drm/i915: Embed the io-mapping struct inside drm_i915_private
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct drm_device *dev,
101 struct intel_framebuffer *ifb,
102 struct drm_mode_fb_cmd2 *mode_cmd,
103 struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108 struct intel_link_m_n *m_n,
109 struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114 const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116 const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_device *dev,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
622 if (clock->p < limit->p.min || limit->p.max < clock->p)
623 INTELPllInvalid("p out of range\n");
624 if (clock->m < limit->m.min || limit->m.max < clock->m)
625 INTELPllInvalid("m out of range\n");
626 }
627
628 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
629 INTELPllInvalid("vco out of range\n");
630 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 * connector, etc., rather than just a single range.
632 */
633 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
634 INTELPllInvalid("dot out of range\n");
635
636 return true;
637 }
638
639 static int
640 i9xx_select_p2_div(const struct intel_limit *limit,
641 const struct intel_crtc_state *crtc_state,
642 int target)
643 {
644 struct drm_device *dev = crtc_state->base.crtc->dev;
645
646 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
647 /*
648 * For LVDS just rely on its current settings for dual-channel.
649 * We haven't figured out how to reliably set up different
650 * single/dual channel state, if we even can.
651 */
652 if (intel_is_dual_link_lvds(dev))
653 return limit->p2.p2_fast;
654 else
655 return limit->p2.p2_slow;
656 } else {
657 if (target < limit->p2.dot_limit)
658 return limit->p2.p2_slow;
659 else
660 return limit->p2.p2_fast;
661 }
662 }
663
664 /*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE. The returned values represent the clock equation:
667 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 *
669 * Target and reference clocks are specified in kHz.
670 *
671 * If match_clock is provided, then best_clock P divider must match the P
672 * divider from @match_clock used for LVDS downclocking.
673 */
674 static bool
675 i9xx_find_best_dpll(const struct intel_limit *limit,
676 struct intel_crtc_state *crtc_state,
677 int target, int refclk, struct dpll *match_clock,
678 struct dpll *best_clock)
679 {
680 struct drm_device *dev = crtc_state->base.crtc->dev;
681 struct dpll clock;
682 int err = target;
683
684 memset(best_clock, 0, sizeof(*best_clock));
685
686 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 clock.m1++) {
690 for (clock.m2 = limit->m2.min;
691 clock.m2 <= limit->m2.max; clock.m2++) {
692 if (clock.m2 >= clock.m1)
693 break;
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
698 int this_err;
699
700 i9xx_calc_dpll_params(refclk, &clock);
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719 }
720
721 /*
722 * Returns a set of divisors for the desired target clock with the given
723 * refclk, or FALSE. The returned values represent the clock equation:
724 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725 *
726 * Target and reference clocks are specified in kHz.
727 *
728 * If match_clock is provided, then best_clock P divider must match the P
729 * divider from @match_clock used for LVDS downclocking.
730 */
731 static bool
732 pnv_find_best_dpll(const struct intel_limit *limit,
733 struct intel_crtc_state *crtc_state,
734 int target, int refclk, struct dpll *match_clock,
735 struct dpll *best_clock)
736 {
737 struct drm_device *dev = crtc_state->base.crtc->dev;
738 struct dpll clock;
739 int err = target;
740
741 memset(best_clock, 0, sizeof(*best_clock));
742
743 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744
745 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746 clock.m1++) {
747 for (clock.m2 = limit->m2.min;
748 clock.m2 <= limit->m2.max; clock.m2++) {
749 for (clock.n = limit->n.min;
750 clock.n <= limit->n.max; clock.n++) {
751 for (clock.p1 = limit->p1.min;
752 clock.p1 <= limit->p1.max; clock.p1++) {
753 int this_err;
754
755 pnv_calc_dpll_params(refclk, &clock);
756 if (!intel_PLL_is_valid(dev, limit,
757 &clock))
758 continue;
759 if (match_clock &&
760 clock.p != match_clock->p)
761 continue;
762
763 this_err = abs(clock.dot - target);
764 if (this_err < err) {
765 *best_clock = clock;
766 err = this_err;
767 }
768 }
769 }
770 }
771 }
772
773 return (err != target);
774 }
775
776 /*
777 * Returns a set of divisors for the desired target clock with the given
778 * refclk, or FALSE. The returned values represent the clock equation:
779 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
780 *
781 * Target and reference clocks are specified in kHz.
782 *
783 * If match_clock is provided, then best_clock P divider must match the P
784 * divider from @match_clock used for LVDS downclocking.
785 */
786 static bool
787 g4x_find_best_dpll(const struct intel_limit *limit,
788 struct intel_crtc_state *crtc_state,
789 int target, int refclk, struct dpll *match_clock,
790 struct dpll *best_clock)
791 {
792 struct drm_device *dev = crtc_state->base.crtc->dev;
793 struct dpll clock;
794 int max_n;
795 bool found = false;
796 /* approximately equals target * 0.00585 */
797 int err_most = (target >> 8) + (target >> 9);
798
799 memset(best_clock, 0, sizeof(*best_clock));
800
801 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802
803 max_n = limit->n.max;
804 /* based on hardware requirement, prefer smaller n to precision */
805 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
806 /* based on hardware requirement, prefere larger m1,m2 */
807 for (clock.m1 = limit->m1.max;
808 clock.m1 >= limit->m1.min; clock.m1--) {
809 for (clock.m2 = limit->m2.max;
810 clock.m2 >= limit->m2.min; clock.m2--) {
811 for (clock.p1 = limit->p1.max;
812 clock.p1 >= limit->p1.min; clock.p1--) {
813 int this_err;
814
815 i9xx_calc_dpll_params(refclk, &clock);
816 if (!intel_PLL_is_valid(dev, limit,
817 &clock))
818 continue;
819
820 this_err = abs(clock.dot - target);
821 if (this_err < err_most) {
822 *best_clock = clock;
823 err_most = this_err;
824 max_n = clock.n;
825 found = true;
826 }
827 }
828 }
829 }
830 }
831 return found;
832 }
833
834 /*
835 * Check if the calculated PLL configuration is more optimal compared to the
836 * best configuration and error found so far. Return the calculated error.
837 */
838 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
839 const struct dpll *calculated_clock,
840 const struct dpll *best_clock,
841 unsigned int best_error_ppm,
842 unsigned int *error_ppm)
843 {
844 /*
845 * For CHV ignore the error and consider only the P value.
846 * Prefer a bigger P value based on HW requirements.
847 */
848 if (IS_CHERRYVIEW(dev)) {
849 *error_ppm = 0;
850
851 return calculated_clock->p > best_clock->p;
852 }
853
854 if (WARN_ON_ONCE(!target_freq))
855 return false;
856
857 *error_ppm = div_u64(1000000ULL *
858 abs(target_freq - calculated_clock->dot),
859 target_freq);
860 /*
861 * Prefer a better P value over a better (smaller) error if the error
862 * is small. Ensure this preference for future configurations too by
863 * setting the error to 0.
864 */
865 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866 *error_ppm = 0;
867
868 return true;
869 }
870
871 return *error_ppm + 10 < best_error_ppm;
872 }
873
874 /*
875 * Returns a set of divisors for the desired target clock with the given
876 * refclk, or FALSE. The returned values represent the clock equation:
877 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878 */
879 static bool
880 vlv_find_best_dpll(const struct intel_limit *limit,
881 struct intel_crtc_state *crtc_state,
882 int target, int refclk, struct dpll *match_clock,
883 struct dpll *best_clock)
884 {
885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
886 struct drm_device *dev = crtc->base.dev;
887 struct dpll clock;
888 unsigned int bestppm = 1000000;
889 /* min update 19.2 MHz */
890 int max_n = min(limit->n.max, refclk / 19200);
891 bool found = false;
892
893 target *= 5; /* fast clock */
894
895 memset(best_clock, 0, sizeof(*best_clock));
896
897 /* based on hardware requirement, prefer smaller n to precision */
898 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
899 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
900 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
901 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
902 clock.p = clock.p1 * clock.p2;
903 /* based on hardware requirement, prefer bigger m1,m2 values */
904 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
905 unsigned int ppm;
906
907 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908 refclk * clock.m1);
909
910 vlv_calc_dpll_params(refclk, &clock);
911
912 if (!intel_PLL_is_valid(dev, limit,
913 &clock))
914 continue;
915
916 if (!vlv_PLL_is_optimal(dev, target,
917 &clock,
918 best_clock,
919 bestppm, &ppm))
920 continue;
921
922 *best_clock = clock;
923 bestppm = ppm;
924 found = true;
925 }
926 }
927 }
928 }
929
930 return found;
931 }
932
933 /*
934 * Returns a set of divisors for the desired target clock with the given
935 * refclk, or FALSE. The returned values represent the clock equation:
936 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937 */
938 static bool
939 chv_find_best_dpll(const struct intel_limit *limit,
940 struct intel_crtc_state *crtc_state,
941 int target, int refclk, struct dpll *match_clock,
942 struct dpll *best_clock)
943 {
944 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
945 struct drm_device *dev = crtc->base.dev;
946 unsigned int best_error_ppm;
947 struct dpll clock;
948 uint64_t m2;
949 int found = false;
950
951 memset(best_clock, 0, sizeof(*best_clock));
952 best_error_ppm = 1000000;
953
954 /*
955 * Based on hardware doc, the n always set to 1, and m1 always
956 * set to 2. If requires to support 200Mhz refclk, we need to
957 * revisit this because n may not 1 anymore.
958 */
959 clock.n = 1, clock.m1 = 2;
960 target *= 5; /* fast clock */
961
962 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963 for (clock.p2 = limit->p2.p2_fast;
964 clock.p2 >= limit->p2.p2_slow;
965 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
966 unsigned int error_ppm;
967
968 clock.p = clock.p1 * clock.p2;
969
970 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971 clock.n) << 22, refclk * clock.m1);
972
973 if (m2 > INT_MAX/clock.m1)
974 continue;
975
976 clock.m2 = m2;
977
978 chv_calc_dpll_params(refclk, &clock);
979
980 if (!intel_PLL_is_valid(dev, limit, &clock))
981 continue;
982
983 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984 best_error_ppm, &error_ppm))
985 continue;
986
987 *best_clock = clock;
988 best_error_ppm = error_ppm;
989 found = true;
990 }
991 }
992
993 return found;
994 }
995
996 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
997 struct dpll *best_clock)
998 {
999 int refclk = 100000;
1000 const struct intel_limit *limit = &intel_limits_bxt;
1001
1002 return chv_find_best_dpll(limit, crtc_state,
1003 target_clock, refclk, NULL, best_clock);
1004 }
1005
1006 bool intel_crtc_active(struct drm_crtc *crtc)
1007 {
1008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009
1010 /* Be paranoid as we can arrive here with only partial
1011 * state retrieved from the hardware during setup.
1012 *
1013 * We can ditch the adjusted_mode.crtc_clock check as soon
1014 * as Haswell has gained clock readout/fastboot support.
1015 *
1016 * We can ditch the crtc->primary->fb check as soon as we can
1017 * properly reconstruct framebuffers.
1018 *
1019 * FIXME: The intel_crtc->active here should be switched to
1020 * crtc->state->active once we have proper CRTC states wired up
1021 * for atomic.
1022 */
1023 return intel_crtc->active && crtc->primary->state->fb &&
1024 intel_crtc->config->base.adjusted_mode.crtc_clock;
1025 }
1026
1027 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028 enum pipe pipe)
1029 {
1030 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032
1033 return intel_crtc->config->cpu_transcoder;
1034 }
1035
1036 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1037 {
1038 struct drm_i915_private *dev_priv = to_i915(dev);
1039 i915_reg_t reg = PIPEDSL(pipe);
1040 u32 line1, line2;
1041 u32 line_mask;
1042
1043 if (IS_GEN2(dev))
1044 line_mask = DSL_LINEMASK_GEN2;
1045 else
1046 line_mask = DSL_LINEMASK_GEN3;
1047
1048 line1 = I915_READ(reg) & line_mask;
1049 msleep(5);
1050 line2 = I915_READ(reg) & line_mask;
1051
1052 return line1 == line2;
1053 }
1054
1055 /*
1056 * intel_wait_for_pipe_off - wait for pipe to turn off
1057 * @crtc: crtc whose pipe to wait for
1058 *
1059 * After disabling a pipe, we can't wait for vblank in the usual way,
1060 * spinning on the vblank interrupt status bit, since we won't actually
1061 * see an interrupt when the pipe is disabled.
1062 *
1063 * On Gen4 and above:
1064 * wait for the pipe register state bit to turn off
1065 *
1066 * Otherwise:
1067 * wait for the display line value to settle (it usually
1068 * ends up stopping at the start of the next frame).
1069 *
1070 */
1071 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1072 {
1073 struct drm_device *dev = crtc->base.dev;
1074 struct drm_i915_private *dev_priv = to_i915(dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_INFO(dev)->gen >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096 {
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162 {
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191 enum pipe pipe)
1192 {
1193 struct drm_device *dev = &dev_priv->drm;
1194 i915_reg_t pp_reg;
1195 u32 val;
1196 enum pipe panel_pipe = PIPE_A;
1197 bool locked = true;
1198
1199 if (WARN_ON(HAS_DDI(dev)))
1200 return;
1201
1202 if (HAS_PCH_SPLIT(dev)) {
1203 u32 port_sel;
1204
1205 pp_reg = PP_CONTROL(0);
1206 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1207
1208 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1209 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1210 panel_pipe = PIPE_B;
1211 /* XXX: else fix for eDP */
1212 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1213 /* presumably write lock depends on pipe, not port select */
1214 pp_reg = PP_CONTROL(pipe);
1215 panel_pipe = pipe;
1216 } else {
1217 pp_reg = PP_CONTROL(0);
1218 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1219 panel_pipe = PIPE_B;
1220 }
1221
1222 val = I915_READ(pp_reg);
1223 if (!(val & PANEL_POWER_ON) ||
1224 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1225 locked = false;
1226
1227 I915_STATE_WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
1229 pipe_name(pipe));
1230 }
1231
1232 static void assert_cursor(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1234 {
1235 struct drm_device *dev = &dev_priv->drm;
1236 bool cur_state;
1237
1238 if (IS_845G(dev) || IS_I865G(dev))
1239 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1240 else
1241 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1242
1243 I915_STATE_WARN(cur_state != state,
1244 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1245 pipe_name(pipe), onoff(state), onoff(cur_state));
1246 }
1247 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1248 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1249
1250 void assert_pipe(struct drm_i915_private *dev_priv,
1251 enum pipe pipe, bool state)
1252 {
1253 bool cur_state;
1254 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1255 pipe);
1256 enum intel_display_power_domain power_domain;
1257
1258 /* if we need the pipe quirk it must be always on */
1259 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1260 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1261 state = true;
1262
1263 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1264 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1265 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1266 cur_state = !!(val & PIPECONF_ENABLE);
1267
1268 intel_display_power_put(dev_priv, power_domain);
1269 } else {
1270 cur_state = false;
1271 }
1272
1273 I915_STATE_WARN(cur_state != state,
1274 "pipe %c assertion failure (expected %s, current %s)\n",
1275 pipe_name(pipe), onoff(state), onoff(cur_state));
1276 }
1277
1278 static void assert_plane(struct drm_i915_private *dev_priv,
1279 enum plane plane, bool state)
1280 {
1281 u32 val;
1282 bool cur_state;
1283
1284 val = I915_READ(DSPCNTR(plane));
1285 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1286 I915_STATE_WARN(cur_state != state,
1287 "plane %c assertion failure (expected %s, current %s)\n",
1288 plane_name(plane), onoff(state), onoff(cur_state));
1289 }
1290
1291 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1292 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1293
1294 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 struct drm_device *dev = &dev_priv->drm;
1298 int i;
1299
1300 /* Primary planes are fixed to pipes on gen4+ */
1301 if (INTEL_INFO(dev)->gen >= 4) {
1302 u32 val = I915_READ(DSPCNTR(pipe));
1303 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1304 "plane %c assertion failure, should be disabled but not\n",
1305 plane_name(pipe));
1306 return;
1307 }
1308
1309 /* Need to check both planes against the pipe */
1310 for_each_pipe(dev_priv, i) {
1311 u32 val = I915_READ(DSPCNTR(i));
1312 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1313 DISPPLANE_SEL_PIPE_SHIFT;
1314 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1315 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1316 plane_name(i), pipe_name(pipe));
1317 }
1318 }
1319
1320 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe)
1322 {
1323 struct drm_device *dev = &dev_priv->drm;
1324 int sprite;
1325
1326 if (INTEL_INFO(dev)->gen >= 9) {
1327 for_each_sprite(dev_priv, pipe, sprite) {
1328 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1329 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1330 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1331 sprite, pipe_name(pipe));
1332 }
1333 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1334 for_each_sprite(dev_priv, pipe, sprite) {
1335 u32 val = I915_READ(SPCNTR(pipe, sprite));
1336 I915_STATE_WARN(val & SP_ENABLE,
1337 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1338 sprite_name(pipe, sprite), pipe_name(pipe));
1339 }
1340 } else if (INTEL_INFO(dev)->gen >= 7) {
1341 u32 val = I915_READ(SPRCTL(pipe));
1342 I915_STATE_WARN(val & SPRITE_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 } else if (INTEL_INFO(dev)->gen >= 5) {
1346 u32 val = I915_READ(DVSCNTR(pipe));
1347 I915_STATE_WARN(val & DVS_ENABLE,
1348 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1349 plane_name(pipe), pipe_name(pipe));
1350 }
1351 }
1352
1353 static void assert_vblank_disabled(struct drm_crtc *crtc)
1354 {
1355 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1356 drm_crtc_vblank_put(crtc);
1357 }
1358
1359 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe)
1361 {
1362 u32 val;
1363 bool enabled;
1364
1365 val = I915_READ(PCH_TRANSCONF(pipe));
1366 enabled = !!(val & TRANS_ENABLE);
1367 I915_STATE_WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv)) {
1379 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1380 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1381 return false;
1382 } else if (IS_CHERRYVIEW(dev_priv)) {
1383 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1384 return false;
1385 } else {
1386 if ((val & DP_PIPE_MASK) != (pipe << 30))
1387 return false;
1388 }
1389 return true;
1390 }
1391
1392 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1393 enum pipe pipe, u32 val)
1394 {
1395 if ((val & SDVO_ENABLE) == 0)
1396 return false;
1397
1398 if (HAS_PCH_CPT(dev_priv)) {
1399 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1400 return false;
1401 } else if (IS_CHERRYVIEW(dev_priv)) {
1402 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1403 return false;
1404 } else {
1405 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1406 return false;
1407 }
1408 return true;
1409 }
1410
1411 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 val)
1413 {
1414 if ((val & LVDS_PORT_EN) == 0)
1415 return false;
1416
1417 if (HAS_PCH_CPT(dev_priv)) {
1418 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1419 return false;
1420 } else {
1421 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1422 return false;
1423 }
1424 return true;
1425 }
1426
1427 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1428 enum pipe pipe, u32 val)
1429 {
1430 if ((val & ADPA_DAC_ENABLE) == 0)
1431 return false;
1432 if (HAS_PCH_CPT(dev_priv)) {
1433 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1434 return false;
1435 } else {
1436 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1437 return false;
1438 }
1439 return true;
1440 }
1441
1442 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1443 enum pipe pipe, i915_reg_t reg,
1444 u32 port_sel)
1445 {
1446 u32 val = I915_READ(reg);
1447 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449 i915_mmio_reg_offset(reg), pipe_name(pipe));
1450
1451 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
1453 "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, i915_reg_t reg)
1458 {
1459 u32 val = I915_READ(reg);
1460 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462 i915_mmio_reg_offset(reg), pipe_name(pipe));
1463
1464 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1465 && (val & SDVO_PIPE_B_SELECT),
1466 "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471 {
1472 u32 val;
1473
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1477
1478 val = I915_READ(PCH_ADPA);
1479 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480 "PCH VGA enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 val = I915_READ(PCH_LVDS);
1484 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486 pipe_name(pipe));
1487
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492
1493 static void _vlv_enable_pll(struct intel_crtc *crtc,
1494 const struct intel_crtc_state *pipe_config)
1495 {
1496 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497 enum pipe pipe = crtc->pipe;
1498
1499 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1500 POSTING_READ(DPLL(pipe));
1501 udelay(150);
1502
1503 if (intel_wait_for_register(dev_priv,
1504 DPLL(pipe),
1505 DPLL_LOCK_VLV,
1506 DPLL_LOCK_VLV,
1507 1))
1508 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1509 }
1510
1511 static void vlv_enable_pll(struct intel_crtc *crtc,
1512 const struct intel_crtc_state *pipe_config)
1513 {
1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 enum pipe pipe = crtc->pipe;
1516
1517 assert_pipe_disabled(dev_priv, pipe);
1518
1519 /* PLL is protected by panel, make sure we can write it */
1520 assert_panel_unlocked(dev_priv, pipe);
1521
1522 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1523 _vlv_enable_pll(crtc, pipe_config);
1524
1525 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1526 POSTING_READ(DPLL_MD(pipe));
1527 }
1528
1529
1530 static void _chv_enable_pll(struct intel_crtc *crtc,
1531 const struct intel_crtc_state *pipe_config)
1532 {
1533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534 enum pipe pipe = crtc->pipe;
1535 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1536 u32 tmp;
1537
1538 mutex_lock(&dev_priv->sb_lock);
1539
1540 /* Enable back the 10bit clock to display controller */
1541 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1542 tmp |= DPIO_DCLKP_EN;
1543 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1544
1545 mutex_unlock(&dev_priv->sb_lock);
1546
1547 /*
1548 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1549 */
1550 udelay(1);
1551
1552 /* Enable PLL */
1553 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1554
1555 /* Check PLL is locked */
1556 if (intel_wait_for_register(dev_priv,
1557 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1558 1))
1559 DRM_ERROR("PLL %d failed to lock\n", pipe);
1560 }
1561
1562 static void chv_enable_pll(struct intel_crtc *crtc,
1563 const struct intel_crtc_state *pipe_config)
1564 {
1565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566 enum pipe pipe = crtc->pipe;
1567
1568 assert_pipe_disabled(dev_priv, pipe);
1569
1570 /* PLL is protected by panel, make sure we can write it */
1571 assert_panel_unlocked(dev_priv, pipe);
1572
1573 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1574 _chv_enable_pll(crtc, pipe_config);
1575
1576 if (pipe != PIPE_A) {
1577 /*
1578 * WaPixelRepeatModeFixForC0:chv
1579 *
1580 * DPLLCMD is AWOL. Use chicken bits to propagate
1581 * the value from DPLLBMD to either pipe B or C.
1582 */
1583 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1584 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1585 I915_WRITE(CBR4_VLV, 0);
1586 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1587
1588 /*
1589 * DPLLB VGA mode also seems to cause problems.
1590 * We should always have it disabled.
1591 */
1592 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1593 } else {
1594 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1595 POSTING_READ(DPLL_MD(pipe));
1596 }
1597 }
1598
1599 static int intel_num_dvo_pipes(struct drm_device *dev)
1600 {
1601 struct intel_crtc *crtc;
1602 int count = 0;
1603
1604 for_each_intel_crtc(dev, crtc) {
1605 count += crtc->base.state->active &&
1606 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1607 }
1608
1609 return count;
1610 }
1611
1612 static void i9xx_enable_pll(struct intel_crtc *crtc)
1613 {
1614 struct drm_device *dev = crtc->base.dev;
1615 struct drm_i915_private *dev_priv = to_i915(dev);
1616 i915_reg_t reg = DPLL(crtc->pipe);
1617 u32 dpll = crtc->config->dpll_hw_state.dpll;
1618
1619 assert_pipe_disabled(dev_priv, crtc->pipe);
1620
1621 /* PLL is protected by panel, make sure we can write it */
1622 if (IS_MOBILE(dev) && !IS_I830(dev))
1623 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625 /* Enable DVO 2x clock on both PLLs if necessary */
1626 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1627 /*
1628 * It appears to be important that we don't enable this
1629 * for the current pipe before otherwise configuring the
1630 * PLL. No idea how this should be handled if multiple
1631 * DVO outputs are enabled simultaneosly.
1632 */
1633 dpll |= DPLL_DVO_2X_MODE;
1634 I915_WRITE(DPLL(!crtc->pipe),
1635 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1636 }
1637
1638 /*
1639 * Apparently we need to have VGA mode enabled prior to changing
1640 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1641 * dividers, even though the register value does change.
1642 */
1643 I915_WRITE(reg, 0);
1644
1645 I915_WRITE(reg, dpll);
1646
1647 /* Wait for the clocks to stabilize. */
1648 POSTING_READ(reg);
1649 udelay(150);
1650
1651 if (INTEL_INFO(dev)->gen >= 4) {
1652 I915_WRITE(DPLL_MD(crtc->pipe),
1653 crtc->config->dpll_hw_state.dpll_md);
1654 } else {
1655 /* The pixel multiplier can only be updated once the
1656 * DPLL is enabled and the clocks are stable.
1657 *
1658 * So write it again.
1659 */
1660 I915_WRITE(reg, dpll);
1661 }
1662
1663 /* We do this three times for luck */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667 I915_WRITE(reg, dpll);
1668 POSTING_READ(reg);
1669 udelay(150); /* wait for warmup */
1670 I915_WRITE(reg, dpll);
1671 POSTING_READ(reg);
1672 udelay(150); /* wait for warmup */
1673 }
1674
1675 /**
1676 * i9xx_disable_pll - disable a PLL
1677 * @dev_priv: i915 private structure
1678 * @pipe: pipe PLL to disable
1679 *
1680 * Disable the PLL for @pipe, making sure the pipe is off first.
1681 *
1682 * Note! This is for pre-ILK only.
1683 */
1684 static void i9xx_disable_pll(struct intel_crtc *crtc)
1685 {
1686 struct drm_device *dev = crtc->base.dev;
1687 struct drm_i915_private *dev_priv = to_i915(dev);
1688 enum pipe pipe = crtc->pipe;
1689
1690 /* Disable DVO 2x clock on both PLLs if necessary */
1691 if (IS_I830(dev) &&
1692 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1693 !intel_num_dvo_pipes(dev)) {
1694 I915_WRITE(DPLL(PIPE_B),
1695 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1696 I915_WRITE(DPLL(PIPE_A),
1697 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1698 }
1699
1700 /* Don't disable pipe or pipe PLLs if needed */
1701 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1702 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1703 return;
1704
1705 /* Make sure the pipe isn't still relying on us */
1706 assert_pipe_disabled(dev_priv, pipe);
1707
1708 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1709 POSTING_READ(DPLL(pipe));
1710 }
1711
1712 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713 {
1714 u32 val;
1715
1716 /* Make sure the pipe isn't still relying on us */
1717 assert_pipe_disabled(dev_priv, pipe);
1718
1719 val = DPLL_INTEGRATED_REF_CLK_VLV |
1720 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1721 if (pipe != PIPE_A)
1722 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
1726 }
1727
1728 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1729 {
1730 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1731 u32 val;
1732
1733 /* Make sure the pipe isn't still relying on us */
1734 assert_pipe_disabled(dev_priv, pipe);
1735
1736 val = DPLL_SSC_REF_CLK_CHV |
1737 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1738 if (pipe != PIPE_A)
1739 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1740
1741 I915_WRITE(DPLL(pipe), val);
1742 POSTING_READ(DPLL(pipe));
1743
1744 mutex_lock(&dev_priv->sb_lock);
1745
1746 /* Disable 10bit clock to display controller */
1747 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1748 val &= ~DPIO_DCLKP_EN;
1749 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1750
1751 mutex_unlock(&dev_priv->sb_lock);
1752 }
1753
1754 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1755 struct intel_digital_port *dport,
1756 unsigned int expected_mask)
1757 {
1758 u32 port_mask;
1759 i915_reg_t dpll_reg;
1760
1761 switch (dport->port) {
1762 case PORT_B:
1763 port_mask = DPLL_PORTB_READY_MASK;
1764 dpll_reg = DPLL(0);
1765 break;
1766 case PORT_C:
1767 port_mask = DPLL_PORTC_READY_MASK;
1768 dpll_reg = DPLL(0);
1769 expected_mask <<= 4;
1770 break;
1771 case PORT_D:
1772 port_mask = DPLL_PORTD_READY_MASK;
1773 dpll_reg = DPIO_PHY_STATUS;
1774 break;
1775 default:
1776 BUG();
1777 }
1778
1779 if (intel_wait_for_register(dev_priv,
1780 dpll_reg, port_mask, expected_mask,
1781 1000))
1782 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1783 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1784 }
1785
1786 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1787 enum pipe pipe)
1788 {
1789 struct drm_device *dev = &dev_priv->drm;
1790 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1792 i915_reg_t reg;
1793 uint32_t val, pipeconf_val;
1794
1795 /* Make sure PCH DPLL is enabled */
1796 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1797
1798 /* FDI must be feeding us bits for PCH ports */
1799 assert_fdi_tx_enabled(dev_priv, pipe);
1800 assert_fdi_rx_enabled(dev_priv, pipe);
1801
1802 if (HAS_PCH_CPT(dev)) {
1803 /* Workaround: Set the timing override bit before enabling the
1804 * pch transcoder. */
1805 reg = TRANS_CHICKEN2(pipe);
1806 val = I915_READ(reg);
1807 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1808 I915_WRITE(reg, val);
1809 }
1810
1811 reg = PCH_TRANSCONF(pipe);
1812 val = I915_READ(reg);
1813 pipeconf_val = I915_READ(PIPECONF(pipe));
1814
1815 if (HAS_PCH_IBX(dev_priv)) {
1816 /*
1817 * Make the BPC in transcoder be consistent with
1818 * that in pipeconf reg. For HDMI we must use 8bpc
1819 * here for both 8bpc and 12bpc.
1820 */
1821 val &= ~PIPECONF_BPC_MASK;
1822 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1823 val |= PIPECONF_8BPC;
1824 else
1825 val |= pipeconf_val & PIPECONF_BPC_MASK;
1826 }
1827
1828 val &= ~TRANS_INTERLACE_MASK;
1829 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1830 if (HAS_PCH_IBX(dev_priv) &&
1831 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1832 val |= TRANS_LEGACY_INTERLACED_ILK;
1833 else
1834 val |= TRANS_INTERLACED;
1835 else
1836 val |= TRANS_PROGRESSIVE;
1837
1838 I915_WRITE(reg, val | TRANS_ENABLE);
1839 if (intel_wait_for_register(dev_priv,
1840 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1841 100))
1842 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1843 }
1844
1845 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1846 enum transcoder cpu_transcoder)
1847 {
1848 u32 val, pipeconf_val;
1849
1850 /* FDI must be feeding us bits for PCH ports */
1851 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1852 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1853
1854 /* Workaround: set timing override bit. */
1855 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1857 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858
1859 val = TRANS_ENABLE;
1860 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1861
1862 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1863 PIPECONF_INTERLACED_ILK)
1864 val |= TRANS_INTERLACED;
1865 else
1866 val |= TRANS_PROGRESSIVE;
1867
1868 I915_WRITE(LPT_TRANSCONF, val);
1869 if (intel_wait_for_register(dev_priv,
1870 LPT_TRANSCONF,
1871 TRANS_STATE_ENABLE,
1872 TRANS_STATE_ENABLE,
1873 100))
1874 DRM_ERROR("Failed to enable PCH transcoder\n");
1875 }
1876
1877 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1878 enum pipe pipe)
1879 {
1880 struct drm_device *dev = &dev_priv->drm;
1881 i915_reg_t reg;
1882 uint32_t val;
1883
1884 /* FDI relies on the transcoder */
1885 assert_fdi_tx_disabled(dev_priv, pipe);
1886 assert_fdi_rx_disabled(dev_priv, pipe);
1887
1888 /* Ports must be off as well */
1889 assert_pch_ports_disabled(dev_priv, pipe);
1890
1891 reg = PCH_TRANSCONF(pipe);
1892 val = I915_READ(reg);
1893 val &= ~TRANS_ENABLE;
1894 I915_WRITE(reg, val);
1895 /* wait for PCH transcoder off, transcoder state */
1896 if (intel_wait_for_register(dev_priv,
1897 reg, TRANS_STATE_ENABLE, 0,
1898 50))
1899 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900
1901 if (HAS_PCH_CPT(dev)) {
1902 /* Workaround: Clear the timing override chicken bit again. */
1903 reg = TRANS_CHICKEN2(pipe);
1904 val = I915_READ(reg);
1905 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 I915_WRITE(reg, val);
1907 }
1908 }
1909
1910 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912 u32 val;
1913
1914 val = I915_READ(LPT_TRANSCONF);
1915 val &= ~TRANS_ENABLE;
1916 I915_WRITE(LPT_TRANSCONF, val);
1917 /* wait for PCH transcoder off, transcoder state */
1918 if (intel_wait_for_register(dev_priv,
1919 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 50))
1921 DRM_ERROR("Failed to disable PCH transcoder\n");
1922
1923 /* Workaround: clear timing override bit. */
1924 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928
1929 /**
1930 * intel_enable_pipe - enable a pipe, asserting requirements
1931 * @crtc: crtc responsible for the pipe
1932 *
1933 * Enable @crtc's pipe, making sure that various hardware specific requirements
1934 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1935 */
1936 static void intel_enable_pipe(struct intel_crtc *crtc)
1937 {
1938 struct drm_device *dev = crtc->base.dev;
1939 struct drm_i915_private *dev_priv = to_i915(dev);
1940 enum pipe pipe = crtc->pipe;
1941 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1942 enum pipe pch_transcoder;
1943 i915_reg_t reg;
1944 u32 val;
1945
1946 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1947
1948 assert_planes_disabled(dev_priv, pipe);
1949 assert_cursor_disabled(dev_priv, pipe);
1950 assert_sprites_disabled(dev_priv, pipe);
1951
1952 if (HAS_PCH_LPT(dev_priv))
1953 pch_transcoder = TRANSCODER_A;
1954 else
1955 pch_transcoder = pipe;
1956
1957 /*
1958 * A pipe without a PLL won't actually be able to drive bits from
1959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1960 * need the check.
1961 */
1962 if (HAS_GMCH_DISPLAY(dev_priv)) {
1963 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1964 assert_dsi_pll_enabled(dev_priv);
1965 else
1966 assert_pll_enabled(dev_priv, pipe);
1967 } else {
1968 if (crtc->config->has_pch_encoder) {
1969 /* if driving the PCH, we need FDI enabled */
1970 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1971 assert_fdi_tx_pll_enabled(dev_priv,
1972 (enum pipe) cpu_transcoder);
1973 }
1974 /* FIXME: assert CPU port conditions for SNB+ */
1975 }
1976
1977 reg = PIPECONF(cpu_transcoder);
1978 val = I915_READ(reg);
1979 if (val & PIPECONF_ENABLE) {
1980 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1981 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1982 return;
1983 }
1984
1985 I915_WRITE(reg, val | PIPECONF_ENABLE);
1986 POSTING_READ(reg);
1987
1988 /*
1989 * Until the pipe starts DSL will read as 0, which would cause
1990 * an apparent vblank timestamp jump, which messes up also the
1991 * frame count when it's derived from the timestamps. So let's
1992 * wait for the pipe to start properly before we call
1993 * drm_crtc_vblank_on()
1994 */
1995 if (dev->max_vblank_count == 0 &&
1996 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1997 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1998 }
1999
2000 /**
2001 * intel_disable_pipe - disable a pipe, asserting requirements
2002 * @crtc: crtc whose pipes is to be disabled
2003 *
2004 * Disable the pipe of @crtc, making sure that various hardware
2005 * specific requirements are met, if applicable, e.g. plane
2006 * disabled, panel fitter off, etc.
2007 *
2008 * Will wait until the pipe has shut down before returning.
2009 */
2010 static void intel_disable_pipe(struct intel_crtc *crtc)
2011 {
2012 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2013 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2014 enum pipe pipe = crtc->pipe;
2015 i915_reg_t reg;
2016 u32 val;
2017
2018 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019
2020 /*
2021 * Make sure planes won't keep trying to pump pixels to us,
2022 * or we might hang the display.
2023 */
2024 assert_planes_disabled(dev_priv, pipe);
2025 assert_cursor_disabled(dev_priv, pipe);
2026 assert_sprites_disabled(dev_priv, pipe);
2027
2028 reg = PIPECONF(cpu_transcoder);
2029 val = I915_READ(reg);
2030 if ((val & PIPECONF_ENABLE) == 0)
2031 return;
2032
2033 /*
2034 * Double wide has implications for planes
2035 * so best keep it disabled when not needed.
2036 */
2037 if (crtc->config->double_wide)
2038 val &= ~PIPECONF_DOUBLE_WIDE;
2039
2040 /* Don't disable pipe or pipe PLLs if needed */
2041 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2042 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2043 val &= ~PIPECONF_ENABLE;
2044
2045 I915_WRITE(reg, val);
2046 if ((val & PIPECONF_ENABLE) == 0)
2047 intel_wait_for_pipe_off(crtc);
2048 }
2049
2050 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2051 {
2052 return IS_GEN2(dev_priv) ? 2048 : 4096;
2053 }
2054
2055 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2056 uint64_t fb_modifier, unsigned int cpp)
2057 {
2058 switch (fb_modifier) {
2059 case DRM_FORMAT_MOD_NONE:
2060 return cpp;
2061 case I915_FORMAT_MOD_X_TILED:
2062 if (IS_GEN2(dev_priv))
2063 return 128;
2064 else
2065 return 512;
2066 case I915_FORMAT_MOD_Y_TILED:
2067 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2068 return 128;
2069 else
2070 return 512;
2071 case I915_FORMAT_MOD_Yf_TILED:
2072 switch (cpp) {
2073 case 1:
2074 return 64;
2075 case 2:
2076 case 4:
2077 return 128;
2078 case 8:
2079 case 16:
2080 return 256;
2081 default:
2082 MISSING_CASE(cpp);
2083 return cpp;
2084 }
2085 break;
2086 default:
2087 MISSING_CASE(fb_modifier);
2088 return cpp;
2089 }
2090 }
2091
2092 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2093 uint64_t fb_modifier, unsigned int cpp)
2094 {
2095 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2096 return 1;
2097 else
2098 return intel_tile_size(dev_priv) /
2099 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2100 }
2101
2102 /* Return the tile dimensions in pixel units */
2103 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2104 unsigned int *tile_width,
2105 unsigned int *tile_height,
2106 uint64_t fb_modifier,
2107 unsigned int cpp)
2108 {
2109 unsigned int tile_width_bytes =
2110 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2111
2112 *tile_width = tile_width_bytes / cpp;
2113 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114 }
2115
2116 unsigned int
2117 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2118 uint32_t pixel_format, uint64_t fb_modifier)
2119 {
2120 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2121 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2122
2123 return ALIGN(height, tile_height);
2124 }
2125
2126 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127 {
2128 unsigned int size = 0;
2129 int i;
2130
2131 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132 size += rot_info->plane[i].width * rot_info->plane[i].height;
2133
2134 return size;
2135 }
2136
2137 static void
2138 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2139 const struct drm_framebuffer *fb,
2140 unsigned int rotation)
2141 {
2142 if (intel_rotation_90_or_270(rotation)) {
2143 *view = i915_ggtt_view_rotated;
2144 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2145 } else {
2146 *view = i915_ggtt_view_normal;
2147 }
2148 }
2149
2150 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2151 {
2152 if (INTEL_INFO(dev_priv)->gen >= 9)
2153 return 256 * 1024;
2154 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2155 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2156 return 128 * 1024;
2157 else if (INTEL_INFO(dev_priv)->gen >= 4)
2158 return 4 * 1024;
2159 else
2160 return 0;
2161 }
2162
2163 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2164 uint64_t fb_modifier)
2165 {
2166 switch (fb_modifier) {
2167 case DRM_FORMAT_MOD_NONE:
2168 return intel_linear_alignment(dev_priv);
2169 case I915_FORMAT_MOD_X_TILED:
2170 if (INTEL_INFO(dev_priv)->gen >= 9)
2171 return 256 * 1024;
2172 return 0;
2173 case I915_FORMAT_MOD_Y_TILED:
2174 case I915_FORMAT_MOD_Yf_TILED:
2175 return 1 * 1024 * 1024;
2176 default:
2177 MISSING_CASE(fb_modifier);
2178 return 0;
2179 }
2180 }
2181
2182 struct i915_vma *
2183 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2184 {
2185 struct drm_device *dev = fb->dev;
2186 struct drm_i915_private *dev_priv = to_i915(dev);
2187 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2188 struct i915_ggtt_view view;
2189 struct i915_vma *vma;
2190 u32 alignment;
2191
2192 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2193
2194 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2195
2196 intel_fill_fb_ggtt_view(&view, fb, rotation);
2197
2198 /* Note that the w/a also requires 64 PTE of padding following the
2199 * bo. We currently fill all unused PTE with the shadow page and so
2200 * we should always have valid PTE following the scanout preventing
2201 * the VT-d warning.
2202 */
2203 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2204 alignment = 256 * 1024;
2205
2206 /*
2207 * Global gtt pte registers are special registers which actually forward
2208 * writes to a chunk of system memory. Which means that there is no risk
2209 * that the register values disappear as soon as we call
2210 * intel_runtime_pm_put(), so it is correct to wrap only the
2211 * pin/unpin/fence and not more.
2212 */
2213 intel_runtime_pm_get(dev_priv);
2214
2215 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2216 if (IS_ERR(vma))
2217 goto err;
2218
2219 if (i915_vma_is_map_and_fenceable(vma)) {
2220 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2221 * fence, whereas 965+ only requires a fence if using
2222 * framebuffer compression. For simplicity, we always, when
2223 * possible, install a fence as the cost is not that onerous.
2224 *
2225 * If we fail to fence the tiled scanout, then either the
2226 * modeset will reject the change (which is highly unlikely as
2227 * the affected systems, all but one, do not have unmappable
2228 * space) or we will not be able to enable full powersaving
2229 * techniques (also likely not to apply due to various limits
2230 * FBC and the like impose on the size of the buffer, which
2231 * presumably we violated anyway with this unmappable buffer).
2232 * Anyway, it is presumably better to stumble onwards with
2233 * something and try to run the system in a "less than optimal"
2234 * mode that matches the user configuration.
2235 */
2236 if (i915_vma_get_fence(vma) == 0)
2237 i915_vma_pin_fence(vma);
2238 }
2239
2240 err:
2241 intel_runtime_pm_put(dev_priv);
2242 return vma;
2243 }
2244
2245 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2246 {
2247 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2248 struct i915_ggtt_view view;
2249 struct i915_vma *vma;
2250
2251 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2252
2253 intel_fill_fb_ggtt_view(&view, fb, rotation);
2254 vma = i915_gem_object_to_ggtt(obj, &view);
2255
2256 i915_vma_unpin_fence(vma);
2257 i915_gem_object_unpin_from_display_plane(vma);
2258 }
2259
2260 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2261 unsigned int rotation)
2262 {
2263 if (intel_rotation_90_or_270(rotation))
2264 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2265 else
2266 return fb->pitches[plane];
2267 }
2268
2269 /*
2270 * Convert the x/y offsets into a linear offset.
2271 * Only valid with 0/180 degree rotation, which is fine since linear
2272 * offset is only used with linear buffers on pre-hsw and tiled buffers
2273 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2274 */
2275 u32 intel_fb_xy_to_linear(int x, int y,
2276 const struct intel_plane_state *state,
2277 int plane)
2278 {
2279 const struct drm_framebuffer *fb = state->base.fb;
2280 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2281 unsigned int pitch = fb->pitches[plane];
2282
2283 return y * pitch + x * cpp;
2284 }
2285
2286 /*
2287 * Add the x/y offsets derived from fb->offsets[] to the user
2288 * specified plane src x/y offsets. The resulting x/y offsets
2289 * specify the start of scanout from the beginning of the gtt mapping.
2290 */
2291 void intel_add_fb_offsets(int *x, int *y,
2292 const struct intel_plane_state *state,
2293 int plane)
2294
2295 {
2296 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2297 unsigned int rotation = state->base.rotation;
2298
2299 if (intel_rotation_90_or_270(rotation)) {
2300 *x += intel_fb->rotated[plane].x;
2301 *y += intel_fb->rotated[plane].y;
2302 } else {
2303 *x += intel_fb->normal[plane].x;
2304 *y += intel_fb->normal[plane].y;
2305 }
2306 }
2307
2308 /*
2309 * Input tile dimensions and pitch must already be
2310 * rotated to match x and y, and in pixel units.
2311 */
2312 static u32 _intel_adjust_tile_offset(int *x, int *y,
2313 unsigned int tile_width,
2314 unsigned int tile_height,
2315 unsigned int tile_size,
2316 unsigned int pitch_tiles,
2317 u32 old_offset,
2318 u32 new_offset)
2319 {
2320 unsigned int pitch_pixels = pitch_tiles * tile_width;
2321 unsigned int tiles;
2322
2323 WARN_ON(old_offset & (tile_size - 1));
2324 WARN_ON(new_offset & (tile_size - 1));
2325 WARN_ON(new_offset > old_offset);
2326
2327 tiles = (old_offset - new_offset) / tile_size;
2328
2329 *y += tiles / pitch_tiles * tile_height;
2330 *x += tiles % pitch_tiles * tile_width;
2331
2332 /* minimize x in case it got needlessly big */
2333 *y += *x / pitch_pixels * tile_height;
2334 *x %= pitch_pixels;
2335
2336 return new_offset;
2337 }
2338
2339 /*
2340 * Adjust the tile offset by moving the difference into
2341 * the x/y offsets.
2342 */
2343 static u32 intel_adjust_tile_offset(int *x, int *y,
2344 const struct intel_plane_state *state, int plane,
2345 u32 old_offset, u32 new_offset)
2346 {
2347 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2348 const struct drm_framebuffer *fb = state->base.fb;
2349 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2350 unsigned int rotation = state->base.rotation;
2351 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2352
2353 WARN_ON(new_offset > old_offset);
2354
2355 if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2356 unsigned int tile_size, tile_width, tile_height;
2357 unsigned int pitch_tiles;
2358
2359 tile_size = intel_tile_size(dev_priv);
2360 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2361 fb->modifier[plane], cpp);
2362
2363 if (intel_rotation_90_or_270(rotation)) {
2364 pitch_tiles = pitch / tile_height;
2365 swap(tile_width, tile_height);
2366 } else {
2367 pitch_tiles = pitch / (tile_width * cpp);
2368 }
2369
2370 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2371 tile_size, pitch_tiles,
2372 old_offset, new_offset);
2373 } else {
2374 old_offset += *y * pitch + *x * cpp;
2375
2376 *y = (old_offset - new_offset) / pitch;
2377 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2378 }
2379
2380 return new_offset;
2381 }
2382
2383 /*
2384 * Computes the linear offset to the base tile and adjusts
2385 * x, y. bytes per pixel is assumed to be a power-of-two.
2386 *
2387 * In the 90/270 rotated case, x and y are assumed
2388 * to be already rotated to match the rotated GTT view, and
2389 * pitch is the tile_height aligned framebuffer height.
2390 *
2391 * This function is used when computing the derived information
2392 * under intel_framebuffer, so using any of that information
2393 * here is not allowed. Anything under drm_framebuffer can be
2394 * used. This is why the user has to pass in the pitch since it
2395 * is specified in the rotated orientation.
2396 */
2397 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2398 int *x, int *y,
2399 const struct drm_framebuffer *fb, int plane,
2400 unsigned int pitch,
2401 unsigned int rotation,
2402 u32 alignment)
2403 {
2404 uint64_t fb_modifier = fb->modifier[plane];
2405 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2406 u32 offset, offset_aligned;
2407
2408 if (alignment)
2409 alignment--;
2410
2411 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2412 unsigned int tile_size, tile_width, tile_height;
2413 unsigned int tile_rows, tiles, pitch_tiles;
2414
2415 tile_size = intel_tile_size(dev_priv);
2416 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2417 fb_modifier, cpp);
2418
2419 if (intel_rotation_90_or_270(rotation)) {
2420 pitch_tiles = pitch / tile_height;
2421 swap(tile_width, tile_height);
2422 } else {
2423 pitch_tiles = pitch / (tile_width * cpp);
2424 }
2425
2426 tile_rows = *y / tile_height;
2427 *y %= tile_height;
2428
2429 tiles = *x / tile_width;
2430 *x %= tile_width;
2431
2432 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2433 offset_aligned = offset & ~alignment;
2434
2435 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2436 tile_size, pitch_tiles,
2437 offset, offset_aligned);
2438 } else {
2439 offset = *y * pitch + *x * cpp;
2440 offset_aligned = offset & ~alignment;
2441
2442 *y = (offset & alignment) / pitch;
2443 *x = ((offset & alignment) - *y * pitch) / cpp;
2444 }
2445
2446 return offset_aligned;
2447 }
2448
2449 u32 intel_compute_tile_offset(int *x, int *y,
2450 const struct intel_plane_state *state,
2451 int plane)
2452 {
2453 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2454 const struct drm_framebuffer *fb = state->base.fb;
2455 unsigned int rotation = state->base.rotation;
2456 int pitch = intel_fb_pitch(fb, plane, rotation);
2457 u32 alignment;
2458
2459 /* AUX_DIST needs only 4K alignment */
2460 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2461 alignment = 4096;
2462 else
2463 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2464
2465 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2466 rotation, alignment);
2467 }
2468
2469 /* Convert the fb->offset[] linear offset into x/y offsets */
2470 static void intel_fb_offset_to_xy(int *x, int *y,
2471 const struct drm_framebuffer *fb, int plane)
2472 {
2473 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2474 unsigned int pitch = fb->pitches[plane];
2475 u32 linear_offset = fb->offsets[plane];
2476
2477 *y = linear_offset / pitch;
2478 *x = linear_offset % pitch / cpp;
2479 }
2480
2481 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2482 {
2483 switch (fb_modifier) {
2484 case I915_FORMAT_MOD_X_TILED:
2485 return I915_TILING_X;
2486 case I915_FORMAT_MOD_Y_TILED:
2487 return I915_TILING_Y;
2488 default:
2489 return I915_TILING_NONE;
2490 }
2491 }
2492
2493 static int
2494 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2495 struct drm_framebuffer *fb)
2496 {
2497 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2498 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2499 u32 gtt_offset_rotated = 0;
2500 unsigned int max_size = 0;
2501 uint32_t format = fb->pixel_format;
2502 int i, num_planes = drm_format_num_planes(format);
2503 unsigned int tile_size = intel_tile_size(dev_priv);
2504
2505 for (i = 0; i < num_planes; i++) {
2506 unsigned int width, height;
2507 unsigned int cpp, size;
2508 u32 offset;
2509 int x, y;
2510
2511 cpp = drm_format_plane_cpp(format, i);
2512 width = drm_format_plane_width(fb->width, format, i);
2513 height = drm_format_plane_height(fb->height, format, i);
2514
2515 intel_fb_offset_to_xy(&x, &y, fb, i);
2516
2517 /*
2518 * The fence (if used) is aligned to the start of the object
2519 * so having the framebuffer wrap around across the edge of the
2520 * fenced region doesn't really work. We have no API to configure
2521 * the fence start offset within the object (nor could we probably
2522 * on gen2/3). So it's just easier if we just require that the
2523 * fb layout agrees with the fence layout. We already check that the
2524 * fb stride matches the fence stride elsewhere.
2525 */
2526 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2527 (x + width) * cpp > fb->pitches[i]) {
2528 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2529 i, fb->offsets[i]);
2530 return -EINVAL;
2531 }
2532
2533 /*
2534 * First pixel of the framebuffer from
2535 * the start of the normal gtt mapping.
2536 */
2537 intel_fb->normal[i].x = x;
2538 intel_fb->normal[i].y = y;
2539
2540 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2541 fb, 0, fb->pitches[i],
2542 DRM_ROTATE_0, tile_size);
2543 offset /= tile_size;
2544
2545 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2546 unsigned int tile_width, tile_height;
2547 unsigned int pitch_tiles;
2548 struct drm_rect r;
2549
2550 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2551 fb->modifier[i], cpp);
2552
2553 rot_info->plane[i].offset = offset;
2554 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2555 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2556 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2557
2558 intel_fb->rotated[i].pitch =
2559 rot_info->plane[i].height * tile_height;
2560
2561 /* how many tiles does this plane need */
2562 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2563 /*
2564 * If the plane isn't horizontally tile aligned,
2565 * we need one more tile.
2566 */
2567 if (x != 0)
2568 size++;
2569
2570 /* rotate the x/y offsets to match the GTT view */
2571 r.x1 = x;
2572 r.y1 = y;
2573 r.x2 = x + width;
2574 r.y2 = y + height;
2575 drm_rect_rotate(&r,
2576 rot_info->plane[i].width * tile_width,
2577 rot_info->plane[i].height * tile_height,
2578 DRM_ROTATE_270);
2579 x = r.x1;
2580 y = r.y1;
2581
2582 /* rotate the tile dimensions to match the GTT view */
2583 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2584 swap(tile_width, tile_height);
2585
2586 /*
2587 * We only keep the x/y offsets, so push all of the
2588 * gtt offset into the x/y offsets.
2589 */
2590 _intel_adjust_tile_offset(&x, &y, tile_size,
2591 tile_width, tile_height, pitch_tiles,
2592 gtt_offset_rotated * tile_size, 0);
2593
2594 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2595
2596 /*
2597 * First pixel of the framebuffer from
2598 * the start of the rotated gtt mapping.
2599 */
2600 intel_fb->rotated[i].x = x;
2601 intel_fb->rotated[i].y = y;
2602 } else {
2603 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2604 x * cpp, tile_size);
2605 }
2606
2607 /* how many tiles in total needed in the bo */
2608 max_size = max(max_size, offset + size);
2609 }
2610
2611 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2612 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2613 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2614 return -EINVAL;
2615 }
2616
2617 return 0;
2618 }
2619
2620 static int i9xx_format_to_fourcc(int format)
2621 {
2622 switch (format) {
2623 case DISPPLANE_8BPP:
2624 return DRM_FORMAT_C8;
2625 case DISPPLANE_BGRX555:
2626 return DRM_FORMAT_XRGB1555;
2627 case DISPPLANE_BGRX565:
2628 return DRM_FORMAT_RGB565;
2629 default:
2630 case DISPPLANE_BGRX888:
2631 return DRM_FORMAT_XRGB8888;
2632 case DISPPLANE_RGBX888:
2633 return DRM_FORMAT_XBGR8888;
2634 case DISPPLANE_BGRX101010:
2635 return DRM_FORMAT_XRGB2101010;
2636 case DISPPLANE_RGBX101010:
2637 return DRM_FORMAT_XBGR2101010;
2638 }
2639 }
2640
2641 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2642 {
2643 switch (format) {
2644 case PLANE_CTL_FORMAT_RGB_565:
2645 return DRM_FORMAT_RGB565;
2646 default:
2647 case PLANE_CTL_FORMAT_XRGB_8888:
2648 if (rgb_order) {
2649 if (alpha)
2650 return DRM_FORMAT_ABGR8888;
2651 else
2652 return DRM_FORMAT_XBGR8888;
2653 } else {
2654 if (alpha)
2655 return DRM_FORMAT_ARGB8888;
2656 else
2657 return DRM_FORMAT_XRGB8888;
2658 }
2659 case PLANE_CTL_FORMAT_XRGB_2101010:
2660 if (rgb_order)
2661 return DRM_FORMAT_XBGR2101010;
2662 else
2663 return DRM_FORMAT_XRGB2101010;
2664 }
2665 }
2666
2667 static bool
2668 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2669 struct intel_initial_plane_config *plane_config)
2670 {
2671 struct drm_device *dev = crtc->base.dev;
2672 struct drm_i915_private *dev_priv = to_i915(dev);
2673 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2674 struct drm_i915_gem_object *obj = NULL;
2675 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2676 struct drm_framebuffer *fb = &plane_config->fb->base;
2677 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2678 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2679 PAGE_SIZE);
2680
2681 size_aligned -= base_aligned;
2682
2683 if (plane_config->size == 0)
2684 return false;
2685
2686 /* If the FB is too big, just don't use it since fbdev is not very
2687 * important and we should probably use that space with FBC or other
2688 * features. */
2689 if (size_aligned * 2 > ggtt->stolen_usable_size)
2690 return false;
2691
2692 mutex_lock(&dev->struct_mutex);
2693
2694 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2695 base_aligned,
2696 base_aligned,
2697 size_aligned);
2698 if (!obj) {
2699 mutex_unlock(&dev->struct_mutex);
2700 return false;
2701 }
2702
2703 if (plane_config->tiling == I915_TILING_X)
2704 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2705
2706 mode_cmd.pixel_format = fb->pixel_format;
2707 mode_cmd.width = fb->width;
2708 mode_cmd.height = fb->height;
2709 mode_cmd.pitches[0] = fb->pitches[0];
2710 mode_cmd.modifier[0] = fb->modifier[0];
2711 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2712
2713 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2714 &mode_cmd, obj)) {
2715 DRM_DEBUG_KMS("intel fb init failed\n");
2716 goto out_unref_obj;
2717 }
2718
2719 mutex_unlock(&dev->struct_mutex);
2720
2721 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2722 return true;
2723
2724 out_unref_obj:
2725 i915_gem_object_put(obj);
2726 mutex_unlock(&dev->struct_mutex);
2727 return false;
2728 }
2729
2730 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2731 static void
2732 update_state_fb(struct drm_plane *plane)
2733 {
2734 if (plane->fb == plane->state->fb)
2735 return;
2736
2737 if (plane->state->fb)
2738 drm_framebuffer_unreference(plane->state->fb);
2739 plane->state->fb = plane->fb;
2740 if (plane->state->fb)
2741 drm_framebuffer_reference(plane->state->fb);
2742 }
2743
2744 static void
2745 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2746 struct intel_initial_plane_config *plane_config)
2747 {
2748 struct drm_device *dev = intel_crtc->base.dev;
2749 struct drm_i915_private *dev_priv = to_i915(dev);
2750 struct drm_crtc *c;
2751 struct intel_crtc *i;
2752 struct drm_i915_gem_object *obj;
2753 struct drm_plane *primary = intel_crtc->base.primary;
2754 struct drm_plane_state *plane_state = primary->state;
2755 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2756 struct intel_plane *intel_plane = to_intel_plane(primary);
2757 struct intel_plane_state *intel_state =
2758 to_intel_plane_state(plane_state);
2759 struct drm_framebuffer *fb;
2760
2761 if (!plane_config->fb)
2762 return;
2763
2764 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2765 fb = &plane_config->fb->base;
2766 goto valid_fb;
2767 }
2768
2769 kfree(plane_config->fb);
2770
2771 /*
2772 * Failed to alloc the obj, check to see if we should share
2773 * an fb with another CRTC instead
2774 */
2775 for_each_crtc(dev, c) {
2776 i = to_intel_crtc(c);
2777
2778 if (c == &intel_crtc->base)
2779 continue;
2780
2781 if (!i->active)
2782 continue;
2783
2784 fb = c->primary->fb;
2785 if (!fb)
2786 continue;
2787
2788 obj = intel_fb_obj(fb);
2789 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2790 drm_framebuffer_reference(fb);
2791 goto valid_fb;
2792 }
2793 }
2794
2795 /*
2796 * We've failed to reconstruct the BIOS FB. Current display state
2797 * indicates that the primary plane is visible, but has a NULL FB,
2798 * which will lead to problems later if we don't fix it up. The
2799 * simplest solution is to just disable the primary plane now and
2800 * pretend the BIOS never had it enabled.
2801 */
2802 to_intel_plane_state(plane_state)->base.visible = false;
2803 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2804 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2805 intel_plane->disable_plane(primary, &intel_crtc->base);
2806
2807 return;
2808
2809 valid_fb:
2810 plane_state->src_x = 0;
2811 plane_state->src_y = 0;
2812 plane_state->src_w = fb->width << 16;
2813 plane_state->src_h = fb->height << 16;
2814
2815 plane_state->crtc_x = 0;
2816 plane_state->crtc_y = 0;
2817 plane_state->crtc_w = fb->width;
2818 plane_state->crtc_h = fb->height;
2819
2820 intel_state->base.src.x1 = plane_state->src_x;
2821 intel_state->base.src.y1 = plane_state->src_y;
2822 intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2823 intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2824 intel_state->base.dst.x1 = plane_state->crtc_x;
2825 intel_state->base.dst.y1 = plane_state->crtc_y;
2826 intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2827 intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2828
2829 obj = intel_fb_obj(fb);
2830 if (i915_gem_object_is_tiled(obj))
2831 dev_priv->preserve_bios_swizzle = true;
2832
2833 drm_framebuffer_reference(fb);
2834 primary->fb = primary->state->fb = fb;
2835 primary->crtc = primary->state->crtc = &intel_crtc->base;
2836 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2837 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2838 &obj->frontbuffer_bits);
2839 }
2840
2841 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2842 unsigned int rotation)
2843 {
2844 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2845
2846 switch (fb->modifier[plane]) {
2847 case DRM_FORMAT_MOD_NONE:
2848 case I915_FORMAT_MOD_X_TILED:
2849 switch (cpp) {
2850 case 8:
2851 return 4096;
2852 case 4:
2853 case 2:
2854 case 1:
2855 return 8192;
2856 default:
2857 MISSING_CASE(cpp);
2858 break;
2859 }
2860 break;
2861 case I915_FORMAT_MOD_Y_TILED:
2862 case I915_FORMAT_MOD_Yf_TILED:
2863 switch (cpp) {
2864 case 8:
2865 return 2048;
2866 case 4:
2867 return 4096;
2868 case 2:
2869 case 1:
2870 return 8192;
2871 default:
2872 MISSING_CASE(cpp);
2873 break;
2874 }
2875 break;
2876 default:
2877 MISSING_CASE(fb->modifier[plane]);
2878 }
2879
2880 return 2048;
2881 }
2882
2883 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2884 {
2885 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2886 const struct drm_framebuffer *fb = plane_state->base.fb;
2887 unsigned int rotation = plane_state->base.rotation;
2888 int x = plane_state->base.src.x1 >> 16;
2889 int y = plane_state->base.src.y1 >> 16;
2890 int w = drm_rect_width(&plane_state->base.src) >> 16;
2891 int h = drm_rect_height(&plane_state->base.src) >> 16;
2892 int max_width = skl_max_plane_width(fb, 0, rotation);
2893 int max_height = 4096;
2894 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2895
2896 if (w > max_width || h > max_height) {
2897 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2898 w, h, max_width, max_height);
2899 return -EINVAL;
2900 }
2901
2902 intel_add_fb_offsets(&x, &y, plane_state, 0);
2903 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2904
2905 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2906
2907 /*
2908 * AUX surface offset is specified as the distance from the
2909 * main surface offset, and it must be non-negative. Make
2910 * sure that is what we will get.
2911 */
2912 if (offset > aux_offset)
2913 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2914 offset, aux_offset & ~(alignment - 1));
2915
2916 /*
2917 * When using an X-tiled surface, the plane blows up
2918 * if the x offset + width exceed the stride.
2919 *
2920 * TODO: linear and Y-tiled seem fine, Yf untested,
2921 */
2922 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2923 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2924
2925 while ((x + w) * cpp > fb->pitches[0]) {
2926 if (offset == 0) {
2927 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2928 return -EINVAL;
2929 }
2930
2931 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2932 offset, offset - alignment);
2933 }
2934 }
2935
2936 plane_state->main.offset = offset;
2937 plane_state->main.x = x;
2938 plane_state->main.y = y;
2939
2940 return 0;
2941 }
2942
2943 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2944 {
2945 const struct drm_framebuffer *fb = plane_state->base.fb;
2946 unsigned int rotation = plane_state->base.rotation;
2947 int max_width = skl_max_plane_width(fb, 1, rotation);
2948 int max_height = 4096;
2949 int x = plane_state->base.src.x1 >> 17;
2950 int y = plane_state->base.src.y1 >> 17;
2951 int w = drm_rect_width(&plane_state->base.src) >> 17;
2952 int h = drm_rect_height(&plane_state->base.src) >> 17;
2953 u32 offset;
2954
2955 intel_add_fb_offsets(&x, &y, plane_state, 1);
2956 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2957
2958 /* FIXME not quite sure how/if these apply to the chroma plane */
2959 if (w > max_width || h > max_height) {
2960 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2961 w, h, max_width, max_height);
2962 return -EINVAL;
2963 }
2964
2965 plane_state->aux.offset = offset;
2966 plane_state->aux.x = x;
2967 plane_state->aux.y = y;
2968
2969 return 0;
2970 }
2971
2972 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2973 {
2974 const struct drm_framebuffer *fb = plane_state->base.fb;
2975 unsigned int rotation = plane_state->base.rotation;
2976 int ret;
2977
2978 /* Rotate src coordinates to match rotated GTT view */
2979 if (intel_rotation_90_or_270(rotation))
2980 drm_rect_rotate(&plane_state->base.src,
2981 fb->width, fb->height, DRM_ROTATE_270);
2982
2983 /*
2984 * Handle the AUX surface first since
2985 * the main surface setup depends on it.
2986 */
2987 if (fb->pixel_format == DRM_FORMAT_NV12) {
2988 ret = skl_check_nv12_aux_surface(plane_state);
2989 if (ret)
2990 return ret;
2991 } else {
2992 plane_state->aux.offset = ~0xfff;
2993 plane_state->aux.x = 0;
2994 plane_state->aux.y = 0;
2995 }
2996
2997 ret = skl_check_main_surface(plane_state);
2998 if (ret)
2999 return ret;
3000
3001 return 0;
3002 }
3003
3004 static void i9xx_update_primary_plane(struct drm_plane *primary,
3005 const struct intel_crtc_state *crtc_state,
3006 const struct intel_plane_state *plane_state)
3007 {
3008 struct drm_device *dev = primary->dev;
3009 struct drm_i915_private *dev_priv = to_i915(dev);
3010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3011 struct drm_framebuffer *fb = plane_state->base.fb;
3012 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3013 int plane = intel_crtc->plane;
3014 u32 linear_offset;
3015 u32 dspcntr;
3016 i915_reg_t reg = DSPCNTR(plane);
3017 unsigned int rotation = plane_state->base.rotation;
3018 int x = plane_state->base.src.x1 >> 16;
3019 int y = plane_state->base.src.y1 >> 16;
3020
3021 dspcntr = DISPPLANE_GAMMA_ENABLE;
3022
3023 dspcntr |= DISPLAY_PLANE_ENABLE;
3024
3025 if (INTEL_INFO(dev)->gen < 4) {
3026 if (intel_crtc->pipe == PIPE_B)
3027 dspcntr |= DISPPLANE_SEL_PIPE_B;
3028
3029 /* pipesrc and dspsize control the size that is scaled from,
3030 * which should always be the user's requested size.
3031 */
3032 I915_WRITE(DSPSIZE(plane),
3033 ((crtc_state->pipe_src_h - 1) << 16) |
3034 (crtc_state->pipe_src_w - 1));
3035 I915_WRITE(DSPPOS(plane), 0);
3036 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
3037 I915_WRITE(PRIMSIZE(plane),
3038 ((crtc_state->pipe_src_h - 1) << 16) |
3039 (crtc_state->pipe_src_w - 1));
3040 I915_WRITE(PRIMPOS(plane), 0);
3041 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3042 }
3043
3044 switch (fb->pixel_format) {
3045 case DRM_FORMAT_C8:
3046 dspcntr |= DISPPLANE_8BPP;
3047 break;
3048 case DRM_FORMAT_XRGB1555:
3049 dspcntr |= DISPPLANE_BGRX555;
3050 break;
3051 case DRM_FORMAT_RGB565:
3052 dspcntr |= DISPPLANE_BGRX565;
3053 break;
3054 case DRM_FORMAT_XRGB8888:
3055 dspcntr |= DISPPLANE_BGRX888;
3056 break;
3057 case DRM_FORMAT_XBGR8888:
3058 dspcntr |= DISPPLANE_RGBX888;
3059 break;
3060 case DRM_FORMAT_XRGB2101010:
3061 dspcntr |= DISPPLANE_BGRX101010;
3062 break;
3063 case DRM_FORMAT_XBGR2101010:
3064 dspcntr |= DISPPLANE_RGBX101010;
3065 break;
3066 default:
3067 BUG();
3068 }
3069
3070 if (INTEL_GEN(dev_priv) >= 4 &&
3071 fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3072 dspcntr |= DISPPLANE_TILED;
3073
3074 if (IS_G4X(dev))
3075 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3076
3077 intel_add_fb_offsets(&x, &y, plane_state, 0);
3078
3079 if (INTEL_INFO(dev)->gen >= 4)
3080 intel_crtc->dspaddr_offset =
3081 intel_compute_tile_offset(&x, &y, plane_state, 0);
3082
3083 if (rotation == DRM_ROTATE_180) {
3084 dspcntr |= DISPPLANE_ROTATE_180;
3085
3086 x += (crtc_state->pipe_src_w - 1);
3087 y += (crtc_state->pipe_src_h - 1);
3088 }
3089
3090 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3091
3092 if (INTEL_INFO(dev)->gen < 4)
3093 intel_crtc->dspaddr_offset = linear_offset;
3094
3095 intel_crtc->adjusted_x = x;
3096 intel_crtc->adjusted_y = y;
3097
3098 I915_WRITE(reg, dspcntr);
3099
3100 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3101 if (INTEL_INFO(dev)->gen >= 4) {
3102 I915_WRITE(DSPSURF(plane),
3103 intel_fb_gtt_offset(fb, rotation) +
3104 intel_crtc->dspaddr_offset);
3105 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3106 I915_WRITE(DSPLINOFF(plane), linear_offset);
3107 } else
3108 I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
3109 POSTING_READ(reg);
3110 }
3111
3112 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3113 struct drm_crtc *crtc)
3114 {
3115 struct drm_device *dev = crtc->dev;
3116 struct drm_i915_private *dev_priv = to_i915(dev);
3117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3118 int plane = intel_crtc->plane;
3119
3120 I915_WRITE(DSPCNTR(plane), 0);
3121 if (INTEL_INFO(dev_priv)->gen >= 4)
3122 I915_WRITE(DSPSURF(plane), 0);
3123 else
3124 I915_WRITE(DSPADDR(plane), 0);
3125 POSTING_READ(DSPCNTR(plane));
3126 }
3127
3128 static void ironlake_update_primary_plane(struct drm_plane *primary,
3129 const struct intel_crtc_state *crtc_state,
3130 const struct intel_plane_state *plane_state)
3131 {
3132 struct drm_device *dev = primary->dev;
3133 struct drm_i915_private *dev_priv = to_i915(dev);
3134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3135 struct drm_framebuffer *fb = plane_state->base.fb;
3136 int plane = intel_crtc->plane;
3137 u32 linear_offset;
3138 u32 dspcntr;
3139 i915_reg_t reg = DSPCNTR(plane);
3140 unsigned int rotation = plane_state->base.rotation;
3141 int x = plane_state->base.src.x1 >> 16;
3142 int y = plane_state->base.src.y1 >> 16;
3143
3144 dspcntr = DISPPLANE_GAMMA_ENABLE;
3145 dspcntr |= DISPLAY_PLANE_ENABLE;
3146
3147 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3148 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3149
3150 switch (fb->pixel_format) {
3151 case DRM_FORMAT_C8:
3152 dspcntr |= DISPPLANE_8BPP;
3153 break;
3154 case DRM_FORMAT_RGB565:
3155 dspcntr |= DISPPLANE_BGRX565;
3156 break;
3157 case DRM_FORMAT_XRGB8888:
3158 dspcntr |= DISPPLANE_BGRX888;
3159 break;
3160 case DRM_FORMAT_XBGR8888:
3161 dspcntr |= DISPPLANE_RGBX888;
3162 break;
3163 case DRM_FORMAT_XRGB2101010:
3164 dspcntr |= DISPPLANE_BGRX101010;
3165 break;
3166 case DRM_FORMAT_XBGR2101010:
3167 dspcntr |= DISPPLANE_RGBX101010;
3168 break;
3169 default:
3170 BUG();
3171 }
3172
3173 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3174 dspcntr |= DISPPLANE_TILED;
3175
3176 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
3177 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3178
3179 intel_add_fb_offsets(&x, &y, plane_state, 0);
3180
3181 intel_crtc->dspaddr_offset =
3182 intel_compute_tile_offset(&x, &y, plane_state, 0);
3183
3184 if (rotation == DRM_ROTATE_180) {
3185 dspcntr |= DISPPLANE_ROTATE_180;
3186
3187 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
3188 x += (crtc_state->pipe_src_w - 1);
3189 y += (crtc_state->pipe_src_h - 1);
3190 }
3191 }
3192
3193 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3194
3195 intel_crtc->adjusted_x = x;
3196 intel_crtc->adjusted_y = y;
3197
3198 I915_WRITE(reg, dspcntr);
3199
3200 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3201 I915_WRITE(DSPSURF(plane),
3202 intel_fb_gtt_offset(fb, rotation) +
3203 intel_crtc->dspaddr_offset);
3204 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3205 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3206 } else {
3207 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3208 I915_WRITE(DSPLINOFF(plane), linear_offset);
3209 }
3210 POSTING_READ(reg);
3211 }
3212
3213 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3214 uint64_t fb_modifier, uint32_t pixel_format)
3215 {
3216 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3217 return 64;
3218 } else {
3219 int cpp = drm_format_plane_cpp(pixel_format, 0);
3220
3221 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3222 }
3223 }
3224
3225 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3226 unsigned int rotation)
3227 {
3228 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3229 struct i915_ggtt_view view;
3230 struct i915_vma *vma;
3231
3232 intel_fill_fb_ggtt_view(&view, fb, rotation);
3233
3234 vma = i915_gem_object_to_ggtt(obj, &view);
3235 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3236 view.type))
3237 return -1;
3238
3239 return i915_ggtt_offset(vma);
3240 }
3241
3242 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3243 {
3244 struct drm_device *dev = intel_crtc->base.dev;
3245 struct drm_i915_private *dev_priv = to_i915(dev);
3246
3247 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3248 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3249 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3250 }
3251
3252 /*
3253 * This function detaches (aka. unbinds) unused scalers in hardware
3254 */
3255 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3256 {
3257 struct intel_crtc_scaler_state *scaler_state;
3258 int i;
3259
3260 scaler_state = &intel_crtc->config->scaler_state;
3261
3262 /* loop through and disable scalers that aren't in use */
3263 for (i = 0; i < intel_crtc->num_scalers; i++) {
3264 if (!scaler_state->scalers[i].in_use)
3265 skl_detach_scaler(intel_crtc, i);
3266 }
3267 }
3268
3269 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3270 unsigned int rotation)
3271 {
3272 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3273 u32 stride = intel_fb_pitch(fb, plane, rotation);
3274
3275 /*
3276 * The stride is either expressed as a multiple of 64 bytes chunks for
3277 * linear buffers or in number of tiles for tiled buffers.
3278 */
3279 if (intel_rotation_90_or_270(rotation)) {
3280 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3281
3282 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3283 } else {
3284 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3285 fb->pixel_format);
3286 }
3287
3288 return stride;
3289 }
3290
3291 u32 skl_plane_ctl_format(uint32_t pixel_format)
3292 {
3293 switch (pixel_format) {
3294 case DRM_FORMAT_C8:
3295 return PLANE_CTL_FORMAT_INDEXED;
3296 case DRM_FORMAT_RGB565:
3297 return PLANE_CTL_FORMAT_RGB_565;
3298 case DRM_FORMAT_XBGR8888:
3299 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3300 case DRM_FORMAT_XRGB8888:
3301 return PLANE_CTL_FORMAT_XRGB_8888;
3302 /*
3303 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3304 * to be already pre-multiplied. We need to add a knob (or a different
3305 * DRM_FORMAT) for user-space to configure that.
3306 */
3307 case DRM_FORMAT_ABGR8888:
3308 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3309 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3310 case DRM_FORMAT_ARGB8888:
3311 return PLANE_CTL_FORMAT_XRGB_8888 |
3312 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3313 case DRM_FORMAT_XRGB2101010:
3314 return PLANE_CTL_FORMAT_XRGB_2101010;
3315 case DRM_FORMAT_XBGR2101010:
3316 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3317 case DRM_FORMAT_YUYV:
3318 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3319 case DRM_FORMAT_YVYU:
3320 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3321 case DRM_FORMAT_UYVY:
3322 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3323 case DRM_FORMAT_VYUY:
3324 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3325 default:
3326 MISSING_CASE(pixel_format);
3327 }
3328
3329 return 0;
3330 }
3331
3332 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3333 {
3334 switch (fb_modifier) {
3335 case DRM_FORMAT_MOD_NONE:
3336 break;
3337 case I915_FORMAT_MOD_X_TILED:
3338 return PLANE_CTL_TILED_X;
3339 case I915_FORMAT_MOD_Y_TILED:
3340 return PLANE_CTL_TILED_Y;
3341 case I915_FORMAT_MOD_Yf_TILED:
3342 return PLANE_CTL_TILED_YF;
3343 default:
3344 MISSING_CASE(fb_modifier);
3345 }
3346
3347 return 0;
3348 }
3349
3350 u32 skl_plane_ctl_rotation(unsigned int rotation)
3351 {
3352 switch (rotation) {
3353 case DRM_ROTATE_0:
3354 break;
3355 /*
3356 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3357 * while i915 HW rotation is clockwise, thats why this swapping.
3358 */
3359 case DRM_ROTATE_90:
3360 return PLANE_CTL_ROTATE_270;
3361 case DRM_ROTATE_180:
3362 return PLANE_CTL_ROTATE_180;
3363 case DRM_ROTATE_270:
3364 return PLANE_CTL_ROTATE_90;
3365 default:
3366 MISSING_CASE(rotation);
3367 }
3368
3369 return 0;
3370 }
3371
3372 static void skylake_update_primary_plane(struct drm_plane *plane,
3373 const struct intel_crtc_state *crtc_state,
3374 const struct intel_plane_state *plane_state)
3375 {
3376 struct drm_device *dev = plane->dev;
3377 struct drm_i915_private *dev_priv = to_i915(dev);
3378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3379 struct drm_framebuffer *fb = plane_state->base.fb;
3380 int pipe = intel_crtc->pipe;
3381 u32 plane_ctl;
3382 unsigned int rotation = plane_state->base.rotation;
3383 u32 stride = skl_plane_stride(fb, 0, rotation);
3384 u32 surf_addr = plane_state->main.offset;
3385 int scaler_id = plane_state->scaler_id;
3386 int src_x = plane_state->main.x;
3387 int src_y = plane_state->main.y;
3388 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3389 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3390 int dst_x = plane_state->base.dst.x1;
3391 int dst_y = plane_state->base.dst.y1;
3392 int dst_w = drm_rect_width(&plane_state->base.dst);
3393 int dst_h = drm_rect_height(&plane_state->base.dst);
3394
3395 plane_ctl = PLANE_CTL_ENABLE |
3396 PLANE_CTL_PIPE_GAMMA_ENABLE |
3397 PLANE_CTL_PIPE_CSC_ENABLE;
3398
3399 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3400 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3401 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3402 plane_ctl |= skl_plane_ctl_rotation(rotation);
3403
3404 /* Sizes are 0 based */
3405 src_w--;
3406 src_h--;
3407 dst_w--;
3408 dst_h--;
3409
3410 intel_crtc->adjusted_x = src_x;
3411 intel_crtc->adjusted_y = src_y;
3412
3413 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3414 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3415 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3416 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3417
3418 if (scaler_id >= 0) {
3419 uint32_t ps_ctrl = 0;
3420
3421 WARN_ON(!dst_w || !dst_h);
3422 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3423 crtc_state->scaler_state.scalers[scaler_id].mode;
3424 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3425 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3426 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3427 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3428 I915_WRITE(PLANE_POS(pipe, 0), 0);
3429 } else {
3430 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3431 }
3432
3433 I915_WRITE(PLANE_SURF(pipe, 0),
3434 intel_fb_gtt_offset(fb, rotation) + surf_addr);
3435
3436 POSTING_READ(PLANE_SURF(pipe, 0));
3437 }
3438
3439 static void skylake_disable_primary_plane(struct drm_plane *primary,
3440 struct drm_crtc *crtc)
3441 {
3442 struct drm_device *dev = crtc->dev;
3443 struct drm_i915_private *dev_priv = to_i915(dev);
3444 int pipe = to_intel_crtc(crtc)->pipe;
3445
3446 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3447 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3448 POSTING_READ(PLANE_SURF(pipe, 0));
3449 }
3450
3451 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3452 static int
3453 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3454 int x, int y, enum mode_set_atomic state)
3455 {
3456 /* Support for kgdboc is disabled, this needs a major rework. */
3457 DRM_ERROR("legacy panic handler not supported any more.\n");
3458
3459 return -ENODEV;
3460 }
3461
3462 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3463 {
3464 struct intel_crtc *crtc;
3465
3466 for_each_intel_crtc(&dev_priv->drm, crtc)
3467 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3468 }
3469
3470 static void intel_update_primary_planes(struct drm_device *dev)
3471 {
3472 struct drm_crtc *crtc;
3473
3474 for_each_crtc(dev, crtc) {
3475 struct intel_plane *plane = to_intel_plane(crtc->primary);
3476 struct intel_plane_state *plane_state =
3477 to_intel_plane_state(plane->base.state);
3478
3479 if (plane_state->base.visible)
3480 plane->update_plane(&plane->base,
3481 to_intel_crtc_state(crtc->state),
3482 plane_state);
3483 }
3484 }
3485
3486 static int
3487 __intel_display_resume(struct drm_device *dev,
3488 struct drm_atomic_state *state)
3489 {
3490 struct drm_crtc_state *crtc_state;
3491 struct drm_crtc *crtc;
3492 int i, ret;
3493
3494 intel_modeset_setup_hw_state(dev);
3495 i915_redisable_vga(dev);
3496
3497 if (!state)
3498 return 0;
3499
3500 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3501 /*
3502 * Force recalculation even if we restore
3503 * current state. With fast modeset this may not result
3504 * in a modeset when the state is compatible.
3505 */
3506 crtc_state->mode_changed = true;
3507 }
3508
3509 /* ignore any reset values/BIOS leftovers in the WM registers */
3510 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3511
3512 ret = drm_atomic_commit(state);
3513
3514 WARN_ON(ret == -EDEADLK);
3515 return ret;
3516 }
3517
3518 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3519 {
3520 return intel_has_gpu_reset(dev_priv) &&
3521 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3522 }
3523
3524 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3525 {
3526 struct drm_device *dev = &dev_priv->drm;
3527 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3528 struct drm_atomic_state *state;
3529 int ret;
3530
3531 /*
3532 * Need mode_config.mutex so that we don't
3533 * trample ongoing ->detect() and whatnot.
3534 */
3535 mutex_lock(&dev->mode_config.mutex);
3536 drm_modeset_acquire_init(ctx, 0);
3537 while (1) {
3538 ret = drm_modeset_lock_all_ctx(dev, ctx);
3539 if (ret != -EDEADLK)
3540 break;
3541
3542 drm_modeset_backoff(ctx);
3543 }
3544
3545 /* reset doesn't touch the display, but flips might get nuked anyway, */
3546 if (!i915.force_reset_modeset_test &&
3547 !gpu_reset_clobbers_display(dev_priv))
3548 return;
3549
3550 /*
3551 * Disabling the crtcs gracefully seems nicer. Also the
3552 * g33 docs say we should at least disable all the planes.
3553 */
3554 state = drm_atomic_helper_duplicate_state(dev, ctx);
3555 if (IS_ERR(state)) {
3556 ret = PTR_ERR(state);
3557 state = NULL;
3558 DRM_ERROR("Duplicating state failed with %i\n", ret);
3559 goto err;
3560 }
3561
3562 ret = drm_atomic_helper_disable_all(dev, ctx);
3563 if (ret) {
3564 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3565 goto err;
3566 }
3567
3568 dev_priv->modeset_restore_state = state;
3569 state->acquire_ctx = ctx;
3570 return;
3571
3572 err:
3573 drm_atomic_state_free(state);
3574 }
3575
3576 void intel_finish_reset(struct drm_i915_private *dev_priv)
3577 {
3578 struct drm_device *dev = &dev_priv->drm;
3579 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3580 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3581 int ret;
3582
3583 /*
3584 * Flips in the rings will be nuked by the reset,
3585 * so complete all pending flips so that user space
3586 * will get its events and not get stuck.
3587 */
3588 intel_complete_page_flips(dev_priv);
3589
3590 dev_priv->modeset_restore_state = NULL;
3591
3592 /* reset doesn't touch the display */
3593 if (!gpu_reset_clobbers_display(dev_priv)) {
3594 if (!state) {
3595 /*
3596 * Flips in the rings have been nuked by the reset,
3597 * so update the base address of all primary
3598 * planes to the the last fb to make sure we're
3599 * showing the correct fb after a reset.
3600 *
3601 * FIXME: Atomic will make this obsolete since we won't schedule
3602 * CS-based flips (which might get lost in gpu resets) any more.
3603 */
3604 intel_update_primary_planes(dev);
3605 } else {
3606 ret = __intel_display_resume(dev, state);
3607 if (ret)
3608 DRM_ERROR("Restoring old state failed with %i\n", ret);
3609 }
3610 } else {
3611 /*
3612 * The display has been reset as well,
3613 * so need a full re-initialization.
3614 */
3615 intel_runtime_pm_disable_interrupts(dev_priv);
3616 intel_runtime_pm_enable_interrupts(dev_priv);
3617
3618 intel_modeset_init_hw(dev);
3619
3620 spin_lock_irq(&dev_priv->irq_lock);
3621 if (dev_priv->display.hpd_irq_setup)
3622 dev_priv->display.hpd_irq_setup(dev_priv);
3623 spin_unlock_irq(&dev_priv->irq_lock);
3624
3625 ret = __intel_display_resume(dev, state);
3626 if (ret)
3627 DRM_ERROR("Restoring old state failed with %i\n", ret);
3628
3629 intel_hpd_init(dev_priv);
3630 }
3631
3632 drm_modeset_drop_locks(ctx);
3633 drm_modeset_acquire_fini(ctx);
3634 mutex_unlock(&dev->mode_config.mutex);
3635 }
3636
3637 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3638 {
3639 struct drm_device *dev = crtc->dev;
3640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3641 unsigned reset_counter;
3642 bool pending;
3643
3644 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3645 if (intel_crtc->reset_counter != reset_counter)
3646 return false;
3647
3648 spin_lock_irq(&dev->event_lock);
3649 pending = to_intel_crtc(crtc)->flip_work != NULL;
3650 spin_unlock_irq(&dev->event_lock);
3651
3652 return pending;
3653 }
3654
3655 static void intel_update_pipe_config(struct intel_crtc *crtc,
3656 struct intel_crtc_state *old_crtc_state)
3657 {
3658 struct drm_device *dev = crtc->base.dev;
3659 struct drm_i915_private *dev_priv = to_i915(dev);
3660 struct intel_crtc_state *pipe_config =
3661 to_intel_crtc_state(crtc->base.state);
3662
3663 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3664 crtc->base.mode = crtc->base.state->mode;
3665
3666 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3667 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3668 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3669
3670 /*
3671 * Update pipe size and adjust fitter if needed: the reason for this is
3672 * that in compute_mode_changes we check the native mode (not the pfit
3673 * mode) to see if we can flip rather than do a full mode set. In the
3674 * fastboot case, we'll flip, but if we don't update the pipesrc and
3675 * pfit state, we'll end up with a big fb scanned out into the wrong
3676 * sized surface.
3677 */
3678
3679 I915_WRITE(PIPESRC(crtc->pipe),
3680 ((pipe_config->pipe_src_w - 1) << 16) |
3681 (pipe_config->pipe_src_h - 1));
3682
3683 /* on skylake this is done by detaching scalers */
3684 if (INTEL_INFO(dev)->gen >= 9) {
3685 skl_detach_scalers(crtc);
3686
3687 if (pipe_config->pch_pfit.enabled)
3688 skylake_pfit_enable(crtc);
3689 } else if (HAS_PCH_SPLIT(dev)) {
3690 if (pipe_config->pch_pfit.enabled)
3691 ironlake_pfit_enable(crtc);
3692 else if (old_crtc_state->pch_pfit.enabled)
3693 ironlake_pfit_disable(crtc, true);
3694 }
3695 }
3696
3697 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3698 {
3699 struct drm_device *dev = crtc->dev;
3700 struct drm_i915_private *dev_priv = to_i915(dev);
3701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3702 int pipe = intel_crtc->pipe;
3703 i915_reg_t reg;
3704 u32 temp;
3705
3706 /* enable normal train */
3707 reg = FDI_TX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 if (IS_IVYBRIDGE(dev)) {
3710 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3711 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3712 } else {
3713 temp &= ~FDI_LINK_TRAIN_NONE;
3714 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3715 }
3716 I915_WRITE(reg, temp);
3717
3718 reg = FDI_RX_CTL(pipe);
3719 temp = I915_READ(reg);
3720 if (HAS_PCH_CPT(dev)) {
3721 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3722 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3723 } else {
3724 temp &= ~FDI_LINK_TRAIN_NONE;
3725 temp |= FDI_LINK_TRAIN_NONE;
3726 }
3727 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3728
3729 /* wait one idle pattern time */
3730 POSTING_READ(reg);
3731 udelay(1000);
3732
3733 /* IVB wants error correction enabled */
3734 if (IS_IVYBRIDGE(dev))
3735 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3736 FDI_FE_ERRC_ENABLE);
3737 }
3738
3739 /* The FDI link training functions for ILK/Ibexpeak. */
3740 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3741 {
3742 struct drm_device *dev = crtc->dev;
3743 struct drm_i915_private *dev_priv = to_i915(dev);
3744 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3745 int pipe = intel_crtc->pipe;
3746 i915_reg_t reg;
3747 u32 temp, tries;
3748
3749 /* FDI needs bits from pipe first */
3750 assert_pipe_enabled(dev_priv, pipe);
3751
3752 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3753 for train result */
3754 reg = FDI_RX_IMR(pipe);
3755 temp = I915_READ(reg);
3756 temp &= ~FDI_RX_SYMBOL_LOCK;
3757 temp &= ~FDI_RX_BIT_LOCK;
3758 I915_WRITE(reg, temp);
3759 I915_READ(reg);
3760 udelay(150);
3761
3762 /* enable CPU FDI TX and PCH FDI RX */
3763 reg = FDI_TX_CTL(pipe);
3764 temp = I915_READ(reg);
3765 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3766 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3767 temp &= ~FDI_LINK_TRAIN_NONE;
3768 temp |= FDI_LINK_TRAIN_PATTERN_1;
3769 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3770
3771 reg = FDI_RX_CTL(pipe);
3772 temp = I915_READ(reg);
3773 temp &= ~FDI_LINK_TRAIN_NONE;
3774 temp |= FDI_LINK_TRAIN_PATTERN_1;
3775 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3776
3777 POSTING_READ(reg);
3778 udelay(150);
3779
3780 /* Ironlake workaround, enable clock pointer after FDI enable*/
3781 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3782 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3783 FDI_RX_PHASE_SYNC_POINTER_EN);
3784
3785 reg = FDI_RX_IIR(pipe);
3786 for (tries = 0; tries < 5; tries++) {
3787 temp = I915_READ(reg);
3788 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3789
3790 if ((temp & FDI_RX_BIT_LOCK)) {
3791 DRM_DEBUG_KMS("FDI train 1 done.\n");
3792 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3793 break;
3794 }
3795 }
3796 if (tries == 5)
3797 DRM_ERROR("FDI train 1 fail!\n");
3798
3799 /* Train 2 */
3800 reg = FDI_TX_CTL(pipe);
3801 temp = I915_READ(reg);
3802 temp &= ~FDI_LINK_TRAIN_NONE;
3803 temp |= FDI_LINK_TRAIN_PATTERN_2;
3804 I915_WRITE(reg, temp);
3805
3806 reg = FDI_RX_CTL(pipe);
3807 temp = I915_READ(reg);
3808 temp &= ~FDI_LINK_TRAIN_NONE;
3809 temp |= FDI_LINK_TRAIN_PATTERN_2;
3810 I915_WRITE(reg, temp);
3811
3812 POSTING_READ(reg);
3813 udelay(150);
3814
3815 reg = FDI_RX_IIR(pipe);
3816 for (tries = 0; tries < 5; tries++) {
3817 temp = I915_READ(reg);
3818 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3819
3820 if (temp & FDI_RX_SYMBOL_LOCK) {
3821 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3822 DRM_DEBUG_KMS("FDI train 2 done.\n");
3823 break;
3824 }
3825 }
3826 if (tries == 5)
3827 DRM_ERROR("FDI train 2 fail!\n");
3828
3829 DRM_DEBUG_KMS("FDI train done\n");
3830
3831 }
3832
3833 static const int snb_b_fdi_train_param[] = {
3834 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3835 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3836 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3837 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3838 };
3839
3840 /* The FDI link training functions for SNB/Cougarpoint. */
3841 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3842 {
3843 struct drm_device *dev = crtc->dev;
3844 struct drm_i915_private *dev_priv = to_i915(dev);
3845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846 int pipe = intel_crtc->pipe;
3847 i915_reg_t reg;
3848 u32 temp, i, retry;
3849
3850 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3851 for train result */
3852 reg = FDI_RX_IMR(pipe);
3853 temp = I915_READ(reg);
3854 temp &= ~FDI_RX_SYMBOL_LOCK;
3855 temp &= ~FDI_RX_BIT_LOCK;
3856 I915_WRITE(reg, temp);
3857
3858 POSTING_READ(reg);
3859 udelay(150);
3860
3861 /* enable CPU FDI TX and PCH FDI RX */
3862 reg = FDI_TX_CTL(pipe);
3863 temp = I915_READ(reg);
3864 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3865 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3866 temp &= ~FDI_LINK_TRAIN_NONE;
3867 temp |= FDI_LINK_TRAIN_PATTERN_1;
3868 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3869 /* SNB-B */
3870 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3871 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3872
3873 I915_WRITE(FDI_RX_MISC(pipe),
3874 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3875
3876 reg = FDI_RX_CTL(pipe);
3877 temp = I915_READ(reg);
3878 if (HAS_PCH_CPT(dev)) {
3879 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3880 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3881 } else {
3882 temp &= ~FDI_LINK_TRAIN_NONE;
3883 temp |= FDI_LINK_TRAIN_PATTERN_1;
3884 }
3885 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3886
3887 POSTING_READ(reg);
3888 udelay(150);
3889
3890 for (i = 0; i < 4; i++) {
3891 reg = FDI_TX_CTL(pipe);
3892 temp = I915_READ(reg);
3893 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3894 temp |= snb_b_fdi_train_param[i];
3895 I915_WRITE(reg, temp);
3896
3897 POSTING_READ(reg);
3898 udelay(500);
3899
3900 for (retry = 0; retry < 5; retry++) {
3901 reg = FDI_RX_IIR(pipe);
3902 temp = I915_READ(reg);
3903 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3904 if (temp & FDI_RX_BIT_LOCK) {
3905 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3906 DRM_DEBUG_KMS("FDI train 1 done.\n");
3907 break;
3908 }
3909 udelay(50);
3910 }
3911 if (retry < 5)
3912 break;
3913 }
3914 if (i == 4)
3915 DRM_ERROR("FDI train 1 fail!\n");
3916
3917 /* Train 2 */
3918 reg = FDI_TX_CTL(pipe);
3919 temp = I915_READ(reg);
3920 temp &= ~FDI_LINK_TRAIN_NONE;
3921 temp |= FDI_LINK_TRAIN_PATTERN_2;
3922 if (IS_GEN6(dev)) {
3923 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3924 /* SNB-B */
3925 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3926 }
3927 I915_WRITE(reg, temp);
3928
3929 reg = FDI_RX_CTL(pipe);
3930 temp = I915_READ(reg);
3931 if (HAS_PCH_CPT(dev)) {
3932 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3933 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3934 } else {
3935 temp &= ~FDI_LINK_TRAIN_NONE;
3936 temp |= FDI_LINK_TRAIN_PATTERN_2;
3937 }
3938 I915_WRITE(reg, temp);
3939
3940 POSTING_READ(reg);
3941 udelay(150);
3942
3943 for (i = 0; i < 4; i++) {
3944 reg = FDI_TX_CTL(pipe);
3945 temp = I915_READ(reg);
3946 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3947 temp |= snb_b_fdi_train_param[i];
3948 I915_WRITE(reg, temp);
3949
3950 POSTING_READ(reg);
3951 udelay(500);
3952
3953 for (retry = 0; retry < 5; retry++) {
3954 reg = FDI_RX_IIR(pipe);
3955 temp = I915_READ(reg);
3956 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3957 if (temp & FDI_RX_SYMBOL_LOCK) {
3958 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3959 DRM_DEBUG_KMS("FDI train 2 done.\n");
3960 break;
3961 }
3962 udelay(50);
3963 }
3964 if (retry < 5)
3965 break;
3966 }
3967 if (i == 4)
3968 DRM_ERROR("FDI train 2 fail!\n");
3969
3970 DRM_DEBUG_KMS("FDI train done.\n");
3971 }
3972
3973 /* Manual link training for Ivy Bridge A0 parts */
3974 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3975 {
3976 struct drm_device *dev = crtc->dev;
3977 struct drm_i915_private *dev_priv = to_i915(dev);
3978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979 int pipe = intel_crtc->pipe;
3980 i915_reg_t reg;
3981 u32 temp, i, j;
3982
3983 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3984 for train result */
3985 reg = FDI_RX_IMR(pipe);
3986 temp = I915_READ(reg);
3987 temp &= ~FDI_RX_SYMBOL_LOCK;
3988 temp &= ~FDI_RX_BIT_LOCK;
3989 I915_WRITE(reg, temp);
3990
3991 POSTING_READ(reg);
3992 udelay(150);
3993
3994 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3995 I915_READ(FDI_RX_IIR(pipe)));
3996
3997 /* Try each vswing and preemphasis setting twice before moving on */
3998 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3999 /* disable first in case we need to retry */
4000 reg = FDI_TX_CTL(pipe);
4001 temp = I915_READ(reg);
4002 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4003 temp &= ~FDI_TX_ENABLE;
4004 I915_WRITE(reg, temp);
4005
4006 reg = FDI_RX_CTL(pipe);
4007 temp = I915_READ(reg);
4008 temp &= ~FDI_LINK_TRAIN_AUTO;
4009 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4010 temp &= ~FDI_RX_ENABLE;
4011 I915_WRITE(reg, temp);
4012
4013 /* enable CPU FDI TX and PCH FDI RX */
4014 reg = FDI_TX_CTL(pipe);
4015 temp = I915_READ(reg);
4016 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4017 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4018 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4019 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4020 temp |= snb_b_fdi_train_param[j/2];
4021 temp |= FDI_COMPOSITE_SYNC;
4022 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4023
4024 I915_WRITE(FDI_RX_MISC(pipe),
4025 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4026
4027 reg = FDI_RX_CTL(pipe);
4028 temp = I915_READ(reg);
4029 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4030 temp |= FDI_COMPOSITE_SYNC;
4031 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4032
4033 POSTING_READ(reg);
4034 udelay(1); /* should be 0.5us */
4035
4036 for (i = 0; i < 4; i++) {
4037 reg = FDI_RX_IIR(pipe);
4038 temp = I915_READ(reg);
4039 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4040
4041 if (temp & FDI_RX_BIT_LOCK ||
4042 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4043 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4044 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4045 i);
4046 break;
4047 }
4048 udelay(1); /* should be 0.5us */
4049 }
4050 if (i == 4) {
4051 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4052 continue;
4053 }
4054
4055 /* Train 2 */
4056 reg = FDI_TX_CTL(pipe);
4057 temp = I915_READ(reg);
4058 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4059 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4060 I915_WRITE(reg, temp);
4061
4062 reg = FDI_RX_CTL(pipe);
4063 temp = I915_READ(reg);
4064 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4065 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4066 I915_WRITE(reg, temp);
4067
4068 POSTING_READ(reg);
4069 udelay(2); /* should be 1.5us */
4070
4071 for (i = 0; i < 4; i++) {
4072 reg = FDI_RX_IIR(pipe);
4073 temp = I915_READ(reg);
4074 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4075
4076 if (temp & FDI_RX_SYMBOL_LOCK ||
4077 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4078 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4079 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4080 i);
4081 goto train_done;
4082 }
4083 udelay(2); /* should be 1.5us */
4084 }
4085 if (i == 4)
4086 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4087 }
4088
4089 train_done:
4090 DRM_DEBUG_KMS("FDI train done.\n");
4091 }
4092
4093 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4094 {
4095 struct drm_device *dev = intel_crtc->base.dev;
4096 struct drm_i915_private *dev_priv = to_i915(dev);
4097 int pipe = intel_crtc->pipe;
4098 i915_reg_t reg;
4099 u32 temp;
4100
4101 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4102 reg = FDI_RX_CTL(pipe);
4103 temp = I915_READ(reg);
4104 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4105 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4106 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4107 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4108
4109 POSTING_READ(reg);
4110 udelay(200);
4111
4112 /* Switch from Rawclk to PCDclk */
4113 temp = I915_READ(reg);
4114 I915_WRITE(reg, temp | FDI_PCDCLK);
4115
4116 POSTING_READ(reg);
4117 udelay(200);
4118
4119 /* Enable CPU FDI TX PLL, always on for Ironlake */
4120 reg = FDI_TX_CTL(pipe);
4121 temp = I915_READ(reg);
4122 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4123 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4124
4125 POSTING_READ(reg);
4126 udelay(100);
4127 }
4128 }
4129
4130 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4131 {
4132 struct drm_device *dev = intel_crtc->base.dev;
4133 struct drm_i915_private *dev_priv = to_i915(dev);
4134 int pipe = intel_crtc->pipe;
4135 i915_reg_t reg;
4136 u32 temp;
4137
4138 /* Switch from PCDclk to Rawclk */
4139 reg = FDI_RX_CTL(pipe);
4140 temp = I915_READ(reg);
4141 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4142
4143 /* Disable CPU FDI TX PLL */
4144 reg = FDI_TX_CTL(pipe);
4145 temp = I915_READ(reg);
4146 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4147
4148 POSTING_READ(reg);
4149 udelay(100);
4150
4151 reg = FDI_RX_CTL(pipe);
4152 temp = I915_READ(reg);
4153 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4154
4155 /* Wait for the clocks to turn off. */
4156 POSTING_READ(reg);
4157 udelay(100);
4158 }
4159
4160 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4161 {
4162 struct drm_device *dev = crtc->dev;
4163 struct drm_i915_private *dev_priv = to_i915(dev);
4164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4165 int pipe = intel_crtc->pipe;
4166 i915_reg_t reg;
4167 u32 temp;
4168
4169 /* disable CPU FDI tx and PCH FDI rx */
4170 reg = FDI_TX_CTL(pipe);
4171 temp = I915_READ(reg);
4172 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4173 POSTING_READ(reg);
4174
4175 reg = FDI_RX_CTL(pipe);
4176 temp = I915_READ(reg);
4177 temp &= ~(0x7 << 16);
4178 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4179 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4180
4181 POSTING_READ(reg);
4182 udelay(100);
4183
4184 /* Ironlake workaround, disable clock pointer after downing FDI */
4185 if (HAS_PCH_IBX(dev))
4186 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4187
4188 /* still set train pattern 1 */
4189 reg = FDI_TX_CTL(pipe);
4190 temp = I915_READ(reg);
4191 temp &= ~FDI_LINK_TRAIN_NONE;
4192 temp |= FDI_LINK_TRAIN_PATTERN_1;
4193 I915_WRITE(reg, temp);
4194
4195 reg = FDI_RX_CTL(pipe);
4196 temp = I915_READ(reg);
4197 if (HAS_PCH_CPT(dev)) {
4198 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4199 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4200 } else {
4201 temp &= ~FDI_LINK_TRAIN_NONE;
4202 temp |= FDI_LINK_TRAIN_PATTERN_1;
4203 }
4204 /* BPC in FDI rx is consistent with that in PIPECONF */
4205 temp &= ~(0x07 << 16);
4206 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4207 I915_WRITE(reg, temp);
4208
4209 POSTING_READ(reg);
4210 udelay(100);
4211 }
4212
4213 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4214 {
4215 struct intel_crtc *crtc;
4216
4217 /* Note that we don't need to be called with mode_config.lock here
4218 * as our list of CRTC objects is static for the lifetime of the
4219 * device and so cannot disappear as we iterate. Similarly, we can
4220 * happily treat the predicates as racy, atomic checks as userspace
4221 * cannot claim and pin a new fb without at least acquring the
4222 * struct_mutex and so serialising with us.
4223 */
4224 for_each_intel_crtc(dev, crtc) {
4225 if (atomic_read(&crtc->unpin_work_count) == 0)
4226 continue;
4227
4228 if (crtc->flip_work)
4229 intel_wait_for_vblank(dev, crtc->pipe);
4230
4231 return true;
4232 }
4233
4234 return false;
4235 }
4236
4237 static void page_flip_completed(struct intel_crtc *intel_crtc)
4238 {
4239 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4240 struct intel_flip_work *work = intel_crtc->flip_work;
4241
4242 intel_crtc->flip_work = NULL;
4243
4244 if (work->event)
4245 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4246
4247 drm_crtc_vblank_put(&intel_crtc->base);
4248
4249 wake_up_all(&dev_priv->pending_flip_queue);
4250 queue_work(dev_priv->wq, &work->unpin_work);
4251
4252 trace_i915_flip_complete(intel_crtc->plane,
4253 work->pending_flip_obj);
4254 }
4255
4256 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4257 {
4258 struct drm_device *dev = crtc->dev;
4259 struct drm_i915_private *dev_priv = to_i915(dev);
4260 long ret;
4261
4262 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4263
4264 ret = wait_event_interruptible_timeout(
4265 dev_priv->pending_flip_queue,
4266 !intel_crtc_has_pending_flip(crtc),
4267 60*HZ);
4268
4269 if (ret < 0)
4270 return ret;
4271
4272 if (ret == 0) {
4273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4274 struct intel_flip_work *work;
4275
4276 spin_lock_irq(&dev->event_lock);
4277 work = intel_crtc->flip_work;
4278 if (work && !is_mmio_work(work)) {
4279 WARN_ONCE(1, "Removing stuck page flip\n");
4280 page_flip_completed(intel_crtc);
4281 }
4282 spin_unlock_irq(&dev->event_lock);
4283 }
4284
4285 return 0;
4286 }
4287
4288 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4289 {
4290 u32 temp;
4291
4292 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4293
4294 mutex_lock(&dev_priv->sb_lock);
4295
4296 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4297 temp |= SBI_SSCCTL_DISABLE;
4298 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4299
4300 mutex_unlock(&dev_priv->sb_lock);
4301 }
4302
4303 /* Program iCLKIP clock to the desired frequency */
4304 static void lpt_program_iclkip(struct drm_crtc *crtc)
4305 {
4306 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4307 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4308 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4309 u32 temp;
4310
4311 lpt_disable_iclkip(dev_priv);
4312
4313 /* The iCLK virtual clock root frequency is in MHz,
4314 * but the adjusted_mode->crtc_clock in in KHz. To get the
4315 * divisors, it is necessary to divide one by another, so we
4316 * convert the virtual clock precision to KHz here for higher
4317 * precision.
4318 */
4319 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4320 u32 iclk_virtual_root_freq = 172800 * 1000;
4321 u32 iclk_pi_range = 64;
4322 u32 desired_divisor;
4323
4324 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4325 clock << auxdiv);
4326 divsel = (desired_divisor / iclk_pi_range) - 2;
4327 phaseinc = desired_divisor % iclk_pi_range;
4328
4329 /*
4330 * Near 20MHz is a corner case which is
4331 * out of range for the 7-bit divisor
4332 */
4333 if (divsel <= 0x7f)
4334 break;
4335 }
4336
4337 /* This should not happen with any sane values */
4338 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4339 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4340 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4341 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4342
4343 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4344 clock,
4345 auxdiv,
4346 divsel,
4347 phasedir,
4348 phaseinc);
4349
4350 mutex_lock(&dev_priv->sb_lock);
4351
4352 /* Program SSCDIVINTPHASE6 */
4353 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4354 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4355 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4356 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4357 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4358 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4359 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4360 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4361
4362 /* Program SSCAUXDIV */
4363 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4364 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4365 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4366 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4367
4368 /* Enable modulator and associated divider */
4369 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4370 temp &= ~SBI_SSCCTL_DISABLE;
4371 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4372
4373 mutex_unlock(&dev_priv->sb_lock);
4374
4375 /* Wait for initialization time */
4376 udelay(24);
4377
4378 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4379 }
4380
4381 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4382 {
4383 u32 divsel, phaseinc, auxdiv;
4384 u32 iclk_virtual_root_freq = 172800 * 1000;
4385 u32 iclk_pi_range = 64;
4386 u32 desired_divisor;
4387 u32 temp;
4388
4389 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4390 return 0;
4391
4392 mutex_lock(&dev_priv->sb_lock);
4393
4394 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4395 if (temp & SBI_SSCCTL_DISABLE) {
4396 mutex_unlock(&dev_priv->sb_lock);
4397 return 0;
4398 }
4399
4400 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4401 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4402 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4403 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4404 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4405
4406 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4407 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4408 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4409
4410 mutex_unlock(&dev_priv->sb_lock);
4411
4412 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4413
4414 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4415 desired_divisor << auxdiv);
4416 }
4417
4418 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4419 enum pipe pch_transcoder)
4420 {
4421 struct drm_device *dev = crtc->base.dev;
4422 struct drm_i915_private *dev_priv = to_i915(dev);
4423 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4424
4425 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4426 I915_READ(HTOTAL(cpu_transcoder)));
4427 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4428 I915_READ(HBLANK(cpu_transcoder)));
4429 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4430 I915_READ(HSYNC(cpu_transcoder)));
4431
4432 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4433 I915_READ(VTOTAL(cpu_transcoder)));
4434 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4435 I915_READ(VBLANK(cpu_transcoder)));
4436 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4437 I915_READ(VSYNC(cpu_transcoder)));
4438 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4439 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4440 }
4441
4442 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4443 {
4444 struct drm_i915_private *dev_priv = to_i915(dev);
4445 uint32_t temp;
4446
4447 temp = I915_READ(SOUTH_CHICKEN1);
4448 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4449 return;
4450
4451 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4453
4454 temp &= ~FDI_BC_BIFURCATION_SELECT;
4455 if (enable)
4456 temp |= FDI_BC_BIFURCATION_SELECT;
4457
4458 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4459 I915_WRITE(SOUTH_CHICKEN1, temp);
4460 POSTING_READ(SOUTH_CHICKEN1);
4461 }
4462
4463 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4464 {
4465 struct drm_device *dev = intel_crtc->base.dev;
4466
4467 switch (intel_crtc->pipe) {
4468 case PIPE_A:
4469 break;
4470 case PIPE_B:
4471 if (intel_crtc->config->fdi_lanes > 2)
4472 cpt_set_fdi_bc_bifurcation(dev, false);
4473 else
4474 cpt_set_fdi_bc_bifurcation(dev, true);
4475
4476 break;
4477 case PIPE_C:
4478 cpt_set_fdi_bc_bifurcation(dev, true);
4479
4480 break;
4481 default:
4482 BUG();
4483 }
4484 }
4485
4486 /* Return which DP Port should be selected for Transcoder DP control */
4487 static enum port
4488 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4489 {
4490 struct drm_device *dev = crtc->dev;
4491 struct intel_encoder *encoder;
4492
4493 for_each_encoder_on_crtc(dev, crtc, encoder) {
4494 if (encoder->type == INTEL_OUTPUT_DP ||
4495 encoder->type == INTEL_OUTPUT_EDP)
4496 return enc_to_dig_port(&encoder->base)->port;
4497 }
4498
4499 return -1;
4500 }
4501
4502 /*
4503 * Enable PCH resources required for PCH ports:
4504 * - PCH PLLs
4505 * - FDI training & RX/TX
4506 * - update transcoder timings
4507 * - DP transcoding bits
4508 * - transcoder
4509 */
4510 static void ironlake_pch_enable(struct drm_crtc *crtc)
4511 {
4512 struct drm_device *dev = crtc->dev;
4513 struct drm_i915_private *dev_priv = to_i915(dev);
4514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4515 int pipe = intel_crtc->pipe;
4516 u32 temp;
4517
4518 assert_pch_transcoder_disabled(dev_priv, pipe);
4519
4520 if (IS_IVYBRIDGE(dev))
4521 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4522
4523 /* Write the TU size bits before fdi link training, so that error
4524 * detection works. */
4525 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4526 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4527
4528 /* For PCH output, training FDI link */
4529 dev_priv->display.fdi_link_train(crtc);
4530
4531 /* We need to program the right clock selection before writing the pixel
4532 * mutliplier into the DPLL. */
4533 if (HAS_PCH_CPT(dev)) {
4534 u32 sel;
4535
4536 temp = I915_READ(PCH_DPLL_SEL);
4537 temp |= TRANS_DPLL_ENABLE(pipe);
4538 sel = TRANS_DPLLB_SEL(pipe);
4539 if (intel_crtc->config->shared_dpll ==
4540 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4541 temp |= sel;
4542 else
4543 temp &= ~sel;
4544 I915_WRITE(PCH_DPLL_SEL, temp);
4545 }
4546
4547 /* XXX: pch pll's can be enabled any time before we enable the PCH
4548 * transcoder, and we actually should do this to not upset any PCH
4549 * transcoder that already use the clock when we share it.
4550 *
4551 * Note that enable_shared_dpll tries to do the right thing, but
4552 * get_shared_dpll unconditionally resets the pll - we need that to have
4553 * the right LVDS enable sequence. */
4554 intel_enable_shared_dpll(intel_crtc);
4555
4556 /* set transcoder timing, panel must allow it */
4557 assert_panel_unlocked(dev_priv, pipe);
4558 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4559
4560 intel_fdi_normal_train(crtc);
4561
4562 /* For PCH DP, enable TRANS_DP_CTL */
4563 if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4564 const struct drm_display_mode *adjusted_mode =
4565 &intel_crtc->config->base.adjusted_mode;
4566 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4567 i915_reg_t reg = TRANS_DP_CTL(pipe);
4568 temp = I915_READ(reg);
4569 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4570 TRANS_DP_SYNC_MASK |
4571 TRANS_DP_BPC_MASK);
4572 temp |= TRANS_DP_OUTPUT_ENABLE;
4573 temp |= bpc << 9; /* same format but at 11:9 */
4574
4575 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4576 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4577 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4578 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4579
4580 switch (intel_trans_dp_port_sel(crtc)) {
4581 case PORT_B:
4582 temp |= TRANS_DP_PORT_SEL_B;
4583 break;
4584 case PORT_C:
4585 temp |= TRANS_DP_PORT_SEL_C;
4586 break;
4587 case PORT_D:
4588 temp |= TRANS_DP_PORT_SEL_D;
4589 break;
4590 default:
4591 BUG();
4592 }
4593
4594 I915_WRITE(reg, temp);
4595 }
4596
4597 ironlake_enable_pch_transcoder(dev_priv, pipe);
4598 }
4599
4600 static void lpt_pch_enable(struct drm_crtc *crtc)
4601 {
4602 struct drm_device *dev = crtc->dev;
4603 struct drm_i915_private *dev_priv = to_i915(dev);
4604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4605 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4606
4607 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4608
4609 lpt_program_iclkip(crtc);
4610
4611 /* Set transcoder timing. */
4612 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4613
4614 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4615 }
4616
4617 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4618 {
4619 struct drm_i915_private *dev_priv = to_i915(dev);
4620 i915_reg_t dslreg = PIPEDSL(pipe);
4621 u32 temp;
4622
4623 temp = I915_READ(dslreg);
4624 udelay(500);
4625 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4626 if (wait_for(I915_READ(dslreg) != temp, 5))
4627 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4628 }
4629 }
4630
4631 static int
4632 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4633 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4634 int src_w, int src_h, int dst_w, int dst_h)
4635 {
4636 struct intel_crtc_scaler_state *scaler_state =
4637 &crtc_state->scaler_state;
4638 struct intel_crtc *intel_crtc =
4639 to_intel_crtc(crtc_state->base.crtc);
4640 int need_scaling;
4641
4642 need_scaling = intel_rotation_90_or_270(rotation) ?
4643 (src_h != dst_w || src_w != dst_h):
4644 (src_w != dst_w || src_h != dst_h);
4645
4646 /*
4647 * if plane is being disabled or scaler is no more required or force detach
4648 * - free scaler binded to this plane/crtc
4649 * - in order to do this, update crtc->scaler_usage
4650 *
4651 * Here scaler state in crtc_state is set free so that
4652 * scaler can be assigned to other user. Actual register
4653 * update to free the scaler is done in plane/panel-fit programming.
4654 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4655 */
4656 if (force_detach || !need_scaling) {
4657 if (*scaler_id >= 0) {
4658 scaler_state->scaler_users &= ~(1 << scaler_user);
4659 scaler_state->scalers[*scaler_id].in_use = 0;
4660
4661 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4662 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4663 intel_crtc->pipe, scaler_user, *scaler_id,
4664 scaler_state->scaler_users);
4665 *scaler_id = -1;
4666 }
4667 return 0;
4668 }
4669
4670 /* range checks */
4671 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4672 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4673
4674 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4675 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4676 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4677 "size is out of scaler range\n",
4678 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4679 return -EINVAL;
4680 }
4681
4682 /* mark this plane as a scaler user in crtc_state */
4683 scaler_state->scaler_users |= (1 << scaler_user);
4684 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4685 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4686 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4687 scaler_state->scaler_users);
4688
4689 return 0;
4690 }
4691
4692 /**
4693 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4694 *
4695 * @state: crtc's scaler state
4696 *
4697 * Return
4698 * 0 - scaler_usage updated successfully
4699 * error - requested scaling cannot be supported or other error condition
4700 */
4701 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4702 {
4703 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4704 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4705
4706 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4707 intel_crtc->base.base.id, intel_crtc->base.name,
4708 intel_crtc->pipe, SKL_CRTC_INDEX);
4709
4710 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4711 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4712 state->pipe_src_w, state->pipe_src_h,
4713 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4714 }
4715
4716 /**
4717 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4718 *
4719 * @state: crtc's scaler state
4720 * @plane_state: atomic plane state to update
4721 *
4722 * Return
4723 * 0 - scaler_usage updated successfully
4724 * error - requested scaling cannot be supported or other error condition
4725 */
4726 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4727 struct intel_plane_state *plane_state)
4728 {
4729
4730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4731 struct intel_plane *intel_plane =
4732 to_intel_plane(plane_state->base.plane);
4733 struct drm_framebuffer *fb = plane_state->base.fb;
4734 int ret;
4735
4736 bool force_detach = !fb || !plane_state->base.visible;
4737
4738 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4739 intel_plane->base.base.id, intel_plane->base.name,
4740 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4741
4742 ret = skl_update_scaler(crtc_state, force_detach,
4743 drm_plane_index(&intel_plane->base),
4744 &plane_state->scaler_id,
4745 plane_state->base.rotation,
4746 drm_rect_width(&plane_state->base.src) >> 16,
4747 drm_rect_height(&plane_state->base.src) >> 16,
4748 drm_rect_width(&plane_state->base.dst),
4749 drm_rect_height(&plane_state->base.dst));
4750
4751 if (ret || plane_state->scaler_id < 0)
4752 return ret;
4753
4754 /* check colorkey */
4755 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4756 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4757 intel_plane->base.base.id,
4758 intel_plane->base.name);
4759 return -EINVAL;
4760 }
4761
4762 /* Check src format */
4763 switch (fb->pixel_format) {
4764 case DRM_FORMAT_RGB565:
4765 case DRM_FORMAT_XBGR8888:
4766 case DRM_FORMAT_XRGB8888:
4767 case DRM_FORMAT_ABGR8888:
4768 case DRM_FORMAT_ARGB8888:
4769 case DRM_FORMAT_XRGB2101010:
4770 case DRM_FORMAT_XBGR2101010:
4771 case DRM_FORMAT_YUYV:
4772 case DRM_FORMAT_YVYU:
4773 case DRM_FORMAT_UYVY:
4774 case DRM_FORMAT_VYUY:
4775 break;
4776 default:
4777 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4778 intel_plane->base.base.id, intel_plane->base.name,
4779 fb->base.id, fb->pixel_format);
4780 return -EINVAL;
4781 }
4782
4783 return 0;
4784 }
4785
4786 static void skylake_scaler_disable(struct intel_crtc *crtc)
4787 {
4788 int i;
4789
4790 for (i = 0; i < crtc->num_scalers; i++)
4791 skl_detach_scaler(crtc, i);
4792 }
4793
4794 static void skylake_pfit_enable(struct intel_crtc *crtc)
4795 {
4796 struct drm_device *dev = crtc->base.dev;
4797 struct drm_i915_private *dev_priv = to_i915(dev);
4798 int pipe = crtc->pipe;
4799 struct intel_crtc_scaler_state *scaler_state =
4800 &crtc->config->scaler_state;
4801
4802 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4803
4804 if (crtc->config->pch_pfit.enabled) {
4805 int id;
4806
4807 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4808 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4809 return;
4810 }
4811
4812 id = scaler_state->scaler_id;
4813 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4814 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4815 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4816 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4817
4818 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4819 }
4820 }
4821
4822 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4823 {
4824 struct drm_device *dev = crtc->base.dev;
4825 struct drm_i915_private *dev_priv = to_i915(dev);
4826 int pipe = crtc->pipe;
4827
4828 if (crtc->config->pch_pfit.enabled) {
4829 /* Force use of hard-coded filter coefficients
4830 * as some pre-programmed values are broken,
4831 * e.g. x201.
4832 */
4833 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4834 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4835 PF_PIPE_SEL_IVB(pipe));
4836 else
4837 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4838 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4839 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4840 }
4841 }
4842
4843 void hsw_enable_ips(struct intel_crtc *crtc)
4844 {
4845 struct drm_device *dev = crtc->base.dev;
4846 struct drm_i915_private *dev_priv = to_i915(dev);
4847
4848 if (!crtc->config->ips_enabled)
4849 return;
4850
4851 /*
4852 * We can only enable IPS after we enable a plane and wait for a vblank
4853 * This function is called from post_plane_update, which is run after
4854 * a vblank wait.
4855 */
4856
4857 assert_plane_enabled(dev_priv, crtc->plane);
4858 if (IS_BROADWELL(dev)) {
4859 mutex_lock(&dev_priv->rps.hw_lock);
4860 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4861 mutex_unlock(&dev_priv->rps.hw_lock);
4862 /* Quoting Art Runyan: "its not safe to expect any particular
4863 * value in IPS_CTL bit 31 after enabling IPS through the
4864 * mailbox." Moreover, the mailbox may return a bogus state,
4865 * so we need to just enable it and continue on.
4866 */
4867 } else {
4868 I915_WRITE(IPS_CTL, IPS_ENABLE);
4869 /* The bit only becomes 1 in the next vblank, so this wait here
4870 * is essentially intel_wait_for_vblank. If we don't have this
4871 * and don't wait for vblanks until the end of crtc_enable, then
4872 * the HW state readout code will complain that the expected
4873 * IPS_CTL value is not the one we read. */
4874 if (intel_wait_for_register(dev_priv,
4875 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4876 50))
4877 DRM_ERROR("Timed out waiting for IPS enable\n");
4878 }
4879 }
4880
4881 void hsw_disable_ips(struct intel_crtc *crtc)
4882 {
4883 struct drm_device *dev = crtc->base.dev;
4884 struct drm_i915_private *dev_priv = to_i915(dev);
4885
4886 if (!crtc->config->ips_enabled)
4887 return;
4888
4889 assert_plane_enabled(dev_priv, crtc->plane);
4890 if (IS_BROADWELL(dev)) {
4891 mutex_lock(&dev_priv->rps.hw_lock);
4892 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4893 mutex_unlock(&dev_priv->rps.hw_lock);
4894 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4895 if (intel_wait_for_register(dev_priv,
4896 IPS_CTL, IPS_ENABLE, 0,
4897 42))
4898 DRM_ERROR("Timed out waiting for IPS disable\n");
4899 } else {
4900 I915_WRITE(IPS_CTL, 0);
4901 POSTING_READ(IPS_CTL);
4902 }
4903
4904 /* We need to wait for a vblank before we can disable the plane. */
4905 intel_wait_for_vblank(dev, crtc->pipe);
4906 }
4907
4908 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4909 {
4910 if (intel_crtc->overlay) {
4911 struct drm_device *dev = intel_crtc->base.dev;
4912 struct drm_i915_private *dev_priv = to_i915(dev);
4913
4914 mutex_lock(&dev->struct_mutex);
4915 dev_priv->mm.interruptible = false;
4916 (void) intel_overlay_switch_off(intel_crtc->overlay);
4917 dev_priv->mm.interruptible = true;
4918 mutex_unlock(&dev->struct_mutex);
4919 }
4920
4921 /* Let userspace switch the overlay on again. In most cases userspace
4922 * has to recompute where to put it anyway.
4923 */
4924 }
4925
4926 /**
4927 * intel_post_enable_primary - Perform operations after enabling primary plane
4928 * @crtc: the CRTC whose primary plane was just enabled
4929 *
4930 * Performs potentially sleeping operations that must be done after the primary
4931 * plane is enabled, such as updating FBC and IPS. Note that this may be
4932 * called due to an explicit primary plane update, or due to an implicit
4933 * re-enable that is caused when a sprite plane is updated to no longer
4934 * completely hide the primary plane.
4935 */
4936 static void
4937 intel_post_enable_primary(struct drm_crtc *crtc)
4938 {
4939 struct drm_device *dev = crtc->dev;
4940 struct drm_i915_private *dev_priv = to_i915(dev);
4941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4942 int pipe = intel_crtc->pipe;
4943
4944 /*
4945 * FIXME IPS should be fine as long as one plane is
4946 * enabled, but in practice it seems to have problems
4947 * when going from primary only to sprite only and vice
4948 * versa.
4949 */
4950 hsw_enable_ips(intel_crtc);
4951
4952 /*
4953 * Gen2 reports pipe underruns whenever all planes are disabled.
4954 * So don't enable underrun reporting before at least some planes
4955 * are enabled.
4956 * FIXME: Need to fix the logic to work when we turn off all planes
4957 * but leave the pipe running.
4958 */
4959 if (IS_GEN2(dev))
4960 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4961
4962 /* Underruns don't always raise interrupts, so check manually. */
4963 intel_check_cpu_fifo_underruns(dev_priv);
4964 intel_check_pch_fifo_underruns(dev_priv);
4965 }
4966
4967 /* FIXME move all this to pre_plane_update() with proper state tracking */
4968 static void
4969 intel_pre_disable_primary(struct drm_crtc *crtc)
4970 {
4971 struct drm_device *dev = crtc->dev;
4972 struct drm_i915_private *dev_priv = to_i915(dev);
4973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4974 int pipe = intel_crtc->pipe;
4975
4976 /*
4977 * Gen2 reports pipe underruns whenever all planes are disabled.
4978 * So diasble underrun reporting before all the planes get disabled.
4979 * FIXME: Need to fix the logic to work when we turn off all planes
4980 * but leave the pipe running.
4981 */
4982 if (IS_GEN2(dev))
4983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4984
4985 /*
4986 * FIXME IPS should be fine as long as one plane is
4987 * enabled, but in practice it seems to have problems
4988 * when going from primary only to sprite only and vice
4989 * versa.
4990 */
4991 hsw_disable_ips(intel_crtc);
4992 }
4993
4994 /* FIXME get rid of this and use pre_plane_update */
4995 static void
4996 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4997 {
4998 struct drm_device *dev = crtc->dev;
4999 struct drm_i915_private *dev_priv = to_i915(dev);
5000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5001 int pipe = intel_crtc->pipe;
5002
5003 intel_pre_disable_primary(crtc);
5004
5005 /*
5006 * Vblank time updates from the shadow to live plane control register
5007 * are blocked if the memory self-refresh mode is active at that
5008 * moment. So to make sure the plane gets truly disabled, disable
5009 * first the self-refresh mode. The self-refresh enable bit in turn
5010 * will be checked/applied by the HW only at the next frame start
5011 * event which is after the vblank start event, so we need to have a
5012 * wait-for-vblank between disabling the plane and the pipe.
5013 */
5014 if (HAS_GMCH_DISPLAY(dev)) {
5015 intel_set_memory_cxsr(dev_priv, false);
5016 dev_priv->wm.vlv.cxsr = false;
5017 intel_wait_for_vblank(dev, pipe);
5018 }
5019 }
5020
5021 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5022 {
5023 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5024 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5025 struct intel_crtc_state *pipe_config =
5026 to_intel_crtc_state(crtc->base.state);
5027 struct drm_plane *primary = crtc->base.primary;
5028 struct drm_plane_state *old_pri_state =
5029 drm_atomic_get_existing_plane_state(old_state, primary);
5030
5031 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5032
5033 crtc->wm.cxsr_allowed = true;
5034
5035 if (pipe_config->update_wm_post && pipe_config->base.active)
5036 intel_update_watermarks(&crtc->base);
5037
5038 if (old_pri_state) {
5039 struct intel_plane_state *primary_state =
5040 to_intel_plane_state(primary->state);
5041 struct intel_plane_state *old_primary_state =
5042 to_intel_plane_state(old_pri_state);
5043
5044 intel_fbc_post_update(crtc);
5045
5046 if (primary_state->base.visible &&
5047 (needs_modeset(&pipe_config->base) ||
5048 !old_primary_state->base.visible))
5049 intel_post_enable_primary(&crtc->base);
5050 }
5051 }
5052
5053 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5054 {
5055 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5056 struct drm_device *dev = crtc->base.dev;
5057 struct drm_i915_private *dev_priv = to_i915(dev);
5058 struct intel_crtc_state *pipe_config =
5059 to_intel_crtc_state(crtc->base.state);
5060 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5061 struct drm_plane *primary = crtc->base.primary;
5062 struct drm_plane_state *old_pri_state =
5063 drm_atomic_get_existing_plane_state(old_state, primary);
5064 bool modeset = needs_modeset(&pipe_config->base);
5065
5066 if (old_pri_state) {
5067 struct intel_plane_state *primary_state =
5068 to_intel_plane_state(primary->state);
5069 struct intel_plane_state *old_primary_state =
5070 to_intel_plane_state(old_pri_state);
5071
5072 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5073
5074 if (old_primary_state->base.visible &&
5075 (modeset || !primary_state->base.visible))
5076 intel_pre_disable_primary(&crtc->base);
5077 }
5078
5079 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
5080 crtc->wm.cxsr_allowed = false;
5081
5082 /*
5083 * Vblank time updates from the shadow to live plane control register
5084 * are blocked if the memory self-refresh mode is active at that
5085 * moment. So to make sure the plane gets truly disabled, disable
5086 * first the self-refresh mode. The self-refresh enable bit in turn
5087 * will be checked/applied by the HW only at the next frame start
5088 * event which is after the vblank start event, so we need to have a
5089 * wait-for-vblank between disabling the plane and the pipe.
5090 */
5091 if (old_crtc_state->base.active) {
5092 intel_set_memory_cxsr(dev_priv, false);
5093 dev_priv->wm.vlv.cxsr = false;
5094 intel_wait_for_vblank(dev, crtc->pipe);
5095 }
5096 }
5097
5098 /*
5099 * IVB workaround: must disable low power watermarks for at least
5100 * one frame before enabling scaling. LP watermarks can be re-enabled
5101 * when scaling is disabled.
5102 *
5103 * WaCxSRDisabledForSpriteScaling:ivb
5104 */
5105 if (pipe_config->disable_lp_wm) {
5106 ilk_disable_lp_wm(dev);
5107 intel_wait_for_vblank(dev, crtc->pipe);
5108 }
5109
5110 /*
5111 * If we're doing a modeset, we're done. No need to do any pre-vblank
5112 * watermark programming here.
5113 */
5114 if (needs_modeset(&pipe_config->base))
5115 return;
5116
5117 /*
5118 * For platforms that support atomic watermarks, program the
5119 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5120 * will be the intermediate values that are safe for both pre- and
5121 * post- vblank; when vblank happens, the 'active' values will be set
5122 * to the final 'target' values and we'll do this again to get the
5123 * optimal watermarks. For gen9+ platforms, the values we program here
5124 * will be the final target values which will get automatically latched
5125 * at vblank time; no further programming will be necessary.
5126 *
5127 * If a platform hasn't been transitioned to atomic watermarks yet,
5128 * we'll continue to update watermarks the old way, if flags tell
5129 * us to.
5130 */
5131 if (dev_priv->display.initial_watermarks != NULL)
5132 dev_priv->display.initial_watermarks(pipe_config);
5133 else if (pipe_config->update_wm_pre)
5134 intel_update_watermarks(&crtc->base);
5135 }
5136
5137 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5138 {
5139 struct drm_device *dev = crtc->dev;
5140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5141 struct drm_plane *p;
5142 int pipe = intel_crtc->pipe;
5143
5144 intel_crtc_dpms_overlay_disable(intel_crtc);
5145
5146 drm_for_each_plane_mask(p, dev, plane_mask)
5147 to_intel_plane(p)->disable_plane(p, crtc);
5148
5149 /*
5150 * FIXME: Once we grow proper nuclear flip support out of this we need
5151 * to compute the mask of flip planes precisely. For the time being
5152 * consider this a flip to a NULL plane.
5153 */
5154 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5155 }
5156
5157 static void ironlake_crtc_enable(struct drm_crtc *crtc)
5158 {
5159 struct drm_device *dev = crtc->dev;
5160 struct drm_i915_private *dev_priv = to_i915(dev);
5161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5162 struct intel_encoder *encoder;
5163 int pipe = intel_crtc->pipe;
5164 struct intel_crtc_state *pipe_config =
5165 to_intel_crtc_state(crtc->state);
5166
5167 if (WARN_ON(intel_crtc->active))
5168 return;
5169
5170 /*
5171 * Sometimes spurious CPU pipe underruns happen during FDI
5172 * training, at least with VGA+HDMI cloning. Suppress them.
5173 *
5174 * On ILK we get an occasional spurious CPU pipe underruns
5175 * between eDP port A enable and vdd enable. Also PCH port
5176 * enable seems to result in the occasional CPU pipe underrun.
5177 *
5178 * Spurious PCH underruns also occur during PCH enabling.
5179 */
5180 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5181 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5182 if (intel_crtc->config->has_pch_encoder)
5183 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5184
5185 if (intel_crtc->config->has_pch_encoder)
5186 intel_prepare_shared_dpll(intel_crtc);
5187
5188 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5189 intel_dp_set_m_n(intel_crtc, M1_N1);
5190
5191 intel_set_pipe_timings(intel_crtc);
5192 intel_set_pipe_src_size(intel_crtc);
5193
5194 if (intel_crtc->config->has_pch_encoder) {
5195 intel_cpu_transcoder_set_m_n(intel_crtc,
5196 &intel_crtc->config->fdi_m_n, NULL);
5197 }
5198
5199 ironlake_set_pipeconf(crtc);
5200
5201 intel_crtc->active = true;
5202
5203 for_each_encoder_on_crtc(dev, crtc, encoder)
5204 if (encoder->pre_enable)
5205 encoder->pre_enable(encoder);
5206
5207 if (intel_crtc->config->has_pch_encoder) {
5208 /* Note: FDI PLL enabling _must_ be done before we enable the
5209 * cpu pipes, hence this is separate from all the other fdi/pch
5210 * enabling. */
5211 ironlake_fdi_pll_enable(intel_crtc);
5212 } else {
5213 assert_fdi_tx_disabled(dev_priv, pipe);
5214 assert_fdi_rx_disabled(dev_priv, pipe);
5215 }
5216
5217 ironlake_pfit_enable(intel_crtc);
5218
5219 /*
5220 * On ILK+ LUT must be loaded before the pipe is running but with
5221 * clocks enabled
5222 */
5223 intel_color_load_luts(&pipe_config->base);
5224
5225 if (dev_priv->display.initial_watermarks != NULL)
5226 dev_priv->display.initial_watermarks(intel_crtc->config);
5227 intel_enable_pipe(intel_crtc);
5228
5229 if (intel_crtc->config->has_pch_encoder)
5230 ironlake_pch_enable(crtc);
5231
5232 assert_vblank_disabled(crtc);
5233 drm_crtc_vblank_on(crtc);
5234
5235 for_each_encoder_on_crtc(dev, crtc, encoder)
5236 encoder->enable(encoder);
5237
5238 if (HAS_PCH_CPT(dev))
5239 cpt_verify_modeset(dev, intel_crtc->pipe);
5240
5241 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5242 if (intel_crtc->config->has_pch_encoder)
5243 intel_wait_for_vblank(dev, pipe);
5244 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5245 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5246 }
5247
5248 /* IPS only exists on ULT machines and is tied to pipe A. */
5249 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5250 {
5251 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
5252 }
5253
5254 static void haswell_crtc_enable(struct drm_crtc *crtc)
5255 {
5256 struct drm_device *dev = crtc->dev;
5257 struct drm_i915_private *dev_priv = to_i915(dev);
5258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5259 struct intel_encoder *encoder;
5260 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5261 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5262 struct intel_crtc_state *pipe_config =
5263 to_intel_crtc_state(crtc->state);
5264
5265 if (WARN_ON(intel_crtc->active))
5266 return;
5267
5268 if (intel_crtc->config->has_pch_encoder)
5269 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5270 false);
5271
5272 for_each_encoder_on_crtc(dev, crtc, encoder)
5273 if (encoder->pre_pll_enable)
5274 encoder->pre_pll_enable(encoder);
5275
5276 if (intel_crtc->config->shared_dpll)
5277 intel_enable_shared_dpll(intel_crtc);
5278
5279 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5280 intel_dp_set_m_n(intel_crtc, M1_N1);
5281
5282 if (!transcoder_is_dsi(cpu_transcoder))
5283 intel_set_pipe_timings(intel_crtc);
5284
5285 intel_set_pipe_src_size(intel_crtc);
5286
5287 if (cpu_transcoder != TRANSCODER_EDP &&
5288 !transcoder_is_dsi(cpu_transcoder)) {
5289 I915_WRITE(PIPE_MULT(cpu_transcoder),
5290 intel_crtc->config->pixel_multiplier - 1);
5291 }
5292
5293 if (intel_crtc->config->has_pch_encoder) {
5294 intel_cpu_transcoder_set_m_n(intel_crtc,
5295 &intel_crtc->config->fdi_m_n, NULL);
5296 }
5297
5298 if (!transcoder_is_dsi(cpu_transcoder))
5299 haswell_set_pipeconf(crtc);
5300
5301 haswell_set_pipemisc(crtc);
5302
5303 intel_color_set_csc(&pipe_config->base);
5304
5305 intel_crtc->active = true;
5306
5307 if (intel_crtc->config->has_pch_encoder)
5308 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5309 else
5310 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5311
5312 for_each_encoder_on_crtc(dev, crtc, encoder) {
5313 if (encoder->pre_enable)
5314 encoder->pre_enable(encoder);
5315 }
5316
5317 if (intel_crtc->config->has_pch_encoder)
5318 dev_priv->display.fdi_link_train(crtc);
5319
5320 if (!transcoder_is_dsi(cpu_transcoder))
5321 intel_ddi_enable_pipe_clock(intel_crtc);
5322
5323 if (INTEL_INFO(dev)->gen >= 9)
5324 skylake_pfit_enable(intel_crtc);
5325 else
5326 ironlake_pfit_enable(intel_crtc);
5327
5328 /*
5329 * On ILK+ LUT must be loaded before the pipe is running but with
5330 * clocks enabled
5331 */
5332 intel_color_load_luts(&pipe_config->base);
5333
5334 intel_ddi_set_pipe_settings(crtc);
5335 if (!transcoder_is_dsi(cpu_transcoder))
5336 intel_ddi_enable_transcoder_func(crtc);
5337
5338 if (dev_priv->display.initial_watermarks != NULL)
5339 dev_priv->display.initial_watermarks(pipe_config);
5340 else
5341 intel_update_watermarks(crtc);
5342
5343 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5344 if (!transcoder_is_dsi(cpu_transcoder))
5345 intel_enable_pipe(intel_crtc);
5346
5347 if (intel_crtc->config->has_pch_encoder)
5348 lpt_pch_enable(crtc);
5349
5350 if (intel_crtc->config->dp_encoder_is_mst)
5351 intel_ddi_set_vc_payload_alloc(crtc, true);
5352
5353 assert_vblank_disabled(crtc);
5354 drm_crtc_vblank_on(crtc);
5355
5356 for_each_encoder_on_crtc(dev, crtc, encoder) {
5357 encoder->enable(encoder);
5358 intel_opregion_notify_encoder(encoder, true);
5359 }
5360
5361 if (intel_crtc->config->has_pch_encoder) {
5362 intel_wait_for_vblank(dev, pipe);
5363 intel_wait_for_vblank(dev, pipe);
5364 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5365 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5366 true);
5367 }
5368
5369 /* If we change the relative order between pipe/planes enabling, we need
5370 * to change the workaround. */
5371 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5372 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5373 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5374 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5375 }
5376 }
5377
5378 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5379 {
5380 struct drm_device *dev = crtc->base.dev;
5381 struct drm_i915_private *dev_priv = to_i915(dev);
5382 int pipe = crtc->pipe;
5383
5384 /* To avoid upsetting the power well on haswell only disable the pfit if
5385 * it's in use. The hw state code will make sure we get this right. */
5386 if (force || crtc->config->pch_pfit.enabled) {
5387 I915_WRITE(PF_CTL(pipe), 0);
5388 I915_WRITE(PF_WIN_POS(pipe), 0);
5389 I915_WRITE(PF_WIN_SZ(pipe), 0);
5390 }
5391 }
5392
5393 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5394 {
5395 struct drm_device *dev = crtc->dev;
5396 struct drm_i915_private *dev_priv = to_i915(dev);
5397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5398 struct intel_encoder *encoder;
5399 int pipe = intel_crtc->pipe;
5400
5401 /*
5402 * Sometimes spurious CPU pipe underruns happen when the
5403 * pipe is already disabled, but FDI RX/TX is still enabled.
5404 * Happens at least with VGA+HDMI cloning. Suppress them.
5405 */
5406 if (intel_crtc->config->has_pch_encoder) {
5407 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5408 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5409 }
5410
5411 for_each_encoder_on_crtc(dev, crtc, encoder)
5412 encoder->disable(encoder);
5413
5414 drm_crtc_vblank_off(crtc);
5415 assert_vblank_disabled(crtc);
5416
5417 intel_disable_pipe(intel_crtc);
5418
5419 ironlake_pfit_disable(intel_crtc, false);
5420
5421 if (intel_crtc->config->has_pch_encoder)
5422 ironlake_fdi_disable(crtc);
5423
5424 for_each_encoder_on_crtc(dev, crtc, encoder)
5425 if (encoder->post_disable)
5426 encoder->post_disable(encoder);
5427
5428 if (intel_crtc->config->has_pch_encoder) {
5429 ironlake_disable_pch_transcoder(dev_priv, pipe);
5430
5431 if (HAS_PCH_CPT(dev)) {
5432 i915_reg_t reg;
5433 u32 temp;
5434
5435 /* disable TRANS_DP_CTL */
5436 reg = TRANS_DP_CTL(pipe);
5437 temp = I915_READ(reg);
5438 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5439 TRANS_DP_PORT_SEL_MASK);
5440 temp |= TRANS_DP_PORT_SEL_NONE;
5441 I915_WRITE(reg, temp);
5442
5443 /* disable DPLL_SEL */
5444 temp = I915_READ(PCH_DPLL_SEL);
5445 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5446 I915_WRITE(PCH_DPLL_SEL, temp);
5447 }
5448
5449 ironlake_fdi_pll_disable(intel_crtc);
5450 }
5451
5452 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5453 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5454 }
5455
5456 static void haswell_crtc_disable(struct drm_crtc *crtc)
5457 {
5458 struct drm_device *dev = crtc->dev;
5459 struct drm_i915_private *dev_priv = to_i915(dev);
5460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5461 struct intel_encoder *encoder;
5462 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5463
5464 if (intel_crtc->config->has_pch_encoder)
5465 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5466 false);
5467
5468 for_each_encoder_on_crtc(dev, crtc, encoder) {
5469 intel_opregion_notify_encoder(encoder, false);
5470 encoder->disable(encoder);
5471 }
5472
5473 drm_crtc_vblank_off(crtc);
5474 assert_vblank_disabled(crtc);
5475
5476 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5477 if (!transcoder_is_dsi(cpu_transcoder))
5478 intel_disable_pipe(intel_crtc);
5479
5480 if (intel_crtc->config->dp_encoder_is_mst)
5481 intel_ddi_set_vc_payload_alloc(crtc, false);
5482
5483 if (!transcoder_is_dsi(cpu_transcoder))
5484 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5485
5486 if (INTEL_INFO(dev)->gen >= 9)
5487 skylake_scaler_disable(intel_crtc);
5488 else
5489 ironlake_pfit_disable(intel_crtc, false);
5490
5491 if (!transcoder_is_dsi(cpu_transcoder))
5492 intel_ddi_disable_pipe_clock(intel_crtc);
5493
5494 for_each_encoder_on_crtc(dev, crtc, encoder)
5495 if (encoder->post_disable)
5496 encoder->post_disable(encoder);
5497
5498 if (intel_crtc->config->has_pch_encoder) {
5499 lpt_disable_pch_transcoder(dev_priv);
5500 lpt_disable_iclkip(dev_priv);
5501 intel_ddi_fdi_disable(crtc);
5502
5503 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5504 true);
5505 }
5506 }
5507
5508 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5509 {
5510 struct drm_device *dev = crtc->base.dev;
5511 struct drm_i915_private *dev_priv = to_i915(dev);
5512 struct intel_crtc_state *pipe_config = crtc->config;
5513
5514 if (!pipe_config->gmch_pfit.control)
5515 return;
5516
5517 /*
5518 * The panel fitter should only be adjusted whilst the pipe is disabled,
5519 * according to register description and PRM.
5520 */
5521 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5522 assert_pipe_disabled(dev_priv, crtc->pipe);
5523
5524 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5525 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5526
5527 /* Border color in case we don't scale up to the full screen. Black by
5528 * default, change to something else for debugging. */
5529 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5530 }
5531
5532 static enum intel_display_power_domain port_to_power_domain(enum port port)
5533 {
5534 switch (port) {
5535 case PORT_A:
5536 return POWER_DOMAIN_PORT_DDI_A_LANES;
5537 case PORT_B:
5538 return POWER_DOMAIN_PORT_DDI_B_LANES;
5539 case PORT_C:
5540 return POWER_DOMAIN_PORT_DDI_C_LANES;
5541 case PORT_D:
5542 return POWER_DOMAIN_PORT_DDI_D_LANES;
5543 case PORT_E:
5544 return POWER_DOMAIN_PORT_DDI_E_LANES;
5545 default:
5546 MISSING_CASE(port);
5547 return POWER_DOMAIN_PORT_OTHER;
5548 }
5549 }
5550
5551 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5552 {
5553 switch (port) {
5554 case PORT_A:
5555 return POWER_DOMAIN_AUX_A;
5556 case PORT_B:
5557 return POWER_DOMAIN_AUX_B;
5558 case PORT_C:
5559 return POWER_DOMAIN_AUX_C;
5560 case PORT_D:
5561 return POWER_DOMAIN_AUX_D;
5562 case PORT_E:
5563 /* FIXME: Check VBT for actual wiring of PORT E */
5564 return POWER_DOMAIN_AUX_D;
5565 default:
5566 MISSING_CASE(port);
5567 return POWER_DOMAIN_AUX_A;
5568 }
5569 }
5570
5571 enum intel_display_power_domain
5572 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5573 {
5574 struct drm_device *dev = intel_encoder->base.dev;
5575 struct intel_digital_port *intel_dig_port;
5576
5577 switch (intel_encoder->type) {
5578 case INTEL_OUTPUT_UNKNOWN:
5579 /* Only DDI platforms should ever use this output type */
5580 WARN_ON_ONCE(!HAS_DDI(dev));
5581 case INTEL_OUTPUT_DP:
5582 case INTEL_OUTPUT_HDMI:
5583 case INTEL_OUTPUT_EDP:
5584 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5585 return port_to_power_domain(intel_dig_port->port);
5586 case INTEL_OUTPUT_DP_MST:
5587 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5588 return port_to_power_domain(intel_dig_port->port);
5589 case INTEL_OUTPUT_ANALOG:
5590 return POWER_DOMAIN_PORT_CRT;
5591 case INTEL_OUTPUT_DSI:
5592 return POWER_DOMAIN_PORT_DSI;
5593 default:
5594 return POWER_DOMAIN_PORT_OTHER;
5595 }
5596 }
5597
5598 enum intel_display_power_domain
5599 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5600 {
5601 struct drm_device *dev = intel_encoder->base.dev;
5602 struct intel_digital_port *intel_dig_port;
5603
5604 switch (intel_encoder->type) {
5605 case INTEL_OUTPUT_UNKNOWN:
5606 case INTEL_OUTPUT_HDMI:
5607 /*
5608 * Only DDI platforms should ever use these output types.
5609 * We can get here after the HDMI detect code has already set
5610 * the type of the shared encoder. Since we can't be sure
5611 * what's the status of the given connectors, play safe and
5612 * run the DP detection too.
5613 */
5614 WARN_ON_ONCE(!HAS_DDI(dev));
5615 case INTEL_OUTPUT_DP:
5616 case INTEL_OUTPUT_EDP:
5617 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5618 return port_to_aux_power_domain(intel_dig_port->port);
5619 case INTEL_OUTPUT_DP_MST:
5620 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5621 return port_to_aux_power_domain(intel_dig_port->port);
5622 default:
5623 MISSING_CASE(intel_encoder->type);
5624 return POWER_DOMAIN_AUX_A;
5625 }
5626 }
5627
5628 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5629 struct intel_crtc_state *crtc_state)
5630 {
5631 struct drm_device *dev = crtc->dev;
5632 struct drm_encoder *encoder;
5633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5634 enum pipe pipe = intel_crtc->pipe;
5635 unsigned long mask;
5636 enum transcoder transcoder = crtc_state->cpu_transcoder;
5637
5638 if (!crtc_state->base.active)
5639 return 0;
5640
5641 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5642 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5643 if (crtc_state->pch_pfit.enabled ||
5644 crtc_state->pch_pfit.force_thru)
5645 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5646
5647 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5648 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5649
5650 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5651 }
5652
5653 if (crtc_state->shared_dpll)
5654 mask |= BIT(POWER_DOMAIN_PLLS);
5655
5656 return mask;
5657 }
5658
5659 static unsigned long
5660 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5661 struct intel_crtc_state *crtc_state)
5662 {
5663 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5665 enum intel_display_power_domain domain;
5666 unsigned long domains, new_domains, old_domains;
5667
5668 old_domains = intel_crtc->enabled_power_domains;
5669 intel_crtc->enabled_power_domains = new_domains =
5670 get_crtc_power_domains(crtc, crtc_state);
5671
5672 domains = new_domains & ~old_domains;
5673
5674 for_each_power_domain(domain, domains)
5675 intel_display_power_get(dev_priv, domain);
5676
5677 return old_domains & ~new_domains;
5678 }
5679
5680 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5681 unsigned long domains)
5682 {
5683 enum intel_display_power_domain domain;
5684
5685 for_each_power_domain(domain, domains)
5686 intel_display_power_put(dev_priv, domain);
5687 }
5688
5689 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5690 {
5691 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5692
5693 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5694 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5695 return max_cdclk_freq;
5696 else if (IS_CHERRYVIEW(dev_priv))
5697 return max_cdclk_freq*95/100;
5698 else if (INTEL_INFO(dev_priv)->gen < 4)
5699 return 2*max_cdclk_freq*90/100;
5700 else
5701 return max_cdclk_freq*90/100;
5702 }
5703
5704 static int skl_calc_cdclk(int max_pixclk, int vco);
5705
5706 static void intel_update_max_cdclk(struct drm_device *dev)
5707 {
5708 struct drm_i915_private *dev_priv = to_i915(dev);
5709
5710 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5711 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5712 int max_cdclk, vco;
5713
5714 vco = dev_priv->skl_preferred_vco_freq;
5715 WARN_ON(vco != 8100000 && vco != 8640000);
5716
5717 /*
5718 * Use the lower (vco 8640) cdclk values as a
5719 * first guess. skl_calc_cdclk() will correct it
5720 * if the preferred vco is 8100 instead.
5721 */
5722 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5723 max_cdclk = 617143;
5724 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5725 max_cdclk = 540000;
5726 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5727 max_cdclk = 432000;
5728 else
5729 max_cdclk = 308571;
5730
5731 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5732 } else if (IS_BROXTON(dev)) {
5733 dev_priv->max_cdclk_freq = 624000;
5734 } else if (IS_BROADWELL(dev)) {
5735 /*
5736 * FIXME with extra cooling we can allow
5737 * 540 MHz for ULX and 675 Mhz for ULT.
5738 * How can we know if extra cooling is
5739 * available? PCI ID, VTB, something else?
5740 */
5741 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5742 dev_priv->max_cdclk_freq = 450000;
5743 else if (IS_BDW_ULX(dev))
5744 dev_priv->max_cdclk_freq = 450000;
5745 else if (IS_BDW_ULT(dev))
5746 dev_priv->max_cdclk_freq = 540000;
5747 else
5748 dev_priv->max_cdclk_freq = 675000;
5749 } else if (IS_CHERRYVIEW(dev)) {
5750 dev_priv->max_cdclk_freq = 320000;
5751 } else if (IS_VALLEYVIEW(dev)) {
5752 dev_priv->max_cdclk_freq = 400000;
5753 } else {
5754 /* otherwise assume cdclk is fixed */
5755 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5756 }
5757
5758 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5759
5760 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5761 dev_priv->max_cdclk_freq);
5762
5763 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5764 dev_priv->max_dotclk_freq);
5765 }
5766
5767 static void intel_update_cdclk(struct drm_device *dev)
5768 {
5769 struct drm_i915_private *dev_priv = to_i915(dev);
5770
5771 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5772
5773 if (INTEL_GEN(dev_priv) >= 9)
5774 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5775 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5776 dev_priv->cdclk_pll.ref);
5777 else
5778 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5779 dev_priv->cdclk_freq);
5780
5781 /*
5782 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5783 * Programmng [sic] note: bit[9:2] should be programmed to the number
5784 * of cdclk that generates 4MHz reference clock freq which is used to
5785 * generate GMBus clock. This will vary with the cdclk freq.
5786 */
5787 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5788 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5789 }
5790
5791 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5792 static int skl_cdclk_decimal(int cdclk)
5793 {
5794 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5795 }
5796
5797 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5798 {
5799 int ratio;
5800
5801 if (cdclk == dev_priv->cdclk_pll.ref)
5802 return 0;
5803
5804 switch (cdclk) {
5805 default:
5806 MISSING_CASE(cdclk);
5807 case 144000:
5808 case 288000:
5809 case 384000:
5810 case 576000:
5811 ratio = 60;
5812 break;
5813 case 624000:
5814 ratio = 65;
5815 break;
5816 }
5817
5818 return dev_priv->cdclk_pll.ref * ratio;
5819 }
5820
5821 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5822 {
5823 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5824
5825 /* Timeout 200us */
5826 if (intel_wait_for_register(dev_priv,
5827 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5828 1))
5829 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5830
5831 dev_priv->cdclk_pll.vco = 0;
5832 }
5833
5834 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5835 {
5836 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5837 u32 val;
5838
5839 val = I915_READ(BXT_DE_PLL_CTL);
5840 val &= ~BXT_DE_PLL_RATIO_MASK;
5841 val |= BXT_DE_PLL_RATIO(ratio);
5842 I915_WRITE(BXT_DE_PLL_CTL, val);
5843
5844 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5845
5846 /* Timeout 200us */
5847 if (intel_wait_for_register(dev_priv,
5848 BXT_DE_PLL_ENABLE,
5849 BXT_DE_PLL_LOCK,
5850 BXT_DE_PLL_LOCK,
5851 1))
5852 DRM_ERROR("timeout waiting for DE PLL lock\n");
5853
5854 dev_priv->cdclk_pll.vco = vco;
5855 }
5856
5857 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5858 {
5859 u32 val, divider;
5860 int vco, ret;
5861
5862 vco = bxt_de_pll_vco(dev_priv, cdclk);
5863
5864 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5865
5866 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5867 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5868 case 8:
5869 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5870 break;
5871 case 4:
5872 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5873 break;
5874 case 3:
5875 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5876 break;
5877 case 2:
5878 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5879 break;
5880 default:
5881 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5882 WARN_ON(vco != 0);
5883
5884 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5885 break;
5886 }
5887
5888 /* Inform power controller of upcoming frequency change */
5889 mutex_lock(&dev_priv->rps.hw_lock);
5890 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5891 0x80000000);
5892 mutex_unlock(&dev_priv->rps.hw_lock);
5893
5894 if (ret) {
5895 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5896 ret, cdclk);
5897 return;
5898 }
5899
5900 if (dev_priv->cdclk_pll.vco != 0 &&
5901 dev_priv->cdclk_pll.vco != vco)
5902 bxt_de_pll_disable(dev_priv);
5903
5904 if (dev_priv->cdclk_pll.vco != vco)
5905 bxt_de_pll_enable(dev_priv, vco);
5906
5907 val = divider | skl_cdclk_decimal(cdclk);
5908 /*
5909 * FIXME if only the cd2x divider needs changing, it could be done
5910 * without shutting off the pipe (if only one pipe is active).
5911 */
5912 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5913 /*
5914 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5915 * enable otherwise.
5916 */
5917 if (cdclk >= 500000)
5918 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5919 I915_WRITE(CDCLK_CTL, val);
5920
5921 mutex_lock(&dev_priv->rps.hw_lock);
5922 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5923 DIV_ROUND_UP(cdclk, 25000));
5924 mutex_unlock(&dev_priv->rps.hw_lock);
5925
5926 if (ret) {
5927 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5928 ret, cdclk);
5929 return;
5930 }
5931
5932 intel_update_cdclk(&dev_priv->drm);
5933 }
5934
5935 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5936 {
5937 u32 cdctl, expected;
5938
5939 intel_update_cdclk(&dev_priv->drm);
5940
5941 if (dev_priv->cdclk_pll.vco == 0 ||
5942 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5943 goto sanitize;
5944
5945 /* DPLL okay; verify the cdclock
5946 *
5947 * Some BIOS versions leave an incorrect decimal frequency value and
5948 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5949 * so sanitize this register.
5950 */
5951 cdctl = I915_READ(CDCLK_CTL);
5952 /*
5953 * Let's ignore the pipe field, since BIOS could have configured the
5954 * dividers both synching to an active pipe, or asynchronously
5955 * (PIPE_NONE).
5956 */
5957 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5958
5959 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5960 skl_cdclk_decimal(dev_priv->cdclk_freq);
5961 /*
5962 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5963 * enable otherwise.
5964 */
5965 if (dev_priv->cdclk_freq >= 500000)
5966 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5967
5968 if (cdctl == expected)
5969 /* All well; nothing to sanitize */
5970 return;
5971
5972 sanitize:
5973 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5974
5975 /* force cdclk programming */
5976 dev_priv->cdclk_freq = 0;
5977
5978 /* force full PLL disable + enable */
5979 dev_priv->cdclk_pll.vco = -1;
5980 }
5981
5982 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5983 {
5984 bxt_sanitize_cdclk(dev_priv);
5985
5986 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5987 return;
5988
5989 /*
5990 * FIXME:
5991 * - The initial CDCLK needs to be read from VBT.
5992 * Need to make this change after VBT has changes for BXT.
5993 */
5994 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5995 }
5996
5997 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5998 {
5999 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6000 }
6001
6002 static int skl_calc_cdclk(int max_pixclk, int vco)
6003 {
6004 if (vco == 8640000) {
6005 if (max_pixclk > 540000)
6006 return 617143;
6007 else if (max_pixclk > 432000)
6008 return 540000;
6009 else if (max_pixclk > 308571)
6010 return 432000;
6011 else
6012 return 308571;
6013 } else {
6014 if (max_pixclk > 540000)
6015 return 675000;
6016 else if (max_pixclk > 450000)
6017 return 540000;
6018 else if (max_pixclk > 337500)
6019 return 450000;
6020 else
6021 return 337500;
6022 }
6023 }
6024
6025 static void
6026 skl_dpll0_update(struct drm_i915_private *dev_priv)
6027 {
6028 u32 val;
6029
6030 dev_priv->cdclk_pll.ref = 24000;
6031 dev_priv->cdclk_pll.vco = 0;
6032
6033 val = I915_READ(LCPLL1_CTL);
6034 if ((val & LCPLL_PLL_ENABLE) == 0)
6035 return;
6036
6037 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6038 return;
6039
6040 val = I915_READ(DPLL_CTRL1);
6041
6042 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6043 DPLL_CTRL1_SSC(SKL_DPLL0) |
6044 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6045 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6046 return;
6047
6048 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6049 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6050 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6051 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6052 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6053 dev_priv->cdclk_pll.vco = 8100000;
6054 break;
6055 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6056 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6057 dev_priv->cdclk_pll.vco = 8640000;
6058 break;
6059 default:
6060 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6061 break;
6062 }
6063 }
6064
6065 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6066 {
6067 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6068
6069 dev_priv->skl_preferred_vco_freq = vco;
6070
6071 if (changed)
6072 intel_update_max_cdclk(&dev_priv->drm);
6073 }
6074
6075 static void
6076 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6077 {
6078 int min_cdclk = skl_calc_cdclk(0, vco);
6079 u32 val;
6080
6081 WARN_ON(vco != 8100000 && vco != 8640000);
6082
6083 /* select the minimum CDCLK before enabling DPLL 0 */
6084 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6085 I915_WRITE(CDCLK_CTL, val);
6086 POSTING_READ(CDCLK_CTL);
6087
6088 /*
6089 * We always enable DPLL0 with the lowest link rate possible, but still
6090 * taking into account the VCO required to operate the eDP panel at the
6091 * desired frequency. The usual DP link rates operate with a VCO of
6092 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6093 * The modeset code is responsible for the selection of the exact link
6094 * rate later on, with the constraint of choosing a frequency that
6095 * works with vco.
6096 */
6097 val = I915_READ(DPLL_CTRL1);
6098
6099 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6100 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6101 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6102 if (vco == 8640000)
6103 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6104 SKL_DPLL0);
6105 else
6106 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6107 SKL_DPLL0);
6108
6109 I915_WRITE(DPLL_CTRL1, val);
6110 POSTING_READ(DPLL_CTRL1);
6111
6112 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6113
6114 if (intel_wait_for_register(dev_priv,
6115 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6116 5))
6117 DRM_ERROR("DPLL0 not locked\n");
6118
6119 dev_priv->cdclk_pll.vco = vco;
6120
6121 /* We'll want to keep using the current vco from now on. */
6122 skl_set_preferred_cdclk_vco(dev_priv, vco);
6123 }
6124
6125 static void
6126 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6127 {
6128 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6129 if (intel_wait_for_register(dev_priv,
6130 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6131 1))
6132 DRM_ERROR("Couldn't disable DPLL0\n");
6133
6134 dev_priv->cdclk_pll.vco = 0;
6135 }
6136
6137 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6138 {
6139 int ret;
6140 u32 val;
6141
6142 /* inform PCU we want to change CDCLK */
6143 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6144 mutex_lock(&dev_priv->rps.hw_lock);
6145 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6146 mutex_unlock(&dev_priv->rps.hw_lock);
6147
6148 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6149 }
6150
6151 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6152 {
6153 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
6154 }
6155
6156 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6157 {
6158 struct drm_device *dev = &dev_priv->drm;
6159 u32 freq_select, pcu_ack;
6160
6161 WARN_ON((cdclk == 24000) != (vco == 0));
6162
6163 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6164
6165 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6166 DRM_ERROR("failed to inform PCU about cdclk change\n");
6167 return;
6168 }
6169
6170 /* set CDCLK_CTL */
6171 switch (cdclk) {
6172 case 450000:
6173 case 432000:
6174 freq_select = CDCLK_FREQ_450_432;
6175 pcu_ack = 1;
6176 break;
6177 case 540000:
6178 freq_select = CDCLK_FREQ_540;
6179 pcu_ack = 2;
6180 break;
6181 case 308571:
6182 case 337500:
6183 default:
6184 freq_select = CDCLK_FREQ_337_308;
6185 pcu_ack = 0;
6186 break;
6187 case 617143:
6188 case 675000:
6189 freq_select = CDCLK_FREQ_675_617;
6190 pcu_ack = 3;
6191 break;
6192 }
6193
6194 if (dev_priv->cdclk_pll.vco != 0 &&
6195 dev_priv->cdclk_pll.vco != vco)
6196 skl_dpll0_disable(dev_priv);
6197
6198 if (dev_priv->cdclk_pll.vco != vco)
6199 skl_dpll0_enable(dev_priv, vco);
6200
6201 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6202 POSTING_READ(CDCLK_CTL);
6203
6204 /* inform PCU of the change */
6205 mutex_lock(&dev_priv->rps.hw_lock);
6206 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6207 mutex_unlock(&dev_priv->rps.hw_lock);
6208
6209 intel_update_cdclk(dev);
6210 }
6211
6212 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6213
6214 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6215 {
6216 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6217 }
6218
6219 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6220 {
6221 int cdclk, vco;
6222
6223 skl_sanitize_cdclk(dev_priv);
6224
6225 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6226 /*
6227 * Use the current vco as our initial
6228 * guess as to what the preferred vco is.
6229 */
6230 if (dev_priv->skl_preferred_vco_freq == 0)
6231 skl_set_preferred_cdclk_vco(dev_priv,
6232 dev_priv->cdclk_pll.vco);
6233 return;
6234 }
6235
6236 vco = dev_priv->skl_preferred_vco_freq;
6237 if (vco == 0)
6238 vco = 8100000;
6239 cdclk = skl_calc_cdclk(0, vco);
6240
6241 skl_set_cdclk(dev_priv, cdclk, vco);
6242 }
6243
6244 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6245 {
6246 uint32_t cdctl, expected;
6247
6248 /*
6249 * check if the pre-os intialized the display
6250 * There is SWF18 scratchpad register defined which is set by the
6251 * pre-os which can be used by the OS drivers to check the status
6252 */
6253 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6254 goto sanitize;
6255
6256 intel_update_cdclk(&dev_priv->drm);
6257 /* Is PLL enabled and locked ? */
6258 if (dev_priv->cdclk_pll.vco == 0 ||
6259 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6260 goto sanitize;
6261
6262 /* DPLL okay; verify the cdclock
6263 *
6264 * Noticed in some instances that the freq selection is correct but
6265 * decimal part is programmed wrong from BIOS where pre-os does not
6266 * enable display. Verify the same as well.
6267 */
6268 cdctl = I915_READ(CDCLK_CTL);
6269 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6270 skl_cdclk_decimal(dev_priv->cdclk_freq);
6271 if (cdctl == expected)
6272 /* All well; nothing to sanitize */
6273 return;
6274
6275 sanitize:
6276 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6277
6278 /* force cdclk programming */
6279 dev_priv->cdclk_freq = 0;
6280 /* force full PLL disable + enable */
6281 dev_priv->cdclk_pll.vco = -1;
6282 }
6283
6284 /* Adjust CDclk dividers to allow high res or save power if possible */
6285 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6286 {
6287 struct drm_i915_private *dev_priv = to_i915(dev);
6288 u32 val, cmd;
6289
6290 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6291 != dev_priv->cdclk_freq);
6292
6293 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6294 cmd = 2;
6295 else if (cdclk == 266667)
6296 cmd = 1;
6297 else
6298 cmd = 0;
6299
6300 mutex_lock(&dev_priv->rps.hw_lock);
6301 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6302 val &= ~DSPFREQGUAR_MASK;
6303 val |= (cmd << DSPFREQGUAR_SHIFT);
6304 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6305 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6306 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6307 50)) {
6308 DRM_ERROR("timed out waiting for CDclk change\n");
6309 }
6310 mutex_unlock(&dev_priv->rps.hw_lock);
6311
6312 mutex_lock(&dev_priv->sb_lock);
6313
6314 if (cdclk == 400000) {
6315 u32 divider;
6316
6317 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6318
6319 /* adjust cdclk divider */
6320 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6321 val &= ~CCK_FREQUENCY_VALUES;
6322 val |= divider;
6323 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6324
6325 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6326 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6327 50))
6328 DRM_ERROR("timed out waiting for CDclk change\n");
6329 }
6330
6331 /* adjust self-refresh exit latency value */
6332 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6333 val &= ~0x7f;
6334
6335 /*
6336 * For high bandwidth configs, we set a higher latency in the bunit
6337 * so that the core display fetch happens in time to avoid underruns.
6338 */
6339 if (cdclk == 400000)
6340 val |= 4500 / 250; /* 4.5 usec */
6341 else
6342 val |= 3000 / 250; /* 3.0 usec */
6343 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6344
6345 mutex_unlock(&dev_priv->sb_lock);
6346
6347 intel_update_cdclk(dev);
6348 }
6349
6350 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6351 {
6352 struct drm_i915_private *dev_priv = to_i915(dev);
6353 u32 val, cmd;
6354
6355 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6356 != dev_priv->cdclk_freq);
6357
6358 switch (cdclk) {
6359 case 333333:
6360 case 320000:
6361 case 266667:
6362 case 200000:
6363 break;
6364 default:
6365 MISSING_CASE(cdclk);
6366 return;
6367 }
6368
6369 /*
6370 * Specs are full of misinformation, but testing on actual
6371 * hardware has shown that we just need to write the desired
6372 * CCK divider into the Punit register.
6373 */
6374 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6375
6376 mutex_lock(&dev_priv->rps.hw_lock);
6377 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6378 val &= ~DSPFREQGUAR_MASK_CHV;
6379 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6380 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6381 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6382 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6383 50)) {
6384 DRM_ERROR("timed out waiting for CDclk change\n");
6385 }
6386 mutex_unlock(&dev_priv->rps.hw_lock);
6387
6388 intel_update_cdclk(dev);
6389 }
6390
6391 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6392 int max_pixclk)
6393 {
6394 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6395 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6396
6397 /*
6398 * Really only a few cases to deal with, as only 4 CDclks are supported:
6399 * 200MHz
6400 * 267MHz
6401 * 320/333MHz (depends on HPLL freq)
6402 * 400MHz (VLV only)
6403 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6404 * of the lower bin and adjust if needed.
6405 *
6406 * We seem to get an unstable or solid color picture at 200MHz.
6407 * Not sure what's wrong. For now use 200MHz only when all pipes
6408 * are off.
6409 */
6410 if (!IS_CHERRYVIEW(dev_priv) &&
6411 max_pixclk > freq_320*limit/100)
6412 return 400000;
6413 else if (max_pixclk > 266667*limit/100)
6414 return freq_320;
6415 else if (max_pixclk > 0)
6416 return 266667;
6417 else
6418 return 200000;
6419 }
6420
6421 static int bxt_calc_cdclk(int max_pixclk)
6422 {
6423 if (max_pixclk > 576000)
6424 return 624000;
6425 else if (max_pixclk > 384000)
6426 return 576000;
6427 else if (max_pixclk > 288000)
6428 return 384000;
6429 else if (max_pixclk > 144000)
6430 return 288000;
6431 else
6432 return 144000;
6433 }
6434
6435 /* Compute the max pixel clock for new configuration. */
6436 static int intel_mode_max_pixclk(struct drm_device *dev,
6437 struct drm_atomic_state *state)
6438 {
6439 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6440 struct drm_i915_private *dev_priv = to_i915(dev);
6441 struct drm_crtc *crtc;
6442 struct drm_crtc_state *crtc_state;
6443 unsigned max_pixclk = 0, i;
6444 enum pipe pipe;
6445
6446 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6447 sizeof(intel_state->min_pixclk));
6448
6449 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6450 int pixclk = 0;
6451
6452 if (crtc_state->enable)
6453 pixclk = crtc_state->adjusted_mode.crtc_clock;
6454
6455 intel_state->min_pixclk[i] = pixclk;
6456 }
6457
6458 for_each_pipe(dev_priv, pipe)
6459 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6460
6461 return max_pixclk;
6462 }
6463
6464 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6465 {
6466 struct drm_device *dev = state->dev;
6467 struct drm_i915_private *dev_priv = to_i915(dev);
6468 int max_pixclk = intel_mode_max_pixclk(dev, state);
6469 struct intel_atomic_state *intel_state =
6470 to_intel_atomic_state(state);
6471
6472 intel_state->cdclk = intel_state->dev_cdclk =
6473 valleyview_calc_cdclk(dev_priv, max_pixclk);
6474
6475 if (!intel_state->active_crtcs)
6476 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6477
6478 return 0;
6479 }
6480
6481 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6482 {
6483 int max_pixclk = ilk_max_pixel_rate(state);
6484 struct intel_atomic_state *intel_state =
6485 to_intel_atomic_state(state);
6486
6487 intel_state->cdclk = intel_state->dev_cdclk =
6488 bxt_calc_cdclk(max_pixclk);
6489
6490 if (!intel_state->active_crtcs)
6491 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6492
6493 return 0;
6494 }
6495
6496 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6497 {
6498 unsigned int credits, default_credits;
6499
6500 if (IS_CHERRYVIEW(dev_priv))
6501 default_credits = PFI_CREDIT(12);
6502 else
6503 default_credits = PFI_CREDIT(8);
6504
6505 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6506 /* CHV suggested value is 31 or 63 */
6507 if (IS_CHERRYVIEW(dev_priv))
6508 credits = PFI_CREDIT_63;
6509 else
6510 credits = PFI_CREDIT(15);
6511 } else {
6512 credits = default_credits;
6513 }
6514
6515 /*
6516 * WA - write default credits before re-programming
6517 * FIXME: should we also set the resend bit here?
6518 */
6519 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6520 default_credits);
6521
6522 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6523 credits | PFI_CREDIT_RESEND);
6524
6525 /*
6526 * FIXME is this guaranteed to clear
6527 * immediately or should we poll for it?
6528 */
6529 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6530 }
6531
6532 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6533 {
6534 struct drm_device *dev = old_state->dev;
6535 struct drm_i915_private *dev_priv = to_i915(dev);
6536 struct intel_atomic_state *old_intel_state =
6537 to_intel_atomic_state(old_state);
6538 unsigned req_cdclk = old_intel_state->dev_cdclk;
6539
6540 /*
6541 * FIXME: We can end up here with all power domains off, yet
6542 * with a CDCLK frequency other than the minimum. To account
6543 * for this take the PIPE-A power domain, which covers the HW
6544 * blocks needed for the following programming. This can be
6545 * removed once it's guaranteed that we get here either with
6546 * the minimum CDCLK set, or the required power domains
6547 * enabled.
6548 */
6549 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6550
6551 if (IS_CHERRYVIEW(dev))
6552 cherryview_set_cdclk(dev, req_cdclk);
6553 else
6554 valleyview_set_cdclk(dev, req_cdclk);
6555
6556 vlv_program_pfi_credits(dev_priv);
6557
6558 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6559 }
6560
6561 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6562 {
6563 struct drm_device *dev = crtc->dev;
6564 struct drm_i915_private *dev_priv = to_i915(dev);
6565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6566 struct intel_encoder *encoder;
6567 struct intel_crtc_state *pipe_config =
6568 to_intel_crtc_state(crtc->state);
6569 int pipe = intel_crtc->pipe;
6570
6571 if (WARN_ON(intel_crtc->active))
6572 return;
6573
6574 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6575 intel_dp_set_m_n(intel_crtc, M1_N1);
6576
6577 intel_set_pipe_timings(intel_crtc);
6578 intel_set_pipe_src_size(intel_crtc);
6579
6580 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6581 struct drm_i915_private *dev_priv = to_i915(dev);
6582
6583 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6584 I915_WRITE(CHV_CANVAS(pipe), 0);
6585 }
6586
6587 i9xx_set_pipeconf(intel_crtc);
6588
6589 intel_crtc->active = true;
6590
6591 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6592
6593 for_each_encoder_on_crtc(dev, crtc, encoder)
6594 if (encoder->pre_pll_enable)
6595 encoder->pre_pll_enable(encoder);
6596
6597 if (IS_CHERRYVIEW(dev)) {
6598 chv_prepare_pll(intel_crtc, intel_crtc->config);
6599 chv_enable_pll(intel_crtc, intel_crtc->config);
6600 } else {
6601 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6602 vlv_enable_pll(intel_crtc, intel_crtc->config);
6603 }
6604
6605 for_each_encoder_on_crtc(dev, crtc, encoder)
6606 if (encoder->pre_enable)
6607 encoder->pre_enable(encoder);
6608
6609 i9xx_pfit_enable(intel_crtc);
6610
6611 intel_color_load_luts(&pipe_config->base);
6612
6613 intel_update_watermarks(crtc);
6614 intel_enable_pipe(intel_crtc);
6615
6616 assert_vblank_disabled(crtc);
6617 drm_crtc_vblank_on(crtc);
6618
6619 for_each_encoder_on_crtc(dev, crtc, encoder)
6620 encoder->enable(encoder);
6621 }
6622
6623 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6624 {
6625 struct drm_device *dev = crtc->base.dev;
6626 struct drm_i915_private *dev_priv = to_i915(dev);
6627
6628 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6629 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6630 }
6631
6632 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6633 {
6634 struct drm_device *dev = crtc->dev;
6635 struct drm_i915_private *dev_priv = to_i915(dev);
6636 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6637 struct intel_encoder *encoder;
6638 struct intel_crtc_state *pipe_config =
6639 to_intel_crtc_state(crtc->state);
6640 enum pipe pipe = intel_crtc->pipe;
6641
6642 if (WARN_ON(intel_crtc->active))
6643 return;
6644
6645 i9xx_set_pll_dividers(intel_crtc);
6646
6647 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6648 intel_dp_set_m_n(intel_crtc, M1_N1);
6649
6650 intel_set_pipe_timings(intel_crtc);
6651 intel_set_pipe_src_size(intel_crtc);
6652
6653 i9xx_set_pipeconf(intel_crtc);
6654
6655 intel_crtc->active = true;
6656
6657 if (!IS_GEN2(dev))
6658 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6659
6660 for_each_encoder_on_crtc(dev, crtc, encoder)
6661 if (encoder->pre_enable)
6662 encoder->pre_enable(encoder);
6663
6664 i9xx_enable_pll(intel_crtc);
6665
6666 i9xx_pfit_enable(intel_crtc);
6667
6668 intel_color_load_luts(&pipe_config->base);
6669
6670 intel_update_watermarks(crtc);
6671 intel_enable_pipe(intel_crtc);
6672
6673 assert_vblank_disabled(crtc);
6674 drm_crtc_vblank_on(crtc);
6675
6676 for_each_encoder_on_crtc(dev, crtc, encoder)
6677 encoder->enable(encoder);
6678 }
6679
6680 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6681 {
6682 struct drm_device *dev = crtc->base.dev;
6683 struct drm_i915_private *dev_priv = to_i915(dev);
6684
6685 if (!crtc->config->gmch_pfit.control)
6686 return;
6687
6688 assert_pipe_disabled(dev_priv, crtc->pipe);
6689
6690 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6691 I915_READ(PFIT_CONTROL));
6692 I915_WRITE(PFIT_CONTROL, 0);
6693 }
6694
6695 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6696 {
6697 struct drm_device *dev = crtc->dev;
6698 struct drm_i915_private *dev_priv = to_i915(dev);
6699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6700 struct intel_encoder *encoder;
6701 int pipe = intel_crtc->pipe;
6702
6703 /*
6704 * On gen2 planes are double buffered but the pipe isn't, so we must
6705 * wait for planes to fully turn off before disabling the pipe.
6706 */
6707 if (IS_GEN2(dev))
6708 intel_wait_for_vblank(dev, pipe);
6709
6710 for_each_encoder_on_crtc(dev, crtc, encoder)
6711 encoder->disable(encoder);
6712
6713 drm_crtc_vblank_off(crtc);
6714 assert_vblank_disabled(crtc);
6715
6716 intel_disable_pipe(intel_crtc);
6717
6718 i9xx_pfit_disable(intel_crtc);
6719
6720 for_each_encoder_on_crtc(dev, crtc, encoder)
6721 if (encoder->post_disable)
6722 encoder->post_disable(encoder);
6723
6724 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6725 if (IS_CHERRYVIEW(dev))
6726 chv_disable_pll(dev_priv, pipe);
6727 else if (IS_VALLEYVIEW(dev))
6728 vlv_disable_pll(dev_priv, pipe);
6729 else
6730 i9xx_disable_pll(intel_crtc);
6731 }
6732
6733 for_each_encoder_on_crtc(dev, crtc, encoder)
6734 if (encoder->post_pll_disable)
6735 encoder->post_pll_disable(encoder);
6736
6737 if (!IS_GEN2(dev))
6738 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6739 }
6740
6741 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6742 {
6743 struct intel_encoder *encoder;
6744 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6745 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6746 enum intel_display_power_domain domain;
6747 unsigned long domains;
6748
6749 if (!intel_crtc->active)
6750 return;
6751
6752 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6753 WARN_ON(intel_crtc->flip_work);
6754
6755 intel_pre_disable_primary_noatomic(crtc);
6756
6757 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6758 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6759 }
6760
6761 dev_priv->display.crtc_disable(crtc);
6762
6763 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6764 crtc->base.id, crtc->name);
6765
6766 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6767 crtc->state->active = false;
6768 intel_crtc->active = false;
6769 crtc->enabled = false;
6770 crtc->state->connector_mask = 0;
6771 crtc->state->encoder_mask = 0;
6772
6773 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6774 encoder->base.crtc = NULL;
6775
6776 intel_fbc_disable(intel_crtc);
6777 intel_update_watermarks(crtc);
6778 intel_disable_shared_dpll(intel_crtc);
6779
6780 domains = intel_crtc->enabled_power_domains;
6781 for_each_power_domain(domain, domains)
6782 intel_display_power_put(dev_priv, domain);
6783 intel_crtc->enabled_power_domains = 0;
6784
6785 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6786 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6787 }
6788
6789 /*
6790 * turn all crtc's off, but do not adjust state
6791 * This has to be paired with a call to intel_modeset_setup_hw_state.
6792 */
6793 int intel_display_suspend(struct drm_device *dev)
6794 {
6795 struct drm_i915_private *dev_priv = to_i915(dev);
6796 struct drm_atomic_state *state;
6797 int ret;
6798
6799 state = drm_atomic_helper_suspend(dev);
6800 ret = PTR_ERR_OR_ZERO(state);
6801 if (ret)
6802 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6803 else
6804 dev_priv->modeset_restore_state = state;
6805 return ret;
6806 }
6807
6808 void intel_encoder_destroy(struct drm_encoder *encoder)
6809 {
6810 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6811
6812 drm_encoder_cleanup(encoder);
6813 kfree(intel_encoder);
6814 }
6815
6816 /* Cross check the actual hw state with our own modeset state tracking (and it's
6817 * internal consistency). */
6818 static void intel_connector_verify_state(struct intel_connector *connector)
6819 {
6820 struct drm_crtc *crtc = connector->base.state->crtc;
6821
6822 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6823 connector->base.base.id,
6824 connector->base.name);
6825
6826 if (connector->get_hw_state(connector)) {
6827 struct intel_encoder *encoder = connector->encoder;
6828 struct drm_connector_state *conn_state = connector->base.state;
6829
6830 I915_STATE_WARN(!crtc,
6831 "connector enabled without attached crtc\n");
6832
6833 if (!crtc)
6834 return;
6835
6836 I915_STATE_WARN(!crtc->state->active,
6837 "connector is active, but attached crtc isn't\n");
6838
6839 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6840 return;
6841
6842 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6843 "atomic encoder doesn't match attached encoder\n");
6844
6845 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6846 "attached encoder crtc differs from connector crtc\n");
6847 } else {
6848 I915_STATE_WARN(crtc && crtc->state->active,
6849 "attached crtc is active, but connector isn't\n");
6850 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6851 "best encoder set without crtc!\n");
6852 }
6853 }
6854
6855 int intel_connector_init(struct intel_connector *connector)
6856 {
6857 drm_atomic_helper_connector_reset(&connector->base);
6858
6859 if (!connector->base.state)
6860 return -ENOMEM;
6861
6862 return 0;
6863 }
6864
6865 struct intel_connector *intel_connector_alloc(void)
6866 {
6867 struct intel_connector *connector;
6868
6869 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6870 if (!connector)
6871 return NULL;
6872
6873 if (intel_connector_init(connector) < 0) {
6874 kfree(connector);
6875 return NULL;
6876 }
6877
6878 return connector;
6879 }
6880
6881 /* Simple connector->get_hw_state implementation for encoders that support only
6882 * one connector and no cloning and hence the encoder state determines the state
6883 * of the connector. */
6884 bool intel_connector_get_hw_state(struct intel_connector *connector)
6885 {
6886 enum pipe pipe = 0;
6887 struct intel_encoder *encoder = connector->encoder;
6888
6889 return encoder->get_hw_state(encoder, &pipe);
6890 }
6891
6892 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6893 {
6894 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6895 return crtc_state->fdi_lanes;
6896
6897 return 0;
6898 }
6899
6900 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6901 struct intel_crtc_state *pipe_config)
6902 {
6903 struct drm_atomic_state *state = pipe_config->base.state;
6904 struct intel_crtc *other_crtc;
6905 struct intel_crtc_state *other_crtc_state;
6906
6907 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6908 pipe_name(pipe), pipe_config->fdi_lanes);
6909 if (pipe_config->fdi_lanes > 4) {
6910 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6911 pipe_name(pipe), pipe_config->fdi_lanes);
6912 return -EINVAL;
6913 }
6914
6915 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6916 if (pipe_config->fdi_lanes > 2) {
6917 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6918 pipe_config->fdi_lanes);
6919 return -EINVAL;
6920 } else {
6921 return 0;
6922 }
6923 }
6924
6925 if (INTEL_INFO(dev)->num_pipes == 2)
6926 return 0;
6927
6928 /* Ivybridge 3 pipe is really complicated */
6929 switch (pipe) {
6930 case PIPE_A:
6931 return 0;
6932 case PIPE_B:
6933 if (pipe_config->fdi_lanes <= 2)
6934 return 0;
6935
6936 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6937 other_crtc_state =
6938 intel_atomic_get_crtc_state(state, other_crtc);
6939 if (IS_ERR(other_crtc_state))
6940 return PTR_ERR(other_crtc_state);
6941
6942 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6943 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6944 pipe_name(pipe), pipe_config->fdi_lanes);
6945 return -EINVAL;
6946 }
6947 return 0;
6948 case PIPE_C:
6949 if (pipe_config->fdi_lanes > 2) {
6950 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6951 pipe_name(pipe), pipe_config->fdi_lanes);
6952 return -EINVAL;
6953 }
6954
6955 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6956 other_crtc_state =
6957 intel_atomic_get_crtc_state(state, other_crtc);
6958 if (IS_ERR(other_crtc_state))
6959 return PTR_ERR(other_crtc_state);
6960
6961 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6962 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6963 return -EINVAL;
6964 }
6965 return 0;
6966 default:
6967 BUG();
6968 }
6969 }
6970
6971 #define RETRY 1
6972 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6973 struct intel_crtc_state *pipe_config)
6974 {
6975 struct drm_device *dev = intel_crtc->base.dev;
6976 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6977 int lane, link_bw, fdi_dotclock, ret;
6978 bool needs_recompute = false;
6979
6980 retry:
6981 /* FDI is a binary signal running at ~2.7GHz, encoding
6982 * each output octet as 10 bits. The actual frequency
6983 * is stored as a divider into a 100MHz clock, and the
6984 * mode pixel clock is stored in units of 1KHz.
6985 * Hence the bw of each lane in terms of the mode signal
6986 * is:
6987 */
6988 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6989
6990 fdi_dotclock = adjusted_mode->crtc_clock;
6991
6992 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6993 pipe_config->pipe_bpp);
6994
6995 pipe_config->fdi_lanes = lane;
6996
6997 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6998 link_bw, &pipe_config->fdi_m_n);
6999
7000 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7001 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7002 pipe_config->pipe_bpp -= 2*3;
7003 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7004 pipe_config->pipe_bpp);
7005 needs_recompute = true;
7006 pipe_config->bw_constrained = true;
7007
7008 goto retry;
7009 }
7010
7011 if (needs_recompute)
7012 return RETRY;
7013
7014 return ret;
7015 }
7016
7017 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7018 struct intel_crtc_state *pipe_config)
7019 {
7020 if (pipe_config->pipe_bpp > 24)
7021 return false;
7022
7023 /* HSW can handle pixel rate up to cdclk? */
7024 if (IS_HASWELL(dev_priv))
7025 return true;
7026
7027 /*
7028 * We compare against max which means we must take
7029 * the increased cdclk requirement into account when
7030 * calculating the new cdclk.
7031 *
7032 * Should measure whether using a lower cdclk w/o IPS
7033 */
7034 return ilk_pipe_pixel_rate(pipe_config) <=
7035 dev_priv->max_cdclk_freq * 95 / 100;
7036 }
7037
7038 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7039 struct intel_crtc_state *pipe_config)
7040 {
7041 struct drm_device *dev = crtc->base.dev;
7042 struct drm_i915_private *dev_priv = to_i915(dev);
7043
7044 pipe_config->ips_enabled = i915.enable_ips &&
7045 hsw_crtc_supports_ips(crtc) &&
7046 pipe_config_supports_ips(dev_priv, pipe_config);
7047 }
7048
7049 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7050 {
7051 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7052
7053 /* GDG double wide on either pipe, otherwise pipe A only */
7054 return INTEL_INFO(dev_priv)->gen < 4 &&
7055 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7056 }
7057
7058 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7059 struct intel_crtc_state *pipe_config)
7060 {
7061 struct drm_device *dev = crtc->base.dev;
7062 struct drm_i915_private *dev_priv = to_i915(dev);
7063 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7064 int clock_limit = dev_priv->max_dotclk_freq;
7065
7066 if (INTEL_INFO(dev)->gen < 4) {
7067 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7068
7069 /*
7070 * Enable double wide mode when the dot clock
7071 * is > 90% of the (display) core speed.
7072 */
7073 if (intel_crtc_supports_double_wide(crtc) &&
7074 adjusted_mode->crtc_clock > clock_limit) {
7075 clock_limit = dev_priv->max_dotclk_freq;
7076 pipe_config->double_wide = true;
7077 }
7078 }
7079
7080 if (adjusted_mode->crtc_clock > clock_limit) {
7081 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7082 adjusted_mode->crtc_clock, clock_limit,
7083 yesno(pipe_config->double_wide));
7084 return -EINVAL;
7085 }
7086
7087 /*
7088 * Pipe horizontal size must be even in:
7089 * - DVO ganged mode
7090 * - LVDS dual channel mode
7091 * - Double wide pipe
7092 */
7093 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7094 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7095 pipe_config->pipe_src_w &= ~1;
7096
7097 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7098 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7099 */
7100 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
7101 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7102 return -EINVAL;
7103
7104 if (HAS_IPS(dev))
7105 hsw_compute_ips_config(crtc, pipe_config);
7106
7107 if (pipe_config->has_pch_encoder)
7108 return ironlake_fdi_compute_config(crtc, pipe_config);
7109
7110 return 0;
7111 }
7112
7113 static int skylake_get_display_clock_speed(struct drm_device *dev)
7114 {
7115 struct drm_i915_private *dev_priv = to_i915(dev);
7116 uint32_t cdctl;
7117
7118 skl_dpll0_update(dev_priv);
7119
7120 if (dev_priv->cdclk_pll.vco == 0)
7121 return dev_priv->cdclk_pll.ref;
7122
7123 cdctl = I915_READ(CDCLK_CTL);
7124
7125 if (dev_priv->cdclk_pll.vco == 8640000) {
7126 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7127 case CDCLK_FREQ_450_432:
7128 return 432000;
7129 case CDCLK_FREQ_337_308:
7130 return 308571;
7131 case CDCLK_FREQ_540:
7132 return 540000;
7133 case CDCLK_FREQ_675_617:
7134 return 617143;
7135 default:
7136 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7137 }
7138 } else {
7139 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7140 case CDCLK_FREQ_450_432:
7141 return 450000;
7142 case CDCLK_FREQ_337_308:
7143 return 337500;
7144 case CDCLK_FREQ_540:
7145 return 540000;
7146 case CDCLK_FREQ_675_617:
7147 return 675000;
7148 default:
7149 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7150 }
7151 }
7152
7153 return dev_priv->cdclk_pll.ref;
7154 }
7155
7156 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7157 {
7158 u32 val;
7159
7160 dev_priv->cdclk_pll.ref = 19200;
7161 dev_priv->cdclk_pll.vco = 0;
7162
7163 val = I915_READ(BXT_DE_PLL_ENABLE);
7164 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7165 return;
7166
7167 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7168 return;
7169
7170 val = I915_READ(BXT_DE_PLL_CTL);
7171 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7172 dev_priv->cdclk_pll.ref;
7173 }
7174
7175 static int broxton_get_display_clock_speed(struct drm_device *dev)
7176 {
7177 struct drm_i915_private *dev_priv = to_i915(dev);
7178 u32 divider;
7179 int div, vco;
7180
7181 bxt_de_pll_update(dev_priv);
7182
7183 vco = dev_priv->cdclk_pll.vco;
7184 if (vco == 0)
7185 return dev_priv->cdclk_pll.ref;
7186
7187 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7188
7189 switch (divider) {
7190 case BXT_CDCLK_CD2X_DIV_SEL_1:
7191 div = 2;
7192 break;
7193 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7194 div = 3;
7195 break;
7196 case BXT_CDCLK_CD2X_DIV_SEL_2:
7197 div = 4;
7198 break;
7199 case BXT_CDCLK_CD2X_DIV_SEL_4:
7200 div = 8;
7201 break;
7202 default:
7203 MISSING_CASE(divider);
7204 return dev_priv->cdclk_pll.ref;
7205 }
7206
7207 return DIV_ROUND_CLOSEST(vco, div);
7208 }
7209
7210 static int broadwell_get_display_clock_speed(struct drm_device *dev)
7211 {
7212 struct drm_i915_private *dev_priv = to_i915(dev);
7213 uint32_t lcpll = I915_READ(LCPLL_CTL);
7214 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7215
7216 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7217 return 800000;
7218 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7219 return 450000;
7220 else if (freq == LCPLL_CLK_FREQ_450)
7221 return 450000;
7222 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7223 return 540000;
7224 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7225 return 337500;
7226 else
7227 return 675000;
7228 }
7229
7230 static int haswell_get_display_clock_speed(struct drm_device *dev)
7231 {
7232 struct drm_i915_private *dev_priv = to_i915(dev);
7233 uint32_t lcpll = I915_READ(LCPLL_CTL);
7234 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7235
7236 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7237 return 800000;
7238 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7239 return 450000;
7240 else if (freq == LCPLL_CLK_FREQ_450)
7241 return 450000;
7242 else if (IS_HSW_ULT(dev))
7243 return 337500;
7244 else
7245 return 540000;
7246 }
7247
7248 static int valleyview_get_display_clock_speed(struct drm_device *dev)
7249 {
7250 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7251 CCK_DISPLAY_CLOCK_CONTROL);
7252 }
7253
7254 static int ilk_get_display_clock_speed(struct drm_device *dev)
7255 {
7256 return 450000;
7257 }
7258
7259 static int i945_get_display_clock_speed(struct drm_device *dev)
7260 {
7261 return 400000;
7262 }
7263
7264 static int i915_get_display_clock_speed(struct drm_device *dev)
7265 {
7266 return 333333;
7267 }
7268
7269 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7270 {
7271 return 200000;
7272 }
7273
7274 static int pnv_get_display_clock_speed(struct drm_device *dev)
7275 {
7276 u16 gcfgc = 0;
7277
7278 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
7279
7280 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7281 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7282 return 266667;
7283 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7284 return 333333;
7285 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7286 return 444444;
7287 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7288 return 200000;
7289 default:
7290 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7291 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7292 return 133333;
7293 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7294 return 166667;
7295 }
7296 }
7297
7298 static int i915gm_get_display_clock_speed(struct drm_device *dev)
7299 {
7300 u16 gcfgc = 0;
7301
7302 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
7303
7304 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7305 return 133333;
7306 else {
7307 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7308 case GC_DISPLAY_CLOCK_333_MHZ:
7309 return 333333;
7310 default:
7311 case GC_DISPLAY_CLOCK_190_200_MHZ:
7312 return 190000;
7313 }
7314 }
7315 }
7316
7317 static int i865_get_display_clock_speed(struct drm_device *dev)
7318 {
7319 return 266667;
7320 }
7321
7322 static int i85x_get_display_clock_speed(struct drm_device *dev)
7323 {
7324 u16 hpllcc = 0;
7325
7326 /*
7327 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7328 * encoding is different :(
7329 * FIXME is this the right way to detect 852GM/852GMV?
7330 */
7331 if (dev->pdev->revision == 0x1)
7332 return 133333;
7333
7334 pci_bus_read_config_word(dev->pdev->bus,
7335 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7336
7337 /* Assume that the hardware is in the high speed state. This
7338 * should be the default.
7339 */
7340 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7341 case GC_CLOCK_133_200:
7342 case GC_CLOCK_133_200_2:
7343 case GC_CLOCK_100_200:
7344 return 200000;
7345 case GC_CLOCK_166_250:
7346 return 250000;
7347 case GC_CLOCK_100_133:
7348 return 133333;
7349 case GC_CLOCK_133_266:
7350 case GC_CLOCK_133_266_2:
7351 case GC_CLOCK_166_266:
7352 return 266667;
7353 }
7354
7355 /* Shouldn't happen */
7356 return 0;
7357 }
7358
7359 static int i830_get_display_clock_speed(struct drm_device *dev)
7360 {
7361 return 133333;
7362 }
7363
7364 static unsigned int intel_hpll_vco(struct drm_device *dev)
7365 {
7366 struct drm_i915_private *dev_priv = to_i915(dev);
7367 static const unsigned int blb_vco[8] = {
7368 [0] = 3200000,
7369 [1] = 4000000,
7370 [2] = 5333333,
7371 [3] = 4800000,
7372 [4] = 6400000,
7373 };
7374 static const unsigned int pnv_vco[8] = {
7375 [0] = 3200000,
7376 [1] = 4000000,
7377 [2] = 5333333,
7378 [3] = 4800000,
7379 [4] = 2666667,
7380 };
7381 static const unsigned int cl_vco[8] = {
7382 [0] = 3200000,
7383 [1] = 4000000,
7384 [2] = 5333333,
7385 [3] = 6400000,
7386 [4] = 3333333,
7387 [5] = 3566667,
7388 [6] = 4266667,
7389 };
7390 static const unsigned int elk_vco[8] = {
7391 [0] = 3200000,
7392 [1] = 4000000,
7393 [2] = 5333333,
7394 [3] = 4800000,
7395 };
7396 static const unsigned int ctg_vco[8] = {
7397 [0] = 3200000,
7398 [1] = 4000000,
7399 [2] = 5333333,
7400 [3] = 6400000,
7401 [4] = 2666667,
7402 [5] = 4266667,
7403 };
7404 const unsigned int *vco_table;
7405 unsigned int vco;
7406 uint8_t tmp = 0;
7407
7408 /* FIXME other chipsets? */
7409 if (IS_GM45(dev))
7410 vco_table = ctg_vco;
7411 else if (IS_G4X(dev))
7412 vco_table = elk_vco;
7413 else if (IS_CRESTLINE(dev))
7414 vco_table = cl_vco;
7415 else if (IS_PINEVIEW(dev))
7416 vco_table = pnv_vco;
7417 else if (IS_G33(dev))
7418 vco_table = blb_vco;
7419 else
7420 return 0;
7421
7422 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7423
7424 vco = vco_table[tmp & 0x7];
7425 if (vco == 0)
7426 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7427 else
7428 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7429
7430 return vco;
7431 }
7432
7433 static int gm45_get_display_clock_speed(struct drm_device *dev)
7434 {
7435 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7436 uint16_t tmp = 0;
7437
7438 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7439
7440 cdclk_sel = (tmp >> 12) & 0x1;
7441
7442 switch (vco) {
7443 case 2666667:
7444 case 4000000:
7445 case 5333333:
7446 return cdclk_sel ? 333333 : 222222;
7447 case 3200000:
7448 return cdclk_sel ? 320000 : 228571;
7449 default:
7450 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7451 return 222222;
7452 }
7453 }
7454
7455 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7456 {
7457 static const uint8_t div_3200[] = { 16, 10, 8 };
7458 static const uint8_t div_4000[] = { 20, 12, 10 };
7459 static const uint8_t div_5333[] = { 24, 16, 14 };
7460 const uint8_t *div_table;
7461 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7462 uint16_t tmp = 0;
7463
7464 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7465
7466 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7467
7468 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7469 goto fail;
7470
7471 switch (vco) {
7472 case 3200000:
7473 div_table = div_3200;
7474 break;
7475 case 4000000:
7476 div_table = div_4000;
7477 break;
7478 case 5333333:
7479 div_table = div_5333;
7480 break;
7481 default:
7482 goto fail;
7483 }
7484
7485 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7486
7487 fail:
7488 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7489 return 200000;
7490 }
7491
7492 static int g33_get_display_clock_speed(struct drm_device *dev)
7493 {
7494 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7495 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7496 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7497 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7498 const uint8_t *div_table;
7499 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7500 uint16_t tmp = 0;
7501
7502 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7503
7504 cdclk_sel = (tmp >> 4) & 0x7;
7505
7506 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7507 goto fail;
7508
7509 switch (vco) {
7510 case 3200000:
7511 div_table = div_3200;
7512 break;
7513 case 4000000:
7514 div_table = div_4000;
7515 break;
7516 case 4800000:
7517 div_table = div_4800;
7518 break;
7519 case 5333333:
7520 div_table = div_5333;
7521 break;
7522 default:
7523 goto fail;
7524 }
7525
7526 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7527
7528 fail:
7529 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7530 return 190476;
7531 }
7532
7533 static void
7534 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7535 {
7536 while (*num > DATA_LINK_M_N_MASK ||
7537 *den > DATA_LINK_M_N_MASK) {
7538 *num >>= 1;
7539 *den >>= 1;
7540 }
7541 }
7542
7543 static void compute_m_n(unsigned int m, unsigned int n,
7544 uint32_t *ret_m, uint32_t *ret_n)
7545 {
7546 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7547 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7548 intel_reduce_m_n_ratio(ret_m, ret_n);
7549 }
7550
7551 void
7552 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7553 int pixel_clock, int link_clock,
7554 struct intel_link_m_n *m_n)
7555 {
7556 m_n->tu = 64;
7557
7558 compute_m_n(bits_per_pixel * pixel_clock,
7559 link_clock * nlanes * 8,
7560 &m_n->gmch_m, &m_n->gmch_n);
7561
7562 compute_m_n(pixel_clock, link_clock,
7563 &m_n->link_m, &m_n->link_n);
7564 }
7565
7566 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7567 {
7568 if (i915.panel_use_ssc >= 0)
7569 return i915.panel_use_ssc != 0;
7570 return dev_priv->vbt.lvds_use_ssc
7571 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7572 }
7573
7574 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7575 {
7576 return (1 << dpll->n) << 16 | dpll->m2;
7577 }
7578
7579 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7580 {
7581 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7582 }
7583
7584 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7585 struct intel_crtc_state *crtc_state,
7586 struct dpll *reduced_clock)
7587 {
7588 struct drm_device *dev = crtc->base.dev;
7589 u32 fp, fp2 = 0;
7590
7591 if (IS_PINEVIEW(dev)) {
7592 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7593 if (reduced_clock)
7594 fp2 = pnv_dpll_compute_fp(reduced_clock);
7595 } else {
7596 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7597 if (reduced_clock)
7598 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7599 }
7600
7601 crtc_state->dpll_hw_state.fp0 = fp;
7602
7603 crtc->lowfreq_avail = false;
7604 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7605 reduced_clock) {
7606 crtc_state->dpll_hw_state.fp1 = fp2;
7607 crtc->lowfreq_avail = true;
7608 } else {
7609 crtc_state->dpll_hw_state.fp1 = fp;
7610 }
7611 }
7612
7613 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7614 pipe)
7615 {
7616 u32 reg_val;
7617
7618 /*
7619 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7620 * and set it to a reasonable value instead.
7621 */
7622 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7623 reg_val &= 0xffffff00;
7624 reg_val |= 0x00000030;
7625 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7626
7627 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7628 reg_val &= 0x8cffffff;
7629 reg_val = 0x8c000000;
7630 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7631
7632 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7633 reg_val &= 0xffffff00;
7634 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7635
7636 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7637 reg_val &= 0x00ffffff;
7638 reg_val |= 0xb0000000;
7639 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7640 }
7641
7642 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7643 struct intel_link_m_n *m_n)
7644 {
7645 struct drm_device *dev = crtc->base.dev;
7646 struct drm_i915_private *dev_priv = to_i915(dev);
7647 int pipe = crtc->pipe;
7648
7649 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7650 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7651 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7652 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7653 }
7654
7655 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7656 struct intel_link_m_n *m_n,
7657 struct intel_link_m_n *m2_n2)
7658 {
7659 struct drm_device *dev = crtc->base.dev;
7660 struct drm_i915_private *dev_priv = to_i915(dev);
7661 int pipe = crtc->pipe;
7662 enum transcoder transcoder = crtc->config->cpu_transcoder;
7663
7664 if (INTEL_INFO(dev)->gen >= 5) {
7665 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7666 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7667 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7668 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7669 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7670 * for gen < 8) and if DRRS is supported (to make sure the
7671 * registers are not unnecessarily accessed).
7672 */
7673 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7674 crtc->config->has_drrs) {
7675 I915_WRITE(PIPE_DATA_M2(transcoder),
7676 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7677 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7678 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7679 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7680 }
7681 } else {
7682 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7683 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7684 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7685 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7686 }
7687 }
7688
7689 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7690 {
7691 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7692
7693 if (m_n == M1_N1) {
7694 dp_m_n = &crtc->config->dp_m_n;
7695 dp_m2_n2 = &crtc->config->dp_m2_n2;
7696 } else if (m_n == M2_N2) {
7697
7698 /*
7699 * M2_N2 registers are not supported. Hence m2_n2 divider value
7700 * needs to be programmed into M1_N1.
7701 */
7702 dp_m_n = &crtc->config->dp_m2_n2;
7703 } else {
7704 DRM_ERROR("Unsupported divider value\n");
7705 return;
7706 }
7707
7708 if (crtc->config->has_pch_encoder)
7709 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7710 else
7711 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7712 }
7713
7714 static void vlv_compute_dpll(struct intel_crtc *crtc,
7715 struct intel_crtc_state *pipe_config)
7716 {
7717 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7718 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7719 if (crtc->pipe != PIPE_A)
7720 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7721
7722 /* DPLL not used with DSI, but still need the rest set up */
7723 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7724 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7725 DPLL_EXT_BUFFER_ENABLE_VLV;
7726
7727 pipe_config->dpll_hw_state.dpll_md =
7728 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7729 }
7730
7731 static void chv_compute_dpll(struct intel_crtc *crtc,
7732 struct intel_crtc_state *pipe_config)
7733 {
7734 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7735 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7736 if (crtc->pipe != PIPE_A)
7737 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7738
7739 /* DPLL not used with DSI, but still need the rest set up */
7740 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7741 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7742
7743 pipe_config->dpll_hw_state.dpll_md =
7744 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7745 }
7746
7747 static void vlv_prepare_pll(struct intel_crtc *crtc,
7748 const struct intel_crtc_state *pipe_config)
7749 {
7750 struct drm_device *dev = crtc->base.dev;
7751 struct drm_i915_private *dev_priv = to_i915(dev);
7752 enum pipe pipe = crtc->pipe;
7753 u32 mdiv;
7754 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7755 u32 coreclk, reg_val;
7756
7757 /* Enable Refclk */
7758 I915_WRITE(DPLL(pipe),
7759 pipe_config->dpll_hw_state.dpll &
7760 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7761
7762 /* No need to actually set up the DPLL with DSI */
7763 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7764 return;
7765
7766 mutex_lock(&dev_priv->sb_lock);
7767
7768 bestn = pipe_config->dpll.n;
7769 bestm1 = pipe_config->dpll.m1;
7770 bestm2 = pipe_config->dpll.m2;
7771 bestp1 = pipe_config->dpll.p1;
7772 bestp2 = pipe_config->dpll.p2;
7773
7774 /* See eDP HDMI DPIO driver vbios notes doc */
7775
7776 /* PLL B needs special handling */
7777 if (pipe == PIPE_B)
7778 vlv_pllb_recal_opamp(dev_priv, pipe);
7779
7780 /* Set up Tx target for periodic Rcomp update */
7781 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7782
7783 /* Disable target IRef on PLL */
7784 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7785 reg_val &= 0x00ffffff;
7786 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7787
7788 /* Disable fast lock */
7789 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7790
7791 /* Set idtafcrecal before PLL is enabled */
7792 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7793 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7794 mdiv |= ((bestn << DPIO_N_SHIFT));
7795 mdiv |= (1 << DPIO_K_SHIFT);
7796
7797 /*
7798 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7799 * but we don't support that).
7800 * Note: don't use the DAC post divider as it seems unstable.
7801 */
7802 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7803 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7804
7805 mdiv |= DPIO_ENABLE_CALIBRATION;
7806 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7807
7808 /* Set HBR and RBR LPF coefficients */
7809 if (pipe_config->port_clock == 162000 ||
7810 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7811 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7812 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7813 0x009f0003);
7814 else
7815 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7816 0x00d0000f);
7817
7818 if (intel_crtc_has_dp_encoder(pipe_config)) {
7819 /* Use SSC source */
7820 if (pipe == PIPE_A)
7821 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7822 0x0df40000);
7823 else
7824 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7825 0x0df70000);
7826 } else { /* HDMI or VGA */
7827 /* Use bend source */
7828 if (pipe == PIPE_A)
7829 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7830 0x0df70000);
7831 else
7832 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7833 0x0df40000);
7834 }
7835
7836 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7837 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7838 if (intel_crtc_has_dp_encoder(crtc->config))
7839 coreclk |= 0x01000000;
7840 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7841
7842 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7843 mutex_unlock(&dev_priv->sb_lock);
7844 }
7845
7846 static void chv_prepare_pll(struct intel_crtc *crtc,
7847 const struct intel_crtc_state *pipe_config)
7848 {
7849 struct drm_device *dev = crtc->base.dev;
7850 struct drm_i915_private *dev_priv = to_i915(dev);
7851 enum pipe pipe = crtc->pipe;
7852 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7853 u32 loopfilter, tribuf_calcntr;
7854 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7855 u32 dpio_val;
7856 int vco;
7857
7858 /* Enable Refclk and SSC */
7859 I915_WRITE(DPLL(pipe),
7860 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7861
7862 /* No need to actually set up the DPLL with DSI */
7863 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7864 return;
7865
7866 bestn = pipe_config->dpll.n;
7867 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7868 bestm1 = pipe_config->dpll.m1;
7869 bestm2 = pipe_config->dpll.m2 >> 22;
7870 bestp1 = pipe_config->dpll.p1;
7871 bestp2 = pipe_config->dpll.p2;
7872 vco = pipe_config->dpll.vco;
7873 dpio_val = 0;
7874 loopfilter = 0;
7875
7876 mutex_lock(&dev_priv->sb_lock);
7877
7878 /* p1 and p2 divider */
7879 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7880 5 << DPIO_CHV_S1_DIV_SHIFT |
7881 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7882 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7883 1 << DPIO_CHV_K_DIV_SHIFT);
7884
7885 /* Feedback post-divider - m2 */
7886 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7887
7888 /* Feedback refclk divider - n and m1 */
7889 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7890 DPIO_CHV_M1_DIV_BY_2 |
7891 1 << DPIO_CHV_N_DIV_SHIFT);
7892
7893 /* M2 fraction division */
7894 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7895
7896 /* M2 fraction division enable */
7897 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7898 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7899 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7900 if (bestm2_frac)
7901 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7902 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7903
7904 /* Program digital lock detect threshold */
7905 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7906 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7907 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7908 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7909 if (!bestm2_frac)
7910 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7911 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7912
7913 /* Loop filter */
7914 if (vco == 5400000) {
7915 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7916 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7917 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7918 tribuf_calcntr = 0x9;
7919 } else if (vco <= 6200000) {
7920 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7921 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7922 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7923 tribuf_calcntr = 0x9;
7924 } else if (vco <= 6480000) {
7925 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7926 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7927 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7928 tribuf_calcntr = 0x8;
7929 } else {
7930 /* Not supported. Apply the same limits as in the max case */
7931 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7932 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7933 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7934 tribuf_calcntr = 0;
7935 }
7936 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7937
7938 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7939 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7940 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7941 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7942
7943 /* AFC Recal */
7944 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7945 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7946 DPIO_AFC_RECAL);
7947
7948 mutex_unlock(&dev_priv->sb_lock);
7949 }
7950
7951 /**
7952 * vlv_force_pll_on - forcibly enable just the PLL
7953 * @dev_priv: i915 private structure
7954 * @pipe: pipe PLL to enable
7955 * @dpll: PLL configuration
7956 *
7957 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7958 * in cases where we need the PLL enabled even when @pipe is not going to
7959 * be enabled.
7960 */
7961 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7962 const struct dpll *dpll)
7963 {
7964 struct intel_crtc *crtc =
7965 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7966 struct intel_crtc_state *pipe_config;
7967
7968 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7969 if (!pipe_config)
7970 return -ENOMEM;
7971
7972 pipe_config->base.crtc = &crtc->base;
7973 pipe_config->pixel_multiplier = 1;
7974 pipe_config->dpll = *dpll;
7975
7976 if (IS_CHERRYVIEW(dev)) {
7977 chv_compute_dpll(crtc, pipe_config);
7978 chv_prepare_pll(crtc, pipe_config);
7979 chv_enable_pll(crtc, pipe_config);
7980 } else {
7981 vlv_compute_dpll(crtc, pipe_config);
7982 vlv_prepare_pll(crtc, pipe_config);
7983 vlv_enable_pll(crtc, pipe_config);
7984 }
7985
7986 kfree(pipe_config);
7987
7988 return 0;
7989 }
7990
7991 /**
7992 * vlv_force_pll_off - forcibly disable just the PLL
7993 * @dev_priv: i915 private structure
7994 * @pipe: pipe PLL to disable
7995 *
7996 * Disable the PLL for @pipe. To be used in cases where we need
7997 * the PLL enabled even when @pipe is not going to be enabled.
7998 */
7999 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8000 {
8001 if (IS_CHERRYVIEW(dev))
8002 chv_disable_pll(to_i915(dev), pipe);
8003 else
8004 vlv_disable_pll(to_i915(dev), pipe);
8005 }
8006
8007 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8008 struct intel_crtc_state *crtc_state,
8009 struct dpll *reduced_clock)
8010 {
8011 struct drm_device *dev = crtc->base.dev;
8012 struct drm_i915_private *dev_priv = to_i915(dev);
8013 u32 dpll;
8014 struct dpll *clock = &crtc_state->dpll;
8015
8016 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8017
8018 dpll = DPLL_VGA_MODE_DIS;
8019
8020 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8021 dpll |= DPLLB_MODE_LVDS;
8022 else
8023 dpll |= DPLLB_MODE_DAC_SERIAL;
8024
8025 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8026 dpll |= (crtc_state->pixel_multiplier - 1)
8027 << SDVO_MULTIPLIER_SHIFT_HIRES;
8028 }
8029
8030 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8031 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8032 dpll |= DPLL_SDVO_HIGH_SPEED;
8033
8034 if (intel_crtc_has_dp_encoder(crtc_state))
8035 dpll |= DPLL_SDVO_HIGH_SPEED;
8036
8037 /* compute bitmask from p1 value */
8038 if (IS_PINEVIEW(dev))
8039 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8040 else {
8041 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8042 if (IS_G4X(dev) && reduced_clock)
8043 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8044 }
8045 switch (clock->p2) {
8046 case 5:
8047 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8048 break;
8049 case 7:
8050 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8051 break;
8052 case 10:
8053 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8054 break;
8055 case 14:
8056 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8057 break;
8058 }
8059 if (INTEL_INFO(dev)->gen >= 4)
8060 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8061
8062 if (crtc_state->sdvo_tv_clock)
8063 dpll |= PLL_REF_INPUT_TVCLKINBC;
8064 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8065 intel_panel_use_ssc(dev_priv))
8066 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8067 else
8068 dpll |= PLL_REF_INPUT_DREFCLK;
8069
8070 dpll |= DPLL_VCO_ENABLE;
8071 crtc_state->dpll_hw_state.dpll = dpll;
8072
8073 if (INTEL_INFO(dev)->gen >= 4) {
8074 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8075 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8076 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8077 }
8078 }
8079
8080 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8081 struct intel_crtc_state *crtc_state,
8082 struct dpll *reduced_clock)
8083 {
8084 struct drm_device *dev = crtc->base.dev;
8085 struct drm_i915_private *dev_priv = to_i915(dev);
8086 u32 dpll;
8087 struct dpll *clock = &crtc_state->dpll;
8088
8089 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8090
8091 dpll = DPLL_VGA_MODE_DIS;
8092
8093 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8094 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8095 } else {
8096 if (clock->p1 == 2)
8097 dpll |= PLL_P1_DIVIDE_BY_TWO;
8098 else
8099 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8100 if (clock->p2 == 4)
8101 dpll |= PLL_P2_DIVIDE_BY_4;
8102 }
8103
8104 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8105 dpll |= DPLL_DVO_2X_MODE;
8106
8107 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8108 intel_panel_use_ssc(dev_priv))
8109 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8110 else
8111 dpll |= PLL_REF_INPUT_DREFCLK;
8112
8113 dpll |= DPLL_VCO_ENABLE;
8114 crtc_state->dpll_hw_state.dpll = dpll;
8115 }
8116
8117 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8118 {
8119 struct drm_device *dev = intel_crtc->base.dev;
8120 struct drm_i915_private *dev_priv = to_i915(dev);
8121 enum pipe pipe = intel_crtc->pipe;
8122 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8123 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8124 uint32_t crtc_vtotal, crtc_vblank_end;
8125 int vsyncshift = 0;
8126
8127 /* We need to be careful not to changed the adjusted mode, for otherwise
8128 * the hw state checker will get angry at the mismatch. */
8129 crtc_vtotal = adjusted_mode->crtc_vtotal;
8130 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8131
8132 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8133 /* the chip adds 2 halflines automatically */
8134 crtc_vtotal -= 1;
8135 crtc_vblank_end -= 1;
8136
8137 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8138 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8139 else
8140 vsyncshift = adjusted_mode->crtc_hsync_start -
8141 adjusted_mode->crtc_htotal / 2;
8142 if (vsyncshift < 0)
8143 vsyncshift += adjusted_mode->crtc_htotal;
8144 }
8145
8146 if (INTEL_INFO(dev)->gen > 3)
8147 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8148
8149 I915_WRITE(HTOTAL(cpu_transcoder),
8150 (adjusted_mode->crtc_hdisplay - 1) |
8151 ((adjusted_mode->crtc_htotal - 1) << 16));
8152 I915_WRITE(HBLANK(cpu_transcoder),
8153 (adjusted_mode->crtc_hblank_start - 1) |
8154 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8155 I915_WRITE(HSYNC(cpu_transcoder),
8156 (adjusted_mode->crtc_hsync_start - 1) |
8157 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8158
8159 I915_WRITE(VTOTAL(cpu_transcoder),
8160 (adjusted_mode->crtc_vdisplay - 1) |
8161 ((crtc_vtotal - 1) << 16));
8162 I915_WRITE(VBLANK(cpu_transcoder),
8163 (adjusted_mode->crtc_vblank_start - 1) |
8164 ((crtc_vblank_end - 1) << 16));
8165 I915_WRITE(VSYNC(cpu_transcoder),
8166 (adjusted_mode->crtc_vsync_start - 1) |
8167 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8168
8169 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8170 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8171 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8172 * bits. */
8173 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
8174 (pipe == PIPE_B || pipe == PIPE_C))
8175 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8176
8177 }
8178
8179 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8180 {
8181 struct drm_device *dev = intel_crtc->base.dev;
8182 struct drm_i915_private *dev_priv = to_i915(dev);
8183 enum pipe pipe = intel_crtc->pipe;
8184
8185 /* pipesrc controls the size that is scaled from, which should
8186 * always be the user's requested size.
8187 */
8188 I915_WRITE(PIPESRC(pipe),
8189 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8190 (intel_crtc->config->pipe_src_h - 1));
8191 }
8192
8193 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8194 struct intel_crtc_state *pipe_config)
8195 {
8196 struct drm_device *dev = crtc->base.dev;
8197 struct drm_i915_private *dev_priv = to_i915(dev);
8198 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8199 uint32_t tmp;
8200
8201 tmp = I915_READ(HTOTAL(cpu_transcoder));
8202 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8203 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8204 tmp = I915_READ(HBLANK(cpu_transcoder));
8205 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8206 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8207 tmp = I915_READ(HSYNC(cpu_transcoder));
8208 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8209 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8210
8211 tmp = I915_READ(VTOTAL(cpu_transcoder));
8212 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8213 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8214 tmp = I915_READ(VBLANK(cpu_transcoder));
8215 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8216 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8217 tmp = I915_READ(VSYNC(cpu_transcoder));
8218 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8219 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8220
8221 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8222 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8223 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8224 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8225 }
8226 }
8227
8228 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8229 struct intel_crtc_state *pipe_config)
8230 {
8231 struct drm_device *dev = crtc->base.dev;
8232 struct drm_i915_private *dev_priv = to_i915(dev);
8233 u32 tmp;
8234
8235 tmp = I915_READ(PIPESRC(crtc->pipe));
8236 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8237 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8238
8239 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8240 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8241 }
8242
8243 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8244 struct intel_crtc_state *pipe_config)
8245 {
8246 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8247 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8248 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8249 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8250
8251 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8252 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8253 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8254 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8255
8256 mode->flags = pipe_config->base.adjusted_mode.flags;
8257 mode->type = DRM_MODE_TYPE_DRIVER;
8258
8259 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8260 mode->flags |= pipe_config->base.adjusted_mode.flags;
8261
8262 mode->hsync = drm_mode_hsync(mode);
8263 mode->vrefresh = drm_mode_vrefresh(mode);
8264 drm_mode_set_name(mode);
8265 }
8266
8267 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8268 {
8269 struct drm_device *dev = intel_crtc->base.dev;
8270 struct drm_i915_private *dev_priv = to_i915(dev);
8271 uint32_t pipeconf;
8272
8273 pipeconf = 0;
8274
8275 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8276 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8277 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8278
8279 if (intel_crtc->config->double_wide)
8280 pipeconf |= PIPECONF_DOUBLE_WIDE;
8281
8282 /* only g4x and later have fancy bpc/dither controls */
8283 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8284 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8285 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8286 pipeconf |= PIPECONF_DITHER_EN |
8287 PIPECONF_DITHER_TYPE_SP;
8288
8289 switch (intel_crtc->config->pipe_bpp) {
8290 case 18:
8291 pipeconf |= PIPECONF_6BPC;
8292 break;
8293 case 24:
8294 pipeconf |= PIPECONF_8BPC;
8295 break;
8296 case 30:
8297 pipeconf |= PIPECONF_10BPC;
8298 break;
8299 default:
8300 /* Case prevented by intel_choose_pipe_bpp_dither. */
8301 BUG();
8302 }
8303 }
8304
8305 if (HAS_PIPE_CXSR(dev)) {
8306 if (intel_crtc->lowfreq_avail) {
8307 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8308 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8309 } else {
8310 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8311 }
8312 }
8313
8314 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8315 if (INTEL_INFO(dev)->gen < 4 ||
8316 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8317 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8318 else
8319 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8320 } else
8321 pipeconf |= PIPECONF_PROGRESSIVE;
8322
8323 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8324 intel_crtc->config->limited_color_range)
8325 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8326
8327 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8328 POSTING_READ(PIPECONF(intel_crtc->pipe));
8329 }
8330
8331 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8332 struct intel_crtc_state *crtc_state)
8333 {
8334 struct drm_device *dev = crtc->base.dev;
8335 struct drm_i915_private *dev_priv = to_i915(dev);
8336 const struct intel_limit *limit;
8337 int refclk = 48000;
8338
8339 memset(&crtc_state->dpll_hw_state, 0,
8340 sizeof(crtc_state->dpll_hw_state));
8341
8342 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8343 if (intel_panel_use_ssc(dev_priv)) {
8344 refclk = dev_priv->vbt.lvds_ssc_freq;
8345 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8346 }
8347
8348 limit = &intel_limits_i8xx_lvds;
8349 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8350 limit = &intel_limits_i8xx_dvo;
8351 } else {
8352 limit = &intel_limits_i8xx_dac;
8353 }
8354
8355 if (!crtc_state->clock_set &&
8356 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8357 refclk, NULL, &crtc_state->dpll)) {
8358 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8359 return -EINVAL;
8360 }
8361
8362 i8xx_compute_dpll(crtc, crtc_state, NULL);
8363
8364 return 0;
8365 }
8366
8367 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8368 struct intel_crtc_state *crtc_state)
8369 {
8370 struct drm_device *dev = crtc->base.dev;
8371 struct drm_i915_private *dev_priv = to_i915(dev);
8372 const struct intel_limit *limit;
8373 int refclk = 96000;
8374
8375 memset(&crtc_state->dpll_hw_state, 0,
8376 sizeof(crtc_state->dpll_hw_state));
8377
8378 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8379 if (intel_panel_use_ssc(dev_priv)) {
8380 refclk = dev_priv->vbt.lvds_ssc_freq;
8381 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8382 }
8383
8384 if (intel_is_dual_link_lvds(dev))
8385 limit = &intel_limits_g4x_dual_channel_lvds;
8386 else
8387 limit = &intel_limits_g4x_single_channel_lvds;
8388 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8389 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8390 limit = &intel_limits_g4x_hdmi;
8391 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8392 limit = &intel_limits_g4x_sdvo;
8393 } else {
8394 /* The option is for other outputs */
8395 limit = &intel_limits_i9xx_sdvo;
8396 }
8397
8398 if (!crtc_state->clock_set &&
8399 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8400 refclk, NULL, &crtc_state->dpll)) {
8401 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8402 return -EINVAL;
8403 }
8404
8405 i9xx_compute_dpll(crtc, crtc_state, NULL);
8406
8407 return 0;
8408 }
8409
8410 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8411 struct intel_crtc_state *crtc_state)
8412 {
8413 struct drm_device *dev = crtc->base.dev;
8414 struct drm_i915_private *dev_priv = to_i915(dev);
8415 const struct intel_limit *limit;
8416 int refclk = 96000;
8417
8418 memset(&crtc_state->dpll_hw_state, 0,
8419 sizeof(crtc_state->dpll_hw_state));
8420
8421 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8422 if (intel_panel_use_ssc(dev_priv)) {
8423 refclk = dev_priv->vbt.lvds_ssc_freq;
8424 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8425 }
8426
8427 limit = &intel_limits_pineview_lvds;
8428 } else {
8429 limit = &intel_limits_pineview_sdvo;
8430 }
8431
8432 if (!crtc_state->clock_set &&
8433 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8434 refclk, NULL, &crtc_state->dpll)) {
8435 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8436 return -EINVAL;
8437 }
8438
8439 i9xx_compute_dpll(crtc, crtc_state, NULL);
8440
8441 return 0;
8442 }
8443
8444 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8445 struct intel_crtc_state *crtc_state)
8446 {
8447 struct drm_device *dev = crtc->base.dev;
8448 struct drm_i915_private *dev_priv = to_i915(dev);
8449 const struct intel_limit *limit;
8450 int refclk = 96000;
8451
8452 memset(&crtc_state->dpll_hw_state, 0,
8453 sizeof(crtc_state->dpll_hw_state));
8454
8455 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8456 if (intel_panel_use_ssc(dev_priv)) {
8457 refclk = dev_priv->vbt.lvds_ssc_freq;
8458 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8459 }
8460
8461 limit = &intel_limits_i9xx_lvds;
8462 } else {
8463 limit = &intel_limits_i9xx_sdvo;
8464 }
8465
8466 if (!crtc_state->clock_set &&
8467 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8468 refclk, NULL, &crtc_state->dpll)) {
8469 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8470 return -EINVAL;
8471 }
8472
8473 i9xx_compute_dpll(crtc, crtc_state, NULL);
8474
8475 return 0;
8476 }
8477
8478 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8479 struct intel_crtc_state *crtc_state)
8480 {
8481 int refclk = 100000;
8482 const struct intel_limit *limit = &intel_limits_chv;
8483
8484 memset(&crtc_state->dpll_hw_state, 0,
8485 sizeof(crtc_state->dpll_hw_state));
8486
8487 if (!crtc_state->clock_set &&
8488 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8489 refclk, NULL, &crtc_state->dpll)) {
8490 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8491 return -EINVAL;
8492 }
8493
8494 chv_compute_dpll(crtc, crtc_state);
8495
8496 return 0;
8497 }
8498
8499 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8500 struct intel_crtc_state *crtc_state)
8501 {
8502 int refclk = 100000;
8503 const struct intel_limit *limit = &intel_limits_vlv;
8504
8505 memset(&crtc_state->dpll_hw_state, 0,
8506 sizeof(crtc_state->dpll_hw_state));
8507
8508 if (!crtc_state->clock_set &&
8509 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8510 refclk, NULL, &crtc_state->dpll)) {
8511 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8512 return -EINVAL;
8513 }
8514
8515 vlv_compute_dpll(crtc, crtc_state);
8516
8517 return 0;
8518 }
8519
8520 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8521 struct intel_crtc_state *pipe_config)
8522 {
8523 struct drm_device *dev = crtc->base.dev;
8524 struct drm_i915_private *dev_priv = to_i915(dev);
8525 uint32_t tmp;
8526
8527 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8528 return;
8529
8530 tmp = I915_READ(PFIT_CONTROL);
8531 if (!(tmp & PFIT_ENABLE))
8532 return;
8533
8534 /* Check whether the pfit is attached to our pipe. */
8535 if (INTEL_INFO(dev)->gen < 4) {
8536 if (crtc->pipe != PIPE_B)
8537 return;
8538 } else {
8539 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8540 return;
8541 }
8542
8543 pipe_config->gmch_pfit.control = tmp;
8544 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8545 }
8546
8547 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8548 struct intel_crtc_state *pipe_config)
8549 {
8550 struct drm_device *dev = crtc->base.dev;
8551 struct drm_i915_private *dev_priv = to_i915(dev);
8552 int pipe = pipe_config->cpu_transcoder;
8553 struct dpll clock;
8554 u32 mdiv;
8555 int refclk = 100000;
8556
8557 /* In case of DSI, DPLL will not be used */
8558 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8559 return;
8560
8561 mutex_lock(&dev_priv->sb_lock);
8562 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8563 mutex_unlock(&dev_priv->sb_lock);
8564
8565 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8566 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8567 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8568 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8569 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8570
8571 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8572 }
8573
8574 static void
8575 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8576 struct intel_initial_plane_config *plane_config)
8577 {
8578 struct drm_device *dev = crtc->base.dev;
8579 struct drm_i915_private *dev_priv = to_i915(dev);
8580 u32 val, base, offset;
8581 int pipe = crtc->pipe, plane = crtc->plane;
8582 int fourcc, pixel_format;
8583 unsigned int aligned_height;
8584 struct drm_framebuffer *fb;
8585 struct intel_framebuffer *intel_fb;
8586
8587 val = I915_READ(DSPCNTR(plane));
8588 if (!(val & DISPLAY_PLANE_ENABLE))
8589 return;
8590
8591 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8592 if (!intel_fb) {
8593 DRM_DEBUG_KMS("failed to alloc fb\n");
8594 return;
8595 }
8596
8597 fb = &intel_fb->base;
8598
8599 if (INTEL_INFO(dev)->gen >= 4) {
8600 if (val & DISPPLANE_TILED) {
8601 plane_config->tiling = I915_TILING_X;
8602 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8603 }
8604 }
8605
8606 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8607 fourcc = i9xx_format_to_fourcc(pixel_format);
8608 fb->pixel_format = fourcc;
8609 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8610
8611 if (INTEL_INFO(dev)->gen >= 4) {
8612 if (plane_config->tiling)
8613 offset = I915_READ(DSPTILEOFF(plane));
8614 else
8615 offset = I915_READ(DSPLINOFF(plane));
8616 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8617 } else {
8618 base = I915_READ(DSPADDR(plane));
8619 }
8620 plane_config->base = base;
8621
8622 val = I915_READ(PIPESRC(pipe));
8623 fb->width = ((val >> 16) & 0xfff) + 1;
8624 fb->height = ((val >> 0) & 0xfff) + 1;
8625
8626 val = I915_READ(DSPSTRIDE(pipe));
8627 fb->pitches[0] = val & 0xffffffc0;
8628
8629 aligned_height = intel_fb_align_height(dev, fb->height,
8630 fb->pixel_format,
8631 fb->modifier[0]);
8632
8633 plane_config->size = fb->pitches[0] * aligned_height;
8634
8635 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8636 pipe_name(pipe), plane, fb->width, fb->height,
8637 fb->bits_per_pixel, base, fb->pitches[0],
8638 plane_config->size);
8639
8640 plane_config->fb = intel_fb;
8641 }
8642
8643 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8644 struct intel_crtc_state *pipe_config)
8645 {
8646 struct drm_device *dev = crtc->base.dev;
8647 struct drm_i915_private *dev_priv = to_i915(dev);
8648 int pipe = pipe_config->cpu_transcoder;
8649 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8650 struct dpll clock;
8651 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8652 int refclk = 100000;
8653
8654 /* In case of DSI, DPLL will not be used */
8655 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8656 return;
8657
8658 mutex_lock(&dev_priv->sb_lock);
8659 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8660 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8661 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8662 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8663 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8664 mutex_unlock(&dev_priv->sb_lock);
8665
8666 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8667 clock.m2 = (pll_dw0 & 0xff) << 22;
8668 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8669 clock.m2 |= pll_dw2 & 0x3fffff;
8670 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8671 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8672 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8673
8674 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8675 }
8676
8677 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8678 struct intel_crtc_state *pipe_config)
8679 {
8680 struct drm_device *dev = crtc->base.dev;
8681 struct drm_i915_private *dev_priv = to_i915(dev);
8682 enum intel_display_power_domain power_domain;
8683 uint32_t tmp;
8684 bool ret;
8685
8686 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8687 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8688 return false;
8689
8690 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8691 pipe_config->shared_dpll = NULL;
8692
8693 ret = false;
8694
8695 tmp = I915_READ(PIPECONF(crtc->pipe));
8696 if (!(tmp & PIPECONF_ENABLE))
8697 goto out;
8698
8699 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8700 switch (tmp & PIPECONF_BPC_MASK) {
8701 case PIPECONF_6BPC:
8702 pipe_config->pipe_bpp = 18;
8703 break;
8704 case PIPECONF_8BPC:
8705 pipe_config->pipe_bpp = 24;
8706 break;
8707 case PIPECONF_10BPC:
8708 pipe_config->pipe_bpp = 30;
8709 break;
8710 default:
8711 break;
8712 }
8713 }
8714
8715 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8716 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8717 pipe_config->limited_color_range = true;
8718
8719 if (INTEL_INFO(dev)->gen < 4)
8720 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8721
8722 intel_get_pipe_timings(crtc, pipe_config);
8723 intel_get_pipe_src_size(crtc, pipe_config);
8724
8725 i9xx_get_pfit_config(crtc, pipe_config);
8726
8727 if (INTEL_INFO(dev)->gen >= 4) {
8728 /* No way to read it out on pipes B and C */
8729 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8730 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8731 else
8732 tmp = I915_READ(DPLL_MD(crtc->pipe));
8733 pipe_config->pixel_multiplier =
8734 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8735 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8736 pipe_config->dpll_hw_state.dpll_md = tmp;
8737 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8738 tmp = I915_READ(DPLL(crtc->pipe));
8739 pipe_config->pixel_multiplier =
8740 ((tmp & SDVO_MULTIPLIER_MASK)
8741 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8742 } else {
8743 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8744 * port and will be fixed up in the encoder->get_config
8745 * function. */
8746 pipe_config->pixel_multiplier = 1;
8747 }
8748 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8749 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8750 /*
8751 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8752 * on 830. Filter it out here so that we don't
8753 * report errors due to that.
8754 */
8755 if (IS_I830(dev))
8756 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8757
8758 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8759 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8760 } else {
8761 /* Mask out read-only status bits. */
8762 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8763 DPLL_PORTC_READY_MASK |
8764 DPLL_PORTB_READY_MASK);
8765 }
8766
8767 if (IS_CHERRYVIEW(dev))
8768 chv_crtc_clock_get(crtc, pipe_config);
8769 else if (IS_VALLEYVIEW(dev))
8770 vlv_crtc_clock_get(crtc, pipe_config);
8771 else
8772 i9xx_crtc_clock_get(crtc, pipe_config);
8773
8774 /*
8775 * Normally the dotclock is filled in by the encoder .get_config()
8776 * but in case the pipe is enabled w/o any ports we need a sane
8777 * default.
8778 */
8779 pipe_config->base.adjusted_mode.crtc_clock =
8780 pipe_config->port_clock / pipe_config->pixel_multiplier;
8781
8782 ret = true;
8783
8784 out:
8785 intel_display_power_put(dev_priv, power_domain);
8786
8787 return ret;
8788 }
8789
8790 static void ironlake_init_pch_refclk(struct drm_device *dev)
8791 {
8792 struct drm_i915_private *dev_priv = to_i915(dev);
8793 struct intel_encoder *encoder;
8794 int i;
8795 u32 val, final;
8796 bool has_lvds = false;
8797 bool has_cpu_edp = false;
8798 bool has_panel = false;
8799 bool has_ck505 = false;
8800 bool can_ssc = false;
8801 bool using_ssc_source = false;
8802
8803 /* We need to take the global config into account */
8804 for_each_intel_encoder(dev, encoder) {
8805 switch (encoder->type) {
8806 case INTEL_OUTPUT_LVDS:
8807 has_panel = true;
8808 has_lvds = true;
8809 break;
8810 case INTEL_OUTPUT_EDP:
8811 has_panel = true;
8812 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8813 has_cpu_edp = true;
8814 break;
8815 default:
8816 break;
8817 }
8818 }
8819
8820 if (HAS_PCH_IBX(dev)) {
8821 has_ck505 = dev_priv->vbt.display_clock_mode;
8822 can_ssc = has_ck505;
8823 } else {
8824 has_ck505 = false;
8825 can_ssc = true;
8826 }
8827
8828 /* Check if any DPLLs are using the SSC source */
8829 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8830 u32 temp = I915_READ(PCH_DPLL(i));
8831
8832 if (!(temp & DPLL_VCO_ENABLE))
8833 continue;
8834
8835 if ((temp & PLL_REF_INPUT_MASK) ==
8836 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8837 using_ssc_source = true;
8838 break;
8839 }
8840 }
8841
8842 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8843 has_panel, has_lvds, has_ck505, using_ssc_source);
8844
8845 /* Ironlake: try to setup display ref clock before DPLL
8846 * enabling. This is only under driver's control after
8847 * PCH B stepping, previous chipset stepping should be
8848 * ignoring this setting.
8849 */
8850 val = I915_READ(PCH_DREF_CONTROL);
8851
8852 /* As we must carefully and slowly disable/enable each source in turn,
8853 * compute the final state we want first and check if we need to
8854 * make any changes at all.
8855 */
8856 final = val;
8857 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8858 if (has_ck505)
8859 final |= DREF_NONSPREAD_CK505_ENABLE;
8860 else
8861 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8862
8863 final &= ~DREF_SSC_SOURCE_MASK;
8864 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8865 final &= ~DREF_SSC1_ENABLE;
8866
8867 if (has_panel) {
8868 final |= DREF_SSC_SOURCE_ENABLE;
8869
8870 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8871 final |= DREF_SSC1_ENABLE;
8872
8873 if (has_cpu_edp) {
8874 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8875 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8876 else
8877 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8878 } else
8879 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8880 } else if (using_ssc_source) {
8881 final |= DREF_SSC_SOURCE_ENABLE;
8882 final |= DREF_SSC1_ENABLE;
8883 }
8884
8885 if (final == val)
8886 return;
8887
8888 /* Always enable nonspread source */
8889 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8890
8891 if (has_ck505)
8892 val |= DREF_NONSPREAD_CK505_ENABLE;
8893 else
8894 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8895
8896 if (has_panel) {
8897 val &= ~DREF_SSC_SOURCE_MASK;
8898 val |= DREF_SSC_SOURCE_ENABLE;
8899
8900 /* SSC must be turned on before enabling the CPU output */
8901 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8902 DRM_DEBUG_KMS("Using SSC on panel\n");
8903 val |= DREF_SSC1_ENABLE;
8904 } else
8905 val &= ~DREF_SSC1_ENABLE;
8906
8907 /* Get SSC going before enabling the outputs */
8908 I915_WRITE(PCH_DREF_CONTROL, val);
8909 POSTING_READ(PCH_DREF_CONTROL);
8910 udelay(200);
8911
8912 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8913
8914 /* Enable CPU source on CPU attached eDP */
8915 if (has_cpu_edp) {
8916 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8917 DRM_DEBUG_KMS("Using SSC on eDP\n");
8918 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8919 } else
8920 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8921 } else
8922 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8923
8924 I915_WRITE(PCH_DREF_CONTROL, val);
8925 POSTING_READ(PCH_DREF_CONTROL);
8926 udelay(200);
8927 } else {
8928 DRM_DEBUG_KMS("Disabling CPU source output\n");
8929
8930 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8931
8932 /* Turn off CPU output */
8933 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8934
8935 I915_WRITE(PCH_DREF_CONTROL, val);
8936 POSTING_READ(PCH_DREF_CONTROL);
8937 udelay(200);
8938
8939 if (!using_ssc_source) {
8940 DRM_DEBUG_KMS("Disabling SSC source\n");
8941
8942 /* Turn off the SSC source */
8943 val &= ~DREF_SSC_SOURCE_MASK;
8944 val |= DREF_SSC_SOURCE_DISABLE;
8945
8946 /* Turn off SSC1 */
8947 val &= ~DREF_SSC1_ENABLE;
8948
8949 I915_WRITE(PCH_DREF_CONTROL, val);
8950 POSTING_READ(PCH_DREF_CONTROL);
8951 udelay(200);
8952 }
8953 }
8954
8955 BUG_ON(val != final);
8956 }
8957
8958 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8959 {
8960 uint32_t tmp;
8961
8962 tmp = I915_READ(SOUTH_CHICKEN2);
8963 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8964 I915_WRITE(SOUTH_CHICKEN2, tmp);
8965
8966 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8967 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8968 DRM_ERROR("FDI mPHY reset assert timeout\n");
8969
8970 tmp = I915_READ(SOUTH_CHICKEN2);
8971 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8972 I915_WRITE(SOUTH_CHICKEN2, tmp);
8973
8974 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8975 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8976 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8977 }
8978
8979 /* WaMPhyProgramming:hsw */
8980 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8981 {
8982 uint32_t tmp;
8983
8984 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8985 tmp &= ~(0xFF << 24);
8986 tmp |= (0x12 << 24);
8987 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8988
8989 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8990 tmp |= (1 << 11);
8991 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8992
8993 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8994 tmp |= (1 << 11);
8995 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8996
8997 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8998 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8999 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9000
9001 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9002 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9003 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9004
9005 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9006 tmp &= ~(7 << 13);
9007 tmp |= (5 << 13);
9008 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9009
9010 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9011 tmp &= ~(7 << 13);
9012 tmp |= (5 << 13);
9013 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9014
9015 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9016 tmp &= ~0xFF;
9017 tmp |= 0x1C;
9018 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9019
9020 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9021 tmp &= ~0xFF;
9022 tmp |= 0x1C;
9023 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9024
9025 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9026 tmp &= ~(0xFF << 16);
9027 tmp |= (0x1C << 16);
9028 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9029
9030 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9031 tmp &= ~(0xFF << 16);
9032 tmp |= (0x1C << 16);
9033 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9034
9035 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9036 tmp |= (1 << 27);
9037 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9038
9039 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9040 tmp |= (1 << 27);
9041 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9042
9043 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9044 tmp &= ~(0xF << 28);
9045 tmp |= (4 << 28);
9046 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9047
9048 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9049 tmp &= ~(0xF << 28);
9050 tmp |= (4 << 28);
9051 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9052 }
9053
9054 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9055 * Programming" based on the parameters passed:
9056 * - Sequence to enable CLKOUT_DP
9057 * - Sequence to enable CLKOUT_DP without spread
9058 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9059 */
9060 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9061 bool with_fdi)
9062 {
9063 struct drm_i915_private *dev_priv = to_i915(dev);
9064 uint32_t reg, tmp;
9065
9066 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9067 with_spread = true;
9068 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
9069 with_fdi = false;
9070
9071 mutex_lock(&dev_priv->sb_lock);
9072
9073 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9074 tmp &= ~SBI_SSCCTL_DISABLE;
9075 tmp |= SBI_SSCCTL_PATHALT;
9076 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9077
9078 udelay(24);
9079
9080 if (with_spread) {
9081 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9082 tmp &= ~SBI_SSCCTL_PATHALT;
9083 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9084
9085 if (with_fdi) {
9086 lpt_reset_fdi_mphy(dev_priv);
9087 lpt_program_fdi_mphy(dev_priv);
9088 }
9089 }
9090
9091 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9092 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9093 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9094 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9095
9096 mutex_unlock(&dev_priv->sb_lock);
9097 }
9098
9099 /* Sequence to disable CLKOUT_DP */
9100 static void lpt_disable_clkout_dp(struct drm_device *dev)
9101 {
9102 struct drm_i915_private *dev_priv = to_i915(dev);
9103 uint32_t reg, tmp;
9104
9105 mutex_lock(&dev_priv->sb_lock);
9106
9107 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9108 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9109 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9110 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9111
9112 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9113 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9114 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9115 tmp |= SBI_SSCCTL_PATHALT;
9116 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9117 udelay(32);
9118 }
9119 tmp |= SBI_SSCCTL_DISABLE;
9120 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9121 }
9122
9123 mutex_unlock(&dev_priv->sb_lock);
9124 }
9125
9126 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9127
9128 static const uint16_t sscdivintphase[] = {
9129 [BEND_IDX( 50)] = 0x3B23,
9130 [BEND_IDX( 45)] = 0x3B23,
9131 [BEND_IDX( 40)] = 0x3C23,
9132 [BEND_IDX( 35)] = 0x3C23,
9133 [BEND_IDX( 30)] = 0x3D23,
9134 [BEND_IDX( 25)] = 0x3D23,
9135 [BEND_IDX( 20)] = 0x3E23,
9136 [BEND_IDX( 15)] = 0x3E23,
9137 [BEND_IDX( 10)] = 0x3F23,
9138 [BEND_IDX( 5)] = 0x3F23,
9139 [BEND_IDX( 0)] = 0x0025,
9140 [BEND_IDX( -5)] = 0x0025,
9141 [BEND_IDX(-10)] = 0x0125,
9142 [BEND_IDX(-15)] = 0x0125,
9143 [BEND_IDX(-20)] = 0x0225,
9144 [BEND_IDX(-25)] = 0x0225,
9145 [BEND_IDX(-30)] = 0x0325,
9146 [BEND_IDX(-35)] = 0x0325,
9147 [BEND_IDX(-40)] = 0x0425,
9148 [BEND_IDX(-45)] = 0x0425,
9149 [BEND_IDX(-50)] = 0x0525,
9150 };
9151
9152 /*
9153 * Bend CLKOUT_DP
9154 * steps -50 to 50 inclusive, in steps of 5
9155 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9156 * change in clock period = -(steps / 10) * 5.787 ps
9157 */
9158 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9159 {
9160 uint32_t tmp;
9161 int idx = BEND_IDX(steps);
9162
9163 if (WARN_ON(steps % 5 != 0))
9164 return;
9165
9166 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9167 return;
9168
9169 mutex_lock(&dev_priv->sb_lock);
9170
9171 if (steps % 10 != 0)
9172 tmp = 0xAAAAAAAB;
9173 else
9174 tmp = 0x00000000;
9175 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9176
9177 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9178 tmp &= 0xffff0000;
9179 tmp |= sscdivintphase[idx];
9180 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9181
9182 mutex_unlock(&dev_priv->sb_lock);
9183 }
9184
9185 #undef BEND_IDX
9186
9187 static void lpt_init_pch_refclk(struct drm_device *dev)
9188 {
9189 struct intel_encoder *encoder;
9190 bool has_vga = false;
9191
9192 for_each_intel_encoder(dev, encoder) {
9193 switch (encoder->type) {
9194 case INTEL_OUTPUT_ANALOG:
9195 has_vga = true;
9196 break;
9197 default:
9198 break;
9199 }
9200 }
9201
9202 if (has_vga) {
9203 lpt_bend_clkout_dp(to_i915(dev), 0);
9204 lpt_enable_clkout_dp(dev, true, true);
9205 } else {
9206 lpt_disable_clkout_dp(dev);
9207 }
9208 }
9209
9210 /*
9211 * Initialize reference clocks when the driver loads
9212 */
9213 void intel_init_pch_refclk(struct drm_device *dev)
9214 {
9215 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9216 ironlake_init_pch_refclk(dev);
9217 else if (HAS_PCH_LPT(dev))
9218 lpt_init_pch_refclk(dev);
9219 }
9220
9221 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9222 {
9223 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9225 int pipe = intel_crtc->pipe;
9226 uint32_t val;
9227
9228 val = 0;
9229
9230 switch (intel_crtc->config->pipe_bpp) {
9231 case 18:
9232 val |= PIPECONF_6BPC;
9233 break;
9234 case 24:
9235 val |= PIPECONF_8BPC;
9236 break;
9237 case 30:
9238 val |= PIPECONF_10BPC;
9239 break;
9240 case 36:
9241 val |= PIPECONF_12BPC;
9242 break;
9243 default:
9244 /* Case prevented by intel_choose_pipe_bpp_dither. */
9245 BUG();
9246 }
9247
9248 if (intel_crtc->config->dither)
9249 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9250
9251 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9252 val |= PIPECONF_INTERLACED_ILK;
9253 else
9254 val |= PIPECONF_PROGRESSIVE;
9255
9256 if (intel_crtc->config->limited_color_range)
9257 val |= PIPECONF_COLOR_RANGE_SELECT;
9258
9259 I915_WRITE(PIPECONF(pipe), val);
9260 POSTING_READ(PIPECONF(pipe));
9261 }
9262
9263 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9264 {
9265 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9267 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9268 u32 val = 0;
9269
9270 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9271 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9272
9273 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9274 val |= PIPECONF_INTERLACED_ILK;
9275 else
9276 val |= PIPECONF_PROGRESSIVE;
9277
9278 I915_WRITE(PIPECONF(cpu_transcoder), val);
9279 POSTING_READ(PIPECONF(cpu_transcoder));
9280 }
9281
9282 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9283 {
9284 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9286
9287 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9288 u32 val = 0;
9289
9290 switch (intel_crtc->config->pipe_bpp) {
9291 case 18:
9292 val |= PIPEMISC_DITHER_6_BPC;
9293 break;
9294 case 24:
9295 val |= PIPEMISC_DITHER_8_BPC;
9296 break;
9297 case 30:
9298 val |= PIPEMISC_DITHER_10_BPC;
9299 break;
9300 case 36:
9301 val |= PIPEMISC_DITHER_12_BPC;
9302 break;
9303 default:
9304 /* Case prevented by pipe_config_set_bpp. */
9305 BUG();
9306 }
9307
9308 if (intel_crtc->config->dither)
9309 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9310
9311 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9312 }
9313 }
9314
9315 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9316 {
9317 /*
9318 * Account for spread spectrum to avoid
9319 * oversubscribing the link. Max center spread
9320 * is 2.5%; use 5% for safety's sake.
9321 */
9322 u32 bps = target_clock * bpp * 21 / 20;
9323 return DIV_ROUND_UP(bps, link_bw * 8);
9324 }
9325
9326 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9327 {
9328 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9329 }
9330
9331 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9332 struct intel_crtc_state *crtc_state,
9333 struct dpll *reduced_clock)
9334 {
9335 struct drm_crtc *crtc = &intel_crtc->base;
9336 struct drm_device *dev = crtc->dev;
9337 struct drm_i915_private *dev_priv = to_i915(dev);
9338 u32 dpll, fp, fp2;
9339 int factor;
9340
9341 /* Enable autotuning of the PLL clock (if permissible) */
9342 factor = 21;
9343 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9344 if ((intel_panel_use_ssc(dev_priv) &&
9345 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9346 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
9347 factor = 25;
9348 } else if (crtc_state->sdvo_tv_clock)
9349 factor = 20;
9350
9351 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9352
9353 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9354 fp |= FP_CB_TUNE;
9355
9356 if (reduced_clock) {
9357 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9358
9359 if (reduced_clock->m < factor * reduced_clock->n)
9360 fp2 |= FP_CB_TUNE;
9361 } else {
9362 fp2 = fp;
9363 }
9364
9365 dpll = 0;
9366
9367 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9368 dpll |= DPLLB_MODE_LVDS;
9369 else
9370 dpll |= DPLLB_MODE_DAC_SERIAL;
9371
9372 dpll |= (crtc_state->pixel_multiplier - 1)
9373 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9374
9375 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9376 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9377 dpll |= DPLL_SDVO_HIGH_SPEED;
9378
9379 if (intel_crtc_has_dp_encoder(crtc_state))
9380 dpll |= DPLL_SDVO_HIGH_SPEED;
9381
9382 /* compute bitmask from p1 value */
9383 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9384 /* also FPA1 */
9385 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9386
9387 switch (crtc_state->dpll.p2) {
9388 case 5:
9389 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9390 break;
9391 case 7:
9392 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9393 break;
9394 case 10:
9395 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9396 break;
9397 case 14:
9398 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9399 break;
9400 }
9401
9402 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9403 intel_panel_use_ssc(dev_priv))
9404 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9405 else
9406 dpll |= PLL_REF_INPUT_DREFCLK;
9407
9408 dpll |= DPLL_VCO_ENABLE;
9409
9410 crtc_state->dpll_hw_state.dpll = dpll;
9411 crtc_state->dpll_hw_state.fp0 = fp;
9412 crtc_state->dpll_hw_state.fp1 = fp2;
9413 }
9414
9415 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9416 struct intel_crtc_state *crtc_state)
9417 {
9418 struct drm_device *dev = crtc->base.dev;
9419 struct drm_i915_private *dev_priv = to_i915(dev);
9420 struct dpll reduced_clock;
9421 bool has_reduced_clock = false;
9422 struct intel_shared_dpll *pll;
9423 const struct intel_limit *limit;
9424 int refclk = 120000;
9425
9426 memset(&crtc_state->dpll_hw_state, 0,
9427 sizeof(crtc_state->dpll_hw_state));
9428
9429 crtc->lowfreq_avail = false;
9430
9431 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9432 if (!crtc_state->has_pch_encoder)
9433 return 0;
9434
9435 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9436 if (intel_panel_use_ssc(dev_priv)) {
9437 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9438 dev_priv->vbt.lvds_ssc_freq);
9439 refclk = dev_priv->vbt.lvds_ssc_freq;
9440 }
9441
9442 if (intel_is_dual_link_lvds(dev)) {
9443 if (refclk == 100000)
9444 limit = &intel_limits_ironlake_dual_lvds_100m;
9445 else
9446 limit = &intel_limits_ironlake_dual_lvds;
9447 } else {
9448 if (refclk == 100000)
9449 limit = &intel_limits_ironlake_single_lvds_100m;
9450 else
9451 limit = &intel_limits_ironlake_single_lvds;
9452 }
9453 } else {
9454 limit = &intel_limits_ironlake_dac;
9455 }
9456
9457 if (!crtc_state->clock_set &&
9458 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9459 refclk, NULL, &crtc_state->dpll)) {
9460 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9461 return -EINVAL;
9462 }
9463
9464 ironlake_compute_dpll(crtc, crtc_state,
9465 has_reduced_clock ? &reduced_clock : NULL);
9466
9467 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9468 if (pll == NULL) {
9469 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9470 pipe_name(crtc->pipe));
9471 return -EINVAL;
9472 }
9473
9474 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9475 has_reduced_clock)
9476 crtc->lowfreq_avail = true;
9477
9478 return 0;
9479 }
9480
9481 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9482 struct intel_link_m_n *m_n)
9483 {
9484 struct drm_device *dev = crtc->base.dev;
9485 struct drm_i915_private *dev_priv = to_i915(dev);
9486 enum pipe pipe = crtc->pipe;
9487
9488 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9489 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9490 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9491 & ~TU_SIZE_MASK;
9492 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9493 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9494 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9495 }
9496
9497 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9498 enum transcoder transcoder,
9499 struct intel_link_m_n *m_n,
9500 struct intel_link_m_n *m2_n2)
9501 {
9502 struct drm_device *dev = crtc->base.dev;
9503 struct drm_i915_private *dev_priv = to_i915(dev);
9504 enum pipe pipe = crtc->pipe;
9505
9506 if (INTEL_INFO(dev)->gen >= 5) {
9507 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9508 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9509 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9510 & ~TU_SIZE_MASK;
9511 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9512 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9513 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9514 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9515 * gen < 8) and if DRRS is supported (to make sure the
9516 * registers are not unnecessarily read).
9517 */
9518 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9519 crtc->config->has_drrs) {
9520 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9521 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9522 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9523 & ~TU_SIZE_MASK;
9524 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9525 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9526 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9527 }
9528 } else {
9529 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9530 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9531 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9532 & ~TU_SIZE_MASK;
9533 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9534 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9535 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9536 }
9537 }
9538
9539 void intel_dp_get_m_n(struct intel_crtc *crtc,
9540 struct intel_crtc_state *pipe_config)
9541 {
9542 if (pipe_config->has_pch_encoder)
9543 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9544 else
9545 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9546 &pipe_config->dp_m_n,
9547 &pipe_config->dp_m2_n2);
9548 }
9549
9550 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9551 struct intel_crtc_state *pipe_config)
9552 {
9553 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9554 &pipe_config->fdi_m_n, NULL);
9555 }
9556
9557 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9558 struct intel_crtc_state *pipe_config)
9559 {
9560 struct drm_device *dev = crtc->base.dev;
9561 struct drm_i915_private *dev_priv = to_i915(dev);
9562 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9563 uint32_t ps_ctrl = 0;
9564 int id = -1;
9565 int i;
9566
9567 /* find scaler attached to this pipe */
9568 for (i = 0; i < crtc->num_scalers; i++) {
9569 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9570 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9571 id = i;
9572 pipe_config->pch_pfit.enabled = true;
9573 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9574 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9575 break;
9576 }
9577 }
9578
9579 scaler_state->scaler_id = id;
9580 if (id >= 0) {
9581 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9582 } else {
9583 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9584 }
9585 }
9586
9587 static void
9588 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9589 struct intel_initial_plane_config *plane_config)
9590 {
9591 struct drm_device *dev = crtc->base.dev;
9592 struct drm_i915_private *dev_priv = to_i915(dev);
9593 u32 val, base, offset, stride_mult, tiling;
9594 int pipe = crtc->pipe;
9595 int fourcc, pixel_format;
9596 unsigned int aligned_height;
9597 struct drm_framebuffer *fb;
9598 struct intel_framebuffer *intel_fb;
9599
9600 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9601 if (!intel_fb) {
9602 DRM_DEBUG_KMS("failed to alloc fb\n");
9603 return;
9604 }
9605
9606 fb = &intel_fb->base;
9607
9608 val = I915_READ(PLANE_CTL(pipe, 0));
9609 if (!(val & PLANE_CTL_ENABLE))
9610 goto error;
9611
9612 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9613 fourcc = skl_format_to_fourcc(pixel_format,
9614 val & PLANE_CTL_ORDER_RGBX,
9615 val & PLANE_CTL_ALPHA_MASK);
9616 fb->pixel_format = fourcc;
9617 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9618
9619 tiling = val & PLANE_CTL_TILED_MASK;
9620 switch (tiling) {
9621 case PLANE_CTL_TILED_LINEAR:
9622 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9623 break;
9624 case PLANE_CTL_TILED_X:
9625 plane_config->tiling = I915_TILING_X;
9626 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9627 break;
9628 case PLANE_CTL_TILED_Y:
9629 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9630 break;
9631 case PLANE_CTL_TILED_YF:
9632 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9633 break;
9634 default:
9635 MISSING_CASE(tiling);
9636 goto error;
9637 }
9638
9639 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9640 plane_config->base = base;
9641
9642 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9643
9644 val = I915_READ(PLANE_SIZE(pipe, 0));
9645 fb->height = ((val >> 16) & 0xfff) + 1;
9646 fb->width = ((val >> 0) & 0x1fff) + 1;
9647
9648 val = I915_READ(PLANE_STRIDE(pipe, 0));
9649 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9650 fb->pixel_format);
9651 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9652
9653 aligned_height = intel_fb_align_height(dev, fb->height,
9654 fb->pixel_format,
9655 fb->modifier[0]);
9656
9657 plane_config->size = fb->pitches[0] * aligned_height;
9658
9659 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9660 pipe_name(pipe), fb->width, fb->height,
9661 fb->bits_per_pixel, base, fb->pitches[0],
9662 plane_config->size);
9663
9664 plane_config->fb = intel_fb;
9665 return;
9666
9667 error:
9668 kfree(fb);
9669 }
9670
9671 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9672 struct intel_crtc_state *pipe_config)
9673 {
9674 struct drm_device *dev = crtc->base.dev;
9675 struct drm_i915_private *dev_priv = to_i915(dev);
9676 uint32_t tmp;
9677
9678 tmp = I915_READ(PF_CTL(crtc->pipe));
9679
9680 if (tmp & PF_ENABLE) {
9681 pipe_config->pch_pfit.enabled = true;
9682 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9683 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9684
9685 /* We currently do not free assignements of panel fitters on
9686 * ivb/hsw (since we don't use the higher upscaling modes which
9687 * differentiates them) so just WARN about this case for now. */
9688 if (IS_GEN7(dev)) {
9689 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9690 PF_PIPE_SEL_IVB(crtc->pipe));
9691 }
9692 }
9693 }
9694
9695 static void
9696 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9697 struct intel_initial_plane_config *plane_config)
9698 {
9699 struct drm_device *dev = crtc->base.dev;
9700 struct drm_i915_private *dev_priv = to_i915(dev);
9701 u32 val, base, offset;
9702 int pipe = crtc->pipe;
9703 int fourcc, pixel_format;
9704 unsigned int aligned_height;
9705 struct drm_framebuffer *fb;
9706 struct intel_framebuffer *intel_fb;
9707
9708 val = I915_READ(DSPCNTR(pipe));
9709 if (!(val & DISPLAY_PLANE_ENABLE))
9710 return;
9711
9712 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9713 if (!intel_fb) {
9714 DRM_DEBUG_KMS("failed to alloc fb\n");
9715 return;
9716 }
9717
9718 fb = &intel_fb->base;
9719
9720 if (INTEL_INFO(dev)->gen >= 4) {
9721 if (val & DISPPLANE_TILED) {
9722 plane_config->tiling = I915_TILING_X;
9723 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9724 }
9725 }
9726
9727 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9728 fourcc = i9xx_format_to_fourcc(pixel_format);
9729 fb->pixel_format = fourcc;
9730 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9731
9732 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9733 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9734 offset = I915_READ(DSPOFFSET(pipe));
9735 } else {
9736 if (plane_config->tiling)
9737 offset = I915_READ(DSPTILEOFF(pipe));
9738 else
9739 offset = I915_READ(DSPLINOFF(pipe));
9740 }
9741 plane_config->base = base;
9742
9743 val = I915_READ(PIPESRC(pipe));
9744 fb->width = ((val >> 16) & 0xfff) + 1;
9745 fb->height = ((val >> 0) & 0xfff) + 1;
9746
9747 val = I915_READ(DSPSTRIDE(pipe));
9748 fb->pitches[0] = val & 0xffffffc0;
9749
9750 aligned_height = intel_fb_align_height(dev, fb->height,
9751 fb->pixel_format,
9752 fb->modifier[0]);
9753
9754 plane_config->size = fb->pitches[0] * aligned_height;
9755
9756 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9757 pipe_name(pipe), fb->width, fb->height,
9758 fb->bits_per_pixel, base, fb->pitches[0],
9759 plane_config->size);
9760
9761 plane_config->fb = intel_fb;
9762 }
9763
9764 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9765 struct intel_crtc_state *pipe_config)
9766 {
9767 struct drm_device *dev = crtc->base.dev;
9768 struct drm_i915_private *dev_priv = to_i915(dev);
9769 enum intel_display_power_domain power_domain;
9770 uint32_t tmp;
9771 bool ret;
9772
9773 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9774 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9775 return false;
9776
9777 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9778 pipe_config->shared_dpll = NULL;
9779
9780 ret = false;
9781 tmp = I915_READ(PIPECONF(crtc->pipe));
9782 if (!(tmp & PIPECONF_ENABLE))
9783 goto out;
9784
9785 switch (tmp & PIPECONF_BPC_MASK) {
9786 case PIPECONF_6BPC:
9787 pipe_config->pipe_bpp = 18;
9788 break;
9789 case PIPECONF_8BPC:
9790 pipe_config->pipe_bpp = 24;
9791 break;
9792 case PIPECONF_10BPC:
9793 pipe_config->pipe_bpp = 30;
9794 break;
9795 case PIPECONF_12BPC:
9796 pipe_config->pipe_bpp = 36;
9797 break;
9798 default:
9799 break;
9800 }
9801
9802 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9803 pipe_config->limited_color_range = true;
9804
9805 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9806 struct intel_shared_dpll *pll;
9807 enum intel_dpll_id pll_id;
9808
9809 pipe_config->has_pch_encoder = true;
9810
9811 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9812 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9813 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9814
9815 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9816
9817 if (HAS_PCH_IBX(dev_priv)) {
9818 /*
9819 * The pipe->pch transcoder and pch transcoder->pll
9820 * mapping is fixed.
9821 */
9822 pll_id = (enum intel_dpll_id) crtc->pipe;
9823 } else {
9824 tmp = I915_READ(PCH_DPLL_SEL);
9825 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9826 pll_id = DPLL_ID_PCH_PLL_B;
9827 else
9828 pll_id= DPLL_ID_PCH_PLL_A;
9829 }
9830
9831 pipe_config->shared_dpll =
9832 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9833 pll = pipe_config->shared_dpll;
9834
9835 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9836 &pipe_config->dpll_hw_state));
9837
9838 tmp = pipe_config->dpll_hw_state.dpll;
9839 pipe_config->pixel_multiplier =
9840 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9841 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9842
9843 ironlake_pch_clock_get(crtc, pipe_config);
9844 } else {
9845 pipe_config->pixel_multiplier = 1;
9846 }
9847
9848 intel_get_pipe_timings(crtc, pipe_config);
9849 intel_get_pipe_src_size(crtc, pipe_config);
9850
9851 ironlake_get_pfit_config(crtc, pipe_config);
9852
9853 ret = true;
9854
9855 out:
9856 intel_display_power_put(dev_priv, power_domain);
9857
9858 return ret;
9859 }
9860
9861 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9862 {
9863 struct drm_device *dev = &dev_priv->drm;
9864 struct intel_crtc *crtc;
9865
9866 for_each_intel_crtc(dev, crtc)
9867 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9868 pipe_name(crtc->pipe));
9869
9870 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9871 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9872 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9873 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9874 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
9875 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9876 "CPU PWM1 enabled\n");
9877 if (IS_HASWELL(dev))
9878 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9879 "CPU PWM2 enabled\n");
9880 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9881 "PCH PWM1 enabled\n");
9882 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9883 "Utility pin enabled\n");
9884 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9885
9886 /*
9887 * In theory we can still leave IRQs enabled, as long as only the HPD
9888 * interrupts remain enabled. We used to check for that, but since it's
9889 * gen-specific and since we only disable LCPLL after we fully disable
9890 * the interrupts, the check below should be enough.
9891 */
9892 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9893 }
9894
9895 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9896 {
9897 struct drm_device *dev = &dev_priv->drm;
9898
9899 if (IS_HASWELL(dev))
9900 return I915_READ(D_COMP_HSW);
9901 else
9902 return I915_READ(D_COMP_BDW);
9903 }
9904
9905 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9906 {
9907 struct drm_device *dev = &dev_priv->drm;
9908
9909 if (IS_HASWELL(dev)) {
9910 mutex_lock(&dev_priv->rps.hw_lock);
9911 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9912 val))
9913 DRM_ERROR("Failed to write to D_COMP\n");
9914 mutex_unlock(&dev_priv->rps.hw_lock);
9915 } else {
9916 I915_WRITE(D_COMP_BDW, val);
9917 POSTING_READ(D_COMP_BDW);
9918 }
9919 }
9920
9921 /*
9922 * This function implements pieces of two sequences from BSpec:
9923 * - Sequence for display software to disable LCPLL
9924 * - Sequence for display software to allow package C8+
9925 * The steps implemented here are just the steps that actually touch the LCPLL
9926 * register. Callers should take care of disabling all the display engine
9927 * functions, doing the mode unset, fixing interrupts, etc.
9928 */
9929 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9930 bool switch_to_fclk, bool allow_power_down)
9931 {
9932 uint32_t val;
9933
9934 assert_can_disable_lcpll(dev_priv);
9935
9936 val = I915_READ(LCPLL_CTL);
9937
9938 if (switch_to_fclk) {
9939 val |= LCPLL_CD_SOURCE_FCLK;
9940 I915_WRITE(LCPLL_CTL, val);
9941
9942 if (wait_for_us(I915_READ(LCPLL_CTL) &
9943 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9944 DRM_ERROR("Switching to FCLK failed\n");
9945
9946 val = I915_READ(LCPLL_CTL);
9947 }
9948
9949 val |= LCPLL_PLL_DISABLE;
9950 I915_WRITE(LCPLL_CTL, val);
9951 POSTING_READ(LCPLL_CTL);
9952
9953 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9954 DRM_ERROR("LCPLL still locked\n");
9955
9956 val = hsw_read_dcomp(dev_priv);
9957 val |= D_COMP_COMP_DISABLE;
9958 hsw_write_dcomp(dev_priv, val);
9959 ndelay(100);
9960
9961 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9962 1))
9963 DRM_ERROR("D_COMP RCOMP still in progress\n");
9964
9965 if (allow_power_down) {
9966 val = I915_READ(LCPLL_CTL);
9967 val |= LCPLL_POWER_DOWN_ALLOW;
9968 I915_WRITE(LCPLL_CTL, val);
9969 POSTING_READ(LCPLL_CTL);
9970 }
9971 }
9972
9973 /*
9974 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9975 * source.
9976 */
9977 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9978 {
9979 uint32_t val;
9980
9981 val = I915_READ(LCPLL_CTL);
9982
9983 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9984 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9985 return;
9986
9987 /*
9988 * Make sure we're not on PC8 state before disabling PC8, otherwise
9989 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9990 */
9991 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9992
9993 if (val & LCPLL_POWER_DOWN_ALLOW) {
9994 val &= ~LCPLL_POWER_DOWN_ALLOW;
9995 I915_WRITE(LCPLL_CTL, val);
9996 POSTING_READ(LCPLL_CTL);
9997 }
9998
9999 val = hsw_read_dcomp(dev_priv);
10000 val |= D_COMP_COMP_FORCE;
10001 val &= ~D_COMP_COMP_DISABLE;
10002 hsw_write_dcomp(dev_priv, val);
10003
10004 val = I915_READ(LCPLL_CTL);
10005 val &= ~LCPLL_PLL_DISABLE;
10006 I915_WRITE(LCPLL_CTL, val);
10007
10008 if (intel_wait_for_register(dev_priv,
10009 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10010 5))
10011 DRM_ERROR("LCPLL not locked yet\n");
10012
10013 if (val & LCPLL_CD_SOURCE_FCLK) {
10014 val = I915_READ(LCPLL_CTL);
10015 val &= ~LCPLL_CD_SOURCE_FCLK;
10016 I915_WRITE(LCPLL_CTL, val);
10017
10018 if (wait_for_us((I915_READ(LCPLL_CTL) &
10019 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10020 DRM_ERROR("Switching back to LCPLL failed\n");
10021 }
10022
10023 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10024 intel_update_cdclk(&dev_priv->drm);
10025 }
10026
10027 /*
10028 * Package states C8 and deeper are really deep PC states that can only be
10029 * reached when all the devices on the system allow it, so even if the graphics
10030 * device allows PC8+, it doesn't mean the system will actually get to these
10031 * states. Our driver only allows PC8+ when going into runtime PM.
10032 *
10033 * The requirements for PC8+ are that all the outputs are disabled, the power
10034 * well is disabled and most interrupts are disabled, and these are also
10035 * requirements for runtime PM. When these conditions are met, we manually do
10036 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10037 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10038 * hang the machine.
10039 *
10040 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10041 * the state of some registers, so when we come back from PC8+ we need to
10042 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10043 * need to take care of the registers kept by RC6. Notice that this happens even
10044 * if we don't put the device in PCI D3 state (which is what currently happens
10045 * because of the runtime PM support).
10046 *
10047 * For more, read "Display Sequences for Package C8" on the hardware
10048 * documentation.
10049 */
10050 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10051 {
10052 struct drm_device *dev = &dev_priv->drm;
10053 uint32_t val;
10054
10055 DRM_DEBUG_KMS("Enabling package C8+\n");
10056
10057 if (HAS_PCH_LPT_LP(dev)) {
10058 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10059 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10060 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10061 }
10062
10063 lpt_disable_clkout_dp(dev);
10064 hsw_disable_lcpll(dev_priv, true, true);
10065 }
10066
10067 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10068 {
10069 struct drm_device *dev = &dev_priv->drm;
10070 uint32_t val;
10071
10072 DRM_DEBUG_KMS("Disabling package C8+\n");
10073
10074 hsw_restore_lcpll(dev_priv);
10075 lpt_init_pch_refclk(dev);
10076
10077 if (HAS_PCH_LPT_LP(dev)) {
10078 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10079 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10080 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10081 }
10082 }
10083
10084 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10085 {
10086 struct drm_device *dev = old_state->dev;
10087 struct intel_atomic_state *old_intel_state =
10088 to_intel_atomic_state(old_state);
10089 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10090
10091 bxt_set_cdclk(to_i915(dev), req_cdclk);
10092 }
10093
10094 /* compute the max rate for new configuration */
10095 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10096 {
10097 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10098 struct drm_i915_private *dev_priv = to_i915(state->dev);
10099 struct drm_crtc *crtc;
10100 struct drm_crtc_state *cstate;
10101 struct intel_crtc_state *crtc_state;
10102 unsigned max_pixel_rate = 0, i;
10103 enum pipe pipe;
10104
10105 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10106 sizeof(intel_state->min_pixclk));
10107
10108 for_each_crtc_in_state(state, crtc, cstate, i) {
10109 int pixel_rate;
10110
10111 crtc_state = to_intel_crtc_state(cstate);
10112 if (!crtc_state->base.enable) {
10113 intel_state->min_pixclk[i] = 0;
10114 continue;
10115 }
10116
10117 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10118
10119 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10120 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10121 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10122
10123 intel_state->min_pixclk[i] = pixel_rate;
10124 }
10125
10126 for_each_pipe(dev_priv, pipe)
10127 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10128
10129 return max_pixel_rate;
10130 }
10131
10132 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10133 {
10134 struct drm_i915_private *dev_priv = to_i915(dev);
10135 uint32_t val, data;
10136 int ret;
10137
10138 if (WARN((I915_READ(LCPLL_CTL) &
10139 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10140 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10141 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10142 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10143 "trying to change cdclk frequency with cdclk not enabled\n"))
10144 return;
10145
10146 mutex_lock(&dev_priv->rps.hw_lock);
10147 ret = sandybridge_pcode_write(dev_priv,
10148 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10149 mutex_unlock(&dev_priv->rps.hw_lock);
10150 if (ret) {
10151 DRM_ERROR("failed to inform pcode about cdclk change\n");
10152 return;
10153 }
10154
10155 val = I915_READ(LCPLL_CTL);
10156 val |= LCPLL_CD_SOURCE_FCLK;
10157 I915_WRITE(LCPLL_CTL, val);
10158
10159 if (wait_for_us(I915_READ(LCPLL_CTL) &
10160 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10161 DRM_ERROR("Switching to FCLK failed\n");
10162
10163 val = I915_READ(LCPLL_CTL);
10164 val &= ~LCPLL_CLK_FREQ_MASK;
10165
10166 switch (cdclk) {
10167 case 450000:
10168 val |= LCPLL_CLK_FREQ_450;
10169 data = 0;
10170 break;
10171 case 540000:
10172 val |= LCPLL_CLK_FREQ_54O_BDW;
10173 data = 1;
10174 break;
10175 case 337500:
10176 val |= LCPLL_CLK_FREQ_337_5_BDW;
10177 data = 2;
10178 break;
10179 case 675000:
10180 val |= LCPLL_CLK_FREQ_675_BDW;
10181 data = 3;
10182 break;
10183 default:
10184 WARN(1, "invalid cdclk frequency\n");
10185 return;
10186 }
10187
10188 I915_WRITE(LCPLL_CTL, val);
10189
10190 val = I915_READ(LCPLL_CTL);
10191 val &= ~LCPLL_CD_SOURCE_FCLK;
10192 I915_WRITE(LCPLL_CTL, val);
10193
10194 if (wait_for_us((I915_READ(LCPLL_CTL) &
10195 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10196 DRM_ERROR("Switching back to LCPLL failed\n");
10197
10198 mutex_lock(&dev_priv->rps.hw_lock);
10199 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10200 mutex_unlock(&dev_priv->rps.hw_lock);
10201
10202 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10203
10204 intel_update_cdclk(dev);
10205
10206 WARN(cdclk != dev_priv->cdclk_freq,
10207 "cdclk requested %d kHz but got %d kHz\n",
10208 cdclk, dev_priv->cdclk_freq);
10209 }
10210
10211 static int broadwell_calc_cdclk(int max_pixclk)
10212 {
10213 if (max_pixclk > 540000)
10214 return 675000;
10215 else if (max_pixclk > 450000)
10216 return 540000;
10217 else if (max_pixclk > 337500)
10218 return 450000;
10219 else
10220 return 337500;
10221 }
10222
10223 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10224 {
10225 struct drm_i915_private *dev_priv = to_i915(state->dev);
10226 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10227 int max_pixclk = ilk_max_pixel_rate(state);
10228 int cdclk;
10229
10230 /*
10231 * FIXME should also account for plane ratio
10232 * once 64bpp pixel formats are supported.
10233 */
10234 cdclk = broadwell_calc_cdclk(max_pixclk);
10235
10236 if (cdclk > dev_priv->max_cdclk_freq) {
10237 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10238 cdclk, dev_priv->max_cdclk_freq);
10239 return -EINVAL;
10240 }
10241
10242 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10243 if (!intel_state->active_crtcs)
10244 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10245
10246 return 0;
10247 }
10248
10249 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10250 {
10251 struct drm_device *dev = old_state->dev;
10252 struct intel_atomic_state *old_intel_state =
10253 to_intel_atomic_state(old_state);
10254 unsigned req_cdclk = old_intel_state->dev_cdclk;
10255
10256 broadwell_set_cdclk(dev, req_cdclk);
10257 }
10258
10259 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10260 {
10261 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10262 struct drm_i915_private *dev_priv = to_i915(state->dev);
10263 const int max_pixclk = ilk_max_pixel_rate(state);
10264 int vco = intel_state->cdclk_pll_vco;
10265 int cdclk;
10266
10267 /*
10268 * FIXME should also account for plane ratio
10269 * once 64bpp pixel formats are supported.
10270 */
10271 cdclk = skl_calc_cdclk(max_pixclk, vco);
10272
10273 /*
10274 * FIXME move the cdclk caclulation to
10275 * compute_config() so we can fail gracegully.
10276 */
10277 if (cdclk > dev_priv->max_cdclk_freq) {
10278 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10279 cdclk, dev_priv->max_cdclk_freq);
10280 cdclk = dev_priv->max_cdclk_freq;
10281 }
10282
10283 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10284 if (!intel_state->active_crtcs)
10285 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10286
10287 return 0;
10288 }
10289
10290 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10291 {
10292 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10293 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10294 unsigned int req_cdclk = intel_state->dev_cdclk;
10295 unsigned int req_vco = intel_state->cdclk_pll_vco;
10296
10297 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10298 }
10299
10300 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10301 struct intel_crtc_state *crtc_state)
10302 {
10303 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10304 if (!intel_ddi_pll_select(crtc, crtc_state))
10305 return -EINVAL;
10306 }
10307
10308 crtc->lowfreq_avail = false;
10309
10310 return 0;
10311 }
10312
10313 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10314 enum port port,
10315 struct intel_crtc_state *pipe_config)
10316 {
10317 enum intel_dpll_id id;
10318
10319 switch (port) {
10320 case PORT_A:
10321 pipe_config->ddi_pll_sel = SKL_DPLL0;
10322 id = DPLL_ID_SKL_DPLL0;
10323 break;
10324 case PORT_B:
10325 pipe_config->ddi_pll_sel = SKL_DPLL1;
10326 id = DPLL_ID_SKL_DPLL1;
10327 break;
10328 case PORT_C:
10329 pipe_config->ddi_pll_sel = SKL_DPLL2;
10330 id = DPLL_ID_SKL_DPLL2;
10331 break;
10332 default:
10333 DRM_ERROR("Incorrect port type\n");
10334 return;
10335 }
10336
10337 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10338 }
10339
10340 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10341 enum port port,
10342 struct intel_crtc_state *pipe_config)
10343 {
10344 enum intel_dpll_id id;
10345 u32 temp;
10346
10347 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10348 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
10349
10350 switch (pipe_config->ddi_pll_sel) {
10351 case SKL_DPLL0:
10352 id = DPLL_ID_SKL_DPLL0;
10353 break;
10354 case SKL_DPLL1:
10355 id = DPLL_ID_SKL_DPLL1;
10356 break;
10357 case SKL_DPLL2:
10358 id = DPLL_ID_SKL_DPLL2;
10359 break;
10360 case SKL_DPLL3:
10361 id = DPLL_ID_SKL_DPLL3;
10362 break;
10363 default:
10364 MISSING_CASE(pipe_config->ddi_pll_sel);
10365 return;
10366 }
10367
10368 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10369 }
10370
10371 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10372 enum port port,
10373 struct intel_crtc_state *pipe_config)
10374 {
10375 enum intel_dpll_id id;
10376
10377 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10378
10379 switch (pipe_config->ddi_pll_sel) {
10380 case PORT_CLK_SEL_WRPLL1:
10381 id = DPLL_ID_WRPLL1;
10382 break;
10383 case PORT_CLK_SEL_WRPLL2:
10384 id = DPLL_ID_WRPLL2;
10385 break;
10386 case PORT_CLK_SEL_SPLL:
10387 id = DPLL_ID_SPLL;
10388 break;
10389 case PORT_CLK_SEL_LCPLL_810:
10390 id = DPLL_ID_LCPLL_810;
10391 break;
10392 case PORT_CLK_SEL_LCPLL_1350:
10393 id = DPLL_ID_LCPLL_1350;
10394 break;
10395 case PORT_CLK_SEL_LCPLL_2700:
10396 id = DPLL_ID_LCPLL_2700;
10397 break;
10398 default:
10399 MISSING_CASE(pipe_config->ddi_pll_sel);
10400 /* fall through */
10401 case PORT_CLK_SEL_NONE:
10402 return;
10403 }
10404
10405 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10406 }
10407
10408 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10409 struct intel_crtc_state *pipe_config,
10410 unsigned long *power_domain_mask)
10411 {
10412 struct drm_device *dev = crtc->base.dev;
10413 struct drm_i915_private *dev_priv = to_i915(dev);
10414 enum intel_display_power_domain power_domain;
10415 u32 tmp;
10416
10417 /*
10418 * The pipe->transcoder mapping is fixed with the exception of the eDP
10419 * transcoder handled below.
10420 */
10421 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10422
10423 /*
10424 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10425 * consistency and less surprising code; it's in always on power).
10426 */
10427 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10428 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10429 enum pipe trans_edp_pipe;
10430 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10431 default:
10432 WARN(1, "unknown pipe linked to edp transcoder\n");
10433 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10434 case TRANS_DDI_EDP_INPUT_A_ON:
10435 trans_edp_pipe = PIPE_A;
10436 break;
10437 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10438 trans_edp_pipe = PIPE_B;
10439 break;
10440 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10441 trans_edp_pipe = PIPE_C;
10442 break;
10443 }
10444
10445 if (trans_edp_pipe == crtc->pipe)
10446 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10447 }
10448
10449 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10450 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10451 return false;
10452 *power_domain_mask |= BIT(power_domain);
10453
10454 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10455
10456 return tmp & PIPECONF_ENABLE;
10457 }
10458
10459 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10460 struct intel_crtc_state *pipe_config,
10461 unsigned long *power_domain_mask)
10462 {
10463 struct drm_device *dev = crtc->base.dev;
10464 struct drm_i915_private *dev_priv = to_i915(dev);
10465 enum intel_display_power_domain power_domain;
10466 enum port port;
10467 enum transcoder cpu_transcoder;
10468 u32 tmp;
10469
10470 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10471 if (port == PORT_A)
10472 cpu_transcoder = TRANSCODER_DSI_A;
10473 else
10474 cpu_transcoder = TRANSCODER_DSI_C;
10475
10476 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10477 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10478 continue;
10479 *power_domain_mask |= BIT(power_domain);
10480
10481 /*
10482 * The PLL needs to be enabled with a valid divider
10483 * configuration, otherwise accessing DSI registers will hang
10484 * the machine. See BSpec North Display Engine
10485 * registers/MIPI[BXT]. We can break out here early, since we
10486 * need the same DSI PLL to be enabled for both DSI ports.
10487 */
10488 if (!intel_dsi_pll_is_enabled(dev_priv))
10489 break;
10490
10491 /* XXX: this works for video mode only */
10492 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10493 if (!(tmp & DPI_ENABLE))
10494 continue;
10495
10496 tmp = I915_READ(MIPI_CTRL(port));
10497 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10498 continue;
10499
10500 pipe_config->cpu_transcoder = cpu_transcoder;
10501 break;
10502 }
10503
10504 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10505 }
10506
10507 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10508 struct intel_crtc_state *pipe_config)
10509 {
10510 struct drm_device *dev = crtc->base.dev;
10511 struct drm_i915_private *dev_priv = to_i915(dev);
10512 struct intel_shared_dpll *pll;
10513 enum port port;
10514 uint32_t tmp;
10515
10516 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10517
10518 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10519
10520 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10521 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10522 else if (IS_BROXTON(dev))
10523 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10524 else
10525 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10526
10527 pll = pipe_config->shared_dpll;
10528 if (pll) {
10529 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10530 &pipe_config->dpll_hw_state));
10531 }
10532
10533 /*
10534 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10535 * DDI E. So just check whether this pipe is wired to DDI E and whether
10536 * the PCH transcoder is on.
10537 */
10538 if (INTEL_INFO(dev)->gen < 9 &&
10539 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10540 pipe_config->has_pch_encoder = true;
10541
10542 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10543 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10544 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10545
10546 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10547 }
10548 }
10549
10550 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10551 struct intel_crtc_state *pipe_config)
10552 {
10553 struct drm_device *dev = crtc->base.dev;
10554 struct drm_i915_private *dev_priv = to_i915(dev);
10555 enum intel_display_power_domain power_domain;
10556 unsigned long power_domain_mask;
10557 bool active;
10558
10559 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10560 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10561 return false;
10562 power_domain_mask = BIT(power_domain);
10563
10564 pipe_config->shared_dpll = NULL;
10565
10566 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10567
10568 if (IS_BROXTON(dev_priv) &&
10569 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10570 WARN_ON(active);
10571 active = true;
10572 }
10573
10574 if (!active)
10575 goto out;
10576
10577 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10578 haswell_get_ddi_port_state(crtc, pipe_config);
10579 intel_get_pipe_timings(crtc, pipe_config);
10580 }
10581
10582 intel_get_pipe_src_size(crtc, pipe_config);
10583
10584 pipe_config->gamma_mode =
10585 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10586
10587 if (INTEL_INFO(dev)->gen >= 9) {
10588 skl_init_scalers(dev, crtc, pipe_config);
10589 }
10590
10591 if (INTEL_INFO(dev)->gen >= 9) {
10592 pipe_config->scaler_state.scaler_id = -1;
10593 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10594 }
10595
10596 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10597 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10598 power_domain_mask |= BIT(power_domain);
10599 if (INTEL_INFO(dev)->gen >= 9)
10600 skylake_get_pfit_config(crtc, pipe_config);
10601 else
10602 ironlake_get_pfit_config(crtc, pipe_config);
10603 }
10604
10605 if (IS_HASWELL(dev))
10606 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10607 (I915_READ(IPS_CTL) & IPS_ENABLE);
10608
10609 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10610 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10611 pipe_config->pixel_multiplier =
10612 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10613 } else {
10614 pipe_config->pixel_multiplier = 1;
10615 }
10616
10617 out:
10618 for_each_power_domain(power_domain, power_domain_mask)
10619 intel_display_power_put(dev_priv, power_domain);
10620
10621 return active;
10622 }
10623
10624 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10625 const struct intel_plane_state *plane_state)
10626 {
10627 struct drm_device *dev = crtc->dev;
10628 struct drm_i915_private *dev_priv = to_i915(dev);
10629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10630 uint32_t cntl = 0, size = 0;
10631
10632 if (plane_state && plane_state->base.visible) {
10633 unsigned int width = plane_state->base.crtc_w;
10634 unsigned int height = plane_state->base.crtc_h;
10635 unsigned int stride = roundup_pow_of_two(width) * 4;
10636
10637 switch (stride) {
10638 default:
10639 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10640 width, stride);
10641 stride = 256;
10642 /* fallthrough */
10643 case 256:
10644 case 512:
10645 case 1024:
10646 case 2048:
10647 break;
10648 }
10649
10650 cntl |= CURSOR_ENABLE |
10651 CURSOR_GAMMA_ENABLE |
10652 CURSOR_FORMAT_ARGB |
10653 CURSOR_STRIDE(stride);
10654
10655 size = (height << 12) | width;
10656 }
10657
10658 if (intel_crtc->cursor_cntl != 0 &&
10659 (intel_crtc->cursor_base != base ||
10660 intel_crtc->cursor_size != size ||
10661 intel_crtc->cursor_cntl != cntl)) {
10662 /* On these chipsets we can only modify the base/size/stride
10663 * whilst the cursor is disabled.
10664 */
10665 I915_WRITE(CURCNTR(PIPE_A), 0);
10666 POSTING_READ(CURCNTR(PIPE_A));
10667 intel_crtc->cursor_cntl = 0;
10668 }
10669
10670 if (intel_crtc->cursor_base != base) {
10671 I915_WRITE(CURBASE(PIPE_A), base);
10672 intel_crtc->cursor_base = base;
10673 }
10674
10675 if (intel_crtc->cursor_size != size) {
10676 I915_WRITE(CURSIZE, size);
10677 intel_crtc->cursor_size = size;
10678 }
10679
10680 if (intel_crtc->cursor_cntl != cntl) {
10681 I915_WRITE(CURCNTR(PIPE_A), cntl);
10682 POSTING_READ(CURCNTR(PIPE_A));
10683 intel_crtc->cursor_cntl = cntl;
10684 }
10685 }
10686
10687 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10688 const struct intel_plane_state *plane_state)
10689 {
10690 struct drm_device *dev = crtc->dev;
10691 struct drm_i915_private *dev_priv = to_i915(dev);
10692 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10693 int pipe = intel_crtc->pipe;
10694 uint32_t cntl = 0;
10695
10696 if (plane_state && plane_state->base.visible) {
10697 cntl = MCURSOR_GAMMA_ENABLE;
10698 switch (plane_state->base.crtc_w) {
10699 case 64:
10700 cntl |= CURSOR_MODE_64_ARGB_AX;
10701 break;
10702 case 128:
10703 cntl |= CURSOR_MODE_128_ARGB_AX;
10704 break;
10705 case 256:
10706 cntl |= CURSOR_MODE_256_ARGB_AX;
10707 break;
10708 default:
10709 MISSING_CASE(plane_state->base.crtc_w);
10710 return;
10711 }
10712 cntl |= pipe << 28; /* Connect to correct pipe */
10713
10714 if (HAS_DDI(dev))
10715 cntl |= CURSOR_PIPE_CSC_ENABLE;
10716
10717 if (plane_state->base.rotation == DRM_ROTATE_180)
10718 cntl |= CURSOR_ROTATE_180;
10719 }
10720
10721 if (intel_crtc->cursor_cntl != cntl) {
10722 I915_WRITE(CURCNTR(pipe), cntl);
10723 POSTING_READ(CURCNTR(pipe));
10724 intel_crtc->cursor_cntl = cntl;
10725 }
10726
10727 /* and commit changes on next vblank */
10728 I915_WRITE(CURBASE(pipe), base);
10729 POSTING_READ(CURBASE(pipe));
10730
10731 intel_crtc->cursor_base = base;
10732 }
10733
10734 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10735 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10736 const struct intel_plane_state *plane_state)
10737 {
10738 struct drm_device *dev = crtc->dev;
10739 struct drm_i915_private *dev_priv = to_i915(dev);
10740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10741 int pipe = intel_crtc->pipe;
10742 u32 base = intel_crtc->cursor_addr;
10743 u32 pos = 0;
10744
10745 if (plane_state) {
10746 int x = plane_state->base.crtc_x;
10747 int y = plane_state->base.crtc_y;
10748
10749 if (x < 0) {
10750 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10751 x = -x;
10752 }
10753 pos |= x << CURSOR_X_SHIFT;
10754
10755 if (y < 0) {
10756 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10757 y = -y;
10758 }
10759 pos |= y << CURSOR_Y_SHIFT;
10760
10761 /* ILK+ do this automagically */
10762 if (HAS_GMCH_DISPLAY(dev) &&
10763 plane_state->base.rotation == DRM_ROTATE_180) {
10764 base += (plane_state->base.crtc_h *
10765 plane_state->base.crtc_w - 1) * 4;
10766 }
10767 }
10768
10769 I915_WRITE(CURPOS(pipe), pos);
10770
10771 if (IS_845G(dev) || IS_I865G(dev))
10772 i845_update_cursor(crtc, base, plane_state);
10773 else
10774 i9xx_update_cursor(crtc, base, plane_state);
10775 }
10776
10777 static bool cursor_size_ok(struct drm_device *dev,
10778 uint32_t width, uint32_t height)
10779 {
10780 if (width == 0 || height == 0)
10781 return false;
10782
10783 /*
10784 * 845g/865g are special in that they are only limited by
10785 * the width of their cursors, the height is arbitrary up to
10786 * the precision of the register. Everything else requires
10787 * square cursors, limited to a few power-of-two sizes.
10788 */
10789 if (IS_845G(dev) || IS_I865G(dev)) {
10790 if ((width & 63) != 0)
10791 return false;
10792
10793 if (width > (IS_845G(dev) ? 64 : 512))
10794 return false;
10795
10796 if (height > 1023)
10797 return false;
10798 } else {
10799 switch (width | height) {
10800 case 256:
10801 case 128:
10802 if (IS_GEN2(dev))
10803 return false;
10804 case 64:
10805 break;
10806 default:
10807 return false;
10808 }
10809 }
10810
10811 return true;
10812 }
10813
10814 /* VESA 640x480x72Hz mode to set on the pipe */
10815 static struct drm_display_mode load_detect_mode = {
10816 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10817 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10818 };
10819
10820 struct drm_framebuffer *
10821 __intel_framebuffer_create(struct drm_device *dev,
10822 struct drm_mode_fb_cmd2 *mode_cmd,
10823 struct drm_i915_gem_object *obj)
10824 {
10825 struct intel_framebuffer *intel_fb;
10826 int ret;
10827
10828 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10829 if (!intel_fb)
10830 return ERR_PTR(-ENOMEM);
10831
10832 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10833 if (ret)
10834 goto err;
10835
10836 return &intel_fb->base;
10837
10838 err:
10839 kfree(intel_fb);
10840 return ERR_PTR(ret);
10841 }
10842
10843 static struct drm_framebuffer *
10844 intel_framebuffer_create(struct drm_device *dev,
10845 struct drm_mode_fb_cmd2 *mode_cmd,
10846 struct drm_i915_gem_object *obj)
10847 {
10848 struct drm_framebuffer *fb;
10849 int ret;
10850
10851 ret = i915_mutex_lock_interruptible(dev);
10852 if (ret)
10853 return ERR_PTR(ret);
10854 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10855 mutex_unlock(&dev->struct_mutex);
10856
10857 return fb;
10858 }
10859
10860 static u32
10861 intel_framebuffer_pitch_for_width(int width, int bpp)
10862 {
10863 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10864 return ALIGN(pitch, 64);
10865 }
10866
10867 static u32
10868 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10869 {
10870 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10871 return PAGE_ALIGN(pitch * mode->vdisplay);
10872 }
10873
10874 static struct drm_framebuffer *
10875 intel_framebuffer_create_for_mode(struct drm_device *dev,
10876 struct drm_display_mode *mode,
10877 int depth, int bpp)
10878 {
10879 struct drm_framebuffer *fb;
10880 struct drm_i915_gem_object *obj;
10881 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10882
10883 obj = i915_gem_object_create(dev,
10884 intel_framebuffer_size_for_mode(mode, bpp));
10885 if (IS_ERR(obj))
10886 return ERR_CAST(obj);
10887
10888 mode_cmd.width = mode->hdisplay;
10889 mode_cmd.height = mode->vdisplay;
10890 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10891 bpp);
10892 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10893
10894 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10895 if (IS_ERR(fb))
10896 i915_gem_object_put_unlocked(obj);
10897
10898 return fb;
10899 }
10900
10901 static struct drm_framebuffer *
10902 mode_fits_in_fbdev(struct drm_device *dev,
10903 struct drm_display_mode *mode)
10904 {
10905 #ifdef CONFIG_DRM_FBDEV_EMULATION
10906 struct drm_i915_private *dev_priv = to_i915(dev);
10907 struct drm_i915_gem_object *obj;
10908 struct drm_framebuffer *fb;
10909
10910 if (!dev_priv->fbdev)
10911 return NULL;
10912
10913 if (!dev_priv->fbdev->fb)
10914 return NULL;
10915
10916 obj = dev_priv->fbdev->fb->obj;
10917 BUG_ON(!obj);
10918
10919 fb = &dev_priv->fbdev->fb->base;
10920 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10921 fb->bits_per_pixel))
10922 return NULL;
10923
10924 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10925 return NULL;
10926
10927 drm_framebuffer_reference(fb);
10928 return fb;
10929 #else
10930 return NULL;
10931 #endif
10932 }
10933
10934 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10935 struct drm_crtc *crtc,
10936 struct drm_display_mode *mode,
10937 struct drm_framebuffer *fb,
10938 int x, int y)
10939 {
10940 struct drm_plane_state *plane_state;
10941 int hdisplay, vdisplay;
10942 int ret;
10943
10944 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10945 if (IS_ERR(plane_state))
10946 return PTR_ERR(plane_state);
10947
10948 if (mode)
10949 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10950 else
10951 hdisplay = vdisplay = 0;
10952
10953 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10954 if (ret)
10955 return ret;
10956 drm_atomic_set_fb_for_plane(plane_state, fb);
10957 plane_state->crtc_x = 0;
10958 plane_state->crtc_y = 0;
10959 plane_state->crtc_w = hdisplay;
10960 plane_state->crtc_h = vdisplay;
10961 plane_state->src_x = x << 16;
10962 plane_state->src_y = y << 16;
10963 plane_state->src_w = hdisplay << 16;
10964 plane_state->src_h = vdisplay << 16;
10965
10966 return 0;
10967 }
10968
10969 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10970 struct drm_display_mode *mode,
10971 struct intel_load_detect_pipe *old,
10972 struct drm_modeset_acquire_ctx *ctx)
10973 {
10974 struct intel_crtc *intel_crtc;
10975 struct intel_encoder *intel_encoder =
10976 intel_attached_encoder(connector);
10977 struct drm_crtc *possible_crtc;
10978 struct drm_encoder *encoder = &intel_encoder->base;
10979 struct drm_crtc *crtc = NULL;
10980 struct drm_device *dev = encoder->dev;
10981 struct drm_framebuffer *fb;
10982 struct drm_mode_config *config = &dev->mode_config;
10983 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10984 struct drm_connector_state *connector_state;
10985 struct intel_crtc_state *crtc_state;
10986 int ret, i = -1;
10987
10988 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10989 connector->base.id, connector->name,
10990 encoder->base.id, encoder->name);
10991
10992 old->restore_state = NULL;
10993
10994 retry:
10995 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10996 if (ret)
10997 goto fail;
10998
10999 /*
11000 * Algorithm gets a little messy:
11001 *
11002 * - if the connector already has an assigned crtc, use it (but make
11003 * sure it's on first)
11004 *
11005 * - try to find the first unused crtc that can drive this connector,
11006 * and use that if we find one
11007 */
11008
11009 /* See if we already have a CRTC for this connector */
11010 if (connector->state->crtc) {
11011 crtc = connector->state->crtc;
11012
11013 ret = drm_modeset_lock(&crtc->mutex, ctx);
11014 if (ret)
11015 goto fail;
11016
11017 /* Make sure the crtc and connector are running */
11018 goto found;
11019 }
11020
11021 /* Find an unused one (if possible) */
11022 for_each_crtc(dev, possible_crtc) {
11023 i++;
11024 if (!(encoder->possible_crtcs & (1 << i)))
11025 continue;
11026
11027 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11028 if (ret)
11029 goto fail;
11030
11031 if (possible_crtc->state->enable) {
11032 drm_modeset_unlock(&possible_crtc->mutex);
11033 continue;
11034 }
11035
11036 crtc = possible_crtc;
11037 break;
11038 }
11039
11040 /*
11041 * If we didn't find an unused CRTC, don't use any.
11042 */
11043 if (!crtc) {
11044 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11045 goto fail;
11046 }
11047
11048 found:
11049 intel_crtc = to_intel_crtc(crtc);
11050
11051 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11052 if (ret)
11053 goto fail;
11054
11055 state = drm_atomic_state_alloc(dev);
11056 restore_state = drm_atomic_state_alloc(dev);
11057 if (!state || !restore_state) {
11058 ret = -ENOMEM;
11059 goto fail;
11060 }
11061
11062 state->acquire_ctx = ctx;
11063 restore_state->acquire_ctx = ctx;
11064
11065 connector_state = drm_atomic_get_connector_state(state, connector);
11066 if (IS_ERR(connector_state)) {
11067 ret = PTR_ERR(connector_state);
11068 goto fail;
11069 }
11070
11071 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11072 if (ret)
11073 goto fail;
11074
11075 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11076 if (IS_ERR(crtc_state)) {
11077 ret = PTR_ERR(crtc_state);
11078 goto fail;
11079 }
11080
11081 crtc_state->base.active = crtc_state->base.enable = true;
11082
11083 if (!mode)
11084 mode = &load_detect_mode;
11085
11086 /* We need a framebuffer large enough to accommodate all accesses
11087 * that the plane may generate whilst we perform load detection.
11088 * We can not rely on the fbcon either being present (we get called
11089 * during its initialisation to detect all boot displays, or it may
11090 * not even exist) or that it is large enough to satisfy the
11091 * requested mode.
11092 */
11093 fb = mode_fits_in_fbdev(dev, mode);
11094 if (fb == NULL) {
11095 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11096 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11097 } else
11098 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11099 if (IS_ERR(fb)) {
11100 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11101 goto fail;
11102 }
11103
11104 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11105 if (ret)
11106 goto fail;
11107
11108 drm_framebuffer_unreference(fb);
11109
11110 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11111 if (ret)
11112 goto fail;
11113
11114 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11115 if (!ret)
11116 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11117 if (!ret)
11118 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11119 if (ret) {
11120 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11121 goto fail;
11122 }
11123
11124 ret = drm_atomic_commit(state);
11125 if (ret) {
11126 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11127 goto fail;
11128 }
11129
11130 old->restore_state = restore_state;
11131
11132 /* let the connector get through one full cycle before testing */
11133 intel_wait_for_vblank(dev, intel_crtc->pipe);
11134 return true;
11135
11136 fail:
11137 drm_atomic_state_free(state);
11138 drm_atomic_state_free(restore_state);
11139 restore_state = state = NULL;
11140
11141 if (ret == -EDEADLK) {
11142 drm_modeset_backoff(ctx);
11143 goto retry;
11144 }
11145
11146 return false;
11147 }
11148
11149 void intel_release_load_detect_pipe(struct drm_connector *connector,
11150 struct intel_load_detect_pipe *old,
11151 struct drm_modeset_acquire_ctx *ctx)
11152 {
11153 struct intel_encoder *intel_encoder =
11154 intel_attached_encoder(connector);
11155 struct drm_encoder *encoder = &intel_encoder->base;
11156 struct drm_atomic_state *state = old->restore_state;
11157 int ret;
11158
11159 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11160 connector->base.id, connector->name,
11161 encoder->base.id, encoder->name);
11162
11163 if (!state)
11164 return;
11165
11166 ret = drm_atomic_commit(state);
11167 if (ret) {
11168 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11169 drm_atomic_state_free(state);
11170 }
11171 }
11172
11173 static int i9xx_pll_refclk(struct drm_device *dev,
11174 const struct intel_crtc_state *pipe_config)
11175 {
11176 struct drm_i915_private *dev_priv = to_i915(dev);
11177 u32 dpll = pipe_config->dpll_hw_state.dpll;
11178
11179 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11180 return dev_priv->vbt.lvds_ssc_freq;
11181 else if (HAS_PCH_SPLIT(dev))
11182 return 120000;
11183 else if (!IS_GEN2(dev))
11184 return 96000;
11185 else
11186 return 48000;
11187 }
11188
11189 /* Returns the clock of the currently programmed mode of the given pipe. */
11190 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11191 struct intel_crtc_state *pipe_config)
11192 {
11193 struct drm_device *dev = crtc->base.dev;
11194 struct drm_i915_private *dev_priv = to_i915(dev);
11195 int pipe = pipe_config->cpu_transcoder;
11196 u32 dpll = pipe_config->dpll_hw_state.dpll;
11197 u32 fp;
11198 struct dpll clock;
11199 int port_clock;
11200 int refclk = i9xx_pll_refclk(dev, pipe_config);
11201
11202 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11203 fp = pipe_config->dpll_hw_state.fp0;
11204 else
11205 fp = pipe_config->dpll_hw_state.fp1;
11206
11207 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11208 if (IS_PINEVIEW(dev)) {
11209 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11210 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11211 } else {
11212 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11213 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11214 }
11215
11216 if (!IS_GEN2(dev)) {
11217 if (IS_PINEVIEW(dev))
11218 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11219 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11220 else
11221 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11222 DPLL_FPA01_P1_POST_DIV_SHIFT);
11223
11224 switch (dpll & DPLL_MODE_MASK) {
11225 case DPLLB_MODE_DAC_SERIAL:
11226 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11227 5 : 10;
11228 break;
11229 case DPLLB_MODE_LVDS:
11230 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11231 7 : 14;
11232 break;
11233 default:
11234 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11235 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11236 return;
11237 }
11238
11239 if (IS_PINEVIEW(dev))
11240 port_clock = pnv_calc_dpll_params(refclk, &clock);
11241 else
11242 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11243 } else {
11244 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
11245 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11246
11247 if (is_lvds) {
11248 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11249 DPLL_FPA01_P1_POST_DIV_SHIFT);
11250
11251 if (lvds & LVDS_CLKB_POWER_UP)
11252 clock.p2 = 7;
11253 else
11254 clock.p2 = 14;
11255 } else {
11256 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11257 clock.p1 = 2;
11258 else {
11259 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11260 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11261 }
11262 if (dpll & PLL_P2_DIVIDE_BY_4)
11263 clock.p2 = 4;
11264 else
11265 clock.p2 = 2;
11266 }
11267
11268 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11269 }
11270
11271 /*
11272 * This value includes pixel_multiplier. We will use
11273 * port_clock to compute adjusted_mode.crtc_clock in the
11274 * encoder's get_config() function.
11275 */
11276 pipe_config->port_clock = port_clock;
11277 }
11278
11279 int intel_dotclock_calculate(int link_freq,
11280 const struct intel_link_m_n *m_n)
11281 {
11282 /*
11283 * The calculation for the data clock is:
11284 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11285 * But we want to avoid losing precison if possible, so:
11286 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11287 *
11288 * and the link clock is simpler:
11289 * link_clock = (m * link_clock) / n
11290 */
11291
11292 if (!m_n->link_n)
11293 return 0;
11294
11295 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11296 }
11297
11298 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11299 struct intel_crtc_state *pipe_config)
11300 {
11301 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11302
11303 /* read out port_clock from the DPLL */
11304 i9xx_crtc_clock_get(crtc, pipe_config);
11305
11306 /*
11307 * In case there is an active pipe without active ports,
11308 * we may need some idea for the dotclock anyway.
11309 * Calculate one based on the FDI configuration.
11310 */
11311 pipe_config->base.adjusted_mode.crtc_clock =
11312 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11313 &pipe_config->fdi_m_n);
11314 }
11315
11316 /** Returns the currently programmed mode of the given pipe. */
11317 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11318 struct drm_crtc *crtc)
11319 {
11320 struct drm_i915_private *dev_priv = to_i915(dev);
11321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11322 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11323 struct drm_display_mode *mode;
11324 struct intel_crtc_state *pipe_config;
11325 int htot = I915_READ(HTOTAL(cpu_transcoder));
11326 int hsync = I915_READ(HSYNC(cpu_transcoder));
11327 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11328 int vsync = I915_READ(VSYNC(cpu_transcoder));
11329 enum pipe pipe = intel_crtc->pipe;
11330
11331 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11332 if (!mode)
11333 return NULL;
11334
11335 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11336 if (!pipe_config) {
11337 kfree(mode);
11338 return NULL;
11339 }
11340
11341 /*
11342 * Construct a pipe_config sufficient for getting the clock info
11343 * back out of crtc_clock_get.
11344 *
11345 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11346 * to use a real value here instead.
11347 */
11348 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11349 pipe_config->pixel_multiplier = 1;
11350 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11351 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11352 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11353 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11354
11355 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11356 mode->hdisplay = (htot & 0xffff) + 1;
11357 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11358 mode->hsync_start = (hsync & 0xffff) + 1;
11359 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11360 mode->vdisplay = (vtot & 0xffff) + 1;
11361 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11362 mode->vsync_start = (vsync & 0xffff) + 1;
11363 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11364
11365 drm_mode_set_name(mode);
11366
11367 kfree(pipe_config);
11368
11369 return mode;
11370 }
11371
11372 static void intel_crtc_destroy(struct drm_crtc *crtc)
11373 {
11374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11375 struct drm_device *dev = crtc->dev;
11376 struct intel_flip_work *work;
11377
11378 spin_lock_irq(&dev->event_lock);
11379 work = intel_crtc->flip_work;
11380 intel_crtc->flip_work = NULL;
11381 spin_unlock_irq(&dev->event_lock);
11382
11383 if (work) {
11384 cancel_work_sync(&work->mmio_work);
11385 cancel_work_sync(&work->unpin_work);
11386 kfree(work);
11387 }
11388
11389 drm_crtc_cleanup(crtc);
11390
11391 kfree(intel_crtc);
11392 }
11393
11394 static void intel_unpin_work_fn(struct work_struct *__work)
11395 {
11396 struct intel_flip_work *work =
11397 container_of(__work, struct intel_flip_work, unpin_work);
11398 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11399 struct drm_device *dev = crtc->base.dev;
11400 struct drm_plane *primary = crtc->base.primary;
11401
11402 if (is_mmio_work(work))
11403 flush_work(&work->mmio_work);
11404
11405 mutex_lock(&dev->struct_mutex);
11406 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11407 i915_gem_object_put(work->pending_flip_obj);
11408 mutex_unlock(&dev->struct_mutex);
11409
11410 i915_gem_request_put(work->flip_queued_req);
11411
11412 intel_frontbuffer_flip_complete(to_i915(dev),
11413 to_intel_plane(primary)->frontbuffer_bit);
11414 intel_fbc_post_update(crtc);
11415 drm_framebuffer_unreference(work->old_fb);
11416
11417 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11418 atomic_dec(&crtc->unpin_work_count);
11419
11420 kfree(work);
11421 }
11422
11423 /* Is 'a' after or equal to 'b'? */
11424 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11425 {
11426 return !((a - b) & 0x80000000);
11427 }
11428
11429 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11430 struct intel_flip_work *work)
11431 {
11432 struct drm_device *dev = crtc->base.dev;
11433 struct drm_i915_private *dev_priv = to_i915(dev);
11434 unsigned reset_counter;
11435
11436 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11437 if (crtc->reset_counter != reset_counter)
11438 return true;
11439
11440 /*
11441 * The relevant registers doen't exist on pre-ctg.
11442 * As the flip done interrupt doesn't trigger for mmio
11443 * flips on gmch platforms, a flip count check isn't
11444 * really needed there. But since ctg has the registers,
11445 * include it in the check anyway.
11446 */
11447 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11448 return true;
11449
11450 /*
11451 * BDW signals flip done immediately if the plane
11452 * is disabled, even if the plane enable is already
11453 * armed to occur at the next vblank :(
11454 */
11455
11456 /*
11457 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11458 * used the same base address. In that case the mmio flip might
11459 * have completed, but the CS hasn't even executed the flip yet.
11460 *
11461 * A flip count check isn't enough as the CS might have updated
11462 * the base address just after start of vblank, but before we
11463 * managed to process the interrupt. This means we'd complete the
11464 * CS flip too soon.
11465 *
11466 * Combining both checks should get us a good enough result. It may
11467 * still happen that the CS flip has been executed, but has not
11468 * yet actually completed. But in case the base address is the same
11469 * anyway, we don't really care.
11470 */
11471 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11472 crtc->flip_work->gtt_offset &&
11473 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11474 crtc->flip_work->flip_count);
11475 }
11476
11477 static bool
11478 __pageflip_finished_mmio(struct intel_crtc *crtc,
11479 struct intel_flip_work *work)
11480 {
11481 /*
11482 * MMIO work completes when vblank is different from
11483 * flip_queued_vblank.
11484 *
11485 * Reset counter value doesn't matter, this is handled by
11486 * i915_wait_request finishing early, so no need to handle
11487 * reset here.
11488 */
11489 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11490 }
11491
11492
11493 static bool pageflip_finished(struct intel_crtc *crtc,
11494 struct intel_flip_work *work)
11495 {
11496 if (!atomic_read(&work->pending))
11497 return false;
11498
11499 smp_rmb();
11500
11501 if (is_mmio_work(work))
11502 return __pageflip_finished_mmio(crtc, work);
11503 else
11504 return __pageflip_finished_cs(crtc, work);
11505 }
11506
11507 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11508 {
11509 struct drm_device *dev = &dev_priv->drm;
11510 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11512 struct intel_flip_work *work;
11513 unsigned long flags;
11514
11515 /* Ignore early vblank irqs */
11516 if (!crtc)
11517 return;
11518
11519 /*
11520 * This is called both by irq handlers and the reset code (to complete
11521 * lost pageflips) so needs the full irqsave spinlocks.
11522 */
11523 spin_lock_irqsave(&dev->event_lock, flags);
11524 work = intel_crtc->flip_work;
11525
11526 if (work != NULL &&
11527 !is_mmio_work(work) &&
11528 pageflip_finished(intel_crtc, work))
11529 page_flip_completed(intel_crtc);
11530
11531 spin_unlock_irqrestore(&dev->event_lock, flags);
11532 }
11533
11534 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11535 {
11536 struct drm_device *dev = &dev_priv->drm;
11537 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11539 struct intel_flip_work *work;
11540 unsigned long flags;
11541
11542 /* Ignore early vblank irqs */
11543 if (!crtc)
11544 return;
11545
11546 /*
11547 * This is called both by irq handlers and the reset code (to complete
11548 * lost pageflips) so needs the full irqsave spinlocks.
11549 */
11550 spin_lock_irqsave(&dev->event_lock, flags);
11551 work = intel_crtc->flip_work;
11552
11553 if (work != NULL &&
11554 is_mmio_work(work) &&
11555 pageflip_finished(intel_crtc, work))
11556 page_flip_completed(intel_crtc);
11557
11558 spin_unlock_irqrestore(&dev->event_lock, flags);
11559 }
11560
11561 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11562 struct intel_flip_work *work)
11563 {
11564 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11565
11566 /* Ensure that the work item is consistent when activating it ... */
11567 smp_mb__before_atomic();
11568 atomic_set(&work->pending, 1);
11569 }
11570
11571 static int intel_gen2_queue_flip(struct drm_device *dev,
11572 struct drm_crtc *crtc,
11573 struct drm_framebuffer *fb,
11574 struct drm_i915_gem_object *obj,
11575 struct drm_i915_gem_request *req,
11576 uint32_t flags)
11577 {
11578 struct intel_ring *ring = req->ring;
11579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11580 u32 flip_mask;
11581 int ret;
11582
11583 ret = intel_ring_begin(req, 6);
11584 if (ret)
11585 return ret;
11586
11587 /* Can't queue multiple flips, so wait for the previous
11588 * one to finish before executing the next.
11589 */
11590 if (intel_crtc->plane)
11591 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11592 else
11593 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11594 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11595 intel_ring_emit(ring, MI_NOOP);
11596 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11597 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11598 intel_ring_emit(ring, fb->pitches[0]);
11599 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11600 intel_ring_emit(ring, 0); /* aux display base address, unused */
11601
11602 return 0;
11603 }
11604
11605 static int intel_gen3_queue_flip(struct drm_device *dev,
11606 struct drm_crtc *crtc,
11607 struct drm_framebuffer *fb,
11608 struct drm_i915_gem_object *obj,
11609 struct drm_i915_gem_request *req,
11610 uint32_t flags)
11611 {
11612 struct intel_ring *ring = req->ring;
11613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11614 u32 flip_mask;
11615 int ret;
11616
11617 ret = intel_ring_begin(req, 6);
11618 if (ret)
11619 return ret;
11620
11621 if (intel_crtc->plane)
11622 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11623 else
11624 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11625 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11626 intel_ring_emit(ring, MI_NOOP);
11627 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11628 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11629 intel_ring_emit(ring, fb->pitches[0]);
11630 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11631 intel_ring_emit(ring, MI_NOOP);
11632
11633 return 0;
11634 }
11635
11636 static int intel_gen4_queue_flip(struct drm_device *dev,
11637 struct drm_crtc *crtc,
11638 struct drm_framebuffer *fb,
11639 struct drm_i915_gem_object *obj,
11640 struct drm_i915_gem_request *req,
11641 uint32_t flags)
11642 {
11643 struct intel_ring *ring = req->ring;
11644 struct drm_i915_private *dev_priv = to_i915(dev);
11645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11646 uint32_t pf, pipesrc;
11647 int ret;
11648
11649 ret = intel_ring_begin(req, 4);
11650 if (ret)
11651 return ret;
11652
11653 /* i965+ uses the linear or tiled offsets from the
11654 * Display Registers (which do not change across a page-flip)
11655 * so we need only reprogram the base address.
11656 */
11657 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11658 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11659 intel_ring_emit(ring, fb->pitches[0]);
11660 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11661 intel_fb_modifier_to_tiling(fb->modifier[0]));
11662
11663 /* XXX Enabling the panel-fitter across page-flip is so far
11664 * untested on non-native modes, so ignore it for now.
11665 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11666 */
11667 pf = 0;
11668 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11669 intel_ring_emit(ring, pf | pipesrc);
11670
11671 return 0;
11672 }
11673
11674 static int intel_gen6_queue_flip(struct drm_device *dev,
11675 struct drm_crtc *crtc,
11676 struct drm_framebuffer *fb,
11677 struct drm_i915_gem_object *obj,
11678 struct drm_i915_gem_request *req,
11679 uint32_t flags)
11680 {
11681 struct intel_ring *ring = req->ring;
11682 struct drm_i915_private *dev_priv = to_i915(dev);
11683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11684 uint32_t pf, pipesrc;
11685 int ret;
11686
11687 ret = intel_ring_begin(req, 4);
11688 if (ret)
11689 return ret;
11690
11691 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11692 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11693 intel_ring_emit(ring, fb->pitches[0] |
11694 intel_fb_modifier_to_tiling(fb->modifier[0]));
11695 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11696
11697 /* Contrary to the suggestions in the documentation,
11698 * "Enable Panel Fitter" does not seem to be required when page
11699 * flipping with a non-native mode, and worse causes a normal
11700 * modeset to fail.
11701 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11702 */
11703 pf = 0;
11704 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11705 intel_ring_emit(ring, pf | pipesrc);
11706
11707 return 0;
11708 }
11709
11710 static int intel_gen7_queue_flip(struct drm_device *dev,
11711 struct drm_crtc *crtc,
11712 struct drm_framebuffer *fb,
11713 struct drm_i915_gem_object *obj,
11714 struct drm_i915_gem_request *req,
11715 uint32_t flags)
11716 {
11717 struct intel_ring *ring = req->ring;
11718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11719 uint32_t plane_bit = 0;
11720 int len, ret;
11721
11722 switch (intel_crtc->plane) {
11723 case PLANE_A:
11724 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11725 break;
11726 case PLANE_B:
11727 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11728 break;
11729 case PLANE_C:
11730 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11731 break;
11732 default:
11733 WARN_ONCE(1, "unknown plane in flip command\n");
11734 return -ENODEV;
11735 }
11736
11737 len = 4;
11738 if (req->engine->id == RCS) {
11739 len += 6;
11740 /*
11741 * On Gen 8, SRM is now taking an extra dword to accommodate
11742 * 48bits addresses, and we need a NOOP for the batch size to
11743 * stay even.
11744 */
11745 if (IS_GEN8(dev))
11746 len += 2;
11747 }
11748
11749 /*
11750 * BSpec MI_DISPLAY_FLIP for IVB:
11751 * "The full packet must be contained within the same cache line."
11752 *
11753 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11754 * cacheline, if we ever start emitting more commands before
11755 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11756 * then do the cacheline alignment, and finally emit the
11757 * MI_DISPLAY_FLIP.
11758 */
11759 ret = intel_ring_cacheline_align(req);
11760 if (ret)
11761 return ret;
11762
11763 ret = intel_ring_begin(req, len);
11764 if (ret)
11765 return ret;
11766
11767 /* Unmask the flip-done completion message. Note that the bspec says that
11768 * we should do this for both the BCS and RCS, and that we must not unmask
11769 * more than one flip event at any time (or ensure that one flip message
11770 * can be sent by waiting for flip-done prior to queueing new flips).
11771 * Experimentation says that BCS works despite DERRMR masking all
11772 * flip-done completion events and that unmasking all planes at once
11773 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11774 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11775 */
11776 if (req->engine->id == RCS) {
11777 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11778 intel_ring_emit_reg(ring, DERRMR);
11779 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11780 DERRMR_PIPEB_PRI_FLIP_DONE |
11781 DERRMR_PIPEC_PRI_FLIP_DONE));
11782 if (IS_GEN8(dev))
11783 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11784 MI_SRM_LRM_GLOBAL_GTT);
11785 else
11786 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11787 MI_SRM_LRM_GLOBAL_GTT);
11788 intel_ring_emit_reg(ring, DERRMR);
11789 intel_ring_emit(ring,
11790 i915_ggtt_offset(req->engine->scratch) + 256);
11791 if (IS_GEN8(dev)) {
11792 intel_ring_emit(ring, 0);
11793 intel_ring_emit(ring, MI_NOOP);
11794 }
11795 }
11796
11797 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11798 intel_ring_emit(ring, fb->pitches[0] |
11799 intel_fb_modifier_to_tiling(fb->modifier[0]));
11800 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11801 intel_ring_emit(ring, (MI_NOOP));
11802
11803 return 0;
11804 }
11805
11806 static bool use_mmio_flip(struct intel_engine_cs *engine,
11807 struct drm_i915_gem_object *obj)
11808 {
11809 struct reservation_object *resv;
11810
11811 /*
11812 * This is not being used for older platforms, because
11813 * non-availability of flip done interrupt forces us to use
11814 * CS flips. Older platforms derive flip done using some clever
11815 * tricks involving the flip_pending status bits and vblank irqs.
11816 * So using MMIO flips there would disrupt this mechanism.
11817 */
11818
11819 if (engine == NULL)
11820 return true;
11821
11822 if (INTEL_GEN(engine->i915) < 5)
11823 return false;
11824
11825 if (i915.use_mmio_flip < 0)
11826 return false;
11827 else if (i915.use_mmio_flip > 0)
11828 return true;
11829 else if (i915.enable_execlists)
11830 return true;
11831
11832 resv = i915_gem_object_get_dmabuf_resv(obj);
11833 if (resv && !reservation_object_test_signaled_rcu(resv, false))
11834 return true;
11835
11836 return engine != i915_gem_active_get_engine(&obj->last_write,
11837 &obj->base.dev->struct_mutex);
11838 }
11839
11840 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11841 unsigned int rotation,
11842 struct intel_flip_work *work)
11843 {
11844 struct drm_device *dev = intel_crtc->base.dev;
11845 struct drm_i915_private *dev_priv = to_i915(dev);
11846 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11847 const enum pipe pipe = intel_crtc->pipe;
11848 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11849
11850 ctl = I915_READ(PLANE_CTL(pipe, 0));
11851 ctl &= ~PLANE_CTL_TILED_MASK;
11852 switch (fb->modifier[0]) {
11853 case DRM_FORMAT_MOD_NONE:
11854 break;
11855 case I915_FORMAT_MOD_X_TILED:
11856 ctl |= PLANE_CTL_TILED_X;
11857 break;
11858 case I915_FORMAT_MOD_Y_TILED:
11859 ctl |= PLANE_CTL_TILED_Y;
11860 break;
11861 case I915_FORMAT_MOD_Yf_TILED:
11862 ctl |= PLANE_CTL_TILED_YF;
11863 break;
11864 default:
11865 MISSING_CASE(fb->modifier[0]);
11866 }
11867
11868 /*
11869 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11870 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11871 */
11872 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11873 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11874
11875 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11876 POSTING_READ(PLANE_SURF(pipe, 0));
11877 }
11878
11879 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11880 struct intel_flip_work *work)
11881 {
11882 struct drm_device *dev = intel_crtc->base.dev;
11883 struct drm_i915_private *dev_priv = to_i915(dev);
11884 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11885 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11886 u32 dspcntr;
11887
11888 dspcntr = I915_READ(reg);
11889
11890 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
11891 dspcntr |= DISPPLANE_TILED;
11892 else
11893 dspcntr &= ~DISPPLANE_TILED;
11894
11895 I915_WRITE(reg, dspcntr);
11896
11897 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11898 POSTING_READ(DSPSURF(intel_crtc->plane));
11899 }
11900
11901 static void intel_mmio_flip_work_func(struct work_struct *w)
11902 {
11903 struct intel_flip_work *work =
11904 container_of(w, struct intel_flip_work, mmio_work);
11905 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11906 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11907 struct intel_framebuffer *intel_fb =
11908 to_intel_framebuffer(crtc->base.primary->fb);
11909 struct drm_i915_gem_object *obj = intel_fb->obj;
11910 struct reservation_object *resv;
11911
11912 if (work->flip_queued_req)
11913 WARN_ON(i915_wait_request(work->flip_queued_req,
11914 false, NULL,
11915 NO_WAITBOOST));
11916
11917 /* For framebuffer backed by dmabuf, wait for fence */
11918 resv = i915_gem_object_get_dmabuf_resv(obj);
11919 if (resv)
11920 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11921 MAX_SCHEDULE_TIMEOUT) < 0);
11922
11923 intel_pipe_update_start(crtc);
11924
11925 if (INTEL_GEN(dev_priv) >= 9)
11926 skl_do_mmio_flip(crtc, work->rotation, work);
11927 else
11928 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11929 ilk_do_mmio_flip(crtc, work);
11930
11931 intel_pipe_update_end(crtc, work);
11932 }
11933
11934 static int intel_default_queue_flip(struct drm_device *dev,
11935 struct drm_crtc *crtc,
11936 struct drm_framebuffer *fb,
11937 struct drm_i915_gem_object *obj,
11938 struct drm_i915_gem_request *req,
11939 uint32_t flags)
11940 {
11941 return -ENODEV;
11942 }
11943
11944 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11945 struct intel_crtc *intel_crtc,
11946 struct intel_flip_work *work)
11947 {
11948 u32 addr, vblank;
11949
11950 if (!atomic_read(&work->pending))
11951 return false;
11952
11953 smp_rmb();
11954
11955 vblank = intel_crtc_get_vblank_counter(intel_crtc);
11956 if (work->flip_ready_vblank == 0) {
11957 if (work->flip_queued_req &&
11958 !i915_gem_request_completed(work->flip_queued_req))
11959 return false;
11960
11961 work->flip_ready_vblank = vblank;
11962 }
11963
11964 if (vblank - work->flip_ready_vblank < 3)
11965 return false;
11966
11967 /* Potential stall - if we see that the flip has happened,
11968 * assume a missed interrupt. */
11969 if (INTEL_GEN(dev_priv) >= 4)
11970 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11971 else
11972 addr = I915_READ(DSPADDR(intel_crtc->plane));
11973
11974 /* There is a potential issue here with a false positive after a flip
11975 * to the same address. We could address this by checking for a
11976 * non-incrementing frame counter.
11977 */
11978 return addr == work->gtt_offset;
11979 }
11980
11981 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11982 {
11983 struct drm_device *dev = &dev_priv->drm;
11984 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11985 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11986 struct intel_flip_work *work;
11987
11988 WARN_ON(!in_interrupt());
11989
11990 if (crtc == NULL)
11991 return;
11992
11993 spin_lock(&dev->event_lock);
11994 work = intel_crtc->flip_work;
11995
11996 if (work != NULL && !is_mmio_work(work) &&
11997 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11998 WARN_ONCE(1,
11999 "Kicking stuck page flip: queued at %d, now %d\n",
12000 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12001 page_flip_completed(intel_crtc);
12002 work = NULL;
12003 }
12004
12005 if (work != NULL && !is_mmio_work(work) &&
12006 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12007 intel_queue_rps_boost_for_request(work->flip_queued_req);
12008 spin_unlock(&dev->event_lock);
12009 }
12010
12011 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12012 struct drm_framebuffer *fb,
12013 struct drm_pending_vblank_event *event,
12014 uint32_t page_flip_flags)
12015 {
12016 struct drm_device *dev = crtc->dev;
12017 struct drm_i915_private *dev_priv = to_i915(dev);
12018 struct drm_framebuffer *old_fb = crtc->primary->fb;
12019 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12021 struct drm_plane *primary = crtc->primary;
12022 enum pipe pipe = intel_crtc->pipe;
12023 struct intel_flip_work *work;
12024 struct intel_engine_cs *engine;
12025 bool mmio_flip;
12026 struct drm_i915_gem_request *request;
12027 struct i915_vma *vma;
12028 int ret;
12029
12030 /*
12031 * drm_mode_page_flip_ioctl() should already catch this, but double
12032 * check to be safe. In the future we may enable pageflipping from
12033 * a disabled primary plane.
12034 */
12035 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12036 return -EBUSY;
12037
12038 /* Can't change pixel format via MI display flips. */
12039 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12040 return -EINVAL;
12041
12042 /*
12043 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12044 * Note that pitch changes could also affect these register.
12045 */
12046 if (INTEL_INFO(dev)->gen > 3 &&
12047 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12048 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12049 return -EINVAL;
12050
12051 if (i915_terminally_wedged(&dev_priv->gpu_error))
12052 goto out_hang;
12053
12054 work = kzalloc(sizeof(*work), GFP_KERNEL);
12055 if (work == NULL)
12056 return -ENOMEM;
12057
12058 work->event = event;
12059 work->crtc = crtc;
12060 work->old_fb = old_fb;
12061 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12062
12063 ret = drm_crtc_vblank_get(crtc);
12064 if (ret)
12065 goto free_work;
12066
12067 /* We borrow the event spin lock for protecting flip_work */
12068 spin_lock_irq(&dev->event_lock);
12069 if (intel_crtc->flip_work) {
12070 /* Before declaring the flip queue wedged, check if
12071 * the hardware completed the operation behind our backs.
12072 */
12073 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12074 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12075 page_flip_completed(intel_crtc);
12076 } else {
12077 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12078 spin_unlock_irq(&dev->event_lock);
12079
12080 drm_crtc_vblank_put(crtc);
12081 kfree(work);
12082 return -EBUSY;
12083 }
12084 }
12085 intel_crtc->flip_work = work;
12086 spin_unlock_irq(&dev->event_lock);
12087
12088 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12089 flush_workqueue(dev_priv->wq);
12090
12091 /* Reference the objects for the scheduled work. */
12092 drm_framebuffer_reference(work->old_fb);
12093
12094 crtc->primary->fb = fb;
12095 update_state_fb(crtc->primary);
12096
12097 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12098 to_intel_plane_state(primary->state));
12099
12100 work->pending_flip_obj = i915_gem_object_get(obj);
12101
12102 ret = i915_mutex_lock_interruptible(dev);
12103 if (ret)
12104 goto cleanup;
12105
12106 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
12107 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
12108 ret = -EIO;
12109 goto cleanup;
12110 }
12111
12112 atomic_inc(&intel_crtc->unpin_work_count);
12113
12114 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
12115 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12116
12117 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
12118 engine = &dev_priv->engine[BCS];
12119 if (fb->modifier[0] != old_fb->modifier[0])
12120 /* vlv: DISPLAY_FLIP fails to change tiling */
12121 engine = NULL;
12122 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
12123 engine = &dev_priv->engine[BCS];
12124 } else if (INTEL_INFO(dev)->gen >= 7) {
12125 engine = i915_gem_active_get_engine(&obj->last_write,
12126 &obj->base.dev->struct_mutex);
12127 if (engine == NULL || engine->id != RCS)
12128 engine = &dev_priv->engine[BCS];
12129 } else {
12130 engine = &dev_priv->engine[RCS];
12131 }
12132
12133 mmio_flip = use_mmio_flip(engine, obj);
12134
12135 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12136 if (IS_ERR(vma)) {
12137 ret = PTR_ERR(vma);
12138 goto cleanup_pending;
12139 }
12140
12141 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12142 work->gtt_offset += intel_crtc->dspaddr_offset;
12143 work->rotation = crtc->primary->state->rotation;
12144
12145 if (mmio_flip) {
12146 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12147
12148 work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12149 &obj->base.dev->struct_mutex);
12150 schedule_work(&work->mmio_work);
12151 } else {
12152 request = i915_gem_request_alloc(engine, engine->last_context);
12153 if (IS_ERR(request)) {
12154 ret = PTR_ERR(request);
12155 goto cleanup_unpin;
12156 }
12157
12158 ret = i915_gem_object_sync(obj, request);
12159 if (ret)
12160 goto cleanup_request;
12161
12162 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12163 page_flip_flags);
12164 if (ret)
12165 goto cleanup_request;
12166
12167 intel_mark_page_flip_active(intel_crtc, work);
12168
12169 work->flip_queued_req = i915_gem_request_get(request);
12170 i915_add_request_no_flush(request);
12171 }
12172
12173 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12174 to_intel_plane(primary)->frontbuffer_bit);
12175 mutex_unlock(&dev->struct_mutex);
12176
12177 intel_frontbuffer_flip_prepare(to_i915(dev),
12178 to_intel_plane(primary)->frontbuffer_bit);
12179
12180 trace_i915_flip_request(intel_crtc->plane, obj);
12181
12182 return 0;
12183
12184 cleanup_request:
12185 i915_add_request_no_flush(request);
12186 cleanup_unpin:
12187 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12188 cleanup_pending:
12189 atomic_dec(&intel_crtc->unpin_work_count);
12190 mutex_unlock(&dev->struct_mutex);
12191 cleanup:
12192 crtc->primary->fb = old_fb;
12193 update_state_fb(crtc->primary);
12194
12195 i915_gem_object_put_unlocked(obj);
12196 drm_framebuffer_unreference(work->old_fb);
12197
12198 spin_lock_irq(&dev->event_lock);
12199 intel_crtc->flip_work = NULL;
12200 spin_unlock_irq(&dev->event_lock);
12201
12202 drm_crtc_vblank_put(crtc);
12203 free_work:
12204 kfree(work);
12205
12206 if (ret == -EIO) {
12207 struct drm_atomic_state *state;
12208 struct drm_plane_state *plane_state;
12209
12210 out_hang:
12211 state = drm_atomic_state_alloc(dev);
12212 if (!state)
12213 return -ENOMEM;
12214 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12215
12216 retry:
12217 plane_state = drm_atomic_get_plane_state(state, primary);
12218 ret = PTR_ERR_OR_ZERO(plane_state);
12219 if (!ret) {
12220 drm_atomic_set_fb_for_plane(plane_state, fb);
12221
12222 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12223 if (!ret)
12224 ret = drm_atomic_commit(state);
12225 }
12226
12227 if (ret == -EDEADLK) {
12228 drm_modeset_backoff(state->acquire_ctx);
12229 drm_atomic_state_clear(state);
12230 goto retry;
12231 }
12232
12233 if (ret)
12234 drm_atomic_state_free(state);
12235
12236 if (ret == 0 && event) {
12237 spin_lock_irq(&dev->event_lock);
12238 drm_crtc_send_vblank_event(crtc, event);
12239 spin_unlock_irq(&dev->event_lock);
12240 }
12241 }
12242 return ret;
12243 }
12244
12245
12246 /**
12247 * intel_wm_need_update - Check whether watermarks need updating
12248 * @plane: drm plane
12249 * @state: new plane state
12250 *
12251 * Check current plane state versus the new one to determine whether
12252 * watermarks need to be recalculated.
12253 *
12254 * Returns true or false.
12255 */
12256 static bool intel_wm_need_update(struct drm_plane *plane,
12257 struct drm_plane_state *state)
12258 {
12259 struct intel_plane_state *new = to_intel_plane_state(state);
12260 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12261
12262 /* Update watermarks on tiling or size changes. */
12263 if (new->base.visible != cur->base.visible)
12264 return true;
12265
12266 if (!cur->base.fb || !new->base.fb)
12267 return false;
12268
12269 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12270 cur->base.rotation != new->base.rotation ||
12271 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12272 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12273 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12274 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12275 return true;
12276
12277 return false;
12278 }
12279
12280 static bool needs_scaling(struct intel_plane_state *state)
12281 {
12282 int src_w = drm_rect_width(&state->base.src) >> 16;
12283 int src_h = drm_rect_height(&state->base.src) >> 16;
12284 int dst_w = drm_rect_width(&state->base.dst);
12285 int dst_h = drm_rect_height(&state->base.dst);
12286
12287 return (src_w != dst_w || src_h != dst_h);
12288 }
12289
12290 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12291 struct drm_plane_state *plane_state)
12292 {
12293 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12294 struct drm_crtc *crtc = crtc_state->crtc;
12295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12296 struct drm_plane *plane = plane_state->plane;
12297 struct drm_device *dev = crtc->dev;
12298 struct drm_i915_private *dev_priv = to_i915(dev);
12299 struct intel_plane_state *old_plane_state =
12300 to_intel_plane_state(plane->state);
12301 bool mode_changed = needs_modeset(crtc_state);
12302 bool was_crtc_enabled = crtc->state->active;
12303 bool is_crtc_enabled = crtc_state->active;
12304 bool turn_off, turn_on, visible, was_visible;
12305 struct drm_framebuffer *fb = plane_state->fb;
12306 int ret;
12307
12308 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12309 ret = skl_update_scaler_plane(
12310 to_intel_crtc_state(crtc_state),
12311 to_intel_plane_state(plane_state));
12312 if (ret)
12313 return ret;
12314 }
12315
12316 was_visible = old_plane_state->base.visible;
12317 visible = to_intel_plane_state(plane_state)->base.visible;
12318
12319 if (!was_crtc_enabled && WARN_ON(was_visible))
12320 was_visible = false;
12321
12322 /*
12323 * Visibility is calculated as if the crtc was on, but
12324 * after scaler setup everything depends on it being off
12325 * when the crtc isn't active.
12326 *
12327 * FIXME this is wrong for watermarks. Watermarks should also
12328 * be computed as if the pipe would be active. Perhaps move
12329 * per-plane wm computation to the .check_plane() hook, and
12330 * only combine the results from all planes in the current place?
12331 */
12332 if (!is_crtc_enabled)
12333 to_intel_plane_state(plane_state)->base.visible = visible = false;
12334
12335 if (!was_visible && !visible)
12336 return 0;
12337
12338 if (fb != old_plane_state->base.fb)
12339 pipe_config->fb_changed = true;
12340
12341 turn_off = was_visible && (!visible || mode_changed);
12342 turn_on = visible && (!was_visible || mode_changed);
12343
12344 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12345 intel_crtc->base.base.id,
12346 intel_crtc->base.name,
12347 plane->base.id, plane->name,
12348 fb ? fb->base.id : -1);
12349
12350 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12351 plane->base.id, plane->name,
12352 was_visible, visible,
12353 turn_off, turn_on, mode_changed);
12354
12355 if (turn_on) {
12356 pipe_config->update_wm_pre = true;
12357
12358 /* must disable cxsr around plane enable/disable */
12359 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12360 pipe_config->disable_cxsr = true;
12361 } else if (turn_off) {
12362 pipe_config->update_wm_post = true;
12363
12364 /* must disable cxsr around plane enable/disable */
12365 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12366 pipe_config->disable_cxsr = true;
12367 } else if (intel_wm_need_update(plane, plane_state)) {
12368 /* FIXME bollocks */
12369 pipe_config->update_wm_pre = true;
12370 pipe_config->update_wm_post = true;
12371 }
12372
12373 /* Pre-gen9 platforms need two-step watermark updates */
12374 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12375 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12376 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12377
12378 if (visible || was_visible)
12379 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12380
12381 /*
12382 * WaCxSRDisabledForSpriteScaling:ivb
12383 *
12384 * cstate->update_wm was already set above, so this flag will
12385 * take effect when we commit and program watermarks.
12386 */
12387 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12388 needs_scaling(to_intel_plane_state(plane_state)) &&
12389 !needs_scaling(old_plane_state))
12390 pipe_config->disable_lp_wm = true;
12391
12392 return 0;
12393 }
12394
12395 static bool encoders_cloneable(const struct intel_encoder *a,
12396 const struct intel_encoder *b)
12397 {
12398 /* masks could be asymmetric, so check both ways */
12399 return a == b || (a->cloneable & (1 << b->type) &&
12400 b->cloneable & (1 << a->type));
12401 }
12402
12403 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12404 struct intel_crtc *crtc,
12405 struct intel_encoder *encoder)
12406 {
12407 struct intel_encoder *source_encoder;
12408 struct drm_connector *connector;
12409 struct drm_connector_state *connector_state;
12410 int i;
12411
12412 for_each_connector_in_state(state, connector, connector_state, i) {
12413 if (connector_state->crtc != &crtc->base)
12414 continue;
12415
12416 source_encoder =
12417 to_intel_encoder(connector_state->best_encoder);
12418 if (!encoders_cloneable(encoder, source_encoder))
12419 return false;
12420 }
12421
12422 return true;
12423 }
12424
12425 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12426 struct drm_crtc_state *crtc_state)
12427 {
12428 struct drm_device *dev = crtc->dev;
12429 struct drm_i915_private *dev_priv = to_i915(dev);
12430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12431 struct intel_crtc_state *pipe_config =
12432 to_intel_crtc_state(crtc_state);
12433 struct drm_atomic_state *state = crtc_state->state;
12434 int ret;
12435 bool mode_changed = needs_modeset(crtc_state);
12436
12437 if (mode_changed && !crtc_state->active)
12438 pipe_config->update_wm_post = true;
12439
12440 if (mode_changed && crtc_state->enable &&
12441 dev_priv->display.crtc_compute_clock &&
12442 !WARN_ON(pipe_config->shared_dpll)) {
12443 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12444 pipe_config);
12445 if (ret)
12446 return ret;
12447 }
12448
12449 if (crtc_state->color_mgmt_changed) {
12450 ret = intel_color_check(crtc, crtc_state);
12451 if (ret)
12452 return ret;
12453
12454 /*
12455 * Changing color management on Intel hardware is
12456 * handled as part of planes update.
12457 */
12458 crtc_state->planes_changed = true;
12459 }
12460
12461 ret = 0;
12462 if (dev_priv->display.compute_pipe_wm) {
12463 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12464 if (ret) {
12465 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12466 return ret;
12467 }
12468 }
12469
12470 if (dev_priv->display.compute_intermediate_wm &&
12471 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12472 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12473 return 0;
12474
12475 /*
12476 * Calculate 'intermediate' watermarks that satisfy both the
12477 * old state and the new state. We can program these
12478 * immediately.
12479 */
12480 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12481 intel_crtc,
12482 pipe_config);
12483 if (ret) {
12484 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12485 return ret;
12486 }
12487 } else if (dev_priv->display.compute_intermediate_wm) {
12488 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12489 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12490 }
12491
12492 if (INTEL_INFO(dev)->gen >= 9) {
12493 if (mode_changed)
12494 ret = skl_update_scaler_crtc(pipe_config);
12495
12496 if (!ret)
12497 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12498 pipe_config);
12499 }
12500
12501 return ret;
12502 }
12503
12504 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12505 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12506 .atomic_begin = intel_begin_crtc_commit,
12507 .atomic_flush = intel_finish_crtc_commit,
12508 .atomic_check = intel_crtc_atomic_check,
12509 };
12510
12511 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12512 {
12513 struct intel_connector *connector;
12514
12515 for_each_intel_connector(dev, connector) {
12516 if (connector->base.state->crtc)
12517 drm_connector_unreference(&connector->base);
12518
12519 if (connector->base.encoder) {
12520 connector->base.state->best_encoder =
12521 connector->base.encoder;
12522 connector->base.state->crtc =
12523 connector->base.encoder->crtc;
12524
12525 drm_connector_reference(&connector->base);
12526 } else {
12527 connector->base.state->best_encoder = NULL;
12528 connector->base.state->crtc = NULL;
12529 }
12530 }
12531 }
12532
12533 static void
12534 connected_sink_compute_bpp(struct intel_connector *connector,
12535 struct intel_crtc_state *pipe_config)
12536 {
12537 int bpp = pipe_config->pipe_bpp;
12538
12539 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12540 connector->base.base.id,
12541 connector->base.name);
12542
12543 /* Don't use an invalid EDID bpc value */
12544 if (connector->base.display_info.bpc &&
12545 connector->base.display_info.bpc * 3 < bpp) {
12546 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12547 bpp, connector->base.display_info.bpc*3);
12548 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12549 }
12550
12551 /* Clamp bpp to 8 on screens without EDID 1.4 */
12552 if (connector->base.display_info.bpc == 0 && bpp > 24) {
12553 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12554 bpp);
12555 pipe_config->pipe_bpp = 24;
12556 }
12557 }
12558
12559 static int
12560 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12561 struct intel_crtc_state *pipe_config)
12562 {
12563 struct drm_device *dev = crtc->base.dev;
12564 struct drm_atomic_state *state;
12565 struct drm_connector *connector;
12566 struct drm_connector_state *connector_state;
12567 int bpp, i;
12568
12569 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12570 bpp = 10*3;
12571 else if (INTEL_INFO(dev)->gen >= 5)
12572 bpp = 12*3;
12573 else
12574 bpp = 8*3;
12575
12576
12577 pipe_config->pipe_bpp = bpp;
12578
12579 state = pipe_config->base.state;
12580
12581 /* Clamp display bpp to EDID value */
12582 for_each_connector_in_state(state, connector, connector_state, i) {
12583 if (connector_state->crtc != &crtc->base)
12584 continue;
12585
12586 connected_sink_compute_bpp(to_intel_connector(connector),
12587 pipe_config);
12588 }
12589
12590 return bpp;
12591 }
12592
12593 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12594 {
12595 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12596 "type: 0x%x flags: 0x%x\n",
12597 mode->crtc_clock,
12598 mode->crtc_hdisplay, mode->crtc_hsync_start,
12599 mode->crtc_hsync_end, mode->crtc_htotal,
12600 mode->crtc_vdisplay, mode->crtc_vsync_start,
12601 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12602 }
12603
12604 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12605 struct intel_crtc_state *pipe_config,
12606 const char *context)
12607 {
12608 struct drm_device *dev = crtc->base.dev;
12609 struct drm_plane *plane;
12610 struct intel_plane *intel_plane;
12611 struct intel_plane_state *state;
12612 struct drm_framebuffer *fb;
12613
12614 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12615 crtc->base.base.id, crtc->base.name,
12616 context, pipe_config, pipe_name(crtc->pipe));
12617
12618 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12619 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12620 pipe_config->pipe_bpp, pipe_config->dither);
12621 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12622 pipe_config->has_pch_encoder,
12623 pipe_config->fdi_lanes,
12624 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12625 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12626 pipe_config->fdi_m_n.tu);
12627 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12628 intel_crtc_has_dp_encoder(pipe_config),
12629 pipe_config->lane_count,
12630 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12631 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12632 pipe_config->dp_m_n.tu);
12633
12634 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12635 intel_crtc_has_dp_encoder(pipe_config),
12636 pipe_config->lane_count,
12637 pipe_config->dp_m2_n2.gmch_m,
12638 pipe_config->dp_m2_n2.gmch_n,
12639 pipe_config->dp_m2_n2.link_m,
12640 pipe_config->dp_m2_n2.link_n,
12641 pipe_config->dp_m2_n2.tu);
12642
12643 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12644 pipe_config->has_audio,
12645 pipe_config->has_infoframe);
12646
12647 DRM_DEBUG_KMS("requested mode:\n");
12648 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12649 DRM_DEBUG_KMS("adjusted mode:\n");
12650 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12651 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12652 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12653 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12654 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12655 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12656 crtc->num_scalers,
12657 pipe_config->scaler_state.scaler_users,
12658 pipe_config->scaler_state.scaler_id);
12659 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12660 pipe_config->gmch_pfit.control,
12661 pipe_config->gmch_pfit.pgm_ratios,
12662 pipe_config->gmch_pfit.lvds_border_bits);
12663 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12664 pipe_config->pch_pfit.pos,
12665 pipe_config->pch_pfit.size,
12666 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12667 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12668 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12669
12670 if (IS_BROXTON(dev)) {
12671 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12672 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12673 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12674 pipe_config->ddi_pll_sel,
12675 pipe_config->dpll_hw_state.ebb0,
12676 pipe_config->dpll_hw_state.ebb4,
12677 pipe_config->dpll_hw_state.pll0,
12678 pipe_config->dpll_hw_state.pll1,
12679 pipe_config->dpll_hw_state.pll2,
12680 pipe_config->dpll_hw_state.pll3,
12681 pipe_config->dpll_hw_state.pll6,
12682 pipe_config->dpll_hw_state.pll8,
12683 pipe_config->dpll_hw_state.pll9,
12684 pipe_config->dpll_hw_state.pll10,
12685 pipe_config->dpll_hw_state.pcsdw12);
12686 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12687 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12688 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12689 pipe_config->ddi_pll_sel,
12690 pipe_config->dpll_hw_state.ctrl1,
12691 pipe_config->dpll_hw_state.cfgcr1,
12692 pipe_config->dpll_hw_state.cfgcr2);
12693 } else if (HAS_DDI(dev)) {
12694 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12695 pipe_config->ddi_pll_sel,
12696 pipe_config->dpll_hw_state.wrpll,
12697 pipe_config->dpll_hw_state.spll);
12698 } else {
12699 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12700 "fp0: 0x%x, fp1: 0x%x\n",
12701 pipe_config->dpll_hw_state.dpll,
12702 pipe_config->dpll_hw_state.dpll_md,
12703 pipe_config->dpll_hw_state.fp0,
12704 pipe_config->dpll_hw_state.fp1);
12705 }
12706
12707 DRM_DEBUG_KMS("planes on this crtc\n");
12708 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12709 intel_plane = to_intel_plane(plane);
12710 if (intel_plane->pipe != crtc->pipe)
12711 continue;
12712
12713 state = to_intel_plane_state(plane->state);
12714 fb = state->base.fb;
12715 if (!fb) {
12716 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12717 plane->base.id, plane->name, state->scaler_id);
12718 continue;
12719 }
12720
12721 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12722 plane->base.id, plane->name);
12723 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12724 fb->base.id, fb->width, fb->height,
12725 drm_get_format_name(fb->pixel_format));
12726 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12727 state->scaler_id,
12728 state->base.src.x1 >> 16,
12729 state->base.src.y1 >> 16,
12730 drm_rect_width(&state->base.src) >> 16,
12731 drm_rect_height(&state->base.src) >> 16,
12732 state->base.dst.x1, state->base.dst.y1,
12733 drm_rect_width(&state->base.dst),
12734 drm_rect_height(&state->base.dst));
12735 }
12736 }
12737
12738 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12739 {
12740 struct drm_device *dev = state->dev;
12741 struct drm_connector *connector;
12742 unsigned int used_ports = 0;
12743 unsigned int used_mst_ports = 0;
12744
12745 /*
12746 * Walk the connector list instead of the encoder
12747 * list to detect the problem on ddi platforms
12748 * where there's just one encoder per digital port.
12749 */
12750 drm_for_each_connector(connector, dev) {
12751 struct drm_connector_state *connector_state;
12752 struct intel_encoder *encoder;
12753
12754 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12755 if (!connector_state)
12756 connector_state = connector->state;
12757
12758 if (!connector_state->best_encoder)
12759 continue;
12760
12761 encoder = to_intel_encoder(connector_state->best_encoder);
12762
12763 WARN_ON(!connector_state->crtc);
12764
12765 switch (encoder->type) {
12766 unsigned int port_mask;
12767 case INTEL_OUTPUT_UNKNOWN:
12768 if (WARN_ON(!HAS_DDI(dev)))
12769 break;
12770 case INTEL_OUTPUT_DP:
12771 case INTEL_OUTPUT_HDMI:
12772 case INTEL_OUTPUT_EDP:
12773 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12774
12775 /* the same port mustn't appear more than once */
12776 if (used_ports & port_mask)
12777 return false;
12778
12779 used_ports |= port_mask;
12780 break;
12781 case INTEL_OUTPUT_DP_MST:
12782 used_mst_ports |=
12783 1 << enc_to_mst(&encoder->base)->primary->port;
12784 break;
12785 default:
12786 break;
12787 }
12788 }
12789
12790 /* can't mix MST and SST/HDMI on the same port */
12791 if (used_ports & used_mst_ports)
12792 return false;
12793
12794 return true;
12795 }
12796
12797 static void
12798 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12799 {
12800 struct drm_crtc_state tmp_state;
12801 struct intel_crtc_scaler_state scaler_state;
12802 struct intel_dpll_hw_state dpll_hw_state;
12803 struct intel_shared_dpll *shared_dpll;
12804 uint32_t ddi_pll_sel;
12805 bool force_thru;
12806
12807 /* FIXME: before the switch to atomic started, a new pipe_config was
12808 * kzalloc'd. Code that depends on any field being zero should be
12809 * fixed, so that the crtc_state can be safely duplicated. For now,
12810 * only fields that are know to not cause problems are preserved. */
12811
12812 tmp_state = crtc_state->base;
12813 scaler_state = crtc_state->scaler_state;
12814 shared_dpll = crtc_state->shared_dpll;
12815 dpll_hw_state = crtc_state->dpll_hw_state;
12816 ddi_pll_sel = crtc_state->ddi_pll_sel;
12817 force_thru = crtc_state->pch_pfit.force_thru;
12818
12819 memset(crtc_state, 0, sizeof *crtc_state);
12820
12821 crtc_state->base = tmp_state;
12822 crtc_state->scaler_state = scaler_state;
12823 crtc_state->shared_dpll = shared_dpll;
12824 crtc_state->dpll_hw_state = dpll_hw_state;
12825 crtc_state->ddi_pll_sel = ddi_pll_sel;
12826 crtc_state->pch_pfit.force_thru = force_thru;
12827 }
12828
12829 static int
12830 intel_modeset_pipe_config(struct drm_crtc *crtc,
12831 struct intel_crtc_state *pipe_config)
12832 {
12833 struct drm_atomic_state *state = pipe_config->base.state;
12834 struct intel_encoder *encoder;
12835 struct drm_connector *connector;
12836 struct drm_connector_state *connector_state;
12837 int base_bpp, ret = -EINVAL;
12838 int i;
12839 bool retry = true;
12840
12841 clear_intel_crtc_state(pipe_config);
12842
12843 pipe_config->cpu_transcoder =
12844 (enum transcoder) to_intel_crtc(crtc)->pipe;
12845
12846 /*
12847 * Sanitize sync polarity flags based on requested ones. If neither
12848 * positive or negative polarity is requested, treat this as meaning
12849 * negative polarity.
12850 */
12851 if (!(pipe_config->base.adjusted_mode.flags &
12852 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12853 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12854
12855 if (!(pipe_config->base.adjusted_mode.flags &
12856 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12857 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12858
12859 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12860 pipe_config);
12861 if (base_bpp < 0)
12862 goto fail;
12863
12864 /*
12865 * Determine the real pipe dimensions. Note that stereo modes can
12866 * increase the actual pipe size due to the frame doubling and
12867 * insertion of additional space for blanks between the frame. This
12868 * is stored in the crtc timings. We use the requested mode to do this
12869 * computation to clearly distinguish it from the adjusted mode, which
12870 * can be changed by the connectors in the below retry loop.
12871 */
12872 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12873 &pipe_config->pipe_src_w,
12874 &pipe_config->pipe_src_h);
12875
12876 for_each_connector_in_state(state, connector, connector_state, i) {
12877 if (connector_state->crtc != crtc)
12878 continue;
12879
12880 encoder = to_intel_encoder(connector_state->best_encoder);
12881
12882 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12883 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12884 goto fail;
12885 }
12886
12887 /*
12888 * Determine output_types before calling the .compute_config()
12889 * hooks so that the hooks can use this information safely.
12890 */
12891 pipe_config->output_types |= 1 << encoder->type;
12892 }
12893
12894 encoder_retry:
12895 /* Ensure the port clock defaults are reset when retrying. */
12896 pipe_config->port_clock = 0;
12897 pipe_config->pixel_multiplier = 1;
12898
12899 /* Fill in default crtc timings, allow encoders to overwrite them. */
12900 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12901 CRTC_STEREO_DOUBLE);
12902
12903 /* Pass our mode to the connectors and the CRTC to give them a chance to
12904 * adjust it according to limitations or connector properties, and also
12905 * a chance to reject the mode entirely.
12906 */
12907 for_each_connector_in_state(state, connector, connector_state, i) {
12908 if (connector_state->crtc != crtc)
12909 continue;
12910
12911 encoder = to_intel_encoder(connector_state->best_encoder);
12912
12913 if (!(encoder->compute_config(encoder, pipe_config))) {
12914 DRM_DEBUG_KMS("Encoder config failure\n");
12915 goto fail;
12916 }
12917 }
12918
12919 /* Set default port clock if not overwritten by the encoder. Needs to be
12920 * done afterwards in case the encoder adjusts the mode. */
12921 if (!pipe_config->port_clock)
12922 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12923 * pipe_config->pixel_multiplier;
12924
12925 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12926 if (ret < 0) {
12927 DRM_DEBUG_KMS("CRTC fixup failed\n");
12928 goto fail;
12929 }
12930
12931 if (ret == RETRY) {
12932 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12933 ret = -EINVAL;
12934 goto fail;
12935 }
12936
12937 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12938 retry = false;
12939 goto encoder_retry;
12940 }
12941
12942 /* Dithering seems to not pass-through bits correctly when it should, so
12943 * only enable it on 6bpc panels. */
12944 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12945 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12946 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12947
12948 fail:
12949 return ret;
12950 }
12951
12952 static void
12953 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12954 {
12955 struct drm_crtc *crtc;
12956 struct drm_crtc_state *crtc_state;
12957 int i;
12958
12959 /* Double check state. */
12960 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12961 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12962
12963 /* Update hwmode for vblank functions */
12964 if (crtc->state->active)
12965 crtc->hwmode = crtc->state->adjusted_mode;
12966 else
12967 crtc->hwmode.crtc_clock = 0;
12968
12969 /*
12970 * Update legacy state to satisfy fbc code. This can
12971 * be removed when fbc uses the atomic state.
12972 */
12973 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12974 struct drm_plane_state *plane_state = crtc->primary->state;
12975
12976 crtc->primary->fb = plane_state->fb;
12977 crtc->x = plane_state->src_x >> 16;
12978 crtc->y = plane_state->src_y >> 16;
12979 }
12980 }
12981 }
12982
12983 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12984 {
12985 int diff;
12986
12987 if (clock1 == clock2)
12988 return true;
12989
12990 if (!clock1 || !clock2)
12991 return false;
12992
12993 diff = abs(clock1 - clock2);
12994
12995 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12996 return true;
12997
12998 return false;
12999 }
13000
13001 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
13002 list_for_each_entry((intel_crtc), \
13003 &(dev)->mode_config.crtc_list, \
13004 base.head) \
13005 for_each_if (mask & (1 <<(intel_crtc)->pipe))
13006
13007 static bool
13008 intel_compare_m_n(unsigned int m, unsigned int n,
13009 unsigned int m2, unsigned int n2,
13010 bool exact)
13011 {
13012 if (m == m2 && n == n2)
13013 return true;
13014
13015 if (exact || !m || !n || !m2 || !n2)
13016 return false;
13017
13018 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13019
13020 if (n > n2) {
13021 while (n > n2) {
13022 m2 <<= 1;
13023 n2 <<= 1;
13024 }
13025 } else if (n < n2) {
13026 while (n < n2) {
13027 m <<= 1;
13028 n <<= 1;
13029 }
13030 }
13031
13032 if (n != n2)
13033 return false;
13034
13035 return intel_fuzzy_clock_check(m, m2);
13036 }
13037
13038 static bool
13039 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13040 struct intel_link_m_n *m2_n2,
13041 bool adjust)
13042 {
13043 if (m_n->tu == m2_n2->tu &&
13044 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13045 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13046 intel_compare_m_n(m_n->link_m, m_n->link_n,
13047 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13048 if (adjust)
13049 *m2_n2 = *m_n;
13050
13051 return true;
13052 }
13053
13054 return false;
13055 }
13056
13057 static bool
13058 intel_pipe_config_compare(struct drm_device *dev,
13059 struct intel_crtc_state *current_config,
13060 struct intel_crtc_state *pipe_config,
13061 bool adjust)
13062 {
13063 bool ret = true;
13064
13065 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13066 do { \
13067 if (!adjust) \
13068 DRM_ERROR(fmt, ##__VA_ARGS__); \
13069 else \
13070 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13071 } while (0)
13072
13073 #define PIPE_CONF_CHECK_X(name) \
13074 if (current_config->name != pipe_config->name) { \
13075 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13076 "(expected 0x%08x, found 0x%08x)\n", \
13077 current_config->name, \
13078 pipe_config->name); \
13079 ret = false; \
13080 }
13081
13082 #define PIPE_CONF_CHECK_I(name) \
13083 if (current_config->name != pipe_config->name) { \
13084 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13085 "(expected %i, found %i)\n", \
13086 current_config->name, \
13087 pipe_config->name); \
13088 ret = false; \
13089 }
13090
13091 #define PIPE_CONF_CHECK_P(name) \
13092 if (current_config->name != pipe_config->name) { \
13093 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13094 "(expected %p, found %p)\n", \
13095 current_config->name, \
13096 pipe_config->name); \
13097 ret = false; \
13098 }
13099
13100 #define PIPE_CONF_CHECK_M_N(name) \
13101 if (!intel_compare_link_m_n(&current_config->name, \
13102 &pipe_config->name,\
13103 adjust)) { \
13104 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13105 "(expected tu %i gmch %i/%i link %i/%i, " \
13106 "found tu %i, gmch %i/%i link %i/%i)\n", \
13107 current_config->name.tu, \
13108 current_config->name.gmch_m, \
13109 current_config->name.gmch_n, \
13110 current_config->name.link_m, \
13111 current_config->name.link_n, \
13112 pipe_config->name.tu, \
13113 pipe_config->name.gmch_m, \
13114 pipe_config->name.gmch_n, \
13115 pipe_config->name.link_m, \
13116 pipe_config->name.link_n); \
13117 ret = false; \
13118 }
13119
13120 /* This is required for BDW+ where there is only one set of registers for
13121 * switching between high and low RR.
13122 * This macro can be used whenever a comparison has to be made between one
13123 * hw state and multiple sw state variables.
13124 */
13125 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13126 if (!intel_compare_link_m_n(&current_config->name, \
13127 &pipe_config->name, adjust) && \
13128 !intel_compare_link_m_n(&current_config->alt_name, \
13129 &pipe_config->name, adjust)) { \
13130 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13131 "(expected tu %i gmch %i/%i link %i/%i, " \
13132 "or tu %i gmch %i/%i link %i/%i, " \
13133 "found tu %i, gmch %i/%i link %i/%i)\n", \
13134 current_config->name.tu, \
13135 current_config->name.gmch_m, \
13136 current_config->name.gmch_n, \
13137 current_config->name.link_m, \
13138 current_config->name.link_n, \
13139 current_config->alt_name.tu, \
13140 current_config->alt_name.gmch_m, \
13141 current_config->alt_name.gmch_n, \
13142 current_config->alt_name.link_m, \
13143 current_config->alt_name.link_n, \
13144 pipe_config->name.tu, \
13145 pipe_config->name.gmch_m, \
13146 pipe_config->name.gmch_n, \
13147 pipe_config->name.link_m, \
13148 pipe_config->name.link_n); \
13149 ret = false; \
13150 }
13151
13152 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13153 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13154 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13155 "(expected %i, found %i)\n", \
13156 current_config->name & (mask), \
13157 pipe_config->name & (mask)); \
13158 ret = false; \
13159 }
13160
13161 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13162 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13163 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13164 "(expected %i, found %i)\n", \
13165 current_config->name, \
13166 pipe_config->name); \
13167 ret = false; \
13168 }
13169
13170 #define PIPE_CONF_QUIRK(quirk) \
13171 ((current_config->quirks | pipe_config->quirks) & (quirk))
13172
13173 PIPE_CONF_CHECK_I(cpu_transcoder);
13174
13175 PIPE_CONF_CHECK_I(has_pch_encoder);
13176 PIPE_CONF_CHECK_I(fdi_lanes);
13177 PIPE_CONF_CHECK_M_N(fdi_m_n);
13178
13179 PIPE_CONF_CHECK_I(lane_count);
13180 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13181
13182 if (INTEL_INFO(dev)->gen < 8) {
13183 PIPE_CONF_CHECK_M_N(dp_m_n);
13184
13185 if (current_config->has_drrs)
13186 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13187 } else
13188 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13189
13190 PIPE_CONF_CHECK_X(output_types);
13191
13192 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13193 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13194 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13195 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13196 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13197 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13198
13199 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13200 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13201 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13202 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13203 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13204 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13205
13206 PIPE_CONF_CHECK_I(pixel_multiplier);
13207 PIPE_CONF_CHECK_I(has_hdmi_sink);
13208 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
13209 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
13210 PIPE_CONF_CHECK_I(limited_color_range);
13211 PIPE_CONF_CHECK_I(has_infoframe);
13212
13213 PIPE_CONF_CHECK_I(has_audio);
13214
13215 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13216 DRM_MODE_FLAG_INTERLACE);
13217
13218 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13219 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13220 DRM_MODE_FLAG_PHSYNC);
13221 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13222 DRM_MODE_FLAG_NHSYNC);
13223 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13224 DRM_MODE_FLAG_PVSYNC);
13225 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13226 DRM_MODE_FLAG_NVSYNC);
13227 }
13228
13229 PIPE_CONF_CHECK_X(gmch_pfit.control);
13230 /* pfit ratios are autocomputed by the hw on gen4+ */
13231 if (INTEL_INFO(dev)->gen < 4)
13232 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13233 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13234
13235 if (!adjust) {
13236 PIPE_CONF_CHECK_I(pipe_src_w);
13237 PIPE_CONF_CHECK_I(pipe_src_h);
13238
13239 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13240 if (current_config->pch_pfit.enabled) {
13241 PIPE_CONF_CHECK_X(pch_pfit.pos);
13242 PIPE_CONF_CHECK_X(pch_pfit.size);
13243 }
13244
13245 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13246 }
13247
13248 /* BDW+ don't expose a synchronous way to read the state */
13249 if (IS_HASWELL(dev))
13250 PIPE_CONF_CHECK_I(ips_enabled);
13251
13252 PIPE_CONF_CHECK_I(double_wide);
13253
13254 PIPE_CONF_CHECK_X(ddi_pll_sel);
13255
13256 PIPE_CONF_CHECK_P(shared_dpll);
13257 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13258 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13259 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13260 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13261 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13262 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13263 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13264 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13265 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13266
13267 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13268 PIPE_CONF_CHECK_X(dsi_pll.div);
13269
13270 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
13271 PIPE_CONF_CHECK_I(pipe_bpp);
13272
13273 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13274 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13275
13276 #undef PIPE_CONF_CHECK_X
13277 #undef PIPE_CONF_CHECK_I
13278 #undef PIPE_CONF_CHECK_P
13279 #undef PIPE_CONF_CHECK_FLAGS
13280 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13281 #undef PIPE_CONF_QUIRK
13282 #undef INTEL_ERR_OR_DBG_KMS
13283
13284 return ret;
13285 }
13286
13287 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13288 const struct intel_crtc_state *pipe_config)
13289 {
13290 if (pipe_config->has_pch_encoder) {
13291 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13292 &pipe_config->fdi_m_n);
13293 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13294
13295 /*
13296 * FDI already provided one idea for the dotclock.
13297 * Yell if the encoder disagrees.
13298 */
13299 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13300 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13301 fdi_dotclock, dotclock);
13302 }
13303 }
13304
13305 static void verify_wm_state(struct drm_crtc *crtc,
13306 struct drm_crtc_state *new_state)
13307 {
13308 struct drm_device *dev = crtc->dev;
13309 struct drm_i915_private *dev_priv = to_i915(dev);
13310 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13311 struct skl_ddb_entry *hw_entry, *sw_entry;
13312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13313 const enum pipe pipe = intel_crtc->pipe;
13314 int plane;
13315
13316 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
13317 return;
13318
13319 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13320 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13321
13322 /* planes */
13323 for_each_plane(dev_priv, pipe, plane) {
13324 hw_entry = &hw_ddb.plane[pipe][plane];
13325 sw_entry = &sw_ddb->plane[pipe][plane];
13326
13327 if (skl_ddb_entry_equal(hw_entry, sw_entry))
13328 continue;
13329
13330 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13331 "(expected (%u,%u), found (%u,%u))\n",
13332 pipe_name(pipe), plane + 1,
13333 sw_entry->start, sw_entry->end,
13334 hw_entry->start, hw_entry->end);
13335 }
13336
13337 /* cursor */
13338 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13339 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13340
13341 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13342 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13343 "(expected (%u,%u), found (%u,%u))\n",
13344 pipe_name(pipe),
13345 sw_entry->start, sw_entry->end,
13346 hw_entry->start, hw_entry->end);
13347 }
13348 }
13349
13350 static void
13351 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13352 {
13353 struct drm_connector *connector;
13354
13355 drm_for_each_connector(connector, dev) {
13356 struct drm_encoder *encoder = connector->encoder;
13357 struct drm_connector_state *state = connector->state;
13358
13359 if (state->crtc != crtc)
13360 continue;
13361
13362 intel_connector_verify_state(to_intel_connector(connector));
13363
13364 I915_STATE_WARN(state->best_encoder != encoder,
13365 "connector's atomic encoder doesn't match legacy encoder\n");
13366 }
13367 }
13368
13369 static void
13370 verify_encoder_state(struct drm_device *dev)
13371 {
13372 struct intel_encoder *encoder;
13373 struct intel_connector *connector;
13374
13375 for_each_intel_encoder(dev, encoder) {
13376 bool enabled = false;
13377 enum pipe pipe;
13378
13379 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13380 encoder->base.base.id,
13381 encoder->base.name);
13382
13383 for_each_intel_connector(dev, connector) {
13384 if (connector->base.state->best_encoder != &encoder->base)
13385 continue;
13386 enabled = true;
13387
13388 I915_STATE_WARN(connector->base.state->crtc !=
13389 encoder->base.crtc,
13390 "connector's crtc doesn't match encoder crtc\n");
13391 }
13392
13393 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13394 "encoder's enabled state mismatch "
13395 "(expected %i, found %i)\n",
13396 !!encoder->base.crtc, enabled);
13397
13398 if (!encoder->base.crtc) {
13399 bool active;
13400
13401 active = encoder->get_hw_state(encoder, &pipe);
13402 I915_STATE_WARN(active,
13403 "encoder detached but still enabled on pipe %c.\n",
13404 pipe_name(pipe));
13405 }
13406 }
13407 }
13408
13409 static void
13410 verify_crtc_state(struct drm_crtc *crtc,
13411 struct drm_crtc_state *old_crtc_state,
13412 struct drm_crtc_state *new_crtc_state)
13413 {
13414 struct drm_device *dev = crtc->dev;
13415 struct drm_i915_private *dev_priv = to_i915(dev);
13416 struct intel_encoder *encoder;
13417 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13418 struct intel_crtc_state *pipe_config, *sw_config;
13419 struct drm_atomic_state *old_state;
13420 bool active;
13421
13422 old_state = old_crtc_state->state;
13423 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13424 pipe_config = to_intel_crtc_state(old_crtc_state);
13425 memset(pipe_config, 0, sizeof(*pipe_config));
13426 pipe_config->base.crtc = crtc;
13427 pipe_config->base.state = old_state;
13428
13429 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13430
13431 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13432
13433 /* hw state is inconsistent with the pipe quirk */
13434 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13435 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13436 active = new_crtc_state->active;
13437
13438 I915_STATE_WARN(new_crtc_state->active != active,
13439 "crtc active state doesn't match with hw state "
13440 "(expected %i, found %i)\n", new_crtc_state->active, active);
13441
13442 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13443 "transitional active state does not match atomic hw state "
13444 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13445
13446 for_each_encoder_on_crtc(dev, crtc, encoder) {
13447 enum pipe pipe;
13448
13449 active = encoder->get_hw_state(encoder, &pipe);
13450 I915_STATE_WARN(active != new_crtc_state->active,
13451 "[ENCODER:%i] active %i with crtc active %i\n",
13452 encoder->base.base.id, active, new_crtc_state->active);
13453
13454 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13455 "Encoder connected to wrong pipe %c\n",
13456 pipe_name(pipe));
13457
13458 if (active) {
13459 pipe_config->output_types |= 1 << encoder->type;
13460 encoder->get_config(encoder, pipe_config);
13461 }
13462 }
13463
13464 if (!new_crtc_state->active)
13465 return;
13466
13467 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13468
13469 sw_config = to_intel_crtc_state(crtc->state);
13470 if (!intel_pipe_config_compare(dev, sw_config,
13471 pipe_config, false)) {
13472 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13473 intel_dump_pipe_config(intel_crtc, pipe_config,
13474 "[hw state]");
13475 intel_dump_pipe_config(intel_crtc, sw_config,
13476 "[sw state]");
13477 }
13478 }
13479
13480 static void
13481 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13482 struct intel_shared_dpll *pll,
13483 struct drm_crtc *crtc,
13484 struct drm_crtc_state *new_state)
13485 {
13486 struct intel_dpll_hw_state dpll_hw_state;
13487 unsigned crtc_mask;
13488 bool active;
13489
13490 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13491
13492 DRM_DEBUG_KMS("%s\n", pll->name);
13493
13494 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13495
13496 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13497 I915_STATE_WARN(!pll->on && pll->active_mask,
13498 "pll in active use but not on in sw tracking\n");
13499 I915_STATE_WARN(pll->on && !pll->active_mask,
13500 "pll is on but not used by any active crtc\n");
13501 I915_STATE_WARN(pll->on != active,
13502 "pll on state mismatch (expected %i, found %i)\n",
13503 pll->on, active);
13504 }
13505
13506 if (!crtc) {
13507 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13508 "more active pll users than references: %x vs %x\n",
13509 pll->active_mask, pll->config.crtc_mask);
13510
13511 return;
13512 }
13513
13514 crtc_mask = 1 << drm_crtc_index(crtc);
13515
13516 if (new_state->active)
13517 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13518 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13519 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13520 else
13521 I915_STATE_WARN(pll->active_mask & crtc_mask,
13522 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13523 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13524
13525 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13526 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13527 crtc_mask, pll->config.crtc_mask);
13528
13529 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13530 &dpll_hw_state,
13531 sizeof(dpll_hw_state)),
13532 "pll hw state mismatch\n");
13533 }
13534
13535 static void
13536 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13537 struct drm_crtc_state *old_crtc_state,
13538 struct drm_crtc_state *new_crtc_state)
13539 {
13540 struct drm_i915_private *dev_priv = to_i915(dev);
13541 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13542 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13543
13544 if (new_state->shared_dpll)
13545 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13546
13547 if (old_state->shared_dpll &&
13548 old_state->shared_dpll != new_state->shared_dpll) {
13549 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13550 struct intel_shared_dpll *pll = old_state->shared_dpll;
13551
13552 I915_STATE_WARN(pll->active_mask & crtc_mask,
13553 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13554 pipe_name(drm_crtc_index(crtc)));
13555 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13556 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13557 pipe_name(drm_crtc_index(crtc)));
13558 }
13559 }
13560
13561 static void
13562 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13563 struct drm_crtc_state *old_state,
13564 struct drm_crtc_state *new_state)
13565 {
13566 if (!needs_modeset(new_state) &&
13567 !to_intel_crtc_state(new_state)->update_pipe)
13568 return;
13569
13570 verify_wm_state(crtc, new_state);
13571 verify_connector_state(crtc->dev, crtc);
13572 verify_crtc_state(crtc, old_state, new_state);
13573 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13574 }
13575
13576 static void
13577 verify_disabled_dpll_state(struct drm_device *dev)
13578 {
13579 struct drm_i915_private *dev_priv = to_i915(dev);
13580 int i;
13581
13582 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13583 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13584 }
13585
13586 static void
13587 intel_modeset_verify_disabled(struct drm_device *dev)
13588 {
13589 verify_encoder_state(dev);
13590 verify_connector_state(dev, NULL);
13591 verify_disabled_dpll_state(dev);
13592 }
13593
13594 static void update_scanline_offset(struct intel_crtc *crtc)
13595 {
13596 struct drm_device *dev = crtc->base.dev;
13597
13598 /*
13599 * The scanline counter increments at the leading edge of hsync.
13600 *
13601 * On most platforms it starts counting from vtotal-1 on the
13602 * first active line. That means the scanline counter value is
13603 * always one less than what we would expect. Ie. just after
13604 * start of vblank, which also occurs at start of hsync (on the
13605 * last active line), the scanline counter will read vblank_start-1.
13606 *
13607 * On gen2 the scanline counter starts counting from 1 instead
13608 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13609 * to keep the value positive), instead of adding one.
13610 *
13611 * On HSW+ the behaviour of the scanline counter depends on the output
13612 * type. For DP ports it behaves like most other platforms, but on HDMI
13613 * there's an extra 1 line difference. So we need to add two instead of
13614 * one to the value.
13615 */
13616 if (IS_GEN2(dev)) {
13617 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13618 int vtotal;
13619
13620 vtotal = adjusted_mode->crtc_vtotal;
13621 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13622 vtotal /= 2;
13623
13624 crtc->scanline_offset = vtotal - 1;
13625 } else if (HAS_DDI(dev) &&
13626 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13627 crtc->scanline_offset = 2;
13628 } else
13629 crtc->scanline_offset = 1;
13630 }
13631
13632 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13633 {
13634 struct drm_device *dev = state->dev;
13635 struct drm_i915_private *dev_priv = to_i915(dev);
13636 struct intel_shared_dpll_config *shared_dpll = NULL;
13637 struct drm_crtc *crtc;
13638 struct drm_crtc_state *crtc_state;
13639 int i;
13640
13641 if (!dev_priv->display.crtc_compute_clock)
13642 return;
13643
13644 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13646 struct intel_shared_dpll *old_dpll =
13647 to_intel_crtc_state(crtc->state)->shared_dpll;
13648
13649 if (!needs_modeset(crtc_state))
13650 continue;
13651
13652 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13653
13654 if (!old_dpll)
13655 continue;
13656
13657 if (!shared_dpll)
13658 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13659
13660 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13661 }
13662 }
13663
13664 /*
13665 * This implements the workaround described in the "notes" section of the mode
13666 * set sequence documentation. When going from no pipes or single pipe to
13667 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13668 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13669 */
13670 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13671 {
13672 struct drm_crtc_state *crtc_state;
13673 struct intel_crtc *intel_crtc;
13674 struct drm_crtc *crtc;
13675 struct intel_crtc_state *first_crtc_state = NULL;
13676 struct intel_crtc_state *other_crtc_state = NULL;
13677 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13678 int i;
13679
13680 /* look at all crtc's that are going to be enabled in during modeset */
13681 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13682 intel_crtc = to_intel_crtc(crtc);
13683
13684 if (!crtc_state->active || !needs_modeset(crtc_state))
13685 continue;
13686
13687 if (first_crtc_state) {
13688 other_crtc_state = to_intel_crtc_state(crtc_state);
13689 break;
13690 } else {
13691 first_crtc_state = to_intel_crtc_state(crtc_state);
13692 first_pipe = intel_crtc->pipe;
13693 }
13694 }
13695
13696 /* No workaround needed? */
13697 if (!first_crtc_state)
13698 return 0;
13699
13700 /* w/a possibly needed, check how many crtc's are already enabled. */
13701 for_each_intel_crtc(state->dev, intel_crtc) {
13702 struct intel_crtc_state *pipe_config;
13703
13704 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13705 if (IS_ERR(pipe_config))
13706 return PTR_ERR(pipe_config);
13707
13708 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13709
13710 if (!pipe_config->base.active ||
13711 needs_modeset(&pipe_config->base))
13712 continue;
13713
13714 /* 2 or more enabled crtcs means no need for w/a */
13715 if (enabled_pipe != INVALID_PIPE)
13716 return 0;
13717
13718 enabled_pipe = intel_crtc->pipe;
13719 }
13720
13721 if (enabled_pipe != INVALID_PIPE)
13722 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13723 else if (other_crtc_state)
13724 other_crtc_state->hsw_workaround_pipe = first_pipe;
13725
13726 return 0;
13727 }
13728
13729 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13730 {
13731 struct drm_crtc *crtc;
13732 struct drm_crtc_state *crtc_state;
13733 int ret = 0;
13734
13735 /* add all active pipes to the state */
13736 for_each_crtc(state->dev, crtc) {
13737 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13738 if (IS_ERR(crtc_state))
13739 return PTR_ERR(crtc_state);
13740
13741 if (!crtc_state->active || needs_modeset(crtc_state))
13742 continue;
13743
13744 crtc_state->mode_changed = true;
13745
13746 ret = drm_atomic_add_affected_connectors(state, crtc);
13747 if (ret)
13748 break;
13749
13750 ret = drm_atomic_add_affected_planes(state, crtc);
13751 if (ret)
13752 break;
13753 }
13754
13755 return ret;
13756 }
13757
13758 static int intel_modeset_checks(struct drm_atomic_state *state)
13759 {
13760 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13761 struct drm_i915_private *dev_priv = to_i915(state->dev);
13762 struct drm_crtc *crtc;
13763 struct drm_crtc_state *crtc_state;
13764 int ret = 0, i;
13765
13766 if (!check_digital_port_conflicts(state)) {
13767 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13768 return -EINVAL;
13769 }
13770
13771 intel_state->modeset = true;
13772 intel_state->active_crtcs = dev_priv->active_crtcs;
13773
13774 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13775 if (crtc_state->active)
13776 intel_state->active_crtcs |= 1 << i;
13777 else
13778 intel_state->active_crtcs &= ~(1 << i);
13779
13780 if (crtc_state->active != crtc->state->active)
13781 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13782 }
13783
13784 /*
13785 * See if the config requires any additional preparation, e.g.
13786 * to adjust global state with pipes off. We need to do this
13787 * here so we can get the modeset_pipe updated config for the new
13788 * mode set on this crtc. For other crtcs we need to use the
13789 * adjusted_mode bits in the crtc directly.
13790 */
13791 if (dev_priv->display.modeset_calc_cdclk) {
13792 if (!intel_state->cdclk_pll_vco)
13793 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13794 if (!intel_state->cdclk_pll_vco)
13795 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13796
13797 ret = dev_priv->display.modeset_calc_cdclk(state);
13798 if (ret < 0)
13799 return ret;
13800
13801 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13802 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13803 ret = intel_modeset_all_pipes(state);
13804
13805 if (ret < 0)
13806 return ret;
13807
13808 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13809 intel_state->cdclk, intel_state->dev_cdclk);
13810 } else
13811 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13812
13813 intel_modeset_clear_plls(state);
13814
13815 if (IS_HASWELL(dev_priv))
13816 return haswell_mode_set_planes_workaround(state);
13817
13818 return 0;
13819 }
13820
13821 /*
13822 * Handle calculation of various watermark data at the end of the atomic check
13823 * phase. The code here should be run after the per-crtc and per-plane 'check'
13824 * handlers to ensure that all derived state has been updated.
13825 */
13826 static int calc_watermark_data(struct drm_atomic_state *state)
13827 {
13828 struct drm_device *dev = state->dev;
13829 struct drm_i915_private *dev_priv = to_i915(dev);
13830
13831 /* Is there platform-specific watermark information to calculate? */
13832 if (dev_priv->display.compute_global_watermarks)
13833 return dev_priv->display.compute_global_watermarks(state);
13834
13835 return 0;
13836 }
13837
13838 /**
13839 * intel_atomic_check - validate state object
13840 * @dev: drm device
13841 * @state: state to validate
13842 */
13843 static int intel_atomic_check(struct drm_device *dev,
13844 struct drm_atomic_state *state)
13845 {
13846 struct drm_i915_private *dev_priv = to_i915(dev);
13847 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13848 struct drm_crtc *crtc;
13849 struct drm_crtc_state *crtc_state;
13850 int ret, i;
13851 bool any_ms = false;
13852
13853 ret = drm_atomic_helper_check_modeset(dev, state);
13854 if (ret)
13855 return ret;
13856
13857 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13858 struct intel_crtc_state *pipe_config =
13859 to_intel_crtc_state(crtc_state);
13860
13861 /* Catch I915_MODE_FLAG_INHERITED */
13862 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13863 crtc_state->mode_changed = true;
13864
13865 if (!needs_modeset(crtc_state))
13866 continue;
13867
13868 if (!crtc_state->enable) {
13869 any_ms = true;
13870 continue;
13871 }
13872
13873 /* FIXME: For only active_changed we shouldn't need to do any
13874 * state recomputation at all. */
13875
13876 ret = drm_atomic_add_affected_connectors(state, crtc);
13877 if (ret)
13878 return ret;
13879
13880 ret = intel_modeset_pipe_config(crtc, pipe_config);
13881 if (ret) {
13882 intel_dump_pipe_config(to_intel_crtc(crtc),
13883 pipe_config, "[failed]");
13884 return ret;
13885 }
13886
13887 if (i915.fastboot &&
13888 intel_pipe_config_compare(dev,
13889 to_intel_crtc_state(crtc->state),
13890 pipe_config, true)) {
13891 crtc_state->mode_changed = false;
13892 to_intel_crtc_state(crtc_state)->update_pipe = true;
13893 }
13894
13895 if (needs_modeset(crtc_state))
13896 any_ms = true;
13897
13898 ret = drm_atomic_add_affected_planes(state, crtc);
13899 if (ret)
13900 return ret;
13901
13902 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13903 needs_modeset(crtc_state) ?
13904 "[modeset]" : "[fastset]");
13905 }
13906
13907 if (any_ms) {
13908 ret = intel_modeset_checks(state);
13909
13910 if (ret)
13911 return ret;
13912 } else
13913 intel_state->cdclk = dev_priv->cdclk_freq;
13914
13915 ret = drm_atomic_helper_check_planes(dev, state);
13916 if (ret)
13917 return ret;
13918
13919 intel_fbc_choose_crtc(dev_priv, state);
13920 return calc_watermark_data(state);
13921 }
13922
13923 static int intel_atomic_prepare_commit(struct drm_device *dev,
13924 struct drm_atomic_state *state,
13925 bool nonblock)
13926 {
13927 struct drm_i915_private *dev_priv = to_i915(dev);
13928 struct drm_plane_state *plane_state;
13929 struct drm_crtc_state *crtc_state;
13930 struct drm_plane *plane;
13931 struct drm_crtc *crtc;
13932 int i, ret;
13933
13934 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13935 if (state->legacy_cursor_update)
13936 continue;
13937
13938 ret = intel_crtc_wait_for_pending_flips(crtc);
13939 if (ret)
13940 return ret;
13941
13942 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13943 flush_workqueue(dev_priv->wq);
13944 }
13945
13946 ret = mutex_lock_interruptible(&dev->struct_mutex);
13947 if (ret)
13948 return ret;
13949
13950 ret = drm_atomic_helper_prepare_planes(dev, state);
13951 mutex_unlock(&dev->struct_mutex);
13952
13953 if (!ret && !nonblock) {
13954 for_each_plane_in_state(state, plane, plane_state, i) {
13955 struct intel_plane_state *intel_plane_state =
13956 to_intel_plane_state(plane_state);
13957
13958 if (!intel_plane_state->wait_req)
13959 continue;
13960
13961 ret = i915_wait_request(intel_plane_state->wait_req,
13962 true, NULL, NULL);
13963 if (ret) {
13964 /* Any hang should be swallowed by the wait */
13965 WARN_ON(ret == -EIO);
13966 mutex_lock(&dev->struct_mutex);
13967 drm_atomic_helper_cleanup_planes(dev, state);
13968 mutex_unlock(&dev->struct_mutex);
13969 break;
13970 }
13971 }
13972 }
13973
13974 return ret;
13975 }
13976
13977 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13978 {
13979 struct drm_device *dev = crtc->base.dev;
13980
13981 if (!dev->max_vblank_count)
13982 return drm_accurate_vblank_count(&crtc->base);
13983
13984 return dev->driver->get_vblank_counter(dev, crtc->pipe);
13985 }
13986
13987 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13988 struct drm_i915_private *dev_priv,
13989 unsigned crtc_mask)
13990 {
13991 unsigned last_vblank_count[I915_MAX_PIPES];
13992 enum pipe pipe;
13993 int ret;
13994
13995 if (!crtc_mask)
13996 return;
13997
13998 for_each_pipe(dev_priv, pipe) {
13999 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14000
14001 if (!((1 << pipe) & crtc_mask))
14002 continue;
14003
14004 ret = drm_crtc_vblank_get(crtc);
14005 if (WARN_ON(ret != 0)) {
14006 crtc_mask &= ~(1 << pipe);
14007 continue;
14008 }
14009
14010 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
14011 }
14012
14013 for_each_pipe(dev_priv, pipe) {
14014 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14015 long lret;
14016
14017 if (!((1 << pipe) & crtc_mask))
14018 continue;
14019
14020 lret = wait_event_timeout(dev->vblank[pipe].queue,
14021 last_vblank_count[pipe] !=
14022 drm_crtc_vblank_count(crtc),
14023 msecs_to_jiffies(50));
14024
14025 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14026
14027 drm_crtc_vblank_put(crtc);
14028 }
14029 }
14030
14031 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14032 {
14033 /* fb updated, need to unpin old fb */
14034 if (crtc_state->fb_changed)
14035 return true;
14036
14037 /* wm changes, need vblank before final wm's */
14038 if (crtc_state->update_wm_post)
14039 return true;
14040
14041 /*
14042 * cxsr is re-enabled after vblank.
14043 * This is already handled by crtc_state->update_wm_post,
14044 * but added for clarity.
14045 */
14046 if (crtc_state->disable_cxsr)
14047 return true;
14048
14049 return false;
14050 }
14051
14052 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14053 {
14054 struct drm_device *dev = state->dev;
14055 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14056 struct drm_i915_private *dev_priv = to_i915(dev);
14057 struct drm_crtc_state *old_crtc_state;
14058 struct drm_crtc *crtc;
14059 struct intel_crtc_state *intel_cstate;
14060 struct drm_plane *plane;
14061 struct drm_plane_state *plane_state;
14062 bool hw_check = intel_state->modeset;
14063 unsigned long put_domains[I915_MAX_PIPES] = {};
14064 unsigned crtc_vblank_mask = 0;
14065 int i, ret;
14066
14067 for_each_plane_in_state(state, plane, plane_state, i) {
14068 struct intel_plane_state *intel_plane_state =
14069 to_intel_plane_state(plane_state);
14070
14071 if (!intel_plane_state->wait_req)
14072 continue;
14073
14074 ret = i915_wait_request(intel_plane_state->wait_req,
14075 true, NULL, NULL);
14076 /* EIO should be eaten, and we can't get interrupted in the
14077 * worker, and blocking commits have waited already. */
14078 WARN_ON(ret);
14079 }
14080
14081 drm_atomic_helper_wait_for_dependencies(state);
14082
14083 if (intel_state->modeset) {
14084 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14085 sizeof(intel_state->min_pixclk));
14086 dev_priv->active_crtcs = intel_state->active_crtcs;
14087 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14088
14089 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14090 }
14091
14092 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14094
14095 if (needs_modeset(crtc->state) ||
14096 to_intel_crtc_state(crtc->state)->update_pipe) {
14097 hw_check = true;
14098
14099 put_domains[to_intel_crtc(crtc)->pipe] =
14100 modeset_get_crtc_power_domains(crtc,
14101 to_intel_crtc_state(crtc->state));
14102 }
14103
14104 if (!needs_modeset(crtc->state))
14105 continue;
14106
14107 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14108
14109 if (old_crtc_state->active) {
14110 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14111 dev_priv->display.crtc_disable(crtc);
14112 intel_crtc->active = false;
14113 intel_fbc_disable(intel_crtc);
14114 intel_disable_shared_dpll(intel_crtc);
14115
14116 /*
14117 * Underruns don't always raise
14118 * interrupts, so check manually.
14119 */
14120 intel_check_cpu_fifo_underruns(dev_priv);
14121 intel_check_pch_fifo_underruns(dev_priv);
14122
14123 if (!crtc->state->active)
14124 intel_update_watermarks(crtc);
14125 }
14126 }
14127
14128 /* Only after disabling all output pipelines that will be changed can we
14129 * update the the output configuration. */
14130 intel_modeset_update_crtc_state(state);
14131
14132 if (intel_state->modeset) {
14133 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14134
14135 if (dev_priv->display.modeset_commit_cdclk &&
14136 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14137 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14138 dev_priv->display.modeset_commit_cdclk(state);
14139
14140 intel_modeset_verify_disabled(dev);
14141 }
14142
14143 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14144 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14146 bool modeset = needs_modeset(crtc->state);
14147 struct intel_crtc_state *pipe_config =
14148 to_intel_crtc_state(crtc->state);
14149
14150 if (modeset && crtc->state->active) {
14151 update_scanline_offset(to_intel_crtc(crtc));
14152 dev_priv->display.crtc_enable(crtc);
14153 }
14154
14155 /* Complete events for now disable pipes here. */
14156 if (modeset && !crtc->state->active && crtc->state->event) {
14157 spin_lock_irq(&dev->event_lock);
14158 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14159 spin_unlock_irq(&dev->event_lock);
14160
14161 crtc->state->event = NULL;
14162 }
14163
14164 if (!modeset)
14165 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14166
14167 if (crtc->state->active &&
14168 drm_atomic_get_existing_plane_state(state, crtc->primary))
14169 intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
14170
14171 if (crtc->state->active)
14172 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14173
14174 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
14175 crtc_vblank_mask |= 1 << i;
14176 }
14177
14178 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14179 * already, but still need the state for the delayed optimization. To
14180 * fix this:
14181 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14182 * - schedule that vblank worker _before_ calling hw_done
14183 * - at the start of commit_tail, cancel it _synchrously
14184 * - switch over to the vblank wait helper in the core after that since
14185 * we don't need out special handling any more.
14186 */
14187 if (!state->legacy_cursor_update)
14188 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14189
14190 /*
14191 * Now that the vblank has passed, we can go ahead and program the
14192 * optimal watermarks on platforms that need two-step watermark
14193 * programming.
14194 *
14195 * TODO: Move this (and other cleanup) to an async worker eventually.
14196 */
14197 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14198 intel_cstate = to_intel_crtc_state(crtc->state);
14199
14200 if (dev_priv->display.optimize_watermarks)
14201 dev_priv->display.optimize_watermarks(intel_cstate);
14202 }
14203
14204 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14205 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14206
14207 if (put_domains[i])
14208 modeset_put_power_domains(dev_priv, put_domains[i]);
14209
14210 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14211 }
14212
14213 drm_atomic_helper_commit_hw_done(state);
14214
14215 if (intel_state->modeset)
14216 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14217
14218 mutex_lock(&dev->struct_mutex);
14219 drm_atomic_helper_cleanup_planes(dev, state);
14220 mutex_unlock(&dev->struct_mutex);
14221
14222 drm_atomic_helper_commit_cleanup_done(state);
14223
14224 drm_atomic_state_free(state);
14225
14226 /* As one of the primary mmio accessors, KMS has a high likelihood
14227 * of triggering bugs in unclaimed access. After we finish
14228 * modesetting, see if an error has been flagged, and if so
14229 * enable debugging for the next modeset - and hope we catch
14230 * the culprit.
14231 *
14232 * XXX note that we assume display power is on at this point.
14233 * This might hold true now but we need to add pm helper to check
14234 * unclaimed only when the hardware is on, as atomic commits
14235 * can happen also when the device is completely off.
14236 */
14237 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14238 }
14239
14240 static void intel_atomic_commit_work(struct work_struct *work)
14241 {
14242 struct drm_atomic_state *state = container_of(work,
14243 struct drm_atomic_state,
14244 commit_work);
14245 intel_atomic_commit_tail(state);
14246 }
14247
14248 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14249 {
14250 struct drm_plane_state *old_plane_state;
14251 struct drm_plane *plane;
14252 int i;
14253
14254 for_each_plane_in_state(state, plane, old_plane_state, i)
14255 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14256 intel_fb_obj(plane->state->fb),
14257 to_intel_plane(plane)->frontbuffer_bit);
14258 }
14259
14260 /**
14261 * intel_atomic_commit - commit validated state object
14262 * @dev: DRM device
14263 * @state: the top-level driver state object
14264 * @nonblock: nonblocking commit
14265 *
14266 * This function commits a top-level state object that has been validated
14267 * with drm_atomic_helper_check().
14268 *
14269 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
14270 * nonblocking commits are only safe for pure plane updates. Everything else
14271 * should work though.
14272 *
14273 * RETURNS
14274 * Zero for success or -errno.
14275 */
14276 static int intel_atomic_commit(struct drm_device *dev,
14277 struct drm_atomic_state *state,
14278 bool nonblock)
14279 {
14280 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14281 struct drm_i915_private *dev_priv = to_i915(dev);
14282 int ret = 0;
14283
14284 if (intel_state->modeset && nonblock) {
14285 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14286 return -EINVAL;
14287 }
14288
14289 ret = drm_atomic_helper_setup_commit(state, nonblock);
14290 if (ret)
14291 return ret;
14292
14293 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14294
14295 ret = intel_atomic_prepare_commit(dev, state, nonblock);
14296 if (ret) {
14297 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14298 return ret;
14299 }
14300
14301 drm_atomic_helper_swap_state(state, true);
14302 dev_priv->wm.distrust_bios_wm = false;
14303 dev_priv->wm.skl_results = intel_state->wm_results;
14304 intel_shared_dpll_commit(state);
14305 intel_atomic_track_fbs(state);
14306
14307 if (nonblock)
14308 queue_work(system_unbound_wq, &state->commit_work);
14309 else
14310 intel_atomic_commit_tail(state);
14311
14312 return 0;
14313 }
14314
14315 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14316 {
14317 struct drm_device *dev = crtc->dev;
14318 struct drm_atomic_state *state;
14319 struct drm_crtc_state *crtc_state;
14320 int ret;
14321
14322 state = drm_atomic_state_alloc(dev);
14323 if (!state) {
14324 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14325 crtc->base.id, crtc->name);
14326 return;
14327 }
14328
14329 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14330
14331 retry:
14332 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14333 ret = PTR_ERR_OR_ZERO(crtc_state);
14334 if (!ret) {
14335 if (!crtc_state->active)
14336 goto out;
14337
14338 crtc_state->mode_changed = true;
14339 ret = drm_atomic_commit(state);
14340 }
14341
14342 if (ret == -EDEADLK) {
14343 drm_atomic_state_clear(state);
14344 drm_modeset_backoff(state->acquire_ctx);
14345 goto retry;
14346 }
14347
14348 if (ret)
14349 out:
14350 drm_atomic_state_free(state);
14351 }
14352
14353 #undef for_each_intel_crtc_masked
14354
14355 /*
14356 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14357 * drm_atomic_helper_legacy_gamma_set() directly.
14358 */
14359 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14360 u16 *red, u16 *green, u16 *blue,
14361 uint32_t size)
14362 {
14363 struct drm_device *dev = crtc->dev;
14364 struct drm_mode_config *config = &dev->mode_config;
14365 struct drm_crtc_state *state;
14366 int ret;
14367
14368 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14369 if (ret)
14370 return ret;
14371
14372 /*
14373 * Make sure we update the legacy properties so this works when
14374 * atomic is not enabled.
14375 */
14376
14377 state = crtc->state;
14378
14379 drm_object_property_set_value(&crtc->base,
14380 config->degamma_lut_property,
14381 (state->degamma_lut) ?
14382 state->degamma_lut->base.id : 0);
14383
14384 drm_object_property_set_value(&crtc->base,
14385 config->ctm_property,
14386 (state->ctm) ?
14387 state->ctm->base.id : 0);
14388
14389 drm_object_property_set_value(&crtc->base,
14390 config->gamma_lut_property,
14391 (state->gamma_lut) ?
14392 state->gamma_lut->base.id : 0);
14393
14394 return 0;
14395 }
14396
14397 static const struct drm_crtc_funcs intel_crtc_funcs = {
14398 .gamma_set = intel_atomic_legacy_gamma_set,
14399 .set_config = drm_atomic_helper_set_config,
14400 .set_property = drm_atomic_helper_crtc_set_property,
14401 .destroy = intel_crtc_destroy,
14402 .page_flip = intel_crtc_page_flip,
14403 .atomic_duplicate_state = intel_crtc_duplicate_state,
14404 .atomic_destroy_state = intel_crtc_destroy_state,
14405 };
14406
14407 /**
14408 * intel_prepare_plane_fb - Prepare fb for usage on plane
14409 * @plane: drm plane to prepare for
14410 * @fb: framebuffer to prepare for presentation
14411 *
14412 * Prepares a framebuffer for usage on a display plane. Generally this
14413 * involves pinning the underlying object and updating the frontbuffer tracking
14414 * bits. Some older platforms need special physical address handling for
14415 * cursor planes.
14416 *
14417 * Must be called with struct_mutex held.
14418 *
14419 * Returns 0 on success, negative error code on failure.
14420 */
14421 int
14422 intel_prepare_plane_fb(struct drm_plane *plane,
14423 const struct drm_plane_state *new_state)
14424 {
14425 struct drm_device *dev = plane->dev;
14426 struct drm_framebuffer *fb = new_state->fb;
14427 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14428 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14429 struct reservation_object *resv;
14430 int ret = 0;
14431
14432 if (!obj && !old_obj)
14433 return 0;
14434
14435 if (old_obj) {
14436 struct drm_crtc_state *crtc_state =
14437 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14438
14439 /* Big Hammer, we also need to ensure that any pending
14440 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14441 * current scanout is retired before unpinning the old
14442 * framebuffer. Note that we rely on userspace rendering
14443 * into the buffer attached to the pipe they are waiting
14444 * on. If not, userspace generates a GPU hang with IPEHR
14445 * point to the MI_WAIT_FOR_EVENT.
14446 *
14447 * This should only fail upon a hung GPU, in which case we
14448 * can safely continue.
14449 */
14450 if (needs_modeset(crtc_state))
14451 ret = i915_gem_object_wait_rendering(old_obj, true);
14452 if (ret) {
14453 /* GPU hangs should have been swallowed by the wait */
14454 WARN_ON(ret == -EIO);
14455 return ret;
14456 }
14457 }
14458
14459 if (!obj)
14460 return 0;
14461
14462 /* For framebuffer backed by dmabuf, wait for fence */
14463 resv = i915_gem_object_get_dmabuf_resv(obj);
14464 if (resv) {
14465 long lret;
14466
14467 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14468 MAX_SCHEDULE_TIMEOUT);
14469 if (lret == -ERESTARTSYS)
14470 return lret;
14471
14472 WARN(lret < 0, "waiting returns %li\n", lret);
14473 }
14474
14475 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14476 INTEL_INFO(dev)->cursor_needs_physical) {
14477 int align = IS_I830(dev) ? 16 * 1024 : 256;
14478 ret = i915_gem_object_attach_phys(obj, align);
14479 if (ret)
14480 DRM_DEBUG_KMS("failed to attach phys object\n");
14481 } else {
14482 struct i915_vma *vma;
14483
14484 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14485 if (IS_ERR(vma))
14486 ret = PTR_ERR(vma);
14487 }
14488
14489 if (ret == 0) {
14490 to_intel_plane_state(new_state)->wait_req =
14491 i915_gem_active_get(&obj->last_write,
14492 &obj->base.dev->struct_mutex);
14493 }
14494
14495 return ret;
14496 }
14497
14498 /**
14499 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14500 * @plane: drm plane to clean up for
14501 * @fb: old framebuffer that was on plane
14502 *
14503 * Cleans up a framebuffer that has just been removed from a plane.
14504 *
14505 * Must be called with struct_mutex held.
14506 */
14507 void
14508 intel_cleanup_plane_fb(struct drm_plane *plane,
14509 const struct drm_plane_state *old_state)
14510 {
14511 struct drm_device *dev = plane->dev;
14512 struct intel_plane_state *old_intel_state;
14513 struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14514 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14515 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14516
14517 old_intel_state = to_intel_plane_state(old_state);
14518
14519 if (!obj && !old_obj)
14520 return;
14521
14522 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14523 !INTEL_INFO(dev)->cursor_needs_physical))
14524 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14525
14526 i915_gem_request_assign(&intel_state->wait_req, NULL);
14527 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14528 }
14529
14530 int
14531 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14532 {
14533 int max_scale;
14534 int crtc_clock, cdclk;
14535
14536 if (!intel_crtc || !crtc_state->base.enable)
14537 return DRM_PLANE_HELPER_NO_SCALING;
14538
14539 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14540 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14541
14542 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14543 return DRM_PLANE_HELPER_NO_SCALING;
14544
14545 /*
14546 * skl max scale is lower of:
14547 * close to 3 but not 3, -1 is for that purpose
14548 * or
14549 * cdclk/crtc_clock
14550 */
14551 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14552
14553 return max_scale;
14554 }
14555
14556 static int
14557 intel_check_primary_plane(struct drm_plane *plane,
14558 struct intel_crtc_state *crtc_state,
14559 struct intel_plane_state *state)
14560 {
14561 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14562 struct drm_crtc *crtc = state->base.crtc;
14563 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14564 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14565 bool can_position = false;
14566 int ret;
14567
14568 if (INTEL_GEN(dev_priv) >= 9) {
14569 /* use scaler when colorkey is not required */
14570 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14571 min_scale = 1;
14572 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14573 }
14574 can_position = true;
14575 }
14576
14577 ret = drm_plane_helper_check_state(&state->base,
14578 &state->clip,
14579 min_scale, max_scale,
14580 can_position, true);
14581 if (ret)
14582 return ret;
14583
14584 if (!state->base.fb)
14585 return 0;
14586
14587 if (INTEL_GEN(dev_priv) >= 9) {
14588 ret = skl_check_plane_surface(state);
14589 if (ret)
14590 return ret;
14591 }
14592
14593 return 0;
14594 }
14595
14596 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14597 struct drm_crtc_state *old_crtc_state)
14598 {
14599 struct drm_device *dev = crtc->dev;
14600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14601 struct intel_crtc_state *old_intel_state =
14602 to_intel_crtc_state(old_crtc_state);
14603 bool modeset = needs_modeset(crtc->state);
14604
14605 /* Perform vblank evasion around commit operation */
14606 intel_pipe_update_start(intel_crtc);
14607
14608 if (modeset)
14609 return;
14610
14611 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14612 intel_color_set_csc(crtc->state);
14613 intel_color_load_luts(crtc->state);
14614 }
14615
14616 if (to_intel_crtc_state(crtc->state)->update_pipe)
14617 intel_update_pipe_config(intel_crtc, old_intel_state);
14618 else if (INTEL_INFO(dev)->gen >= 9)
14619 skl_detach_scalers(intel_crtc);
14620 }
14621
14622 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14623 struct drm_crtc_state *old_crtc_state)
14624 {
14625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14626
14627 intel_pipe_update_end(intel_crtc, NULL);
14628 }
14629
14630 /**
14631 * intel_plane_destroy - destroy a plane
14632 * @plane: plane to destroy
14633 *
14634 * Common destruction function for all types of planes (primary, cursor,
14635 * sprite).
14636 */
14637 void intel_plane_destroy(struct drm_plane *plane)
14638 {
14639 if (!plane)
14640 return;
14641
14642 drm_plane_cleanup(plane);
14643 kfree(to_intel_plane(plane));
14644 }
14645
14646 const struct drm_plane_funcs intel_plane_funcs = {
14647 .update_plane = drm_atomic_helper_update_plane,
14648 .disable_plane = drm_atomic_helper_disable_plane,
14649 .destroy = intel_plane_destroy,
14650 .set_property = drm_atomic_helper_plane_set_property,
14651 .atomic_get_property = intel_plane_atomic_get_property,
14652 .atomic_set_property = intel_plane_atomic_set_property,
14653 .atomic_duplicate_state = intel_plane_duplicate_state,
14654 .atomic_destroy_state = intel_plane_destroy_state,
14655
14656 };
14657
14658 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14659 int pipe)
14660 {
14661 struct intel_plane *primary = NULL;
14662 struct intel_plane_state *state = NULL;
14663 const uint32_t *intel_primary_formats;
14664 unsigned int num_formats;
14665 int ret;
14666
14667 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14668 if (!primary)
14669 goto fail;
14670
14671 state = intel_create_plane_state(&primary->base);
14672 if (!state)
14673 goto fail;
14674 primary->base.state = &state->base;
14675
14676 primary->can_scale = false;
14677 primary->max_downscale = 1;
14678 if (INTEL_INFO(dev)->gen >= 9) {
14679 primary->can_scale = true;
14680 state->scaler_id = -1;
14681 }
14682 primary->pipe = pipe;
14683 primary->plane = pipe;
14684 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14685 primary->check_plane = intel_check_primary_plane;
14686 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14687 primary->plane = !pipe;
14688
14689 if (INTEL_INFO(dev)->gen >= 9) {
14690 intel_primary_formats = skl_primary_formats;
14691 num_formats = ARRAY_SIZE(skl_primary_formats);
14692
14693 primary->update_plane = skylake_update_primary_plane;
14694 primary->disable_plane = skylake_disable_primary_plane;
14695 } else if (HAS_PCH_SPLIT(dev)) {
14696 intel_primary_formats = i965_primary_formats;
14697 num_formats = ARRAY_SIZE(i965_primary_formats);
14698
14699 primary->update_plane = ironlake_update_primary_plane;
14700 primary->disable_plane = i9xx_disable_primary_plane;
14701 } else if (INTEL_INFO(dev)->gen >= 4) {
14702 intel_primary_formats = i965_primary_formats;
14703 num_formats = ARRAY_SIZE(i965_primary_formats);
14704
14705 primary->update_plane = i9xx_update_primary_plane;
14706 primary->disable_plane = i9xx_disable_primary_plane;
14707 } else {
14708 intel_primary_formats = i8xx_primary_formats;
14709 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14710
14711 primary->update_plane = i9xx_update_primary_plane;
14712 primary->disable_plane = i9xx_disable_primary_plane;
14713 }
14714
14715 if (INTEL_INFO(dev)->gen >= 9)
14716 ret = drm_universal_plane_init(dev, &primary->base, 0,
14717 &intel_plane_funcs,
14718 intel_primary_formats, num_formats,
14719 DRM_PLANE_TYPE_PRIMARY,
14720 "plane 1%c", pipe_name(pipe));
14721 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14722 ret = drm_universal_plane_init(dev, &primary->base, 0,
14723 &intel_plane_funcs,
14724 intel_primary_formats, num_formats,
14725 DRM_PLANE_TYPE_PRIMARY,
14726 "primary %c", pipe_name(pipe));
14727 else
14728 ret = drm_universal_plane_init(dev, &primary->base, 0,
14729 &intel_plane_funcs,
14730 intel_primary_formats, num_formats,
14731 DRM_PLANE_TYPE_PRIMARY,
14732 "plane %c", plane_name(primary->plane));
14733 if (ret)
14734 goto fail;
14735
14736 if (INTEL_INFO(dev)->gen >= 4)
14737 intel_create_rotation_property(dev, primary);
14738
14739 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14740
14741 return &primary->base;
14742
14743 fail:
14744 kfree(state);
14745 kfree(primary);
14746
14747 return NULL;
14748 }
14749
14750 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14751 {
14752 if (!dev->mode_config.rotation_property) {
14753 unsigned long flags = DRM_ROTATE_0 |
14754 DRM_ROTATE_180;
14755
14756 if (INTEL_INFO(dev)->gen >= 9)
14757 flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
14758
14759 dev->mode_config.rotation_property =
14760 drm_mode_create_rotation_property(dev, flags);
14761 }
14762 if (dev->mode_config.rotation_property)
14763 drm_object_attach_property(&plane->base.base,
14764 dev->mode_config.rotation_property,
14765 plane->base.state->rotation);
14766 }
14767
14768 static int
14769 intel_check_cursor_plane(struct drm_plane *plane,
14770 struct intel_crtc_state *crtc_state,
14771 struct intel_plane_state *state)
14772 {
14773 struct drm_framebuffer *fb = state->base.fb;
14774 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14775 enum pipe pipe = to_intel_plane(plane)->pipe;
14776 unsigned stride;
14777 int ret;
14778
14779 ret = drm_plane_helper_check_state(&state->base,
14780 &state->clip,
14781 DRM_PLANE_HELPER_NO_SCALING,
14782 DRM_PLANE_HELPER_NO_SCALING,
14783 true, true);
14784 if (ret)
14785 return ret;
14786
14787 /* if we want to turn off the cursor ignore width and height */
14788 if (!obj)
14789 return 0;
14790
14791 /* Check for which cursor types we support */
14792 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14793 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14794 state->base.crtc_w, state->base.crtc_h);
14795 return -EINVAL;
14796 }
14797
14798 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14799 if (obj->base.size < stride * state->base.crtc_h) {
14800 DRM_DEBUG_KMS("buffer is too small\n");
14801 return -ENOMEM;
14802 }
14803
14804 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14805 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14806 return -EINVAL;
14807 }
14808
14809 /*
14810 * There's something wrong with the cursor on CHV pipe C.
14811 * If it straddles the left edge of the screen then
14812 * moving it away from the edge or disabling it often
14813 * results in a pipe underrun, and often that can lead to
14814 * dead pipe (constant underrun reported, and it scans
14815 * out just a solid color). To recover from that, the
14816 * display power well must be turned off and on again.
14817 * Refuse the put the cursor into that compromised position.
14818 */
14819 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14820 state->base.visible && state->base.crtc_x < 0) {
14821 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14822 return -EINVAL;
14823 }
14824
14825 return 0;
14826 }
14827
14828 static void
14829 intel_disable_cursor_plane(struct drm_plane *plane,
14830 struct drm_crtc *crtc)
14831 {
14832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14833
14834 intel_crtc->cursor_addr = 0;
14835 intel_crtc_update_cursor(crtc, NULL);
14836 }
14837
14838 static void
14839 intel_update_cursor_plane(struct drm_plane *plane,
14840 const struct intel_crtc_state *crtc_state,
14841 const struct intel_plane_state *state)
14842 {
14843 struct drm_crtc *crtc = crtc_state->base.crtc;
14844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14845 struct drm_device *dev = plane->dev;
14846 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14847 uint32_t addr;
14848
14849 if (!obj)
14850 addr = 0;
14851 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14852 addr = i915_gem_object_ggtt_offset(obj, NULL);
14853 else
14854 addr = obj->phys_handle->busaddr;
14855
14856 intel_crtc->cursor_addr = addr;
14857 intel_crtc_update_cursor(crtc, state);
14858 }
14859
14860 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14861 int pipe)
14862 {
14863 struct intel_plane *cursor = NULL;
14864 struct intel_plane_state *state = NULL;
14865 int ret;
14866
14867 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14868 if (!cursor)
14869 goto fail;
14870
14871 state = intel_create_plane_state(&cursor->base);
14872 if (!state)
14873 goto fail;
14874 cursor->base.state = &state->base;
14875
14876 cursor->can_scale = false;
14877 cursor->max_downscale = 1;
14878 cursor->pipe = pipe;
14879 cursor->plane = pipe;
14880 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14881 cursor->check_plane = intel_check_cursor_plane;
14882 cursor->update_plane = intel_update_cursor_plane;
14883 cursor->disable_plane = intel_disable_cursor_plane;
14884
14885 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14886 &intel_plane_funcs,
14887 intel_cursor_formats,
14888 ARRAY_SIZE(intel_cursor_formats),
14889 DRM_PLANE_TYPE_CURSOR,
14890 "cursor %c", pipe_name(pipe));
14891 if (ret)
14892 goto fail;
14893
14894 if (INTEL_INFO(dev)->gen >= 4) {
14895 if (!dev->mode_config.rotation_property)
14896 dev->mode_config.rotation_property =
14897 drm_mode_create_rotation_property(dev,
14898 DRM_ROTATE_0 |
14899 DRM_ROTATE_180);
14900 if (dev->mode_config.rotation_property)
14901 drm_object_attach_property(&cursor->base.base,
14902 dev->mode_config.rotation_property,
14903 state->base.rotation);
14904 }
14905
14906 if (INTEL_INFO(dev)->gen >=9)
14907 state->scaler_id = -1;
14908
14909 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14910
14911 return &cursor->base;
14912
14913 fail:
14914 kfree(state);
14915 kfree(cursor);
14916
14917 return NULL;
14918 }
14919
14920 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14921 struct intel_crtc_state *crtc_state)
14922 {
14923 int i;
14924 struct intel_scaler *intel_scaler;
14925 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14926
14927 for (i = 0; i < intel_crtc->num_scalers; i++) {
14928 intel_scaler = &scaler_state->scalers[i];
14929 intel_scaler->in_use = 0;
14930 intel_scaler->mode = PS_SCALER_MODE_DYN;
14931 }
14932
14933 scaler_state->scaler_id = -1;
14934 }
14935
14936 static void intel_crtc_init(struct drm_device *dev, int pipe)
14937 {
14938 struct drm_i915_private *dev_priv = to_i915(dev);
14939 struct intel_crtc *intel_crtc;
14940 struct intel_crtc_state *crtc_state = NULL;
14941 struct drm_plane *primary = NULL;
14942 struct drm_plane *cursor = NULL;
14943 int ret;
14944
14945 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14946 if (intel_crtc == NULL)
14947 return;
14948
14949 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14950 if (!crtc_state)
14951 goto fail;
14952 intel_crtc->config = crtc_state;
14953 intel_crtc->base.state = &crtc_state->base;
14954 crtc_state->base.crtc = &intel_crtc->base;
14955
14956 /* initialize shared scalers */
14957 if (INTEL_INFO(dev)->gen >= 9) {
14958 if (pipe == PIPE_C)
14959 intel_crtc->num_scalers = 1;
14960 else
14961 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14962
14963 skl_init_scalers(dev, intel_crtc, crtc_state);
14964 }
14965
14966 primary = intel_primary_plane_create(dev, pipe);
14967 if (!primary)
14968 goto fail;
14969
14970 cursor = intel_cursor_plane_create(dev, pipe);
14971 if (!cursor)
14972 goto fail;
14973
14974 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14975 cursor, &intel_crtc_funcs,
14976 "pipe %c", pipe_name(pipe));
14977 if (ret)
14978 goto fail;
14979
14980 /*
14981 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14982 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14983 */
14984 intel_crtc->pipe = pipe;
14985 intel_crtc->plane = pipe;
14986 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14987 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14988 intel_crtc->plane = !pipe;
14989 }
14990
14991 intel_crtc->cursor_base = ~0;
14992 intel_crtc->cursor_cntl = ~0;
14993 intel_crtc->cursor_size = ~0;
14994
14995 intel_crtc->wm.cxsr_allowed = true;
14996
14997 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14998 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14999 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15000 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15001
15002 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15003
15004 intel_color_init(&intel_crtc->base);
15005
15006 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15007 return;
15008
15009 fail:
15010 intel_plane_destroy(primary);
15011 intel_plane_destroy(cursor);
15012 kfree(crtc_state);
15013 kfree(intel_crtc);
15014 }
15015
15016 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15017 {
15018 struct drm_encoder *encoder = connector->base.encoder;
15019 struct drm_device *dev = connector->base.dev;
15020
15021 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15022
15023 if (!encoder || WARN_ON(!encoder->crtc))
15024 return INVALID_PIPE;
15025
15026 return to_intel_crtc(encoder->crtc)->pipe;
15027 }
15028
15029 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15030 struct drm_file *file)
15031 {
15032 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15033 struct drm_crtc *drmmode_crtc;
15034 struct intel_crtc *crtc;
15035
15036 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15037 if (!drmmode_crtc)
15038 return -ENOENT;
15039
15040 crtc = to_intel_crtc(drmmode_crtc);
15041 pipe_from_crtc_id->pipe = crtc->pipe;
15042
15043 return 0;
15044 }
15045
15046 static int intel_encoder_clones(struct intel_encoder *encoder)
15047 {
15048 struct drm_device *dev = encoder->base.dev;
15049 struct intel_encoder *source_encoder;
15050 int index_mask = 0;
15051 int entry = 0;
15052
15053 for_each_intel_encoder(dev, source_encoder) {
15054 if (encoders_cloneable(encoder, source_encoder))
15055 index_mask |= (1 << entry);
15056
15057 entry++;
15058 }
15059
15060 return index_mask;
15061 }
15062
15063 static bool has_edp_a(struct drm_device *dev)
15064 {
15065 struct drm_i915_private *dev_priv = to_i915(dev);
15066
15067 if (!IS_MOBILE(dev))
15068 return false;
15069
15070 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15071 return false;
15072
15073 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15074 return false;
15075
15076 return true;
15077 }
15078
15079 static bool intel_crt_present(struct drm_device *dev)
15080 {
15081 struct drm_i915_private *dev_priv = to_i915(dev);
15082
15083 if (INTEL_INFO(dev)->gen >= 9)
15084 return false;
15085
15086 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
15087 return false;
15088
15089 if (IS_CHERRYVIEW(dev))
15090 return false;
15091
15092 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15093 return false;
15094
15095 /* DDI E can't be used if DDI A requires 4 lanes */
15096 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15097 return false;
15098
15099 if (!dev_priv->vbt.int_crt_support)
15100 return false;
15101
15102 return true;
15103 }
15104
15105 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15106 {
15107 int pps_num;
15108 int pps_idx;
15109
15110 if (HAS_DDI(dev_priv))
15111 return;
15112 /*
15113 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15114 * everywhere where registers can be write protected.
15115 */
15116 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15117 pps_num = 2;
15118 else
15119 pps_num = 1;
15120
15121 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15122 u32 val = I915_READ(PP_CONTROL(pps_idx));
15123
15124 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15125 I915_WRITE(PP_CONTROL(pps_idx), val);
15126 }
15127 }
15128
15129 static void intel_pps_init(struct drm_i915_private *dev_priv)
15130 {
15131 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15132 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15133 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15134 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15135 else
15136 dev_priv->pps_mmio_base = PPS_BASE;
15137
15138 intel_pps_unlock_regs_wa(dev_priv);
15139 }
15140
15141 static void intel_setup_outputs(struct drm_device *dev)
15142 {
15143 struct drm_i915_private *dev_priv = to_i915(dev);
15144 struct intel_encoder *encoder;
15145 bool dpd_is_edp = false;
15146
15147 intel_pps_init(dev_priv);
15148
15149 /*
15150 * intel_edp_init_connector() depends on this completing first, to
15151 * prevent the registeration of both eDP and LVDS and the incorrect
15152 * sharing of the PPS.
15153 */
15154 intel_lvds_init(dev);
15155
15156 if (intel_crt_present(dev))
15157 intel_crt_init(dev);
15158
15159 if (IS_BROXTON(dev)) {
15160 /*
15161 * FIXME: Broxton doesn't support port detection via the
15162 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15163 * detect the ports.
15164 */
15165 intel_ddi_init(dev, PORT_A);
15166 intel_ddi_init(dev, PORT_B);
15167 intel_ddi_init(dev, PORT_C);
15168
15169 intel_dsi_init(dev);
15170 } else if (HAS_DDI(dev)) {
15171 int found;
15172
15173 /*
15174 * Haswell uses DDI functions to detect digital outputs.
15175 * On SKL pre-D0 the strap isn't connected, so we assume
15176 * it's there.
15177 */
15178 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15179 /* WaIgnoreDDIAStrap: skl */
15180 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
15181 intel_ddi_init(dev, PORT_A);
15182
15183 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15184 * register */
15185 found = I915_READ(SFUSE_STRAP);
15186
15187 if (found & SFUSE_STRAP_DDIB_DETECTED)
15188 intel_ddi_init(dev, PORT_B);
15189 if (found & SFUSE_STRAP_DDIC_DETECTED)
15190 intel_ddi_init(dev, PORT_C);
15191 if (found & SFUSE_STRAP_DDID_DETECTED)
15192 intel_ddi_init(dev, PORT_D);
15193 /*
15194 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15195 */
15196 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
15197 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15198 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15199 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15200 intel_ddi_init(dev, PORT_E);
15201
15202 } else if (HAS_PCH_SPLIT(dev)) {
15203 int found;
15204 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
15205
15206 if (has_edp_a(dev))
15207 intel_dp_init(dev, DP_A, PORT_A);
15208
15209 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15210 /* PCH SDVOB multiplex with HDMIB */
15211 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15212 if (!found)
15213 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15214 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15215 intel_dp_init(dev, PCH_DP_B, PORT_B);
15216 }
15217
15218 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15219 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15220
15221 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15222 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15223
15224 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15225 intel_dp_init(dev, PCH_DP_C, PORT_C);
15226
15227 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15228 intel_dp_init(dev, PCH_DP_D, PORT_D);
15229 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15230 bool has_edp, has_port;
15231
15232 /*
15233 * The DP_DETECTED bit is the latched state of the DDC
15234 * SDA pin at boot. However since eDP doesn't require DDC
15235 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15236 * eDP ports may have been muxed to an alternate function.
15237 * Thus we can't rely on the DP_DETECTED bit alone to detect
15238 * eDP ports. Consult the VBT as well as DP_DETECTED to
15239 * detect eDP ports.
15240 *
15241 * Sadly the straps seem to be missing sometimes even for HDMI
15242 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15243 * and VBT for the presence of the port. Additionally we can't
15244 * trust the port type the VBT declares as we've seen at least
15245 * HDMI ports that the VBT claim are DP or eDP.
15246 */
15247 has_edp = intel_dp_is_edp(dev, PORT_B);
15248 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15249 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15250 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15251 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15252 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15253
15254 has_edp = intel_dp_is_edp(dev, PORT_C);
15255 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15256 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15257 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15258 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15259 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15260
15261 if (IS_CHERRYVIEW(dev)) {
15262 /*
15263 * eDP not supported on port D,
15264 * so no need to worry about it
15265 */
15266 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15267 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15268 intel_dp_init(dev, CHV_DP_D, PORT_D);
15269 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15270 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15271 }
15272
15273 intel_dsi_init(dev);
15274 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
15275 bool found = false;
15276
15277 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15278 DRM_DEBUG_KMS("probing SDVOB\n");
15279 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15280 if (!found && IS_G4X(dev)) {
15281 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15282 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15283 }
15284
15285 if (!found && IS_G4X(dev))
15286 intel_dp_init(dev, DP_B, PORT_B);
15287 }
15288
15289 /* Before G4X SDVOC doesn't have its own detect register */
15290
15291 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15292 DRM_DEBUG_KMS("probing SDVOC\n");
15293 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15294 }
15295
15296 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15297
15298 if (IS_G4X(dev)) {
15299 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15300 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15301 }
15302 if (IS_G4X(dev))
15303 intel_dp_init(dev, DP_C, PORT_C);
15304 }
15305
15306 if (IS_G4X(dev) &&
15307 (I915_READ(DP_D) & DP_DETECTED))
15308 intel_dp_init(dev, DP_D, PORT_D);
15309 } else if (IS_GEN2(dev))
15310 intel_dvo_init(dev);
15311
15312 if (SUPPORTS_TV(dev))
15313 intel_tv_init(dev);
15314
15315 intel_psr_init(dev);
15316
15317 for_each_intel_encoder(dev, encoder) {
15318 encoder->base.possible_crtcs = encoder->crtc_mask;
15319 encoder->base.possible_clones =
15320 intel_encoder_clones(encoder);
15321 }
15322
15323 intel_init_pch_refclk(dev);
15324
15325 drm_helper_move_panel_connectors_to_head(dev);
15326 }
15327
15328 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15329 {
15330 struct drm_device *dev = fb->dev;
15331 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15332
15333 drm_framebuffer_cleanup(fb);
15334 mutex_lock(&dev->struct_mutex);
15335 WARN_ON(!intel_fb->obj->framebuffer_references--);
15336 i915_gem_object_put(intel_fb->obj);
15337 mutex_unlock(&dev->struct_mutex);
15338 kfree(intel_fb);
15339 }
15340
15341 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15342 struct drm_file *file,
15343 unsigned int *handle)
15344 {
15345 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15346 struct drm_i915_gem_object *obj = intel_fb->obj;
15347
15348 if (obj->userptr.mm) {
15349 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15350 return -EINVAL;
15351 }
15352
15353 return drm_gem_handle_create(file, &obj->base, handle);
15354 }
15355
15356 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15357 struct drm_file *file,
15358 unsigned flags, unsigned color,
15359 struct drm_clip_rect *clips,
15360 unsigned num_clips)
15361 {
15362 struct drm_device *dev = fb->dev;
15363 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15364 struct drm_i915_gem_object *obj = intel_fb->obj;
15365
15366 mutex_lock(&dev->struct_mutex);
15367 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15368 mutex_unlock(&dev->struct_mutex);
15369
15370 return 0;
15371 }
15372
15373 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15374 .destroy = intel_user_framebuffer_destroy,
15375 .create_handle = intel_user_framebuffer_create_handle,
15376 .dirty = intel_user_framebuffer_dirty,
15377 };
15378
15379 static
15380 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
15381 uint32_t pixel_format)
15382 {
15383 u32 gen = INTEL_INFO(dev)->gen;
15384
15385 if (gen >= 9) {
15386 int cpp = drm_format_plane_cpp(pixel_format, 0);
15387
15388 /* "The stride in bytes must not exceed the of the size of 8K
15389 * pixels and 32K bytes."
15390 */
15391 return min(8192 * cpp, 32768);
15392 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15393 return 32*1024;
15394 } else if (gen >= 4) {
15395 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15396 return 16*1024;
15397 else
15398 return 32*1024;
15399 } else if (gen >= 3) {
15400 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15401 return 8*1024;
15402 else
15403 return 16*1024;
15404 } else {
15405 /* XXX DSPC is limited to 4k tiled */
15406 return 8*1024;
15407 }
15408 }
15409
15410 static int intel_framebuffer_init(struct drm_device *dev,
15411 struct intel_framebuffer *intel_fb,
15412 struct drm_mode_fb_cmd2 *mode_cmd,
15413 struct drm_i915_gem_object *obj)
15414 {
15415 struct drm_i915_private *dev_priv = to_i915(dev);
15416 unsigned int tiling = i915_gem_object_get_tiling(obj);
15417 int ret;
15418 u32 pitch_limit, stride_alignment;
15419
15420 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15421
15422 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15423 /*
15424 * If there's a fence, enforce that
15425 * the fb modifier and tiling mode match.
15426 */
15427 if (tiling != I915_TILING_NONE &&
15428 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15429 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15430 return -EINVAL;
15431 }
15432 } else {
15433 if (tiling == I915_TILING_X) {
15434 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15435 } else if (tiling == I915_TILING_Y) {
15436 DRM_DEBUG("No Y tiling for legacy addfb\n");
15437 return -EINVAL;
15438 }
15439 }
15440
15441 /* Passed in modifier sanity checking. */
15442 switch (mode_cmd->modifier[0]) {
15443 case I915_FORMAT_MOD_Y_TILED:
15444 case I915_FORMAT_MOD_Yf_TILED:
15445 if (INTEL_INFO(dev)->gen < 9) {
15446 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15447 mode_cmd->modifier[0]);
15448 return -EINVAL;
15449 }
15450 case DRM_FORMAT_MOD_NONE:
15451 case I915_FORMAT_MOD_X_TILED:
15452 break;
15453 default:
15454 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15455 mode_cmd->modifier[0]);
15456 return -EINVAL;
15457 }
15458
15459 /*
15460 * gen2/3 display engine uses the fence if present,
15461 * so the tiling mode must match the fb modifier exactly.
15462 */
15463 if (INTEL_INFO(dev_priv)->gen < 4 &&
15464 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15465 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15466 return -EINVAL;
15467 }
15468
15469 stride_alignment = intel_fb_stride_alignment(dev_priv,
15470 mode_cmd->modifier[0],
15471 mode_cmd->pixel_format);
15472 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15473 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15474 mode_cmd->pitches[0], stride_alignment);
15475 return -EINVAL;
15476 }
15477
15478 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15479 mode_cmd->pixel_format);
15480 if (mode_cmd->pitches[0] > pitch_limit) {
15481 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15482 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15483 "tiled" : "linear",
15484 mode_cmd->pitches[0], pitch_limit);
15485 return -EINVAL;
15486 }
15487
15488 /*
15489 * If there's a fence, enforce that
15490 * the fb pitch and fence stride match.
15491 */
15492 if (tiling != I915_TILING_NONE &&
15493 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15494 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15495 mode_cmd->pitches[0],
15496 i915_gem_object_get_stride(obj));
15497 return -EINVAL;
15498 }
15499
15500 /* Reject formats not supported by any plane early. */
15501 switch (mode_cmd->pixel_format) {
15502 case DRM_FORMAT_C8:
15503 case DRM_FORMAT_RGB565:
15504 case DRM_FORMAT_XRGB8888:
15505 case DRM_FORMAT_ARGB8888:
15506 break;
15507 case DRM_FORMAT_XRGB1555:
15508 if (INTEL_INFO(dev)->gen > 3) {
15509 DRM_DEBUG("unsupported pixel format: %s\n",
15510 drm_get_format_name(mode_cmd->pixel_format));
15511 return -EINVAL;
15512 }
15513 break;
15514 case DRM_FORMAT_ABGR8888:
15515 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15516 INTEL_INFO(dev)->gen < 9) {
15517 DRM_DEBUG("unsupported pixel format: %s\n",
15518 drm_get_format_name(mode_cmd->pixel_format));
15519 return -EINVAL;
15520 }
15521 break;
15522 case DRM_FORMAT_XBGR8888:
15523 case DRM_FORMAT_XRGB2101010:
15524 case DRM_FORMAT_XBGR2101010:
15525 if (INTEL_INFO(dev)->gen < 4) {
15526 DRM_DEBUG("unsupported pixel format: %s\n",
15527 drm_get_format_name(mode_cmd->pixel_format));
15528 return -EINVAL;
15529 }
15530 break;
15531 case DRM_FORMAT_ABGR2101010:
15532 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15533 DRM_DEBUG("unsupported pixel format: %s\n",
15534 drm_get_format_name(mode_cmd->pixel_format));
15535 return -EINVAL;
15536 }
15537 break;
15538 case DRM_FORMAT_YUYV:
15539 case DRM_FORMAT_UYVY:
15540 case DRM_FORMAT_YVYU:
15541 case DRM_FORMAT_VYUY:
15542 if (INTEL_INFO(dev)->gen < 5) {
15543 DRM_DEBUG("unsupported pixel format: %s\n",
15544 drm_get_format_name(mode_cmd->pixel_format));
15545 return -EINVAL;
15546 }
15547 break;
15548 default:
15549 DRM_DEBUG("unsupported pixel format: %s\n",
15550 drm_get_format_name(mode_cmd->pixel_format));
15551 return -EINVAL;
15552 }
15553
15554 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15555 if (mode_cmd->offsets[0] != 0)
15556 return -EINVAL;
15557
15558 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15559 intel_fb->obj = obj;
15560
15561 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15562 if (ret)
15563 return ret;
15564
15565 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15566 if (ret) {
15567 DRM_ERROR("framebuffer init failed %d\n", ret);
15568 return ret;
15569 }
15570
15571 intel_fb->obj->framebuffer_references++;
15572
15573 return 0;
15574 }
15575
15576 static struct drm_framebuffer *
15577 intel_user_framebuffer_create(struct drm_device *dev,
15578 struct drm_file *filp,
15579 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15580 {
15581 struct drm_framebuffer *fb;
15582 struct drm_i915_gem_object *obj;
15583 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15584
15585 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15586 if (!obj)
15587 return ERR_PTR(-ENOENT);
15588
15589 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15590 if (IS_ERR(fb))
15591 i915_gem_object_put_unlocked(obj);
15592
15593 return fb;
15594 }
15595
15596 #ifndef CONFIG_DRM_FBDEV_EMULATION
15597 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15598 {
15599 }
15600 #endif
15601
15602 static const struct drm_mode_config_funcs intel_mode_funcs = {
15603 .fb_create = intel_user_framebuffer_create,
15604 .output_poll_changed = intel_fbdev_output_poll_changed,
15605 .atomic_check = intel_atomic_check,
15606 .atomic_commit = intel_atomic_commit,
15607 .atomic_state_alloc = intel_atomic_state_alloc,
15608 .atomic_state_clear = intel_atomic_state_clear,
15609 };
15610
15611 /**
15612 * intel_init_display_hooks - initialize the display modesetting hooks
15613 * @dev_priv: device private
15614 */
15615 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15616 {
15617 if (INTEL_INFO(dev_priv)->gen >= 9) {
15618 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15619 dev_priv->display.get_initial_plane_config =
15620 skylake_get_initial_plane_config;
15621 dev_priv->display.crtc_compute_clock =
15622 haswell_crtc_compute_clock;
15623 dev_priv->display.crtc_enable = haswell_crtc_enable;
15624 dev_priv->display.crtc_disable = haswell_crtc_disable;
15625 } else if (HAS_DDI(dev_priv)) {
15626 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15627 dev_priv->display.get_initial_plane_config =
15628 ironlake_get_initial_plane_config;
15629 dev_priv->display.crtc_compute_clock =
15630 haswell_crtc_compute_clock;
15631 dev_priv->display.crtc_enable = haswell_crtc_enable;
15632 dev_priv->display.crtc_disable = haswell_crtc_disable;
15633 } else if (HAS_PCH_SPLIT(dev_priv)) {
15634 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15635 dev_priv->display.get_initial_plane_config =
15636 ironlake_get_initial_plane_config;
15637 dev_priv->display.crtc_compute_clock =
15638 ironlake_crtc_compute_clock;
15639 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15640 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15641 } else if (IS_CHERRYVIEW(dev_priv)) {
15642 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15643 dev_priv->display.get_initial_plane_config =
15644 i9xx_get_initial_plane_config;
15645 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15646 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15647 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15648 } else if (IS_VALLEYVIEW(dev_priv)) {
15649 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15650 dev_priv->display.get_initial_plane_config =
15651 i9xx_get_initial_plane_config;
15652 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15653 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15654 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15655 } else if (IS_G4X(dev_priv)) {
15656 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15657 dev_priv->display.get_initial_plane_config =
15658 i9xx_get_initial_plane_config;
15659 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15660 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15661 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15662 } else if (IS_PINEVIEW(dev_priv)) {
15663 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15664 dev_priv->display.get_initial_plane_config =
15665 i9xx_get_initial_plane_config;
15666 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15667 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15668 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15669 } else if (!IS_GEN2(dev_priv)) {
15670 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15671 dev_priv->display.get_initial_plane_config =
15672 i9xx_get_initial_plane_config;
15673 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15674 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15675 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15676 } else {
15677 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15678 dev_priv->display.get_initial_plane_config =
15679 i9xx_get_initial_plane_config;
15680 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15681 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15682 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15683 }
15684
15685 /* Returns the core display clock speed */
15686 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15687 dev_priv->display.get_display_clock_speed =
15688 skylake_get_display_clock_speed;
15689 else if (IS_BROXTON(dev_priv))
15690 dev_priv->display.get_display_clock_speed =
15691 broxton_get_display_clock_speed;
15692 else if (IS_BROADWELL(dev_priv))
15693 dev_priv->display.get_display_clock_speed =
15694 broadwell_get_display_clock_speed;
15695 else if (IS_HASWELL(dev_priv))
15696 dev_priv->display.get_display_clock_speed =
15697 haswell_get_display_clock_speed;
15698 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15699 dev_priv->display.get_display_clock_speed =
15700 valleyview_get_display_clock_speed;
15701 else if (IS_GEN5(dev_priv))
15702 dev_priv->display.get_display_clock_speed =
15703 ilk_get_display_clock_speed;
15704 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15705 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15706 dev_priv->display.get_display_clock_speed =
15707 i945_get_display_clock_speed;
15708 else if (IS_GM45(dev_priv))
15709 dev_priv->display.get_display_clock_speed =
15710 gm45_get_display_clock_speed;
15711 else if (IS_CRESTLINE(dev_priv))
15712 dev_priv->display.get_display_clock_speed =
15713 i965gm_get_display_clock_speed;
15714 else if (IS_PINEVIEW(dev_priv))
15715 dev_priv->display.get_display_clock_speed =
15716 pnv_get_display_clock_speed;
15717 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15718 dev_priv->display.get_display_clock_speed =
15719 g33_get_display_clock_speed;
15720 else if (IS_I915G(dev_priv))
15721 dev_priv->display.get_display_clock_speed =
15722 i915_get_display_clock_speed;
15723 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15724 dev_priv->display.get_display_clock_speed =
15725 i9xx_misc_get_display_clock_speed;
15726 else if (IS_I915GM(dev_priv))
15727 dev_priv->display.get_display_clock_speed =
15728 i915gm_get_display_clock_speed;
15729 else if (IS_I865G(dev_priv))
15730 dev_priv->display.get_display_clock_speed =
15731 i865_get_display_clock_speed;
15732 else if (IS_I85X(dev_priv))
15733 dev_priv->display.get_display_clock_speed =
15734 i85x_get_display_clock_speed;
15735 else { /* 830 */
15736 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15737 dev_priv->display.get_display_clock_speed =
15738 i830_get_display_clock_speed;
15739 }
15740
15741 if (IS_GEN5(dev_priv)) {
15742 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15743 } else if (IS_GEN6(dev_priv)) {
15744 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15745 } else if (IS_IVYBRIDGE(dev_priv)) {
15746 /* FIXME: detect B0+ stepping and use auto training */
15747 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15748 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15749 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15750 }
15751
15752 if (IS_BROADWELL(dev_priv)) {
15753 dev_priv->display.modeset_commit_cdclk =
15754 broadwell_modeset_commit_cdclk;
15755 dev_priv->display.modeset_calc_cdclk =
15756 broadwell_modeset_calc_cdclk;
15757 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15758 dev_priv->display.modeset_commit_cdclk =
15759 valleyview_modeset_commit_cdclk;
15760 dev_priv->display.modeset_calc_cdclk =
15761 valleyview_modeset_calc_cdclk;
15762 } else if (IS_BROXTON(dev_priv)) {
15763 dev_priv->display.modeset_commit_cdclk =
15764 bxt_modeset_commit_cdclk;
15765 dev_priv->display.modeset_calc_cdclk =
15766 bxt_modeset_calc_cdclk;
15767 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15768 dev_priv->display.modeset_commit_cdclk =
15769 skl_modeset_commit_cdclk;
15770 dev_priv->display.modeset_calc_cdclk =
15771 skl_modeset_calc_cdclk;
15772 }
15773
15774 switch (INTEL_INFO(dev_priv)->gen) {
15775 case 2:
15776 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15777 break;
15778
15779 case 3:
15780 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15781 break;
15782
15783 case 4:
15784 case 5:
15785 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15786 break;
15787
15788 case 6:
15789 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15790 break;
15791 case 7:
15792 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15793 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15794 break;
15795 case 9:
15796 /* Drop through - unsupported since execlist only. */
15797 default:
15798 /* Default just returns -ENODEV to indicate unsupported */
15799 dev_priv->display.queue_flip = intel_default_queue_flip;
15800 }
15801 }
15802
15803 /*
15804 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15805 * resume, or other times. This quirk makes sure that's the case for
15806 * affected systems.
15807 */
15808 static void quirk_pipea_force(struct drm_device *dev)
15809 {
15810 struct drm_i915_private *dev_priv = to_i915(dev);
15811
15812 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15813 DRM_INFO("applying pipe a force quirk\n");
15814 }
15815
15816 static void quirk_pipeb_force(struct drm_device *dev)
15817 {
15818 struct drm_i915_private *dev_priv = to_i915(dev);
15819
15820 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15821 DRM_INFO("applying pipe b force quirk\n");
15822 }
15823
15824 /*
15825 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15826 */
15827 static void quirk_ssc_force_disable(struct drm_device *dev)
15828 {
15829 struct drm_i915_private *dev_priv = to_i915(dev);
15830 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15831 DRM_INFO("applying lvds SSC disable quirk\n");
15832 }
15833
15834 /*
15835 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15836 * brightness value
15837 */
15838 static void quirk_invert_brightness(struct drm_device *dev)
15839 {
15840 struct drm_i915_private *dev_priv = to_i915(dev);
15841 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15842 DRM_INFO("applying inverted panel brightness quirk\n");
15843 }
15844
15845 /* Some VBT's incorrectly indicate no backlight is present */
15846 static void quirk_backlight_present(struct drm_device *dev)
15847 {
15848 struct drm_i915_private *dev_priv = to_i915(dev);
15849 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15850 DRM_INFO("applying backlight present quirk\n");
15851 }
15852
15853 struct intel_quirk {
15854 int device;
15855 int subsystem_vendor;
15856 int subsystem_device;
15857 void (*hook)(struct drm_device *dev);
15858 };
15859
15860 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15861 struct intel_dmi_quirk {
15862 void (*hook)(struct drm_device *dev);
15863 const struct dmi_system_id (*dmi_id_list)[];
15864 };
15865
15866 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15867 {
15868 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15869 return 1;
15870 }
15871
15872 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15873 {
15874 .dmi_id_list = &(const struct dmi_system_id[]) {
15875 {
15876 .callback = intel_dmi_reverse_brightness,
15877 .ident = "NCR Corporation",
15878 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15879 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15880 },
15881 },
15882 { } /* terminating entry */
15883 },
15884 .hook = quirk_invert_brightness,
15885 },
15886 };
15887
15888 static struct intel_quirk intel_quirks[] = {
15889 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15890 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15891
15892 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15893 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15894
15895 /* 830 needs to leave pipe A & dpll A up */
15896 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15897
15898 /* 830 needs to leave pipe B & dpll B up */
15899 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15900
15901 /* Lenovo U160 cannot use SSC on LVDS */
15902 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15903
15904 /* Sony Vaio Y cannot use SSC on LVDS */
15905 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15906
15907 /* Acer Aspire 5734Z must invert backlight brightness */
15908 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15909
15910 /* Acer/eMachines G725 */
15911 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15912
15913 /* Acer/eMachines e725 */
15914 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15915
15916 /* Acer/Packard Bell NCL20 */
15917 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15918
15919 /* Acer Aspire 4736Z */
15920 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15921
15922 /* Acer Aspire 5336 */
15923 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15924
15925 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15926 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15927
15928 /* Acer C720 Chromebook (Core i3 4005U) */
15929 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15930
15931 /* Apple Macbook 2,1 (Core 2 T7400) */
15932 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15933
15934 /* Apple Macbook 4,1 */
15935 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15936
15937 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15938 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15939
15940 /* HP Chromebook 14 (Celeron 2955U) */
15941 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15942
15943 /* Dell Chromebook 11 */
15944 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15945
15946 /* Dell Chromebook 11 (2015 version) */
15947 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15948 };
15949
15950 static void intel_init_quirks(struct drm_device *dev)
15951 {
15952 struct pci_dev *d = dev->pdev;
15953 int i;
15954
15955 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15956 struct intel_quirk *q = &intel_quirks[i];
15957
15958 if (d->device == q->device &&
15959 (d->subsystem_vendor == q->subsystem_vendor ||
15960 q->subsystem_vendor == PCI_ANY_ID) &&
15961 (d->subsystem_device == q->subsystem_device ||
15962 q->subsystem_device == PCI_ANY_ID))
15963 q->hook(dev);
15964 }
15965 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15966 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15967 intel_dmi_quirks[i].hook(dev);
15968 }
15969 }
15970
15971 /* Disable the VGA plane that we never use */
15972 static void i915_disable_vga(struct drm_device *dev)
15973 {
15974 struct drm_i915_private *dev_priv = to_i915(dev);
15975 u8 sr1;
15976 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15977
15978 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15979 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15980 outb(SR01, VGA_SR_INDEX);
15981 sr1 = inb(VGA_SR_DATA);
15982 outb(sr1 | 1<<5, VGA_SR_DATA);
15983 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15984 udelay(300);
15985
15986 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15987 POSTING_READ(vga_reg);
15988 }
15989
15990 void intel_modeset_init_hw(struct drm_device *dev)
15991 {
15992 struct drm_i915_private *dev_priv = to_i915(dev);
15993
15994 intel_update_cdclk(dev);
15995
15996 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15997
15998 intel_init_clock_gating(dev);
15999 }
16000
16001 /*
16002 * Calculate what we think the watermarks should be for the state we've read
16003 * out of the hardware and then immediately program those watermarks so that
16004 * we ensure the hardware settings match our internal state.
16005 *
16006 * We can calculate what we think WM's should be by creating a duplicate of the
16007 * current state (which was constructed during hardware readout) and running it
16008 * through the atomic check code to calculate new watermark values in the
16009 * state object.
16010 */
16011 static void sanitize_watermarks(struct drm_device *dev)
16012 {
16013 struct drm_i915_private *dev_priv = to_i915(dev);
16014 struct drm_atomic_state *state;
16015 struct drm_crtc *crtc;
16016 struct drm_crtc_state *cstate;
16017 struct drm_modeset_acquire_ctx ctx;
16018 int ret;
16019 int i;
16020
16021 /* Only supported on platforms that use atomic watermark design */
16022 if (!dev_priv->display.optimize_watermarks)
16023 return;
16024
16025 /*
16026 * We need to hold connection_mutex before calling duplicate_state so
16027 * that the connector loop is protected.
16028 */
16029 drm_modeset_acquire_init(&ctx, 0);
16030 retry:
16031 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16032 if (ret == -EDEADLK) {
16033 drm_modeset_backoff(&ctx);
16034 goto retry;
16035 } else if (WARN_ON(ret)) {
16036 goto fail;
16037 }
16038
16039 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16040 if (WARN_ON(IS_ERR(state)))
16041 goto fail;
16042
16043 /*
16044 * Hardware readout is the only time we don't want to calculate
16045 * intermediate watermarks (since we don't trust the current
16046 * watermarks).
16047 */
16048 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16049
16050 ret = intel_atomic_check(dev, state);
16051 if (ret) {
16052 /*
16053 * If we fail here, it means that the hardware appears to be
16054 * programmed in a way that shouldn't be possible, given our
16055 * understanding of watermark requirements. This might mean a
16056 * mistake in the hardware readout code or a mistake in the
16057 * watermark calculations for a given platform. Raise a WARN
16058 * so that this is noticeable.
16059 *
16060 * If this actually happens, we'll have to just leave the
16061 * BIOS-programmed watermarks untouched and hope for the best.
16062 */
16063 WARN(true, "Could not determine valid watermarks for inherited state\n");
16064 goto fail;
16065 }
16066
16067 /* Write calculated watermark values back */
16068 for_each_crtc_in_state(state, crtc, cstate, i) {
16069 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16070
16071 cs->wm.need_postvbl_update = true;
16072 dev_priv->display.optimize_watermarks(cs);
16073 }
16074
16075 drm_atomic_state_free(state);
16076 fail:
16077 drm_modeset_drop_locks(&ctx);
16078 drm_modeset_acquire_fini(&ctx);
16079 }
16080
16081 void intel_modeset_init(struct drm_device *dev)
16082 {
16083 struct drm_i915_private *dev_priv = to_i915(dev);
16084 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16085 int sprite, ret;
16086 enum pipe pipe;
16087 struct intel_crtc *crtc;
16088
16089 drm_mode_config_init(dev);
16090
16091 dev->mode_config.min_width = 0;
16092 dev->mode_config.min_height = 0;
16093
16094 dev->mode_config.preferred_depth = 24;
16095 dev->mode_config.prefer_shadow = 1;
16096
16097 dev->mode_config.allow_fb_modifiers = true;
16098
16099 dev->mode_config.funcs = &intel_mode_funcs;
16100
16101 intel_init_quirks(dev);
16102
16103 intel_init_pm(dev);
16104
16105 if (INTEL_INFO(dev)->num_pipes == 0)
16106 return;
16107
16108 /*
16109 * There may be no VBT; and if the BIOS enabled SSC we can
16110 * just keep using it to avoid unnecessary flicker. Whereas if the
16111 * BIOS isn't using it, don't assume it will work even if the VBT
16112 * indicates as much.
16113 */
16114 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
16115 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16116 DREF_SSC1_ENABLE);
16117
16118 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16119 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16120 bios_lvds_use_ssc ? "en" : "dis",
16121 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16122 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16123 }
16124 }
16125
16126 if (IS_GEN2(dev)) {
16127 dev->mode_config.max_width = 2048;
16128 dev->mode_config.max_height = 2048;
16129 } else if (IS_GEN3(dev)) {
16130 dev->mode_config.max_width = 4096;
16131 dev->mode_config.max_height = 4096;
16132 } else {
16133 dev->mode_config.max_width = 8192;
16134 dev->mode_config.max_height = 8192;
16135 }
16136
16137 if (IS_845G(dev) || IS_I865G(dev)) {
16138 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
16139 dev->mode_config.cursor_height = 1023;
16140 } else if (IS_GEN2(dev)) {
16141 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16142 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16143 } else {
16144 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16145 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16146 }
16147
16148 dev->mode_config.fb_base = ggtt->mappable_base;
16149
16150 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16151 INTEL_INFO(dev)->num_pipes,
16152 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
16153
16154 for_each_pipe(dev_priv, pipe) {
16155 intel_crtc_init(dev, pipe);
16156 for_each_sprite(dev_priv, pipe, sprite) {
16157 ret = intel_plane_init(dev, pipe, sprite);
16158 if (ret)
16159 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
16160 pipe_name(pipe), sprite_name(pipe, sprite), ret);
16161 }
16162 }
16163
16164 intel_update_czclk(dev_priv);
16165 intel_update_cdclk(dev);
16166
16167 intel_shared_dpll_init(dev);
16168
16169 if (dev_priv->max_cdclk_freq == 0)
16170 intel_update_max_cdclk(dev);
16171
16172 /* Just disable it once at startup */
16173 i915_disable_vga(dev);
16174 intel_setup_outputs(dev);
16175
16176 drm_modeset_lock_all(dev);
16177 intel_modeset_setup_hw_state(dev);
16178 drm_modeset_unlock_all(dev);
16179
16180 for_each_intel_crtc(dev, crtc) {
16181 struct intel_initial_plane_config plane_config = {};
16182
16183 if (!crtc->active)
16184 continue;
16185
16186 /*
16187 * Note that reserving the BIOS fb up front prevents us
16188 * from stuffing other stolen allocations like the ring
16189 * on top. This prevents some ugliness at boot time, and
16190 * can even allow for smooth boot transitions if the BIOS
16191 * fb is large enough for the active pipe configuration.
16192 */
16193 dev_priv->display.get_initial_plane_config(crtc,
16194 &plane_config);
16195
16196 /*
16197 * If the fb is shared between multiple heads, we'll
16198 * just get the first one.
16199 */
16200 intel_find_initial_plane_obj(crtc, &plane_config);
16201 }
16202
16203 /*
16204 * Make sure hardware watermarks really match the state we read out.
16205 * Note that we need to do this after reconstructing the BIOS fb's
16206 * since the watermark calculation done here will use pstate->fb.
16207 */
16208 sanitize_watermarks(dev);
16209 }
16210
16211 static void intel_enable_pipe_a(struct drm_device *dev)
16212 {
16213 struct intel_connector *connector;
16214 struct drm_connector *crt = NULL;
16215 struct intel_load_detect_pipe load_detect_temp;
16216 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16217
16218 /* We can't just switch on the pipe A, we need to set things up with a
16219 * proper mode and output configuration. As a gross hack, enable pipe A
16220 * by enabling the load detect pipe once. */
16221 for_each_intel_connector(dev, connector) {
16222 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16223 crt = &connector->base;
16224 break;
16225 }
16226 }
16227
16228 if (!crt)
16229 return;
16230
16231 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16232 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16233 }
16234
16235 static bool
16236 intel_check_plane_mapping(struct intel_crtc *crtc)
16237 {
16238 struct drm_device *dev = crtc->base.dev;
16239 struct drm_i915_private *dev_priv = to_i915(dev);
16240 u32 val;
16241
16242 if (INTEL_INFO(dev)->num_pipes == 1)
16243 return true;
16244
16245 val = I915_READ(DSPCNTR(!crtc->plane));
16246
16247 if ((val & DISPLAY_PLANE_ENABLE) &&
16248 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16249 return false;
16250
16251 return true;
16252 }
16253
16254 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16255 {
16256 struct drm_device *dev = crtc->base.dev;
16257 struct intel_encoder *encoder;
16258
16259 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16260 return true;
16261
16262 return false;
16263 }
16264
16265 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
16266 {
16267 struct drm_device *dev = encoder->base.dev;
16268 struct intel_connector *connector;
16269
16270 for_each_connector_on_encoder(dev, &encoder->base, connector)
16271 return true;
16272
16273 return false;
16274 }
16275
16276 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16277 enum transcoder pch_transcoder)
16278 {
16279 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16280 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16281 }
16282
16283 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16284 {
16285 struct drm_device *dev = crtc->base.dev;
16286 struct drm_i915_private *dev_priv = to_i915(dev);
16287 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16288
16289 /* Clear any frame start delays used for debugging left by the BIOS */
16290 if (!transcoder_is_dsi(cpu_transcoder)) {
16291 i915_reg_t reg = PIPECONF(cpu_transcoder);
16292
16293 I915_WRITE(reg,
16294 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16295 }
16296
16297 /* restore vblank interrupts to correct state */
16298 drm_crtc_vblank_reset(&crtc->base);
16299 if (crtc->active) {
16300 struct intel_plane *plane;
16301
16302 drm_crtc_vblank_on(&crtc->base);
16303
16304 /* Disable everything but the primary plane */
16305 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16306 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16307 continue;
16308
16309 plane->disable_plane(&plane->base, &crtc->base);
16310 }
16311 }
16312
16313 /* We need to sanitize the plane -> pipe mapping first because this will
16314 * disable the crtc (and hence change the state) if it is wrong. Note
16315 * that gen4+ has a fixed plane -> pipe mapping. */
16316 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
16317 bool plane;
16318
16319 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16320 crtc->base.base.id, crtc->base.name);
16321
16322 /* Pipe has the wrong plane attached and the plane is active.
16323 * Temporarily change the plane mapping and disable everything
16324 * ... */
16325 plane = crtc->plane;
16326 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16327 crtc->plane = !plane;
16328 intel_crtc_disable_noatomic(&crtc->base);
16329 crtc->plane = plane;
16330 }
16331
16332 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16333 crtc->pipe == PIPE_A && !crtc->active) {
16334 /* BIOS forgot to enable pipe A, this mostly happens after
16335 * resume. Force-enable the pipe to fix this, the update_dpms
16336 * call below we restore the pipe to the right state, but leave
16337 * the required bits on. */
16338 intel_enable_pipe_a(dev);
16339 }
16340
16341 /* Adjust the state of the output pipe according to whether we
16342 * have active connectors/encoders. */
16343 if (crtc->active && !intel_crtc_has_encoders(crtc))
16344 intel_crtc_disable_noatomic(&crtc->base);
16345
16346 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
16347 /*
16348 * We start out with underrun reporting disabled to avoid races.
16349 * For correct bookkeeping mark this on active crtcs.
16350 *
16351 * Also on gmch platforms we dont have any hardware bits to
16352 * disable the underrun reporting. Which means we need to start
16353 * out with underrun reporting disabled also on inactive pipes,
16354 * since otherwise we'll complain about the garbage we read when
16355 * e.g. coming up after runtime pm.
16356 *
16357 * No protection against concurrent access is required - at
16358 * worst a fifo underrun happens which also sets this to false.
16359 */
16360 crtc->cpu_fifo_underrun_disabled = true;
16361 /*
16362 * We track the PCH trancoder underrun reporting state
16363 * within the crtc. With crtc for pipe A housing the underrun
16364 * reporting state for PCH transcoder A, crtc for pipe B housing
16365 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16366 * and marking underrun reporting as disabled for the non-existing
16367 * PCH transcoders B and C would prevent enabling the south
16368 * error interrupt (see cpt_can_enable_serr_int()).
16369 */
16370 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16371 crtc->pch_fifo_underrun_disabled = true;
16372 }
16373 }
16374
16375 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16376 {
16377 struct intel_connector *connector;
16378 struct drm_device *dev = encoder->base.dev;
16379
16380 /* We need to check both for a crtc link (meaning that the
16381 * encoder is active and trying to read from a pipe) and the
16382 * pipe itself being active. */
16383 bool has_active_crtc = encoder->base.crtc &&
16384 to_intel_crtc(encoder->base.crtc)->active;
16385
16386 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
16387 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16388 encoder->base.base.id,
16389 encoder->base.name);
16390
16391 /* Connector is active, but has no active pipe. This is
16392 * fallout from our resume register restoring. Disable
16393 * the encoder manually again. */
16394 if (encoder->base.crtc) {
16395 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16396 encoder->base.base.id,
16397 encoder->base.name);
16398 encoder->disable(encoder);
16399 if (encoder->post_disable)
16400 encoder->post_disable(encoder);
16401 }
16402 encoder->base.crtc = NULL;
16403
16404 /* Inconsistent output/port/pipe state happens presumably due to
16405 * a bug in one of the get_hw_state functions. Or someplace else
16406 * in our code, like the register restore mess on resume. Clamp
16407 * things to off as a safer default. */
16408 for_each_intel_connector(dev, connector) {
16409 if (connector->encoder != encoder)
16410 continue;
16411 connector->base.dpms = DRM_MODE_DPMS_OFF;
16412 connector->base.encoder = NULL;
16413 }
16414 }
16415 /* Enabled encoders without active connectors will be fixed in
16416 * the crtc fixup. */
16417 }
16418
16419 void i915_redisable_vga_power_on(struct drm_device *dev)
16420 {
16421 struct drm_i915_private *dev_priv = to_i915(dev);
16422 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16423
16424 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16425 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16426 i915_disable_vga(dev);
16427 }
16428 }
16429
16430 void i915_redisable_vga(struct drm_device *dev)
16431 {
16432 struct drm_i915_private *dev_priv = to_i915(dev);
16433
16434 /* This function can be called both from intel_modeset_setup_hw_state or
16435 * at a very early point in our resume sequence, where the power well
16436 * structures are not yet restored. Since this function is at a very
16437 * paranoid "someone might have enabled VGA while we were not looking"
16438 * level, just check if the power well is enabled instead of trying to
16439 * follow the "don't touch the power well if we don't need it" policy
16440 * the rest of the driver uses. */
16441 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16442 return;
16443
16444 i915_redisable_vga_power_on(dev);
16445
16446 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16447 }
16448
16449 static bool primary_get_hw_state(struct intel_plane *plane)
16450 {
16451 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16452
16453 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16454 }
16455
16456 /* FIXME read out full plane state for all planes */
16457 static void readout_plane_state(struct intel_crtc *crtc)
16458 {
16459 struct drm_plane *primary = crtc->base.primary;
16460 struct intel_plane_state *plane_state =
16461 to_intel_plane_state(primary->state);
16462
16463 plane_state->base.visible = crtc->active &&
16464 primary_get_hw_state(to_intel_plane(primary));
16465
16466 if (plane_state->base.visible)
16467 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16468 }
16469
16470 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16471 {
16472 struct drm_i915_private *dev_priv = to_i915(dev);
16473 enum pipe pipe;
16474 struct intel_crtc *crtc;
16475 struct intel_encoder *encoder;
16476 struct intel_connector *connector;
16477 int i;
16478
16479 dev_priv->active_crtcs = 0;
16480
16481 for_each_intel_crtc(dev, crtc) {
16482 struct intel_crtc_state *crtc_state = crtc->config;
16483 int pixclk = 0;
16484
16485 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16486 memset(crtc_state, 0, sizeof(*crtc_state));
16487 crtc_state->base.crtc = &crtc->base;
16488
16489 crtc_state->base.active = crtc_state->base.enable =
16490 dev_priv->display.get_pipe_config(crtc, crtc_state);
16491
16492 crtc->base.enabled = crtc_state->base.enable;
16493 crtc->active = crtc_state->base.active;
16494
16495 if (crtc_state->base.active) {
16496 dev_priv->active_crtcs |= 1 << crtc->pipe;
16497
16498 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16499 pixclk = ilk_pipe_pixel_rate(crtc_state);
16500 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16501 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16502 else
16503 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16504
16505 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16506 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16507 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16508 }
16509
16510 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16511
16512 readout_plane_state(crtc);
16513
16514 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16515 crtc->base.base.id, crtc->base.name,
16516 crtc->active ? "enabled" : "disabled");
16517 }
16518
16519 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16520 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16521
16522 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16523 &pll->config.hw_state);
16524 pll->config.crtc_mask = 0;
16525 for_each_intel_crtc(dev, crtc) {
16526 if (crtc->active && crtc->config->shared_dpll == pll)
16527 pll->config.crtc_mask |= 1 << crtc->pipe;
16528 }
16529 pll->active_mask = pll->config.crtc_mask;
16530
16531 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16532 pll->name, pll->config.crtc_mask, pll->on);
16533 }
16534
16535 for_each_intel_encoder(dev, encoder) {
16536 pipe = 0;
16537
16538 if (encoder->get_hw_state(encoder, &pipe)) {
16539 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16540 encoder->base.crtc = &crtc->base;
16541 crtc->config->output_types |= 1 << encoder->type;
16542 encoder->get_config(encoder, crtc->config);
16543 } else {
16544 encoder->base.crtc = NULL;
16545 }
16546
16547 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16548 encoder->base.base.id,
16549 encoder->base.name,
16550 encoder->base.crtc ? "enabled" : "disabled",
16551 pipe_name(pipe));
16552 }
16553
16554 for_each_intel_connector(dev, connector) {
16555 if (connector->get_hw_state(connector)) {
16556 connector->base.dpms = DRM_MODE_DPMS_ON;
16557
16558 encoder = connector->encoder;
16559 connector->base.encoder = &encoder->base;
16560
16561 if (encoder->base.crtc &&
16562 encoder->base.crtc->state->active) {
16563 /*
16564 * This has to be done during hardware readout
16565 * because anything calling .crtc_disable may
16566 * rely on the connector_mask being accurate.
16567 */
16568 encoder->base.crtc->state->connector_mask |=
16569 1 << drm_connector_index(&connector->base);
16570 encoder->base.crtc->state->encoder_mask |=
16571 1 << drm_encoder_index(&encoder->base);
16572 }
16573
16574 } else {
16575 connector->base.dpms = DRM_MODE_DPMS_OFF;
16576 connector->base.encoder = NULL;
16577 }
16578 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16579 connector->base.base.id,
16580 connector->base.name,
16581 connector->base.encoder ? "enabled" : "disabled");
16582 }
16583
16584 for_each_intel_crtc(dev, crtc) {
16585 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16586
16587 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16588 if (crtc->base.state->active) {
16589 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16590 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16591 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16592
16593 /*
16594 * The initial mode needs to be set in order to keep
16595 * the atomic core happy. It wants a valid mode if the
16596 * crtc's enabled, so we do the above call.
16597 *
16598 * At this point some state updated by the connectors
16599 * in their ->detect() callback has not run yet, so
16600 * no recalculation can be done yet.
16601 *
16602 * Even if we could do a recalculation and modeset
16603 * right now it would cause a double modeset if
16604 * fbdev or userspace chooses a different initial mode.
16605 *
16606 * If that happens, someone indicated they wanted a
16607 * mode change, which means it's safe to do a full
16608 * recalculation.
16609 */
16610 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16611
16612 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16613 update_scanline_offset(crtc);
16614 }
16615
16616 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16617 }
16618 }
16619
16620 /* Scan out the current hw modeset state,
16621 * and sanitizes it to the current state
16622 */
16623 static void
16624 intel_modeset_setup_hw_state(struct drm_device *dev)
16625 {
16626 struct drm_i915_private *dev_priv = to_i915(dev);
16627 enum pipe pipe;
16628 struct intel_crtc *crtc;
16629 struct intel_encoder *encoder;
16630 int i;
16631
16632 intel_modeset_readout_hw_state(dev);
16633
16634 /* HW state is read out, now we need to sanitize this mess. */
16635 for_each_intel_encoder(dev, encoder) {
16636 intel_sanitize_encoder(encoder);
16637 }
16638
16639 for_each_pipe(dev_priv, pipe) {
16640 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16641 intel_sanitize_crtc(crtc);
16642 intel_dump_pipe_config(crtc, crtc->config,
16643 "[setup_hw_state]");
16644 }
16645
16646 intel_modeset_update_connector_atomic_state(dev);
16647
16648 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16649 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16650
16651 if (!pll->on || pll->active_mask)
16652 continue;
16653
16654 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16655
16656 pll->funcs.disable(dev_priv, pll);
16657 pll->on = false;
16658 }
16659
16660 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16661 vlv_wm_get_hw_state(dev);
16662 else if (IS_GEN9(dev))
16663 skl_wm_get_hw_state(dev);
16664 else if (HAS_PCH_SPLIT(dev))
16665 ilk_wm_get_hw_state(dev);
16666
16667 for_each_intel_crtc(dev, crtc) {
16668 unsigned long put_domains;
16669
16670 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16671 if (WARN_ON(put_domains))
16672 modeset_put_power_domains(dev_priv, put_domains);
16673 }
16674 intel_display_set_init_power(dev_priv, false);
16675
16676 intel_fbc_init_pipe_state(dev_priv);
16677 }
16678
16679 void intel_display_resume(struct drm_device *dev)
16680 {
16681 struct drm_i915_private *dev_priv = to_i915(dev);
16682 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16683 struct drm_modeset_acquire_ctx ctx;
16684 int ret;
16685
16686 dev_priv->modeset_restore_state = NULL;
16687 if (state)
16688 state->acquire_ctx = &ctx;
16689
16690 /*
16691 * This is a cludge because with real atomic modeset mode_config.mutex
16692 * won't be taken. Unfortunately some probed state like
16693 * audio_codec_enable is still protected by mode_config.mutex, so lock
16694 * it here for now.
16695 */
16696 mutex_lock(&dev->mode_config.mutex);
16697 drm_modeset_acquire_init(&ctx, 0);
16698
16699 while (1) {
16700 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16701 if (ret != -EDEADLK)
16702 break;
16703
16704 drm_modeset_backoff(&ctx);
16705 }
16706
16707 if (!ret)
16708 ret = __intel_display_resume(dev, state);
16709
16710 drm_modeset_drop_locks(&ctx);
16711 drm_modeset_acquire_fini(&ctx);
16712 mutex_unlock(&dev->mode_config.mutex);
16713
16714 if (ret) {
16715 DRM_ERROR("Restoring old state failed with %i\n", ret);
16716 drm_atomic_state_free(state);
16717 }
16718 }
16719
16720 void intel_modeset_gem_init(struct drm_device *dev)
16721 {
16722 struct drm_i915_private *dev_priv = to_i915(dev);
16723 struct drm_crtc *c;
16724 struct drm_i915_gem_object *obj;
16725
16726 intel_init_gt_powersave(dev_priv);
16727
16728 intel_modeset_init_hw(dev);
16729
16730 intel_setup_overlay(dev_priv);
16731
16732 /*
16733 * Make sure any fbs we allocated at startup are properly
16734 * pinned & fenced. When we do the allocation it's too early
16735 * for this.
16736 */
16737 for_each_crtc(dev, c) {
16738 struct i915_vma *vma;
16739
16740 obj = intel_fb_obj(c->primary->fb);
16741 if (obj == NULL)
16742 continue;
16743
16744 mutex_lock(&dev->struct_mutex);
16745 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
16746 c->primary->state->rotation);
16747 mutex_unlock(&dev->struct_mutex);
16748 if (IS_ERR(vma)) {
16749 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16750 to_intel_crtc(c)->pipe);
16751 drm_framebuffer_unreference(c->primary->fb);
16752 c->primary->fb = NULL;
16753 c->primary->crtc = c->primary->state->crtc = NULL;
16754 update_state_fb(c->primary);
16755 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16756 }
16757 }
16758 }
16759
16760 int intel_connector_register(struct drm_connector *connector)
16761 {
16762 struct intel_connector *intel_connector = to_intel_connector(connector);
16763 int ret;
16764
16765 ret = intel_backlight_device_register(intel_connector);
16766 if (ret)
16767 goto err;
16768
16769 return 0;
16770
16771 err:
16772 return ret;
16773 }
16774
16775 void intel_connector_unregister(struct drm_connector *connector)
16776 {
16777 struct intel_connector *intel_connector = to_intel_connector(connector);
16778
16779 intel_backlight_device_unregister(intel_connector);
16780 intel_panel_destroy_backlight(connector);
16781 }
16782
16783 void intel_modeset_cleanup(struct drm_device *dev)
16784 {
16785 struct drm_i915_private *dev_priv = to_i915(dev);
16786
16787 intel_disable_gt_powersave(dev_priv);
16788
16789 /*
16790 * Interrupts and polling as the first thing to avoid creating havoc.
16791 * Too much stuff here (turning of connectors, ...) would
16792 * experience fancy races otherwise.
16793 */
16794 intel_irq_uninstall(dev_priv);
16795
16796 /*
16797 * Due to the hpd irq storm handling the hotplug work can re-arm the
16798 * poll handlers. Hence disable polling after hpd handling is shut down.
16799 */
16800 drm_kms_helper_poll_fini(dev);
16801
16802 intel_unregister_dsm_handler();
16803
16804 intel_fbc_global_disable(dev_priv);
16805
16806 /* flush any delayed tasks or pending work */
16807 flush_scheduled_work();
16808
16809 drm_mode_config_cleanup(dev);
16810
16811 intel_cleanup_overlay(dev_priv);
16812
16813 intel_cleanup_gt_powersave(dev_priv);
16814
16815 intel_teardown_gmbus(dev);
16816 }
16817
16818 void intel_connector_attach_encoder(struct intel_connector *connector,
16819 struct intel_encoder *encoder)
16820 {
16821 connector->encoder = encoder;
16822 drm_mode_connector_attach_encoder(&connector->base,
16823 &encoder->base);
16824 }
16825
16826 /*
16827 * set vga decode state - true == enable VGA decode
16828 */
16829 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16830 {
16831 struct drm_i915_private *dev_priv = to_i915(dev);
16832 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16833 u16 gmch_ctrl;
16834
16835 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16836 DRM_ERROR("failed to read control word\n");
16837 return -EIO;
16838 }
16839
16840 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16841 return 0;
16842
16843 if (state)
16844 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16845 else
16846 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16847
16848 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16849 DRM_ERROR("failed to write control word\n");
16850 return -EIO;
16851 }
16852
16853 return 0;
16854 }
16855
16856 struct intel_display_error_state {
16857
16858 u32 power_well_driver;
16859
16860 int num_transcoders;
16861
16862 struct intel_cursor_error_state {
16863 u32 control;
16864 u32 position;
16865 u32 base;
16866 u32 size;
16867 } cursor[I915_MAX_PIPES];
16868
16869 struct intel_pipe_error_state {
16870 bool power_domain_on;
16871 u32 source;
16872 u32 stat;
16873 } pipe[I915_MAX_PIPES];
16874
16875 struct intel_plane_error_state {
16876 u32 control;
16877 u32 stride;
16878 u32 size;
16879 u32 pos;
16880 u32 addr;
16881 u32 surface;
16882 u32 tile_offset;
16883 } plane[I915_MAX_PIPES];
16884
16885 struct intel_transcoder_error_state {
16886 bool power_domain_on;
16887 enum transcoder cpu_transcoder;
16888
16889 u32 conf;
16890
16891 u32 htotal;
16892 u32 hblank;
16893 u32 hsync;
16894 u32 vtotal;
16895 u32 vblank;
16896 u32 vsync;
16897 } transcoder[4];
16898 };
16899
16900 struct intel_display_error_state *
16901 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16902 {
16903 struct intel_display_error_state *error;
16904 int transcoders[] = {
16905 TRANSCODER_A,
16906 TRANSCODER_B,
16907 TRANSCODER_C,
16908 TRANSCODER_EDP,
16909 };
16910 int i;
16911
16912 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16913 return NULL;
16914
16915 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16916 if (error == NULL)
16917 return NULL;
16918
16919 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16920 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16921
16922 for_each_pipe(dev_priv, i) {
16923 error->pipe[i].power_domain_on =
16924 __intel_display_power_is_enabled(dev_priv,
16925 POWER_DOMAIN_PIPE(i));
16926 if (!error->pipe[i].power_domain_on)
16927 continue;
16928
16929 error->cursor[i].control = I915_READ(CURCNTR(i));
16930 error->cursor[i].position = I915_READ(CURPOS(i));
16931 error->cursor[i].base = I915_READ(CURBASE(i));
16932
16933 error->plane[i].control = I915_READ(DSPCNTR(i));
16934 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16935 if (INTEL_GEN(dev_priv) <= 3) {
16936 error->plane[i].size = I915_READ(DSPSIZE(i));
16937 error->plane[i].pos = I915_READ(DSPPOS(i));
16938 }
16939 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16940 error->plane[i].addr = I915_READ(DSPADDR(i));
16941 if (INTEL_GEN(dev_priv) >= 4) {
16942 error->plane[i].surface = I915_READ(DSPSURF(i));
16943 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16944 }
16945
16946 error->pipe[i].source = I915_READ(PIPESRC(i));
16947
16948 if (HAS_GMCH_DISPLAY(dev_priv))
16949 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16950 }
16951
16952 /* Note: this does not include DSI transcoders. */
16953 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16954 if (HAS_DDI(dev_priv))
16955 error->num_transcoders++; /* Account for eDP. */
16956
16957 for (i = 0; i < error->num_transcoders; i++) {
16958 enum transcoder cpu_transcoder = transcoders[i];
16959
16960 error->transcoder[i].power_domain_on =
16961 __intel_display_power_is_enabled(dev_priv,
16962 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16963 if (!error->transcoder[i].power_domain_on)
16964 continue;
16965
16966 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16967
16968 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16969 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16970 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16971 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16972 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16973 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16974 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16975 }
16976
16977 return error;
16978 }
16979
16980 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16981
16982 void
16983 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16984 struct drm_device *dev,
16985 struct intel_display_error_state *error)
16986 {
16987 struct drm_i915_private *dev_priv = to_i915(dev);
16988 int i;
16989
16990 if (!error)
16991 return;
16992
16993 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16994 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16995 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16996 error->power_well_driver);
16997 for_each_pipe(dev_priv, i) {
16998 err_printf(m, "Pipe [%d]:\n", i);
16999 err_printf(m, " Power: %s\n",
17000 onoff(error->pipe[i].power_domain_on));
17001 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17002 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17003
17004 err_printf(m, "Plane [%d]:\n", i);
17005 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17006 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17007 if (INTEL_INFO(dev)->gen <= 3) {
17008 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17009 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17010 }
17011 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
17012 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17013 if (INTEL_INFO(dev)->gen >= 4) {
17014 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17015 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17016 }
17017
17018 err_printf(m, "Cursor [%d]:\n", i);
17019 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17020 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17021 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17022 }
17023
17024 for (i = 0; i < error->num_transcoders; i++) {
17025 err_printf(m, "CPU transcoder: %s\n",
17026 transcoder_name(error->transcoder[i].cpu_transcoder));
17027 err_printf(m, " Power: %s\n",
17028 onoff(error->transcoder[i].power_domain_on));
17029 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17030 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17031 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17032 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17033 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17034 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17035 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17036 }
17037 }
This page took 0.785505 seconds and 5 git commands to generate.