drm/i915: Add double_wide readout and checking
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54 int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68 intel_range_t dot, vco, n, m, m1, m2, p, p1;
69 intel_p2_t p2;
70 };
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75 struct drm_i915_private *dev_priv = dev->dev_private;
76
77 WARN_ON(!HAS_PCH_SPLIT(dev));
78
79 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85 if (IS_GEN5(dev)) {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88 } else
89 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93 .dot = { .min = 25000, .max = 350000 },
94 .vco = { .min = 930000, .max = 1400000 },
95 .n = { .min = 3, .max = 16 },
96 .m = { .min = 96, .max = 140 },
97 .m1 = { .min = 18, .max = 26 },
98 .m2 = { .min = 6, .max = 16 },
99 .p = { .min = 4, .max = 128 },
100 .p1 = { .min = 2, .max = 33 },
101 .p2 = { .dot_limit = 165000,
102 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106 .dot = { .min = 25000, .max = 350000 },
107 .vco = { .min = 930000, .max = 1400000 },
108 .n = { .min = 3, .max = 16 },
109 .m = { .min = 96, .max = 140 },
110 .m1 = { .min = 18, .max = 26 },
111 .m2 = { .min = 6, .max = 16 },
112 .p = { .min = 4, .max = 128 },
113 .p1 = { .min = 2, .max = 33 },
114 .p2 = { .dot_limit = 165000,
115 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119 .dot = { .min = 25000, .max = 350000 },
120 .vco = { .min = 930000, .max = 1400000 },
121 .n = { .min = 3, .max = 16 },
122 .m = { .min = 96, .max = 140 },
123 .m1 = { .min = 18, .max = 26 },
124 .m2 = { .min = 6, .max = 16 },
125 .p = { .min = 4, .max = 128 },
126 .p1 = { .min = 1, .max = 6 },
127 .p2 = { .dot_limit = 165000,
128 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132 .dot = { .min = 20000, .max = 400000 },
133 .vco = { .min = 1400000, .max = 2800000 },
134 .n = { .min = 1, .max = 6 },
135 .m = { .min = 70, .max = 120 },
136 .m1 = { .min = 8, .max = 18 },
137 .m2 = { .min = 3, .max = 7 },
138 .p = { .min = 5, .max = 80 },
139 .p1 = { .min = 1, .max = 8 },
140 .p2 = { .dot_limit = 200000,
141 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 8, .max = 18 },
150 .m2 = { .min = 3, .max = 7 },
151 .p = { .min = 7, .max = 98 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 112000,
154 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159 .dot = { .min = 25000, .max = 270000 },
160 .vco = { .min = 1750000, .max = 3500000},
161 .n = { .min = 1, .max = 4 },
162 .m = { .min = 104, .max = 138 },
163 .m1 = { .min = 17, .max = 23 },
164 .m2 = { .min = 5, .max = 11 },
165 .p = { .min = 10, .max = 30 },
166 .p1 = { .min = 1, .max = 3},
167 .p2 = { .dot_limit = 270000,
168 .p2_slow = 10,
169 .p2_fast = 10
170 },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174 .dot = { .min = 22000, .max = 400000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 16, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 5, .max = 80 },
181 .p1 = { .min = 1, .max = 8},
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187 .dot = { .min = 20000, .max = 115000 },
188 .vco = { .min = 1750000, .max = 3500000 },
189 .n = { .min = 1, .max = 3 },
190 .m = { .min = 104, .max = 138 },
191 .m1 = { .min = 17, .max = 23 },
192 .m2 = { .min = 5, .max = 11 },
193 .p = { .min = 28, .max = 112 },
194 .p1 = { .min = 2, .max = 8 },
195 .p2 = { .dot_limit = 0,
196 .p2_slow = 14, .p2_fast = 14
197 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201 .dot = { .min = 80000, .max = 224000 },
202 .vco = { .min = 1750000, .max = 3500000 },
203 .n = { .min = 1, .max = 3 },
204 .m = { .min = 104, .max = 138 },
205 .m1 = { .min = 17, .max = 23 },
206 .m2 = { .min = 5, .max = 11 },
207 .p = { .min = 14, .max = 42 },
208 .p1 = { .min = 2, .max = 6 },
209 .p2 = { .dot_limit = 0,
210 .p2_slow = 7, .p2_fast = 7
211 },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215 .dot = { .min = 20000, .max = 400000},
216 .vco = { .min = 1700000, .max = 3500000 },
217 /* Pineview's Ncounter is a ring counter */
218 .n = { .min = 3, .max = 6 },
219 .m = { .min = 2, .max = 256 },
220 /* Pineview only has one combined m divider, which we treat as m2. */
221 .m1 = { .min = 0, .max = 0 },
222 .m2 = { .min = 0, .max = 254 },
223 .p = { .min = 5, .max = 80 },
224 .p1 = { .min = 1, .max = 8 },
225 .p2 = { .dot_limit = 200000,
226 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230 .dot = { .min = 20000, .max = 400000 },
231 .vco = { .min = 1700000, .max = 3500000 },
232 .n = { .min = 3, .max = 6 },
233 .m = { .min = 2, .max = 256 },
234 .m1 = { .min = 0, .max = 0 },
235 .m2 = { .min = 0, .max = 254 },
236 .p = { .min = 7, .max = 112 },
237 .p1 = { .min = 1, .max = 8 },
238 .p2 = { .dot_limit = 112000,
239 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243 *
244 * We calculate clock using (register_value + 2) for N/M1/M2, so here
245 * the range value for them is (actual_value - 2).
246 */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248 .dot = { .min = 25000, .max = 350000 },
249 .vco = { .min = 1760000, .max = 3510000 },
250 .n = { .min = 1, .max = 5 },
251 .m = { .min = 79, .max = 127 },
252 .m1 = { .min = 12, .max = 22 },
253 .m2 = { .min = 5, .max = 9 },
254 .p = { .min = 5, .max = 80 },
255 .p1 = { .min = 1, .max = 8 },
256 .p2 = { .dot_limit = 225000,
257 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261 .dot = { .min = 25000, .max = 350000 },
262 .vco = { .min = 1760000, .max = 3510000 },
263 .n = { .min = 1, .max = 3 },
264 .m = { .min = 79, .max = 118 },
265 .m1 = { .min = 12, .max = 22 },
266 .m2 = { .min = 5, .max = 9 },
267 .p = { .min = 28, .max = 112 },
268 .p1 = { .min = 2, .max = 8 },
269 .p2 = { .dot_limit = 225000,
270 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 3 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 14, .max = 56 },
281 .p1 = { .min = 2, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 2 },
291 .m = { .min = 79, .max = 126 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 3 },
304 .m = { .min = 79, .max = 126 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 14, .max = 42 },
308 .p1 = { .min = 2, .max = 6 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314 .dot = { .min = 25000, .max = 270000 },
315 .vco = { .min = 4000000, .max = 6000000 },
316 .n = { .min = 1, .max = 7 },
317 .m = { .min = 22, .max = 450 }, /* guess */
318 .m1 = { .min = 2, .max = 3 },
319 .m2 = { .min = 11, .max = 156 },
320 .p = { .min = 10, .max = 30 },
321 .p1 = { .min = 1, .max = 3 },
322 .p2 = { .dot_limit = 270000,
323 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327 .dot = { .min = 25000, .max = 270000 },
328 .vco = { .min = 4000000, .max = 6000000 },
329 .n = { .min = 1, .max = 7 },
330 .m = { .min = 60, .max = 300 }, /* guess */
331 .m1 = { .min = 2, .max = 3 },
332 .m2 = { .min = 11, .max = 156 },
333 .p = { .min = 10, .max = 30 },
334 .p1 = { .min = 2, .max = 3 },
335 .p2 = { .dot_limit = 270000,
336 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
340 int refclk)
341 {
342 struct drm_device *dev = crtc->dev;
343 const intel_limit_t *limit;
344
345 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
346 if (intel_is_dual_link_lvds(dev)) {
347 if (refclk == 100000)
348 limit = &intel_limits_ironlake_dual_lvds_100m;
349 else
350 limit = &intel_limits_ironlake_dual_lvds;
351 } else {
352 if (refclk == 100000)
353 limit = &intel_limits_ironlake_single_lvds_100m;
354 else
355 limit = &intel_limits_ironlake_single_lvds;
356 }
357 } else
358 limit = &intel_limits_ironlake_dac;
359
360 return limit;
361 }
362
363 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
364 {
365 struct drm_device *dev = crtc->dev;
366 const intel_limit_t *limit;
367
368 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369 if (intel_is_dual_link_lvds(dev))
370 limit = &intel_limits_g4x_dual_channel_lvds;
371 else
372 limit = &intel_limits_g4x_single_channel_lvds;
373 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
374 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
375 limit = &intel_limits_g4x_hdmi;
376 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
377 limit = &intel_limits_g4x_sdvo;
378 } else /* The option is for other outputs */
379 limit = &intel_limits_i9xx_sdvo;
380
381 return limit;
382 }
383
384 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
385 {
386 struct drm_device *dev = crtc->dev;
387 const intel_limit_t *limit;
388
389 if (HAS_PCH_SPLIT(dev))
390 limit = intel_ironlake_limit(crtc, refclk);
391 else if (IS_G4X(dev)) {
392 limit = intel_g4x_limit(crtc);
393 } else if (IS_PINEVIEW(dev)) {
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
395 limit = &intel_limits_pineview_lvds;
396 else
397 limit = &intel_limits_pineview_sdvo;
398 } else if (IS_VALLEYVIEW(dev)) {
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
400 limit = &intel_limits_vlv_dac;
401 else
402 limit = &intel_limits_vlv_hdmi;
403 } else if (!IS_GEN2(dev)) {
404 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
405 limit = &intel_limits_i9xx_lvds;
406 else
407 limit = &intel_limits_i9xx_sdvo;
408 } else {
409 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
410 limit = &intel_limits_i8xx_lvds;
411 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
412 limit = &intel_limits_i8xx_dvo;
413 else
414 limit = &intel_limits_i8xx_dac;
415 }
416 return limit;
417 }
418
419 /* m1 is reserved as 0 in Pineview, n is a ring counter */
420 static void pineview_clock(int refclk, intel_clock_t *clock)
421 {
422 clock->m = clock->m2 + 2;
423 clock->p = clock->p1 * clock->p2;
424 clock->vco = refclk * clock->m / clock->n;
425 clock->dot = clock->vco / clock->p;
426 }
427
428 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
429 {
430 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
431 }
432
433 static void i9xx_clock(int refclk, intel_clock_t *clock)
434 {
435 clock->m = i9xx_dpll_compute_m(clock);
436 clock->p = clock->p1 * clock->p2;
437 clock->vco = refclk * clock->m / (clock->n + 2);
438 clock->dot = clock->vco / clock->p;
439 }
440
441 /**
442 * Returns whether any output on the specified pipe is of the specified type
443 */
444 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
445 {
446 struct drm_device *dev = crtc->dev;
447 struct intel_encoder *encoder;
448
449 for_each_encoder_on_crtc(dev, crtc, encoder)
450 if (encoder->type == type)
451 return true;
452
453 return false;
454 }
455
456 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458 * Returns whether the given set of divisors are valid for a given refclk with
459 * the given connectors.
460 */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463 const intel_limit_t *limit,
464 const intel_clock_t *clock)
465 {
466 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
467 INTELPllInvalid("p1 out of range\n");
468 if (clock->p < limit->p.min || limit->p.max < clock->p)
469 INTELPllInvalid("p out of range\n");
470 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
471 INTELPllInvalid("m2 out of range\n");
472 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
473 INTELPllInvalid("m1 out of range\n");
474 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
475 INTELPllInvalid("m1 <= m2\n");
476 if (clock->m < limit->m.min || limit->m.max < clock->m)
477 INTELPllInvalid("m out of range\n");
478 if (clock->n < limit->n.min || limit->n.max < clock->n)
479 INTELPllInvalid("n out of range\n");
480 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481 INTELPllInvalid("vco out of range\n");
482 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483 * connector, etc., rather than just a single range.
484 */
485 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486 INTELPllInvalid("dot out of range\n");
487
488 return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493 int target, int refclk, intel_clock_t *match_clock,
494 intel_clock_t *best_clock)
495 {
496 struct drm_device *dev = crtc->dev;
497 intel_clock_t clock;
498 int err = target;
499
500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501 /*
502 * For LVDS just rely on its current settings for dual-channel.
503 * We haven't figured out how to reliably set up different
504 * single/dual channel state, if we even can.
505 */
506 if (intel_is_dual_link_lvds(dev))
507 clock.p2 = limit->p2.p2_fast;
508 else
509 clock.p2 = limit->p2.p2_slow;
510 } else {
511 if (target < limit->p2.dot_limit)
512 clock.p2 = limit->p2.p2_slow;
513 else
514 clock.p2 = limit->p2.p2_fast;
515 }
516
517 memset(best_clock, 0, sizeof(*best_clock));
518
519 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520 clock.m1++) {
521 for (clock.m2 = limit->m2.min;
522 clock.m2 <= limit->m2.max; clock.m2++) {
523 if (clock.m2 >= clock.m1)
524 break;
525 for (clock.n = limit->n.min;
526 clock.n <= limit->n.max; clock.n++) {
527 for (clock.p1 = limit->p1.min;
528 clock.p1 <= limit->p1.max; clock.p1++) {
529 int this_err;
530
531 i9xx_clock(refclk, &clock);
532 if (!intel_PLL_is_valid(dev, limit,
533 &clock))
534 continue;
535 if (match_clock &&
536 clock.p != match_clock->p)
537 continue;
538
539 this_err = abs(clock.dot - target);
540 if (this_err < err) {
541 *best_clock = clock;
542 err = this_err;
543 }
544 }
545 }
546 }
547 }
548
549 return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554 int target, int refclk, intel_clock_t *match_clock,
555 intel_clock_t *best_clock)
556 {
557 struct drm_device *dev = crtc->dev;
558 intel_clock_t clock;
559 int err = target;
560
561 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562 /*
563 * For LVDS just rely on its current settings for dual-channel.
564 * We haven't figured out how to reliably set up different
565 * single/dual channel state, if we even can.
566 */
567 if (intel_is_dual_link_lvds(dev))
568 clock.p2 = limit->p2.p2_fast;
569 else
570 clock.p2 = limit->p2.p2_slow;
571 } else {
572 if (target < limit->p2.dot_limit)
573 clock.p2 = limit->p2.p2_slow;
574 else
575 clock.p2 = limit->p2.p2_fast;
576 }
577
578 memset(best_clock, 0, sizeof(*best_clock));
579
580 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581 clock.m1++) {
582 for (clock.m2 = limit->m2.min;
583 clock.m2 <= limit->m2.max; clock.m2++) {
584 for (clock.n = limit->n.min;
585 clock.n <= limit->n.max; clock.n++) {
586 for (clock.p1 = limit->p1.min;
587 clock.p1 <= limit->p1.max; clock.p1++) {
588 int this_err;
589
590 pineview_clock(refclk, &clock);
591 if (!intel_PLL_is_valid(dev, limit,
592 &clock))
593 continue;
594 if (match_clock &&
595 clock.p != match_clock->p)
596 continue;
597
598 this_err = abs(clock.dot - target);
599 if (this_err < err) {
600 *best_clock = clock;
601 err = this_err;
602 }
603 }
604 }
605 }
606 }
607
608 return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613 int target, int refclk, intel_clock_t *match_clock,
614 intel_clock_t *best_clock)
615 {
616 struct drm_device *dev = crtc->dev;
617 intel_clock_t clock;
618 int max_n;
619 bool found;
620 /* approximately equals target * 0.00585 */
621 int err_most = (target >> 8) + (target >> 9);
622 found = false;
623
624 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625 if (intel_is_dual_link_lvds(dev))
626 clock.p2 = limit->p2.p2_fast;
627 else
628 clock.p2 = limit->p2.p2_slow;
629 } else {
630 if (target < limit->p2.dot_limit)
631 clock.p2 = limit->p2.p2_slow;
632 else
633 clock.p2 = limit->p2.p2_fast;
634 }
635
636 memset(best_clock, 0, sizeof(*best_clock));
637 max_n = limit->n.max;
638 /* based on hardware requirement, prefer smaller n to precision */
639 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640 /* based on hardware requirement, prefere larger m1,m2 */
641 for (clock.m1 = limit->m1.max;
642 clock.m1 >= limit->m1.min; clock.m1--) {
643 for (clock.m2 = limit->m2.max;
644 clock.m2 >= limit->m2.min; clock.m2--) {
645 for (clock.p1 = limit->p1.max;
646 clock.p1 >= limit->p1.min; clock.p1--) {
647 int this_err;
648
649 i9xx_clock(refclk, &clock);
650 if (!intel_PLL_is_valid(dev, limit,
651 &clock))
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err_most) {
656 *best_clock = clock;
657 err_most = this_err;
658 max_n = clock.n;
659 found = true;
660 }
661 }
662 }
663 }
664 }
665 return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *match_clock,
671 intel_clock_t *best_clock)
672 {
673 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
674 u32 m, n, fastclk;
675 u32 updrate, minupdate, p;
676 unsigned long bestppm, ppm, absppm;
677 int dotclk, flag;
678
679 flag = 0;
680 dotclk = target * 1000;
681 bestppm = 1000000;
682 ppm = absppm = 0;
683 fastclk = dotclk / (2*100);
684 updrate = 0;
685 minupdate = 19200;
686 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
687 bestm1 = bestm2 = bestp1 = bestp2 = 0;
688
689 /* based on hardware requirement, prefer smaller n to precision */
690 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
691 updrate = refclk / n;
692 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
693 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
694 if (p2 > 10)
695 p2 = p2 - 1;
696 p = p1 * p2;
697 /* based on hardware requirement, prefer bigger m1,m2 values */
698 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
699 m2 = (((2*(fastclk * p * n / m1 )) +
700 refclk) / (2*refclk));
701 m = m1 * m2;
702 vco = updrate * m;
703 if (vco >= limit->vco.min && vco < limit->vco.max) {
704 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
705 absppm = (ppm > 0) ? ppm : (-ppm);
706 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
707 bestppm = 0;
708 flag = 1;
709 }
710 if (absppm < bestppm - 10) {
711 bestppm = absppm;
712 flag = 1;
713 }
714 if (flag) {
715 bestn = n;
716 bestm1 = m1;
717 bestm2 = m2;
718 bestp1 = p1;
719 bestp2 = p2;
720 flag = 0;
721 }
722 }
723 }
724 }
725 }
726 }
727 best_clock->n = bestn;
728 best_clock->m1 = bestm1;
729 best_clock->m2 = bestm2;
730 best_clock->p1 = bestp1;
731 best_clock->p2 = bestp2;
732
733 return true;
734 }
735
736 bool intel_crtc_active(struct drm_crtc *crtc)
737 {
738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
739
740 /* Be paranoid as we can arrive here with only partial
741 * state retrieved from the hardware during setup.
742 *
743 * We can ditch the adjusted_mode.clock check as soon
744 * as Haswell has gained clock readout/fastboot support.
745 *
746 * We can ditch the crtc->fb check as soon as we can
747 * properly reconstruct framebuffers.
748 */
749 return intel_crtc->active && crtc->fb &&
750 intel_crtc->config.adjusted_mode.clock;
751 }
752
753 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
754 enum pipe pipe)
755 {
756 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
758
759 return intel_crtc->config.cpu_transcoder;
760 }
761
762 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765 u32 frame, frame_reg = PIPEFRAME(pipe);
766
767 frame = I915_READ(frame_reg);
768
769 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
770 DRM_DEBUG_KMS("vblank wait timed out\n");
771 }
772
773 /**
774 * intel_wait_for_vblank - wait for vblank on a given pipe
775 * @dev: drm device
776 * @pipe: pipe to wait for
777 *
778 * Wait for vblank to occur on a given pipe. Needed for various bits of
779 * mode setting code.
780 */
781 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783 struct drm_i915_private *dev_priv = dev->dev_private;
784 int pipestat_reg = PIPESTAT(pipe);
785
786 if (INTEL_INFO(dev)->gen >= 5) {
787 ironlake_wait_for_vblank(dev, pipe);
788 return;
789 }
790
791 /* Clear existing vblank status. Note this will clear any other
792 * sticky status fields as well.
793 *
794 * This races with i915_driver_irq_handler() with the result
795 * that either function could miss a vblank event. Here it is not
796 * fatal, as we will either wait upon the next vblank interrupt or
797 * timeout. Generally speaking intel_wait_for_vblank() is only
798 * called during modeset at which time the GPU should be idle and
799 * should *not* be performing page flips and thus not waiting on
800 * vblanks...
801 * Currently, the result of us stealing a vblank from the irq
802 * handler is that a single frame will be skipped during swapbuffers.
803 */
804 I915_WRITE(pipestat_reg,
805 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
806
807 /* Wait for vblank interrupt bit to set */
808 if (wait_for(I915_READ(pipestat_reg) &
809 PIPE_VBLANK_INTERRUPT_STATUS,
810 50))
811 DRM_DEBUG_KMS("vblank wait timed out\n");
812 }
813
814 /*
815 * intel_wait_for_pipe_off - wait for pipe to turn off
816 * @dev: drm device
817 * @pipe: pipe to wait for
818 *
819 * After disabling a pipe, we can't wait for vblank in the usual way,
820 * spinning on the vblank interrupt status bit, since we won't actually
821 * see an interrupt when the pipe is disabled.
822 *
823 * On Gen4 and above:
824 * wait for the pipe register state bit to turn off
825 *
826 * Otherwise:
827 * wait for the display line value to settle (it usually
828 * ends up stopping at the start of the next frame).
829 *
830 */
831 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
832 {
833 struct drm_i915_private *dev_priv = dev->dev_private;
834 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
835 pipe);
836
837 if (INTEL_INFO(dev)->gen >= 4) {
838 int reg = PIPECONF(cpu_transcoder);
839
840 /* Wait for the Pipe State to go off */
841 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
842 100))
843 WARN(1, "pipe_off wait timed out\n");
844 } else {
845 u32 last_line, line_mask;
846 int reg = PIPEDSL(pipe);
847 unsigned long timeout = jiffies + msecs_to_jiffies(100);
848
849 if (IS_GEN2(dev))
850 line_mask = DSL_LINEMASK_GEN2;
851 else
852 line_mask = DSL_LINEMASK_GEN3;
853
854 /* Wait for the display line to settle */
855 do {
856 last_line = I915_READ(reg) & line_mask;
857 mdelay(5);
858 } while (((I915_READ(reg) & line_mask) != last_line) &&
859 time_after(timeout, jiffies));
860 if (time_after(jiffies, timeout))
861 WARN(1, "pipe_off wait timed out\n");
862 }
863 }
864
865 /*
866 * ibx_digital_port_connected - is the specified port connected?
867 * @dev_priv: i915 private structure
868 * @port: the port to test
869 *
870 * Returns true if @port is connected, false otherwise.
871 */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873 struct intel_digital_port *port)
874 {
875 u32 bit;
876
877 if (HAS_PCH_IBX(dev_priv->dev)) {
878 switch(port->port) {
879 case PORT_B:
880 bit = SDE_PORTB_HOTPLUG;
881 break;
882 case PORT_C:
883 bit = SDE_PORTC_HOTPLUG;
884 break;
885 case PORT_D:
886 bit = SDE_PORTD_HOTPLUG;
887 break;
888 default:
889 return true;
890 }
891 } else {
892 switch(port->port) {
893 case PORT_B:
894 bit = SDE_PORTB_HOTPLUG_CPT;
895 break;
896 case PORT_C:
897 bit = SDE_PORTC_HOTPLUG_CPT;
898 break;
899 case PORT_D:
900 bit = SDE_PORTD_HOTPLUG_CPT;
901 break;
902 default:
903 return true;
904 }
905 }
906
907 return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912 return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917 enum pipe pipe, bool state)
918 {
919 int reg;
920 u32 val;
921 bool cur_state;
922
923 reg = DPLL(pipe);
924 val = I915_READ(reg);
925 cur_state = !!(val & DPLL_VCO_ENABLE);
926 WARN(cur_state != state,
927 "PLL state assertion failure (expected %s, current %s)\n",
928 state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934 u32 val;
935 bool cur_state;
936
937 mutex_lock(&dev_priv->dpio_lock);
938 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939 mutex_unlock(&dev_priv->dpio_lock);
940
941 cur_state = val & DSI_PLL_VCO_EN;
942 WARN(cur_state != state,
943 "DSI PLL state assertion failure (expected %s, current %s)\n",
944 state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954 if (crtc->config.shared_dpll < 0)
955 return NULL;
956
957 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962 struct intel_shared_dpll *pll,
963 bool state)
964 {
965 bool cur_state;
966 struct intel_dpll_hw_state hw_state;
967
968 if (HAS_PCH_LPT(dev_priv->dev)) {
969 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970 return;
971 }
972
973 if (WARN (!pll,
974 "asserting DPLL %s with no DPLL\n", state_string(state)))
975 return;
976
977 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978 WARN(cur_state != state,
979 "%s assertion failure (expected %s, current %s)\n",
980 pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984 enum pipe pipe, bool state)
985 {
986 int reg;
987 u32 val;
988 bool cur_state;
989 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990 pipe);
991
992 if (HAS_DDI(dev_priv->dev)) {
993 /* DDI does not have a specific FDI_TX register */
994 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995 val = I915_READ(reg);
996 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997 } else {
998 reg = FDI_TX_CTL(pipe);
999 val = I915_READ(reg);
1000 cur_state = !!(val & FDI_TX_ENABLE);
1001 }
1002 WARN(cur_state != state,
1003 "FDI TX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010 enum pipe pipe, bool state)
1011 {
1012 int reg;
1013 u32 val;
1014 bool cur_state;
1015
1016 reg = FDI_RX_CTL(pipe);
1017 val = I915_READ(reg);
1018 cur_state = !!(val & FDI_RX_ENABLE);
1019 WARN(cur_state != state,
1020 "FDI RX state assertion failure (expected %s, current %s)\n",
1021 state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 int reg;
1030 u32 val;
1031
1032 /* ILK FDI PLL is always enabled */
1033 if (dev_priv->info->gen == 5)
1034 return;
1035
1036 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037 if (HAS_DDI(dev_priv->dev))
1038 return;
1039
1040 reg = FDI_TX_CTL(pipe);
1041 val = I915_READ(reg);
1042 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
1047 {
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = FDI_RX_CTL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055 WARN(cur_state != state,
1056 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061 enum pipe pipe)
1062 {
1063 int pp_reg, lvds_reg;
1064 u32 val;
1065 enum pipe panel_pipe = PIPE_A;
1066 bool locked = true;
1067
1068 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069 pp_reg = PCH_PP_CONTROL;
1070 lvds_reg = PCH_LVDS;
1071 } else {
1072 pp_reg = PP_CONTROL;
1073 lvds_reg = LVDS;
1074 }
1075
1076 val = I915_READ(pp_reg);
1077 if (!(val & PANEL_POWER_ON) ||
1078 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079 locked = false;
1080
1081 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082 panel_pipe = PIPE_B;
1083
1084 WARN(panel_pipe == pipe && locked,
1085 "panel assertion failure, pipe %c regs locked\n",
1086 pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, bool state)
1091 {
1092 struct drm_device *dev = dev_priv->dev;
1093 bool cur_state;
1094
1095 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097 else if (IS_845G(dev) || IS_I865G(dev))
1098 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099 else
1100 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102 WARN(cur_state != state,
1103 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104 pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110 enum pipe pipe, bool state)
1111 {
1112 int reg;
1113 u32 val;
1114 bool cur_state;
1115 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116 pipe);
1117
1118 /* if we need the pipe A quirk it must be always on */
1119 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120 state = true;
1121
1122 if (!intel_display_power_enabled(dev_priv->dev,
1123 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124 cur_state = false;
1125 } else {
1126 reg = PIPECONF(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & PIPECONF_ENABLE);
1129 }
1130
1131 WARN(cur_state != state,
1132 "pipe %c assertion failure (expected %s, current %s)\n",
1133 pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137 enum plane plane, bool state)
1138 {
1139 int reg;
1140 u32 val;
1141 bool cur_state;
1142
1143 reg = DSPCNTR(plane);
1144 val = I915_READ(reg);
1145 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146 WARN(cur_state != state,
1147 "plane %c assertion failure (expected %s, current %s)\n",
1148 plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155 enum pipe pipe)
1156 {
1157 struct drm_device *dev = dev_priv->dev;
1158 int reg, i;
1159 u32 val;
1160 int cur_pipe;
1161
1162 /* Primary planes are fixed to pipes on gen4+ */
1163 if (INTEL_INFO(dev)->gen >= 4) {
1164 reg = DSPCNTR(pipe);
1165 val = I915_READ(reg);
1166 WARN((val & DISPLAY_PLANE_ENABLE),
1167 "plane %c assertion failure, should be disabled but not\n",
1168 plane_name(pipe));
1169 return;
1170 }
1171
1172 /* Need to check both planes against the pipe */
1173 for_each_pipe(i) {
1174 reg = DSPCNTR(i);
1175 val = I915_READ(reg);
1176 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177 DISPPLANE_SEL_PIPE_SHIFT;
1178 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180 plane_name(i), pipe_name(pipe));
1181 }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186 {
1187 struct drm_device *dev = dev_priv->dev;
1188 int reg, i;
1189 u32 val;
1190
1191 if (IS_VALLEYVIEW(dev)) {
1192 for (i = 0; i < dev_priv->num_plane; i++) {
1193 reg = SPCNTR(pipe, i);
1194 val = I915_READ(reg);
1195 WARN((val & SP_ENABLE),
1196 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197 sprite_name(pipe, i), pipe_name(pipe));
1198 }
1199 } else if (INTEL_INFO(dev)->gen >= 7) {
1200 reg = SPRCTL(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & SPRITE_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 } else if (INTEL_INFO(dev)->gen >= 5) {
1206 reg = DVSCNTR(pipe);
1207 val = I915_READ(reg);
1208 WARN((val & DVS_ENABLE),
1209 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210 plane_name(pipe), pipe_name(pipe));
1211 }
1212 }
1213
1214 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216 u32 val;
1217 bool enabled;
1218
1219 if (HAS_PCH_LPT(dev_priv->dev)) {
1220 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1221 return;
1222 }
1223
1224 val = I915_READ(PCH_DREF_CONTROL);
1225 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226 DREF_SUPERSPREAD_SOURCE_MASK));
1227 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231 enum pipe pipe)
1232 {
1233 int reg;
1234 u32 val;
1235 bool enabled;
1236
1237 reg = PCH_TRANSCONF(pipe);
1238 val = I915_READ(reg);
1239 enabled = !!(val & TRANS_ENABLE);
1240 WARN(enabled,
1241 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242 pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246 enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248 if ((val & DP_PORT_EN) == 0)
1249 return false;
1250
1251 if (HAS_PCH_CPT(dev_priv->dev)) {
1252 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255 return false;
1256 } else {
1257 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258 return false;
1259 }
1260 return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264 enum pipe pipe, u32 val)
1265 {
1266 if ((val & SDVO_ENABLE) == 0)
1267 return false;
1268
1269 if (HAS_PCH_CPT(dev_priv->dev)) {
1270 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271 return false;
1272 } else {
1273 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274 return false;
1275 }
1276 return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280 enum pipe pipe, u32 val)
1281 {
1282 if ((val & LVDS_PORT_EN) == 0)
1283 return false;
1284
1285 if (HAS_PCH_CPT(dev_priv->dev)) {
1286 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287 return false;
1288 } else {
1289 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290 return false;
1291 }
1292 return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe, u32 val)
1297 {
1298 if ((val & ADPA_DAC_ENABLE) == 0)
1299 return false;
1300 if (HAS_PCH_CPT(dev_priv->dev)) {
1301 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302 return false;
1303 } else {
1304 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305 return false;
1306 }
1307 return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe, int reg, u32 port_sel)
1312 {
1313 u32 val = I915_READ(reg);
1314 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316 reg, pipe_name(pipe));
1317
1318 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319 && (val & DP_PIPEB_SELECT),
1320 "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324 enum pipe pipe, int reg)
1325 {
1326 u32 val = I915_READ(reg);
1327 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329 reg, pipe_name(pipe));
1330
1331 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332 && (val & SDVO_PIPE_B_SELECT),
1333 "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe)
1338 {
1339 int reg;
1340 u32 val;
1341
1342 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346 reg = PCH_ADPA;
1347 val = I915_READ(reg);
1348 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349 "PCH VGA enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 reg = PCH_LVDS;
1353 val = I915_READ(reg);
1354 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356 pipe_name(pipe));
1357
1358 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void vlv_enable_pll(struct intel_crtc *crtc)
1364 {
1365 struct drm_device *dev = crtc->base.dev;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 int reg = DPLL(crtc->pipe);
1368 u32 dpll = crtc->config.dpll_hw_state.dpll;
1369
1370 assert_pipe_disabled(dev_priv, crtc->pipe);
1371
1372 /* No really, not for ILK+ */
1373 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1374
1375 /* PLL is protected by panel, make sure we can write it */
1376 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1377 assert_panel_unlocked(dev_priv, crtc->pipe);
1378
1379 I915_WRITE(reg, dpll);
1380 POSTING_READ(reg);
1381 udelay(150);
1382
1383 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1384 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1385
1386 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1387 POSTING_READ(DPLL_MD(crtc->pipe));
1388
1389 /* We do this three times for luck */
1390 I915_WRITE(reg, dpll);
1391 POSTING_READ(reg);
1392 udelay(150); /* wait for warmup */
1393 I915_WRITE(reg, dpll);
1394 POSTING_READ(reg);
1395 udelay(150); /* wait for warmup */
1396 I915_WRITE(reg, dpll);
1397 POSTING_READ(reg);
1398 udelay(150); /* wait for warmup */
1399 }
1400
1401 static void i9xx_enable_pll(struct intel_crtc *crtc)
1402 {
1403 struct drm_device *dev = crtc->base.dev;
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405 int reg = DPLL(crtc->pipe);
1406 u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408 assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410 /* No really, not for ILK+ */
1411 BUG_ON(dev_priv->info->gen >= 5);
1412
1413 /* PLL is protected by panel, make sure we can write it */
1414 if (IS_MOBILE(dev) && !IS_I830(dev))
1415 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417 I915_WRITE(reg, dpll);
1418
1419 /* Wait for the clocks to stabilize. */
1420 POSTING_READ(reg);
1421 udelay(150);
1422
1423 if (INTEL_INFO(dev)->gen >= 4) {
1424 I915_WRITE(DPLL_MD(crtc->pipe),
1425 crtc->config.dpll_hw_state.dpll_md);
1426 } else {
1427 /* The pixel multiplier can only be updated once the
1428 * DPLL is enabled and the clocks are stable.
1429 *
1430 * So write it again.
1431 */
1432 I915_WRITE(reg, dpll);
1433 }
1434
1435 /* We do this three times for luck */
1436 I915_WRITE(reg, dpll);
1437 POSTING_READ(reg);
1438 udelay(150); /* wait for warmup */
1439 I915_WRITE(reg, dpll);
1440 POSTING_READ(reg);
1441 udelay(150); /* wait for warmup */
1442 I915_WRITE(reg, dpll);
1443 POSTING_READ(reg);
1444 udelay(150); /* wait for warmup */
1445 }
1446
1447 /**
1448 * i9xx_disable_pll - disable a PLL
1449 * @dev_priv: i915 private structure
1450 * @pipe: pipe PLL to disable
1451 *
1452 * Disable the PLL for @pipe, making sure the pipe is off first.
1453 *
1454 * Note! This is for pre-ILK only.
1455 */
1456 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1457 {
1458 /* Don't disable pipe A or pipe A PLLs if needed */
1459 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1460 return;
1461
1462 /* Make sure the pipe isn't still relying on us */
1463 assert_pipe_disabled(dev_priv, pipe);
1464
1465 I915_WRITE(DPLL(pipe), 0);
1466 POSTING_READ(DPLL(pipe));
1467 }
1468
1469 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1470 {
1471 u32 port_mask;
1472
1473 if (!port)
1474 port_mask = DPLL_PORTB_READY_MASK;
1475 else
1476 port_mask = DPLL_PORTC_READY_MASK;
1477
1478 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1479 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1480 'B' + port, I915_READ(DPLL(0)));
1481 }
1482
1483 /**
1484 * ironlake_enable_shared_dpll - enable PCH PLL
1485 * @dev_priv: i915 private structure
1486 * @pipe: pipe PLL to enable
1487 *
1488 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1489 * drives the transcoder clock.
1490 */
1491 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1492 {
1493 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1494 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1495
1496 /* PCH PLLs only available on ILK, SNB and IVB */
1497 BUG_ON(dev_priv->info->gen < 5);
1498 if (WARN_ON(pll == NULL))
1499 return;
1500
1501 if (WARN_ON(pll->refcount == 0))
1502 return;
1503
1504 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1505 pll->name, pll->active, pll->on,
1506 crtc->base.base.id);
1507
1508 if (pll->active++) {
1509 WARN_ON(!pll->on);
1510 assert_shared_dpll_enabled(dev_priv, pll);
1511 return;
1512 }
1513 WARN_ON(pll->on);
1514
1515 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1516 pll->enable(dev_priv, pll);
1517 pll->on = true;
1518 }
1519
1520 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1521 {
1522 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1523 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1524
1525 /* PCH only available on ILK+ */
1526 BUG_ON(dev_priv->info->gen < 5);
1527 if (WARN_ON(pll == NULL))
1528 return;
1529
1530 if (WARN_ON(pll->refcount == 0))
1531 return;
1532
1533 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1534 pll->name, pll->active, pll->on,
1535 crtc->base.base.id);
1536
1537 if (WARN_ON(pll->active == 0)) {
1538 assert_shared_dpll_disabled(dev_priv, pll);
1539 return;
1540 }
1541
1542 assert_shared_dpll_enabled(dev_priv, pll);
1543 WARN_ON(!pll->on);
1544 if (--pll->active)
1545 return;
1546
1547 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1548 pll->disable(dev_priv, pll);
1549 pll->on = false;
1550 }
1551
1552 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1553 enum pipe pipe)
1554 {
1555 struct drm_device *dev = dev_priv->dev;
1556 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1558 uint32_t reg, val, pipeconf_val;
1559
1560 /* PCH only available on ILK+ */
1561 BUG_ON(dev_priv->info->gen < 5);
1562
1563 /* Make sure PCH DPLL is enabled */
1564 assert_shared_dpll_enabled(dev_priv,
1565 intel_crtc_to_shared_dpll(intel_crtc));
1566
1567 /* FDI must be feeding us bits for PCH ports */
1568 assert_fdi_tx_enabled(dev_priv, pipe);
1569 assert_fdi_rx_enabled(dev_priv, pipe);
1570
1571 if (HAS_PCH_CPT(dev)) {
1572 /* Workaround: Set the timing override bit before enabling the
1573 * pch transcoder. */
1574 reg = TRANS_CHICKEN2(pipe);
1575 val = I915_READ(reg);
1576 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1577 I915_WRITE(reg, val);
1578 }
1579
1580 reg = PCH_TRANSCONF(pipe);
1581 val = I915_READ(reg);
1582 pipeconf_val = I915_READ(PIPECONF(pipe));
1583
1584 if (HAS_PCH_IBX(dev_priv->dev)) {
1585 /*
1586 * make the BPC in transcoder be consistent with
1587 * that in pipeconf reg.
1588 */
1589 val &= ~PIPECONF_BPC_MASK;
1590 val |= pipeconf_val & PIPECONF_BPC_MASK;
1591 }
1592
1593 val &= ~TRANS_INTERLACE_MASK;
1594 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1595 if (HAS_PCH_IBX(dev_priv->dev) &&
1596 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1597 val |= TRANS_LEGACY_INTERLACED_ILK;
1598 else
1599 val |= TRANS_INTERLACED;
1600 else
1601 val |= TRANS_PROGRESSIVE;
1602
1603 I915_WRITE(reg, val | TRANS_ENABLE);
1604 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1605 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1606 }
1607
1608 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1609 enum transcoder cpu_transcoder)
1610 {
1611 u32 val, pipeconf_val;
1612
1613 /* PCH only available on ILK+ */
1614 BUG_ON(dev_priv->info->gen < 5);
1615
1616 /* FDI must be feeding us bits for PCH ports */
1617 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1618 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1619
1620 /* Workaround: set timing override bit. */
1621 val = I915_READ(_TRANSA_CHICKEN2);
1622 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1623 I915_WRITE(_TRANSA_CHICKEN2, val);
1624
1625 val = TRANS_ENABLE;
1626 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1627
1628 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1629 PIPECONF_INTERLACED_ILK)
1630 val |= TRANS_INTERLACED;
1631 else
1632 val |= TRANS_PROGRESSIVE;
1633
1634 I915_WRITE(LPT_TRANSCONF, val);
1635 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1636 DRM_ERROR("Failed to enable PCH transcoder\n");
1637 }
1638
1639 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1640 enum pipe pipe)
1641 {
1642 struct drm_device *dev = dev_priv->dev;
1643 uint32_t reg, val;
1644
1645 /* FDI relies on the transcoder */
1646 assert_fdi_tx_disabled(dev_priv, pipe);
1647 assert_fdi_rx_disabled(dev_priv, pipe);
1648
1649 /* Ports must be off as well */
1650 assert_pch_ports_disabled(dev_priv, pipe);
1651
1652 reg = PCH_TRANSCONF(pipe);
1653 val = I915_READ(reg);
1654 val &= ~TRANS_ENABLE;
1655 I915_WRITE(reg, val);
1656 /* wait for PCH transcoder off, transcoder state */
1657 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1658 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1659
1660 if (!HAS_PCH_IBX(dev)) {
1661 /* Workaround: Clear the timing override chicken bit again. */
1662 reg = TRANS_CHICKEN2(pipe);
1663 val = I915_READ(reg);
1664 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1665 I915_WRITE(reg, val);
1666 }
1667 }
1668
1669 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1670 {
1671 u32 val;
1672
1673 val = I915_READ(LPT_TRANSCONF);
1674 val &= ~TRANS_ENABLE;
1675 I915_WRITE(LPT_TRANSCONF, val);
1676 /* wait for PCH transcoder off, transcoder state */
1677 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1678 DRM_ERROR("Failed to disable PCH transcoder\n");
1679
1680 /* Workaround: clear timing override bit. */
1681 val = I915_READ(_TRANSA_CHICKEN2);
1682 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1683 I915_WRITE(_TRANSA_CHICKEN2, val);
1684 }
1685
1686 /**
1687 * intel_enable_pipe - enable a pipe, asserting requirements
1688 * @dev_priv: i915 private structure
1689 * @pipe: pipe to enable
1690 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1691 *
1692 * Enable @pipe, making sure that various hardware specific requirements
1693 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1694 *
1695 * @pipe should be %PIPE_A or %PIPE_B.
1696 *
1697 * Will wait until the pipe is actually running (i.e. first vblank) before
1698 * returning.
1699 */
1700 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1701 bool pch_port, bool dsi)
1702 {
1703 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1704 pipe);
1705 enum pipe pch_transcoder;
1706 int reg;
1707 u32 val;
1708
1709 assert_planes_disabled(dev_priv, pipe);
1710 assert_cursor_disabled(dev_priv, pipe);
1711 assert_sprites_disabled(dev_priv, pipe);
1712
1713 if (HAS_PCH_LPT(dev_priv->dev))
1714 pch_transcoder = TRANSCODER_A;
1715 else
1716 pch_transcoder = pipe;
1717
1718 /*
1719 * A pipe without a PLL won't actually be able to drive bits from
1720 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1721 * need the check.
1722 */
1723 if (!HAS_PCH_SPLIT(dev_priv->dev))
1724 if (dsi)
1725 assert_dsi_pll_enabled(dev_priv);
1726 else
1727 assert_pll_enabled(dev_priv, pipe);
1728 else {
1729 if (pch_port) {
1730 /* if driving the PCH, we need FDI enabled */
1731 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1732 assert_fdi_tx_pll_enabled(dev_priv,
1733 (enum pipe) cpu_transcoder);
1734 }
1735 /* FIXME: assert CPU port conditions for SNB+ */
1736 }
1737
1738 reg = PIPECONF(cpu_transcoder);
1739 val = I915_READ(reg);
1740 if (val & PIPECONF_ENABLE)
1741 return;
1742
1743 I915_WRITE(reg, val | PIPECONF_ENABLE);
1744 intel_wait_for_vblank(dev_priv->dev, pipe);
1745 }
1746
1747 /**
1748 * intel_disable_pipe - disable a pipe, asserting requirements
1749 * @dev_priv: i915 private structure
1750 * @pipe: pipe to disable
1751 *
1752 * Disable @pipe, making sure that various hardware specific requirements
1753 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1754 *
1755 * @pipe should be %PIPE_A or %PIPE_B.
1756 *
1757 * Will wait until the pipe has shut down before returning.
1758 */
1759 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1760 enum pipe pipe)
1761 {
1762 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763 pipe);
1764 int reg;
1765 u32 val;
1766
1767 /*
1768 * Make sure planes won't keep trying to pump pixels to us,
1769 * or we might hang the display.
1770 */
1771 assert_planes_disabled(dev_priv, pipe);
1772 assert_cursor_disabled(dev_priv, pipe);
1773 assert_sprites_disabled(dev_priv, pipe);
1774
1775 /* Don't disable pipe A or pipe A PLLs if needed */
1776 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1777 return;
1778
1779 reg = PIPECONF(cpu_transcoder);
1780 val = I915_READ(reg);
1781 if ((val & PIPECONF_ENABLE) == 0)
1782 return;
1783
1784 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1785 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1786 }
1787
1788 /*
1789 * Plane regs are double buffered, going from enabled->disabled needs a
1790 * trigger in order to latch. The display address reg provides this.
1791 */
1792 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1793 enum plane plane)
1794 {
1795 if (dev_priv->info->gen >= 4)
1796 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1797 else
1798 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1799 }
1800
1801 /**
1802 * intel_enable_plane - enable a display plane on a given pipe
1803 * @dev_priv: i915 private structure
1804 * @plane: plane to enable
1805 * @pipe: pipe being fed
1806 *
1807 * Enable @plane on @pipe, making sure that @pipe is running first.
1808 */
1809 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1810 enum plane plane, enum pipe pipe)
1811 {
1812 int reg;
1813 u32 val;
1814
1815 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1816 assert_pipe_enabled(dev_priv, pipe);
1817
1818 reg = DSPCNTR(plane);
1819 val = I915_READ(reg);
1820 if (val & DISPLAY_PLANE_ENABLE)
1821 return;
1822
1823 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1824 intel_flush_display_plane(dev_priv, plane);
1825 intel_wait_for_vblank(dev_priv->dev, pipe);
1826 }
1827
1828 /**
1829 * intel_disable_plane - disable a display plane
1830 * @dev_priv: i915 private structure
1831 * @plane: plane to disable
1832 * @pipe: pipe consuming the data
1833 *
1834 * Disable @plane; should be an independent operation.
1835 */
1836 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1837 enum plane plane, enum pipe pipe)
1838 {
1839 int reg;
1840 u32 val;
1841
1842 reg = DSPCNTR(plane);
1843 val = I915_READ(reg);
1844 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1845 return;
1846
1847 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1848 intel_flush_display_plane(dev_priv, plane);
1849 intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 static bool need_vtd_wa(struct drm_device *dev)
1853 {
1854 #ifdef CONFIG_INTEL_IOMMU
1855 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1856 return true;
1857 #endif
1858 return false;
1859 }
1860
1861 int
1862 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1863 struct drm_i915_gem_object *obj,
1864 struct intel_ring_buffer *pipelined)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 u32 alignment;
1868 int ret;
1869
1870 switch (obj->tiling_mode) {
1871 case I915_TILING_NONE:
1872 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1873 alignment = 128 * 1024;
1874 else if (INTEL_INFO(dev)->gen >= 4)
1875 alignment = 4 * 1024;
1876 else
1877 alignment = 64 * 1024;
1878 break;
1879 case I915_TILING_X:
1880 /* pin() will align the object as required by fence */
1881 alignment = 0;
1882 break;
1883 case I915_TILING_Y:
1884 /* Despite that we check this in framebuffer_init userspace can
1885 * screw us over and change the tiling after the fact. Only
1886 * pinned buffers can't change their tiling. */
1887 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1888 return -EINVAL;
1889 default:
1890 BUG();
1891 }
1892
1893 /* Note that the w/a also requires 64 PTE of padding following the
1894 * bo. We currently fill all unused PTE with the shadow page and so
1895 * we should always have valid PTE following the scanout preventing
1896 * the VT-d warning.
1897 */
1898 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1899 alignment = 256 * 1024;
1900
1901 dev_priv->mm.interruptible = false;
1902 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1903 if (ret)
1904 goto err_interruptible;
1905
1906 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1907 * fence, whereas 965+ only requires a fence if using
1908 * framebuffer compression. For simplicity, we always install
1909 * a fence as the cost is not that onerous.
1910 */
1911 ret = i915_gem_object_get_fence(obj);
1912 if (ret)
1913 goto err_unpin;
1914
1915 i915_gem_object_pin_fence(obj);
1916
1917 dev_priv->mm.interruptible = true;
1918 return 0;
1919
1920 err_unpin:
1921 i915_gem_object_unpin_from_display_plane(obj);
1922 err_interruptible:
1923 dev_priv->mm.interruptible = true;
1924 return ret;
1925 }
1926
1927 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1928 {
1929 i915_gem_object_unpin_fence(obj);
1930 i915_gem_object_unpin_from_display_plane(obj);
1931 }
1932
1933 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1934 * is assumed to be a power-of-two. */
1935 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1936 unsigned int tiling_mode,
1937 unsigned int cpp,
1938 unsigned int pitch)
1939 {
1940 if (tiling_mode != I915_TILING_NONE) {
1941 unsigned int tile_rows, tiles;
1942
1943 tile_rows = *y / 8;
1944 *y %= 8;
1945
1946 tiles = *x / (512/cpp);
1947 *x %= 512/cpp;
1948
1949 return tile_rows * pitch * 8 + tiles * 4096;
1950 } else {
1951 unsigned int offset;
1952
1953 offset = *y * pitch + *x * cpp;
1954 *y = 0;
1955 *x = (offset & 4095) / cpp;
1956 return offset & -4096;
1957 }
1958 }
1959
1960 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1961 int x, int y)
1962 {
1963 struct drm_device *dev = crtc->dev;
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966 struct intel_framebuffer *intel_fb;
1967 struct drm_i915_gem_object *obj;
1968 int plane = intel_crtc->plane;
1969 unsigned long linear_offset;
1970 u32 dspcntr;
1971 u32 reg;
1972
1973 switch (plane) {
1974 case 0:
1975 case 1:
1976 break;
1977 default:
1978 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1979 return -EINVAL;
1980 }
1981
1982 intel_fb = to_intel_framebuffer(fb);
1983 obj = intel_fb->obj;
1984
1985 reg = DSPCNTR(plane);
1986 dspcntr = I915_READ(reg);
1987 /* Mask out pixel format bits in case we change it */
1988 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1989 switch (fb->pixel_format) {
1990 case DRM_FORMAT_C8:
1991 dspcntr |= DISPPLANE_8BPP;
1992 break;
1993 case DRM_FORMAT_XRGB1555:
1994 case DRM_FORMAT_ARGB1555:
1995 dspcntr |= DISPPLANE_BGRX555;
1996 break;
1997 case DRM_FORMAT_RGB565:
1998 dspcntr |= DISPPLANE_BGRX565;
1999 break;
2000 case DRM_FORMAT_XRGB8888:
2001 case DRM_FORMAT_ARGB8888:
2002 dspcntr |= DISPPLANE_BGRX888;
2003 break;
2004 case DRM_FORMAT_XBGR8888:
2005 case DRM_FORMAT_ABGR8888:
2006 dspcntr |= DISPPLANE_RGBX888;
2007 break;
2008 case DRM_FORMAT_XRGB2101010:
2009 case DRM_FORMAT_ARGB2101010:
2010 dspcntr |= DISPPLANE_BGRX101010;
2011 break;
2012 case DRM_FORMAT_XBGR2101010:
2013 case DRM_FORMAT_ABGR2101010:
2014 dspcntr |= DISPPLANE_RGBX101010;
2015 break;
2016 default:
2017 BUG();
2018 }
2019
2020 if (INTEL_INFO(dev)->gen >= 4) {
2021 if (obj->tiling_mode != I915_TILING_NONE)
2022 dspcntr |= DISPPLANE_TILED;
2023 else
2024 dspcntr &= ~DISPPLANE_TILED;
2025 }
2026
2027 if (IS_G4X(dev))
2028 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2029
2030 I915_WRITE(reg, dspcntr);
2031
2032 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2033
2034 if (INTEL_INFO(dev)->gen >= 4) {
2035 intel_crtc->dspaddr_offset =
2036 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2037 fb->bits_per_pixel / 8,
2038 fb->pitches[0]);
2039 linear_offset -= intel_crtc->dspaddr_offset;
2040 } else {
2041 intel_crtc->dspaddr_offset = linear_offset;
2042 }
2043
2044 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2045 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2046 fb->pitches[0]);
2047 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2048 if (INTEL_INFO(dev)->gen >= 4) {
2049 I915_MODIFY_DISPBASE(DSPSURF(plane),
2050 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2051 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2052 I915_WRITE(DSPLINOFF(plane), linear_offset);
2053 } else
2054 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2055 POSTING_READ(reg);
2056
2057 return 0;
2058 }
2059
2060 static int ironlake_update_plane(struct drm_crtc *crtc,
2061 struct drm_framebuffer *fb, int x, int y)
2062 {
2063 struct drm_device *dev = crtc->dev;
2064 struct drm_i915_private *dev_priv = dev->dev_private;
2065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2066 struct intel_framebuffer *intel_fb;
2067 struct drm_i915_gem_object *obj;
2068 int plane = intel_crtc->plane;
2069 unsigned long linear_offset;
2070 u32 dspcntr;
2071 u32 reg;
2072
2073 switch (plane) {
2074 case 0:
2075 case 1:
2076 case 2:
2077 break;
2078 default:
2079 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2080 return -EINVAL;
2081 }
2082
2083 intel_fb = to_intel_framebuffer(fb);
2084 obj = intel_fb->obj;
2085
2086 reg = DSPCNTR(plane);
2087 dspcntr = I915_READ(reg);
2088 /* Mask out pixel format bits in case we change it */
2089 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2090 switch (fb->pixel_format) {
2091 case DRM_FORMAT_C8:
2092 dspcntr |= DISPPLANE_8BPP;
2093 break;
2094 case DRM_FORMAT_RGB565:
2095 dspcntr |= DISPPLANE_BGRX565;
2096 break;
2097 case DRM_FORMAT_XRGB8888:
2098 case DRM_FORMAT_ARGB8888:
2099 dspcntr |= DISPPLANE_BGRX888;
2100 break;
2101 case DRM_FORMAT_XBGR8888:
2102 case DRM_FORMAT_ABGR8888:
2103 dspcntr |= DISPPLANE_RGBX888;
2104 break;
2105 case DRM_FORMAT_XRGB2101010:
2106 case DRM_FORMAT_ARGB2101010:
2107 dspcntr |= DISPPLANE_BGRX101010;
2108 break;
2109 case DRM_FORMAT_XBGR2101010:
2110 case DRM_FORMAT_ABGR2101010:
2111 dspcntr |= DISPPLANE_RGBX101010;
2112 break;
2113 default:
2114 BUG();
2115 }
2116
2117 if (obj->tiling_mode != I915_TILING_NONE)
2118 dspcntr |= DISPPLANE_TILED;
2119 else
2120 dspcntr &= ~DISPPLANE_TILED;
2121
2122 if (IS_HASWELL(dev))
2123 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2124 else
2125 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2126
2127 I915_WRITE(reg, dspcntr);
2128
2129 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2130 intel_crtc->dspaddr_offset =
2131 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2132 fb->bits_per_pixel / 8,
2133 fb->pitches[0]);
2134 linear_offset -= intel_crtc->dspaddr_offset;
2135
2136 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2137 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2138 fb->pitches[0]);
2139 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2140 I915_MODIFY_DISPBASE(DSPSURF(plane),
2141 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2142 if (IS_HASWELL(dev)) {
2143 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2144 } else {
2145 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2146 I915_WRITE(DSPLINOFF(plane), linear_offset);
2147 }
2148 POSTING_READ(reg);
2149
2150 return 0;
2151 }
2152
2153 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2154 static int
2155 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2156 int x, int y, enum mode_set_atomic state)
2157 {
2158 struct drm_device *dev = crtc->dev;
2159 struct drm_i915_private *dev_priv = dev->dev_private;
2160
2161 if (dev_priv->display.disable_fbc)
2162 dev_priv->display.disable_fbc(dev);
2163 intel_increase_pllclock(crtc);
2164
2165 return dev_priv->display.update_plane(crtc, fb, x, y);
2166 }
2167
2168 void intel_display_handle_reset(struct drm_device *dev)
2169 {
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 struct drm_crtc *crtc;
2172
2173 /*
2174 * Flips in the rings have been nuked by the reset,
2175 * so complete all pending flips so that user space
2176 * will get its events and not get stuck.
2177 *
2178 * Also update the base address of all primary
2179 * planes to the the last fb to make sure we're
2180 * showing the correct fb after a reset.
2181 *
2182 * Need to make two loops over the crtcs so that we
2183 * don't try to grab a crtc mutex before the
2184 * pending_flip_queue really got woken up.
2185 */
2186
2187 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2189 enum plane plane = intel_crtc->plane;
2190
2191 intel_prepare_page_flip(dev, plane);
2192 intel_finish_page_flip_plane(dev, plane);
2193 }
2194
2195 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198 mutex_lock(&crtc->mutex);
2199 if (intel_crtc->active)
2200 dev_priv->display.update_plane(crtc, crtc->fb,
2201 crtc->x, crtc->y);
2202 mutex_unlock(&crtc->mutex);
2203 }
2204 }
2205
2206 static int
2207 intel_finish_fb(struct drm_framebuffer *old_fb)
2208 {
2209 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2210 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2211 bool was_interruptible = dev_priv->mm.interruptible;
2212 int ret;
2213
2214 /* Big Hammer, we also need to ensure that any pending
2215 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2216 * current scanout is retired before unpinning the old
2217 * framebuffer.
2218 *
2219 * This should only fail upon a hung GPU, in which case we
2220 * can safely continue.
2221 */
2222 dev_priv->mm.interruptible = false;
2223 ret = i915_gem_object_finish_gpu(obj);
2224 dev_priv->mm.interruptible = was_interruptible;
2225
2226 return ret;
2227 }
2228
2229 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2230 {
2231 struct drm_device *dev = crtc->dev;
2232 struct drm_i915_master_private *master_priv;
2233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235 if (!dev->primary->master)
2236 return;
2237
2238 master_priv = dev->primary->master->driver_priv;
2239 if (!master_priv->sarea_priv)
2240 return;
2241
2242 switch (intel_crtc->pipe) {
2243 case 0:
2244 master_priv->sarea_priv->pipeA_x = x;
2245 master_priv->sarea_priv->pipeA_y = y;
2246 break;
2247 case 1:
2248 master_priv->sarea_priv->pipeB_x = x;
2249 master_priv->sarea_priv->pipeB_y = y;
2250 break;
2251 default:
2252 break;
2253 }
2254 }
2255
2256 static int
2257 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2258 struct drm_framebuffer *fb)
2259 {
2260 struct drm_device *dev = crtc->dev;
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263 struct drm_framebuffer *old_fb;
2264 int ret;
2265
2266 /* no fb bound */
2267 if (!fb) {
2268 DRM_ERROR("No FB bound\n");
2269 return 0;
2270 }
2271
2272 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2273 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2274 plane_name(intel_crtc->plane),
2275 INTEL_INFO(dev)->num_pipes);
2276 return -EINVAL;
2277 }
2278
2279 mutex_lock(&dev->struct_mutex);
2280 ret = intel_pin_and_fence_fb_obj(dev,
2281 to_intel_framebuffer(fb)->obj,
2282 NULL);
2283 if (ret != 0) {
2284 mutex_unlock(&dev->struct_mutex);
2285 DRM_ERROR("pin & fence failed\n");
2286 return ret;
2287 }
2288
2289 /* Update pipe size and adjust fitter if needed */
2290 if (i915_fastboot) {
2291 I915_WRITE(PIPESRC(intel_crtc->pipe),
2292 ((crtc->mode.hdisplay - 1) << 16) |
2293 (crtc->mode.vdisplay - 1));
2294 if (!intel_crtc->config.pch_pfit.size &&
2295 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2296 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2297 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2298 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2299 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2300 }
2301 }
2302
2303 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2304 if (ret) {
2305 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2306 mutex_unlock(&dev->struct_mutex);
2307 DRM_ERROR("failed to update base address\n");
2308 return ret;
2309 }
2310
2311 old_fb = crtc->fb;
2312 crtc->fb = fb;
2313 crtc->x = x;
2314 crtc->y = y;
2315
2316 if (old_fb) {
2317 if (intel_crtc->active && old_fb != fb)
2318 intel_wait_for_vblank(dev, intel_crtc->pipe);
2319 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2320 }
2321
2322 intel_update_fbc(dev);
2323 intel_edp_psr_update(dev);
2324 mutex_unlock(&dev->struct_mutex);
2325
2326 intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328 return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333 struct drm_device *dev = crtc->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336 int pipe = intel_crtc->pipe;
2337 u32 reg, temp;
2338
2339 /* enable normal train */
2340 reg = FDI_TX_CTL(pipe);
2341 temp = I915_READ(reg);
2342 if (IS_IVYBRIDGE(dev)) {
2343 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345 } else {
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348 }
2349 I915_WRITE(reg, temp);
2350
2351 reg = FDI_RX_CTL(pipe);
2352 temp = I915_READ(reg);
2353 if (HAS_PCH_CPT(dev)) {
2354 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356 } else {
2357 temp &= ~FDI_LINK_TRAIN_NONE;
2358 temp |= FDI_LINK_TRAIN_NONE;
2359 }
2360 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362 /* wait one idle pattern time */
2363 POSTING_READ(reg);
2364 udelay(1000);
2365
2366 /* IVB wants error correction enabled */
2367 if (IS_IVYBRIDGE(dev))
2368 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369 FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2373 {
2374 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2375 }
2376
2377 static void ivb_modeset_global_resources(struct drm_device *dev)
2378 {
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380 struct intel_crtc *pipe_B_crtc =
2381 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2382 struct intel_crtc *pipe_C_crtc =
2383 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2384 uint32_t temp;
2385
2386 /*
2387 * When everything is off disable fdi C so that we could enable fdi B
2388 * with all lanes. Note that we don't care about enabled pipes without
2389 * an enabled pch encoder.
2390 */
2391 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2392 !pipe_has_enabled_pch(pipe_C_crtc)) {
2393 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2394 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2395
2396 temp = I915_READ(SOUTH_CHICKEN1);
2397 temp &= ~FDI_BC_BIFURCATION_SELECT;
2398 DRM_DEBUG_KMS("disabling fdi C rx\n");
2399 I915_WRITE(SOUTH_CHICKEN1, temp);
2400 }
2401 }
2402
2403 /* The FDI link training functions for ILK/Ibexpeak. */
2404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2405 {
2406 struct drm_device *dev = crtc->dev;
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409 int pipe = intel_crtc->pipe;
2410 int plane = intel_crtc->plane;
2411 u32 reg, temp, tries;
2412
2413 /* FDI needs bits from pipe & plane first */
2414 assert_pipe_enabled(dev_priv, pipe);
2415 assert_plane_enabled(dev_priv, plane);
2416
2417 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2418 for train result */
2419 reg = FDI_RX_IMR(pipe);
2420 temp = I915_READ(reg);
2421 temp &= ~FDI_RX_SYMBOL_LOCK;
2422 temp &= ~FDI_RX_BIT_LOCK;
2423 I915_WRITE(reg, temp);
2424 I915_READ(reg);
2425 udelay(150);
2426
2427 /* enable CPU FDI TX and PCH FDI RX */
2428 reg = FDI_TX_CTL(pipe);
2429 temp = I915_READ(reg);
2430 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2431 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2432 temp &= ~FDI_LINK_TRAIN_NONE;
2433 temp |= FDI_LINK_TRAIN_PATTERN_1;
2434 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2435
2436 reg = FDI_RX_CTL(pipe);
2437 temp = I915_READ(reg);
2438 temp &= ~FDI_LINK_TRAIN_NONE;
2439 temp |= FDI_LINK_TRAIN_PATTERN_1;
2440 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2441
2442 POSTING_READ(reg);
2443 udelay(150);
2444
2445 /* Ironlake workaround, enable clock pointer after FDI enable*/
2446 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2447 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2448 FDI_RX_PHASE_SYNC_POINTER_EN);
2449
2450 reg = FDI_RX_IIR(pipe);
2451 for (tries = 0; tries < 5; tries++) {
2452 temp = I915_READ(reg);
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455 if ((temp & FDI_RX_BIT_LOCK)) {
2456 DRM_DEBUG_KMS("FDI train 1 done.\n");
2457 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2458 break;
2459 }
2460 }
2461 if (tries == 5)
2462 DRM_ERROR("FDI train 1 fail!\n");
2463
2464 /* Train 2 */
2465 reg = FDI_TX_CTL(pipe);
2466 temp = I915_READ(reg);
2467 temp &= ~FDI_LINK_TRAIN_NONE;
2468 temp |= FDI_LINK_TRAIN_PATTERN_2;
2469 I915_WRITE(reg, temp);
2470
2471 reg = FDI_RX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~FDI_LINK_TRAIN_NONE;
2474 temp |= FDI_LINK_TRAIN_PATTERN_2;
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
2478 udelay(150);
2479
2480 reg = FDI_RX_IIR(pipe);
2481 for (tries = 0; tries < 5; tries++) {
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484
2485 if (temp & FDI_RX_SYMBOL_LOCK) {
2486 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2487 DRM_DEBUG_KMS("FDI train 2 done.\n");
2488 break;
2489 }
2490 }
2491 if (tries == 5)
2492 DRM_ERROR("FDI train 2 fail!\n");
2493
2494 DRM_DEBUG_KMS("FDI train done\n");
2495
2496 }
2497
2498 static const int snb_b_fdi_train_param[] = {
2499 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2500 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2501 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2502 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2503 };
2504
2505 /* The FDI link training functions for SNB/Cougarpoint. */
2506 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2507 {
2508 struct drm_device *dev = crtc->dev;
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511 int pipe = intel_crtc->pipe;
2512 u32 reg, temp, i, retry;
2513
2514 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2515 for train result */
2516 reg = FDI_RX_IMR(pipe);
2517 temp = I915_READ(reg);
2518 temp &= ~FDI_RX_SYMBOL_LOCK;
2519 temp &= ~FDI_RX_BIT_LOCK;
2520 I915_WRITE(reg, temp);
2521
2522 POSTING_READ(reg);
2523 udelay(150);
2524
2525 /* enable CPU FDI TX and PCH FDI RX */
2526 reg = FDI_TX_CTL(pipe);
2527 temp = I915_READ(reg);
2528 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2529 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2530 temp &= ~FDI_LINK_TRAIN_NONE;
2531 temp |= FDI_LINK_TRAIN_PATTERN_1;
2532 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533 /* SNB-B */
2534 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2536
2537 I915_WRITE(FDI_RX_MISC(pipe),
2538 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2539
2540 reg = FDI_RX_CTL(pipe);
2541 temp = I915_READ(reg);
2542 if (HAS_PCH_CPT(dev)) {
2543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545 } else {
2546 temp &= ~FDI_LINK_TRAIN_NONE;
2547 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548 }
2549 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551 POSTING_READ(reg);
2552 udelay(150);
2553
2554 for (i = 0; i < 4; i++) {
2555 reg = FDI_TX_CTL(pipe);
2556 temp = I915_READ(reg);
2557 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2558 temp |= snb_b_fdi_train_param[i];
2559 I915_WRITE(reg, temp);
2560
2561 POSTING_READ(reg);
2562 udelay(500);
2563
2564 for (retry = 0; retry < 5; retry++) {
2565 reg = FDI_RX_IIR(pipe);
2566 temp = I915_READ(reg);
2567 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568 if (temp & FDI_RX_BIT_LOCK) {
2569 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2570 DRM_DEBUG_KMS("FDI train 1 done.\n");
2571 break;
2572 }
2573 udelay(50);
2574 }
2575 if (retry < 5)
2576 break;
2577 }
2578 if (i == 4)
2579 DRM_ERROR("FDI train 1 fail!\n");
2580
2581 /* Train 2 */
2582 reg = FDI_TX_CTL(pipe);
2583 temp = I915_READ(reg);
2584 temp &= ~FDI_LINK_TRAIN_NONE;
2585 temp |= FDI_LINK_TRAIN_PATTERN_2;
2586 if (IS_GEN6(dev)) {
2587 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588 /* SNB-B */
2589 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590 }
2591 I915_WRITE(reg, temp);
2592
2593 reg = FDI_RX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 if (HAS_PCH_CPT(dev)) {
2596 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2598 } else {
2599 temp &= ~FDI_LINK_TRAIN_NONE;
2600 temp |= FDI_LINK_TRAIN_PATTERN_2;
2601 }
2602 I915_WRITE(reg, temp);
2603
2604 POSTING_READ(reg);
2605 udelay(150);
2606
2607 for (i = 0; i < 4; i++) {
2608 reg = FDI_TX_CTL(pipe);
2609 temp = I915_READ(reg);
2610 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611 temp |= snb_b_fdi_train_param[i];
2612 I915_WRITE(reg, temp);
2613
2614 POSTING_READ(reg);
2615 udelay(500);
2616
2617 for (retry = 0; retry < 5; retry++) {
2618 reg = FDI_RX_IIR(pipe);
2619 temp = I915_READ(reg);
2620 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621 if (temp & FDI_RX_SYMBOL_LOCK) {
2622 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2623 DRM_DEBUG_KMS("FDI train 2 done.\n");
2624 break;
2625 }
2626 udelay(50);
2627 }
2628 if (retry < 5)
2629 break;
2630 }
2631 if (i == 4)
2632 DRM_ERROR("FDI train 2 fail!\n");
2633
2634 DRM_DEBUG_KMS("FDI train done.\n");
2635 }
2636
2637 /* Manual link training for Ivy Bridge A0 parts */
2638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2639 {
2640 struct drm_device *dev = crtc->dev;
2641 struct drm_i915_private *dev_priv = dev->dev_private;
2642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643 int pipe = intel_crtc->pipe;
2644 u32 reg, temp, i, j;
2645
2646 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2647 for train result */
2648 reg = FDI_RX_IMR(pipe);
2649 temp = I915_READ(reg);
2650 temp &= ~FDI_RX_SYMBOL_LOCK;
2651 temp &= ~FDI_RX_BIT_LOCK;
2652 I915_WRITE(reg, temp);
2653
2654 POSTING_READ(reg);
2655 udelay(150);
2656
2657 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2658 I915_READ(FDI_RX_IIR(pipe)));
2659
2660 /* Try each vswing and preemphasis setting twice before moving on */
2661 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2662 /* disable first in case we need to retry */
2663 reg = FDI_TX_CTL(pipe);
2664 temp = I915_READ(reg);
2665 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2666 temp &= ~FDI_TX_ENABLE;
2667 I915_WRITE(reg, temp);
2668
2669 reg = FDI_RX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~FDI_LINK_TRAIN_AUTO;
2672 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2673 temp &= ~FDI_RX_ENABLE;
2674 I915_WRITE(reg, temp);
2675
2676 /* enable CPU FDI TX and PCH FDI RX */
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2680 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2681 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2682 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683 temp |= snb_b_fdi_train_param[j/2];
2684 temp |= FDI_COMPOSITE_SYNC;
2685 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2686
2687 I915_WRITE(FDI_RX_MISC(pipe),
2688 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2689
2690 reg = FDI_RX_CTL(pipe);
2691 temp = I915_READ(reg);
2692 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2693 temp |= FDI_COMPOSITE_SYNC;
2694 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2695
2696 POSTING_READ(reg);
2697 udelay(1); /* should be 0.5us */
2698
2699 for (i = 0; i < 4; i++) {
2700 reg = FDI_RX_IIR(pipe);
2701 temp = I915_READ(reg);
2702 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2703
2704 if (temp & FDI_RX_BIT_LOCK ||
2705 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2706 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2708 i);
2709 break;
2710 }
2711 udelay(1); /* should be 0.5us */
2712 }
2713 if (i == 4) {
2714 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2715 continue;
2716 }
2717
2718 /* Train 2 */
2719 reg = FDI_TX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2722 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2723 I915_WRITE(reg, temp);
2724
2725 reg = FDI_RX_CTL(pipe);
2726 temp = I915_READ(reg);
2727 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2728 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2729 I915_WRITE(reg, temp);
2730
2731 POSTING_READ(reg);
2732 udelay(2); /* should be 1.5us */
2733
2734 for (i = 0; i < 4; i++) {
2735 reg = FDI_RX_IIR(pipe);
2736 temp = I915_READ(reg);
2737 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2738
2739 if (temp & FDI_RX_SYMBOL_LOCK ||
2740 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2741 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2742 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2743 i);
2744 goto train_done;
2745 }
2746 udelay(2); /* should be 1.5us */
2747 }
2748 if (i == 4)
2749 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2750 }
2751
2752 train_done:
2753 DRM_DEBUG_KMS("FDI train done.\n");
2754 }
2755
2756 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2757 {
2758 struct drm_device *dev = intel_crtc->base.dev;
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 int pipe = intel_crtc->pipe;
2761 u32 reg, temp;
2762
2763
2764 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2768 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2769 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2770 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2771
2772 POSTING_READ(reg);
2773 udelay(200);
2774
2775 /* Switch from Rawclk to PCDclk */
2776 temp = I915_READ(reg);
2777 I915_WRITE(reg, temp | FDI_PCDCLK);
2778
2779 POSTING_READ(reg);
2780 udelay(200);
2781
2782 /* Enable CPU FDI TX PLL, always on for Ironlake */
2783 reg = FDI_TX_CTL(pipe);
2784 temp = I915_READ(reg);
2785 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2786 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2787
2788 POSTING_READ(reg);
2789 udelay(100);
2790 }
2791 }
2792
2793 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2794 {
2795 struct drm_device *dev = intel_crtc->base.dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 int pipe = intel_crtc->pipe;
2798 u32 reg, temp;
2799
2800 /* Switch from PCDclk to Rawclk */
2801 reg = FDI_RX_CTL(pipe);
2802 temp = I915_READ(reg);
2803 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2804
2805 /* Disable CPU FDI TX PLL */
2806 reg = FDI_TX_CTL(pipe);
2807 temp = I915_READ(reg);
2808 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2809
2810 POSTING_READ(reg);
2811 udelay(100);
2812
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2816
2817 /* Wait for the clocks to turn off. */
2818 POSTING_READ(reg);
2819 udelay(100);
2820 }
2821
2822 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2823 {
2824 struct drm_device *dev = crtc->dev;
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2827 int pipe = intel_crtc->pipe;
2828 u32 reg, temp;
2829
2830 /* disable CPU FDI tx and PCH FDI rx */
2831 reg = FDI_TX_CTL(pipe);
2832 temp = I915_READ(reg);
2833 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2834 POSTING_READ(reg);
2835
2836 reg = FDI_RX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 temp &= ~(0x7 << 16);
2839 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2840 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2841
2842 POSTING_READ(reg);
2843 udelay(100);
2844
2845 /* Ironlake workaround, disable clock pointer after downing FDI */
2846 if (HAS_PCH_IBX(dev)) {
2847 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2848 }
2849
2850 /* still set train pattern 1 */
2851 reg = FDI_TX_CTL(pipe);
2852 temp = I915_READ(reg);
2853 temp &= ~FDI_LINK_TRAIN_NONE;
2854 temp |= FDI_LINK_TRAIN_PATTERN_1;
2855 I915_WRITE(reg, temp);
2856
2857 reg = FDI_RX_CTL(pipe);
2858 temp = I915_READ(reg);
2859 if (HAS_PCH_CPT(dev)) {
2860 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2861 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2862 } else {
2863 temp &= ~FDI_LINK_TRAIN_NONE;
2864 temp |= FDI_LINK_TRAIN_PATTERN_1;
2865 }
2866 /* BPC in FDI rx is consistent with that in PIPECONF */
2867 temp &= ~(0x07 << 16);
2868 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2869 I915_WRITE(reg, temp);
2870
2871 POSTING_READ(reg);
2872 udelay(100);
2873 }
2874
2875 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2876 {
2877 struct drm_device *dev = crtc->dev;
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880 unsigned long flags;
2881 bool pending;
2882
2883 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2884 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2885 return false;
2886
2887 spin_lock_irqsave(&dev->event_lock, flags);
2888 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2889 spin_unlock_irqrestore(&dev->event_lock, flags);
2890
2891 return pending;
2892 }
2893
2894 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2895 {
2896 struct drm_device *dev = crtc->dev;
2897 struct drm_i915_private *dev_priv = dev->dev_private;
2898
2899 if (crtc->fb == NULL)
2900 return;
2901
2902 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2903
2904 wait_event(dev_priv->pending_flip_queue,
2905 !intel_crtc_has_pending_flip(crtc));
2906
2907 mutex_lock(&dev->struct_mutex);
2908 intel_finish_fb(crtc->fb);
2909 mutex_unlock(&dev->struct_mutex);
2910 }
2911
2912 /* Program iCLKIP clock to the desired frequency */
2913 static void lpt_program_iclkip(struct drm_crtc *crtc)
2914 {
2915 struct drm_device *dev = crtc->dev;
2916 struct drm_i915_private *dev_priv = dev->dev_private;
2917 int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2918 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2919 u32 temp;
2920
2921 mutex_lock(&dev_priv->dpio_lock);
2922
2923 /* It is necessary to ungate the pixclk gate prior to programming
2924 * the divisors, and gate it back when it is done.
2925 */
2926 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2927
2928 /* Disable SSCCTL */
2929 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2930 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2931 SBI_SSCCTL_DISABLE,
2932 SBI_ICLK);
2933
2934 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2935 if (clock == 20000) {
2936 auxdiv = 1;
2937 divsel = 0x41;
2938 phaseinc = 0x20;
2939 } else {
2940 /* The iCLK virtual clock root frequency is in MHz,
2941 * but the adjusted_mode->clock in in KHz. To get the divisors,
2942 * it is necessary to divide one by another, so we
2943 * convert the virtual clock precision to KHz here for higher
2944 * precision.
2945 */
2946 u32 iclk_virtual_root_freq = 172800 * 1000;
2947 u32 iclk_pi_range = 64;
2948 u32 desired_divisor, msb_divisor_value, pi_value;
2949
2950 desired_divisor = (iclk_virtual_root_freq / clock);
2951 msb_divisor_value = desired_divisor / iclk_pi_range;
2952 pi_value = desired_divisor % iclk_pi_range;
2953
2954 auxdiv = 0;
2955 divsel = msb_divisor_value - 2;
2956 phaseinc = pi_value;
2957 }
2958
2959 /* This should not happen with any sane values */
2960 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2961 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2962 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2963 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2964
2965 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2966 clock,
2967 auxdiv,
2968 divsel,
2969 phasedir,
2970 phaseinc);
2971
2972 /* Program SSCDIVINTPHASE6 */
2973 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2974 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2975 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2976 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2977 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2978 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2979 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2980 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2981
2982 /* Program SSCAUXDIV */
2983 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2984 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2985 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2986 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2987
2988 /* Enable modulator and associated divider */
2989 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2990 temp &= ~SBI_SSCCTL_DISABLE;
2991 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2992
2993 /* Wait for initialization time */
2994 udelay(24);
2995
2996 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2997
2998 mutex_unlock(&dev_priv->dpio_lock);
2999 }
3000
3001 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3002 enum pipe pch_transcoder)
3003 {
3004 struct drm_device *dev = crtc->base.dev;
3005 struct drm_i915_private *dev_priv = dev->dev_private;
3006 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3007
3008 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3009 I915_READ(HTOTAL(cpu_transcoder)));
3010 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3011 I915_READ(HBLANK(cpu_transcoder)));
3012 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3013 I915_READ(HSYNC(cpu_transcoder)));
3014
3015 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3016 I915_READ(VTOTAL(cpu_transcoder)));
3017 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3018 I915_READ(VBLANK(cpu_transcoder)));
3019 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3020 I915_READ(VSYNC(cpu_transcoder)));
3021 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3022 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3023 }
3024
3025 /*
3026 * Enable PCH resources required for PCH ports:
3027 * - PCH PLLs
3028 * - FDI training & RX/TX
3029 * - update transcoder timings
3030 * - DP transcoding bits
3031 * - transcoder
3032 */
3033 static void ironlake_pch_enable(struct drm_crtc *crtc)
3034 {
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038 int pipe = intel_crtc->pipe;
3039 u32 reg, temp;
3040
3041 assert_pch_transcoder_disabled(dev_priv, pipe);
3042
3043 /* Write the TU size bits before fdi link training, so that error
3044 * detection works. */
3045 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3046 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3047
3048 /* For PCH output, training FDI link */
3049 dev_priv->display.fdi_link_train(crtc);
3050
3051 /* We need to program the right clock selection before writing the pixel
3052 * mutliplier into the DPLL. */
3053 if (HAS_PCH_CPT(dev)) {
3054 u32 sel;
3055
3056 temp = I915_READ(PCH_DPLL_SEL);
3057 temp |= TRANS_DPLL_ENABLE(pipe);
3058 sel = TRANS_DPLLB_SEL(pipe);
3059 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3060 temp |= sel;
3061 else
3062 temp &= ~sel;
3063 I915_WRITE(PCH_DPLL_SEL, temp);
3064 }
3065
3066 /* XXX: pch pll's can be enabled any time before we enable the PCH
3067 * transcoder, and we actually should do this to not upset any PCH
3068 * transcoder that already use the clock when we share it.
3069 *
3070 * Note that enable_shared_dpll tries to do the right thing, but
3071 * get_shared_dpll unconditionally resets the pll - we need that to have
3072 * the right LVDS enable sequence. */
3073 ironlake_enable_shared_dpll(intel_crtc);
3074
3075 /* set transcoder timing, panel must allow it */
3076 assert_panel_unlocked(dev_priv, pipe);
3077 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3078
3079 intel_fdi_normal_train(crtc);
3080
3081 /* For PCH DP, enable TRANS_DP_CTL */
3082 if (HAS_PCH_CPT(dev) &&
3083 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3084 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3085 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3086 reg = TRANS_DP_CTL(pipe);
3087 temp = I915_READ(reg);
3088 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3089 TRANS_DP_SYNC_MASK |
3090 TRANS_DP_BPC_MASK);
3091 temp |= (TRANS_DP_OUTPUT_ENABLE |
3092 TRANS_DP_ENH_FRAMING);
3093 temp |= bpc << 9; /* same format but at 11:9 */
3094
3095 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3096 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3097 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3098 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3099
3100 switch (intel_trans_dp_port_sel(crtc)) {
3101 case PCH_DP_B:
3102 temp |= TRANS_DP_PORT_SEL_B;
3103 break;
3104 case PCH_DP_C:
3105 temp |= TRANS_DP_PORT_SEL_C;
3106 break;
3107 case PCH_DP_D:
3108 temp |= TRANS_DP_PORT_SEL_D;
3109 break;
3110 default:
3111 BUG();
3112 }
3113
3114 I915_WRITE(reg, temp);
3115 }
3116
3117 ironlake_enable_pch_transcoder(dev_priv, pipe);
3118 }
3119
3120 static void lpt_pch_enable(struct drm_crtc *crtc)
3121 {
3122 struct drm_device *dev = crtc->dev;
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3126
3127 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3128
3129 lpt_program_iclkip(crtc);
3130
3131 /* Set transcoder timing. */
3132 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3133
3134 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3135 }
3136
3137 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3138 {
3139 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3140
3141 if (pll == NULL)
3142 return;
3143
3144 if (pll->refcount == 0) {
3145 WARN(1, "bad %s refcount\n", pll->name);
3146 return;
3147 }
3148
3149 if (--pll->refcount == 0) {
3150 WARN_ON(pll->on);
3151 WARN_ON(pll->active);
3152 }
3153
3154 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3155 }
3156
3157 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3158 {
3159 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3160 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3161 enum intel_dpll_id i;
3162
3163 if (pll) {
3164 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3165 crtc->base.base.id, pll->name);
3166 intel_put_shared_dpll(crtc);
3167 }
3168
3169 if (HAS_PCH_IBX(dev_priv->dev)) {
3170 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3171 i = (enum intel_dpll_id) crtc->pipe;
3172 pll = &dev_priv->shared_dplls[i];
3173
3174 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3175 crtc->base.base.id, pll->name);
3176
3177 goto found;
3178 }
3179
3180 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3181 pll = &dev_priv->shared_dplls[i];
3182
3183 /* Only want to check enabled timings first */
3184 if (pll->refcount == 0)
3185 continue;
3186
3187 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3188 sizeof(pll->hw_state)) == 0) {
3189 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3190 crtc->base.base.id,
3191 pll->name, pll->refcount, pll->active);
3192
3193 goto found;
3194 }
3195 }
3196
3197 /* Ok no matching timings, maybe there's a free one? */
3198 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3199 pll = &dev_priv->shared_dplls[i];
3200 if (pll->refcount == 0) {
3201 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3202 crtc->base.base.id, pll->name);
3203 goto found;
3204 }
3205 }
3206
3207 return NULL;
3208
3209 found:
3210 crtc->config.shared_dpll = i;
3211 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3212 pipe_name(crtc->pipe));
3213
3214 if (pll->active == 0) {
3215 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3216 sizeof(pll->hw_state));
3217
3218 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3219 WARN_ON(pll->on);
3220 assert_shared_dpll_disabled(dev_priv, pll);
3221
3222 pll->mode_set(dev_priv, pll);
3223 }
3224 pll->refcount++;
3225
3226 return pll;
3227 }
3228
3229 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3230 {
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 int dslreg = PIPEDSL(pipe);
3233 u32 temp;
3234
3235 temp = I915_READ(dslreg);
3236 udelay(500);
3237 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3238 if (wait_for(I915_READ(dslreg) != temp, 5))
3239 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3240 }
3241 }
3242
3243 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3244 {
3245 struct drm_device *dev = crtc->base.dev;
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 int pipe = crtc->pipe;
3248
3249 if (crtc->config.pch_pfit.size) {
3250 /* Force use of hard-coded filter coefficients
3251 * as some pre-programmed values are broken,
3252 * e.g. x201.
3253 */
3254 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3255 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3256 PF_PIPE_SEL_IVB(pipe));
3257 else
3258 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3259 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3260 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3261 }
3262 }
3263
3264 static void intel_enable_planes(struct drm_crtc *crtc)
3265 {
3266 struct drm_device *dev = crtc->dev;
3267 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3268 struct intel_plane *intel_plane;
3269
3270 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3271 if (intel_plane->pipe == pipe)
3272 intel_plane_restore(&intel_plane->base);
3273 }
3274
3275 static void intel_disable_planes(struct drm_crtc *crtc)
3276 {
3277 struct drm_device *dev = crtc->dev;
3278 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3279 struct intel_plane *intel_plane;
3280
3281 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3282 if (intel_plane->pipe == pipe)
3283 intel_plane_disable(&intel_plane->base);
3284 }
3285
3286 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3287 {
3288 struct drm_device *dev = crtc->dev;
3289 struct drm_i915_private *dev_priv = dev->dev_private;
3290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3291 struct intel_encoder *encoder;
3292 int pipe = intel_crtc->pipe;
3293 int plane = intel_crtc->plane;
3294
3295 WARN_ON(!crtc->enabled);
3296
3297 if (intel_crtc->active)
3298 return;
3299
3300 intel_crtc->active = true;
3301
3302 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3303 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3304
3305 for_each_encoder_on_crtc(dev, crtc, encoder)
3306 if (encoder->pre_enable)
3307 encoder->pre_enable(encoder);
3308
3309 if (intel_crtc->config.has_pch_encoder) {
3310 /* Note: FDI PLL enabling _must_ be done before we enable the
3311 * cpu pipes, hence this is separate from all the other fdi/pch
3312 * enabling. */
3313 ironlake_fdi_pll_enable(intel_crtc);
3314 } else {
3315 assert_fdi_tx_disabled(dev_priv, pipe);
3316 assert_fdi_rx_disabled(dev_priv, pipe);
3317 }
3318
3319 ironlake_pfit_enable(intel_crtc);
3320
3321 /*
3322 * On ILK+ LUT must be loaded before the pipe is running but with
3323 * clocks enabled
3324 */
3325 intel_crtc_load_lut(crtc);
3326
3327 intel_update_watermarks(crtc);
3328 intel_enable_pipe(dev_priv, pipe,
3329 intel_crtc->config.has_pch_encoder, false);
3330 intel_enable_plane(dev_priv, plane, pipe);
3331 intel_enable_planes(crtc);
3332 intel_crtc_update_cursor(crtc, true);
3333
3334 if (intel_crtc->config.has_pch_encoder)
3335 ironlake_pch_enable(crtc);
3336
3337 mutex_lock(&dev->struct_mutex);
3338 intel_update_fbc(dev);
3339 mutex_unlock(&dev->struct_mutex);
3340
3341 for_each_encoder_on_crtc(dev, crtc, encoder)
3342 encoder->enable(encoder);
3343
3344 if (HAS_PCH_CPT(dev))
3345 cpt_verify_modeset(dev, intel_crtc->pipe);
3346
3347 /*
3348 * There seems to be a race in PCH platform hw (at least on some
3349 * outputs) where an enabled pipe still completes any pageflip right
3350 * away (as if the pipe is off) instead of waiting for vblank. As soon
3351 * as the first vblank happend, everything works as expected. Hence just
3352 * wait for one vblank before returning to avoid strange things
3353 * happening.
3354 */
3355 intel_wait_for_vblank(dev, intel_crtc->pipe);
3356 }
3357
3358 /* IPS only exists on ULT machines and is tied to pipe A. */
3359 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3360 {
3361 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3362 }
3363
3364 static void hsw_enable_ips(struct intel_crtc *crtc)
3365 {
3366 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3367
3368 if (!crtc->config.ips_enabled)
3369 return;
3370
3371 /* We can only enable IPS after we enable a plane and wait for a vblank.
3372 * We guarantee that the plane is enabled by calling intel_enable_ips
3373 * only after intel_enable_plane. And intel_enable_plane already waits
3374 * for a vblank, so all we need to do here is to enable the IPS bit. */
3375 assert_plane_enabled(dev_priv, crtc->plane);
3376 I915_WRITE(IPS_CTL, IPS_ENABLE);
3377 }
3378
3379 static void hsw_disable_ips(struct intel_crtc *crtc)
3380 {
3381 struct drm_device *dev = crtc->base.dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384 if (!crtc->config.ips_enabled)
3385 return;
3386
3387 assert_plane_enabled(dev_priv, crtc->plane);
3388 I915_WRITE(IPS_CTL, 0);
3389
3390 /* We need to wait for a vblank before we can disable the plane. */
3391 intel_wait_for_vblank(dev, crtc->pipe);
3392 }
3393
3394 static void haswell_crtc_enable(struct drm_crtc *crtc)
3395 {
3396 struct drm_device *dev = crtc->dev;
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399 struct intel_encoder *encoder;
3400 int pipe = intel_crtc->pipe;
3401 int plane = intel_crtc->plane;
3402
3403 WARN_ON(!crtc->enabled);
3404
3405 if (intel_crtc->active)
3406 return;
3407
3408 intel_crtc->active = true;
3409
3410 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3411 if (intel_crtc->config.has_pch_encoder)
3412 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3413
3414 if (intel_crtc->config.has_pch_encoder)
3415 dev_priv->display.fdi_link_train(crtc);
3416
3417 for_each_encoder_on_crtc(dev, crtc, encoder)
3418 if (encoder->pre_enable)
3419 encoder->pre_enable(encoder);
3420
3421 intel_ddi_enable_pipe_clock(intel_crtc);
3422
3423 ironlake_pfit_enable(intel_crtc);
3424
3425 /*
3426 * On ILK+ LUT must be loaded before the pipe is running but with
3427 * clocks enabled
3428 */
3429 intel_crtc_load_lut(crtc);
3430
3431 intel_ddi_set_pipe_settings(crtc);
3432 intel_ddi_enable_transcoder_func(crtc);
3433
3434 intel_update_watermarks(crtc);
3435 intel_enable_pipe(dev_priv, pipe,
3436 intel_crtc->config.has_pch_encoder, false);
3437 intel_enable_plane(dev_priv, plane, pipe);
3438 intel_enable_planes(crtc);
3439 intel_crtc_update_cursor(crtc, true);
3440
3441 hsw_enable_ips(intel_crtc);
3442
3443 if (intel_crtc->config.has_pch_encoder)
3444 lpt_pch_enable(crtc);
3445
3446 mutex_lock(&dev->struct_mutex);
3447 intel_update_fbc(dev);
3448 mutex_unlock(&dev->struct_mutex);
3449
3450 for_each_encoder_on_crtc(dev, crtc, encoder) {
3451 encoder->enable(encoder);
3452 intel_opregion_notify_encoder(encoder, true);
3453 }
3454
3455 /*
3456 * There seems to be a race in PCH platform hw (at least on some
3457 * outputs) where an enabled pipe still completes any pageflip right
3458 * away (as if the pipe is off) instead of waiting for vblank. As soon
3459 * as the first vblank happend, everything works as expected. Hence just
3460 * wait for one vblank before returning to avoid strange things
3461 * happening.
3462 */
3463 intel_wait_for_vblank(dev, intel_crtc->pipe);
3464 }
3465
3466 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3467 {
3468 struct drm_device *dev = crtc->base.dev;
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 int pipe = crtc->pipe;
3471
3472 /* To avoid upsetting the power well on haswell only disable the pfit if
3473 * it's in use. The hw state code will make sure we get this right. */
3474 if (crtc->config.pch_pfit.size) {
3475 I915_WRITE(PF_CTL(pipe), 0);
3476 I915_WRITE(PF_WIN_POS(pipe), 0);
3477 I915_WRITE(PF_WIN_SZ(pipe), 0);
3478 }
3479 }
3480
3481 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3482 {
3483 struct drm_device *dev = crtc->dev;
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3486 struct intel_encoder *encoder;
3487 int pipe = intel_crtc->pipe;
3488 int plane = intel_crtc->plane;
3489 u32 reg, temp;
3490
3491
3492 if (!intel_crtc->active)
3493 return;
3494
3495 for_each_encoder_on_crtc(dev, crtc, encoder)
3496 encoder->disable(encoder);
3497
3498 intel_crtc_wait_for_pending_flips(crtc);
3499 drm_vblank_off(dev, pipe);
3500
3501 if (dev_priv->fbc.plane == plane)
3502 intel_disable_fbc(dev);
3503
3504 intel_crtc_update_cursor(crtc, false);
3505 intel_disable_planes(crtc);
3506 intel_disable_plane(dev_priv, plane, pipe);
3507
3508 if (intel_crtc->config.has_pch_encoder)
3509 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3510
3511 intel_disable_pipe(dev_priv, pipe);
3512
3513 ironlake_pfit_disable(intel_crtc);
3514
3515 for_each_encoder_on_crtc(dev, crtc, encoder)
3516 if (encoder->post_disable)
3517 encoder->post_disable(encoder);
3518
3519 if (intel_crtc->config.has_pch_encoder) {
3520 ironlake_fdi_disable(crtc);
3521
3522 ironlake_disable_pch_transcoder(dev_priv, pipe);
3523 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3524
3525 if (HAS_PCH_CPT(dev)) {
3526 /* disable TRANS_DP_CTL */
3527 reg = TRANS_DP_CTL(pipe);
3528 temp = I915_READ(reg);
3529 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3530 TRANS_DP_PORT_SEL_MASK);
3531 temp |= TRANS_DP_PORT_SEL_NONE;
3532 I915_WRITE(reg, temp);
3533
3534 /* disable DPLL_SEL */
3535 temp = I915_READ(PCH_DPLL_SEL);
3536 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3537 I915_WRITE(PCH_DPLL_SEL, temp);
3538 }
3539
3540 /* disable PCH DPLL */
3541 intel_disable_shared_dpll(intel_crtc);
3542
3543 ironlake_fdi_pll_disable(intel_crtc);
3544 }
3545
3546 intel_crtc->active = false;
3547 intel_update_watermarks(crtc);
3548
3549 mutex_lock(&dev->struct_mutex);
3550 intel_update_fbc(dev);
3551 mutex_unlock(&dev->struct_mutex);
3552 }
3553
3554 static void haswell_crtc_disable(struct drm_crtc *crtc)
3555 {
3556 struct drm_device *dev = crtc->dev;
3557 struct drm_i915_private *dev_priv = dev->dev_private;
3558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559 struct intel_encoder *encoder;
3560 int pipe = intel_crtc->pipe;
3561 int plane = intel_crtc->plane;
3562 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3563
3564 if (!intel_crtc->active)
3565 return;
3566
3567 for_each_encoder_on_crtc(dev, crtc, encoder) {
3568 intel_opregion_notify_encoder(encoder, false);
3569 encoder->disable(encoder);
3570 }
3571
3572 intel_crtc_wait_for_pending_flips(crtc);
3573 drm_vblank_off(dev, pipe);
3574
3575 /* FBC must be disabled before disabling the plane on HSW. */
3576 if (dev_priv->fbc.plane == plane)
3577 intel_disable_fbc(dev);
3578
3579 hsw_disable_ips(intel_crtc);
3580
3581 intel_crtc_update_cursor(crtc, false);
3582 intel_disable_planes(crtc);
3583 intel_disable_plane(dev_priv, plane, pipe);
3584
3585 if (intel_crtc->config.has_pch_encoder)
3586 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3587 intel_disable_pipe(dev_priv, pipe);
3588
3589 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3590
3591 ironlake_pfit_disable(intel_crtc);
3592
3593 intel_ddi_disable_pipe_clock(intel_crtc);
3594
3595 for_each_encoder_on_crtc(dev, crtc, encoder)
3596 if (encoder->post_disable)
3597 encoder->post_disable(encoder);
3598
3599 if (intel_crtc->config.has_pch_encoder) {
3600 lpt_disable_pch_transcoder(dev_priv);
3601 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3602 intel_ddi_fdi_disable(crtc);
3603 }
3604
3605 intel_crtc->active = false;
3606 intel_update_watermarks(crtc);
3607
3608 mutex_lock(&dev->struct_mutex);
3609 intel_update_fbc(dev);
3610 mutex_unlock(&dev->struct_mutex);
3611 }
3612
3613 static void ironlake_crtc_off(struct drm_crtc *crtc)
3614 {
3615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616 intel_put_shared_dpll(intel_crtc);
3617 }
3618
3619 static void haswell_crtc_off(struct drm_crtc *crtc)
3620 {
3621 intel_ddi_put_crtc_pll(crtc);
3622 }
3623
3624 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3625 {
3626 if (!enable && intel_crtc->overlay) {
3627 struct drm_device *dev = intel_crtc->base.dev;
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629
3630 mutex_lock(&dev->struct_mutex);
3631 dev_priv->mm.interruptible = false;
3632 (void) intel_overlay_switch_off(intel_crtc->overlay);
3633 dev_priv->mm.interruptible = true;
3634 mutex_unlock(&dev->struct_mutex);
3635 }
3636
3637 /* Let userspace switch the overlay on again. In most cases userspace
3638 * has to recompute where to put it anyway.
3639 */
3640 }
3641
3642 /**
3643 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3644 * cursor plane briefly if not already running after enabling the display
3645 * plane.
3646 * This workaround avoids occasional blank screens when self refresh is
3647 * enabled.
3648 */
3649 static void
3650 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3651 {
3652 u32 cntl = I915_READ(CURCNTR(pipe));
3653
3654 if ((cntl & CURSOR_MODE) == 0) {
3655 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3656
3657 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3658 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3659 intel_wait_for_vblank(dev_priv->dev, pipe);
3660 I915_WRITE(CURCNTR(pipe), cntl);
3661 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3662 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3663 }
3664 }
3665
3666 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3667 {
3668 struct drm_device *dev = crtc->base.dev;
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3670 struct intel_crtc_config *pipe_config = &crtc->config;
3671
3672 if (!crtc->config.gmch_pfit.control)
3673 return;
3674
3675 /*
3676 * The panel fitter should only be adjusted whilst the pipe is disabled,
3677 * according to register description and PRM.
3678 */
3679 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3680 assert_pipe_disabled(dev_priv, crtc->pipe);
3681
3682 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3683 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3684
3685 /* Border color in case we don't scale up to the full screen. Black by
3686 * default, change to something else for debugging. */
3687 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3688 }
3689
3690 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3691 {
3692 struct drm_device *dev = crtc->dev;
3693 struct drm_i915_private *dev_priv = dev->dev_private;
3694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695 struct intel_encoder *encoder;
3696 int pipe = intel_crtc->pipe;
3697 int plane = intel_crtc->plane;
3698 bool is_dsi;
3699
3700 WARN_ON(!crtc->enabled);
3701
3702 if (intel_crtc->active)
3703 return;
3704
3705 intel_crtc->active = true;
3706
3707 for_each_encoder_on_crtc(dev, crtc, encoder)
3708 if (encoder->pre_pll_enable)
3709 encoder->pre_pll_enable(encoder);
3710
3711 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3712
3713 if (!is_dsi)
3714 vlv_enable_pll(intel_crtc);
3715
3716 for_each_encoder_on_crtc(dev, crtc, encoder)
3717 if (encoder->pre_enable)
3718 encoder->pre_enable(encoder);
3719
3720 i9xx_pfit_enable(intel_crtc);
3721
3722 intel_crtc_load_lut(crtc);
3723
3724 intel_update_watermarks(crtc);
3725 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3726 intel_enable_plane(dev_priv, plane, pipe);
3727 intel_enable_planes(crtc);
3728 intel_crtc_update_cursor(crtc, true);
3729
3730 intel_update_fbc(dev);
3731
3732 for_each_encoder_on_crtc(dev, crtc, encoder)
3733 encoder->enable(encoder);
3734 }
3735
3736 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3737 {
3738 struct drm_device *dev = crtc->dev;
3739 struct drm_i915_private *dev_priv = dev->dev_private;
3740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741 struct intel_encoder *encoder;
3742 int pipe = intel_crtc->pipe;
3743 int plane = intel_crtc->plane;
3744
3745 WARN_ON(!crtc->enabled);
3746
3747 if (intel_crtc->active)
3748 return;
3749
3750 intel_crtc->active = true;
3751
3752 for_each_encoder_on_crtc(dev, crtc, encoder)
3753 if (encoder->pre_enable)
3754 encoder->pre_enable(encoder);
3755
3756 i9xx_enable_pll(intel_crtc);
3757
3758 i9xx_pfit_enable(intel_crtc);
3759
3760 intel_crtc_load_lut(crtc);
3761
3762 intel_update_watermarks(crtc);
3763 intel_enable_pipe(dev_priv, pipe, false, false);
3764 intel_enable_plane(dev_priv, plane, pipe);
3765 intel_enable_planes(crtc);
3766 /* The fixup needs to happen before cursor is enabled */
3767 if (IS_G4X(dev))
3768 g4x_fixup_plane(dev_priv, pipe);
3769 intel_crtc_update_cursor(crtc, true);
3770
3771 /* Give the overlay scaler a chance to enable if it's on this pipe */
3772 intel_crtc_dpms_overlay(intel_crtc, true);
3773
3774 intel_update_fbc(dev);
3775
3776 for_each_encoder_on_crtc(dev, crtc, encoder)
3777 encoder->enable(encoder);
3778 }
3779
3780 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3781 {
3782 struct drm_device *dev = crtc->base.dev;
3783 struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785 if (!crtc->config.gmch_pfit.control)
3786 return;
3787
3788 assert_pipe_disabled(dev_priv, crtc->pipe);
3789
3790 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3791 I915_READ(PFIT_CONTROL));
3792 I915_WRITE(PFIT_CONTROL, 0);
3793 }
3794
3795 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3796 {
3797 struct drm_device *dev = crtc->dev;
3798 struct drm_i915_private *dev_priv = dev->dev_private;
3799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3800 struct intel_encoder *encoder;
3801 int pipe = intel_crtc->pipe;
3802 int plane = intel_crtc->plane;
3803
3804 if (!intel_crtc->active)
3805 return;
3806
3807 for_each_encoder_on_crtc(dev, crtc, encoder)
3808 encoder->disable(encoder);
3809
3810 /* Give the overlay scaler a chance to disable if it's on this pipe */
3811 intel_crtc_wait_for_pending_flips(crtc);
3812 drm_vblank_off(dev, pipe);
3813
3814 if (dev_priv->fbc.plane == plane)
3815 intel_disable_fbc(dev);
3816
3817 intel_crtc_dpms_overlay(intel_crtc, false);
3818 intel_crtc_update_cursor(crtc, false);
3819 intel_disable_planes(crtc);
3820 intel_disable_plane(dev_priv, plane, pipe);
3821
3822 intel_disable_pipe(dev_priv, pipe);
3823
3824 i9xx_pfit_disable(intel_crtc);
3825
3826 for_each_encoder_on_crtc(dev, crtc, encoder)
3827 if (encoder->post_disable)
3828 encoder->post_disable(encoder);
3829
3830 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3831 i9xx_disable_pll(dev_priv, pipe);
3832
3833 intel_crtc->active = false;
3834 intel_update_watermarks(crtc);
3835
3836 intel_update_fbc(dev);
3837 }
3838
3839 static void i9xx_crtc_off(struct drm_crtc *crtc)
3840 {
3841 }
3842
3843 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3844 bool enabled)
3845 {
3846 struct drm_device *dev = crtc->dev;
3847 struct drm_i915_master_private *master_priv;
3848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849 int pipe = intel_crtc->pipe;
3850
3851 if (!dev->primary->master)
3852 return;
3853
3854 master_priv = dev->primary->master->driver_priv;
3855 if (!master_priv->sarea_priv)
3856 return;
3857
3858 switch (pipe) {
3859 case 0:
3860 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3861 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3862 break;
3863 case 1:
3864 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3865 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3866 break;
3867 default:
3868 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3869 break;
3870 }
3871 }
3872
3873 /**
3874 * Sets the power management mode of the pipe and plane.
3875 */
3876 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3877 {
3878 struct drm_device *dev = crtc->dev;
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880 struct intel_encoder *intel_encoder;
3881 bool enable = false;
3882
3883 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3884 enable |= intel_encoder->connectors_active;
3885
3886 if (enable)
3887 dev_priv->display.crtc_enable(crtc);
3888 else
3889 dev_priv->display.crtc_disable(crtc);
3890
3891 intel_crtc_update_sarea(crtc, enable);
3892 }
3893
3894 static void intel_crtc_disable(struct drm_crtc *crtc)
3895 {
3896 struct drm_device *dev = crtc->dev;
3897 struct drm_connector *connector;
3898 struct drm_i915_private *dev_priv = dev->dev_private;
3899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3900
3901 /* crtc should still be enabled when we disable it. */
3902 WARN_ON(!crtc->enabled);
3903
3904 dev_priv->display.crtc_disable(crtc);
3905 intel_crtc->eld_vld = false;
3906 intel_crtc_update_sarea(crtc, false);
3907 dev_priv->display.off(crtc);
3908
3909 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3910 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3911 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3912
3913 if (crtc->fb) {
3914 mutex_lock(&dev->struct_mutex);
3915 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3916 mutex_unlock(&dev->struct_mutex);
3917 crtc->fb = NULL;
3918 }
3919
3920 /* Update computed state. */
3921 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3922 if (!connector->encoder || !connector->encoder->crtc)
3923 continue;
3924
3925 if (connector->encoder->crtc != crtc)
3926 continue;
3927
3928 connector->dpms = DRM_MODE_DPMS_OFF;
3929 to_intel_encoder(connector->encoder)->connectors_active = false;
3930 }
3931 }
3932
3933 void intel_encoder_destroy(struct drm_encoder *encoder)
3934 {
3935 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3936
3937 drm_encoder_cleanup(encoder);
3938 kfree(intel_encoder);
3939 }
3940
3941 /* Simple dpms helper for encoders with just one connector, no cloning and only
3942 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3943 * state of the entire output pipe. */
3944 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3945 {
3946 if (mode == DRM_MODE_DPMS_ON) {
3947 encoder->connectors_active = true;
3948
3949 intel_crtc_update_dpms(encoder->base.crtc);
3950 } else {
3951 encoder->connectors_active = false;
3952
3953 intel_crtc_update_dpms(encoder->base.crtc);
3954 }
3955 }
3956
3957 /* Cross check the actual hw state with our own modeset state tracking (and it's
3958 * internal consistency). */
3959 static void intel_connector_check_state(struct intel_connector *connector)
3960 {
3961 if (connector->get_hw_state(connector)) {
3962 struct intel_encoder *encoder = connector->encoder;
3963 struct drm_crtc *crtc;
3964 bool encoder_enabled;
3965 enum pipe pipe;
3966
3967 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3968 connector->base.base.id,
3969 drm_get_connector_name(&connector->base));
3970
3971 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3972 "wrong connector dpms state\n");
3973 WARN(connector->base.encoder != &encoder->base,
3974 "active connector not linked to encoder\n");
3975 WARN(!encoder->connectors_active,
3976 "encoder->connectors_active not set\n");
3977
3978 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3979 WARN(!encoder_enabled, "encoder not enabled\n");
3980 if (WARN_ON(!encoder->base.crtc))
3981 return;
3982
3983 crtc = encoder->base.crtc;
3984
3985 WARN(!crtc->enabled, "crtc not enabled\n");
3986 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3987 WARN(pipe != to_intel_crtc(crtc)->pipe,
3988 "encoder active on the wrong pipe\n");
3989 }
3990 }
3991
3992 /* Even simpler default implementation, if there's really no special case to
3993 * consider. */
3994 void intel_connector_dpms(struct drm_connector *connector, int mode)
3995 {
3996 struct intel_encoder *encoder = intel_attached_encoder(connector);
3997
3998 /* All the simple cases only support two dpms states. */
3999 if (mode != DRM_MODE_DPMS_ON)
4000 mode = DRM_MODE_DPMS_OFF;
4001
4002 if (mode == connector->dpms)
4003 return;
4004
4005 connector->dpms = mode;
4006
4007 /* Only need to change hw state when actually enabled */
4008 if (encoder->base.crtc)
4009 intel_encoder_dpms(encoder, mode);
4010 else
4011 WARN_ON(encoder->connectors_active != false);
4012
4013 intel_modeset_check_state(connector->dev);
4014 }
4015
4016 /* Simple connector->get_hw_state implementation for encoders that support only
4017 * one connector and no cloning and hence the encoder state determines the state
4018 * of the connector. */
4019 bool intel_connector_get_hw_state(struct intel_connector *connector)
4020 {
4021 enum pipe pipe = 0;
4022 struct intel_encoder *encoder = connector->encoder;
4023
4024 return encoder->get_hw_state(encoder, &pipe);
4025 }
4026
4027 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4028 struct intel_crtc_config *pipe_config)
4029 {
4030 struct drm_i915_private *dev_priv = dev->dev_private;
4031 struct intel_crtc *pipe_B_crtc =
4032 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4033
4034 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4035 pipe_name(pipe), pipe_config->fdi_lanes);
4036 if (pipe_config->fdi_lanes > 4) {
4037 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4038 pipe_name(pipe), pipe_config->fdi_lanes);
4039 return false;
4040 }
4041
4042 if (IS_HASWELL(dev)) {
4043 if (pipe_config->fdi_lanes > 2) {
4044 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4045 pipe_config->fdi_lanes);
4046 return false;
4047 } else {
4048 return true;
4049 }
4050 }
4051
4052 if (INTEL_INFO(dev)->num_pipes == 2)
4053 return true;
4054
4055 /* Ivybridge 3 pipe is really complicated */
4056 switch (pipe) {
4057 case PIPE_A:
4058 return true;
4059 case PIPE_B:
4060 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4061 pipe_config->fdi_lanes > 2) {
4062 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4063 pipe_name(pipe), pipe_config->fdi_lanes);
4064 return false;
4065 }
4066 return true;
4067 case PIPE_C:
4068 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4069 pipe_B_crtc->config.fdi_lanes <= 2) {
4070 if (pipe_config->fdi_lanes > 2) {
4071 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4072 pipe_name(pipe), pipe_config->fdi_lanes);
4073 return false;
4074 }
4075 } else {
4076 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4077 return false;
4078 }
4079 return true;
4080 default:
4081 BUG();
4082 }
4083 }
4084
4085 #define RETRY 1
4086 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4087 struct intel_crtc_config *pipe_config)
4088 {
4089 struct drm_device *dev = intel_crtc->base.dev;
4090 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4091 int lane, link_bw, fdi_dotclock;
4092 bool setup_ok, needs_recompute = false;
4093
4094 retry:
4095 /* FDI is a binary signal running at ~2.7GHz, encoding
4096 * each output octet as 10 bits. The actual frequency
4097 * is stored as a divider into a 100MHz clock, and the
4098 * mode pixel clock is stored in units of 1KHz.
4099 * Hence the bw of each lane in terms of the mode signal
4100 * is:
4101 */
4102 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4103
4104 fdi_dotclock = adjusted_mode->clock;
4105
4106 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4107 pipe_config->pipe_bpp);
4108
4109 pipe_config->fdi_lanes = lane;
4110
4111 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4112 link_bw, &pipe_config->fdi_m_n);
4113
4114 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4115 intel_crtc->pipe, pipe_config);
4116 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4117 pipe_config->pipe_bpp -= 2*3;
4118 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4119 pipe_config->pipe_bpp);
4120 needs_recompute = true;
4121 pipe_config->bw_constrained = true;
4122
4123 goto retry;
4124 }
4125
4126 if (needs_recompute)
4127 return RETRY;
4128
4129 return setup_ok ? 0 : -EINVAL;
4130 }
4131
4132 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4133 struct intel_crtc_config *pipe_config)
4134 {
4135 pipe_config->ips_enabled = i915_enable_ips &&
4136 hsw_crtc_supports_ips(crtc) &&
4137 pipe_config->pipe_bpp <= 24;
4138 }
4139
4140 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4141 struct intel_crtc_config *pipe_config)
4142 {
4143 struct drm_device *dev = crtc->base.dev;
4144 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4145
4146 if (INTEL_INFO(dev)->gen < 4) {
4147 struct drm_i915_private *dev_priv = dev->dev_private;
4148 int clock_limit =
4149 dev_priv->display.get_display_clock_speed(dev);
4150
4151 /*
4152 * Enable pixel doubling when the dot clock
4153 * is > 90% of the (display) core speed.
4154 *
4155 * XXX: No double-wide on 915GM pipe B. Is that
4156 * the only reason for the pipe == PIPE_A check?
4157 */
4158 if (crtc->pipe == PIPE_A &&
4159 adjusted_mode->clock > clock_limit * 9 / 10)
4160 pipe_config->double_wide = true;
4161 }
4162
4163 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4164 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4165 */
4166 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4167 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4168 return -EINVAL;
4169
4170 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4171 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4172 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4173 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4174 * for lvds. */
4175 pipe_config->pipe_bpp = 8*3;
4176 }
4177
4178 if (HAS_IPS(dev))
4179 hsw_compute_ips_config(crtc, pipe_config);
4180
4181 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4182 * clock survives for now. */
4183 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4184 pipe_config->shared_dpll = crtc->config.shared_dpll;
4185
4186 if (pipe_config->has_pch_encoder)
4187 return ironlake_fdi_compute_config(crtc, pipe_config);
4188
4189 return 0;
4190 }
4191
4192 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4193 {
4194 return 400000; /* FIXME */
4195 }
4196
4197 static int i945_get_display_clock_speed(struct drm_device *dev)
4198 {
4199 return 400000;
4200 }
4201
4202 static int i915_get_display_clock_speed(struct drm_device *dev)
4203 {
4204 return 333000;
4205 }
4206
4207 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4208 {
4209 return 200000;
4210 }
4211
4212 static int pnv_get_display_clock_speed(struct drm_device *dev)
4213 {
4214 u16 gcfgc = 0;
4215
4216 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4217
4218 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4219 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4220 return 267000;
4221 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4222 return 333000;
4223 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4224 return 444000;
4225 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4226 return 200000;
4227 default:
4228 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4229 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4230 return 133000;
4231 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4232 return 167000;
4233 }
4234 }
4235
4236 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4237 {
4238 u16 gcfgc = 0;
4239
4240 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4241
4242 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4243 return 133000;
4244 else {
4245 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4246 case GC_DISPLAY_CLOCK_333_MHZ:
4247 return 333000;
4248 default:
4249 case GC_DISPLAY_CLOCK_190_200_MHZ:
4250 return 190000;
4251 }
4252 }
4253 }
4254
4255 static int i865_get_display_clock_speed(struct drm_device *dev)
4256 {
4257 return 266000;
4258 }
4259
4260 static int i855_get_display_clock_speed(struct drm_device *dev)
4261 {
4262 u16 hpllcc = 0;
4263 /* Assume that the hardware is in the high speed state. This
4264 * should be the default.
4265 */
4266 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4267 case GC_CLOCK_133_200:
4268 case GC_CLOCK_100_200:
4269 return 200000;
4270 case GC_CLOCK_166_250:
4271 return 250000;
4272 case GC_CLOCK_100_133:
4273 return 133000;
4274 }
4275
4276 /* Shouldn't happen */
4277 return 0;
4278 }
4279
4280 static int i830_get_display_clock_speed(struct drm_device *dev)
4281 {
4282 return 133000;
4283 }
4284
4285 static void
4286 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4287 {
4288 while (*num > DATA_LINK_M_N_MASK ||
4289 *den > DATA_LINK_M_N_MASK) {
4290 *num >>= 1;
4291 *den >>= 1;
4292 }
4293 }
4294
4295 static void compute_m_n(unsigned int m, unsigned int n,
4296 uint32_t *ret_m, uint32_t *ret_n)
4297 {
4298 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4299 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4300 intel_reduce_m_n_ratio(ret_m, ret_n);
4301 }
4302
4303 void
4304 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4305 int pixel_clock, int link_clock,
4306 struct intel_link_m_n *m_n)
4307 {
4308 m_n->tu = 64;
4309
4310 compute_m_n(bits_per_pixel * pixel_clock,
4311 link_clock * nlanes * 8,
4312 &m_n->gmch_m, &m_n->gmch_n);
4313
4314 compute_m_n(pixel_clock, link_clock,
4315 &m_n->link_m, &m_n->link_n);
4316 }
4317
4318 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4319 {
4320 if (i915_panel_use_ssc >= 0)
4321 return i915_panel_use_ssc != 0;
4322 return dev_priv->vbt.lvds_use_ssc
4323 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4324 }
4325
4326 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4327 {
4328 struct drm_device *dev = crtc->dev;
4329 struct drm_i915_private *dev_priv = dev->dev_private;
4330 int refclk;
4331
4332 if (IS_VALLEYVIEW(dev)) {
4333 refclk = 100000;
4334 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4335 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4336 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4337 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4338 refclk / 1000);
4339 } else if (!IS_GEN2(dev)) {
4340 refclk = 96000;
4341 } else {
4342 refclk = 48000;
4343 }
4344
4345 return refclk;
4346 }
4347
4348 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4349 {
4350 return (1 << dpll->n) << 16 | dpll->m2;
4351 }
4352
4353 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4354 {
4355 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4356 }
4357
4358 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4359 intel_clock_t *reduced_clock)
4360 {
4361 struct drm_device *dev = crtc->base.dev;
4362 struct drm_i915_private *dev_priv = dev->dev_private;
4363 int pipe = crtc->pipe;
4364 u32 fp, fp2 = 0;
4365
4366 if (IS_PINEVIEW(dev)) {
4367 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4368 if (reduced_clock)
4369 fp2 = pnv_dpll_compute_fp(reduced_clock);
4370 } else {
4371 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4372 if (reduced_clock)
4373 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4374 }
4375
4376 I915_WRITE(FP0(pipe), fp);
4377 crtc->config.dpll_hw_state.fp0 = fp;
4378
4379 crtc->lowfreq_avail = false;
4380 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4381 reduced_clock && i915_powersave) {
4382 I915_WRITE(FP1(pipe), fp2);
4383 crtc->config.dpll_hw_state.fp1 = fp2;
4384 crtc->lowfreq_avail = true;
4385 } else {
4386 I915_WRITE(FP1(pipe), fp);
4387 crtc->config.dpll_hw_state.fp1 = fp;
4388 }
4389 }
4390
4391 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4392 pipe)
4393 {
4394 u32 reg_val;
4395
4396 /*
4397 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4398 * and set it to a reasonable value instead.
4399 */
4400 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4401 reg_val &= 0xffffff00;
4402 reg_val |= 0x00000030;
4403 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4404
4405 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4406 reg_val &= 0x8cffffff;
4407 reg_val = 0x8c000000;
4408 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4409
4410 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4411 reg_val &= 0xffffff00;
4412 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4413
4414 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4415 reg_val &= 0x00ffffff;
4416 reg_val |= 0xb0000000;
4417 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4418 }
4419
4420 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4421 struct intel_link_m_n *m_n)
4422 {
4423 struct drm_device *dev = crtc->base.dev;
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425 int pipe = crtc->pipe;
4426
4427 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4428 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4429 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4430 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4431 }
4432
4433 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4434 struct intel_link_m_n *m_n)
4435 {
4436 struct drm_device *dev = crtc->base.dev;
4437 struct drm_i915_private *dev_priv = dev->dev_private;
4438 int pipe = crtc->pipe;
4439 enum transcoder transcoder = crtc->config.cpu_transcoder;
4440
4441 if (INTEL_INFO(dev)->gen >= 5) {
4442 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4443 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4444 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4445 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4446 } else {
4447 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4448 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4449 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4450 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4451 }
4452 }
4453
4454 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4455 {
4456 if (crtc->config.has_pch_encoder)
4457 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4458 else
4459 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4460 }
4461
4462 static void vlv_update_pll(struct intel_crtc *crtc)
4463 {
4464 struct drm_device *dev = crtc->base.dev;
4465 struct drm_i915_private *dev_priv = dev->dev_private;
4466 int pipe = crtc->pipe;
4467 u32 dpll, mdiv;
4468 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4469 u32 coreclk, reg_val, dpll_md;
4470
4471 mutex_lock(&dev_priv->dpio_lock);
4472
4473 bestn = crtc->config.dpll.n;
4474 bestm1 = crtc->config.dpll.m1;
4475 bestm2 = crtc->config.dpll.m2;
4476 bestp1 = crtc->config.dpll.p1;
4477 bestp2 = crtc->config.dpll.p2;
4478
4479 /* See eDP HDMI DPIO driver vbios notes doc */
4480
4481 /* PLL B needs special handling */
4482 if (pipe)
4483 vlv_pllb_recal_opamp(dev_priv, pipe);
4484
4485 /* Set up Tx target for periodic Rcomp update */
4486 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4487
4488 /* Disable target IRef on PLL */
4489 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4490 reg_val &= 0x00ffffff;
4491 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4492
4493 /* Disable fast lock */
4494 vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4495
4496 /* Set idtafcrecal before PLL is enabled */
4497 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4498 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4499 mdiv |= ((bestn << DPIO_N_SHIFT));
4500 mdiv |= (1 << DPIO_K_SHIFT);
4501
4502 /*
4503 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4504 * but we don't support that).
4505 * Note: don't use the DAC post divider as it seems unstable.
4506 */
4507 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4508 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4509
4510 mdiv |= DPIO_ENABLE_CALIBRATION;
4511 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4512
4513 /* Set HBR and RBR LPF coefficients */
4514 if (crtc->config.port_clock == 162000 ||
4515 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4516 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4517 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4518 0x009f0003);
4519 else
4520 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4521 0x00d0000f);
4522
4523 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4524 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4525 /* Use SSC source */
4526 if (!pipe)
4527 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4528 0x0df40000);
4529 else
4530 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4531 0x0df70000);
4532 } else { /* HDMI or VGA */
4533 /* Use bend source */
4534 if (!pipe)
4535 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4536 0x0df70000);
4537 else
4538 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4539 0x0df40000);
4540 }
4541
4542 coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4543 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4544 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4545 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4546 coreclk |= 0x01000000;
4547 vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4548
4549 vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4550
4551 /* Enable DPIO clock input */
4552 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4553 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4554 if (pipe)
4555 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4556
4557 dpll |= DPLL_VCO_ENABLE;
4558 crtc->config.dpll_hw_state.dpll = dpll;
4559
4560 dpll_md = (crtc->config.pixel_multiplier - 1)
4561 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4562 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4563
4564 if (crtc->config.has_dp_encoder)
4565 intel_dp_set_m_n(crtc);
4566
4567 mutex_unlock(&dev_priv->dpio_lock);
4568 }
4569
4570 static void i9xx_update_pll(struct intel_crtc *crtc,
4571 intel_clock_t *reduced_clock,
4572 int num_connectors)
4573 {
4574 struct drm_device *dev = crtc->base.dev;
4575 struct drm_i915_private *dev_priv = dev->dev_private;
4576 u32 dpll;
4577 bool is_sdvo;
4578 struct dpll *clock = &crtc->config.dpll;
4579
4580 i9xx_update_pll_dividers(crtc, reduced_clock);
4581
4582 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4583 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4584
4585 dpll = DPLL_VGA_MODE_DIS;
4586
4587 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4588 dpll |= DPLLB_MODE_LVDS;
4589 else
4590 dpll |= DPLLB_MODE_DAC_SERIAL;
4591
4592 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4593 dpll |= (crtc->config.pixel_multiplier - 1)
4594 << SDVO_MULTIPLIER_SHIFT_HIRES;
4595 }
4596
4597 if (is_sdvo)
4598 dpll |= DPLL_SDVO_HIGH_SPEED;
4599
4600 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4601 dpll |= DPLL_SDVO_HIGH_SPEED;
4602
4603 /* compute bitmask from p1 value */
4604 if (IS_PINEVIEW(dev))
4605 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4606 else {
4607 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4608 if (IS_G4X(dev) && reduced_clock)
4609 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4610 }
4611 switch (clock->p2) {
4612 case 5:
4613 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4614 break;
4615 case 7:
4616 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4617 break;
4618 case 10:
4619 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4620 break;
4621 case 14:
4622 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4623 break;
4624 }
4625 if (INTEL_INFO(dev)->gen >= 4)
4626 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4627
4628 if (crtc->config.sdvo_tv_clock)
4629 dpll |= PLL_REF_INPUT_TVCLKINBC;
4630 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4631 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4632 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4633 else
4634 dpll |= PLL_REF_INPUT_DREFCLK;
4635
4636 dpll |= DPLL_VCO_ENABLE;
4637 crtc->config.dpll_hw_state.dpll = dpll;
4638
4639 if (INTEL_INFO(dev)->gen >= 4) {
4640 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4641 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4642 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4643 }
4644
4645 if (crtc->config.has_dp_encoder)
4646 intel_dp_set_m_n(crtc);
4647 }
4648
4649 static void i8xx_update_pll(struct intel_crtc *crtc,
4650 intel_clock_t *reduced_clock,
4651 int num_connectors)
4652 {
4653 struct drm_device *dev = crtc->base.dev;
4654 struct drm_i915_private *dev_priv = dev->dev_private;
4655 u32 dpll;
4656 struct dpll *clock = &crtc->config.dpll;
4657
4658 i9xx_update_pll_dividers(crtc, reduced_clock);
4659
4660 dpll = DPLL_VGA_MODE_DIS;
4661
4662 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4663 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4664 } else {
4665 if (clock->p1 == 2)
4666 dpll |= PLL_P1_DIVIDE_BY_TWO;
4667 else
4668 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4669 if (clock->p2 == 4)
4670 dpll |= PLL_P2_DIVIDE_BY_4;
4671 }
4672
4673 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4674 dpll |= DPLL_DVO_2X_MODE;
4675
4676 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4677 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4678 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4679 else
4680 dpll |= PLL_REF_INPUT_DREFCLK;
4681
4682 dpll |= DPLL_VCO_ENABLE;
4683 crtc->config.dpll_hw_state.dpll = dpll;
4684 }
4685
4686 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4687 {
4688 struct drm_device *dev = intel_crtc->base.dev;
4689 struct drm_i915_private *dev_priv = dev->dev_private;
4690 enum pipe pipe = intel_crtc->pipe;
4691 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4692 struct drm_display_mode *adjusted_mode =
4693 &intel_crtc->config.adjusted_mode;
4694 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4695
4696 /* We need to be careful not to changed the adjusted mode, for otherwise
4697 * the hw state checker will get angry at the mismatch. */
4698 crtc_vtotal = adjusted_mode->crtc_vtotal;
4699 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4700
4701 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4702 /* the chip adds 2 halflines automatically */
4703 crtc_vtotal -= 1;
4704 crtc_vblank_end -= 1;
4705 vsyncshift = adjusted_mode->crtc_hsync_start
4706 - adjusted_mode->crtc_htotal / 2;
4707 } else {
4708 vsyncshift = 0;
4709 }
4710
4711 if (INTEL_INFO(dev)->gen > 3)
4712 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4713
4714 I915_WRITE(HTOTAL(cpu_transcoder),
4715 (adjusted_mode->crtc_hdisplay - 1) |
4716 ((adjusted_mode->crtc_htotal - 1) << 16));
4717 I915_WRITE(HBLANK(cpu_transcoder),
4718 (adjusted_mode->crtc_hblank_start - 1) |
4719 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4720 I915_WRITE(HSYNC(cpu_transcoder),
4721 (adjusted_mode->crtc_hsync_start - 1) |
4722 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4723
4724 I915_WRITE(VTOTAL(cpu_transcoder),
4725 (adjusted_mode->crtc_vdisplay - 1) |
4726 ((crtc_vtotal - 1) << 16));
4727 I915_WRITE(VBLANK(cpu_transcoder),
4728 (adjusted_mode->crtc_vblank_start - 1) |
4729 ((crtc_vblank_end - 1) << 16));
4730 I915_WRITE(VSYNC(cpu_transcoder),
4731 (adjusted_mode->crtc_vsync_start - 1) |
4732 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4733
4734 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4735 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4736 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4737 * bits. */
4738 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4739 (pipe == PIPE_B || pipe == PIPE_C))
4740 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4741
4742 /* pipesrc controls the size that is scaled from, which should
4743 * always be the user's requested size.
4744 */
4745 I915_WRITE(PIPESRC(pipe),
4746 ((intel_crtc->config.pipe_src_w - 1) << 16) |
4747 (intel_crtc->config.pipe_src_h - 1));
4748 }
4749
4750 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4751 struct intel_crtc_config *pipe_config)
4752 {
4753 struct drm_device *dev = crtc->base.dev;
4754 struct drm_i915_private *dev_priv = dev->dev_private;
4755 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4756 uint32_t tmp;
4757
4758 tmp = I915_READ(HTOTAL(cpu_transcoder));
4759 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4760 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4761 tmp = I915_READ(HBLANK(cpu_transcoder));
4762 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4763 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4764 tmp = I915_READ(HSYNC(cpu_transcoder));
4765 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4766 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4767
4768 tmp = I915_READ(VTOTAL(cpu_transcoder));
4769 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4770 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4771 tmp = I915_READ(VBLANK(cpu_transcoder));
4772 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4773 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4774 tmp = I915_READ(VSYNC(cpu_transcoder));
4775 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4776 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4777
4778 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4779 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4780 pipe_config->adjusted_mode.crtc_vtotal += 1;
4781 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4782 }
4783
4784 tmp = I915_READ(PIPESRC(crtc->pipe));
4785 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4786 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4787
4788 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4789 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4790 }
4791
4792 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4793 struct intel_crtc_config *pipe_config)
4794 {
4795 struct drm_crtc *crtc = &intel_crtc->base;
4796
4797 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4798 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4799 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4800 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4801
4802 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4803 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4804 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4805 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4806
4807 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4808
4809 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4810 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4811 }
4812
4813 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4814 {
4815 struct drm_device *dev = intel_crtc->base.dev;
4816 struct drm_i915_private *dev_priv = dev->dev_private;
4817 uint32_t pipeconf;
4818
4819 pipeconf = 0;
4820
4821 if (intel_crtc->config.double_wide)
4822 pipeconf |= PIPECONF_DOUBLE_WIDE;
4823
4824 /* only g4x and later have fancy bpc/dither controls */
4825 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4826 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4827 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4828 pipeconf |= PIPECONF_DITHER_EN |
4829 PIPECONF_DITHER_TYPE_SP;
4830
4831 switch (intel_crtc->config.pipe_bpp) {
4832 case 18:
4833 pipeconf |= PIPECONF_6BPC;
4834 break;
4835 case 24:
4836 pipeconf |= PIPECONF_8BPC;
4837 break;
4838 case 30:
4839 pipeconf |= PIPECONF_10BPC;
4840 break;
4841 default:
4842 /* Case prevented by intel_choose_pipe_bpp_dither. */
4843 BUG();
4844 }
4845 }
4846
4847 if (HAS_PIPE_CXSR(dev)) {
4848 if (intel_crtc->lowfreq_avail) {
4849 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4850 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4851 } else {
4852 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4853 }
4854 }
4855
4856 if (!IS_GEN2(dev) &&
4857 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4858 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4859 else
4860 pipeconf |= PIPECONF_PROGRESSIVE;
4861
4862 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4863 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4864
4865 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4866 POSTING_READ(PIPECONF(intel_crtc->pipe));
4867 }
4868
4869 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4870 int x, int y,
4871 struct drm_framebuffer *fb)
4872 {
4873 struct drm_device *dev = crtc->dev;
4874 struct drm_i915_private *dev_priv = dev->dev_private;
4875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4876 int pipe = intel_crtc->pipe;
4877 int plane = intel_crtc->plane;
4878 int refclk, num_connectors = 0;
4879 intel_clock_t clock, reduced_clock;
4880 u32 dspcntr;
4881 bool ok, has_reduced_clock = false;
4882 bool is_lvds = false, is_dsi = false;
4883 struct intel_encoder *encoder;
4884 const intel_limit_t *limit;
4885 int ret;
4886
4887 for_each_encoder_on_crtc(dev, crtc, encoder) {
4888 switch (encoder->type) {
4889 case INTEL_OUTPUT_LVDS:
4890 is_lvds = true;
4891 break;
4892 case INTEL_OUTPUT_DSI:
4893 is_dsi = true;
4894 break;
4895 }
4896
4897 num_connectors++;
4898 }
4899
4900 refclk = i9xx_get_refclk(crtc, num_connectors);
4901
4902 if (!is_dsi && !intel_crtc->config.clock_set) {
4903 /*
4904 * Returns a set of divisors for the desired target clock with
4905 * the given refclk, or FALSE. The returned values represent
4906 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
4907 * 2) / p1 / p2.
4908 */
4909 limit = intel_limit(crtc, refclk);
4910 ok = dev_priv->display.find_dpll(limit, crtc,
4911 intel_crtc->config.port_clock,
4912 refclk, NULL, &clock);
4913 if (!ok && !intel_crtc->config.clock_set) {
4914 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4915 return -EINVAL;
4916 }
4917 }
4918
4919 /* Ensure that the cursor is valid for the new mode before changing... */
4920 intel_crtc_update_cursor(crtc, true);
4921
4922 if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
4923 /*
4924 * Ensure we match the reduced clock's P to the target clock.
4925 * If the clocks don't match, we can't switch the display clock
4926 * by using the FP0/FP1. In such case we will disable the LVDS
4927 * downclock feature.
4928 */
4929 limit = intel_limit(crtc, refclk);
4930 has_reduced_clock =
4931 dev_priv->display.find_dpll(limit, crtc,
4932 dev_priv->lvds_downclock,
4933 refclk, &clock,
4934 &reduced_clock);
4935 }
4936 /* Compat-code for transition, will disappear. */
4937 if (!intel_crtc->config.clock_set) {
4938 intel_crtc->config.dpll.n = clock.n;
4939 intel_crtc->config.dpll.m1 = clock.m1;
4940 intel_crtc->config.dpll.m2 = clock.m2;
4941 intel_crtc->config.dpll.p1 = clock.p1;
4942 intel_crtc->config.dpll.p2 = clock.p2;
4943 }
4944
4945 if (IS_GEN2(dev)) {
4946 i8xx_update_pll(intel_crtc,
4947 has_reduced_clock ? &reduced_clock : NULL,
4948 num_connectors);
4949 } else if (IS_VALLEYVIEW(dev)) {
4950 if (!is_dsi)
4951 vlv_update_pll(intel_crtc);
4952 } else {
4953 i9xx_update_pll(intel_crtc,
4954 has_reduced_clock ? &reduced_clock : NULL,
4955 num_connectors);
4956 }
4957
4958 /* Set up the display plane register */
4959 dspcntr = DISPPLANE_GAMMA_ENABLE;
4960
4961 if (!IS_VALLEYVIEW(dev)) {
4962 if (pipe == 0)
4963 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4964 else
4965 dspcntr |= DISPPLANE_SEL_PIPE_B;
4966 }
4967
4968 intel_set_pipe_timings(intel_crtc);
4969
4970 /* pipesrc and dspsize control the size that is scaled from,
4971 * which should always be the user's requested size.
4972 */
4973 I915_WRITE(DSPSIZE(plane),
4974 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4975 (intel_crtc->config.pipe_src_w - 1));
4976 I915_WRITE(DSPPOS(plane), 0);
4977
4978 i9xx_set_pipeconf(intel_crtc);
4979
4980 I915_WRITE(DSPCNTR(plane), dspcntr);
4981 POSTING_READ(DSPCNTR(plane));
4982
4983 ret = intel_pipe_set_base(crtc, x, y, fb);
4984
4985 return ret;
4986 }
4987
4988 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4989 struct intel_crtc_config *pipe_config)
4990 {
4991 struct drm_device *dev = crtc->base.dev;
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 uint32_t tmp;
4994
4995 tmp = I915_READ(PFIT_CONTROL);
4996 if (!(tmp & PFIT_ENABLE))
4997 return;
4998
4999 /* Check whether the pfit is attached to our pipe. */
5000 if (INTEL_INFO(dev)->gen < 4) {
5001 if (crtc->pipe != PIPE_B)
5002 return;
5003 } else {
5004 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5005 return;
5006 }
5007
5008 pipe_config->gmch_pfit.control = tmp;
5009 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5010 if (INTEL_INFO(dev)->gen < 5)
5011 pipe_config->gmch_pfit.lvds_border_bits =
5012 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5013 }
5014
5015 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5016 struct intel_crtc_config *pipe_config)
5017 {
5018 struct drm_device *dev = crtc->base.dev;
5019 struct drm_i915_private *dev_priv = dev->dev_private;
5020 uint32_t tmp;
5021
5022 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5023 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5024
5025 tmp = I915_READ(PIPECONF(crtc->pipe));
5026 if (!(tmp & PIPECONF_ENABLE))
5027 return false;
5028
5029 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5030 switch (tmp & PIPECONF_BPC_MASK) {
5031 case PIPECONF_6BPC:
5032 pipe_config->pipe_bpp = 18;
5033 break;
5034 case PIPECONF_8BPC:
5035 pipe_config->pipe_bpp = 24;
5036 break;
5037 case PIPECONF_10BPC:
5038 pipe_config->pipe_bpp = 30;
5039 break;
5040 default:
5041 break;
5042 }
5043 }
5044
5045 if (INTEL_INFO(dev)->gen < 4)
5046 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5047
5048 intel_get_pipe_timings(crtc, pipe_config);
5049
5050 i9xx_get_pfit_config(crtc, pipe_config);
5051
5052 if (INTEL_INFO(dev)->gen >= 4) {
5053 tmp = I915_READ(DPLL_MD(crtc->pipe));
5054 pipe_config->pixel_multiplier =
5055 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5056 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5057 pipe_config->dpll_hw_state.dpll_md = tmp;
5058 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5059 tmp = I915_READ(DPLL(crtc->pipe));
5060 pipe_config->pixel_multiplier =
5061 ((tmp & SDVO_MULTIPLIER_MASK)
5062 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5063 } else {
5064 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5065 * port and will be fixed up in the encoder->get_config
5066 * function. */
5067 pipe_config->pixel_multiplier = 1;
5068 }
5069 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5070 if (!IS_VALLEYVIEW(dev)) {
5071 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5072 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5073 } else {
5074 /* Mask out read-only status bits. */
5075 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5076 DPLL_PORTC_READY_MASK |
5077 DPLL_PORTB_READY_MASK);
5078 }
5079
5080 i9xx_crtc_clock_get(crtc, pipe_config);
5081
5082 return true;
5083 }
5084
5085 static void ironlake_init_pch_refclk(struct drm_device *dev)
5086 {
5087 struct drm_i915_private *dev_priv = dev->dev_private;
5088 struct drm_mode_config *mode_config = &dev->mode_config;
5089 struct intel_encoder *encoder;
5090 u32 val, final;
5091 bool has_lvds = false;
5092 bool has_cpu_edp = false;
5093 bool has_panel = false;
5094 bool has_ck505 = false;
5095 bool can_ssc = false;
5096
5097 /* We need to take the global config into account */
5098 list_for_each_entry(encoder, &mode_config->encoder_list,
5099 base.head) {
5100 switch (encoder->type) {
5101 case INTEL_OUTPUT_LVDS:
5102 has_panel = true;
5103 has_lvds = true;
5104 break;
5105 case INTEL_OUTPUT_EDP:
5106 has_panel = true;
5107 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5108 has_cpu_edp = true;
5109 break;
5110 }
5111 }
5112
5113 if (HAS_PCH_IBX(dev)) {
5114 has_ck505 = dev_priv->vbt.display_clock_mode;
5115 can_ssc = has_ck505;
5116 } else {
5117 has_ck505 = false;
5118 can_ssc = true;
5119 }
5120
5121 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5122 has_panel, has_lvds, has_ck505);
5123
5124 /* Ironlake: try to setup display ref clock before DPLL
5125 * enabling. This is only under driver's control after
5126 * PCH B stepping, previous chipset stepping should be
5127 * ignoring this setting.
5128 */
5129 val = I915_READ(PCH_DREF_CONTROL);
5130
5131 /* As we must carefully and slowly disable/enable each source in turn,
5132 * compute the final state we want first and check if we need to
5133 * make any changes at all.
5134 */
5135 final = val;
5136 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5137 if (has_ck505)
5138 final |= DREF_NONSPREAD_CK505_ENABLE;
5139 else
5140 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5141
5142 final &= ~DREF_SSC_SOURCE_MASK;
5143 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5144 final &= ~DREF_SSC1_ENABLE;
5145
5146 if (has_panel) {
5147 final |= DREF_SSC_SOURCE_ENABLE;
5148
5149 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5150 final |= DREF_SSC1_ENABLE;
5151
5152 if (has_cpu_edp) {
5153 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5154 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5155 else
5156 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5157 } else
5158 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5159 } else {
5160 final |= DREF_SSC_SOURCE_DISABLE;
5161 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5162 }
5163
5164 if (final == val)
5165 return;
5166
5167 /* Always enable nonspread source */
5168 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5169
5170 if (has_ck505)
5171 val |= DREF_NONSPREAD_CK505_ENABLE;
5172 else
5173 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5174
5175 if (has_panel) {
5176 val &= ~DREF_SSC_SOURCE_MASK;
5177 val |= DREF_SSC_SOURCE_ENABLE;
5178
5179 /* SSC must be turned on before enabling the CPU output */
5180 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5181 DRM_DEBUG_KMS("Using SSC on panel\n");
5182 val |= DREF_SSC1_ENABLE;
5183 } else
5184 val &= ~DREF_SSC1_ENABLE;
5185
5186 /* Get SSC going before enabling the outputs */
5187 I915_WRITE(PCH_DREF_CONTROL, val);
5188 POSTING_READ(PCH_DREF_CONTROL);
5189 udelay(200);
5190
5191 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5192
5193 /* Enable CPU source on CPU attached eDP */
5194 if (has_cpu_edp) {
5195 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5196 DRM_DEBUG_KMS("Using SSC on eDP\n");
5197 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5198 }
5199 else
5200 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5201 } else
5202 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5203
5204 I915_WRITE(PCH_DREF_CONTROL, val);
5205 POSTING_READ(PCH_DREF_CONTROL);
5206 udelay(200);
5207 } else {
5208 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5209
5210 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5211
5212 /* Turn off CPU output */
5213 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5214
5215 I915_WRITE(PCH_DREF_CONTROL, val);
5216 POSTING_READ(PCH_DREF_CONTROL);
5217 udelay(200);
5218
5219 /* Turn off the SSC source */
5220 val &= ~DREF_SSC_SOURCE_MASK;
5221 val |= DREF_SSC_SOURCE_DISABLE;
5222
5223 /* Turn off SSC1 */
5224 val &= ~DREF_SSC1_ENABLE;
5225
5226 I915_WRITE(PCH_DREF_CONTROL, val);
5227 POSTING_READ(PCH_DREF_CONTROL);
5228 udelay(200);
5229 }
5230
5231 BUG_ON(val != final);
5232 }
5233
5234 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5235 {
5236 uint32_t tmp;
5237
5238 tmp = I915_READ(SOUTH_CHICKEN2);
5239 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5240 I915_WRITE(SOUTH_CHICKEN2, tmp);
5241
5242 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5243 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5244 DRM_ERROR("FDI mPHY reset assert timeout\n");
5245
5246 tmp = I915_READ(SOUTH_CHICKEN2);
5247 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5248 I915_WRITE(SOUTH_CHICKEN2, tmp);
5249
5250 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5251 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5252 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5253 }
5254
5255 /* WaMPhyProgramming:hsw */
5256 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5257 {
5258 uint32_t tmp;
5259
5260 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5261 tmp &= ~(0xFF << 24);
5262 tmp |= (0x12 << 24);
5263 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5264
5265 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5266 tmp |= (1 << 11);
5267 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5268
5269 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5270 tmp |= (1 << 11);
5271 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5272
5273 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5274 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5275 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5276
5277 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5278 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5279 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5280
5281 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5282 tmp &= ~(7 << 13);
5283 tmp |= (5 << 13);
5284 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5285
5286 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5287 tmp &= ~(7 << 13);
5288 tmp |= (5 << 13);
5289 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5290
5291 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5292 tmp &= ~0xFF;
5293 tmp |= 0x1C;
5294 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5295
5296 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5297 tmp &= ~0xFF;
5298 tmp |= 0x1C;
5299 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5300
5301 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5302 tmp &= ~(0xFF << 16);
5303 tmp |= (0x1C << 16);
5304 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5305
5306 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5307 tmp &= ~(0xFF << 16);
5308 tmp |= (0x1C << 16);
5309 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5310
5311 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5312 tmp |= (1 << 27);
5313 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5314
5315 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5316 tmp |= (1 << 27);
5317 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5318
5319 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5320 tmp &= ~(0xF << 28);
5321 tmp |= (4 << 28);
5322 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5323
5324 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5325 tmp &= ~(0xF << 28);
5326 tmp |= (4 << 28);
5327 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5328 }
5329
5330 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5331 * Programming" based on the parameters passed:
5332 * - Sequence to enable CLKOUT_DP
5333 * - Sequence to enable CLKOUT_DP without spread
5334 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5335 */
5336 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5337 bool with_fdi)
5338 {
5339 struct drm_i915_private *dev_priv = dev->dev_private;
5340 uint32_t reg, tmp;
5341
5342 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5343 with_spread = true;
5344 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5345 with_fdi, "LP PCH doesn't have FDI\n"))
5346 with_fdi = false;
5347
5348 mutex_lock(&dev_priv->dpio_lock);
5349
5350 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5351 tmp &= ~SBI_SSCCTL_DISABLE;
5352 tmp |= SBI_SSCCTL_PATHALT;
5353 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5354
5355 udelay(24);
5356
5357 if (with_spread) {
5358 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5359 tmp &= ~SBI_SSCCTL_PATHALT;
5360 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5361
5362 if (with_fdi) {
5363 lpt_reset_fdi_mphy(dev_priv);
5364 lpt_program_fdi_mphy(dev_priv);
5365 }
5366 }
5367
5368 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5369 SBI_GEN0 : SBI_DBUFF0;
5370 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5371 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5372 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5373
5374 mutex_unlock(&dev_priv->dpio_lock);
5375 }
5376
5377 /* Sequence to disable CLKOUT_DP */
5378 static void lpt_disable_clkout_dp(struct drm_device *dev)
5379 {
5380 struct drm_i915_private *dev_priv = dev->dev_private;
5381 uint32_t reg, tmp;
5382
5383 mutex_lock(&dev_priv->dpio_lock);
5384
5385 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5386 SBI_GEN0 : SBI_DBUFF0;
5387 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5388 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5389 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5390
5391 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5392 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5393 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5394 tmp |= SBI_SSCCTL_PATHALT;
5395 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5396 udelay(32);
5397 }
5398 tmp |= SBI_SSCCTL_DISABLE;
5399 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5400 }
5401
5402 mutex_unlock(&dev_priv->dpio_lock);
5403 }
5404
5405 static void lpt_init_pch_refclk(struct drm_device *dev)
5406 {
5407 struct drm_mode_config *mode_config = &dev->mode_config;
5408 struct intel_encoder *encoder;
5409 bool has_vga = false;
5410
5411 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5412 switch (encoder->type) {
5413 case INTEL_OUTPUT_ANALOG:
5414 has_vga = true;
5415 break;
5416 }
5417 }
5418
5419 if (has_vga)
5420 lpt_enable_clkout_dp(dev, true, true);
5421 else
5422 lpt_disable_clkout_dp(dev);
5423 }
5424
5425 /*
5426 * Initialize reference clocks when the driver loads
5427 */
5428 void intel_init_pch_refclk(struct drm_device *dev)
5429 {
5430 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5431 ironlake_init_pch_refclk(dev);
5432 else if (HAS_PCH_LPT(dev))
5433 lpt_init_pch_refclk(dev);
5434 }
5435
5436 static int ironlake_get_refclk(struct drm_crtc *crtc)
5437 {
5438 struct drm_device *dev = crtc->dev;
5439 struct drm_i915_private *dev_priv = dev->dev_private;
5440 struct intel_encoder *encoder;
5441 int num_connectors = 0;
5442 bool is_lvds = false;
5443
5444 for_each_encoder_on_crtc(dev, crtc, encoder) {
5445 switch (encoder->type) {
5446 case INTEL_OUTPUT_LVDS:
5447 is_lvds = true;
5448 break;
5449 }
5450 num_connectors++;
5451 }
5452
5453 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5454 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5455 dev_priv->vbt.lvds_ssc_freq);
5456 return dev_priv->vbt.lvds_ssc_freq * 1000;
5457 }
5458
5459 return 120000;
5460 }
5461
5462 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5463 {
5464 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5466 int pipe = intel_crtc->pipe;
5467 uint32_t val;
5468
5469 val = 0;
5470
5471 switch (intel_crtc->config.pipe_bpp) {
5472 case 18:
5473 val |= PIPECONF_6BPC;
5474 break;
5475 case 24:
5476 val |= PIPECONF_8BPC;
5477 break;
5478 case 30:
5479 val |= PIPECONF_10BPC;
5480 break;
5481 case 36:
5482 val |= PIPECONF_12BPC;
5483 break;
5484 default:
5485 /* Case prevented by intel_choose_pipe_bpp_dither. */
5486 BUG();
5487 }
5488
5489 if (intel_crtc->config.dither)
5490 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5491
5492 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5493 val |= PIPECONF_INTERLACED_ILK;
5494 else
5495 val |= PIPECONF_PROGRESSIVE;
5496
5497 if (intel_crtc->config.limited_color_range)
5498 val |= PIPECONF_COLOR_RANGE_SELECT;
5499
5500 I915_WRITE(PIPECONF(pipe), val);
5501 POSTING_READ(PIPECONF(pipe));
5502 }
5503
5504 /*
5505 * Set up the pipe CSC unit.
5506 *
5507 * Currently only full range RGB to limited range RGB conversion
5508 * is supported, but eventually this should handle various
5509 * RGB<->YCbCr scenarios as well.
5510 */
5511 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5512 {
5513 struct drm_device *dev = crtc->dev;
5514 struct drm_i915_private *dev_priv = dev->dev_private;
5515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5516 int pipe = intel_crtc->pipe;
5517 uint16_t coeff = 0x7800; /* 1.0 */
5518
5519 /*
5520 * TODO: Check what kind of values actually come out of the pipe
5521 * with these coeff/postoff values and adjust to get the best
5522 * accuracy. Perhaps we even need to take the bpc value into
5523 * consideration.
5524 */
5525
5526 if (intel_crtc->config.limited_color_range)
5527 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5528
5529 /*
5530 * GY/GU and RY/RU should be the other way around according
5531 * to BSpec, but reality doesn't agree. Just set them up in
5532 * a way that results in the correct picture.
5533 */
5534 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5535 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5536
5537 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5538 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5539
5540 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5541 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5542
5543 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5544 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5545 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5546
5547 if (INTEL_INFO(dev)->gen > 6) {
5548 uint16_t postoff = 0;
5549
5550 if (intel_crtc->config.limited_color_range)
5551 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5552
5553 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5554 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5555 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5556
5557 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5558 } else {
5559 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5560
5561 if (intel_crtc->config.limited_color_range)
5562 mode |= CSC_BLACK_SCREEN_OFFSET;
5563
5564 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5565 }
5566 }
5567
5568 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5569 {
5570 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5572 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5573 uint32_t val;
5574
5575 val = 0;
5576
5577 if (intel_crtc->config.dither)
5578 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5579
5580 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5581 val |= PIPECONF_INTERLACED_ILK;
5582 else
5583 val |= PIPECONF_PROGRESSIVE;
5584
5585 I915_WRITE(PIPECONF(cpu_transcoder), val);
5586 POSTING_READ(PIPECONF(cpu_transcoder));
5587
5588 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5589 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5590 }
5591
5592 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5593 intel_clock_t *clock,
5594 bool *has_reduced_clock,
5595 intel_clock_t *reduced_clock)
5596 {
5597 struct drm_device *dev = crtc->dev;
5598 struct drm_i915_private *dev_priv = dev->dev_private;
5599 struct intel_encoder *intel_encoder;
5600 int refclk;
5601 const intel_limit_t *limit;
5602 bool ret, is_lvds = false;
5603
5604 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5605 switch (intel_encoder->type) {
5606 case INTEL_OUTPUT_LVDS:
5607 is_lvds = true;
5608 break;
5609 }
5610 }
5611
5612 refclk = ironlake_get_refclk(crtc);
5613
5614 /*
5615 * Returns a set of divisors for the desired target clock with the given
5616 * refclk, or FALSE. The returned values represent the clock equation:
5617 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5618 */
5619 limit = intel_limit(crtc, refclk);
5620 ret = dev_priv->display.find_dpll(limit, crtc,
5621 to_intel_crtc(crtc)->config.port_clock,
5622 refclk, NULL, clock);
5623 if (!ret)
5624 return false;
5625
5626 if (is_lvds && dev_priv->lvds_downclock_avail) {
5627 /*
5628 * Ensure we match the reduced clock's P to the target clock.
5629 * If the clocks don't match, we can't switch the display clock
5630 * by using the FP0/FP1. In such case we will disable the LVDS
5631 * downclock feature.
5632 */
5633 *has_reduced_clock =
5634 dev_priv->display.find_dpll(limit, crtc,
5635 dev_priv->lvds_downclock,
5636 refclk, clock,
5637 reduced_clock);
5638 }
5639
5640 return true;
5641 }
5642
5643 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5644 {
5645 struct drm_i915_private *dev_priv = dev->dev_private;
5646 uint32_t temp;
5647
5648 temp = I915_READ(SOUTH_CHICKEN1);
5649 if (temp & FDI_BC_BIFURCATION_SELECT)
5650 return;
5651
5652 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5653 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5654
5655 temp |= FDI_BC_BIFURCATION_SELECT;
5656 DRM_DEBUG_KMS("enabling fdi C rx\n");
5657 I915_WRITE(SOUTH_CHICKEN1, temp);
5658 POSTING_READ(SOUTH_CHICKEN1);
5659 }
5660
5661 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5662 {
5663 struct drm_device *dev = intel_crtc->base.dev;
5664 struct drm_i915_private *dev_priv = dev->dev_private;
5665
5666 switch (intel_crtc->pipe) {
5667 case PIPE_A:
5668 break;
5669 case PIPE_B:
5670 if (intel_crtc->config.fdi_lanes > 2)
5671 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5672 else
5673 cpt_enable_fdi_bc_bifurcation(dev);
5674
5675 break;
5676 case PIPE_C:
5677 cpt_enable_fdi_bc_bifurcation(dev);
5678
5679 break;
5680 default:
5681 BUG();
5682 }
5683 }
5684
5685 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5686 {
5687 /*
5688 * Account for spread spectrum to avoid
5689 * oversubscribing the link. Max center spread
5690 * is 2.5%; use 5% for safety's sake.
5691 */
5692 u32 bps = target_clock * bpp * 21 / 20;
5693 return bps / (link_bw * 8) + 1;
5694 }
5695
5696 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5697 {
5698 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5699 }
5700
5701 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5702 u32 *fp,
5703 intel_clock_t *reduced_clock, u32 *fp2)
5704 {
5705 struct drm_crtc *crtc = &intel_crtc->base;
5706 struct drm_device *dev = crtc->dev;
5707 struct drm_i915_private *dev_priv = dev->dev_private;
5708 struct intel_encoder *intel_encoder;
5709 uint32_t dpll;
5710 int factor, num_connectors = 0;
5711 bool is_lvds = false, is_sdvo = false;
5712
5713 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5714 switch (intel_encoder->type) {
5715 case INTEL_OUTPUT_LVDS:
5716 is_lvds = true;
5717 break;
5718 case INTEL_OUTPUT_SDVO:
5719 case INTEL_OUTPUT_HDMI:
5720 is_sdvo = true;
5721 break;
5722 }
5723
5724 num_connectors++;
5725 }
5726
5727 /* Enable autotuning of the PLL clock (if permissible) */
5728 factor = 21;
5729 if (is_lvds) {
5730 if ((intel_panel_use_ssc(dev_priv) &&
5731 dev_priv->vbt.lvds_ssc_freq == 100) ||
5732 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5733 factor = 25;
5734 } else if (intel_crtc->config.sdvo_tv_clock)
5735 factor = 20;
5736
5737 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5738 *fp |= FP_CB_TUNE;
5739
5740 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5741 *fp2 |= FP_CB_TUNE;
5742
5743 dpll = 0;
5744
5745 if (is_lvds)
5746 dpll |= DPLLB_MODE_LVDS;
5747 else
5748 dpll |= DPLLB_MODE_DAC_SERIAL;
5749
5750 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5751 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5752
5753 if (is_sdvo)
5754 dpll |= DPLL_SDVO_HIGH_SPEED;
5755 if (intel_crtc->config.has_dp_encoder)
5756 dpll |= DPLL_SDVO_HIGH_SPEED;
5757
5758 /* compute bitmask from p1 value */
5759 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5760 /* also FPA1 */
5761 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5762
5763 switch (intel_crtc->config.dpll.p2) {
5764 case 5:
5765 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5766 break;
5767 case 7:
5768 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5769 break;
5770 case 10:
5771 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5772 break;
5773 case 14:
5774 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5775 break;
5776 }
5777
5778 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5779 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5780 else
5781 dpll |= PLL_REF_INPUT_DREFCLK;
5782
5783 return dpll | DPLL_VCO_ENABLE;
5784 }
5785
5786 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5787 int x, int y,
5788 struct drm_framebuffer *fb)
5789 {
5790 struct drm_device *dev = crtc->dev;
5791 struct drm_i915_private *dev_priv = dev->dev_private;
5792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5793 int pipe = intel_crtc->pipe;
5794 int plane = intel_crtc->plane;
5795 int num_connectors = 0;
5796 intel_clock_t clock, reduced_clock;
5797 u32 dpll = 0, fp = 0, fp2 = 0;
5798 bool ok, has_reduced_clock = false;
5799 bool is_lvds = false;
5800 struct intel_encoder *encoder;
5801 struct intel_shared_dpll *pll;
5802 int ret;
5803
5804 for_each_encoder_on_crtc(dev, crtc, encoder) {
5805 switch (encoder->type) {
5806 case INTEL_OUTPUT_LVDS:
5807 is_lvds = true;
5808 break;
5809 }
5810
5811 num_connectors++;
5812 }
5813
5814 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5815 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5816
5817 ok = ironlake_compute_clocks(crtc, &clock,
5818 &has_reduced_clock, &reduced_clock);
5819 if (!ok && !intel_crtc->config.clock_set) {
5820 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5821 return -EINVAL;
5822 }
5823 /* Compat-code for transition, will disappear. */
5824 if (!intel_crtc->config.clock_set) {
5825 intel_crtc->config.dpll.n = clock.n;
5826 intel_crtc->config.dpll.m1 = clock.m1;
5827 intel_crtc->config.dpll.m2 = clock.m2;
5828 intel_crtc->config.dpll.p1 = clock.p1;
5829 intel_crtc->config.dpll.p2 = clock.p2;
5830 }
5831
5832 /* Ensure that the cursor is valid for the new mode before changing... */
5833 intel_crtc_update_cursor(crtc, true);
5834
5835 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5836 if (intel_crtc->config.has_pch_encoder) {
5837 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5838 if (has_reduced_clock)
5839 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5840
5841 dpll = ironlake_compute_dpll(intel_crtc,
5842 &fp, &reduced_clock,
5843 has_reduced_clock ? &fp2 : NULL);
5844
5845 intel_crtc->config.dpll_hw_state.dpll = dpll;
5846 intel_crtc->config.dpll_hw_state.fp0 = fp;
5847 if (has_reduced_clock)
5848 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5849 else
5850 intel_crtc->config.dpll_hw_state.fp1 = fp;
5851
5852 pll = intel_get_shared_dpll(intel_crtc);
5853 if (pll == NULL) {
5854 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5855 pipe_name(pipe));
5856 return -EINVAL;
5857 }
5858 } else
5859 intel_put_shared_dpll(intel_crtc);
5860
5861 if (intel_crtc->config.has_dp_encoder)
5862 intel_dp_set_m_n(intel_crtc);
5863
5864 if (is_lvds && has_reduced_clock && i915_powersave)
5865 intel_crtc->lowfreq_avail = true;
5866 else
5867 intel_crtc->lowfreq_avail = false;
5868
5869 if (intel_crtc->config.has_pch_encoder) {
5870 pll = intel_crtc_to_shared_dpll(intel_crtc);
5871
5872 }
5873
5874 intel_set_pipe_timings(intel_crtc);
5875
5876 if (intel_crtc->config.has_pch_encoder) {
5877 intel_cpu_transcoder_set_m_n(intel_crtc,
5878 &intel_crtc->config.fdi_m_n);
5879 }
5880
5881 if (IS_IVYBRIDGE(dev))
5882 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5883
5884 ironlake_set_pipeconf(crtc);
5885
5886 /* Set up the display plane register */
5887 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5888 POSTING_READ(DSPCNTR(plane));
5889
5890 ret = intel_pipe_set_base(crtc, x, y, fb);
5891
5892 return ret;
5893 }
5894
5895 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
5896 struct intel_link_m_n *m_n)
5897 {
5898 struct drm_device *dev = crtc->base.dev;
5899 struct drm_i915_private *dev_priv = dev->dev_private;
5900 enum pipe pipe = crtc->pipe;
5901
5902 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
5903 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
5904 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
5905 & ~TU_SIZE_MASK;
5906 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
5907 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
5908 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5909 }
5910
5911 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
5912 enum transcoder transcoder,
5913 struct intel_link_m_n *m_n)
5914 {
5915 struct drm_device *dev = crtc->base.dev;
5916 struct drm_i915_private *dev_priv = dev->dev_private;
5917 enum pipe pipe = crtc->pipe;
5918
5919 if (INTEL_INFO(dev)->gen >= 5) {
5920 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
5921 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
5922 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5923 & ~TU_SIZE_MASK;
5924 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5925 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5926 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5927 } else {
5928 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
5929 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
5930 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
5931 & ~TU_SIZE_MASK;
5932 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
5933 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
5934 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5935 }
5936 }
5937
5938 void intel_dp_get_m_n(struct intel_crtc *crtc,
5939 struct intel_crtc_config *pipe_config)
5940 {
5941 if (crtc->config.has_pch_encoder)
5942 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
5943 else
5944 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5945 &pipe_config->dp_m_n);
5946 }
5947
5948 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5949 struct intel_crtc_config *pipe_config)
5950 {
5951 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5952 &pipe_config->fdi_m_n);
5953 }
5954
5955 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5956 struct intel_crtc_config *pipe_config)
5957 {
5958 struct drm_device *dev = crtc->base.dev;
5959 struct drm_i915_private *dev_priv = dev->dev_private;
5960 uint32_t tmp;
5961
5962 tmp = I915_READ(PF_CTL(crtc->pipe));
5963
5964 if (tmp & PF_ENABLE) {
5965 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5966 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5967
5968 /* We currently do not free assignements of panel fitters on
5969 * ivb/hsw (since we don't use the higher upscaling modes which
5970 * differentiates them) so just WARN about this case for now. */
5971 if (IS_GEN7(dev)) {
5972 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5973 PF_PIPE_SEL_IVB(crtc->pipe));
5974 }
5975 }
5976 }
5977
5978 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5979 struct intel_crtc_config *pipe_config)
5980 {
5981 struct drm_device *dev = crtc->base.dev;
5982 struct drm_i915_private *dev_priv = dev->dev_private;
5983 uint32_t tmp;
5984
5985 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5986 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5987
5988 tmp = I915_READ(PIPECONF(crtc->pipe));
5989 if (!(tmp & PIPECONF_ENABLE))
5990 return false;
5991
5992 switch (tmp & PIPECONF_BPC_MASK) {
5993 case PIPECONF_6BPC:
5994 pipe_config->pipe_bpp = 18;
5995 break;
5996 case PIPECONF_8BPC:
5997 pipe_config->pipe_bpp = 24;
5998 break;
5999 case PIPECONF_10BPC:
6000 pipe_config->pipe_bpp = 30;
6001 break;
6002 case PIPECONF_12BPC:
6003 pipe_config->pipe_bpp = 36;
6004 break;
6005 default:
6006 break;
6007 }
6008
6009 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6010 struct intel_shared_dpll *pll;
6011
6012 pipe_config->has_pch_encoder = true;
6013
6014 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6015 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6016 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6017
6018 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6019
6020 if (HAS_PCH_IBX(dev_priv->dev)) {
6021 pipe_config->shared_dpll =
6022 (enum intel_dpll_id) crtc->pipe;
6023 } else {
6024 tmp = I915_READ(PCH_DPLL_SEL);
6025 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6026 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6027 else
6028 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6029 }
6030
6031 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6032
6033 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6034 &pipe_config->dpll_hw_state));
6035
6036 tmp = pipe_config->dpll_hw_state.dpll;
6037 pipe_config->pixel_multiplier =
6038 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6039 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6040
6041 ironlake_pch_clock_get(crtc, pipe_config);
6042 } else {
6043 pipe_config->pixel_multiplier = 1;
6044 }
6045
6046 intel_get_pipe_timings(crtc, pipe_config);
6047
6048 ironlake_get_pfit_config(crtc, pipe_config);
6049
6050 return true;
6051 }
6052
6053 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6054 {
6055 struct drm_device *dev = dev_priv->dev;
6056 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6057 struct intel_crtc *crtc;
6058 unsigned long irqflags;
6059 uint32_t val;
6060
6061 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6062 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6063 pipe_name(crtc->pipe));
6064
6065 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6066 WARN(plls->spll_refcount, "SPLL enabled\n");
6067 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6068 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6069 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6070 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6071 "CPU PWM1 enabled\n");
6072 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6073 "CPU PWM2 enabled\n");
6074 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6075 "PCH PWM1 enabled\n");
6076 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6077 "Utility pin enabled\n");
6078 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6079
6080 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6081 val = I915_READ(DEIMR);
6082 WARN((val & ~DE_PCH_EVENT_IVB) != val,
6083 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6084 val = I915_READ(SDEIMR);
6085 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6086 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6087 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6088 }
6089
6090 /*
6091 * This function implements pieces of two sequences from BSpec:
6092 * - Sequence for display software to disable LCPLL
6093 * - Sequence for display software to allow package C8+
6094 * The steps implemented here are just the steps that actually touch the LCPLL
6095 * register. Callers should take care of disabling all the display engine
6096 * functions, doing the mode unset, fixing interrupts, etc.
6097 */
6098 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6099 bool switch_to_fclk, bool allow_power_down)
6100 {
6101 uint32_t val;
6102
6103 assert_can_disable_lcpll(dev_priv);
6104
6105 val = I915_READ(LCPLL_CTL);
6106
6107 if (switch_to_fclk) {
6108 val |= LCPLL_CD_SOURCE_FCLK;
6109 I915_WRITE(LCPLL_CTL, val);
6110
6111 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6112 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6113 DRM_ERROR("Switching to FCLK failed\n");
6114
6115 val = I915_READ(LCPLL_CTL);
6116 }
6117
6118 val |= LCPLL_PLL_DISABLE;
6119 I915_WRITE(LCPLL_CTL, val);
6120 POSTING_READ(LCPLL_CTL);
6121
6122 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6123 DRM_ERROR("LCPLL still locked\n");
6124
6125 val = I915_READ(D_COMP);
6126 val |= D_COMP_COMP_DISABLE;
6127 I915_WRITE(D_COMP, val);
6128 POSTING_READ(D_COMP);
6129 ndelay(100);
6130
6131 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6132 DRM_ERROR("D_COMP RCOMP still in progress\n");
6133
6134 if (allow_power_down) {
6135 val = I915_READ(LCPLL_CTL);
6136 val |= LCPLL_POWER_DOWN_ALLOW;
6137 I915_WRITE(LCPLL_CTL, val);
6138 POSTING_READ(LCPLL_CTL);
6139 }
6140 }
6141
6142 /*
6143 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6144 * source.
6145 */
6146 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6147 {
6148 uint32_t val;
6149
6150 val = I915_READ(LCPLL_CTL);
6151
6152 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6153 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6154 return;
6155
6156 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6157 * we'll hang the machine! */
6158 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6159
6160 if (val & LCPLL_POWER_DOWN_ALLOW) {
6161 val &= ~LCPLL_POWER_DOWN_ALLOW;
6162 I915_WRITE(LCPLL_CTL, val);
6163 POSTING_READ(LCPLL_CTL);
6164 }
6165
6166 val = I915_READ(D_COMP);
6167 val |= D_COMP_COMP_FORCE;
6168 val &= ~D_COMP_COMP_DISABLE;
6169 I915_WRITE(D_COMP, val);
6170 POSTING_READ(D_COMP);
6171
6172 val = I915_READ(LCPLL_CTL);
6173 val &= ~LCPLL_PLL_DISABLE;
6174 I915_WRITE(LCPLL_CTL, val);
6175
6176 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6177 DRM_ERROR("LCPLL not locked yet\n");
6178
6179 if (val & LCPLL_CD_SOURCE_FCLK) {
6180 val = I915_READ(LCPLL_CTL);
6181 val &= ~LCPLL_CD_SOURCE_FCLK;
6182 I915_WRITE(LCPLL_CTL, val);
6183
6184 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6185 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6186 DRM_ERROR("Switching back to LCPLL failed\n");
6187 }
6188
6189 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6190 }
6191
6192 void hsw_enable_pc8_work(struct work_struct *__work)
6193 {
6194 struct drm_i915_private *dev_priv =
6195 container_of(to_delayed_work(__work), struct drm_i915_private,
6196 pc8.enable_work);
6197 struct drm_device *dev = dev_priv->dev;
6198 uint32_t val;
6199
6200 if (dev_priv->pc8.enabled)
6201 return;
6202
6203 DRM_DEBUG_KMS("Enabling package C8+\n");
6204
6205 dev_priv->pc8.enabled = true;
6206
6207 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6208 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6209 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6210 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6211 }
6212
6213 lpt_disable_clkout_dp(dev);
6214 hsw_pc8_disable_interrupts(dev);
6215 hsw_disable_lcpll(dev_priv, true, true);
6216 }
6217
6218 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6219 {
6220 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6221 WARN(dev_priv->pc8.disable_count < 1,
6222 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6223
6224 dev_priv->pc8.disable_count--;
6225 if (dev_priv->pc8.disable_count != 0)
6226 return;
6227
6228 schedule_delayed_work(&dev_priv->pc8.enable_work,
6229 msecs_to_jiffies(i915_pc8_timeout));
6230 }
6231
6232 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6233 {
6234 struct drm_device *dev = dev_priv->dev;
6235 uint32_t val;
6236
6237 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6238 WARN(dev_priv->pc8.disable_count < 0,
6239 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6240
6241 dev_priv->pc8.disable_count++;
6242 if (dev_priv->pc8.disable_count != 1)
6243 return;
6244
6245 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6246 if (!dev_priv->pc8.enabled)
6247 return;
6248
6249 DRM_DEBUG_KMS("Disabling package C8+\n");
6250
6251 hsw_restore_lcpll(dev_priv);
6252 hsw_pc8_restore_interrupts(dev);
6253 lpt_init_pch_refclk(dev);
6254
6255 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6256 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6257 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6258 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6259 }
6260
6261 intel_prepare_ddi(dev);
6262 i915_gem_init_swizzling(dev);
6263 mutex_lock(&dev_priv->rps.hw_lock);
6264 gen6_update_ring_freq(dev);
6265 mutex_unlock(&dev_priv->rps.hw_lock);
6266 dev_priv->pc8.enabled = false;
6267 }
6268
6269 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6270 {
6271 mutex_lock(&dev_priv->pc8.lock);
6272 __hsw_enable_package_c8(dev_priv);
6273 mutex_unlock(&dev_priv->pc8.lock);
6274 }
6275
6276 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6277 {
6278 mutex_lock(&dev_priv->pc8.lock);
6279 __hsw_disable_package_c8(dev_priv);
6280 mutex_unlock(&dev_priv->pc8.lock);
6281 }
6282
6283 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6284 {
6285 struct drm_device *dev = dev_priv->dev;
6286 struct intel_crtc *crtc;
6287 uint32_t val;
6288
6289 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6290 if (crtc->base.enabled)
6291 return false;
6292
6293 /* This case is still possible since we have the i915.disable_power_well
6294 * parameter and also the KVMr or something else might be requesting the
6295 * power well. */
6296 val = I915_READ(HSW_PWR_WELL_DRIVER);
6297 if (val != 0) {
6298 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6299 return false;
6300 }
6301
6302 return true;
6303 }
6304
6305 /* Since we're called from modeset_global_resources there's no way to
6306 * symmetrically increase and decrease the refcount, so we use
6307 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6308 * or not.
6309 */
6310 static void hsw_update_package_c8(struct drm_device *dev)
6311 {
6312 struct drm_i915_private *dev_priv = dev->dev_private;
6313 bool allow;
6314
6315 if (!i915_enable_pc8)
6316 return;
6317
6318 mutex_lock(&dev_priv->pc8.lock);
6319
6320 allow = hsw_can_enable_package_c8(dev_priv);
6321
6322 if (allow == dev_priv->pc8.requirements_met)
6323 goto done;
6324
6325 dev_priv->pc8.requirements_met = allow;
6326
6327 if (allow)
6328 __hsw_enable_package_c8(dev_priv);
6329 else
6330 __hsw_disable_package_c8(dev_priv);
6331
6332 done:
6333 mutex_unlock(&dev_priv->pc8.lock);
6334 }
6335
6336 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6337 {
6338 if (!dev_priv->pc8.gpu_idle) {
6339 dev_priv->pc8.gpu_idle = true;
6340 hsw_enable_package_c8(dev_priv);
6341 }
6342 }
6343
6344 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6345 {
6346 if (dev_priv->pc8.gpu_idle) {
6347 dev_priv->pc8.gpu_idle = false;
6348 hsw_disable_package_c8(dev_priv);
6349 }
6350 }
6351
6352 static void haswell_modeset_global_resources(struct drm_device *dev)
6353 {
6354 bool enable = false;
6355 struct intel_crtc *crtc;
6356
6357 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6358 if (!crtc->base.enabled)
6359 continue;
6360
6361 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6362 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6363 enable = true;
6364 }
6365
6366 intel_set_power_well(dev, enable);
6367
6368 hsw_update_package_c8(dev);
6369 }
6370
6371 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6372 int x, int y,
6373 struct drm_framebuffer *fb)
6374 {
6375 struct drm_device *dev = crtc->dev;
6376 struct drm_i915_private *dev_priv = dev->dev_private;
6377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6378 int plane = intel_crtc->plane;
6379 int ret;
6380
6381 if (!intel_ddi_pll_mode_set(crtc))
6382 return -EINVAL;
6383
6384 /* Ensure that the cursor is valid for the new mode before changing... */
6385 intel_crtc_update_cursor(crtc, true);
6386
6387 if (intel_crtc->config.has_dp_encoder)
6388 intel_dp_set_m_n(intel_crtc);
6389
6390 intel_crtc->lowfreq_avail = false;
6391
6392 intel_set_pipe_timings(intel_crtc);
6393
6394 if (intel_crtc->config.has_pch_encoder) {
6395 intel_cpu_transcoder_set_m_n(intel_crtc,
6396 &intel_crtc->config.fdi_m_n);
6397 }
6398
6399 haswell_set_pipeconf(crtc);
6400
6401 intel_set_pipe_csc(crtc);
6402
6403 /* Set up the display plane register */
6404 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6405 POSTING_READ(DSPCNTR(plane));
6406
6407 ret = intel_pipe_set_base(crtc, x, y, fb);
6408
6409 return ret;
6410 }
6411
6412 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6413 struct intel_crtc_config *pipe_config)
6414 {
6415 struct drm_device *dev = crtc->base.dev;
6416 struct drm_i915_private *dev_priv = dev->dev_private;
6417 enum intel_display_power_domain pfit_domain;
6418 uint32_t tmp;
6419
6420 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6421 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6422
6423 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6424 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6425 enum pipe trans_edp_pipe;
6426 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6427 default:
6428 WARN(1, "unknown pipe linked to edp transcoder\n");
6429 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6430 case TRANS_DDI_EDP_INPUT_A_ON:
6431 trans_edp_pipe = PIPE_A;
6432 break;
6433 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6434 trans_edp_pipe = PIPE_B;
6435 break;
6436 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6437 trans_edp_pipe = PIPE_C;
6438 break;
6439 }
6440
6441 if (trans_edp_pipe == crtc->pipe)
6442 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6443 }
6444
6445 if (!intel_display_power_enabled(dev,
6446 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6447 return false;
6448
6449 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6450 if (!(tmp & PIPECONF_ENABLE))
6451 return false;
6452
6453 /*
6454 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6455 * DDI E. So just check whether this pipe is wired to DDI E and whether
6456 * the PCH transcoder is on.
6457 */
6458 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6459 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6460 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6461 pipe_config->has_pch_encoder = true;
6462
6463 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6464 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6465 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6466
6467 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6468 }
6469
6470 intel_get_pipe_timings(crtc, pipe_config);
6471
6472 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6473 if (intel_display_power_enabled(dev, pfit_domain))
6474 ironlake_get_pfit_config(crtc, pipe_config);
6475
6476 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6477 (I915_READ(IPS_CTL) & IPS_ENABLE);
6478
6479 pipe_config->pixel_multiplier = 1;
6480
6481 return true;
6482 }
6483
6484 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6485 int x, int y,
6486 struct drm_framebuffer *fb)
6487 {
6488 struct drm_device *dev = crtc->dev;
6489 struct drm_i915_private *dev_priv = dev->dev_private;
6490 struct intel_encoder *encoder;
6491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6492 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6493 int pipe = intel_crtc->pipe;
6494 int ret;
6495
6496 drm_vblank_pre_modeset(dev, pipe);
6497
6498 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6499
6500 drm_vblank_post_modeset(dev, pipe);
6501
6502 if (ret != 0)
6503 return ret;
6504
6505 for_each_encoder_on_crtc(dev, crtc, encoder) {
6506 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6507 encoder->base.base.id,
6508 drm_get_encoder_name(&encoder->base),
6509 mode->base.id, mode->name);
6510 encoder->mode_set(encoder);
6511 }
6512
6513 return 0;
6514 }
6515
6516 static bool intel_eld_uptodate(struct drm_connector *connector,
6517 int reg_eldv, uint32_t bits_eldv,
6518 int reg_elda, uint32_t bits_elda,
6519 int reg_edid)
6520 {
6521 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6522 uint8_t *eld = connector->eld;
6523 uint32_t i;
6524
6525 i = I915_READ(reg_eldv);
6526 i &= bits_eldv;
6527
6528 if (!eld[0])
6529 return !i;
6530
6531 if (!i)
6532 return false;
6533
6534 i = I915_READ(reg_elda);
6535 i &= ~bits_elda;
6536 I915_WRITE(reg_elda, i);
6537
6538 for (i = 0; i < eld[2]; i++)
6539 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6540 return false;
6541
6542 return true;
6543 }
6544
6545 static void g4x_write_eld(struct drm_connector *connector,
6546 struct drm_crtc *crtc)
6547 {
6548 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6549 uint8_t *eld = connector->eld;
6550 uint32_t eldv;
6551 uint32_t len;
6552 uint32_t i;
6553
6554 i = I915_READ(G4X_AUD_VID_DID);
6555
6556 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6557 eldv = G4X_ELDV_DEVCL_DEVBLC;
6558 else
6559 eldv = G4X_ELDV_DEVCTG;
6560
6561 if (intel_eld_uptodate(connector,
6562 G4X_AUD_CNTL_ST, eldv,
6563 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6564 G4X_HDMIW_HDMIEDID))
6565 return;
6566
6567 i = I915_READ(G4X_AUD_CNTL_ST);
6568 i &= ~(eldv | G4X_ELD_ADDR);
6569 len = (i >> 9) & 0x1f; /* ELD buffer size */
6570 I915_WRITE(G4X_AUD_CNTL_ST, i);
6571
6572 if (!eld[0])
6573 return;
6574
6575 len = min_t(uint8_t, eld[2], len);
6576 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6577 for (i = 0; i < len; i++)
6578 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6579
6580 i = I915_READ(G4X_AUD_CNTL_ST);
6581 i |= eldv;
6582 I915_WRITE(G4X_AUD_CNTL_ST, i);
6583 }
6584
6585 static void haswell_write_eld(struct drm_connector *connector,
6586 struct drm_crtc *crtc)
6587 {
6588 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6589 uint8_t *eld = connector->eld;
6590 struct drm_device *dev = crtc->dev;
6591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6592 uint32_t eldv;
6593 uint32_t i;
6594 int len;
6595 int pipe = to_intel_crtc(crtc)->pipe;
6596 int tmp;
6597
6598 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6599 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6600 int aud_config = HSW_AUD_CFG(pipe);
6601 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6602
6603
6604 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6605
6606 /* Audio output enable */
6607 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6608 tmp = I915_READ(aud_cntrl_st2);
6609 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6610 I915_WRITE(aud_cntrl_st2, tmp);
6611
6612 /* Wait for 1 vertical blank */
6613 intel_wait_for_vblank(dev, pipe);
6614
6615 /* Set ELD valid state */
6616 tmp = I915_READ(aud_cntrl_st2);
6617 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6618 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6619 I915_WRITE(aud_cntrl_st2, tmp);
6620 tmp = I915_READ(aud_cntrl_st2);
6621 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6622
6623 /* Enable HDMI mode */
6624 tmp = I915_READ(aud_config);
6625 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6626 /* clear N_programing_enable and N_value_index */
6627 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6628 I915_WRITE(aud_config, tmp);
6629
6630 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6631
6632 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6633 intel_crtc->eld_vld = true;
6634
6635 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6636 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6637 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6638 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6639 } else
6640 I915_WRITE(aud_config, 0);
6641
6642 if (intel_eld_uptodate(connector,
6643 aud_cntrl_st2, eldv,
6644 aud_cntl_st, IBX_ELD_ADDRESS,
6645 hdmiw_hdmiedid))
6646 return;
6647
6648 i = I915_READ(aud_cntrl_st2);
6649 i &= ~eldv;
6650 I915_WRITE(aud_cntrl_st2, i);
6651
6652 if (!eld[0])
6653 return;
6654
6655 i = I915_READ(aud_cntl_st);
6656 i &= ~IBX_ELD_ADDRESS;
6657 I915_WRITE(aud_cntl_st, i);
6658 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6659 DRM_DEBUG_DRIVER("port num:%d\n", i);
6660
6661 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6662 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6663 for (i = 0; i < len; i++)
6664 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6665
6666 i = I915_READ(aud_cntrl_st2);
6667 i |= eldv;
6668 I915_WRITE(aud_cntrl_st2, i);
6669
6670 }
6671
6672 static void ironlake_write_eld(struct drm_connector *connector,
6673 struct drm_crtc *crtc)
6674 {
6675 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6676 uint8_t *eld = connector->eld;
6677 uint32_t eldv;
6678 uint32_t i;
6679 int len;
6680 int hdmiw_hdmiedid;
6681 int aud_config;
6682 int aud_cntl_st;
6683 int aud_cntrl_st2;
6684 int pipe = to_intel_crtc(crtc)->pipe;
6685
6686 if (HAS_PCH_IBX(connector->dev)) {
6687 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6688 aud_config = IBX_AUD_CFG(pipe);
6689 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6690 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6691 } else {
6692 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6693 aud_config = CPT_AUD_CFG(pipe);
6694 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6695 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6696 }
6697
6698 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6699
6700 i = I915_READ(aud_cntl_st);
6701 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6702 if (!i) {
6703 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6704 /* operate blindly on all ports */
6705 eldv = IBX_ELD_VALIDB;
6706 eldv |= IBX_ELD_VALIDB << 4;
6707 eldv |= IBX_ELD_VALIDB << 8;
6708 } else {
6709 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6710 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6711 }
6712
6713 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6714 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6715 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6716 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6717 } else
6718 I915_WRITE(aud_config, 0);
6719
6720 if (intel_eld_uptodate(connector,
6721 aud_cntrl_st2, eldv,
6722 aud_cntl_st, IBX_ELD_ADDRESS,
6723 hdmiw_hdmiedid))
6724 return;
6725
6726 i = I915_READ(aud_cntrl_st2);
6727 i &= ~eldv;
6728 I915_WRITE(aud_cntrl_st2, i);
6729
6730 if (!eld[0])
6731 return;
6732
6733 i = I915_READ(aud_cntl_st);
6734 i &= ~IBX_ELD_ADDRESS;
6735 I915_WRITE(aud_cntl_st, i);
6736
6737 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6738 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6739 for (i = 0; i < len; i++)
6740 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6741
6742 i = I915_READ(aud_cntrl_st2);
6743 i |= eldv;
6744 I915_WRITE(aud_cntrl_st2, i);
6745 }
6746
6747 void intel_write_eld(struct drm_encoder *encoder,
6748 struct drm_display_mode *mode)
6749 {
6750 struct drm_crtc *crtc = encoder->crtc;
6751 struct drm_connector *connector;
6752 struct drm_device *dev = encoder->dev;
6753 struct drm_i915_private *dev_priv = dev->dev_private;
6754
6755 connector = drm_select_eld(encoder, mode);
6756 if (!connector)
6757 return;
6758
6759 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6760 connector->base.id,
6761 drm_get_connector_name(connector),
6762 connector->encoder->base.id,
6763 drm_get_encoder_name(connector->encoder));
6764
6765 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6766
6767 if (dev_priv->display.write_eld)
6768 dev_priv->display.write_eld(connector, crtc);
6769 }
6770
6771 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6772 void intel_crtc_load_lut(struct drm_crtc *crtc)
6773 {
6774 struct drm_device *dev = crtc->dev;
6775 struct drm_i915_private *dev_priv = dev->dev_private;
6776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6777 enum pipe pipe = intel_crtc->pipe;
6778 int palreg = PALETTE(pipe);
6779 int i;
6780 bool reenable_ips = false;
6781
6782 /* The clocks have to be on to load the palette. */
6783 if (!crtc->enabled || !intel_crtc->active)
6784 return;
6785
6786 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
6787 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
6788 assert_dsi_pll_enabled(dev_priv);
6789 else
6790 assert_pll_enabled(dev_priv, pipe);
6791 }
6792
6793 /* use legacy palette for Ironlake */
6794 if (HAS_PCH_SPLIT(dev))
6795 palreg = LGC_PALETTE(pipe);
6796
6797 /* Workaround : Do not read or write the pipe palette/gamma data while
6798 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6799 */
6800 if (intel_crtc->config.ips_enabled &&
6801 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6802 GAMMA_MODE_MODE_SPLIT)) {
6803 hsw_disable_ips(intel_crtc);
6804 reenable_ips = true;
6805 }
6806
6807 for (i = 0; i < 256; i++) {
6808 I915_WRITE(palreg + 4 * i,
6809 (intel_crtc->lut_r[i] << 16) |
6810 (intel_crtc->lut_g[i] << 8) |
6811 intel_crtc->lut_b[i]);
6812 }
6813
6814 if (reenable_ips)
6815 hsw_enable_ips(intel_crtc);
6816 }
6817
6818 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6819 {
6820 struct drm_device *dev = crtc->dev;
6821 struct drm_i915_private *dev_priv = dev->dev_private;
6822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6823 bool visible = base != 0;
6824 u32 cntl;
6825
6826 if (intel_crtc->cursor_visible == visible)
6827 return;
6828
6829 cntl = I915_READ(_CURACNTR);
6830 if (visible) {
6831 /* On these chipsets we can only modify the base whilst
6832 * the cursor is disabled.
6833 */
6834 I915_WRITE(_CURABASE, base);
6835
6836 cntl &= ~(CURSOR_FORMAT_MASK);
6837 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6838 cntl |= CURSOR_ENABLE |
6839 CURSOR_GAMMA_ENABLE |
6840 CURSOR_FORMAT_ARGB;
6841 } else
6842 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6843 I915_WRITE(_CURACNTR, cntl);
6844
6845 intel_crtc->cursor_visible = visible;
6846 }
6847
6848 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6849 {
6850 struct drm_device *dev = crtc->dev;
6851 struct drm_i915_private *dev_priv = dev->dev_private;
6852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6853 int pipe = intel_crtc->pipe;
6854 bool visible = base != 0;
6855
6856 if (intel_crtc->cursor_visible != visible) {
6857 uint32_t cntl = I915_READ(CURCNTR(pipe));
6858 if (base) {
6859 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6860 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6861 cntl |= pipe << 28; /* Connect to correct pipe */
6862 } else {
6863 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6864 cntl |= CURSOR_MODE_DISABLE;
6865 }
6866 I915_WRITE(CURCNTR(pipe), cntl);
6867
6868 intel_crtc->cursor_visible = visible;
6869 }
6870 /* and commit changes on next vblank */
6871 I915_WRITE(CURBASE(pipe), base);
6872 }
6873
6874 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6875 {
6876 struct drm_device *dev = crtc->dev;
6877 struct drm_i915_private *dev_priv = dev->dev_private;
6878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6879 int pipe = intel_crtc->pipe;
6880 bool visible = base != 0;
6881
6882 if (intel_crtc->cursor_visible != visible) {
6883 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6884 if (base) {
6885 cntl &= ~CURSOR_MODE;
6886 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6887 } else {
6888 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6889 cntl |= CURSOR_MODE_DISABLE;
6890 }
6891 if (IS_HASWELL(dev)) {
6892 cntl |= CURSOR_PIPE_CSC_ENABLE;
6893 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6894 }
6895 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6896
6897 intel_crtc->cursor_visible = visible;
6898 }
6899 /* and commit changes on next vblank */
6900 I915_WRITE(CURBASE_IVB(pipe), base);
6901 }
6902
6903 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6904 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6905 bool on)
6906 {
6907 struct drm_device *dev = crtc->dev;
6908 struct drm_i915_private *dev_priv = dev->dev_private;
6909 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6910 int pipe = intel_crtc->pipe;
6911 int x = intel_crtc->cursor_x;
6912 int y = intel_crtc->cursor_y;
6913 u32 base = 0, pos = 0;
6914 bool visible;
6915
6916 if (on)
6917 base = intel_crtc->cursor_addr;
6918
6919 if (x >= intel_crtc->config.pipe_src_w)
6920 base = 0;
6921
6922 if (y >= intel_crtc->config.pipe_src_h)
6923 base = 0;
6924
6925 if (x < 0) {
6926 if (x + intel_crtc->cursor_width <= 0)
6927 base = 0;
6928
6929 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6930 x = -x;
6931 }
6932 pos |= x << CURSOR_X_SHIFT;
6933
6934 if (y < 0) {
6935 if (y + intel_crtc->cursor_height <= 0)
6936 base = 0;
6937
6938 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6939 y = -y;
6940 }
6941 pos |= y << CURSOR_Y_SHIFT;
6942
6943 visible = base != 0;
6944 if (!visible && !intel_crtc->cursor_visible)
6945 return;
6946
6947 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6948 I915_WRITE(CURPOS_IVB(pipe), pos);
6949 ivb_update_cursor(crtc, base);
6950 } else {
6951 I915_WRITE(CURPOS(pipe), pos);
6952 if (IS_845G(dev) || IS_I865G(dev))
6953 i845_update_cursor(crtc, base);
6954 else
6955 i9xx_update_cursor(crtc, base);
6956 }
6957 }
6958
6959 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6960 struct drm_file *file,
6961 uint32_t handle,
6962 uint32_t width, uint32_t height)
6963 {
6964 struct drm_device *dev = crtc->dev;
6965 struct drm_i915_private *dev_priv = dev->dev_private;
6966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6967 struct drm_i915_gem_object *obj;
6968 uint32_t addr;
6969 int ret;
6970
6971 /* if we want to turn off the cursor ignore width and height */
6972 if (!handle) {
6973 DRM_DEBUG_KMS("cursor off\n");
6974 addr = 0;
6975 obj = NULL;
6976 mutex_lock(&dev->struct_mutex);
6977 goto finish;
6978 }
6979
6980 /* Currently we only support 64x64 cursors */
6981 if (width != 64 || height != 64) {
6982 DRM_ERROR("we currently only support 64x64 cursors\n");
6983 return -EINVAL;
6984 }
6985
6986 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6987 if (&obj->base == NULL)
6988 return -ENOENT;
6989
6990 if (obj->base.size < width * height * 4) {
6991 DRM_ERROR("buffer is to small\n");
6992 ret = -ENOMEM;
6993 goto fail;
6994 }
6995
6996 /* we only need to pin inside GTT if cursor is non-phy */
6997 mutex_lock(&dev->struct_mutex);
6998 if (!dev_priv->info->cursor_needs_physical) {
6999 unsigned alignment;
7000
7001 if (obj->tiling_mode) {
7002 DRM_ERROR("cursor cannot be tiled\n");
7003 ret = -EINVAL;
7004 goto fail_locked;
7005 }
7006
7007 /* Note that the w/a also requires 2 PTE of padding following
7008 * the bo. We currently fill all unused PTE with the shadow
7009 * page and so we should always have valid PTE following the
7010 * cursor preventing the VT-d warning.
7011 */
7012 alignment = 0;
7013 if (need_vtd_wa(dev))
7014 alignment = 64*1024;
7015
7016 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7017 if (ret) {
7018 DRM_ERROR("failed to move cursor bo into the GTT\n");
7019 goto fail_locked;
7020 }
7021
7022 ret = i915_gem_object_put_fence(obj);
7023 if (ret) {
7024 DRM_ERROR("failed to release fence for cursor");
7025 goto fail_unpin;
7026 }
7027
7028 addr = i915_gem_obj_ggtt_offset(obj);
7029 } else {
7030 int align = IS_I830(dev) ? 16 * 1024 : 256;
7031 ret = i915_gem_attach_phys_object(dev, obj,
7032 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7033 align);
7034 if (ret) {
7035 DRM_ERROR("failed to attach phys object\n");
7036 goto fail_locked;
7037 }
7038 addr = obj->phys_obj->handle->busaddr;
7039 }
7040
7041 if (IS_GEN2(dev))
7042 I915_WRITE(CURSIZE, (height << 12) | width);
7043
7044 finish:
7045 if (intel_crtc->cursor_bo) {
7046 if (dev_priv->info->cursor_needs_physical) {
7047 if (intel_crtc->cursor_bo != obj)
7048 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7049 } else
7050 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7051 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7052 }
7053
7054 mutex_unlock(&dev->struct_mutex);
7055
7056 intel_crtc->cursor_addr = addr;
7057 intel_crtc->cursor_bo = obj;
7058 intel_crtc->cursor_width = width;
7059 intel_crtc->cursor_height = height;
7060
7061 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7062
7063 return 0;
7064 fail_unpin:
7065 i915_gem_object_unpin_from_display_plane(obj);
7066 fail_locked:
7067 mutex_unlock(&dev->struct_mutex);
7068 fail:
7069 drm_gem_object_unreference_unlocked(&obj->base);
7070 return ret;
7071 }
7072
7073 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7074 {
7075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7076
7077 intel_crtc->cursor_x = x;
7078 intel_crtc->cursor_y = y;
7079
7080 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7081
7082 return 0;
7083 }
7084
7085 /** Sets the color ramps on behalf of RandR */
7086 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
7087 u16 blue, int regno)
7088 {
7089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7090
7091 intel_crtc->lut_r[regno] = red >> 8;
7092 intel_crtc->lut_g[regno] = green >> 8;
7093 intel_crtc->lut_b[regno] = blue >> 8;
7094 }
7095
7096 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
7097 u16 *blue, int regno)
7098 {
7099 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7100
7101 *red = intel_crtc->lut_r[regno] << 8;
7102 *green = intel_crtc->lut_g[regno] << 8;
7103 *blue = intel_crtc->lut_b[regno] << 8;
7104 }
7105
7106 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7107 u16 *blue, uint32_t start, uint32_t size)
7108 {
7109 int end = (start + size > 256) ? 256 : start + size, i;
7110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7111
7112 for (i = start; i < end; i++) {
7113 intel_crtc->lut_r[i] = red[i] >> 8;
7114 intel_crtc->lut_g[i] = green[i] >> 8;
7115 intel_crtc->lut_b[i] = blue[i] >> 8;
7116 }
7117
7118 intel_crtc_load_lut(crtc);
7119 }
7120
7121 /* VESA 640x480x72Hz mode to set on the pipe */
7122 static struct drm_display_mode load_detect_mode = {
7123 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7124 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7125 };
7126
7127 static struct drm_framebuffer *
7128 intel_framebuffer_create(struct drm_device *dev,
7129 struct drm_mode_fb_cmd2 *mode_cmd,
7130 struct drm_i915_gem_object *obj)
7131 {
7132 struct intel_framebuffer *intel_fb;
7133 int ret;
7134
7135 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7136 if (!intel_fb) {
7137 drm_gem_object_unreference_unlocked(&obj->base);
7138 return ERR_PTR(-ENOMEM);
7139 }
7140
7141 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7142 if (ret) {
7143 drm_gem_object_unreference_unlocked(&obj->base);
7144 kfree(intel_fb);
7145 return ERR_PTR(ret);
7146 }
7147
7148 return &intel_fb->base;
7149 }
7150
7151 static u32
7152 intel_framebuffer_pitch_for_width(int width, int bpp)
7153 {
7154 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7155 return ALIGN(pitch, 64);
7156 }
7157
7158 static u32
7159 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7160 {
7161 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7162 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7163 }
7164
7165 static struct drm_framebuffer *
7166 intel_framebuffer_create_for_mode(struct drm_device *dev,
7167 struct drm_display_mode *mode,
7168 int depth, int bpp)
7169 {
7170 struct drm_i915_gem_object *obj;
7171 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7172
7173 obj = i915_gem_alloc_object(dev,
7174 intel_framebuffer_size_for_mode(mode, bpp));
7175 if (obj == NULL)
7176 return ERR_PTR(-ENOMEM);
7177
7178 mode_cmd.width = mode->hdisplay;
7179 mode_cmd.height = mode->vdisplay;
7180 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7181 bpp);
7182 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7183
7184 return intel_framebuffer_create(dev, &mode_cmd, obj);
7185 }
7186
7187 static struct drm_framebuffer *
7188 mode_fits_in_fbdev(struct drm_device *dev,
7189 struct drm_display_mode *mode)
7190 {
7191 struct drm_i915_private *dev_priv = dev->dev_private;
7192 struct drm_i915_gem_object *obj;
7193 struct drm_framebuffer *fb;
7194
7195 if (dev_priv->fbdev == NULL)
7196 return NULL;
7197
7198 obj = dev_priv->fbdev->ifb.obj;
7199 if (obj == NULL)
7200 return NULL;
7201
7202 fb = &dev_priv->fbdev->ifb.base;
7203 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7204 fb->bits_per_pixel))
7205 return NULL;
7206
7207 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7208 return NULL;
7209
7210 return fb;
7211 }
7212
7213 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7214 struct drm_display_mode *mode,
7215 struct intel_load_detect_pipe *old)
7216 {
7217 struct intel_crtc *intel_crtc;
7218 struct intel_encoder *intel_encoder =
7219 intel_attached_encoder(connector);
7220 struct drm_crtc *possible_crtc;
7221 struct drm_encoder *encoder = &intel_encoder->base;
7222 struct drm_crtc *crtc = NULL;
7223 struct drm_device *dev = encoder->dev;
7224 struct drm_framebuffer *fb;
7225 int i = -1;
7226
7227 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7228 connector->base.id, drm_get_connector_name(connector),
7229 encoder->base.id, drm_get_encoder_name(encoder));
7230
7231 /*
7232 * Algorithm gets a little messy:
7233 *
7234 * - if the connector already has an assigned crtc, use it (but make
7235 * sure it's on first)
7236 *
7237 * - try to find the first unused crtc that can drive this connector,
7238 * and use that if we find one
7239 */
7240
7241 /* See if we already have a CRTC for this connector */
7242 if (encoder->crtc) {
7243 crtc = encoder->crtc;
7244
7245 mutex_lock(&crtc->mutex);
7246
7247 old->dpms_mode = connector->dpms;
7248 old->load_detect_temp = false;
7249
7250 /* Make sure the crtc and connector are running */
7251 if (connector->dpms != DRM_MODE_DPMS_ON)
7252 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7253
7254 return true;
7255 }
7256
7257 /* Find an unused one (if possible) */
7258 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7259 i++;
7260 if (!(encoder->possible_crtcs & (1 << i)))
7261 continue;
7262 if (!possible_crtc->enabled) {
7263 crtc = possible_crtc;
7264 break;
7265 }
7266 }
7267
7268 /*
7269 * If we didn't find an unused CRTC, don't use any.
7270 */
7271 if (!crtc) {
7272 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7273 return false;
7274 }
7275
7276 mutex_lock(&crtc->mutex);
7277 intel_encoder->new_crtc = to_intel_crtc(crtc);
7278 to_intel_connector(connector)->new_encoder = intel_encoder;
7279
7280 intel_crtc = to_intel_crtc(crtc);
7281 old->dpms_mode = connector->dpms;
7282 old->load_detect_temp = true;
7283 old->release_fb = NULL;
7284
7285 if (!mode)
7286 mode = &load_detect_mode;
7287
7288 /* We need a framebuffer large enough to accommodate all accesses
7289 * that the plane may generate whilst we perform load detection.
7290 * We can not rely on the fbcon either being present (we get called
7291 * during its initialisation to detect all boot displays, or it may
7292 * not even exist) or that it is large enough to satisfy the
7293 * requested mode.
7294 */
7295 fb = mode_fits_in_fbdev(dev, mode);
7296 if (fb == NULL) {
7297 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7298 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7299 old->release_fb = fb;
7300 } else
7301 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7302 if (IS_ERR(fb)) {
7303 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7304 mutex_unlock(&crtc->mutex);
7305 return false;
7306 }
7307
7308 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7309 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7310 if (old->release_fb)
7311 old->release_fb->funcs->destroy(old->release_fb);
7312 mutex_unlock(&crtc->mutex);
7313 return false;
7314 }
7315
7316 /* let the connector get through one full cycle before testing */
7317 intel_wait_for_vblank(dev, intel_crtc->pipe);
7318 return true;
7319 }
7320
7321 void intel_release_load_detect_pipe(struct drm_connector *connector,
7322 struct intel_load_detect_pipe *old)
7323 {
7324 struct intel_encoder *intel_encoder =
7325 intel_attached_encoder(connector);
7326 struct drm_encoder *encoder = &intel_encoder->base;
7327 struct drm_crtc *crtc = encoder->crtc;
7328
7329 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7330 connector->base.id, drm_get_connector_name(connector),
7331 encoder->base.id, drm_get_encoder_name(encoder));
7332
7333 if (old->load_detect_temp) {
7334 to_intel_connector(connector)->new_encoder = NULL;
7335 intel_encoder->new_crtc = NULL;
7336 intel_set_mode(crtc, NULL, 0, 0, NULL);
7337
7338 if (old->release_fb) {
7339 drm_framebuffer_unregister_private(old->release_fb);
7340 drm_framebuffer_unreference(old->release_fb);
7341 }
7342
7343 mutex_unlock(&crtc->mutex);
7344 return;
7345 }
7346
7347 /* Switch crtc and encoder back off if necessary */
7348 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7349 connector->funcs->dpms(connector, old->dpms_mode);
7350
7351 mutex_unlock(&crtc->mutex);
7352 }
7353
7354 static int i9xx_pll_refclk(struct drm_device *dev,
7355 const struct intel_crtc_config *pipe_config)
7356 {
7357 struct drm_i915_private *dev_priv = dev->dev_private;
7358 u32 dpll = pipe_config->dpll_hw_state.dpll;
7359
7360 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7361 return dev_priv->vbt.lvds_ssc_freq * 1000;
7362 else if (HAS_PCH_SPLIT(dev))
7363 return 120000;
7364 else if (!IS_GEN2(dev))
7365 return 96000;
7366 else
7367 return 48000;
7368 }
7369
7370 /* Returns the clock of the currently programmed mode of the given pipe. */
7371 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7372 struct intel_crtc_config *pipe_config)
7373 {
7374 struct drm_device *dev = crtc->base.dev;
7375 struct drm_i915_private *dev_priv = dev->dev_private;
7376 int pipe = pipe_config->cpu_transcoder;
7377 u32 dpll = pipe_config->dpll_hw_state.dpll;
7378 u32 fp;
7379 intel_clock_t clock;
7380 int refclk = i9xx_pll_refclk(dev, pipe_config);
7381
7382 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7383 fp = pipe_config->dpll_hw_state.fp0;
7384 else
7385 fp = pipe_config->dpll_hw_state.fp1;
7386
7387 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7388 if (IS_PINEVIEW(dev)) {
7389 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7390 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7391 } else {
7392 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7393 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7394 }
7395
7396 if (!IS_GEN2(dev)) {
7397 if (IS_PINEVIEW(dev))
7398 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7399 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7400 else
7401 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7402 DPLL_FPA01_P1_POST_DIV_SHIFT);
7403
7404 switch (dpll & DPLL_MODE_MASK) {
7405 case DPLLB_MODE_DAC_SERIAL:
7406 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7407 5 : 10;
7408 break;
7409 case DPLLB_MODE_LVDS:
7410 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7411 7 : 14;
7412 break;
7413 default:
7414 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7415 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7416 return;
7417 }
7418
7419 if (IS_PINEVIEW(dev))
7420 pineview_clock(refclk, &clock);
7421 else
7422 i9xx_clock(refclk, &clock);
7423 } else {
7424 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7425
7426 if (is_lvds) {
7427 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7428 DPLL_FPA01_P1_POST_DIV_SHIFT);
7429 clock.p2 = 14;
7430 } else {
7431 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7432 clock.p1 = 2;
7433 else {
7434 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7435 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7436 }
7437 if (dpll & PLL_P2_DIVIDE_BY_4)
7438 clock.p2 = 4;
7439 else
7440 clock.p2 = 2;
7441 }
7442
7443 i9xx_clock(refclk, &clock);
7444 }
7445
7446 /*
7447 * This value includes pixel_multiplier. We will use
7448 * port_clock to compute adjusted_mode.clock in the
7449 * encoder's get_config() function.
7450 */
7451 pipe_config->port_clock = clock.dot;
7452 }
7453
7454 int intel_dotclock_calculate(int link_freq,
7455 const struct intel_link_m_n *m_n)
7456 {
7457 /*
7458 * The calculation for the data clock is:
7459 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7460 * But we want to avoid losing precison if possible, so:
7461 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7462 *
7463 * and the link clock is simpler:
7464 * link_clock = (m * link_clock) / n
7465 */
7466
7467 if (!m_n->link_n)
7468 return 0;
7469
7470 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7471 }
7472
7473 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7474 struct intel_crtc_config *pipe_config)
7475 {
7476 struct drm_device *dev = crtc->base.dev;
7477
7478 /* read out port_clock from the DPLL */
7479 i9xx_crtc_clock_get(crtc, pipe_config);
7480
7481 /*
7482 * This value does not include pixel_multiplier.
7483 * We will check that port_clock and adjusted_mode.clock
7484 * agree once we know their relationship in the encoder's
7485 * get_config() function.
7486 */
7487 pipe_config->adjusted_mode.clock =
7488 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7489 &pipe_config->fdi_m_n);
7490 }
7491
7492 /** Returns the currently programmed mode of the given pipe. */
7493 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7494 struct drm_crtc *crtc)
7495 {
7496 struct drm_i915_private *dev_priv = dev->dev_private;
7497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7498 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7499 struct drm_display_mode *mode;
7500 struct intel_crtc_config pipe_config;
7501 int htot = I915_READ(HTOTAL(cpu_transcoder));
7502 int hsync = I915_READ(HSYNC(cpu_transcoder));
7503 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7504 int vsync = I915_READ(VSYNC(cpu_transcoder));
7505 enum pipe pipe = intel_crtc->pipe;
7506
7507 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7508 if (!mode)
7509 return NULL;
7510
7511 /*
7512 * Construct a pipe_config sufficient for getting the clock info
7513 * back out of crtc_clock_get.
7514 *
7515 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7516 * to use a real value here instead.
7517 */
7518 pipe_config.cpu_transcoder = (enum transcoder) pipe;
7519 pipe_config.pixel_multiplier = 1;
7520 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7521 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7522 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7523 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7524
7525 mode->clock = pipe_config.adjusted_mode.clock;
7526 mode->hdisplay = (htot & 0xffff) + 1;
7527 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7528 mode->hsync_start = (hsync & 0xffff) + 1;
7529 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7530 mode->vdisplay = (vtot & 0xffff) + 1;
7531 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7532 mode->vsync_start = (vsync & 0xffff) + 1;
7533 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7534
7535 drm_mode_set_name(mode);
7536
7537 return mode;
7538 }
7539
7540 static void intel_increase_pllclock(struct drm_crtc *crtc)
7541 {
7542 struct drm_device *dev = crtc->dev;
7543 drm_i915_private_t *dev_priv = dev->dev_private;
7544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7545 int pipe = intel_crtc->pipe;
7546 int dpll_reg = DPLL(pipe);
7547 int dpll;
7548
7549 if (HAS_PCH_SPLIT(dev))
7550 return;
7551
7552 if (!dev_priv->lvds_downclock_avail)
7553 return;
7554
7555 dpll = I915_READ(dpll_reg);
7556 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7557 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7558
7559 assert_panel_unlocked(dev_priv, pipe);
7560
7561 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7562 I915_WRITE(dpll_reg, dpll);
7563 intel_wait_for_vblank(dev, pipe);
7564
7565 dpll = I915_READ(dpll_reg);
7566 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7567 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7568 }
7569 }
7570
7571 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7572 {
7573 struct drm_device *dev = crtc->dev;
7574 drm_i915_private_t *dev_priv = dev->dev_private;
7575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7576
7577 if (HAS_PCH_SPLIT(dev))
7578 return;
7579
7580 if (!dev_priv->lvds_downclock_avail)
7581 return;
7582
7583 /*
7584 * Since this is called by a timer, we should never get here in
7585 * the manual case.
7586 */
7587 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7588 int pipe = intel_crtc->pipe;
7589 int dpll_reg = DPLL(pipe);
7590 int dpll;
7591
7592 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7593
7594 assert_panel_unlocked(dev_priv, pipe);
7595
7596 dpll = I915_READ(dpll_reg);
7597 dpll |= DISPLAY_RATE_SELECT_FPA1;
7598 I915_WRITE(dpll_reg, dpll);
7599 intel_wait_for_vblank(dev, pipe);
7600 dpll = I915_READ(dpll_reg);
7601 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7602 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7603 }
7604
7605 }
7606
7607 void intel_mark_busy(struct drm_device *dev)
7608 {
7609 struct drm_i915_private *dev_priv = dev->dev_private;
7610
7611 hsw_package_c8_gpu_busy(dev_priv);
7612 i915_update_gfx_val(dev_priv);
7613 }
7614
7615 void intel_mark_idle(struct drm_device *dev)
7616 {
7617 struct drm_i915_private *dev_priv = dev->dev_private;
7618 struct drm_crtc *crtc;
7619
7620 hsw_package_c8_gpu_idle(dev_priv);
7621
7622 if (!i915_powersave)
7623 return;
7624
7625 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7626 if (!crtc->fb)
7627 continue;
7628
7629 intel_decrease_pllclock(crtc);
7630 }
7631 }
7632
7633 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7634 struct intel_ring_buffer *ring)
7635 {
7636 struct drm_device *dev = obj->base.dev;
7637 struct drm_crtc *crtc;
7638
7639 if (!i915_powersave)
7640 return;
7641
7642 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7643 if (!crtc->fb)
7644 continue;
7645
7646 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7647 continue;
7648
7649 intel_increase_pllclock(crtc);
7650 if (ring && intel_fbc_enabled(dev))
7651 ring->fbc_dirty = true;
7652 }
7653 }
7654
7655 static void intel_crtc_destroy(struct drm_crtc *crtc)
7656 {
7657 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7658 struct drm_device *dev = crtc->dev;
7659 struct intel_unpin_work *work;
7660 unsigned long flags;
7661
7662 spin_lock_irqsave(&dev->event_lock, flags);
7663 work = intel_crtc->unpin_work;
7664 intel_crtc->unpin_work = NULL;
7665 spin_unlock_irqrestore(&dev->event_lock, flags);
7666
7667 if (work) {
7668 cancel_work_sync(&work->work);
7669 kfree(work);
7670 }
7671
7672 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7673
7674 drm_crtc_cleanup(crtc);
7675
7676 kfree(intel_crtc);
7677 }
7678
7679 static void intel_unpin_work_fn(struct work_struct *__work)
7680 {
7681 struct intel_unpin_work *work =
7682 container_of(__work, struct intel_unpin_work, work);
7683 struct drm_device *dev = work->crtc->dev;
7684
7685 mutex_lock(&dev->struct_mutex);
7686 intel_unpin_fb_obj(work->old_fb_obj);
7687 drm_gem_object_unreference(&work->pending_flip_obj->base);
7688 drm_gem_object_unreference(&work->old_fb_obj->base);
7689
7690 intel_update_fbc(dev);
7691 mutex_unlock(&dev->struct_mutex);
7692
7693 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7694 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7695
7696 kfree(work);
7697 }
7698
7699 static void do_intel_finish_page_flip(struct drm_device *dev,
7700 struct drm_crtc *crtc)
7701 {
7702 drm_i915_private_t *dev_priv = dev->dev_private;
7703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7704 struct intel_unpin_work *work;
7705 unsigned long flags;
7706
7707 /* Ignore early vblank irqs */
7708 if (intel_crtc == NULL)
7709 return;
7710
7711 spin_lock_irqsave(&dev->event_lock, flags);
7712 work = intel_crtc->unpin_work;
7713
7714 /* Ensure we don't miss a work->pending update ... */
7715 smp_rmb();
7716
7717 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7718 spin_unlock_irqrestore(&dev->event_lock, flags);
7719 return;
7720 }
7721
7722 /* and that the unpin work is consistent wrt ->pending. */
7723 smp_rmb();
7724
7725 intel_crtc->unpin_work = NULL;
7726
7727 if (work->event)
7728 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7729
7730 drm_vblank_put(dev, intel_crtc->pipe);
7731
7732 spin_unlock_irqrestore(&dev->event_lock, flags);
7733
7734 wake_up_all(&dev_priv->pending_flip_queue);
7735
7736 queue_work(dev_priv->wq, &work->work);
7737
7738 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7739 }
7740
7741 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7742 {
7743 drm_i915_private_t *dev_priv = dev->dev_private;
7744 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7745
7746 do_intel_finish_page_flip(dev, crtc);
7747 }
7748
7749 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7750 {
7751 drm_i915_private_t *dev_priv = dev->dev_private;
7752 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7753
7754 do_intel_finish_page_flip(dev, crtc);
7755 }
7756
7757 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7758 {
7759 drm_i915_private_t *dev_priv = dev->dev_private;
7760 struct intel_crtc *intel_crtc =
7761 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7762 unsigned long flags;
7763
7764 /* NB: An MMIO update of the plane base pointer will also
7765 * generate a page-flip completion irq, i.e. every modeset
7766 * is also accompanied by a spurious intel_prepare_page_flip().
7767 */
7768 spin_lock_irqsave(&dev->event_lock, flags);
7769 if (intel_crtc->unpin_work)
7770 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7771 spin_unlock_irqrestore(&dev->event_lock, flags);
7772 }
7773
7774 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7775 {
7776 /* Ensure that the work item is consistent when activating it ... */
7777 smp_wmb();
7778 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7779 /* and that it is marked active as soon as the irq could fire. */
7780 smp_wmb();
7781 }
7782
7783 static int intel_gen2_queue_flip(struct drm_device *dev,
7784 struct drm_crtc *crtc,
7785 struct drm_framebuffer *fb,
7786 struct drm_i915_gem_object *obj,
7787 uint32_t flags)
7788 {
7789 struct drm_i915_private *dev_priv = dev->dev_private;
7790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7791 u32 flip_mask;
7792 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7793 int ret;
7794
7795 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7796 if (ret)
7797 goto err;
7798
7799 ret = intel_ring_begin(ring, 6);
7800 if (ret)
7801 goto err_unpin;
7802
7803 /* Can't queue multiple flips, so wait for the previous
7804 * one to finish before executing the next.
7805 */
7806 if (intel_crtc->plane)
7807 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7808 else
7809 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7810 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7811 intel_ring_emit(ring, MI_NOOP);
7812 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7813 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7814 intel_ring_emit(ring, fb->pitches[0]);
7815 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7816 intel_ring_emit(ring, 0); /* aux display base address, unused */
7817
7818 intel_mark_page_flip_active(intel_crtc);
7819 __intel_ring_advance(ring);
7820 return 0;
7821
7822 err_unpin:
7823 intel_unpin_fb_obj(obj);
7824 err:
7825 return ret;
7826 }
7827
7828 static int intel_gen3_queue_flip(struct drm_device *dev,
7829 struct drm_crtc *crtc,
7830 struct drm_framebuffer *fb,
7831 struct drm_i915_gem_object *obj,
7832 uint32_t flags)
7833 {
7834 struct drm_i915_private *dev_priv = dev->dev_private;
7835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7836 u32 flip_mask;
7837 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7838 int ret;
7839
7840 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7841 if (ret)
7842 goto err;
7843
7844 ret = intel_ring_begin(ring, 6);
7845 if (ret)
7846 goto err_unpin;
7847
7848 if (intel_crtc->plane)
7849 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7850 else
7851 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7852 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7853 intel_ring_emit(ring, MI_NOOP);
7854 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7855 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7856 intel_ring_emit(ring, fb->pitches[0]);
7857 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7858 intel_ring_emit(ring, MI_NOOP);
7859
7860 intel_mark_page_flip_active(intel_crtc);
7861 __intel_ring_advance(ring);
7862 return 0;
7863
7864 err_unpin:
7865 intel_unpin_fb_obj(obj);
7866 err:
7867 return ret;
7868 }
7869
7870 static int intel_gen4_queue_flip(struct drm_device *dev,
7871 struct drm_crtc *crtc,
7872 struct drm_framebuffer *fb,
7873 struct drm_i915_gem_object *obj,
7874 uint32_t flags)
7875 {
7876 struct drm_i915_private *dev_priv = dev->dev_private;
7877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7878 uint32_t pf, pipesrc;
7879 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7880 int ret;
7881
7882 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7883 if (ret)
7884 goto err;
7885
7886 ret = intel_ring_begin(ring, 4);
7887 if (ret)
7888 goto err_unpin;
7889
7890 /* i965+ uses the linear or tiled offsets from the
7891 * Display Registers (which do not change across a page-flip)
7892 * so we need only reprogram the base address.
7893 */
7894 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7895 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7896 intel_ring_emit(ring, fb->pitches[0]);
7897 intel_ring_emit(ring,
7898 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7899 obj->tiling_mode);
7900
7901 /* XXX Enabling the panel-fitter across page-flip is so far
7902 * untested on non-native modes, so ignore it for now.
7903 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7904 */
7905 pf = 0;
7906 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7907 intel_ring_emit(ring, pf | pipesrc);
7908
7909 intel_mark_page_flip_active(intel_crtc);
7910 __intel_ring_advance(ring);
7911 return 0;
7912
7913 err_unpin:
7914 intel_unpin_fb_obj(obj);
7915 err:
7916 return ret;
7917 }
7918
7919 static int intel_gen6_queue_flip(struct drm_device *dev,
7920 struct drm_crtc *crtc,
7921 struct drm_framebuffer *fb,
7922 struct drm_i915_gem_object *obj,
7923 uint32_t flags)
7924 {
7925 struct drm_i915_private *dev_priv = dev->dev_private;
7926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7927 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7928 uint32_t pf, pipesrc;
7929 int ret;
7930
7931 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7932 if (ret)
7933 goto err;
7934
7935 ret = intel_ring_begin(ring, 4);
7936 if (ret)
7937 goto err_unpin;
7938
7939 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7940 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7941 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7942 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7943
7944 /* Contrary to the suggestions in the documentation,
7945 * "Enable Panel Fitter" does not seem to be required when page
7946 * flipping with a non-native mode, and worse causes a normal
7947 * modeset to fail.
7948 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7949 */
7950 pf = 0;
7951 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7952 intel_ring_emit(ring, pf | pipesrc);
7953
7954 intel_mark_page_flip_active(intel_crtc);
7955 __intel_ring_advance(ring);
7956 return 0;
7957
7958 err_unpin:
7959 intel_unpin_fb_obj(obj);
7960 err:
7961 return ret;
7962 }
7963
7964 static int intel_gen7_queue_flip(struct drm_device *dev,
7965 struct drm_crtc *crtc,
7966 struct drm_framebuffer *fb,
7967 struct drm_i915_gem_object *obj,
7968 uint32_t flags)
7969 {
7970 struct drm_i915_private *dev_priv = dev->dev_private;
7971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7972 struct intel_ring_buffer *ring;
7973 uint32_t plane_bit = 0;
7974 int len, ret;
7975
7976 ring = obj->ring;
7977 if (ring == NULL || ring->id != RCS)
7978 ring = &dev_priv->ring[BCS];
7979
7980 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7981 if (ret)
7982 goto err;
7983
7984 switch(intel_crtc->plane) {
7985 case PLANE_A:
7986 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7987 break;
7988 case PLANE_B:
7989 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7990 break;
7991 case PLANE_C:
7992 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7993 break;
7994 default:
7995 WARN_ONCE(1, "unknown plane in flip command\n");
7996 ret = -ENODEV;
7997 goto err_unpin;
7998 }
7999
8000 len = 4;
8001 if (ring->id == RCS)
8002 len += 6;
8003
8004 ret = intel_ring_begin(ring, len);
8005 if (ret)
8006 goto err_unpin;
8007
8008 /* Unmask the flip-done completion message. Note that the bspec says that
8009 * we should do this for both the BCS and RCS, and that we must not unmask
8010 * more than one flip event at any time (or ensure that one flip message
8011 * can be sent by waiting for flip-done prior to queueing new flips).
8012 * Experimentation says that BCS works despite DERRMR masking all
8013 * flip-done completion events and that unmasking all planes at once
8014 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8015 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8016 */
8017 if (ring->id == RCS) {
8018 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8019 intel_ring_emit(ring, DERRMR);
8020 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8021 DERRMR_PIPEB_PRI_FLIP_DONE |
8022 DERRMR_PIPEC_PRI_FLIP_DONE));
8023 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8024 intel_ring_emit(ring, DERRMR);
8025 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8026 }
8027
8028 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8029 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8030 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8031 intel_ring_emit(ring, (MI_NOOP));
8032
8033 intel_mark_page_flip_active(intel_crtc);
8034 __intel_ring_advance(ring);
8035 return 0;
8036
8037 err_unpin:
8038 intel_unpin_fb_obj(obj);
8039 err:
8040 return ret;
8041 }
8042
8043 static int intel_default_queue_flip(struct drm_device *dev,
8044 struct drm_crtc *crtc,
8045 struct drm_framebuffer *fb,
8046 struct drm_i915_gem_object *obj,
8047 uint32_t flags)
8048 {
8049 return -ENODEV;
8050 }
8051
8052 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8053 struct drm_framebuffer *fb,
8054 struct drm_pending_vblank_event *event,
8055 uint32_t page_flip_flags)
8056 {
8057 struct drm_device *dev = crtc->dev;
8058 struct drm_i915_private *dev_priv = dev->dev_private;
8059 struct drm_framebuffer *old_fb = crtc->fb;
8060 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8062 struct intel_unpin_work *work;
8063 unsigned long flags;
8064 int ret;
8065
8066 /* Can't change pixel format via MI display flips. */
8067 if (fb->pixel_format != crtc->fb->pixel_format)
8068 return -EINVAL;
8069
8070 /*
8071 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8072 * Note that pitch changes could also affect these register.
8073 */
8074 if (INTEL_INFO(dev)->gen > 3 &&
8075 (fb->offsets[0] != crtc->fb->offsets[0] ||
8076 fb->pitches[0] != crtc->fb->pitches[0]))
8077 return -EINVAL;
8078
8079 work = kzalloc(sizeof *work, GFP_KERNEL);
8080 if (work == NULL)
8081 return -ENOMEM;
8082
8083 work->event = event;
8084 work->crtc = crtc;
8085 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8086 INIT_WORK(&work->work, intel_unpin_work_fn);
8087
8088 ret = drm_vblank_get(dev, intel_crtc->pipe);
8089 if (ret)
8090 goto free_work;
8091
8092 /* We borrow the event spin lock for protecting unpin_work */
8093 spin_lock_irqsave(&dev->event_lock, flags);
8094 if (intel_crtc->unpin_work) {
8095 spin_unlock_irqrestore(&dev->event_lock, flags);
8096 kfree(work);
8097 drm_vblank_put(dev, intel_crtc->pipe);
8098
8099 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8100 return -EBUSY;
8101 }
8102 intel_crtc->unpin_work = work;
8103 spin_unlock_irqrestore(&dev->event_lock, flags);
8104
8105 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8106 flush_workqueue(dev_priv->wq);
8107
8108 ret = i915_mutex_lock_interruptible(dev);
8109 if (ret)
8110 goto cleanup;
8111
8112 /* Reference the objects for the scheduled work. */
8113 drm_gem_object_reference(&work->old_fb_obj->base);
8114 drm_gem_object_reference(&obj->base);
8115
8116 crtc->fb = fb;
8117
8118 work->pending_flip_obj = obj;
8119
8120 work->enable_stall_check = true;
8121
8122 atomic_inc(&intel_crtc->unpin_work_count);
8123 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8124
8125 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8126 if (ret)
8127 goto cleanup_pending;
8128
8129 intel_disable_fbc(dev);
8130 intel_mark_fb_busy(obj, NULL);
8131 mutex_unlock(&dev->struct_mutex);
8132
8133 trace_i915_flip_request(intel_crtc->plane, obj);
8134
8135 return 0;
8136
8137 cleanup_pending:
8138 atomic_dec(&intel_crtc->unpin_work_count);
8139 crtc->fb = old_fb;
8140 drm_gem_object_unreference(&work->old_fb_obj->base);
8141 drm_gem_object_unreference(&obj->base);
8142 mutex_unlock(&dev->struct_mutex);
8143
8144 cleanup:
8145 spin_lock_irqsave(&dev->event_lock, flags);
8146 intel_crtc->unpin_work = NULL;
8147 spin_unlock_irqrestore(&dev->event_lock, flags);
8148
8149 drm_vblank_put(dev, intel_crtc->pipe);
8150 free_work:
8151 kfree(work);
8152
8153 return ret;
8154 }
8155
8156 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8157 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8158 .load_lut = intel_crtc_load_lut,
8159 };
8160
8161 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8162 struct drm_crtc *crtc)
8163 {
8164 struct drm_device *dev;
8165 struct drm_crtc *tmp;
8166 int crtc_mask = 1;
8167
8168 WARN(!crtc, "checking null crtc?\n");
8169
8170 dev = crtc->dev;
8171
8172 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8173 if (tmp == crtc)
8174 break;
8175 crtc_mask <<= 1;
8176 }
8177
8178 if (encoder->possible_crtcs & crtc_mask)
8179 return true;
8180 return false;
8181 }
8182
8183 /**
8184 * intel_modeset_update_staged_output_state
8185 *
8186 * Updates the staged output configuration state, e.g. after we've read out the
8187 * current hw state.
8188 */
8189 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8190 {
8191 struct intel_encoder *encoder;
8192 struct intel_connector *connector;
8193
8194 list_for_each_entry(connector, &dev->mode_config.connector_list,
8195 base.head) {
8196 connector->new_encoder =
8197 to_intel_encoder(connector->base.encoder);
8198 }
8199
8200 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8201 base.head) {
8202 encoder->new_crtc =
8203 to_intel_crtc(encoder->base.crtc);
8204 }
8205 }
8206
8207 /**
8208 * intel_modeset_commit_output_state
8209 *
8210 * This function copies the stage display pipe configuration to the real one.
8211 */
8212 static void intel_modeset_commit_output_state(struct drm_device *dev)
8213 {
8214 struct intel_encoder *encoder;
8215 struct intel_connector *connector;
8216
8217 list_for_each_entry(connector, &dev->mode_config.connector_list,
8218 base.head) {
8219 connector->base.encoder = &connector->new_encoder->base;
8220 }
8221
8222 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8223 base.head) {
8224 encoder->base.crtc = &encoder->new_crtc->base;
8225 }
8226 }
8227
8228 static void
8229 connected_sink_compute_bpp(struct intel_connector * connector,
8230 struct intel_crtc_config *pipe_config)
8231 {
8232 int bpp = pipe_config->pipe_bpp;
8233
8234 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8235 connector->base.base.id,
8236 drm_get_connector_name(&connector->base));
8237
8238 /* Don't use an invalid EDID bpc value */
8239 if (connector->base.display_info.bpc &&
8240 connector->base.display_info.bpc * 3 < bpp) {
8241 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8242 bpp, connector->base.display_info.bpc*3);
8243 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8244 }
8245
8246 /* Clamp bpp to 8 on screens without EDID 1.4 */
8247 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8248 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8249 bpp);
8250 pipe_config->pipe_bpp = 24;
8251 }
8252 }
8253
8254 static int
8255 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8256 struct drm_framebuffer *fb,
8257 struct intel_crtc_config *pipe_config)
8258 {
8259 struct drm_device *dev = crtc->base.dev;
8260 struct intel_connector *connector;
8261 int bpp;
8262
8263 switch (fb->pixel_format) {
8264 case DRM_FORMAT_C8:
8265 bpp = 8*3; /* since we go through a colormap */
8266 break;
8267 case DRM_FORMAT_XRGB1555:
8268 case DRM_FORMAT_ARGB1555:
8269 /* checked in intel_framebuffer_init already */
8270 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8271 return -EINVAL;
8272 case DRM_FORMAT_RGB565:
8273 bpp = 6*3; /* min is 18bpp */
8274 break;
8275 case DRM_FORMAT_XBGR8888:
8276 case DRM_FORMAT_ABGR8888:
8277 /* checked in intel_framebuffer_init already */
8278 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8279 return -EINVAL;
8280 case DRM_FORMAT_XRGB8888:
8281 case DRM_FORMAT_ARGB8888:
8282 bpp = 8*3;
8283 break;
8284 case DRM_FORMAT_XRGB2101010:
8285 case DRM_FORMAT_ARGB2101010:
8286 case DRM_FORMAT_XBGR2101010:
8287 case DRM_FORMAT_ABGR2101010:
8288 /* checked in intel_framebuffer_init already */
8289 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8290 return -EINVAL;
8291 bpp = 10*3;
8292 break;
8293 /* TODO: gen4+ supports 16 bpc floating point, too. */
8294 default:
8295 DRM_DEBUG_KMS("unsupported depth\n");
8296 return -EINVAL;
8297 }
8298
8299 pipe_config->pipe_bpp = bpp;
8300
8301 /* Clamp display bpp to EDID value */
8302 list_for_each_entry(connector, &dev->mode_config.connector_list,
8303 base.head) {
8304 if (!connector->new_encoder ||
8305 connector->new_encoder->new_crtc != crtc)
8306 continue;
8307
8308 connected_sink_compute_bpp(connector, pipe_config);
8309 }
8310
8311 return bpp;
8312 }
8313
8314 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8315 struct intel_crtc_config *pipe_config,
8316 const char *context)
8317 {
8318 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8319 context, pipe_name(crtc->pipe));
8320
8321 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8322 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8323 pipe_config->pipe_bpp, pipe_config->dither);
8324 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8325 pipe_config->has_pch_encoder,
8326 pipe_config->fdi_lanes,
8327 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8328 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8329 pipe_config->fdi_m_n.tu);
8330 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8331 pipe_config->has_dp_encoder,
8332 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8333 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8334 pipe_config->dp_m_n.tu);
8335 DRM_DEBUG_KMS("requested mode:\n");
8336 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8337 DRM_DEBUG_KMS("adjusted mode:\n");
8338 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8339 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8340 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8341 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8342 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8343 pipe_config->gmch_pfit.control,
8344 pipe_config->gmch_pfit.pgm_ratios,
8345 pipe_config->gmch_pfit.lvds_border_bits);
8346 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8347 pipe_config->pch_pfit.pos,
8348 pipe_config->pch_pfit.size);
8349 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8350 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8351 }
8352
8353 static bool check_encoder_cloning(struct drm_crtc *crtc)
8354 {
8355 int num_encoders = 0;
8356 bool uncloneable_encoders = false;
8357 struct intel_encoder *encoder;
8358
8359 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8360 base.head) {
8361 if (&encoder->new_crtc->base != crtc)
8362 continue;
8363
8364 num_encoders++;
8365 if (!encoder->cloneable)
8366 uncloneable_encoders = true;
8367 }
8368
8369 return !(num_encoders > 1 && uncloneable_encoders);
8370 }
8371
8372 static struct intel_crtc_config *
8373 intel_modeset_pipe_config(struct drm_crtc *crtc,
8374 struct drm_framebuffer *fb,
8375 struct drm_display_mode *mode)
8376 {
8377 struct drm_device *dev = crtc->dev;
8378 struct intel_encoder *encoder;
8379 struct intel_crtc_config *pipe_config;
8380 int plane_bpp, ret = -EINVAL;
8381 bool retry = true;
8382
8383 if (!check_encoder_cloning(crtc)) {
8384 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8385 return ERR_PTR(-EINVAL);
8386 }
8387
8388 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8389 if (!pipe_config)
8390 return ERR_PTR(-ENOMEM);
8391
8392 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8393 drm_mode_copy(&pipe_config->requested_mode, mode);
8394
8395 pipe_config->pipe_src_w = mode->hdisplay;
8396 pipe_config->pipe_src_h = mode->vdisplay;
8397
8398 pipe_config->cpu_transcoder =
8399 (enum transcoder) to_intel_crtc(crtc)->pipe;
8400 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8401
8402 /*
8403 * Sanitize sync polarity flags based on requested ones. If neither
8404 * positive or negative polarity is requested, treat this as meaning
8405 * negative polarity.
8406 */
8407 if (!(pipe_config->adjusted_mode.flags &
8408 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8409 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8410
8411 if (!(pipe_config->adjusted_mode.flags &
8412 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8413 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8414
8415 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8416 * plane pixel format and any sink constraints into account. Returns the
8417 * source plane bpp so that dithering can be selected on mismatches
8418 * after encoders and crtc also have had their say. */
8419 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8420 fb, pipe_config);
8421 if (plane_bpp < 0)
8422 goto fail;
8423
8424 encoder_retry:
8425 /* Ensure the port clock defaults are reset when retrying. */
8426 pipe_config->port_clock = 0;
8427 pipe_config->pixel_multiplier = 1;
8428
8429 /* Fill in default crtc timings, allow encoders to overwrite them. */
8430 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8431
8432 /* Pass our mode to the connectors and the CRTC to give them a chance to
8433 * adjust it according to limitations or connector properties, and also
8434 * a chance to reject the mode entirely.
8435 */
8436 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8437 base.head) {
8438
8439 if (&encoder->new_crtc->base != crtc)
8440 continue;
8441
8442 if (!(encoder->compute_config(encoder, pipe_config))) {
8443 DRM_DEBUG_KMS("Encoder config failure\n");
8444 goto fail;
8445 }
8446 }
8447
8448 /* Set default port clock if not overwritten by the encoder. Needs to be
8449 * done afterwards in case the encoder adjusts the mode. */
8450 if (!pipe_config->port_clock)
8451 pipe_config->port_clock = pipe_config->adjusted_mode.clock *
8452 pipe_config->pixel_multiplier;
8453
8454 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8455 if (ret < 0) {
8456 DRM_DEBUG_KMS("CRTC fixup failed\n");
8457 goto fail;
8458 }
8459
8460 if (ret == RETRY) {
8461 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8462 ret = -EINVAL;
8463 goto fail;
8464 }
8465
8466 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8467 retry = false;
8468 goto encoder_retry;
8469 }
8470
8471 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8472 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8473 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8474
8475 return pipe_config;
8476 fail:
8477 kfree(pipe_config);
8478 return ERR_PTR(ret);
8479 }
8480
8481 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8482 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8483 static void
8484 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8485 unsigned *prepare_pipes, unsigned *disable_pipes)
8486 {
8487 struct intel_crtc *intel_crtc;
8488 struct drm_device *dev = crtc->dev;
8489 struct intel_encoder *encoder;
8490 struct intel_connector *connector;
8491 struct drm_crtc *tmp_crtc;
8492
8493 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8494
8495 /* Check which crtcs have changed outputs connected to them, these need
8496 * to be part of the prepare_pipes mask. We don't (yet) support global
8497 * modeset across multiple crtcs, so modeset_pipes will only have one
8498 * bit set at most. */
8499 list_for_each_entry(connector, &dev->mode_config.connector_list,
8500 base.head) {
8501 if (connector->base.encoder == &connector->new_encoder->base)
8502 continue;
8503
8504 if (connector->base.encoder) {
8505 tmp_crtc = connector->base.encoder->crtc;
8506
8507 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8508 }
8509
8510 if (connector->new_encoder)
8511 *prepare_pipes |=
8512 1 << connector->new_encoder->new_crtc->pipe;
8513 }
8514
8515 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8516 base.head) {
8517 if (encoder->base.crtc == &encoder->new_crtc->base)
8518 continue;
8519
8520 if (encoder->base.crtc) {
8521 tmp_crtc = encoder->base.crtc;
8522
8523 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8524 }
8525
8526 if (encoder->new_crtc)
8527 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8528 }
8529
8530 /* Check for any pipes that will be fully disabled ... */
8531 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8532 base.head) {
8533 bool used = false;
8534
8535 /* Don't try to disable disabled crtcs. */
8536 if (!intel_crtc->base.enabled)
8537 continue;
8538
8539 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8540 base.head) {
8541 if (encoder->new_crtc == intel_crtc)
8542 used = true;
8543 }
8544
8545 if (!used)
8546 *disable_pipes |= 1 << intel_crtc->pipe;
8547 }
8548
8549
8550 /* set_mode is also used to update properties on life display pipes. */
8551 intel_crtc = to_intel_crtc(crtc);
8552 if (crtc->enabled)
8553 *prepare_pipes |= 1 << intel_crtc->pipe;
8554
8555 /*
8556 * For simplicity do a full modeset on any pipe where the output routing
8557 * changed. We could be more clever, but that would require us to be
8558 * more careful with calling the relevant encoder->mode_set functions.
8559 */
8560 if (*prepare_pipes)
8561 *modeset_pipes = *prepare_pipes;
8562
8563 /* ... and mask these out. */
8564 *modeset_pipes &= ~(*disable_pipes);
8565 *prepare_pipes &= ~(*disable_pipes);
8566
8567 /*
8568 * HACK: We don't (yet) fully support global modesets. intel_set_config
8569 * obies this rule, but the modeset restore mode of
8570 * intel_modeset_setup_hw_state does not.
8571 */
8572 *modeset_pipes &= 1 << intel_crtc->pipe;
8573 *prepare_pipes &= 1 << intel_crtc->pipe;
8574
8575 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8576 *modeset_pipes, *prepare_pipes, *disable_pipes);
8577 }
8578
8579 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8580 {
8581 struct drm_encoder *encoder;
8582 struct drm_device *dev = crtc->dev;
8583
8584 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8585 if (encoder->crtc == crtc)
8586 return true;
8587
8588 return false;
8589 }
8590
8591 static void
8592 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8593 {
8594 struct intel_encoder *intel_encoder;
8595 struct intel_crtc *intel_crtc;
8596 struct drm_connector *connector;
8597
8598 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8599 base.head) {
8600 if (!intel_encoder->base.crtc)
8601 continue;
8602
8603 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8604
8605 if (prepare_pipes & (1 << intel_crtc->pipe))
8606 intel_encoder->connectors_active = false;
8607 }
8608
8609 intel_modeset_commit_output_state(dev);
8610
8611 /* Update computed state. */
8612 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8613 base.head) {
8614 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8615 }
8616
8617 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8618 if (!connector->encoder || !connector->encoder->crtc)
8619 continue;
8620
8621 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8622
8623 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8624 struct drm_property *dpms_property =
8625 dev->mode_config.dpms_property;
8626
8627 connector->dpms = DRM_MODE_DPMS_ON;
8628 drm_object_property_set_value(&connector->base,
8629 dpms_property,
8630 DRM_MODE_DPMS_ON);
8631
8632 intel_encoder = to_intel_encoder(connector->encoder);
8633 intel_encoder->connectors_active = true;
8634 }
8635 }
8636
8637 }
8638
8639 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8640 {
8641 int diff;
8642
8643 if (clock1 == clock2)
8644 return true;
8645
8646 if (!clock1 || !clock2)
8647 return false;
8648
8649 diff = abs(clock1 - clock2);
8650
8651 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8652 return true;
8653
8654 return false;
8655 }
8656
8657 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8658 list_for_each_entry((intel_crtc), \
8659 &(dev)->mode_config.crtc_list, \
8660 base.head) \
8661 if (mask & (1 <<(intel_crtc)->pipe))
8662
8663 static bool
8664 intel_pipe_config_compare(struct drm_device *dev,
8665 struct intel_crtc_config *current_config,
8666 struct intel_crtc_config *pipe_config)
8667 {
8668 #define PIPE_CONF_CHECK_X(name) \
8669 if (current_config->name != pipe_config->name) { \
8670 DRM_ERROR("mismatch in " #name " " \
8671 "(expected 0x%08x, found 0x%08x)\n", \
8672 current_config->name, \
8673 pipe_config->name); \
8674 return false; \
8675 }
8676
8677 #define PIPE_CONF_CHECK_I(name) \
8678 if (current_config->name != pipe_config->name) { \
8679 DRM_ERROR("mismatch in " #name " " \
8680 "(expected %i, found %i)\n", \
8681 current_config->name, \
8682 pipe_config->name); \
8683 return false; \
8684 }
8685
8686 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8687 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8688 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8689 "(expected %i, found %i)\n", \
8690 current_config->name & (mask), \
8691 pipe_config->name & (mask)); \
8692 return false; \
8693 }
8694
8695 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8696 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8697 DRM_ERROR("mismatch in " #name " " \
8698 "(expected %i, found %i)\n", \
8699 current_config->name, \
8700 pipe_config->name); \
8701 return false; \
8702 }
8703
8704 #define PIPE_CONF_QUIRK(quirk) \
8705 ((current_config->quirks | pipe_config->quirks) & (quirk))
8706
8707 PIPE_CONF_CHECK_I(cpu_transcoder);
8708
8709 PIPE_CONF_CHECK_I(has_pch_encoder);
8710 PIPE_CONF_CHECK_I(fdi_lanes);
8711 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8712 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8713 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8714 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8715 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8716
8717 PIPE_CONF_CHECK_I(has_dp_encoder);
8718 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8719 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8720 PIPE_CONF_CHECK_I(dp_m_n.link_m);
8721 PIPE_CONF_CHECK_I(dp_m_n.link_n);
8722 PIPE_CONF_CHECK_I(dp_m_n.tu);
8723
8724 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8725 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8726 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8727 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8728 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8729 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8730
8731 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8732 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8733 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8734 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8735 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8736 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8737
8738 PIPE_CONF_CHECK_I(pixel_multiplier);
8739
8740 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8741 DRM_MODE_FLAG_INTERLACE);
8742
8743 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8744 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8745 DRM_MODE_FLAG_PHSYNC);
8746 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8747 DRM_MODE_FLAG_NHSYNC);
8748 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8749 DRM_MODE_FLAG_PVSYNC);
8750 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8751 DRM_MODE_FLAG_NVSYNC);
8752 }
8753
8754 PIPE_CONF_CHECK_I(pipe_src_w);
8755 PIPE_CONF_CHECK_I(pipe_src_h);
8756
8757 PIPE_CONF_CHECK_I(gmch_pfit.control);
8758 /* pfit ratios are autocomputed by the hw on gen4+ */
8759 if (INTEL_INFO(dev)->gen < 4)
8760 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8761 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8762 PIPE_CONF_CHECK_I(pch_pfit.pos);
8763 PIPE_CONF_CHECK_I(pch_pfit.size);
8764
8765 PIPE_CONF_CHECK_I(ips_enabled);
8766
8767 PIPE_CONF_CHECK_I(double_wide);
8768
8769 PIPE_CONF_CHECK_I(shared_dpll);
8770 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8771 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8772 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8773 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8774
8775 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8776 PIPE_CONF_CHECK_I(pipe_bpp);
8777
8778 if (!IS_HASWELL(dev)) {
8779 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
8780 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8781 }
8782
8783 #undef PIPE_CONF_CHECK_X
8784 #undef PIPE_CONF_CHECK_I
8785 #undef PIPE_CONF_CHECK_FLAGS
8786 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8787 #undef PIPE_CONF_QUIRK
8788
8789 return true;
8790 }
8791
8792 static void
8793 check_connector_state(struct drm_device *dev)
8794 {
8795 struct intel_connector *connector;
8796
8797 list_for_each_entry(connector, &dev->mode_config.connector_list,
8798 base.head) {
8799 /* This also checks the encoder/connector hw state with the
8800 * ->get_hw_state callbacks. */
8801 intel_connector_check_state(connector);
8802
8803 WARN(&connector->new_encoder->base != connector->base.encoder,
8804 "connector's staged encoder doesn't match current encoder\n");
8805 }
8806 }
8807
8808 static void
8809 check_encoder_state(struct drm_device *dev)
8810 {
8811 struct intel_encoder *encoder;
8812 struct intel_connector *connector;
8813
8814 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8815 base.head) {
8816 bool enabled = false;
8817 bool active = false;
8818 enum pipe pipe, tracked_pipe;
8819
8820 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8821 encoder->base.base.id,
8822 drm_get_encoder_name(&encoder->base));
8823
8824 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8825 "encoder's stage crtc doesn't match current crtc\n");
8826 WARN(encoder->connectors_active && !encoder->base.crtc,
8827 "encoder's active_connectors set, but no crtc\n");
8828
8829 list_for_each_entry(connector, &dev->mode_config.connector_list,
8830 base.head) {
8831 if (connector->base.encoder != &encoder->base)
8832 continue;
8833 enabled = true;
8834 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8835 active = true;
8836 }
8837 WARN(!!encoder->base.crtc != enabled,
8838 "encoder's enabled state mismatch "
8839 "(expected %i, found %i)\n",
8840 !!encoder->base.crtc, enabled);
8841 WARN(active && !encoder->base.crtc,
8842 "active encoder with no crtc\n");
8843
8844 WARN(encoder->connectors_active != active,
8845 "encoder's computed active state doesn't match tracked active state "
8846 "(expected %i, found %i)\n", active, encoder->connectors_active);
8847
8848 active = encoder->get_hw_state(encoder, &pipe);
8849 WARN(active != encoder->connectors_active,
8850 "encoder's hw state doesn't match sw tracking "
8851 "(expected %i, found %i)\n",
8852 encoder->connectors_active, active);
8853
8854 if (!encoder->base.crtc)
8855 continue;
8856
8857 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8858 WARN(active && pipe != tracked_pipe,
8859 "active encoder's pipe doesn't match"
8860 "(expected %i, found %i)\n",
8861 tracked_pipe, pipe);
8862
8863 }
8864 }
8865
8866 static void
8867 check_crtc_state(struct drm_device *dev)
8868 {
8869 drm_i915_private_t *dev_priv = dev->dev_private;
8870 struct intel_crtc *crtc;
8871 struct intel_encoder *encoder;
8872 struct intel_crtc_config pipe_config;
8873
8874 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8875 base.head) {
8876 bool enabled = false;
8877 bool active = false;
8878
8879 memset(&pipe_config, 0, sizeof(pipe_config));
8880
8881 DRM_DEBUG_KMS("[CRTC:%d]\n",
8882 crtc->base.base.id);
8883
8884 WARN(crtc->active && !crtc->base.enabled,
8885 "active crtc, but not enabled in sw tracking\n");
8886
8887 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8888 base.head) {
8889 if (encoder->base.crtc != &crtc->base)
8890 continue;
8891 enabled = true;
8892 if (encoder->connectors_active)
8893 active = true;
8894 }
8895
8896 WARN(active != crtc->active,
8897 "crtc's computed active state doesn't match tracked active state "
8898 "(expected %i, found %i)\n", active, crtc->active);
8899 WARN(enabled != crtc->base.enabled,
8900 "crtc's computed enabled state doesn't match tracked enabled state "
8901 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8902
8903 active = dev_priv->display.get_pipe_config(crtc,
8904 &pipe_config);
8905
8906 /* hw state is inconsistent with the pipe A quirk */
8907 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8908 active = crtc->active;
8909
8910 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8911 base.head) {
8912 enum pipe pipe;
8913 if (encoder->base.crtc != &crtc->base)
8914 continue;
8915 if (encoder->get_config &&
8916 encoder->get_hw_state(encoder, &pipe))
8917 encoder->get_config(encoder, &pipe_config);
8918 }
8919
8920 WARN(crtc->active != active,
8921 "crtc active state doesn't match with hw state "
8922 "(expected %i, found %i)\n", crtc->active, active);
8923
8924 if (active &&
8925 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8926 WARN(1, "pipe state doesn't match!\n");
8927 intel_dump_pipe_config(crtc, &pipe_config,
8928 "[hw state]");
8929 intel_dump_pipe_config(crtc, &crtc->config,
8930 "[sw state]");
8931 }
8932 }
8933 }
8934
8935 static void
8936 check_shared_dpll_state(struct drm_device *dev)
8937 {
8938 drm_i915_private_t *dev_priv = dev->dev_private;
8939 struct intel_crtc *crtc;
8940 struct intel_dpll_hw_state dpll_hw_state;
8941 int i;
8942
8943 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8944 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8945 int enabled_crtcs = 0, active_crtcs = 0;
8946 bool active;
8947
8948 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8949
8950 DRM_DEBUG_KMS("%s\n", pll->name);
8951
8952 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8953
8954 WARN(pll->active > pll->refcount,
8955 "more active pll users than references: %i vs %i\n",
8956 pll->active, pll->refcount);
8957 WARN(pll->active && !pll->on,
8958 "pll in active use but not on in sw tracking\n");
8959 WARN(pll->on && !pll->active,
8960 "pll in on but not on in use in sw tracking\n");
8961 WARN(pll->on != active,
8962 "pll on state mismatch (expected %i, found %i)\n",
8963 pll->on, active);
8964
8965 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8966 base.head) {
8967 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8968 enabled_crtcs++;
8969 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8970 active_crtcs++;
8971 }
8972 WARN(pll->active != active_crtcs,
8973 "pll active crtcs mismatch (expected %i, found %i)\n",
8974 pll->active, active_crtcs);
8975 WARN(pll->refcount != enabled_crtcs,
8976 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8977 pll->refcount, enabled_crtcs);
8978
8979 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8980 sizeof(dpll_hw_state)),
8981 "pll hw state mismatch\n");
8982 }
8983 }
8984
8985 void
8986 intel_modeset_check_state(struct drm_device *dev)
8987 {
8988 check_connector_state(dev);
8989 check_encoder_state(dev);
8990 check_crtc_state(dev);
8991 check_shared_dpll_state(dev);
8992 }
8993
8994 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
8995 int dotclock)
8996 {
8997 /*
8998 * FDI already provided one idea for the dotclock.
8999 * Yell if the encoder disagrees.
9000 */
9001 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
9002 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9003 pipe_config->adjusted_mode.clock, dotclock);
9004 }
9005
9006 static int __intel_set_mode(struct drm_crtc *crtc,
9007 struct drm_display_mode *mode,
9008 int x, int y, struct drm_framebuffer *fb)
9009 {
9010 struct drm_device *dev = crtc->dev;
9011 drm_i915_private_t *dev_priv = dev->dev_private;
9012 struct drm_display_mode *saved_mode, *saved_hwmode;
9013 struct intel_crtc_config *pipe_config = NULL;
9014 struct intel_crtc *intel_crtc;
9015 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9016 int ret = 0;
9017
9018 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
9019 if (!saved_mode)
9020 return -ENOMEM;
9021 saved_hwmode = saved_mode + 1;
9022
9023 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9024 &prepare_pipes, &disable_pipes);
9025
9026 *saved_hwmode = crtc->hwmode;
9027 *saved_mode = crtc->mode;
9028
9029 /* Hack: Because we don't (yet) support global modeset on multiple
9030 * crtcs, we don't keep track of the new mode for more than one crtc.
9031 * Hence simply check whether any bit is set in modeset_pipes in all the
9032 * pieces of code that are not yet converted to deal with mutliple crtcs
9033 * changing their mode at the same time. */
9034 if (modeset_pipes) {
9035 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9036 if (IS_ERR(pipe_config)) {
9037 ret = PTR_ERR(pipe_config);
9038 pipe_config = NULL;
9039
9040 goto out;
9041 }
9042 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9043 "[modeset]");
9044 }
9045
9046 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9047 intel_crtc_disable(&intel_crtc->base);
9048
9049 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9050 if (intel_crtc->base.enabled)
9051 dev_priv->display.crtc_disable(&intel_crtc->base);
9052 }
9053
9054 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9055 * to set it here already despite that we pass it down the callchain.
9056 */
9057 if (modeset_pipes) {
9058 crtc->mode = *mode;
9059 /* mode_set/enable/disable functions rely on a correct pipe
9060 * config. */
9061 to_intel_crtc(crtc)->config = *pipe_config;
9062 }
9063
9064 /* Only after disabling all output pipelines that will be changed can we
9065 * update the the output configuration. */
9066 intel_modeset_update_state(dev, prepare_pipes);
9067
9068 if (dev_priv->display.modeset_global_resources)
9069 dev_priv->display.modeset_global_resources(dev);
9070
9071 /* Set up the DPLL and any encoders state that needs to adjust or depend
9072 * on the DPLL.
9073 */
9074 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9075 ret = intel_crtc_mode_set(&intel_crtc->base,
9076 x, y, fb);
9077 if (ret)
9078 goto done;
9079 }
9080
9081 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9082 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9083 dev_priv->display.crtc_enable(&intel_crtc->base);
9084
9085 if (modeset_pipes) {
9086 /* Store real post-adjustment hardware mode. */
9087 crtc->hwmode = pipe_config->adjusted_mode;
9088
9089 /* Calculate and store various constants which
9090 * are later needed by vblank and swap-completion
9091 * timestamping. They are derived from true hwmode.
9092 */
9093 drm_calc_timestamping_constants(crtc);
9094 }
9095
9096 /* FIXME: add subpixel order */
9097 done:
9098 if (ret && crtc->enabled) {
9099 crtc->hwmode = *saved_hwmode;
9100 crtc->mode = *saved_mode;
9101 }
9102
9103 out:
9104 kfree(pipe_config);
9105 kfree(saved_mode);
9106 return ret;
9107 }
9108
9109 static int intel_set_mode(struct drm_crtc *crtc,
9110 struct drm_display_mode *mode,
9111 int x, int y, struct drm_framebuffer *fb)
9112 {
9113 int ret;
9114
9115 ret = __intel_set_mode(crtc, mode, x, y, fb);
9116
9117 if (ret == 0)
9118 intel_modeset_check_state(crtc->dev);
9119
9120 return ret;
9121 }
9122
9123 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9124 {
9125 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9126 }
9127
9128 #undef for_each_intel_crtc_masked
9129
9130 static void intel_set_config_free(struct intel_set_config *config)
9131 {
9132 if (!config)
9133 return;
9134
9135 kfree(config->save_connector_encoders);
9136 kfree(config->save_encoder_crtcs);
9137 kfree(config);
9138 }
9139
9140 static int intel_set_config_save_state(struct drm_device *dev,
9141 struct intel_set_config *config)
9142 {
9143 struct drm_encoder *encoder;
9144 struct drm_connector *connector;
9145 int count;
9146
9147 config->save_encoder_crtcs =
9148 kcalloc(dev->mode_config.num_encoder,
9149 sizeof(struct drm_crtc *), GFP_KERNEL);
9150 if (!config->save_encoder_crtcs)
9151 return -ENOMEM;
9152
9153 config->save_connector_encoders =
9154 kcalloc(dev->mode_config.num_connector,
9155 sizeof(struct drm_encoder *), GFP_KERNEL);
9156 if (!config->save_connector_encoders)
9157 return -ENOMEM;
9158
9159 /* Copy data. Note that driver private data is not affected.
9160 * Should anything bad happen only the expected state is
9161 * restored, not the drivers personal bookkeeping.
9162 */
9163 count = 0;
9164 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9165 config->save_encoder_crtcs[count++] = encoder->crtc;
9166 }
9167
9168 count = 0;
9169 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9170 config->save_connector_encoders[count++] = connector->encoder;
9171 }
9172
9173 return 0;
9174 }
9175
9176 static void intel_set_config_restore_state(struct drm_device *dev,
9177 struct intel_set_config *config)
9178 {
9179 struct intel_encoder *encoder;
9180 struct intel_connector *connector;
9181 int count;
9182
9183 count = 0;
9184 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9185 encoder->new_crtc =
9186 to_intel_crtc(config->save_encoder_crtcs[count++]);
9187 }
9188
9189 count = 0;
9190 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9191 connector->new_encoder =
9192 to_intel_encoder(config->save_connector_encoders[count++]);
9193 }
9194 }
9195
9196 static bool
9197 is_crtc_connector_off(struct drm_mode_set *set)
9198 {
9199 int i;
9200
9201 if (set->num_connectors == 0)
9202 return false;
9203
9204 if (WARN_ON(set->connectors == NULL))
9205 return false;
9206
9207 for (i = 0; i < set->num_connectors; i++)
9208 if (set->connectors[i]->encoder &&
9209 set->connectors[i]->encoder->crtc == set->crtc &&
9210 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9211 return true;
9212
9213 return false;
9214 }
9215
9216 static void
9217 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9218 struct intel_set_config *config)
9219 {
9220
9221 /* We should be able to check here if the fb has the same properties
9222 * and then just flip_or_move it */
9223 if (is_crtc_connector_off(set)) {
9224 config->mode_changed = true;
9225 } else if (set->crtc->fb != set->fb) {
9226 /* If we have no fb then treat it as a full mode set */
9227 if (set->crtc->fb == NULL) {
9228 struct intel_crtc *intel_crtc =
9229 to_intel_crtc(set->crtc);
9230
9231 if (intel_crtc->active && i915_fastboot) {
9232 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9233 config->fb_changed = true;
9234 } else {
9235 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9236 config->mode_changed = true;
9237 }
9238 } else if (set->fb == NULL) {
9239 config->mode_changed = true;
9240 } else if (set->fb->pixel_format !=
9241 set->crtc->fb->pixel_format) {
9242 config->mode_changed = true;
9243 } else {
9244 config->fb_changed = true;
9245 }
9246 }
9247
9248 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9249 config->fb_changed = true;
9250
9251 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9252 DRM_DEBUG_KMS("modes are different, full mode set\n");
9253 drm_mode_debug_printmodeline(&set->crtc->mode);
9254 drm_mode_debug_printmodeline(set->mode);
9255 config->mode_changed = true;
9256 }
9257
9258 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9259 set->crtc->base.id, config->mode_changed, config->fb_changed);
9260 }
9261
9262 static int
9263 intel_modeset_stage_output_state(struct drm_device *dev,
9264 struct drm_mode_set *set,
9265 struct intel_set_config *config)
9266 {
9267 struct drm_crtc *new_crtc;
9268 struct intel_connector *connector;
9269 struct intel_encoder *encoder;
9270 int ro;
9271
9272 /* The upper layers ensure that we either disable a crtc or have a list
9273 * of connectors. For paranoia, double-check this. */
9274 WARN_ON(!set->fb && (set->num_connectors != 0));
9275 WARN_ON(set->fb && (set->num_connectors == 0));
9276
9277 list_for_each_entry(connector, &dev->mode_config.connector_list,
9278 base.head) {
9279 /* Otherwise traverse passed in connector list and get encoders
9280 * for them. */
9281 for (ro = 0; ro < set->num_connectors; ro++) {
9282 if (set->connectors[ro] == &connector->base) {
9283 connector->new_encoder = connector->encoder;
9284 break;
9285 }
9286 }
9287
9288 /* If we disable the crtc, disable all its connectors. Also, if
9289 * the connector is on the changing crtc but not on the new
9290 * connector list, disable it. */
9291 if ((!set->fb || ro == set->num_connectors) &&
9292 connector->base.encoder &&
9293 connector->base.encoder->crtc == set->crtc) {
9294 connector->new_encoder = NULL;
9295
9296 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9297 connector->base.base.id,
9298 drm_get_connector_name(&connector->base));
9299 }
9300
9301
9302 if (&connector->new_encoder->base != connector->base.encoder) {
9303 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9304 config->mode_changed = true;
9305 }
9306 }
9307 /* connector->new_encoder is now updated for all connectors. */
9308
9309 /* Update crtc of enabled connectors. */
9310 list_for_each_entry(connector, &dev->mode_config.connector_list,
9311 base.head) {
9312 if (!connector->new_encoder)
9313 continue;
9314
9315 new_crtc = connector->new_encoder->base.crtc;
9316
9317 for (ro = 0; ro < set->num_connectors; ro++) {
9318 if (set->connectors[ro] == &connector->base)
9319 new_crtc = set->crtc;
9320 }
9321
9322 /* Make sure the new CRTC will work with the encoder */
9323 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9324 new_crtc)) {
9325 return -EINVAL;
9326 }
9327 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9328
9329 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9330 connector->base.base.id,
9331 drm_get_connector_name(&connector->base),
9332 new_crtc->base.id);
9333 }
9334
9335 /* Check for any encoders that needs to be disabled. */
9336 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9337 base.head) {
9338 list_for_each_entry(connector,
9339 &dev->mode_config.connector_list,
9340 base.head) {
9341 if (connector->new_encoder == encoder) {
9342 WARN_ON(!connector->new_encoder->new_crtc);
9343
9344 goto next_encoder;
9345 }
9346 }
9347 encoder->new_crtc = NULL;
9348 next_encoder:
9349 /* Only now check for crtc changes so we don't miss encoders
9350 * that will be disabled. */
9351 if (&encoder->new_crtc->base != encoder->base.crtc) {
9352 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9353 config->mode_changed = true;
9354 }
9355 }
9356 /* Now we've also updated encoder->new_crtc for all encoders. */
9357
9358 return 0;
9359 }
9360
9361 static int intel_crtc_set_config(struct drm_mode_set *set)
9362 {
9363 struct drm_device *dev;
9364 struct drm_mode_set save_set;
9365 struct intel_set_config *config;
9366 int ret;
9367
9368 BUG_ON(!set);
9369 BUG_ON(!set->crtc);
9370 BUG_ON(!set->crtc->helper_private);
9371
9372 /* Enforce sane interface api - has been abused by the fb helper. */
9373 BUG_ON(!set->mode && set->fb);
9374 BUG_ON(set->fb && set->num_connectors == 0);
9375
9376 if (set->fb) {
9377 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9378 set->crtc->base.id, set->fb->base.id,
9379 (int)set->num_connectors, set->x, set->y);
9380 } else {
9381 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9382 }
9383
9384 dev = set->crtc->dev;
9385
9386 ret = -ENOMEM;
9387 config = kzalloc(sizeof(*config), GFP_KERNEL);
9388 if (!config)
9389 goto out_config;
9390
9391 ret = intel_set_config_save_state(dev, config);
9392 if (ret)
9393 goto out_config;
9394
9395 save_set.crtc = set->crtc;
9396 save_set.mode = &set->crtc->mode;
9397 save_set.x = set->crtc->x;
9398 save_set.y = set->crtc->y;
9399 save_set.fb = set->crtc->fb;
9400
9401 /* Compute whether we need a full modeset, only an fb base update or no
9402 * change at all. In the future we might also check whether only the
9403 * mode changed, e.g. for LVDS where we only change the panel fitter in
9404 * such cases. */
9405 intel_set_config_compute_mode_changes(set, config);
9406
9407 ret = intel_modeset_stage_output_state(dev, set, config);
9408 if (ret)
9409 goto fail;
9410
9411 if (config->mode_changed) {
9412 ret = intel_set_mode(set->crtc, set->mode,
9413 set->x, set->y, set->fb);
9414 } else if (config->fb_changed) {
9415 intel_crtc_wait_for_pending_flips(set->crtc);
9416
9417 ret = intel_pipe_set_base(set->crtc,
9418 set->x, set->y, set->fb);
9419 }
9420
9421 if (ret) {
9422 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9423 set->crtc->base.id, ret);
9424 fail:
9425 intel_set_config_restore_state(dev, config);
9426
9427 /* Try to restore the config */
9428 if (config->mode_changed &&
9429 intel_set_mode(save_set.crtc, save_set.mode,
9430 save_set.x, save_set.y, save_set.fb))
9431 DRM_ERROR("failed to restore config after modeset failure\n");
9432 }
9433
9434 out_config:
9435 intel_set_config_free(config);
9436 return ret;
9437 }
9438
9439 static const struct drm_crtc_funcs intel_crtc_funcs = {
9440 .cursor_set = intel_crtc_cursor_set,
9441 .cursor_move = intel_crtc_cursor_move,
9442 .gamma_set = intel_crtc_gamma_set,
9443 .set_config = intel_crtc_set_config,
9444 .destroy = intel_crtc_destroy,
9445 .page_flip = intel_crtc_page_flip,
9446 };
9447
9448 static void intel_cpu_pll_init(struct drm_device *dev)
9449 {
9450 if (HAS_DDI(dev))
9451 intel_ddi_pll_init(dev);
9452 }
9453
9454 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9455 struct intel_shared_dpll *pll,
9456 struct intel_dpll_hw_state *hw_state)
9457 {
9458 uint32_t val;
9459
9460 val = I915_READ(PCH_DPLL(pll->id));
9461 hw_state->dpll = val;
9462 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9463 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9464
9465 return val & DPLL_VCO_ENABLE;
9466 }
9467
9468 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9469 struct intel_shared_dpll *pll)
9470 {
9471 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9472 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9473 }
9474
9475 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9476 struct intel_shared_dpll *pll)
9477 {
9478 /* PCH refclock must be enabled first */
9479 assert_pch_refclk_enabled(dev_priv);
9480
9481 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9482
9483 /* Wait for the clocks to stabilize. */
9484 POSTING_READ(PCH_DPLL(pll->id));
9485 udelay(150);
9486
9487 /* The pixel multiplier can only be updated once the
9488 * DPLL is enabled and the clocks are stable.
9489 *
9490 * So write it again.
9491 */
9492 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9493 POSTING_READ(PCH_DPLL(pll->id));
9494 udelay(200);
9495 }
9496
9497 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9498 struct intel_shared_dpll *pll)
9499 {
9500 struct drm_device *dev = dev_priv->dev;
9501 struct intel_crtc *crtc;
9502
9503 /* Make sure no transcoder isn't still depending on us. */
9504 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9505 if (intel_crtc_to_shared_dpll(crtc) == pll)
9506 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9507 }
9508
9509 I915_WRITE(PCH_DPLL(pll->id), 0);
9510 POSTING_READ(PCH_DPLL(pll->id));
9511 udelay(200);
9512 }
9513
9514 static char *ibx_pch_dpll_names[] = {
9515 "PCH DPLL A",
9516 "PCH DPLL B",
9517 };
9518
9519 static void ibx_pch_dpll_init(struct drm_device *dev)
9520 {
9521 struct drm_i915_private *dev_priv = dev->dev_private;
9522 int i;
9523
9524 dev_priv->num_shared_dpll = 2;
9525
9526 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9527 dev_priv->shared_dplls[i].id = i;
9528 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9529 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9530 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9531 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9532 dev_priv->shared_dplls[i].get_hw_state =
9533 ibx_pch_dpll_get_hw_state;
9534 }
9535 }
9536
9537 static void intel_shared_dpll_init(struct drm_device *dev)
9538 {
9539 struct drm_i915_private *dev_priv = dev->dev_private;
9540
9541 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9542 ibx_pch_dpll_init(dev);
9543 else
9544 dev_priv->num_shared_dpll = 0;
9545
9546 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9547 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9548 dev_priv->num_shared_dpll);
9549 }
9550
9551 static void intel_crtc_init(struct drm_device *dev, int pipe)
9552 {
9553 drm_i915_private_t *dev_priv = dev->dev_private;
9554 struct intel_crtc *intel_crtc;
9555 int i;
9556
9557 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9558 if (intel_crtc == NULL)
9559 return;
9560
9561 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9562
9563 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9564 for (i = 0; i < 256; i++) {
9565 intel_crtc->lut_r[i] = i;
9566 intel_crtc->lut_g[i] = i;
9567 intel_crtc->lut_b[i] = i;
9568 }
9569
9570 /* Swap pipes & planes for FBC on pre-965 */
9571 intel_crtc->pipe = pipe;
9572 intel_crtc->plane = pipe;
9573 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9574 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9575 intel_crtc->plane = !pipe;
9576 }
9577
9578 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9579 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9580 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9581 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9582
9583 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9584 }
9585
9586 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9587 struct drm_file *file)
9588 {
9589 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9590 struct drm_mode_object *drmmode_obj;
9591 struct intel_crtc *crtc;
9592
9593 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9594 return -ENODEV;
9595
9596 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9597 DRM_MODE_OBJECT_CRTC);
9598
9599 if (!drmmode_obj) {
9600 DRM_ERROR("no such CRTC id\n");
9601 return -EINVAL;
9602 }
9603
9604 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9605 pipe_from_crtc_id->pipe = crtc->pipe;
9606
9607 return 0;
9608 }
9609
9610 static int intel_encoder_clones(struct intel_encoder *encoder)
9611 {
9612 struct drm_device *dev = encoder->base.dev;
9613 struct intel_encoder *source_encoder;
9614 int index_mask = 0;
9615 int entry = 0;
9616
9617 list_for_each_entry(source_encoder,
9618 &dev->mode_config.encoder_list, base.head) {
9619
9620 if (encoder == source_encoder)
9621 index_mask |= (1 << entry);
9622
9623 /* Intel hw has only one MUX where enocoders could be cloned. */
9624 if (encoder->cloneable && source_encoder->cloneable)
9625 index_mask |= (1 << entry);
9626
9627 entry++;
9628 }
9629
9630 return index_mask;
9631 }
9632
9633 static bool has_edp_a(struct drm_device *dev)
9634 {
9635 struct drm_i915_private *dev_priv = dev->dev_private;
9636
9637 if (!IS_MOBILE(dev))
9638 return false;
9639
9640 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9641 return false;
9642
9643 if (IS_GEN5(dev) &&
9644 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9645 return false;
9646
9647 return true;
9648 }
9649
9650 static void intel_setup_outputs(struct drm_device *dev)
9651 {
9652 struct drm_i915_private *dev_priv = dev->dev_private;
9653 struct intel_encoder *encoder;
9654 bool dpd_is_edp = false;
9655
9656 intel_lvds_init(dev);
9657
9658 if (!IS_ULT(dev))
9659 intel_crt_init(dev);
9660
9661 if (HAS_DDI(dev)) {
9662 int found;
9663
9664 /* Haswell uses DDI functions to detect digital outputs */
9665 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9666 /* DDI A only supports eDP */
9667 if (found)
9668 intel_ddi_init(dev, PORT_A);
9669
9670 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9671 * register */
9672 found = I915_READ(SFUSE_STRAP);
9673
9674 if (found & SFUSE_STRAP_DDIB_DETECTED)
9675 intel_ddi_init(dev, PORT_B);
9676 if (found & SFUSE_STRAP_DDIC_DETECTED)
9677 intel_ddi_init(dev, PORT_C);
9678 if (found & SFUSE_STRAP_DDID_DETECTED)
9679 intel_ddi_init(dev, PORT_D);
9680 } else if (HAS_PCH_SPLIT(dev)) {
9681 int found;
9682 dpd_is_edp = intel_dpd_is_edp(dev);
9683
9684 if (has_edp_a(dev))
9685 intel_dp_init(dev, DP_A, PORT_A);
9686
9687 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9688 /* PCH SDVOB multiplex with HDMIB */
9689 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9690 if (!found)
9691 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9692 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9693 intel_dp_init(dev, PCH_DP_B, PORT_B);
9694 }
9695
9696 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9697 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9698
9699 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9700 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9701
9702 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9703 intel_dp_init(dev, PCH_DP_C, PORT_C);
9704
9705 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9706 intel_dp_init(dev, PCH_DP_D, PORT_D);
9707 } else if (IS_VALLEYVIEW(dev)) {
9708 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9709 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9710 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9711 PORT_C);
9712 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9713 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9714 PORT_C);
9715 }
9716
9717 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9718 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9719 PORT_B);
9720 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9721 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9722 }
9723
9724 intel_dsi_init(dev);
9725 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9726 bool found = false;
9727
9728 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9729 DRM_DEBUG_KMS("probing SDVOB\n");
9730 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9731 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9732 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9733 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9734 }
9735
9736 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9737 intel_dp_init(dev, DP_B, PORT_B);
9738 }
9739
9740 /* Before G4X SDVOC doesn't have its own detect register */
9741
9742 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9743 DRM_DEBUG_KMS("probing SDVOC\n");
9744 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9745 }
9746
9747 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9748
9749 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9750 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9751 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9752 }
9753 if (SUPPORTS_INTEGRATED_DP(dev))
9754 intel_dp_init(dev, DP_C, PORT_C);
9755 }
9756
9757 if (SUPPORTS_INTEGRATED_DP(dev) &&
9758 (I915_READ(DP_D) & DP_DETECTED))
9759 intel_dp_init(dev, DP_D, PORT_D);
9760 } else if (IS_GEN2(dev))
9761 intel_dvo_init(dev);
9762
9763 if (SUPPORTS_TV(dev))
9764 intel_tv_init(dev);
9765
9766 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9767 encoder->base.possible_crtcs = encoder->crtc_mask;
9768 encoder->base.possible_clones =
9769 intel_encoder_clones(encoder);
9770 }
9771
9772 intel_init_pch_refclk(dev);
9773
9774 drm_helper_move_panel_connectors_to_head(dev);
9775 }
9776
9777 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9778 {
9779 drm_framebuffer_cleanup(&fb->base);
9780 drm_gem_object_unreference_unlocked(&fb->obj->base);
9781 }
9782
9783 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9784 {
9785 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9786
9787 intel_framebuffer_fini(intel_fb);
9788 kfree(intel_fb);
9789 }
9790
9791 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9792 struct drm_file *file,
9793 unsigned int *handle)
9794 {
9795 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9796 struct drm_i915_gem_object *obj = intel_fb->obj;
9797
9798 return drm_gem_handle_create(file, &obj->base, handle);
9799 }
9800
9801 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9802 .destroy = intel_user_framebuffer_destroy,
9803 .create_handle = intel_user_framebuffer_create_handle,
9804 };
9805
9806 int intel_framebuffer_init(struct drm_device *dev,
9807 struct intel_framebuffer *intel_fb,
9808 struct drm_mode_fb_cmd2 *mode_cmd,
9809 struct drm_i915_gem_object *obj)
9810 {
9811 int pitch_limit;
9812 int ret;
9813
9814 if (obj->tiling_mode == I915_TILING_Y) {
9815 DRM_DEBUG("hardware does not support tiling Y\n");
9816 return -EINVAL;
9817 }
9818
9819 if (mode_cmd->pitches[0] & 63) {
9820 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9821 mode_cmd->pitches[0]);
9822 return -EINVAL;
9823 }
9824
9825 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9826 pitch_limit = 32*1024;
9827 } else if (INTEL_INFO(dev)->gen >= 4) {
9828 if (obj->tiling_mode)
9829 pitch_limit = 16*1024;
9830 else
9831 pitch_limit = 32*1024;
9832 } else if (INTEL_INFO(dev)->gen >= 3) {
9833 if (obj->tiling_mode)
9834 pitch_limit = 8*1024;
9835 else
9836 pitch_limit = 16*1024;
9837 } else
9838 /* XXX DSPC is limited to 4k tiled */
9839 pitch_limit = 8*1024;
9840
9841 if (mode_cmd->pitches[0] > pitch_limit) {
9842 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9843 obj->tiling_mode ? "tiled" : "linear",
9844 mode_cmd->pitches[0], pitch_limit);
9845 return -EINVAL;
9846 }
9847
9848 if (obj->tiling_mode != I915_TILING_NONE &&
9849 mode_cmd->pitches[0] != obj->stride) {
9850 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9851 mode_cmd->pitches[0], obj->stride);
9852 return -EINVAL;
9853 }
9854
9855 /* Reject formats not supported by any plane early. */
9856 switch (mode_cmd->pixel_format) {
9857 case DRM_FORMAT_C8:
9858 case DRM_FORMAT_RGB565:
9859 case DRM_FORMAT_XRGB8888:
9860 case DRM_FORMAT_ARGB8888:
9861 break;
9862 case DRM_FORMAT_XRGB1555:
9863 case DRM_FORMAT_ARGB1555:
9864 if (INTEL_INFO(dev)->gen > 3) {
9865 DRM_DEBUG("unsupported pixel format: %s\n",
9866 drm_get_format_name(mode_cmd->pixel_format));
9867 return -EINVAL;
9868 }
9869 break;
9870 case DRM_FORMAT_XBGR8888:
9871 case DRM_FORMAT_ABGR8888:
9872 case DRM_FORMAT_XRGB2101010:
9873 case DRM_FORMAT_ARGB2101010:
9874 case DRM_FORMAT_XBGR2101010:
9875 case DRM_FORMAT_ABGR2101010:
9876 if (INTEL_INFO(dev)->gen < 4) {
9877 DRM_DEBUG("unsupported pixel format: %s\n",
9878 drm_get_format_name(mode_cmd->pixel_format));
9879 return -EINVAL;
9880 }
9881 break;
9882 case DRM_FORMAT_YUYV:
9883 case DRM_FORMAT_UYVY:
9884 case DRM_FORMAT_YVYU:
9885 case DRM_FORMAT_VYUY:
9886 if (INTEL_INFO(dev)->gen < 5) {
9887 DRM_DEBUG("unsupported pixel format: %s\n",
9888 drm_get_format_name(mode_cmd->pixel_format));
9889 return -EINVAL;
9890 }
9891 break;
9892 default:
9893 DRM_DEBUG("unsupported pixel format: %s\n",
9894 drm_get_format_name(mode_cmd->pixel_format));
9895 return -EINVAL;
9896 }
9897
9898 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9899 if (mode_cmd->offsets[0] != 0)
9900 return -EINVAL;
9901
9902 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9903 intel_fb->obj = obj;
9904
9905 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9906 if (ret) {
9907 DRM_ERROR("framebuffer init failed %d\n", ret);
9908 return ret;
9909 }
9910
9911 return 0;
9912 }
9913
9914 static struct drm_framebuffer *
9915 intel_user_framebuffer_create(struct drm_device *dev,
9916 struct drm_file *filp,
9917 struct drm_mode_fb_cmd2 *mode_cmd)
9918 {
9919 struct drm_i915_gem_object *obj;
9920
9921 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9922 mode_cmd->handles[0]));
9923 if (&obj->base == NULL)
9924 return ERR_PTR(-ENOENT);
9925
9926 return intel_framebuffer_create(dev, mode_cmd, obj);
9927 }
9928
9929 static const struct drm_mode_config_funcs intel_mode_funcs = {
9930 .fb_create = intel_user_framebuffer_create,
9931 .output_poll_changed = intel_fb_output_poll_changed,
9932 };
9933
9934 /* Set up chip specific display functions */
9935 static void intel_init_display(struct drm_device *dev)
9936 {
9937 struct drm_i915_private *dev_priv = dev->dev_private;
9938
9939 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9940 dev_priv->display.find_dpll = g4x_find_best_dpll;
9941 else if (IS_VALLEYVIEW(dev))
9942 dev_priv->display.find_dpll = vlv_find_best_dpll;
9943 else if (IS_PINEVIEW(dev))
9944 dev_priv->display.find_dpll = pnv_find_best_dpll;
9945 else
9946 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9947
9948 if (HAS_DDI(dev)) {
9949 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9950 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9951 dev_priv->display.crtc_enable = haswell_crtc_enable;
9952 dev_priv->display.crtc_disable = haswell_crtc_disable;
9953 dev_priv->display.off = haswell_crtc_off;
9954 dev_priv->display.update_plane = ironlake_update_plane;
9955 } else if (HAS_PCH_SPLIT(dev)) {
9956 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9957 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9958 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9959 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9960 dev_priv->display.off = ironlake_crtc_off;
9961 dev_priv->display.update_plane = ironlake_update_plane;
9962 } else if (IS_VALLEYVIEW(dev)) {
9963 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9964 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9965 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9966 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9967 dev_priv->display.off = i9xx_crtc_off;
9968 dev_priv->display.update_plane = i9xx_update_plane;
9969 } else {
9970 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9971 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9972 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9973 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9974 dev_priv->display.off = i9xx_crtc_off;
9975 dev_priv->display.update_plane = i9xx_update_plane;
9976 }
9977
9978 /* Returns the core display clock speed */
9979 if (IS_VALLEYVIEW(dev))
9980 dev_priv->display.get_display_clock_speed =
9981 valleyview_get_display_clock_speed;
9982 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9983 dev_priv->display.get_display_clock_speed =
9984 i945_get_display_clock_speed;
9985 else if (IS_I915G(dev))
9986 dev_priv->display.get_display_clock_speed =
9987 i915_get_display_clock_speed;
9988 else if (IS_I945GM(dev) || IS_845G(dev))
9989 dev_priv->display.get_display_clock_speed =
9990 i9xx_misc_get_display_clock_speed;
9991 else if (IS_PINEVIEW(dev))
9992 dev_priv->display.get_display_clock_speed =
9993 pnv_get_display_clock_speed;
9994 else if (IS_I915GM(dev))
9995 dev_priv->display.get_display_clock_speed =
9996 i915gm_get_display_clock_speed;
9997 else if (IS_I865G(dev))
9998 dev_priv->display.get_display_clock_speed =
9999 i865_get_display_clock_speed;
10000 else if (IS_I85X(dev))
10001 dev_priv->display.get_display_clock_speed =
10002 i855_get_display_clock_speed;
10003 else /* 852, 830 */
10004 dev_priv->display.get_display_clock_speed =
10005 i830_get_display_clock_speed;
10006
10007 if (HAS_PCH_SPLIT(dev)) {
10008 if (IS_GEN5(dev)) {
10009 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10010 dev_priv->display.write_eld = ironlake_write_eld;
10011 } else if (IS_GEN6(dev)) {
10012 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10013 dev_priv->display.write_eld = ironlake_write_eld;
10014 } else if (IS_IVYBRIDGE(dev)) {
10015 /* FIXME: detect B0+ stepping and use auto training */
10016 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10017 dev_priv->display.write_eld = ironlake_write_eld;
10018 dev_priv->display.modeset_global_resources =
10019 ivb_modeset_global_resources;
10020 } else if (IS_HASWELL(dev)) {
10021 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10022 dev_priv->display.write_eld = haswell_write_eld;
10023 dev_priv->display.modeset_global_resources =
10024 haswell_modeset_global_resources;
10025 }
10026 } else if (IS_G4X(dev)) {
10027 dev_priv->display.write_eld = g4x_write_eld;
10028 }
10029
10030 /* Default just returns -ENODEV to indicate unsupported */
10031 dev_priv->display.queue_flip = intel_default_queue_flip;
10032
10033 switch (INTEL_INFO(dev)->gen) {
10034 case 2:
10035 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10036 break;
10037
10038 case 3:
10039 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10040 break;
10041
10042 case 4:
10043 case 5:
10044 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10045 break;
10046
10047 case 6:
10048 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10049 break;
10050 case 7:
10051 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10052 break;
10053 }
10054 }
10055
10056 /*
10057 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10058 * resume, or other times. This quirk makes sure that's the case for
10059 * affected systems.
10060 */
10061 static void quirk_pipea_force(struct drm_device *dev)
10062 {
10063 struct drm_i915_private *dev_priv = dev->dev_private;
10064
10065 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10066 DRM_INFO("applying pipe a force quirk\n");
10067 }
10068
10069 /*
10070 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10071 */
10072 static void quirk_ssc_force_disable(struct drm_device *dev)
10073 {
10074 struct drm_i915_private *dev_priv = dev->dev_private;
10075 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10076 DRM_INFO("applying lvds SSC disable quirk\n");
10077 }
10078
10079 /*
10080 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10081 * brightness value
10082 */
10083 static void quirk_invert_brightness(struct drm_device *dev)
10084 {
10085 struct drm_i915_private *dev_priv = dev->dev_private;
10086 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10087 DRM_INFO("applying inverted panel brightness quirk\n");
10088 }
10089
10090 /*
10091 * Some machines (Dell XPS13) suffer broken backlight controls if
10092 * BLM_PCH_PWM_ENABLE is set.
10093 */
10094 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10095 {
10096 struct drm_i915_private *dev_priv = dev->dev_private;
10097 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10098 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10099 }
10100
10101 struct intel_quirk {
10102 int device;
10103 int subsystem_vendor;
10104 int subsystem_device;
10105 void (*hook)(struct drm_device *dev);
10106 };
10107
10108 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10109 struct intel_dmi_quirk {
10110 void (*hook)(struct drm_device *dev);
10111 const struct dmi_system_id (*dmi_id_list)[];
10112 };
10113
10114 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10115 {
10116 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10117 return 1;
10118 }
10119
10120 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10121 {
10122 .dmi_id_list = &(const struct dmi_system_id[]) {
10123 {
10124 .callback = intel_dmi_reverse_brightness,
10125 .ident = "NCR Corporation",
10126 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10127 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10128 },
10129 },
10130 { } /* terminating entry */
10131 },
10132 .hook = quirk_invert_brightness,
10133 },
10134 };
10135
10136 static struct intel_quirk intel_quirks[] = {
10137 /* HP Mini needs pipe A force quirk (LP: #322104) */
10138 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10139
10140 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10141 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10142
10143 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10144 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10145
10146 /* 830/845 need to leave pipe A & dpll A up */
10147 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10148 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10149
10150 /* Lenovo U160 cannot use SSC on LVDS */
10151 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10152
10153 /* Sony Vaio Y cannot use SSC on LVDS */
10154 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10155
10156 /* Acer Aspire 5734Z must invert backlight brightness */
10157 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
10158
10159 /* Acer/eMachines G725 */
10160 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10161
10162 /* Acer/eMachines e725 */
10163 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10164
10165 /* Acer/Packard Bell NCL20 */
10166 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10167
10168 /* Acer Aspire 4736Z */
10169 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10170
10171 /* Dell XPS13 HD Sandy Bridge */
10172 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10173 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10174 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10175 };
10176
10177 static void intel_init_quirks(struct drm_device *dev)
10178 {
10179 struct pci_dev *d = dev->pdev;
10180 int i;
10181
10182 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10183 struct intel_quirk *q = &intel_quirks[i];
10184
10185 if (d->device == q->device &&
10186 (d->subsystem_vendor == q->subsystem_vendor ||
10187 q->subsystem_vendor == PCI_ANY_ID) &&
10188 (d->subsystem_device == q->subsystem_device ||
10189 q->subsystem_device == PCI_ANY_ID))
10190 q->hook(dev);
10191 }
10192 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10193 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10194 intel_dmi_quirks[i].hook(dev);
10195 }
10196 }
10197
10198 /* Disable the VGA plane that we never use */
10199 static void i915_disable_vga(struct drm_device *dev)
10200 {
10201 struct drm_i915_private *dev_priv = dev->dev_private;
10202 u8 sr1;
10203 u32 vga_reg = i915_vgacntrl_reg(dev);
10204
10205 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10206 outb(SR01, VGA_SR_INDEX);
10207 sr1 = inb(VGA_SR_DATA);
10208 outb(sr1 | 1<<5, VGA_SR_DATA);
10209
10210 /* Disable VGA memory on Intel HD */
10211 if (HAS_PCH_SPLIT(dev)) {
10212 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10213 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10214 VGA_RSRC_NORMAL_IO |
10215 VGA_RSRC_NORMAL_MEM);
10216 }
10217
10218 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10219 udelay(300);
10220
10221 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10222 POSTING_READ(vga_reg);
10223 }
10224
10225 static void i915_enable_vga(struct drm_device *dev)
10226 {
10227 /* Enable VGA memory on Intel HD */
10228 if (HAS_PCH_SPLIT(dev)) {
10229 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10230 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10231 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10232 VGA_RSRC_LEGACY_MEM |
10233 VGA_RSRC_NORMAL_IO |
10234 VGA_RSRC_NORMAL_MEM);
10235 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10236 }
10237 }
10238
10239 void intel_modeset_init_hw(struct drm_device *dev)
10240 {
10241 intel_init_power_well(dev);
10242
10243 intel_prepare_ddi(dev);
10244
10245 intel_init_clock_gating(dev);
10246
10247 mutex_lock(&dev->struct_mutex);
10248 intel_enable_gt_powersave(dev);
10249 mutex_unlock(&dev->struct_mutex);
10250 }
10251
10252 void intel_modeset_suspend_hw(struct drm_device *dev)
10253 {
10254 intel_suspend_hw(dev);
10255 }
10256
10257 void intel_modeset_init(struct drm_device *dev)
10258 {
10259 struct drm_i915_private *dev_priv = dev->dev_private;
10260 int i, j, ret;
10261
10262 drm_mode_config_init(dev);
10263
10264 dev->mode_config.min_width = 0;
10265 dev->mode_config.min_height = 0;
10266
10267 dev->mode_config.preferred_depth = 24;
10268 dev->mode_config.prefer_shadow = 1;
10269
10270 dev->mode_config.funcs = &intel_mode_funcs;
10271
10272 intel_init_quirks(dev);
10273
10274 intel_init_pm(dev);
10275
10276 if (INTEL_INFO(dev)->num_pipes == 0)
10277 return;
10278
10279 intel_init_display(dev);
10280
10281 if (IS_GEN2(dev)) {
10282 dev->mode_config.max_width = 2048;
10283 dev->mode_config.max_height = 2048;
10284 } else if (IS_GEN3(dev)) {
10285 dev->mode_config.max_width = 4096;
10286 dev->mode_config.max_height = 4096;
10287 } else {
10288 dev->mode_config.max_width = 8192;
10289 dev->mode_config.max_height = 8192;
10290 }
10291 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10292
10293 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10294 INTEL_INFO(dev)->num_pipes,
10295 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10296
10297 for_each_pipe(i) {
10298 intel_crtc_init(dev, i);
10299 for (j = 0; j < dev_priv->num_plane; j++) {
10300 ret = intel_plane_init(dev, i, j);
10301 if (ret)
10302 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10303 pipe_name(i), sprite_name(i, j), ret);
10304 }
10305 }
10306
10307 intel_cpu_pll_init(dev);
10308 intel_shared_dpll_init(dev);
10309
10310 /* Just disable it once at startup */
10311 i915_disable_vga(dev);
10312 intel_setup_outputs(dev);
10313
10314 /* Just in case the BIOS is doing something questionable. */
10315 intel_disable_fbc(dev);
10316 }
10317
10318 static void
10319 intel_connector_break_all_links(struct intel_connector *connector)
10320 {
10321 connector->base.dpms = DRM_MODE_DPMS_OFF;
10322 connector->base.encoder = NULL;
10323 connector->encoder->connectors_active = false;
10324 connector->encoder->base.crtc = NULL;
10325 }
10326
10327 static void intel_enable_pipe_a(struct drm_device *dev)
10328 {
10329 struct intel_connector *connector;
10330 struct drm_connector *crt = NULL;
10331 struct intel_load_detect_pipe load_detect_temp;
10332
10333 /* We can't just switch on the pipe A, we need to set things up with a
10334 * proper mode and output configuration. As a gross hack, enable pipe A
10335 * by enabling the load detect pipe once. */
10336 list_for_each_entry(connector,
10337 &dev->mode_config.connector_list,
10338 base.head) {
10339 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10340 crt = &connector->base;
10341 break;
10342 }
10343 }
10344
10345 if (!crt)
10346 return;
10347
10348 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10349 intel_release_load_detect_pipe(crt, &load_detect_temp);
10350
10351
10352 }
10353
10354 static bool
10355 intel_check_plane_mapping(struct intel_crtc *crtc)
10356 {
10357 struct drm_device *dev = crtc->base.dev;
10358 struct drm_i915_private *dev_priv = dev->dev_private;
10359 u32 reg, val;
10360
10361 if (INTEL_INFO(dev)->num_pipes == 1)
10362 return true;
10363
10364 reg = DSPCNTR(!crtc->plane);
10365 val = I915_READ(reg);
10366
10367 if ((val & DISPLAY_PLANE_ENABLE) &&
10368 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10369 return false;
10370
10371 return true;
10372 }
10373
10374 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10375 {
10376 struct drm_device *dev = crtc->base.dev;
10377 struct drm_i915_private *dev_priv = dev->dev_private;
10378 u32 reg;
10379
10380 /* Clear any frame start delays used for debugging left by the BIOS */
10381 reg = PIPECONF(crtc->config.cpu_transcoder);
10382 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10383
10384 /* We need to sanitize the plane -> pipe mapping first because this will
10385 * disable the crtc (and hence change the state) if it is wrong. Note
10386 * that gen4+ has a fixed plane -> pipe mapping. */
10387 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10388 struct intel_connector *connector;
10389 bool plane;
10390
10391 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10392 crtc->base.base.id);
10393
10394 /* Pipe has the wrong plane attached and the plane is active.
10395 * Temporarily change the plane mapping and disable everything
10396 * ... */
10397 plane = crtc->plane;
10398 crtc->plane = !plane;
10399 dev_priv->display.crtc_disable(&crtc->base);
10400 crtc->plane = plane;
10401
10402 /* ... and break all links. */
10403 list_for_each_entry(connector, &dev->mode_config.connector_list,
10404 base.head) {
10405 if (connector->encoder->base.crtc != &crtc->base)
10406 continue;
10407
10408 intel_connector_break_all_links(connector);
10409 }
10410
10411 WARN_ON(crtc->active);
10412 crtc->base.enabled = false;
10413 }
10414
10415 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10416 crtc->pipe == PIPE_A && !crtc->active) {
10417 /* BIOS forgot to enable pipe A, this mostly happens after
10418 * resume. Force-enable the pipe to fix this, the update_dpms
10419 * call below we restore the pipe to the right state, but leave
10420 * the required bits on. */
10421 intel_enable_pipe_a(dev);
10422 }
10423
10424 /* Adjust the state of the output pipe according to whether we
10425 * have active connectors/encoders. */
10426 intel_crtc_update_dpms(&crtc->base);
10427
10428 if (crtc->active != crtc->base.enabled) {
10429 struct intel_encoder *encoder;
10430
10431 /* This can happen either due to bugs in the get_hw_state
10432 * functions or because the pipe is force-enabled due to the
10433 * pipe A quirk. */
10434 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10435 crtc->base.base.id,
10436 crtc->base.enabled ? "enabled" : "disabled",
10437 crtc->active ? "enabled" : "disabled");
10438
10439 crtc->base.enabled = crtc->active;
10440
10441 /* Because we only establish the connector -> encoder ->
10442 * crtc links if something is active, this means the
10443 * crtc is now deactivated. Break the links. connector
10444 * -> encoder links are only establish when things are
10445 * actually up, hence no need to break them. */
10446 WARN_ON(crtc->active);
10447
10448 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10449 WARN_ON(encoder->connectors_active);
10450 encoder->base.crtc = NULL;
10451 }
10452 }
10453 }
10454
10455 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10456 {
10457 struct intel_connector *connector;
10458 struct drm_device *dev = encoder->base.dev;
10459
10460 /* We need to check both for a crtc link (meaning that the
10461 * encoder is active and trying to read from a pipe) and the
10462 * pipe itself being active. */
10463 bool has_active_crtc = encoder->base.crtc &&
10464 to_intel_crtc(encoder->base.crtc)->active;
10465
10466 if (encoder->connectors_active && !has_active_crtc) {
10467 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10468 encoder->base.base.id,
10469 drm_get_encoder_name(&encoder->base));
10470
10471 /* Connector is active, but has no active pipe. This is
10472 * fallout from our resume register restoring. Disable
10473 * the encoder manually again. */
10474 if (encoder->base.crtc) {
10475 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10476 encoder->base.base.id,
10477 drm_get_encoder_name(&encoder->base));
10478 encoder->disable(encoder);
10479 }
10480
10481 /* Inconsistent output/port/pipe state happens presumably due to
10482 * a bug in one of the get_hw_state functions. Or someplace else
10483 * in our code, like the register restore mess on resume. Clamp
10484 * things to off as a safer default. */
10485 list_for_each_entry(connector,
10486 &dev->mode_config.connector_list,
10487 base.head) {
10488 if (connector->encoder != encoder)
10489 continue;
10490
10491 intel_connector_break_all_links(connector);
10492 }
10493 }
10494 /* Enabled encoders without active connectors will be fixed in
10495 * the crtc fixup. */
10496 }
10497
10498 void i915_redisable_vga(struct drm_device *dev)
10499 {
10500 struct drm_i915_private *dev_priv = dev->dev_private;
10501 u32 vga_reg = i915_vgacntrl_reg(dev);
10502
10503 /* This function can be called both from intel_modeset_setup_hw_state or
10504 * at a very early point in our resume sequence, where the power well
10505 * structures are not yet restored. Since this function is at a very
10506 * paranoid "someone might have enabled VGA while we were not looking"
10507 * level, just check if the power well is enabled instead of trying to
10508 * follow the "don't touch the power well if we don't need it" policy
10509 * the rest of the driver uses. */
10510 if (HAS_POWER_WELL(dev) &&
10511 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10512 return;
10513
10514 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10515 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10516 i915_disable_vga(dev);
10517 }
10518 }
10519
10520 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10521 {
10522 struct drm_i915_private *dev_priv = dev->dev_private;
10523 enum pipe pipe;
10524 struct intel_crtc *crtc;
10525 struct intel_encoder *encoder;
10526 struct intel_connector *connector;
10527 int i;
10528
10529 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10530 base.head) {
10531 memset(&crtc->config, 0, sizeof(crtc->config));
10532
10533 crtc->active = dev_priv->display.get_pipe_config(crtc,
10534 &crtc->config);
10535
10536 crtc->base.enabled = crtc->active;
10537
10538 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10539 crtc->base.base.id,
10540 crtc->active ? "enabled" : "disabled");
10541 }
10542
10543 /* FIXME: Smash this into the new shared dpll infrastructure. */
10544 if (HAS_DDI(dev))
10545 intel_ddi_setup_hw_pll_state(dev);
10546
10547 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10548 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10549
10550 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10551 pll->active = 0;
10552 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10553 base.head) {
10554 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10555 pll->active++;
10556 }
10557 pll->refcount = pll->active;
10558
10559 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10560 pll->name, pll->refcount, pll->on);
10561 }
10562
10563 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10564 base.head) {
10565 pipe = 0;
10566
10567 if (encoder->get_hw_state(encoder, &pipe)) {
10568 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10569 encoder->base.crtc = &crtc->base;
10570 if (encoder->get_config)
10571 encoder->get_config(encoder, &crtc->config);
10572 } else {
10573 encoder->base.crtc = NULL;
10574 }
10575
10576 encoder->connectors_active = false;
10577 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10578 encoder->base.base.id,
10579 drm_get_encoder_name(&encoder->base),
10580 encoder->base.crtc ? "enabled" : "disabled",
10581 pipe);
10582 }
10583
10584 list_for_each_entry(connector, &dev->mode_config.connector_list,
10585 base.head) {
10586 if (connector->get_hw_state(connector)) {
10587 connector->base.dpms = DRM_MODE_DPMS_ON;
10588 connector->encoder->connectors_active = true;
10589 connector->base.encoder = &connector->encoder->base;
10590 } else {
10591 connector->base.dpms = DRM_MODE_DPMS_OFF;
10592 connector->base.encoder = NULL;
10593 }
10594 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10595 connector->base.base.id,
10596 drm_get_connector_name(&connector->base),
10597 connector->base.encoder ? "enabled" : "disabled");
10598 }
10599 }
10600
10601 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10602 * and i915 state tracking structures. */
10603 void intel_modeset_setup_hw_state(struct drm_device *dev,
10604 bool force_restore)
10605 {
10606 struct drm_i915_private *dev_priv = dev->dev_private;
10607 enum pipe pipe;
10608 struct drm_plane *plane;
10609 struct intel_crtc *crtc;
10610 struct intel_encoder *encoder;
10611 int i;
10612
10613 intel_modeset_readout_hw_state(dev);
10614
10615 /*
10616 * Now that we have the config, copy it to each CRTC struct
10617 * Note that this could go away if we move to using crtc_config
10618 * checking everywhere.
10619 */
10620 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10621 base.head) {
10622 if (crtc->active && i915_fastboot) {
10623 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10624
10625 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10626 crtc->base.base.id);
10627 drm_mode_debug_printmodeline(&crtc->base.mode);
10628 }
10629 }
10630
10631 /* HW state is read out, now we need to sanitize this mess. */
10632 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10633 base.head) {
10634 intel_sanitize_encoder(encoder);
10635 }
10636
10637 for_each_pipe(pipe) {
10638 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10639 intel_sanitize_crtc(crtc);
10640 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10641 }
10642
10643 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10644 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10645
10646 if (!pll->on || pll->active)
10647 continue;
10648
10649 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10650
10651 pll->disable(dev_priv, pll);
10652 pll->on = false;
10653 }
10654
10655 if (force_restore) {
10656 /*
10657 * We need to use raw interfaces for restoring state to avoid
10658 * checking (bogus) intermediate states.
10659 */
10660 for_each_pipe(pipe) {
10661 struct drm_crtc *crtc =
10662 dev_priv->pipe_to_crtc_mapping[pipe];
10663
10664 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10665 crtc->fb);
10666 }
10667 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10668 intel_plane_restore(plane);
10669
10670 i915_redisable_vga(dev);
10671 } else {
10672 intel_modeset_update_staged_output_state(dev);
10673 }
10674
10675 intel_modeset_check_state(dev);
10676
10677 drm_mode_config_reset(dev);
10678 }
10679
10680 void intel_modeset_gem_init(struct drm_device *dev)
10681 {
10682 intel_modeset_init_hw(dev);
10683
10684 intel_setup_overlay(dev);
10685
10686 intel_modeset_setup_hw_state(dev, false);
10687 }
10688
10689 void intel_modeset_cleanup(struct drm_device *dev)
10690 {
10691 struct drm_i915_private *dev_priv = dev->dev_private;
10692 struct drm_crtc *crtc;
10693
10694 /*
10695 * Interrupts and polling as the first thing to avoid creating havoc.
10696 * Too much stuff here (turning of rps, connectors, ...) would
10697 * experience fancy races otherwise.
10698 */
10699 drm_irq_uninstall(dev);
10700 cancel_work_sync(&dev_priv->hotplug_work);
10701 /*
10702 * Due to the hpd irq storm handling the hotplug work can re-arm the
10703 * poll handlers. Hence disable polling after hpd handling is shut down.
10704 */
10705 drm_kms_helper_poll_fini(dev);
10706
10707 mutex_lock(&dev->struct_mutex);
10708
10709 intel_unregister_dsm_handler();
10710
10711 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10712 /* Skip inactive CRTCs */
10713 if (!crtc->fb)
10714 continue;
10715
10716 intel_increase_pllclock(crtc);
10717 }
10718
10719 intel_disable_fbc(dev);
10720
10721 i915_enable_vga(dev);
10722
10723 intel_disable_gt_powersave(dev);
10724
10725 ironlake_teardown_rc6(dev);
10726
10727 mutex_unlock(&dev->struct_mutex);
10728
10729 /* flush any delayed tasks or pending work */
10730 flush_scheduled_work();
10731
10732 /* destroy backlight, if any, before the connectors */
10733 intel_panel_destroy_backlight(dev);
10734
10735 drm_mode_config_cleanup(dev);
10736
10737 intel_cleanup_overlay(dev);
10738 }
10739
10740 /*
10741 * Return which encoder is currently attached for connector.
10742 */
10743 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10744 {
10745 return &intel_attached_encoder(connector)->base;
10746 }
10747
10748 void intel_connector_attach_encoder(struct intel_connector *connector,
10749 struct intel_encoder *encoder)
10750 {
10751 connector->encoder = encoder;
10752 drm_mode_connector_attach_encoder(&connector->base,
10753 &encoder->base);
10754 }
10755
10756 /*
10757 * set vga decode state - true == enable VGA decode
10758 */
10759 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10760 {
10761 struct drm_i915_private *dev_priv = dev->dev_private;
10762 u16 gmch_ctrl;
10763
10764 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10765 if (state)
10766 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10767 else
10768 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10769 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10770 return 0;
10771 }
10772
10773 struct intel_display_error_state {
10774
10775 u32 power_well_driver;
10776
10777 int num_transcoders;
10778
10779 struct intel_cursor_error_state {
10780 u32 control;
10781 u32 position;
10782 u32 base;
10783 u32 size;
10784 } cursor[I915_MAX_PIPES];
10785
10786 struct intel_pipe_error_state {
10787 u32 source;
10788 } pipe[I915_MAX_PIPES];
10789
10790 struct intel_plane_error_state {
10791 u32 control;
10792 u32 stride;
10793 u32 size;
10794 u32 pos;
10795 u32 addr;
10796 u32 surface;
10797 u32 tile_offset;
10798 } plane[I915_MAX_PIPES];
10799
10800 struct intel_transcoder_error_state {
10801 enum transcoder cpu_transcoder;
10802
10803 u32 conf;
10804
10805 u32 htotal;
10806 u32 hblank;
10807 u32 hsync;
10808 u32 vtotal;
10809 u32 vblank;
10810 u32 vsync;
10811 } transcoder[4];
10812 };
10813
10814 struct intel_display_error_state *
10815 intel_display_capture_error_state(struct drm_device *dev)
10816 {
10817 drm_i915_private_t *dev_priv = dev->dev_private;
10818 struct intel_display_error_state *error;
10819 int transcoders[] = {
10820 TRANSCODER_A,
10821 TRANSCODER_B,
10822 TRANSCODER_C,
10823 TRANSCODER_EDP,
10824 };
10825 int i;
10826
10827 if (INTEL_INFO(dev)->num_pipes == 0)
10828 return NULL;
10829
10830 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10831 if (error == NULL)
10832 return NULL;
10833
10834 if (HAS_POWER_WELL(dev))
10835 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10836
10837 for_each_pipe(i) {
10838 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10839 error->cursor[i].control = I915_READ(CURCNTR(i));
10840 error->cursor[i].position = I915_READ(CURPOS(i));
10841 error->cursor[i].base = I915_READ(CURBASE(i));
10842 } else {
10843 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10844 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10845 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10846 }
10847
10848 error->plane[i].control = I915_READ(DSPCNTR(i));
10849 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10850 if (INTEL_INFO(dev)->gen <= 3) {
10851 error->plane[i].size = I915_READ(DSPSIZE(i));
10852 error->plane[i].pos = I915_READ(DSPPOS(i));
10853 }
10854 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10855 error->plane[i].addr = I915_READ(DSPADDR(i));
10856 if (INTEL_INFO(dev)->gen >= 4) {
10857 error->plane[i].surface = I915_READ(DSPSURF(i));
10858 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10859 }
10860
10861 error->pipe[i].source = I915_READ(PIPESRC(i));
10862 }
10863
10864 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10865 if (HAS_DDI(dev_priv->dev))
10866 error->num_transcoders++; /* Account for eDP. */
10867
10868 for (i = 0; i < error->num_transcoders; i++) {
10869 enum transcoder cpu_transcoder = transcoders[i];
10870
10871 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10872
10873 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10874 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10875 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10876 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10877 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10878 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10879 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10880 }
10881
10882 /* In the code above we read the registers without checking if the power
10883 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10884 * prevent the next I915_WRITE from detecting it and printing an error
10885 * message. */
10886 intel_uncore_clear_errors(dev);
10887
10888 return error;
10889 }
10890
10891 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10892
10893 void
10894 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10895 struct drm_device *dev,
10896 struct intel_display_error_state *error)
10897 {
10898 int i;
10899
10900 if (!error)
10901 return;
10902
10903 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10904 if (HAS_POWER_WELL(dev))
10905 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10906 error->power_well_driver);
10907 for_each_pipe(i) {
10908 err_printf(m, "Pipe [%d]:\n", i);
10909 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10910
10911 err_printf(m, "Plane [%d]:\n", i);
10912 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10913 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10914 if (INTEL_INFO(dev)->gen <= 3) {
10915 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10916 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10917 }
10918 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10919 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10920 if (INTEL_INFO(dev)->gen >= 4) {
10921 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10922 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10923 }
10924
10925 err_printf(m, "Cursor [%d]:\n", i);
10926 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10927 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10928 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10929 }
10930
10931 for (i = 0; i < error->num_transcoders; i++) {
10932 err_printf(m, " CPU transcoder: %c\n",
10933 transcoder_name(error->transcoder[i].cpu_transcoder));
10934 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
10935 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
10936 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
10937 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
10938 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
10939 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
10940 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
10941 }
10942 }
This page took 0.539042 seconds and 5 git commands to generate.