\n");
2500
2501 }
2502
2503 static const int snb_b_fdi_train_param[] = {
2504 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2505 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2506 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2507 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2508 };
2509
2510 /* The FDI link training functions for SNB/Cougarpoint. */
2511 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2512 {
2513 struct drm_device *dev = crtc->dev;
2514 struct drm_i915_private *dev_priv = dev->dev_private;
2515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2516 int pipe = intel_crtc->pipe;
2517 u32 reg, temp, i, retry;
2518
2519 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2520 for train result */
2521 reg = FDI_RX_IMR(pipe);
2522 temp = I915_READ(reg);
2523 temp &= ~FDI_RX_SYMBOL_LOCK;
2524 temp &= ~FDI_RX_BIT_LOCK;
2525 I915_WRITE(reg, temp);
2526
2527 POSTING_READ(reg);
2528 udelay(150);
2529
2530 /* enable CPU FDI TX and PCH FDI RX */
2531 reg = FDI_TX_CTL(pipe);
2532 temp = I915_READ(reg);
2533 temp &= ~(7 << 19);
2534 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2535 temp &= ~FDI_LINK_TRAIN_NONE;
2536 temp |= FDI_LINK_TRAIN_PATTERN_1;
2537 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2538 /* SNB-B */
2539 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2540 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2541
2542 I915_WRITE(FDI_RX_MISC(pipe),
2543 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2544
2545 reg = FDI_RX_CTL(pipe);
2546 temp = I915_READ(reg);
2547 if (HAS_PCH_CPT(dev)) {
2548 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2549 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2550 } else {
2551 temp &= ~FDI_LINK_TRAIN_NONE;
2552 temp |= FDI_LINK_TRAIN_PATTERN_1;
2553 }
2554 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556 POSTING_READ(reg);
2557 udelay(150);
2558
2559 for (i = 0; i < 4; i++) {
2560 reg = FDI_TX_CTL(pipe);
2561 temp = I915_READ(reg);
2562 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2563 temp |= snb_b_fdi_train_param[i];
2564 I915_WRITE(reg, temp);
2565
2566 POSTING_READ(reg);
2567 udelay(500);
2568
2569 for (retry = 0; retry < 5; retry++) {
2570 reg = FDI_RX_IIR(pipe);
2571 temp = I915_READ(reg);
2572 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2573 if (temp & FDI_RX_BIT_LOCK) {
2574 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2575 DRM_DEBUG_KMS("FDI train 1 done.\n");
2576 break;
2577 }
2578 udelay(50);
2579 }
2580 if (retry < 5)
2581 break;
2582 }
2583 if (i == 4)
2584 DRM_ERROR("FDI train 1 fail!\n");
2585
2586 /* Train 2 */
2587 reg = FDI_TX_CTL(pipe);
2588 temp = I915_READ(reg);
2589 temp &= ~FDI_LINK_TRAIN_NONE;
2590 temp |= FDI_LINK_TRAIN_PATTERN_2;
2591 if (IS_GEN6(dev)) {
2592 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2593 /* SNB-B */
2594 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2595 }
2596 I915_WRITE(reg, temp);
2597
2598 reg = FDI_RX_CTL(pipe);
2599 temp = I915_READ(reg);
2600 if (HAS_PCH_CPT(dev)) {
2601 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2602 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2603 } else {
2604 temp &= ~FDI_LINK_TRAIN_NONE;
2605 temp |= FDI_LINK_TRAIN_PATTERN_2;
2606 }
2607 I915_WRITE(reg, temp);
2608
2609 POSTING_READ(reg);
2610 udelay(150);
2611
2612 for (i = 0; i < 4; i++) {
2613 reg = FDI_TX_CTL(pipe);
2614 temp = I915_READ(reg);
2615 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2616 temp |= snb_b_fdi_train_param[i];
2617 I915_WRITE(reg, temp);
2618
2619 POSTING_READ(reg);
2620 udelay(500);
2621
2622 for (retry = 0; retry < 5; retry++) {
2623 reg = FDI_RX_IIR(pipe);
2624 temp = I915_READ(reg);
2625 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2626 if (temp & FDI_RX_SYMBOL_LOCK) {
2627 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2628 DRM_DEBUG_KMS("FDI train 2 done.\n");
2629 break;
2630 }
2631 udelay(50);
2632 }
2633 if (retry < 5)
2634 break;
2635 }
2636 if (i == 4)
2637 DRM_ERROR("FDI train 2 fail!\n");
2638
2639 DRM_DEBUG_KMS("FDI train done.\n");
2640 }
2641
2642 /* Manual link training for Ivy Bridge A0 parts */
2643 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2644 {
2645 struct drm_device *dev = crtc->dev;
2646 struct drm_i915_private *dev_priv = dev->dev_private;
2647 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2648 int pipe = intel_crtc->pipe;
2649 u32 reg, temp, i;
2650
2651 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2652 for train result */
2653 reg = FDI_RX_IMR(pipe);
2654 temp = I915_READ(reg);
2655 temp &= ~FDI_RX_SYMBOL_LOCK;
2656 temp &= ~FDI_RX_BIT_LOCK;
2657 I915_WRITE(reg, temp);
2658
2659 POSTING_READ(reg);
2660 udelay(150);
2661
2662 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2663 I915_READ(FDI_RX_IIR(pipe)));
2664
2665 /* enable CPU FDI TX and PCH FDI RX */
2666 reg = FDI_TX_CTL(pipe);
2667 temp = I915_READ(reg);
2668 temp &= ~(7 << 19);
2669 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2670 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2671 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2672 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2673 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2674 temp |= FDI_COMPOSITE_SYNC;
2675 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2676
2677 I915_WRITE(FDI_RX_MISC(pipe),
2678 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2679
2680 reg = FDI_RX_CTL(pipe);
2681 temp = I915_READ(reg);
2682 temp &= ~FDI_LINK_TRAIN_AUTO;
2683 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2684 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2685 temp |= FDI_COMPOSITE_SYNC;
2686 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2687
2688 POSTING_READ(reg);
2689 udelay(150);
2690
2691 for (i = 0; i < 4; i++) {
2692 reg = FDI_TX_CTL(pipe);
2693 temp = I915_READ(reg);
2694 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2695 temp |= snb_b_fdi_train_param[i];
2696 I915_WRITE(reg, temp);
2697
2698 POSTING_READ(reg);
2699 udelay(500);
2700
2701 reg = FDI_RX_IIR(pipe);
2702 temp = I915_READ(reg);
2703 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2704
2705 if (temp & FDI_RX_BIT_LOCK ||
2706 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2707 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2708 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2709 break;
2710 }
2711 }
2712 if (i == 4)
2713 DRM_ERROR("FDI train 1 fail!\n");
2714
2715 /* Train 2 */
2716 reg = FDI_TX_CTL(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2719 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2720 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2721 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2722 I915_WRITE(reg, temp);
2723
2724 reg = FDI_RX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2727 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2728 I915_WRITE(reg, temp);
2729
2730 POSTING_READ(reg);
2731 udelay(150);
2732
2733 for (i = 0; i < 4; i++) {
2734 reg = FDI_TX_CTL(pipe);
2735 temp = I915_READ(reg);
2736 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2737 temp |= snb_b_fdi_train_param[i];
2738 I915_WRITE(reg, temp);
2739
2740 POSTING_READ(reg);
2741 udelay(500);
2742
2743 reg = FDI_RX_IIR(pipe);
2744 temp = I915_READ(reg);
2745 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2746
2747 if (temp & FDI_RX_SYMBOL_LOCK) {
2748 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2749 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2750 break;
2751 }
2752 }
2753 if (i == 4)
2754 DRM_ERROR("FDI train 2 fail!\n");
2755
2756 DRM_DEBUG_KMS("FDI train done.\n");
2757 }
2758
2759 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2760 {
2761 struct drm_device *dev = intel_crtc->base.dev;
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 int pipe = intel_crtc->pipe;
2764 u32 reg, temp;
2765
2766
2767 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2768 reg = FDI_RX_CTL(pipe);
2769 temp = I915_READ(reg);
2770 temp &= ~((0x7 << 19) | (0x7 << 16));
2771 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2772 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2773 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2774
2775 POSTING_READ(reg);
2776 udelay(200);
2777
2778 /* Switch from Rawclk to PCDclk */
2779 temp = I915_READ(reg);
2780 I915_WRITE(reg, temp | FDI_PCDCLK);
2781
2782 POSTING_READ(reg);
2783 udelay(200);
2784
2785 /* Enable CPU FDI TX PLL, always on for Ironlake */
2786 reg = FDI_TX_CTL(pipe);
2787 temp = I915_READ(reg);
2788 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2789 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2790
2791 POSTING_READ(reg);
2792 udelay(100);
2793 }
2794 }
2795
2796 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2797 {
2798 struct drm_device *dev = intel_crtc->base.dev;
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 int pipe = intel_crtc->pipe;
2801 u32 reg, temp;
2802
2803 /* Switch from PCDclk to Rawclk */
2804 reg = FDI_RX_CTL(pipe);
2805 temp = I915_READ(reg);
2806 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2807
2808 /* Disable CPU FDI TX PLL */
2809 reg = FDI_TX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2812
2813 POSTING_READ(reg);
2814 udelay(100);
2815
2816 reg = FDI_RX_CTL(pipe);
2817 temp = I915_READ(reg);
2818 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2819
2820 /* Wait for the clocks to turn off. */
2821 POSTING_READ(reg);
2822 udelay(100);
2823 }
2824
2825 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2826 {
2827 struct drm_device *dev = crtc->dev;
2828 struct drm_i915_private *dev_priv = dev->dev_private;
2829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2830 int pipe = intel_crtc->pipe;
2831 u32 reg, temp;
2832
2833 /* disable CPU FDI tx and PCH FDI rx */
2834 reg = FDI_TX_CTL(pipe);
2835 temp = I915_READ(reg);
2836 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2837 POSTING_READ(reg);
2838
2839 reg = FDI_RX_CTL(pipe);
2840 temp = I915_READ(reg);
2841 temp &= ~(0x7 << 16);
2842 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2843 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2844
2845 POSTING_READ(reg);
2846 udelay(100);
2847
2848 /* Ironlake workaround, disable clock pointer after downing FDI */
2849 if (HAS_PCH_IBX(dev)) {
2850 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2851 }
2852
2853 /* still set train pattern 1 */
2854 reg = FDI_TX_CTL(pipe);
2855 temp = I915_READ(reg);
2856 temp &= ~FDI_LINK_TRAIN_NONE;
2857 temp |= FDI_LINK_TRAIN_PATTERN_1;
2858 I915_WRITE(reg, temp);
2859
2860 reg = FDI_RX_CTL(pipe);
2861 temp = I915_READ(reg);
2862 if (HAS_PCH_CPT(dev)) {
2863 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2864 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2865 } else {
2866 temp &= ~FDI_LINK_TRAIN_NONE;
2867 temp |= FDI_LINK_TRAIN_PATTERN_1;
2868 }
2869 /* BPC in FDI rx is consistent with that in PIPECONF */
2870 temp &= ~(0x07 << 16);
2871 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2872 I915_WRITE(reg, temp);
2873
2874 POSTING_READ(reg);
2875 udelay(100);
2876 }
2877
2878 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2879 {
2880 struct drm_device *dev = crtc->dev;
2881 struct drm_i915_private *dev_priv = dev->dev_private;
2882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2883 unsigned long flags;
2884 bool pending;
2885
2886 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2887 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2888 return false;
2889
2890 spin_lock_irqsave(&dev->event_lock, flags);
2891 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2892 spin_unlock_irqrestore(&dev->event_lock, flags);
2893
2894 return pending;
2895 }
2896
2897 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2898 {
2899 struct drm_device *dev = crtc->dev;
2900 struct drm_i915_private *dev_priv = dev->dev_private;
2901
2902 if (crtc->fb == NULL)
2903 return;
2904
2905 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2906
2907 wait_event(dev_priv->pending_flip_queue,
2908 !intel_crtc_has_pending_flip(crtc));
2909
2910 mutex_lock(&dev->struct_mutex);
2911 intel_finish_fb(crtc->fb);
2912 mutex_unlock(&dev->struct_mutex);
2913 }
2914
2915 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2916 {
2917 struct drm_device *dev = crtc->dev;
2918 struct intel_encoder *intel_encoder;
2919
2920 /*
2921 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2922 * must be driven by its own crtc; no sharing is possible.
2923 */
2924 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2925 switch (intel_encoder->type) {
2926 case INTEL_OUTPUT_EDP:
2927 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2928 return false;
2929 continue;
2930 }
2931 }
2932
2933 return true;
2934 }
2935
2936 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2937 {
2938 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2939 }
2940
2941 /* Program iCLKIP clock to the desired frequency */
2942 static void lpt_program_iclkip(struct drm_crtc *crtc)
2943 {
2944 struct drm_device *dev = crtc->dev;
2945 struct drm_i915_private *dev_priv = dev->dev_private;
2946 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2947 u32 temp;
2948
2949 mutex_lock(&dev_priv->dpio_lock);
2950
2951 /* It is necessary to ungate the pixclk gate prior to programming
2952 * the divisors, and gate it back when it is done.
2953 */
2954 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2955
2956 /* Disable SSCCTL */
2957 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2958 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2959 SBI_SSCCTL_DISABLE,
2960 SBI_ICLK);
2961
2962 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2963 if (crtc->mode.clock == 20000) {
2964 auxdiv = 1;
2965 divsel = 0x41;
2966 phaseinc = 0x20;
2967 } else {
2968 /* The iCLK virtual clock root frequency is in MHz,
2969 * but the crtc->mode.clock in in KHz. To get the divisors,
2970 * it is necessary to divide one by another, so we
2971 * convert the virtual clock precision to KHz here for higher
2972 * precision.
2973 */
2974 u32 iclk_virtual_root_freq = 172800 * 1000;
2975 u32 iclk_pi_range = 64;
2976 u32 desired_divisor, msb_divisor_value, pi_value;
2977
2978 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2979 msb_divisor_value = desired_divisor / iclk_pi_range;
2980 pi_value = desired_divisor % iclk_pi_range;
2981
2982 auxdiv = 0;
2983 divsel = msb_divisor_value - 2;
2984 phaseinc = pi_value;
2985 }
2986
2987 /* This should not happen with any sane values */
2988 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2989 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2990 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2991 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2992
2993 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2994 crtc->mode.clock,
2995 auxdiv,
2996 divsel,
2997 phasedir,
2998 phaseinc);
2999
3000 /* Program SSCDIVINTPHASE6 */
3001 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3002 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3003 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3004 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3005 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3006 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3007 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3008 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3009
3010 /* Program SSCAUXDIV */
3011 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3012 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3013 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3014 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3015
3016 /* Enable modulator and associated divider */
3017 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3018 temp &= ~SBI_SSCCTL_DISABLE;
3019 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3020
3021 /* Wait for initialization time */
3022 udelay(24);
3023
3024 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3025
3026 mutex_unlock(&dev_priv->dpio_lock);
3027 }
3028
3029 /*
3030 * Enable PCH resources required for PCH ports:
3031 * - PCH PLLs
3032 * - FDI training & RX/TX
3033 * - update transcoder timings
3034 * - DP transcoding bits
3035 * - transcoder
3036 */
3037 static void ironlake_pch_enable(struct drm_crtc *crtc)
3038 {
3039 struct drm_device *dev = crtc->dev;
3040 struct drm_i915_private *dev_priv = dev->dev_private;
3041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3042 int pipe = intel_crtc->pipe;
3043 u32 reg, temp;
3044
3045 assert_transcoder_disabled(dev_priv, pipe);
3046
3047 /* Write the TU size bits before fdi link training, so that error
3048 * detection works. */
3049 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3050 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3051
3052 /* For PCH output, training FDI link */
3053 dev_priv->display.fdi_link_train(crtc);
3054
3055 /* XXX: pch pll's can be enabled any time before we enable the PCH
3056 * transcoder, and we actually should do this to not upset any PCH
3057 * transcoder that already use the clock when we share it.
3058 *
3059 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3060 * unconditionally resets the pll - we need that to have the right LVDS
3061 * enable sequence. */
3062 ironlake_enable_pch_pll(intel_crtc);
3063
3064 if (HAS_PCH_CPT(dev)) {
3065 u32 sel;
3066
3067 temp = I915_READ(PCH_DPLL_SEL);
3068 switch (pipe) {
3069 default:
3070 case 0:
3071 temp |= TRANSA_DPLL_ENABLE;
3072 sel = TRANSA_DPLLB_SEL;
3073 break;
3074 case 1:
3075 temp |= TRANSB_DPLL_ENABLE;
3076 sel = TRANSB_DPLLB_SEL;
3077 break;
3078 case 2:
3079 temp |= TRANSC_DPLL_ENABLE;
3080 sel = TRANSC_DPLLB_SEL;
3081 break;
3082 }
3083 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3084 temp |= sel;
3085 else
3086 temp &= ~sel;
3087 I915_WRITE(PCH_DPLL_SEL, temp);
3088 }
3089
3090 /* set transcoder timing, panel must allow it */
3091 assert_panel_unlocked(dev_priv, pipe);
3092 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3093 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3094 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3095
3096 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3097 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3098 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3099 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3100
3101 intel_fdi_normal_train(crtc);
3102
3103 /* For PCH DP, enable TRANS_DP_CTL */
3104 if (HAS_PCH_CPT(dev) &&
3105 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3106 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3107 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3108 reg = TRANS_DP_CTL(pipe);
3109 temp = I915_READ(reg);
3110 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3111 TRANS_DP_SYNC_MASK |
3112 TRANS_DP_BPC_MASK);
3113 temp |= (TRANS_DP_OUTPUT_ENABLE |
3114 TRANS_DP_ENH_FRAMING);
3115 temp |= bpc << 9; /* same format but at 11:9 */
3116
3117 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3118 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3119 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3120 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3121
3122 switch (intel_trans_dp_port_sel(crtc)) {
3123 case PCH_DP_B:
3124 temp |= TRANS_DP_PORT_SEL_B;
3125 break;
3126 case PCH_DP_C:
3127 temp |= TRANS_DP_PORT_SEL_C;
3128 break;
3129 case PCH_DP_D:
3130 temp |= TRANS_DP_PORT_SEL_D;
3131 break;
3132 default:
3133 BUG();
3134 }
3135
3136 I915_WRITE(reg, temp);
3137 }
3138
3139 ironlake_enable_pch_transcoder(dev_priv, pipe);
3140 }
3141
3142 static void lpt_pch_enable(struct drm_crtc *crtc)
3143 {
3144 struct drm_device *dev = crtc->dev;
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3147 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3148
3149 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3150
3151 lpt_program_iclkip(crtc);
3152
3153 /* Set transcoder timing. */
3154 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3155 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3156 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3157
3158 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3159 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3160 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3161 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3162
3163 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3164 }
3165
3166 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3167 {
3168 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3169
3170 if (pll == NULL)
3171 return;
3172
3173 if (pll->refcount == 0) {
3174 WARN(1, "bad PCH PLL refcount\n");
3175 return;
3176 }
3177
3178 --pll->refcount;
3179 intel_crtc->pch_pll = NULL;
3180 }
3181
3182 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3183 {
3184 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3185 struct intel_pch_pll *pll;
3186 int i;
3187
3188 pll = intel_crtc->pch_pll;
3189 if (pll) {
3190 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3191 intel_crtc->base.base.id, pll->pll_reg);
3192 goto prepare;
3193 }
3194
3195 if (HAS_PCH_IBX(dev_priv->dev)) {
3196 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3197 i = intel_crtc->pipe;
3198 pll = &dev_priv->pch_plls[i];
3199
3200 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3201 intel_crtc->base.base.id, pll->pll_reg);
3202
3203 goto found;
3204 }
3205
3206 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3207 pll = &dev_priv->pch_plls[i];
3208
3209 /* Only want to check enabled timings first */
3210 if (pll->refcount == 0)
3211 continue;
3212
3213 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3214 fp == I915_READ(pll->fp0_reg)) {
3215 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3216 intel_crtc->base.base.id,
3217 pll->pll_reg, pll->refcount, pll->active);
3218
3219 goto found;
3220 }
3221 }
3222
3223 /* Ok no matching timings, maybe there's a free one? */
3224 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3225 pll = &dev_priv->pch_plls[i];
3226 if (pll->refcount == 0) {
3227 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3228 intel_crtc->base.base.id, pll->pll_reg);
3229 goto found;
3230 }
3231 }
3232
3233 return NULL;
3234
3235 found:
3236 intel_crtc->pch_pll = pll;
3237 pll->refcount++;
3238 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3239 prepare: /* separate function? */
3240 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3241
3242 /* Wait for the clocks to stabilize before rewriting the regs */
3243 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3244 POSTING_READ(pll->pll_reg);
3245 udelay(150);
3246
3247 I915_WRITE(pll->fp0_reg, fp);
3248 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3249 pll->on = false;
3250 return pll;
3251 }
3252
3253 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3254 {
3255 struct drm_i915_private *dev_priv = dev->dev_private;
3256 int dslreg = PIPEDSL(pipe);
3257 u32 temp;
3258
3259 temp = I915_READ(dslreg);
3260 udelay(500);
3261 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3262 if (wait_for(I915_READ(dslreg) != temp, 5))
3263 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3264 }
3265 }
3266
3267 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3268 {
3269 struct drm_device *dev = crtc->dev;
3270 struct drm_i915_private *dev_priv = dev->dev_private;
3271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3272 struct intel_encoder *encoder;
3273 int pipe = intel_crtc->pipe;
3274 int plane = intel_crtc->plane;
3275 u32 temp;
3276 bool is_pch_port;
3277
3278 WARN_ON(!crtc->enabled);
3279
3280 if (intel_crtc->active)
3281 return;
3282
3283 intel_crtc->active = true;
3284 intel_update_watermarks(dev);
3285
3286 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3287 temp = I915_READ(PCH_LVDS);
3288 if ((temp & LVDS_PORT_EN) == 0)
3289 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3290 }
3291
3292 is_pch_port = ironlake_crtc_driving_pch(crtc);
3293
3294 if (is_pch_port) {
3295 /* Note: FDI PLL enabling _must_ be done before we enable the
3296 * cpu pipes, hence this is separate from all the other fdi/pch
3297 * enabling. */
3298 ironlake_fdi_pll_enable(intel_crtc);
3299 } else {
3300 assert_fdi_tx_disabled(dev_priv, pipe);
3301 assert_fdi_rx_disabled(dev_priv, pipe);
3302 }
3303
3304 for_each_encoder_on_crtc(dev, crtc, encoder)
3305 if (encoder->pre_enable)
3306 encoder->pre_enable(encoder);
3307
3308 /* Enable panel fitting for LVDS */
3309 if (dev_priv->pch_pf_size &&
3310 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3311 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3312 /* Force use of hard-coded filter coefficients
3313 * as some pre-programmed values are broken,
3314 * e.g. x201.
3315 */
3316 if (IS_IVYBRIDGE(dev))
3317 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3318 PF_PIPE_SEL_IVB(pipe));
3319 else
3320 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3321 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3322 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3323 }
3324
3325 /*
3326 * On ILK+ LUT must be loaded before the pipe is running but with
3327 * clocks enabled
3328 */
3329 intel_crtc_load_lut(crtc);
3330
3331 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3332 intel_enable_plane(dev_priv, plane, pipe);
3333
3334 if (is_pch_port)
3335 ironlake_pch_enable(crtc);
3336
3337 mutex_lock(&dev->struct_mutex);
3338 intel_update_fbc(dev);
3339 mutex_unlock(&dev->struct_mutex);
3340
3341 intel_crtc_update_cursor(crtc, true);
3342
3343 for_each_encoder_on_crtc(dev, crtc, encoder)
3344 encoder->enable(encoder);
3345
3346 if (HAS_PCH_CPT(dev))
3347 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3348
3349 /*
3350 * There seems to be a race in PCH platform hw (at least on some
3351 * outputs) where an enabled pipe still completes any pageflip right
3352 * away (as if the pipe is off) instead of waiting for vblank. As soon
3353 * as the first vblank happend, everything works as expected. Hence just
3354 * wait for one vblank before returning to avoid strange things
3355 * happening.
3356 */
3357 intel_wait_for_vblank(dev, intel_crtc->pipe);
3358 }
3359
3360 static void haswell_crtc_enable(struct drm_crtc *crtc)
3361 {
3362 struct drm_device *dev = crtc->dev;
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3365 struct intel_encoder *encoder;
3366 int pipe = intel_crtc->pipe;
3367 int plane = intel_crtc->plane;
3368 bool is_pch_port;
3369
3370 WARN_ON(!crtc->enabled);
3371
3372 if (intel_crtc->active)
3373 return;
3374
3375 intel_crtc->active = true;
3376 intel_update_watermarks(dev);
3377
3378 is_pch_port = haswell_crtc_driving_pch(crtc);
3379
3380 if (is_pch_port)
3381 dev_priv->display.fdi_link_train(crtc);
3382
3383 for_each_encoder_on_crtc(dev, crtc, encoder)
3384 if (encoder->pre_enable)
3385 encoder->pre_enable(encoder);
3386
3387 intel_ddi_enable_pipe_clock(intel_crtc);
3388
3389 /* Enable panel fitting for eDP */
3390 if (dev_priv->pch_pf_size &&
3391 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3392 /* Force use of hard-coded filter coefficients
3393 * as some pre-programmed values are broken,
3394 * e.g. x201.
3395 */
3396 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3397 PF_PIPE_SEL_IVB(pipe));
3398 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3399 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3400 }
3401
3402 /*
3403 * On ILK+ LUT must be loaded before the pipe is running but with
3404 * clocks enabled
3405 */
3406 intel_crtc_load_lut(crtc);
3407
3408 intel_ddi_set_pipe_settings(crtc);
3409 intel_ddi_enable_pipe_func(crtc);
3410
3411 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3412 intel_enable_plane(dev_priv, plane, pipe);
3413
3414 if (is_pch_port)
3415 lpt_pch_enable(crtc);
3416
3417 mutex_lock(&dev->struct_mutex);
3418 intel_update_fbc(dev);
3419 mutex_unlock(&dev->struct_mutex);
3420
3421 intel_crtc_update_cursor(crtc, true);
3422
3423 for_each_encoder_on_crtc(dev, crtc, encoder)
3424 encoder->enable(encoder);
3425
3426 /*
3427 * There seems to be a race in PCH platform hw (at least on some
3428 * outputs) where an enabled pipe still completes any pageflip right
3429 * away (as if the pipe is off) instead of waiting for vblank. As soon
3430 * as the first vblank happend, everything works as expected. Hence just
3431 * wait for one vblank before returning to avoid strange things
3432 * happening.
3433 */
3434 intel_wait_for_vblank(dev, intel_crtc->pipe);
3435 }
3436
3437 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3438 {
3439 struct drm_device *dev = crtc->dev;
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3442 struct intel_encoder *encoder;
3443 int pipe = intel_crtc->pipe;
3444 int plane = intel_crtc->plane;
3445 u32 reg, temp;
3446
3447
3448 if (!intel_crtc->active)
3449 return;
3450
3451 for_each_encoder_on_crtc(dev, crtc, encoder)
3452 encoder->disable(encoder);
3453
3454 intel_crtc_wait_for_pending_flips(crtc);
3455 drm_vblank_off(dev, pipe);
3456 intel_crtc_update_cursor(crtc, false);
3457
3458 intel_disable_plane(dev_priv, plane, pipe);
3459
3460 if (dev_priv->cfb_plane == plane)
3461 intel_disable_fbc(dev);
3462
3463 intel_disable_pipe(dev_priv, pipe);
3464
3465 /* Disable PF */
3466 I915_WRITE(PF_CTL(pipe), 0);
3467 I915_WRITE(PF_WIN_SZ(pipe), 0);
3468
3469 for_each_encoder_on_crtc(dev, crtc, encoder)
3470 if (encoder->post_disable)
3471 encoder->post_disable(encoder);
3472
3473 ironlake_fdi_disable(crtc);
3474
3475 ironlake_disable_pch_transcoder(dev_priv, pipe);
3476
3477 if (HAS_PCH_CPT(dev)) {
3478 /* disable TRANS_DP_CTL */
3479 reg = TRANS_DP_CTL(pipe);
3480 temp = I915_READ(reg);
3481 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3482 temp |= TRANS_DP_PORT_SEL_NONE;
3483 I915_WRITE(reg, temp);
3484
3485 /* disable DPLL_SEL */
3486 temp = I915_READ(PCH_DPLL_SEL);
3487 switch (pipe) {
3488 case 0:
3489 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3490 break;
3491 case 1:
3492 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3493 break;
3494 case 2:
3495 /* C shares PLL A or B */
3496 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3497 break;
3498 default:
3499 BUG(); /* wtf */
3500 }
3501 I915_WRITE(PCH_DPLL_SEL, temp);
3502 }
3503
3504 /* disable PCH DPLL */
3505 intel_disable_pch_pll(intel_crtc);
3506
3507 ironlake_fdi_pll_disable(intel_crtc);
3508
3509 intel_crtc->active = false;
3510 intel_update_watermarks(dev);
3511
3512 mutex_lock(&dev->struct_mutex);
3513 intel_update_fbc(dev);
3514 mutex_unlock(&dev->struct_mutex);
3515 }
3516
3517 static void haswell_crtc_disable(struct drm_crtc *crtc)
3518 {
3519 struct drm_device *dev = crtc->dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522 struct intel_encoder *encoder;
3523 int pipe = intel_crtc->pipe;
3524 int plane = intel_crtc->plane;
3525 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3526 bool is_pch_port;
3527
3528 if (!intel_crtc->active)
3529 return;
3530
3531 is_pch_port = haswell_crtc_driving_pch(crtc);
3532
3533 for_each_encoder_on_crtc(dev, crtc, encoder)
3534 encoder->disable(encoder);
3535
3536 intel_crtc_wait_for_pending_flips(crtc);
3537 drm_vblank_off(dev, pipe);
3538 intel_crtc_update_cursor(crtc, false);
3539
3540 intel_disable_plane(dev_priv, plane, pipe);
3541
3542 if (dev_priv->cfb_plane == plane)
3543 intel_disable_fbc(dev);
3544
3545 intel_disable_pipe(dev_priv, pipe);
3546
3547 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3548
3549 /* Disable PF */
3550 I915_WRITE(PF_CTL(pipe), 0);
3551 I915_WRITE(PF_WIN_SZ(pipe), 0);
3552
3553 intel_ddi_disable_pipe_clock(intel_crtc);
3554
3555 for_each_encoder_on_crtc(dev, crtc, encoder)
3556 if (encoder->post_disable)
3557 encoder->post_disable(encoder);
3558
3559 if (is_pch_port) {
3560 lpt_disable_pch_transcoder(dev_priv);
3561 intel_ddi_fdi_disable(crtc);
3562 }
3563
3564 intel_crtc->active = false;
3565 intel_update_watermarks(dev);
3566
3567 mutex_lock(&dev->struct_mutex);
3568 intel_update_fbc(dev);
3569 mutex_unlock(&dev->struct_mutex);
3570 }
3571
3572 static void ironlake_crtc_off(struct drm_crtc *crtc)
3573 {
3574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3575 intel_put_pch_pll(intel_crtc);
3576 }
3577
3578 static void haswell_crtc_off(struct drm_crtc *crtc)
3579 {
3580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581
3582 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3583 * start using it. */
3584 intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3585
3586 intel_ddi_put_crtc_pll(crtc);
3587 }
3588
3589 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3590 {
3591 if (!enable && intel_crtc->overlay) {
3592 struct drm_device *dev = intel_crtc->base.dev;
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594
3595 mutex_lock(&dev->struct_mutex);
3596 dev_priv->mm.interruptible = false;
3597 (void) intel_overlay_switch_off(intel_crtc->overlay);
3598 dev_priv->mm.interruptible = true;
3599 mutex_unlock(&dev->struct_mutex);
3600 }
3601
3602 /* Let userspace switch the overlay on again. In most cases userspace
3603 * has to recompute where to put it anyway.
3604 */
3605 }
3606
3607 /**
3608 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3609 * cursor plane briefly if not already running after enabling the display
3610 * plane.
3611 * This workaround avoids occasional blank screens when self refresh is
3612 * enabled.
3613 */
3614 static void
3615 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3616 {
3617 u32 cntl = I915_READ(CURCNTR(pipe));
3618
3619 if ((cntl & CURSOR_MODE) == 0) {
3620 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3621
3622 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3623 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3624 intel_wait_for_vblank(dev_priv->dev, pipe);
3625 I915_WRITE(CURCNTR(pipe), cntl);
3626 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3627 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3628 }
3629 }
3630
3631 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3632 {
3633 struct drm_device *dev = crtc->dev;
3634 struct drm_i915_private *dev_priv = dev->dev_private;
3635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3636 struct intel_encoder *encoder;
3637 int pipe = intel_crtc->pipe;
3638 int plane = intel_crtc->plane;
3639
3640 WARN_ON(!crtc->enabled);
3641
3642 if (intel_crtc->active)
3643 return;
3644
3645 intel_crtc->active = true;
3646 intel_update_watermarks(dev);
3647
3648 intel_enable_pll(dev_priv, pipe);
3649
3650 for_each_encoder_on_crtc(dev, crtc, encoder)
3651 if (encoder->pre_enable)
3652 encoder->pre_enable(encoder);
3653
3654 intel_enable_pipe(dev_priv, pipe, false);
3655 intel_enable_plane(dev_priv, plane, pipe);
3656 if (IS_G4X(dev))
3657 g4x_fixup_plane(dev_priv, pipe);
3658
3659 intel_crtc_load_lut(crtc);
3660 intel_update_fbc(dev);
3661
3662 /* Give the overlay scaler a chance to enable if it's on this pipe */
3663 intel_crtc_dpms_overlay(intel_crtc, true);
3664 intel_crtc_update_cursor(crtc, true);
3665
3666 for_each_encoder_on_crtc(dev, crtc, encoder)
3667 encoder->enable(encoder);
3668 }
3669
3670 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3671 {
3672 struct drm_device *dev = crtc->dev;
3673 struct drm_i915_private *dev_priv = dev->dev_private;
3674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3675 struct intel_encoder *encoder;
3676 int pipe = intel_crtc->pipe;
3677 int plane = intel_crtc->plane;
3678 u32 pctl;
3679
3680
3681 if (!intel_crtc->active)
3682 return;
3683
3684 for_each_encoder_on_crtc(dev, crtc, encoder)
3685 encoder->disable(encoder);
3686
3687 /* Give the overlay scaler a chance to disable if it's on this pipe */
3688 intel_crtc_wait_for_pending_flips(crtc);
3689 drm_vblank_off(dev, pipe);
3690 intel_crtc_dpms_overlay(intel_crtc, false);
3691 intel_crtc_update_cursor(crtc, false);
3692
3693 if (dev_priv->cfb_plane == plane)
3694 intel_disable_fbc(dev);
3695
3696 intel_disable_plane(dev_priv, plane, pipe);
3697 intel_disable_pipe(dev_priv, pipe);
3698
3699 /* Disable pannel fitter if it is on this pipe. */
3700 pctl = I915_READ(PFIT_CONTROL);
3701 if ((pctl & PFIT_ENABLE) &&
3702 ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3703 I915_WRITE(PFIT_CONTROL, 0);
3704
3705 intel_disable_pll(dev_priv, pipe);
3706
3707 intel_crtc->active = false;
3708 intel_update_fbc(dev);
3709 intel_update_watermarks(dev);
3710 }
3711
3712 static void i9xx_crtc_off(struct drm_crtc *crtc)
3713 {
3714 }
3715
3716 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3717 bool enabled)
3718 {
3719 struct drm_device *dev = crtc->dev;
3720 struct drm_i915_master_private *master_priv;
3721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3722 int pipe = intel_crtc->pipe;
3723
3724 if (!dev->primary->master)
3725 return;
3726
3727 master_priv = dev->primary->master->driver_priv;
3728 if (!master_priv->sarea_priv)
3729 return;
3730
3731 switch (pipe) {
3732 case 0:
3733 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3734 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3735 break;
3736 case 1:
3737 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3738 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3739 break;
3740 default:
3741 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3742 break;
3743 }
3744 }
3745
3746 /**
3747 * Sets the power management mode of the pipe and plane.
3748 */
3749 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3750 {
3751 struct drm_device *dev = crtc->dev;
3752 struct drm_i915_private *dev_priv = dev->dev_private;
3753 struct intel_encoder *intel_encoder;
3754 bool enable = false;
3755
3756 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3757 enable |= intel_encoder->connectors_active;
3758
3759 if (enable)
3760 dev_priv->display.crtc_enable(crtc);
3761 else
3762 dev_priv->display.crtc_disable(crtc);
3763
3764 intel_crtc_update_sarea(crtc, enable);
3765 }
3766
3767 static void intel_crtc_disable(struct drm_crtc *crtc)
3768 {
3769 struct drm_device *dev = crtc->dev;
3770 struct drm_connector *connector;
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3773
3774 /* crtc should still be enabled when we disable it. */
3775 WARN_ON(!crtc->enabled);
3776
3777 intel_crtc->eld_vld = false;
3778 dev_priv->display.crtc_disable(crtc);
3779 intel_crtc_update_sarea(crtc, false);
3780 dev_priv->display.off(crtc);
3781
3782 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3783 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3784
3785 if (crtc->fb) {
3786 mutex_lock(&dev->struct_mutex);
3787 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3788 mutex_unlock(&dev->struct_mutex);
3789 crtc->fb = NULL;
3790 }
3791
3792 /* Update computed state. */
3793 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3794 if (!connector->encoder || !connector->encoder->crtc)
3795 continue;
3796
3797 if (connector->encoder->crtc != crtc)
3798 continue;
3799
3800 connector->dpms = DRM_MODE_DPMS_OFF;
3801 to_intel_encoder(connector->encoder)->connectors_active = false;
3802 }
3803 }
3804
3805 void intel_modeset_disable(struct drm_device *dev)
3806 {
3807 struct drm_crtc *crtc;
3808
3809 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3810 if (crtc->enabled)
3811 intel_crtc_disable(crtc);
3812 }
3813 }
3814
3815 void intel_encoder_destroy(struct drm_encoder *encoder)
3816 {
3817 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3818
3819 drm_encoder_cleanup(encoder);
3820 kfree(intel_encoder);
3821 }
3822
3823 /* Simple dpms helper for encodres with just one connector, no cloning and only
3824 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3825 * state of the entire output pipe. */
3826 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3827 {
3828 if (mode == DRM_MODE_DPMS_ON) {
3829 encoder->connectors_active = true;
3830
3831 intel_crtc_update_dpms(encoder->base.crtc);
3832 } else {
3833 encoder->connectors_active = false;
3834
3835 intel_crtc_update_dpms(encoder->base.crtc);
3836 }
3837 }
3838
3839 /* Cross check the actual hw state with our own modeset state tracking (and it's
3840 * internal consistency). */
3841 static void intel_connector_check_state(struct intel_connector *connector)
3842 {
3843 if (connector->get_hw_state(connector)) {
3844 struct intel_encoder *encoder = connector->encoder;
3845 struct drm_crtc *crtc;
3846 bool encoder_enabled;
3847 enum pipe pipe;
3848
3849 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3850 connector->base.base.id,
3851 drm_get_connector_name(&connector->base));
3852
3853 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3854 "wrong connector dpms state\n");
3855 WARN(connector->base.encoder != &encoder->base,
3856 "active connector not linked to encoder\n");
3857 WARN(!encoder->connectors_active,
3858 "encoder->connectors_active not set\n");
3859
3860 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3861 WARN(!encoder_enabled, "encoder not enabled\n");
3862 if (WARN_ON(!encoder->base.crtc))
3863 return;
3864
3865 crtc = encoder->base.crtc;
3866
3867 WARN(!crtc->enabled, "crtc not enabled\n");
3868 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3869 WARN(pipe != to_intel_crtc(crtc)->pipe,
3870 "encoder active on the wrong pipe\n");
3871 }
3872 }
3873
3874 /* Even simpler default implementation, if there's really no special case to
3875 * consider. */
3876 void intel_connector_dpms(struct drm_connector *connector, int mode)
3877 {
3878 struct intel_encoder *encoder = intel_attached_encoder(connector);
3879
3880 /* All the simple cases only support two dpms states. */
3881 if (mode != DRM_MODE_DPMS_ON)
3882 mode = DRM_MODE_DPMS_OFF;
3883
3884 if (mode == connector->dpms)
3885 return;
3886
3887 connector->dpms = mode;
3888
3889 /* Only need to change hw state when actually enabled */
3890 if (encoder->base.crtc)
3891 intel_encoder_dpms(encoder, mode);
3892 else
3893 WARN_ON(encoder->connectors_active != false);
3894
3895 intel_modeset_check_state(connector->dev);
3896 }
3897
3898 /* Simple connector->get_hw_state implementation for encoders that support only
3899 * one connector and no cloning and hence the encoder state determines the state
3900 * of the connector. */
3901 bool intel_connector_get_hw_state(struct intel_connector *connector)
3902 {
3903 enum pipe pipe = 0;
3904 struct intel_encoder *encoder = connector->encoder;
3905
3906 return encoder->get_hw_state(encoder, &pipe);
3907 }
3908
3909 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3910 const struct drm_display_mode *mode,
3911 struct drm_display_mode *adjusted_mode)
3912 {
3913 struct drm_device *dev = crtc->dev;
3914
3915 if (HAS_PCH_SPLIT(dev)) {
3916 /* FDI link clock is fixed at 2.7G */
3917 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3918 return false;
3919 }
3920
3921 /* All interlaced capable intel hw wants timings in frames. Note though
3922 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3923 * timings, so we need to be careful not to clobber these.*/
3924 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3925 drm_mode_set_crtcinfo(adjusted_mode, 0);
3926
3927 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3928 * with a hsync front porch of 0.
3929 */
3930 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3931 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3932 return false;
3933
3934 return true;
3935 }
3936
3937 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3938 {
3939 return 400000; /* FIXME */
3940 }
3941
3942 static int i945_get_display_clock_speed(struct drm_device *dev)
3943 {
3944 return 400000;
3945 }
3946
3947 static int i915_get_display_clock_speed(struct drm_device *dev)
3948 {
3949 return 333000;
3950 }
3951
3952 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3953 {
3954 return 200000;
3955 }
3956
3957 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3958 {
3959 u16 gcfgc = 0;
3960
3961 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3962
3963 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3964 return 133000;
3965 else {
3966 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3967 case GC_DISPLAY_CLOCK_333_MHZ:
3968 return 333000;
3969 default:
3970 case GC_DISPLAY_CLOCK_190_200_MHZ:
3971 return 190000;
3972 }
3973 }
3974 }
3975
3976 static int i865_get_display_clock_speed(struct drm_device *dev)
3977 {
3978 return 266000;
3979 }
3980
3981 static int i855_get_display_clock_speed(struct drm_device *dev)
3982 {
3983 u16 hpllcc = 0;
3984 /* Assume that the hardware is in the high speed state. This
3985 * should be the default.
3986 */
3987 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3988 case GC_CLOCK_133_200:
3989 case GC_CLOCK_100_200:
3990 return 200000;
3991 case GC_CLOCK_166_250:
3992 return 250000;
3993 case GC_CLOCK_100_133:
3994 return 133000;
3995 }
3996
3997 /* Shouldn't happen */
3998 return 0;
3999 }
4000
4001 static int i830_get_display_clock_speed(struct drm_device *dev)
4002 {
4003 return 133000;
4004 }
4005
4006 static void
4007 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4008 {
4009 while (*num > 0xffffff || *den > 0xffffff) {
4010 *num >>= 1;
4011 *den >>= 1;
4012 }
4013 }
4014
4015 void
4016 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4017 int pixel_clock, int link_clock,
4018 struct intel_link_m_n *m_n)
4019 {
4020 m_n->tu = 64;
4021 m_n->gmch_m = bits_per_pixel * pixel_clock;
4022 m_n->gmch_n = link_clock * nlanes * 8;
4023 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4024 m_n->link_m = pixel_clock;
4025 m_n->link_n = link_clock;
4026 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4027 }
4028
4029 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4030 {
4031 if (i915_panel_use_ssc >= 0)
4032 return i915_panel_use_ssc != 0;
4033 return dev_priv->lvds_use_ssc
4034 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4035 }
4036
4037 /**
4038 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4039 * @crtc: CRTC structure
4040 * @mode: requested mode
4041 *
4042 * A pipe may be connected to one or more outputs. Based on the depth of the
4043 * attached framebuffer, choose a good color depth to use on the pipe.
4044 *
4045 * If possible, match the pipe depth to the fb depth. In some cases, this
4046 * isn't ideal, because the connected output supports a lesser or restricted
4047 * set of depths. Resolve that here:
4048 * LVDS typically supports only 6bpc, so clamp down in that case
4049 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4050 * Displays may support a restricted set as well, check EDID and clamp as
4051 * appropriate.
4052 * DP may want to dither down to 6bpc to fit larger modes
4053 *
4054 * RETURNS:
4055 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4056 * true if they don't match).
4057 */
4058 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4059 struct drm_framebuffer *fb,
4060 unsigned int *pipe_bpp,
4061 struct drm_display_mode *mode)
4062 {
4063 struct drm_device *dev = crtc->dev;
4064 struct drm_i915_private *dev_priv = dev->dev_private;
4065 struct drm_connector *connector;
4066 struct intel_encoder *intel_encoder;
4067 unsigned int display_bpc = UINT_MAX, bpc;
4068
4069 /* Walk the encoders & connectors on this crtc, get min bpc */
4070 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4071
4072 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4073 unsigned int lvds_bpc;
4074
4075 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4076 LVDS_A3_POWER_UP)
4077 lvds_bpc = 8;
4078 else
4079 lvds_bpc = 6;
4080
4081 if (lvds_bpc < display_bpc) {
4082 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4083 display_bpc = lvds_bpc;
4084 }
4085 continue;
4086 }
4087
4088 /* Not one of the known troublemakers, check the EDID */
4089 list_for_each_entry(connector, &dev->mode_config.connector_list,
4090 head) {
4091 if (connector->encoder != &intel_encoder->base)
4092 continue;
4093
4094 /* Don't use an invalid EDID bpc value */
4095 if (connector->display_info.bpc &&
4096 connector->display_info.bpc < display_bpc) {
4097 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4098 display_bpc = connector->display_info.bpc;
4099 }
4100 }
4101
4102 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4103 /* Use VBT settings if we have an eDP panel */
4104 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4105
4106 if (edp_bpc && edp_bpc < display_bpc) {
4107 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4108 display_bpc = edp_bpc;
4109 }
4110 continue;
4111 }
4112
4113 /*
4114 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4115 * through, clamp it down. (Note: >12bpc will be caught below.)
4116 */
4117 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4118 if (display_bpc > 8 && display_bpc < 12) {
4119 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4120 display_bpc = 12;
4121 } else {
4122 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4123 display_bpc = 8;
4124 }
4125 }
4126 }
4127
4128 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4129 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4130 display_bpc = 6;
4131 }
4132
4133 /*
4134 * We could just drive the pipe at the highest bpc all the time and
4135 * enable dithering as needed, but that costs bandwidth. So choose
4136 * the minimum value that expresses the full color range of the fb but
4137 * also stays within the max display bpc discovered above.
4138 */
4139
4140 switch (fb->depth) {
4141 case 8:
4142 bpc = 8; /* since we go through a colormap */
4143 break;
4144 case 15:
4145 case 16:
4146 bpc = 6; /* min is 18bpp */
4147 break;
4148 case 24:
4149 bpc = 8;
4150 break;
4151 case 30:
4152 bpc = 10;
4153 break;
4154 case 48:
4155 bpc = 12;
4156 break;
4157 default:
4158 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4159 bpc = min((unsigned int)8, display_bpc);
4160 break;
4161 }
4162
4163 display_bpc = min(display_bpc, bpc);
4164
4165 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4166 bpc, display_bpc);
4167
4168 *pipe_bpp = display_bpc * 3;
4169
4170 return display_bpc != bpc;
4171 }
4172
4173 static int vlv_get_refclk(struct drm_crtc *crtc)
4174 {
4175 struct drm_device *dev = crtc->dev;
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177 int refclk = 27000; /* for DP & HDMI */
4178
4179 return 100000; /* only one validated so far */
4180
4181 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4182 refclk = 96000;
4183 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4184 if (intel_panel_use_ssc(dev_priv))
4185 refclk = 100000;
4186 else
4187 refclk = 96000;
4188 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4189 refclk = 100000;
4190 }
4191
4192 return refclk;
4193 }
4194
4195 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4196 {
4197 struct drm_device *dev = crtc->dev;
4198 struct drm_i915_private *dev_priv = dev->dev_private;
4199 int refclk;
4200
4201 if (IS_VALLEYVIEW(dev)) {
4202 refclk = vlv_get_refclk(crtc);
4203 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4204 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4205 refclk = dev_priv->lvds_ssc_freq * 1000;
4206 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4207 refclk / 1000);
4208 } else if (!IS_GEN2(dev)) {
4209 refclk = 96000;
4210 } else {
4211 refclk = 48000;
4212 }
4213
4214 return refclk;
4215 }
4216
4217 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4218 intel_clock_t *clock)
4219 {
4220 /* SDVO TV has fixed PLL values depend on its clock range,
4221 this mirrors vbios setting. */
4222 if (adjusted_mode->clock >= 100000
4223 && adjusted_mode->clock < 140500) {
4224 clock->p1 = 2;
4225 clock->p2 = 10;
4226 clock->n = 3;
4227 clock->m1 = 16;
4228 clock->m2 = 8;
4229 } else if (adjusted_mode->clock >= 140500
4230 && adjusted_mode->clock <= 200000) {
4231 clock->p1 = 1;
4232 clock->p2 = 10;
4233 clock->n = 6;
4234 clock->m1 = 12;
4235 clock->m2 = 8;
4236 }
4237 }
4238
4239 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4240 intel_clock_t *clock,
4241 intel_clock_t *reduced_clock)
4242 {
4243 struct drm_device *dev = crtc->dev;
4244 struct drm_i915_private *dev_priv = dev->dev_private;
4245 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4246 int pipe = intel_crtc->pipe;
4247 u32 fp, fp2 = 0;
4248
4249 if (IS_PINEVIEW(dev)) {
4250 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4251 if (reduced_clock)
4252 fp2 = (1 << reduced_clock->n) << 16 |
4253 reduced_clock->m1 << 8 | reduced_clock->m2;
4254 } else {
4255 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4256 if (reduced_clock)
4257 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4258 reduced_clock->m2;
4259 }
4260
4261 I915_WRITE(FP0(pipe), fp);
4262
4263 intel_crtc->lowfreq_avail = false;
4264 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4265 reduced_clock && i915_powersave) {
4266 I915_WRITE(FP1(pipe), fp2);
4267 intel_crtc->lowfreq_avail = true;
4268 } else {
4269 I915_WRITE(FP1(pipe), fp);
4270 }
4271 }
4272
4273 static void vlv_update_pll(struct drm_crtc *crtc,
4274 struct drm_display_mode *mode,
4275 struct drm_display_mode *adjusted_mode,
4276 intel_clock_t *clock, intel_clock_t *reduced_clock,
4277 int num_connectors)
4278 {
4279 struct drm_device *dev = crtc->dev;
4280 struct drm_i915_private *dev_priv = dev->dev_private;
4281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4282 int pipe = intel_crtc->pipe;
4283 u32 dpll, mdiv, pdiv;
4284 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4285 bool is_sdvo;
4286 u32 temp;
4287
4288 mutex_lock(&dev_priv->dpio_lock);
4289
4290 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4291 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4292
4293 dpll = DPLL_VGA_MODE_DIS;
4294 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4295 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4296 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4297
4298 I915_WRITE(DPLL(pipe), dpll);
4299 POSTING_READ(DPLL(pipe));
4300
4301 bestn = clock->n;
4302 bestm1 = clock->m1;
4303 bestm2 = clock->m2;
4304 bestp1 = clock->p1;
4305 bestp2 = clock->p2;
4306
4307 /*
4308 * In Valleyview PLL and program lane counter registers are exposed
4309 * through DPIO interface
4310 */
4311 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4312 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4313 mdiv |= ((bestn << DPIO_N_SHIFT));
4314 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4315 mdiv |= (1 << DPIO_K_SHIFT);
4316 mdiv |= DPIO_ENABLE_CALIBRATION;
4317 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4318
4319 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4320
4321 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4322 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4323 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4324 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4325 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4326
4327 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4328
4329 dpll |= DPLL_VCO_ENABLE;
4330 I915_WRITE(DPLL(pipe), dpll);
4331 POSTING_READ(DPLL(pipe));
4332 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4333 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4334
4335 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4336
4337 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4338 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4339
4340 I915_WRITE(DPLL(pipe), dpll);
4341
4342 /* Wait for the clocks to stabilize. */
4343 POSTING_READ(DPLL(pipe));
4344 udelay(150);
4345
4346 temp = 0;
4347 if (is_sdvo) {
4348 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4349 if (temp > 1)
4350 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4351 else
4352 temp = 0;
4353 }
4354 I915_WRITE(DPLL_MD(pipe), temp);
4355 POSTING_READ(DPLL_MD(pipe));
4356
4357 /* Now program lane control registers */
4358 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4359 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4360 {
4361 temp = 0x1000C4;
4362 if(pipe == 1)
4363 temp |= (1 << 21);
4364 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4365 }
4366 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4367 {
4368 temp = 0x1000C4;
4369 if(pipe == 1)
4370 temp |= (1 << 21);
4371 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4372 }
4373
4374 mutex_unlock(&dev_priv->dpio_lock);
4375 }
4376
4377 static void i9xx_update_pll(struct drm_crtc *crtc,
4378 struct drm_display_mode *mode,
4379 struct drm_display_mode *adjusted_mode,
4380 intel_clock_t *clock, intel_clock_t *reduced_clock,
4381 int num_connectors)
4382 {
4383 struct drm_device *dev = crtc->dev;
4384 struct drm_i915_private *dev_priv = dev->dev_private;
4385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4386 struct intel_encoder *encoder;
4387 int pipe = intel_crtc->pipe;
4388 u32 dpll;
4389 bool is_sdvo;
4390
4391 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4392
4393 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4394 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4395
4396 dpll = DPLL_VGA_MODE_DIS;
4397
4398 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4399 dpll |= DPLLB_MODE_LVDS;
4400 else
4401 dpll |= DPLLB_MODE_DAC_SERIAL;
4402 if (is_sdvo) {
4403 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4404 if (pixel_multiplier > 1) {
4405 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4406 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4407 }
4408 dpll |= DPLL_DVO_HIGH_SPEED;
4409 }
4410 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4411 dpll |= DPLL_DVO_HIGH_SPEED;
4412
4413 /* compute bitmask from p1 value */
4414 if (IS_PINEVIEW(dev))
4415 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4416 else {
4417 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4418 if (IS_G4X(dev) && reduced_clock)
4419 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4420 }
4421 switch (clock->p2) {
4422 case 5:
4423 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4424 break;
4425 case 7:
4426 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4427 break;
4428 case 10:
4429 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4430 break;
4431 case 14:
4432 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4433 break;
4434 }
4435 if (INTEL_INFO(dev)->gen >= 4)
4436 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4437
4438 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4439 dpll |= PLL_REF_INPUT_TVCLKINBC;
4440 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4441 /* XXX: just matching BIOS for now */
4442 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4443 dpll |= 3;
4444 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4445 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4446 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4447 else
4448 dpll |= PLL_REF_INPUT_DREFCLK;
4449
4450 dpll |= DPLL_VCO_ENABLE;
4451 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4452 POSTING_READ(DPLL(pipe));
4453 udelay(150);
4454
4455 for_each_encoder_on_crtc(dev, crtc, encoder)
4456 if (encoder->pre_pll_enable)
4457 encoder->pre_pll_enable(encoder);
4458
4459 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4460 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4461
4462 I915_WRITE(DPLL(pipe), dpll);
4463
4464 /* Wait for the clocks to stabilize. */
4465 POSTING_READ(DPLL(pipe));
4466 udelay(150);
4467
4468 if (INTEL_INFO(dev)->gen >= 4) {
4469 u32 temp = 0;
4470 if (is_sdvo) {
4471 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4472 if (temp > 1)
4473 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4474 else
4475 temp = 0;
4476 }
4477 I915_WRITE(DPLL_MD(pipe), temp);
4478 } else {
4479 /* The pixel multiplier can only be updated once the
4480 * DPLL is enabled and the clocks are stable.
4481 *
4482 * So write it again.
4483 */
4484 I915_WRITE(DPLL(pipe), dpll);
4485 }
4486 }
4487
4488 static void i8xx_update_pll(struct drm_crtc *crtc,
4489 struct drm_display_mode *adjusted_mode,
4490 intel_clock_t *clock, intel_clock_t *reduced_clock,
4491 int num_connectors)
4492 {
4493 struct drm_device *dev = crtc->dev;
4494 struct drm_i915_private *dev_priv = dev->dev_private;
4495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4496 struct intel_encoder *encoder;
4497 int pipe = intel_crtc->pipe;
4498 u32 dpll;
4499
4500 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4501
4502 dpll = DPLL_VGA_MODE_DIS;
4503
4504 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4505 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4506 } else {
4507 if (clock->p1 == 2)
4508 dpll |= PLL_P1_DIVIDE_BY_TWO;
4509 else
4510 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4511 if (clock->p2 == 4)
4512 dpll |= PLL_P2_DIVIDE_BY_4;
4513 }
4514
4515 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4516 /* XXX: just matching BIOS for now */
4517 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4518 dpll |= 3;
4519 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4520 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4521 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4522 else
4523 dpll |= PLL_REF_INPUT_DREFCLK;
4524
4525 dpll |= DPLL_VCO_ENABLE;
4526 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4527 POSTING_READ(DPLL(pipe));
4528 udelay(150);
4529
4530 for_each_encoder_on_crtc(dev, crtc, encoder)
4531 if (encoder->pre_pll_enable)
4532 encoder->pre_pll_enable(encoder);
4533
4534 I915_WRITE(DPLL(pipe), dpll);
4535
4536 /* Wait for the clocks to stabilize. */
4537 POSTING_READ(DPLL(pipe));
4538 udelay(150);
4539
4540 /* The pixel multiplier can only be updated once the
4541 * DPLL is enabled and the clocks are stable.
4542 *
4543 * So write it again.
4544 */
4545 I915_WRITE(DPLL(pipe), dpll);
4546 }
4547
4548 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4549 struct drm_display_mode *mode,
4550 struct drm_display_mode *adjusted_mode)
4551 {
4552 struct drm_device *dev = intel_crtc->base.dev;
4553 struct drm_i915_private *dev_priv = dev->dev_private;
4554 enum pipe pipe = intel_crtc->pipe;
4555 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4556 uint32_t vsyncshift;
4557
4558 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4559 /* the chip adds 2 halflines automatically */
4560 adjusted_mode->crtc_vtotal -= 1;
4561 adjusted_mode->crtc_vblank_end -= 1;
4562 vsyncshift = adjusted_mode->crtc_hsync_start
4563 - adjusted_mode->crtc_htotal / 2;
4564 } else {
4565 vsyncshift = 0;
4566 }
4567
4568 if (INTEL_INFO(dev)->gen > 3)
4569 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4570
4571 I915_WRITE(HTOTAL(cpu_transcoder),
4572 (adjusted_mode->crtc_hdisplay - 1) |
4573 ((adjusted_mode->crtc_htotal - 1) << 16));
4574 I915_WRITE(HBLANK(cpu_transcoder),
4575 (adjusted_mode->crtc_hblank_start - 1) |
4576 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4577 I915_WRITE(HSYNC(cpu_transcoder),
4578 (adjusted_mode->crtc_hsync_start - 1) |
4579 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4580
4581 I915_WRITE(VTOTAL(cpu_transcoder),
4582 (adjusted_mode->crtc_vdisplay - 1) |
4583 ((adjusted_mode->crtc_vtotal - 1) << 16));
4584 I915_WRITE(VBLANK(cpu_transcoder),
4585 (adjusted_mode->crtc_vblank_start - 1) |
4586 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4587 I915_WRITE(VSYNC(cpu_transcoder),
4588 (adjusted_mode->crtc_vsync_start - 1) |
4589 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4590
4591 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4592 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4593 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4594 * bits. */
4595 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4596 (pipe == PIPE_B || pipe == PIPE_C))
4597 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4598
4599 /* pipesrc controls the size that is scaled from, which should
4600 * always be the user's requested size.
4601 */
4602 I915_WRITE(PIPESRC(pipe),
4603 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4604 }
4605
4606 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4607 struct drm_display_mode *mode,
4608 struct drm_display_mode *adjusted_mode,
4609 int x, int y,
4610 struct drm_framebuffer *fb)
4611 {
4612 struct drm_device *dev = crtc->dev;
4613 struct drm_i915_private *dev_priv = dev->dev_private;
4614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4615 int pipe = intel_crtc->pipe;
4616 int plane = intel_crtc->plane;
4617 int refclk, num_connectors = 0;
4618 intel_clock_t clock, reduced_clock;
4619 u32 dspcntr, pipeconf;
4620 bool ok, has_reduced_clock = false, is_sdvo = false;
4621 bool is_lvds = false, is_tv = false, is_dp = false;
4622 struct intel_encoder *encoder;
4623 const intel_limit_t *limit;
4624 int ret;
4625
4626 for_each_encoder_on_crtc(dev, crtc, encoder) {
4627 switch (encoder->type) {
4628 case INTEL_OUTPUT_LVDS:
4629 is_lvds = true;
4630 break;
4631 case INTEL_OUTPUT_SDVO:
4632 case INTEL_OUTPUT_HDMI:
4633 is_sdvo = true;
4634 if (encoder->needs_tv_clock)
4635 is_tv = true;
4636 break;
4637 case INTEL_OUTPUT_TVOUT:
4638 is_tv = true;
4639 break;
4640 case INTEL_OUTPUT_DISPLAYPORT:
4641 is_dp = true;
4642 break;
4643 }
4644
4645 num_connectors++;
4646 }
4647
4648 refclk = i9xx_get_refclk(crtc, num_connectors);
4649
4650 /*
4651 * Returns a set of divisors for the desired target clock with the given
4652 * refclk, or FALSE. The returned values represent the clock equation:
4653 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4654 */
4655 limit = intel_limit(crtc, refclk);
4656 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4657 &clock);
4658 if (!ok) {
4659 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4660 return -EINVAL;
4661 }
4662
4663 /* Ensure that the cursor is valid for the new mode before changing... */
4664 intel_crtc_update_cursor(crtc, true);
4665
4666 if (is_lvds && dev_priv->lvds_downclock_avail) {
4667 /*
4668 * Ensure we match the reduced clock's P to the target clock.
4669 * If the clocks don't match, we can't switch the display clock
4670 * by using the FP0/FP1. In such case we will disable the LVDS
4671 * downclock feature.
4672 */
4673 has_reduced_clock = limit->find_pll(limit, crtc,
4674 dev_priv->lvds_downclock,
4675 refclk,
4676 &clock,
4677 &reduced_clock);
4678 }
4679
4680 if (is_sdvo && is_tv)
4681 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4682
4683 if (IS_GEN2(dev))
4684 i8xx_update_pll(crtc, adjusted_mode, &clock,
4685 has_reduced_clock ? &reduced_clock : NULL,
4686 num_connectors);
4687 else if (IS_VALLEYVIEW(dev))
4688 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4689 has_reduced_clock ? &reduced_clock : NULL,
4690 num_connectors);
4691 else
4692 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4693 has_reduced_clock ? &reduced_clock : NULL,
4694 num_connectors);
4695
4696 /* setup pipeconf */
4697 pipeconf = I915_READ(PIPECONF(pipe));
4698
4699 /* Set up the display plane register */
4700 dspcntr = DISPPLANE_GAMMA_ENABLE;
4701
4702 if (pipe == 0)
4703 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4704 else
4705 dspcntr |= DISPPLANE_SEL_PIPE_B;
4706
4707 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4708 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4709 * core speed.
4710 *
4711 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4712 * pipe == 0 check?
4713 */
4714 if (mode->clock >
4715 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4716 pipeconf |= PIPECONF_DOUBLE_WIDE;
4717 else
4718 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4719 }
4720
4721 /* default to 8bpc */
4722 pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4723 if (is_dp) {
4724 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4725 pipeconf |= PIPECONF_6BPC |
4726 PIPECONF_DITHER_EN |
4727 PIPECONF_DITHER_TYPE_SP;
4728 }
4729 }
4730
4731 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4732 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4733 pipeconf |= PIPECONF_6BPC |
4734 PIPECONF_ENABLE |
4735 I965_PIPECONF_ACTIVE;
4736 }
4737 }
4738
4739 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4740 drm_mode_debug_printmodeline(mode);
4741
4742 if (HAS_PIPE_CXSR(dev)) {
4743 if (intel_crtc->lowfreq_avail) {
4744 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4745 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4746 } else {
4747 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4748 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4749 }
4750 }
4751
4752 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4753 if (!IS_GEN2(dev) &&
4754 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4755 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4756 else
4757 pipeconf |= PIPECONF_PROGRESSIVE;
4758
4759 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4760
4761 /* pipesrc and dspsize control the size that is scaled from,
4762 * which should always be the user's requested size.
4763 */
4764 I915_WRITE(DSPSIZE(plane),
4765 ((mode->vdisplay - 1) << 16) |
4766 (mode->hdisplay - 1));
4767 I915_WRITE(DSPPOS(plane), 0);
4768
4769 I915_WRITE(PIPECONF(pipe), pipeconf);
4770 POSTING_READ(PIPECONF(pipe));
4771 intel_enable_pipe(dev_priv, pipe, false);
4772
4773 intel_wait_for_vblank(dev, pipe);
4774
4775 I915_WRITE(DSPCNTR(plane), dspcntr);
4776 POSTING_READ(DSPCNTR(plane));
4777
4778 ret = intel_pipe_set_base(crtc, x, y, fb);
4779
4780 intel_update_watermarks(dev);
4781
4782 return ret;
4783 }
4784
4785 static void ironlake_init_pch_refclk(struct drm_device *dev)
4786 {
4787 struct drm_i915_private *dev_priv = dev->dev_private;
4788 struct drm_mode_config *mode_config = &dev->mode_config;
4789 struct intel_encoder *encoder;
4790 u32 temp;
4791 bool has_lvds = false;
4792 bool has_cpu_edp = false;
4793 bool has_pch_edp = false;
4794 bool has_panel = false;
4795 bool has_ck505 = false;
4796 bool can_ssc = false;
4797
4798 /* We need to take the global config into account */
4799 list_for_each_entry(encoder, &mode_config->encoder_list,
4800 base.head) {
4801 switch (encoder->type) {
4802 case INTEL_OUTPUT_LVDS:
4803 has_panel = true;
4804 has_lvds = true;
4805 break;
4806 case INTEL_OUTPUT_EDP:
4807 has_panel = true;
4808 if (intel_encoder_is_pch_edp(&encoder->base))
4809 has_pch_edp = true;
4810 else
4811 has_cpu_edp = true;
4812 break;
4813 }
4814 }
4815
4816 if (HAS_PCH_IBX(dev)) {
4817 has_ck505 = dev_priv->display_clock_mode;
4818 can_ssc = has_ck505;
4819 } else {
4820 has_ck505 = false;
4821 can_ssc = true;
4822 }
4823
4824 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4825 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4826 has_ck505);
4827
4828 /* Ironlake: try to setup display ref clock before DPLL
4829 * enabling. This is only under driver's control after
4830 * PCH B stepping, previous chipset stepping should be
4831 * ignoring this setting.
4832 */
4833 temp = I915_READ(PCH_DREF_CONTROL);
4834 /* Always enable nonspread source */
4835 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4836
4837 if (has_ck505)
4838 temp |= DREF_NONSPREAD_CK505_ENABLE;
4839 else
4840 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4841
4842 if (has_panel) {
4843 temp &= ~DREF_SSC_SOURCE_MASK;
4844 temp |= DREF_SSC_SOURCE_ENABLE;
4845
4846 /* SSC must be turned on before enabling the CPU output */
4847 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4848 DRM_DEBUG_KMS("Using SSC on panel\n");
4849 temp |= DREF_SSC1_ENABLE;
4850 } else
4851 temp &= ~DREF_SSC1_ENABLE;
4852
4853 /* Get SSC going before enabling the outputs */
4854 I915_WRITE(PCH_DREF_CONTROL, temp);
4855 POSTING_READ(PCH_DREF_CONTROL);
4856 udelay(200);
4857
4858 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4859
4860 /* Enable CPU source on CPU attached eDP */
4861 if (has_cpu_edp) {
4862 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4863 DRM_DEBUG_KMS("Using SSC on eDP\n");
4864 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4865 }
4866 else
4867 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4868 } else
4869 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4870
4871 I915_WRITE(PCH_DREF_CONTROL, temp);
4872 POSTING_READ(PCH_DREF_CONTROL);
4873 udelay(200);
4874 } else {
4875 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4876
4877 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4878
4879 /* Turn off CPU output */
4880 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4881
4882 I915_WRITE(PCH_DREF_CONTROL, temp);
4883 POSTING_READ(PCH_DREF_CONTROL);
4884 udelay(200);
4885
4886 /* Turn off the SSC source */
4887 temp &= ~DREF_SSC_SOURCE_MASK;
4888 temp |= DREF_SSC_SOURCE_DISABLE;
4889
4890 /* Turn off SSC1 */
4891 temp &= ~ DREF_SSC1_ENABLE;
4892
4893 I915_WRITE(PCH_DREF_CONTROL, temp);
4894 POSTING_READ(PCH_DREF_CONTROL);
4895 udelay(200);
4896 }
4897 }
4898
4899 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4900 static void lpt_init_pch_refclk(struct drm_device *dev)
4901 {
4902 struct drm_i915_private *dev_priv = dev->dev_private;
4903 struct drm_mode_config *mode_config = &dev->mode_config;
4904 struct intel_encoder *encoder;
4905 bool has_vga = false;
4906 bool is_sdv = false;
4907 u32 tmp;
4908
4909 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4910 switch (encoder->type) {
4911 case INTEL_OUTPUT_ANALOG:
4912 has_vga = true;
4913 break;
4914 }
4915 }
4916
4917 if (!has_vga)
4918 return;
4919
4920 mutex_lock(&dev_priv->dpio_lock);
4921
4922 /* XXX: Rip out SDV support once Haswell ships for real. */
4923 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4924 is_sdv = true;
4925
4926 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4927 tmp &= ~SBI_SSCCTL_DISABLE;
4928 tmp |= SBI_SSCCTL_PATHALT;
4929 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4930
4931 udelay(24);
4932
4933 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4934 tmp &= ~SBI_SSCCTL_PATHALT;
4935 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4936
4937 if (!is_sdv) {
4938 tmp = I915_READ(SOUTH_CHICKEN2);
4939 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4940 I915_WRITE(SOUTH_CHICKEN2, tmp);
4941
4942 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4943 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4944 DRM_ERROR("FDI mPHY reset assert timeout\n");
4945
4946 tmp = I915_READ(SOUTH_CHICKEN2);
4947 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4948 I915_WRITE(SOUTH_CHICKEN2, tmp);
4949
4950 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4951 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4952 100))
4953 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4954 }
4955
4956 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4957 tmp &= ~(0xFF << 24);
4958 tmp |= (0x12 << 24);
4959 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4960
4961 if (!is_sdv) {
4962 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4963 tmp &= ~(0x3 << 6);
4964 tmp |= (1 << 6) | (1 << 0);
4965 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4966 }
4967
4968 if (is_sdv) {
4969 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4970 tmp |= 0x7FFF;
4971 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4972 }
4973
4974 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4975 tmp |= (1 << 11);
4976 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4977
4978 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4979 tmp |= (1 << 11);
4980 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4981
4982 if (is_sdv) {
4983 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4984 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4985 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4986
4987 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4988 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4989 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4990
4991 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4992 tmp |= (0x3F << 8);
4993 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4994
4995 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4996 tmp |= (0x3F << 8);
4997 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4998 }
4999
5000 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5001 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5002 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5003
5004 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5005 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5006 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5007
5008 if (!is_sdv) {
5009 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5010 tmp &= ~(7 << 13);
5011 tmp |= (5 << 13);
5012 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5013
5014 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5015 tmp &= ~(7 << 13);
5016 tmp |= (5 << 13);
5017 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5018 }
5019
5020 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5021 tmp &= ~0xFF;
5022 tmp |= 0x1C;
5023 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5024
5025 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5026 tmp &= ~0xFF;
5027 tmp |= 0x1C;
5028 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5029
5030 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5031 tmp &= ~(0xFF << 16);
5032 tmp |= (0x1C << 16);
5033 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5034
5035 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5036 tmp &= ~(0xFF << 16);
5037 tmp |= (0x1C << 16);
5038 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5039
5040 if (!is_sdv) {
5041 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5042 tmp |= (1 << 27);
5043 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5044
5045 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5046 tmp |= (1 << 27);
5047 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5048
5049 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5050 tmp &= ~(0xF << 28);
5051 tmp |= (4 << 28);
5052 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5053
5054 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5055 tmp &= ~(0xF << 28);
5056 tmp |= (4 << 28);
5057 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5058 }
5059
5060 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5061 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5062 tmp |= SBI_DBUFF0_ENABLE;
5063 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5064
5065 mutex_unlock(&dev_priv->dpio_lock);
5066 }
5067
5068 /*
5069 * Initialize reference clocks when the driver loads
5070 */
5071 void intel_init_pch_refclk(struct drm_device *dev)
5072 {
5073 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5074 ironlake_init_pch_refclk(dev);
5075 else if (HAS_PCH_LPT(dev))
5076 lpt_init_pch_refclk(dev);
5077 }
5078
5079 static int ironlake_get_refclk(struct drm_crtc *crtc)
5080 {
5081 struct drm_device *dev = crtc->dev;
5082 struct drm_i915_private *dev_priv = dev->dev_private;
5083 struct intel_encoder *encoder;
5084 struct intel_encoder *edp_encoder = NULL;
5085 int num_connectors = 0;
5086 bool is_lvds = false;
5087
5088 for_each_encoder_on_crtc(dev, crtc, encoder) {
5089 switch (encoder->type) {
5090 case INTEL_OUTPUT_LVDS:
5091 is_lvds = true;
5092 break;
5093 case INTEL_OUTPUT_EDP:
5094 edp_encoder = encoder;
5095 break;
5096 }
5097 num_connectors++;
5098 }
5099
5100 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5101 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5102 dev_priv->lvds_ssc_freq);
5103 return dev_priv->lvds_ssc_freq * 1000;
5104 }
5105
5106 return 120000;
5107 }
5108
5109 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5110 struct drm_display_mode *adjusted_mode,
5111 bool dither)
5112 {
5113 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5115 int pipe = intel_crtc->pipe;
5116 uint32_t val;
5117
5118 val = I915_READ(PIPECONF(pipe));
5119
5120 val &= ~PIPECONF_BPC_MASK;
5121 switch (intel_crtc->bpp) {
5122 case 18:
5123 val |= PIPECONF_6BPC;
5124 break;
5125 case 24:
5126 val |= PIPECONF_8BPC;
5127 break;
5128 case 30:
5129 val |= PIPECONF_10BPC;
5130 break;
5131 case 36:
5132 val |= PIPECONF_12BPC;
5133 break;
5134 default:
5135 /* Case prevented by intel_choose_pipe_bpp_dither. */
5136 BUG();
5137 }
5138
5139 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5140 if (dither)
5141 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5142
5143 val &= ~PIPECONF_INTERLACE_MASK;
5144 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5145 val |= PIPECONF_INTERLACED_ILK;
5146 else
5147 val |= PIPECONF_PROGRESSIVE;
5148
5149 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5150 val |= PIPECONF_COLOR_RANGE_SELECT;
5151 else
5152 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5153
5154 I915_WRITE(PIPECONF(pipe), val);
5155 POSTING_READ(PIPECONF(pipe));
5156 }
5157
5158 /*
5159 * Set up the pipe CSC unit.
5160 *
5161 * Currently only full range RGB to limited range RGB conversion
5162 * is supported, but eventually this should handle various
5163 * RGB<->YCbCr scenarios as well.
5164 */
5165 static void intel_set_pipe_csc(struct drm_crtc *crtc,
5166 const struct drm_display_mode *adjusted_mode)
5167 {
5168 struct drm_device *dev = crtc->dev;
5169 struct drm_i915_private *dev_priv = dev->dev_private;
5170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5171 int pipe = intel_crtc->pipe;
5172 uint16_t coeff = 0x7800; /* 1.0 */
5173
5174 /*
5175 * TODO: Check what kind of values actually come out of the pipe
5176 * with these coeff/postoff values and adjust to get the best
5177 * accuracy. Perhaps we even need to take the bpc value into
5178 * consideration.
5179 */
5180
5181 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5182 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5183
5184 /*
5185 * GY/GU and RY/RU should be the other way around according
5186 * to BSpec, but reality doesn't agree. Just set them up in
5187 * a way that results in the correct picture.
5188 */
5189 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5190 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5191
5192 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5193 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5194
5195 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5196 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5197
5198 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5199 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5200 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5201
5202 if (INTEL_INFO(dev)->gen > 6) {
5203 uint16_t postoff = 0;
5204
5205 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5206 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5207
5208 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5209 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5210 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5211
5212 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5213 } else {
5214 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5215
5216 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5217 mode |= CSC_BLACK_SCREEN_OFFSET;
5218
5219 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5220 }
5221 }
5222
5223 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5224 struct drm_display_mode *adjusted_mode,
5225 bool dither)
5226 {
5227 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5229 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5230 uint32_t val;
5231
5232 val = I915_READ(PIPECONF(cpu_transcoder));
5233
5234 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5235 if (dither)
5236 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5237
5238 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5239 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5240 val |= PIPECONF_INTERLACED_ILK;
5241 else
5242 val |= PIPECONF_PROGRESSIVE;
5243
5244 I915_WRITE(PIPECONF(cpu_transcoder), val);
5245 POSTING_READ(PIPECONF(cpu_transcoder));
5246 }
5247
5248 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5249 struct drm_display_mode *adjusted_mode,
5250 intel_clock_t *clock,
5251 bool *has_reduced_clock,
5252 intel_clock_t *reduced_clock)
5253 {
5254 struct drm_device *dev = crtc->dev;
5255 struct drm_i915_private *dev_priv = dev->dev_private;
5256 struct intel_encoder *intel_encoder;
5257 int refclk;
5258 const intel_limit_t *limit;
5259 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5260
5261 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5262 switch (intel_encoder->type) {
5263 case INTEL_OUTPUT_LVDS:
5264 is_lvds = true;
5265 break;
5266 case INTEL_OUTPUT_SDVO:
5267 case INTEL_OUTPUT_HDMI:
5268 is_sdvo = true;
5269 if (intel_encoder->needs_tv_clock)
5270 is_tv = true;
5271 break;
5272 case INTEL_OUTPUT_TVOUT:
5273 is_tv = true;
5274 break;
5275 }
5276 }
5277
5278 refclk = ironlake_get_refclk(crtc);
5279
5280 /*
5281 * Returns a set of divisors for the desired target clock with the given
5282 * refclk, or FALSE. The returned values represent the clock equation:
5283 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5284 */
5285 limit = intel_limit(crtc, refclk);
5286 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5287 clock);
5288 if (!ret)
5289 return false;
5290
5291 if (is_lvds && dev_priv->lvds_downclock_avail) {
5292 /*
5293 * Ensure we match the reduced clock's P to the target clock.
5294 * If the clocks don't match, we can't switch the display clock
5295 * by using the FP0/FP1. In such case we will disable the LVDS
5296 * downclock feature.
5297 */
5298 *has_reduced_clock = limit->find_pll(limit, crtc,
5299 dev_priv->lvds_downclock,
5300 refclk,
5301 clock,
5302 reduced_clock);
5303 }
5304
5305 if (is_sdvo && is_tv)
5306 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5307
5308 return true;
5309 }
5310
5311 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5312 {
5313 struct drm_i915_private *dev_priv = dev->dev_private;
5314 uint32_t temp;
5315
5316 temp = I915_READ(SOUTH_CHICKEN1);
5317 if (temp & FDI_BC_BIFURCATION_SELECT)
5318 return;
5319
5320 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5321 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5322
5323 temp |= FDI_BC_BIFURCATION_SELECT;
5324 DRM_DEBUG_KMS("enabling fdi C rx\n");
5325 I915_WRITE(SOUTH_CHICKEN1, temp);
5326 POSTING_READ(SOUTH_CHICKEN1);
5327 }
5328
5329 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5330 {
5331 struct drm_device *dev = intel_crtc->base.dev;
5332 struct drm_i915_private *dev_priv = dev->dev_private;
5333 struct intel_crtc *pipe_B_crtc =
5334 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5335
5336 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5337 intel_crtc->pipe, intel_crtc->fdi_lanes);
5338 if (intel_crtc->fdi_lanes > 4) {
5339 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5340 intel_crtc->pipe, intel_crtc->fdi_lanes);
5341 /* Clamp lanes to avoid programming the hw with bogus values. */
5342 intel_crtc->fdi_lanes = 4;
5343
5344 return false;
5345 }
5346
5347 if (dev_priv->num_pipe == 2)
5348 return true;
5349
5350 switch (intel_crtc->pipe) {
5351 case PIPE_A:
5352 return true;
5353 case PIPE_B:
5354 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5355 intel_crtc->fdi_lanes > 2) {
5356 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5357 intel_crtc->pipe, intel_crtc->fdi_lanes);
5358 /* Clamp lanes to avoid programming the hw with bogus values. */
5359 intel_crtc->fdi_lanes = 2;
5360
5361 return false;
5362 }
5363
5364 if (intel_crtc->fdi_lanes > 2)
5365 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5366 else
5367 cpt_enable_fdi_bc_bifurcation(dev);
5368
5369 return true;
5370 case PIPE_C:
5371 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5372 if (intel_crtc->fdi_lanes > 2) {
5373 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5374 intel_crtc->pipe, intel_crtc->fdi_lanes);
5375 /* Clamp lanes to avoid programming the hw with bogus values. */
5376 intel_crtc->fdi_lanes = 2;
5377
5378 return false;
5379 }
5380 } else {
5381 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5382 return false;
5383 }
5384
5385 cpt_enable_fdi_bc_bifurcation(dev);
5386
5387 return true;
5388 default:
5389 BUG();
5390 }
5391 }
5392
5393 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5394 {
5395 /*
5396 * Account for spread spectrum to avoid
5397 * oversubscribing the link. Max center spread
5398 * is 2.5%; use 5% for safety's sake.
5399 */
5400 u32 bps = target_clock * bpp * 21 / 20;
5401 return bps / (link_bw * 8) + 1;
5402 }
5403
5404 static void ironlake_set_m_n(struct drm_crtc *crtc,
5405 struct drm_display_mode *mode,
5406 struct drm_display_mode *adjusted_mode)
5407 {
5408 struct drm_device *dev = crtc->dev;
5409 struct drm_i915_private *dev_priv = dev->dev_private;
5410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5411 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5412 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5413 struct intel_link_m_n m_n = {0};
5414 int target_clock, pixel_multiplier, lane, link_bw;
5415 bool is_dp = false, is_cpu_edp = false;
5416
5417 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5418 switch (intel_encoder->type) {
5419 case INTEL_OUTPUT_DISPLAYPORT:
5420 is_dp = true;
5421 break;
5422 case INTEL_OUTPUT_EDP:
5423 is_dp = true;
5424 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5425 is_cpu_edp = true;
5426 edp_encoder = intel_encoder;
5427 break;
5428 }
5429 }
5430
5431 /* FDI link */
5432 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5433 lane = 0;
5434 /* CPU eDP doesn't require FDI link, so just set DP M/N
5435 according to current link config */
5436 if (is_cpu_edp) {
5437 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5438 } else {
5439 /* FDI is a binary signal running at ~2.7GHz, encoding
5440 * each output octet as 10 bits. The actual frequency
5441 * is stored as a divider into a 100MHz clock, and the
5442 * mode pixel clock is stored in units of 1KHz.
5443 * Hence the bw of each lane in terms of the mode signal
5444 * is:
5445 */
5446 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5447 }
5448
5449 /* [e]DP over FDI requires target mode clock instead of link clock. */
5450 if (edp_encoder)
5451 target_clock = intel_edp_target_clock(edp_encoder, mode);
5452 else if (is_dp)
5453 target_clock = mode->clock;
5454 else
5455 target_clock = adjusted_mode->clock;
5456
5457 if (!lane)
5458 lane = ironlake_get_lanes_required(target_clock, link_bw,
5459 intel_crtc->bpp);
5460
5461 intel_crtc->fdi_lanes = lane;
5462
5463 if (pixel_multiplier > 1)
5464 link_bw *= pixel_multiplier;
5465 intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
5466
5467 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5468 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5469 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5470 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5471 }
5472
5473 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5474 struct drm_display_mode *adjusted_mode,
5475 intel_clock_t *clock, u32 fp)
5476 {
5477 struct drm_crtc *crtc = &intel_crtc->base;
5478 struct drm_device *dev = crtc->dev;
5479 struct drm_i915_private *dev_priv = dev->dev_private;
5480 struct intel_encoder *intel_encoder;
5481 uint32_t dpll;
5482 int factor, pixel_multiplier, num_connectors = 0;
5483 bool is_lvds = false, is_sdvo = false, is_tv = false;
5484 bool is_dp = false, is_cpu_edp = false;
5485
5486 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5487 switch (intel_encoder->type) {
5488 case INTEL_OUTPUT_LVDS:
5489 is_lvds = true;
5490 break;
5491 case INTEL_OUTPUT_SDVO:
5492 case INTEL_OUTPUT_HDMI:
5493 is_sdvo = true;
5494 if (intel_encoder->needs_tv_clock)
5495 is_tv = true;
5496 break;
5497 case INTEL_OUTPUT_TVOUT:
5498 is_tv = true;
5499 break;
5500 case INTEL_OUTPUT_DISPLAYPORT:
5501 is_dp = true;
5502 break;
5503 case INTEL_OUTPUT_EDP:
5504 is_dp = true;
5505 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5506 is_cpu_edp = true;
5507 break;
5508 }
5509
5510 num_connectors++;
5511 }
5512
5513 /* Enable autotuning of the PLL clock (if permissible) */
5514 factor = 21;
5515 if (is_lvds) {
5516 if ((intel_panel_use_ssc(dev_priv) &&
5517 dev_priv->lvds_ssc_freq == 100) ||
5518 intel_is_dual_link_lvds(dev))
5519 factor = 25;
5520 } else if (is_sdvo && is_tv)
5521 factor = 20;
5522
5523 if (clock->m < factor * clock->n)
5524 fp |= FP_CB_TUNE;
5525
5526 dpll = 0;
5527
5528 if (is_lvds)
5529 dpll |= DPLLB_MODE_LVDS;
5530 else
5531 dpll |= DPLLB_MODE_DAC_SERIAL;
5532 if (is_sdvo) {
5533 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5534 if (pixel_multiplier > 1) {
5535 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5536 }
5537 dpll |= DPLL_DVO_HIGH_SPEED;
5538 }
5539 if (is_dp && !is_cpu_edp)
5540 dpll |= DPLL_DVO_HIGH_SPEED;
5541
5542 /* compute bitmask from p1 value */
5543 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5544 /* also FPA1 */
5545 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5546
5547 switch (clock->p2) {
5548 case 5:
5549 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5550 break;
5551 case 7:
5552 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5553 break;
5554 case 10:
5555 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5556 break;
5557 case 14:
5558 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5559 break;
5560 }
5561
5562 if (is_sdvo && is_tv)
5563 dpll |= PLL_REF_INPUT_TVCLKINBC;
5564 else if (is_tv)
5565 /* XXX: just matching BIOS for now */
5566 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5567 dpll |= 3;
5568 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5569 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5570 else
5571 dpll |= PLL_REF_INPUT_DREFCLK;
5572
5573 return dpll;
5574 }
5575
5576 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5577 struct drm_display_mode *mode,
5578 struct drm_display_mode *adjusted_mode,
5579 int x, int y,
5580 struct drm_framebuffer *fb)
5581 {
5582 struct drm_device *dev = crtc->dev;
5583 struct drm_i915_private *dev_priv = dev->dev_private;
5584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585 int pipe = intel_crtc->pipe;
5586 int plane = intel_crtc->plane;
5587 int num_connectors = 0;
5588 intel_clock_t clock, reduced_clock;
5589 u32 dpll, fp = 0, fp2 = 0;
5590 bool ok, has_reduced_clock = false;
5591 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5592 struct intel_encoder *encoder;
5593 int ret;
5594 bool dither, fdi_config_ok;
5595
5596 for_each_encoder_on_crtc(dev, crtc, encoder) {
5597 switch (encoder->type) {
5598 case INTEL_OUTPUT_LVDS:
5599 is_lvds = true;
5600 break;
5601 case INTEL_OUTPUT_DISPLAYPORT:
5602 is_dp = true;
5603 break;
5604 case INTEL_OUTPUT_EDP:
5605 is_dp = true;
5606 if (!intel_encoder_is_pch_edp(&encoder->base))
5607 is_cpu_edp = true;
5608 break;
5609 }
5610
5611 num_connectors++;
5612 }
5613
5614 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5615 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5616
5617 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5618 &has_reduced_clock, &reduced_clock);
5619 if (!ok) {
5620 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5621 return -EINVAL;
5622 }
5623
5624 /* Ensure that the cursor is valid for the new mode before changing... */
5625 intel_crtc_update_cursor(crtc, true);
5626
5627 /* determine panel color depth */
5628 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5629 adjusted_mode);
5630 if (is_lvds && dev_priv->lvds_dither)
5631 dither = true;
5632
5633 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5634 if (has_reduced_clock)
5635 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5636 reduced_clock.m2;
5637
5638 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5639
5640 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5641 drm_mode_debug_printmodeline(mode);
5642
5643 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5644 if (!is_cpu_edp) {
5645 struct intel_pch_pll *pll;
5646
5647 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5648 if (pll == NULL) {
5649 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5650 pipe);
5651 return -EINVAL;
5652 }
5653 } else
5654 intel_put_pch_pll(intel_crtc);
5655
5656 if (is_dp && !is_cpu_edp)
5657 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5658
5659 for_each_encoder_on_crtc(dev, crtc, encoder)
5660 if (encoder->pre_pll_enable)
5661 encoder->pre_pll_enable(encoder);
5662
5663 if (intel_crtc->pch_pll) {
5664 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5665
5666 /* Wait for the clocks to stabilize. */
5667 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5668 udelay(150);
5669
5670 /* The pixel multiplier can only be updated once the
5671 * DPLL is enabled and the clocks are stable.
5672 *
5673 * So write it again.
5674 */
5675 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5676 }
5677
5678 intel_crtc->lowfreq_avail = false;
5679 if (intel_crtc->pch_pll) {
5680 if (is_lvds && has_reduced_clock && i915_powersave) {
5681 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5682 intel_crtc->lowfreq_avail = true;
5683 } else {
5684 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5685 }
5686 }
5687
5688 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5689
5690 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5691 * ironlake_check_fdi_lanes. */
5692 ironlake_set_m_n(crtc, mode, adjusted_mode);
5693
5694 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5695
5696 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5697
5698 intel_wait_for_vblank(dev, pipe);
5699
5700 /* Set up the display plane register */
5701 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5702 POSTING_READ(DSPCNTR(plane));
5703
5704 ret = intel_pipe_set_base(crtc, x, y, fb);
5705
5706 intel_update_watermarks(dev);
5707
5708 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5709
5710 return fdi_config_ok ? ret : -EINVAL;
5711 }
5712
5713 static void haswell_modeset_global_resources(struct drm_device *dev)
5714 {
5715 struct drm_i915_private *dev_priv = dev->dev_private;
5716 bool enable = false;
5717 struct intel_crtc *crtc;
5718 struct intel_encoder *encoder;
5719
5720 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5721 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5722 enable = true;
5723 /* XXX: Should check for edp transcoder here, but thanks to init
5724 * sequence that's not yet available. Just in case desktop eDP
5725 * on PORT D is possible on haswell, too. */
5726 }
5727
5728 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5729 base.head) {
5730 if (encoder->type != INTEL_OUTPUT_EDP &&
5731 encoder->connectors_active)
5732 enable = true;
5733 }
5734
5735 /* Even the eDP panel fitter is outside the always-on well. */
5736 if (dev_priv->pch_pf_size)
5737 enable = true;
5738
5739 intel_set_power_well(dev, enable);
5740 }
5741
5742 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5743 struct drm_display_mode *mode,
5744 struct drm_display_mode *adjusted_mode,
5745 int x, int y,
5746 struct drm_framebuffer *fb)
5747 {
5748 struct drm_device *dev = crtc->dev;
5749 struct drm_i915_private *dev_priv = dev->dev_private;
5750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5751 int pipe = intel_crtc->pipe;
5752 int plane = intel_crtc->plane;
5753 int num_connectors = 0;
5754 bool is_dp = false, is_cpu_edp = false;
5755 struct intel_encoder *encoder;
5756 int ret;
5757 bool dither;
5758
5759 for_each_encoder_on_crtc(dev, crtc, encoder) {
5760 switch (encoder->type) {
5761 case INTEL_OUTPUT_DISPLAYPORT:
5762 is_dp = true;
5763 break;
5764 case INTEL_OUTPUT_EDP:
5765 is_dp = true;
5766 if (!intel_encoder_is_pch_edp(&encoder->base))
5767 is_cpu_edp = true;
5768 break;
5769 }
5770
5771 num_connectors++;
5772 }
5773
5774 if (is_cpu_edp)
5775 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5776 else
5777 intel_crtc->cpu_transcoder = pipe;
5778
5779 /* We are not sure yet this won't happen. */
5780 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5781 INTEL_PCH_TYPE(dev));
5782
5783 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5784 num_connectors, pipe_name(pipe));
5785
5786 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5787 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5788
5789 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5790
5791 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5792 return -EINVAL;
5793
5794 /* Ensure that the cursor is valid for the new mode before changing... */
5795 intel_crtc_update_cursor(crtc, true);
5796
5797 /* determine panel color depth */
5798 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5799 adjusted_mode);
5800
5801 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5802 drm_mode_debug_printmodeline(mode);
5803
5804 if (is_dp && !is_cpu_edp)
5805 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5806
5807 intel_crtc->lowfreq_avail = false;
5808
5809 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5810
5811 if (!is_dp || is_cpu_edp)
5812 ironlake_set_m_n(crtc, mode, adjusted_mode);
5813
5814 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5815
5816 intel_set_pipe_csc(crtc, adjusted_mode);
5817
5818 /* Set up the display plane register */
5819 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5820 POSTING_READ(DSPCNTR(plane));
5821
5822 ret = intel_pipe_set_base(crtc, x, y, fb);
5823
5824 intel_update_watermarks(dev);
5825
5826 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5827
5828 return ret;
5829 }
5830
5831 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5832 struct drm_display_mode *mode,
5833 struct drm_display_mode *adjusted_mode,
5834 int x, int y,
5835 struct drm_framebuffer *fb)
5836 {
5837 struct drm_device *dev = crtc->dev;
5838 struct drm_i915_private *dev_priv = dev->dev_private;
5839 struct drm_encoder_helper_funcs *encoder_funcs;
5840 struct intel_encoder *encoder;
5841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5842 int pipe = intel_crtc->pipe;
5843 int ret;
5844
5845 drm_vblank_pre_modeset(dev, pipe);
5846
5847 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5848 x, y, fb);
5849 drm_vblank_post_modeset(dev, pipe);
5850
5851 if (ret != 0)
5852 return ret;
5853
5854 for_each_encoder_on_crtc(dev, crtc, encoder) {
5855 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5856 encoder->base.base.id,
5857 drm_get_encoder_name(&encoder->base),
5858 mode->base.id, mode->name);
5859 encoder_funcs = encoder->base.helper_private;
5860 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5861 }
5862
5863 return 0;
5864 }
5865
5866 static bool intel_eld_uptodate(struct drm_connector *connector,
5867 int reg_eldv, uint32_t bits_eldv,
5868 int reg_elda, uint32_t bits_elda,
5869 int reg_edid)
5870 {
5871 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5872 uint8_t *eld = connector->eld;
5873 uint32_t i;
5874
5875 i = I915_READ(reg_eldv);
5876 i &= bits_eldv;
5877
5878 if (!eld[0])
5879 return !i;
5880
5881 if (!i)
5882 return false;
5883
5884 i = I915_READ(reg_elda);
5885 i &= ~bits_elda;
5886 I915_WRITE(reg_elda, i);
5887
5888 for (i = 0; i < eld[2]; i++)
5889 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5890 return false;
5891
5892 return true;
5893 }
5894
5895 static void g4x_write_eld(struct drm_connector *connector,
5896 struct drm_crtc *crtc)
5897 {
5898 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5899 uint8_t *eld = connector->eld;
5900 uint32_t eldv;
5901 uint32_t len;
5902 uint32_t i;
5903
5904 i = I915_READ(G4X_AUD_VID_DID);
5905
5906 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5907 eldv = G4X_ELDV_DEVCL_DEVBLC;
5908 else
5909 eldv = G4X_ELDV_DEVCTG;
5910
5911 if (intel_eld_uptodate(connector,
5912 G4X_AUD_CNTL_ST, eldv,
5913 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5914 G4X_HDMIW_HDMIEDID))
5915 return;
5916
5917 i = I915_READ(G4X_AUD_CNTL_ST);
5918 i &= ~(eldv | G4X_ELD_ADDR);
5919 len = (i >> 9) & 0x1f; /* ELD buffer size */
5920 I915_WRITE(G4X_AUD_CNTL_ST, i);
5921
5922 if (!eld[0])
5923 return;
5924
5925 len = min_t(uint8_t, eld[2], len);
5926 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5927 for (i = 0; i < len; i++)
5928 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5929
5930 i = I915_READ(G4X_AUD_CNTL_ST);
5931 i |= eldv;
5932 I915_WRITE(G4X_AUD_CNTL_ST, i);
5933 }
5934
5935 static void haswell_write_eld(struct drm_connector *connector,
5936 struct drm_crtc *crtc)
5937 {
5938 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5939 uint8_t *eld = connector->eld;
5940 struct drm_device *dev = crtc->dev;
5941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5942 uint32_t eldv;
5943 uint32_t i;
5944 int len;
5945 int pipe = to_intel_crtc(crtc)->pipe;
5946 int tmp;
5947
5948 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5949 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5950 int aud_config = HSW_AUD_CFG(pipe);
5951 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5952
5953
5954 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5955
5956 /* Audio output enable */
5957 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5958 tmp = I915_READ(aud_cntrl_st2);
5959 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5960 I915_WRITE(aud_cntrl_st2, tmp);
5961
5962 /* Wait for 1 vertical blank */
5963 intel_wait_for_vblank(dev, pipe);
5964
5965 /* Set ELD valid state */
5966 tmp = I915_READ(aud_cntrl_st2);
5967 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5968 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5969 I915_WRITE(aud_cntrl_st2, tmp);
5970 tmp = I915_READ(aud_cntrl_st2);
5971 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5972
5973 /* Enable HDMI mode */
5974 tmp = I915_READ(aud_config);
5975 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5976 /* clear N_programing_enable and N_value_index */
5977 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5978 I915_WRITE(aud_config, tmp);
5979
5980 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5981
5982 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5983 intel_crtc->eld_vld = true;
5984
5985 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5986 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5987 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5988 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5989 } else
5990 I915_WRITE(aud_config, 0);
5991
5992 if (intel_eld_uptodate(connector,
5993 aud_cntrl_st2, eldv,
5994 aud_cntl_st, IBX_ELD_ADDRESS,
5995 hdmiw_hdmiedid))
5996 return;
5997
5998 i = I915_READ(aud_cntrl_st2);
5999 i &= ~eldv;
6000 I915_WRITE(aud_cntrl_st2, i);
6001
6002 if (!eld[0])
6003 return;
6004
6005 i = I915_READ(aud_cntl_st);
6006 i &= ~IBX_ELD_ADDRESS;
6007 I915_WRITE(aud_cntl_st, i);
6008 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6009 DRM_DEBUG_DRIVER("port num:%d\n", i);
6010
6011 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6012 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6013 for (i = 0; i < len; i++)
6014 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6015
6016 i = I915_READ(aud_cntrl_st2);
6017 i |= eldv;
6018 I915_WRITE(aud_cntrl_st2, i);
6019
6020 }
6021
6022 static void ironlake_write_eld(struct drm_connector *connector,
6023 struct drm_crtc *crtc)
6024 {
6025 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6026 uint8_t *eld = connector->eld;
6027 uint32_t eldv;
6028 uint32_t i;
6029 int len;
6030 int hdmiw_hdmiedid;
6031 int aud_config;
6032 int aud_cntl_st;
6033 int aud_cntrl_st2;
6034 int pipe = to_intel_crtc(crtc)->pipe;
6035
6036 if (HAS_PCH_IBX(connector->dev)) {
6037 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6038 aud_config = IBX_AUD_CFG(pipe);
6039 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6040 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6041 } else {
6042 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6043 aud_config = CPT_AUD_CFG(pipe);
6044 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6045 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6046 }
6047
6048 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6049
6050 i = I915_READ(aud_cntl_st);
6051 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6052 if (!i) {
6053 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6054 /* operate blindly on all ports */
6055 eldv = IBX_ELD_VALIDB;
6056 eldv |= IBX_ELD_VALIDB << 4;
6057 eldv |= IBX_ELD_VALIDB << 8;
6058 } else {
6059 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6060 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6061 }
6062
6063 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6064 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6065 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6066 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6067 } else
6068 I915_WRITE(aud_config, 0);
6069
6070 if (intel_eld_uptodate(connector,
6071 aud_cntrl_st2, eldv,
6072 aud_cntl_st, IBX_ELD_ADDRESS,
6073 hdmiw_hdmiedid))
6074 return;
6075
6076 i = I915_READ(aud_cntrl_st2);
6077 i &= ~eldv;
6078 I915_WRITE(aud_cntrl_st2, i);
6079
6080 if (!eld[0])
6081 return;
6082
6083 i = I915_READ(aud_cntl_st);
6084 i &= ~IBX_ELD_ADDRESS;
6085 I915_WRITE(aud_cntl_st, i);
6086
6087 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6088 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6089 for (i = 0; i < len; i++)
6090 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6091
6092 i = I915_READ(aud_cntrl_st2);
6093 i |= eldv;
6094 I915_WRITE(aud_cntrl_st2, i);
6095 }
6096
6097 void intel_write_eld(struct drm_encoder *encoder,
6098 struct drm_display_mode *mode)
6099 {
6100 struct drm_crtc *crtc = encoder->crtc;
6101 struct drm_connector *connector;
6102 struct drm_device *dev = encoder->dev;
6103 struct drm_i915_private *dev_priv = dev->dev_private;
6104
6105 connector = drm_select_eld(encoder, mode);
6106 if (!connector)
6107 return;
6108
6109 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6110 connector->base.id,
6111 drm_get_connector_name(connector),
6112 connector->encoder->base.id,
6113 drm_get_encoder_name(connector->encoder));
6114
6115 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6116
6117 if (dev_priv->display.write_eld)
6118 dev_priv->display.write_eld(connector, crtc);
6119 }
6120
6121 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6122 void intel_crtc_load_lut(struct drm_crtc *crtc)
6123 {
6124 struct drm_device *dev = crtc->dev;
6125 struct drm_i915_private *dev_priv = dev->dev_private;
6126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6127 int palreg = PALETTE(intel_crtc->pipe);
6128 int i;
6129
6130 /* The clocks have to be on to load the palette. */
6131 if (!crtc->enabled || !intel_crtc->active)
6132 return;
6133
6134 /* use legacy palette for Ironlake */
6135 if (HAS_PCH_SPLIT(dev))
6136 palreg = LGC_PALETTE(intel_crtc->pipe);
6137
6138 for (i = 0; i < 256; i++) {
6139 I915_WRITE(palreg + 4 * i,
6140 (intel_crtc->lut_r[i] << 16) |
6141 (intel_crtc->lut_g[i] << 8) |
6142 intel_crtc->lut_b[i]);
6143 }
6144 }
6145
6146 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6147 {
6148 struct drm_device *dev = crtc->dev;
6149 struct drm_i915_private *dev_priv = dev->dev_private;
6150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6151 bool visible = base != 0;
6152 u32 cntl;
6153
6154 if (intel_crtc->cursor_visible == visible)
6155 return;
6156
6157 cntl = I915_READ(_CURACNTR);
6158 if (visible) {
6159 /* On these chipsets we can only modify the base whilst
6160 * the cursor is disabled.
6161 */
6162 I915_WRITE(_CURABASE, base);
6163
6164 cntl &= ~(CURSOR_FORMAT_MASK);
6165 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6166 cntl |= CURSOR_ENABLE |
6167 CURSOR_GAMMA_ENABLE |
6168 CURSOR_FORMAT_ARGB;
6169 } else
6170 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6171 I915_WRITE(_CURACNTR, cntl);
6172
6173 intel_crtc->cursor_visible = visible;
6174 }
6175
6176 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6177 {
6178 struct drm_device *dev = crtc->dev;
6179 struct drm_i915_private *dev_priv = dev->dev_private;
6180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6181 int pipe = intel_crtc->pipe;
6182 bool visible = base != 0;
6183
6184 if (intel_crtc->cursor_visible != visible) {
6185 uint32_t cntl = I915_READ(CURCNTR(pipe));
6186 if (base) {
6187 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6188 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6189 cntl |= pipe << 28; /* Connect to correct pipe */
6190 } else {
6191 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6192 cntl |= CURSOR_MODE_DISABLE;
6193 }
6194 I915_WRITE(CURCNTR(pipe), cntl);
6195
6196 intel_crtc->cursor_visible = visible;
6197 }
6198 /* and commit changes on next vblank */
6199 I915_WRITE(CURBASE(pipe), base);
6200 }
6201
6202 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6203 {
6204 struct drm_device *dev = crtc->dev;
6205 struct drm_i915_private *dev_priv = dev->dev_private;
6206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207 int pipe = intel_crtc->pipe;
6208 bool visible = base != 0;
6209
6210 if (intel_crtc->cursor_visible != visible) {
6211 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6212 if (base) {
6213 cntl &= ~CURSOR_MODE;
6214 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6215 } else {
6216 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6217 cntl |= CURSOR_MODE_DISABLE;
6218 }
6219 if (IS_HASWELL(dev))
6220 cntl |= CURSOR_PIPE_CSC_ENABLE;
6221 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6222
6223 intel_crtc->cursor_visible = visible;
6224 }
6225 /* and commit changes on next vblank */
6226 I915_WRITE(CURBASE_IVB(pipe), base);
6227 }
6228
6229 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6230 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6231 bool on)
6232 {
6233 struct drm_device *dev = crtc->dev;
6234 struct drm_i915_private *dev_priv = dev->dev_private;
6235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6236 int pipe = intel_crtc->pipe;
6237 int x = intel_crtc->cursor_x;
6238 int y = intel_crtc->cursor_y;
6239 u32 base, pos;
6240 bool visible;
6241
6242 pos = 0;
6243
6244 if (on && crtc->enabled && crtc->fb) {
6245 base = intel_crtc->cursor_addr;
6246 if (x > (int) crtc->fb->width)
6247 base = 0;
6248
6249 if (y > (int) crtc->fb->height)
6250 base = 0;
6251 } else
6252 base = 0;
6253
6254 if (x < 0) {
6255 if (x + intel_crtc->cursor_width < 0)
6256 base = 0;
6257
6258 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6259 x = -x;
6260 }
6261 pos |= x << CURSOR_X_SHIFT;
6262
6263 if (y < 0) {
6264 if (y + intel_crtc->cursor_height < 0)
6265 base = 0;
6266
6267 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6268 y = -y;
6269 }
6270 pos |= y << CURSOR_Y_SHIFT;
6271
6272 visible = base != 0;
6273 if (!visible && !intel_crtc->cursor_visible)
6274 return;
6275
6276 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6277 I915_WRITE(CURPOS_IVB(pipe), pos);
6278 ivb_update_cursor(crtc, base);
6279 } else {
6280 I915_WRITE(CURPOS(pipe), pos);
6281 if (IS_845G(dev) || IS_I865G(dev))
6282 i845_update_cursor(crtc, base);
6283 else
6284 i9xx_update_cursor(crtc, base);
6285 }
6286 }
6287
6288 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6289 struct drm_file *file,
6290 uint32_t handle,
6291 uint32_t width, uint32_t height)
6292 {
6293 struct drm_device *dev = crtc->dev;
6294 struct drm_i915_private *dev_priv = dev->dev_private;
6295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6296 struct drm_i915_gem_object *obj;
6297 uint32_t addr;
6298 int ret;
6299
6300 /* if we want to turn off the cursor ignore width and height */
6301 if (!handle) {
6302 DRM_DEBUG_KMS("cursor off\n");
6303 addr = 0;
6304 obj = NULL;
6305 mutex_lock(&dev->struct_mutex);
6306 goto finish;
6307 }
6308
6309 /* Currently we only support 64x64 cursors */
6310 if (width != 64 || height != 64) {
6311 DRM_ERROR("we currently only support 64x64 cursors\n");
6312 return -EINVAL;
6313 }
6314
6315 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6316 if (&obj->base == NULL)
6317 return -ENOENT;
6318
6319 if (obj->base.size < width * height * 4) {
6320 DRM_ERROR("buffer is to small\n");
6321 ret = -ENOMEM;
6322 goto fail;
6323 }
6324
6325 /* we only need to pin inside GTT if cursor is non-phy */
6326 mutex_lock(&dev->struct_mutex);
6327 if (!dev_priv->info->cursor_needs_physical) {
6328 if (obj->tiling_mode) {
6329 DRM_ERROR("cursor cannot be tiled\n");
6330 ret = -EINVAL;
6331 goto fail_locked;
6332 }
6333
6334 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6335 if (ret) {
6336 DRM_ERROR("failed to move cursor bo into the GTT\n");
6337 goto fail_locked;
6338 }
6339
6340 ret = i915_gem_object_put_fence(obj);
6341 if (ret) {
6342 DRM_ERROR("failed to release fence for cursor");
6343 goto fail_unpin;
6344 }
6345
6346 addr = obj->gtt_offset;
6347 } else {
6348 int align = IS_I830(dev) ? 16 * 1024 : 256;
6349 ret = i915_gem_attach_phys_object(dev, obj,
6350 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6351 align);
6352 if (ret) {
6353 DRM_ERROR("failed to attach phys object\n");
6354 goto fail_locked;
6355 }
6356 addr = obj->phys_obj->handle->busaddr;
6357 }
6358
6359 if (IS_GEN2(dev))
6360 I915_WRITE(CURSIZE, (height << 12) | width);
6361
6362 finish:
6363 if (intel_crtc->cursor_bo) {
6364 if (dev_priv->info->cursor_needs_physical) {
6365 if (intel_crtc->cursor_bo != obj)
6366 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6367 } else
6368 i915_gem_object_unpin(intel_crtc->cursor_bo);
6369 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6370 }
6371
6372 mutex_unlock(&dev->struct_mutex);
6373
6374 intel_crtc->cursor_addr = addr;
6375 intel_crtc->cursor_bo = obj;
6376 intel_crtc->cursor_width = width;
6377 intel_crtc->cursor_height = height;
6378
6379 intel_crtc_update_cursor(crtc, true);
6380
6381 return 0;
6382 fail_unpin:
6383 i915_gem_object_unpin(obj);
6384 fail_locked:
6385 mutex_unlock(&dev->struct_mutex);
6386 fail:
6387 drm_gem_object_unreference_unlocked(&obj->base);
6388 return ret;
6389 }
6390
6391 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6392 {
6393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6394
6395 intel_crtc->cursor_x = x;
6396 intel_crtc->cursor_y = y;
6397
6398 intel_crtc_update_cursor(crtc, true);
6399
6400 return 0;
6401 }
6402
6403 /** Sets the color ramps on behalf of RandR */
6404 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6405 u16 blue, int regno)
6406 {
6407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6408
6409 intel_crtc->lut_r[regno] = red >> 8;
6410 intel_crtc->lut_g[regno] = green >> 8;
6411 intel_crtc->lut_b[regno] = blue >> 8;
6412 }
6413
6414 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6415 u16 *blue, int regno)
6416 {
6417 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6418
6419 *red = intel_crtc->lut_r[regno] << 8;
6420 *green = intel_crtc->lut_g[regno] << 8;
6421 *blue = intel_crtc->lut_b[regno] << 8;
6422 }
6423
6424 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6425 u16 *blue, uint32_t start, uint32_t size)
6426 {
6427 int end = (start + size > 256) ? 256 : start + size, i;
6428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6429
6430 for (i = start; i < end; i++) {
6431 intel_crtc->lut_r[i] = red[i] >> 8;
6432 intel_crtc->lut_g[i] = green[i] >> 8;
6433 intel_crtc->lut_b[i] = blue[i] >> 8;
6434 }
6435
6436 intel_crtc_load_lut(crtc);
6437 }
6438
6439 /**
6440 * Get a pipe with a simple mode set on it for doing load-based monitor
6441 * detection.
6442 *
6443 * It will be up to the load-detect code to adjust the pipe as appropriate for
6444 * its requirements. The pipe will be connected to no other encoders.
6445 *
6446 * Currently this code will only succeed if there is a pipe with no encoders
6447 * configured for it. In the future, it could choose to temporarily disable
6448 * some outputs to free up a pipe for its use.
6449 *
6450 * \return crtc, or NULL if no pipes are available.
6451 */
6452
6453 /* VESA 640x480x72Hz mode to set on the pipe */
6454 static struct drm_display_mode load_detect_mode = {
6455 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6456 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6457 };
6458
6459 static struct drm_framebuffer *
6460 intel_framebuffer_create(struct drm_device *dev,
6461 struct drm_mode_fb_cmd2 *mode_cmd,
6462 struct drm_i915_gem_object *obj)
6463 {
6464 struct intel_framebuffer *intel_fb;
6465 int ret;
6466
6467 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6468 if (!intel_fb) {
6469 drm_gem_object_unreference_unlocked(&obj->base);
6470 return ERR_PTR(-ENOMEM);
6471 }
6472
6473 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6474 if (ret) {
6475 drm_gem_object_unreference_unlocked(&obj->base);
6476 kfree(intel_fb);
6477 return ERR_PTR(ret);
6478 }
6479
6480 return &intel_fb->base;
6481 }
6482
6483 static u32
6484 intel_framebuffer_pitch_for_width(int width, int bpp)
6485 {
6486 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6487 return ALIGN(pitch, 64);
6488 }
6489
6490 static u32
6491 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6492 {
6493 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6494 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6495 }
6496
6497 static struct drm_framebuffer *
6498 intel_framebuffer_create_for_mode(struct drm_device *dev,
6499 struct drm_display_mode *mode,
6500 int depth, int bpp)
6501 {
6502 struct drm_i915_gem_object *obj;
6503 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6504
6505 obj = i915_gem_alloc_object(dev,
6506 intel_framebuffer_size_for_mode(mode, bpp));
6507 if (obj == NULL)
6508 return ERR_PTR(-ENOMEM);
6509
6510 mode_cmd.width = mode->hdisplay;
6511 mode_cmd.height = mode->vdisplay;
6512 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6513 bpp);
6514 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6515
6516 return intel_framebuffer_create(dev, &mode_cmd, obj);
6517 }
6518
6519 static struct drm_framebuffer *
6520 mode_fits_in_fbdev(struct drm_device *dev,
6521 struct drm_display_mode *mode)
6522 {
6523 struct drm_i915_private *dev_priv = dev->dev_private;
6524 struct drm_i915_gem_object *obj;
6525 struct drm_framebuffer *fb;
6526
6527 if (dev_priv->fbdev == NULL)
6528 return NULL;
6529
6530 obj = dev_priv->fbdev->ifb.obj;
6531 if (obj == NULL)
6532 return NULL;
6533
6534 fb = &dev_priv->fbdev->ifb.base;
6535 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6536 fb->bits_per_pixel))
6537 return NULL;
6538
6539 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6540 return NULL;
6541
6542 return fb;
6543 }
6544
6545 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6546 struct drm_display_mode *mode,
6547 struct intel_load_detect_pipe *old)
6548 {
6549 struct intel_crtc *intel_crtc;
6550 struct intel_encoder *intel_encoder =
6551 intel_attached_encoder(connector);
6552 struct drm_crtc *possible_crtc;
6553 struct drm_encoder *encoder = &intel_encoder->base;
6554 struct drm_crtc *crtc = NULL;
6555 struct drm_device *dev = encoder->dev;
6556 struct drm_framebuffer *fb;
6557 int i = -1;
6558
6559 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6560 connector->base.id, drm_get_connector_name(connector),
6561 encoder->base.id, drm_get_encoder_name(encoder));
6562
6563 /*
6564 * Algorithm gets a little messy:
6565 *
6566 * - if the connector already has an assigned crtc, use it (but make
6567 * sure it's on first)
6568 *
6569 * - try to find the first unused crtc that can drive this connector,
6570 * and use that if we find one
6571 */
6572
6573 /* See if we already have a CRTC for this connector */
6574 if (encoder->crtc) {
6575 crtc = encoder->crtc;
6576
6577 mutex_lock(&crtc->mutex);
6578
6579 old->dpms_mode = connector->dpms;
6580 old->load_detect_temp = false;
6581
6582 /* Make sure the crtc and connector are running */
6583 if (connector->dpms != DRM_MODE_DPMS_ON)
6584 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6585
6586 return true;
6587 }
6588
6589 /* Find an unused one (if possible) */
6590 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6591 i++;
6592 if (!(encoder->possible_crtcs & (1 << i)))
6593 continue;
6594 if (!possible_crtc->enabled) {
6595 crtc = possible_crtc;
6596 break;
6597 }
6598 }
6599
6600 /*
6601 * If we didn't find an unused CRTC, don't use any.
6602 */
6603 if (!crtc) {
6604 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6605 return false;
6606 }
6607
6608 mutex_lock(&crtc->mutex);
6609 intel_encoder->new_crtc = to_intel_crtc(crtc);
6610 to_intel_connector(connector)->new_encoder = intel_encoder;
6611
6612 intel_crtc = to_intel_crtc(crtc);
6613 old->dpms_mode = connector->dpms;
6614 old->load_detect_temp = true;
6615 old->release_fb = NULL;
6616
6617 if (!mode)
6618 mode = &load_detect_mode;
6619
6620 /* We need a framebuffer large enough to accommodate all accesses
6621 * that the plane may generate whilst we perform load detection.
6622 * We can not rely on the fbcon either being present (we get called
6623 * during its initialisation to detect all boot displays, or it may
6624 * not even exist) or that it is large enough to satisfy the
6625 * requested mode.
6626 */
6627 fb = mode_fits_in_fbdev(dev, mode);
6628 if (fb == NULL) {
6629 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6630 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6631 old->release_fb = fb;
6632 } else
6633 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6634 if (IS_ERR(fb)) {
6635 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6636 mutex_unlock(&crtc->mutex);
6637 return false;
6638 }
6639
6640 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6641 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6642 if (old->release_fb)
6643 old->release_fb->funcs->destroy(old->release_fb);
6644 mutex_unlock(&crtc->mutex);
6645 return false;
6646 }
6647
6648 /* let the connector get through one full cycle before testing */
6649 intel_wait_for_vblank(dev, intel_crtc->pipe);
6650 return true;
6651 }
6652
6653 void intel_release_load_detect_pipe(struct drm_connector *connector,
6654 struct intel_load_detect_pipe *old)
6655 {
6656 struct intel_encoder *intel_encoder =
6657 intel_attached_encoder(connector);
6658 struct drm_encoder *encoder = &intel_encoder->base;
6659 struct drm_crtc *crtc = encoder->crtc;
6660
6661 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6662 connector->base.id, drm_get_connector_name(connector),
6663 encoder->base.id, drm_get_encoder_name(encoder));
6664
6665 if (old->load_detect_temp) {
6666 to_intel_connector(connector)->new_encoder = NULL;
6667 intel_encoder->new_crtc = NULL;
6668 intel_set_mode(crtc, NULL, 0, 0, NULL);
6669
6670 if (old->release_fb) {
6671 drm_framebuffer_unregister_private(old->release_fb);
6672 drm_framebuffer_unreference(old->release_fb);
6673 }
6674
6675 mutex_unlock(&crtc->mutex);
6676 return;
6677 }
6678
6679 /* Switch crtc and encoder back off if necessary */
6680 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6681 connector->funcs->dpms(connector, old->dpms_mode);
6682
6683 mutex_unlock(&crtc->mutex);
6684 }
6685
6686 /* Returns the clock of the currently programmed mode of the given pipe. */
6687 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6688 {
6689 struct drm_i915_private *dev_priv = dev->dev_private;
6690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6691 int pipe = intel_crtc->pipe;
6692 u32 dpll = I915_READ(DPLL(pipe));
6693 u32 fp;
6694 intel_clock_t clock;
6695
6696 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6697 fp = I915_READ(FP0(pipe));
6698 else
6699 fp = I915_READ(FP1(pipe));
6700
6701 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6702 if (IS_PINEVIEW(dev)) {
6703 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6704 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6705 } else {
6706 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6707 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6708 }
6709
6710 if (!IS_GEN2(dev)) {
6711 if (IS_PINEVIEW(dev))
6712 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6713 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6714 else
6715 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6716 DPLL_FPA01_P1_POST_DIV_SHIFT);
6717
6718 switch (dpll & DPLL_MODE_MASK) {
6719 case DPLLB_MODE_DAC_SERIAL:
6720 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6721 5 : 10;
6722 break;
6723 case DPLLB_MODE_LVDS:
6724 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6725 7 : 14;
6726 break;
6727 default:
6728 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6729 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6730 return 0;
6731 }
6732
6733 /* XXX: Handle the 100Mhz refclk */
6734 intel_clock(dev, 96000, &clock);
6735 } else {
6736 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6737
6738 if (is_lvds) {
6739 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6740 DPLL_FPA01_P1_POST_DIV_SHIFT);
6741 clock.p2 = 14;
6742
6743 if ((dpll & PLL_REF_INPUT_MASK) ==
6744 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6745 /* XXX: might not be 66MHz */
6746 intel_clock(dev, 66000, &clock);
6747 } else
6748 intel_clock(dev, 48000, &clock);
6749 } else {
6750 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6751 clock.p1 = 2;
6752 else {
6753 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6754 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6755 }
6756 if (dpll & PLL_P2_DIVIDE_BY_4)
6757 clock.p2 = 4;
6758 else
6759 clock.p2 = 2;
6760
6761 intel_clock(dev, 48000, &clock);
6762 }
6763 }
6764
6765 /* XXX: It would be nice to validate the clocks, but we can't reuse
6766 * i830PllIsValid() because it relies on the xf86_config connector
6767 * configuration being accurate, which it isn't necessarily.
6768 */
6769
6770 return clock.dot;
6771 }
6772
6773 /** Returns the currently programmed mode of the given pipe. */
6774 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6775 struct drm_crtc *crtc)
6776 {
6777 struct drm_i915_private *dev_priv = dev->dev_private;
6778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6779 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6780 struct drm_display_mode *mode;
6781 int htot = I915_READ(HTOTAL(cpu_transcoder));
6782 int hsync = I915_READ(HSYNC(cpu_transcoder));
6783 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6784 int vsync = I915_READ(VSYNC(cpu_transcoder));
6785
6786 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6787 if (!mode)
6788 return NULL;
6789
6790 mode->clock = intel_crtc_clock_get(dev, crtc);
6791 mode->hdisplay = (htot & 0xffff) + 1;
6792 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6793 mode->hsync_start = (hsync & 0xffff) + 1;
6794 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6795 mode->vdisplay = (vtot & 0xffff) + 1;
6796 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6797 mode->vsync_start = (vsync & 0xffff) + 1;
6798 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6799
6800 drm_mode_set_name(mode);
6801
6802 return mode;
6803 }
6804
6805 static void intel_increase_pllclock(struct drm_crtc *crtc)
6806 {
6807 struct drm_device *dev = crtc->dev;
6808 drm_i915_private_t *dev_priv = dev->dev_private;
6809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6810 int pipe = intel_crtc->pipe;
6811 int dpll_reg = DPLL(pipe);
6812 int dpll;
6813
6814 if (HAS_PCH_SPLIT(dev))
6815 return;
6816
6817 if (!dev_priv->lvds_downclock_avail)
6818 return;
6819
6820 dpll = I915_READ(dpll_reg);
6821 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6822 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6823
6824 assert_panel_unlocked(dev_priv, pipe);
6825
6826 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6827 I915_WRITE(dpll_reg, dpll);
6828 intel_wait_for_vblank(dev, pipe);
6829
6830 dpll = I915_READ(dpll_reg);
6831 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6832 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6833 }
6834 }
6835
6836 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6837 {
6838 struct drm_device *dev = crtc->dev;
6839 drm_i915_private_t *dev_priv = dev->dev_private;
6840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6841
6842 if (HAS_PCH_SPLIT(dev))
6843 return;
6844
6845 if (!dev_priv->lvds_downclock_avail)
6846 return;
6847
6848 /*
6849 * Since this is called by a timer, we should never get here in
6850 * the manual case.
6851 */
6852 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6853 int pipe = intel_crtc->pipe;
6854 int dpll_reg = DPLL(pipe);
6855 int dpll;
6856
6857 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6858
6859 assert_panel_unlocked(dev_priv, pipe);
6860
6861 dpll = I915_READ(dpll_reg);
6862 dpll |= DISPLAY_RATE_SELECT_FPA1;
6863 I915_WRITE(dpll_reg, dpll);
6864 intel_wait_for_vblank(dev, pipe);
6865 dpll = I915_READ(dpll_reg);
6866 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6867 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6868 }
6869
6870 }
6871
6872 void intel_mark_busy(struct drm_device *dev)
6873 {
6874 i915_update_gfx_val(dev->dev_private);
6875 }
6876
6877 void intel_mark_idle(struct drm_device *dev)
6878 {
6879 struct drm_crtc *crtc;
6880
6881 if (!i915_powersave)
6882 return;
6883
6884 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6885 if (!crtc->fb)
6886 continue;
6887
6888 intel_decrease_pllclock(crtc);
6889 }
6890 }
6891
6892 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6893 {
6894 struct drm_device *dev = obj->base.dev;
6895 struct drm_crtc *crtc;
6896
6897 if (!i915_powersave)
6898 return;
6899
6900 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6901 if (!crtc->fb)
6902 continue;
6903
6904 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6905 intel_increase_pllclock(crtc);
6906 }
6907 }
6908
6909 static void intel_crtc_destroy(struct drm_crtc *crtc)
6910 {
6911 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6912 struct drm_device *dev = crtc->dev;
6913 struct intel_unpin_work *work;
6914 unsigned long flags;
6915
6916 spin_lock_irqsave(&dev->event_lock, flags);
6917 work = intel_crtc->unpin_work;
6918 intel_crtc->unpin_work = NULL;
6919 spin_unlock_irqrestore(&dev->event_lock, flags);
6920
6921 if (work) {
6922 cancel_work_sync(&work->work);
6923 kfree(work);
6924 }
6925
6926 drm_crtc_cleanup(crtc);
6927
6928 kfree(intel_crtc);
6929 }
6930
6931 static void intel_unpin_work_fn(struct work_struct *__work)
6932 {
6933 struct intel_unpin_work *work =
6934 container_of(__work, struct intel_unpin_work, work);
6935 struct drm_device *dev = work->crtc->dev;
6936
6937 mutex_lock(&dev->struct_mutex);
6938 intel_unpin_fb_obj(work->old_fb_obj);
6939 drm_gem_object_unreference(&work->pending_flip_obj->base);
6940 drm_gem_object_unreference(&work->old_fb_obj->base);
6941
6942 intel_update_fbc(dev);
6943 mutex_unlock(&dev->struct_mutex);
6944
6945 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6946 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6947
6948 kfree(work);
6949 }
6950
6951 static void do_intel_finish_page_flip(struct drm_device *dev,
6952 struct drm_crtc *crtc)
6953 {
6954 drm_i915_private_t *dev_priv = dev->dev_private;
6955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6956 struct intel_unpin_work *work;
6957 struct drm_i915_gem_object *obj;
6958 unsigned long flags;
6959
6960 /* Ignore early vblank irqs */
6961 if (intel_crtc == NULL)
6962 return;
6963
6964 spin_lock_irqsave(&dev->event_lock, flags);
6965 work = intel_crtc->unpin_work;
6966
6967 /* Ensure we don't miss a work->pending update ... */
6968 smp_rmb();
6969
6970 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6971 spin_unlock_irqrestore(&dev->event_lock, flags);
6972 return;
6973 }
6974
6975 /* and that the unpin work is consistent wrt ->pending. */
6976 smp_rmb();
6977
6978 intel_crtc->unpin_work = NULL;
6979
6980 if (work->event)
6981 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6982
6983 drm_vblank_put(dev, intel_crtc->pipe);
6984
6985 spin_unlock_irqrestore(&dev->event_lock, flags);
6986
6987 obj = work->old_fb_obj;
6988
6989 wake_up_all(&dev_priv->pending_flip_queue);
6990
6991 queue_work(dev_priv->wq, &work->work);
6992
6993 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6994 }
6995
6996 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6997 {
6998 drm_i915_private_t *dev_priv = dev->dev_private;
6999 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7000
7001 do_intel_finish_page_flip(dev, crtc);
7002 }
7003
7004 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7005 {
7006 drm_i915_private_t *dev_priv = dev->dev_private;
7007 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7008
7009 do_intel_finish_page_flip(dev, crtc);
7010 }
7011
7012 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7013 {
7014 drm_i915_private_t *dev_priv = dev->dev_private;
7015 struct intel_crtc *intel_crtc =
7016 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7017 unsigned long flags;
7018
7019 /* NB: An MMIO update of the plane base pointer will also
7020 * generate a page-flip completion irq, i.e. every modeset
7021 * is also accompanied by a spurious intel_prepare_page_flip().
7022 */
7023 spin_lock_irqsave(&dev->event_lock, flags);
7024 if (intel_crtc->unpin_work)
7025 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7026 spin_unlock_irqrestore(&dev->event_lock, flags);
7027 }
7028
7029 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7030 {
7031 /* Ensure that the work item is consistent when activating it ... */
7032 smp_wmb();
7033 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7034 /* and that it is marked active as soon as the irq could fire. */
7035 smp_wmb();
7036 }
7037
7038 static int intel_gen2_queue_flip(struct drm_device *dev,
7039 struct drm_crtc *crtc,
7040 struct drm_framebuffer *fb,
7041 struct drm_i915_gem_object *obj)
7042 {
7043 struct drm_i915_private *dev_priv = dev->dev_private;
7044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7045 u32 flip_mask;
7046 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7047 int ret;
7048
7049 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7050 if (ret)
7051 goto err;
7052
7053 ret = intel_ring_begin(ring, 6);
7054 if (ret)
7055 goto err_unpin;
7056
7057 /* Can't queue multiple flips, so wait for the previous
7058 * one to finish before executing the next.
7059 */
7060 if (intel_crtc->plane)
7061 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7062 else
7063 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7064 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7065 intel_ring_emit(ring, MI_NOOP);
7066 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7067 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7068 intel_ring_emit(ring, fb->pitches[0]);
7069 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7070 intel_ring_emit(ring, 0); /* aux display base address, unused */
7071
7072 intel_mark_page_flip_active(intel_crtc);
7073 intel_ring_advance(ring);
7074 return 0;
7075
7076 err_unpin:
7077 intel_unpin_fb_obj(obj);
7078 err:
7079 return ret;
7080 }
7081
7082 static int intel_gen3_queue_flip(struct drm_device *dev,
7083 struct drm_crtc *crtc,
7084 struct drm_framebuffer *fb,
7085 struct drm_i915_gem_object *obj)
7086 {
7087 struct drm_i915_private *dev_priv = dev->dev_private;
7088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7089 u32 flip_mask;
7090 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7091 int ret;
7092
7093 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7094 if (ret)
7095 goto err;
7096
7097 ret = intel_ring_begin(ring, 6);
7098 if (ret)
7099 goto err_unpin;
7100
7101 if (intel_crtc->plane)
7102 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7103 else
7104 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7105 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7106 intel_ring_emit(ring, MI_NOOP);
7107 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7108 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7109 intel_ring_emit(ring, fb->pitches[0]);
7110 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7111 intel_ring_emit(ring, MI_NOOP);
7112
7113 intel_mark_page_flip_active(intel_crtc);
7114 intel_ring_advance(ring);
7115 return 0;
7116
7117 err_unpin:
7118 intel_unpin_fb_obj(obj);
7119 err:
7120 return ret;
7121 }
7122
7123 static int intel_gen4_queue_flip(struct drm_device *dev,
7124 struct drm_crtc *crtc,
7125 struct drm_framebuffer *fb,
7126 struct drm_i915_gem_object *obj)
7127 {
7128 struct drm_i915_private *dev_priv = dev->dev_private;
7129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7130 uint32_t pf, pipesrc;
7131 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7132 int ret;
7133
7134 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7135 if (ret)
7136 goto err;
7137
7138 ret = intel_ring_begin(ring, 4);
7139 if (ret)
7140 goto err_unpin;
7141
7142 /* i965+ uses the linear or tiled offsets from the
7143 * Display Registers (which do not change across a page-flip)
7144 * so we need only reprogram the base address.
7145 */
7146 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7147 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7148 intel_ring_emit(ring, fb->pitches[0]);
7149 intel_ring_emit(ring,
7150 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7151 obj->tiling_mode);
7152
7153 /* XXX Enabling the panel-fitter across page-flip is so far
7154 * untested on non-native modes, so ignore it for now.
7155 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7156 */
7157 pf = 0;
7158 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7159 intel_ring_emit(ring, pf | pipesrc);
7160
7161 intel_mark_page_flip_active(intel_crtc);
7162 intel_ring_advance(ring);
7163 return 0;
7164
7165 err_unpin:
7166 intel_unpin_fb_obj(obj);
7167 err:
7168 return ret;
7169 }
7170
7171 static int intel_gen6_queue_flip(struct drm_device *dev,
7172 struct drm_crtc *crtc,
7173 struct drm_framebuffer *fb,
7174 struct drm_i915_gem_object *obj)
7175 {
7176 struct drm_i915_private *dev_priv = dev->dev_private;
7177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7178 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7179 uint32_t pf, pipesrc;
7180 int ret;
7181
7182 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7183 if (ret)
7184 goto err;
7185
7186 ret = intel_ring_begin(ring, 4);
7187 if (ret)
7188 goto err_unpin;
7189
7190 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7191 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7192 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7193 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7194
7195 /* Contrary to the suggestions in the documentation,
7196 * "Enable Panel Fitter" does not seem to be required when page
7197 * flipping with a non-native mode, and worse causes a normal
7198 * modeset to fail.
7199 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7200 */
7201 pf = 0;
7202 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7203 intel_ring_emit(ring, pf | pipesrc);
7204
7205 intel_mark_page_flip_active(intel_crtc);
7206 intel_ring_advance(ring);
7207 return 0;
7208
7209 err_unpin:
7210 intel_unpin_fb_obj(obj);
7211 err:
7212 return ret;
7213 }
7214
7215 /*
7216 * On gen7 we currently use the blit ring because (in early silicon at least)
7217 * the render ring doesn't give us interrpts for page flip completion, which
7218 * means clients will hang after the first flip is queued. Fortunately the
7219 * blit ring generates interrupts properly, so use it instead.
7220 */
7221 static int intel_gen7_queue_flip(struct drm_device *dev,
7222 struct drm_crtc *crtc,
7223 struct drm_framebuffer *fb,
7224 struct drm_i915_gem_object *obj)
7225 {
7226 struct drm_i915_private *dev_priv = dev->dev_private;
7227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7228 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7229 uint32_t plane_bit = 0;
7230 int ret;
7231
7232 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7233 if (ret)
7234 goto err;
7235
7236 switch(intel_crtc->plane) {
7237 case PLANE_A:
7238 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7239 break;
7240 case PLANE_B:
7241 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7242 break;
7243 case PLANE_C:
7244 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7245 break;
7246 default:
7247 WARN_ONCE(1, "unknown plane in flip command\n");
7248 ret = -ENODEV;
7249 goto err_unpin;
7250 }
7251
7252 ret = intel_ring_begin(ring, 4);
7253 if (ret)
7254 goto err_unpin;
7255
7256 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7257 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7258 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7259 intel_ring_emit(ring, (MI_NOOP));
7260
7261 intel_mark_page_flip_active(intel_crtc);
7262 intel_ring_advance(ring);
7263 return 0;
7264
7265 err_unpin:
7266 intel_unpin_fb_obj(obj);
7267 err:
7268 return ret;
7269 }
7270
7271 static int intel_default_queue_flip(struct drm_device *dev,
7272 struct drm_crtc *crtc,
7273 struct drm_framebuffer *fb,
7274 struct drm_i915_gem_object *obj)
7275 {
7276 return -ENODEV;
7277 }
7278
7279 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7280 struct drm_framebuffer *fb,
7281 struct drm_pending_vblank_event *event)
7282 {
7283 struct drm_device *dev = crtc->dev;
7284 struct drm_i915_private *dev_priv = dev->dev_private;
7285 struct drm_framebuffer *old_fb = crtc->fb;
7286 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7288 struct intel_unpin_work *work;
7289 unsigned long flags;
7290 int ret;
7291
7292 /* Can't change pixel format via MI display flips. */
7293 if (fb->pixel_format != crtc->fb->pixel_format)
7294 return -EINVAL;
7295
7296 /*
7297 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7298 * Note that pitch changes could also affect these register.
7299 */
7300 if (INTEL_INFO(dev)->gen > 3 &&
7301 (fb->offsets[0] != crtc->fb->offsets[0] ||
7302 fb->pitches[0] != crtc->fb->pitches[0]))
7303 return -EINVAL;
7304
7305 work = kzalloc(sizeof *work, GFP_KERNEL);
7306 if (work == NULL)
7307 return -ENOMEM;
7308
7309 work->event = event;
7310 work->crtc = crtc;
7311 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7312 INIT_WORK(&work->work, intel_unpin_work_fn);
7313
7314 ret = drm_vblank_get(dev, intel_crtc->pipe);
7315 if (ret)
7316 goto free_work;
7317
7318 /* We borrow the event spin lock for protecting unpin_work */
7319 spin_lock_irqsave(&dev->event_lock, flags);
7320 if (intel_crtc->unpin_work) {
7321 spin_unlock_irqrestore(&dev->event_lock, flags);
7322 kfree(work);
7323 drm_vblank_put(dev, intel_crtc->pipe);
7324
7325 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7326 return -EBUSY;
7327 }
7328 intel_crtc->unpin_work = work;
7329 spin_unlock_irqrestore(&dev->event_lock, flags);
7330
7331 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7332 flush_workqueue(dev_priv->wq);
7333
7334 ret = i915_mutex_lock_interruptible(dev);
7335 if (ret)
7336 goto cleanup;
7337
7338 /* Reference the objects for the scheduled work. */
7339 drm_gem_object_reference(&work->old_fb_obj->base);
7340 drm_gem_object_reference(&obj->base);
7341
7342 crtc->fb = fb;
7343
7344 work->pending_flip_obj = obj;
7345
7346 work->enable_stall_check = true;
7347
7348 atomic_inc(&intel_crtc->unpin_work_count);
7349 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7350
7351 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7352 if (ret)
7353 goto cleanup_pending;
7354
7355 intel_disable_fbc(dev);
7356 intel_mark_fb_busy(obj);
7357 mutex_unlock(&dev->struct_mutex);
7358
7359 trace_i915_flip_request(intel_crtc->plane, obj);
7360
7361 return 0;
7362
7363 cleanup_pending:
7364 atomic_dec(&intel_crtc->unpin_work_count);
7365 crtc->fb = old_fb;
7366 drm_gem_object_unreference(&work->old_fb_obj->base);
7367 drm_gem_object_unreference(&obj->base);
7368 mutex_unlock(&dev->struct_mutex);
7369
7370 cleanup:
7371 spin_lock_irqsave(&dev->event_lock, flags);
7372 intel_crtc->unpin_work = NULL;
7373 spin_unlock_irqrestore(&dev->event_lock, flags);
7374
7375 drm_vblank_put(dev, intel_crtc->pipe);
7376 free_work:
7377 kfree(work);
7378
7379 return ret;
7380 }
7381
7382 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7383 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7384 .load_lut = intel_crtc_load_lut,
7385 };
7386
7387 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7388 {
7389 struct intel_encoder *other_encoder;
7390 struct drm_crtc *crtc = &encoder->new_crtc->base;
7391
7392 if (WARN_ON(!crtc))
7393 return false;
7394
7395 list_for_each_entry(other_encoder,
7396 &crtc->dev->mode_config.encoder_list,
7397 base.head) {
7398
7399 if (&other_encoder->new_crtc->base != crtc ||
7400 encoder == other_encoder)
7401 continue;
7402 else
7403 return true;
7404 }
7405
7406 return false;
7407 }
7408
7409 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7410 struct drm_crtc *crtc)
7411 {
7412 struct drm_device *dev;
7413 struct drm_crtc *tmp;
7414 int crtc_mask = 1;
7415
7416 WARN(!crtc, "checking null crtc?\n");
7417
7418 dev = crtc->dev;
7419
7420 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7421 if (tmp == crtc)
7422 break;
7423 crtc_mask <<= 1;
7424 }
7425
7426 if (encoder->possible_crtcs & crtc_mask)
7427 return true;
7428 return false;
7429 }
7430
7431 /**
7432 * intel_modeset_update_staged_output_state
7433 *
7434 * Updates the staged output configuration state, e.g. after we've read out the
7435 * current hw state.
7436 */
7437 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7438 {
7439 struct intel_encoder *encoder;
7440 struct intel_connector *connector;
7441
7442 list_for_each_entry(connector, &dev->mode_config.connector_list,
7443 base.head) {
7444 connector->new_encoder =
7445 to_intel_encoder(connector->base.encoder);
7446 }
7447
7448 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7449 base.head) {
7450 encoder->new_crtc =
7451 to_intel_crtc(encoder->base.crtc);
7452 }
7453 }
7454
7455 /**
7456 * intel_modeset_commit_output_state
7457 *
7458 * This function copies the stage display pipe configuration to the real one.
7459 */
7460 static void intel_modeset_commit_output_state(struct drm_device *dev)
7461 {
7462 struct intel_encoder *encoder;
7463 struct intel_connector *connector;
7464
7465 list_for_each_entry(connector, &dev->mode_config.connector_list,
7466 base.head) {
7467 connector->base.encoder = &connector->new_encoder->base;
7468 }
7469
7470 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7471 base.head) {
7472 encoder->base.crtc = &encoder->new_crtc->base;
7473 }
7474 }
7475
7476 static struct drm_display_mode *
7477 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7478 struct drm_display_mode *mode)
7479 {
7480 struct drm_device *dev = crtc->dev;
7481 struct drm_display_mode *adjusted_mode;
7482 struct drm_encoder_helper_funcs *encoder_funcs;
7483 struct intel_encoder *encoder;
7484
7485 adjusted_mode = drm_mode_duplicate(dev, mode);
7486 if (!adjusted_mode)
7487 return ERR_PTR(-ENOMEM);
7488
7489 /* Pass our mode to the connectors and the CRTC to give them a chance to
7490 * adjust it according to limitations or connector properties, and also
7491 * a chance to reject the mode entirely.
7492 */
7493 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7494 base.head) {
7495
7496 if (&encoder->new_crtc->base != crtc)
7497 continue;
7498 encoder_funcs = encoder->base.helper_private;
7499 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7500 adjusted_mode))) {
7501 DRM_DEBUG_KMS("Encoder fixup failed\n");
7502 goto fail;
7503 }
7504 }
7505
7506 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7507 DRM_DEBUG_KMS("CRTC fixup failed\n");
7508 goto fail;
7509 }
7510 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7511
7512 return adjusted_mode;
7513 fail:
7514 drm_mode_destroy(dev, adjusted_mode);
7515 return ERR_PTR(-EINVAL);
7516 }
7517
7518 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7519 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7520 static void
7521 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7522 unsigned *prepare_pipes, unsigned *disable_pipes)
7523 {
7524 struct intel_crtc *intel_crtc;
7525 struct drm_device *dev = crtc->dev;
7526 struct intel_encoder *encoder;
7527 struct intel_connector *connector;
7528 struct drm_crtc *tmp_crtc;
7529
7530 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7531
7532 /* Check which crtcs have changed outputs connected to them, these need
7533 * to be part of the prepare_pipes mask. We don't (yet) support global
7534 * modeset across multiple crtcs, so modeset_pipes will only have one
7535 * bit set at most. */
7536 list_for_each_entry(connector, &dev->mode_config.connector_list,
7537 base.head) {
7538 if (connector->base.encoder == &connector->new_encoder->base)
7539 continue;
7540
7541 if (connector->base.encoder) {
7542 tmp_crtc = connector->base.encoder->crtc;
7543
7544 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7545 }
7546
7547 if (connector->new_encoder)
7548 *prepare_pipes |=
7549 1 << connector->new_encoder->new_crtc->pipe;
7550 }
7551
7552 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7553 base.head) {
7554 if (encoder->base.crtc == &encoder->new_crtc->base)
7555 continue;
7556
7557 if (encoder->base.crtc) {
7558 tmp_crtc = encoder->base.crtc;
7559
7560 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7561 }
7562
7563 if (encoder->new_crtc)
7564 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7565 }
7566
7567 /* Check for any pipes that will be fully disabled ... */
7568 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7569 base.head) {
7570 bool used = false;
7571
7572 /* Don't try to disable disabled crtcs. */
7573 if (!intel_crtc->base.enabled)
7574 continue;
7575
7576 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7577 base.head) {
7578 if (encoder->new_crtc == intel_crtc)
7579 used = true;
7580 }
7581
7582 if (!used)
7583 *disable_pipes |= 1 << intel_crtc->pipe;
7584 }
7585
7586
7587 /* set_mode is also used to update properties on life display pipes. */
7588 intel_crtc = to_intel_crtc(crtc);
7589 if (crtc->enabled)
7590 *prepare_pipes |= 1 << intel_crtc->pipe;
7591
7592 /* We only support modeset on one single crtc, hence we need to do that
7593 * only for the passed in crtc iff we change anything else than just
7594 * disable crtcs.
7595 *
7596 * This is actually not true, to be fully compatible with the old crtc
7597 * helper we automatically disable _any_ output (i.e. doesn't need to be
7598 * connected to the crtc we're modesetting on) if it's disconnected.
7599 * Which is a rather nutty api (since changed the output configuration
7600 * without userspace's explicit request can lead to confusion), but
7601 * alas. Hence we currently need to modeset on all pipes we prepare. */
7602 if (*prepare_pipes)
7603 *modeset_pipes = *prepare_pipes;
7604
7605 /* ... and mask these out. */
7606 *modeset_pipes &= ~(*disable_pipes);
7607 *prepare_pipes &= ~(*disable_pipes);
7608 }
7609
7610 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7611 {
7612 struct drm_encoder *encoder;
7613 struct drm_device *dev = crtc->dev;
7614
7615 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7616 if (encoder->crtc == crtc)
7617 return true;
7618
7619 return false;
7620 }
7621
7622 static void
7623 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7624 {
7625 struct intel_encoder *intel_encoder;
7626 struct intel_crtc *intel_crtc;
7627 struct drm_connector *connector;
7628
7629 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7630 base.head) {
7631 if (!intel_encoder->base.crtc)
7632 continue;
7633
7634 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7635
7636 if (prepare_pipes & (1 << intel_crtc->pipe))
7637 intel_encoder->connectors_active = false;
7638 }
7639
7640 intel_modeset_commit_output_state(dev);
7641
7642 /* Update computed state. */
7643 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7644 base.head) {
7645 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7646 }
7647
7648 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7649 if (!connector->encoder || !connector->encoder->crtc)
7650 continue;
7651
7652 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7653
7654 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7655 struct drm_property *dpms_property =
7656 dev->mode_config.dpms_property;
7657
7658 connector->dpms = DRM_MODE_DPMS_ON;
7659 drm_object_property_set_value(&connector->base,
7660 dpms_property,
7661 DRM_MODE_DPMS_ON);
7662
7663 intel_encoder = to_intel_encoder(connector->encoder);
7664 intel_encoder->connectors_active = true;
7665 }
7666 }
7667
7668 }
7669
7670 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7671 list_for_each_entry((intel_crtc), \
7672 &(dev)->mode_config.crtc_list, \
7673 base.head) \
7674 if (mask & (1 <<(intel_crtc)->pipe)) \
7675
7676 void
7677 intel_modeset_check_state(struct drm_device *dev)
7678 {
7679 struct intel_crtc *crtc;
7680 struct intel_encoder *encoder;
7681 struct intel_connector *connector;
7682
7683 list_for_each_entry(connector, &dev->mode_config.connector_list,
7684 base.head) {
7685 /* This also checks the encoder/connector hw state with the
7686 * ->get_hw_state callbacks. */
7687 intel_connector_check_state(connector);
7688
7689 WARN(&connector->new_encoder->base != connector->base.encoder,
7690 "connector's staged encoder doesn't match current encoder\n");
7691 }
7692
7693 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7694 base.head) {
7695 bool enabled = false;
7696 bool active = false;
7697 enum pipe pipe, tracked_pipe;
7698
7699 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7700 encoder->base.base.id,
7701 drm_get_encoder_name(&encoder->base));
7702
7703 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7704 "encoder's stage crtc doesn't match current crtc\n");
7705 WARN(encoder->connectors_active && !encoder->base.crtc,
7706 "encoder's active_connectors set, but no crtc\n");
7707
7708 list_for_each_entry(connector, &dev->mode_config.connector_list,
7709 base.head) {
7710 if (connector->base.encoder != &encoder->base)
7711 continue;
7712 enabled = true;
7713 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7714 active = true;
7715 }
7716 WARN(!!encoder->base.crtc != enabled,
7717 "encoder's enabled state mismatch "
7718 "(expected %i, found %i)\n",
7719 !!encoder->base.crtc, enabled);
7720 WARN(active && !encoder->base.crtc,
7721 "active encoder with no crtc\n");
7722
7723 WARN(encoder->connectors_active != active,
7724 "encoder's computed active state doesn't match tracked active state "
7725 "(expected %i, found %i)\n", active, encoder->connectors_active);
7726
7727 active = encoder->get_hw_state(encoder, &pipe);
7728 WARN(active != encoder->connectors_active,
7729 "encoder's hw state doesn't match sw tracking "
7730 "(expected %i, found %i)\n",
7731 encoder->connectors_active, active);
7732
7733 if (!encoder->base.crtc)
7734 continue;
7735
7736 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7737 WARN(active && pipe != tracked_pipe,
7738 "active encoder's pipe doesn't match"
7739 "(expected %i, found %i)\n",
7740 tracked_pipe, pipe);
7741
7742 }
7743
7744 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7745 base.head) {
7746 bool enabled = false;
7747 bool active = false;
7748
7749 DRM_DEBUG_KMS("[CRTC:%d]\n",
7750 crtc->base.base.id);
7751
7752 WARN(crtc->active && !crtc->base.enabled,
7753 "active crtc, but not enabled in sw tracking\n");
7754
7755 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7756 base.head) {
7757 if (encoder->base.crtc != &crtc->base)
7758 continue;
7759 enabled = true;
7760 if (encoder->connectors_active)
7761 active = true;
7762 }
7763 WARN(active != crtc->active,
7764 "crtc's computed active state doesn't match tracked active state "
7765 "(expected %i, found %i)\n", active, crtc->active);
7766 WARN(enabled != crtc->base.enabled,
7767 "crtc's computed enabled state doesn't match tracked enabled state "
7768 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7769
7770 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7771 }
7772 }
7773
7774 int intel_set_mode(struct drm_crtc *crtc,
7775 struct drm_display_mode *mode,
7776 int x, int y, struct drm_framebuffer *fb)
7777 {
7778 struct drm_device *dev = crtc->dev;
7779 drm_i915_private_t *dev_priv = dev->dev_private;
7780 struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
7781 struct intel_crtc *intel_crtc;
7782 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7783 int ret = 0;
7784
7785 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7786 if (!saved_mode)
7787 return -ENOMEM;
7788 saved_hwmode = saved_mode + 1;
7789
7790 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7791 &prepare_pipes, &disable_pipes);
7792
7793 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7794 modeset_pipes, prepare_pipes, disable_pipes);
7795
7796 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7797 intel_crtc_disable(&intel_crtc->base);
7798
7799 *saved_hwmode = crtc->hwmode;
7800 *saved_mode = crtc->mode;
7801
7802 /* Hack: Because we don't (yet) support global modeset on multiple
7803 * crtcs, we don't keep track of the new mode for more than one crtc.
7804 * Hence simply check whether any bit is set in modeset_pipes in all the
7805 * pieces of code that are not yet converted to deal with mutliple crtcs
7806 * changing their mode at the same time. */
7807 adjusted_mode = NULL;
7808 if (modeset_pipes) {
7809 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7810 if (IS_ERR(adjusted_mode)) {
7811 ret = PTR_ERR(adjusted_mode);
7812 goto out;
7813 }
7814 }
7815
7816 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7817 if (intel_crtc->base.enabled)
7818 dev_priv->display.crtc_disable(&intel_crtc->base);
7819 }
7820
7821 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7822 * to set it here already despite that we pass it down the callchain.
7823 */
7824 if (modeset_pipes)
7825 crtc->mode = *mode;
7826
7827 /* Only after disabling all output pipelines that will be changed can we
7828 * update the the output configuration. */
7829 intel_modeset_update_state(dev, prepare_pipes);
7830
7831 if (dev_priv->display.modeset_global_resources)
7832 dev_priv->display.modeset_global_resources(dev);
7833
7834 /* Set up the DPLL and any encoders state that needs to adjust or depend
7835 * on the DPLL.
7836 */
7837 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7838 ret = intel_crtc_mode_set(&intel_crtc->base,
7839 mode, adjusted_mode,
7840 x, y, fb);
7841 if (ret)
7842 goto done;
7843 }
7844
7845 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7846 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7847 dev_priv->display.crtc_enable(&intel_crtc->base);
7848
7849 if (modeset_pipes) {
7850 /* Store real post-adjustment hardware mode. */
7851 crtc->hwmode = *adjusted_mode;
7852
7853 /* Calculate and store various constants which
7854 * are later needed by vblank and swap-completion
7855 * timestamping. They are derived from true hwmode.
7856 */
7857 drm_calc_timestamping_constants(crtc);
7858 }
7859
7860 /* FIXME: add subpixel order */
7861 done:
7862 drm_mode_destroy(dev, adjusted_mode);
7863 if (ret && crtc->enabled) {
7864 crtc->hwmode = *saved_hwmode;
7865 crtc->mode = *saved_mode;
7866 } else {
7867 intel_modeset_check_state(dev);
7868 }
7869
7870 out:
7871 kfree(saved_mode);
7872 return ret;
7873 }
7874
7875 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7876 {
7877 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7878 }
7879
7880 #undef for_each_intel_crtc_masked
7881
7882 static void intel_set_config_free(struct intel_set_config *config)
7883 {
7884 if (!config)
7885 return;
7886
7887 kfree(config->save_connector_encoders);
7888 kfree(config->save_encoder_crtcs);
7889 kfree(config);
7890 }
7891
7892 static int intel_set_config_save_state(struct drm_device *dev,
7893 struct intel_set_config *config)
7894 {
7895 struct drm_encoder *encoder;
7896 struct drm_connector *connector;
7897 int count;
7898
7899 config->save_encoder_crtcs =
7900 kcalloc(dev->mode_config.num_encoder,
7901 sizeof(struct drm_crtc *), GFP_KERNEL);
7902 if (!config->save_encoder_crtcs)
7903 return -ENOMEM;
7904
7905 config->save_connector_encoders =
7906 kcalloc(dev->mode_config.num_connector,
7907 sizeof(struct drm_encoder *), GFP_KERNEL);
7908 if (!config->save_connector_encoders)
7909 return -ENOMEM;
7910
7911 /* Copy data. Note that driver private data is not affected.
7912 * Should anything bad happen only the expected state is
7913 * restored, not the drivers personal bookkeeping.
7914 */
7915 count = 0;
7916 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7917 config->save_encoder_crtcs[count++] = encoder->crtc;
7918 }
7919
7920 count = 0;
7921 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7922 config->save_connector_encoders[count++] = connector->encoder;
7923 }
7924
7925 return 0;
7926 }
7927
7928 static void intel_set_config_restore_state(struct drm_device *dev,
7929 struct intel_set_config *config)
7930 {
7931 struct intel_encoder *encoder;
7932 struct intel_connector *connector;
7933 int count;
7934
7935 count = 0;
7936 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7937 encoder->new_crtc =
7938 to_intel_crtc(config->save_encoder_crtcs[count++]);
7939 }
7940
7941 count = 0;
7942 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7943 connector->new_encoder =
7944 to_intel_encoder(config->save_connector_encoders[count++]);
7945 }
7946 }
7947
7948 static void
7949 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7950 struct intel_set_config *config)
7951 {
7952
7953 /* We should be able to check here if the fb has the same properties
7954 * and then just flip_or_move it */
7955 if (set->crtc->fb != set->fb) {
7956 /* If we have no fb then treat it as a full mode set */
7957 if (set->crtc->fb == NULL) {
7958 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7959 config->mode_changed = true;
7960 } else if (set->fb == NULL) {
7961 config->mode_changed = true;
7962 } else if (set->fb->depth != set->crtc->fb->depth) {
7963 config->mode_changed = true;
7964 } else if (set->fb->bits_per_pixel !=
7965 set->crtc->fb->bits_per_pixel) {
7966 config->mode_changed = true;
7967 } else
7968 config->fb_changed = true;
7969 }
7970
7971 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7972 config->fb_changed = true;
7973
7974 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7975 DRM_DEBUG_KMS("modes are different, full mode set\n");
7976 drm_mode_debug_printmodeline(&set->crtc->mode);
7977 drm_mode_debug_printmodeline(set->mode);
7978 config->mode_changed = true;
7979 }
7980 }
7981
7982 static int
7983 intel_modeset_stage_output_state(struct drm_device *dev,
7984 struct drm_mode_set *set,
7985 struct intel_set_config *config)
7986 {
7987 struct drm_crtc *new_crtc;
7988 struct intel_connector *connector;
7989 struct intel_encoder *encoder;
7990 int count, ro;
7991
7992 /* The upper layers ensure that we either disable a crtc or have a list
7993 * of connectors. For paranoia, double-check this. */
7994 WARN_ON(!set->fb && (set->num_connectors != 0));
7995 WARN_ON(set->fb && (set->num_connectors == 0));
7996
7997 count = 0;
7998 list_for_each_entry(connector, &dev->mode_config.connector_list,
7999 base.head) {
8000 /* Otherwise traverse passed in connector list and get encoders
8001 * for them. */
8002 for (ro = 0; ro < set->num_connectors; ro++) {
8003 if (set->connectors[ro] == &connector->base) {
8004 connector->new_encoder = connector->encoder;
8005 break;
8006 }
8007 }
8008
8009 /* If we disable the crtc, disable all its connectors. Also, if
8010 * the connector is on the changing crtc but not on the new
8011 * connector list, disable it. */
8012 if ((!set->fb || ro == set->num_connectors) &&
8013 connector->base.encoder &&
8014 connector->base.encoder->crtc == set->crtc) {
8015 connector->new_encoder = NULL;
8016
8017 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8018 connector->base.base.id,
8019 drm_get_connector_name(&connector->base));
8020 }
8021
8022
8023 if (&connector->new_encoder->base != connector->base.encoder) {
8024 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8025 config->mode_changed = true;
8026 }
8027 }
8028 /* connector->new_encoder is now updated for all connectors. */
8029
8030 /* Update crtc of enabled connectors. */
8031 count = 0;
8032 list_for_each_entry(connector, &dev->mode_config.connector_list,
8033 base.head) {
8034 if (!connector->new_encoder)
8035 continue;
8036
8037 new_crtc = connector->new_encoder->base.crtc;
8038
8039 for (ro = 0; ro < set->num_connectors; ro++) {
8040 if (set->connectors[ro] == &connector->base)
8041 new_crtc = set->crtc;
8042 }
8043
8044 /* Make sure the new CRTC will work with the encoder */
8045 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8046 new_crtc)) {
8047 return -EINVAL;
8048 }
8049 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8050
8051 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8052 connector->base.base.id,
8053 drm_get_connector_name(&connector->base),
8054 new_crtc->base.id);
8055 }
8056
8057 /* Check for any encoders that needs to be disabled. */
8058 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8059 base.head) {
8060 list_for_each_entry(connector,
8061 &dev->mode_config.connector_list,
8062 base.head) {
8063 if (connector->new_encoder == encoder) {
8064 WARN_ON(!connector->new_encoder->new_crtc);
8065
8066 goto next_encoder;
8067 }
8068 }
8069 encoder->new_crtc = NULL;
8070 next_encoder:
8071 /* Only now check for crtc changes so we don't miss encoders
8072 * that will be disabled. */
8073 if (&encoder->new_crtc->base != encoder->base.crtc) {
8074 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8075 config->mode_changed = true;
8076 }
8077 }
8078 /* Now we've also updated encoder->new_crtc for all encoders. */
8079
8080 return 0;
8081 }
8082
8083 static int intel_crtc_set_config(struct drm_mode_set *set)
8084 {
8085 struct drm_device *dev;
8086 struct drm_mode_set save_set;
8087 struct intel_set_config *config;
8088 int ret;
8089
8090 BUG_ON(!set);
8091 BUG_ON(!set->crtc);
8092 BUG_ON(!set->crtc->helper_private);
8093
8094 /* Enforce sane interface api - has been abused by the fb helper. */
8095 BUG_ON(!set->mode && set->fb);
8096 BUG_ON(set->fb && set->num_connectors == 0);
8097
8098 if (set->fb) {
8099 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8100 set->crtc->base.id, set->fb->base.id,
8101 (int)set->num_connectors, set->x, set->y);
8102 } else {
8103 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8104 }
8105
8106 dev = set->crtc->dev;
8107
8108 ret = -ENOMEM;
8109 config = kzalloc(sizeof(*config), GFP_KERNEL);
8110 if (!config)
8111 goto out_config;
8112
8113 ret = intel_set_config_save_state(dev, config);
8114 if (ret)
8115 goto out_config;
8116
8117 save_set.crtc = set->crtc;
8118 save_set.mode = &set->crtc->mode;
8119 save_set.x = set->crtc->x;
8120 save_set.y = set->crtc->y;
8121 save_set.fb = set->crtc->fb;
8122
8123 /* Compute whether we need a full modeset, only an fb base update or no
8124 * change at all. In the future we might also check whether only the
8125 * mode changed, e.g. for LVDS where we only change the panel fitter in
8126 * such cases. */
8127 intel_set_config_compute_mode_changes(set, config);
8128
8129 ret = intel_modeset_stage_output_state(dev, set, config);
8130 if (ret)
8131 goto fail;
8132
8133 if (config->mode_changed) {
8134 if (set->mode) {
8135 DRM_DEBUG_KMS("attempting to set mode from"
8136 " userspace\n");
8137 drm_mode_debug_printmodeline(set->mode);
8138 }
8139
8140 ret = intel_set_mode(set->crtc, set->mode,
8141 set->x, set->y, set->fb);
8142 if (ret) {
8143 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8144 set->crtc->base.id, ret);
8145 goto fail;
8146 }
8147 } else if (config->fb_changed) {
8148 ret = intel_pipe_set_base(set->crtc,
8149 set->x, set->y, set->fb);
8150 }
8151
8152 intel_set_config_free(config);
8153
8154 return 0;
8155
8156 fail:
8157 intel_set_config_restore_state(dev, config);
8158
8159 /* Try to restore the config */
8160 if (config->mode_changed &&
8161 intel_set_mode(save_set.crtc, save_set.mode,
8162 save_set.x, save_set.y, save_set.fb))
8163 DRM_ERROR("failed to restore config after modeset failure\n");
8164
8165 out_config:
8166 intel_set_config_free(config);
8167 return ret;
8168 }
8169
8170 static const struct drm_crtc_funcs intel_crtc_funcs = {
8171 .cursor_set = intel_crtc_cursor_set,
8172 .cursor_move = intel_crtc_cursor_move,
8173 .gamma_set = intel_crtc_gamma_set,
8174 .set_config = intel_crtc_set_config,
8175 .destroy = intel_crtc_destroy,
8176 .page_flip = intel_crtc_page_flip,
8177 };
8178
8179 static void intel_cpu_pll_init(struct drm_device *dev)
8180 {
8181 if (HAS_DDI(dev))
8182 intel_ddi_pll_init(dev);
8183 }
8184
8185 static void intel_pch_pll_init(struct drm_device *dev)
8186 {
8187 drm_i915_private_t *dev_priv = dev->dev_private;
8188 int i;
8189
8190 if (dev_priv->num_pch_pll == 0) {
8191 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8192 return;
8193 }
8194
8195 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8196 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8197 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8198 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8199 }
8200 }
8201
8202 static void intel_crtc_init(struct drm_device *dev, int pipe)
8203 {
8204 drm_i915_private_t *dev_priv = dev->dev_private;
8205 struct intel_crtc *intel_crtc;
8206 int i;
8207
8208 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8209 if (intel_crtc == NULL)
8210 return;
8211
8212 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8213
8214 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8215 for (i = 0; i < 256; i++) {
8216 intel_crtc->lut_r[i] = i;
8217 intel_crtc->lut_g[i] = i;
8218 intel_crtc->lut_b[i] = i;
8219 }
8220
8221 /* Swap pipes & planes for FBC on pre-965 */
8222 intel_crtc->pipe = pipe;
8223 intel_crtc->plane = pipe;
8224 intel_crtc->cpu_transcoder = pipe;
8225 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8226 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8227 intel_crtc->plane = !pipe;
8228 }
8229
8230 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8231 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8232 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8233 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8234
8235 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8236
8237 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8238 }
8239
8240 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8241 struct drm_file *file)
8242 {
8243 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8244 struct drm_mode_object *drmmode_obj;
8245 struct intel_crtc *crtc;
8246
8247 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8248 return -ENODEV;
8249
8250 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8251 DRM_MODE_OBJECT_CRTC);
8252
8253 if (!drmmode_obj) {
8254 DRM_ERROR("no such CRTC id\n");
8255 return -EINVAL;
8256 }
8257
8258 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8259 pipe_from_crtc_id->pipe = crtc->pipe;
8260
8261 return 0;
8262 }
8263
8264 static int intel_encoder_clones(struct intel_encoder *encoder)
8265 {
8266 struct drm_device *dev = encoder->base.dev;
8267 struct intel_encoder *source_encoder;
8268 int index_mask = 0;
8269 int entry = 0;
8270
8271 list_for_each_entry(source_encoder,
8272 &dev->mode_config.encoder_list, base.head) {
8273
8274 if (encoder == source_encoder)
8275 index_mask |= (1 << entry);
8276
8277 /* Intel hw has only one MUX where enocoders could be cloned. */
8278 if (encoder->cloneable && source_encoder->cloneable)
8279 index_mask |= (1 << entry);
8280
8281 entry++;
8282 }
8283
8284 return index_mask;
8285 }
8286
8287 static bool has_edp_a(struct drm_device *dev)
8288 {
8289 struct drm_i915_private *dev_priv = dev->dev_private;
8290
8291 if (!IS_MOBILE(dev))
8292 return false;
8293
8294 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8295 return false;
8296
8297 if (IS_GEN5(dev) &&
8298 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8299 return false;
8300
8301 return true;
8302 }
8303
8304 static void intel_setup_outputs(struct drm_device *dev)
8305 {
8306 struct drm_i915_private *dev_priv = dev->dev_private;
8307 struct intel_encoder *encoder;
8308 bool dpd_is_edp = false;
8309 bool has_lvds;
8310
8311 has_lvds = intel_lvds_init(dev);
8312 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8313 /* disable the panel fitter on everything but LVDS */
8314 I915_WRITE(PFIT_CONTROL, 0);
8315 }
8316
8317 if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8318 intel_crt_init(dev);
8319
8320 if (HAS_DDI(dev)) {
8321 int found;
8322
8323 /* Haswell uses DDI functions to detect digital outputs */
8324 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8325 /* DDI A only supports eDP */
8326 if (found)
8327 intel_ddi_init(dev, PORT_A);
8328
8329 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8330 * register */
8331 found = I915_READ(SFUSE_STRAP);
8332
8333 if (found & SFUSE_STRAP_DDIB_DETECTED)
8334 intel_ddi_init(dev, PORT_B);
8335 if (found & SFUSE_STRAP_DDIC_DETECTED)
8336 intel_ddi_init(dev, PORT_C);
8337 if (found & SFUSE_STRAP_DDID_DETECTED)
8338 intel_ddi_init(dev, PORT_D);
8339 } else if (HAS_PCH_SPLIT(dev)) {
8340 int found;
8341 dpd_is_edp = intel_dpd_is_edp(dev);
8342
8343 if (has_edp_a(dev))
8344 intel_dp_init(dev, DP_A, PORT_A);
8345
8346 if (I915_READ(HDMIB) & PORT_DETECTED) {
8347 /* PCH SDVOB multiplex with HDMIB */
8348 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8349 if (!found)
8350 intel_hdmi_init(dev, HDMIB, PORT_B);
8351 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8352 intel_dp_init(dev, PCH_DP_B, PORT_B);
8353 }
8354
8355 if (I915_READ(HDMIC) & PORT_DETECTED)
8356 intel_hdmi_init(dev, HDMIC, PORT_C);
8357
8358 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8359 intel_hdmi_init(dev, HDMID, PORT_D);
8360
8361 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8362 intel_dp_init(dev, PCH_DP_C, PORT_C);
8363
8364 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8365 intel_dp_init(dev, PCH_DP_D, PORT_D);
8366 } else if (IS_VALLEYVIEW(dev)) {
8367 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8368 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8369 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8370
8371 if (I915_READ(VLV_DISPLAY_BASE + SDVOB) & PORT_DETECTED) {
8372 intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOB, PORT_B);
8373 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8374 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8375 }
8376
8377 if (I915_READ(VLV_DISPLAY_BASE + SDVOC) & PORT_DETECTED)
8378 intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOC, PORT_C);
8379
8380 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8381 bool found = false;
8382
8383 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8384 DRM_DEBUG_KMS("probing SDVOB\n");
8385 found = intel_sdvo_init(dev, SDVOB, true);
8386 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8387 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8388 intel_hdmi_init(dev, SDVOB, PORT_B);
8389 }
8390
8391 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8392 DRM_DEBUG_KMS("probing DP_B\n");
8393 intel_dp_init(dev, DP_B, PORT_B);
8394 }
8395 }
8396
8397 /* Before G4X SDVOC doesn't have its own detect register */
8398
8399 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8400 DRM_DEBUG_KMS("probing SDVOC\n");
8401 found = intel_sdvo_init(dev, SDVOC, false);
8402 }
8403
8404 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8405
8406 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8407 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8408 intel_hdmi_init(dev, SDVOC, PORT_C);
8409 }
8410 if (SUPPORTS_INTEGRATED_DP(dev)) {
8411 DRM_DEBUG_KMS("probing DP_C\n");
8412 intel_dp_init(dev, DP_C, PORT_C);
8413 }
8414 }
8415
8416 if (SUPPORTS_INTEGRATED_DP(dev) &&
8417 (I915_READ(DP_D) & DP_DETECTED)) {
8418 DRM_DEBUG_KMS("probing DP_D\n");
8419 intel_dp_init(dev, DP_D, PORT_D);
8420 }
8421 } else if (IS_GEN2(dev))
8422 intel_dvo_init(dev);
8423
8424 if (SUPPORTS_TV(dev))
8425 intel_tv_init(dev);
8426
8427 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8428 encoder->base.possible_crtcs = encoder->crtc_mask;
8429 encoder->base.possible_clones =
8430 intel_encoder_clones(encoder);
8431 }
8432
8433 intel_init_pch_refclk(dev);
8434
8435 drm_helper_move_panel_connectors_to_head(dev);
8436 }
8437
8438 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8439 {
8440 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8441
8442 drm_framebuffer_cleanup(fb);
8443 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8444
8445 kfree(intel_fb);
8446 }
8447
8448 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8449 struct drm_file *file,
8450 unsigned int *handle)
8451 {
8452 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8453 struct drm_i915_gem_object *obj = intel_fb->obj;
8454
8455 return drm_gem_handle_create(file, &obj->base, handle);
8456 }
8457
8458 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8459 .destroy = intel_user_framebuffer_destroy,
8460 .create_handle = intel_user_framebuffer_create_handle,
8461 };
8462
8463 int intel_framebuffer_init(struct drm_device *dev,
8464 struct intel_framebuffer *intel_fb,
8465 struct drm_mode_fb_cmd2 *mode_cmd,
8466 struct drm_i915_gem_object *obj)
8467 {
8468 int ret;
8469
8470 if (obj->tiling_mode == I915_TILING_Y) {
8471 DRM_DEBUG("hardware does not support tiling Y\n");
8472 return -EINVAL;
8473 }
8474
8475 if (mode_cmd->pitches[0] & 63) {
8476 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8477 mode_cmd->pitches[0]);
8478 return -EINVAL;
8479 }
8480
8481 /* FIXME <= Gen4 stride limits are bit unclear */
8482 if (mode_cmd->pitches[0] > 32768) {
8483 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8484 mode_cmd->pitches[0]);
8485 return -EINVAL;
8486 }
8487
8488 if (obj->tiling_mode != I915_TILING_NONE &&
8489 mode_cmd->pitches[0] != obj->stride) {
8490 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8491 mode_cmd->pitches[0], obj->stride);
8492 return -EINVAL;
8493 }
8494
8495 /* Reject formats not supported by any plane early. */
8496 switch (mode_cmd->pixel_format) {
8497 case DRM_FORMAT_C8:
8498 case DRM_FORMAT_RGB565:
8499 case DRM_FORMAT_XRGB8888:
8500 case DRM_FORMAT_ARGB8888:
8501 break;
8502 case DRM_FORMAT_XRGB1555:
8503 case DRM_FORMAT_ARGB1555:
8504 if (INTEL_INFO(dev)->gen > 3) {
8505 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8506 return -EINVAL;
8507 }
8508 break;
8509 case DRM_FORMAT_XBGR8888:
8510 case DRM_FORMAT_ABGR8888:
8511 case DRM_FORMAT_XRGB2101010:
8512 case DRM_FORMAT_ARGB2101010:
8513 case DRM_FORMAT_XBGR2101010:
8514 case DRM_FORMAT_ABGR2101010:
8515 if (INTEL_INFO(dev)->gen < 4) {
8516 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8517 return -EINVAL;
8518 }
8519 break;
8520 case DRM_FORMAT_YUYV:
8521 case DRM_FORMAT_UYVY:
8522 case DRM_FORMAT_YVYU:
8523 case DRM_FORMAT_VYUY:
8524 if (INTEL_INFO(dev)->gen < 5) {
8525 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8526 return -EINVAL;
8527 }
8528 break;
8529 default:
8530 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8531 return -EINVAL;
8532 }
8533
8534 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8535 if (mode_cmd->offsets[0] != 0)
8536 return -EINVAL;
8537
8538 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8539 intel_fb->obj = obj;
8540
8541 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8542 if (ret) {
8543 DRM_ERROR("framebuffer init failed %d\n", ret);
8544 return ret;
8545 }
8546
8547 return 0;
8548 }
8549
8550 static struct drm_framebuffer *
8551 intel_user_framebuffer_create(struct drm_device *dev,
8552 struct drm_file *filp,
8553 struct drm_mode_fb_cmd2 *mode_cmd)
8554 {
8555 struct drm_i915_gem_object *obj;
8556
8557 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8558 mode_cmd->handles[0]));
8559 if (&obj->base == NULL)
8560 return ERR_PTR(-ENOENT);
8561
8562 return intel_framebuffer_create(dev, mode_cmd, obj);
8563 }
8564
8565 static const struct drm_mode_config_funcs intel_mode_funcs = {
8566 .fb_create = intel_user_framebuffer_create,
8567 .output_poll_changed = intel_fb_output_poll_changed,
8568 };
8569
8570 /* Set up chip specific display functions */
8571 static void intel_init_display(struct drm_device *dev)
8572 {
8573 struct drm_i915_private *dev_priv = dev->dev_private;
8574
8575 /* We always want a DPMS function */
8576 if (HAS_DDI(dev)) {
8577 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8578 dev_priv->display.crtc_enable = haswell_crtc_enable;
8579 dev_priv->display.crtc_disable = haswell_crtc_disable;
8580 dev_priv->display.off = haswell_crtc_off;
8581 dev_priv->display.update_plane = ironlake_update_plane;
8582 } else if (HAS_PCH_SPLIT(dev)) {
8583 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8584 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8585 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8586 dev_priv->display.off = ironlake_crtc_off;
8587 dev_priv->display.update_plane = ironlake_update_plane;
8588 } else {
8589 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8590 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8591 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8592 dev_priv->display.off = i9xx_crtc_off;
8593 dev_priv->display.update_plane = i9xx_update_plane;
8594 }
8595
8596 /* Returns the core display clock speed */
8597 if (IS_VALLEYVIEW(dev))
8598 dev_priv->display.get_display_clock_speed =
8599 valleyview_get_display_clock_speed;
8600 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8601 dev_priv->display.get_display_clock_speed =
8602 i945_get_display_clock_speed;
8603 else if (IS_I915G(dev))
8604 dev_priv->display.get_display_clock_speed =
8605 i915_get_display_clock_speed;
8606 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8607 dev_priv->display.get_display_clock_speed =
8608 i9xx_misc_get_display_clock_speed;
8609 else if (IS_I915GM(dev))
8610 dev_priv->display.get_display_clock_speed =
8611 i915gm_get_display_clock_speed;
8612 else if (IS_I865G(dev))
8613 dev_priv->display.get_display_clock_speed =
8614 i865_get_display_clock_speed;
8615 else if (IS_I85X(dev))
8616 dev_priv->display.get_display_clock_speed =
8617 i855_get_display_clock_speed;
8618 else /* 852, 830 */
8619 dev_priv->display.get_display_clock_speed =
8620 i830_get_display_clock_speed;
8621
8622 if (HAS_PCH_SPLIT(dev)) {
8623 if (IS_GEN5(dev)) {
8624 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8625 dev_priv->display.write_eld = ironlake_write_eld;
8626 } else if (IS_GEN6(dev)) {
8627 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8628 dev_priv->display.write_eld = ironlake_write_eld;
8629 } else if (IS_IVYBRIDGE(dev)) {
8630 /* FIXME: detect B0+ stepping and use auto training */
8631 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8632 dev_priv->display.write_eld = ironlake_write_eld;
8633 dev_priv->display.modeset_global_resources =
8634 ivb_modeset_global_resources;
8635 } else if (IS_HASWELL(dev)) {
8636 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8637 dev_priv->display.write_eld = haswell_write_eld;
8638 dev_priv->display.modeset_global_resources =
8639 haswell_modeset_global_resources;
8640 }
8641 } else if (IS_G4X(dev)) {
8642 dev_priv->display.write_eld = g4x_write_eld;
8643 }
8644
8645 /* Default just returns -ENODEV to indicate unsupported */
8646 dev_priv->display.queue_flip = intel_default_queue_flip;
8647
8648 switch (INTEL_INFO(dev)->gen) {
8649 case 2:
8650 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8651 break;
8652
8653 case 3:
8654 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8655 break;
8656
8657 case 4:
8658 case 5:
8659 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8660 break;
8661
8662 case 6:
8663 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8664 break;
8665 case 7:
8666 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8667 break;
8668 }
8669 }
8670
8671 /*
8672 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8673 * resume, or other times. This quirk makes sure that's the case for
8674 * affected systems.
8675 */
8676 static void quirk_pipea_force(struct drm_device *dev)
8677 {
8678 struct drm_i915_private *dev_priv = dev->dev_private;
8679
8680 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8681 DRM_INFO("applying pipe a force quirk\n");
8682 }
8683
8684 /*
8685 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8686 */
8687 static void quirk_ssc_force_disable(struct drm_device *dev)
8688 {
8689 struct drm_i915_private *dev_priv = dev->dev_private;
8690 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8691 DRM_INFO("applying lvds SSC disable quirk\n");
8692 }
8693
8694 /*
8695 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8696 * brightness value
8697 */
8698 static void quirk_invert_brightness(struct drm_device *dev)
8699 {
8700 struct drm_i915_private *dev_priv = dev->dev_private;
8701 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8702 DRM_INFO("applying inverted panel brightness quirk\n");
8703 }
8704
8705 struct intel_quirk {
8706 int device;
8707 int subsystem_vendor;
8708 int subsystem_device;
8709 void (*hook)(struct drm_device *dev);
8710 };
8711
8712 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8713 struct intel_dmi_quirk {
8714 void (*hook)(struct drm_device *dev);
8715 const struct dmi_system_id (*dmi_id_list)[];
8716 };
8717
8718 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8719 {
8720 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8721 return 1;
8722 }
8723
8724 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8725 {
8726 .dmi_id_list = &(const struct dmi_system_id[]) {
8727 {
8728 .callback = intel_dmi_reverse_brightness,
8729 .ident = "NCR Corporation",
8730 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8731 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8732 },
8733 },
8734 { } /* terminating entry */
8735 },
8736 .hook = quirk_invert_brightness,
8737 },
8738 };
8739
8740 static struct intel_quirk intel_quirks[] = {
8741 /* HP Mini needs pipe A force quirk (LP: #322104) */
8742 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8743
8744 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8745 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8746
8747 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8748 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8749
8750 /* 830/845 need to leave pipe A & dpll A up */
8751 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8752 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8753
8754 /* Lenovo U160 cannot use SSC on LVDS */
8755 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8756
8757 /* Sony Vaio Y cannot use SSC on LVDS */
8758 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8759
8760 /* Acer Aspire 5734Z must invert backlight brightness */
8761 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8762
8763 /* Acer/eMachines G725 */
8764 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8765
8766 /* Acer/eMachines e725 */
8767 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8768
8769 /* Acer/Packard Bell NCL20 */
8770 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8771
8772 /* Acer Aspire 4736Z */
8773 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8774 };
8775
8776 static void intel_init_quirks(struct drm_device *dev)
8777 {
8778 struct pci_dev *d = dev->pdev;
8779 int i;
8780
8781 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8782 struct intel_quirk *q = &intel_quirks[i];
8783
8784 if (d->device == q->device &&
8785 (d->subsystem_vendor == q->subsystem_vendor ||
8786 q->subsystem_vendor == PCI_ANY_ID) &&
8787 (d->subsystem_device == q->subsystem_device ||
8788 q->subsystem_device == PCI_ANY_ID))
8789 q->hook(dev);
8790 }
8791 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8792 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8793 intel_dmi_quirks[i].hook(dev);
8794 }
8795 }
8796
8797 /* Disable the VGA plane that we never use */
8798 static void i915_disable_vga(struct drm_device *dev)
8799 {
8800 struct drm_i915_private *dev_priv = dev->dev_private;
8801 u8 sr1;
8802 u32 vga_reg = i915_vgacntrl_reg(dev);
8803
8804 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8805 outb(SR01, VGA_SR_INDEX);
8806 sr1 = inb(VGA_SR_DATA);
8807 outb(sr1 | 1<<5, VGA_SR_DATA);
8808 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8809 udelay(300);
8810
8811 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8812 POSTING_READ(vga_reg);
8813 }
8814
8815 void intel_modeset_init_hw(struct drm_device *dev)
8816 {
8817 intel_init_power_well(dev);
8818
8819 intel_prepare_ddi(dev);
8820
8821 intel_init_clock_gating(dev);
8822
8823 mutex_lock(&dev->struct_mutex);
8824 intel_enable_gt_powersave(dev);
8825 mutex_unlock(&dev->struct_mutex);
8826 }
8827
8828 void intel_modeset_init(struct drm_device *dev)
8829 {
8830 struct drm_i915_private *dev_priv = dev->dev_private;
8831 int i, ret;
8832
8833 drm_mode_config_init(dev);
8834
8835 dev->mode_config.min_width = 0;
8836 dev->mode_config.min_height = 0;
8837
8838 dev->mode_config.preferred_depth = 24;
8839 dev->mode_config.prefer_shadow = 1;
8840
8841 dev->mode_config.funcs = &intel_mode_funcs;
8842
8843 intel_init_quirks(dev);
8844
8845 intel_init_pm(dev);
8846
8847 intel_init_display(dev);
8848
8849 if (IS_GEN2(dev)) {
8850 dev->mode_config.max_width = 2048;
8851 dev->mode_config.max_height = 2048;
8852 } else if (IS_GEN3(dev)) {
8853 dev->mode_config.max_width = 4096;
8854 dev->mode_config.max_height = 4096;
8855 } else {
8856 dev->mode_config.max_width = 8192;
8857 dev->mode_config.max_height = 8192;
8858 }
8859 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8860
8861 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8862 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8863
8864 for (i = 0; i < dev_priv->num_pipe; i++) {
8865 intel_crtc_init(dev, i);
8866 ret = intel_plane_init(dev, i);
8867 if (ret)
8868 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8869 }
8870
8871 intel_cpu_pll_init(dev);
8872 intel_pch_pll_init(dev);
8873
8874 /* Just disable it once at startup */
8875 i915_disable_vga(dev);
8876 intel_setup_outputs(dev);
8877
8878 /* Just in case the BIOS is doing something questionable. */
8879 intel_disable_fbc(dev);
8880 }
8881
8882 static void
8883 intel_connector_break_all_links(struct intel_connector *connector)
8884 {
8885 connector->base.dpms = DRM_MODE_DPMS_OFF;
8886 connector->base.encoder = NULL;
8887 connector->encoder->connectors_active = false;
8888 connector->encoder->base.crtc = NULL;
8889 }
8890
8891 static void intel_enable_pipe_a(struct drm_device *dev)
8892 {
8893 struct intel_connector *connector;
8894 struct drm_connector *crt = NULL;
8895 struct intel_load_detect_pipe load_detect_temp;
8896
8897 /* We can't just switch on the pipe A, we need to set things up with a
8898 * proper mode and output configuration. As a gross hack, enable pipe A
8899 * by enabling the load detect pipe once. */
8900 list_for_each_entry(connector,
8901 &dev->mode_config.connector_list,
8902 base.head) {
8903 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8904 crt = &connector->base;
8905 break;
8906 }
8907 }
8908
8909 if (!crt)
8910 return;
8911
8912 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8913 intel_release_load_detect_pipe(crt, &load_detect_temp);
8914
8915
8916 }
8917
8918 static bool
8919 intel_check_plane_mapping(struct intel_crtc *crtc)
8920 {
8921 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8922 u32 reg, val;
8923
8924 if (dev_priv->num_pipe == 1)
8925 return true;
8926
8927 reg = DSPCNTR(!crtc->plane);
8928 val = I915_READ(reg);
8929
8930 if ((val & DISPLAY_PLANE_ENABLE) &&
8931 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8932 return false;
8933
8934 return true;
8935 }
8936
8937 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8938 {
8939 struct drm_device *dev = crtc->base.dev;
8940 struct drm_i915_private *dev_priv = dev->dev_private;
8941 u32 reg;
8942
8943 /* Clear any frame start delays used for debugging left by the BIOS */
8944 reg = PIPECONF(crtc->cpu_transcoder);
8945 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8946
8947 /* We need to sanitize the plane -> pipe mapping first because this will
8948 * disable the crtc (and hence change the state) if it is wrong. Note
8949 * that gen4+ has a fixed plane -> pipe mapping. */
8950 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8951 struct intel_connector *connector;
8952 bool plane;
8953
8954 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8955 crtc->base.base.id);
8956
8957 /* Pipe has the wrong plane attached and the plane is active.
8958 * Temporarily change the plane mapping and disable everything
8959 * ... */
8960 plane = crtc->plane;
8961 crtc->plane = !plane;
8962 dev_priv->display.crtc_disable(&crtc->base);
8963 crtc->plane = plane;
8964
8965 /* ... and break all links. */
8966 list_for_each_entry(connector, &dev->mode_config.connector_list,
8967 base.head) {
8968 if (connector->encoder->base.crtc != &crtc->base)
8969 continue;
8970
8971 intel_connector_break_all_links(connector);
8972 }
8973
8974 WARN_ON(crtc->active);
8975 crtc->base.enabled = false;
8976 }
8977
8978 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8979 crtc->pipe == PIPE_A && !crtc->active) {
8980 /* BIOS forgot to enable pipe A, this mostly happens after
8981 * resume. Force-enable the pipe to fix this, the update_dpms
8982 * call below we restore the pipe to the right state, but leave
8983 * the required bits on. */
8984 intel_enable_pipe_a(dev);
8985 }
8986
8987 /* Adjust the state of the output pipe according to whether we
8988 * have active connectors/encoders. */
8989 intel_crtc_update_dpms(&crtc->base);
8990
8991 if (crtc->active != crtc->base.enabled) {
8992 struct intel_encoder *encoder;
8993
8994 /* This can happen either due to bugs in the get_hw_state
8995 * functions or because the pipe is force-enabled due to the
8996 * pipe A quirk. */
8997 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8998 crtc->base.base.id,
8999 crtc->base.enabled ? "enabled" : "disabled",
9000 crtc->active ? "enabled" : "disabled");
9001
9002 crtc->base.enabled = crtc->active;
9003
9004 /* Because we only establish the connector -> encoder ->
9005 * crtc links if something is active, this means the
9006 * crtc is now deactivated. Break the links. connector
9007 * -> encoder links are only establish when things are
9008 * actually up, hence no need to break them. */
9009 WARN_ON(crtc->active);
9010
9011 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9012 WARN_ON(encoder->connectors_active);
9013 encoder->base.crtc = NULL;
9014 }
9015 }
9016 }
9017
9018 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9019 {
9020 struct intel_connector *connector;
9021 struct drm_device *dev = encoder->base.dev;
9022
9023 /* We need to check both for a crtc link (meaning that the
9024 * encoder is active and trying to read from a pipe) and the
9025 * pipe itself being active. */
9026 bool has_active_crtc = encoder->base.crtc &&
9027 to_intel_crtc(encoder->base.crtc)->active;
9028
9029 if (encoder->connectors_active && !has_active_crtc) {
9030 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9031 encoder->base.base.id,
9032 drm_get_encoder_name(&encoder->base));
9033
9034 /* Connector is active, but has no active pipe. This is
9035 * fallout from our resume register restoring. Disable
9036 * the encoder manually again. */
9037 if (encoder->base.crtc) {
9038 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9039 encoder->base.base.id,
9040 drm_get_encoder_name(&encoder->base));
9041 encoder->disable(encoder);
9042 }
9043
9044 /* Inconsistent output/port/pipe state happens presumably due to
9045 * a bug in one of the get_hw_state functions. Or someplace else
9046 * in our code, like the register restore mess on resume. Clamp
9047 * things to off as a safer default. */
9048 list_for_each_entry(connector,
9049 &dev->mode_config.connector_list,
9050 base.head) {
9051 if (connector->encoder != encoder)
9052 continue;
9053
9054 intel_connector_break_all_links(connector);
9055 }
9056 }
9057 /* Enabled encoders without active connectors will be fixed in
9058 * the crtc fixup. */
9059 }
9060
9061 void i915_redisable_vga(struct drm_device *dev)
9062 {
9063 struct drm_i915_private *dev_priv = dev->dev_private;
9064 u32 vga_reg = i915_vgacntrl_reg(dev);
9065
9066 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9067 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9068 i915_disable_vga(dev);
9069 }
9070 }
9071
9072 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9073 * and i915 state tracking structures. */
9074 void intel_modeset_setup_hw_state(struct drm_device *dev,
9075 bool force_restore)
9076 {
9077 struct drm_i915_private *dev_priv = dev->dev_private;
9078 enum pipe pipe;
9079 u32 tmp;
9080 struct intel_crtc *crtc;
9081 struct intel_encoder *encoder;
9082 struct intel_connector *connector;
9083
9084 if (HAS_DDI(dev)) {
9085 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9086
9087 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9088 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9089 case TRANS_DDI_EDP_INPUT_A_ON:
9090 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9091 pipe = PIPE_A;
9092 break;
9093 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9094 pipe = PIPE_B;
9095 break;
9096 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9097 pipe = PIPE_C;
9098 break;
9099 }
9100
9101 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9102 crtc->cpu_transcoder = TRANSCODER_EDP;
9103
9104 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9105 pipe_name(pipe));
9106 }
9107 }
9108
9109 for_each_pipe(pipe) {
9110 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9111
9112 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9113 if (tmp & PIPECONF_ENABLE)
9114 crtc->active = true;
9115 else
9116 crtc->active = false;
9117
9118 crtc->base.enabled = crtc->active;
9119
9120 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9121 crtc->base.base.id,
9122 crtc->active ? "enabled" : "disabled");
9123 }
9124
9125 if (HAS_DDI(dev))
9126 intel_ddi_setup_hw_pll_state(dev);
9127
9128 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9129 base.head) {
9130 pipe = 0;
9131
9132 if (encoder->get_hw_state(encoder, &pipe)) {
9133 encoder->base.crtc =
9134 dev_priv->pipe_to_crtc_mapping[pipe];
9135 } else {
9136 encoder->base.crtc = NULL;
9137 }
9138
9139 encoder->connectors_active = false;
9140 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9141 encoder->base.base.id,
9142 drm_get_encoder_name(&encoder->base),
9143 encoder->base.crtc ? "enabled" : "disabled",
9144 pipe);
9145 }
9146
9147 list_for_each_entry(connector, &dev->mode_config.connector_list,
9148 base.head) {
9149 if (connector->get_hw_state(connector)) {
9150 connector->base.dpms = DRM_MODE_DPMS_ON;
9151 connector->encoder->connectors_active = true;
9152 connector->base.encoder = &connector->encoder->base;
9153 } else {
9154 connector->base.dpms = DRM_MODE_DPMS_OFF;
9155 connector->base.encoder = NULL;
9156 }
9157 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9158 connector->base.base.id,
9159 drm_get_connector_name(&connector->base),
9160 connector->base.encoder ? "enabled" : "disabled");
9161 }
9162
9163 /* HW state is read out, now we need to sanitize this mess. */
9164 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9165 base.head) {
9166 intel_sanitize_encoder(encoder);
9167 }
9168
9169 for_each_pipe(pipe) {
9170 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9171 intel_sanitize_crtc(crtc);
9172 }
9173
9174 if (force_restore) {
9175 for_each_pipe(pipe) {
9176 intel_crtc_restore_mode(dev_priv->pipe_to_crtc_mapping[pipe]);
9177 }
9178
9179 i915_redisable_vga(dev);
9180 } else {
9181 intel_modeset_update_staged_output_state(dev);
9182 }
9183
9184 intel_modeset_check_state(dev);
9185
9186 drm_mode_config_reset(dev);
9187 }
9188
9189 void intel_modeset_gem_init(struct drm_device *dev)
9190 {
9191 intel_modeset_init_hw(dev);
9192
9193 intel_setup_overlay(dev);
9194
9195 intel_modeset_setup_hw_state(dev, false);
9196 }
9197
9198 void intel_modeset_cleanup(struct drm_device *dev)
9199 {
9200 struct drm_i915_private *dev_priv = dev->dev_private;
9201 struct drm_crtc *crtc;
9202 struct intel_crtc *intel_crtc;
9203
9204 drm_kms_helper_poll_fini(dev);
9205 mutex_lock(&dev->struct_mutex);
9206
9207 intel_unregister_dsm_handler();
9208
9209
9210 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9211 /* Skip inactive CRTCs */
9212 if (!crtc->fb)
9213 continue;
9214
9215 intel_crtc = to_intel_crtc(crtc);
9216 intel_increase_pllclock(crtc);
9217 }
9218
9219 intel_disable_fbc(dev);
9220
9221 intel_disable_gt_powersave(dev);
9222
9223 ironlake_teardown_rc6(dev);
9224
9225 if (IS_VALLEYVIEW(dev))
9226 vlv_init_dpio(dev);
9227
9228 mutex_unlock(&dev->struct_mutex);
9229
9230 /* Disable the irq before mode object teardown, for the irq might
9231 * enqueue unpin/hotplug work. */
9232 drm_irq_uninstall(dev);
9233 cancel_work_sync(&dev_priv->hotplug_work);
9234 cancel_work_sync(&dev_priv->rps.work);
9235
9236 /* flush any delayed tasks or pending work */
9237 flush_scheduled_work();
9238
9239 drm_mode_config_cleanup(dev);
9240
9241 intel_cleanup_overlay(dev);
9242 }
9243
9244 /*
9245 * Return which encoder is currently attached for connector.
9246 */
9247 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9248 {
9249 return &intel_attached_encoder(connector)->base;
9250 }
9251
9252 void intel_connector_attach_encoder(struct intel_connector *connector,
9253 struct intel_encoder *encoder)
9254 {
9255 connector->encoder = encoder;
9256 drm_mode_connector_attach_encoder(&connector->base,
9257 &encoder->base);
9258 }
9259
9260 /*
9261 * set vga decode state - true == enable VGA decode
9262 */
9263 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9264 {
9265 struct drm_i915_private *dev_priv = dev->dev_private;
9266 u16 gmch_ctrl;
9267
9268 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9269 if (state)
9270 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9271 else
9272 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9273 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9274 return 0;
9275 }
9276
9277 #ifdef CONFIG_DEBUG_FS
9278 #include <linux/seq_file.h>
9279
9280 struct intel_display_error_state {
9281 struct intel_cursor_error_state {
9282 u32 control;
9283 u32 position;
9284 u32 base;
9285 u32 size;
9286 } cursor[I915_MAX_PIPES];
9287
9288 struct intel_pipe_error_state {
9289 u32 conf;
9290 u32 source;
9291
9292 u32 htotal;
9293 u32 hblank;
9294 u32 hsync;
9295 u32 vtotal;
9296 u32 vblank;
9297 u32 vsync;
9298 } pipe[I915_MAX_PIPES];
9299
9300 struct intel_plane_error_state {
9301 u32 control;
9302 u32 stride;
9303 u32 size;
9304 u32 pos;
9305 u32 addr;
9306 u32 surface;
9307 u32 tile_offset;
9308 } plane[I915_MAX_PIPES];
9309 };
9310
9311 struct intel_display_error_state *
9312 intel_display_capture_error_state(struct drm_device *dev)
9313 {
9314 drm_i915_private_t *dev_priv = dev->dev_private;
9315 struct intel_display_error_state *error;
9316 enum transcoder cpu_transcoder;
9317 int i;
9318
9319 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9320 if (error == NULL)
9321 return NULL;
9322
9323 for_each_pipe(i) {
9324 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9325
9326 error->cursor[i].control = I915_READ(CURCNTR(i));
9327 error->cursor[i].position = I915_READ(CURPOS(i));
9328 error->cursor[i].base = I915_READ(CURBASE(i));
9329
9330 error->plane[i].control = I915_READ(DSPCNTR(i));
9331 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9332 error->plane[i].size = I915_READ(DSPSIZE(i));
9333 error->plane[i].pos = I915_READ(DSPPOS(i));
9334 error->plane[i].addr = I915_READ(DSPADDR(i));
9335 if (INTEL_INFO(dev)->gen >= 4) {
9336 error->plane[i].surface = I915_READ(DSPSURF(i));
9337 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9338 }
9339
9340 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9341 error->pipe[i].source = I915_READ(PIPESRC(i));
9342 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9343 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9344 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9345 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9346 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9347 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9348 }
9349
9350 return error;
9351 }
9352
9353 void
9354 intel_display_print_error_state(struct seq_file *m,
9355 struct drm_device *dev,
9356 struct intel_display_error_state *error)
9357 {
9358 drm_i915_private_t *dev_priv = dev->dev_private;
9359 int i;
9360
9361 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9362 for_each_pipe(i) {
9363 seq_printf(m, "Pipe [%d]:\n", i);
9364 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9365 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9366 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9367 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9368 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9369 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9370 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9371 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9372
9373 seq_printf(m, "Plane [%d]:\n", i);
9374 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9375 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9376 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9377 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9378 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9379 if (INTEL_INFO(dev)->gen >= 4) {
9380 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9381 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9382 }
9383
9384 seq_printf(m, "Cursor [%d]:\n", i);
9385 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9386 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9387 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9388 }
9389 }
9390 #endif
This page took 0.235068 seconds and 5 git commands to generate.