dc3e6b2e5663ac768da13d6d56d8be34db9f9042
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_framebuffer_init(struct drm_device *dev,
90 struct intel_framebuffer *ifb,
91 struct drm_mode_fb_cmd2 *mode_cmd,
92 struct drm_i915_gem_object *obj);
93 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
95 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
96 struct intel_link_m_n *m_n,
97 struct intel_link_m_n *m2_n2);
98 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
99 static void haswell_set_pipeconf(struct drm_crtc *crtc);
100 static void intel_set_pipe_csc(struct drm_crtc *crtc);
101 static void vlv_prepare_pll(struct intel_crtc *crtc,
102 const struct intel_crtc_state *pipe_config);
103 static void chv_prepare_pll(struct intel_crtc *crtc,
104 const struct intel_crtc_state *pipe_config);
105 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
106 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
107 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108 struct intel_crtc_state *crtc_state);
109 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110 int num_connectors);
111 static void intel_modeset_setup_hw_state(struct drm_device *dev);
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4800000, .max = 6480000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static const intel_limit_t intel_limits_bxt = {
402 /* FIXME: find real dot limits */
403 .dot = { .min = 0, .max = INT_MAX },
404 .vco = { .min = 4800000, .max = 6700000 },
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 /* FIXME: find real m2 limits */
408 .m2 = { .min = 2 << 22, .max = 255 << 22 },
409 .p1 = { .min = 2, .max = 4 },
410 .p2 = { .p2_slow = 1, .p2_fast = 20 },
411 };
412
413 static bool
414 needs_modeset(struct drm_crtc_state *state)
415 {
416 return drm_atomic_crtc_needs_modeset(state);
417 }
418
419 /**
420 * Returns whether any output on the specified pipe is of the specified type
421 */
422 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
423 {
424 struct drm_device *dev = crtc->base.dev;
425 struct intel_encoder *encoder;
426
427 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
428 if (encoder->type == type)
429 return true;
430
431 return false;
432 }
433
434 /**
435 * Returns whether any output on the specified pipe will have the specified
436 * type after a staged modeset is complete, i.e., the same as
437 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438 * encoder->crtc.
439 */
440 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441 int type)
442 {
443 struct drm_atomic_state *state = crtc_state->base.state;
444 struct drm_connector *connector;
445 struct drm_connector_state *connector_state;
446 struct intel_encoder *encoder;
447 int i, num_connectors = 0;
448
449 for_each_connector_in_state(state, connector, connector_state, i) {
450 if (connector_state->crtc != crtc_state->base.crtc)
451 continue;
452
453 num_connectors++;
454
455 encoder = to_intel_encoder(connector_state->best_encoder);
456 if (encoder->type == type)
457 return true;
458 }
459
460 WARN_ON(num_connectors == 0);
461
462 return false;
463 }
464
465 static const intel_limit_t *
466 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
467 {
468 struct drm_device *dev = crtc_state->base.crtc->dev;
469 const intel_limit_t *limit;
470
471 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
472 if (intel_is_dual_link_lvds(dev)) {
473 if (refclk == 100000)
474 limit = &intel_limits_ironlake_dual_lvds_100m;
475 else
476 limit = &intel_limits_ironlake_dual_lvds;
477 } else {
478 if (refclk == 100000)
479 limit = &intel_limits_ironlake_single_lvds_100m;
480 else
481 limit = &intel_limits_ironlake_single_lvds;
482 }
483 } else
484 limit = &intel_limits_ironlake_dac;
485
486 return limit;
487 }
488
489 static const intel_limit_t *
490 intel_g4x_limit(struct intel_crtc_state *crtc_state)
491 {
492 struct drm_device *dev = crtc_state->base.crtc->dev;
493 const intel_limit_t *limit;
494
495 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
496 if (intel_is_dual_link_lvds(dev))
497 limit = &intel_limits_g4x_dual_channel_lvds;
498 else
499 limit = &intel_limits_g4x_single_channel_lvds;
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
502 limit = &intel_limits_g4x_hdmi;
503 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
504 limit = &intel_limits_g4x_sdvo;
505 } else /* The option is for other outputs */
506 limit = &intel_limits_i9xx_sdvo;
507
508 return limit;
509 }
510
511 static const intel_limit_t *
512 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
513 {
514 struct drm_device *dev = crtc_state->base.crtc->dev;
515 const intel_limit_t *limit;
516
517 if (IS_BROXTON(dev))
518 limit = &intel_limits_bxt;
519 else if (HAS_PCH_SPLIT(dev))
520 limit = intel_ironlake_limit(crtc_state, refclk);
521 else if (IS_G4X(dev)) {
522 limit = intel_g4x_limit(crtc_state);
523 } else if (IS_PINEVIEW(dev)) {
524 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
525 limit = &intel_limits_pineview_lvds;
526 else
527 limit = &intel_limits_pineview_sdvo;
528 } else if (IS_CHERRYVIEW(dev)) {
529 limit = &intel_limits_chv;
530 } else if (IS_VALLEYVIEW(dev)) {
531 limit = &intel_limits_vlv;
532 } else if (!IS_GEN2(dev)) {
533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_i9xx_lvds;
535 else
536 limit = &intel_limits_i9xx_sdvo;
537 } else {
538 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_i8xx_lvds;
540 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
541 limit = &intel_limits_i8xx_dvo;
542 else
543 limit = &intel_limits_i8xx_dac;
544 }
545 return limit;
546 }
547
548 /*
549 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552 * The helpers' return value is the rate of the clock that is fed to the
553 * display engine's pipe which can be the above fast dot clock rate or a
554 * divided-down version of it.
555 */
556 /* m1 is reserved as 0 in Pineview, n is a ring counter */
557 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
558 {
559 clock->m = clock->m2 + 2;
560 clock->p = clock->p1 * clock->p2;
561 if (WARN_ON(clock->n == 0 || clock->p == 0))
562 return 0;
563 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
565
566 return clock->dot;
567 }
568
569 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570 {
571 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572 }
573
574 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
575 {
576 clock->m = i9xx_dpll_compute_m(clock);
577 clock->p = clock->p1 * clock->p2;
578 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
579 return 0;
580 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
582
583 return clock->dot;
584 }
585
586 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
587 {
588 clock->m = clock->m1 * clock->m2;
589 clock->p = clock->p1 * clock->p2;
590 if (WARN_ON(clock->n == 0 || clock->p == 0))
591 return 0;
592 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594
595 return clock->dot / 5;
596 }
597
598 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
599 {
600 clock->m = clock->m1 * clock->m2;
601 clock->p = clock->p1 * clock->p2;
602 if (WARN_ON(clock->n == 0 || clock->p == 0))
603 return 0;
604 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605 clock->n << 22);
606 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607
608 return clock->dot / 5;
609 }
610
611 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
612 /**
613 * Returns whether the given set of divisors are valid for a given refclk with
614 * the given connectors.
615 */
616
617 static bool intel_PLL_is_valid(struct drm_device *dev,
618 const intel_limit_t *limit,
619 const intel_clock_t *clock)
620 {
621 if (clock->n < limit->n.min || limit->n.max < clock->n)
622 INTELPllInvalid("n out of range\n");
623 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
624 INTELPllInvalid("p1 out of range\n");
625 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
626 INTELPllInvalid("m2 out of range\n");
627 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
628 INTELPllInvalid("m1 out of range\n");
629
630 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
631 if (clock->m1 <= clock->m2)
632 INTELPllInvalid("m1 <= m2\n");
633
634 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
635 if (clock->p < limit->p.min || limit->p.max < clock->p)
636 INTELPllInvalid("p out of range\n");
637 if (clock->m < limit->m.min || limit->m.max < clock->m)
638 INTELPllInvalid("m out of range\n");
639 }
640
641 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
642 INTELPllInvalid("vco out of range\n");
643 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644 * connector, etc., rather than just a single range.
645 */
646 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
647 INTELPllInvalid("dot out of range\n");
648
649 return true;
650 }
651
652 static int
653 i9xx_select_p2_div(const intel_limit_t *limit,
654 const struct intel_crtc_state *crtc_state,
655 int target)
656 {
657 struct drm_device *dev = crtc_state->base.crtc->dev;
658
659 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
660 /*
661 * For LVDS just rely on its current settings for dual-channel.
662 * We haven't figured out how to reliably set up different
663 * single/dual channel state, if we even can.
664 */
665 if (intel_is_dual_link_lvds(dev))
666 return limit->p2.p2_fast;
667 else
668 return limit->p2.p2_slow;
669 } else {
670 if (target < limit->p2.dot_limit)
671 return limit->p2.p2_slow;
672 else
673 return limit->p2.p2_fast;
674 }
675 }
676
677 static bool
678 i9xx_find_best_dpll(const intel_limit_t *limit,
679 struct intel_crtc_state *crtc_state,
680 int target, int refclk, intel_clock_t *match_clock,
681 intel_clock_t *best_clock)
682 {
683 struct drm_device *dev = crtc_state->base.crtc->dev;
684 intel_clock_t clock;
685 int err = target;
686
687 memset(best_clock, 0, sizeof(*best_clock));
688
689 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692 clock.m1++) {
693 for (clock.m2 = limit->m2.min;
694 clock.m2 <= limit->m2.max; clock.m2++) {
695 if (clock.m2 >= clock.m1)
696 break;
697 for (clock.n = limit->n.min;
698 clock.n <= limit->n.max; clock.n++) {
699 for (clock.p1 = limit->p1.min;
700 clock.p1 <= limit->p1.max; clock.p1++) {
701 int this_err;
702
703 i9xx_calc_dpll_params(refclk, &clock);
704 if (!intel_PLL_is_valid(dev, limit,
705 &clock))
706 continue;
707 if (match_clock &&
708 clock.p != match_clock->p)
709 continue;
710
711 this_err = abs(clock.dot - target);
712 if (this_err < err) {
713 *best_clock = clock;
714 err = this_err;
715 }
716 }
717 }
718 }
719 }
720
721 return (err != target);
722 }
723
724 static bool
725 pnv_find_best_dpll(const intel_limit_t *limit,
726 struct intel_crtc_state *crtc_state,
727 int target, int refclk, intel_clock_t *match_clock,
728 intel_clock_t *best_clock)
729 {
730 struct drm_device *dev = crtc_state->base.crtc->dev;
731 intel_clock_t clock;
732 int err = target;
733
734 memset(best_clock, 0, sizeof(*best_clock));
735
736 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
738 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739 clock.m1++) {
740 for (clock.m2 = limit->m2.min;
741 clock.m2 <= limit->m2.max; clock.m2++) {
742 for (clock.n = limit->n.min;
743 clock.n <= limit->n.max; clock.n++) {
744 for (clock.p1 = limit->p1.min;
745 clock.p1 <= limit->p1.max; clock.p1++) {
746 int this_err;
747
748 pnv_calc_dpll_params(refclk, &clock);
749 if (!intel_PLL_is_valid(dev, limit,
750 &clock))
751 continue;
752 if (match_clock &&
753 clock.p != match_clock->p)
754 continue;
755
756 this_err = abs(clock.dot - target);
757 if (this_err < err) {
758 *best_clock = clock;
759 err = this_err;
760 }
761 }
762 }
763 }
764 }
765
766 return (err != target);
767 }
768
769 static bool
770 g4x_find_best_dpll(const intel_limit_t *limit,
771 struct intel_crtc_state *crtc_state,
772 int target, int refclk, intel_clock_t *match_clock,
773 intel_clock_t *best_clock)
774 {
775 struct drm_device *dev = crtc_state->base.crtc->dev;
776 intel_clock_t clock;
777 int max_n;
778 bool found = false;
779 /* approximately equals target * 0.00585 */
780 int err_most = (target >> 8) + (target >> 9);
781
782 memset(best_clock, 0, sizeof(*best_clock));
783
784 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786 max_n = limit->n.max;
787 /* based on hardware requirement, prefer smaller n to precision */
788 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
789 /* based on hardware requirement, prefere larger m1,m2 */
790 for (clock.m1 = limit->m1.max;
791 clock.m1 >= limit->m1.min; clock.m1--) {
792 for (clock.m2 = limit->m2.max;
793 clock.m2 >= limit->m2.min; clock.m2--) {
794 for (clock.p1 = limit->p1.max;
795 clock.p1 >= limit->p1.min; clock.p1--) {
796 int this_err;
797
798 i9xx_calc_dpll_params(refclk, &clock);
799 if (!intel_PLL_is_valid(dev, limit,
800 &clock))
801 continue;
802
803 this_err = abs(clock.dot - target);
804 if (this_err < err_most) {
805 *best_clock = clock;
806 err_most = this_err;
807 max_n = clock.n;
808 found = true;
809 }
810 }
811 }
812 }
813 }
814 return found;
815 }
816
817 /*
818 * Check if the calculated PLL configuration is more optimal compared to the
819 * best configuration and error found so far. Return the calculated error.
820 */
821 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822 const intel_clock_t *calculated_clock,
823 const intel_clock_t *best_clock,
824 unsigned int best_error_ppm,
825 unsigned int *error_ppm)
826 {
827 /*
828 * For CHV ignore the error and consider only the P value.
829 * Prefer a bigger P value based on HW requirements.
830 */
831 if (IS_CHERRYVIEW(dev)) {
832 *error_ppm = 0;
833
834 return calculated_clock->p > best_clock->p;
835 }
836
837 if (WARN_ON_ONCE(!target_freq))
838 return false;
839
840 *error_ppm = div_u64(1000000ULL *
841 abs(target_freq - calculated_clock->dot),
842 target_freq);
843 /*
844 * Prefer a better P value over a better (smaller) error if the error
845 * is small. Ensure this preference for future configurations too by
846 * setting the error to 0.
847 */
848 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849 *error_ppm = 0;
850
851 return true;
852 }
853
854 return *error_ppm + 10 < best_error_ppm;
855 }
856
857 static bool
858 vlv_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
862 {
863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
864 struct drm_device *dev = crtc->base.dev;
865 intel_clock_t clock;
866 unsigned int bestppm = 1000000;
867 /* min update 19.2 MHz */
868 int max_n = min(limit->n.max, refclk / 19200);
869 bool found = false;
870
871 target *= 5; /* fast clock */
872
873 memset(best_clock, 0, sizeof(*best_clock));
874
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
878 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
879 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
880 clock.p = clock.p1 * clock.p2;
881 /* based on hardware requirement, prefer bigger m1,m2 values */
882 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
883 unsigned int ppm;
884
885 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886 refclk * clock.m1);
887
888 vlv_calc_dpll_params(refclk, &clock);
889
890 if (!intel_PLL_is_valid(dev, limit,
891 &clock))
892 continue;
893
894 if (!vlv_PLL_is_optimal(dev, target,
895 &clock,
896 best_clock,
897 bestppm, &ppm))
898 continue;
899
900 *best_clock = clock;
901 bestppm = ppm;
902 found = true;
903 }
904 }
905 }
906 }
907
908 return found;
909 }
910
911 static bool
912 chv_find_best_dpll(const intel_limit_t *limit,
913 struct intel_crtc_state *crtc_state,
914 int target, int refclk, intel_clock_t *match_clock,
915 intel_clock_t *best_clock)
916 {
917 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
918 struct drm_device *dev = crtc->base.dev;
919 unsigned int best_error_ppm;
920 intel_clock_t clock;
921 uint64_t m2;
922 int found = false;
923
924 memset(best_clock, 0, sizeof(*best_clock));
925 best_error_ppm = 1000000;
926
927 /*
928 * Based on hardware doc, the n always set to 1, and m1 always
929 * set to 2. If requires to support 200Mhz refclk, we need to
930 * revisit this because n may not 1 anymore.
931 */
932 clock.n = 1, clock.m1 = 2;
933 target *= 5; /* fast clock */
934
935 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936 for (clock.p2 = limit->p2.p2_fast;
937 clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 unsigned int error_ppm;
940
941 clock.p = clock.p1 * clock.p2;
942
943 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944 clock.n) << 22, refclk * clock.m1);
945
946 if (m2 > INT_MAX/clock.m1)
947 continue;
948
949 clock.m2 = m2;
950
951 chv_calc_dpll_params(refclk, &clock);
952
953 if (!intel_PLL_is_valid(dev, limit, &clock))
954 continue;
955
956 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957 best_error_ppm, &error_ppm))
958 continue;
959
960 *best_clock = clock;
961 best_error_ppm = error_ppm;
962 found = true;
963 }
964 }
965
966 return found;
967 }
968
969 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970 intel_clock_t *best_clock)
971 {
972 int refclk = i9xx_get_refclk(crtc_state, 0);
973
974 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975 target_clock, refclk, NULL, best_clock);
976 }
977
978 bool intel_crtc_active(struct drm_crtc *crtc)
979 {
980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982 /* Be paranoid as we can arrive here with only partial
983 * state retrieved from the hardware during setup.
984 *
985 * We can ditch the adjusted_mode.crtc_clock check as soon
986 * as Haswell has gained clock readout/fastboot support.
987 *
988 * We can ditch the crtc->primary->fb check as soon as we can
989 * properly reconstruct framebuffers.
990 *
991 * FIXME: The intel_crtc->active here should be switched to
992 * crtc->state->active once we have proper CRTC states wired up
993 * for atomic.
994 */
995 return intel_crtc->active && crtc->primary->state->fb &&
996 intel_crtc->config->base.adjusted_mode.crtc_clock;
997 }
998
999 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000 enum pipe pipe)
1001 {
1002 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
1005 return intel_crtc->config->cpu_transcoder;
1006 }
1007
1008 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009 {
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 reg = PIPEDSL(pipe);
1012 u32 line1, line2;
1013 u32 line_mask;
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 line1 = I915_READ(reg) & line_mask;
1021 msleep(5);
1022 line2 = I915_READ(reg) & line_mask;
1023
1024 return line1 == line2;
1025 }
1026
1027 /*
1028 * intel_wait_for_pipe_off - wait for pipe to turn off
1029 * @crtc: crtc whose pipe to wait for
1030 *
1031 * After disabling a pipe, we can't wait for vblank in the usual way,
1032 * spinning on the vblank interrupt status bit, since we won't actually
1033 * see an interrupt when the pipe is disabled.
1034 *
1035 * On Gen4 and above:
1036 * wait for the pipe register state bit to turn off
1037 *
1038 * Otherwise:
1039 * wait for the display line value to settle (it usually
1040 * ends up stopping at the start of the next frame).
1041 *
1042 */
1043 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1044 {
1045 struct drm_device *dev = crtc->base.dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1048 enum pipe pipe = crtc->pipe;
1049
1050 if (INTEL_INFO(dev)->gen >= 4) {
1051 int reg = PIPECONF(cpu_transcoder);
1052
1053 /* Wait for the Pipe State to go off */
1054 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055 100))
1056 WARN(1, "pipe_off wait timed out\n");
1057 } else {
1058 /* Wait for the display line to settle */
1059 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1060 WARN(1, "pipe_off wait timed out\n");
1061 }
1062 }
1063
1064 /*
1065 * ibx_digital_port_connected - is the specified port connected?
1066 * @dev_priv: i915 private structure
1067 * @port: the port to test
1068 *
1069 * Returns true if @port is connected, false otherwise.
1070 */
1071 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072 struct intel_digital_port *port)
1073 {
1074 u32 bit;
1075
1076 if (HAS_PCH_IBX(dev_priv->dev)) {
1077 switch (port->port) {
1078 case PORT_B:
1079 bit = SDE_PORTB_HOTPLUG;
1080 break;
1081 case PORT_C:
1082 bit = SDE_PORTC_HOTPLUG;
1083 break;
1084 case PORT_D:
1085 bit = SDE_PORTD_HOTPLUG;
1086 break;
1087 default:
1088 return true;
1089 }
1090 } else {
1091 switch (port->port) {
1092 case PORT_B:
1093 bit = SDE_PORTB_HOTPLUG_CPT;
1094 break;
1095 case PORT_C:
1096 bit = SDE_PORTC_HOTPLUG_CPT;
1097 break;
1098 case PORT_D:
1099 bit = SDE_PORTD_HOTPLUG_CPT;
1100 break;
1101 default:
1102 return true;
1103 }
1104 }
1105
1106 return I915_READ(SDEISR) & bit;
1107 }
1108
1109 static const char *state_string(bool enabled)
1110 {
1111 return enabled ? "on" : "off";
1112 }
1113
1114 /* Only for pre-ILK configs */
1115 void assert_pll(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117 {
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121
1122 reg = DPLL(pipe);
1123 val = I915_READ(reg);
1124 cur_state = !!(val & DPLL_VCO_ENABLE);
1125 I915_STATE_WARN(cur_state != state,
1126 "PLL state assertion failure (expected %s, current %s)\n",
1127 state_string(state), state_string(cur_state));
1128 }
1129
1130 /* XXX: the dsi pll is shared between MIPI DSI ports */
1131 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1132 {
1133 u32 val;
1134 bool cur_state;
1135
1136 mutex_lock(&dev_priv->sb_lock);
1137 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1138 mutex_unlock(&dev_priv->sb_lock);
1139
1140 cur_state = val & DSI_PLL_VCO_EN;
1141 I915_STATE_WARN(cur_state != state,
1142 "DSI PLL state assertion failure (expected %s, current %s)\n",
1143 state_string(state), state_string(cur_state));
1144 }
1145 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1146 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1147
1148 struct intel_shared_dpll *
1149 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1150 {
1151 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1152
1153 if (crtc->config->shared_dpll < 0)
1154 return NULL;
1155
1156 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1157 }
1158
1159 /* For ILK+ */
1160 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1161 struct intel_shared_dpll *pll,
1162 bool state)
1163 {
1164 bool cur_state;
1165 struct intel_dpll_hw_state hw_state;
1166
1167 if (WARN (!pll,
1168 "asserting DPLL %s with no DPLL\n", state_string(state)))
1169 return;
1170
1171 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1172 I915_STATE_WARN(cur_state != state,
1173 "%s assertion failure (expected %s, current %s)\n",
1174 pll->name, state_string(state), state_string(cur_state));
1175 }
1176
1177 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 int reg;
1181 u32 val;
1182 bool cur_state;
1183 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1184 pipe);
1185
1186 if (HAS_DDI(dev_priv->dev)) {
1187 /* DDI does not have a specific FDI_TX register */
1188 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1189 val = I915_READ(reg);
1190 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1191 } else {
1192 reg = FDI_TX_CTL(pipe);
1193 val = I915_READ(reg);
1194 cur_state = !!(val & FDI_TX_ENABLE);
1195 }
1196 I915_STATE_WARN(cur_state != state,
1197 "FDI TX state assertion failure (expected %s, current %s)\n",
1198 state_string(state), state_string(cur_state));
1199 }
1200 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1201 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1202
1203 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1204 enum pipe pipe, bool state)
1205 {
1206 int reg;
1207 u32 val;
1208 bool cur_state;
1209
1210 reg = FDI_RX_CTL(pipe);
1211 val = I915_READ(reg);
1212 cur_state = !!(val & FDI_RX_ENABLE);
1213 I915_STATE_WARN(cur_state != state,
1214 "FDI RX state assertion failure (expected %s, current %s)\n",
1215 state_string(state), state_string(cur_state));
1216 }
1217 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1218 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1219
1220 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1221 enum pipe pipe)
1222 {
1223 int reg;
1224 u32 val;
1225
1226 /* ILK FDI PLL is always enabled */
1227 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1228 return;
1229
1230 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1231 if (HAS_DDI(dev_priv->dev))
1232 return;
1233
1234 reg = FDI_TX_CTL(pipe);
1235 val = I915_READ(reg);
1236 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1237 }
1238
1239 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 int reg;
1243 u32 val;
1244 bool cur_state;
1245
1246 reg = FDI_RX_CTL(pipe);
1247 val = I915_READ(reg);
1248 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1249 I915_STATE_WARN(cur_state != state,
1250 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1251 state_string(state), state_string(cur_state));
1252 }
1253
1254 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256 {
1257 struct drm_device *dev = dev_priv->dev;
1258 int pp_reg;
1259 u32 val;
1260 enum pipe panel_pipe = PIPE_A;
1261 bool locked = true;
1262
1263 if (WARN_ON(HAS_DDI(dev)))
1264 return;
1265
1266 if (HAS_PCH_SPLIT(dev)) {
1267 u32 port_sel;
1268
1269 pp_reg = PCH_PP_CONTROL;
1270 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1271
1272 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1273 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1274 panel_pipe = PIPE_B;
1275 /* XXX: else fix for eDP */
1276 } else if (IS_VALLEYVIEW(dev)) {
1277 /* presumably write lock depends on pipe, not port select */
1278 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1279 panel_pipe = pipe;
1280 } else {
1281 pp_reg = PP_CONTROL;
1282 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1283 panel_pipe = PIPE_B;
1284 }
1285
1286 val = I915_READ(pp_reg);
1287 if (!(val & PANEL_POWER_ON) ||
1288 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1289 locked = false;
1290
1291 I915_STATE_WARN(panel_pipe == pipe && locked,
1292 "panel assertion failure, pipe %c regs locked\n",
1293 pipe_name(pipe));
1294 }
1295
1296 static void assert_cursor(struct drm_i915_private *dev_priv,
1297 enum pipe pipe, bool state)
1298 {
1299 struct drm_device *dev = dev_priv->dev;
1300 bool cur_state;
1301
1302 if (IS_845G(dev) || IS_I865G(dev))
1303 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1304 else
1305 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1306
1307 I915_STATE_WARN(cur_state != state,
1308 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1309 pipe_name(pipe), state_string(state), state_string(cur_state));
1310 }
1311 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1312 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1313
1314 void assert_pipe(struct drm_i915_private *dev_priv,
1315 enum pipe pipe, bool state)
1316 {
1317 int reg;
1318 u32 val;
1319 bool cur_state;
1320 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1321 pipe);
1322
1323 /* if we need the pipe quirk it must be always on */
1324 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1325 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1326 state = true;
1327
1328 if (!intel_display_power_is_enabled(dev_priv,
1329 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1330 cur_state = false;
1331 } else {
1332 reg = PIPECONF(cpu_transcoder);
1333 val = I915_READ(reg);
1334 cur_state = !!(val & PIPECONF_ENABLE);
1335 }
1336
1337 I915_STATE_WARN(cur_state != state,
1338 "pipe %c assertion failure (expected %s, current %s)\n",
1339 pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341
1342 static void assert_plane(struct drm_i915_private *dev_priv,
1343 enum plane plane, bool state)
1344 {
1345 int reg;
1346 u32 val;
1347 bool cur_state;
1348
1349 reg = DSPCNTR(plane);
1350 val = I915_READ(reg);
1351 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1352 I915_STATE_WARN(cur_state != state,
1353 "plane %c assertion failure (expected %s, current %s)\n",
1354 plane_name(plane), state_string(state), state_string(cur_state));
1355 }
1356
1357 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1358 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1359
1360 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1361 enum pipe pipe)
1362 {
1363 struct drm_device *dev = dev_priv->dev;
1364 int reg, i;
1365 u32 val;
1366 int cur_pipe;
1367
1368 /* Primary planes are fixed to pipes on gen4+ */
1369 if (INTEL_INFO(dev)->gen >= 4) {
1370 reg = DSPCNTR(pipe);
1371 val = I915_READ(reg);
1372 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1373 "plane %c assertion failure, should be disabled but not\n",
1374 plane_name(pipe));
1375 return;
1376 }
1377
1378 /* Need to check both planes against the pipe */
1379 for_each_pipe(dev_priv, i) {
1380 reg = DSPCNTR(i);
1381 val = I915_READ(reg);
1382 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1383 DISPPLANE_SEL_PIPE_SHIFT;
1384 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1385 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1386 plane_name(i), pipe_name(pipe));
1387 }
1388 }
1389
1390 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392 {
1393 struct drm_device *dev = dev_priv->dev;
1394 int reg, sprite;
1395 u32 val;
1396
1397 if (INTEL_INFO(dev)->gen >= 9) {
1398 for_each_sprite(dev_priv, pipe, sprite) {
1399 val = I915_READ(PLANE_CTL(pipe, sprite));
1400 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1401 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1402 sprite, pipe_name(pipe));
1403 }
1404 } else if (IS_VALLEYVIEW(dev)) {
1405 for_each_sprite(dev_priv, pipe, sprite) {
1406 reg = SPCNTR(pipe, sprite);
1407 val = I915_READ(reg);
1408 I915_STATE_WARN(val & SP_ENABLE,
1409 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1410 sprite_name(pipe, sprite), pipe_name(pipe));
1411 }
1412 } else if (INTEL_INFO(dev)->gen >= 7) {
1413 reg = SPRCTL(pipe);
1414 val = I915_READ(reg);
1415 I915_STATE_WARN(val & SPRITE_ENABLE,
1416 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417 plane_name(pipe), pipe_name(pipe));
1418 } else if (INTEL_INFO(dev)->gen >= 5) {
1419 reg = DVSCNTR(pipe);
1420 val = I915_READ(reg);
1421 I915_STATE_WARN(val & DVS_ENABLE,
1422 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1423 plane_name(pipe), pipe_name(pipe));
1424 }
1425 }
1426
1427 static void assert_vblank_disabled(struct drm_crtc *crtc)
1428 {
1429 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1430 drm_crtc_vblank_put(crtc);
1431 }
1432
1433 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1434 {
1435 u32 val;
1436 bool enabled;
1437
1438 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1439
1440 val = I915_READ(PCH_DREF_CONTROL);
1441 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1442 DREF_SUPERSPREAD_SOURCE_MASK));
1443 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1444 }
1445
1446 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1447 enum pipe pipe)
1448 {
1449 int reg;
1450 u32 val;
1451 bool enabled;
1452
1453 reg = PCH_TRANSCONF(pipe);
1454 val = I915_READ(reg);
1455 enabled = !!(val & TRANS_ENABLE);
1456 I915_STATE_WARN(enabled,
1457 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1458 pipe_name(pipe));
1459 }
1460
1461 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1462 enum pipe pipe, u32 port_sel, u32 val)
1463 {
1464 if ((val & DP_PORT_EN) == 0)
1465 return false;
1466
1467 if (HAS_PCH_CPT(dev_priv->dev)) {
1468 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1469 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1470 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1471 return false;
1472 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1473 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1474 return false;
1475 } else {
1476 if ((val & DP_PIPE_MASK) != (pipe << 30))
1477 return false;
1478 }
1479 return true;
1480 }
1481
1482 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1483 enum pipe pipe, u32 val)
1484 {
1485 if ((val & SDVO_ENABLE) == 0)
1486 return false;
1487
1488 if (HAS_PCH_CPT(dev_priv->dev)) {
1489 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1490 return false;
1491 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1492 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1493 return false;
1494 } else {
1495 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1496 return false;
1497 }
1498 return true;
1499 }
1500
1501 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1502 enum pipe pipe, u32 val)
1503 {
1504 if ((val & LVDS_PORT_EN) == 0)
1505 return false;
1506
1507 if (HAS_PCH_CPT(dev_priv->dev)) {
1508 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1509 return false;
1510 } else {
1511 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1512 return false;
1513 }
1514 return true;
1515 }
1516
1517 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519 {
1520 if ((val & ADPA_DAC_ENABLE) == 0)
1521 return false;
1522 if (HAS_PCH_CPT(dev_priv->dev)) {
1523 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524 return false;
1525 } else {
1526 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1527 return false;
1528 }
1529 return true;
1530 }
1531
1532 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1533 enum pipe pipe, int reg, u32 port_sel)
1534 {
1535 u32 val = I915_READ(reg);
1536 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1537 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1538 reg, pipe_name(pipe));
1539
1540 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1541 && (val & DP_PIPEB_SELECT),
1542 "IBX PCH dp port still using transcoder B\n");
1543 }
1544
1545 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1546 enum pipe pipe, int reg)
1547 {
1548 u32 val = I915_READ(reg);
1549 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1550 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1551 reg, pipe_name(pipe));
1552
1553 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1554 && (val & SDVO_PIPE_B_SELECT),
1555 "IBX PCH hdmi port still using transcoder B\n");
1556 }
1557
1558 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1559 enum pipe pipe)
1560 {
1561 int reg;
1562 u32 val;
1563
1564 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1565 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1566 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1567
1568 reg = PCH_ADPA;
1569 val = I915_READ(reg);
1570 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1571 "PCH VGA enabled on transcoder %c, should be disabled\n",
1572 pipe_name(pipe));
1573
1574 reg = PCH_LVDS;
1575 val = I915_READ(reg);
1576 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1577 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1578 pipe_name(pipe));
1579
1580 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1581 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1582 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1583 }
1584
1585 static void intel_init_dpio(struct drm_device *dev)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589 if (!IS_VALLEYVIEW(dev))
1590 return;
1591
1592 /*
1593 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1594 * CHV x1 PHY (DP/HDMI D)
1595 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1596 */
1597 if (IS_CHERRYVIEW(dev)) {
1598 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1599 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1600 } else {
1601 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1602 }
1603 }
1604
1605 static void vlv_enable_pll(struct intel_crtc *crtc,
1606 const struct intel_crtc_state *pipe_config)
1607 {
1608 struct drm_device *dev = crtc->base.dev;
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 int reg = DPLL(crtc->pipe);
1611 u32 dpll = pipe_config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* No really, not for ILK+ */
1616 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1617
1618 /* PLL is protected by panel, make sure we can write it */
1619 if (IS_MOBILE(dev_priv->dev))
1620 assert_panel_unlocked(dev_priv, crtc->pipe);
1621
1622 I915_WRITE(reg, dpll);
1623 POSTING_READ(reg);
1624 udelay(150);
1625
1626 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1627 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1628
1629 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1630 POSTING_READ(DPLL_MD(crtc->pipe));
1631
1632 /* We do this three times for luck */
1633 I915_WRITE(reg, dpll);
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636 I915_WRITE(reg, dpll);
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
1639 I915_WRITE(reg, dpll);
1640 POSTING_READ(reg);
1641 udelay(150); /* wait for warmup */
1642 }
1643
1644 static void chv_enable_pll(struct intel_crtc *crtc,
1645 const struct intel_crtc_state *pipe_config)
1646 {
1647 struct drm_device *dev = crtc->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int pipe = crtc->pipe;
1650 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1651 u32 tmp;
1652
1653 assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1656
1657 mutex_lock(&dev_priv->sb_lock);
1658
1659 /* Enable back the 10bit clock to display controller */
1660 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1661 tmp |= DPIO_DCLKP_EN;
1662 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1663
1664 mutex_unlock(&dev_priv->sb_lock);
1665
1666 /*
1667 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1668 */
1669 udelay(1);
1670
1671 /* Enable PLL */
1672 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1673
1674 /* Check PLL is locked */
1675 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1676 DRM_ERROR("PLL %d failed to lock\n", pipe);
1677
1678 /* not sure when this should be written */
1679 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1680 POSTING_READ(DPLL_MD(pipe));
1681 }
1682
1683 static int intel_num_dvo_pipes(struct drm_device *dev)
1684 {
1685 struct intel_crtc *crtc;
1686 int count = 0;
1687
1688 for_each_intel_crtc(dev, crtc)
1689 count += crtc->base.state->active &&
1690 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1691
1692 return count;
1693 }
1694
1695 static void i9xx_enable_pll(struct intel_crtc *crtc)
1696 {
1697 struct drm_device *dev = crtc->base.dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 int reg = DPLL(crtc->pipe);
1700 u32 dpll = crtc->config->dpll_hw_state.dpll;
1701
1702 assert_pipe_disabled(dev_priv, crtc->pipe);
1703
1704 /* No really, not for ILK+ */
1705 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1706
1707 /* PLL is protected by panel, make sure we can write it */
1708 if (IS_MOBILE(dev) && !IS_I830(dev))
1709 assert_panel_unlocked(dev_priv, crtc->pipe);
1710
1711 /* Enable DVO 2x clock on both PLLs if necessary */
1712 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1713 /*
1714 * It appears to be important that we don't enable this
1715 * for the current pipe before otherwise configuring the
1716 * PLL. No idea how this should be handled if multiple
1717 * DVO outputs are enabled simultaneosly.
1718 */
1719 dpll |= DPLL_DVO_2X_MODE;
1720 I915_WRITE(DPLL(!crtc->pipe),
1721 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1722 }
1723
1724 /* Wait for the clocks to stabilize. */
1725 POSTING_READ(reg);
1726 udelay(150);
1727
1728 if (INTEL_INFO(dev)->gen >= 4) {
1729 I915_WRITE(DPLL_MD(crtc->pipe),
1730 crtc->config->dpll_hw_state.dpll_md);
1731 } else {
1732 /* The pixel multiplier can only be updated once the
1733 * DPLL is enabled and the clocks are stable.
1734 *
1735 * So write it again.
1736 */
1737 I915_WRITE(reg, dpll);
1738 }
1739
1740 /* We do this three times for luck */
1741 I915_WRITE(reg, dpll);
1742 POSTING_READ(reg);
1743 udelay(150); /* wait for warmup */
1744 I915_WRITE(reg, dpll);
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
1747 I915_WRITE(reg, dpll);
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
1750 }
1751
1752 /**
1753 * i9xx_disable_pll - disable a PLL
1754 * @dev_priv: i915 private structure
1755 * @pipe: pipe PLL to disable
1756 *
1757 * Disable the PLL for @pipe, making sure the pipe is off first.
1758 *
1759 * Note! This is for pre-ILK only.
1760 */
1761 static void i9xx_disable_pll(struct intel_crtc *crtc)
1762 {
1763 struct drm_device *dev = crtc->base.dev;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 enum pipe pipe = crtc->pipe;
1766
1767 /* Disable DVO 2x clock on both PLLs if necessary */
1768 if (IS_I830(dev) &&
1769 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1770 !intel_num_dvo_pipes(dev)) {
1771 I915_WRITE(DPLL(PIPE_B),
1772 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773 I915_WRITE(DPLL(PIPE_A),
1774 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775 }
1776
1777 /* Don't disable pipe or pipe PLLs if needed */
1778 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1780 return;
1781
1782 /* Make sure the pipe isn't still relying on us */
1783 assert_pipe_disabled(dev_priv, pipe);
1784
1785 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1786 POSTING_READ(DPLL(pipe));
1787 }
1788
1789 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790 {
1791 u32 val;
1792
1793 /* Make sure the pipe isn't still relying on us */
1794 assert_pipe_disabled(dev_priv, pipe);
1795
1796 /*
1797 * Leave integrated clock source and reference clock enabled for pipe B.
1798 * The latter is needed for VGA hotplug / manual detection.
1799 */
1800 val = DPLL_VGA_MODE_DIS;
1801 if (pipe == PIPE_B)
1802 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1803 I915_WRITE(DPLL(pipe), val);
1804 POSTING_READ(DPLL(pipe));
1805
1806 }
1807
1808 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809 {
1810 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1811 u32 val;
1812
1813 /* Make sure the pipe isn't still relying on us */
1814 assert_pipe_disabled(dev_priv, pipe);
1815
1816 /* Set PLL en = 0 */
1817 val = DPLL_SSC_REF_CLK_CHV |
1818 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1819 if (pipe != PIPE_A)
1820 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821 I915_WRITE(DPLL(pipe), val);
1822 POSTING_READ(DPLL(pipe));
1823
1824 mutex_lock(&dev_priv->sb_lock);
1825
1826 /* Disable 10bit clock to display controller */
1827 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828 val &= ~DPIO_DCLKP_EN;
1829 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
1831 /* disable left/right clock distribution */
1832 if (pipe != PIPE_B) {
1833 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1834 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1835 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1836 } else {
1837 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1838 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1839 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1840 }
1841
1842 mutex_unlock(&dev_priv->sb_lock);
1843 }
1844
1845 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1846 struct intel_digital_port *dport,
1847 unsigned int expected_mask)
1848 {
1849 u32 port_mask;
1850 int dpll_reg;
1851
1852 switch (dport->port) {
1853 case PORT_B:
1854 port_mask = DPLL_PORTB_READY_MASK;
1855 dpll_reg = DPLL(0);
1856 break;
1857 case PORT_C:
1858 port_mask = DPLL_PORTC_READY_MASK;
1859 dpll_reg = DPLL(0);
1860 expected_mask <<= 4;
1861 break;
1862 case PORT_D:
1863 port_mask = DPLL_PORTD_READY_MASK;
1864 dpll_reg = DPIO_PHY_STATUS;
1865 break;
1866 default:
1867 BUG();
1868 }
1869
1870 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1871 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1872 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1873 }
1874
1875 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876 {
1877 struct drm_device *dev = crtc->base.dev;
1878 struct drm_i915_private *dev_priv = dev->dev_private;
1879 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
1881 if (WARN_ON(pll == NULL))
1882 return;
1883
1884 WARN_ON(!pll->config.crtc_mask);
1885 if (pll->active == 0) {
1886 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887 WARN_ON(pll->on);
1888 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890 pll->mode_set(dev_priv, pll);
1891 }
1892 }
1893
1894 /**
1895 * intel_enable_shared_dpll - enable PCH PLL
1896 * @dev_priv: i915 private structure
1897 * @pipe: pipe PLL to enable
1898 *
1899 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900 * drives the transcoder clock.
1901 */
1902 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1903 {
1904 struct drm_device *dev = crtc->base.dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1907
1908 if (WARN_ON(pll == NULL))
1909 return;
1910
1911 if (WARN_ON(pll->config.crtc_mask == 0))
1912 return;
1913
1914 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1915 pll->name, pll->active, pll->on,
1916 crtc->base.base.id);
1917
1918 if (pll->active++) {
1919 WARN_ON(!pll->on);
1920 assert_shared_dpll_enabled(dev_priv, pll);
1921 return;
1922 }
1923 WARN_ON(pll->on);
1924
1925 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
1927 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1928 pll->enable(dev_priv, pll);
1929 pll->on = true;
1930 }
1931
1932 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1933 {
1934 struct drm_device *dev = crtc->base.dev;
1935 struct drm_i915_private *dev_priv = dev->dev_private;
1936 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1937
1938 /* PCH only available on ILK+ */
1939 if (INTEL_INFO(dev)->gen < 5)
1940 return;
1941
1942 if (pll == NULL)
1943 return;
1944
1945 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1946 return;
1947
1948 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1949 pll->name, pll->active, pll->on,
1950 crtc->base.base.id);
1951
1952 if (WARN_ON(pll->active == 0)) {
1953 assert_shared_dpll_disabled(dev_priv, pll);
1954 return;
1955 }
1956
1957 assert_shared_dpll_enabled(dev_priv, pll);
1958 WARN_ON(!pll->on);
1959 if (--pll->active)
1960 return;
1961
1962 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1963 pll->disable(dev_priv, pll);
1964 pll->on = false;
1965
1966 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1967 }
1968
1969 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1970 enum pipe pipe)
1971 {
1972 struct drm_device *dev = dev_priv->dev;
1973 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1975 uint32_t reg, val, pipeconf_val;
1976
1977 /* PCH only available on ILK+ */
1978 BUG_ON(!HAS_PCH_SPLIT(dev));
1979
1980 /* Make sure PCH DPLL is enabled */
1981 assert_shared_dpll_enabled(dev_priv,
1982 intel_crtc_to_shared_dpll(intel_crtc));
1983
1984 /* FDI must be feeding us bits for PCH ports */
1985 assert_fdi_tx_enabled(dev_priv, pipe);
1986 assert_fdi_rx_enabled(dev_priv, pipe);
1987
1988 if (HAS_PCH_CPT(dev)) {
1989 /* Workaround: Set the timing override bit before enabling the
1990 * pch transcoder. */
1991 reg = TRANS_CHICKEN2(pipe);
1992 val = I915_READ(reg);
1993 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1994 I915_WRITE(reg, val);
1995 }
1996
1997 reg = PCH_TRANSCONF(pipe);
1998 val = I915_READ(reg);
1999 pipeconf_val = I915_READ(PIPECONF(pipe));
2000
2001 if (HAS_PCH_IBX(dev_priv->dev)) {
2002 /*
2003 * Make the BPC in transcoder be consistent with
2004 * that in pipeconf reg. For HDMI we must use 8bpc
2005 * here for both 8bpc and 12bpc.
2006 */
2007 val &= ~PIPECONF_BPC_MASK;
2008 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2009 val |= PIPECONF_8BPC;
2010 else
2011 val |= pipeconf_val & PIPECONF_BPC_MASK;
2012 }
2013
2014 val &= ~TRANS_INTERLACE_MASK;
2015 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2016 if (HAS_PCH_IBX(dev_priv->dev) &&
2017 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2018 val |= TRANS_LEGACY_INTERLACED_ILK;
2019 else
2020 val |= TRANS_INTERLACED;
2021 else
2022 val |= TRANS_PROGRESSIVE;
2023
2024 I915_WRITE(reg, val | TRANS_ENABLE);
2025 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2026 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2027 }
2028
2029 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2030 enum transcoder cpu_transcoder)
2031 {
2032 u32 val, pipeconf_val;
2033
2034 /* PCH only available on ILK+ */
2035 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2036
2037 /* FDI must be feeding us bits for PCH ports */
2038 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2039 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2040
2041 /* Workaround: set timing override bit. */
2042 val = I915_READ(_TRANSA_CHICKEN2);
2043 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2044 I915_WRITE(_TRANSA_CHICKEN2, val);
2045
2046 val = TRANS_ENABLE;
2047 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2048
2049 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050 PIPECONF_INTERLACED_ILK)
2051 val |= TRANS_INTERLACED;
2052 else
2053 val |= TRANS_PROGRESSIVE;
2054
2055 I915_WRITE(LPT_TRANSCONF, val);
2056 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2057 DRM_ERROR("Failed to enable PCH transcoder\n");
2058 }
2059
2060 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
2062 {
2063 struct drm_device *dev = dev_priv->dev;
2064 uint32_t reg, val;
2065
2066 /* FDI relies on the transcoder */
2067 assert_fdi_tx_disabled(dev_priv, pipe);
2068 assert_fdi_rx_disabled(dev_priv, pipe);
2069
2070 /* Ports must be off as well */
2071 assert_pch_ports_disabled(dev_priv, pipe);
2072
2073 reg = PCH_TRANSCONF(pipe);
2074 val = I915_READ(reg);
2075 val &= ~TRANS_ENABLE;
2076 I915_WRITE(reg, val);
2077 /* wait for PCH transcoder off, transcoder state */
2078 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2079 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2080
2081 if (!HAS_PCH_IBX(dev)) {
2082 /* Workaround: Clear the timing override chicken bit again. */
2083 reg = TRANS_CHICKEN2(pipe);
2084 val = I915_READ(reg);
2085 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086 I915_WRITE(reg, val);
2087 }
2088 }
2089
2090 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2091 {
2092 u32 val;
2093
2094 val = I915_READ(LPT_TRANSCONF);
2095 val &= ~TRANS_ENABLE;
2096 I915_WRITE(LPT_TRANSCONF, val);
2097 /* wait for PCH transcoder off, transcoder state */
2098 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2099 DRM_ERROR("Failed to disable PCH transcoder\n");
2100
2101 /* Workaround: clear timing override bit. */
2102 val = I915_READ(_TRANSA_CHICKEN2);
2103 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2104 I915_WRITE(_TRANSA_CHICKEN2, val);
2105 }
2106
2107 /**
2108 * intel_enable_pipe - enable a pipe, asserting requirements
2109 * @crtc: crtc responsible for the pipe
2110 *
2111 * Enable @crtc's pipe, making sure that various hardware specific requirements
2112 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2113 */
2114 static void intel_enable_pipe(struct intel_crtc *crtc)
2115 {
2116 struct drm_device *dev = crtc->base.dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118 enum pipe pipe = crtc->pipe;
2119 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120 pipe);
2121 enum pipe pch_transcoder;
2122 int reg;
2123 u32 val;
2124
2125 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2126
2127 assert_planes_disabled(dev_priv, pipe);
2128 assert_cursor_disabled(dev_priv, pipe);
2129 assert_sprites_disabled(dev_priv, pipe);
2130
2131 if (HAS_PCH_LPT(dev_priv->dev))
2132 pch_transcoder = TRANSCODER_A;
2133 else
2134 pch_transcoder = pipe;
2135
2136 /*
2137 * A pipe without a PLL won't actually be able to drive bits from
2138 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2139 * need the check.
2140 */
2141 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2142 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2143 assert_dsi_pll_enabled(dev_priv);
2144 else
2145 assert_pll_enabled(dev_priv, pipe);
2146 else {
2147 if (crtc->config->has_pch_encoder) {
2148 /* if driving the PCH, we need FDI enabled */
2149 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2150 assert_fdi_tx_pll_enabled(dev_priv,
2151 (enum pipe) cpu_transcoder);
2152 }
2153 /* FIXME: assert CPU port conditions for SNB+ */
2154 }
2155
2156 reg = PIPECONF(cpu_transcoder);
2157 val = I915_READ(reg);
2158 if (val & PIPECONF_ENABLE) {
2159 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2160 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2161 return;
2162 }
2163
2164 I915_WRITE(reg, val | PIPECONF_ENABLE);
2165 POSTING_READ(reg);
2166 }
2167
2168 /**
2169 * intel_disable_pipe - disable a pipe, asserting requirements
2170 * @crtc: crtc whose pipes is to be disabled
2171 *
2172 * Disable the pipe of @crtc, making sure that various hardware
2173 * specific requirements are met, if applicable, e.g. plane
2174 * disabled, panel fitter off, etc.
2175 *
2176 * Will wait until the pipe has shut down before returning.
2177 */
2178 static void intel_disable_pipe(struct intel_crtc *crtc)
2179 {
2180 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2181 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2182 enum pipe pipe = crtc->pipe;
2183 int reg;
2184 u32 val;
2185
2186 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2187
2188 /*
2189 * Make sure planes won't keep trying to pump pixels to us,
2190 * or we might hang the display.
2191 */
2192 assert_planes_disabled(dev_priv, pipe);
2193 assert_cursor_disabled(dev_priv, pipe);
2194 assert_sprites_disabled(dev_priv, pipe);
2195
2196 reg = PIPECONF(cpu_transcoder);
2197 val = I915_READ(reg);
2198 if ((val & PIPECONF_ENABLE) == 0)
2199 return;
2200
2201 /*
2202 * Double wide has implications for planes
2203 * so best keep it disabled when not needed.
2204 */
2205 if (crtc->config->double_wide)
2206 val &= ~PIPECONF_DOUBLE_WIDE;
2207
2208 /* Don't disable pipe or pipe PLLs if needed */
2209 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2210 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2211 val &= ~PIPECONF_ENABLE;
2212
2213 I915_WRITE(reg, val);
2214 if ((val & PIPECONF_ENABLE) == 0)
2215 intel_wait_for_pipe_off(crtc);
2216 }
2217
2218 static bool need_vtd_wa(struct drm_device *dev)
2219 {
2220 #ifdef CONFIG_INTEL_IOMMU
2221 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2222 return true;
2223 #endif
2224 return false;
2225 }
2226
2227 unsigned int
2228 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2229 uint64_t fb_format_modifier)
2230 {
2231 unsigned int tile_height;
2232 uint32_t pixel_bytes;
2233
2234 switch (fb_format_modifier) {
2235 case DRM_FORMAT_MOD_NONE:
2236 tile_height = 1;
2237 break;
2238 case I915_FORMAT_MOD_X_TILED:
2239 tile_height = IS_GEN2(dev) ? 16 : 8;
2240 break;
2241 case I915_FORMAT_MOD_Y_TILED:
2242 tile_height = 32;
2243 break;
2244 case I915_FORMAT_MOD_Yf_TILED:
2245 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2246 switch (pixel_bytes) {
2247 default:
2248 case 1:
2249 tile_height = 64;
2250 break;
2251 case 2:
2252 case 4:
2253 tile_height = 32;
2254 break;
2255 case 8:
2256 tile_height = 16;
2257 break;
2258 case 16:
2259 WARN_ONCE(1,
2260 "128-bit pixels are not supported for display!");
2261 tile_height = 16;
2262 break;
2263 }
2264 break;
2265 default:
2266 MISSING_CASE(fb_format_modifier);
2267 tile_height = 1;
2268 break;
2269 }
2270
2271 return tile_height;
2272 }
2273
2274 unsigned int
2275 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2276 uint32_t pixel_format, uint64_t fb_format_modifier)
2277 {
2278 return ALIGN(height, intel_tile_height(dev, pixel_format,
2279 fb_format_modifier));
2280 }
2281
2282 static int
2283 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2284 const struct drm_plane_state *plane_state)
2285 {
2286 struct intel_rotation_info *info = &view->rotation_info;
2287 unsigned int tile_height, tile_pitch;
2288
2289 *view = i915_ggtt_view_normal;
2290
2291 if (!plane_state)
2292 return 0;
2293
2294 if (!intel_rotation_90_or_270(plane_state->rotation))
2295 return 0;
2296
2297 *view = i915_ggtt_view_rotated;
2298
2299 info->height = fb->height;
2300 info->pixel_format = fb->pixel_format;
2301 info->pitch = fb->pitches[0];
2302 info->fb_modifier = fb->modifier[0];
2303
2304 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305 fb->modifier[0]);
2306 tile_pitch = PAGE_SIZE / tile_height;
2307 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2309 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2310
2311 return 0;
2312 }
2313
2314 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2315 {
2316 if (INTEL_INFO(dev_priv)->gen >= 9)
2317 return 256 * 1024;
2318 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2319 IS_VALLEYVIEW(dev_priv))
2320 return 128 * 1024;
2321 else if (INTEL_INFO(dev_priv)->gen >= 4)
2322 return 4 * 1024;
2323 else
2324 return 0;
2325 }
2326
2327 int
2328 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2329 struct drm_framebuffer *fb,
2330 const struct drm_plane_state *plane_state,
2331 struct intel_engine_cs *pipelined,
2332 struct drm_i915_gem_request **pipelined_request)
2333 {
2334 struct drm_device *dev = fb->dev;
2335 struct drm_i915_private *dev_priv = dev->dev_private;
2336 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2337 struct i915_ggtt_view view;
2338 u32 alignment;
2339 int ret;
2340
2341 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2342
2343 switch (fb->modifier[0]) {
2344 case DRM_FORMAT_MOD_NONE:
2345 alignment = intel_linear_alignment(dev_priv);
2346 break;
2347 case I915_FORMAT_MOD_X_TILED:
2348 if (INTEL_INFO(dev)->gen >= 9)
2349 alignment = 256 * 1024;
2350 else {
2351 /* pin() will align the object as required by fence */
2352 alignment = 0;
2353 }
2354 break;
2355 case I915_FORMAT_MOD_Y_TILED:
2356 case I915_FORMAT_MOD_Yf_TILED:
2357 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2358 "Y tiling bo slipped through, driver bug!\n"))
2359 return -EINVAL;
2360 alignment = 1 * 1024 * 1024;
2361 break;
2362 default:
2363 MISSING_CASE(fb->modifier[0]);
2364 return -EINVAL;
2365 }
2366
2367 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2368 if (ret)
2369 return ret;
2370
2371 /* Note that the w/a also requires 64 PTE of padding following the
2372 * bo. We currently fill all unused PTE with the shadow page and so
2373 * we should always have valid PTE following the scanout preventing
2374 * the VT-d warning.
2375 */
2376 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2377 alignment = 256 * 1024;
2378
2379 /*
2380 * Global gtt pte registers are special registers which actually forward
2381 * writes to a chunk of system memory. Which means that there is no risk
2382 * that the register values disappear as soon as we call
2383 * intel_runtime_pm_put(), so it is correct to wrap only the
2384 * pin/unpin/fence and not more.
2385 */
2386 intel_runtime_pm_get(dev_priv);
2387
2388 dev_priv->mm.interruptible = false;
2389 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2390 pipelined_request, &view);
2391 if (ret)
2392 goto err_interruptible;
2393
2394 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2395 * fence, whereas 965+ only requires a fence if using
2396 * framebuffer compression. For simplicity, we always install
2397 * a fence as the cost is not that onerous.
2398 */
2399 ret = i915_gem_object_get_fence(obj);
2400 if (ret == -EDEADLK) {
2401 /*
2402 * -EDEADLK means there are no free fences
2403 * no pending flips.
2404 *
2405 * This is propagated to atomic, but it uses
2406 * -EDEADLK to force a locking recovery, so
2407 * change the returned error to -EBUSY.
2408 */
2409 ret = -EBUSY;
2410 goto err_unpin;
2411 } else if (ret)
2412 goto err_unpin;
2413
2414 i915_gem_object_pin_fence(obj);
2415
2416 dev_priv->mm.interruptible = true;
2417 intel_runtime_pm_put(dev_priv);
2418 return 0;
2419
2420 err_unpin:
2421 i915_gem_object_unpin_from_display_plane(obj, &view);
2422 err_interruptible:
2423 dev_priv->mm.interruptible = true;
2424 intel_runtime_pm_put(dev_priv);
2425 return ret;
2426 }
2427
2428 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2429 const struct drm_plane_state *plane_state)
2430 {
2431 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2432 struct i915_ggtt_view view;
2433 int ret;
2434
2435 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2436
2437 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2438 WARN_ONCE(ret, "Couldn't get view from plane state!");
2439
2440 i915_gem_object_unpin_fence(obj);
2441 i915_gem_object_unpin_from_display_plane(obj, &view);
2442 }
2443
2444 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2445 * is assumed to be a power-of-two. */
2446 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2447 int *x, int *y,
2448 unsigned int tiling_mode,
2449 unsigned int cpp,
2450 unsigned int pitch)
2451 {
2452 if (tiling_mode != I915_TILING_NONE) {
2453 unsigned int tile_rows, tiles;
2454
2455 tile_rows = *y / 8;
2456 *y %= 8;
2457
2458 tiles = *x / (512/cpp);
2459 *x %= 512/cpp;
2460
2461 return tile_rows * pitch * 8 + tiles * 4096;
2462 } else {
2463 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2464 unsigned int offset;
2465
2466 offset = *y * pitch + *x * cpp;
2467 *y = (offset & alignment) / pitch;
2468 *x = ((offset & alignment) - *y * pitch) / cpp;
2469 return offset & ~alignment;
2470 }
2471 }
2472
2473 static int i9xx_format_to_fourcc(int format)
2474 {
2475 switch (format) {
2476 case DISPPLANE_8BPP:
2477 return DRM_FORMAT_C8;
2478 case DISPPLANE_BGRX555:
2479 return DRM_FORMAT_XRGB1555;
2480 case DISPPLANE_BGRX565:
2481 return DRM_FORMAT_RGB565;
2482 default:
2483 case DISPPLANE_BGRX888:
2484 return DRM_FORMAT_XRGB8888;
2485 case DISPPLANE_RGBX888:
2486 return DRM_FORMAT_XBGR8888;
2487 case DISPPLANE_BGRX101010:
2488 return DRM_FORMAT_XRGB2101010;
2489 case DISPPLANE_RGBX101010:
2490 return DRM_FORMAT_XBGR2101010;
2491 }
2492 }
2493
2494 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2495 {
2496 switch (format) {
2497 case PLANE_CTL_FORMAT_RGB_565:
2498 return DRM_FORMAT_RGB565;
2499 default:
2500 case PLANE_CTL_FORMAT_XRGB_8888:
2501 if (rgb_order) {
2502 if (alpha)
2503 return DRM_FORMAT_ABGR8888;
2504 else
2505 return DRM_FORMAT_XBGR8888;
2506 } else {
2507 if (alpha)
2508 return DRM_FORMAT_ARGB8888;
2509 else
2510 return DRM_FORMAT_XRGB8888;
2511 }
2512 case PLANE_CTL_FORMAT_XRGB_2101010:
2513 if (rgb_order)
2514 return DRM_FORMAT_XBGR2101010;
2515 else
2516 return DRM_FORMAT_XRGB2101010;
2517 }
2518 }
2519
2520 static bool
2521 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2522 struct intel_initial_plane_config *plane_config)
2523 {
2524 struct drm_device *dev = crtc->base.dev;
2525 struct drm_i915_gem_object *obj = NULL;
2526 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2527 struct drm_framebuffer *fb = &plane_config->fb->base;
2528 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2529 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2530 PAGE_SIZE);
2531
2532 size_aligned -= base_aligned;
2533
2534 if (plane_config->size == 0)
2535 return false;
2536
2537 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2538 base_aligned,
2539 base_aligned,
2540 size_aligned);
2541 if (!obj)
2542 return false;
2543
2544 obj->tiling_mode = plane_config->tiling;
2545 if (obj->tiling_mode == I915_TILING_X)
2546 obj->stride = fb->pitches[0];
2547
2548 mode_cmd.pixel_format = fb->pixel_format;
2549 mode_cmd.width = fb->width;
2550 mode_cmd.height = fb->height;
2551 mode_cmd.pitches[0] = fb->pitches[0];
2552 mode_cmd.modifier[0] = fb->modifier[0];
2553 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2554
2555 mutex_lock(&dev->struct_mutex);
2556 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2557 &mode_cmd, obj)) {
2558 DRM_DEBUG_KMS("intel fb init failed\n");
2559 goto out_unref_obj;
2560 }
2561 mutex_unlock(&dev->struct_mutex);
2562
2563 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2564 return true;
2565
2566 out_unref_obj:
2567 drm_gem_object_unreference(&obj->base);
2568 mutex_unlock(&dev->struct_mutex);
2569 return false;
2570 }
2571
2572 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2573 static void
2574 update_state_fb(struct drm_plane *plane)
2575 {
2576 if (plane->fb == plane->state->fb)
2577 return;
2578
2579 if (plane->state->fb)
2580 drm_framebuffer_unreference(plane->state->fb);
2581 plane->state->fb = plane->fb;
2582 if (plane->state->fb)
2583 drm_framebuffer_reference(plane->state->fb);
2584 }
2585
2586 static void
2587 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2588 struct intel_initial_plane_config *plane_config)
2589 {
2590 struct drm_device *dev = intel_crtc->base.dev;
2591 struct drm_i915_private *dev_priv = dev->dev_private;
2592 struct drm_crtc *c;
2593 struct intel_crtc *i;
2594 struct drm_i915_gem_object *obj;
2595 struct drm_plane *primary = intel_crtc->base.primary;
2596 struct drm_plane_state *plane_state = primary->state;
2597 struct drm_framebuffer *fb;
2598
2599 if (!plane_config->fb)
2600 return;
2601
2602 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2603 fb = &plane_config->fb->base;
2604 goto valid_fb;
2605 }
2606
2607 kfree(plane_config->fb);
2608
2609 /*
2610 * Failed to alloc the obj, check to see if we should share
2611 * an fb with another CRTC instead
2612 */
2613 for_each_crtc(dev, c) {
2614 i = to_intel_crtc(c);
2615
2616 if (c == &intel_crtc->base)
2617 continue;
2618
2619 if (!i->active)
2620 continue;
2621
2622 fb = c->primary->fb;
2623 if (!fb)
2624 continue;
2625
2626 obj = intel_fb_obj(fb);
2627 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2628 drm_framebuffer_reference(fb);
2629 goto valid_fb;
2630 }
2631 }
2632
2633 return;
2634
2635 valid_fb:
2636 plane_state->src_x = plane_state->src_y = 0;
2637 plane_state->src_w = fb->width << 16;
2638 plane_state->src_h = fb->height << 16;
2639
2640 plane_state->crtc_x = plane_state->src_y = 0;
2641 plane_state->crtc_w = fb->width;
2642 plane_state->crtc_h = fb->height;
2643
2644 obj = intel_fb_obj(fb);
2645 if (obj->tiling_mode != I915_TILING_NONE)
2646 dev_priv->preserve_bios_swizzle = true;
2647
2648 drm_framebuffer_reference(fb);
2649 primary->fb = primary->state->fb = fb;
2650 primary->crtc = primary->state->crtc = &intel_crtc->base;
2651 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2652 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2653 }
2654
2655 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2656 struct drm_framebuffer *fb,
2657 int x, int y)
2658 {
2659 struct drm_device *dev = crtc->dev;
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2662 struct drm_plane *primary = crtc->primary;
2663 bool visible = to_intel_plane_state(primary->state)->visible;
2664 struct drm_i915_gem_object *obj;
2665 int plane = intel_crtc->plane;
2666 unsigned long linear_offset;
2667 u32 dspcntr;
2668 u32 reg = DSPCNTR(plane);
2669 int pixel_size;
2670
2671 if (!visible || !fb) {
2672 I915_WRITE(reg, 0);
2673 if (INTEL_INFO(dev)->gen >= 4)
2674 I915_WRITE(DSPSURF(plane), 0);
2675 else
2676 I915_WRITE(DSPADDR(plane), 0);
2677 POSTING_READ(reg);
2678 return;
2679 }
2680
2681 obj = intel_fb_obj(fb);
2682 if (WARN_ON(obj == NULL))
2683 return;
2684
2685 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2686
2687 dspcntr = DISPPLANE_GAMMA_ENABLE;
2688
2689 dspcntr |= DISPLAY_PLANE_ENABLE;
2690
2691 if (INTEL_INFO(dev)->gen < 4) {
2692 if (intel_crtc->pipe == PIPE_B)
2693 dspcntr |= DISPPLANE_SEL_PIPE_B;
2694
2695 /* pipesrc and dspsize control the size that is scaled from,
2696 * which should always be the user's requested size.
2697 */
2698 I915_WRITE(DSPSIZE(plane),
2699 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2700 (intel_crtc->config->pipe_src_w - 1));
2701 I915_WRITE(DSPPOS(plane), 0);
2702 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2703 I915_WRITE(PRIMSIZE(plane),
2704 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2705 (intel_crtc->config->pipe_src_w - 1));
2706 I915_WRITE(PRIMPOS(plane), 0);
2707 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2708 }
2709
2710 switch (fb->pixel_format) {
2711 case DRM_FORMAT_C8:
2712 dspcntr |= DISPPLANE_8BPP;
2713 break;
2714 case DRM_FORMAT_XRGB1555:
2715 dspcntr |= DISPPLANE_BGRX555;
2716 break;
2717 case DRM_FORMAT_RGB565:
2718 dspcntr |= DISPPLANE_BGRX565;
2719 break;
2720 case DRM_FORMAT_XRGB8888:
2721 dspcntr |= DISPPLANE_BGRX888;
2722 break;
2723 case DRM_FORMAT_XBGR8888:
2724 dspcntr |= DISPPLANE_RGBX888;
2725 break;
2726 case DRM_FORMAT_XRGB2101010:
2727 dspcntr |= DISPPLANE_BGRX101010;
2728 break;
2729 case DRM_FORMAT_XBGR2101010:
2730 dspcntr |= DISPPLANE_RGBX101010;
2731 break;
2732 default:
2733 BUG();
2734 }
2735
2736 if (INTEL_INFO(dev)->gen >= 4 &&
2737 obj->tiling_mode != I915_TILING_NONE)
2738 dspcntr |= DISPPLANE_TILED;
2739
2740 if (IS_G4X(dev))
2741 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2742
2743 linear_offset = y * fb->pitches[0] + x * pixel_size;
2744
2745 if (INTEL_INFO(dev)->gen >= 4) {
2746 intel_crtc->dspaddr_offset =
2747 intel_gen4_compute_page_offset(dev_priv,
2748 &x, &y, obj->tiling_mode,
2749 pixel_size,
2750 fb->pitches[0]);
2751 linear_offset -= intel_crtc->dspaddr_offset;
2752 } else {
2753 intel_crtc->dspaddr_offset = linear_offset;
2754 }
2755
2756 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2757 dspcntr |= DISPPLANE_ROTATE_180;
2758
2759 x += (intel_crtc->config->pipe_src_w - 1);
2760 y += (intel_crtc->config->pipe_src_h - 1);
2761
2762 /* Finding the last pixel of the last line of the display
2763 data and adding to linear_offset*/
2764 linear_offset +=
2765 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2766 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2767 }
2768
2769 I915_WRITE(reg, dspcntr);
2770
2771 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2772 if (INTEL_INFO(dev)->gen >= 4) {
2773 I915_WRITE(DSPSURF(plane),
2774 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2775 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2776 I915_WRITE(DSPLINOFF(plane), linear_offset);
2777 } else
2778 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2779 POSTING_READ(reg);
2780 }
2781
2782 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2783 struct drm_framebuffer *fb,
2784 int x, int y)
2785 {
2786 struct drm_device *dev = crtc->dev;
2787 struct drm_i915_private *dev_priv = dev->dev_private;
2788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2789 struct drm_plane *primary = crtc->primary;
2790 bool visible = to_intel_plane_state(primary->state)->visible;
2791 struct drm_i915_gem_object *obj;
2792 int plane = intel_crtc->plane;
2793 unsigned long linear_offset;
2794 u32 dspcntr;
2795 u32 reg = DSPCNTR(plane);
2796 int pixel_size;
2797
2798 if (!visible || !fb) {
2799 I915_WRITE(reg, 0);
2800 I915_WRITE(DSPSURF(plane), 0);
2801 POSTING_READ(reg);
2802 return;
2803 }
2804
2805 obj = intel_fb_obj(fb);
2806 if (WARN_ON(obj == NULL))
2807 return;
2808
2809 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2810
2811 dspcntr = DISPPLANE_GAMMA_ENABLE;
2812
2813 dspcntr |= DISPLAY_PLANE_ENABLE;
2814
2815 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2816 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2817
2818 switch (fb->pixel_format) {
2819 case DRM_FORMAT_C8:
2820 dspcntr |= DISPPLANE_8BPP;
2821 break;
2822 case DRM_FORMAT_RGB565:
2823 dspcntr |= DISPPLANE_BGRX565;
2824 break;
2825 case DRM_FORMAT_XRGB8888:
2826 dspcntr |= DISPPLANE_BGRX888;
2827 break;
2828 case DRM_FORMAT_XBGR8888:
2829 dspcntr |= DISPPLANE_RGBX888;
2830 break;
2831 case DRM_FORMAT_XRGB2101010:
2832 dspcntr |= DISPPLANE_BGRX101010;
2833 break;
2834 case DRM_FORMAT_XBGR2101010:
2835 dspcntr |= DISPPLANE_RGBX101010;
2836 break;
2837 default:
2838 BUG();
2839 }
2840
2841 if (obj->tiling_mode != I915_TILING_NONE)
2842 dspcntr |= DISPPLANE_TILED;
2843
2844 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2845 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2846
2847 linear_offset = y * fb->pitches[0] + x * pixel_size;
2848 intel_crtc->dspaddr_offset =
2849 intel_gen4_compute_page_offset(dev_priv,
2850 &x, &y, obj->tiling_mode,
2851 pixel_size,
2852 fb->pitches[0]);
2853 linear_offset -= intel_crtc->dspaddr_offset;
2854 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2855 dspcntr |= DISPPLANE_ROTATE_180;
2856
2857 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2858 x += (intel_crtc->config->pipe_src_w - 1);
2859 y += (intel_crtc->config->pipe_src_h - 1);
2860
2861 /* Finding the last pixel of the last line of the display
2862 data and adding to linear_offset*/
2863 linear_offset +=
2864 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2865 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2866 }
2867 }
2868
2869 I915_WRITE(reg, dspcntr);
2870
2871 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2872 I915_WRITE(DSPSURF(plane),
2873 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2874 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2875 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2876 } else {
2877 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2878 I915_WRITE(DSPLINOFF(plane), linear_offset);
2879 }
2880 POSTING_READ(reg);
2881 }
2882
2883 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2884 uint32_t pixel_format)
2885 {
2886 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2887
2888 /*
2889 * The stride is either expressed as a multiple of 64 bytes
2890 * chunks for linear buffers or in number of tiles for tiled
2891 * buffers.
2892 */
2893 switch (fb_modifier) {
2894 case DRM_FORMAT_MOD_NONE:
2895 return 64;
2896 case I915_FORMAT_MOD_X_TILED:
2897 if (INTEL_INFO(dev)->gen == 2)
2898 return 128;
2899 return 512;
2900 case I915_FORMAT_MOD_Y_TILED:
2901 /* No need to check for old gens and Y tiling since this is
2902 * about the display engine and those will be blocked before
2903 * we get here.
2904 */
2905 return 128;
2906 case I915_FORMAT_MOD_Yf_TILED:
2907 if (bits_per_pixel == 8)
2908 return 64;
2909 else
2910 return 128;
2911 default:
2912 MISSING_CASE(fb_modifier);
2913 return 64;
2914 }
2915 }
2916
2917 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2918 struct drm_i915_gem_object *obj)
2919 {
2920 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2921
2922 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2923 view = &i915_ggtt_view_rotated;
2924
2925 return i915_gem_obj_ggtt_offset_view(obj, view);
2926 }
2927
2928 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2929 {
2930 struct drm_device *dev = intel_crtc->base.dev;
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932
2933 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2934 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2935 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2936 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2937 intel_crtc->base.base.id, intel_crtc->pipe, id);
2938 }
2939
2940 /*
2941 * This function detaches (aka. unbinds) unused scalers in hardware
2942 */
2943 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2944 {
2945 struct intel_crtc_scaler_state *scaler_state;
2946 int i;
2947
2948 scaler_state = &intel_crtc->config->scaler_state;
2949
2950 /* loop through and disable scalers that aren't in use */
2951 for (i = 0; i < intel_crtc->num_scalers; i++) {
2952 if (!scaler_state->scalers[i].in_use)
2953 skl_detach_scaler(intel_crtc, i);
2954 }
2955 }
2956
2957 u32 skl_plane_ctl_format(uint32_t pixel_format)
2958 {
2959 switch (pixel_format) {
2960 case DRM_FORMAT_C8:
2961 return PLANE_CTL_FORMAT_INDEXED;
2962 case DRM_FORMAT_RGB565:
2963 return PLANE_CTL_FORMAT_RGB_565;
2964 case DRM_FORMAT_XBGR8888:
2965 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2966 case DRM_FORMAT_XRGB8888:
2967 return PLANE_CTL_FORMAT_XRGB_8888;
2968 /*
2969 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2970 * to be already pre-multiplied. We need to add a knob (or a different
2971 * DRM_FORMAT) for user-space to configure that.
2972 */
2973 case DRM_FORMAT_ABGR8888:
2974 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2975 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2976 case DRM_FORMAT_ARGB8888:
2977 return PLANE_CTL_FORMAT_XRGB_8888 |
2978 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2979 case DRM_FORMAT_XRGB2101010:
2980 return PLANE_CTL_FORMAT_XRGB_2101010;
2981 case DRM_FORMAT_XBGR2101010:
2982 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2983 case DRM_FORMAT_YUYV:
2984 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2985 case DRM_FORMAT_YVYU:
2986 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2987 case DRM_FORMAT_UYVY:
2988 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2989 case DRM_FORMAT_VYUY:
2990 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2991 default:
2992 MISSING_CASE(pixel_format);
2993 }
2994
2995 return 0;
2996 }
2997
2998 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2999 {
3000 switch (fb_modifier) {
3001 case DRM_FORMAT_MOD_NONE:
3002 break;
3003 case I915_FORMAT_MOD_X_TILED:
3004 return PLANE_CTL_TILED_X;
3005 case I915_FORMAT_MOD_Y_TILED:
3006 return PLANE_CTL_TILED_Y;
3007 case I915_FORMAT_MOD_Yf_TILED:
3008 return PLANE_CTL_TILED_YF;
3009 default:
3010 MISSING_CASE(fb_modifier);
3011 }
3012
3013 return 0;
3014 }
3015
3016 u32 skl_plane_ctl_rotation(unsigned int rotation)
3017 {
3018 switch (rotation) {
3019 case BIT(DRM_ROTATE_0):
3020 break;
3021 /*
3022 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3023 * while i915 HW rotation is clockwise, thats why this swapping.
3024 */
3025 case BIT(DRM_ROTATE_90):
3026 return PLANE_CTL_ROTATE_270;
3027 case BIT(DRM_ROTATE_180):
3028 return PLANE_CTL_ROTATE_180;
3029 case BIT(DRM_ROTATE_270):
3030 return PLANE_CTL_ROTATE_90;
3031 default:
3032 MISSING_CASE(rotation);
3033 }
3034
3035 return 0;
3036 }
3037
3038 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3039 struct drm_framebuffer *fb,
3040 int x, int y)
3041 {
3042 struct drm_device *dev = crtc->dev;
3043 struct drm_i915_private *dev_priv = dev->dev_private;
3044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3045 struct drm_plane *plane = crtc->primary;
3046 bool visible = to_intel_plane_state(plane->state)->visible;
3047 struct drm_i915_gem_object *obj;
3048 int pipe = intel_crtc->pipe;
3049 u32 plane_ctl, stride_div, stride;
3050 u32 tile_height, plane_offset, plane_size;
3051 unsigned int rotation;
3052 int x_offset, y_offset;
3053 unsigned long surf_addr;
3054 struct intel_crtc_state *crtc_state = intel_crtc->config;
3055 struct intel_plane_state *plane_state;
3056 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3057 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3058 int scaler_id = -1;
3059
3060 plane_state = to_intel_plane_state(plane->state);
3061
3062 if (!visible || !fb) {
3063 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3064 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3065 POSTING_READ(PLANE_CTL(pipe, 0));
3066 return;
3067 }
3068
3069 plane_ctl = PLANE_CTL_ENABLE |
3070 PLANE_CTL_PIPE_GAMMA_ENABLE |
3071 PLANE_CTL_PIPE_CSC_ENABLE;
3072
3073 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3074 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3075 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3076
3077 rotation = plane->state->rotation;
3078 plane_ctl |= skl_plane_ctl_rotation(rotation);
3079
3080 obj = intel_fb_obj(fb);
3081 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3082 fb->pixel_format);
3083 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3084
3085 /*
3086 * FIXME: intel_plane_state->src, dst aren't set when transitional
3087 * update_plane helpers are called from legacy paths.
3088 * Once full atomic crtc is available, below check can be avoided.
3089 */
3090 if (drm_rect_width(&plane_state->src)) {
3091 scaler_id = plane_state->scaler_id;
3092 src_x = plane_state->src.x1 >> 16;
3093 src_y = plane_state->src.y1 >> 16;
3094 src_w = drm_rect_width(&plane_state->src) >> 16;
3095 src_h = drm_rect_height(&plane_state->src) >> 16;
3096 dst_x = plane_state->dst.x1;
3097 dst_y = plane_state->dst.y1;
3098 dst_w = drm_rect_width(&plane_state->dst);
3099 dst_h = drm_rect_height(&plane_state->dst);
3100
3101 WARN_ON(x != src_x || y != src_y);
3102 } else {
3103 src_w = intel_crtc->config->pipe_src_w;
3104 src_h = intel_crtc->config->pipe_src_h;
3105 }
3106
3107 if (intel_rotation_90_or_270(rotation)) {
3108 /* stride = Surface height in tiles */
3109 tile_height = intel_tile_height(dev, fb->pixel_format,
3110 fb->modifier[0]);
3111 stride = DIV_ROUND_UP(fb->height, tile_height);
3112 x_offset = stride * tile_height - y - src_h;
3113 y_offset = x;
3114 plane_size = (src_w - 1) << 16 | (src_h - 1);
3115 } else {
3116 stride = fb->pitches[0] / stride_div;
3117 x_offset = x;
3118 y_offset = y;
3119 plane_size = (src_h - 1) << 16 | (src_w - 1);
3120 }
3121 plane_offset = y_offset << 16 | x_offset;
3122
3123 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3124 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3125 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3126 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3127
3128 if (scaler_id >= 0) {
3129 uint32_t ps_ctrl = 0;
3130
3131 WARN_ON(!dst_w || !dst_h);
3132 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3133 crtc_state->scaler_state.scalers[scaler_id].mode;
3134 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3135 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3136 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3137 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3138 I915_WRITE(PLANE_POS(pipe, 0), 0);
3139 } else {
3140 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3141 }
3142
3143 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3144
3145 POSTING_READ(PLANE_SURF(pipe, 0));
3146 }
3147
3148 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3149 static int
3150 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3151 int x, int y, enum mode_set_atomic state)
3152 {
3153 struct drm_device *dev = crtc->dev;
3154 struct drm_i915_private *dev_priv = dev->dev_private;
3155
3156 if (dev_priv->fbc.disable_fbc)
3157 dev_priv->fbc.disable_fbc(dev_priv);
3158
3159 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3160
3161 return 0;
3162 }
3163
3164 static void intel_complete_page_flips(struct drm_device *dev)
3165 {
3166 struct drm_crtc *crtc;
3167
3168 for_each_crtc(dev, crtc) {
3169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3170 enum plane plane = intel_crtc->plane;
3171
3172 intel_prepare_page_flip(dev, plane);
3173 intel_finish_page_flip_plane(dev, plane);
3174 }
3175 }
3176
3177 static void intel_update_primary_planes(struct drm_device *dev)
3178 {
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180 struct drm_crtc *crtc;
3181
3182 for_each_crtc(dev, crtc) {
3183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184
3185 drm_modeset_lock(&crtc->mutex, NULL);
3186 /*
3187 * FIXME: Once we have proper support for primary planes (and
3188 * disabling them without disabling the entire crtc) allow again
3189 * a NULL crtc->primary->fb.
3190 */
3191 if (intel_crtc->active && crtc->primary->fb)
3192 dev_priv->display.update_primary_plane(crtc,
3193 crtc->primary->fb,
3194 crtc->x,
3195 crtc->y);
3196 drm_modeset_unlock(&crtc->mutex);
3197 }
3198 }
3199
3200 void intel_prepare_reset(struct drm_device *dev)
3201 {
3202 /* no reset support for gen2 */
3203 if (IS_GEN2(dev))
3204 return;
3205
3206 /* reset doesn't touch the display */
3207 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3208 return;
3209
3210 drm_modeset_lock_all(dev);
3211 /*
3212 * Disabling the crtcs gracefully seems nicer. Also the
3213 * g33 docs say we should at least disable all the planes.
3214 */
3215 intel_display_suspend(dev);
3216 }
3217
3218 void intel_finish_reset(struct drm_device *dev)
3219 {
3220 struct drm_i915_private *dev_priv = to_i915(dev);
3221
3222 /*
3223 * Flips in the rings will be nuked by the reset,
3224 * so complete all pending flips so that user space
3225 * will get its events and not get stuck.
3226 */
3227 intel_complete_page_flips(dev);
3228
3229 /* no reset support for gen2 */
3230 if (IS_GEN2(dev))
3231 return;
3232
3233 /* reset doesn't touch the display */
3234 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3235 /*
3236 * Flips in the rings have been nuked by the reset,
3237 * so update the base address of all primary
3238 * planes to the the last fb to make sure we're
3239 * showing the correct fb after a reset.
3240 */
3241 intel_update_primary_planes(dev);
3242 return;
3243 }
3244
3245 /*
3246 * The display has been reset as well,
3247 * so need a full re-initialization.
3248 */
3249 intel_runtime_pm_disable_interrupts(dev_priv);
3250 intel_runtime_pm_enable_interrupts(dev_priv);
3251
3252 intel_modeset_init_hw(dev);
3253
3254 spin_lock_irq(&dev_priv->irq_lock);
3255 if (dev_priv->display.hpd_irq_setup)
3256 dev_priv->display.hpd_irq_setup(dev);
3257 spin_unlock_irq(&dev_priv->irq_lock);
3258
3259 intel_display_resume(dev);
3260
3261 intel_hpd_init(dev_priv);
3262
3263 drm_modeset_unlock_all(dev);
3264 }
3265
3266 static void
3267 intel_finish_fb(struct drm_framebuffer *old_fb)
3268 {
3269 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3270 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3271 bool was_interruptible = dev_priv->mm.interruptible;
3272 int ret;
3273
3274 /* Big Hammer, we also need to ensure that any pending
3275 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3276 * current scanout is retired before unpinning the old
3277 * framebuffer. Note that we rely on userspace rendering
3278 * into the buffer attached to the pipe they are waiting
3279 * on. If not, userspace generates a GPU hang with IPEHR
3280 * point to the MI_WAIT_FOR_EVENT.
3281 *
3282 * This should only fail upon a hung GPU, in which case we
3283 * can safely continue.
3284 */
3285 dev_priv->mm.interruptible = false;
3286 ret = i915_gem_object_wait_rendering(obj, true);
3287 dev_priv->mm.interruptible = was_interruptible;
3288
3289 WARN_ON(ret);
3290 }
3291
3292 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3293 {
3294 struct drm_device *dev = crtc->dev;
3295 struct drm_i915_private *dev_priv = dev->dev_private;
3296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3297 bool pending;
3298
3299 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3300 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3301 return false;
3302
3303 spin_lock_irq(&dev->event_lock);
3304 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3305 spin_unlock_irq(&dev->event_lock);
3306
3307 return pending;
3308 }
3309
3310 static void intel_update_pipe_size(struct intel_crtc *crtc)
3311 {
3312 struct drm_device *dev = crtc->base.dev;
3313 struct drm_i915_private *dev_priv = dev->dev_private;
3314 const struct drm_display_mode *adjusted_mode;
3315
3316 if (!i915.fastboot)
3317 return;
3318
3319 /*
3320 * Update pipe size and adjust fitter if needed: the reason for this is
3321 * that in compute_mode_changes we check the native mode (not the pfit
3322 * mode) to see if we can flip rather than do a full mode set. In the
3323 * fastboot case, we'll flip, but if we don't update the pipesrc and
3324 * pfit state, we'll end up with a big fb scanned out into the wrong
3325 * sized surface.
3326 *
3327 * To fix this properly, we need to hoist the checks up into
3328 * compute_mode_changes (or above), check the actual pfit state and
3329 * whether the platform allows pfit disable with pipe active, and only
3330 * then update the pipesrc and pfit state, even on the flip path.
3331 */
3332
3333 adjusted_mode = &crtc->config->base.adjusted_mode;
3334
3335 I915_WRITE(PIPESRC(crtc->pipe),
3336 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3337 (adjusted_mode->crtc_vdisplay - 1));
3338 if (!crtc->config->pch_pfit.enabled &&
3339 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3340 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3341 I915_WRITE(PF_CTL(crtc->pipe), 0);
3342 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3343 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3344 }
3345 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3346 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3347 }
3348
3349 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3350 {
3351 struct drm_device *dev = crtc->dev;
3352 struct drm_i915_private *dev_priv = dev->dev_private;
3353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3354 int pipe = intel_crtc->pipe;
3355 u32 reg, temp;
3356
3357 /* enable normal train */
3358 reg = FDI_TX_CTL(pipe);
3359 temp = I915_READ(reg);
3360 if (IS_IVYBRIDGE(dev)) {
3361 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3362 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3363 } else {
3364 temp &= ~FDI_LINK_TRAIN_NONE;
3365 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3366 }
3367 I915_WRITE(reg, temp);
3368
3369 reg = FDI_RX_CTL(pipe);
3370 temp = I915_READ(reg);
3371 if (HAS_PCH_CPT(dev)) {
3372 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3373 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3374 } else {
3375 temp &= ~FDI_LINK_TRAIN_NONE;
3376 temp |= FDI_LINK_TRAIN_NONE;
3377 }
3378 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3379
3380 /* wait one idle pattern time */
3381 POSTING_READ(reg);
3382 udelay(1000);
3383
3384 /* IVB wants error correction enabled */
3385 if (IS_IVYBRIDGE(dev))
3386 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3387 FDI_FE_ERRC_ENABLE);
3388 }
3389
3390 /* The FDI link training functions for ILK/Ibexpeak. */
3391 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3392 {
3393 struct drm_device *dev = crtc->dev;
3394 struct drm_i915_private *dev_priv = dev->dev_private;
3395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396 int pipe = intel_crtc->pipe;
3397 u32 reg, temp, tries;
3398
3399 /* FDI needs bits from pipe first */
3400 assert_pipe_enabled(dev_priv, pipe);
3401
3402 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3403 for train result */
3404 reg = FDI_RX_IMR(pipe);
3405 temp = I915_READ(reg);
3406 temp &= ~FDI_RX_SYMBOL_LOCK;
3407 temp &= ~FDI_RX_BIT_LOCK;
3408 I915_WRITE(reg, temp);
3409 I915_READ(reg);
3410 udelay(150);
3411
3412 /* enable CPU FDI TX and PCH FDI RX */
3413 reg = FDI_TX_CTL(pipe);
3414 temp = I915_READ(reg);
3415 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3416 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3417 temp &= ~FDI_LINK_TRAIN_NONE;
3418 temp |= FDI_LINK_TRAIN_PATTERN_1;
3419 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3420
3421 reg = FDI_RX_CTL(pipe);
3422 temp = I915_READ(reg);
3423 temp &= ~FDI_LINK_TRAIN_NONE;
3424 temp |= FDI_LINK_TRAIN_PATTERN_1;
3425 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427 POSTING_READ(reg);
3428 udelay(150);
3429
3430 /* Ironlake workaround, enable clock pointer after FDI enable*/
3431 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3432 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3433 FDI_RX_PHASE_SYNC_POINTER_EN);
3434
3435 reg = FDI_RX_IIR(pipe);
3436 for (tries = 0; tries < 5; tries++) {
3437 temp = I915_READ(reg);
3438 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439
3440 if ((temp & FDI_RX_BIT_LOCK)) {
3441 DRM_DEBUG_KMS("FDI train 1 done.\n");
3442 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3443 break;
3444 }
3445 }
3446 if (tries == 5)
3447 DRM_ERROR("FDI train 1 fail!\n");
3448
3449 /* Train 2 */
3450 reg = FDI_TX_CTL(pipe);
3451 temp = I915_READ(reg);
3452 temp &= ~FDI_LINK_TRAIN_NONE;
3453 temp |= FDI_LINK_TRAIN_PATTERN_2;
3454 I915_WRITE(reg, temp);
3455
3456 reg = FDI_RX_CTL(pipe);
3457 temp = I915_READ(reg);
3458 temp &= ~FDI_LINK_TRAIN_NONE;
3459 temp |= FDI_LINK_TRAIN_PATTERN_2;
3460 I915_WRITE(reg, temp);
3461
3462 POSTING_READ(reg);
3463 udelay(150);
3464
3465 reg = FDI_RX_IIR(pipe);
3466 for (tries = 0; tries < 5; tries++) {
3467 temp = I915_READ(reg);
3468 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3469
3470 if (temp & FDI_RX_SYMBOL_LOCK) {
3471 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3472 DRM_DEBUG_KMS("FDI train 2 done.\n");
3473 break;
3474 }
3475 }
3476 if (tries == 5)
3477 DRM_ERROR("FDI train 2 fail!\n");
3478
3479 DRM_DEBUG_KMS("FDI train done\n");
3480
3481 }
3482
3483 static const int snb_b_fdi_train_param[] = {
3484 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3485 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3486 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3487 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3488 };
3489
3490 /* The FDI link training functions for SNB/Cougarpoint. */
3491 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3492 {
3493 struct drm_device *dev = crtc->dev;
3494 struct drm_i915_private *dev_priv = dev->dev_private;
3495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3496 int pipe = intel_crtc->pipe;
3497 u32 reg, temp, i, retry;
3498
3499 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3500 for train result */
3501 reg = FDI_RX_IMR(pipe);
3502 temp = I915_READ(reg);
3503 temp &= ~FDI_RX_SYMBOL_LOCK;
3504 temp &= ~FDI_RX_BIT_LOCK;
3505 I915_WRITE(reg, temp);
3506
3507 POSTING_READ(reg);
3508 udelay(150);
3509
3510 /* enable CPU FDI TX and PCH FDI RX */
3511 reg = FDI_TX_CTL(pipe);
3512 temp = I915_READ(reg);
3513 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3514 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3515 temp &= ~FDI_LINK_TRAIN_NONE;
3516 temp |= FDI_LINK_TRAIN_PATTERN_1;
3517 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3518 /* SNB-B */
3519 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3520 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3521
3522 I915_WRITE(FDI_RX_MISC(pipe),
3523 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3524
3525 reg = FDI_RX_CTL(pipe);
3526 temp = I915_READ(reg);
3527 if (HAS_PCH_CPT(dev)) {
3528 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3529 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3530 } else {
3531 temp &= ~FDI_LINK_TRAIN_NONE;
3532 temp |= FDI_LINK_TRAIN_PATTERN_1;
3533 }
3534 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3535
3536 POSTING_READ(reg);
3537 udelay(150);
3538
3539 for (i = 0; i < 4; i++) {
3540 reg = FDI_TX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3543 temp |= snb_b_fdi_train_param[i];
3544 I915_WRITE(reg, temp);
3545
3546 POSTING_READ(reg);
3547 udelay(500);
3548
3549 for (retry = 0; retry < 5; retry++) {
3550 reg = FDI_RX_IIR(pipe);
3551 temp = I915_READ(reg);
3552 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3553 if (temp & FDI_RX_BIT_LOCK) {
3554 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3555 DRM_DEBUG_KMS("FDI train 1 done.\n");
3556 break;
3557 }
3558 udelay(50);
3559 }
3560 if (retry < 5)
3561 break;
3562 }
3563 if (i == 4)
3564 DRM_ERROR("FDI train 1 fail!\n");
3565
3566 /* Train 2 */
3567 reg = FDI_TX_CTL(pipe);
3568 temp = I915_READ(reg);
3569 temp &= ~FDI_LINK_TRAIN_NONE;
3570 temp |= FDI_LINK_TRAIN_PATTERN_2;
3571 if (IS_GEN6(dev)) {
3572 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3573 /* SNB-B */
3574 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3575 }
3576 I915_WRITE(reg, temp);
3577
3578 reg = FDI_RX_CTL(pipe);
3579 temp = I915_READ(reg);
3580 if (HAS_PCH_CPT(dev)) {
3581 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3582 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3583 } else {
3584 temp &= ~FDI_LINK_TRAIN_NONE;
3585 temp |= FDI_LINK_TRAIN_PATTERN_2;
3586 }
3587 I915_WRITE(reg, temp);
3588
3589 POSTING_READ(reg);
3590 udelay(150);
3591
3592 for (i = 0; i < 4; i++) {
3593 reg = FDI_TX_CTL(pipe);
3594 temp = I915_READ(reg);
3595 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3596 temp |= snb_b_fdi_train_param[i];
3597 I915_WRITE(reg, temp);
3598
3599 POSTING_READ(reg);
3600 udelay(500);
3601
3602 for (retry = 0; retry < 5; retry++) {
3603 reg = FDI_RX_IIR(pipe);
3604 temp = I915_READ(reg);
3605 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3606 if (temp & FDI_RX_SYMBOL_LOCK) {
3607 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3608 DRM_DEBUG_KMS("FDI train 2 done.\n");
3609 break;
3610 }
3611 udelay(50);
3612 }
3613 if (retry < 5)
3614 break;
3615 }
3616 if (i == 4)
3617 DRM_ERROR("FDI train 2 fail!\n");
3618
3619 DRM_DEBUG_KMS("FDI train done.\n");
3620 }
3621
3622 /* Manual link training for Ivy Bridge A0 parts */
3623 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3624 {
3625 struct drm_device *dev = crtc->dev;
3626 struct drm_i915_private *dev_priv = dev->dev_private;
3627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3628 int pipe = intel_crtc->pipe;
3629 u32 reg, temp, i, j;
3630
3631 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3632 for train result */
3633 reg = FDI_RX_IMR(pipe);
3634 temp = I915_READ(reg);
3635 temp &= ~FDI_RX_SYMBOL_LOCK;
3636 temp &= ~FDI_RX_BIT_LOCK;
3637 I915_WRITE(reg, temp);
3638
3639 POSTING_READ(reg);
3640 udelay(150);
3641
3642 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3643 I915_READ(FDI_RX_IIR(pipe)));
3644
3645 /* Try each vswing and preemphasis setting twice before moving on */
3646 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3647 /* disable first in case we need to retry */
3648 reg = FDI_TX_CTL(pipe);
3649 temp = I915_READ(reg);
3650 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3651 temp &= ~FDI_TX_ENABLE;
3652 I915_WRITE(reg, temp);
3653
3654 reg = FDI_RX_CTL(pipe);
3655 temp = I915_READ(reg);
3656 temp &= ~FDI_LINK_TRAIN_AUTO;
3657 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3658 temp &= ~FDI_RX_ENABLE;
3659 I915_WRITE(reg, temp);
3660
3661 /* enable CPU FDI TX and PCH FDI RX */
3662 reg = FDI_TX_CTL(pipe);
3663 temp = I915_READ(reg);
3664 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3665 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3666 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3667 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3668 temp |= snb_b_fdi_train_param[j/2];
3669 temp |= FDI_COMPOSITE_SYNC;
3670 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3671
3672 I915_WRITE(FDI_RX_MISC(pipe),
3673 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3674
3675 reg = FDI_RX_CTL(pipe);
3676 temp = I915_READ(reg);
3677 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3678 temp |= FDI_COMPOSITE_SYNC;
3679 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3680
3681 POSTING_READ(reg);
3682 udelay(1); /* should be 0.5us */
3683
3684 for (i = 0; i < 4; i++) {
3685 reg = FDI_RX_IIR(pipe);
3686 temp = I915_READ(reg);
3687 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3688
3689 if (temp & FDI_RX_BIT_LOCK ||
3690 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3691 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3692 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3693 i);
3694 break;
3695 }
3696 udelay(1); /* should be 0.5us */
3697 }
3698 if (i == 4) {
3699 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3700 continue;
3701 }
3702
3703 /* Train 2 */
3704 reg = FDI_TX_CTL(pipe);
3705 temp = I915_READ(reg);
3706 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3707 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3708 I915_WRITE(reg, temp);
3709
3710 reg = FDI_RX_CTL(pipe);
3711 temp = I915_READ(reg);
3712 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3713 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3714 I915_WRITE(reg, temp);
3715
3716 POSTING_READ(reg);
3717 udelay(2); /* should be 1.5us */
3718
3719 for (i = 0; i < 4; i++) {
3720 reg = FDI_RX_IIR(pipe);
3721 temp = I915_READ(reg);
3722 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3723
3724 if (temp & FDI_RX_SYMBOL_LOCK ||
3725 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3726 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3727 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3728 i);
3729 goto train_done;
3730 }
3731 udelay(2); /* should be 1.5us */
3732 }
3733 if (i == 4)
3734 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3735 }
3736
3737 train_done:
3738 DRM_DEBUG_KMS("FDI train done.\n");
3739 }
3740
3741 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3742 {
3743 struct drm_device *dev = intel_crtc->base.dev;
3744 struct drm_i915_private *dev_priv = dev->dev_private;
3745 int pipe = intel_crtc->pipe;
3746 u32 reg, temp;
3747
3748
3749 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3750 reg = FDI_RX_CTL(pipe);
3751 temp = I915_READ(reg);
3752 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3753 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3754 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3755 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3756
3757 POSTING_READ(reg);
3758 udelay(200);
3759
3760 /* Switch from Rawclk to PCDclk */
3761 temp = I915_READ(reg);
3762 I915_WRITE(reg, temp | FDI_PCDCLK);
3763
3764 POSTING_READ(reg);
3765 udelay(200);
3766
3767 /* Enable CPU FDI TX PLL, always on for Ironlake */
3768 reg = FDI_TX_CTL(pipe);
3769 temp = I915_READ(reg);
3770 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3771 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3772
3773 POSTING_READ(reg);
3774 udelay(100);
3775 }
3776 }
3777
3778 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3779 {
3780 struct drm_device *dev = intel_crtc->base.dev;
3781 struct drm_i915_private *dev_priv = dev->dev_private;
3782 int pipe = intel_crtc->pipe;
3783 u32 reg, temp;
3784
3785 /* Switch from PCDclk to Rawclk */
3786 reg = FDI_RX_CTL(pipe);
3787 temp = I915_READ(reg);
3788 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3789
3790 /* Disable CPU FDI TX PLL */
3791 reg = FDI_TX_CTL(pipe);
3792 temp = I915_READ(reg);
3793 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3794
3795 POSTING_READ(reg);
3796 udelay(100);
3797
3798 reg = FDI_RX_CTL(pipe);
3799 temp = I915_READ(reg);
3800 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3801
3802 /* Wait for the clocks to turn off. */
3803 POSTING_READ(reg);
3804 udelay(100);
3805 }
3806
3807 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3808 {
3809 struct drm_device *dev = crtc->dev;
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3812 int pipe = intel_crtc->pipe;
3813 u32 reg, temp;
3814
3815 /* disable CPU FDI tx and PCH FDI rx */
3816 reg = FDI_TX_CTL(pipe);
3817 temp = I915_READ(reg);
3818 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3819 POSTING_READ(reg);
3820
3821 reg = FDI_RX_CTL(pipe);
3822 temp = I915_READ(reg);
3823 temp &= ~(0x7 << 16);
3824 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3825 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3826
3827 POSTING_READ(reg);
3828 udelay(100);
3829
3830 /* Ironlake workaround, disable clock pointer after downing FDI */
3831 if (HAS_PCH_IBX(dev))
3832 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3833
3834 /* still set train pattern 1 */
3835 reg = FDI_TX_CTL(pipe);
3836 temp = I915_READ(reg);
3837 temp &= ~FDI_LINK_TRAIN_NONE;
3838 temp |= FDI_LINK_TRAIN_PATTERN_1;
3839 I915_WRITE(reg, temp);
3840
3841 reg = FDI_RX_CTL(pipe);
3842 temp = I915_READ(reg);
3843 if (HAS_PCH_CPT(dev)) {
3844 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3845 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3846 } else {
3847 temp &= ~FDI_LINK_TRAIN_NONE;
3848 temp |= FDI_LINK_TRAIN_PATTERN_1;
3849 }
3850 /* BPC in FDI rx is consistent with that in PIPECONF */
3851 temp &= ~(0x07 << 16);
3852 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3853 I915_WRITE(reg, temp);
3854
3855 POSTING_READ(reg);
3856 udelay(100);
3857 }
3858
3859 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3860 {
3861 struct intel_crtc *crtc;
3862
3863 /* Note that we don't need to be called with mode_config.lock here
3864 * as our list of CRTC objects is static for the lifetime of the
3865 * device and so cannot disappear as we iterate. Similarly, we can
3866 * happily treat the predicates as racy, atomic checks as userspace
3867 * cannot claim and pin a new fb without at least acquring the
3868 * struct_mutex and so serialising with us.
3869 */
3870 for_each_intel_crtc(dev, crtc) {
3871 if (atomic_read(&crtc->unpin_work_count) == 0)
3872 continue;
3873
3874 if (crtc->unpin_work)
3875 intel_wait_for_vblank(dev, crtc->pipe);
3876
3877 return true;
3878 }
3879
3880 return false;
3881 }
3882
3883 static void page_flip_completed(struct intel_crtc *intel_crtc)
3884 {
3885 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3886 struct intel_unpin_work *work = intel_crtc->unpin_work;
3887
3888 /* ensure that the unpin work is consistent wrt ->pending. */
3889 smp_rmb();
3890 intel_crtc->unpin_work = NULL;
3891
3892 if (work->event)
3893 drm_send_vblank_event(intel_crtc->base.dev,
3894 intel_crtc->pipe,
3895 work->event);
3896
3897 drm_crtc_vblank_put(&intel_crtc->base);
3898
3899 wake_up_all(&dev_priv->pending_flip_queue);
3900 queue_work(dev_priv->wq, &work->work);
3901
3902 trace_i915_flip_complete(intel_crtc->plane,
3903 work->pending_flip_obj);
3904 }
3905
3906 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3907 {
3908 struct drm_device *dev = crtc->dev;
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910
3911 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3912 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3913 !intel_crtc_has_pending_flip(crtc),
3914 60*HZ) == 0)) {
3915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3916
3917 spin_lock_irq(&dev->event_lock);
3918 if (intel_crtc->unpin_work) {
3919 WARN_ONCE(1, "Removing stuck page flip\n");
3920 page_flip_completed(intel_crtc);
3921 }
3922 spin_unlock_irq(&dev->event_lock);
3923 }
3924
3925 if (crtc->primary->fb) {
3926 mutex_lock(&dev->struct_mutex);
3927 intel_finish_fb(crtc->primary->fb);
3928 mutex_unlock(&dev->struct_mutex);
3929 }
3930 }
3931
3932 /* Program iCLKIP clock to the desired frequency */
3933 static void lpt_program_iclkip(struct drm_crtc *crtc)
3934 {
3935 struct drm_device *dev = crtc->dev;
3936 struct drm_i915_private *dev_priv = dev->dev_private;
3937 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3938 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3939 u32 temp;
3940
3941 mutex_lock(&dev_priv->sb_lock);
3942
3943 /* It is necessary to ungate the pixclk gate prior to programming
3944 * the divisors, and gate it back when it is done.
3945 */
3946 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3947
3948 /* Disable SSCCTL */
3949 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3950 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3951 SBI_SSCCTL_DISABLE,
3952 SBI_ICLK);
3953
3954 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3955 if (clock == 20000) {
3956 auxdiv = 1;
3957 divsel = 0x41;
3958 phaseinc = 0x20;
3959 } else {
3960 /* The iCLK virtual clock root frequency is in MHz,
3961 * but the adjusted_mode->crtc_clock in in KHz. To get the
3962 * divisors, it is necessary to divide one by another, so we
3963 * convert the virtual clock precision to KHz here for higher
3964 * precision.
3965 */
3966 u32 iclk_virtual_root_freq = 172800 * 1000;
3967 u32 iclk_pi_range = 64;
3968 u32 desired_divisor, msb_divisor_value, pi_value;
3969
3970 desired_divisor = (iclk_virtual_root_freq / clock);
3971 msb_divisor_value = desired_divisor / iclk_pi_range;
3972 pi_value = desired_divisor % iclk_pi_range;
3973
3974 auxdiv = 0;
3975 divsel = msb_divisor_value - 2;
3976 phaseinc = pi_value;
3977 }
3978
3979 /* This should not happen with any sane values */
3980 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3981 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3982 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3983 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3984
3985 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3986 clock,
3987 auxdiv,
3988 divsel,
3989 phasedir,
3990 phaseinc);
3991
3992 /* Program SSCDIVINTPHASE6 */
3993 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3994 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3995 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3996 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3997 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3998 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3999 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4000 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4001
4002 /* Program SSCAUXDIV */
4003 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4004 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4005 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4006 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4007
4008 /* Enable modulator and associated divider */
4009 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4010 temp &= ~SBI_SSCCTL_DISABLE;
4011 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4012
4013 /* Wait for initialization time */
4014 udelay(24);
4015
4016 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4017
4018 mutex_unlock(&dev_priv->sb_lock);
4019 }
4020
4021 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4022 enum pipe pch_transcoder)
4023 {
4024 struct drm_device *dev = crtc->base.dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4027
4028 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4029 I915_READ(HTOTAL(cpu_transcoder)));
4030 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4031 I915_READ(HBLANK(cpu_transcoder)));
4032 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4033 I915_READ(HSYNC(cpu_transcoder)));
4034
4035 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4036 I915_READ(VTOTAL(cpu_transcoder)));
4037 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4038 I915_READ(VBLANK(cpu_transcoder)));
4039 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4040 I915_READ(VSYNC(cpu_transcoder)));
4041 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4042 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4043 }
4044
4045 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4046 {
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 uint32_t temp;
4049
4050 temp = I915_READ(SOUTH_CHICKEN1);
4051 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4052 return;
4053
4054 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4055 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4056
4057 temp &= ~FDI_BC_BIFURCATION_SELECT;
4058 if (enable)
4059 temp |= FDI_BC_BIFURCATION_SELECT;
4060
4061 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4062 I915_WRITE(SOUTH_CHICKEN1, temp);
4063 POSTING_READ(SOUTH_CHICKEN1);
4064 }
4065
4066 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4067 {
4068 struct drm_device *dev = intel_crtc->base.dev;
4069
4070 switch (intel_crtc->pipe) {
4071 case PIPE_A:
4072 break;
4073 case PIPE_B:
4074 if (intel_crtc->config->fdi_lanes > 2)
4075 cpt_set_fdi_bc_bifurcation(dev, false);
4076 else
4077 cpt_set_fdi_bc_bifurcation(dev, true);
4078
4079 break;
4080 case PIPE_C:
4081 cpt_set_fdi_bc_bifurcation(dev, true);
4082
4083 break;
4084 default:
4085 BUG();
4086 }
4087 }
4088
4089 /*
4090 * Enable PCH resources required for PCH ports:
4091 * - PCH PLLs
4092 * - FDI training & RX/TX
4093 * - update transcoder timings
4094 * - DP transcoding bits
4095 * - transcoder
4096 */
4097 static void ironlake_pch_enable(struct drm_crtc *crtc)
4098 {
4099 struct drm_device *dev = crtc->dev;
4100 struct drm_i915_private *dev_priv = dev->dev_private;
4101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4102 int pipe = intel_crtc->pipe;
4103 u32 reg, temp;
4104
4105 assert_pch_transcoder_disabled(dev_priv, pipe);
4106
4107 if (IS_IVYBRIDGE(dev))
4108 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4109
4110 /* Write the TU size bits before fdi link training, so that error
4111 * detection works. */
4112 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4113 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4114
4115 /* For PCH output, training FDI link */
4116 dev_priv->display.fdi_link_train(crtc);
4117
4118 /* We need to program the right clock selection before writing the pixel
4119 * mutliplier into the DPLL. */
4120 if (HAS_PCH_CPT(dev)) {
4121 u32 sel;
4122
4123 temp = I915_READ(PCH_DPLL_SEL);
4124 temp |= TRANS_DPLL_ENABLE(pipe);
4125 sel = TRANS_DPLLB_SEL(pipe);
4126 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4127 temp |= sel;
4128 else
4129 temp &= ~sel;
4130 I915_WRITE(PCH_DPLL_SEL, temp);
4131 }
4132
4133 /* XXX: pch pll's can be enabled any time before we enable the PCH
4134 * transcoder, and we actually should do this to not upset any PCH
4135 * transcoder that already use the clock when we share it.
4136 *
4137 * Note that enable_shared_dpll tries to do the right thing, but
4138 * get_shared_dpll unconditionally resets the pll - we need that to have
4139 * the right LVDS enable sequence. */
4140 intel_enable_shared_dpll(intel_crtc);
4141
4142 /* set transcoder timing, panel must allow it */
4143 assert_panel_unlocked(dev_priv, pipe);
4144 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4145
4146 intel_fdi_normal_train(crtc);
4147
4148 /* For PCH DP, enable TRANS_DP_CTL */
4149 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4150 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4151 reg = TRANS_DP_CTL(pipe);
4152 temp = I915_READ(reg);
4153 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4154 TRANS_DP_SYNC_MASK |
4155 TRANS_DP_BPC_MASK);
4156 temp |= TRANS_DP_OUTPUT_ENABLE;
4157 temp |= bpc << 9; /* same format but at 11:9 */
4158
4159 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4160 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4161 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4162 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4163
4164 switch (intel_trans_dp_port_sel(crtc)) {
4165 case PCH_DP_B:
4166 temp |= TRANS_DP_PORT_SEL_B;
4167 break;
4168 case PCH_DP_C:
4169 temp |= TRANS_DP_PORT_SEL_C;
4170 break;
4171 case PCH_DP_D:
4172 temp |= TRANS_DP_PORT_SEL_D;
4173 break;
4174 default:
4175 BUG();
4176 }
4177
4178 I915_WRITE(reg, temp);
4179 }
4180
4181 ironlake_enable_pch_transcoder(dev_priv, pipe);
4182 }
4183
4184 static void lpt_pch_enable(struct drm_crtc *crtc)
4185 {
4186 struct drm_device *dev = crtc->dev;
4187 struct drm_i915_private *dev_priv = dev->dev_private;
4188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4189 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4190
4191 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4192
4193 lpt_program_iclkip(crtc);
4194
4195 /* Set transcoder timing. */
4196 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4197
4198 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4199 }
4200
4201 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4202 struct intel_crtc_state *crtc_state)
4203 {
4204 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4205 struct intel_shared_dpll *pll;
4206 struct intel_shared_dpll_config *shared_dpll;
4207 enum intel_dpll_id i;
4208
4209 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4210
4211 if (HAS_PCH_IBX(dev_priv->dev)) {
4212 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4213 i = (enum intel_dpll_id) crtc->pipe;
4214 pll = &dev_priv->shared_dplls[i];
4215
4216 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4217 crtc->base.base.id, pll->name);
4218
4219 WARN_ON(shared_dpll[i].crtc_mask);
4220
4221 goto found;
4222 }
4223
4224 if (IS_BROXTON(dev_priv->dev)) {
4225 /* PLL is attached to port in bxt */
4226 struct intel_encoder *encoder;
4227 struct intel_digital_port *intel_dig_port;
4228
4229 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4230 if (WARN_ON(!encoder))
4231 return NULL;
4232
4233 intel_dig_port = enc_to_dig_port(&encoder->base);
4234 /* 1:1 mapping between ports and PLLs */
4235 i = (enum intel_dpll_id)intel_dig_port->port;
4236 pll = &dev_priv->shared_dplls[i];
4237 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4238 crtc->base.base.id, pll->name);
4239 WARN_ON(shared_dpll[i].crtc_mask);
4240
4241 goto found;
4242 }
4243
4244 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4245 pll = &dev_priv->shared_dplls[i];
4246
4247 /* Only want to check enabled timings first */
4248 if (shared_dpll[i].crtc_mask == 0)
4249 continue;
4250
4251 if (memcmp(&crtc_state->dpll_hw_state,
4252 &shared_dpll[i].hw_state,
4253 sizeof(crtc_state->dpll_hw_state)) == 0) {
4254 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4255 crtc->base.base.id, pll->name,
4256 shared_dpll[i].crtc_mask,
4257 pll->active);
4258 goto found;
4259 }
4260 }
4261
4262 /* Ok no matching timings, maybe there's a free one? */
4263 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4264 pll = &dev_priv->shared_dplls[i];
4265 if (shared_dpll[i].crtc_mask == 0) {
4266 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4267 crtc->base.base.id, pll->name);
4268 goto found;
4269 }
4270 }
4271
4272 return NULL;
4273
4274 found:
4275 if (shared_dpll[i].crtc_mask == 0)
4276 shared_dpll[i].hw_state =
4277 crtc_state->dpll_hw_state;
4278
4279 crtc_state->shared_dpll = i;
4280 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4281 pipe_name(crtc->pipe));
4282
4283 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4284
4285 return pll;
4286 }
4287
4288 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4289 {
4290 struct drm_i915_private *dev_priv = to_i915(state->dev);
4291 struct intel_shared_dpll_config *shared_dpll;
4292 struct intel_shared_dpll *pll;
4293 enum intel_dpll_id i;
4294
4295 if (!to_intel_atomic_state(state)->dpll_set)
4296 return;
4297
4298 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4299 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4300 pll = &dev_priv->shared_dplls[i];
4301 pll->config = shared_dpll[i];
4302 }
4303 }
4304
4305 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4306 {
4307 struct drm_i915_private *dev_priv = dev->dev_private;
4308 int dslreg = PIPEDSL(pipe);
4309 u32 temp;
4310
4311 temp = I915_READ(dslreg);
4312 udelay(500);
4313 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4314 if (wait_for(I915_READ(dslreg) != temp, 5))
4315 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4316 }
4317 }
4318
4319 static int
4320 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4321 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4322 int src_w, int src_h, int dst_w, int dst_h)
4323 {
4324 struct intel_crtc_scaler_state *scaler_state =
4325 &crtc_state->scaler_state;
4326 struct intel_crtc *intel_crtc =
4327 to_intel_crtc(crtc_state->base.crtc);
4328 int need_scaling;
4329
4330 need_scaling = intel_rotation_90_or_270(rotation) ?
4331 (src_h != dst_w || src_w != dst_h):
4332 (src_w != dst_w || src_h != dst_h);
4333
4334 /*
4335 * if plane is being disabled or scaler is no more required or force detach
4336 * - free scaler binded to this plane/crtc
4337 * - in order to do this, update crtc->scaler_usage
4338 *
4339 * Here scaler state in crtc_state is set free so that
4340 * scaler can be assigned to other user. Actual register
4341 * update to free the scaler is done in plane/panel-fit programming.
4342 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4343 */
4344 if (force_detach || !need_scaling) {
4345 if (*scaler_id >= 0) {
4346 scaler_state->scaler_users &= ~(1 << scaler_user);
4347 scaler_state->scalers[*scaler_id].in_use = 0;
4348
4349 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4350 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4351 intel_crtc->pipe, scaler_user, *scaler_id,
4352 scaler_state->scaler_users);
4353 *scaler_id = -1;
4354 }
4355 return 0;
4356 }
4357
4358 /* range checks */
4359 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4360 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4361
4362 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4363 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4364 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4365 "size is out of scaler range\n",
4366 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4367 return -EINVAL;
4368 }
4369
4370 /* mark this plane as a scaler user in crtc_state */
4371 scaler_state->scaler_users |= (1 << scaler_user);
4372 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4373 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4374 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4375 scaler_state->scaler_users);
4376
4377 return 0;
4378 }
4379
4380 /**
4381 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4382 *
4383 * @state: crtc's scaler state
4384 *
4385 * Return
4386 * 0 - scaler_usage updated successfully
4387 * error - requested scaling cannot be supported or other error condition
4388 */
4389 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4390 {
4391 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4392 struct drm_display_mode *adjusted_mode =
4393 &state->base.adjusted_mode;
4394
4395 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4396 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4397
4398 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4399 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4400 state->pipe_src_w, state->pipe_src_h,
4401 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4402 }
4403
4404 /**
4405 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4406 *
4407 * @state: crtc's scaler state
4408 * @plane_state: atomic plane state to update
4409 *
4410 * Return
4411 * 0 - scaler_usage updated successfully
4412 * error - requested scaling cannot be supported or other error condition
4413 */
4414 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4415 struct intel_plane_state *plane_state)
4416 {
4417
4418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4419 struct intel_plane *intel_plane =
4420 to_intel_plane(plane_state->base.plane);
4421 struct drm_framebuffer *fb = plane_state->base.fb;
4422 int ret;
4423
4424 bool force_detach = !fb || !plane_state->visible;
4425
4426 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4427 intel_plane->base.base.id, intel_crtc->pipe,
4428 drm_plane_index(&intel_plane->base));
4429
4430 ret = skl_update_scaler(crtc_state, force_detach,
4431 drm_plane_index(&intel_plane->base),
4432 &plane_state->scaler_id,
4433 plane_state->base.rotation,
4434 drm_rect_width(&plane_state->src) >> 16,
4435 drm_rect_height(&plane_state->src) >> 16,
4436 drm_rect_width(&plane_state->dst),
4437 drm_rect_height(&plane_state->dst));
4438
4439 if (ret || plane_state->scaler_id < 0)
4440 return ret;
4441
4442 /* check colorkey */
4443 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4444 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4445 intel_plane->base.base.id);
4446 return -EINVAL;
4447 }
4448
4449 /* Check src format */
4450 switch (fb->pixel_format) {
4451 case DRM_FORMAT_RGB565:
4452 case DRM_FORMAT_XBGR8888:
4453 case DRM_FORMAT_XRGB8888:
4454 case DRM_FORMAT_ABGR8888:
4455 case DRM_FORMAT_ARGB8888:
4456 case DRM_FORMAT_XRGB2101010:
4457 case DRM_FORMAT_XBGR2101010:
4458 case DRM_FORMAT_YUYV:
4459 case DRM_FORMAT_YVYU:
4460 case DRM_FORMAT_UYVY:
4461 case DRM_FORMAT_VYUY:
4462 break;
4463 default:
4464 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4465 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4466 return -EINVAL;
4467 }
4468
4469 return 0;
4470 }
4471
4472 static void skylake_scaler_disable(struct intel_crtc *crtc)
4473 {
4474 int i;
4475
4476 for (i = 0; i < crtc->num_scalers; i++)
4477 skl_detach_scaler(crtc, i);
4478 }
4479
4480 static void skylake_pfit_enable(struct intel_crtc *crtc)
4481 {
4482 struct drm_device *dev = crtc->base.dev;
4483 struct drm_i915_private *dev_priv = dev->dev_private;
4484 int pipe = crtc->pipe;
4485 struct intel_crtc_scaler_state *scaler_state =
4486 &crtc->config->scaler_state;
4487
4488 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4489
4490 if (crtc->config->pch_pfit.enabled) {
4491 int id;
4492
4493 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4494 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4495 return;
4496 }
4497
4498 id = scaler_state->scaler_id;
4499 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4500 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4501 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4502 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4503
4504 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4505 }
4506 }
4507
4508 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4509 {
4510 struct drm_device *dev = crtc->base.dev;
4511 struct drm_i915_private *dev_priv = dev->dev_private;
4512 int pipe = crtc->pipe;
4513
4514 if (crtc->config->pch_pfit.enabled) {
4515 /* Force use of hard-coded filter coefficients
4516 * as some pre-programmed values are broken,
4517 * e.g. x201.
4518 */
4519 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4520 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4521 PF_PIPE_SEL_IVB(pipe));
4522 else
4523 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4524 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4525 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4526 }
4527 }
4528
4529 void hsw_enable_ips(struct intel_crtc *crtc)
4530 {
4531 struct drm_device *dev = crtc->base.dev;
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533
4534 if (!crtc->config->ips_enabled)
4535 return;
4536
4537 /* We can only enable IPS after we enable a plane and wait for a vblank */
4538 intel_wait_for_vblank(dev, crtc->pipe);
4539
4540 assert_plane_enabled(dev_priv, crtc->plane);
4541 if (IS_BROADWELL(dev)) {
4542 mutex_lock(&dev_priv->rps.hw_lock);
4543 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4544 mutex_unlock(&dev_priv->rps.hw_lock);
4545 /* Quoting Art Runyan: "its not safe to expect any particular
4546 * value in IPS_CTL bit 31 after enabling IPS through the
4547 * mailbox." Moreover, the mailbox may return a bogus state,
4548 * so we need to just enable it and continue on.
4549 */
4550 } else {
4551 I915_WRITE(IPS_CTL, IPS_ENABLE);
4552 /* The bit only becomes 1 in the next vblank, so this wait here
4553 * is essentially intel_wait_for_vblank. If we don't have this
4554 * and don't wait for vblanks until the end of crtc_enable, then
4555 * the HW state readout code will complain that the expected
4556 * IPS_CTL value is not the one we read. */
4557 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4558 DRM_ERROR("Timed out waiting for IPS enable\n");
4559 }
4560 }
4561
4562 void hsw_disable_ips(struct intel_crtc *crtc)
4563 {
4564 struct drm_device *dev = crtc->base.dev;
4565 struct drm_i915_private *dev_priv = dev->dev_private;
4566
4567 if (!crtc->config->ips_enabled)
4568 return;
4569
4570 assert_plane_enabled(dev_priv, crtc->plane);
4571 if (IS_BROADWELL(dev)) {
4572 mutex_lock(&dev_priv->rps.hw_lock);
4573 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4574 mutex_unlock(&dev_priv->rps.hw_lock);
4575 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4576 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4577 DRM_ERROR("Timed out waiting for IPS disable\n");
4578 } else {
4579 I915_WRITE(IPS_CTL, 0);
4580 POSTING_READ(IPS_CTL);
4581 }
4582
4583 /* We need to wait for a vblank before we can disable the plane. */
4584 intel_wait_for_vblank(dev, crtc->pipe);
4585 }
4586
4587 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4588 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4589 {
4590 struct drm_device *dev = crtc->dev;
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593 enum pipe pipe = intel_crtc->pipe;
4594 int palreg = PALETTE(pipe);
4595 int i;
4596 bool reenable_ips = false;
4597
4598 /* The clocks have to be on to load the palette. */
4599 if (!crtc->state->active)
4600 return;
4601
4602 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4603 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4604 assert_dsi_pll_enabled(dev_priv);
4605 else
4606 assert_pll_enabled(dev_priv, pipe);
4607 }
4608
4609 /* use legacy palette for Ironlake */
4610 if (!HAS_GMCH_DISPLAY(dev))
4611 palreg = LGC_PALETTE(pipe);
4612
4613 /* Workaround : Do not read or write the pipe palette/gamma data while
4614 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4615 */
4616 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4617 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4618 GAMMA_MODE_MODE_SPLIT)) {
4619 hsw_disable_ips(intel_crtc);
4620 reenable_ips = true;
4621 }
4622
4623 for (i = 0; i < 256; i++) {
4624 I915_WRITE(palreg + 4 * i,
4625 (intel_crtc->lut_r[i] << 16) |
4626 (intel_crtc->lut_g[i] << 8) |
4627 intel_crtc->lut_b[i]);
4628 }
4629
4630 if (reenable_ips)
4631 hsw_enable_ips(intel_crtc);
4632 }
4633
4634 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4635 {
4636 if (intel_crtc->overlay) {
4637 struct drm_device *dev = intel_crtc->base.dev;
4638 struct drm_i915_private *dev_priv = dev->dev_private;
4639
4640 mutex_lock(&dev->struct_mutex);
4641 dev_priv->mm.interruptible = false;
4642 (void) intel_overlay_switch_off(intel_crtc->overlay);
4643 dev_priv->mm.interruptible = true;
4644 mutex_unlock(&dev->struct_mutex);
4645 }
4646
4647 /* Let userspace switch the overlay on again. In most cases userspace
4648 * has to recompute where to put it anyway.
4649 */
4650 }
4651
4652 /**
4653 * intel_post_enable_primary - Perform operations after enabling primary plane
4654 * @crtc: the CRTC whose primary plane was just enabled
4655 *
4656 * Performs potentially sleeping operations that must be done after the primary
4657 * plane is enabled, such as updating FBC and IPS. Note that this may be
4658 * called due to an explicit primary plane update, or due to an implicit
4659 * re-enable that is caused when a sprite plane is updated to no longer
4660 * completely hide the primary plane.
4661 */
4662 static void
4663 intel_post_enable_primary(struct drm_crtc *crtc)
4664 {
4665 struct drm_device *dev = crtc->dev;
4666 struct drm_i915_private *dev_priv = dev->dev_private;
4667 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4668 int pipe = intel_crtc->pipe;
4669
4670 /*
4671 * BDW signals flip done immediately if the plane
4672 * is disabled, even if the plane enable is already
4673 * armed to occur at the next vblank :(
4674 */
4675 if (IS_BROADWELL(dev))
4676 intel_wait_for_vblank(dev, pipe);
4677
4678 /*
4679 * FIXME IPS should be fine as long as one plane is
4680 * enabled, but in practice it seems to have problems
4681 * when going from primary only to sprite only and vice
4682 * versa.
4683 */
4684 hsw_enable_ips(intel_crtc);
4685
4686 /*
4687 * Gen2 reports pipe underruns whenever all planes are disabled.
4688 * So don't enable underrun reporting before at least some planes
4689 * are enabled.
4690 * FIXME: Need to fix the logic to work when we turn off all planes
4691 * but leave the pipe running.
4692 */
4693 if (IS_GEN2(dev))
4694 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4695
4696 /* Underruns don't raise interrupts, so check manually. */
4697 if (HAS_GMCH_DISPLAY(dev))
4698 i9xx_check_fifo_underruns(dev_priv);
4699 }
4700
4701 /**
4702 * intel_pre_disable_primary - Perform operations before disabling primary plane
4703 * @crtc: the CRTC whose primary plane is to be disabled
4704 *
4705 * Performs potentially sleeping operations that must be done before the
4706 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4707 * be called due to an explicit primary plane update, or due to an implicit
4708 * disable that is caused when a sprite plane completely hides the primary
4709 * plane.
4710 */
4711 static void
4712 intel_pre_disable_primary(struct drm_crtc *crtc)
4713 {
4714 struct drm_device *dev = crtc->dev;
4715 struct drm_i915_private *dev_priv = dev->dev_private;
4716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4717 int pipe = intel_crtc->pipe;
4718
4719 /*
4720 * Gen2 reports pipe underruns whenever all planes are disabled.
4721 * So diasble underrun reporting before all the planes get disabled.
4722 * FIXME: Need to fix the logic to work when we turn off all planes
4723 * but leave the pipe running.
4724 */
4725 if (IS_GEN2(dev))
4726 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4727
4728 /*
4729 * Vblank time updates from the shadow to live plane control register
4730 * are blocked if the memory self-refresh mode is active at that
4731 * moment. So to make sure the plane gets truly disabled, disable
4732 * first the self-refresh mode. The self-refresh enable bit in turn
4733 * will be checked/applied by the HW only at the next frame start
4734 * event which is after the vblank start event, so we need to have a
4735 * wait-for-vblank between disabling the plane and the pipe.
4736 */
4737 if (HAS_GMCH_DISPLAY(dev)) {
4738 intel_set_memory_cxsr(dev_priv, false);
4739 dev_priv->wm.vlv.cxsr = false;
4740 intel_wait_for_vblank(dev, pipe);
4741 }
4742
4743 /*
4744 * FIXME IPS should be fine as long as one plane is
4745 * enabled, but in practice it seems to have problems
4746 * when going from primary only to sprite only and vice
4747 * versa.
4748 */
4749 hsw_disable_ips(intel_crtc);
4750 }
4751
4752 static void intel_post_plane_update(struct intel_crtc *crtc)
4753 {
4754 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4755 struct drm_device *dev = crtc->base.dev;
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757 struct drm_plane *plane;
4758
4759 if (atomic->wait_vblank)
4760 intel_wait_for_vblank(dev, crtc->pipe);
4761
4762 intel_frontbuffer_flip(dev, atomic->fb_bits);
4763
4764 if (atomic->disable_cxsr)
4765 crtc->wm.cxsr_allowed = true;
4766
4767 if (crtc->atomic.update_wm_post)
4768 intel_update_watermarks(&crtc->base);
4769
4770 if (atomic->update_fbc)
4771 intel_fbc_update(dev_priv);
4772
4773 if (atomic->post_enable_primary)
4774 intel_post_enable_primary(&crtc->base);
4775
4776 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4777 intel_update_sprite_watermarks(plane, &crtc->base,
4778 0, 0, 0, false, false);
4779
4780 memset(atomic, 0, sizeof(*atomic));
4781 }
4782
4783 static void intel_pre_plane_update(struct intel_crtc *crtc)
4784 {
4785 struct drm_device *dev = crtc->base.dev;
4786 struct drm_i915_private *dev_priv = dev->dev_private;
4787 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4788 struct drm_plane *p;
4789
4790 /* Track fb's for any planes being disabled */
4791 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4792 struct intel_plane *plane = to_intel_plane(p);
4793
4794 mutex_lock(&dev->struct_mutex);
4795 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4796 plane->frontbuffer_bit);
4797 mutex_unlock(&dev->struct_mutex);
4798 }
4799
4800 if (atomic->wait_for_flips)
4801 intel_crtc_wait_for_pending_flips(&crtc->base);
4802
4803 if (atomic->disable_fbc)
4804 intel_fbc_disable_crtc(crtc);
4805
4806 if (crtc->atomic.disable_ips)
4807 hsw_disable_ips(crtc);
4808
4809 if (atomic->pre_disable_primary)
4810 intel_pre_disable_primary(&crtc->base);
4811
4812 if (atomic->disable_cxsr) {
4813 crtc->wm.cxsr_allowed = false;
4814 intel_set_memory_cxsr(dev_priv, false);
4815 }
4816 }
4817
4818 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4819 {
4820 struct drm_device *dev = crtc->dev;
4821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4822 struct drm_plane *p;
4823 int pipe = intel_crtc->pipe;
4824
4825 intel_crtc_dpms_overlay_disable(intel_crtc);
4826
4827 drm_for_each_plane_mask(p, dev, plane_mask)
4828 to_intel_plane(p)->disable_plane(p, crtc);
4829
4830 /*
4831 * FIXME: Once we grow proper nuclear flip support out of this we need
4832 * to compute the mask of flip planes precisely. For the time being
4833 * consider this a flip to a NULL plane.
4834 */
4835 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4836 }
4837
4838 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4839 {
4840 struct drm_device *dev = crtc->dev;
4841 struct drm_i915_private *dev_priv = dev->dev_private;
4842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4843 struct intel_encoder *encoder;
4844 int pipe = intel_crtc->pipe;
4845
4846 if (WARN_ON(intel_crtc->active))
4847 return;
4848
4849 if (intel_crtc->config->has_pch_encoder)
4850 intel_prepare_shared_dpll(intel_crtc);
4851
4852 if (intel_crtc->config->has_dp_encoder)
4853 intel_dp_set_m_n(intel_crtc, M1_N1);
4854
4855 intel_set_pipe_timings(intel_crtc);
4856
4857 if (intel_crtc->config->has_pch_encoder) {
4858 intel_cpu_transcoder_set_m_n(intel_crtc,
4859 &intel_crtc->config->fdi_m_n, NULL);
4860 }
4861
4862 ironlake_set_pipeconf(crtc);
4863
4864 intel_crtc->active = true;
4865
4866 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4867 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4868
4869 for_each_encoder_on_crtc(dev, crtc, encoder)
4870 if (encoder->pre_enable)
4871 encoder->pre_enable(encoder);
4872
4873 if (intel_crtc->config->has_pch_encoder) {
4874 /* Note: FDI PLL enabling _must_ be done before we enable the
4875 * cpu pipes, hence this is separate from all the other fdi/pch
4876 * enabling. */
4877 ironlake_fdi_pll_enable(intel_crtc);
4878 } else {
4879 assert_fdi_tx_disabled(dev_priv, pipe);
4880 assert_fdi_rx_disabled(dev_priv, pipe);
4881 }
4882
4883 ironlake_pfit_enable(intel_crtc);
4884
4885 /*
4886 * On ILK+ LUT must be loaded before the pipe is running but with
4887 * clocks enabled
4888 */
4889 intel_crtc_load_lut(crtc);
4890
4891 intel_update_watermarks(crtc);
4892 intel_enable_pipe(intel_crtc);
4893
4894 if (intel_crtc->config->has_pch_encoder)
4895 ironlake_pch_enable(crtc);
4896
4897 assert_vblank_disabled(crtc);
4898 drm_crtc_vblank_on(crtc);
4899
4900 for_each_encoder_on_crtc(dev, crtc, encoder)
4901 encoder->enable(encoder);
4902
4903 if (HAS_PCH_CPT(dev))
4904 cpt_verify_modeset(dev, intel_crtc->pipe);
4905 }
4906
4907 /* IPS only exists on ULT machines and is tied to pipe A. */
4908 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4909 {
4910 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4911 }
4912
4913 static void haswell_crtc_enable(struct drm_crtc *crtc)
4914 {
4915 struct drm_device *dev = crtc->dev;
4916 struct drm_i915_private *dev_priv = dev->dev_private;
4917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4918 struct intel_encoder *encoder;
4919 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4920 struct intel_crtc_state *pipe_config =
4921 to_intel_crtc_state(crtc->state);
4922
4923 if (WARN_ON(intel_crtc->active))
4924 return;
4925
4926 if (intel_crtc_to_shared_dpll(intel_crtc))
4927 intel_enable_shared_dpll(intel_crtc);
4928
4929 if (intel_crtc->config->has_dp_encoder)
4930 intel_dp_set_m_n(intel_crtc, M1_N1);
4931
4932 intel_set_pipe_timings(intel_crtc);
4933
4934 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4935 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4936 intel_crtc->config->pixel_multiplier - 1);
4937 }
4938
4939 if (intel_crtc->config->has_pch_encoder) {
4940 intel_cpu_transcoder_set_m_n(intel_crtc,
4941 &intel_crtc->config->fdi_m_n, NULL);
4942 }
4943
4944 haswell_set_pipeconf(crtc);
4945
4946 intel_set_pipe_csc(crtc);
4947
4948 intel_crtc->active = true;
4949
4950 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4951 for_each_encoder_on_crtc(dev, crtc, encoder)
4952 if (encoder->pre_enable)
4953 encoder->pre_enable(encoder);
4954
4955 if (intel_crtc->config->has_pch_encoder) {
4956 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4957 true);
4958 dev_priv->display.fdi_link_train(crtc);
4959 }
4960
4961 intel_ddi_enable_pipe_clock(intel_crtc);
4962
4963 if (INTEL_INFO(dev)->gen == 9)
4964 skylake_pfit_enable(intel_crtc);
4965 else if (INTEL_INFO(dev)->gen < 9)
4966 ironlake_pfit_enable(intel_crtc);
4967 else
4968 MISSING_CASE(INTEL_INFO(dev)->gen);
4969
4970 /*
4971 * On ILK+ LUT must be loaded before the pipe is running but with
4972 * clocks enabled
4973 */
4974 intel_crtc_load_lut(crtc);
4975
4976 intel_ddi_set_pipe_settings(crtc);
4977 intel_ddi_enable_transcoder_func(crtc);
4978
4979 intel_update_watermarks(crtc);
4980 intel_enable_pipe(intel_crtc);
4981
4982 if (intel_crtc->config->has_pch_encoder)
4983 lpt_pch_enable(crtc);
4984
4985 if (intel_crtc->config->dp_encoder_is_mst)
4986 intel_ddi_set_vc_payload_alloc(crtc, true);
4987
4988 assert_vblank_disabled(crtc);
4989 drm_crtc_vblank_on(crtc);
4990
4991 for_each_encoder_on_crtc(dev, crtc, encoder) {
4992 encoder->enable(encoder);
4993 intel_opregion_notify_encoder(encoder, true);
4994 }
4995
4996 /* If we change the relative order between pipe/planes enabling, we need
4997 * to change the workaround. */
4998 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4999 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5000 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5001 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5002 }
5003 }
5004
5005 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5006 {
5007 struct drm_device *dev = crtc->base.dev;
5008 struct drm_i915_private *dev_priv = dev->dev_private;
5009 int pipe = crtc->pipe;
5010
5011 /* To avoid upsetting the power well on haswell only disable the pfit if
5012 * it's in use. The hw state code will make sure we get this right. */
5013 if (crtc->config->pch_pfit.enabled) {
5014 I915_WRITE(PF_CTL(pipe), 0);
5015 I915_WRITE(PF_WIN_POS(pipe), 0);
5016 I915_WRITE(PF_WIN_SZ(pipe), 0);
5017 }
5018 }
5019
5020 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5021 {
5022 struct drm_device *dev = crtc->dev;
5023 struct drm_i915_private *dev_priv = dev->dev_private;
5024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5025 struct intel_encoder *encoder;
5026 int pipe = intel_crtc->pipe;
5027 u32 reg, temp;
5028
5029 for_each_encoder_on_crtc(dev, crtc, encoder)
5030 encoder->disable(encoder);
5031
5032 drm_crtc_vblank_off(crtc);
5033 assert_vblank_disabled(crtc);
5034
5035 if (intel_crtc->config->has_pch_encoder)
5036 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5037
5038 intel_disable_pipe(intel_crtc);
5039
5040 ironlake_pfit_disable(intel_crtc);
5041
5042 if (intel_crtc->config->has_pch_encoder)
5043 ironlake_fdi_disable(crtc);
5044
5045 for_each_encoder_on_crtc(dev, crtc, encoder)
5046 if (encoder->post_disable)
5047 encoder->post_disable(encoder);
5048
5049 if (intel_crtc->config->has_pch_encoder) {
5050 ironlake_disable_pch_transcoder(dev_priv, pipe);
5051
5052 if (HAS_PCH_CPT(dev)) {
5053 /* disable TRANS_DP_CTL */
5054 reg = TRANS_DP_CTL(pipe);
5055 temp = I915_READ(reg);
5056 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5057 TRANS_DP_PORT_SEL_MASK);
5058 temp |= TRANS_DP_PORT_SEL_NONE;
5059 I915_WRITE(reg, temp);
5060
5061 /* disable DPLL_SEL */
5062 temp = I915_READ(PCH_DPLL_SEL);
5063 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5064 I915_WRITE(PCH_DPLL_SEL, temp);
5065 }
5066
5067 ironlake_fdi_pll_disable(intel_crtc);
5068 }
5069
5070 intel_crtc->active = false;
5071 intel_update_watermarks(crtc);
5072 }
5073
5074 static void haswell_crtc_disable(struct drm_crtc *crtc)
5075 {
5076 struct drm_device *dev = crtc->dev;
5077 struct drm_i915_private *dev_priv = dev->dev_private;
5078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5079 struct intel_encoder *encoder;
5080 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5081
5082 for_each_encoder_on_crtc(dev, crtc, encoder) {
5083 intel_opregion_notify_encoder(encoder, false);
5084 encoder->disable(encoder);
5085 }
5086
5087 drm_crtc_vblank_off(crtc);
5088 assert_vblank_disabled(crtc);
5089
5090 if (intel_crtc->config->has_pch_encoder)
5091 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5092 false);
5093 intel_disable_pipe(intel_crtc);
5094
5095 if (intel_crtc->config->dp_encoder_is_mst)
5096 intel_ddi_set_vc_payload_alloc(crtc, false);
5097
5098 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5099
5100 if (INTEL_INFO(dev)->gen == 9)
5101 skylake_scaler_disable(intel_crtc);
5102 else if (INTEL_INFO(dev)->gen < 9)
5103 ironlake_pfit_disable(intel_crtc);
5104 else
5105 MISSING_CASE(INTEL_INFO(dev)->gen);
5106
5107 intel_ddi_disable_pipe_clock(intel_crtc);
5108
5109 if (intel_crtc->config->has_pch_encoder) {
5110 lpt_disable_pch_transcoder(dev_priv);
5111 intel_ddi_fdi_disable(crtc);
5112 }
5113
5114 for_each_encoder_on_crtc(dev, crtc, encoder)
5115 if (encoder->post_disable)
5116 encoder->post_disable(encoder);
5117
5118 intel_crtc->active = false;
5119 intel_update_watermarks(crtc);
5120 }
5121
5122 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5123 {
5124 struct drm_device *dev = crtc->base.dev;
5125 struct drm_i915_private *dev_priv = dev->dev_private;
5126 struct intel_crtc_state *pipe_config = crtc->config;
5127
5128 if (!pipe_config->gmch_pfit.control)
5129 return;
5130
5131 /*
5132 * The panel fitter should only be adjusted whilst the pipe is disabled,
5133 * according to register description and PRM.
5134 */
5135 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5136 assert_pipe_disabled(dev_priv, crtc->pipe);
5137
5138 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5139 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5140
5141 /* Border color in case we don't scale up to the full screen. Black by
5142 * default, change to something else for debugging. */
5143 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5144 }
5145
5146 static enum intel_display_power_domain port_to_power_domain(enum port port)
5147 {
5148 switch (port) {
5149 case PORT_A:
5150 case PORT_E:
5151 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5152 case PORT_B:
5153 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5154 case PORT_C:
5155 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5156 case PORT_D:
5157 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5158 default:
5159 WARN_ON_ONCE(1);
5160 return POWER_DOMAIN_PORT_OTHER;
5161 }
5162 }
5163
5164 #define for_each_power_domain(domain, mask) \
5165 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5166 if ((1 << (domain)) & (mask))
5167
5168 enum intel_display_power_domain
5169 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5170 {
5171 struct drm_device *dev = intel_encoder->base.dev;
5172 struct intel_digital_port *intel_dig_port;
5173
5174 switch (intel_encoder->type) {
5175 case INTEL_OUTPUT_UNKNOWN:
5176 /* Only DDI platforms should ever use this output type */
5177 WARN_ON_ONCE(!HAS_DDI(dev));
5178 case INTEL_OUTPUT_DISPLAYPORT:
5179 case INTEL_OUTPUT_HDMI:
5180 case INTEL_OUTPUT_EDP:
5181 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5182 return port_to_power_domain(intel_dig_port->port);
5183 case INTEL_OUTPUT_DP_MST:
5184 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5185 return port_to_power_domain(intel_dig_port->port);
5186 case INTEL_OUTPUT_ANALOG:
5187 return POWER_DOMAIN_PORT_CRT;
5188 case INTEL_OUTPUT_DSI:
5189 return POWER_DOMAIN_PORT_DSI;
5190 default:
5191 return POWER_DOMAIN_PORT_OTHER;
5192 }
5193 }
5194
5195 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5196 {
5197 struct drm_device *dev = crtc->dev;
5198 struct intel_encoder *intel_encoder;
5199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5200 enum pipe pipe = intel_crtc->pipe;
5201 unsigned long mask;
5202 enum transcoder transcoder;
5203
5204 if (!crtc->state->active)
5205 return 0;
5206
5207 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5208
5209 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5210 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5211 if (intel_crtc->config->pch_pfit.enabled ||
5212 intel_crtc->config->pch_pfit.force_thru)
5213 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5214
5215 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5216 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5217
5218 return mask;
5219 }
5220
5221 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5222 {
5223 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5225 enum intel_display_power_domain domain;
5226 unsigned long domains, new_domains, old_domains;
5227
5228 old_domains = intel_crtc->enabled_power_domains;
5229 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5230
5231 domains = new_domains & ~old_domains;
5232
5233 for_each_power_domain(domain, domains)
5234 intel_display_power_get(dev_priv, domain);
5235
5236 return old_domains & ~new_domains;
5237 }
5238
5239 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5240 unsigned long domains)
5241 {
5242 enum intel_display_power_domain domain;
5243
5244 for_each_power_domain(domain, domains)
5245 intel_display_power_put(dev_priv, domain);
5246 }
5247
5248 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5249 {
5250 struct drm_device *dev = state->dev;
5251 struct drm_i915_private *dev_priv = dev->dev_private;
5252 unsigned long put_domains[I915_MAX_PIPES] = {};
5253 struct drm_crtc_state *crtc_state;
5254 struct drm_crtc *crtc;
5255 int i;
5256
5257 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5258 if (needs_modeset(crtc->state))
5259 put_domains[to_intel_crtc(crtc)->pipe] =
5260 modeset_get_crtc_power_domains(crtc);
5261 }
5262
5263 if (dev_priv->display.modeset_commit_cdclk) {
5264 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5265
5266 if (cdclk != dev_priv->cdclk_freq &&
5267 !WARN_ON(!state->allow_modeset))
5268 dev_priv->display.modeset_commit_cdclk(state);
5269 }
5270
5271 for (i = 0; i < I915_MAX_PIPES; i++)
5272 if (put_domains[i])
5273 modeset_put_power_domains(dev_priv, put_domains[i]);
5274 }
5275
5276 static void intel_update_max_cdclk(struct drm_device *dev)
5277 {
5278 struct drm_i915_private *dev_priv = dev->dev_private;
5279
5280 if (IS_SKYLAKE(dev)) {
5281 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5282
5283 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5284 dev_priv->max_cdclk_freq = 675000;
5285 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5286 dev_priv->max_cdclk_freq = 540000;
5287 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5288 dev_priv->max_cdclk_freq = 450000;
5289 else
5290 dev_priv->max_cdclk_freq = 337500;
5291 } else if (IS_BROADWELL(dev)) {
5292 /*
5293 * FIXME with extra cooling we can allow
5294 * 540 MHz for ULX and 675 Mhz for ULT.
5295 * How can we know if extra cooling is
5296 * available? PCI ID, VTB, something else?
5297 */
5298 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5299 dev_priv->max_cdclk_freq = 450000;
5300 else if (IS_BDW_ULX(dev))
5301 dev_priv->max_cdclk_freq = 450000;
5302 else if (IS_BDW_ULT(dev))
5303 dev_priv->max_cdclk_freq = 540000;
5304 else
5305 dev_priv->max_cdclk_freq = 675000;
5306 } else if (IS_CHERRYVIEW(dev)) {
5307 dev_priv->max_cdclk_freq = 320000;
5308 } else if (IS_VALLEYVIEW(dev)) {
5309 dev_priv->max_cdclk_freq = 400000;
5310 } else {
5311 /* otherwise assume cdclk is fixed */
5312 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5313 }
5314
5315 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5316 dev_priv->max_cdclk_freq);
5317 }
5318
5319 static void intel_update_cdclk(struct drm_device *dev)
5320 {
5321 struct drm_i915_private *dev_priv = dev->dev_private;
5322
5323 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5324 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5325 dev_priv->cdclk_freq);
5326
5327 /*
5328 * Program the gmbus_freq based on the cdclk frequency.
5329 * BSpec erroneously claims we should aim for 4MHz, but
5330 * in fact 1MHz is the correct frequency.
5331 */
5332 if (IS_VALLEYVIEW(dev)) {
5333 /*
5334 * Program the gmbus_freq based on the cdclk frequency.
5335 * BSpec erroneously claims we should aim for 4MHz, but
5336 * in fact 1MHz is the correct frequency.
5337 */
5338 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5339 }
5340
5341 if (dev_priv->max_cdclk_freq == 0)
5342 intel_update_max_cdclk(dev);
5343 }
5344
5345 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5346 {
5347 struct drm_i915_private *dev_priv = dev->dev_private;
5348 uint32_t divider;
5349 uint32_t ratio;
5350 uint32_t current_freq;
5351 int ret;
5352
5353 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5354 switch (frequency) {
5355 case 144000:
5356 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5357 ratio = BXT_DE_PLL_RATIO(60);
5358 break;
5359 case 288000:
5360 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5361 ratio = BXT_DE_PLL_RATIO(60);
5362 break;
5363 case 384000:
5364 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5365 ratio = BXT_DE_PLL_RATIO(60);
5366 break;
5367 case 576000:
5368 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5369 ratio = BXT_DE_PLL_RATIO(60);
5370 break;
5371 case 624000:
5372 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5373 ratio = BXT_DE_PLL_RATIO(65);
5374 break;
5375 case 19200:
5376 /*
5377 * Bypass frequency with DE PLL disabled. Init ratio, divider
5378 * to suppress GCC warning.
5379 */
5380 ratio = 0;
5381 divider = 0;
5382 break;
5383 default:
5384 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5385
5386 return;
5387 }
5388
5389 mutex_lock(&dev_priv->rps.hw_lock);
5390 /* Inform power controller of upcoming frequency change */
5391 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5392 0x80000000);
5393 mutex_unlock(&dev_priv->rps.hw_lock);
5394
5395 if (ret) {
5396 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5397 ret, frequency);
5398 return;
5399 }
5400
5401 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5402 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5403 current_freq = current_freq * 500 + 1000;
5404
5405 /*
5406 * DE PLL has to be disabled when
5407 * - setting to 19.2MHz (bypass, PLL isn't used)
5408 * - before setting to 624MHz (PLL needs toggling)
5409 * - before setting to any frequency from 624MHz (PLL needs toggling)
5410 */
5411 if (frequency == 19200 || frequency == 624000 ||
5412 current_freq == 624000) {
5413 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5414 /* Timeout 200us */
5415 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5416 1))
5417 DRM_ERROR("timout waiting for DE PLL unlock\n");
5418 }
5419
5420 if (frequency != 19200) {
5421 uint32_t val;
5422
5423 val = I915_READ(BXT_DE_PLL_CTL);
5424 val &= ~BXT_DE_PLL_RATIO_MASK;
5425 val |= ratio;
5426 I915_WRITE(BXT_DE_PLL_CTL, val);
5427
5428 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5429 /* Timeout 200us */
5430 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5431 DRM_ERROR("timeout waiting for DE PLL lock\n");
5432
5433 val = I915_READ(CDCLK_CTL);
5434 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5435 val |= divider;
5436 /*
5437 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5438 * enable otherwise.
5439 */
5440 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5441 if (frequency >= 500000)
5442 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5443
5444 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5445 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5446 val |= (frequency - 1000) / 500;
5447 I915_WRITE(CDCLK_CTL, val);
5448 }
5449
5450 mutex_lock(&dev_priv->rps.hw_lock);
5451 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5452 DIV_ROUND_UP(frequency, 25000));
5453 mutex_unlock(&dev_priv->rps.hw_lock);
5454
5455 if (ret) {
5456 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5457 ret, frequency);
5458 return;
5459 }
5460
5461 intel_update_cdclk(dev);
5462 }
5463
5464 void broxton_init_cdclk(struct drm_device *dev)
5465 {
5466 struct drm_i915_private *dev_priv = dev->dev_private;
5467 uint32_t val;
5468
5469 /*
5470 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5471 * or else the reset will hang because there is no PCH to respond.
5472 * Move the handshake programming to initialization sequence.
5473 * Previously was left up to BIOS.
5474 */
5475 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5476 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5477 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5478
5479 /* Enable PG1 for cdclk */
5480 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5481
5482 /* check if cd clock is enabled */
5483 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5484 DRM_DEBUG_KMS("Display already initialized\n");
5485 return;
5486 }
5487
5488 /*
5489 * FIXME:
5490 * - The initial CDCLK needs to be read from VBT.
5491 * Need to make this change after VBT has changes for BXT.
5492 * - check if setting the max (or any) cdclk freq is really necessary
5493 * here, it belongs to modeset time
5494 */
5495 broxton_set_cdclk(dev, 624000);
5496
5497 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5498 POSTING_READ(DBUF_CTL);
5499
5500 udelay(10);
5501
5502 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5503 DRM_ERROR("DBuf power enable timeout!\n");
5504 }
5505
5506 void broxton_uninit_cdclk(struct drm_device *dev)
5507 {
5508 struct drm_i915_private *dev_priv = dev->dev_private;
5509
5510 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5511 POSTING_READ(DBUF_CTL);
5512
5513 udelay(10);
5514
5515 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5516 DRM_ERROR("DBuf power disable timeout!\n");
5517
5518 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5519 broxton_set_cdclk(dev, 19200);
5520
5521 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5522 }
5523
5524 static const struct skl_cdclk_entry {
5525 unsigned int freq;
5526 unsigned int vco;
5527 } skl_cdclk_frequencies[] = {
5528 { .freq = 308570, .vco = 8640 },
5529 { .freq = 337500, .vco = 8100 },
5530 { .freq = 432000, .vco = 8640 },
5531 { .freq = 450000, .vco = 8100 },
5532 { .freq = 540000, .vco = 8100 },
5533 { .freq = 617140, .vco = 8640 },
5534 { .freq = 675000, .vco = 8100 },
5535 };
5536
5537 static unsigned int skl_cdclk_decimal(unsigned int freq)
5538 {
5539 return (freq - 1000) / 500;
5540 }
5541
5542 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5543 {
5544 unsigned int i;
5545
5546 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5547 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5548
5549 if (e->freq == freq)
5550 return e->vco;
5551 }
5552
5553 return 8100;
5554 }
5555
5556 static void
5557 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5558 {
5559 unsigned int min_freq;
5560 u32 val;
5561
5562 /* select the minimum CDCLK before enabling DPLL 0 */
5563 val = I915_READ(CDCLK_CTL);
5564 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5565 val |= CDCLK_FREQ_337_308;
5566
5567 if (required_vco == 8640)
5568 min_freq = 308570;
5569 else
5570 min_freq = 337500;
5571
5572 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5573
5574 I915_WRITE(CDCLK_CTL, val);
5575 POSTING_READ(CDCLK_CTL);
5576
5577 /*
5578 * We always enable DPLL0 with the lowest link rate possible, but still
5579 * taking into account the VCO required to operate the eDP panel at the
5580 * desired frequency. The usual DP link rates operate with a VCO of
5581 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5582 * The modeset code is responsible for the selection of the exact link
5583 * rate later on, with the constraint of choosing a frequency that
5584 * works with required_vco.
5585 */
5586 val = I915_READ(DPLL_CTRL1);
5587
5588 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5589 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5590 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5591 if (required_vco == 8640)
5592 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5593 SKL_DPLL0);
5594 else
5595 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5596 SKL_DPLL0);
5597
5598 I915_WRITE(DPLL_CTRL1, val);
5599 POSTING_READ(DPLL_CTRL1);
5600
5601 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5602
5603 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5604 DRM_ERROR("DPLL0 not locked\n");
5605 }
5606
5607 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5608 {
5609 int ret;
5610 u32 val;
5611
5612 /* inform PCU we want to change CDCLK */
5613 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5614 mutex_lock(&dev_priv->rps.hw_lock);
5615 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5616 mutex_unlock(&dev_priv->rps.hw_lock);
5617
5618 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5619 }
5620
5621 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5622 {
5623 unsigned int i;
5624
5625 for (i = 0; i < 15; i++) {
5626 if (skl_cdclk_pcu_ready(dev_priv))
5627 return true;
5628 udelay(10);
5629 }
5630
5631 return false;
5632 }
5633
5634 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5635 {
5636 struct drm_device *dev = dev_priv->dev;
5637 u32 freq_select, pcu_ack;
5638
5639 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5640
5641 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5642 DRM_ERROR("failed to inform PCU about cdclk change\n");
5643 return;
5644 }
5645
5646 /* set CDCLK_CTL */
5647 switch(freq) {
5648 case 450000:
5649 case 432000:
5650 freq_select = CDCLK_FREQ_450_432;
5651 pcu_ack = 1;
5652 break;
5653 case 540000:
5654 freq_select = CDCLK_FREQ_540;
5655 pcu_ack = 2;
5656 break;
5657 case 308570:
5658 case 337500:
5659 default:
5660 freq_select = CDCLK_FREQ_337_308;
5661 pcu_ack = 0;
5662 break;
5663 case 617140:
5664 case 675000:
5665 freq_select = CDCLK_FREQ_675_617;
5666 pcu_ack = 3;
5667 break;
5668 }
5669
5670 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5671 POSTING_READ(CDCLK_CTL);
5672
5673 /* inform PCU of the change */
5674 mutex_lock(&dev_priv->rps.hw_lock);
5675 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5676 mutex_unlock(&dev_priv->rps.hw_lock);
5677
5678 intel_update_cdclk(dev);
5679 }
5680
5681 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5682 {
5683 /* disable DBUF power */
5684 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5685 POSTING_READ(DBUF_CTL);
5686
5687 udelay(10);
5688
5689 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5690 DRM_ERROR("DBuf power disable timeout\n");
5691
5692 /* disable DPLL0 */
5693 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5694 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5695 DRM_ERROR("Couldn't disable DPLL0\n");
5696
5697 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5698 }
5699
5700 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5701 {
5702 u32 val;
5703 unsigned int required_vco;
5704
5705 /* enable PCH reset handshake */
5706 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5707 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5708
5709 /* enable PG1 and Misc I/O */
5710 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5711
5712 /* DPLL0 already enabed !? */
5713 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5714 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5715 return;
5716 }
5717
5718 /* enable DPLL0 */
5719 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5720 skl_dpll0_enable(dev_priv, required_vco);
5721
5722 /* set CDCLK to the frequency the BIOS chose */
5723 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5724
5725 /* enable DBUF power */
5726 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5727 POSTING_READ(DBUF_CTL);
5728
5729 udelay(10);
5730
5731 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5732 DRM_ERROR("DBuf power enable timeout\n");
5733 }
5734
5735 /* returns HPLL frequency in kHz */
5736 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5737 {
5738 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5739
5740 /* Obtain SKU information */
5741 mutex_lock(&dev_priv->sb_lock);
5742 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5743 CCK_FUSE_HPLL_FREQ_MASK;
5744 mutex_unlock(&dev_priv->sb_lock);
5745
5746 return vco_freq[hpll_freq] * 1000;
5747 }
5748
5749 /* Adjust CDclk dividers to allow high res or save power if possible */
5750 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5751 {
5752 struct drm_i915_private *dev_priv = dev->dev_private;
5753 u32 val, cmd;
5754
5755 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5756 != dev_priv->cdclk_freq);
5757
5758 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5759 cmd = 2;
5760 else if (cdclk == 266667)
5761 cmd = 1;
5762 else
5763 cmd = 0;
5764
5765 mutex_lock(&dev_priv->rps.hw_lock);
5766 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5767 val &= ~DSPFREQGUAR_MASK;
5768 val |= (cmd << DSPFREQGUAR_SHIFT);
5769 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5770 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5771 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5772 50)) {
5773 DRM_ERROR("timed out waiting for CDclk change\n");
5774 }
5775 mutex_unlock(&dev_priv->rps.hw_lock);
5776
5777 mutex_lock(&dev_priv->sb_lock);
5778
5779 if (cdclk == 400000) {
5780 u32 divider;
5781
5782 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5783
5784 /* adjust cdclk divider */
5785 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5786 val &= ~DISPLAY_FREQUENCY_VALUES;
5787 val |= divider;
5788 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5789
5790 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5791 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5792 50))
5793 DRM_ERROR("timed out waiting for CDclk change\n");
5794 }
5795
5796 /* adjust self-refresh exit latency value */
5797 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5798 val &= ~0x7f;
5799
5800 /*
5801 * For high bandwidth configs, we set a higher latency in the bunit
5802 * so that the core display fetch happens in time to avoid underruns.
5803 */
5804 if (cdclk == 400000)
5805 val |= 4500 / 250; /* 4.5 usec */
5806 else
5807 val |= 3000 / 250; /* 3.0 usec */
5808 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5809
5810 mutex_unlock(&dev_priv->sb_lock);
5811
5812 intel_update_cdclk(dev);
5813 }
5814
5815 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5816 {
5817 struct drm_i915_private *dev_priv = dev->dev_private;
5818 u32 val, cmd;
5819
5820 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5821 != dev_priv->cdclk_freq);
5822
5823 switch (cdclk) {
5824 case 333333:
5825 case 320000:
5826 case 266667:
5827 case 200000:
5828 break;
5829 default:
5830 MISSING_CASE(cdclk);
5831 return;
5832 }
5833
5834 /*
5835 * Specs are full of misinformation, but testing on actual
5836 * hardware has shown that we just need to write the desired
5837 * CCK divider into the Punit register.
5838 */
5839 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5840
5841 mutex_lock(&dev_priv->rps.hw_lock);
5842 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5843 val &= ~DSPFREQGUAR_MASK_CHV;
5844 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5845 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5846 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5847 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5848 50)) {
5849 DRM_ERROR("timed out waiting for CDclk change\n");
5850 }
5851 mutex_unlock(&dev_priv->rps.hw_lock);
5852
5853 intel_update_cdclk(dev);
5854 }
5855
5856 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5857 int max_pixclk)
5858 {
5859 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5860 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5861
5862 /*
5863 * Really only a few cases to deal with, as only 4 CDclks are supported:
5864 * 200MHz
5865 * 267MHz
5866 * 320/333MHz (depends on HPLL freq)
5867 * 400MHz (VLV only)
5868 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5869 * of the lower bin and adjust if needed.
5870 *
5871 * We seem to get an unstable or solid color picture at 200MHz.
5872 * Not sure what's wrong. For now use 200MHz only when all pipes
5873 * are off.
5874 */
5875 if (!IS_CHERRYVIEW(dev_priv) &&
5876 max_pixclk > freq_320*limit/100)
5877 return 400000;
5878 else if (max_pixclk > 266667*limit/100)
5879 return freq_320;
5880 else if (max_pixclk > 0)
5881 return 266667;
5882 else
5883 return 200000;
5884 }
5885
5886 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5887 int max_pixclk)
5888 {
5889 /*
5890 * FIXME:
5891 * - remove the guardband, it's not needed on BXT
5892 * - set 19.2MHz bypass frequency if there are no active pipes
5893 */
5894 if (max_pixclk > 576000*9/10)
5895 return 624000;
5896 else if (max_pixclk > 384000*9/10)
5897 return 576000;
5898 else if (max_pixclk > 288000*9/10)
5899 return 384000;
5900 else if (max_pixclk > 144000*9/10)
5901 return 288000;
5902 else
5903 return 144000;
5904 }
5905
5906 /* Compute the max pixel clock for new configuration. Uses atomic state if
5907 * that's non-NULL, look at current state otherwise. */
5908 static int intel_mode_max_pixclk(struct drm_device *dev,
5909 struct drm_atomic_state *state)
5910 {
5911 struct intel_crtc *intel_crtc;
5912 struct intel_crtc_state *crtc_state;
5913 int max_pixclk = 0;
5914
5915 for_each_intel_crtc(dev, intel_crtc) {
5916 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5917 if (IS_ERR(crtc_state))
5918 return PTR_ERR(crtc_state);
5919
5920 if (!crtc_state->base.enable)
5921 continue;
5922
5923 max_pixclk = max(max_pixclk,
5924 crtc_state->base.adjusted_mode.crtc_clock);
5925 }
5926
5927 return max_pixclk;
5928 }
5929
5930 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5931 {
5932 struct drm_device *dev = state->dev;
5933 struct drm_i915_private *dev_priv = dev->dev_private;
5934 int max_pixclk = intel_mode_max_pixclk(dev, state);
5935
5936 if (max_pixclk < 0)
5937 return max_pixclk;
5938
5939 to_intel_atomic_state(state)->cdclk =
5940 valleyview_calc_cdclk(dev_priv, max_pixclk);
5941
5942 return 0;
5943 }
5944
5945 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5946 {
5947 struct drm_device *dev = state->dev;
5948 struct drm_i915_private *dev_priv = dev->dev_private;
5949 int max_pixclk = intel_mode_max_pixclk(dev, state);
5950
5951 if (max_pixclk < 0)
5952 return max_pixclk;
5953
5954 to_intel_atomic_state(state)->cdclk =
5955 broxton_calc_cdclk(dev_priv, max_pixclk);
5956
5957 return 0;
5958 }
5959
5960 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5961 {
5962 unsigned int credits, default_credits;
5963
5964 if (IS_CHERRYVIEW(dev_priv))
5965 default_credits = PFI_CREDIT(12);
5966 else
5967 default_credits = PFI_CREDIT(8);
5968
5969 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5970 /* CHV suggested value is 31 or 63 */
5971 if (IS_CHERRYVIEW(dev_priv))
5972 credits = PFI_CREDIT_63;
5973 else
5974 credits = PFI_CREDIT(15);
5975 } else {
5976 credits = default_credits;
5977 }
5978
5979 /*
5980 * WA - write default credits before re-programming
5981 * FIXME: should we also set the resend bit here?
5982 */
5983 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5984 default_credits);
5985
5986 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5987 credits | PFI_CREDIT_RESEND);
5988
5989 /*
5990 * FIXME is this guaranteed to clear
5991 * immediately or should we poll for it?
5992 */
5993 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5994 }
5995
5996 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5997 {
5998 struct drm_device *dev = old_state->dev;
5999 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6000 struct drm_i915_private *dev_priv = dev->dev_private;
6001
6002 /*
6003 * FIXME: We can end up here with all power domains off, yet
6004 * with a CDCLK frequency other than the minimum. To account
6005 * for this take the PIPE-A power domain, which covers the HW
6006 * blocks needed for the following programming. This can be
6007 * removed once it's guaranteed that we get here either with
6008 * the minimum CDCLK set, or the required power domains
6009 * enabled.
6010 */
6011 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6012
6013 if (IS_CHERRYVIEW(dev))
6014 cherryview_set_cdclk(dev, req_cdclk);
6015 else
6016 valleyview_set_cdclk(dev, req_cdclk);
6017
6018 vlv_program_pfi_credits(dev_priv);
6019
6020 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6021 }
6022
6023 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6024 {
6025 struct drm_device *dev = crtc->dev;
6026 struct drm_i915_private *dev_priv = to_i915(dev);
6027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6028 struct intel_encoder *encoder;
6029 int pipe = intel_crtc->pipe;
6030 bool is_dsi;
6031
6032 if (WARN_ON(intel_crtc->active))
6033 return;
6034
6035 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6036
6037 if (!is_dsi) {
6038 if (IS_CHERRYVIEW(dev))
6039 chv_prepare_pll(intel_crtc, intel_crtc->config);
6040 else
6041 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6042 }
6043
6044 if (intel_crtc->config->has_dp_encoder)
6045 intel_dp_set_m_n(intel_crtc, M1_N1);
6046
6047 intel_set_pipe_timings(intel_crtc);
6048
6049 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6050 struct drm_i915_private *dev_priv = dev->dev_private;
6051
6052 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6053 I915_WRITE(CHV_CANVAS(pipe), 0);
6054 }
6055
6056 i9xx_set_pipeconf(intel_crtc);
6057
6058 intel_crtc->active = true;
6059
6060 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6061
6062 for_each_encoder_on_crtc(dev, crtc, encoder)
6063 if (encoder->pre_pll_enable)
6064 encoder->pre_pll_enable(encoder);
6065
6066 if (!is_dsi) {
6067 if (IS_CHERRYVIEW(dev))
6068 chv_enable_pll(intel_crtc, intel_crtc->config);
6069 else
6070 vlv_enable_pll(intel_crtc, intel_crtc->config);
6071 }
6072
6073 for_each_encoder_on_crtc(dev, crtc, encoder)
6074 if (encoder->pre_enable)
6075 encoder->pre_enable(encoder);
6076
6077 i9xx_pfit_enable(intel_crtc);
6078
6079 intel_crtc_load_lut(crtc);
6080
6081 intel_enable_pipe(intel_crtc);
6082
6083 assert_vblank_disabled(crtc);
6084 drm_crtc_vblank_on(crtc);
6085
6086 for_each_encoder_on_crtc(dev, crtc, encoder)
6087 encoder->enable(encoder);
6088 }
6089
6090 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6091 {
6092 struct drm_device *dev = crtc->base.dev;
6093 struct drm_i915_private *dev_priv = dev->dev_private;
6094
6095 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6096 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6097 }
6098
6099 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6100 {
6101 struct drm_device *dev = crtc->dev;
6102 struct drm_i915_private *dev_priv = to_i915(dev);
6103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6104 struct intel_encoder *encoder;
6105 int pipe = intel_crtc->pipe;
6106
6107 if (WARN_ON(intel_crtc->active))
6108 return;
6109
6110 i9xx_set_pll_dividers(intel_crtc);
6111
6112 if (intel_crtc->config->has_dp_encoder)
6113 intel_dp_set_m_n(intel_crtc, M1_N1);
6114
6115 intel_set_pipe_timings(intel_crtc);
6116
6117 i9xx_set_pipeconf(intel_crtc);
6118
6119 intel_crtc->active = true;
6120
6121 if (!IS_GEN2(dev))
6122 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6123
6124 for_each_encoder_on_crtc(dev, crtc, encoder)
6125 if (encoder->pre_enable)
6126 encoder->pre_enable(encoder);
6127
6128 i9xx_enable_pll(intel_crtc);
6129
6130 i9xx_pfit_enable(intel_crtc);
6131
6132 intel_crtc_load_lut(crtc);
6133
6134 intel_update_watermarks(crtc);
6135 intel_enable_pipe(intel_crtc);
6136
6137 assert_vblank_disabled(crtc);
6138 drm_crtc_vblank_on(crtc);
6139
6140 for_each_encoder_on_crtc(dev, crtc, encoder)
6141 encoder->enable(encoder);
6142 }
6143
6144 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6145 {
6146 struct drm_device *dev = crtc->base.dev;
6147 struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149 if (!crtc->config->gmch_pfit.control)
6150 return;
6151
6152 assert_pipe_disabled(dev_priv, crtc->pipe);
6153
6154 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6155 I915_READ(PFIT_CONTROL));
6156 I915_WRITE(PFIT_CONTROL, 0);
6157 }
6158
6159 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6160 {
6161 struct drm_device *dev = crtc->dev;
6162 struct drm_i915_private *dev_priv = dev->dev_private;
6163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6164 struct intel_encoder *encoder;
6165 int pipe = intel_crtc->pipe;
6166
6167 /*
6168 * On gen2 planes are double buffered but the pipe isn't, so we must
6169 * wait for planes to fully turn off before disabling the pipe.
6170 * We also need to wait on all gmch platforms because of the
6171 * self-refresh mode constraint explained above.
6172 */
6173 intel_wait_for_vblank(dev, pipe);
6174
6175 for_each_encoder_on_crtc(dev, crtc, encoder)
6176 encoder->disable(encoder);
6177
6178 drm_crtc_vblank_off(crtc);
6179 assert_vblank_disabled(crtc);
6180
6181 intel_disable_pipe(intel_crtc);
6182
6183 i9xx_pfit_disable(intel_crtc);
6184
6185 for_each_encoder_on_crtc(dev, crtc, encoder)
6186 if (encoder->post_disable)
6187 encoder->post_disable(encoder);
6188
6189 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6190 if (IS_CHERRYVIEW(dev))
6191 chv_disable_pll(dev_priv, pipe);
6192 else if (IS_VALLEYVIEW(dev))
6193 vlv_disable_pll(dev_priv, pipe);
6194 else
6195 i9xx_disable_pll(intel_crtc);
6196 }
6197
6198 if (!IS_GEN2(dev))
6199 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6200
6201 intel_crtc->active = false;
6202 intel_update_watermarks(crtc);
6203 }
6204
6205 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6206 {
6207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6208 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6209 enum intel_display_power_domain domain;
6210 unsigned long domains;
6211
6212 if (!intel_crtc->active)
6213 return;
6214
6215 if (to_intel_plane_state(crtc->primary->state)->visible) {
6216 intel_crtc_wait_for_pending_flips(crtc);
6217 intel_pre_disable_primary(crtc);
6218 }
6219
6220 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6221 dev_priv->display.crtc_disable(crtc);
6222 intel_disable_shared_dpll(intel_crtc);
6223
6224 domains = intel_crtc->enabled_power_domains;
6225 for_each_power_domain(domain, domains)
6226 intel_display_power_put(dev_priv, domain);
6227 intel_crtc->enabled_power_domains = 0;
6228 }
6229
6230 /*
6231 * turn all crtc's off, but do not adjust state
6232 * This has to be paired with a call to intel_modeset_setup_hw_state.
6233 */
6234 int intel_display_suspend(struct drm_device *dev)
6235 {
6236 struct drm_mode_config *config = &dev->mode_config;
6237 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6238 struct drm_atomic_state *state;
6239 struct drm_crtc *crtc;
6240 unsigned crtc_mask = 0;
6241 int ret = 0;
6242
6243 if (WARN_ON(!ctx))
6244 return 0;
6245
6246 lockdep_assert_held(&ctx->ww_ctx);
6247 state = drm_atomic_state_alloc(dev);
6248 if (WARN_ON(!state))
6249 return -ENOMEM;
6250
6251 state->acquire_ctx = ctx;
6252 state->allow_modeset = true;
6253
6254 for_each_crtc(dev, crtc) {
6255 struct drm_crtc_state *crtc_state =
6256 drm_atomic_get_crtc_state(state, crtc);
6257
6258 ret = PTR_ERR_OR_ZERO(crtc_state);
6259 if (ret)
6260 goto free;
6261
6262 if (!crtc_state->active)
6263 continue;
6264
6265 crtc_state->active = false;
6266 crtc_mask |= 1 << drm_crtc_index(crtc);
6267 }
6268
6269 if (crtc_mask) {
6270 ret = drm_atomic_commit(state);
6271
6272 if (!ret) {
6273 for_each_crtc(dev, crtc)
6274 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6275 crtc->state->active = true;
6276
6277 return ret;
6278 }
6279 }
6280
6281 free:
6282 if (ret)
6283 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6284 drm_atomic_state_free(state);
6285 return ret;
6286 }
6287
6288 void intel_encoder_destroy(struct drm_encoder *encoder)
6289 {
6290 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6291
6292 drm_encoder_cleanup(encoder);
6293 kfree(intel_encoder);
6294 }
6295
6296 /* Cross check the actual hw state with our own modeset state tracking (and it's
6297 * internal consistency). */
6298 static void intel_connector_check_state(struct intel_connector *connector)
6299 {
6300 struct drm_crtc *crtc = connector->base.state->crtc;
6301
6302 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6303 connector->base.base.id,
6304 connector->base.name);
6305
6306 if (connector->get_hw_state(connector)) {
6307 struct drm_encoder *encoder = &connector->encoder->base;
6308 struct drm_connector_state *conn_state = connector->base.state;
6309
6310 I915_STATE_WARN(!crtc,
6311 "connector enabled without attached crtc\n");
6312
6313 if (!crtc)
6314 return;
6315
6316 I915_STATE_WARN(!crtc->state->active,
6317 "connector is active, but attached crtc isn't\n");
6318
6319 if (!encoder)
6320 return;
6321
6322 I915_STATE_WARN(conn_state->best_encoder != encoder,
6323 "atomic encoder doesn't match attached encoder\n");
6324
6325 I915_STATE_WARN(conn_state->crtc != encoder->crtc,
6326 "attached encoder crtc differs from connector crtc\n");
6327 } else {
6328 I915_STATE_WARN(crtc && crtc->state->active,
6329 "attached crtc is active, but connector isn't\n");
6330 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6331 "best encoder set without crtc!\n");
6332 }
6333 }
6334
6335 int intel_connector_init(struct intel_connector *connector)
6336 {
6337 struct drm_connector_state *connector_state;
6338
6339 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6340 if (!connector_state)
6341 return -ENOMEM;
6342
6343 connector->base.state = connector_state;
6344 return 0;
6345 }
6346
6347 struct intel_connector *intel_connector_alloc(void)
6348 {
6349 struct intel_connector *connector;
6350
6351 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6352 if (!connector)
6353 return NULL;
6354
6355 if (intel_connector_init(connector) < 0) {
6356 kfree(connector);
6357 return NULL;
6358 }
6359
6360 return connector;
6361 }
6362
6363 /* Simple connector->get_hw_state implementation for encoders that support only
6364 * one connector and no cloning and hence the encoder state determines the state
6365 * of the connector. */
6366 bool intel_connector_get_hw_state(struct intel_connector *connector)
6367 {
6368 enum pipe pipe = 0;
6369 struct intel_encoder *encoder = connector->encoder;
6370
6371 return encoder->get_hw_state(encoder, &pipe);
6372 }
6373
6374 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6375 {
6376 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6377 return crtc_state->fdi_lanes;
6378
6379 return 0;
6380 }
6381
6382 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6383 struct intel_crtc_state *pipe_config)
6384 {
6385 struct drm_atomic_state *state = pipe_config->base.state;
6386 struct intel_crtc *other_crtc;
6387 struct intel_crtc_state *other_crtc_state;
6388
6389 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6390 pipe_name(pipe), pipe_config->fdi_lanes);
6391 if (pipe_config->fdi_lanes > 4) {
6392 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6393 pipe_name(pipe), pipe_config->fdi_lanes);
6394 return -EINVAL;
6395 }
6396
6397 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6398 if (pipe_config->fdi_lanes > 2) {
6399 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6400 pipe_config->fdi_lanes);
6401 return -EINVAL;
6402 } else {
6403 return 0;
6404 }
6405 }
6406
6407 if (INTEL_INFO(dev)->num_pipes == 2)
6408 return 0;
6409
6410 /* Ivybridge 3 pipe is really complicated */
6411 switch (pipe) {
6412 case PIPE_A:
6413 return 0;
6414 case PIPE_B:
6415 if (pipe_config->fdi_lanes <= 2)
6416 return 0;
6417
6418 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6419 other_crtc_state =
6420 intel_atomic_get_crtc_state(state, other_crtc);
6421 if (IS_ERR(other_crtc_state))
6422 return PTR_ERR(other_crtc_state);
6423
6424 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6425 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6426 pipe_name(pipe), pipe_config->fdi_lanes);
6427 return -EINVAL;
6428 }
6429 return 0;
6430 case PIPE_C:
6431 if (pipe_config->fdi_lanes > 2) {
6432 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6433 pipe_name(pipe), pipe_config->fdi_lanes);
6434 return -EINVAL;
6435 }
6436
6437 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6438 other_crtc_state =
6439 intel_atomic_get_crtc_state(state, other_crtc);
6440 if (IS_ERR(other_crtc_state))
6441 return PTR_ERR(other_crtc_state);
6442
6443 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6444 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6445 return -EINVAL;
6446 }
6447 return 0;
6448 default:
6449 BUG();
6450 }
6451 }
6452
6453 #define RETRY 1
6454 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6455 struct intel_crtc_state *pipe_config)
6456 {
6457 struct drm_device *dev = intel_crtc->base.dev;
6458 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6459 int lane, link_bw, fdi_dotclock, ret;
6460 bool needs_recompute = false;
6461
6462 retry:
6463 /* FDI is a binary signal running at ~2.7GHz, encoding
6464 * each output octet as 10 bits. The actual frequency
6465 * is stored as a divider into a 100MHz clock, and the
6466 * mode pixel clock is stored in units of 1KHz.
6467 * Hence the bw of each lane in terms of the mode signal
6468 * is:
6469 */
6470 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6471
6472 fdi_dotclock = adjusted_mode->crtc_clock;
6473
6474 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6475 pipe_config->pipe_bpp);
6476
6477 pipe_config->fdi_lanes = lane;
6478
6479 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6480 link_bw, &pipe_config->fdi_m_n);
6481
6482 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6483 intel_crtc->pipe, pipe_config);
6484 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6485 pipe_config->pipe_bpp -= 2*3;
6486 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6487 pipe_config->pipe_bpp);
6488 needs_recompute = true;
6489 pipe_config->bw_constrained = true;
6490
6491 goto retry;
6492 }
6493
6494 if (needs_recompute)
6495 return RETRY;
6496
6497 return ret;
6498 }
6499
6500 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6501 struct intel_crtc_state *pipe_config)
6502 {
6503 if (pipe_config->pipe_bpp > 24)
6504 return false;
6505
6506 /* HSW can handle pixel rate up to cdclk? */
6507 if (IS_HASWELL(dev_priv->dev))
6508 return true;
6509
6510 /*
6511 * We compare against max which means we must take
6512 * the increased cdclk requirement into account when
6513 * calculating the new cdclk.
6514 *
6515 * Should measure whether using a lower cdclk w/o IPS
6516 */
6517 return ilk_pipe_pixel_rate(pipe_config) <=
6518 dev_priv->max_cdclk_freq * 95 / 100;
6519 }
6520
6521 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6522 struct intel_crtc_state *pipe_config)
6523 {
6524 struct drm_device *dev = crtc->base.dev;
6525 struct drm_i915_private *dev_priv = dev->dev_private;
6526
6527 pipe_config->ips_enabled = i915.enable_ips &&
6528 hsw_crtc_supports_ips(crtc) &&
6529 pipe_config_supports_ips(dev_priv, pipe_config);
6530 }
6531
6532 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6533 struct intel_crtc_state *pipe_config)
6534 {
6535 struct drm_device *dev = crtc->base.dev;
6536 struct drm_i915_private *dev_priv = dev->dev_private;
6537 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6538
6539 /* FIXME should check pixel clock limits on all platforms */
6540 if (INTEL_INFO(dev)->gen < 4) {
6541 int clock_limit = dev_priv->max_cdclk_freq;
6542
6543 /*
6544 * Enable pixel doubling when the dot clock
6545 * is > 90% of the (display) core speed.
6546 *
6547 * GDG double wide on either pipe,
6548 * otherwise pipe A only.
6549 */
6550 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6551 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6552 clock_limit *= 2;
6553 pipe_config->double_wide = true;
6554 }
6555
6556 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6557 return -EINVAL;
6558 }
6559
6560 /*
6561 * Pipe horizontal size must be even in:
6562 * - DVO ganged mode
6563 * - LVDS dual channel mode
6564 * - Double wide pipe
6565 */
6566 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6567 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6568 pipe_config->pipe_src_w &= ~1;
6569
6570 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6571 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6572 */
6573 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6574 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6575 return -EINVAL;
6576
6577 if (HAS_IPS(dev))
6578 hsw_compute_ips_config(crtc, pipe_config);
6579
6580 if (pipe_config->has_pch_encoder)
6581 return ironlake_fdi_compute_config(crtc, pipe_config);
6582
6583 return 0;
6584 }
6585
6586 static int skylake_get_display_clock_speed(struct drm_device *dev)
6587 {
6588 struct drm_i915_private *dev_priv = to_i915(dev);
6589 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6590 uint32_t cdctl = I915_READ(CDCLK_CTL);
6591 uint32_t linkrate;
6592
6593 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6594 return 24000; /* 24MHz is the cd freq with NSSC ref */
6595
6596 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6597 return 540000;
6598
6599 linkrate = (I915_READ(DPLL_CTRL1) &
6600 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6601
6602 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6603 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6604 /* vco 8640 */
6605 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6606 case CDCLK_FREQ_450_432:
6607 return 432000;
6608 case CDCLK_FREQ_337_308:
6609 return 308570;
6610 case CDCLK_FREQ_675_617:
6611 return 617140;
6612 default:
6613 WARN(1, "Unknown cd freq selection\n");
6614 }
6615 } else {
6616 /* vco 8100 */
6617 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6618 case CDCLK_FREQ_450_432:
6619 return 450000;
6620 case CDCLK_FREQ_337_308:
6621 return 337500;
6622 case CDCLK_FREQ_675_617:
6623 return 675000;
6624 default:
6625 WARN(1, "Unknown cd freq selection\n");
6626 }
6627 }
6628
6629 /* error case, do as if DPLL0 isn't enabled */
6630 return 24000;
6631 }
6632
6633 static int broxton_get_display_clock_speed(struct drm_device *dev)
6634 {
6635 struct drm_i915_private *dev_priv = to_i915(dev);
6636 uint32_t cdctl = I915_READ(CDCLK_CTL);
6637 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6638 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6639 int cdclk;
6640
6641 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6642 return 19200;
6643
6644 cdclk = 19200 * pll_ratio / 2;
6645
6646 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6647 case BXT_CDCLK_CD2X_DIV_SEL_1:
6648 return cdclk; /* 576MHz or 624MHz */
6649 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6650 return cdclk * 2 / 3; /* 384MHz */
6651 case BXT_CDCLK_CD2X_DIV_SEL_2:
6652 return cdclk / 2; /* 288MHz */
6653 case BXT_CDCLK_CD2X_DIV_SEL_4:
6654 return cdclk / 4; /* 144MHz */
6655 }
6656
6657 /* error case, do as if DE PLL isn't enabled */
6658 return 19200;
6659 }
6660
6661 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6662 {
6663 struct drm_i915_private *dev_priv = dev->dev_private;
6664 uint32_t lcpll = I915_READ(LCPLL_CTL);
6665 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6666
6667 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6668 return 800000;
6669 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6670 return 450000;
6671 else if (freq == LCPLL_CLK_FREQ_450)
6672 return 450000;
6673 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6674 return 540000;
6675 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6676 return 337500;
6677 else
6678 return 675000;
6679 }
6680
6681 static int haswell_get_display_clock_speed(struct drm_device *dev)
6682 {
6683 struct drm_i915_private *dev_priv = dev->dev_private;
6684 uint32_t lcpll = I915_READ(LCPLL_CTL);
6685 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6686
6687 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6688 return 800000;
6689 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6690 return 450000;
6691 else if (freq == LCPLL_CLK_FREQ_450)
6692 return 450000;
6693 else if (IS_HSW_ULT(dev))
6694 return 337500;
6695 else
6696 return 540000;
6697 }
6698
6699 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6700 {
6701 struct drm_i915_private *dev_priv = dev->dev_private;
6702 u32 val;
6703 int divider;
6704
6705 if (dev_priv->hpll_freq == 0)
6706 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6707
6708 mutex_lock(&dev_priv->sb_lock);
6709 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6710 mutex_unlock(&dev_priv->sb_lock);
6711
6712 divider = val & DISPLAY_FREQUENCY_VALUES;
6713
6714 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6715 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6716 "cdclk change in progress\n");
6717
6718 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6719 }
6720
6721 static int ilk_get_display_clock_speed(struct drm_device *dev)
6722 {
6723 return 450000;
6724 }
6725
6726 static int i945_get_display_clock_speed(struct drm_device *dev)
6727 {
6728 return 400000;
6729 }
6730
6731 static int i915_get_display_clock_speed(struct drm_device *dev)
6732 {
6733 return 333333;
6734 }
6735
6736 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6737 {
6738 return 200000;
6739 }
6740
6741 static int pnv_get_display_clock_speed(struct drm_device *dev)
6742 {
6743 u16 gcfgc = 0;
6744
6745 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6746
6747 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6748 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6749 return 266667;
6750 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6751 return 333333;
6752 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6753 return 444444;
6754 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6755 return 200000;
6756 default:
6757 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6758 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6759 return 133333;
6760 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6761 return 166667;
6762 }
6763 }
6764
6765 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6766 {
6767 u16 gcfgc = 0;
6768
6769 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6770
6771 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6772 return 133333;
6773 else {
6774 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6775 case GC_DISPLAY_CLOCK_333_MHZ:
6776 return 333333;
6777 default:
6778 case GC_DISPLAY_CLOCK_190_200_MHZ:
6779 return 190000;
6780 }
6781 }
6782 }
6783
6784 static int i865_get_display_clock_speed(struct drm_device *dev)
6785 {
6786 return 266667;
6787 }
6788
6789 static int i85x_get_display_clock_speed(struct drm_device *dev)
6790 {
6791 u16 hpllcc = 0;
6792
6793 /*
6794 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6795 * encoding is different :(
6796 * FIXME is this the right way to detect 852GM/852GMV?
6797 */
6798 if (dev->pdev->revision == 0x1)
6799 return 133333;
6800
6801 pci_bus_read_config_word(dev->pdev->bus,
6802 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6803
6804 /* Assume that the hardware is in the high speed state. This
6805 * should be the default.
6806 */
6807 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6808 case GC_CLOCK_133_200:
6809 case GC_CLOCK_133_200_2:
6810 case GC_CLOCK_100_200:
6811 return 200000;
6812 case GC_CLOCK_166_250:
6813 return 250000;
6814 case GC_CLOCK_100_133:
6815 return 133333;
6816 case GC_CLOCK_133_266:
6817 case GC_CLOCK_133_266_2:
6818 case GC_CLOCK_166_266:
6819 return 266667;
6820 }
6821
6822 /* Shouldn't happen */
6823 return 0;
6824 }
6825
6826 static int i830_get_display_clock_speed(struct drm_device *dev)
6827 {
6828 return 133333;
6829 }
6830
6831 static unsigned int intel_hpll_vco(struct drm_device *dev)
6832 {
6833 struct drm_i915_private *dev_priv = dev->dev_private;
6834 static const unsigned int blb_vco[8] = {
6835 [0] = 3200000,
6836 [1] = 4000000,
6837 [2] = 5333333,
6838 [3] = 4800000,
6839 [4] = 6400000,
6840 };
6841 static const unsigned int pnv_vco[8] = {
6842 [0] = 3200000,
6843 [1] = 4000000,
6844 [2] = 5333333,
6845 [3] = 4800000,
6846 [4] = 2666667,
6847 };
6848 static const unsigned int cl_vco[8] = {
6849 [0] = 3200000,
6850 [1] = 4000000,
6851 [2] = 5333333,
6852 [3] = 6400000,
6853 [4] = 3333333,
6854 [5] = 3566667,
6855 [6] = 4266667,
6856 };
6857 static const unsigned int elk_vco[8] = {
6858 [0] = 3200000,
6859 [1] = 4000000,
6860 [2] = 5333333,
6861 [3] = 4800000,
6862 };
6863 static const unsigned int ctg_vco[8] = {
6864 [0] = 3200000,
6865 [1] = 4000000,
6866 [2] = 5333333,
6867 [3] = 6400000,
6868 [4] = 2666667,
6869 [5] = 4266667,
6870 };
6871 const unsigned int *vco_table;
6872 unsigned int vco;
6873 uint8_t tmp = 0;
6874
6875 /* FIXME other chipsets? */
6876 if (IS_GM45(dev))
6877 vco_table = ctg_vco;
6878 else if (IS_G4X(dev))
6879 vco_table = elk_vco;
6880 else if (IS_CRESTLINE(dev))
6881 vco_table = cl_vco;
6882 else if (IS_PINEVIEW(dev))
6883 vco_table = pnv_vco;
6884 else if (IS_G33(dev))
6885 vco_table = blb_vco;
6886 else
6887 return 0;
6888
6889 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6890
6891 vco = vco_table[tmp & 0x7];
6892 if (vco == 0)
6893 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6894 else
6895 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6896
6897 return vco;
6898 }
6899
6900 static int gm45_get_display_clock_speed(struct drm_device *dev)
6901 {
6902 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6903 uint16_t tmp = 0;
6904
6905 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6906
6907 cdclk_sel = (tmp >> 12) & 0x1;
6908
6909 switch (vco) {
6910 case 2666667:
6911 case 4000000:
6912 case 5333333:
6913 return cdclk_sel ? 333333 : 222222;
6914 case 3200000:
6915 return cdclk_sel ? 320000 : 228571;
6916 default:
6917 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6918 return 222222;
6919 }
6920 }
6921
6922 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6923 {
6924 static const uint8_t div_3200[] = { 16, 10, 8 };
6925 static const uint8_t div_4000[] = { 20, 12, 10 };
6926 static const uint8_t div_5333[] = { 24, 16, 14 };
6927 const uint8_t *div_table;
6928 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6929 uint16_t tmp = 0;
6930
6931 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6932
6933 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6934
6935 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6936 goto fail;
6937
6938 switch (vco) {
6939 case 3200000:
6940 div_table = div_3200;
6941 break;
6942 case 4000000:
6943 div_table = div_4000;
6944 break;
6945 case 5333333:
6946 div_table = div_5333;
6947 break;
6948 default:
6949 goto fail;
6950 }
6951
6952 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6953
6954 fail:
6955 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6956 return 200000;
6957 }
6958
6959 static int g33_get_display_clock_speed(struct drm_device *dev)
6960 {
6961 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6962 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6963 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6964 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6965 const uint8_t *div_table;
6966 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6967 uint16_t tmp = 0;
6968
6969 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6970
6971 cdclk_sel = (tmp >> 4) & 0x7;
6972
6973 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6974 goto fail;
6975
6976 switch (vco) {
6977 case 3200000:
6978 div_table = div_3200;
6979 break;
6980 case 4000000:
6981 div_table = div_4000;
6982 break;
6983 case 4800000:
6984 div_table = div_4800;
6985 break;
6986 case 5333333:
6987 div_table = div_5333;
6988 break;
6989 default:
6990 goto fail;
6991 }
6992
6993 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6994
6995 fail:
6996 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6997 return 190476;
6998 }
6999
7000 static void
7001 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7002 {
7003 while (*num > DATA_LINK_M_N_MASK ||
7004 *den > DATA_LINK_M_N_MASK) {
7005 *num >>= 1;
7006 *den >>= 1;
7007 }
7008 }
7009
7010 static void compute_m_n(unsigned int m, unsigned int n,
7011 uint32_t *ret_m, uint32_t *ret_n)
7012 {
7013 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7014 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7015 intel_reduce_m_n_ratio(ret_m, ret_n);
7016 }
7017
7018 void
7019 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7020 int pixel_clock, int link_clock,
7021 struct intel_link_m_n *m_n)
7022 {
7023 m_n->tu = 64;
7024
7025 compute_m_n(bits_per_pixel * pixel_clock,
7026 link_clock * nlanes * 8,
7027 &m_n->gmch_m, &m_n->gmch_n);
7028
7029 compute_m_n(pixel_clock, link_clock,
7030 &m_n->link_m, &m_n->link_n);
7031 }
7032
7033 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7034 {
7035 if (i915.panel_use_ssc >= 0)
7036 return i915.panel_use_ssc != 0;
7037 return dev_priv->vbt.lvds_use_ssc
7038 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7039 }
7040
7041 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7042 int num_connectors)
7043 {
7044 struct drm_device *dev = crtc_state->base.crtc->dev;
7045 struct drm_i915_private *dev_priv = dev->dev_private;
7046 int refclk;
7047
7048 WARN_ON(!crtc_state->base.state);
7049
7050 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7051 refclk = 100000;
7052 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7053 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7054 refclk = dev_priv->vbt.lvds_ssc_freq;
7055 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7056 } else if (!IS_GEN2(dev)) {
7057 refclk = 96000;
7058 } else {
7059 refclk = 48000;
7060 }
7061
7062 return refclk;
7063 }
7064
7065 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7066 {
7067 return (1 << dpll->n) << 16 | dpll->m2;
7068 }
7069
7070 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7071 {
7072 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7073 }
7074
7075 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7076 struct intel_crtc_state *crtc_state,
7077 intel_clock_t *reduced_clock)
7078 {
7079 struct drm_device *dev = crtc->base.dev;
7080 u32 fp, fp2 = 0;
7081
7082 if (IS_PINEVIEW(dev)) {
7083 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7084 if (reduced_clock)
7085 fp2 = pnv_dpll_compute_fp(reduced_clock);
7086 } else {
7087 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7088 if (reduced_clock)
7089 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7090 }
7091
7092 crtc_state->dpll_hw_state.fp0 = fp;
7093
7094 crtc->lowfreq_avail = false;
7095 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7096 reduced_clock) {
7097 crtc_state->dpll_hw_state.fp1 = fp2;
7098 crtc->lowfreq_avail = true;
7099 } else {
7100 crtc_state->dpll_hw_state.fp1 = fp;
7101 }
7102 }
7103
7104 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7105 pipe)
7106 {
7107 u32 reg_val;
7108
7109 /*
7110 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7111 * and set it to a reasonable value instead.
7112 */
7113 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7114 reg_val &= 0xffffff00;
7115 reg_val |= 0x00000030;
7116 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7117
7118 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7119 reg_val &= 0x8cffffff;
7120 reg_val = 0x8c000000;
7121 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7122
7123 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7124 reg_val &= 0xffffff00;
7125 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7126
7127 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7128 reg_val &= 0x00ffffff;
7129 reg_val |= 0xb0000000;
7130 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7131 }
7132
7133 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7134 struct intel_link_m_n *m_n)
7135 {
7136 struct drm_device *dev = crtc->base.dev;
7137 struct drm_i915_private *dev_priv = dev->dev_private;
7138 int pipe = crtc->pipe;
7139
7140 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7141 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7142 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7143 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7144 }
7145
7146 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7147 struct intel_link_m_n *m_n,
7148 struct intel_link_m_n *m2_n2)
7149 {
7150 struct drm_device *dev = crtc->base.dev;
7151 struct drm_i915_private *dev_priv = dev->dev_private;
7152 int pipe = crtc->pipe;
7153 enum transcoder transcoder = crtc->config->cpu_transcoder;
7154
7155 if (INTEL_INFO(dev)->gen >= 5) {
7156 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7157 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7158 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7159 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7160 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7161 * for gen < 8) and if DRRS is supported (to make sure the
7162 * registers are not unnecessarily accessed).
7163 */
7164 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7165 crtc->config->has_drrs) {
7166 I915_WRITE(PIPE_DATA_M2(transcoder),
7167 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7168 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7169 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7170 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7171 }
7172 } else {
7173 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7174 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7175 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7176 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7177 }
7178 }
7179
7180 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7181 {
7182 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7183
7184 if (m_n == M1_N1) {
7185 dp_m_n = &crtc->config->dp_m_n;
7186 dp_m2_n2 = &crtc->config->dp_m2_n2;
7187 } else if (m_n == M2_N2) {
7188
7189 /*
7190 * M2_N2 registers are not supported. Hence m2_n2 divider value
7191 * needs to be programmed into M1_N1.
7192 */
7193 dp_m_n = &crtc->config->dp_m2_n2;
7194 } else {
7195 DRM_ERROR("Unsupported divider value\n");
7196 return;
7197 }
7198
7199 if (crtc->config->has_pch_encoder)
7200 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7201 else
7202 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7203 }
7204
7205 static void vlv_compute_dpll(struct intel_crtc *crtc,
7206 struct intel_crtc_state *pipe_config)
7207 {
7208 u32 dpll, dpll_md;
7209
7210 /*
7211 * Enable DPIO clock input. We should never disable the reference
7212 * clock for pipe B, since VGA hotplug / manual detection depends
7213 * on it.
7214 */
7215 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7216 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7217 /* We should never disable this, set it here for state tracking */
7218 if (crtc->pipe == PIPE_B)
7219 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7220 dpll |= DPLL_VCO_ENABLE;
7221 pipe_config->dpll_hw_state.dpll = dpll;
7222
7223 dpll_md = (pipe_config->pixel_multiplier - 1)
7224 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7225 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7226 }
7227
7228 static void vlv_prepare_pll(struct intel_crtc *crtc,
7229 const struct intel_crtc_state *pipe_config)
7230 {
7231 struct drm_device *dev = crtc->base.dev;
7232 struct drm_i915_private *dev_priv = dev->dev_private;
7233 int pipe = crtc->pipe;
7234 u32 mdiv;
7235 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7236 u32 coreclk, reg_val;
7237
7238 mutex_lock(&dev_priv->sb_lock);
7239
7240 bestn = pipe_config->dpll.n;
7241 bestm1 = pipe_config->dpll.m1;
7242 bestm2 = pipe_config->dpll.m2;
7243 bestp1 = pipe_config->dpll.p1;
7244 bestp2 = pipe_config->dpll.p2;
7245
7246 /* See eDP HDMI DPIO driver vbios notes doc */
7247
7248 /* PLL B needs special handling */
7249 if (pipe == PIPE_B)
7250 vlv_pllb_recal_opamp(dev_priv, pipe);
7251
7252 /* Set up Tx target for periodic Rcomp update */
7253 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7254
7255 /* Disable target IRef on PLL */
7256 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7257 reg_val &= 0x00ffffff;
7258 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7259
7260 /* Disable fast lock */
7261 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7262
7263 /* Set idtafcrecal before PLL is enabled */
7264 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7265 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7266 mdiv |= ((bestn << DPIO_N_SHIFT));
7267 mdiv |= (1 << DPIO_K_SHIFT);
7268
7269 /*
7270 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7271 * but we don't support that).
7272 * Note: don't use the DAC post divider as it seems unstable.
7273 */
7274 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7275 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7276
7277 mdiv |= DPIO_ENABLE_CALIBRATION;
7278 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7279
7280 /* Set HBR and RBR LPF coefficients */
7281 if (pipe_config->port_clock == 162000 ||
7282 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7283 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7284 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7285 0x009f0003);
7286 else
7287 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7288 0x00d0000f);
7289
7290 if (pipe_config->has_dp_encoder) {
7291 /* Use SSC source */
7292 if (pipe == PIPE_A)
7293 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7294 0x0df40000);
7295 else
7296 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7297 0x0df70000);
7298 } else { /* HDMI or VGA */
7299 /* Use bend source */
7300 if (pipe == PIPE_A)
7301 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7302 0x0df70000);
7303 else
7304 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7305 0x0df40000);
7306 }
7307
7308 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7309 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7310 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7311 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7312 coreclk |= 0x01000000;
7313 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7314
7315 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7316 mutex_unlock(&dev_priv->sb_lock);
7317 }
7318
7319 static void chv_compute_dpll(struct intel_crtc *crtc,
7320 struct intel_crtc_state *pipe_config)
7321 {
7322 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7323 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7324 DPLL_VCO_ENABLE;
7325 if (crtc->pipe != PIPE_A)
7326 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7327
7328 pipe_config->dpll_hw_state.dpll_md =
7329 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7330 }
7331
7332 static void chv_prepare_pll(struct intel_crtc *crtc,
7333 const struct intel_crtc_state *pipe_config)
7334 {
7335 struct drm_device *dev = crtc->base.dev;
7336 struct drm_i915_private *dev_priv = dev->dev_private;
7337 int pipe = crtc->pipe;
7338 int dpll_reg = DPLL(crtc->pipe);
7339 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7340 u32 loopfilter, tribuf_calcntr;
7341 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7342 u32 dpio_val;
7343 int vco;
7344
7345 bestn = pipe_config->dpll.n;
7346 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7347 bestm1 = pipe_config->dpll.m1;
7348 bestm2 = pipe_config->dpll.m2 >> 22;
7349 bestp1 = pipe_config->dpll.p1;
7350 bestp2 = pipe_config->dpll.p2;
7351 vco = pipe_config->dpll.vco;
7352 dpio_val = 0;
7353 loopfilter = 0;
7354
7355 /*
7356 * Enable Refclk and SSC
7357 */
7358 I915_WRITE(dpll_reg,
7359 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7360
7361 mutex_lock(&dev_priv->sb_lock);
7362
7363 /* p1 and p2 divider */
7364 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7365 5 << DPIO_CHV_S1_DIV_SHIFT |
7366 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7367 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7368 1 << DPIO_CHV_K_DIV_SHIFT);
7369
7370 /* Feedback post-divider - m2 */
7371 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7372
7373 /* Feedback refclk divider - n and m1 */
7374 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7375 DPIO_CHV_M1_DIV_BY_2 |
7376 1 << DPIO_CHV_N_DIV_SHIFT);
7377
7378 /* M2 fraction division */
7379 if (bestm2_frac)
7380 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7381
7382 /* M2 fraction division enable */
7383 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7384 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7385 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7386 if (bestm2_frac)
7387 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7388 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7389
7390 /* Program digital lock detect threshold */
7391 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7392 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7393 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7394 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7395 if (!bestm2_frac)
7396 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7397 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7398
7399 /* Loop filter */
7400 if (vco == 5400000) {
7401 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7402 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7403 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7404 tribuf_calcntr = 0x9;
7405 } else if (vco <= 6200000) {
7406 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7407 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7408 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7409 tribuf_calcntr = 0x9;
7410 } else if (vco <= 6480000) {
7411 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7412 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7413 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7414 tribuf_calcntr = 0x8;
7415 } else {
7416 /* Not supported. Apply the same limits as in the max case */
7417 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7418 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7419 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7420 tribuf_calcntr = 0;
7421 }
7422 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7423
7424 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7425 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7426 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7427 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7428
7429 /* AFC Recal */
7430 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7431 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7432 DPIO_AFC_RECAL);
7433
7434 mutex_unlock(&dev_priv->sb_lock);
7435 }
7436
7437 /**
7438 * vlv_force_pll_on - forcibly enable just the PLL
7439 * @dev_priv: i915 private structure
7440 * @pipe: pipe PLL to enable
7441 * @dpll: PLL configuration
7442 *
7443 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7444 * in cases where we need the PLL enabled even when @pipe is not going to
7445 * be enabled.
7446 */
7447 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7448 const struct dpll *dpll)
7449 {
7450 struct intel_crtc *crtc =
7451 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7452 struct intel_crtc_state pipe_config = {
7453 .base.crtc = &crtc->base,
7454 .pixel_multiplier = 1,
7455 .dpll = *dpll,
7456 };
7457
7458 if (IS_CHERRYVIEW(dev)) {
7459 chv_compute_dpll(crtc, &pipe_config);
7460 chv_prepare_pll(crtc, &pipe_config);
7461 chv_enable_pll(crtc, &pipe_config);
7462 } else {
7463 vlv_compute_dpll(crtc, &pipe_config);
7464 vlv_prepare_pll(crtc, &pipe_config);
7465 vlv_enable_pll(crtc, &pipe_config);
7466 }
7467 }
7468
7469 /**
7470 * vlv_force_pll_off - forcibly disable just the PLL
7471 * @dev_priv: i915 private structure
7472 * @pipe: pipe PLL to disable
7473 *
7474 * Disable the PLL for @pipe. To be used in cases where we need
7475 * the PLL enabled even when @pipe is not going to be enabled.
7476 */
7477 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7478 {
7479 if (IS_CHERRYVIEW(dev))
7480 chv_disable_pll(to_i915(dev), pipe);
7481 else
7482 vlv_disable_pll(to_i915(dev), pipe);
7483 }
7484
7485 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7486 struct intel_crtc_state *crtc_state,
7487 intel_clock_t *reduced_clock,
7488 int num_connectors)
7489 {
7490 struct drm_device *dev = crtc->base.dev;
7491 struct drm_i915_private *dev_priv = dev->dev_private;
7492 u32 dpll;
7493 bool is_sdvo;
7494 struct dpll *clock = &crtc_state->dpll;
7495
7496 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7497
7498 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7499 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7500
7501 dpll = DPLL_VGA_MODE_DIS;
7502
7503 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7504 dpll |= DPLLB_MODE_LVDS;
7505 else
7506 dpll |= DPLLB_MODE_DAC_SERIAL;
7507
7508 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7509 dpll |= (crtc_state->pixel_multiplier - 1)
7510 << SDVO_MULTIPLIER_SHIFT_HIRES;
7511 }
7512
7513 if (is_sdvo)
7514 dpll |= DPLL_SDVO_HIGH_SPEED;
7515
7516 if (crtc_state->has_dp_encoder)
7517 dpll |= DPLL_SDVO_HIGH_SPEED;
7518
7519 /* compute bitmask from p1 value */
7520 if (IS_PINEVIEW(dev))
7521 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7522 else {
7523 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7524 if (IS_G4X(dev) && reduced_clock)
7525 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7526 }
7527 switch (clock->p2) {
7528 case 5:
7529 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7530 break;
7531 case 7:
7532 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7533 break;
7534 case 10:
7535 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7536 break;
7537 case 14:
7538 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7539 break;
7540 }
7541 if (INTEL_INFO(dev)->gen >= 4)
7542 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7543
7544 if (crtc_state->sdvo_tv_clock)
7545 dpll |= PLL_REF_INPUT_TVCLKINBC;
7546 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7547 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7548 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7549 else
7550 dpll |= PLL_REF_INPUT_DREFCLK;
7551
7552 dpll |= DPLL_VCO_ENABLE;
7553 crtc_state->dpll_hw_state.dpll = dpll;
7554
7555 if (INTEL_INFO(dev)->gen >= 4) {
7556 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7557 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7558 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7559 }
7560 }
7561
7562 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7563 struct intel_crtc_state *crtc_state,
7564 intel_clock_t *reduced_clock,
7565 int num_connectors)
7566 {
7567 struct drm_device *dev = crtc->base.dev;
7568 struct drm_i915_private *dev_priv = dev->dev_private;
7569 u32 dpll;
7570 struct dpll *clock = &crtc_state->dpll;
7571
7572 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7573
7574 dpll = DPLL_VGA_MODE_DIS;
7575
7576 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7577 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7578 } else {
7579 if (clock->p1 == 2)
7580 dpll |= PLL_P1_DIVIDE_BY_TWO;
7581 else
7582 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7583 if (clock->p2 == 4)
7584 dpll |= PLL_P2_DIVIDE_BY_4;
7585 }
7586
7587 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7588 dpll |= DPLL_DVO_2X_MODE;
7589
7590 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7591 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7592 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7593 else
7594 dpll |= PLL_REF_INPUT_DREFCLK;
7595
7596 dpll |= DPLL_VCO_ENABLE;
7597 crtc_state->dpll_hw_state.dpll = dpll;
7598 }
7599
7600 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7601 {
7602 struct drm_device *dev = intel_crtc->base.dev;
7603 struct drm_i915_private *dev_priv = dev->dev_private;
7604 enum pipe pipe = intel_crtc->pipe;
7605 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7606 struct drm_display_mode *adjusted_mode =
7607 &intel_crtc->config->base.adjusted_mode;
7608 uint32_t crtc_vtotal, crtc_vblank_end;
7609 int vsyncshift = 0;
7610
7611 /* We need to be careful not to changed the adjusted mode, for otherwise
7612 * the hw state checker will get angry at the mismatch. */
7613 crtc_vtotal = adjusted_mode->crtc_vtotal;
7614 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7615
7616 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7617 /* the chip adds 2 halflines automatically */
7618 crtc_vtotal -= 1;
7619 crtc_vblank_end -= 1;
7620
7621 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7622 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7623 else
7624 vsyncshift = adjusted_mode->crtc_hsync_start -
7625 adjusted_mode->crtc_htotal / 2;
7626 if (vsyncshift < 0)
7627 vsyncshift += adjusted_mode->crtc_htotal;
7628 }
7629
7630 if (INTEL_INFO(dev)->gen > 3)
7631 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7632
7633 I915_WRITE(HTOTAL(cpu_transcoder),
7634 (adjusted_mode->crtc_hdisplay - 1) |
7635 ((adjusted_mode->crtc_htotal - 1) << 16));
7636 I915_WRITE(HBLANK(cpu_transcoder),
7637 (adjusted_mode->crtc_hblank_start - 1) |
7638 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7639 I915_WRITE(HSYNC(cpu_transcoder),
7640 (adjusted_mode->crtc_hsync_start - 1) |
7641 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7642
7643 I915_WRITE(VTOTAL(cpu_transcoder),
7644 (adjusted_mode->crtc_vdisplay - 1) |
7645 ((crtc_vtotal - 1) << 16));
7646 I915_WRITE(VBLANK(cpu_transcoder),
7647 (adjusted_mode->crtc_vblank_start - 1) |
7648 ((crtc_vblank_end - 1) << 16));
7649 I915_WRITE(VSYNC(cpu_transcoder),
7650 (adjusted_mode->crtc_vsync_start - 1) |
7651 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7652
7653 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7654 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7655 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7656 * bits. */
7657 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7658 (pipe == PIPE_B || pipe == PIPE_C))
7659 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7660
7661 /* pipesrc controls the size that is scaled from, which should
7662 * always be the user's requested size.
7663 */
7664 I915_WRITE(PIPESRC(pipe),
7665 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7666 (intel_crtc->config->pipe_src_h - 1));
7667 }
7668
7669 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7670 struct intel_crtc_state *pipe_config)
7671 {
7672 struct drm_device *dev = crtc->base.dev;
7673 struct drm_i915_private *dev_priv = dev->dev_private;
7674 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7675 uint32_t tmp;
7676
7677 tmp = I915_READ(HTOTAL(cpu_transcoder));
7678 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7679 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7680 tmp = I915_READ(HBLANK(cpu_transcoder));
7681 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7682 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7683 tmp = I915_READ(HSYNC(cpu_transcoder));
7684 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7685 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7686
7687 tmp = I915_READ(VTOTAL(cpu_transcoder));
7688 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7689 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7690 tmp = I915_READ(VBLANK(cpu_transcoder));
7691 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7692 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7693 tmp = I915_READ(VSYNC(cpu_transcoder));
7694 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7695 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7696
7697 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7698 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7699 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7700 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7701 }
7702
7703 tmp = I915_READ(PIPESRC(crtc->pipe));
7704 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7705 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7706
7707 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7708 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7709 }
7710
7711 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7712 struct intel_crtc_state *pipe_config)
7713 {
7714 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7715 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7716 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7717 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7718
7719 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7720 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7721 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7722 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7723
7724 mode->flags = pipe_config->base.adjusted_mode.flags;
7725 mode->type = DRM_MODE_TYPE_DRIVER;
7726
7727 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7728 mode->flags |= pipe_config->base.adjusted_mode.flags;
7729
7730 mode->hsync = drm_mode_hsync(mode);
7731 mode->vrefresh = drm_mode_vrefresh(mode);
7732 drm_mode_set_name(mode);
7733 }
7734
7735 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7736 {
7737 struct drm_device *dev = intel_crtc->base.dev;
7738 struct drm_i915_private *dev_priv = dev->dev_private;
7739 uint32_t pipeconf;
7740
7741 pipeconf = 0;
7742
7743 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7744 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7745 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7746
7747 if (intel_crtc->config->double_wide)
7748 pipeconf |= PIPECONF_DOUBLE_WIDE;
7749
7750 /* only g4x and later have fancy bpc/dither controls */
7751 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7752 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7753 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7754 pipeconf |= PIPECONF_DITHER_EN |
7755 PIPECONF_DITHER_TYPE_SP;
7756
7757 switch (intel_crtc->config->pipe_bpp) {
7758 case 18:
7759 pipeconf |= PIPECONF_6BPC;
7760 break;
7761 case 24:
7762 pipeconf |= PIPECONF_8BPC;
7763 break;
7764 case 30:
7765 pipeconf |= PIPECONF_10BPC;
7766 break;
7767 default:
7768 /* Case prevented by intel_choose_pipe_bpp_dither. */
7769 BUG();
7770 }
7771 }
7772
7773 if (HAS_PIPE_CXSR(dev)) {
7774 if (intel_crtc->lowfreq_avail) {
7775 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7776 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7777 } else {
7778 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7779 }
7780 }
7781
7782 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7783 if (INTEL_INFO(dev)->gen < 4 ||
7784 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7785 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7786 else
7787 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7788 } else
7789 pipeconf |= PIPECONF_PROGRESSIVE;
7790
7791 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7792 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7793
7794 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7795 POSTING_READ(PIPECONF(intel_crtc->pipe));
7796 }
7797
7798 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7799 struct intel_crtc_state *crtc_state)
7800 {
7801 struct drm_device *dev = crtc->base.dev;
7802 struct drm_i915_private *dev_priv = dev->dev_private;
7803 int refclk, num_connectors = 0;
7804 intel_clock_t clock;
7805 bool ok;
7806 bool is_dsi = false;
7807 struct intel_encoder *encoder;
7808 const intel_limit_t *limit;
7809 struct drm_atomic_state *state = crtc_state->base.state;
7810 struct drm_connector *connector;
7811 struct drm_connector_state *connector_state;
7812 int i;
7813
7814 memset(&crtc_state->dpll_hw_state, 0,
7815 sizeof(crtc_state->dpll_hw_state));
7816
7817 for_each_connector_in_state(state, connector, connector_state, i) {
7818 if (connector_state->crtc != &crtc->base)
7819 continue;
7820
7821 encoder = to_intel_encoder(connector_state->best_encoder);
7822
7823 switch (encoder->type) {
7824 case INTEL_OUTPUT_DSI:
7825 is_dsi = true;
7826 break;
7827 default:
7828 break;
7829 }
7830
7831 num_connectors++;
7832 }
7833
7834 if (is_dsi)
7835 return 0;
7836
7837 if (!crtc_state->clock_set) {
7838 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7839
7840 /*
7841 * Returns a set of divisors for the desired target clock with
7842 * the given refclk, or FALSE. The returned values represent
7843 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7844 * 2) / p1 / p2.
7845 */
7846 limit = intel_limit(crtc_state, refclk);
7847 ok = dev_priv->display.find_dpll(limit, crtc_state,
7848 crtc_state->port_clock,
7849 refclk, NULL, &clock);
7850 if (!ok) {
7851 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7852 return -EINVAL;
7853 }
7854
7855 /* Compat-code for transition, will disappear. */
7856 crtc_state->dpll.n = clock.n;
7857 crtc_state->dpll.m1 = clock.m1;
7858 crtc_state->dpll.m2 = clock.m2;
7859 crtc_state->dpll.p1 = clock.p1;
7860 crtc_state->dpll.p2 = clock.p2;
7861 }
7862
7863 if (IS_GEN2(dev)) {
7864 i8xx_compute_dpll(crtc, crtc_state, NULL,
7865 num_connectors);
7866 } else if (IS_CHERRYVIEW(dev)) {
7867 chv_compute_dpll(crtc, crtc_state);
7868 } else if (IS_VALLEYVIEW(dev)) {
7869 vlv_compute_dpll(crtc, crtc_state);
7870 } else {
7871 i9xx_compute_dpll(crtc, crtc_state, NULL,
7872 num_connectors);
7873 }
7874
7875 return 0;
7876 }
7877
7878 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7879 struct intel_crtc_state *pipe_config)
7880 {
7881 struct drm_device *dev = crtc->base.dev;
7882 struct drm_i915_private *dev_priv = dev->dev_private;
7883 uint32_t tmp;
7884
7885 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7886 return;
7887
7888 tmp = I915_READ(PFIT_CONTROL);
7889 if (!(tmp & PFIT_ENABLE))
7890 return;
7891
7892 /* Check whether the pfit is attached to our pipe. */
7893 if (INTEL_INFO(dev)->gen < 4) {
7894 if (crtc->pipe != PIPE_B)
7895 return;
7896 } else {
7897 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7898 return;
7899 }
7900
7901 pipe_config->gmch_pfit.control = tmp;
7902 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7903 if (INTEL_INFO(dev)->gen < 5)
7904 pipe_config->gmch_pfit.lvds_border_bits =
7905 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7906 }
7907
7908 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7909 struct intel_crtc_state *pipe_config)
7910 {
7911 struct drm_device *dev = crtc->base.dev;
7912 struct drm_i915_private *dev_priv = dev->dev_private;
7913 int pipe = pipe_config->cpu_transcoder;
7914 intel_clock_t clock;
7915 u32 mdiv;
7916 int refclk = 100000;
7917
7918 /* In case of MIPI DPLL will not even be used */
7919 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7920 return;
7921
7922 mutex_lock(&dev_priv->sb_lock);
7923 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7924 mutex_unlock(&dev_priv->sb_lock);
7925
7926 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7927 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7928 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7929 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7930 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7931
7932 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7933 }
7934
7935 static void
7936 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7937 struct intel_initial_plane_config *plane_config)
7938 {
7939 struct drm_device *dev = crtc->base.dev;
7940 struct drm_i915_private *dev_priv = dev->dev_private;
7941 u32 val, base, offset;
7942 int pipe = crtc->pipe, plane = crtc->plane;
7943 int fourcc, pixel_format;
7944 unsigned int aligned_height;
7945 struct drm_framebuffer *fb;
7946 struct intel_framebuffer *intel_fb;
7947
7948 val = I915_READ(DSPCNTR(plane));
7949 if (!(val & DISPLAY_PLANE_ENABLE))
7950 return;
7951
7952 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7953 if (!intel_fb) {
7954 DRM_DEBUG_KMS("failed to alloc fb\n");
7955 return;
7956 }
7957
7958 fb = &intel_fb->base;
7959
7960 if (INTEL_INFO(dev)->gen >= 4) {
7961 if (val & DISPPLANE_TILED) {
7962 plane_config->tiling = I915_TILING_X;
7963 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7964 }
7965 }
7966
7967 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7968 fourcc = i9xx_format_to_fourcc(pixel_format);
7969 fb->pixel_format = fourcc;
7970 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7971
7972 if (INTEL_INFO(dev)->gen >= 4) {
7973 if (plane_config->tiling)
7974 offset = I915_READ(DSPTILEOFF(plane));
7975 else
7976 offset = I915_READ(DSPLINOFF(plane));
7977 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7978 } else {
7979 base = I915_READ(DSPADDR(plane));
7980 }
7981 plane_config->base = base;
7982
7983 val = I915_READ(PIPESRC(pipe));
7984 fb->width = ((val >> 16) & 0xfff) + 1;
7985 fb->height = ((val >> 0) & 0xfff) + 1;
7986
7987 val = I915_READ(DSPSTRIDE(pipe));
7988 fb->pitches[0] = val & 0xffffffc0;
7989
7990 aligned_height = intel_fb_align_height(dev, fb->height,
7991 fb->pixel_format,
7992 fb->modifier[0]);
7993
7994 plane_config->size = fb->pitches[0] * aligned_height;
7995
7996 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7997 pipe_name(pipe), plane, fb->width, fb->height,
7998 fb->bits_per_pixel, base, fb->pitches[0],
7999 plane_config->size);
8000
8001 plane_config->fb = intel_fb;
8002 }
8003
8004 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8005 struct intel_crtc_state *pipe_config)
8006 {
8007 struct drm_device *dev = crtc->base.dev;
8008 struct drm_i915_private *dev_priv = dev->dev_private;
8009 int pipe = pipe_config->cpu_transcoder;
8010 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8011 intel_clock_t clock;
8012 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8013 int refclk = 100000;
8014
8015 mutex_lock(&dev_priv->sb_lock);
8016 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8017 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8018 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8019 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8020 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8021 mutex_unlock(&dev_priv->sb_lock);
8022
8023 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8024 clock.m2 = (pll_dw0 & 0xff) << 22;
8025 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8026 clock.m2 |= pll_dw2 & 0x3fffff;
8027 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8028 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8029 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8030
8031 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8032 }
8033
8034 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8035 struct intel_crtc_state *pipe_config)
8036 {
8037 struct drm_device *dev = crtc->base.dev;
8038 struct drm_i915_private *dev_priv = dev->dev_private;
8039 uint32_t tmp;
8040
8041 if (!intel_display_power_is_enabled(dev_priv,
8042 POWER_DOMAIN_PIPE(crtc->pipe)))
8043 return false;
8044
8045 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8046 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8047
8048 tmp = I915_READ(PIPECONF(crtc->pipe));
8049 if (!(tmp & PIPECONF_ENABLE))
8050 return false;
8051
8052 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8053 switch (tmp & PIPECONF_BPC_MASK) {
8054 case PIPECONF_6BPC:
8055 pipe_config->pipe_bpp = 18;
8056 break;
8057 case PIPECONF_8BPC:
8058 pipe_config->pipe_bpp = 24;
8059 break;
8060 case PIPECONF_10BPC:
8061 pipe_config->pipe_bpp = 30;
8062 break;
8063 default:
8064 break;
8065 }
8066 }
8067
8068 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8069 pipe_config->limited_color_range = true;
8070
8071 if (INTEL_INFO(dev)->gen < 4)
8072 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8073
8074 intel_get_pipe_timings(crtc, pipe_config);
8075
8076 i9xx_get_pfit_config(crtc, pipe_config);
8077
8078 if (INTEL_INFO(dev)->gen >= 4) {
8079 tmp = I915_READ(DPLL_MD(crtc->pipe));
8080 pipe_config->pixel_multiplier =
8081 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8082 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8083 pipe_config->dpll_hw_state.dpll_md = tmp;
8084 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8085 tmp = I915_READ(DPLL(crtc->pipe));
8086 pipe_config->pixel_multiplier =
8087 ((tmp & SDVO_MULTIPLIER_MASK)
8088 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8089 } else {
8090 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8091 * port and will be fixed up in the encoder->get_config
8092 * function. */
8093 pipe_config->pixel_multiplier = 1;
8094 }
8095 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8096 if (!IS_VALLEYVIEW(dev)) {
8097 /*
8098 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8099 * on 830. Filter it out here so that we don't
8100 * report errors due to that.
8101 */
8102 if (IS_I830(dev))
8103 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8104
8105 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8106 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8107 } else {
8108 /* Mask out read-only status bits. */
8109 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8110 DPLL_PORTC_READY_MASK |
8111 DPLL_PORTB_READY_MASK);
8112 }
8113
8114 if (IS_CHERRYVIEW(dev))
8115 chv_crtc_clock_get(crtc, pipe_config);
8116 else if (IS_VALLEYVIEW(dev))
8117 vlv_crtc_clock_get(crtc, pipe_config);
8118 else
8119 i9xx_crtc_clock_get(crtc, pipe_config);
8120
8121 return true;
8122 }
8123
8124 static void ironlake_init_pch_refclk(struct drm_device *dev)
8125 {
8126 struct drm_i915_private *dev_priv = dev->dev_private;
8127 struct intel_encoder *encoder;
8128 u32 val, final;
8129 bool has_lvds = false;
8130 bool has_cpu_edp = false;
8131 bool has_panel = false;
8132 bool has_ck505 = false;
8133 bool can_ssc = false;
8134
8135 /* We need to take the global config into account */
8136 for_each_intel_encoder(dev, encoder) {
8137 switch (encoder->type) {
8138 case INTEL_OUTPUT_LVDS:
8139 has_panel = true;
8140 has_lvds = true;
8141 break;
8142 case INTEL_OUTPUT_EDP:
8143 has_panel = true;
8144 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8145 has_cpu_edp = true;
8146 break;
8147 default:
8148 break;
8149 }
8150 }
8151
8152 if (HAS_PCH_IBX(dev)) {
8153 has_ck505 = dev_priv->vbt.display_clock_mode;
8154 can_ssc = has_ck505;
8155 } else {
8156 has_ck505 = false;
8157 can_ssc = true;
8158 }
8159
8160 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8161 has_panel, has_lvds, has_ck505);
8162
8163 /* Ironlake: try to setup display ref clock before DPLL
8164 * enabling. This is only under driver's control after
8165 * PCH B stepping, previous chipset stepping should be
8166 * ignoring this setting.
8167 */
8168 val = I915_READ(PCH_DREF_CONTROL);
8169
8170 /* As we must carefully and slowly disable/enable each source in turn,
8171 * compute the final state we want first and check if we need to
8172 * make any changes at all.
8173 */
8174 final = val;
8175 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8176 if (has_ck505)
8177 final |= DREF_NONSPREAD_CK505_ENABLE;
8178 else
8179 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8180
8181 final &= ~DREF_SSC_SOURCE_MASK;
8182 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8183 final &= ~DREF_SSC1_ENABLE;
8184
8185 if (has_panel) {
8186 final |= DREF_SSC_SOURCE_ENABLE;
8187
8188 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8189 final |= DREF_SSC1_ENABLE;
8190
8191 if (has_cpu_edp) {
8192 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8193 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8194 else
8195 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8196 } else
8197 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8198 } else {
8199 final |= DREF_SSC_SOURCE_DISABLE;
8200 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8201 }
8202
8203 if (final == val)
8204 return;
8205
8206 /* Always enable nonspread source */
8207 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8208
8209 if (has_ck505)
8210 val |= DREF_NONSPREAD_CK505_ENABLE;
8211 else
8212 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8213
8214 if (has_panel) {
8215 val &= ~DREF_SSC_SOURCE_MASK;
8216 val |= DREF_SSC_SOURCE_ENABLE;
8217
8218 /* SSC must be turned on before enabling the CPU output */
8219 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8220 DRM_DEBUG_KMS("Using SSC on panel\n");
8221 val |= DREF_SSC1_ENABLE;
8222 } else
8223 val &= ~DREF_SSC1_ENABLE;
8224
8225 /* Get SSC going before enabling the outputs */
8226 I915_WRITE(PCH_DREF_CONTROL, val);
8227 POSTING_READ(PCH_DREF_CONTROL);
8228 udelay(200);
8229
8230 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8231
8232 /* Enable CPU source on CPU attached eDP */
8233 if (has_cpu_edp) {
8234 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8235 DRM_DEBUG_KMS("Using SSC on eDP\n");
8236 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8237 } else
8238 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8239 } else
8240 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8241
8242 I915_WRITE(PCH_DREF_CONTROL, val);
8243 POSTING_READ(PCH_DREF_CONTROL);
8244 udelay(200);
8245 } else {
8246 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8247
8248 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8249
8250 /* Turn off CPU output */
8251 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8252
8253 I915_WRITE(PCH_DREF_CONTROL, val);
8254 POSTING_READ(PCH_DREF_CONTROL);
8255 udelay(200);
8256
8257 /* Turn off the SSC source */
8258 val &= ~DREF_SSC_SOURCE_MASK;
8259 val |= DREF_SSC_SOURCE_DISABLE;
8260
8261 /* Turn off SSC1 */
8262 val &= ~DREF_SSC1_ENABLE;
8263
8264 I915_WRITE(PCH_DREF_CONTROL, val);
8265 POSTING_READ(PCH_DREF_CONTROL);
8266 udelay(200);
8267 }
8268
8269 BUG_ON(val != final);
8270 }
8271
8272 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8273 {
8274 uint32_t tmp;
8275
8276 tmp = I915_READ(SOUTH_CHICKEN2);
8277 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8278 I915_WRITE(SOUTH_CHICKEN2, tmp);
8279
8280 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8281 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8282 DRM_ERROR("FDI mPHY reset assert timeout\n");
8283
8284 tmp = I915_READ(SOUTH_CHICKEN2);
8285 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8286 I915_WRITE(SOUTH_CHICKEN2, tmp);
8287
8288 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8289 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8290 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8291 }
8292
8293 /* WaMPhyProgramming:hsw */
8294 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8295 {
8296 uint32_t tmp;
8297
8298 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8299 tmp &= ~(0xFF << 24);
8300 tmp |= (0x12 << 24);
8301 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8302
8303 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8304 tmp |= (1 << 11);
8305 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8306
8307 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8308 tmp |= (1 << 11);
8309 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8310
8311 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8312 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8313 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8314
8315 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8316 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8317 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8318
8319 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8320 tmp &= ~(7 << 13);
8321 tmp |= (5 << 13);
8322 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8323
8324 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8325 tmp &= ~(7 << 13);
8326 tmp |= (5 << 13);
8327 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8328
8329 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8330 tmp &= ~0xFF;
8331 tmp |= 0x1C;
8332 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8333
8334 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8335 tmp &= ~0xFF;
8336 tmp |= 0x1C;
8337 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8338
8339 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8340 tmp &= ~(0xFF << 16);
8341 tmp |= (0x1C << 16);
8342 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8343
8344 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8345 tmp &= ~(0xFF << 16);
8346 tmp |= (0x1C << 16);
8347 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8348
8349 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8350 tmp |= (1 << 27);
8351 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8352
8353 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8354 tmp |= (1 << 27);
8355 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8356
8357 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8358 tmp &= ~(0xF << 28);
8359 tmp |= (4 << 28);
8360 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8361
8362 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8363 tmp &= ~(0xF << 28);
8364 tmp |= (4 << 28);
8365 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8366 }
8367
8368 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8369 * Programming" based on the parameters passed:
8370 * - Sequence to enable CLKOUT_DP
8371 * - Sequence to enable CLKOUT_DP without spread
8372 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8373 */
8374 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8375 bool with_fdi)
8376 {
8377 struct drm_i915_private *dev_priv = dev->dev_private;
8378 uint32_t reg, tmp;
8379
8380 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8381 with_spread = true;
8382 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8383 with_fdi, "LP PCH doesn't have FDI\n"))
8384 with_fdi = false;
8385
8386 mutex_lock(&dev_priv->sb_lock);
8387
8388 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8389 tmp &= ~SBI_SSCCTL_DISABLE;
8390 tmp |= SBI_SSCCTL_PATHALT;
8391 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8392
8393 udelay(24);
8394
8395 if (with_spread) {
8396 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8397 tmp &= ~SBI_SSCCTL_PATHALT;
8398 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8399
8400 if (with_fdi) {
8401 lpt_reset_fdi_mphy(dev_priv);
8402 lpt_program_fdi_mphy(dev_priv);
8403 }
8404 }
8405
8406 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8407 SBI_GEN0 : SBI_DBUFF0;
8408 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8409 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8410 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8411
8412 mutex_unlock(&dev_priv->sb_lock);
8413 }
8414
8415 /* Sequence to disable CLKOUT_DP */
8416 static void lpt_disable_clkout_dp(struct drm_device *dev)
8417 {
8418 struct drm_i915_private *dev_priv = dev->dev_private;
8419 uint32_t reg, tmp;
8420
8421 mutex_lock(&dev_priv->sb_lock);
8422
8423 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8424 SBI_GEN0 : SBI_DBUFF0;
8425 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8426 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8427 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8428
8429 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8430 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8431 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8432 tmp |= SBI_SSCCTL_PATHALT;
8433 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8434 udelay(32);
8435 }
8436 tmp |= SBI_SSCCTL_DISABLE;
8437 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8438 }
8439
8440 mutex_unlock(&dev_priv->sb_lock);
8441 }
8442
8443 static void lpt_init_pch_refclk(struct drm_device *dev)
8444 {
8445 struct intel_encoder *encoder;
8446 bool has_vga = false;
8447
8448 for_each_intel_encoder(dev, encoder) {
8449 switch (encoder->type) {
8450 case INTEL_OUTPUT_ANALOG:
8451 has_vga = true;
8452 break;
8453 default:
8454 break;
8455 }
8456 }
8457
8458 if (has_vga)
8459 lpt_enable_clkout_dp(dev, true, true);
8460 else
8461 lpt_disable_clkout_dp(dev);
8462 }
8463
8464 /*
8465 * Initialize reference clocks when the driver loads
8466 */
8467 void intel_init_pch_refclk(struct drm_device *dev)
8468 {
8469 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8470 ironlake_init_pch_refclk(dev);
8471 else if (HAS_PCH_LPT(dev))
8472 lpt_init_pch_refclk(dev);
8473 }
8474
8475 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8476 {
8477 struct drm_device *dev = crtc_state->base.crtc->dev;
8478 struct drm_i915_private *dev_priv = dev->dev_private;
8479 struct drm_atomic_state *state = crtc_state->base.state;
8480 struct drm_connector *connector;
8481 struct drm_connector_state *connector_state;
8482 struct intel_encoder *encoder;
8483 int num_connectors = 0, i;
8484 bool is_lvds = false;
8485
8486 for_each_connector_in_state(state, connector, connector_state, i) {
8487 if (connector_state->crtc != crtc_state->base.crtc)
8488 continue;
8489
8490 encoder = to_intel_encoder(connector_state->best_encoder);
8491
8492 switch (encoder->type) {
8493 case INTEL_OUTPUT_LVDS:
8494 is_lvds = true;
8495 break;
8496 default:
8497 break;
8498 }
8499 num_connectors++;
8500 }
8501
8502 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8503 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8504 dev_priv->vbt.lvds_ssc_freq);
8505 return dev_priv->vbt.lvds_ssc_freq;
8506 }
8507
8508 return 120000;
8509 }
8510
8511 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8512 {
8513 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8515 int pipe = intel_crtc->pipe;
8516 uint32_t val;
8517
8518 val = 0;
8519
8520 switch (intel_crtc->config->pipe_bpp) {
8521 case 18:
8522 val |= PIPECONF_6BPC;
8523 break;
8524 case 24:
8525 val |= PIPECONF_8BPC;
8526 break;
8527 case 30:
8528 val |= PIPECONF_10BPC;
8529 break;
8530 case 36:
8531 val |= PIPECONF_12BPC;
8532 break;
8533 default:
8534 /* Case prevented by intel_choose_pipe_bpp_dither. */
8535 BUG();
8536 }
8537
8538 if (intel_crtc->config->dither)
8539 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8540
8541 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8542 val |= PIPECONF_INTERLACED_ILK;
8543 else
8544 val |= PIPECONF_PROGRESSIVE;
8545
8546 if (intel_crtc->config->limited_color_range)
8547 val |= PIPECONF_COLOR_RANGE_SELECT;
8548
8549 I915_WRITE(PIPECONF(pipe), val);
8550 POSTING_READ(PIPECONF(pipe));
8551 }
8552
8553 /*
8554 * Set up the pipe CSC unit.
8555 *
8556 * Currently only full range RGB to limited range RGB conversion
8557 * is supported, but eventually this should handle various
8558 * RGB<->YCbCr scenarios as well.
8559 */
8560 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8561 {
8562 struct drm_device *dev = crtc->dev;
8563 struct drm_i915_private *dev_priv = dev->dev_private;
8564 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8565 int pipe = intel_crtc->pipe;
8566 uint16_t coeff = 0x7800; /* 1.0 */
8567
8568 /*
8569 * TODO: Check what kind of values actually come out of the pipe
8570 * with these coeff/postoff values and adjust to get the best
8571 * accuracy. Perhaps we even need to take the bpc value into
8572 * consideration.
8573 */
8574
8575 if (intel_crtc->config->limited_color_range)
8576 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8577
8578 /*
8579 * GY/GU and RY/RU should be the other way around according
8580 * to BSpec, but reality doesn't agree. Just set them up in
8581 * a way that results in the correct picture.
8582 */
8583 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8584 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8585
8586 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8587 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8588
8589 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8590 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8591
8592 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8593 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8594 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8595
8596 if (INTEL_INFO(dev)->gen > 6) {
8597 uint16_t postoff = 0;
8598
8599 if (intel_crtc->config->limited_color_range)
8600 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8601
8602 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8603 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8604 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8605
8606 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8607 } else {
8608 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8609
8610 if (intel_crtc->config->limited_color_range)
8611 mode |= CSC_BLACK_SCREEN_OFFSET;
8612
8613 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8614 }
8615 }
8616
8617 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8618 {
8619 struct drm_device *dev = crtc->dev;
8620 struct drm_i915_private *dev_priv = dev->dev_private;
8621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8622 enum pipe pipe = intel_crtc->pipe;
8623 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8624 uint32_t val;
8625
8626 val = 0;
8627
8628 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8629 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8630
8631 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8632 val |= PIPECONF_INTERLACED_ILK;
8633 else
8634 val |= PIPECONF_PROGRESSIVE;
8635
8636 I915_WRITE(PIPECONF(cpu_transcoder), val);
8637 POSTING_READ(PIPECONF(cpu_transcoder));
8638
8639 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8640 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8641
8642 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8643 val = 0;
8644
8645 switch (intel_crtc->config->pipe_bpp) {
8646 case 18:
8647 val |= PIPEMISC_DITHER_6_BPC;
8648 break;
8649 case 24:
8650 val |= PIPEMISC_DITHER_8_BPC;
8651 break;
8652 case 30:
8653 val |= PIPEMISC_DITHER_10_BPC;
8654 break;
8655 case 36:
8656 val |= PIPEMISC_DITHER_12_BPC;
8657 break;
8658 default:
8659 /* Case prevented by pipe_config_set_bpp. */
8660 BUG();
8661 }
8662
8663 if (intel_crtc->config->dither)
8664 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8665
8666 I915_WRITE(PIPEMISC(pipe), val);
8667 }
8668 }
8669
8670 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8671 struct intel_crtc_state *crtc_state,
8672 intel_clock_t *clock,
8673 bool *has_reduced_clock,
8674 intel_clock_t *reduced_clock)
8675 {
8676 struct drm_device *dev = crtc->dev;
8677 struct drm_i915_private *dev_priv = dev->dev_private;
8678 int refclk;
8679 const intel_limit_t *limit;
8680 bool ret;
8681
8682 refclk = ironlake_get_refclk(crtc_state);
8683
8684 /*
8685 * Returns a set of divisors for the desired target clock with the given
8686 * refclk, or FALSE. The returned values represent the clock equation:
8687 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8688 */
8689 limit = intel_limit(crtc_state, refclk);
8690 ret = dev_priv->display.find_dpll(limit, crtc_state,
8691 crtc_state->port_clock,
8692 refclk, NULL, clock);
8693 if (!ret)
8694 return false;
8695
8696 return true;
8697 }
8698
8699 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8700 {
8701 /*
8702 * Account for spread spectrum to avoid
8703 * oversubscribing the link. Max center spread
8704 * is 2.5%; use 5% for safety's sake.
8705 */
8706 u32 bps = target_clock * bpp * 21 / 20;
8707 return DIV_ROUND_UP(bps, link_bw * 8);
8708 }
8709
8710 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8711 {
8712 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8713 }
8714
8715 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8716 struct intel_crtc_state *crtc_state,
8717 u32 *fp,
8718 intel_clock_t *reduced_clock, u32 *fp2)
8719 {
8720 struct drm_crtc *crtc = &intel_crtc->base;
8721 struct drm_device *dev = crtc->dev;
8722 struct drm_i915_private *dev_priv = dev->dev_private;
8723 struct drm_atomic_state *state = crtc_state->base.state;
8724 struct drm_connector *connector;
8725 struct drm_connector_state *connector_state;
8726 struct intel_encoder *encoder;
8727 uint32_t dpll;
8728 int factor, num_connectors = 0, i;
8729 bool is_lvds = false, is_sdvo = false;
8730
8731 for_each_connector_in_state(state, connector, connector_state, i) {
8732 if (connector_state->crtc != crtc_state->base.crtc)
8733 continue;
8734
8735 encoder = to_intel_encoder(connector_state->best_encoder);
8736
8737 switch (encoder->type) {
8738 case INTEL_OUTPUT_LVDS:
8739 is_lvds = true;
8740 break;
8741 case INTEL_OUTPUT_SDVO:
8742 case INTEL_OUTPUT_HDMI:
8743 is_sdvo = true;
8744 break;
8745 default:
8746 break;
8747 }
8748
8749 num_connectors++;
8750 }
8751
8752 /* Enable autotuning of the PLL clock (if permissible) */
8753 factor = 21;
8754 if (is_lvds) {
8755 if ((intel_panel_use_ssc(dev_priv) &&
8756 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8757 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8758 factor = 25;
8759 } else if (crtc_state->sdvo_tv_clock)
8760 factor = 20;
8761
8762 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8763 *fp |= FP_CB_TUNE;
8764
8765 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8766 *fp2 |= FP_CB_TUNE;
8767
8768 dpll = 0;
8769
8770 if (is_lvds)
8771 dpll |= DPLLB_MODE_LVDS;
8772 else
8773 dpll |= DPLLB_MODE_DAC_SERIAL;
8774
8775 dpll |= (crtc_state->pixel_multiplier - 1)
8776 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8777
8778 if (is_sdvo)
8779 dpll |= DPLL_SDVO_HIGH_SPEED;
8780 if (crtc_state->has_dp_encoder)
8781 dpll |= DPLL_SDVO_HIGH_SPEED;
8782
8783 /* compute bitmask from p1 value */
8784 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8785 /* also FPA1 */
8786 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8787
8788 switch (crtc_state->dpll.p2) {
8789 case 5:
8790 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8791 break;
8792 case 7:
8793 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8794 break;
8795 case 10:
8796 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8797 break;
8798 case 14:
8799 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8800 break;
8801 }
8802
8803 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8804 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8805 else
8806 dpll |= PLL_REF_INPUT_DREFCLK;
8807
8808 return dpll | DPLL_VCO_ENABLE;
8809 }
8810
8811 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8812 struct intel_crtc_state *crtc_state)
8813 {
8814 struct drm_device *dev = crtc->base.dev;
8815 intel_clock_t clock, reduced_clock;
8816 u32 dpll = 0, fp = 0, fp2 = 0;
8817 bool ok, has_reduced_clock = false;
8818 bool is_lvds = false;
8819 struct intel_shared_dpll *pll;
8820
8821 memset(&crtc_state->dpll_hw_state, 0,
8822 sizeof(crtc_state->dpll_hw_state));
8823
8824 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8825
8826 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8827 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8828
8829 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8830 &has_reduced_clock, &reduced_clock);
8831 if (!ok && !crtc_state->clock_set) {
8832 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8833 return -EINVAL;
8834 }
8835 /* Compat-code for transition, will disappear. */
8836 if (!crtc_state->clock_set) {
8837 crtc_state->dpll.n = clock.n;
8838 crtc_state->dpll.m1 = clock.m1;
8839 crtc_state->dpll.m2 = clock.m2;
8840 crtc_state->dpll.p1 = clock.p1;
8841 crtc_state->dpll.p2 = clock.p2;
8842 }
8843
8844 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8845 if (crtc_state->has_pch_encoder) {
8846 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8847 if (has_reduced_clock)
8848 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8849
8850 dpll = ironlake_compute_dpll(crtc, crtc_state,
8851 &fp, &reduced_clock,
8852 has_reduced_clock ? &fp2 : NULL);
8853
8854 crtc_state->dpll_hw_state.dpll = dpll;
8855 crtc_state->dpll_hw_state.fp0 = fp;
8856 if (has_reduced_clock)
8857 crtc_state->dpll_hw_state.fp1 = fp2;
8858 else
8859 crtc_state->dpll_hw_state.fp1 = fp;
8860
8861 pll = intel_get_shared_dpll(crtc, crtc_state);
8862 if (pll == NULL) {
8863 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8864 pipe_name(crtc->pipe));
8865 return -EINVAL;
8866 }
8867 }
8868
8869 if (is_lvds && has_reduced_clock)
8870 crtc->lowfreq_avail = true;
8871 else
8872 crtc->lowfreq_avail = false;
8873
8874 return 0;
8875 }
8876
8877 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8878 struct intel_link_m_n *m_n)
8879 {
8880 struct drm_device *dev = crtc->base.dev;
8881 struct drm_i915_private *dev_priv = dev->dev_private;
8882 enum pipe pipe = crtc->pipe;
8883
8884 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8885 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8886 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8887 & ~TU_SIZE_MASK;
8888 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8889 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8890 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8891 }
8892
8893 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8894 enum transcoder transcoder,
8895 struct intel_link_m_n *m_n,
8896 struct intel_link_m_n *m2_n2)
8897 {
8898 struct drm_device *dev = crtc->base.dev;
8899 struct drm_i915_private *dev_priv = dev->dev_private;
8900 enum pipe pipe = crtc->pipe;
8901
8902 if (INTEL_INFO(dev)->gen >= 5) {
8903 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8904 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8905 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8906 & ~TU_SIZE_MASK;
8907 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8908 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8909 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8910 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8911 * gen < 8) and if DRRS is supported (to make sure the
8912 * registers are not unnecessarily read).
8913 */
8914 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8915 crtc->config->has_drrs) {
8916 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8917 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8918 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8919 & ~TU_SIZE_MASK;
8920 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8921 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8922 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8923 }
8924 } else {
8925 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8926 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8927 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8928 & ~TU_SIZE_MASK;
8929 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8930 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8931 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8932 }
8933 }
8934
8935 void intel_dp_get_m_n(struct intel_crtc *crtc,
8936 struct intel_crtc_state *pipe_config)
8937 {
8938 if (pipe_config->has_pch_encoder)
8939 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8940 else
8941 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8942 &pipe_config->dp_m_n,
8943 &pipe_config->dp_m2_n2);
8944 }
8945
8946 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8947 struct intel_crtc_state *pipe_config)
8948 {
8949 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8950 &pipe_config->fdi_m_n, NULL);
8951 }
8952
8953 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8954 struct intel_crtc_state *pipe_config)
8955 {
8956 struct drm_device *dev = crtc->base.dev;
8957 struct drm_i915_private *dev_priv = dev->dev_private;
8958 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8959 uint32_t ps_ctrl = 0;
8960 int id = -1;
8961 int i;
8962
8963 /* find scaler attached to this pipe */
8964 for (i = 0; i < crtc->num_scalers; i++) {
8965 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8966 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8967 id = i;
8968 pipe_config->pch_pfit.enabled = true;
8969 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8970 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8971 break;
8972 }
8973 }
8974
8975 scaler_state->scaler_id = id;
8976 if (id >= 0) {
8977 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8978 } else {
8979 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8980 }
8981 }
8982
8983 static void
8984 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8985 struct intel_initial_plane_config *plane_config)
8986 {
8987 struct drm_device *dev = crtc->base.dev;
8988 struct drm_i915_private *dev_priv = dev->dev_private;
8989 u32 val, base, offset, stride_mult, tiling;
8990 int pipe = crtc->pipe;
8991 int fourcc, pixel_format;
8992 unsigned int aligned_height;
8993 struct drm_framebuffer *fb;
8994 struct intel_framebuffer *intel_fb;
8995
8996 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8997 if (!intel_fb) {
8998 DRM_DEBUG_KMS("failed to alloc fb\n");
8999 return;
9000 }
9001
9002 fb = &intel_fb->base;
9003
9004 val = I915_READ(PLANE_CTL(pipe, 0));
9005 if (!(val & PLANE_CTL_ENABLE))
9006 goto error;
9007
9008 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9009 fourcc = skl_format_to_fourcc(pixel_format,
9010 val & PLANE_CTL_ORDER_RGBX,
9011 val & PLANE_CTL_ALPHA_MASK);
9012 fb->pixel_format = fourcc;
9013 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9014
9015 tiling = val & PLANE_CTL_TILED_MASK;
9016 switch (tiling) {
9017 case PLANE_CTL_TILED_LINEAR:
9018 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9019 break;
9020 case PLANE_CTL_TILED_X:
9021 plane_config->tiling = I915_TILING_X;
9022 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9023 break;
9024 case PLANE_CTL_TILED_Y:
9025 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9026 break;
9027 case PLANE_CTL_TILED_YF:
9028 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9029 break;
9030 default:
9031 MISSING_CASE(tiling);
9032 goto error;
9033 }
9034
9035 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9036 plane_config->base = base;
9037
9038 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9039
9040 val = I915_READ(PLANE_SIZE(pipe, 0));
9041 fb->height = ((val >> 16) & 0xfff) + 1;
9042 fb->width = ((val >> 0) & 0x1fff) + 1;
9043
9044 val = I915_READ(PLANE_STRIDE(pipe, 0));
9045 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9046 fb->pixel_format);
9047 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9048
9049 aligned_height = intel_fb_align_height(dev, fb->height,
9050 fb->pixel_format,
9051 fb->modifier[0]);
9052
9053 plane_config->size = fb->pitches[0] * aligned_height;
9054
9055 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9056 pipe_name(pipe), fb->width, fb->height,
9057 fb->bits_per_pixel, base, fb->pitches[0],
9058 plane_config->size);
9059
9060 plane_config->fb = intel_fb;
9061 return;
9062
9063 error:
9064 kfree(fb);
9065 }
9066
9067 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9068 struct intel_crtc_state *pipe_config)
9069 {
9070 struct drm_device *dev = crtc->base.dev;
9071 struct drm_i915_private *dev_priv = dev->dev_private;
9072 uint32_t tmp;
9073
9074 tmp = I915_READ(PF_CTL(crtc->pipe));
9075
9076 if (tmp & PF_ENABLE) {
9077 pipe_config->pch_pfit.enabled = true;
9078 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9079 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9080
9081 /* We currently do not free assignements of panel fitters on
9082 * ivb/hsw (since we don't use the higher upscaling modes which
9083 * differentiates them) so just WARN about this case for now. */
9084 if (IS_GEN7(dev)) {
9085 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9086 PF_PIPE_SEL_IVB(crtc->pipe));
9087 }
9088 }
9089 }
9090
9091 static void
9092 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9093 struct intel_initial_plane_config *plane_config)
9094 {
9095 struct drm_device *dev = crtc->base.dev;
9096 struct drm_i915_private *dev_priv = dev->dev_private;
9097 u32 val, base, offset;
9098 int pipe = crtc->pipe;
9099 int fourcc, pixel_format;
9100 unsigned int aligned_height;
9101 struct drm_framebuffer *fb;
9102 struct intel_framebuffer *intel_fb;
9103
9104 val = I915_READ(DSPCNTR(pipe));
9105 if (!(val & DISPLAY_PLANE_ENABLE))
9106 return;
9107
9108 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9109 if (!intel_fb) {
9110 DRM_DEBUG_KMS("failed to alloc fb\n");
9111 return;
9112 }
9113
9114 fb = &intel_fb->base;
9115
9116 if (INTEL_INFO(dev)->gen >= 4) {
9117 if (val & DISPPLANE_TILED) {
9118 plane_config->tiling = I915_TILING_X;
9119 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9120 }
9121 }
9122
9123 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9124 fourcc = i9xx_format_to_fourcc(pixel_format);
9125 fb->pixel_format = fourcc;
9126 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9127
9128 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9129 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9130 offset = I915_READ(DSPOFFSET(pipe));
9131 } else {
9132 if (plane_config->tiling)
9133 offset = I915_READ(DSPTILEOFF(pipe));
9134 else
9135 offset = I915_READ(DSPLINOFF(pipe));
9136 }
9137 plane_config->base = base;
9138
9139 val = I915_READ(PIPESRC(pipe));
9140 fb->width = ((val >> 16) & 0xfff) + 1;
9141 fb->height = ((val >> 0) & 0xfff) + 1;
9142
9143 val = I915_READ(DSPSTRIDE(pipe));
9144 fb->pitches[0] = val & 0xffffffc0;
9145
9146 aligned_height = intel_fb_align_height(dev, fb->height,
9147 fb->pixel_format,
9148 fb->modifier[0]);
9149
9150 plane_config->size = fb->pitches[0] * aligned_height;
9151
9152 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9153 pipe_name(pipe), fb->width, fb->height,
9154 fb->bits_per_pixel, base, fb->pitches[0],
9155 plane_config->size);
9156
9157 plane_config->fb = intel_fb;
9158 }
9159
9160 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9161 struct intel_crtc_state *pipe_config)
9162 {
9163 struct drm_device *dev = crtc->base.dev;
9164 struct drm_i915_private *dev_priv = dev->dev_private;
9165 uint32_t tmp;
9166
9167 if (!intel_display_power_is_enabled(dev_priv,
9168 POWER_DOMAIN_PIPE(crtc->pipe)))
9169 return false;
9170
9171 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9172 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9173
9174 tmp = I915_READ(PIPECONF(crtc->pipe));
9175 if (!(tmp & PIPECONF_ENABLE))
9176 return false;
9177
9178 switch (tmp & PIPECONF_BPC_MASK) {
9179 case PIPECONF_6BPC:
9180 pipe_config->pipe_bpp = 18;
9181 break;
9182 case PIPECONF_8BPC:
9183 pipe_config->pipe_bpp = 24;
9184 break;
9185 case PIPECONF_10BPC:
9186 pipe_config->pipe_bpp = 30;
9187 break;
9188 case PIPECONF_12BPC:
9189 pipe_config->pipe_bpp = 36;
9190 break;
9191 default:
9192 break;
9193 }
9194
9195 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9196 pipe_config->limited_color_range = true;
9197
9198 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9199 struct intel_shared_dpll *pll;
9200
9201 pipe_config->has_pch_encoder = true;
9202
9203 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9204 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9205 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9206
9207 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9208
9209 if (HAS_PCH_IBX(dev_priv->dev)) {
9210 pipe_config->shared_dpll =
9211 (enum intel_dpll_id) crtc->pipe;
9212 } else {
9213 tmp = I915_READ(PCH_DPLL_SEL);
9214 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9215 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9216 else
9217 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9218 }
9219
9220 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9221
9222 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9223 &pipe_config->dpll_hw_state));
9224
9225 tmp = pipe_config->dpll_hw_state.dpll;
9226 pipe_config->pixel_multiplier =
9227 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9228 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9229
9230 ironlake_pch_clock_get(crtc, pipe_config);
9231 } else {
9232 pipe_config->pixel_multiplier = 1;
9233 }
9234
9235 intel_get_pipe_timings(crtc, pipe_config);
9236
9237 ironlake_get_pfit_config(crtc, pipe_config);
9238
9239 return true;
9240 }
9241
9242 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9243 {
9244 struct drm_device *dev = dev_priv->dev;
9245 struct intel_crtc *crtc;
9246
9247 for_each_intel_crtc(dev, crtc)
9248 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9249 pipe_name(crtc->pipe));
9250
9251 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9252 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9253 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9254 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9255 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9256 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9257 "CPU PWM1 enabled\n");
9258 if (IS_HASWELL(dev))
9259 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9260 "CPU PWM2 enabled\n");
9261 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9262 "PCH PWM1 enabled\n");
9263 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9264 "Utility pin enabled\n");
9265 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9266
9267 /*
9268 * In theory we can still leave IRQs enabled, as long as only the HPD
9269 * interrupts remain enabled. We used to check for that, but since it's
9270 * gen-specific and since we only disable LCPLL after we fully disable
9271 * the interrupts, the check below should be enough.
9272 */
9273 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9274 }
9275
9276 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9277 {
9278 struct drm_device *dev = dev_priv->dev;
9279
9280 if (IS_HASWELL(dev))
9281 return I915_READ(D_COMP_HSW);
9282 else
9283 return I915_READ(D_COMP_BDW);
9284 }
9285
9286 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9287 {
9288 struct drm_device *dev = dev_priv->dev;
9289
9290 if (IS_HASWELL(dev)) {
9291 mutex_lock(&dev_priv->rps.hw_lock);
9292 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9293 val))
9294 DRM_ERROR("Failed to write to D_COMP\n");
9295 mutex_unlock(&dev_priv->rps.hw_lock);
9296 } else {
9297 I915_WRITE(D_COMP_BDW, val);
9298 POSTING_READ(D_COMP_BDW);
9299 }
9300 }
9301
9302 /*
9303 * This function implements pieces of two sequences from BSpec:
9304 * - Sequence for display software to disable LCPLL
9305 * - Sequence for display software to allow package C8+
9306 * The steps implemented here are just the steps that actually touch the LCPLL
9307 * register. Callers should take care of disabling all the display engine
9308 * functions, doing the mode unset, fixing interrupts, etc.
9309 */
9310 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9311 bool switch_to_fclk, bool allow_power_down)
9312 {
9313 uint32_t val;
9314
9315 assert_can_disable_lcpll(dev_priv);
9316
9317 val = I915_READ(LCPLL_CTL);
9318
9319 if (switch_to_fclk) {
9320 val |= LCPLL_CD_SOURCE_FCLK;
9321 I915_WRITE(LCPLL_CTL, val);
9322
9323 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9324 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9325 DRM_ERROR("Switching to FCLK failed\n");
9326
9327 val = I915_READ(LCPLL_CTL);
9328 }
9329
9330 val |= LCPLL_PLL_DISABLE;
9331 I915_WRITE(LCPLL_CTL, val);
9332 POSTING_READ(LCPLL_CTL);
9333
9334 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9335 DRM_ERROR("LCPLL still locked\n");
9336
9337 val = hsw_read_dcomp(dev_priv);
9338 val |= D_COMP_COMP_DISABLE;
9339 hsw_write_dcomp(dev_priv, val);
9340 ndelay(100);
9341
9342 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9343 1))
9344 DRM_ERROR("D_COMP RCOMP still in progress\n");
9345
9346 if (allow_power_down) {
9347 val = I915_READ(LCPLL_CTL);
9348 val |= LCPLL_POWER_DOWN_ALLOW;
9349 I915_WRITE(LCPLL_CTL, val);
9350 POSTING_READ(LCPLL_CTL);
9351 }
9352 }
9353
9354 /*
9355 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9356 * source.
9357 */
9358 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9359 {
9360 uint32_t val;
9361
9362 val = I915_READ(LCPLL_CTL);
9363
9364 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9365 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9366 return;
9367
9368 /*
9369 * Make sure we're not on PC8 state before disabling PC8, otherwise
9370 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9371 */
9372 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9373
9374 if (val & LCPLL_POWER_DOWN_ALLOW) {
9375 val &= ~LCPLL_POWER_DOWN_ALLOW;
9376 I915_WRITE(LCPLL_CTL, val);
9377 POSTING_READ(LCPLL_CTL);
9378 }
9379
9380 val = hsw_read_dcomp(dev_priv);
9381 val |= D_COMP_COMP_FORCE;
9382 val &= ~D_COMP_COMP_DISABLE;
9383 hsw_write_dcomp(dev_priv, val);
9384
9385 val = I915_READ(LCPLL_CTL);
9386 val &= ~LCPLL_PLL_DISABLE;
9387 I915_WRITE(LCPLL_CTL, val);
9388
9389 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9390 DRM_ERROR("LCPLL not locked yet\n");
9391
9392 if (val & LCPLL_CD_SOURCE_FCLK) {
9393 val = I915_READ(LCPLL_CTL);
9394 val &= ~LCPLL_CD_SOURCE_FCLK;
9395 I915_WRITE(LCPLL_CTL, val);
9396
9397 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9398 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9399 DRM_ERROR("Switching back to LCPLL failed\n");
9400 }
9401
9402 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9403 intel_update_cdclk(dev_priv->dev);
9404 }
9405
9406 /*
9407 * Package states C8 and deeper are really deep PC states that can only be
9408 * reached when all the devices on the system allow it, so even if the graphics
9409 * device allows PC8+, it doesn't mean the system will actually get to these
9410 * states. Our driver only allows PC8+ when going into runtime PM.
9411 *
9412 * The requirements for PC8+ are that all the outputs are disabled, the power
9413 * well is disabled and most interrupts are disabled, and these are also
9414 * requirements for runtime PM. When these conditions are met, we manually do
9415 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9416 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9417 * hang the machine.
9418 *
9419 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9420 * the state of some registers, so when we come back from PC8+ we need to
9421 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9422 * need to take care of the registers kept by RC6. Notice that this happens even
9423 * if we don't put the device in PCI D3 state (which is what currently happens
9424 * because of the runtime PM support).
9425 *
9426 * For more, read "Display Sequences for Package C8" on the hardware
9427 * documentation.
9428 */
9429 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9430 {
9431 struct drm_device *dev = dev_priv->dev;
9432 uint32_t val;
9433
9434 DRM_DEBUG_KMS("Enabling package C8+\n");
9435
9436 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9437 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9438 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9439 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9440 }
9441
9442 lpt_disable_clkout_dp(dev);
9443 hsw_disable_lcpll(dev_priv, true, true);
9444 }
9445
9446 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9447 {
9448 struct drm_device *dev = dev_priv->dev;
9449 uint32_t val;
9450
9451 DRM_DEBUG_KMS("Disabling package C8+\n");
9452
9453 hsw_restore_lcpll(dev_priv);
9454 lpt_init_pch_refclk(dev);
9455
9456 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9457 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9458 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9459 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9460 }
9461
9462 intel_prepare_ddi(dev);
9463 }
9464
9465 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9466 {
9467 struct drm_device *dev = old_state->dev;
9468 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9469
9470 broxton_set_cdclk(dev, req_cdclk);
9471 }
9472
9473 /* compute the max rate for new configuration */
9474 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9475 {
9476 struct intel_crtc *intel_crtc;
9477 struct intel_crtc_state *crtc_state;
9478 int max_pixel_rate = 0;
9479
9480 for_each_intel_crtc(state->dev, intel_crtc) {
9481 int pixel_rate;
9482
9483 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9484 if (IS_ERR(crtc_state))
9485 return PTR_ERR(crtc_state);
9486
9487 if (!crtc_state->base.enable)
9488 continue;
9489
9490 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9491
9492 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9493 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9494 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9495
9496 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9497 }
9498
9499 return max_pixel_rate;
9500 }
9501
9502 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9503 {
9504 struct drm_i915_private *dev_priv = dev->dev_private;
9505 uint32_t val, data;
9506 int ret;
9507
9508 if (WARN((I915_READ(LCPLL_CTL) &
9509 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9510 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9511 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9512 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9513 "trying to change cdclk frequency with cdclk not enabled\n"))
9514 return;
9515
9516 mutex_lock(&dev_priv->rps.hw_lock);
9517 ret = sandybridge_pcode_write(dev_priv,
9518 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9519 mutex_unlock(&dev_priv->rps.hw_lock);
9520 if (ret) {
9521 DRM_ERROR("failed to inform pcode about cdclk change\n");
9522 return;
9523 }
9524
9525 val = I915_READ(LCPLL_CTL);
9526 val |= LCPLL_CD_SOURCE_FCLK;
9527 I915_WRITE(LCPLL_CTL, val);
9528
9529 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9530 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9531 DRM_ERROR("Switching to FCLK failed\n");
9532
9533 val = I915_READ(LCPLL_CTL);
9534 val &= ~LCPLL_CLK_FREQ_MASK;
9535
9536 switch (cdclk) {
9537 case 450000:
9538 val |= LCPLL_CLK_FREQ_450;
9539 data = 0;
9540 break;
9541 case 540000:
9542 val |= LCPLL_CLK_FREQ_54O_BDW;
9543 data = 1;
9544 break;
9545 case 337500:
9546 val |= LCPLL_CLK_FREQ_337_5_BDW;
9547 data = 2;
9548 break;
9549 case 675000:
9550 val |= LCPLL_CLK_FREQ_675_BDW;
9551 data = 3;
9552 break;
9553 default:
9554 WARN(1, "invalid cdclk frequency\n");
9555 return;
9556 }
9557
9558 I915_WRITE(LCPLL_CTL, val);
9559
9560 val = I915_READ(LCPLL_CTL);
9561 val &= ~LCPLL_CD_SOURCE_FCLK;
9562 I915_WRITE(LCPLL_CTL, val);
9563
9564 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9565 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9566 DRM_ERROR("Switching back to LCPLL failed\n");
9567
9568 mutex_lock(&dev_priv->rps.hw_lock);
9569 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9570 mutex_unlock(&dev_priv->rps.hw_lock);
9571
9572 intel_update_cdclk(dev);
9573
9574 WARN(cdclk != dev_priv->cdclk_freq,
9575 "cdclk requested %d kHz but got %d kHz\n",
9576 cdclk, dev_priv->cdclk_freq);
9577 }
9578
9579 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9580 {
9581 struct drm_i915_private *dev_priv = to_i915(state->dev);
9582 int max_pixclk = ilk_max_pixel_rate(state);
9583 int cdclk;
9584
9585 /*
9586 * FIXME should also account for plane ratio
9587 * once 64bpp pixel formats are supported.
9588 */
9589 if (max_pixclk > 540000)
9590 cdclk = 675000;
9591 else if (max_pixclk > 450000)
9592 cdclk = 540000;
9593 else if (max_pixclk > 337500)
9594 cdclk = 450000;
9595 else
9596 cdclk = 337500;
9597
9598 /*
9599 * FIXME move the cdclk caclulation to
9600 * compute_config() so we can fail gracegully.
9601 */
9602 if (cdclk > dev_priv->max_cdclk_freq) {
9603 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9604 cdclk, dev_priv->max_cdclk_freq);
9605 cdclk = dev_priv->max_cdclk_freq;
9606 }
9607
9608 to_intel_atomic_state(state)->cdclk = cdclk;
9609
9610 return 0;
9611 }
9612
9613 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9614 {
9615 struct drm_device *dev = old_state->dev;
9616 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9617
9618 broadwell_set_cdclk(dev, req_cdclk);
9619 }
9620
9621 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9622 struct intel_crtc_state *crtc_state)
9623 {
9624 if (!intel_ddi_pll_select(crtc, crtc_state))
9625 return -EINVAL;
9626
9627 crtc->lowfreq_avail = false;
9628
9629 return 0;
9630 }
9631
9632 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9633 enum port port,
9634 struct intel_crtc_state *pipe_config)
9635 {
9636 switch (port) {
9637 case PORT_A:
9638 pipe_config->ddi_pll_sel = SKL_DPLL0;
9639 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9640 break;
9641 case PORT_B:
9642 pipe_config->ddi_pll_sel = SKL_DPLL1;
9643 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9644 break;
9645 case PORT_C:
9646 pipe_config->ddi_pll_sel = SKL_DPLL2;
9647 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9648 break;
9649 default:
9650 DRM_ERROR("Incorrect port type\n");
9651 }
9652 }
9653
9654 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9655 enum port port,
9656 struct intel_crtc_state *pipe_config)
9657 {
9658 u32 temp, dpll_ctl1;
9659
9660 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9661 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9662
9663 switch (pipe_config->ddi_pll_sel) {
9664 case SKL_DPLL0:
9665 /*
9666 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9667 * of the shared DPLL framework and thus needs to be read out
9668 * separately
9669 */
9670 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9671 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9672 break;
9673 case SKL_DPLL1:
9674 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9675 break;
9676 case SKL_DPLL2:
9677 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9678 break;
9679 case SKL_DPLL3:
9680 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9681 break;
9682 }
9683 }
9684
9685 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9686 enum port port,
9687 struct intel_crtc_state *pipe_config)
9688 {
9689 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9690
9691 switch (pipe_config->ddi_pll_sel) {
9692 case PORT_CLK_SEL_WRPLL1:
9693 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9694 break;
9695 case PORT_CLK_SEL_WRPLL2:
9696 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9697 break;
9698 }
9699 }
9700
9701 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9702 struct intel_crtc_state *pipe_config)
9703 {
9704 struct drm_device *dev = crtc->base.dev;
9705 struct drm_i915_private *dev_priv = dev->dev_private;
9706 struct intel_shared_dpll *pll;
9707 enum port port;
9708 uint32_t tmp;
9709
9710 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9711
9712 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9713
9714 if (IS_SKYLAKE(dev))
9715 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9716 else if (IS_BROXTON(dev))
9717 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9718 else
9719 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9720
9721 if (pipe_config->shared_dpll >= 0) {
9722 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9723
9724 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9725 &pipe_config->dpll_hw_state));
9726 }
9727
9728 /*
9729 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9730 * DDI E. So just check whether this pipe is wired to DDI E and whether
9731 * the PCH transcoder is on.
9732 */
9733 if (INTEL_INFO(dev)->gen < 9 &&
9734 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9735 pipe_config->has_pch_encoder = true;
9736
9737 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9738 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9739 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9740
9741 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9742 }
9743 }
9744
9745 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9746 struct intel_crtc_state *pipe_config)
9747 {
9748 struct drm_device *dev = crtc->base.dev;
9749 struct drm_i915_private *dev_priv = dev->dev_private;
9750 enum intel_display_power_domain pfit_domain;
9751 uint32_t tmp;
9752
9753 if (!intel_display_power_is_enabled(dev_priv,
9754 POWER_DOMAIN_PIPE(crtc->pipe)))
9755 return false;
9756
9757 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9758 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9759
9760 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9761 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9762 enum pipe trans_edp_pipe;
9763 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9764 default:
9765 WARN(1, "unknown pipe linked to edp transcoder\n");
9766 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9767 case TRANS_DDI_EDP_INPUT_A_ON:
9768 trans_edp_pipe = PIPE_A;
9769 break;
9770 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9771 trans_edp_pipe = PIPE_B;
9772 break;
9773 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9774 trans_edp_pipe = PIPE_C;
9775 break;
9776 }
9777
9778 if (trans_edp_pipe == crtc->pipe)
9779 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9780 }
9781
9782 if (!intel_display_power_is_enabled(dev_priv,
9783 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9784 return false;
9785
9786 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9787 if (!(tmp & PIPECONF_ENABLE))
9788 return false;
9789
9790 haswell_get_ddi_port_state(crtc, pipe_config);
9791
9792 intel_get_pipe_timings(crtc, pipe_config);
9793
9794 if (INTEL_INFO(dev)->gen >= 9) {
9795 skl_init_scalers(dev, crtc, pipe_config);
9796 }
9797
9798 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9799
9800 if (INTEL_INFO(dev)->gen >= 9) {
9801 pipe_config->scaler_state.scaler_id = -1;
9802 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9803 }
9804
9805 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9806 if (INTEL_INFO(dev)->gen == 9)
9807 skylake_get_pfit_config(crtc, pipe_config);
9808 else if (INTEL_INFO(dev)->gen < 9)
9809 ironlake_get_pfit_config(crtc, pipe_config);
9810 else
9811 MISSING_CASE(INTEL_INFO(dev)->gen);
9812 }
9813
9814 if (IS_HASWELL(dev))
9815 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9816 (I915_READ(IPS_CTL) & IPS_ENABLE);
9817
9818 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9819 pipe_config->pixel_multiplier =
9820 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9821 } else {
9822 pipe_config->pixel_multiplier = 1;
9823 }
9824
9825 return true;
9826 }
9827
9828 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9829 {
9830 struct drm_device *dev = crtc->dev;
9831 struct drm_i915_private *dev_priv = dev->dev_private;
9832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9833 uint32_t cntl = 0, size = 0;
9834
9835 if (base) {
9836 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9837 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9838 unsigned int stride = roundup_pow_of_two(width) * 4;
9839
9840 switch (stride) {
9841 default:
9842 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9843 width, stride);
9844 stride = 256;
9845 /* fallthrough */
9846 case 256:
9847 case 512:
9848 case 1024:
9849 case 2048:
9850 break;
9851 }
9852
9853 cntl |= CURSOR_ENABLE |
9854 CURSOR_GAMMA_ENABLE |
9855 CURSOR_FORMAT_ARGB |
9856 CURSOR_STRIDE(stride);
9857
9858 size = (height << 12) | width;
9859 }
9860
9861 if (intel_crtc->cursor_cntl != 0 &&
9862 (intel_crtc->cursor_base != base ||
9863 intel_crtc->cursor_size != size ||
9864 intel_crtc->cursor_cntl != cntl)) {
9865 /* On these chipsets we can only modify the base/size/stride
9866 * whilst the cursor is disabled.
9867 */
9868 I915_WRITE(_CURACNTR, 0);
9869 POSTING_READ(_CURACNTR);
9870 intel_crtc->cursor_cntl = 0;
9871 }
9872
9873 if (intel_crtc->cursor_base != base) {
9874 I915_WRITE(_CURABASE, base);
9875 intel_crtc->cursor_base = base;
9876 }
9877
9878 if (intel_crtc->cursor_size != size) {
9879 I915_WRITE(CURSIZE, size);
9880 intel_crtc->cursor_size = size;
9881 }
9882
9883 if (intel_crtc->cursor_cntl != cntl) {
9884 I915_WRITE(_CURACNTR, cntl);
9885 POSTING_READ(_CURACNTR);
9886 intel_crtc->cursor_cntl = cntl;
9887 }
9888 }
9889
9890 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9891 {
9892 struct drm_device *dev = crtc->dev;
9893 struct drm_i915_private *dev_priv = dev->dev_private;
9894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9895 int pipe = intel_crtc->pipe;
9896 uint32_t cntl;
9897
9898 cntl = 0;
9899 if (base) {
9900 cntl = MCURSOR_GAMMA_ENABLE;
9901 switch (intel_crtc->base.cursor->state->crtc_w) {
9902 case 64:
9903 cntl |= CURSOR_MODE_64_ARGB_AX;
9904 break;
9905 case 128:
9906 cntl |= CURSOR_MODE_128_ARGB_AX;
9907 break;
9908 case 256:
9909 cntl |= CURSOR_MODE_256_ARGB_AX;
9910 break;
9911 default:
9912 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9913 return;
9914 }
9915 cntl |= pipe << 28; /* Connect to correct pipe */
9916
9917 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9918 cntl |= CURSOR_PIPE_CSC_ENABLE;
9919 }
9920
9921 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9922 cntl |= CURSOR_ROTATE_180;
9923
9924 if (intel_crtc->cursor_cntl != cntl) {
9925 I915_WRITE(CURCNTR(pipe), cntl);
9926 POSTING_READ(CURCNTR(pipe));
9927 intel_crtc->cursor_cntl = cntl;
9928 }
9929
9930 /* and commit changes on next vblank */
9931 I915_WRITE(CURBASE(pipe), base);
9932 POSTING_READ(CURBASE(pipe));
9933
9934 intel_crtc->cursor_base = base;
9935 }
9936
9937 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9938 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9939 bool on)
9940 {
9941 struct drm_device *dev = crtc->dev;
9942 struct drm_i915_private *dev_priv = dev->dev_private;
9943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9944 int pipe = intel_crtc->pipe;
9945 int x = crtc->cursor_x;
9946 int y = crtc->cursor_y;
9947 u32 base = 0, pos = 0;
9948
9949 if (on)
9950 base = intel_crtc->cursor_addr;
9951
9952 if (x >= intel_crtc->config->pipe_src_w)
9953 base = 0;
9954
9955 if (y >= intel_crtc->config->pipe_src_h)
9956 base = 0;
9957
9958 if (x < 0) {
9959 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9960 base = 0;
9961
9962 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9963 x = -x;
9964 }
9965 pos |= x << CURSOR_X_SHIFT;
9966
9967 if (y < 0) {
9968 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9969 base = 0;
9970
9971 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9972 y = -y;
9973 }
9974 pos |= y << CURSOR_Y_SHIFT;
9975
9976 if (base == 0 && intel_crtc->cursor_base == 0)
9977 return;
9978
9979 I915_WRITE(CURPOS(pipe), pos);
9980
9981 /* ILK+ do this automagically */
9982 if (HAS_GMCH_DISPLAY(dev) &&
9983 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9984 base += (intel_crtc->base.cursor->state->crtc_h *
9985 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9986 }
9987
9988 if (IS_845G(dev) || IS_I865G(dev))
9989 i845_update_cursor(crtc, base);
9990 else
9991 i9xx_update_cursor(crtc, base);
9992 }
9993
9994 static bool cursor_size_ok(struct drm_device *dev,
9995 uint32_t width, uint32_t height)
9996 {
9997 if (width == 0 || height == 0)
9998 return false;
9999
10000 /*
10001 * 845g/865g are special in that they are only limited by
10002 * the width of their cursors, the height is arbitrary up to
10003 * the precision of the register. Everything else requires
10004 * square cursors, limited to a few power-of-two sizes.
10005 */
10006 if (IS_845G(dev) || IS_I865G(dev)) {
10007 if ((width & 63) != 0)
10008 return false;
10009
10010 if (width > (IS_845G(dev) ? 64 : 512))
10011 return false;
10012
10013 if (height > 1023)
10014 return false;
10015 } else {
10016 switch (width | height) {
10017 case 256:
10018 case 128:
10019 if (IS_GEN2(dev))
10020 return false;
10021 case 64:
10022 break;
10023 default:
10024 return false;
10025 }
10026 }
10027
10028 return true;
10029 }
10030
10031 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10032 u16 *blue, uint32_t start, uint32_t size)
10033 {
10034 int end = (start + size > 256) ? 256 : start + size, i;
10035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10036
10037 for (i = start; i < end; i++) {
10038 intel_crtc->lut_r[i] = red[i] >> 8;
10039 intel_crtc->lut_g[i] = green[i] >> 8;
10040 intel_crtc->lut_b[i] = blue[i] >> 8;
10041 }
10042
10043 intel_crtc_load_lut(crtc);
10044 }
10045
10046 /* VESA 640x480x72Hz mode to set on the pipe */
10047 static struct drm_display_mode load_detect_mode = {
10048 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10049 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10050 };
10051
10052 struct drm_framebuffer *
10053 __intel_framebuffer_create(struct drm_device *dev,
10054 struct drm_mode_fb_cmd2 *mode_cmd,
10055 struct drm_i915_gem_object *obj)
10056 {
10057 struct intel_framebuffer *intel_fb;
10058 int ret;
10059
10060 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10061 if (!intel_fb) {
10062 drm_gem_object_unreference(&obj->base);
10063 return ERR_PTR(-ENOMEM);
10064 }
10065
10066 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10067 if (ret)
10068 goto err;
10069
10070 return &intel_fb->base;
10071 err:
10072 drm_gem_object_unreference(&obj->base);
10073 kfree(intel_fb);
10074
10075 return ERR_PTR(ret);
10076 }
10077
10078 static struct drm_framebuffer *
10079 intel_framebuffer_create(struct drm_device *dev,
10080 struct drm_mode_fb_cmd2 *mode_cmd,
10081 struct drm_i915_gem_object *obj)
10082 {
10083 struct drm_framebuffer *fb;
10084 int ret;
10085
10086 ret = i915_mutex_lock_interruptible(dev);
10087 if (ret)
10088 return ERR_PTR(ret);
10089 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10090 mutex_unlock(&dev->struct_mutex);
10091
10092 return fb;
10093 }
10094
10095 static u32
10096 intel_framebuffer_pitch_for_width(int width, int bpp)
10097 {
10098 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10099 return ALIGN(pitch, 64);
10100 }
10101
10102 static u32
10103 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10104 {
10105 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10106 return PAGE_ALIGN(pitch * mode->vdisplay);
10107 }
10108
10109 static struct drm_framebuffer *
10110 intel_framebuffer_create_for_mode(struct drm_device *dev,
10111 struct drm_display_mode *mode,
10112 int depth, int bpp)
10113 {
10114 struct drm_i915_gem_object *obj;
10115 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10116
10117 obj = i915_gem_alloc_object(dev,
10118 intel_framebuffer_size_for_mode(mode, bpp));
10119 if (obj == NULL)
10120 return ERR_PTR(-ENOMEM);
10121
10122 mode_cmd.width = mode->hdisplay;
10123 mode_cmd.height = mode->vdisplay;
10124 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10125 bpp);
10126 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10127
10128 return intel_framebuffer_create(dev, &mode_cmd, obj);
10129 }
10130
10131 static struct drm_framebuffer *
10132 mode_fits_in_fbdev(struct drm_device *dev,
10133 struct drm_display_mode *mode)
10134 {
10135 #ifdef CONFIG_DRM_I915_FBDEV
10136 struct drm_i915_private *dev_priv = dev->dev_private;
10137 struct drm_i915_gem_object *obj;
10138 struct drm_framebuffer *fb;
10139
10140 if (!dev_priv->fbdev)
10141 return NULL;
10142
10143 if (!dev_priv->fbdev->fb)
10144 return NULL;
10145
10146 obj = dev_priv->fbdev->fb->obj;
10147 BUG_ON(!obj);
10148
10149 fb = &dev_priv->fbdev->fb->base;
10150 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10151 fb->bits_per_pixel))
10152 return NULL;
10153
10154 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10155 return NULL;
10156
10157 return fb;
10158 #else
10159 return NULL;
10160 #endif
10161 }
10162
10163 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10164 struct drm_crtc *crtc,
10165 struct drm_display_mode *mode,
10166 struct drm_framebuffer *fb,
10167 int x, int y)
10168 {
10169 struct drm_plane_state *plane_state;
10170 int hdisplay, vdisplay;
10171 int ret;
10172
10173 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10174 if (IS_ERR(plane_state))
10175 return PTR_ERR(plane_state);
10176
10177 if (mode)
10178 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10179 else
10180 hdisplay = vdisplay = 0;
10181
10182 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10183 if (ret)
10184 return ret;
10185 drm_atomic_set_fb_for_plane(plane_state, fb);
10186 plane_state->crtc_x = 0;
10187 plane_state->crtc_y = 0;
10188 plane_state->crtc_w = hdisplay;
10189 plane_state->crtc_h = vdisplay;
10190 plane_state->src_x = x << 16;
10191 plane_state->src_y = y << 16;
10192 plane_state->src_w = hdisplay << 16;
10193 plane_state->src_h = vdisplay << 16;
10194
10195 return 0;
10196 }
10197
10198 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10199 struct drm_display_mode *mode,
10200 struct intel_load_detect_pipe *old,
10201 struct drm_modeset_acquire_ctx *ctx)
10202 {
10203 struct intel_crtc *intel_crtc;
10204 struct intel_encoder *intel_encoder =
10205 intel_attached_encoder(connector);
10206 struct drm_crtc *possible_crtc;
10207 struct drm_encoder *encoder = &intel_encoder->base;
10208 struct drm_crtc *crtc = NULL;
10209 struct drm_device *dev = encoder->dev;
10210 struct drm_framebuffer *fb;
10211 struct drm_mode_config *config = &dev->mode_config;
10212 struct drm_atomic_state *state = NULL;
10213 struct drm_connector_state *connector_state;
10214 struct intel_crtc_state *crtc_state;
10215 int ret, i = -1;
10216
10217 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10218 connector->base.id, connector->name,
10219 encoder->base.id, encoder->name);
10220
10221 retry:
10222 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10223 if (ret)
10224 goto fail;
10225
10226 /*
10227 * Algorithm gets a little messy:
10228 *
10229 * - if the connector already has an assigned crtc, use it (but make
10230 * sure it's on first)
10231 *
10232 * - try to find the first unused crtc that can drive this connector,
10233 * and use that if we find one
10234 */
10235
10236 /* See if we already have a CRTC for this connector */
10237 if (encoder->crtc) {
10238 crtc = encoder->crtc;
10239
10240 ret = drm_modeset_lock(&crtc->mutex, ctx);
10241 if (ret)
10242 goto fail;
10243 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10244 if (ret)
10245 goto fail;
10246
10247 old->dpms_mode = connector->dpms;
10248 old->load_detect_temp = false;
10249
10250 /* Make sure the crtc and connector are running */
10251 if (connector->dpms != DRM_MODE_DPMS_ON)
10252 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10253
10254 return true;
10255 }
10256
10257 /* Find an unused one (if possible) */
10258 for_each_crtc(dev, possible_crtc) {
10259 i++;
10260 if (!(encoder->possible_crtcs & (1 << i)))
10261 continue;
10262 if (possible_crtc->state->enable)
10263 continue;
10264
10265 crtc = possible_crtc;
10266 break;
10267 }
10268
10269 /*
10270 * If we didn't find an unused CRTC, don't use any.
10271 */
10272 if (!crtc) {
10273 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10274 goto fail;
10275 }
10276
10277 ret = drm_modeset_lock(&crtc->mutex, ctx);
10278 if (ret)
10279 goto fail;
10280 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10281 if (ret)
10282 goto fail;
10283
10284 intel_crtc = to_intel_crtc(crtc);
10285 old->dpms_mode = connector->dpms;
10286 old->load_detect_temp = true;
10287 old->release_fb = NULL;
10288
10289 state = drm_atomic_state_alloc(dev);
10290 if (!state)
10291 return false;
10292
10293 state->acquire_ctx = ctx;
10294
10295 connector_state = drm_atomic_get_connector_state(state, connector);
10296 if (IS_ERR(connector_state)) {
10297 ret = PTR_ERR(connector_state);
10298 goto fail;
10299 }
10300
10301 connector_state->crtc = crtc;
10302 connector_state->best_encoder = &intel_encoder->base;
10303
10304 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10305 if (IS_ERR(crtc_state)) {
10306 ret = PTR_ERR(crtc_state);
10307 goto fail;
10308 }
10309
10310 crtc_state->base.active = crtc_state->base.enable = true;
10311
10312 if (!mode)
10313 mode = &load_detect_mode;
10314
10315 /* We need a framebuffer large enough to accommodate all accesses
10316 * that the plane may generate whilst we perform load detection.
10317 * We can not rely on the fbcon either being present (we get called
10318 * during its initialisation to detect all boot displays, or it may
10319 * not even exist) or that it is large enough to satisfy the
10320 * requested mode.
10321 */
10322 fb = mode_fits_in_fbdev(dev, mode);
10323 if (fb == NULL) {
10324 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10325 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10326 old->release_fb = fb;
10327 } else
10328 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10329 if (IS_ERR(fb)) {
10330 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10331 goto fail;
10332 }
10333
10334 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10335 if (ret)
10336 goto fail;
10337
10338 drm_mode_copy(&crtc_state->base.mode, mode);
10339
10340 if (drm_atomic_commit(state)) {
10341 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10342 if (old->release_fb)
10343 old->release_fb->funcs->destroy(old->release_fb);
10344 goto fail;
10345 }
10346 crtc->primary->crtc = crtc;
10347
10348 /* let the connector get through one full cycle before testing */
10349 intel_wait_for_vblank(dev, intel_crtc->pipe);
10350 return true;
10351
10352 fail:
10353 drm_atomic_state_free(state);
10354 state = NULL;
10355
10356 if (ret == -EDEADLK) {
10357 drm_modeset_backoff(ctx);
10358 goto retry;
10359 }
10360
10361 return false;
10362 }
10363
10364 void intel_release_load_detect_pipe(struct drm_connector *connector,
10365 struct intel_load_detect_pipe *old,
10366 struct drm_modeset_acquire_ctx *ctx)
10367 {
10368 struct drm_device *dev = connector->dev;
10369 struct intel_encoder *intel_encoder =
10370 intel_attached_encoder(connector);
10371 struct drm_encoder *encoder = &intel_encoder->base;
10372 struct drm_crtc *crtc = encoder->crtc;
10373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10374 struct drm_atomic_state *state;
10375 struct drm_connector_state *connector_state;
10376 struct intel_crtc_state *crtc_state;
10377 int ret;
10378
10379 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10380 connector->base.id, connector->name,
10381 encoder->base.id, encoder->name);
10382
10383 if (old->load_detect_temp) {
10384 state = drm_atomic_state_alloc(dev);
10385 if (!state)
10386 goto fail;
10387
10388 state->acquire_ctx = ctx;
10389
10390 connector_state = drm_atomic_get_connector_state(state, connector);
10391 if (IS_ERR(connector_state))
10392 goto fail;
10393
10394 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10395 if (IS_ERR(crtc_state))
10396 goto fail;
10397
10398 connector_state->best_encoder = NULL;
10399 connector_state->crtc = NULL;
10400
10401 crtc_state->base.enable = crtc_state->base.active = false;
10402
10403 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10404 0, 0);
10405 if (ret)
10406 goto fail;
10407
10408 ret = drm_atomic_commit(state);
10409 if (ret)
10410 goto fail;
10411
10412 if (old->release_fb) {
10413 drm_framebuffer_unregister_private(old->release_fb);
10414 drm_framebuffer_unreference(old->release_fb);
10415 }
10416
10417 return;
10418 }
10419
10420 /* Switch crtc and encoder back off if necessary */
10421 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10422 connector->funcs->dpms(connector, old->dpms_mode);
10423
10424 return;
10425 fail:
10426 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10427 drm_atomic_state_free(state);
10428 }
10429
10430 static int i9xx_pll_refclk(struct drm_device *dev,
10431 const struct intel_crtc_state *pipe_config)
10432 {
10433 struct drm_i915_private *dev_priv = dev->dev_private;
10434 u32 dpll = pipe_config->dpll_hw_state.dpll;
10435
10436 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10437 return dev_priv->vbt.lvds_ssc_freq;
10438 else if (HAS_PCH_SPLIT(dev))
10439 return 120000;
10440 else if (!IS_GEN2(dev))
10441 return 96000;
10442 else
10443 return 48000;
10444 }
10445
10446 /* Returns the clock of the currently programmed mode of the given pipe. */
10447 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10448 struct intel_crtc_state *pipe_config)
10449 {
10450 struct drm_device *dev = crtc->base.dev;
10451 struct drm_i915_private *dev_priv = dev->dev_private;
10452 int pipe = pipe_config->cpu_transcoder;
10453 u32 dpll = pipe_config->dpll_hw_state.dpll;
10454 u32 fp;
10455 intel_clock_t clock;
10456 int port_clock;
10457 int refclk = i9xx_pll_refclk(dev, pipe_config);
10458
10459 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10460 fp = pipe_config->dpll_hw_state.fp0;
10461 else
10462 fp = pipe_config->dpll_hw_state.fp1;
10463
10464 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10465 if (IS_PINEVIEW(dev)) {
10466 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10467 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10468 } else {
10469 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10470 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10471 }
10472
10473 if (!IS_GEN2(dev)) {
10474 if (IS_PINEVIEW(dev))
10475 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10476 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10477 else
10478 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10479 DPLL_FPA01_P1_POST_DIV_SHIFT);
10480
10481 switch (dpll & DPLL_MODE_MASK) {
10482 case DPLLB_MODE_DAC_SERIAL:
10483 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10484 5 : 10;
10485 break;
10486 case DPLLB_MODE_LVDS:
10487 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10488 7 : 14;
10489 break;
10490 default:
10491 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10492 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10493 return;
10494 }
10495
10496 if (IS_PINEVIEW(dev))
10497 port_clock = pnv_calc_dpll_params(refclk, &clock);
10498 else
10499 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10500 } else {
10501 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10502 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10503
10504 if (is_lvds) {
10505 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10506 DPLL_FPA01_P1_POST_DIV_SHIFT);
10507
10508 if (lvds & LVDS_CLKB_POWER_UP)
10509 clock.p2 = 7;
10510 else
10511 clock.p2 = 14;
10512 } else {
10513 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10514 clock.p1 = 2;
10515 else {
10516 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10517 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10518 }
10519 if (dpll & PLL_P2_DIVIDE_BY_4)
10520 clock.p2 = 4;
10521 else
10522 clock.p2 = 2;
10523 }
10524
10525 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10526 }
10527
10528 /*
10529 * This value includes pixel_multiplier. We will use
10530 * port_clock to compute adjusted_mode.crtc_clock in the
10531 * encoder's get_config() function.
10532 */
10533 pipe_config->port_clock = port_clock;
10534 }
10535
10536 int intel_dotclock_calculate(int link_freq,
10537 const struct intel_link_m_n *m_n)
10538 {
10539 /*
10540 * The calculation for the data clock is:
10541 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10542 * But we want to avoid losing precison if possible, so:
10543 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10544 *
10545 * and the link clock is simpler:
10546 * link_clock = (m * link_clock) / n
10547 */
10548
10549 if (!m_n->link_n)
10550 return 0;
10551
10552 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10553 }
10554
10555 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10556 struct intel_crtc_state *pipe_config)
10557 {
10558 struct drm_device *dev = crtc->base.dev;
10559
10560 /* read out port_clock from the DPLL */
10561 i9xx_crtc_clock_get(crtc, pipe_config);
10562
10563 /*
10564 * This value does not include pixel_multiplier.
10565 * We will check that port_clock and adjusted_mode.crtc_clock
10566 * agree once we know their relationship in the encoder's
10567 * get_config() function.
10568 */
10569 pipe_config->base.adjusted_mode.crtc_clock =
10570 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10571 &pipe_config->fdi_m_n);
10572 }
10573
10574 /** Returns the currently programmed mode of the given pipe. */
10575 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10576 struct drm_crtc *crtc)
10577 {
10578 struct drm_i915_private *dev_priv = dev->dev_private;
10579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10580 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10581 struct drm_display_mode *mode;
10582 struct intel_crtc_state pipe_config;
10583 int htot = I915_READ(HTOTAL(cpu_transcoder));
10584 int hsync = I915_READ(HSYNC(cpu_transcoder));
10585 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10586 int vsync = I915_READ(VSYNC(cpu_transcoder));
10587 enum pipe pipe = intel_crtc->pipe;
10588
10589 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10590 if (!mode)
10591 return NULL;
10592
10593 /*
10594 * Construct a pipe_config sufficient for getting the clock info
10595 * back out of crtc_clock_get.
10596 *
10597 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10598 * to use a real value here instead.
10599 */
10600 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10601 pipe_config.pixel_multiplier = 1;
10602 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10603 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10604 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10605 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10606
10607 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10608 mode->hdisplay = (htot & 0xffff) + 1;
10609 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10610 mode->hsync_start = (hsync & 0xffff) + 1;
10611 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10612 mode->vdisplay = (vtot & 0xffff) + 1;
10613 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10614 mode->vsync_start = (vsync & 0xffff) + 1;
10615 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10616
10617 drm_mode_set_name(mode);
10618
10619 return mode;
10620 }
10621
10622 void intel_mark_busy(struct drm_device *dev)
10623 {
10624 struct drm_i915_private *dev_priv = dev->dev_private;
10625
10626 if (dev_priv->mm.busy)
10627 return;
10628
10629 intel_runtime_pm_get(dev_priv);
10630 i915_update_gfx_val(dev_priv);
10631 if (INTEL_INFO(dev)->gen >= 6)
10632 gen6_rps_busy(dev_priv);
10633 dev_priv->mm.busy = true;
10634 }
10635
10636 void intel_mark_idle(struct drm_device *dev)
10637 {
10638 struct drm_i915_private *dev_priv = dev->dev_private;
10639
10640 if (!dev_priv->mm.busy)
10641 return;
10642
10643 dev_priv->mm.busy = false;
10644
10645 if (INTEL_INFO(dev)->gen >= 6)
10646 gen6_rps_idle(dev->dev_private);
10647
10648 intel_runtime_pm_put(dev_priv);
10649 }
10650
10651 static void intel_crtc_destroy(struct drm_crtc *crtc)
10652 {
10653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10654 struct drm_device *dev = crtc->dev;
10655 struct intel_unpin_work *work;
10656
10657 spin_lock_irq(&dev->event_lock);
10658 work = intel_crtc->unpin_work;
10659 intel_crtc->unpin_work = NULL;
10660 spin_unlock_irq(&dev->event_lock);
10661
10662 if (work) {
10663 cancel_work_sync(&work->work);
10664 kfree(work);
10665 }
10666
10667 drm_crtc_cleanup(crtc);
10668
10669 kfree(intel_crtc);
10670 }
10671
10672 static void intel_unpin_work_fn(struct work_struct *__work)
10673 {
10674 struct intel_unpin_work *work =
10675 container_of(__work, struct intel_unpin_work, work);
10676 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10677 struct drm_device *dev = crtc->base.dev;
10678 struct drm_plane *primary = crtc->base.primary;
10679
10680 mutex_lock(&dev->struct_mutex);
10681 intel_unpin_fb_obj(work->old_fb, primary->state);
10682 drm_gem_object_unreference(&work->pending_flip_obj->base);
10683
10684 if (work->flip_queued_req)
10685 i915_gem_request_assign(&work->flip_queued_req, NULL);
10686 mutex_unlock(&dev->struct_mutex);
10687
10688 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10689 drm_framebuffer_unreference(work->old_fb);
10690
10691 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10692 atomic_dec(&crtc->unpin_work_count);
10693
10694 kfree(work);
10695 }
10696
10697 static void do_intel_finish_page_flip(struct drm_device *dev,
10698 struct drm_crtc *crtc)
10699 {
10700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10701 struct intel_unpin_work *work;
10702 unsigned long flags;
10703
10704 /* Ignore early vblank irqs */
10705 if (intel_crtc == NULL)
10706 return;
10707
10708 /*
10709 * This is called both by irq handlers and the reset code (to complete
10710 * lost pageflips) so needs the full irqsave spinlocks.
10711 */
10712 spin_lock_irqsave(&dev->event_lock, flags);
10713 work = intel_crtc->unpin_work;
10714
10715 /* Ensure we don't miss a work->pending update ... */
10716 smp_rmb();
10717
10718 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10719 spin_unlock_irqrestore(&dev->event_lock, flags);
10720 return;
10721 }
10722
10723 page_flip_completed(intel_crtc);
10724
10725 spin_unlock_irqrestore(&dev->event_lock, flags);
10726 }
10727
10728 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10729 {
10730 struct drm_i915_private *dev_priv = dev->dev_private;
10731 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10732
10733 do_intel_finish_page_flip(dev, crtc);
10734 }
10735
10736 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10737 {
10738 struct drm_i915_private *dev_priv = dev->dev_private;
10739 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10740
10741 do_intel_finish_page_flip(dev, crtc);
10742 }
10743
10744 /* Is 'a' after or equal to 'b'? */
10745 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10746 {
10747 return !((a - b) & 0x80000000);
10748 }
10749
10750 static bool page_flip_finished(struct intel_crtc *crtc)
10751 {
10752 struct drm_device *dev = crtc->base.dev;
10753 struct drm_i915_private *dev_priv = dev->dev_private;
10754
10755 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10756 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10757 return true;
10758
10759 /*
10760 * The relevant registers doen't exist on pre-ctg.
10761 * As the flip done interrupt doesn't trigger for mmio
10762 * flips on gmch platforms, a flip count check isn't
10763 * really needed there. But since ctg has the registers,
10764 * include it in the check anyway.
10765 */
10766 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10767 return true;
10768
10769 /*
10770 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10771 * used the same base address. In that case the mmio flip might
10772 * have completed, but the CS hasn't even executed the flip yet.
10773 *
10774 * A flip count check isn't enough as the CS might have updated
10775 * the base address just after start of vblank, but before we
10776 * managed to process the interrupt. This means we'd complete the
10777 * CS flip too soon.
10778 *
10779 * Combining both checks should get us a good enough result. It may
10780 * still happen that the CS flip has been executed, but has not
10781 * yet actually completed. But in case the base address is the same
10782 * anyway, we don't really care.
10783 */
10784 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10785 crtc->unpin_work->gtt_offset &&
10786 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10787 crtc->unpin_work->flip_count);
10788 }
10789
10790 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10791 {
10792 struct drm_i915_private *dev_priv = dev->dev_private;
10793 struct intel_crtc *intel_crtc =
10794 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10795 unsigned long flags;
10796
10797
10798 /*
10799 * This is called both by irq handlers and the reset code (to complete
10800 * lost pageflips) so needs the full irqsave spinlocks.
10801 *
10802 * NB: An MMIO update of the plane base pointer will also
10803 * generate a page-flip completion irq, i.e. every modeset
10804 * is also accompanied by a spurious intel_prepare_page_flip().
10805 */
10806 spin_lock_irqsave(&dev->event_lock, flags);
10807 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10808 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10809 spin_unlock_irqrestore(&dev->event_lock, flags);
10810 }
10811
10812 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10813 {
10814 /* Ensure that the work item is consistent when activating it ... */
10815 smp_wmb();
10816 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10817 /* and that it is marked active as soon as the irq could fire. */
10818 smp_wmb();
10819 }
10820
10821 static int intel_gen2_queue_flip(struct drm_device *dev,
10822 struct drm_crtc *crtc,
10823 struct drm_framebuffer *fb,
10824 struct drm_i915_gem_object *obj,
10825 struct drm_i915_gem_request *req,
10826 uint32_t flags)
10827 {
10828 struct intel_engine_cs *ring = req->ring;
10829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10830 u32 flip_mask;
10831 int ret;
10832
10833 ret = intel_ring_begin(req, 6);
10834 if (ret)
10835 return ret;
10836
10837 /* Can't queue multiple flips, so wait for the previous
10838 * one to finish before executing the next.
10839 */
10840 if (intel_crtc->plane)
10841 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10842 else
10843 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10844 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10845 intel_ring_emit(ring, MI_NOOP);
10846 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10847 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10848 intel_ring_emit(ring, fb->pitches[0]);
10849 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10850 intel_ring_emit(ring, 0); /* aux display base address, unused */
10851
10852 intel_mark_page_flip_active(intel_crtc);
10853 return 0;
10854 }
10855
10856 static int intel_gen3_queue_flip(struct drm_device *dev,
10857 struct drm_crtc *crtc,
10858 struct drm_framebuffer *fb,
10859 struct drm_i915_gem_object *obj,
10860 struct drm_i915_gem_request *req,
10861 uint32_t flags)
10862 {
10863 struct intel_engine_cs *ring = req->ring;
10864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10865 u32 flip_mask;
10866 int ret;
10867
10868 ret = intel_ring_begin(req, 6);
10869 if (ret)
10870 return ret;
10871
10872 if (intel_crtc->plane)
10873 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10874 else
10875 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10876 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10877 intel_ring_emit(ring, MI_NOOP);
10878 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10879 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10880 intel_ring_emit(ring, fb->pitches[0]);
10881 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10882 intel_ring_emit(ring, MI_NOOP);
10883
10884 intel_mark_page_flip_active(intel_crtc);
10885 return 0;
10886 }
10887
10888 static int intel_gen4_queue_flip(struct drm_device *dev,
10889 struct drm_crtc *crtc,
10890 struct drm_framebuffer *fb,
10891 struct drm_i915_gem_object *obj,
10892 struct drm_i915_gem_request *req,
10893 uint32_t flags)
10894 {
10895 struct intel_engine_cs *ring = req->ring;
10896 struct drm_i915_private *dev_priv = dev->dev_private;
10897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10898 uint32_t pf, pipesrc;
10899 int ret;
10900
10901 ret = intel_ring_begin(req, 4);
10902 if (ret)
10903 return ret;
10904
10905 /* i965+ uses the linear or tiled offsets from the
10906 * Display Registers (which do not change across a page-flip)
10907 * so we need only reprogram the base address.
10908 */
10909 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10910 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10911 intel_ring_emit(ring, fb->pitches[0]);
10912 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10913 obj->tiling_mode);
10914
10915 /* XXX Enabling the panel-fitter across page-flip is so far
10916 * untested on non-native modes, so ignore it for now.
10917 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10918 */
10919 pf = 0;
10920 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10921 intel_ring_emit(ring, pf | pipesrc);
10922
10923 intel_mark_page_flip_active(intel_crtc);
10924 return 0;
10925 }
10926
10927 static int intel_gen6_queue_flip(struct drm_device *dev,
10928 struct drm_crtc *crtc,
10929 struct drm_framebuffer *fb,
10930 struct drm_i915_gem_object *obj,
10931 struct drm_i915_gem_request *req,
10932 uint32_t flags)
10933 {
10934 struct intel_engine_cs *ring = req->ring;
10935 struct drm_i915_private *dev_priv = dev->dev_private;
10936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10937 uint32_t pf, pipesrc;
10938 int ret;
10939
10940 ret = intel_ring_begin(req, 4);
10941 if (ret)
10942 return ret;
10943
10944 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10945 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10946 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10947 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10948
10949 /* Contrary to the suggestions in the documentation,
10950 * "Enable Panel Fitter" does not seem to be required when page
10951 * flipping with a non-native mode, and worse causes a normal
10952 * modeset to fail.
10953 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10954 */
10955 pf = 0;
10956 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10957 intel_ring_emit(ring, pf | pipesrc);
10958
10959 intel_mark_page_flip_active(intel_crtc);
10960 return 0;
10961 }
10962
10963 static int intel_gen7_queue_flip(struct drm_device *dev,
10964 struct drm_crtc *crtc,
10965 struct drm_framebuffer *fb,
10966 struct drm_i915_gem_object *obj,
10967 struct drm_i915_gem_request *req,
10968 uint32_t flags)
10969 {
10970 struct intel_engine_cs *ring = req->ring;
10971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10972 uint32_t plane_bit = 0;
10973 int len, ret;
10974
10975 switch (intel_crtc->plane) {
10976 case PLANE_A:
10977 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10978 break;
10979 case PLANE_B:
10980 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10981 break;
10982 case PLANE_C:
10983 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10984 break;
10985 default:
10986 WARN_ONCE(1, "unknown plane in flip command\n");
10987 return -ENODEV;
10988 }
10989
10990 len = 4;
10991 if (ring->id == RCS) {
10992 len += 6;
10993 /*
10994 * On Gen 8, SRM is now taking an extra dword to accommodate
10995 * 48bits addresses, and we need a NOOP for the batch size to
10996 * stay even.
10997 */
10998 if (IS_GEN8(dev))
10999 len += 2;
11000 }
11001
11002 /*
11003 * BSpec MI_DISPLAY_FLIP for IVB:
11004 * "The full packet must be contained within the same cache line."
11005 *
11006 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11007 * cacheline, if we ever start emitting more commands before
11008 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11009 * then do the cacheline alignment, and finally emit the
11010 * MI_DISPLAY_FLIP.
11011 */
11012 ret = intel_ring_cacheline_align(req);
11013 if (ret)
11014 return ret;
11015
11016 ret = intel_ring_begin(req, len);
11017 if (ret)
11018 return ret;
11019
11020 /* Unmask the flip-done completion message. Note that the bspec says that
11021 * we should do this for both the BCS and RCS, and that we must not unmask
11022 * more than one flip event at any time (or ensure that one flip message
11023 * can be sent by waiting for flip-done prior to queueing new flips).
11024 * Experimentation says that BCS works despite DERRMR masking all
11025 * flip-done completion events and that unmasking all planes at once
11026 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11027 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11028 */
11029 if (ring->id == RCS) {
11030 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11031 intel_ring_emit(ring, DERRMR);
11032 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11033 DERRMR_PIPEB_PRI_FLIP_DONE |
11034 DERRMR_PIPEC_PRI_FLIP_DONE));
11035 if (IS_GEN8(dev))
11036 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11037 MI_SRM_LRM_GLOBAL_GTT);
11038 else
11039 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11040 MI_SRM_LRM_GLOBAL_GTT);
11041 intel_ring_emit(ring, DERRMR);
11042 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11043 if (IS_GEN8(dev)) {
11044 intel_ring_emit(ring, 0);
11045 intel_ring_emit(ring, MI_NOOP);
11046 }
11047 }
11048
11049 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11050 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11051 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11052 intel_ring_emit(ring, (MI_NOOP));
11053
11054 intel_mark_page_flip_active(intel_crtc);
11055 return 0;
11056 }
11057
11058 static bool use_mmio_flip(struct intel_engine_cs *ring,
11059 struct drm_i915_gem_object *obj)
11060 {
11061 /*
11062 * This is not being used for older platforms, because
11063 * non-availability of flip done interrupt forces us to use
11064 * CS flips. Older platforms derive flip done using some clever
11065 * tricks involving the flip_pending status bits and vblank irqs.
11066 * So using MMIO flips there would disrupt this mechanism.
11067 */
11068
11069 if (ring == NULL)
11070 return true;
11071
11072 if (INTEL_INFO(ring->dev)->gen < 5)
11073 return false;
11074
11075 if (i915.use_mmio_flip < 0)
11076 return false;
11077 else if (i915.use_mmio_flip > 0)
11078 return true;
11079 else if (i915.enable_execlists)
11080 return true;
11081 else
11082 return ring != i915_gem_request_get_ring(obj->last_write_req);
11083 }
11084
11085 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11086 {
11087 struct drm_device *dev = intel_crtc->base.dev;
11088 struct drm_i915_private *dev_priv = dev->dev_private;
11089 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11090 const enum pipe pipe = intel_crtc->pipe;
11091 u32 ctl, stride;
11092
11093 ctl = I915_READ(PLANE_CTL(pipe, 0));
11094 ctl &= ~PLANE_CTL_TILED_MASK;
11095 switch (fb->modifier[0]) {
11096 case DRM_FORMAT_MOD_NONE:
11097 break;
11098 case I915_FORMAT_MOD_X_TILED:
11099 ctl |= PLANE_CTL_TILED_X;
11100 break;
11101 case I915_FORMAT_MOD_Y_TILED:
11102 ctl |= PLANE_CTL_TILED_Y;
11103 break;
11104 case I915_FORMAT_MOD_Yf_TILED:
11105 ctl |= PLANE_CTL_TILED_YF;
11106 break;
11107 default:
11108 MISSING_CASE(fb->modifier[0]);
11109 }
11110
11111 /*
11112 * The stride is either expressed as a multiple of 64 bytes chunks for
11113 * linear buffers or in number of tiles for tiled buffers.
11114 */
11115 stride = fb->pitches[0] /
11116 intel_fb_stride_alignment(dev, fb->modifier[0],
11117 fb->pixel_format);
11118
11119 /*
11120 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11121 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11122 */
11123 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11124 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11125
11126 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11127 POSTING_READ(PLANE_SURF(pipe, 0));
11128 }
11129
11130 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11131 {
11132 struct drm_device *dev = intel_crtc->base.dev;
11133 struct drm_i915_private *dev_priv = dev->dev_private;
11134 struct intel_framebuffer *intel_fb =
11135 to_intel_framebuffer(intel_crtc->base.primary->fb);
11136 struct drm_i915_gem_object *obj = intel_fb->obj;
11137 u32 dspcntr;
11138 u32 reg;
11139
11140 reg = DSPCNTR(intel_crtc->plane);
11141 dspcntr = I915_READ(reg);
11142
11143 if (obj->tiling_mode != I915_TILING_NONE)
11144 dspcntr |= DISPPLANE_TILED;
11145 else
11146 dspcntr &= ~DISPPLANE_TILED;
11147
11148 I915_WRITE(reg, dspcntr);
11149
11150 I915_WRITE(DSPSURF(intel_crtc->plane),
11151 intel_crtc->unpin_work->gtt_offset);
11152 POSTING_READ(DSPSURF(intel_crtc->plane));
11153
11154 }
11155
11156 /*
11157 * XXX: This is the temporary way to update the plane registers until we get
11158 * around to using the usual plane update functions for MMIO flips
11159 */
11160 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11161 {
11162 struct drm_device *dev = intel_crtc->base.dev;
11163 u32 start_vbl_count;
11164
11165 intel_mark_page_flip_active(intel_crtc);
11166
11167 intel_pipe_update_start(intel_crtc, &start_vbl_count);
11168
11169 if (INTEL_INFO(dev)->gen >= 9)
11170 skl_do_mmio_flip(intel_crtc);
11171 else
11172 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11173 ilk_do_mmio_flip(intel_crtc);
11174
11175 intel_pipe_update_end(intel_crtc, start_vbl_count);
11176 }
11177
11178 static void intel_mmio_flip_work_func(struct work_struct *work)
11179 {
11180 struct intel_mmio_flip *mmio_flip =
11181 container_of(work, struct intel_mmio_flip, work);
11182
11183 if (mmio_flip->req)
11184 WARN_ON(__i915_wait_request(mmio_flip->req,
11185 mmio_flip->crtc->reset_counter,
11186 false, NULL,
11187 &mmio_flip->i915->rps.mmioflips));
11188
11189 intel_do_mmio_flip(mmio_flip->crtc);
11190
11191 i915_gem_request_unreference__unlocked(mmio_flip->req);
11192 kfree(mmio_flip);
11193 }
11194
11195 static int intel_queue_mmio_flip(struct drm_device *dev,
11196 struct drm_crtc *crtc,
11197 struct drm_framebuffer *fb,
11198 struct drm_i915_gem_object *obj,
11199 struct intel_engine_cs *ring,
11200 uint32_t flags)
11201 {
11202 struct intel_mmio_flip *mmio_flip;
11203
11204 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11205 if (mmio_flip == NULL)
11206 return -ENOMEM;
11207
11208 mmio_flip->i915 = to_i915(dev);
11209 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11210 mmio_flip->crtc = to_intel_crtc(crtc);
11211
11212 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11213 schedule_work(&mmio_flip->work);
11214
11215 return 0;
11216 }
11217
11218 static int intel_default_queue_flip(struct drm_device *dev,
11219 struct drm_crtc *crtc,
11220 struct drm_framebuffer *fb,
11221 struct drm_i915_gem_object *obj,
11222 struct drm_i915_gem_request *req,
11223 uint32_t flags)
11224 {
11225 return -ENODEV;
11226 }
11227
11228 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11229 struct drm_crtc *crtc)
11230 {
11231 struct drm_i915_private *dev_priv = dev->dev_private;
11232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11233 struct intel_unpin_work *work = intel_crtc->unpin_work;
11234 u32 addr;
11235
11236 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11237 return true;
11238
11239 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11240 return false;
11241
11242 if (!work->enable_stall_check)
11243 return false;
11244
11245 if (work->flip_ready_vblank == 0) {
11246 if (work->flip_queued_req &&
11247 !i915_gem_request_completed(work->flip_queued_req, true))
11248 return false;
11249
11250 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11251 }
11252
11253 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11254 return false;
11255
11256 /* Potential stall - if we see that the flip has happened,
11257 * assume a missed interrupt. */
11258 if (INTEL_INFO(dev)->gen >= 4)
11259 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11260 else
11261 addr = I915_READ(DSPADDR(intel_crtc->plane));
11262
11263 /* There is a potential issue here with a false positive after a flip
11264 * to the same address. We could address this by checking for a
11265 * non-incrementing frame counter.
11266 */
11267 return addr == work->gtt_offset;
11268 }
11269
11270 void intel_check_page_flip(struct drm_device *dev, int pipe)
11271 {
11272 struct drm_i915_private *dev_priv = dev->dev_private;
11273 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11275 struct intel_unpin_work *work;
11276
11277 WARN_ON(!in_interrupt());
11278
11279 if (crtc == NULL)
11280 return;
11281
11282 spin_lock(&dev->event_lock);
11283 work = intel_crtc->unpin_work;
11284 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11285 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11286 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11287 page_flip_completed(intel_crtc);
11288 work = NULL;
11289 }
11290 if (work != NULL &&
11291 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11292 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11293 spin_unlock(&dev->event_lock);
11294 }
11295
11296 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11297 struct drm_framebuffer *fb,
11298 struct drm_pending_vblank_event *event,
11299 uint32_t page_flip_flags)
11300 {
11301 struct drm_device *dev = crtc->dev;
11302 struct drm_i915_private *dev_priv = dev->dev_private;
11303 struct drm_framebuffer *old_fb = crtc->primary->fb;
11304 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11306 struct drm_plane *primary = crtc->primary;
11307 enum pipe pipe = intel_crtc->pipe;
11308 struct intel_unpin_work *work;
11309 struct intel_engine_cs *ring;
11310 bool mmio_flip;
11311 struct drm_i915_gem_request *request = NULL;
11312 int ret;
11313
11314 /*
11315 * drm_mode_page_flip_ioctl() should already catch this, but double
11316 * check to be safe. In the future we may enable pageflipping from
11317 * a disabled primary plane.
11318 */
11319 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11320 return -EBUSY;
11321
11322 /* Can't change pixel format via MI display flips. */
11323 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11324 return -EINVAL;
11325
11326 /*
11327 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11328 * Note that pitch changes could also affect these register.
11329 */
11330 if (INTEL_INFO(dev)->gen > 3 &&
11331 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11332 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11333 return -EINVAL;
11334
11335 if (i915_terminally_wedged(&dev_priv->gpu_error))
11336 goto out_hang;
11337
11338 work = kzalloc(sizeof(*work), GFP_KERNEL);
11339 if (work == NULL)
11340 return -ENOMEM;
11341
11342 work->event = event;
11343 work->crtc = crtc;
11344 work->old_fb = old_fb;
11345 INIT_WORK(&work->work, intel_unpin_work_fn);
11346
11347 ret = drm_crtc_vblank_get(crtc);
11348 if (ret)
11349 goto free_work;
11350
11351 /* We borrow the event spin lock for protecting unpin_work */
11352 spin_lock_irq(&dev->event_lock);
11353 if (intel_crtc->unpin_work) {
11354 /* Before declaring the flip queue wedged, check if
11355 * the hardware completed the operation behind our backs.
11356 */
11357 if (__intel_pageflip_stall_check(dev, crtc)) {
11358 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11359 page_flip_completed(intel_crtc);
11360 } else {
11361 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11362 spin_unlock_irq(&dev->event_lock);
11363
11364 drm_crtc_vblank_put(crtc);
11365 kfree(work);
11366 return -EBUSY;
11367 }
11368 }
11369 intel_crtc->unpin_work = work;
11370 spin_unlock_irq(&dev->event_lock);
11371
11372 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11373 flush_workqueue(dev_priv->wq);
11374
11375 /* Reference the objects for the scheduled work. */
11376 drm_framebuffer_reference(work->old_fb);
11377 drm_gem_object_reference(&obj->base);
11378
11379 crtc->primary->fb = fb;
11380 update_state_fb(crtc->primary);
11381
11382 work->pending_flip_obj = obj;
11383
11384 ret = i915_mutex_lock_interruptible(dev);
11385 if (ret)
11386 goto cleanup;
11387
11388 atomic_inc(&intel_crtc->unpin_work_count);
11389 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11390
11391 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11392 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11393
11394 if (IS_VALLEYVIEW(dev)) {
11395 ring = &dev_priv->ring[BCS];
11396 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11397 /* vlv: DISPLAY_FLIP fails to change tiling */
11398 ring = NULL;
11399 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11400 ring = &dev_priv->ring[BCS];
11401 } else if (INTEL_INFO(dev)->gen >= 7) {
11402 ring = i915_gem_request_get_ring(obj->last_write_req);
11403 if (ring == NULL || ring->id != RCS)
11404 ring = &dev_priv->ring[BCS];
11405 } else {
11406 ring = &dev_priv->ring[RCS];
11407 }
11408
11409 mmio_flip = use_mmio_flip(ring, obj);
11410
11411 /* When using CS flips, we want to emit semaphores between rings.
11412 * However, when using mmio flips we will create a task to do the
11413 * synchronisation, so all we want here is to pin the framebuffer
11414 * into the display plane and skip any waits.
11415 */
11416 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11417 crtc->primary->state,
11418 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11419 if (ret)
11420 goto cleanup_pending;
11421
11422 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11423 + intel_crtc->dspaddr_offset;
11424
11425 if (mmio_flip) {
11426 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11427 page_flip_flags);
11428 if (ret)
11429 goto cleanup_unpin;
11430
11431 i915_gem_request_assign(&work->flip_queued_req,
11432 obj->last_write_req);
11433 } else {
11434 if (!request) {
11435 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11436 if (ret)
11437 goto cleanup_unpin;
11438 }
11439
11440 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11441 page_flip_flags);
11442 if (ret)
11443 goto cleanup_unpin;
11444
11445 i915_gem_request_assign(&work->flip_queued_req, request);
11446 }
11447
11448 if (request)
11449 i915_add_request_no_flush(request);
11450
11451 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11452 work->enable_stall_check = true;
11453
11454 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11455 to_intel_plane(primary)->frontbuffer_bit);
11456 mutex_unlock(&dev->struct_mutex);
11457
11458 intel_fbc_disable_crtc(intel_crtc);
11459 intel_frontbuffer_flip_prepare(dev,
11460 to_intel_plane(primary)->frontbuffer_bit);
11461
11462 trace_i915_flip_request(intel_crtc->plane, obj);
11463
11464 return 0;
11465
11466 cleanup_unpin:
11467 intel_unpin_fb_obj(fb, crtc->primary->state);
11468 cleanup_pending:
11469 if (request)
11470 i915_gem_request_cancel(request);
11471 atomic_dec(&intel_crtc->unpin_work_count);
11472 mutex_unlock(&dev->struct_mutex);
11473 cleanup:
11474 crtc->primary->fb = old_fb;
11475 update_state_fb(crtc->primary);
11476
11477 drm_gem_object_unreference_unlocked(&obj->base);
11478 drm_framebuffer_unreference(work->old_fb);
11479
11480 spin_lock_irq(&dev->event_lock);
11481 intel_crtc->unpin_work = NULL;
11482 spin_unlock_irq(&dev->event_lock);
11483
11484 drm_crtc_vblank_put(crtc);
11485 free_work:
11486 kfree(work);
11487
11488 if (ret == -EIO) {
11489 struct drm_atomic_state *state;
11490 struct drm_plane_state *plane_state;
11491
11492 out_hang:
11493 state = drm_atomic_state_alloc(dev);
11494 if (!state)
11495 return -ENOMEM;
11496 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11497
11498 retry:
11499 plane_state = drm_atomic_get_plane_state(state, primary);
11500 ret = PTR_ERR_OR_ZERO(plane_state);
11501 if (!ret) {
11502 drm_atomic_set_fb_for_plane(plane_state, fb);
11503
11504 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11505 if (!ret)
11506 ret = drm_atomic_commit(state);
11507 }
11508
11509 if (ret == -EDEADLK) {
11510 drm_modeset_backoff(state->acquire_ctx);
11511 drm_atomic_state_clear(state);
11512 goto retry;
11513 }
11514
11515 if (ret)
11516 drm_atomic_state_free(state);
11517
11518 if (ret == 0 && event) {
11519 spin_lock_irq(&dev->event_lock);
11520 drm_send_vblank_event(dev, pipe, event);
11521 spin_unlock_irq(&dev->event_lock);
11522 }
11523 }
11524 return ret;
11525 }
11526
11527
11528 /**
11529 * intel_wm_need_update - Check whether watermarks need updating
11530 * @plane: drm plane
11531 * @state: new plane state
11532 *
11533 * Check current plane state versus the new one to determine whether
11534 * watermarks need to be recalculated.
11535 *
11536 * Returns true or false.
11537 */
11538 static bool intel_wm_need_update(struct drm_plane *plane,
11539 struct drm_plane_state *state)
11540 {
11541 /* Update watermarks on tiling changes. */
11542 if (!plane->state->fb || !state->fb ||
11543 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11544 plane->state->rotation != state->rotation)
11545 return true;
11546
11547 if (plane->state->crtc_w != state->crtc_w)
11548 return true;
11549
11550 return false;
11551 }
11552
11553 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11554 struct drm_plane_state *plane_state)
11555 {
11556 struct drm_crtc *crtc = crtc_state->crtc;
11557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11558 struct drm_plane *plane = plane_state->plane;
11559 struct drm_device *dev = crtc->dev;
11560 struct drm_i915_private *dev_priv = dev->dev_private;
11561 struct intel_plane_state *old_plane_state =
11562 to_intel_plane_state(plane->state);
11563 int idx = intel_crtc->base.base.id, ret;
11564 int i = drm_plane_index(plane);
11565 bool mode_changed = needs_modeset(crtc_state);
11566 bool was_crtc_enabled = crtc->state->active;
11567 bool is_crtc_enabled = crtc_state->active;
11568
11569 bool turn_off, turn_on, visible, was_visible;
11570 struct drm_framebuffer *fb = plane_state->fb;
11571
11572 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11573 plane->type != DRM_PLANE_TYPE_CURSOR) {
11574 ret = skl_update_scaler_plane(
11575 to_intel_crtc_state(crtc_state),
11576 to_intel_plane_state(plane_state));
11577 if (ret)
11578 return ret;
11579 }
11580
11581 /*
11582 * Disabling a plane is always okay; we just need to update
11583 * fb tracking in a special way since cleanup_fb() won't
11584 * get called by the plane helpers.
11585 */
11586 if (old_plane_state->base.fb && !fb)
11587 intel_crtc->atomic.disabled_planes |= 1 << i;
11588
11589 was_visible = old_plane_state->visible;
11590 visible = to_intel_plane_state(plane_state)->visible;
11591
11592 if (!was_crtc_enabled && WARN_ON(was_visible))
11593 was_visible = false;
11594
11595 if (!is_crtc_enabled && WARN_ON(visible))
11596 visible = false;
11597
11598 if (!was_visible && !visible)
11599 return 0;
11600
11601 turn_off = was_visible && (!visible || mode_changed);
11602 turn_on = visible && (!was_visible || mode_changed);
11603
11604 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11605 plane->base.id, fb ? fb->base.id : -1);
11606
11607 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11608 plane->base.id, was_visible, visible,
11609 turn_off, turn_on, mode_changed);
11610
11611 if (turn_on) {
11612 intel_crtc->atomic.update_wm_pre = true;
11613 /* must disable cxsr around plane enable/disable */
11614 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11615 intel_crtc->atomic.disable_cxsr = true;
11616 /* to potentially re-enable cxsr */
11617 intel_crtc->atomic.wait_vblank = true;
11618 intel_crtc->atomic.update_wm_post = true;
11619 }
11620 } else if (turn_off) {
11621 intel_crtc->atomic.update_wm_post = true;
11622 /* must disable cxsr around plane enable/disable */
11623 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11624 if (is_crtc_enabled)
11625 intel_crtc->atomic.wait_vblank = true;
11626 intel_crtc->atomic.disable_cxsr = true;
11627 }
11628 } else if (intel_wm_need_update(plane, plane_state)) {
11629 intel_crtc->atomic.update_wm_pre = true;
11630 }
11631
11632 if (visible)
11633 intel_crtc->atomic.fb_bits |=
11634 to_intel_plane(plane)->frontbuffer_bit;
11635
11636 switch (plane->type) {
11637 case DRM_PLANE_TYPE_PRIMARY:
11638 intel_crtc->atomic.wait_for_flips = true;
11639 intel_crtc->atomic.pre_disable_primary = turn_off;
11640 intel_crtc->atomic.post_enable_primary = turn_on;
11641
11642 if (turn_off) {
11643 /*
11644 * FIXME: Actually if we will still have any other
11645 * plane enabled on the pipe we could let IPS enabled
11646 * still, but for now lets consider that when we make
11647 * primary invisible by setting DSPCNTR to 0 on
11648 * update_primary_plane function IPS needs to be
11649 * disable.
11650 */
11651 intel_crtc->atomic.disable_ips = true;
11652
11653 intel_crtc->atomic.disable_fbc = true;
11654 }
11655
11656 /*
11657 * FBC does not work on some platforms for rotated
11658 * planes, so disable it when rotation is not 0 and
11659 * update it when rotation is set back to 0.
11660 *
11661 * FIXME: This is redundant with the fbc update done in
11662 * the primary plane enable function except that that
11663 * one is done too late. We eventually need to unify
11664 * this.
11665 */
11666
11667 if (visible &&
11668 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11669 dev_priv->fbc.crtc == intel_crtc &&
11670 plane_state->rotation != BIT(DRM_ROTATE_0))
11671 intel_crtc->atomic.disable_fbc = true;
11672
11673 /*
11674 * BDW signals flip done immediately if the plane
11675 * is disabled, even if the plane enable is already
11676 * armed to occur at the next vblank :(
11677 */
11678 if (turn_on && IS_BROADWELL(dev))
11679 intel_crtc->atomic.wait_vblank = true;
11680
11681 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11682 break;
11683 case DRM_PLANE_TYPE_CURSOR:
11684 break;
11685 case DRM_PLANE_TYPE_OVERLAY:
11686 if (turn_off && !mode_changed) {
11687 intel_crtc->atomic.wait_vblank = true;
11688 intel_crtc->atomic.update_sprite_watermarks |=
11689 1 << i;
11690 }
11691 }
11692 return 0;
11693 }
11694
11695 static bool encoders_cloneable(const struct intel_encoder *a,
11696 const struct intel_encoder *b)
11697 {
11698 /* masks could be asymmetric, so check both ways */
11699 return a == b || (a->cloneable & (1 << b->type) &&
11700 b->cloneable & (1 << a->type));
11701 }
11702
11703 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11704 struct intel_crtc *crtc,
11705 struct intel_encoder *encoder)
11706 {
11707 struct intel_encoder *source_encoder;
11708 struct drm_connector *connector;
11709 struct drm_connector_state *connector_state;
11710 int i;
11711
11712 for_each_connector_in_state(state, connector, connector_state, i) {
11713 if (connector_state->crtc != &crtc->base)
11714 continue;
11715
11716 source_encoder =
11717 to_intel_encoder(connector_state->best_encoder);
11718 if (!encoders_cloneable(encoder, source_encoder))
11719 return false;
11720 }
11721
11722 return true;
11723 }
11724
11725 static bool check_encoder_cloning(struct drm_atomic_state *state,
11726 struct intel_crtc *crtc)
11727 {
11728 struct intel_encoder *encoder;
11729 struct drm_connector *connector;
11730 struct drm_connector_state *connector_state;
11731 int i;
11732
11733 for_each_connector_in_state(state, connector, connector_state, i) {
11734 if (connector_state->crtc != &crtc->base)
11735 continue;
11736
11737 encoder = to_intel_encoder(connector_state->best_encoder);
11738 if (!check_single_encoder_cloning(state, crtc, encoder))
11739 return false;
11740 }
11741
11742 return true;
11743 }
11744
11745 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11746 struct drm_crtc_state *crtc_state)
11747 {
11748 struct drm_device *dev = crtc->dev;
11749 struct drm_i915_private *dev_priv = dev->dev_private;
11750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11751 struct intel_crtc_state *pipe_config =
11752 to_intel_crtc_state(crtc_state);
11753 struct drm_atomic_state *state = crtc_state->state;
11754 int ret;
11755 bool mode_changed = needs_modeset(crtc_state);
11756
11757 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11758 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11759 return -EINVAL;
11760 }
11761
11762 if (mode_changed && !crtc_state->active)
11763 intel_crtc->atomic.update_wm_post = true;
11764
11765 if (mode_changed && crtc_state->enable &&
11766 dev_priv->display.crtc_compute_clock &&
11767 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11768 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11769 pipe_config);
11770 if (ret)
11771 return ret;
11772 }
11773
11774 ret = 0;
11775 if (INTEL_INFO(dev)->gen >= 9) {
11776 if (mode_changed)
11777 ret = skl_update_scaler_crtc(pipe_config);
11778
11779 if (!ret)
11780 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11781 pipe_config);
11782 }
11783
11784 return ret;
11785 }
11786
11787 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11788 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11789 .load_lut = intel_crtc_load_lut,
11790 .atomic_begin = intel_begin_crtc_commit,
11791 .atomic_flush = intel_finish_crtc_commit,
11792 .atomic_check = intel_crtc_atomic_check,
11793 };
11794
11795 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11796 {
11797 struct intel_connector *connector;
11798
11799 for_each_intel_connector(dev, connector) {
11800 if (connector->base.encoder) {
11801 connector->base.state->best_encoder =
11802 connector->base.encoder;
11803 connector->base.state->crtc =
11804 connector->base.encoder->crtc;
11805 } else {
11806 connector->base.state->best_encoder = NULL;
11807 connector->base.state->crtc = NULL;
11808 }
11809 }
11810 }
11811
11812 static void
11813 connected_sink_compute_bpp(struct intel_connector *connector,
11814 struct intel_crtc_state *pipe_config)
11815 {
11816 int bpp = pipe_config->pipe_bpp;
11817
11818 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11819 connector->base.base.id,
11820 connector->base.name);
11821
11822 /* Don't use an invalid EDID bpc value */
11823 if (connector->base.display_info.bpc &&
11824 connector->base.display_info.bpc * 3 < bpp) {
11825 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11826 bpp, connector->base.display_info.bpc*3);
11827 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11828 }
11829
11830 /* Clamp bpp to 8 on screens without EDID 1.4 */
11831 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11832 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11833 bpp);
11834 pipe_config->pipe_bpp = 24;
11835 }
11836 }
11837
11838 static int
11839 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11840 struct intel_crtc_state *pipe_config)
11841 {
11842 struct drm_device *dev = crtc->base.dev;
11843 struct drm_atomic_state *state;
11844 struct drm_connector *connector;
11845 struct drm_connector_state *connector_state;
11846 int bpp, i;
11847
11848 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11849 bpp = 10*3;
11850 else if (INTEL_INFO(dev)->gen >= 5)
11851 bpp = 12*3;
11852 else
11853 bpp = 8*3;
11854
11855
11856 pipe_config->pipe_bpp = bpp;
11857
11858 state = pipe_config->base.state;
11859
11860 /* Clamp display bpp to EDID value */
11861 for_each_connector_in_state(state, connector, connector_state, i) {
11862 if (connector_state->crtc != &crtc->base)
11863 continue;
11864
11865 connected_sink_compute_bpp(to_intel_connector(connector),
11866 pipe_config);
11867 }
11868
11869 return bpp;
11870 }
11871
11872 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11873 {
11874 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11875 "type: 0x%x flags: 0x%x\n",
11876 mode->crtc_clock,
11877 mode->crtc_hdisplay, mode->crtc_hsync_start,
11878 mode->crtc_hsync_end, mode->crtc_htotal,
11879 mode->crtc_vdisplay, mode->crtc_vsync_start,
11880 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11881 }
11882
11883 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11884 struct intel_crtc_state *pipe_config,
11885 const char *context)
11886 {
11887 struct drm_device *dev = crtc->base.dev;
11888 struct drm_plane *plane;
11889 struct intel_plane *intel_plane;
11890 struct intel_plane_state *state;
11891 struct drm_framebuffer *fb;
11892
11893 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11894 context, pipe_config, pipe_name(crtc->pipe));
11895
11896 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11897 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11898 pipe_config->pipe_bpp, pipe_config->dither);
11899 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11900 pipe_config->has_pch_encoder,
11901 pipe_config->fdi_lanes,
11902 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11903 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11904 pipe_config->fdi_m_n.tu);
11905 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11906 pipe_config->has_dp_encoder,
11907 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11908 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11909 pipe_config->dp_m_n.tu);
11910
11911 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11912 pipe_config->has_dp_encoder,
11913 pipe_config->dp_m2_n2.gmch_m,
11914 pipe_config->dp_m2_n2.gmch_n,
11915 pipe_config->dp_m2_n2.link_m,
11916 pipe_config->dp_m2_n2.link_n,
11917 pipe_config->dp_m2_n2.tu);
11918
11919 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11920 pipe_config->has_audio,
11921 pipe_config->has_infoframe);
11922
11923 DRM_DEBUG_KMS("requested mode:\n");
11924 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11925 DRM_DEBUG_KMS("adjusted mode:\n");
11926 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11927 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11928 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11929 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11930 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11931 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11932 crtc->num_scalers,
11933 pipe_config->scaler_state.scaler_users,
11934 pipe_config->scaler_state.scaler_id);
11935 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11936 pipe_config->gmch_pfit.control,
11937 pipe_config->gmch_pfit.pgm_ratios,
11938 pipe_config->gmch_pfit.lvds_border_bits);
11939 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11940 pipe_config->pch_pfit.pos,
11941 pipe_config->pch_pfit.size,
11942 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11943 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11944 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11945
11946 if (IS_BROXTON(dev)) {
11947 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11948 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11949 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11950 pipe_config->ddi_pll_sel,
11951 pipe_config->dpll_hw_state.ebb0,
11952 pipe_config->dpll_hw_state.ebb4,
11953 pipe_config->dpll_hw_state.pll0,
11954 pipe_config->dpll_hw_state.pll1,
11955 pipe_config->dpll_hw_state.pll2,
11956 pipe_config->dpll_hw_state.pll3,
11957 pipe_config->dpll_hw_state.pll6,
11958 pipe_config->dpll_hw_state.pll8,
11959 pipe_config->dpll_hw_state.pll9,
11960 pipe_config->dpll_hw_state.pll10,
11961 pipe_config->dpll_hw_state.pcsdw12);
11962 } else if (IS_SKYLAKE(dev)) {
11963 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11964 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11965 pipe_config->ddi_pll_sel,
11966 pipe_config->dpll_hw_state.ctrl1,
11967 pipe_config->dpll_hw_state.cfgcr1,
11968 pipe_config->dpll_hw_state.cfgcr2);
11969 } else if (HAS_DDI(dev)) {
11970 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11971 pipe_config->ddi_pll_sel,
11972 pipe_config->dpll_hw_state.wrpll);
11973 } else {
11974 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11975 "fp0: 0x%x, fp1: 0x%x\n",
11976 pipe_config->dpll_hw_state.dpll,
11977 pipe_config->dpll_hw_state.dpll_md,
11978 pipe_config->dpll_hw_state.fp0,
11979 pipe_config->dpll_hw_state.fp1);
11980 }
11981
11982 DRM_DEBUG_KMS("planes on this crtc\n");
11983 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11984 intel_plane = to_intel_plane(plane);
11985 if (intel_plane->pipe != crtc->pipe)
11986 continue;
11987
11988 state = to_intel_plane_state(plane->state);
11989 fb = state->base.fb;
11990 if (!fb) {
11991 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11992 "disabled, scaler_id = %d\n",
11993 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11994 plane->base.id, intel_plane->pipe,
11995 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11996 drm_plane_index(plane), state->scaler_id);
11997 continue;
11998 }
11999
12000 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12001 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12002 plane->base.id, intel_plane->pipe,
12003 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12004 drm_plane_index(plane));
12005 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12006 fb->base.id, fb->width, fb->height, fb->pixel_format);
12007 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12008 state->scaler_id,
12009 state->src.x1 >> 16, state->src.y1 >> 16,
12010 drm_rect_width(&state->src) >> 16,
12011 drm_rect_height(&state->src) >> 16,
12012 state->dst.x1, state->dst.y1,
12013 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12014 }
12015 }
12016
12017 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12018 {
12019 struct drm_device *dev = state->dev;
12020 struct intel_encoder *encoder;
12021 struct drm_connector *connector;
12022 struct drm_connector_state *connector_state;
12023 unsigned int used_ports = 0;
12024 int i;
12025
12026 /*
12027 * Walk the connector list instead of the encoder
12028 * list to detect the problem on ddi platforms
12029 * where there's just one encoder per digital port.
12030 */
12031 for_each_connector_in_state(state, connector, connector_state, i) {
12032 if (!connector_state->best_encoder)
12033 continue;
12034
12035 encoder = to_intel_encoder(connector_state->best_encoder);
12036
12037 WARN_ON(!connector_state->crtc);
12038
12039 switch (encoder->type) {
12040 unsigned int port_mask;
12041 case INTEL_OUTPUT_UNKNOWN:
12042 if (WARN_ON(!HAS_DDI(dev)))
12043 break;
12044 case INTEL_OUTPUT_DISPLAYPORT:
12045 case INTEL_OUTPUT_HDMI:
12046 case INTEL_OUTPUT_EDP:
12047 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12048
12049 /* the same port mustn't appear more than once */
12050 if (used_ports & port_mask)
12051 return false;
12052
12053 used_ports |= port_mask;
12054 default:
12055 break;
12056 }
12057 }
12058
12059 return true;
12060 }
12061
12062 static void
12063 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12064 {
12065 struct drm_crtc_state tmp_state;
12066 struct intel_crtc_scaler_state scaler_state;
12067 struct intel_dpll_hw_state dpll_hw_state;
12068 enum intel_dpll_id shared_dpll;
12069 uint32_t ddi_pll_sel;
12070 bool force_thru;
12071
12072 /* FIXME: before the switch to atomic started, a new pipe_config was
12073 * kzalloc'd. Code that depends on any field being zero should be
12074 * fixed, so that the crtc_state can be safely duplicated. For now,
12075 * only fields that are know to not cause problems are preserved. */
12076
12077 tmp_state = crtc_state->base;
12078 scaler_state = crtc_state->scaler_state;
12079 shared_dpll = crtc_state->shared_dpll;
12080 dpll_hw_state = crtc_state->dpll_hw_state;
12081 ddi_pll_sel = crtc_state->ddi_pll_sel;
12082 force_thru = crtc_state->pch_pfit.force_thru;
12083
12084 memset(crtc_state, 0, sizeof *crtc_state);
12085
12086 crtc_state->base = tmp_state;
12087 crtc_state->scaler_state = scaler_state;
12088 crtc_state->shared_dpll = shared_dpll;
12089 crtc_state->dpll_hw_state = dpll_hw_state;
12090 crtc_state->ddi_pll_sel = ddi_pll_sel;
12091 crtc_state->pch_pfit.force_thru = force_thru;
12092 }
12093
12094 static int
12095 intel_modeset_pipe_config(struct drm_crtc *crtc,
12096 struct intel_crtc_state *pipe_config)
12097 {
12098 struct drm_atomic_state *state = pipe_config->base.state;
12099 struct intel_encoder *encoder;
12100 struct drm_connector *connector;
12101 struct drm_connector_state *connector_state;
12102 int base_bpp, ret = -EINVAL;
12103 int i;
12104 bool retry = true;
12105
12106 clear_intel_crtc_state(pipe_config);
12107
12108 pipe_config->cpu_transcoder =
12109 (enum transcoder) to_intel_crtc(crtc)->pipe;
12110
12111 /*
12112 * Sanitize sync polarity flags based on requested ones. If neither
12113 * positive or negative polarity is requested, treat this as meaning
12114 * negative polarity.
12115 */
12116 if (!(pipe_config->base.adjusted_mode.flags &
12117 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12118 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12119
12120 if (!(pipe_config->base.adjusted_mode.flags &
12121 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12122 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12123
12124 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12125 * plane pixel format and any sink constraints into account. Returns the
12126 * source plane bpp so that dithering can be selected on mismatches
12127 * after encoders and crtc also have had their say. */
12128 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12129 pipe_config);
12130 if (base_bpp < 0)
12131 goto fail;
12132
12133 /*
12134 * Determine the real pipe dimensions. Note that stereo modes can
12135 * increase the actual pipe size due to the frame doubling and
12136 * insertion of additional space for blanks between the frame. This
12137 * is stored in the crtc timings. We use the requested mode to do this
12138 * computation to clearly distinguish it from the adjusted mode, which
12139 * can be changed by the connectors in the below retry loop.
12140 */
12141 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12142 &pipe_config->pipe_src_w,
12143 &pipe_config->pipe_src_h);
12144
12145 encoder_retry:
12146 /* Ensure the port clock defaults are reset when retrying. */
12147 pipe_config->port_clock = 0;
12148 pipe_config->pixel_multiplier = 1;
12149
12150 /* Fill in default crtc timings, allow encoders to overwrite them. */
12151 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12152 CRTC_STEREO_DOUBLE);
12153
12154 /* Pass our mode to the connectors and the CRTC to give them a chance to
12155 * adjust it according to limitations or connector properties, and also
12156 * a chance to reject the mode entirely.
12157 */
12158 for_each_connector_in_state(state, connector, connector_state, i) {
12159 if (connector_state->crtc != crtc)
12160 continue;
12161
12162 encoder = to_intel_encoder(connector_state->best_encoder);
12163
12164 if (!(encoder->compute_config(encoder, pipe_config))) {
12165 DRM_DEBUG_KMS("Encoder config failure\n");
12166 goto fail;
12167 }
12168 }
12169
12170 /* Set default port clock if not overwritten by the encoder. Needs to be
12171 * done afterwards in case the encoder adjusts the mode. */
12172 if (!pipe_config->port_clock)
12173 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12174 * pipe_config->pixel_multiplier;
12175
12176 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12177 if (ret < 0) {
12178 DRM_DEBUG_KMS("CRTC fixup failed\n");
12179 goto fail;
12180 }
12181
12182 if (ret == RETRY) {
12183 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12184 ret = -EINVAL;
12185 goto fail;
12186 }
12187
12188 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12189 retry = false;
12190 goto encoder_retry;
12191 }
12192
12193 /* Dithering seems to not pass-through bits correctly when it should, so
12194 * only enable it on 6bpc panels. */
12195 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12196 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12197 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12198
12199 fail:
12200 return ret;
12201 }
12202
12203 static void
12204 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12205 {
12206 struct drm_crtc *crtc;
12207 struct drm_crtc_state *crtc_state;
12208 int i;
12209
12210 /* Double check state. */
12211 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12212 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12213
12214 /* Update hwmode for vblank functions */
12215 if (crtc->state->active)
12216 crtc->hwmode = crtc->state->adjusted_mode;
12217 else
12218 crtc->hwmode.crtc_clock = 0;
12219 }
12220 }
12221
12222 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12223 {
12224 int diff;
12225
12226 if (clock1 == clock2)
12227 return true;
12228
12229 if (!clock1 || !clock2)
12230 return false;
12231
12232 diff = abs(clock1 - clock2);
12233
12234 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12235 return true;
12236
12237 return false;
12238 }
12239
12240 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12241 list_for_each_entry((intel_crtc), \
12242 &(dev)->mode_config.crtc_list, \
12243 base.head) \
12244 if (mask & (1 <<(intel_crtc)->pipe))
12245
12246
12247 static bool
12248 intel_compare_m_n(unsigned int m, unsigned int n,
12249 unsigned int m2, unsigned int n2,
12250 bool exact)
12251 {
12252 if (m == m2 && n == n2)
12253 return true;
12254
12255 if (exact || !m || !n || !m2 || !n2)
12256 return false;
12257
12258 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12259
12260 if (m > m2) {
12261 while (m > m2) {
12262 m2 <<= 1;
12263 n2 <<= 1;
12264 }
12265 } else if (m < m2) {
12266 while (m < m2) {
12267 m <<= 1;
12268 n <<= 1;
12269 }
12270 }
12271
12272 return m == m2 && n == n2;
12273 }
12274
12275 static bool
12276 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12277 struct intel_link_m_n *m2_n2,
12278 bool adjust)
12279 {
12280 if (m_n->tu == m2_n2->tu &&
12281 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12282 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12283 intel_compare_m_n(m_n->link_m, m_n->link_n,
12284 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12285 if (adjust)
12286 *m2_n2 = *m_n;
12287
12288 return true;
12289 }
12290
12291 return false;
12292 }
12293
12294 static bool
12295 intel_pipe_config_compare(struct drm_device *dev,
12296 struct intel_crtc_state *current_config,
12297 struct intel_crtc_state *pipe_config,
12298 bool adjust)
12299 {
12300 bool ret = true;
12301
12302 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12303 do { \
12304 if (!adjust) \
12305 DRM_ERROR(fmt, ##__VA_ARGS__); \
12306 else \
12307 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12308 } while (0)
12309
12310 #define PIPE_CONF_CHECK_X(name) \
12311 if (current_config->name != pipe_config->name) { \
12312 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12313 "(expected 0x%08x, found 0x%08x)\n", \
12314 current_config->name, \
12315 pipe_config->name); \
12316 ret = false; \
12317 }
12318
12319 #define PIPE_CONF_CHECK_I(name) \
12320 if (current_config->name != pipe_config->name) { \
12321 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12322 "(expected %i, found %i)\n", \
12323 current_config->name, \
12324 pipe_config->name); \
12325 ret = false; \
12326 }
12327
12328 #define PIPE_CONF_CHECK_M_N(name) \
12329 if (!intel_compare_link_m_n(&current_config->name, \
12330 &pipe_config->name,\
12331 adjust)) { \
12332 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12333 "(expected tu %i gmch %i/%i link %i/%i, " \
12334 "found tu %i, gmch %i/%i link %i/%i)\n", \
12335 current_config->name.tu, \
12336 current_config->name.gmch_m, \
12337 current_config->name.gmch_n, \
12338 current_config->name.link_m, \
12339 current_config->name.link_n, \
12340 pipe_config->name.tu, \
12341 pipe_config->name.gmch_m, \
12342 pipe_config->name.gmch_n, \
12343 pipe_config->name.link_m, \
12344 pipe_config->name.link_n); \
12345 ret = false; \
12346 }
12347
12348 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12349 if (!intel_compare_link_m_n(&current_config->name, \
12350 &pipe_config->name, adjust) && \
12351 !intel_compare_link_m_n(&current_config->alt_name, \
12352 &pipe_config->name, adjust)) { \
12353 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12354 "(expected tu %i gmch %i/%i link %i/%i, " \
12355 "or tu %i gmch %i/%i link %i/%i, " \
12356 "found tu %i, gmch %i/%i link %i/%i)\n", \
12357 current_config->name.tu, \
12358 current_config->name.gmch_m, \
12359 current_config->name.gmch_n, \
12360 current_config->name.link_m, \
12361 current_config->name.link_n, \
12362 current_config->alt_name.tu, \
12363 current_config->alt_name.gmch_m, \
12364 current_config->alt_name.gmch_n, \
12365 current_config->alt_name.link_m, \
12366 current_config->alt_name.link_n, \
12367 pipe_config->name.tu, \
12368 pipe_config->name.gmch_m, \
12369 pipe_config->name.gmch_n, \
12370 pipe_config->name.link_m, \
12371 pipe_config->name.link_n); \
12372 ret = false; \
12373 }
12374
12375 /* This is required for BDW+ where there is only one set of registers for
12376 * switching between high and low RR.
12377 * This macro can be used whenever a comparison has to be made between one
12378 * hw state and multiple sw state variables.
12379 */
12380 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12381 if ((current_config->name != pipe_config->name) && \
12382 (current_config->alt_name != pipe_config->name)) { \
12383 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12384 "(expected %i or %i, found %i)\n", \
12385 current_config->name, \
12386 current_config->alt_name, \
12387 pipe_config->name); \
12388 ret = false; \
12389 }
12390
12391 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12392 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12393 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12394 "(expected %i, found %i)\n", \
12395 current_config->name & (mask), \
12396 pipe_config->name & (mask)); \
12397 ret = false; \
12398 }
12399
12400 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12401 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12402 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12403 "(expected %i, found %i)\n", \
12404 current_config->name, \
12405 pipe_config->name); \
12406 ret = false; \
12407 }
12408
12409 #define PIPE_CONF_QUIRK(quirk) \
12410 ((current_config->quirks | pipe_config->quirks) & (quirk))
12411
12412 PIPE_CONF_CHECK_I(cpu_transcoder);
12413
12414 PIPE_CONF_CHECK_I(has_pch_encoder);
12415 PIPE_CONF_CHECK_I(fdi_lanes);
12416 PIPE_CONF_CHECK_M_N(fdi_m_n);
12417
12418 PIPE_CONF_CHECK_I(has_dp_encoder);
12419
12420 if (INTEL_INFO(dev)->gen < 8) {
12421 PIPE_CONF_CHECK_M_N(dp_m_n);
12422
12423 PIPE_CONF_CHECK_I(has_drrs);
12424 if (current_config->has_drrs)
12425 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12426 } else
12427 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12428
12429 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12430 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12431 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12432 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12433 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12434 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12435
12436 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12437 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12438 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12439 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12440 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12441 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12442
12443 PIPE_CONF_CHECK_I(pixel_multiplier);
12444 PIPE_CONF_CHECK_I(has_hdmi_sink);
12445 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12446 IS_VALLEYVIEW(dev))
12447 PIPE_CONF_CHECK_I(limited_color_range);
12448 PIPE_CONF_CHECK_I(has_infoframe);
12449
12450 PIPE_CONF_CHECK_I(has_audio);
12451
12452 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12453 DRM_MODE_FLAG_INTERLACE);
12454
12455 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12456 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12457 DRM_MODE_FLAG_PHSYNC);
12458 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12459 DRM_MODE_FLAG_NHSYNC);
12460 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12461 DRM_MODE_FLAG_PVSYNC);
12462 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12463 DRM_MODE_FLAG_NVSYNC);
12464 }
12465
12466 PIPE_CONF_CHECK_I(pipe_src_w);
12467 PIPE_CONF_CHECK_I(pipe_src_h);
12468
12469 PIPE_CONF_CHECK_I(gmch_pfit.control);
12470 /* pfit ratios are autocomputed by the hw on gen4+ */
12471 if (INTEL_INFO(dev)->gen < 4)
12472 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12473 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12474
12475 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12476 if (current_config->pch_pfit.enabled) {
12477 PIPE_CONF_CHECK_I(pch_pfit.pos);
12478 PIPE_CONF_CHECK_I(pch_pfit.size);
12479 }
12480
12481 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12482
12483 /* BDW+ don't expose a synchronous way to read the state */
12484 if (IS_HASWELL(dev))
12485 PIPE_CONF_CHECK_I(ips_enabled);
12486
12487 PIPE_CONF_CHECK_I(double_wide);
12488
12489 PIPE_CONF_CHECK_X(ddi_pll_sel);
12490
12491 PIPE_CONF_CHECK_I(shared_dpll);
12492 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12493 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12494 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12495 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12496 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12497 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12498 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12499 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12500
12501 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12502 PIPE_CONF_CHECK_I(pipe_bpp);
12503
12504 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12505 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12506
12507 #undef PIPE_CONF_CHECK_X
12508 #undef PIPE_CONF_CHECK_I
12509 #undef PIPE_CONF_CHECK_I_ALT
12510 #undef PIPE_CONF_CHECK_FLAGS
12511 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12512 #undef PIPE_CONF_QUIRK
12513 #undef INTEL_ERR_OR_DBG_KMS
12514
12515 return ret;
12516 }
12517
12518 static void check_wm_state(struct drm_device *dev)
12519 {
12520 struct drm_i915_private *dev_priv = dev->dev_private;
12521 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12522 struct intel_crtc *intel_crtc;
12523 int plane;
12524
12525 if (INTEL_INFO(dev)->gen < 9)
12526 return;
12527
12528 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12529 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12530
12531 for_each_intel_crtc(dev, intel_crtc) {
12532 struct skl_ddb_entry *hw_entry, *sw_entry;
12533 const enum pipe pipe = intel_crtc->pipe;
12534
12535 if (!intel_crtc->active)
12536 continue;
12537
12538 /* planes */
12539 for_each_plane(dev_priv, pipe, plane) {
12540 hw_entry = &hw_ddb.plane[pipe][plane];
12541 sw_entry = &sw_ddb->plane[pipe][plane];
12542
12543 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12544 continue;
12545
12546 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12547 "(expected (%u,%u), found (%u,%u))\n",
12548 pipe_name(pipe), plane + 1,
12549 sw_entry->start, sw_entry->end,
12550 hw_entry->start, hw_entry->end);
12551 }
12552
12553 /* cursor */
12554 hw_entry = &hw_ddb.cursor[pipe];
12555 sw_entry = &sw_ddb->cursor[pipe];
12556
12557 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12558 continue;
12559
12560 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12561 "(expected (%u,%u), found (%u,%u))\n",
12562 pipe_name(pipe),
12563 sw_entry->start, sw_entry->end,
12564 hw_entry->start, hw_entry->end);
12565 }
12566 }
12567
12568 static void
12569 check_connector_state(struct drm_device *dev,
12570 struct drm_atomic_state *old_state)
12571 {
12572 struct drm_connector_state *old_conn_state;
12573 struct drm_connector *connector;
12574 int i;
12575
12576 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12577 struct drm_encoder *encoder = connector->encoder;
12578 struct drm_connector_state *state = connector->state;
12579
12580 /* This also checks the encoder/connector hw state with the
12581 * ->get_hw_state callbacks. */
12582 intel_connector_check_state(to_intel_connector(connector));
12583
12584 I915_STATE_WARN(state->best_encoder != encoder,
12585 "connector's atomic encoder doesn't match legacy encoder\n");
12586 }
12587 }
12588
12589 static void
12590 check_encoder_state(struct drm_device *dev)
12591 {
12592 struct intel_encoder *encoder;
12593 struct intel_connector *connector;
12594
12595 for_each_intel_encoder(dev, encoder) {
12596 bool enabled = false;
12597 enum pipe pipe;
12598
12599 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12600 encoder->base.base.id,
12601 encoder->base.name);
12602
12603 for_each_intel_connector(dev, connector) {
12604 if (connector->base.state->best_encoder != &encoder->base)
12605 continue;
12606 enabled = true;
12607
12608 I915_STATE_WARN(connector->base.state->crtc !=
12609 encoder->base.crtc,
12610 "connector's crtc doesn't match encoder crtc\n");
12611 }
12612
12613 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12614 "encoder's enabled state mismatch "
12615 "(expected %i, found %i)\n",
12616 !!encoder->base.crtc, enabled);
12617
12618 if (!encoder->base.crtc) {
12619 bool active;
12620
12621 active = encoder->get_hw_state(encoder, &pipe);
12622 I915_STATE_WARN(active,
12623 "encoder detached but still enabled on pipe %c.\n",
12624 pipe_name(pipe));
12625 }
12626 }
12627 }
12628
12629 static void
12630 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12631 {
12632 struct drm_i915_private *dev_priv = dev->dev_private;
12633 struct intel_encoder *encoder;
12634 struct drm_crtc_state *old_crtc_state;
12635 struct drm_crtc *crtc;
12636 int i;
12637
12638 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12640 struct intel_crtc_state *pipe_config, *sw_config;
12641 bool active;
12642
12643 if (!needs_modeset(crtc->state))
12644 continue;
12645
12646 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12647 pipe_config = to_intel_crtc_state(old_crtc_state);
12648 memset(pipe_config, 0, sizeof(*pipe_config));
12649 pipe_config->base.crtc = crtc;
12650 pipe_config->base.state = old_state;
12651
12652 DRM_DEBUG_KMS("[CRTC:%d]\n",
12653 crtc->base.id);
12654
12655 active = dev_priv->display.get_pipe_config(intel_crtc,
12656 pipe_config);
12657
12658 /* hw state is inconsistent with the pipe quirk */
12659 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12660 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12661 active = crtc->state->active;
12662
12663 I915_STATE_WARN(crtc->state->active != active,
12664 "crtc active state doesn't match with hw state "
12665 "(expected %i, found %i)\n", crtc->state->active, active);
12666
12667 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12668 "transitional active state does not match atomic hw state "
12669 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12670
12671 for_each_encoder_on_crtc(dev, crtc, encoder) {
12672 enum pipe pipe;
12673
12674 active = encoder->get_hw_state(encoder, &pipe);
12675 I915_STATE_WARN(active != crtc->state->active,
12676 "[ENCODER:%i] active %i with crtc active %i\n",
12677 encoder->base.base.id, active, crtc->state->active);
12678
12679 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12680 "Encoder connected to wrong pipe %c\n",
12681 pipe_name(pipe));
12682
12683 if (active)
12684 encoder->get_config(encoder, pipe_config);
12685 }
12686
12687 if (!crtc->state->active)
12688 continue;
12689
12690 sw_config = to_intel_crtc_state(crtc->state);
12691 if (!intel_pipe_config_compare(dev, sw_config,
12692 pipe_config, false)) {
12693 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12694 intel_dump_pipe_config(intel_crtc, pipe_config,
12695 "[hw state]");
12696 intel_dump_pipe_config(intel_crtc, sw_config,
12697 "[sw state]");
12698 }
12699 }
12700 }
12701
12702 static void
12703 check_shared_dpll_state(struct drm_device *dev)
12704 {
12705 struct drm_i915_private *dev_priv = dev->dev_private;
12706 struct intel_crtc *crtc;
12707 struct intel_dpll_hw_state dpll_hw_state;
12708 int i;
12709
12710 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12711 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12712 int enabled_crtcs = 0, active_crtcs = 0;
12713 bool active;
12714
12715 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12716
12717 DRM_DEBUG_KMS("%s\n", pll->name);
12718
12719 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12720
12721 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12722 "more active pll users than references: %i vs %i\n",
12723 pll->active, hweight32(pll->config.crtc_mask));
12724 I915_STATE_WARN(pll->active && !pll->on,
12725 "pll in active use but not on in sw tracking\n");
12726 I915_STATE_WARN(pll->on && !pll->active,
12727 "pll in on but not on in use in sw tracking\n");
12728 I915_STATE_WARN(pll->on != active,
12729 "pll on state mismatch (expected %i, found %i)\n",
12730 pll->on, active);
12731
12732 for_each_intel_crtc(dev, crtc) {
12733 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12734 enabled_crtcs++;
12735 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12736 active_crtcs++;
12737 }
12738 I915_STATE_WARN(pll->active != active_crtcs,
12739 "pll active crtcs mismatch (expected %i, found %i)\n",
12740 pll->active, active_crtcs);
12741 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12742 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12743 hweight32(pll->config.crtc_mask), enabled_crtcs);
12744
12745 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12746 sizeof(dpll_hw_state)),
12747 "pll hw state mismatch\n");
12748 }
12749 }
12750
12751 static void
12752 intel_modeset_check_state(struct drm_device *dev,
12753 struct drm_atomic_state *old_state)
12754 {
12755 check_wm_state(dev);
12756 check_connector_state(dev, old_state);
12757 check_encoder_state(dev);
12758 check_crtc_state(dev, old_state);
12759 check_shared_dpll_state(dev);
12760 }
12761
12762 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12763 int dotclock)
12764 {
12765 /*
12766 * FDI already provided one idea for the dotclock.
12767 * Yell if the encoder disagrees.
12768 */
12769 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12770 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12771 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12772 }
12773
12774 static void update_scanline_offset(struct intel_crtc *crtc)
12775 {
12776 struct drm_device *dev = crtc->base.dev;
12777
12778 /*
12779 * The scanline counter increments at the leading edge of hsync.
12780 *
12781 * On most platforms it starts counting from vtotal-1 on the
12782 * first active line. That means the scanline counter value is
12783 * always one less than what we would expect. Ie. just after
12784 * start of vblank, which also occurs at start of hsync (on the
12785 * last active line), the scanline counter will read vblank_start-1.
12786 *
12787 * On gen2 the scanline counter starts counting from 1 instead
12788 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12789 * to keep the value positive), instead of adding one.
12790 *
12791 * On HSW+ the behaviour of the scanline counter depends on the output
12792 * type. For DP ports it behaves like most other platforms, but on HDMI
12793 * there's an extra 1 line difference. So we need to add two instead of
12794 * one to the value.
12795 */
12796 if (IS_GEN2(dev)) {
12797 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12798 int vtotal;
12799
12800 vtotal = mode->crtc_vtotal;
12801 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12802 vtotal /= 2;
12803
12804 crtc->scanline_offset = vtotal - 1;
12805 } else if (HAS_DDI(dev) &&
12806 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12807 crtc->scanline_offset = 2;
12808 } else
12809 crtc->scanline_offset = 1;
12810 }
12811
12812 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12813 {
12814 struct drm_device *dev = state->dev;
12815 struct drm_i915_private *dev_priv = to_i915(dev);
12816 struct intel_shared_dpll_config *shared_dpll = NULL;
12817 struct intel_crtc *intel_crtc;
12818 struct intel_crtc_state *intel_crtc_state;
12819 struct drm_crtc *crtc;
12820 struct drm_crtc_state *crtc_state;
12821 int i;
12822
12823 if (!dev_priv->display.crtc_compute_clock)
12824 return;
12825
12826 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12827 int dpll;
12828
12829 intel_crtc = to_intel_crtc(crtc);
12830 intel_crtc_state = to_intel_crtc_state(crtc_state);
12831 dpll = intel_crtc_state->shared_dpll;
12832
12833 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12834 continue;
12835
12836 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12837
12838 if (!shared_dpll)
12839 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12840
12841 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12842 }
12843 }
12844
12845 /*
12846 * This implements the workaround described in the "notes" section of the mode
12847 * set sequence documentation. When going from no pipes or single pipe to
12848 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12849 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12850 */
12851 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12852 {
12853 struct drm_crtc_state *crtc_state;
12854 struct intel_crtc *intel_crtc;
12855 struct drm_crtc *crtc;
12856 struct intel_crtc_state *first_crtc_state = NULL;
12857 struct intel_crtc_state *other_crtc_state = NULL;
12858 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12859 int i;
12860
12861 /* look at all crtc's that are going to be enabled in during modeset */
12862 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12863 intel_crtc = to_intel_crtc(crtc);
12864
12865 if (!crtc_state->active || !needs_modeset(crtc_state))
12866 continue;
12867
12868 if (first_crtc_state) {
12869 other_crtc_state = to_intel_crtc_state(crtc_state);
12870 break;
12871 } else {
12872 first_crtc_state = to_intel_crtc_state(crtc_state);
12873 first_pipe = intel_crtc->pipe;
12874 }
12875 }
12876
12877 /* No workaround needed? */
12878 if (!first_crtc_state)
12879 return 0;
12880
12881 /* w/a possibly needed, check how many crtc's are already enabled. */
12882 for_each_intel_crtc(state->dev, intel_crtc) {
12883 struct intel_crtc_state *pipe_config;
12884
12885 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12886 if (IS_ERR(pipe_config))
12887 return PTR_ERR(pipe_config);
12888
12889 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12890
12891 if (!pipe_config->base.active ||
12892 needs_modeset(&pipe_config->base))
12893 continue;
12894
12895 /* 2 or more enabled crtcs means no need for w/a */
12896 if (enabled_pipe != INVALID_PIPE)
12897 return 0;
12898
12899 enabled_pipe = intel_crtc->pipe;
12900 }
12901
12902 if (enabled_pipe != INVALID_PIPE)
12903 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12904 else if (other_crtc_state)
12905 other_crtc_state->hsw_workaround_pipe = first_pipe;
12906
12907 return 0;
12908 }
12909
12910 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12911 {
12912 struct drm_crtc *crtc;
12913 struct drm_crtc_state *crtc_state;
12914 int ret = 0;
12915
12916 /* add all active pipes to the state */
12917 for_each_crtc(state->dev, crtc) {
12918 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12919 if (IS_ERR(crtc_state))
12920 return PTR_ERR(crtc_state);
12921
12922 if (!crtc_state->active || needs_modeset(crtc_state))
12923 continue;
12924
12925 crtc_state->mode_changed = true;
12926
12927 ret = drm_atomic_add_affected_connectors(state, crtc);
12928 if (ret)
12929 break;
12930
12931 ret = drm_atomic_add_affected_planes(state, crtc);
12932 if (ret)
12933 break;
12934 }
12935
12936 return ret;
12937 }
12938
12939
12940 static int intel_modeset_checks(struct drm_atomic_state *state)
12941 {
12942 struct drm_device *dev = state->dev;
12943 struct drm_i915_private *dev_priv = dev->dev_private;
12944 int ret;
12945
12946 if (!check_digital_port_conflicts(state)) {
12947 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12948 return -EINVAL;
12949 }
12950
12951 /*
12952 * See if the config requires any additional preparation, e.g.
12953 * to adjust global state with pipes off. We need to do this
12954 * here so we can get the modeset_pipe updated config for the new
12955 * mode set on this crtc. For other crtcs we need to use the
12956 * adjusted_mode bits in the crtc directly.
12957 */
12958 if (dev_priv->display.modeset_calc_cdclk) {
12959 unsigned int cdclk;
12960
12961 ret = dev_priv->display.modeset_calc_cdclk(state);
12962
12963 cdclk = to_intel_atomic_state(state)->cdclk;
12964 if (!ret && cdclk != dev_priv->cdclk_freq)
12965 ret = intel_modeset_all_pipes(state);
12966
12967 if (ret < 0)
12968 return ret;
12969 } else
12970 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
12971
12972 intel_modeset_clear_plls(state);
12973
12974 if (IS_HASWELL(dev))
12975 return haswell_mode_set_planes_workaround(state);
12976
12977 return 0;
12978 }
12979
12980 /**
12981 * intel_atomic_check - validate state object
12982 * @dev: drm device
12983 * @state: state to validate
12984 */
12985 static int intel_atomic_check(struct drm_device *dev,
12986 struct drm_atomic_state *state)
12987 {
12988 struct drm_crtc *crtc;
12989 struct drm_crtc_state *crtc_state;
12990 int ret, i;
12991 bool any_ms = false;
12992
12993 ret = drm_atomic_helper_check_modeset(dev, state);
12994 if (ret)
12995 return ret;
12996
12997 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12998 struct intel_crtc_state *pipe_config =
12999 to_intel_crtc_state(crtc_state);
13000
13001 /* Catch I915_MODE_FLAG_INHERITED */
13002 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13003 crtc_state->mode_changed = true;
13004
13005 if (!crtc_state->enable) {
13006 if (needs_modeset(crtc_state))
13007 any_ms = true;
13008 continue;
13009 }
13010
13011 if (!needs_modeset(crtc_state))
13012 continue;
13013
13014 /* FIXME: For only active_changed we shouldn't need to do any
13015 * state recomputation at all. */
13016
13017 ret = drm_atomic_add_affected_connectors(state, crtc);
13018 if (ret)
13019 return ret;
13020
13021 ret = intel_modeset_pipe_config(crtc, pipe_config);
13022 if (ret)
13023 return ret;
13024
13025 if (i915.fastboot &&
13026 intel_pipe_config_compare(state->dev,
13027 to_intel_crtc_state(crtc->state),
13028 pipe_config, true)) {
13029 crtc_state->mode_changed = false;
13030 }
13031
13032 if (needs_modeset(crtc_state)) {
13033 any_ms = true;
13034
13035 ret = drm_atomic_add_affected_planes(state, crtc);
13036 if (ret)
13037 return ret;
13038 }
13039
13040 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13041 needs_modeset(crtc_state) ?
13042 "[modeset]" : "[fastset]");
13043 }
13044
13045 if (any_ms) {
13046 ret = intel_modeset_checks(state);
13047
13048 if (ret)
13049 return ret;
13050 } else
13051 to_intel_atomic_state(state)->cdclk =
13052 to_i915(state->dev)->cdclk_freq;
13053
13054 return drm_atomic_helper_check_planes(state->dev, state);
13055 }
13056
13057 /**
13058 * intel_atomic_commit - commit validated state object
13059 * @dev: DRM device
13060 * @state: the top-level driver state object
13061 * @async: asynchronous commit
13062 *
13063 * This function commits a top-level state object that has been validated
13064 * with drm_atomic_helper_check().
13065 *
13066 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13067 * we can only handle plane-related operations and do not yet support
13068 * asynchronous commit.
13069 *
13070 * RETURNS
13071 * Zero for success or -errno.
13072 */
13073 static int intel_atomic_commit(struct drm_device *dev,
13074 struct drm_atomic_state *state,
13075 bool async)
13076 {
13077 struct drm_i915_private *dev_priv = dev->dev_private;
13078 struct drm_crtc *crtc;
13079 struct drm_crtc_state *crtc_state;
13080 int ret = 0;
13081 int i;
13082 bool any_ms = false;
13083
13084 if (async) {
13085 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13086 return -EINVAL;
13087 }
13088
13089 ret = drm_atomic_helper_prepare_planes(dev, state);
13090 if (ret)
13091 return ret;
13092
13093 drm_atomic_helper_swap_state(dev, state);
13094
13095 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13096 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13097
13098 if (!needs_modeset(crtc->state))
13099 continue;
13100
13101 any_ms = true;
13102 intel_pre_plane_update(intel_crtc);
13103
13104 if (crtc_state->active) {
13105 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13106 dev_priv->display.crtc_disable(crtc);
13107 intel_crtc->active = false;
13108 intel_disable_shared_dpll(intel_crtc);
13109 }
13110 }
13111
13112 /* Only after disabling all output pipelines that will be changed can we
13113 * update the the output configuration. */
13114 intel_modeset_update_crtc_state(state);
13115
13116 if (any_ms) {
13117 intel_shared_dpll_commit(state);
13118
13119 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13120 modeset_update_crtc_power_domains(state);
13121 }
13122
13123 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13124 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13126 bool modeset = needs_modeset(crtc->state);
13127
13128 if (modeset && crtc->state->active) {
13129 update_scanline_offset(to_intel_crtc(crtc));
13130 dev_priv->display.crtc_enable(crtc);
13131 }
13132
13133 if (!modeset)
13134 intel_pre_plane_update(intel_crtc);
13135
13136 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13137 intel_post_plane_update(intel_crtc);
13138 }
13139
13140 /* FIXME: add subpixel order */
13141
13142 drm_atomic_helper_wait_for_vblanks(dev, state);
13143 drm_atomic_helper_cleanup_planes(dev, state);
13144
13145 if (any_ms)
13146 intel_modeset_check_state(dev, state);
13147
13148 drm_atomic_state_free(state);
13149
13150 return 0;
13151 }
13152
13153 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13154 {
13155 struct drm_device *dev = crtc->dev;
13156 struct drm_atomic_state *state;
13157 struct drm_crtc_state *crtc_state;
13158 int ret;
13159
13160 state = drm_atomic_state_alloc(dev);
13161 if (!state) {
13162 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13163 crtc->base.id);
13164 return;
13165 }
13166
13167 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13168
13169 retry:
13170 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13171 ret = PTR_ERR_OR_ZERO(crtc_state);
13172 if (!ret) {
13173 if (!crtc_state->active)
13174 goto out;
13175
13176 crtc_state->mode_changed = true;
13177 ret = drm_atomic_commit(state);
13178 }
13179
13180 if (ret == -EDEADLK) {
13181 drm_atomic_state_clear(state);
13182 drm_modeset_backoff(state->acquire_ctx);
13183 goto retry;
13184 }
13185
13186 if (ret)
13187 out:
13188 drm_atomic_state_free(state);
13189 }
13190
13191 #undef for_each_intel_crtc_masked
13192
13193 static const struct drm_crtc_funcs intel_crtc_funcs = {
13194 .gamma_set = intel_crtc_gamma_set,
13195 .set_config = drm_atomic_helper_set_config,
13196 .destroy = intel_crtc_destroy,
13197 .page_flip = intel_crtc_page_flip,
13198 .atomic_duplicate_state = intel_crtc_duplicate_state,
13199 .atomic_destroy_state = intel_crtc_destroy_state,
13200 };
13201
13202 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13203 struct intel_shared_dpll *pll,
13204 struct intel_dpll_hw_state *hw_state)
13205 {
13206 uint32_t val;
13207
13208 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13209 return false;
13210
13211 val = I915_READ(PCH_DPLL(pll->id));
13212 hw_state->dpll = val;
13213 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13214 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13215
13216 return val & DPLL_VCO_ENABLE;
13217 }
13218
13219 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13220 struct intel_shared_dpll *pll)
13221 {
13222 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13223 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13224 }
13225
13226 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13227 struct intel_shared_dpll *pll)
13228 {
13229 /* PCH refclock must be enabled first */
13230 ibx_assert_pch_refclk_enabled(dev_priv);
13231
13232 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13233
13234 /* Wait for the clocks to stabilize. */
13235 POSTING_READ(PCH_DPLL(pll->id));
13236 udelay(150);
13237
13238 /* The pixel multiplier can only be updated once the
13239 * DPLL is enabled and the clocks are stable.
13240 *
13241 * So write it again.
13242 */
13243 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13244 POSTING_READ(PCH_DPLL(pll->id));
13245 udelay(200);
13246 }
13247
13248 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13249 struct intel_shared_dpll *pll)
13250 {
13251 struct drm_device *dev = dev_priv->dev;
13252 struct intel_crtc *crtc;
13253
13254 /* Make sure no transcoder isn't still depending on us. */
13255 for_each_intel_crtc(dev, crtc) {
13256 if (intel_crtc_to_shared_dpll(crtc) == pll)
13257 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13258 }
13259
13260 I915_WRITE(PCH_DPLL(pll->id), 0);
13261 POSTING_READ(PCH_DPLL(pll->id));
13262 udelay(200);
13263 }
13264
13265 static char *ibx_pch_dpll_names[] = {
13266 "PCH DPLL A",
13267 "PCH DPLL B",
13268 };
13269
13270 static void ibx_pch_dpll_init(struct drm_device *dev)
13271 {
13272 struct drm_i915_private *dev_priv = dev->dev_private;
13273 int i;
13274
13275 dev_priv->num_shared_dpll = 2;
13276
13277 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13278 dev_priv->shared_dplls[i].id = i;
13279 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13280 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13281 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13282 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13283 dev_priv->shared_dplls[i].get_hw_state =
13284 ibx_pch_dpll_get_hw_state;
13285 }
13286 }
13287
13288 static void intel_shared_dpll_init(struct drm_device *dev)
13289 {
13290 struct drm_i915_private *dev_priv = dev->dev_private;
13291
13292 intel_update_cdclk(dev);
13293
13294 if (HAS_DDI(dev))
13295 intel_ddi_pll_init(dev);
13296 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13297 ibx_pch_dpll_init(dev);
13298 else
13299 dev_priv->num_shared_dpll = 0;
13300
13301 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13302 }
13303
13304 /**
13305 * intel_prepare_plane_fb - Prepare fb for usage on plane
13306 * @plane: drm plane to prepare for
13307 * @fb: framebuffer to prepare for presentation
13308 *
13309 * Prepares a framebuffer for usage on a display plane. Generally this
13310 * involves pinning the underlying object and updating the frontbuffer tracking
13311 * bits. Some older platforms need special physical address handling for
13312 * cursor planes.
13313 *
13314 * Returns 0 on success, negative error code on failure.
13315 */
13316 int
13317 intel_prepare_plane_fb(struct drm_plane *plane,
13318 struct drm_framebuffer *fb,
13319 const struct drm_plane_state *new_state)
13320 {
13321 struct drm_device *dev = plane->dev;
13322 struct intel_plane *intel_plane = to_intel_plane(plane);
13323 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13324 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13325 int ret = 0;
13326
13327 if (!obj)
13328 return 0;
13329
13330 mutex_lock(&dev->struct_mutex);
13331
13332 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13333 INTEL_INFO(dev)->cursor_needs_physical) {
13334 int align = IS_I830(dev) ? 16 * 1024 : 256;
13335 ret = i915_gem_object_attach_phys(obj, align);
13336 if (ret)
13337 DRM_DEBUG_KMS("failed to attach phys object\n");
13338 } else {
13339 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13340 }
13341
13342 if (ret == 0)
13343 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13344
13345 mutex_unlock(&dev->struct_mutex);
13346
13347 return ret;
13348 }
13349
13350 /**
13351 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13352 * @plane: drm plane to clean up for
13353 * @fb: old framebuffer that was on plane
13354 *
13355 * Cleans up a framebuffer that has just been removed from a plane.
13356 */
13357 void
13358 intel_cleanup_plane_fb(struct drm_plane *plane,
13359 struct drm_framebuffer *fb,
13360 const struct drm_plane_state *old_state)
13361 {
13362 struct drm_device *dev = plane->dev;
13363 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13364
13365 if (WARN_ON(!obj))
13366 return;
13367
13368 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13369 !INTEL_INFO(dev)->cursor_needs_physical) {
13370 mutex_lock(&dev->struct_mutex);
13371 intel_unpin_fb_obj(fb, old_state);
13372 mutex_unlock(&dev->struct_mutex);
13373 }
13374 }
13375
13376 int
13377 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13378 {
13379 int max_scale;
13380 struct drm_device *dev;
13381 struct drm_i915_private *dev_priv;
13382 int crtc_clock, cdclk;
13383
13384 if (!intel_crtc || !crtc_state)
13385 return DRM_PLANE_HELPER_NO_SCALING;
13386
13387 dev = intel_crtc->base.dev;
13388 dev_priv = dev->dev_private;
13389 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13390 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13391
13392 if (!crtc_clock || !cdclk)
13393 return DRM_PLANE_HELPER_NO_SCALING;
13394
13395 /*
13396 * skl max scale is lower of:
13397 * close to 3 but not 3, -1 is for that purpose
13398 * or
13399 * cdclk/crtc_clock
13400 */
13401 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13402
13403 return max_scale;
13404 }
13405
13406 static int
13407 intel_check_primary_plane(struct drm_plane *plane,
13408 struct intel_crtc_state *crtc_state,
13409 struct intel_plane_state *state)
13410 {
13411 struct drm_crtc *crtc = state->base.crtc;
13412 struct drm_framebuffer *fb = state->base.fb;
13413 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13414 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13415 bool can_position = false;
13416
13417 /* use scaler when colorkey is not required */
13418 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13419 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13420 min_scale = 1;
13421 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13422 can_position = true;
13423 }
13424
13425 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13426 &state->dst, &state->clip,
13427 min_scale, max_scale,
13428 can_position, true,
13429 &state->visible);
13430 }
13431
13432 static void
13433 intel_commit_primary_plane(struct drm_plane *plane,
13434 struct intel_plane_state *state)
13435 {
13436 struct drm_crtc *crtc = state->base.crtc;
13437 struct drm_framebuffer *fb = state->base.fb;
13438 struct drm_device *dev = plane->dev;
13439 struct drm_i915_private *dev_priv = dev->dev_private;
13440 struct intel_crtc *intel_crtc;
13441 struct drm_rect *src = &state->src;
13442
13443 crtc = crtc ? crtc : plane->crtc;
13444 intel_crtc = to_intel_crtc(crtc);
13445
13446 plane->fb = fb;
13447 crtc->x = src->x1 >> 16;
13448 crtc->y = src->y1 >> 16;
13449
13450 if (!crtc->state->active)
13451 return;
13452
13453 if (state->visible)
13454 /* FIXME: kill this fastboot hack */
13455 intel_update_pipe_size(intel_crtc);
13456
13457 dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13458 }
13459
13460 static void
13461 intel_disable_primary_plane(struct drm_plane *plane,
13462 struct drm_crtc *crtc)
13463 {
13464 struct drm_device *dev = plane->dev;
13465 struct drm_i915_private *dev_priv = dev->dev_private;
13466
13467 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13468 }
13469
13470 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13471 struct drm_crtc_state *old_crtc_state)
13472 {
13473 struct drm_device *dev = crtc->dev;
13474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13475
13476 if (intel_crtc->atomic.update_wm_pre)
13477 intel_update_watermarks(crtc);
13478
13479 /* Perform vblank evasion around commit operation */
13480 if (crtc->state->active)
13481 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13482
13483 if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13484 skl_detach_scalers(intel_crtc);
13485 }
13486
13487 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13488 struct drm_crtc_state *old_crtc_state)
13489 {
13490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13491
13492 if (crtc->state->active)
13493 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13494 }
13495
13496 /**
13497 * intel_plane_destroy - destroy a plane
13498 * @plane: plane to destroy
13499 *
13500 * Common destruction function for all types of planes (primary, cursor,
13501 * sprite).
13502 */
13503 void intel_plane_destroy(struct drm_plane *plane)
13504 {
13505 struct intel_plane *intel_plane = to_intel_plane(plane);
13506 drm_plane_cleanup(plane);
13507 kfree(intel_plane);
13508 }
13509
13510 const struct drm_plane_funcs intel_plane_funcs = {
13511 .update_plane = drm_atomic_helper_update_plane,
13512 .disable_plane = drm_atomic_helper_disable_plane,
13513 .destroy = intel_plane_destroy,
13514 .set_property = drm_atomic_helper_plane_set_property,
13515 .atomic_get_property = intel_plane_atomic_get_property,
13516 .atomic_set_property = intel_plane_atomic_set_property,
13517 .atomic_duplicate_state = intel_plane_duplicate_state,
13518 .atomic_destroy_state = intel_plane_destroy_state,
13519
13520 };
13521
13522 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13523 int pipe)
13524 {
13525 struct intel_plane *primary;
13526 struct intel_plane_state *state;
13527 const uint32_t *intel_primary_formats;
13528 int num_formats;
13529
13530 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13531 if (primary == NULL)
13532 return NULL;
13533
13534 state = intel_create_plane_state(&primary->base);
13535 if (!state) {
13536 kfree(primary);
13537 return NULL;
13538 }
13539 primary->base.state = &state->base;
13540
13541 primary->can_scale = false;
13542 primary->max_downscale = 1;
13543 if (INTEL_INFO(dev)->gen >= 9) {
13544 primary->can_scale = true;
13545 state->scaler_id = -1;
13546 }
13547 primary->pipe = pipe;
13548 primary->plane = pipe;
13549 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13550 primary->check_plane = intel_check_primary_plane;
13551 primary->commit_plane = intel_commit_primary_plane;
13552 primary->disable_plane = intel_disable_primary_plane;
13553 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13554 primary->plane = !pipe;
13555
13556 if (INTEL_INFO(dev)->gen >= 9) {
13557 intel_primary_formats = skl_primary_formats;
13558 num_formats = ARRAY_SIZE(skl_primary_formats);
13559 } else if (INTEL_INFO(dev)->gen >= 4) {
13560 intel_primary_formats = i965_primary_formats;
13561 num_formats = ARRAY_SIZE(i965_primary_formats);
13562 } else {
13563 intel_primary_formats = i8xx_primary_formats;
13564 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13565 }
13566
13567 drm_universal_plane_init(dev, &primary->base, 0,
13568 &intel_plane_funcs,
13569 intel_primary_formats, num_formats,
13570 DRM_PLANE_TYPE_PRIMARY);
13571
13572 if (INTEL_INFO(dev)->gen >= 4)
13573 intel_create_rotation_property(dev, primary);
13574
13575 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13576
13577 return &primary->base;
13578 }
13579
13580 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13581 {
13582 if (!dev->mode_config.rotation_property) {
13583 unsigned long flags = BIT(DRM_ROTATE_0) |
13584 BIT(DRM_ROTATE_180);
13585
13586 if (INTEL_INFO(dev)->gen >= 9)
13587 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13588
13589 dev->mode_config.rotation_property =
13590 drm_mode_create_rotation_property(dev, flags);
13591 }
13592 if (dev->mode_config.rotation_property)
13593 drm_object_attach_property(&plane->base.base,
13594 dev->mode_config.rotation_property,
13595 plane->base.state->rotation);
13596 }
13597
13598 static int
13599 intel_check_cursor_plane(struct drm_plane *plane,
13600 struct intel_crtc_state *crtc_state,
13601 struct intel_plane_state *state)
13602 {
13603 struct drm_crtc *crtc = crtc_state->base.crtc;
13604 struct drm_framebuffer *fb = state->base.fb;
13605 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13606 unsigned stride;
13607 int ret;
13608
13609 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13610 &state->dst, &state->clip,
13611 DRM_PLANE_HELPER_NO_SCALING,
13612 DRM_PLANE_HELPER_NO_SCALING,
13613 true, true, &state->visible);
13614 if (ret)
13615 return ret;
13616
13617 /* if we want to turn off the cursor ignore width and height */
13618 if (!obj)
13619 return 0;
13620
13621 /* Check for which cursor types we support */
13622 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13623 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13624 state->base.crtc_w, state->base.crtc_h);
13625 return -EINVAL;
13626 }
13627
13628 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13629 if (obj->base.size < stride * state->base.crtc_h) {
13630 DRM_DEBUG_KMS("buffer is too small\n");
13631 return -ENOMEM;
13632 }
13633
13634 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13635 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13636 return -EINVAL;
13637 }
13638
13639 return 0;
13640 }
13641
13642 static void
13643 intel_disable_cursor_plane(struct drm_plane *plane,
13644 struct drm_crtc *crtc)
13645 {
13646 intel_crtc_update_cursor(crtc, false);
13647 }
13648
13649 static void
13650 intel_commit_cursor_plane(struct drm_plane *plane,
13651 struct intel_plane_state *state)
13652 {
13653 struct drm_crtc *crtc = state->base.crtc;
13654 struct drm_device *dev = plane->dev;
13655 struct intel_crtc *intel_crtc;
13656 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13657 uint32_t addr;
13658
13659 crtc = crtc ? crtc : plane->crtc;
13660 intel_crtc = to_intel_crtc(crtc);
13661
13662 plane->fb = state->base.fb;
13663 crtc->cursor_x = state->base.crtc_x;
13664 crtc->cursor_y = state->base.crtc_y;
13665
13666 if (intel_crtc->cursor_bo == obj)
13667 goto update;
13668
13669 if (!obj)
13670 addr = 0;
13671 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13672 addr = i915_gem_obj_ggtt_offset(obj);
13673 else
13674 addr = obj->phys_handle->busaddr;
13675
13676 intel_crtc->cursor_addr = addr;
13677 intel_crtc->cursor_bo = obj;
13678
13679 update:
13680 if (crtc->state->active)
13681 intel_crtc_update_cursor(crtc, state->visible);
13682 }
13683
13684 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13685 int pipe)
13686 {
13687 struct intel_plane *cursor;
13688 struct intel_plane_state *state;
13689
13690 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13691 if (cursor == NULL)
13692 return NULL;
13693
13694 state = intel_create_plane_state(&cursor->base);
13695 if (!state) {
13696 kfree(cursor);
13697 return NULL;
13698 }
13699 cursor->base.state = &state->base;
13700
13701 cursor->can_scale = false;
13702 cursor->max_downscale = 1;
13703 cursor->pipe = pipe;
13704 cursor->plane = pipe;
13705 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13706 cursor->check_plane = intel_check_cursor_plane;
13707 cursor->commit_plane = intel_commit_cursor_plane;
13708 cursor->disable_plane = intel_disable_cursor_plane;
13709
13710 drm_universal_plane_init(dev, &cursor->base, 0,
13711 &intel_plane_funcs,
13712 intel_cursor_formats,
13713 ARRAY_SIZE(intel_cursor_formats),
13714 DRM_PLANE_TYPE_CURSOR);
13715
13716 if (INTEL_INFO(dev)->gen >= 4) {
13717 if (!dev->mode_config.rotation_property)
13718 dev->mode_config.rotation_property =
13719 drm_mode_create_rotation_property(dev,
13720 BIT(DRM_ROTATE_0) |
13721 BIT(DRM_ROTATE_180));
13722 if (dev->mode_config.rotation_property)
13723 drm_object_attach_property(&cursor->base.base,
13724 dev->mode_config.rotation_property,
13725 state->base.rotation);
13726 }
13727
13728 if (INTEL_INFO(dev)->gen >=9)
13729 state->scaler_id = -1;
13730
13731 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13732
13733 return &cursor->base;
13734 }
13735
13736 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13737 struct intel_crtc_state *crtc_state)
13738 {
13739 int i;
13740 struct intel_scaler *intel_scaler;
13741 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13742
13743 for (i = 0; i < intel_crtc->num_scalers; i++) {
13744 intel_scaler = &scaler_state->scalers[i];
13745 intel_scaler->in_use = 0;
13746 intel_scaler->mode = PS_SCALER_MODE_DYN;
13747 }
13748
13749 scaler_state->scaler_id = -1;
13750 }
13751
13752 static void intel_crtc_init(struct drm_device *dev, int pipe)
13753 {
13754 struct drm_i915_private *dev_priv = dev->dev_private;
13755 struct intel_crtc *intel_crtc;
13756 struct intel_crtc_state *crtc_state = NULL;
13757 struct drm_plane *primary = NULL;
13758 struct drm_plane *cursor = NULL;
13759 int i, ret;
13760
13761 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13762 if (intel_crtc == NULL)
13763 return;
13764
13765 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13766 if (!crtc_state)
13767 goto fail;
13768 intel_crtc->config = crtc_state;
13769 intel_crtc->base.state = &crtc_state->base;
13770 crtc_state->base.crtc = &intel_crtc->base;
13771
13772 /* initialize shared scalers */
13773 if (INTEL_INFO(dev)->gen >= 9) {
13774 if (pipe == PIPE_C)
13775 intel_crtc->num_scalers = 1;
13776 else
13777 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13778
13779 skl_init_scalers(dev, intel_crtc, crtc_state);
13780 }
13781
13782 primary = intel_primary_plane_create(dev, pipe);
13783 if (!primary)
13784 goto fail;
13785
13786 cursor = intel_cursor_plane_create(dev, pipe);
13787 if (!cursor)
13788 goto fail;
13789
13790 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13791 cursor, &intel_crtc_funcs);
13792 if (ret)
13793 goto fail;
13794
13795 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13796 for (i = 0; i < 256; i++) {
13797 intel_crtc->lut_r[i] = i;
13798 intel_crtc->lut_g[i] = i;
13799 intel_crtc->lut_b[i] = i;
13800 }
13801
13802 /*
13803 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13804 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13805 */
13806 intel_crtc->pipe = pipe;
13807 intel_crtc->plane = pipe;
13808 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13809 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13810 intel_crtc->plane = !pipe;
13811 }
13812
13813 intel_crtc->cursor_base = ~0;
13814 intel_crtc->cursor_cntl = ~0;
13815 intel_crtc->cursor_size = ~0;
13816
13817 intel_crtc->wm.cxsr_allowed = true;
13818
13819 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13820 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13821 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13822 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13823
13824 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13825
13826 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13827 return;
13828
13829 fail:
13830 if (primary)
13831 drm_plane_cleanup(primary);
13832 if (cursor)
13833 drm_plane_cleanup(cursor);
13834 kfree(crtc_state);
13835 kfree(intel_crtc);
13836 }
13837
13838 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13839 {
13840 struct drm_encoder *encoder = connector->base.encoder;
13841 struct drm_device *dev = connector->base.dev;
13842
13843 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13844
13845 if (!encoder || WARN_ON(!encoder->crtc))
13846 return INVALID_PIPE;
13847
13848 return to_intel_crtc(encoder->crtc)->pipe;
13849 }
13850
13851 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13852 struct drm_file *file)
13853 {
13854 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13855 struct drm_crtc *drmmode_crtc;
13856 struct intel_crtc *crtc;
13857
13858 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13859
13860 if (!drmmode_crtc) {
13861 DRM_ERROR("no such CRTC id\n");
13862 return -ENOENT;
13863 }
13864
13865 crtc = to_intel_crtc(drmmode_crtc);
13866 pipe_from_crtc_id->pipe = crtc->pipe;
13867
13868 return 0;
13869 }
13870
13871 static int intel_encoder_clones(struct intel_encoder *encoder)
13872 {
13873 struct drm_device *dev = encoder->base.dev;
13874 struct intel_encoder *source_encoder;
13875 int index_mask = 0;
13876 int entry = 0;
13877
13878 for_each_intel_encoder(dev, source_encoder) {
13879 if (encoders_cloneable(encoder, source_encoder))
13880 index_mask |= (1 << entry);
13881
13882 entry++;
13883 }
13884
13885 return index_mask;
13886 }
13887
13888 static bool has_edp_a(struct drm_device *dev)
13889 {
13890 struct drm_i915_private *dev_priv = dev->dev_private;
13891
13892 if (!IS_MOBILE(dev))
13893 return false;
13894
13895 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13896 return false;
13897
13898 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13899 return false;
13900
13901 return true;
13902 }
13903
13904 static bool intel_crt_present(struct drm_device *dev)
13905 {
13906 struct drm_i915_private *dev_priv = dev->dev_private;
13907
13908 if (INTEL_INFO(dev)->gen >= 9)
13909 return false;
13910
13911 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13912 return false;
13913
13914 if (IS_CHERRYVIEW(dev))
13915 return false;
13916
13917 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13918 return false;
13919
13920 return true;
13921 }
13922
13923 static void intel_setup_outputs(struct drm_device *dev)
13924 {
13925 struct drm_i915_private *dev_priv = dev->dev_private;
13926 struct intel_encoder *encoder;
13927 bool dpd_is_edp = false;
13928
13929 intel_lvds_init(dev);
13930
13931 if (intel_crt_present(dev))
13932 intel_crt_init(dev);
13933
13934 if (IS_BROXTON(dev)) {
13935 /*
13936 * FIXME: Broxton doesn't support port detection via the
13937 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13938 * detect the ports.
13939 */
13940 intel_ddi_init(dev, PORT_A);
13941 intel_ddi_init(dev, PORT_B);
13942 intel_ddi_init(dev, PORT_C);
13943 } else if (HAS_DDI(dev)) {
13944 int found;
13945
13946 /*
13947 * Haswell uses DDI functions to detect digital outputs.
13948 * On SKL pre-D0 the strap isn't connected, so we assume
13949 * it's there.
13950 */
13951 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13952 /* WaIgnoreDDIAStrap: skl */
13953 if (found || IS_SKYLAKE(dev))
13954 intel_ddi_init(dev, PORT_A);
13955
13956 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13957 * register */
13958 found = I915_READ(SFUSE_STRAP);
13959
13960 if (found & SFUSE_STRAP_DDIB_DETECTED)
13961 intel_ddi_init(dev, PORT_B);
13962 if (found & SFUSE_STRAP_DDIC_DETECTED)
13963 intel_ddi_init(dev, PORT_C);
13964 if (found & SFUSE_STRAP_DDID_DETECTED)
13965 intel_ddi_init(dev, PORT_D);
13966 } else if (HAS_PCH_SPLIT(dev)) {
13967 int found;
13968 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13969
13970 if (has_edp_a(dev))
13971 intel_dp_init(dev, DP_A, PORT_A);
13972
13973 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13974 /* PCH SDVOB multiplex with HDMIB */
13975 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13976 if (!found)
13977 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13978 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13979 intel_dp_init(dev, PCH_DP_B, PORT_B);
13980 }
13981
13982 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13983 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13984
13985 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13986 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13987
13988 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13989 intel_dp_init(dev, PCH_DP_C, PORT_C);
13990
13991 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13992 intel_dp_init(dev, PCH_DP_D, PORT_D);
13993 } else if (IS_VALLEYVIEW(dev)) {
13994 /*
13995 * The DP_DETECTED bit is the latched state of the DDC
13996 * SDA pin at boot. However since eDP doesn't require DDC
13997 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13998 * eDP ports may have been muxed to an alternate function.
13999 * Thus we can't rely on the DP_DETECTED bit alone to detect
14000 * eDP ports. Consult the VBT as well as DP_DETECTED to
14001 * detect eDP ports.
14002 */
14003 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14004 !intel_dp_is_edp(dev, PORT_B))
14005 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14006 PORT_B);
14007 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14008 intel_dp_is_edp(dev, PORT_B))
14009 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14010
14011 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14012 !intel_dp_is_edp(dev, PORT_C))
14013 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14014 PORT_C);
14015 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14016 intel_dp_is_edp(dev, PORT_C))
14017 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14018
14019 if (IS_CHERRYVIEW(dev)) {
14020 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14021 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14022 PORT_D);
14023 /* eDP not supported on port D, so don't check VBT */
14024 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14025 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14026 }
14027
14028 intel_dsi_init(dev);
14029 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14030 bool found = false;
14031
14032 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14033 DRM_DEBUG_KMS("probing SDVOB\n");
14034 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14035 if (!found && IS_G4X(dev)) {
14036 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14037 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14038 }
14039
14040 if (!found && IS_G4X(dev))
14041 intel_dp_init(dev, DP_B, PORT_B);
14042 }
14043
14044 /* Before G4X SDVOC doesn't have its own detect register */
14045
14046 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14047 DRM_DEBUG_KMS("probing SDVOC\n");
14048 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14049 }
14050
14051 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14052
14053 if (IS_G4X(dev)) {
14054 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14055 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14056 }
14057 if (IS_G4X(dev))
14058 intel_dp_init(dev, DP_C, PORT_C);
14059 }
14060
14061 if (IS_G4X(dev) &&
14062 (I915_READ(DP_D) & DP_DETECTED))
14063 intel_dp_init(dev, DP_D, PORT_D);
14064 } else if (IS_GEN2(dev))
14065 intel_dvo_init(dev);
14066
14067 if (SUPPORTS_TV(dev))
14068 intel_tv_init(dev);
14069
14070 intel_psr_init(dev);
14071
14072 for_each_intel_encoder(dev, encoder) {
14073 encoder->base.possible_crtcs = encoder->crtc_mask;
14074 encoder->base.possible_clones =
14075 intel_encoder_clones(encoder);
14076 }
14077
14078 intel_init_pch_refclk(dev);
14079
14080 drm_helper_move_panel_connectors_to_head(dev);
14081 }
14082
14083 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14084 {
14085 struct drm_device *dev = fb->dev;
14086 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14087
14088 drm_framebuffer_cleanup(fb);
14089 mutex_lock(&dev->struct_mutex);
14090 WARN_ON(!intel_fb->obj->framebuffer_references--);
14091 drm_gem_object_unreference(&intel_fb->obj->base);
14092 mutex_unlock(&dev->struct_mutex);
14093 kfree(intel_fb);
14094 }
14095
14096 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14097 struct drm_file *file,
14098 unsigned int *handle)
14099 {
14100 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14101 struct drm_i915_gem_object *obj = intel_fb->obj;
14102
14103 return drm_gem_handle_create(file, &obj->base, handle);
14104 }
14105
14106 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14107 struct drm_file *file,
14108 unsigned flags, unsigned color,
14109 struct drm_clip_rect *clips,
14110 unsigned num_clips)
14111 {
14112 struct drm_device *dev = fb->dev;
14113 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14114 struct drm_i915_gem_object *obj = intel_fb->obj;
14115
14116 mutex_lock(&dev->struct_mutex);
14117 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14118 mutex_unlock(&dev->struct_mutex);
14119
14120 return 0;
14121 }
14122
14123 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14124 .destroy = intel_user_framebuffer_destroy,
14125 .create_handle = intel_user_framebuffer_create_handle,
14126 .dirty = intel_user_framebuffer_dirty,
14127 };
14128
14129 static
14130 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14131 uint32_t pixel_format)
14132 {
14133 u32 gen = INTEL_INFO(dev)->gen;
14134
14135 if (gen >= 9) {
14136 /* "The stride in bytes must not exceed the of the size of 8K
14137 * pixels and 32K bytes."
14138 */
14139 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14140 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14141 return 32*1024;
14142 } else if (gen >= 4) {
14143 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14144 return 16*1024;
14145 else
14146 return 32*1024;
14147 } else if (gen >= 3) {
14148 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14149 return 8*1024;
14150 else
14151 return 16*1024;
14152 } else {
14153 /* XXX DSPC is limited to 4k tiled */
14154 return 8*1024;
14155 }
14156 }
14157
14158 static int intel_framebuffer_init(struct drm_device *dev,
14159 struct intel_framebuffer *intel_fb,
14160 struct drm_mode_fb_cmd2 *mode_cmd,
14161 struct drm_i915_gem_object *obj)
14162 {
14163 unsigned int aligned_height;
14164 int ret;
14165 u32 pitch_limit, stride_alignment;
14166
14167 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14168
14169 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14170 /* Enforce that fb modifier and tiling mode match, but only for
14171 * X-tiled. This is needed for FBC. */
14172 if (!!(obj->tiling_mode == I915_TILING_X) !=
14173 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14174 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14175 return -EINVAL;
14176 }
14177 } else {
14178 if (obj->tiling_mode == I915_TILING_X)
14179 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14180 else if (obj->tiling_mode == I915_TILING_Y) {
14181 DRM_DEBUG("No Y tiling for legacy addfb\n");
14182 return -EINVAL;
14183 }
14184 }
14185
14186 /* Passed in modifier sanity checking. */
14187 switch (mode_cmd->modifier[0]) {
14188 case I915_FORMAT_MOD_Y_TILED:
14189 case I915_FORMAT_MOD_Yf_TILED:
14190 if (INTEL_INFO(dev)->gen < 9) {
14191 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14192 mode_cmd->modifier[0]);
14193 return -EINVAL;
14194 }
14195 case DRM_FORMAT_MOD_NONE:
14196 case I915_FORMAT_MOD_X_TILED:
14197 break;
14198 default:
14199 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14200 mode_cmd->modifier[0]);
14201 return -EINVAL;
14202 }
14203
14204 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14205 mode_cmd->pixel_format);
14206 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14207 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14208 mode_cmd->pitches[0], stride_alignment);
14209 return -EINVAL;
14210 }
14211
14212 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14213 mode_cmd->pixel_format);
14214 if (mode_cmd->pitches[0] > pitch_limit) {
14215 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14216 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14217 "tiled" : "linear",
14218 mode_cmd->pitches[0], pitch_limit);
14219 return -EINVAL;
14220 }
14221
14222 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14223 mode_cmd->pitches[0] != obj->stride) {
14224 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14225 mode_cmd->pitches[0], obj->stride);
14226 return -EINVAL;
14227 }
14228
14229 /* Reject formats not supported by any plane early. */
14230 switch (mode_cmd->pixel_format) {
14231 case DRM_FORMAT_C8:
14232 case DRM_FORMAT_RGB565:
14233 case DRM_FORMAT_XRGB8888:
14234 case DRM_FORMAT_ARGB8888:
14235 break;
14236 case DRM_FORMAT_XRGB1555:
14237 if (INTEL_INFO(dev)->gen > 3) {
14238 DRM_DEBUG("unsupported pixel format: %s\n",
14239 drm_get_format_name(mode_cmd->pixel_format));
14240 return -EINVAL;
14241 }
14242 break;
14243 case DRM_FORMAT_ABGR8888:
14244 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14245 DRM_DEBUG("unsupported pixel format: %s\n",
14246 drm_get_format_name(mode_cmd->pixel_format));
14247 return -EINVAL;
14248 }
14249 break;
14250 case DRM_FORMAT_XBGR8888:
14251 case DRM_FORMAT_XRGB2101010:
14252 case DRM_FORMAT_XBGR2101010:
14253 if (INTEL_INFO(dev)->gen < 4) {
14254 DRM_DEBUG("unsupported pixel format: %s\n",
14255 drm_get_format_name(mode_cmd->pixel_format));
14256 return -EINVAL;
14257 }
14258 break;
14259 case DRM_FORMAT_ABGR2101010:
14260 if (!IS_VALLEYVIEW(dev)) {
14261 DRM_DEBUG("unsupported pixel format: %s\n",
14262 drm_get_format_name(mode_cmd->pixel_format));
14263 return -EINVAL;
14264 }
14265 break;
14266 case DRM_FORMAT_YUYV:
14267 case DRM_FORMAT_UYVY:
14268 case DRM_FORMAT_YVYU:
14269 case DRM_FORMAT_VYUY:
14270 if (INTEL_INFO(dev)->gen < 5) {
14271 DRM_DEBUG("unsupported pixel format: %s\n",
14272 drm_get_format_name(mode_cmd->pixel_format));
14273 return -EINVAL;
14274 }
14275 break;
14276 default:
14277 DRM_DEBUG("unsupported pixel format: %s\n",
14278 drm_get_format_name(mode_cmd->pixel_format));
14279 return -EINVAL;
14280 }
14281
14282 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14283 if (mode_cmd->offsets[0] != 0)
14284 return -EINVAL;
14285
14286 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14287 mode_cmd->pixel_format,
14288 mode_cmd->modifier[0]);
14289 /* FIXME drm helper for size checks (especially planar formats)? */
14290 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14291 return -EINVAL;
14292
14293 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14294 intel_fb->obj = obj;
14295 intel_fb->obj->framebuffer_references++;
14296
14297 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14298 if (ret) {
14299 DRM_ERROR("framebuffer init failed %d\n", ret);
14300 return ret;
14301 }
14302
14303 return 0;
14304 }
14305
14306 static struct drm_framebuffer *
14307 intel_user_framebuffer_create(struct drm_device *dev,
14308 struct drm_file *filp,
14309 struct drm_mode_fb_cmd2 *mode_cmd)
14310 {
14311 struct drm_i915_gem_object *obj;
14312
14313 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14314 mode_cmd->handles[0]));
14315 if (&obj->base == NULL)
14316 return ERR_PTR(-ENOENT);
14317
14318 return intel_framebuffer_create(dev, mode_cmd, obj);
14319 }
14320
14321 #ifndef CONFIG_DRM_I915_FBDEV
14322 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14323 {
14324 }
14325 #endif
14326
14327 static const struct drm_mode_config_funcs intel_mode_funcs = {
14328 .fb_create = intel_user_framebuffer_create,
14329 .output_poll_changed = intel_fbdev_output_poll_changed,
14330 .atomic_check = intel_atomic_check,
14331 .atomic_commit = intel_atomic_commit,
14332 .atomic_state_alloc = intel_atomic_state_alloc,
14333 .atomic_state_clear = intel_atomic_state_clear,
14334 };
14335
14336 /* Set up chip specific display functions */
14337 static void intel_init_display(struct drm_device *dev)
14338 {
14339 struct drm_i915_private *dev_priv = dev->dev_private;
14340
14341 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14342 dev_priv->display.find_dpll = g4x_find_best_dpll;
14343 else if (IS_CHERRYVIEW(dev))
14344 dev_priv->display.find_dpll = chv_find_best_dpll;
14345 else if (IS_VALLEYVIEW(dev))
14346 dev_priv->display.find_dpll = vlv_find_best_dpll;
14347 else if (IS_PINEVIEW(dev))
14348 dev_priv->display.find_dpll = pnv_find_best_dpll;
14349 else
14350 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14351
14352 if (INTEL_INFO(dev)->gen >= 9) {
14353 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14354 dev_priv->display.get_initial_plane_config =
14355 skylake_get_initial_plane_config;
14356 dev_priv->display.crtc_compute_clock =
14357 haswell_crtc_compute_clock;
14358 dev_priv->display.crtc_enable = haswell_crtc_enable;
14359 dev_priv->display.crtc_disable = haswell_crtc_disable;
14360 dev_priv->display.update_primary_plane =
14361 skylake_update_primary_plane;
14362 } else if (HAS_DDI(dev)) {
14363 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14364 dev_priv->display.get_initial_plane_config =
14365 ironlake_get_initial_plane_config;
14366 dev_priv->display.crtc_compute_clock =
14367 haswell_crtc_compute_clock;
14368 dev_priv->display.crtc_enable = haswell_crtc_enable;
14369 dev_priv->display.crtc_disable = haswell_crtc_disable;
14370 dev_priv->display.update_primary_plane =
14371 ironlake_update_primary_plane;
14372 } else if (HAS_PCH_SPLIT(dev)) {
14373 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14374 dev_priv->display.get_initial_plane_config =
14375 ironlake_get_initial_plane_config;
14376 dev_priv->display.crtc_compute_clock =
14377 ironlake_crtc_compute_clock;
14378 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14379 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14380 dev_priv->display.update_primary_plane =
14381 ironlake_update_primary_plane;
14382 } else if (IS_VALLEYVIEW(dev)) {
14383 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14384 dev_priv->display.get_initial_plane_config =
14385 i9xx_get_initial_plane_config;
14386 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14387 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14388 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14389 dev_priv->display.update_primary_plane =
14390 i9xx_update_primary_plane;
14391 } else {
14392 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14393 dev_priv->display.get_initial_plane_config =
14394 i9xx_get_initial_plane_config;
14395 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14396 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14397 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14398 dev_priv->display.update_primary_plane =
14399 i9xx_update_primary_plane;
14400 }
14401
14402 /* Returns the core display clock speed */
14403 if (IS_SKYLAKE(dev))
14404 dev_priv->display.get_display_clock_speed =
14405 skylake_get_display_clock_speed;
14406 else if (IS_BROXTON(dev))
14407 dev_priv->display.get_display_clock_speed =
14408 broxton_get_display_clock_speed;
14409 else if (IS_BROADWELL(dev))
14410 dev_priv->display.get_display_clock_speed =
14411 broadwell_get_display_clock_speed;
14412 else if (IS_HASWELL(dev))
14413 dev_priv->display.get_display_clock_speed =
14414 haswell_get_display_clock_speed;
14415 else if (IS_VALLEYVIEW(dev))
14416 dev_priv->display.get_display_clock_speed =
14417 valleyview_get_display_clock_speed;
14418 else if (IS_GEN5(dev))
14419 dev_priv->display.get_display_clock_speed =
14420 ilk_get_display_clock_speed;
14421 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14422 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14423 dev_priv->display.get_display_clock_speed =
14424 i945_get_display_clock_speed;
14425 else if (IS_GM45(dev))
14426 dev_priv->display.get_display_clock_speed =
14427 gm45_get_display_clock_speed;
14428 else if (IS_CRESTLINE(dev))
14429 dev_priv->display.get_display_clock_speed =
14430 i965gm_get_display_clock_speed;
14431 else if (IS_PINEVIEW(dev))
14432 dev_priv->display.get_display_clock_speed =
14433 pnv_get_display_clock_speed;
14434 else if (IS_G33(dev) || IS_G4X(dev))
14435 dev_priv->display.get_display_clock_speed =
14436 g33_get_display_clock_speed;
14437 else if (IS_I915G(dev))
14438 dev_priv->display.get_display_clock_speed =
14439 i915_get_display_clock_speed;
14440 else if (IS_I945GM(dev) || IS_845G(dev))
14441 dev_priv->display.get_display_clock_speed =
14442 i9xx_misc_get_display_clock_speed;
14443 else if (IS_PINEVIEW(dev))
14444 dev_priv->display.get_display_clock_speed =
14445 pnv_get_display_clock_speed;
14446 else if (IS_I915GM(dev))
14447 dev_priv->display.get_display_clock_speed =
14448 i915gm_get_display_clock_speed;
14449 else if (IS_I865G(dev))
14450 dev_priv->display.get_display_clock_speed =
14451 i865_get_display_clock_speed;
14452 else if (IS_I85X(dev))
14453 dev_priv->display.get_display_clock_speed =
14454 i85x_get_display_clock_speed;
14455 else { /* 830 */
14456 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14457 dev_priv->display.get_display_clock_speed =
14458 i830_get_display_clock_speed;
14459 }
14460
14461 if (IS_GEN5(dev)) {
14462 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14463 } else if (IS_GEN6(dev)) {
14464 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14465 } else if (IS_IVYBRIDGE(dev)) {
14466 /* FIXME: detect B0+ stepping and use auto training */
14467 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14468 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14469 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14470 if (IS_BROADWELL(dev)) {
14471 dev_priv->display.modeset_commit_cdclk =
14472 broadwell_modeset_commit_cdclk;
14473 dev_priv->display.modeset_calc_cdclk =
14474 broadwell_modeset_calc_cdclk;
14475 }
14476 } else if (IS_VALLEYVIEW(dev)) {
14477 dev_priv->display.modeset_commit_cdclk =
14478 valleyview_modeset_commit_cdclk;
14479 dev_priv->display.modeset_calc_cdclk =
14480 valleyview_modeset_calc_cdclk;
14481 } else if (IS_BROXTON(dev)) {
14482 dev_priv->display.modeset_commit_cdclk =
14483 broxton_modeset_commit_cdclk;
14484 dev_priv->display.modeset_calc_cdclk =
14485 broxton_modeset_calc_cdclk;
14486 }
14487
14488 switch (INTEL_INFO(dev)->gen) {
14489 case 2:
14490 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14491 break;
14492
14493 case 3:
14494 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14495 break;
14496
14497 case 4:
14498 case 5:
14499 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14500 break;
14501
14502 case 6:
14503 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14504 break;
14505 case 7:
14506 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14507 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14508 break;
14509 case 9:
14510 /* Drop through - unsupported since execlist only. */
14511 default:
14512 /* Default just returns -ENODEV to indicate unsupported */
14513 dev_priv->display.queue_flip = intel_default_queue_flip;
14514 }
14515
14516 intel_panel_init_backlight_funcs(dev);
14517
14518 mutex_init(&dev_priv->pps_mutex);
14519 }
14520
14521 /*
14522 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14523 * resume, or other times. This quirk makes sure that's the case for
14524 * affected systems.
14525 */
14526 static void quirk_pipea_force(struct drm_device *dev)
14527 {
14528 struct drm_i915_private *dev_priv = dev->dev_private;
14529
14530 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14531 DRM_INFO("applying pipe a force quirk\n");
14532 }
14533
14534 static void quirk_pipeb_force(struct drm_device *dev)
14535 {
14536 struct drm_i915_private *dev_priv = dev->dev_private;
14537
14538 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14539 DRM_INFO("applying pipe b force quirk\n");
14540 }
14541
14542 /*
14543 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14544 */
14545 static void quirk_ssc_force_disable(struct drm_device *dev)
14546 {
14547 struct drm_i915_private *dev_priv = dev->dev_private;
14548 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14549 DRM_INFO("applying lvds SSC disable quirk\n");
14550 }
14551
14552 /*
14553 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14554 * brightness value
14555 */
14556 static void quirk_invert_brightness(struct drm_device *dev)
14557 {
14558 struct drm_i915_private *dev_priv = dev->dev_private;
14559 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14560 DRM_INFO("applying inverted panel brightness quirk\n");
14561 }
14562
14563 /* Some VBT's incorrectly indicate no backlight is present */
14564 static void quirk_backlight_present(struct drm_device *dev)
14565 {
14566 struct drm_i915_private *dev_priv = dev->dev_private;
14567 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14568 DRM_INFO("applying backlight present quirk\n");
14569 }
14570
14571 struct intel_quirk {
14572 int device;
14573 int subsystem_vendor;
14574 int subsystem_device;
14575 void (*hook)(struct drm_device *dev);
14576 };
14577
14578 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14579 struct intel_dmi_quirk {
14580 void (*hook)(struct drm_device *dev);
14581 const struct dmi_system_id (*dmi_id_list)[];
14582 };
14583
14584 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14585 {
14586 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14587 return 1;
14588 }
14589
14590 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14591 {
14592 .dmi_id_list = &(const struct dmi_system_id[]) {
14593 {
14594 .callback = intel_dmi_reverse_brightness,
14595 .ident = "NCR Corporation",
14596 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14597 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14598 },
14599 },
14600 { } /* terminating entry */
14601 },
14602 .hook = quirk_invert_brightness,
14603 },
14604 };
14605
14606 static struct intel_quirk intel_quirks[] = {
14607 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14608 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14609
14610 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14611 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14612
14613 /* 830 needs to leave pipe A & dpll A up */
14614 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14615
14616 /* 830 needs to leave pipe B & dpll B up */
14617 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14618
14619 /* Lenovo U160 cannot use SSC on LVDS */
14620 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14621
14622 /* Sony Vaio Y cannot use SSC on LVDS */
14623 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14624
14625 /* Acer Aspire 5734Z must invert backlight brightness */
14626 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14627
14628 /* Acer/eMachines G725 */
14629 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14630
14631 /* Acer/eMachines e725 */
14632 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14633
14634 /* Acer/Packard Bell NCL20 */
14635 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14636
14637 /* Acer Aspire 4736Z */
14638 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14639
14640 /* Acer Aspire 5336 */
14641 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14642
14643 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14644 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14645
14646 /* Acer C720 Chromebook (Core i3 4005U) */
14647 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14648
14649 /* Apple Macbook 2,1 (Core 2 T7400) */
14650 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14651
14652 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14653 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14654
14655 /* HP Chromebook 14 (Celeron 2955U) */
14656 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14657
14658 /* Dell Chromebook 11 */
14659 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14660 };
14661
14662 static void intel_init_quirks(struct drm_device *dev)
14663 {
14664 struct pci_dev *d = dev->pdev;
14665 int i;
14666
14667 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14668 struct intel_quirk *q = &intel_quirks[i];
14669
14670 if (d->device == q->device &&
14671 (d->subsystem_vendor == q->subsystem_vendor ||
14672 q->subsystem_vendor == PCI_ANY_ID) &&
14673 (d->subsystem_device == q->subsystem_device ||
14674 q->subsystem_device == PCI_ANY_ID))
14675 q->hook(dev);
14676 }
14677 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14678 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14679 intel_dmi_quirks[i].hook(dev);
14680 }
14681 }
14682
14683 /* Disable the VGA plane that we never use */
14684 static void i915_disable_vga(struct drm_device *dev)
14685 {
14686 struct drm_i915_private *dev_priv = dev->dev_private;
14687 u8 sr1;
14688 u32 vga_reg = i915_vgacntrl_reg(dev);
14689
14690 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14691 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14692 outb(SR01, VGA_SR_INDEX);
14693 sr1 = inb(VGA_SR_DATA);
14694 outb(sr1 | 1<<5, VGA_SR_DATA);
14695 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14696 udelay(300);
14697
14698 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14699 POSTING_READ(vga_reg);
14700 }
14701
14702 void intel_modeset_init_hw(struct drm_device *dev)
14703 {
14704 intel_update_cdclk(dev);
14705 intel_prepare_ddi(dev);
14706 intel_init_clock_gating(dev);
14707 intel_enable_gt_powersave(dev);
14708 }
14709
14710 void intel_modeset_init(struct drm_device *dev)
14711 {
14712 struct drm_i915_private *dev_priv = dev->dev_private;
14713 int sprite, ret;
14714 enum pipe pipe;
14715 struct intel_crtc *crtc;
14716
14717 drm_mode_config_init(dev);
14718
14719 dev->mode_config.min_width = 0;
14720 dev->mode_config.min_height = 0;
14721
14722 dev->mode_config.preferred_depth = 24;
14723 dev->mode_config.prefer_shadow = 1;
14724
14725 dev->mode_config.allow_fb_modifiers = true;
14726
14727 dev->mode_config.funcs = &intel_mode_funcs;
14728
14729 intel_init_quirks(dev);
14730
14731 intel_init_pm(dev);
14732
14733 if (INTEL_INFO(dev)->num_pipes == 0)
14734 return;
14735
14736 intel_init_display(dev);
14737 intel_init_audio(dev);
14738
14739 if (IS_GEN2(dev)) {
14740 dev->mode_config.max_width = 2048;
14741 dev->mode_config.max_height = 2048;
14742 } else if (IS_GEN3(dev)) {
14743 dev->mode_config.max_width = 4096;
14744 dev->mode_config.max_height = 4096;
14745 } else {
14746 dev->mode_config.max_width = 8192;
14747 dev->mode_config.max_height = 8192;
14748 }
14749
14750 if (IS_845G(dev) || IS_I865G(dev)) {
14751 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14752 dev->mode_config.cursor_height = 1023;
14753 } else if (IS_GEN2(dev)) {
14754 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14755 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14756 } else {
14757 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14758 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14759 }
14760
14761 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14762
14763 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14764 INTEL_INFO(dev)->num_pipes,
14765 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14766
14767 for_each_pipe(dev_priv, pipe) {
14768 intel_crtc_init(dev, pipe);
14769 for_each_sprite(dev_priv, pipe, sprite) {
14770 ret = intel_plane_init(dev, pipe, sprite);
14771 if (ret)
14772 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14773 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14774 }
14775 }
14776
14777 intel_init_dpio(dev);
14778
14779 intel_shared_dpll_init(dev);
14780
14781 /* Just disable it once at startup */
14782 i915_disable_vga(dev);
14783 intel_setup_outputs(dev);
14784
14785 /* Just in case the BIOS is doing something questionable. */
14786 intel_fbc_disable(dev_priv);
14787
14788 drm_modeset_lock_all(dev);
14789 intel_modeset_setup_hw_state(dev);
14790 drm_modeset_unlock_all(dev);
14791
14792 for_each_intel_crtc(dev, crtc) {
14793 struct intel_initial_plane_config plane_config = {};
14794
14795 if (!crtc->active)
14796 continue;
14797
14798 /*
14799 * Note that reserving the BIOS fb up front prevents us
14800 * from stuffing other stolen allocations like the ring
14801 * on top. This prevents some ugliness at boot time, and
14802 * can even allow for smooth boot transitions if the BIOS
14803 * fb is large enough for the active pipe configuration.
14804 */
14805 dev_priv->display.get_initial_plane_config(crtc,
14806 &plane_config);
14807
14808 /*
14809 * If the fb is shared between multiple heads, we'll
14810 * just get the first one.
14811 */
14812 intel_find_initial_plane_obj(crtc, &plane_config);
14813 }
14814 }
14815
14816 static void intel_enable_pipe_a(struct drm_device *dev)
14817 {
14818 struct intel_connector *connector;
14819 struct drm_connector *crt = NULL;
14820 struct intel_load_detect_pipe load_detect_temp;
14821 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14822
14823 /* We can't just switch on the pipe A, we need to set things up with a
14824 * proper mode and output configuration. As a gross hack, enable pipe A
14825 * by enabling the load detect pipe once. */
14826 for_each_intel_connector(dev, connector) {
14827 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14828 crt = &connector->base;
14829 break;
14830 }
14831 }
14832
14833 if (!crt)
14834 return;
14835
14836 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14837 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14838 }
14839
14840 static bool
14841 intel_check_plane_mapping(struct intel_crtc *crtc)
14842 {
14843 struct drm_device *dev = crtc->base.dev;
14844 struct drm_i915_private *dev_priv = dev->dev_private;
14845 u32 reg, val;
14846
14847 if (INTEL_INFO(dev)->num_pipes == 1)
14848 return true;
14849
14850 reg = DSPCNTR(!crtc->plane);
14851 val = I915_READ(reg);
14852
14853 if ((val & DISPLAY_PLANE_ENABLE) &&
14854 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14855 return false;
14856
14857 return true;
14858 }
14859
14860 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14861 {
14862 struct drm_device *dev = crtc->base.dev;
14863 struct drm_i915_private *dev_priv = dev->dev_private;
14864 struct intel_encoder *encoder;
14865 u32 reg;
14866 bool enable;
14867
14868 /* Clear any frame start delays used for debugging left by the BIOS */
14869 reg = PIPECONF(crtc->config->cpu_transcoder);
14870 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14871
14872 /* restore vblank interrupts to correct state */
14873 drm_crtc_vblank_reset(&crtc->base);
14874 if (crtc->active) {
14875 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
14876 update_scanline_offset(crtc);
14877 drm_crtc_vblank_on(&crtc->base);
14878 }
14879
14880 /* We need to sanitize the plane -> pipe mapping first because this will
14881 * disable the crtc (and hence change the state) if it is wrong. Note
14882 * that gen4+ has a fixed plane -> pipe mapping. */
14883 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14884 bool plane;
14885
14886 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14887 crtc->base.base.id);
14888
14889 /* Pipe has the wrong plane attached and the plane is active.
14890 * Temporarily change the plane mapping and disable everything
14891 * ... */
14892 plane = crtc->plane;
14893 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14894 crtc->plane = !plane;
14895 intel_crtc_disable_noatomic(&crtc->base);
14896 crtc->plane = plane;
14897 }
14898
14899 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14900 crtc->pipe == PIPE_A && !crtc->active) {
14901 /* BIOS forgot to enable pipe A, this mostly happens after
14902 * resume. Force-enable the pipe to fix this, the update_dpms
14903 * call below we restore the pipe to the right state, but leave
14904 * the required bits on. */
14905 intel_enable_pipe_a(dev);
14906 }
14907
14908 /* Adjust the state of the output pipe according to whether we
14909 * have active connectors/encoders. */
14910 enable = false;
14911 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14912 enable = true;
14913 break;
14914 }
14915
14916 if (!enable)
14917 intel_crtc_disable_noatomic(&crtc->base);
14918
14919 if (crtc->active != crtc->base.state->active) {
14920
14921 /* This can happen either due to bugs in the get_hw_state
14922 * functions or because of calls to intel_crtc_disable_noatomic,
14923 * or because the pipe is force-enabled due to the
14924 * pipe A quirk. */
14925 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14926 crtc->base.base.id,
14927 crtc->base.state->enable ? "enabled" : "disabled",
14928 crtc->active ? "enabled" : "disabled");
14929
14930 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
14931 crtc->base.state->active = crtc->active;
14932 crtc->base.enabled = crtc->active;
14933
14934 /* Because we only establish the connector -> encoder ->
14935 * crtc links if something is active, this means the
14936 * crtc is now deactivated. Break the links. connector
14937 * -> encoder links are only establish when things are
14938 * actually up, hence no need to break them. */
14939 WARN_ON(crtc->active);
14940
14941 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14942 encoder->base.crtc = NULL;
14943 }
14944
14945 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14946 /*
14947 * We start out with underrun reporting disabled to avoid races.
14948 * For correct bookkeeping mark this on active crtcs.
14949 *
14950 * Also on gmch platforms we dont have any hardware bits to
14951 * disable the underrun reporting. Which means we need to start
14952 * out with underrun reporting disabled also on inactive pipes,
14953 * since otherwise we'll complain about the garbage we read when
14954 * e.g. coming up after runtime pm.
14955 *
14956 * No protection against concurrent access is required - at
14957 * worst a fifo underrun happens which also sets this to false.
14958 */
14959 crtc->cpu_fifo_underrun_disabled = true;
14960 crtc->pch_fifo_underrun_disabled = true;
14961 }
14962 }
14963
14964 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14965 {
14966 struct intel_connector *connector;
14967 struct drm_device *dev = encoder->base.dev;
14968 bool active = false;
14969
14970 /* We need to check both for a crtc link (meaning that the
14971 * encoder is active and trying to read from a pipe) and the
14972 * pipe itself being active. */
14973 bool has_active_crtc = encoder->base.crtc &&
14974 to_intel_crtc(encoder->base.crtc)->active;
14975
14976 for_each_intel_connector(dev, connector) {
14977 if (connector->base.encoder != &encoder->base)
14978 continue;
14979
14980 active = true;
14981 break;
14982 }
14983
14984 if (active && !has_active_crtc) {
14985 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14986 encoder->base.base.id,
14987 encoder->base.name);
14988
14989 /* Connector is active, but has no active pipe. This is
14990 * fallout from our resume register restoring. Disable
14991 * the encoder manually again. */
14992 if (encoder->base.crtc) {
14993 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14994 encoder->base.base.id,
14995 encoder->base.name);
14996 encoder->disable(encoder);
14997 if (encoder->post_disable)
14998 encoder->post_disable(encoder);
14999 }
15000 encoder->base.crtc = NULL;
15001
15002 /* Inconsistent output/port/pipe state happens presumably due to
15003 * a bug in one of the get_hw_state functions. Or someplace else
15004 * in our code, like the register restore mess on resume. Clamp
15005 * things to off as a safer default. */
15006 for_each_intel_connector(dev, connector) {
15007 if (connector->encoder != encoder)
15008 continue;
15009 connector->base.dpms = DRM_MODE_DPMS_OFF;
15010 connector->base.encoder = NULL;
15011 }
15012 }
15013 /* Enabled encoders without active connectors will be fixed in
15014 * the crtc fixup. */
15015 }
15016
15017 void i915_redisable_vga_power_on(struct drm_device *dev)
15018 {
15019 struct drm_i915_private *dev_priv = dev->dev_private;
15020 u32 vga_reg = i915_vgacntrl_reg(dev);
15021
15022 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15023 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15024 i915_disable_vga(dev);
15025 }
15026 }
15027
15028 void i915_redisable_vga(struct drm_device *dev)
15029 {
15030 struct drm_i915_private *dev_priv = dev->dev_private;
15031
15032 /* This function can be called both from intel_modeset_setup_hw_state or
15033 * at a very early point in our resume sequence, where the power well
15034 * structures are not yet restored. Since this function is at a very
15035 * paranoid "someone might have enabled VGA while we were not looking"
15036 * level, just check if the power well is enabled instead of trying to
15037 * follow the "don't touch the power well if we don't need it" policy
15038 * the rest of the driver uses. */
15039 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15040 return;
15041
15042 i915_redisable_vga_power_on(dev);
15043 }
15044
15045 static bool primary_get_hw_state(struct intel_crtc *crtc)
15046 {
15047 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15048
15049 return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15050 }
15051
15052 static void readout_plane_state(struct intel_crtc *crtc,
15053 struct intel_crtc_state *crtc_state)
15054 {
15055 struct intel_plane *p;
15056 struct intel_plane_state *plane_state;
15057 bool active = crtc_state->base.active;
15058
15059 for_each_intel_plane(crtc->base.dev, p) {
15060 if (crtc->pipe != p->pipe)
15061 continue;
15062
15063 plane_state = to_intel_plane_state(p->base.state);
15064
15065 if (p->base.type == DRM_PLANE_TYPE_PRIMARY)
15066 plane_state->visible = primary_get_hw_state(crtc);
15067 else {
15068 if (active)
15069 p->disable_plane(&p->base, &crtc->base);
15070
15071 plane_state->visible = false;
15072 }
15073 }
15074 }
15075
15076 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15077 {
15078 struct drm_i915_private *dev_priv = dev->dev_private;
15079 enum pipe pipe;
15080 struct intel_crtc *crtc;
15081 struct intel_encoder *encoder;
15082 struct intel_connector *connector;
15083 int i;
15084
15085 for_each_intel_crtc(dev, crtc) {
15086 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15087 memset(crtc->config, 0, sizeof(*crtc->config));
15088 crtc->config->base.crtc = &crtc->base;
15089
15090 crtc->active = dev_priv->display.get_pipe_config(crtc,
15091 crtc->config);
15092
15093 crtc->base.state->active = crtc->active;
15094 crtc->base.enabled = crtc->active;
15095
15096 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15097 if (crtc->base.state->active) {
15098 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15099 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15100 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15101
15102 /*
15103 * The initial mode needs to be set in order to keep
15104 * the atomic core happy. It wants a valid mode if the
15105 * crtc's enabled, so we do the above call.
15106 *
15107 * At this point some state updated by the connectors
15108 * in their ->detect() callback has not run yet, so
15109 * no recalculation can be done yet.
15110 *
15111 * Even if we could do a recalculation and modeset
15112 * right now it would cause a double modeset if
15113 * fbdev or userspace chooses a different initial mode.
15114 *
15115 * If that happens, someone indicated they wanted a
15116 * mode change, which means it's safe to do a full
15117 * recalculation.
15118 */
15119 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15120 }
15121
15122 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15123 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15124
15125 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15126 crtc->base.base.id,
15127 crtc->active ? "enabled" : "disabled");
15128 }
15129
15130 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15131 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15132
15133 pll->on = pll->get_hw_state(dev_priv, pll,
15134 &pll->config.hw_state);
15135 pll->active = 0;
15136 pll->config.crtc_mask = 0;
15137 for_each_intel_crtc(dev, crtc) {
15138 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15139 pll->active++;
15140 pll->config.crtc_mask |= 1 << crtc->pipe;
15141 }
15142 }
15143
15144 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15145 pll->name, pll->config.crtc_mask, pll->on);
15146
15147 if (pll->config.crtc_mask)
15148 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15149 }
15150
15151 for_each_intel_encoder(dev, encoder) {
15152 pipe = 0;
15153
15154 if (encoder->get_hw_state(encoder, &pipe)) {
15155 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15156 encoder->base.crtc = &crtc->base;
15157 encoder->get_config(encoder, crtc->config);
15158 } else {
15159 encoder->base.crtc = NULL;
15160 }
15161
15162 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15163 encoder->base.base.id,
15164 encoder->base.name,
15165 encoder->base.crtc ? "enabled" : "disabled",
15166 pipe_name(pipe));
15167 }
15168
15169 for_each_intel_connector(dev, connector) {
15170 if (connector->get_hw_state(connector)) {
15171 connector->base.dpms = DRM_MODE_DPMS_ON;
15172 connector->base.encoder = &connector->encoder->base;
15173 } else {
15174 connector->base.dpms = DRM_MODE_DPMS_OFF;
15175 connector->base.encoder = NULL;
15176 }
15177 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15178 connector->base.base.id,
15179 connector->base.name,
15180 connector->base.encoder ? "enabled" : "disabled");
15181 }
15182 }
15183
15184 /* Scan out the current hw modeset state,
15185 * and sanitizes it to the current state
15186 */
15187 static void
15188 intel_modeset_setup_hw_state(struct drm_device *dev)
15189 {
15190 struct drm_i915_private *dev_priv = dev->dev_private;
15191 enum pipe pipe;
15192 struct intel_crtc *crtc;
15193 struct intel_encoder *encoder;
15194 int i;
15195
15196 intel_modeset_readout_hw_state(dev);
15197
15198 /* HW state is read out, now we need to sanitize this mess. */
15199 for_each_intel_encoder(dev, encoder) {
15200 intel_sanitize_encoder(encoder);
15201 }
15202
15203 for_each_pipe(dev_priv, pipe) {
15204 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15205 intel_sanitize_crtc(crtc);
15206 intel_dump_pipe_config(crtc, crtc->config,
15207 "[setup_hw_state]");
15208 }
15209
15210 intel_modeset_update_connector_atomic_state(dev);
15211
15212 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15213 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15214
15215 if (!pll->on || pll->active)
15216 continue;
15217
15218 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15219
15220 pll->disable(dev_priv, pll);
15221 pll->on = false;
15222 }
15223
15224 if (IS_VALLEYVIEW(dev))
15225 vlv_wm_get_hw_state(dev);
15226 else if (IS_GEN9(dev))
15227 skl_wm_get_hw_state(dev);
15228 else if (HAS_PCH_SPLIT(dev))
15229 ilk_wm_get_hw_state(dev);
15230
15231 for_each_intel_crtc(dev, crtc) {
15232 unsigned long put_domains;
15233
15234 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15235 if (WARN_ON(put_domains))
15236 modeset_put_power_domains(dev_priv, put_domains);
15237 }
15238 intel_display_set_init_power(dev_priv, false);
15239 }
15240
15241 void intel_display_resume(struct drm_device *dev)
15242 {
15243 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15244 struct intel_connector *conn;
15245 struct intel_plane *plane;
15246 struct drm_crtc *crtc;
15247 int ret;
15248
15249 if (!state)
15250 return;
15251
15252 state->acquire_ctx = dev->mode_config.acquire_ctx;
15253
15254 /* preserve complete old state, including dpll */
15255 intel_atomic_get_shared_dpll_state(state);
15256
15257 for_each_crtc(dev, crtc) {
15258 struct drm_crtc_state *crtc_state =
15259 drm_atomic_get_crtc_state(state, crtc);
15260
15261 ret = PTR_ERR_OR_ZERO(crtc_state);
15262 if (ret)
15263 goto err;
15264
15265 /* force a restore */
15266 crtc_state->mode_changed = true;
15267 }
15268
15269 for_each_intel_plane(dev, plane) {
15270 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15271 if (ret)
15272 goto err;
15273 }
15274
15275 for_each_intel_connector(dev, conn) {
15276 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15277 if (ret)
15278 goto err;
15279 }
15280
15281 intel_modeset_setup_hw_state(dev);
15282
15283 i915_redisable_vga(dev);
15284 ret = drm_atomic_commit(state);
15285 if (!ret)
15286 return;
15287
15288 err:
15289 DRM_ERROR("Restoring old state failed with %i\n", ret);
15290 drm_atomic_state_free(state);
15291 }
15292
15293 void intel_modeset_gem_init(struct drm_device *dev)
15294 {
15295 struct drm_i915_private *dev_priv = dev->dev_private;
15296 struct drm_crtc *c;
15297 struct drm_i915_gem_object *obj;
15298 int ret;
15299
15300 mutex_lock(&dev->struct_mutex);
15301 intel_init_gt_powersave(dev);
15302 mutex_unlock(&dev->struct_mutex);
15303
15304 /*
15305 * There may be no VBT; and if the BIOS enabled SSC we can
15306 * just keep using it to avoid unnecessary flicker. Whereas if the
15307 * BIOS isn't using it, don't assume it will work even if the VBT
15308 * indicates as much.
15309 */
15310 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15311 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15312 DREF_SSC1_ENABLE);
15313
15314 intel_modeset_init_hw(dev);
15315
15316 intel_setup_overlay(dev);
15317
15318 /*
15319 * Make sure any fbs we allocated at startup are properly
15320 * pinned & fenced. When we do the allocation it's too early
15321 * for this.
15322 */
15323 for_each_crtc(dev, c) {
15324 obj = intel_fb_obj(c->primary->fb);
15325 if (obj == NULL)
15326 continue;
15327
15328 mutex_lock(&dev->struct_mutex);
15329 ret = intel_pin_and_fence_fb_obj(c->primary,
15330 c->primary->fb,
15331 c->primary->state,
15332 NULL, NULL);
15333 mutex_unlock(&dev->struct_mutex);
15334 if (ret) {
15335 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15336 to_intel_crtc(c)->pipe);
15337 drm_framebuffer_unreference(c->primary->fb);
15338 c->primary->fb = NULL;
15339 c->primary->crtc = c->primary->state->crtc = NULL;
15340 update_state_fb(c->primary);
15341 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15342 }
15343 }
15344
15345 intel_backlight_register(dev);
15346 }
15347
15348 void intel_connector_unregister(struct intel_connector *intel_connector)
15349 {
15350 struct drm_connector *connector = &intel_connector->base;
15351
15352 intel_panel_destroy_backlight(connector);
15353 drm_connector_unregister(connector);
15354 }
15355
15356 void intel_modeset_cleanup(struct drm_device *dev)
15357 {
15358 struct drm_i915_private *dev_priv = dev->dev_private;
15359 struct drm_connector *connector;
15360
15361 intel_disable_gt_powersave(dev);
15362
15363 intel_backlight_unregister(dev);
15364
15365 /*
15366 * Interrupts and polling as the first thing to avoid creating havoc.
15367 * Too much stuff here (turning of connectors, ...) would
15368 * experience fancy races otherwise.
15369 */
15370 intel_irq_uninstall(dev_priv);
15371
15372 /*
15373 * Due to the hpd irq storm handling the hotplug work can re-arm the
15374 * poll handlers. Hence disable polling after hpd handling is shut down.
15375 */
15376 drm_kms_helper_poll_fini(dev);
15377
15378 intel_unregister_dsm_handler();
15379
15380 intel_fbc_disable(dev_priv);
15381
15382 /* flush any delayed tasks or pending work */
15383 flush_scheduled_work();
15384
15385 /* destroy the backlight and sysfs files before encoders/connectors */
15386 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15387 struct intel_connector *intel_connector;
15388
15389 intel_connector = to_intel_connector(connector);
15390 intel_connector->unregister(intel_connector);
15391 }
15392
15393 drm_mode_config_cleanup(dev);
15394
15395 intel_cleanup_overlay(dev);
15396
15397 mutex_lock(&dev->struct_mutex);
15398 intel_cleanup_gt_powersave(dev);
15399 mutex_unlock(&dev->struct_mutex);
15400 }
15401
15402 /*
15403 * Return which encoder is currently attached for connector.
15404 */
15405 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15406 {
15407 return &intel_attached_encoder(connector)->base;
15408 }
15409
15410 void intel_connector_attach_encoder(struct intel_connector *connector,
15411 struct intel_encoder *encoder)
15412 {
15413 connector->encoder = encoder;
15414 drm_mode_connector_attach_encoder(&connector->base,
15415 &encoder->base);
15416 }
15417
15418 /*
15419 * set vga decode state - true == enable VGA decode
15420 */
15421 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15422 {
15423 struct drm_i915_private *dev_priv = dev->dev_private;
15424 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15425 u16 gmch_ctrl;
15426
15427 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15428 DRM_ERROR("failed to read control word\n");
15429 return -EIO;
15430 }
15431
15432 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15433 return 0;
15434
15435 if (state)
15436 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15437 else
15438 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15439
15440 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15441 DRM_ERROR("failed to write control word\n");
15442 return -EIO;
15443 }
15444
15445 return 0;
15446 }
15447
15448 struct intel_display_error_state {
15449
15450 u32 power_well_driver;
15451
15452 int num_transcoders;
15453
15454 struct intel_cursor_error_state {
15455 u32 control;
15456 u32 position;
15457 u32 base;
15458 u32 size;
15459 } cursor[I915_MAX_PIPES];
15460
15461 struct intel_pipe_error_state {
15462 bool power_domain_on;
15463 u32 source;
15464 u32 stat;
15465 } pipe[I915_MAX_PIPES];
15466
15467 struct intel_plane_error_state {
15468 u32 control;
15469 u32 stride;
15470 u32 size;
15471 u32 pos;
15472 u32 addr;
15473 u32 surface;
15474 u32 tile_offset;
15475 } plane[I915_MAX_PIPES];
15476
15477 struct intel_transcoder_error_state {
15478 bool power_domain_on;
15479 enum transcoder cpu_transcoder;
15480
15481 u32 conf;
15482
15483 u32 htotal;
15484 u32 hblank;
15485 u32 hsync;
15486 u32 vtotal;
15487 u32 vblank;
15488 u32 vsync;
15489 } transcoder[4];
15490 };
15491
15492 struct intel_display_error_state *
15493 intel_display_capture_error_state(struct drm_device *dev)
15494 {
15495 struct drm_i915_private *dev_priv = dev->dev_private;
15496 struct intel_display_error_state *error;
15497 int transcoders[] = {
15498 TRANSCODER_A,
15499 TRANSCODER_B,
15500 TRANSCODER_C,
15501 TRANSCODER_EDP,
15502 };
15503 int i;
15504
15505 if (INTEL_INFO(dev)->num_pipes == 0)
15506 return NULL;
15507
15508 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15509 if (error == NULL)
15510 return NULL;
15511
15512 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15513 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15514
15515 for_each_pipe(dev_priv, i) {
15516 error->pipe[i].power_domain_on =
15517 __intel_display_power_is_enabled(dev_priv,
15518 POWER_DOMAIN_PIPE(i));
15519 if (!error->pipe[i].power_domain_on)
15520 continue;
15521
15522 error->cursor[i].control = I915_READ(CURCNTR(i));
15523 error->cursor[i].position = I915_READ(CURPOS(i));
15524 error->cursor[i].base = I915_READ(CURBASE(i));
15525
15526 error->plane[i].control = I915_READ(DSPCNTR(i));
15527 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15528 if (INTEL_INFO(dev)->gen <= 3) {
15529 error->plane[i].size = I915_READ(DSPSIZE(i));
15530 error->plane[i].pos = I915_READ(DSPPOS(i));
15531 }
15532 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15533 error->plane[i].addr = I915_READ(DSPADDR(i));
15534 if (INTEL_INFO(dev)->gen >= 4) {
15535 error->plane[i].surface = I915_READ(DSPSURF(i));
15536 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15537 }
15538
15539 error->pipe[i].source = I915_READ(PIPESRC(i));
15540
15541 if (HAS_GMCH_DISPLAY(dev))
15542 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15543 }
15544
15545 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15546 if (HAS_DDI(dev_priv->dev))
15547 error->num_transcoders++; /* Account for eDP. */
15548
15549 for (i = 0; i < error->num_transcoders; i++) {
15550 enum transcoder cpu_transcoder = transcoders[i];
15551
15552 error->transcoder[i].power_domain_on =
15553 __intel_display_power_is_enabled(dev_priv,
15554 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15555 if (!error->transcoder[i].power_domain_on)
15556 continue;
15557
15558 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15559
15560 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15561 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15562 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15563 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15564 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15565 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15566 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15567 }
15568
15569 return error;
15570 }
15571
15572 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15573
15574 void
15575 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15576 struct drm_device *dev,
15577 struct intel_display_error_state *error)
15578 {
15579 struct drm_i915_private *dev_priv = dev->dev_private;
15580 int i;
15581
15582 if (!error)
15583 return;
15584
15585 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15586 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15587 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15588 error->power_well_driver);
15589 for_each_pipe(dev_priv, i) {
15590 err_printf(m, "Pipe [%d]:\n", i);
15591 err_printf(m, " Power: %s\n",
15592 error->pipe[i].power_domain_on ? "on" : "off");
15593 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15594 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15595
15596 err_printf(m, "Plane [%d]:\n", i);
15597 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15598 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15599 if (INTEL_INFO(dev)->gen <= 3) {
15600 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15601 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15602 }
15603 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15604 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15605 if (INTEL_INFO(dev)->gen >= 4) {
15606 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15607 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15608 }
15609
15610 err_printf(m, "Cursor [%d]:\n", i);
15611 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15612 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15613 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15614 }
15615
15616 for (i = 0; i < error->num_transcoders; i++) {
15617 err_printf(m, "CPU transcoder: %c\n",
15618 transcoder_name(error->transcoder[i].cpu_transcoder));
15619 err_printf(m, " Power: %s\n",
15620 error->transcoder[i].power_domain_on ? "on" : "off");
15621 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15622 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15623 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15624 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15625 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15626 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15627 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15628 }
15629 }
15630
15631 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15632 {
15633 struct intel_crtc *crtc;
15634
15635 for_each_intel_crtc(dev, crtc) {
15636 struct intel_unpin_work *work;
15637
15638 spin_lock_irq(&dev->event_lock);
15639
15640 work = crtc->unpin_work;
15641
15642 if (work && work->event &&
15643 work->event->base.file_priv == file) {
15644 kfree(work->event);
15645 work->event = NULL;
15646 }
15647
15648 spin_unlock_irq(&dev->event_lock);
15649 }
15650 }
This page took 0.339961 seconds and 4 git commands to generate.