drm/i915: Toshiba CB35 has a controllable backlight
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
45 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53 struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56 int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58 struct intel_framebuffer *ifb,
59 struct drm_mode_fb_cmd2 *mode_cmd,
60 struct drm_i915_gem_object *obj);
61 static void intel_dp_set_m_n(struct intel_crtc *crtc);
62 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
63 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
64 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
65 struct intel_link_m_n *m_n);
66 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
67 static void haswell_set_pipeconf(struct drm_crtc *crtc);
68 static void intel_set_pipe_csc(struct drm_crtc *crtc);
69 static void vlv_prepare_pll(struct intel_crtc *crtc);
70
71 typedef struct {
72 int min, max;
73 } intel_range_t;
74
75 typedef struct {
76 int dot_limit;
77 int p2_slow, p2_fast;
78 } intel_p2_t;
79
80 typedef struct intel_limit intel_limit_t;
81 struct intel_limit {
82 intel_range_t dot, vco, n, m, m1, m2, p, p1;
83 intel_p2_t p2;
84 };
85
86 int
87 intel_pch_rawclk(struct drm_device *dev)
88 {
89 struct drm_i915_private *dev_priv = dev->dev_private;
90
91 WARN_ON(!HAS_PCH_SPLIT(dev));
92
93 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
94 }
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99 if (IS_GEN5(dev)) {
100 struct drm_i915_private *dev_priv = dev->dev_private;
101 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102 } else
103 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dac = {
107 .dot = { .min = 25000, .max = 350000 },
108 .vco = { .min = 908000, .max = 1512000 },
109 .n = { .min = 2, .max = 16 },
110 .m = { .min = 96, .max = 140 },
111 .m1 = { .min = 18, .max = 26 },
112 .m2 = { .min = 6, .max = 16 },
113 .p = { .min = 4, .max = 128 },
114 .p1 = { .min = 2, .max = 33 },
115 .p2 = { .dot_limit = 165000,
116 .p2_slow = 4, .p2_fast = 2 },
117 };
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120 .dot = { .min = 25000, .max = 350000 },
121 .vco = { .min = 908000, .max = 1512000 },
122 .n = { .min = 2, .max = 16 },
123 .m = { .min = 96, .max = 140 },
124 .m1 = { .min = 18, .max = 26 },
125 .m2 = { .min = 6, .max = 16 },
126 .p = { .min = 4, .max = 128 },
127 .p1 = { .min = 2, .max = 33 },
128 .p2 = { .dot_limit = 165000,
129 .p2_slow = 4, .p2_fast = 4 },
130 };
131
132 static const intel_limit_t intel_limits_i8xx_lvds = {
133 .dot = { .min = 25000, .max = 350000 },
134 .vco = { .min = 908000, .max = 1512000 },
135 .n = { .min = 2, .max = 16 },
136 .m = { .min = 96, .max = 140 },
137 .m1 = { .min = 18, .max = 26 },
138 .m2 = { .min = 6, .max = 16 },
139 .p = { .min = 4, .max = 128 },
140 .p1 = { .min = 1, .max = 6 },
141 .p2 = { .dot_limit = 165000,
142 .p2_slow = 14, .p2_fast = 7 },
143 };
144
145 static const intel_limit_t intel_limits_i9xx_sdvo = {
146 .dot = { .min = 20000, .max = 400000 },
147 .vco = { .min = 1400000, .max = 2800000 },
148 .n = { .min = 1, .max = 6 },
149 .m = { .min = 70, .max = 120 },
150 .m1 = { .min = 8, .max = 18 },
151 .m2 = { .min = 3, .max = 7 },
152 .p = { .min = 5, .max = 80 },
153 .p1 = { .min = 1, .max = 8 },
154 .p2 = { .dot_limit = 200000,
155 .p2_slow = 10, .p2_fast = 5 },
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 8, .max = 18 },
164 .m2 = { .min = 3, .max = 7 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 };
170
171
172 static const intel_limit_t intel_limits_g4x_sdvo = {
173 .dot = { .min = 25000, .max = 270000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 17, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 10, .max = 30 },
180 .p1 = { .min = 1, .max = 3},
181 .p2 = { .dot_limit = 270000,
182 .p2_slow = 10,
183 .p2_fast = 10
184 },
185 };
186
187 static const intel_limit_t intel_limits_g4x_hdmi = {
188 .dot = { .min = 22000, .max = 400000 },
189 .vco = { .min = 1750000, .max = 3500000},
190 .n = { .min = 1, .max = 4 },
191 .m = { .min = 104, .max = 138 },
192 .m1 = { .min = 16, .max = 23 },
193 .m2 = { .min = 5, .max = 11 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8},
196 .p2 = { .dot_limit = 165000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
201 .dot = { .min = 20000, .max = 115000 },
202 .vco = { .min = 1750000, .max = 3500000 },
203 .n = { .min = 1, .max = 3 },
204 .m = { .min = 104, .max = 138 },
205 .m1 = { .min = 17, .max = 23 },
206 .m2 = { .min = 5, .max = 11 },
207 .p = { .min = 28, .max = 112 },
208 .p1 = { .min = 2, .max = 8 },
209 .p2 = { .dot_limit = 0,
210 .p2_slow = 14, .p2_fast = 14
211 },
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215 .dot = { .min = 80000, .max = 224000 },
216 .vco = { .min = 1750000, .max = 3500000 },
217 .n = { .min = 1, .max = 3 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 14, .max = 42 },
222 .p1 = { .min = 2, .max = 6 },
223 .p2 = { .dot_limit = 0,
224 .p2_slow = 7, .p2_fast = 7
225 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_sdvo = {
229 .dot = { .min = 20000, .max = 400000},
230 .vco = { .min = 1700000, .max = 3500000 },
231 /* Pineview's Ncounter is a ring counter */
232 .n = { .min = 3, .max = 6 },
233 .m = { .min = 2, .max = 256 },
234 /* Pineview only has one combined m divider, which we treat as m2. */
235 .m1 = { .min = 0, .max = 0 },
236 .m2 = { .min = 0, .max = 254 },
237 .p = { .min = 5, .max = 80 },
238 .p1 = { .min = 1, .max = 8 },
239 .p2 = { .dot_limit = 200000,
240 .p2_slow = 10, .p2_fast = 5 },
241 };
242
243 static const intel_limit_t intel_limits_pineview_lvds = {
244 .dot = { .min = 20000, .max = 400000 },
245 .vco = { .min = 1700000, .max = 3500000 },
246 .n = { .min = 3, .max = 6 },
247 .m = { .min = 2, .max = 256 },
248 .m1 = { .min = 0, .max = 0 },
249 .m2 = { .min = 0, .max = 254 },
250 .p = { .min = 7, .max = 112 },
251 .p1 = { .min = 1, .max = 8 },
252 .p2 = { .dot_limit = 112000,
253 .p2_slow = 14, .p2_fast = 14 },
254 };
255
256 /* Ironlake / Sandybridge
257 *
258 * We calculate clock using (register_value + 2) for N/M1/M2, so here
259 * the range value for them is (actual_value - 2).
260 */
261 static const intel_limit_t intel_limits_ironlake_dac = {
262 .dot = { .min = 25000, .max = 350000 },
263 .vco = { .min = 1760000, .max = 3510000 },
264 .n = { .min = 1, .max = 5 },
265 .m = { .min = 79, .max = 127 },
266 .m1 = { .min = 12, .max = 22 },
267 .m2 = { .min = 5, .max = 9 },
268 .p = { .min = 5, .max = 80 },
269 .p1 = { .min = 1, .max = 8 },
270 .p2 = { .dot_limit = 225000,
271 .p2_slow = 10, .p2_fast = 5 },
272 };
273
274 static const intel_limit_t intel_limits_ironlake_single_lvds = {
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 3 },
278 .m = { .min = 79, .max = 118 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 28, .max = 112 },
282 .p1 = { .min = 2, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 14, .p2_fast = 14 },
285 };
286
287 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 127 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 14, .max = 56 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 7, .p2_fast = 7 },
298 };
299
300 /* LVDS 100mhz refclk limits. */
301 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
302 .dot = { .min = 25000, .max = 350000 },
303 .vco = { .min = 1760000, .max = 3510000 },
304 .n = { .min = 1, .max = 2 },
305 .m = { .min = 79, .max = 126 },
306 .m1 = { .min = 12, .max = 22 },
307 .m2 = { .min = 5, .max = 9 },
308 .p = { .min = 28, .max = 112 },
309 .p1 = { .min = 2, .max = 8 },
310 .p2 = { .dot_limit = 225000,
311 .p2_slow = 14, .p2_fast = 14 },
312 };
313
314 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
315 .dot = { .min = 25000, .max = 350000 },
316 .vco = { .min = 1760000, .max = 3510000 },
317 .n = { .min = 1, .max = 3 },
318 .m = { .min = 79, .max = 126 },
319 .m1 = { .min = 12, .max = 22 },
320 .m2 = { .min = 5, .max = 9 },
321 .p = { .min = 14, .max = 42 },
322 .p1 = { .min = 2, .max = 6 },
323 .p2 = { .dot_limit = 225000,
324 .p2_slow = 7, .p2_fast = 7 },
325 };
326
327 static const intel_limit_t intel_limits_vlv = {
328 /*
329 * These are the data rate limits (measured in fast clocks)
330 * since those are the strictest limits we have. The fast
331 * clock and actual rate limits are more relaxed, so checking
332 * them would make no difference.
333 */
334 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
335 .vco = { .min = 4000000, .max = 6000000 },
336 .n = { .min = 1, .max = 7 },
337 .m1 = { .min = 2, .max = 3 },
338 .m2 = { .min = 11, .max = 156 },
339 .p1 = { .min = 2, .max = 3 },
340 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
341 };
342
343 static const intel_limit_t intel_limits_chv = {
344 /*
345 * These are the data rate limits (measured in fast clocks)
346 * since those are the strictest limits we have. The fast
347 * clock and actual rate limits are more relaxed, so checking
348 * them would make no difference.
349 */
350 .dot = { .min = 25000 * 5, .max = 540000 * 5},
351 .vco = { .min = 4860000, .max = 6700000 },
352 .n = { .min = 1, .max = 1 },
353 .m1 = { .min = 2, .max = 2 },
354 .m2 = { .min = 24 << 22, .max = 175 << 22 },
355 .p1 = { .min = 2, .max = 4 },
356 .p2 = { .p2_slow = 1, .p2_fast = 14 },
357 };
358
359 static void vlv_clock(int refclk, intel_clock_t *clock)
360 {
361 clock->m = clock->m1 * clock->m2;
362 clock->p = clock->p1 * clock->p2;
363 if (WARN_ON(clock->n == 0 || clock->p == 0))
364 return;
365 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
366 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
367 }
368
369 /**
370 * Returns whether any output on the specified pipe is of the specified type
371 */
372 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
373 {
374 struct drm_device *dev = crtc->dev;
375 struct intel_encoder *encoder;
376
377 for_each_encoder_on_crtc(dev, crtc, encoder)
378 if (encoder->type == type)
379 return true;
380
381 return false;
382 }
383
384 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
385 int refclk)
386 {
387 struct drm_device *dev = crtc->dev;
388 const intel_limit_t *limit;
389
390 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
391 if (intel_is_dual_link_lvds(dev)) {
392 if (refclk == 100000)
393 limit = &intel_limits_ironlake_dual_lvds_100m;
394 else
395 limit = &intel_limits_ironlake_dual_lvds;
396 } else {
397 if (refclk == 100000)
398 limit = &intel_limits_ironlake_single_lvds_100m;
399 else
400 limit = &intel_limits_ironlake_single_lvds;
401 }
402 } else
403 limit = &intel_limits_ironlake_dac;
404
405 return limit;
406 }
407
408 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
409 {
410 struct drm_device *dev = crtc->dev;
411 const intel_limit_t *limit;
412
413 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
414 if (intel_is_dual_link_lvds(dev))
415 limit = &intel_limits_g4x_dual_channel_lvds;
416 else
417 limit = &intel_limits_g4x_single_channel_lvds;
418 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
419 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
420 limit = &intel_limits_g4x_hdmi;
421 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
422 limit = &intel_limits_g4x_sdvo;
423 } else /* The option is for other outputs */
424 limit = &intel_limits_i9xx_sdvo;
425
426 return limit;
427 }
428
429 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
430 {
431 struct drm_device *dev = crtc->dev;
432 const intel_limit_t *limit;
433
434 if (HAS_PCH_SPLIT(dev))
435 limit = intel_ironlake_limit(crtc, refclk);
436 else if (IS_G4X(dev)) {
437 limit = intel_g4x_limit(crtc);
438 } else if (IS_PINEVIEW(dev)) {
439 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440 limit = &intel_limits_pineview_lvds;
441 else
442 limit = &intel_limits_pineview_sdvo;
443 } else if (IS_CHERRYVIEW(dev)) {
444 limit = &intel_limits_chv;
445 } else if (IS_VALLEYVIEW(dev)) {
446 limit = &intel_limits_vlv;
447 } else if (!IS_GEN2(dev)) {
448 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
449 limit = &intel_limits_i9xx_lvds;
450 else
451 limit = &intel_limits_i9xx_sdvo;
452 } else {
453 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
454 limit = &intel_limits_i8xx_lvds;
455 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
456 limit = &intel_limits_i8xx_dvo;
457 else
458 limit = &intel_limits_i8xx_dac;
459 }
460 return limit;
461 }
462
463 /* m1 is reserved as 0 in Pineview, n is a ring counter */
464 static void pineview_clock(int refclk, intel_clock_t *clock)
465 {
466 clock->m = clock->m2 + 2;
467 clock->p = clock->p1 * clock->p2;
468 if (WARN_ON(clock->n == 0 || clock->p == 0))
469 return;
470 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
471 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
472 }
473
474 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
475 {
476 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
477 }
478
479 static void i9xx_clock(int refclk, intel_clock_t *clock)
480 {
481 clock->m = i9xx_dpll_compute_m(clock);
482 clock->p = clock->p1 * clock->p2;
483 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
484 return;
485 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
486 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
487 }
488
489 static void chv_clock(int refclk, intel_clock_t *clock)
490 {
491 clock->m = clock->m1 * clock->m2;
492 clock->p = clock->p1 * clock->p2;
493 if (WARN_ON(clock->n == 0 || clock->p == 0))
494 return;
495 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
496 clock->n << 22);
497 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
498 }
499
500 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
501 /**
502 * Returns whether the given set of divisors are valid for a given refclk with
503 * the given connectors.
504 */
505
506 static bool intel_PLL_is_valid(struct drm_device *dev,
507 const intel_limit_t *limit,
508 const intel_clock_t *clock)
509 {
510 if (clock->n < limit->n.min || limit->n.max < clock->n)
511 INTELPllInvalid("n out of range\n");
512 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
513 INTELPllInvalid("p1 out of range\n");
514 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
515 INTELPllInvalid("m2 out of range\n");
516 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
517 INTELPllInvalid("m1 out of range\n");
518
519 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
520 if (clock->m1 <= clock->m2)
521 INTELPllInvalid("m1 <= m2\n");
522
523 if (!IS_VALLEYVIEW(dev)) {
524 if (clock->p < limit->p.min || limit->p.max < clock->p)
525 INTELPllInvalid("p out of range\n");
526 if (clock->m < limit->m.min || limit->m.max < clock->m)
527 INTELPllInvalid("m out of range\n");
528 }
529
530 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
531 INTELPllInvalid("vco out of range\n");
532 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
533 * connector, etc., rather than just a single range.
534 */
535 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
536 INTELPllInvalid("dot out of range\n");
537
538 return true;
539 }
540
541 static bool
542 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
543 int target, int refclk, intel_clock_t *match_clock,
544 intel_clock_t *best_clock)
545 {
546 struct drm_device *dev = crtc->dev;
547 intel_clock_t clock;
548 int err = target;
549
550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
551 /*
552 * For LVDS just rely on its current settings for dual-channel.
553 * We haven't figured out how to reliably set up different
554 * single/dual channel state, if we even can.
555 */
556 if (intel_is_dual_link_lvds(dev))
557 clock.p2 = limit->p2.p2_fast;
558 else
559 clock.p2 = limit->p2.p2_slow;
560 } else {
561 if (target < limit->p2.dot_limit)
562 clock.p2 = limit->p2.p2_slow;
563 else
564 clock.p2 = limit->p2.p2_fast;
565 }
566
567 memset(best_clock, 0, sizeof(*best_clock));
568
569 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
570 clock.m1++) {
571 for (clock.m2 = limit->m2.min;
572 clock.m2 <= limit->m2.max; clock.m2++) {
573 if (clock.m2 >= clock.m1)
574 break;
575 for (clock.n = limit->n.min;
576 clock.n <= limit->n.max; clock.n++) {
577 for (clock.p1 = limit->p1.min;
578 clock.p1 <= limit->p1.max; clock.p1++) {
579 int this_err;
580
581 i9xx_clock(refclk, &clock);
582 if (!intel_PLL_is_valid(dev, limit,
583 &clock))
584 continue;
585 if (match_clock &&
586 clock.p != match_clock->p)
587 continue;
588
589 this_err = abs(clock.dot - target);
590 if (this_err < err) {
591 *best_clock = clock;
592 err = this_err;
593 }
594 }
595 }
596 }
597 }
598
599 return (err != target);
600 }
601
602 static bool
603 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
604 int target, int refclk, intel_clock_t *match_clock,
605 intel_clock_t *best_clock)
606 {
607 struct drm_device *dev = crtc->dev;
608 intel_clock_t clock;
609 int err = target;
610
611 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
612 /*
613 * For LVDS just rely on its current settings for dual-channel.
614 * We haven't figured out how to reliably set up different
615 * single/dual channel state, if we even can.
616 */
617 if (intel_is_dual_link_lvds(dev))
618 clock.p2 = limit->p2.p2_fast;
619 else
620 clock.p2 = limit->p2.p2_slow;
621 } else {
622 if (target < limit->p2.dot_limit)
623 clock.p2 = limit->p2.p2_slow;
624 else
625 clock.p2 = limit->p2.p2_fast;
626 }
627
628 memset(best_clock, 0, sizeof(*best_clock));
629
630 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631 clock.m1++) {
632 for (clock.m2 = limit->m2.min;
633 clock.m2 <= limit->m2.max; clock.m2++) {
634 for (clock.n = limit->n.min;
635 clock.n <= limit->n.max; clock.n++) {
636 for (clock.p1 = limit->p1.min;
637 clock.p1 <= limit->p1.max; clock.p1++) {
638 int this_err;
639
640 pineview_clock(refclk, &clock);
641 if (!intel_PLL_is_valid(dev, limit,
642 &clock))
643 continue;
644 if (match_clock &&
645 clock.p != match_clock->p)
646 continue;
647
648 this_err = abs(clock.dot - target);
649 if (this_err < err) {
650 *best_clock = clock;
651 err = this_err;
652 }
653 }
654 }
655 }
656 }
657
658 return (err != target);
659 }
660
661 static bool
662 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
663 int target, int refclk, intel_clock_t *match_clock,
664 intel_clock_t *best_clock)
665 {
666 struct drm_device *dev = crtc->dev;
667 intel_clock_t clock;
668 int max_n;
669 bool found;
670 /* approximately equals target * 0.00585 */
671 int err_most = (target >> 8) + (target >> 9);
672 found = false;
673
674 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675 if (intel_is_dual_link_lvds(dev))
676 clock.p2 = limit->p2.p2_fast;
677 else
678 clock.p2 = limit->p2.p2_slow;
679 } else {
680 if (target < limit->p2.dot_limit)
681 clock.p2 = limit->p2.p2_slow;
682 else
683 clock.p2 = limit->p2.p2_fast;
684 }
685
686 memset(best_clock, 0, sizeof(*best_clock));
687 max_n = limit->n.max;
688 /* based on hardware requirement, prefer smaller n to precision */
689 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
690 /* based on hardware requirement, prefere larger m1,m2 */
691 for (clock.m1 = limit->m1.max;
692 clock.m1 >= limit->m1.min; clock.m1--) {
693 for (clock.m2 = limit->m2.max;
694 clock.m2 >= limit->m2.min; clock.m2--) {
695 for (clock.p1 = limit->p1.max;
696 clock.p1 >= limit->p1.min; clock.p1--) {
697 int this_err;
698
699 i9xx_clock(refclk, &clock);
700 if (!intel_PLL_is_valid(dev, limit,
701 &clock))
702 continue;
703
704 this_err = abs(clock.dot - target);
705 if (this_err < err_most) {
706 *best_clock = clock;
707 err_most = this_err;
708 max_n = clock.n;
709 found = true;
710 }
711 }
712 }
713 }
714 }
715 return found;
716 }
717
718 static bool
719 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
722 {
723 struct drm_device *dev = crtc->dev;
724 intel_clock_t clock;
725 unsigned int bestppm = 1000000;
726 /* min update 19.2 MHz */
727 int max_n = min(limit->n.max, refclk / 19200);
728 bool found = false;
729
730 target *= 5; /* fast clock */
731
732 memset(best_clock, 0, sizeof(*best_clock));
733
734 /* based on hardware requirement, prefer smaller n to precision */
735 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
737 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
738 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
739 clock.p = clock.p1 * clock.p2;
740 /* based on hardware requirement, prefer bigger m1,m2 values */
741 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
742 unsigned int ppm, diff;
743
744 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
745 refclk * clock.m1);
746
747 vlv_clock(refclk, &clock);
748
749 if (!intel_PLL_is_valid(dev, limit,
750 &clock))
751 continue;
752
753 diff = abs(clock.dot - target);
754 ppm = div_u64(1000000ULL * diff, target);
755
756 if (ppm < 100 && clock.p > best_clock->p) {
757 bestppm = 0;
758 *best_clock = clock;
759 found = true;
760 }
761
762 if (bestppm >= 10 && ppm < bestppm - 10) {
763 bestppm = ppm;
764 *best_clock = clock;
765 found = true;
766 }
767 }
768 }
769 }
770 }
771
772 return found;
773 }
774
775 static bool
776 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
779 {
780 struct drm_device *dev = crtc->dev;
781 intel_clock_t clock;
782 uint64_t m2;
783 int found = false;
784
785 memset(best_clock, 0, sizeof(*best_clock));
786
787 /*
788 * Based on hardware doc, the n always set to 1, and m1 always
789 * set to 2. If requires to support 200Mhz refclk, we need to
790 * revisit this because n may not 1 anymore.
791 */
792 clock.n = 1, clock.m1 = 2;
793 target *= 5; /* fast clock */
794
795 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
796 for (clock.p2 = limit->p2.p2_fast;
797 clock.p2 >= limit->p2.p2_slow;
798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799
800 clock.p = clock.p1 * clock.p2;
801
802 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
803 clock.n) << 22, refclk * clock.m1);
804
805 if (m2 > INT_MAX/clock.m1)
806 continue;
807
808 clock.m2 = m2;
809
810 chv_clock(refclk, &clock);
811
812 if (!intel_PLL_is_valid(dev, limit, &clock))
813 continue;
814
815 /* based on hardware requirement, prefer bigger p
816 */
817 if (clock.p > best_clock->p) {
818 *best_clock = clock;
819 found = true;
820 }
821 }
822 }
823
824 return found;
825 }
826
827 bool intel_crtc_active(struct drm_crtc *crtc)
828 {
829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
830
831 /* Be paranoid as we can arrive here with only partial
832 * state retrieved from the hardware during setup.
833 *
834 * We can ditch the adjusted_mode.crtc_clock check as soon
835 * as Haswell has gained clock readout/fastboot support.
836 *
837 * We can ditch the crtc->primary->fb check as soon as we can
838 * properly reconstruct framebuffers.
839 */
840 return intel_crtc->active && crtc->primary->fb &&
841 intel_crtc->config.adjusted_mode.crtc_clock;
842 }
843
844 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
845 enum pipe pipe)
846 {
847 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
849
850 return intel_crtc->config.cpu_transcoder;
851 }
852
853 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
854 {
855 struct drm_i915_private *dev_priv = dev->dev_private;
856 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
857
858 frame = I915_READ(frame_reg);
859
860 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
861 WARN(1, "vblank wait timed out\n");
862 }
863
864 /**
865 * intel_wait_for_vblank - wait for vblank on a given pipe
866 * @dev: drm device
867 * @pipe: pipe to wait for
868 *
869 * Wait for vblank to occur on a given pipe. Needed for various bits of
870 * mode setting code.
871 */
872 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
873 {
874 struct drm_i915_private *dev_priv = dev->dev_private;
875 int pipestat_reg = PIPESTAT(pipe);
876
877 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
878 g4x_wait_for_vblank(dev, pipe);
879 return;
880 }
881
882 /* Clear existing vblank status. Note this will clear any other
883 * sticky status fields as well.
884 *
885 * This races with i915_driver_irq_handler() with the result
886 * that either function could miss a vblank event. Here it is not
887 * fatal, as we will either wait upon the next vblank interrupt or
888 * timeout. Generally speaking intel_wait_for_vblank() is only
889 * called during modeset at which time the GPU should be idle and
890 * should *not* be performing page flips and thus not waiting on
891 * vblanks...
892 * Currently, the result of us stealing a vblank from the irq
893 * handler is that a single frame will be skipped during swapbuffers.
894 */
895 I915_WRITE(pipestat_reg,
896 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
897
898 /* Wait for vblank interrupt bit to set */
899 if (wait_for(I915_READ(pipestat_reg) &
900 PIPE_VBLANK_INTERRUPT_STATUS,
901 50))
902 DRM_DEBUG_KMS("vblank wait timed out\n");
903 }
904
905 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
906 {
907 struct drm_i915_private *dev_priv = dev->dev_private;
908 u32 reg = PIPEDSL(pipe);
909 u32 line1, line2;
910 u32 line_mask;
911
912 if (IS_GEN2(dev))
913 line_mask = DSL_LINEMASK_GEN2;
914 else
915 line_mask = DSL_LINEMASK_GEN3;
916
917 line1 = I915_READ(reg) & line_mask;
918 mdelay(5);
919 line2 = I915_READ(reg) & line_mask;
920
921 return line1 == line2;
922 }
923
924 /*
925 * intel_wait_for_pipe_off - wait for pipe to turn off
926 * @dev: drm device
927 * @pipe: pipe to wait for
928 *
929 * After disabling a pipe, we can't wait for vblank in the usual way,
930 * spinning on the vblank interrupt status bit, since we won't actually
931 * see an interrupt when the pipe is disabled.
932 *
933 * On Gen4 and above:
934 * wait for the pipe register state bit to turn off
935 *
936 * Otherwise:
937 * wait for the display line value to settle (it usually
938 * ends up stopping at the start of the next frame).
939 *
940 */
941 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
942 {
943 struct drm_i915_private *dev_priv = dev->dev_private;
944 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
945 pipe);
946
947 if (INTEL_INFO(dev)->gen >= 4) {
948 int reg = PIPECONF(cpu_transcoder);
949
950 /* Wait for the Pipe State to go off */
951 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
952 100))
953 WARN(1, "pipe_off wait timed out\n");
954 } else {
955 /* Wait for the display line to settle */
956 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
957 WARN(1, "pipe_off wait timed out\n");
958 }
959 }
960
961 /*
962 * ibx_digital_port_connected - is the specified port connected?
963 * @dev_priv: i915 private structure
964 * @port: the port to test
965 *
966 * Returns true if @port is connected, false otherwise.
967 */
968 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
969 struct intel_digital_port *port)
970 {
971 u32 bit;
972
973 if (HAS_PCH_IBX(dev_priv->dev)) {
974 switch (port->port) {
975 case PORT_B:
976 bit = SDE_PORTB_HOTPLUG;
977 break;
978 case PORT_C:
979 bit = SDE_PORTC_HOTPLUG;
980 break;
981 case PORT_D:
982 bit = SDE_PORTD_HOTPLUG;
983 break;
984 default:
985 return true;
986 }
987 } else {
988 switch (port->port) {
989 case PORT_B:
990 bit = SDE_PORTB_HOTPLUG_CPT;
991 break;
992 case PORT_C:
993 bit = SDE_PORTC_HOTPLUG_CPT;
994 break;
995 case PORT_D:
996 bit = SDE_PORTD_HOTPLUG_CPT;
997 break;
998 default:
999 return true;
1000 }
1001 }
1002
1003 return I915_READ(SDEISR) & bit;
1004 }
1005
1006 static const char *state_string(bool enabled)
1007 {
1008 return enabled ? "on" : "off";
1009 }
1010
1011 /* Only for pre-ILK configs */
1012 void assert_pll(struct drm_i915_private *dev_priv,
1013 enum pipe pipe, bool state)
1014 {
1015 int reg;
1016 u32 val;
1017 bool cur_state;
1018
1019 reg = DPLL(pipe);
1020 val = I915_READ(reg);
1021 cur_state = !!(val & DPLL_VCO_ENABLE);
1022 WARN(cur_state != state,
1023 "PLL state assertion failure (expected %s, current %s)\n",
1024 state_string(state), state_string(cur_state));
1025 }
1026
1027 /* XXX: the dsi pll is shared between MIPI DSI ports */
1028 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1029 {
1030 u32 val;
1031 bool cur_state;
1032
1033 mutex_lock(&dev_priv->dpio_lock);
1034 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1035 mutex_unlock(&dev_priv->dpio_lock);
1036
1037 cur_state = val & DSI_PLL_VCO_EN;
1038 WARN(cur_state != state,
1039 "DSI PLL state assertion failure (expected %s, current %s)\n",
1040 state_string(state), state_string(cur_state));
1041 }
1042 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1043 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1044
1045 struct intel_shared_dpll *
1046 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1047 {
1048 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1049
1050 if (crtc->config.shared_dpll < 0)
1051 return NULL;
1052
1053 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1054 }
1055
1056 /* For ILK+ */
1057 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1058 struct intel_shared_dpll *pll,
1059 bool state)
1060 {
1061 bool cur_state;
1062 struct intel_dpll_hw_state hw_state;
1063
1064 if (HAS_PCH_LPT(dev_priv->dev)) {
1065 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1066 return;
1067 }
1068
1069 if (WARN (!pll,
1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
1071 return;
1072
1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074 WARN(cur_state != state,
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081 {
1082 int reg;
1083 u32 val;
1084 bool cur_state;
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
1087
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091 val = I915_READ(reg);
1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
1098 WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107 {
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
1115 WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124 {
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130 return;
1131
1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133 if (HAS_DDI(dev_priv->dev))
1134 return;
1135
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155
1156 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
1158 {
1159 int pp_reg, lvds_reg;
1160 u32 val;
1161 enum pipe panel_pipe = PIPE_A;
1162 bool locked = true;
1163
1164 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1165 pp_reg = PCH_PP_CONTROL;
1166 lvds_reg = PCH_LVDS;
1167 } else {
1168 pp_reg = PP_CONTROL;
1169 lvds_reg = LVDS;
1170 }
1171
1172 val = I915_READ(pp_reg);
1173 if (!(val & PANEL_POWER_ON) ||
1174 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1175 locked = false;
1176
1177 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1178 panel_pipe = PIPE_B;
1179
1180 WARN(panel_pipe == pipe && locked,
1181 "panel assertion failure, pipe %c regs locked\n",
1182 pipe_name(pipe));
1183 }
1184
1185 static void assert_cursor(struct drm_i915_private *dev_priv,
1186 enum pipe pipe, bool state)
1187 {
1188 struct drm_device *dev = dev_priv->dev;
1189 bool cur_state;
1190
1191 if (IS_845G(dev) || IS_I865G(dev))
1192 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1193 else
1194 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1195
1196 WARN(cur_state != state,
1197 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1198 pipe_name(pipe), state_string(state), state_string(cur_state));
1199 }
1200 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1201 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1202
1203 void assert_pipe(struct drm_i915_private *dev_priv,
1204 enum pipe pipe, bool state)
1205 {
1206 int reg;
1207 u32 val;
1208 bool cur_state;
1209 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1210 pipe);
1211
1212 /* if we need the pipe A quirk it must be always on */
1213 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1214 state = true;
1215
1216 if (!intel_display_power_enabled(dev_priv,
1217 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1218 cur_state = false;
1219 } else {
1220 reg = PIPECONF(cpu_transcoder);
1221 val = I915_READ(reg);
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 }
1224
1225 WARN(cur_state != state,
1226 "pipe %c assertion failure (expected %s, current %s)\n",
1227 pipe_name(pipe), state_string(state), state_string(cur_state));
1228 }
1229
1230 static void assert_plane(struct drm_i915_private *dev_priv,
1231 enum plane plane, bool state)
1232 {
1233 int reg;
1234 u32 val;
1235 bool cur_state;
1236
1237 reg = DSPCNTR(plane);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1240 WARN(cur_state != state,
1241 "plane %c assertion failure (expected %s, current %s)\n",
1242 plane_name(plane), state_string(state), state_string(cur_state));
1243 }
1244
1245 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1246 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1247
1248 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1249 enum pipe pipe)
1250 {
1251 struct drm_device *dev = dev_priv->dev;
1252 int reg, i;
1253 u32 val;
1254 int cur_pipe;
1255
1256 /* Primary planes are fixed to pipes on gen4+ */
1257 if (INTEL_INFO(dev)->gen >= 4) {
1258 reg = DSPCNTR(pipe);
1259 val = I915_READ(reg);
1260 WARN(val & DISPLAY_PLANE_ENABLE,
1261 "plane %c assertion failure, should be disabled but not\n",
1262 plane_name(pipe));
1263 return;
1264 }
1265
1266 /* Need to check both planes against the pipe */
1267 for_each_pipe(i) {
1268 reg = DSPCNTR(i);
1269 val = I915_READ(reg);
1270 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1271 DISPPLANE_SEL_PIPE_SHIFT;
1272 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1273 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1274 plane_name(i), pipe_name(pipe));
1275 }
1276 }
1277
1278 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1279 enum pipe pipe)
1280 {
1281 struct drm_device *dev = dev_priv->dev;
1282 int reg, sprite;
1283 u32 val;
1284
1285 if (IS_VALLEYVIEW(dev)) {
1286 for_each_sprite(pipe, sprite) {
1287 reg = SPCNTR(pipe, sprite);
1288 val = I915_READ(reg);
1289 WARN(val & SP_ENABLE,
1290 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291 sprite_name(pipe, sprite), pipe_name(pipe));
1292 }
1293 } else if (INTEL_INFO(dev)->gen >= 7) {
1294 reg = SPRCTL(pipe);
1295 val = I915_READ(reg);
1296 WARN(val & SPRITE_ENABLE,
1297 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1298 plane_name(pipe), pipe_name(pipe));
1299 } else if (INTEL_INFO(dev)->gen >= 5) {
1300 reg = DVSCNTR(pipe);
1301 val = I915_READ(reg);
1302 WARN(val & DVS_ENABLE,
1303 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1304 plane_name(pipe), pipe_name(pipe));
1305 }
1306 }
1307
1308 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1309 {
1310 u32 val;
1311 bool enabled;
1312
1313 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1314
1315 val = I915_READ(PCH_DREF_CONTROL);
1316 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1317 DREF_SUPERSPREAD_SOURCE_MASK));
1318 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1319 }
1320
1321 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1322 enum pipe pipe)
1323 {
1324 int reg;
1325 u32 val;
1326 bool enabled;
1327
1328 reg = PCH_TRANSCONF(pipe);
1329 val = I915_READ(reg);
1330 enabled = !!(val & TRANS_ENABLE);
1331 WARN(enabled,
1332 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1333 pipe_name(pipe));
1334 }
1335
1336 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe, u32 port_sel, u32 val)
1338 {
1339 if ((val & DP_PORT_EN) == 0)
1340 return false;
1341
1342 if (HAS_PCH_CPT(dev_priv->dev)) {
1343 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1344 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1345 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1346 return false;
1347 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1348 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1349 return false;
1350 } else {
1351 if ((val & DP_PIPE_MASK) != (pipe << 30))
1352 return false;
1353 }
1354 return true;
1355 }
1356
1357 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1358 enum pipe pipe, u32 val)
1359 {
1360 if ((val & SDVO_ENABLE) == 0)
1361 return false;
1362
1363 if (HAS_PCH_CPT(dev_priv->dev)) {
1364 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1365 return false;
1366 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1367 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1368 return false;
1369 } else {
1370 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1371 return false;
1372 }
1373 return true;
1374 }
1375
1376 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1377 enum pipe pipe, u32 val)
1378 {
1379 if ((val & LVDS_PORT_EN) == 0)
1380 return false;
1381
1382 if (HAS_PCH_CPT(dev_priv->dev)) {
1383 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1384 return false;
1385 } else {
1386 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1387 return false;
1388 }
1389 return true;
1390 }
1391
1392 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1393 enum pipe pipe, u32 val)
1394 {
1395 if ((val & ADPA_DAC_ENABLE) == 0)
1396 return false;
1397 if (HAS_PCH_CPT(dev_priv->dev)) {
1398 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1399 return false;
1400 } else {
1401 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1402 return false;
1403 }
1404 return true;
1405 }
1406
1407 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1408 enum pipe pipe, int reg, u32 port_sel)
1409 {
1410 u32 val = I915_READ(reg);
1411 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1412 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1413 reg, pipe_name(pipe));
1414
1415 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1416 && (val & DP_PIPEB_SELECT),
1417 "IBX PCH dp port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1421 enum pipe pipe, int reg)
1422 {
1423 u32 val = I915_READ(reg);
1424 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1425 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1426 reg, pipe_name(pipe));
1427
1428 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1429 && (val & SDVO_PIPE_B_SELECT),
1430 "IBX PCH hdmi port still using transcoder B\n");
1431 }
1432
1433 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1434 enum pipe pipe)
1435 {
1436 int reg;
1437 u32 val;
1438
1439 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1440 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1441 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1442
1443 reg = PCH_ADPA;
1444 val = I915_READ(reg);
1445 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1446 "PCH VGA enabled on transcoder %c, should be disabled\n",
1447 pipe_name(pipe));
1448
1449 reg = PCH_LVDS;
1450 val = I915_READ(reg);
1451 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1452 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1453 pipe_name(pipe));
1454
1455 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1456 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1457 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1458 }
1459
1460 static void intel_init_dpio(struct drm_device *dev)
1461 {
1462 struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464 if (!IS_VALLEYVIEW(dev))
1465 return;
1466
1467 /*
1468 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1469 * CHV x1 PHY (DP/HDMI D)
1470 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1471 */
1472 if (IS_CHERRYVIEW(dev)) {
1473 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1474 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1475 } else {
1476 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1477 }
1478 }
1479
1480 static void intel_reset_dpio(struct drm_device *dev)
1481 {
1482 struct drm_i915_private *dev_priv = dev->dev_private;
1483
1484 if (!IS_VALLEYVIEW(dev))
1485 return;
1486
1487 if (IS_CHERRYVIEW(dev)) {
1488 enum dpio_phy phy;
1489 u32 val;
1490
1491 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1492 /* Poll for phypwrgood signal */
1493 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1494 PHY_POWERGOOD(phy), 1))
1495 DRM_ERROR("Display PHY %d is not power up\n", phy);
1496
1497 /*
1498 * Deassert common lane reset for PHY.
1499 *
1500 * This should only be done on init and resume from S3
1501 * with both PLLs disabled, or we risk losing DPIO and
1502 * PLL synchronization.
1503 */
1504 val = I915_READ(DISPLAY_PHY_CONTROL);
1505 I915_WRITE(DISPLAY_PHY_CONTROL,
1506 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1507 }
1508
1509 } else {
1510 /*
1511 * If DPIO has already been reset, e.g. by BIOS, just skip all
1512 * this.
1513 */
1514 if (I915_READ(DPIO_CTL) & DPIO_CMNRST)
1515 return;
1516
1517 /*
1518 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1519 * Need to assert and de-assert PHY SB reset by gating the
1520 * common lane power, then un-gating it.
1521 * Simply ungating isn't enough to reset the PHY enough to get
1522 * ports and lanes running.
1523 */
1524 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1525 false);
1526 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1527 true);
1528 }
1529 }
1530
1531 static void vlv_enable_pll(struct intel_crtc *crtc)
1532 {
1533 struct drm_device *dev = crtc->base.dev;
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 int reg = DPLL(crtc->pipe);
1536 u32 dpll = crtc->config.dpll_hw_state.dpll;
1537
1538 assert_pipe_disabled(dev_priv, crtc->pipe);
1539
1540 /* No really, not for ILK+ */
1541 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1542
1543 /* PLL is protected by panel, make sure we can write it */
1544 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1545 assert_panel_unlocked(dev_priv, crtc->pipe);
1546
1547 I915_WRITE(reg, dpll);
1548 POSTING_READ(reg);
1549 udelay(150);
1550
1551 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1552 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1553
1554 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1555 POSTING_READ(DPLL_MD(crtc->pipe));
1556
1557 /* We do this three times for luck */
1558 I915_WRITE(reg, dpll);
1559 POSTING_READ(reg);
1560 udelay(150); /* wait for warmup */
1561 I915_WRITE(reg, dpll);
1562 POSTING_READ(reg);
1563 udelay(150); /* wait for warmup */
1564 I915_WRITE(reg, dpll);
1565 POSTING_READ(reg);
1566 udelay(150); /* wait for warmup */
1567 }
1568
1569 static void chv_enable_pll(struct intel_crtc *crtc)
1570 {
1571 struct drm_device *dev = crtc->base.dev;
1572 struct drm_i915_private *dev_priv = dev->dev_private;
1573 int pipe = crtc->pipe;
1574 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1575 u32 tmp;
1576
1577 assert_pipe_disabled(dev_priv, crtc->pipe);
1578
1579 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1580
1581 mutex_lock(&dev_priv->dpio_lock);
1582
1583 /* Enable back the 10bit clock to display controller */
1584 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1585 tmp |= DPIO_DCLKP_EN;
1586 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1587
1588 /*
1589 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1590 */
1591 udelay(1);
1592
1593 /* Enable PLL */
1594 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1595
1596 /* Check PLL is locked */
1597 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1598 DRM_ERROR("PLL %d failed to lock\n", pipe);
1599
1600 /* not sure when this should be written */
1601 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1602 POSTING_READ(DPLL_MD(pipe));
1603
1604 mutex_unlock(&dev_priv->dpio_lock);
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609 struct drm_device *dev = crtc->base.dev;
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 int reg = DPLL(crtc->pipe);
1612 u32 dpll = crtc->config.dpll_hw_state.dpll;
1613
1614 assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616 /* No really, not for ILK+ */
1617 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1618
1619 /* PLL is protected by panel, make sure we can write it */
1620 if (IS_MOBILE(dev) && !IS_I830(dev))
1621 assert_panel_unlocked(dev_priv, crtc->pipe);
1622
1623 I915_WRITE(reg, dpll);
1624
1625 /* Wait for the clocks to stabilize. */
1626 POSTING_READ(reg);
1627 udelay(150);
1628
1629 if (INTEL_INFO(dev)->gen >= 4) {
1630 I915_WRITE(DPLL_MD(crtc->pipe),
1631 crtc->config.dpll_hw_state.dpll_md);
1632 } else {
1633 /* The pixel multiplier can only be updated once the
1634 * DPLL is enabled and the clocks are stable.
1635 *
1636 * So write it again.
1637 */
1638 I915_WRITE(reg, dpll);
1639 }
1640
1641 /* We do this three times for luck */
1642 I915_WRITE(reg, dpll);
1643 POSTING_READ(reg);
1644 udelay(150); /* wait for warmup */
1645 I915_WRITE(reg, dpll);
1646 POSTING_READ(reg);
1647 udelay(150); /* wait for warmup */
1648 I915_WRITE(reg, dpll);
1649 POSTING_READ(reg);
1650 udelay(150); /* wait for warmup */
1651 }
1652
1653 /**
1654 * i9xx_disable_pll - disable a PLL
1655 * @dev_priv: i915 private structure
1656 * @pipe: pipe PLL to disable
1657 *
1658 * Disable the PLL for @pipe, making sure the pipe is off first.
1659 *
1660 * Note! This is for pre-ILK only.
1661 */
1662 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664 /* Don't disable pipe A or pipe A PLLs if needed */
1665 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1666 return;
1667
1668 /* Make sure the pipe isn't still relying on us */
1669 assert_pipe_disabled(dev_priv, pipe);
1670
1671 I915_WRITE(DPLL(pipe), 0);
1672 POSTING_READ(DPLL(pipe));
1673 }
1674
1675 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677 u32 val = 0;
1678
1679 /* Make sure the pipe isn't still relying on us */
1680 assert_pipe_disabled(dev_priv, pipe);
1681
1682 /*
1683 * Leave integrated clock source and reference clock enabled for pipe B.
1684 * The latter is needed for VGA hotplug / manual detection.
1685 */
1686 if (pipe == PIPE_B)
1687 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1688 I915_WRITE(DPLL(pipe), val);
1689 POSTING_READ(DPLL(pipe));
1690
1691 }
1692
1693 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1696 u32 val;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 /* Set PLL en = 0 */
1702 val = DPLL_SSC_REF_CLOCK_CHV;
1703 if (pipe != PIPE_A)
1704 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1705 I915_WRITE(DPLL(pipe), val);
1706 POSTING_READ(DPLL(pipe));
1707
1708 mutex_lock(&dev_priv->dpio_lock);
1709
1710 /* Disable 10bit clock to display controller */
1711 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1712 val &= ~DPIO_DCLKP_EN;
1713 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1714
1715 mutex_unlock(&dev_priv->dpio_lock);
1716 }
1717
1718 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1719 struct intel_digital_port *dport)
1720 {
1721 u32 port_mask;
1722 int dpll_reg;
1723
1724 switch (dport->port) {
1725 case PORT_B:
1726 port_mask = DPLL_PORTB_READY_MASK;
1727 dpll_reg = DPLL(0);
1728 break;
1729 case PORT_C:
1730 port_mask = DPLL_PORTC_READY_MASK;
1731 dpll_reg = DPLL(0);
1732 break;
1733 case PORT_D:
1734 port_mask = DPLL_PORTD_READY_MASK;
1735 dpll_reg = DPIO_PHY_STATUS;
1736 break;
1737 default:
1738 BUG();
1739 }
1740
1741 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1742 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1743 port_name(dport->port), I915_READ(dpll_reg));
1744 }
1745
1746 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1747 {
1748 struct drm_device *dev = crtc->base.dev;
1749 struct drm_i915_private *dev_priv = dev->dev_private;
1750 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1751
1752 WARN_ON(!pll->refcount);
1753 if (pll->active == 0) {
1754 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1755 WARN_ON(pll->on);
1756 assert_shared_dpll_disabled(dev_priv, pll);
1757
1758 pll->mode_set(dev_priv, pll);
1759 }
1760 }
1761
1762 /**
1763 * intel_enable_shared_dpll - enable PCH PLL
1764 * @dev_priv: i915 private structure
1765 * @pipe: pipe PLL to enable
1766 *
1767 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1768 * drives the transcoder clock.
1769 */
1770 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1771 {
1772 struct drm_device *dev = crtc->base.dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776 if (WARN_ON(pll == NULL))
1777 return;
1778
1779 if (WARN_ON(pll->refcount == 0))
1780 return;
1781
1782 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1783 pll->name, pll->active, pll->on,
1784 crtc->base.base.id);
1785
1786 if (pll->active++) {
1787 WARN_ON(!pll->on);
1788 assert_shared_dpll_enabled(dev_priv, pll);
1789 return;
1790 }
1791 WARN_ON(pll->on);
1792
1793 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1794 pll->enable(dev_priv, pll);
1795 pll->on = true;
1796 }
1797
1798 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1799 {
1800 struct drm_device *dev = crtc->base.dev;
1801 struct drm_i915_private *dev_priv = dev->dev_private;
1802 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1803
1804 /* PCH only available on ILK+ */
1805 BUG_ON(INTEL_INFO(dev)->gen < 5);
1806 if (WARN_ON(pll == NULL))
1807 return;
1808
1809 if (WARN_ON(pll->refcount == 0))
1810 return;
1811
1812 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1813 pll->name, pll->active, pll->on,
1814 crtc->base.base.id);
1815
1816 if (WARN_ON(pll->active == 0)) {
1817 assert_shared_dpll_disabled(dev_priv, pll);
1818 return;
1819 }
1820
1821 assert_shared_dpll_enabled(dev_priv, pll);
1822 WARN_ON(!pll->on);
1823 if (--pll->active)
1824 return;
1825
1826 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1827 pll->disable(dev_priv, pll);
1828 pll->on = false;
1829 }
1830
1831 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1832 enum pipe pipe)
1833 {
1834 struct drm_device *dev = dev_priv->dev;
1835 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1836 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1837 uint32_t reg, val, pipeconf_val;
1838
1839 /* PCH only available on ILK+ */
1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
1841
1842 /* Make sure PCH DPLL is enabled */
1843 assert_shared_dpll_enabled(dev_priv,
1844 intel_crtc_to_shared_dpll(intel_crtc));
1845
1846 /* FDI must be feeding us bits for PCH ports */
1847 assert_fdi_tx_enabled(dev_priv, pipe);
1848 assert_fdi_rx_enabled(dev_priv, pipe);
1849
1850 if (HAS_PCH_CPT(dev)) {
1851 /* Workaround: Set the timing override bit before enabling the
1852 * pch transcoder. */
1853 reg = TRANS_CHICKEN2(pipe);
1854 val = I915_READ(reg);
1855 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856 I915_WRITE(reg, val);
1857 }
1858
1859 reg = PCH_TRANSCONF(pipe);
1860 val = I915_READ(reg);
1861 pipeconf_val = I915_READ(PIPECONF(pipe));
1862
1863 if (HAS_PCH_IBX(dev_priv->dev)) {
1864 /*
1865 * make the BPC in transcoder be consistent with
1866 * that in pipeconf reg.
1867 */
1868 val &= ~PIPECONF_BPC_MASK;
1869 val |= pipeconf_val & PIPECONF_BPC_MASK;
1870 }
1871
1872 val &= ~TRANS_INTERLACE_MASK;
1873 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1874 if (HAS_PCH_IBX(dev_priv->dev) &&
1875 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1876 val |= TRANS_LEGACY_INTERLACED_ILK;
1877 else
1878 val |= TRANS_INTERLACED;
1879 else
1880 val |= TRANS_PROGRESSIVE;
1881
1882 I915_WRITE(reg, val | TRANS_ENABLE);
1883 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1884 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1885 }
1886
1887 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1888 enum transcoder cpu_transcoder)
1889 {
1890 u32 val, pipeconf_val;
1891
1892 /* PCH only available on ILK+ */
1893 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1894
1895 /* FDI must be feeding us bits for PCH ports */
1896 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1897 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1898
1899 /* Workaround: set timing override bit. */
1900 val = I915_READ(_TRANSA_CHICKEN2);
1901 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1902 I915_WRITE(_TRANSA_CHICKEN2, val);
1903
1904 val = TRANS_ENABLE;
1905 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1906
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1908 PIPECONF_INTERLACED_ILK)
1909 val |= TRANS_INTERLACED;
1910 else
1911 val |= TRANS_PROGRESSIVE;
1912
1913 I915_WRITE(LPT_TRANSCONF, val);
1914 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1915 DRM_ERROR("Failed to enable PCH transcoder\n");
1916 }
1917
1918 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1919 enum pipe pipe)
1920 {
1921 struct drm_device *dev = dev_priv->dev;
1922 uint32_t reg, val;
1923
1924 /* FDI relies on the transcoder */
1925 assert_fdi_tx_disabled(dev_priv, pipe);
1926 assert_fdi_rx_disabled(dev_priv, pipe);
1927
1928 /* Ports must be off as well */
1929 assert_pch_ports_disabled(dev_priv, pipe);
1930
1931 reg = PCH_TRANSCONF(pipe);
1932 val = I915_READ(reg);
1933 val &= ~TRANS_ENABLE;
1934 I915_WRITE(reg, val);
1935 /* wait for PCH transcoder off, transcoder state */
1936 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1937 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1938
1939 if (!HAS_PCH_IBX(dev)) {
1940 /* Workaround: Clear the timing override chicken bit again. */
1941 reg = TRANS_CHICKEN2(pipe);
1942 val = I915_READ(reg);
1943 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1944 I915_WRITE(reg, val);
1945 }
1946 }
1947
1948 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1949 {
1950 u32 val;
1951
1952 val = I915_READ(LPT_TRANSCONF);
1953 val &= ~TRANS_ENABLE;
1954 I915_WRITE(LPT_TRANSCONF, val);
1955 /* wait for PCH transcoder off, transcoder state */
1956 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1957 DRM_ERROR("Failed to disable PCH transcoder\n");
1958
1959 /* Workaround: clear timing override bit. */
1960 val = I915_READ(_TRANSA_CHICKEN2);
1961 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1962 I915_WRITE(_TRANSA_CHICKEN2, val);
1963 }
1964
1965 /**
1966 * intel_enable_pipe - enable a pipe, asserting requirements
1967 * @crtc: crtc responsible for the pipe
1968 *
1969 * Enable @crtc's pipe, making sure that various hardware specific requirements
1970 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1971 */
1972 static void intel_enable_pipe(struct intel_crtc *crtc)
1973 {
1974 struct drm_device *dev = crtc->base.dev;
1975 struct drm_i915_private *dev_priv = dev->dev_private;
1976 enum pipe pipe = crtc->pipe;
1977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1978 pipe);
1979 enum pipe pch_transcoder;
1980 int reg;
1981 u32 val;
1982
1983 assert_planes_disabled(dev_priv, pipe);
1984 assert_cursor_disabled(dev_priv, pipe);
1985 assert_sprites_disabled(dev_priv, pipe);
1986
1987 if (HAS_PCH_LPT(dev_priv->dev))
1988 pch_transcoder = TRANSCODER_A;
1989 else
1990 pch_transcoder = pipe;
1991
1992 /*
1993 * A pipe without a PLL won't actually be able to drive bits from
1994 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1995 * need the check.
1996 */
1997 if (!HAS_PCH_SPLIT(dev_priv->dev))
1998 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1999 assert_dsi_pll_enabled(dev_priv);
2000 else
2001 assert_pll_enabled(dev_priv, pipe);
2002 else {
2003 if (crtc->config.has_pch_encoder) {
2004 /* if driving the PCH, we need FDI enabled */
2005 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2006 assert_fdi_tx_pll_enabled(dev_priv,
2007 (enum pipe) cpu_transcoder);
2008 }
2009 /* FIXME: assert CPU port conditions for SNB+ */
2010 }
2011
2012 reg = PIPECONF(cpu_transcoder);
2013 val = I915_READ(reg);
2014 if (val & PIPECONF_ENABLE) {
2015 WARN_ON(!(pipe == PIPE_A &&
2016 dev_priv->quirks & QUIRK_PIPEA_FORCE));
2017 return;
2018 }
2019
2020 I915_WRITE(reg, val | PIPECONF_ENABLE);
2021 POSTING_READ(reg);
2022 }
2023
2024 /**
2025 * intel_disable_pipe - disable a pipe, asserting requirements
2026 * @dev_priv: i915 private structure
2027 * @pipe: pipe to disable
2028 *
2029 * Disable @pipe, making sure that various hardware specific requirements
2030 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2031 *
2032 * @pipe should be %PIPE_A or %PIPE_B.
2033 *
2034 * Will wait until the pipe has shut down before returning.
2035 */
2036 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2037 enum pipe pipe)
2038 {
2039 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2040 pipe);
2041 int reg;
2042 u32 val;
2043
2044 /*
2045 * Make sure planes won't keep trying to pump pixels to us,
2046 * or we might hang the display.
2047 */
2048 assert_planes_disabled(dev_priv, pipe);
2049 assert_cursor_disabled(dev_priv, pipe);
2050 assert_sprites_disabled(dev_priv, pipe);
2051
2052 /* Don't disable pipe A or pipe A PLLs if needed */
2053 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2054 return;
2055
2056 reg = PIPECONF(cpu_transcoder);
2057 val = I915_READ(reg);
2058 if ((val & PIPECONF_ENABLE) == 0)
2059 return;
2060
2061 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2062 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2063 }
2064
2065 /*
2066 * Plane regs are double buffered, going from enabled->disabled needs a
2067 * trigger in order to latch. The display address reg provides this.
2068 */
2069 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2070 enum plane plane)
2071 {
2072 struct drm_device *dev = dev_priv->dev;
2073 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2074
2075 I915_WRITE(reg, I915_READ(reg));
2076 POSTING_READ(reg);
2077 }
2078
2079 /**
2080 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2081 * @dev_priv: i915 private structure
2082 * @plane: plane to enable
2083 * @pipe: pipe being fed
2084 *
2085 * Enable @plane on @pipe, making sure that @pipe is running first.
2086 */
2087 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2088 enum plane plane, enum pipe pipe)
2089 {
2090 struct drm_device *dev = dev_priv->dev;
2091 struct intel_crtc *intel_crtc =
2092 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2093 int reg;
2094 u32 val;
2095
2096 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2097 assert_pipe_enabled(dev_priv, pipe);
2098
2099 if (intel_crtc->primary_enabled)
2100 return;
2101
2102 intel_crtc->primary_enabled = true;
2103
2104 reg = DSPCNTR(plane);
2105 val = I915_READ(reg);
2106 WARN_ON(val & DISPLAY_PLANE_ENABLE);
2107
2108 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2109 intel_flush_primary_plane(dev_priv, plane);
2110
2111 /*
2112 * BDW signals flip done immediately if the plane
2113 * is disabled, even if the plane enable is already
2114 * armed to occur at the next vblank :(
2115 */
2116 if (IS_BROADWELL(dev))
2117 intel_wait_for_vblank(dev, intel_crtc->pipe);
2118 }
2119
2120 /**
2121 * intel_disable_primary_hw_plane - disable the primary hardware plane
2122 * @dev_priv: i915 private structure
2123 * @plane: plane to disable
2124 * @pipe: pipe consuming the data
2125 *
2126 * Disable @plane; should be an independent operation.
2127 */
2128 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2129 enum plane plane, enum pipe pipe)
2130 {
2131 struct intel_crtc *intel_crtc =
2132 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2133 int reg;
2134 u32 val;
2135
2136 if (!intel_crtc->primary_enabled)
2137 return;
2138
2139 intel_crtc->primary_enabled = false;
2140
2141 reg = DSPCNTR(plane);
2142 val = I915_READ(reg);
2143 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2144
2145 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2146 intel_flush_primary_plane(dev_priv, plane);
2147 }
2148
2149 static bool need_vtd_wa(struct drm_device *dev)
2150 {
2151 #ifdef CONFIG_INTEL_IOMMU
2152 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2153 return true;
2154 #endif
2155 return false;
2156 }
2157
2158 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2159 {
2160 int tile_height;
2161
2162 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2163 return ALIGN(height, tile_height);
2164 }
2165
2166 int
2167 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2168 struct drm_i915_gem_object *obj,
2169 struct intel_engine_cs *pipelined)
2170 {
2171 struct drm_i915_private *dev_priv = dev->dev_private;
2172 u32 alignment;
2173 int ret;
2174
2175 switch (obj->tiling_mode) {
2176 case I915_TILING_NONE:
2177 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2178 alignment = 128 * 1024;
2179 else if (INTEL_INFO(dev)->gen >= 4)
2180 alignment = 4 * 1024;
2181 else
2182 alignment = 64 * 1024;
2183 break;
2184 case I915_TILING_X:
2185 /* pin() will align the object as required by fence */
2186 alignment = 0;
2187 break;
2188 case I915_TILING_Y:
2189 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2190 return -EINVAL;
2191 default:
2192 BUG();
2193 }
2194
2195 /* Note that the w/a also requires 64 PTE of padding following the
2196 * bo. We currently fill all unused PTE with the shadow page and so
2197 * we should always have valid PTE following the scanout preventing
2198 * the VT-d warning.
2199 */
2200 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2201 alignment = 256 * 1024;
2202
2203 dev_priv->mm.interruptible = false;
2204 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2205 if (ret)
2206 goto err_interruptible;
2207
2208 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2209 * fence, whereas 965+ only requires a fence if using
2210 * framebuffer compression. For simplicity, we always install
2211 * a fence as the cost is not that onerous.
2212 */
2213 ret = i915_gem_object_get_fence(obj);
2214 if (ret)
2215 goto err_unpin;
2216
2217 i915_gem_object_pin_fence(obj);
2218
2219 dev_priv->mm.interruptible = true;
2220 return 0;
2221
2222 err_unpin:
2223 i915_gem_object_unpin_from_display_plane(obj);
2224 err_interruptible:
2225 dev_priv->mm.interruptible = true;
2226 return ret;
2227 }
2228
2229 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2230 {
2231 i915_gem_object_unpin_fence(obj);
2232 i915_gem_object_unpin_from_display_plane(obj);
2233 }
2234
2235 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2236 * is assumed to be a power-of-two. */
2237 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2238 unsigned int tiling_mode,
2239 unsigned int cpp,
2240 unsigned int pitch)
2241 {
2242 if (tiling_mode != I915_TILING_NONE) {
2243 unsigned int tile_rows, tiles;
2244
2245 tile_rows = *y / 8;
2246 *y %= 8;
2247
2248 tiles = *x / (512/cpp);
2249 *x %= 512/cpp;
2250
2251 return tile_rows * pitch * 8 + tiles * 4096;
2252 } else {
2253 unsigned int offset;
2254
2255 offset = *y * pitch + *x * cpp;
2256 *y = 0;
2257 *x = (offset & 4095) / cpp;
2258 return offset & -4096;
2259 }
2260 }
2261
2262 int intel_format_to_fourcc(int format)
2263 {
2264 switch (format) {
2265 case DISPPLANE_8BPP:
2266 return DRM_FORMAT_C8;
2267 case DISPPLANE_BGRX555:
2268 return DRM_FORMAT_XRGB1555;
2269 case DISPPLANE_BGRX565:
2270 return DRM_FORMAT_RGB565;
2271 default:
2272 case DISPPLANE_BGRX888:
2273 return DRM_FORMAT_XRGB8888;
2274 case DISPPLANE_RGBX888:
2275 return DRM_FORMAT_XBGR8888;
2276 case DISPPLANE_BGRX101010:
2277 return DRM_FORMAT_XRGB2101010;
2278 case DISPPLANE_RGBX101010:
2279 return DRM_FORMAT_XBGR2101010;
2280 }
2281 }
2282
2283 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2284 struct intel_plane_config *plane_config)
2285 {
2286 struct drm_device *dev = crtc->base.dev;
2287 struct drm_i915_gem_object *obj = NULL;
2288 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2289 u32 base = plane_config->base;
2290
2291 if (plane_config->size == 0)
2292 return false;
2293
2294 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2295 plane_config->size);
2296 if (!obj)
2297 return false;
2298
2299 if (plane_config->tiled) {
2300 obj->tiling_mode = I915_TILING_X;
2301 obj->stride = crtc->base.primary->fb->pitches[0];
2302 }
2303
2304 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2305 mode_cmd.width = crtc->base.primary->fb->width;
2306 mode_cmd.height = crtc->base.primary->fb->height;
2307 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2308
2309 mutex_lock(&dev->struct_mutex);
2310
2311 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2312 &mode_cmd, obj)) {
2313 DRM_DEBUG_KMS("intel fb init failed\n");
2314 goto out_unref_obj;
2315 }
2316
2317 mutex_unlock(&dev->struct_mutex);
2318
2319 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2320 return true;
2321
2322 out_unref_obj:
2323 drm_gem_object_unreference(&obj->base);
2324 mutex_unlock(&dev->struct_mutex);
2325 return false;
2326 }
2327
2328 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2329 struct intel_plane_config *plane_config)
2330 {
2331 struct drm_device *dev = intel_crtc->base.dev;
2332 struct drm_crtc *c;
2333 struct intel_crtc *i;
2334 struct intel_framebuffer *fb;
2335
2336 if (!intel_crtc->base.primary->fb)
2337 return;
2338
2339 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2340 return;
2341
2342 kfree(intel_crtc->base.primary->fb);
2343 intel_crtc->base.primary->fb = NULL;
2344
2345 /*
2346 * Failed to alloc the obj, check to see if we should share
2347 * an fb with another CRTC instead
2348 */
2349 for_each_crtc(dev, c) {
2350 i = to_intel_crtc(c);
2351
2352 if (c == &intel_crtc->base)
2353 continue;
2354
2355 if (!i->active || !c->primary->fb)
2356 continue;
2357
2358 fb = to_intel_framebuffer(c->primary->fb);
2359 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2360 drm_framebuffer_reference(c->primary->fb);
2361 intel_crtc->base.primary->fb = c->primary->fb;
2362 break;
2363 }
2364 }
2365 }
2366
2367 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2368 struct drm_framebuffer *fb,
2369 int x, int y)
2370 {
2371 struct drm_device *dev = crtc->dev;
2372 struct drm_i915_private *dev_priv = dev->dev_private;
2373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2374 struct intel_framebuffer *intel_fb;
2375 struct drm_i915_gem_object *obj;
2376 int plane = intel_crtc->plane;
2377 unsigned long linear_offset;
2378 u32 dspcntr;
2379 u32 reg;
2380
2381 intel_fb = to_intel_framebuffer(fb);
2382 obj = intel_fb->obj;
2383
2384 reg = DSPCNTR(plane);
2385 dspcntr = I915_READ(reg);
2386 /* Mask out pixel format bits in case we change it */
2387 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2388 switch (fb->pixel_format) {
2389 case DRM_FORMAT_C8:
2390 dspcntr |= DISPPLANE_8BPP;
2391 break;
2392 case DRM_FORMAT_XRGB1555:
2393 case DRM_FORMAT_ARGB1555:
2394 dspcntr |= DISPPLANE_BGRX555;
2395 break;
2396 case DRM_FORMAT_RGB565:
2397 dspcntr |= DISPPLANE_BGRX565;
2398 break;
2399 case DRM_FORMAT_XRGB8888:
2400 case DRM_FORMAT_ARGB8888:
2401 dspcntr |= DISPPLANE_BGRX888;
2402 break;
2403 case DRM_FORMAT_XBGR8888:
2404 case DRM_FORMAT_ABGR8888:
2405 dspcntr |= DISPPLANE_RGBX888;
2406 break;
2407 case DRM_FORMAT_XRGB2101010:
2408 case DRM_FORMAT_ARGB2101010:
2409 dspcntr |= DISPPLANE_BGRX101010;
2410 break;
2411 case DRM_FORMAT_XBGR2101010:
2412 case DRM_FORMAT_ABGR2101010:
2413 dspcntr |= DISPPLANE_RGBX101010;
2414 break;
2415 default:
2416 BUG();
2417 }
2418
2419 if (INTEL_INFO(dev)->gen >= 4) {
2420 if (obj->tiling_mode != I915_TILING_NONE)
2421 dspcntr |= DISPPLANE_TILED;
2422 else
2423 dspcntr &= ~DISPPLANE_TILED;
2424 }
2425
2426 if (IS_G4X(dev))
2427 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2428
2429 I915_WRITE(reg, dspcntr);
2430
2431 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2432
2433 if (INTEL_INFO(dev)->gen >= 4) {
2434 intel_crtc->dspaddr_offset =
2435 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2436 fb->bits_per_pixel / 8,
2437 fb->pitches[0]);
2438 linear_offset -= intel_crtc->dspaddr_offset;
2439 } else {
2440 intel_crtc->dspaddr_offset = linear_offset;
2441 }
2442
2443 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2444 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2445 fb->pitches[0]);
2446 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2447 if (INTEL_INFO(dev)->gen >= 4) {
2448 I915_WRITE(DSPSURF(plane),
2449 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2450 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2451 I915_WRITE(DSPLINOFF(plane), linear_offset);
2452 } else
2453 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2454 POSTING_READ(reg);
2455 }
2456
2457 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2458 struct drm_framebuffer *fb,
2459 int x, int y)
2460 {
2461 struct drm_device *dev = crtc->dev;
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2464 struct intel_framebuffer *intel_fb;
2465 struct drm_i915_gem_object *obj;
2466 int plane = intel_crtc->plane;
2467 unsigned long linear_offset;
2468 u32 dspcntr;
2469 u32 reg;
2470
2471 intel_fb = to_intel_framebuffer(fb);
2472 obj = intel_fb->obj;
2473
2474 reg = DSPCNTR(plane);
2475 dspcntr = I915_READ(reg);
2476 /* Mask out pixel format bits in case we change it */
2477 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2478 switch (fb->pixel_format) {
2479 case DRM_FORMAT_C8:
2480 dspcntr |= DISPPLANE_8BPP;
2481 break;
2482 case DRM_FORMAT_RGB565:
2483 dspcntr |= DISPPLANE_BGRX565;
2484 break;
2485 case DRM_FORMAT_XRGB8888:
2486 case DRM_FORMAT_ARGB8888:
2487 dspcntr |= DISPPLANE_BGRX888;
2488 break;
2489 case DRM_FORMAT_XBGR8888:
2490 case DRM_FORMAT_ABGR8888:
2491 dspcntr |= DISPPLANE_RGBX888;
2492 break;
2493 case DRM_FORMAT_XRGB2101010:
2494 case DRM_FORMAT_ARGB2101010:
2495 dspcntr |= DISPPLANE_BGRX101010;
2496 break;
2497 case DRM_FORMAT_XBGR2101010:
2498 case DRM_FORMAT_ABGR2101010:
2499 dspcntr |= DISPPLANE_RGBX101010;
2500 break;
2501 default:
2502 BUG();
2503 }
2504
2505 if (obj->tiling_mode != I915_TILING_NONE)
2506 dspcntr |= DISPPLANE_TILED;
2507 else
2508 dspcntr &= ~DISPPLANE_TILED;
2509
2510 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2511 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2512 else
2513 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2514
2515 I915_WRITE(reg, dspcntr);
2516
2517 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2518 intel_crtc->dspaddr_offset =
2519 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2520 fb->bits_per_pixel / 8,
2521 fb->pitches[0]);
2522 linear_offset -= intel_crtc->dspaddr_offset;
2523
2524 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2525 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2526 fb->pitches[0]);
2527 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2528 I915_WRITE(DSPSURF(plane),
2529 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2530 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2531 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2532 } else {
2533 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2534 I915_WRITE(DSPLINOFF(plane), linear_offset);
2535 }
2536 POSTING_READ(reg);
2537 }
2538
2539 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2540 static int
2541 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2542 int x, int y, enum mode_set_atomic state)
2543 {
2544 struct drm_device *dev = crtc->dev;
2545 struct drm_i915_private *dev_priv = dev->dev_private;
2546
2547 if (dev_priv->display.disable_fbc)
2548 dev_priv->display.disable_fbc(dev);
2549 intel_increase_pllclock(crtc);
2550
2551 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2552
2553 return 0;
2554 }
2555
2556 void intel_display_handle_reset(struct drm_device *dev)
2557 {
2558 struct drm_i915_private *dev_priv = dev->dev_private;
2559 struct drm_crtc *crtc;
2560
2561 /*
2562 * Flips in the rings have been nuked by the reset,
2563 * so complete all pending flips so that user space
2564 * will get its events and not get stuck.
2565 *
2566 * Also update the base address of all primary
2567 * planes to the the last fb to make sure we're
2568 * showing the correct fb after a reset.
2569 *
2570 * Need to make two loops over the crtcs so that we
2571 * don't try to grab a crtc mutex before the
2572 * pending_flip_queue really got woken up.
2573 */
2574
2575 for_each_crtc(dev, crtc) {
2576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2577 enum plane plane = intel_crtc->plane;
2578
2579 intel_prepare_page_flip(dev, plane);
2580 intel_finish_page_flip_plane(dev, plane);
2581 }
2582
2583 for_each_crtc(dev, crtc) {
2584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2585
2586 drm_modeset_lock(&crtc->mutex, NULL);
2587 /*
2588 * FIXME: Once we have proper support for primary planes (and
2589 * disabling them without disabling the entire crtc) allow again
2590 * a NULL crtc->primary->fb.
2591 */
2592 if (intel_crtc->active && crtc->primary->fb)
2593 dev_priv->display.update_primary_plane(crtc,
2594 crtc->primary->fb,
2595 crtc->x,
2596 crtc->y);
2597 drm_modeset_unlock(&crtc->mutex);
2598 }
2599 }
2600
2601 static int
2602 intel_finish_fb(struct drm_framebuffer *old_fb)
2603 {
2604 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2605 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2606 bool was_interruptible = dev_priv->mm.interruptible;
2607 int ret;
2608
2609 /* Big Hammer, we also need to ensure that any pending
2610 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2611 * current scanout is retired before unpinning the old
2612 * framebuffer.
2613 *
2614 * This should only fail upon a hung GPU, in which case we
2615 * can safely continue.
2616 */
2617 dev_priv->mm.interruptible = false;
2618 ret = i915_gem_object_finish_gpu(obj);
2619 dev_priv->mm.interruptible = was_interruptible;
2620
2621 return ret;
2622 }
2623
2624 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2625 {
2626 struct drm_device *dev = crtc->dev;
2627 struct drm_i915_private *dev_priv = dev->dev_private;
2628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2629 unsigned long flags;
2630 bool pending;
2631
2632 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2633 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2634 return false;
2635
2636 spin_lock_irqsave(&dev->event_lock, flags);
2637 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2638 spin_unlock_irqrestore(&dev->event_lock, flags);
2639
2640 return pending;
2641 }
2642
2643 static int
2644 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2645 struct drm_framebuffer *fb)
2646 {
2647 struct drm_device *dev = crtc->dev;
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2650 struct drm_framebuffer *old_fb;
2651 int ret;
2652
2653 if (intel_crtc_has_pending_flip(crtc)) {
2654 DRM_ERROR("pipe is still busy with an old pageflip\n");
2655 return -EBUSY;
2656 }
2657
2658 /* no fb bound */
2659 if (!fb) {
2660 DRM_ERROR("No FB bound\n");
2661 return 0;
2662 }
2663
2664 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2665 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2666 plane_name(intel_crtc->plane),
2667 INTEL_INFO(dev)->num_pipes);
2668 return -EINVAL;
2669 }
2670
2671 mutex_lock(&dev->struct_mutex);
2672 ret = intel_pin_and_fence_fb_obj(dev,
2673 to_intel_framebuffer(fb)->obj,
2674 NULL);
2675 mutex_unlock(&dev->struct_mutex);
2676 if (ret != 0) {
2677 DRM_ERROR("pin & fence failed\n");
2678 return ret;
2679 }
2680
2681 /*
2682 * Update pipe size and adjust fitter if needed: the reason for this is
2683 * that in compute_mode_changes we check the native mode (not the pfit
2684 * mode) to see if we can flip rather than do a full mode set. In the
2685 * fastboot case, we'll flip, but if we don't update the pipesrc and
2686 * pfit state, we'll end up with a big fb scanned out into the wrong
2687 * sized surface.
2688 *
2689 * To fix this properly, we need to hoist the checks up into
2690 * compute_mode_changes (or above), check the actual pfit state and
2691 * whether the platform allows pfit disable with pipe active, and only
2692 * then update the pipesrc and pfit state, even on the flip path.
2693 */
2694 if (i915.fastboot) {
2695 const struct drm_display_mode *adjusted_mode =
2696 &intel_crtc->config.adjusted_mode;
2697
2698 I915_WRITE(PIPESRC(intel_crtc->pipe),
2699 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2700 (adjusted_mode->crtc_vdisplay - 1));
2701 if (!intel_crtc->config.pch_pfit.enabled &&
2702 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2703 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2704 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2705 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2706 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2707 }
2708 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2709 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2710 }
2711
2712 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2713
2714 old_fb = crtc->primary->fb;
2715 crtc->primary->fb = fb;
2716 crtc->x = x;
2717 crtc->y = y;
2718
2719 if (old_fb) {
2720 if (intel_crtc->active && old_fb != fb)
2721 intel_wait_for_vblank(dev, intel_crtc->pipe);
2722 mutex_lock(&dev->struct_mutex);
2723 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2724 mutex_unlock(&dev->struct_mutex);
2725 }
2726
2727 mutex_lock(&dev->struct_mutex);
2728 intel_update_fbc(dev);
2729 intel_edp_psr_update(dev);
2730 mutex_unlock(&dev->struct_mutex);
2731
2732 return 0;
2733 }
2734
2735 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2736 {
2737 struct drm_device *dev = crtc->dev;
2738 struct drm_i915_private *dev_priv = dev->dev_private;
2739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2740 int pipe = intel_crtc->pipe;
2741 u32 reg, temp;
2742
2743 /* enable normal train */
2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg);
2746 if (IS_IVYBRIDGE(dev)) {
2747 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2748 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2749 } else {
2750 temp &= ~FDI_LINK_TRAIN_NONE;
2751 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2752 }
2753 I915_WRITE(reg, temp);
2754
2755 reg = FDI_RX_CTL(pipe);
2756 temp = I915_READ(reg);
2757 if (HAS_PCH_CPT(dev)) {
2758 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2759 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2760 } else {
2761 temp &= ~FDI_LINK_TRAIN_NONE;
2762 temp |= FDI_LINK_TRAIN_NONE;
2763 }
2764 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2765
2766 /* wait one idle pattern time */
2767 POSTING_READ(reg);
2768 udelay(1000);
2769
2770 /* IVB wants error correction enabled */
2771 if (IS_IVYBRIDGE(dev))
2772 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2773 FDI_FE_ERRC_ENABLE);
2774 }
2775
2776 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2777 {
2778 return crtc->base.enabled && crtc->active &&
2779 crtc->config.has_pch_encoder;
2780 }
2781
2782 static void ivb_modeset_global_resources(struct drm_device *dev)
2783 {
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 struct intel_crtc *pipe_B_crtc =
2786 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2787 struct intel_crtc *pipe_C_crtc =
2788 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2789 uint32_t temp;
2790
2791 /*
2792 * When everything is off disable fdi C so that we could enable fdi B
2793 * with all lanes. Note that we don't care about enabled pipes without
2794 * an enabled pch encoder.
2795 */
2796 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2797 !pipe_has_enabled_pch(pipe_C_crtc)) {
2798 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2799 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2800
2801 temp = I915_READ(SOUTH_CHICKEN1);
2802 temp &= ~FDI_BC_BIFURCATION_SELECT;
2803 DRM_DEBUG_KMS("disabling fdi C rx\n");
2804 I915_WRITE(SOUTH_CHICKEN1, temp);
2805 }
2806 }
2807
2808 /* The FDI link training functions for ILK/Ibexpeak. */
2809 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2810 {
2811 struct drm_device *dev = crtc->dev;
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2814 int pipe = intel_crtc->pipe;
2815 u32 reg, temp, tries;
2816
2817 /* FDI needs bits from pipe first */
2818 assert_pipe_enabled(dev_priv, pipe);
2819
2820 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2821 for train result */
2822 reg = FDI_RX_IMR(pipe);
2823 temp = I915_READ(reg);
2824 temp &= ~FDI_RX_SYMBOL_LOCK;
2825 temp &= ~FDI_RX_BIT_LOCK;
2826 I915_WRITE(reg, temp);
2827 I915_READ(reg);
2828 udelay(150);
2829
2830 /* enable CPU FDI TX and PCH FDI RX */
2831 reg = FDI_TX_CTL(pipe);
2832 temp = I915_READ(reg);
2833 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2834 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2835 temp &= ~FDI_LINK_TRAIN_NONE;
2836 temp |= FDI_LINK_TRAIN_PATTERN_1;
2837 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2838
2839 reg = FDI_RX_CTL(pipe);
2840 temp = I915_READ(reg);
2841 temp &= ~FDI_LINK_TRAIN_NONE;
2842 temp |= FDI_LINK_TRAIN_PATTERN_1;
2843 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2844
2845 POSTING_READ(reg);
2846 udelay(150);
2847
2848 /* Ironlake workaround, enable clock pointer after FDI enable*/
2849 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2850 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2851 FDI_RX_PHASE_SYNC_POINTER_EN);
2852
2853 reg = FDI_RX_IIR(pipe);
2854 for (tries = 0; tries < 5; tries++) {
2855 temp = I915_READ(reg);
2856 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2857
2858 if ((temp & FDI_RX_BIT_LOCK)) {
2859 DRM_DEBUG_KMS("FDI train 1 done.\n");
2860 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2861 break;
2862 }
2863 }
2864 if (tries == 5)
2865 DRM_ERROR("FDI train 1 fail!\n");
2866
2867 /* Train 2 */
2868 reg = FDI_TX_CTL(pipe);
2869 temp = I915_READ(reg);
2870 temp &= ~FDI_LINK_TRAIN_NONE;
2871 temp |= FDI_LINK_TRAIN_PATTERN_2;
2872 I915_WRITE(reg, temp);
2873
2874 reg = FDI_RX_CTL(pipe);
2875 temp = I915_READ(reg);
2876 temp &= ~FDI_LINK_TRAIN_NONE;
2877 temp |= FDI_LINK_TRAIN_PATTERN_2;
2878 I915_WRITE(reg, temp);
2879
2880 POSTING_READ(reg);
2881 udelay(150);
2882
2883 reg = FDI_RX_IIR(pipe);
2884 for (tries = 0; tries < 5; tries++) {
2885 temp = I915_READ(reg);
2886 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2887
2888 if (temp & FDI_RX_SYMBOL_LOCK) {
2889 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2890 DRM_DEBUG_KMS("FDI train 2 done.\n");
2891 break;
2892 }
2893 }
2894 if (tries == 5)
2895 DRM_ERROR("FDI train 2 fail!\n");
2896
2897 DRM_DEBUG_KMS("FDI train done\n");
2898
2899 }
2900
2901 static const int snb_b_fdi_train_param[] = {
2902 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2903 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2904 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2905 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2906 };
2907
2908 /* The FDI link training functions for SNB/Cougarpoint. */
2909 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2910 {
2911 struct drm_device *dev = crtc->dev;
2912 struct drm_i915_private *dev_priv = dev->dev_private;
2913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2914 int pipe = intel_crtc->pipe;
2915 u32 reg, temp, i, retry;
2916
2917 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2918 for train result */
2919 reg = FDI_RX_IMR(pipe);
2920 temp = I915_READ(reg);
2921 temp &= ~FDI_RX_SYMBOL_LOCK;
2922 temp &= ~FDI_RX_BIT_LOCK;
2923 I915_WRITE(reg, temp);
2924
2925 POSTING_READ(reg);
2926 udelay(150);
2927
2928 /* enable CPU FDI TX and PCH FDI RX */
2929 reg = FDI_TX_CTL(pipe);
2930 temp = I915_READ(reg);
2931 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2932 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2933 temp &= ~FDI_LINK_TRAIN_NONE;
2934 temp |= FDI_LINK_TRAIN_PATTERN_1;
2935 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2936 /* SNB-B */
2937 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2938 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2939
2940 I915_WRITE(FDI_RX_MISC(pipe),
2941 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2942
2943 reg = FDI_RX_CTL(pipe);
2944 temp = I915_READ(reg);
2945 if (HAS_PCH_CPT(dev)) {
2946 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2947 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2948 } else {
2949 temp &= ~FDI_LINK_TRAIN_NONE;
2950 temp |= FDI_LINK_TRAIN_PATTERN_1;
2951 }
2952 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2953
2954 POSTING_READ(reg);
2955 udelay(150);
2956
2957 for (i = 0; i < 4; i++) {
2958 reg = FDI_TX_CTL(pipe);
2959 temp = I915_READ(reg);
2960 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2961 temp |= snb_b_fdi_train_param[i];
2962 I915_WRITE(reg, temp);
2963
2964 POSTING_READ(reg);
2965 udelay(500);
2966
2967 for (retry = 0; retry < 5; retry++) {
2968 reg = FDI_RX_IIR(pipe);
2969 temp = I915_READ(reg);
2970 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2971 if (temp & FDI_RX_BIT_LOCK) {
2972 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2973 DRM_DEBUG_KMS("FDI train 1 done.\n");
2974 break;
2975 }
2976 udelay(50);
2977 }
2978 if (retry < 5)
2979 break;
2980 }
2981 if (i == 4)
2982 DRM_ERROR("FDI train 1 fail!\n");
2983
2984 /* Train 2 */
2985 reg = FDI_TX_CTL(pipe);
2986 temp = I915_READ(reg);
2987 temp &= ~FDI_LINK_TRAIN_NONE;
2988 temp |= FDI_LINK_TRAIN_PATTERN_2;
2989 if (IS_GEN6(dev)) {
2990 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2991 /* SNB-B */
2992 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2993 }
2994 I915_WRITE(reg, temp);
2995
2996 reg = FDI_RX_CTL(pipe);
2997 temp = I915_READ(reg);
2998 if (HAS_PCH_CPT(dev)) {
2999 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3000 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3001 } else {
3002 temp &= ~FDI_LINK_TRAIN_NONE;
3003 temp |= FDI_LINK_TRAIN_PATTERN_2;
3004 }
3005 I915_WRITE(reg, temp);
3006
3007 POSTING_READ(reg);
3008 udelay(150);
3009
3010 for (i = 0; i < 4; i++) {
3011 reg = FDI_TX_CTL(pipe);
3012 temp = I915_READ(reg);
3013 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3014 temp |= snb_b_fdi_train_param[i];
3015 I915_WRITE(reg, temp);
3016
3017 POSTING_READ(reg);
3018 udelay(500);
3019
3020 for (retry = 0; retry < 5; retry++) {
3021 reg = FDI_RX_IIR(pipe);
3022 temp = I915_READ(reg);
3023 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3024 if (temp & FDI_RX_SYMBOL_LOCK) {
3025 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3026 DRM_DEBUG_KMS("FDI train 2 done.\n");
3027 break;
3028 }
3029 udelay(50);
3030 }
3031 if (retry < 5)
3032 break;
3033 }
3034 if (i == 4)
3035 DRM_ERROR("FDI train 2 fail!\n");
3036
3037 DRM_DEBUG_KMS("FDI train done.\n");
3038 }
3039
3040 /* Manual link training for Ivy Bridge A0 parts */
3041 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3042 {
3043 struct drm_device *dev = crtc->dev;
3044 struct drm_i915_private *dev_priv = dev->dev_private;
3045 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3046 int pipe = intel_crtc->pipe;
3047 u32 reg, temp, i, j;
3048
3049 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3050 for train result */
3051 reg = FDI_RX_IMR(pipe);
3052 temp = I915_READ(reg);
3053 temp &= ~FDI_RX_SYMBOL_LOCK;
3054 temp &= ~FDI_RX_BIT_LOCK;
3055 I915_WRITE(reg, temp);
3056
3057 POSTING_READ(reg);
3058 udelay(150);
3059
3060 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3061 I915_READ(FDI_RX_IIR(pipe)));
3062
3063 /* Try each vswing and preemphasis setting twice before moving on */
3064 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3065 /* disable first in case we need to retry */
3066 reg = FDI_TX_CTL(pipe);
3067 temp = I915_READ(reg);
3068 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3069 temp &= ~FDI_TX_ENABLE;
3070 I915_WRITE(reg, temp);
3071
3072 reg = FDI_RX_CTL(pipe);
3073 temp = I915_READ(reg);
3074 temp &= ~FDI_LINK_TRAIN_AUTO;
3075 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3076 temp &= ~FDI_RX_ENABLE;
3077 I915_WRITE(reg, temp);
3078
3079 /* enable CPU FDI TX and PCH FDI RX */
3080 reg = FDI_TX_CTL(pipe);
3081 temp = I915_READ(reg);
3082 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3083 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3084 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3085 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3086 temp |= snb_b_fdi_train_param[j/2];
3087 temp |= FDI_COMPOSITE_SYNC;
3088 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3089
3090 I915_WRITE(FDI_RX_MISC(pipe),
3091 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3092
3093 reg = FDI_RX_CTL(pipe);
3094 temp = I915_READ(reg);
3095 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3096 temp |= FDI_COMPOSITE_SYNC;
3097 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3098
3099 POSTING_READ(reg);
3100 udelay(1); /* should be 0.5us */
3101
3102 for (i = 0; i < 4; i++) {
3103 reg = FDI_RX_IIR(pipe);
3104 temp = I915_READ(reg);
3105 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3106
3107 if (temp & FDI_RX_BIT_LOCK ||
3108 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3109 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3110 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3111 i);
3112 break;
3113 }
3114 udelay(1); /* should be 0.5us */
3115 }
3116 if (i == 4) {
3117 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3118 continue;
3119 }
3120
3121 /* Train 2 */
3122 reg = FDI_TX_CTL(pipe);
3123 temp = I915_READ(reg);
3124 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3125 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3126 I915_WRITE(reg, temp);
3127
3128 reg = FDI_RX_CTL(pipe);
3129 temp = I915_READ(reg);
3130 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3131 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3132 I915_WRITE(reg, temp);
3133
3134 POSTING_READ(reg);
3135 udelay(2); /* should be 1.5us */
3136
3137 for (i = 0; i < 4; i++) {
3138 reg = FDI_RX_IIR(pipe);
3139 temp = I915_READ(reg);
3140 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3141
3142 if (temp & FDI_RX_SYMBOL_LOCK ||
3143 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3144 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3145 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3146 i);
3147 goto train_done;
3148 }
3149 udelay(2); /* should be 1.5us */
3150 }
3151 if (i == 4)
3152 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3153 }
3154
3155 train_done:
3156 DRM_DEBUG_KMS("FDI train done.\n");
3157 }
3158
3159 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3160 {
3161 struct drm_device *dev = intel_crtc->base.dev;
3162 struct drm_i915_private *dev_priv = dev->dev_private;
3163 int pipe = intel_crtc->pipe;
3164 u32 reg, temp;
3165
3166
3167 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3168 reg = FDI_RX_CTL(pipe);
3169 temp = I915_READ(reg);
3170 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3171 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3172 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3173 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3174
3175 POSTING_READ(reg);
3176 udelay(200);
3177
3178 /* Switch from Rawclk to PCDclk */
3179 temp = I915_READ(reg);
3180 I915_WRITE(reg, temp | FDI_PCDCLK);
3181
3182 POSTING_READ(reg);
3183 udelay(200);
3184
3185 /* Enable CPU FDI TX PLL, always on for Ironlake */
3186 reg = FDI_TX_CTL(pipe);
3187 temp = I915_READ(reg);
3188 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3189 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3190
3191 POSTING_READ(reg);
3192 udelay(100);
3193 }
3194 }
3195
3196 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3197 {
3198 struct drm_device *dev = intel_crtc->base.dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 int pipe = intel_crtc->pipe;
3201 u32 reg, temp;
3202
3203 /* Switch from PCDclk to Rawclk */
3204 reg = FDI_RX_CTL(pipe);
3205 temp = I915_READ(reg);
3206 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3207
3208 /* Disable CPU FDI TX PLL */
3209 reg = FDI_TX_CTL(pipe);
3210 temp = I915_READ(reg);
3211 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3212
3213 POSTING_READ(reg);
3214 udelay(100);
3215
3216 reg = FDI_RX_CTL(pipe);
3217 temp = I915_READ(reg);
3218 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3219
3220 /* Wait for the clocks to turn off. */
3221 POSTING_READ(reg);
3222 udelay(100);
3223 }
3224
3225 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3226 {
3227 struct drm_device *dev = crtc->dev;
3228 struct drm_i915_private *dev_priv = dev->dev_private;
3229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3230 int pipe = intel_crtc->pipe;
3231 u32 reg, temp;
3232
3233 /* disable CPU FDI tx and PCH FDI rx */
3234 reg = FDI_TX_CTL(pipe);
3235 temp = I915_READ(reg);
3236 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3237 POSTING_READ(reg);
3238
3239 reg = FDI_RX_CTL(pipe);
3240 temp = I915_READ(reg);
3241 temp &= ~(0x7 << 16);
3242 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3243 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3244
3245 POSTING_READ(reg);
3246 udelay(100);
3247
3248 /* Ironlake workaround, disable clock pointer after downing FDI */
3249 if (HAS_PCH_IBX(dev))
3250 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3251
3252 /* still set train pattern 1 */
3253 reg = FDI_TX_CTL(pipe);
3254 temp = I915_READ(reg);
3255 temp &= ~FDI_LINK_TRAIN_NONE;
3256 temp |= FDI_LINK_TRAIN_PATTERN_1;
3257 I915_WRITE(reg, temp);
3258
3259 reg = FDI_RX_CTL(pipe);
3260 temp = I915_READ(reg);
3261 if (HAS_PCH_CPT(dev)) {
3262 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3263 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3264 } else {
3265 temp &= ~FDI_LINK_TRAIN_NONE;
3266 temp |= FDI_LINK_TRAIN_PATTERN_1;
3267 }
3268 /* BPC in FDI rx is consistent with that in PIPECONF */
3269 temp &= ~(0x07 << 16);
3270 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3271 I915_WRITE(reg, temp);
3272
3273 POSTING_READ(reg);
3274 udelay(100);
3275 }
3276
3277 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3278 {
3279 struct intel_crtc *crtc;
3280
3281 /* Note that we don't need to be called with mode_config.lock here
3282 * as our list of CRTC objects is static for the lifetime of the
3283 * device and so cannot disappear as we iterate. Similarly, we can
3284 * happily treat the predicates as racy, atomic checks as userspace
3285 * cannot claim and pin a new fb without at least acquring the
3286 * struct_mutex and so serialising with us.
3287 */
3288 for_each_intel_crtc(dev, crtc) {
3289 if (atomic_read(&crtc->unpin_work_count) == 0)
3290 continue;
3291
3292 if (crtc->unpin_work)
3293 intel_wait_for_vblank(dev, crtc->pipe);
3294
3295 return true;
3296 }
3297
3298 return false;
3299 }
3300
3301 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3302 {
3303 struct drm_device *dev = crtc->dev;
3304 struct drm_i915_private *dev_priv = dev->dev_private;
3305
3306 if (crtc->primary->fb == NULL)
3307 return;
3308
3309 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3310
3311 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3312 !intel_crtc_has_pending_flip(crtc),
3313 60*HZ) == 0);
3314
3315 mutex_lock(&dev->struct_mutex);
3316 intel_finish_fb(crtc->primary->fb);
3317 mutex_unlock(&dev->struct_mutex);
3318 }
3319
3320 /* Program iCLKIP clock to the desired frequency */
3321 static void lpt_program_iclkip(struct drm_crtc *crtc)
3322 {
3323 struct drm_device *dev = crtc->dev;
3324 struct drm_i915_private *dev_priv = dev->dev_private;
3325 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3326 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3327 u32 temp;
3328
3329 mutex_lock(&dev_priv->dpio_lock);
3330
3331 /* It is necessary to ungate the pixclk gate prior to programming
3332 * the divisors, and gate it back when it is done.
3333 */
3334 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3335
3336 /* Disable SSCCTL */
3337 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3338 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3339 SBI_SSCCTL_DISABLE,
3340 SBI_ICLK);
3341
3342 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3343 if (clock == 20000) {
3344 auxdiv = 1;
3345 divsel = 0x41;
3346 phaseinc = 0x20;
3347 } else {
3348 /* The iCLK virtual clock root frequency is in MHz,
3349 * but the adjusted_mode->crtc_clock in in KHz. To get the
3350 * divisors, it is necessary to divide one by another, so we
3351 * convert the virtual clock precision to KHz here for higher
3352 * precision.
3353 */
3354 u32 iclk_virtual_root_freq = 172800 * 1000;
3355 u32 iclk_pi_range = 64;
3356 u32 desired_divisor, msb_divisor_value, pi_value;
3357
3358 desired_divisor = (iclk_virtual_root_freq / clock);
3359 msb_divisor_value = desired_divisor / iclk_pi_range;
3360 pi_value = desired_divisor % iclk_pi_range;
3361
3362 auxdiv = 0;
3363 divsel = msb_divisor_value - 2;
3364 phaseinc = pi_value;
3365 }
3366
3367 /* This should not happen with any sane values */
3368 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3369 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3370 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3371 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3372
3373 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3374 clock,
3375 auxdiv,
3376 divsel,
3377 phasedir,
3378 phaseinc);
3379
3380 /* Program SSCDIVINTPHASE6 */
3381 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3382 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3383 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3384 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3385 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3386 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3387 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3388 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3389
3390 /* Program SSCAUXDIV */
3391 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3392 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3393 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3394 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3395
3396 /* Enable modulator and associated divider */
3397 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3398 temp &= ~SBI_SSCCTL_DISABLE;
3399 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3400
3401 /* Wait for initialization time */
3402 udelay(24);
3403
3404 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3405
3406 mutex_unlock(&dev_priv->dpio_lock);
3407 }
3408
3409 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3410 enum pipe pch_transcoder)
3411 {
3412 struct drm_device *dev = crtc->base.dev;
3413 struct drm_i915_private *dev_priv = dev->dev_private;
3414 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3415
3416 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3417 I915_READ(HTOTAL(cpu_transcoder)));
3418 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3419 I915_READ(HBLANK(cpu_transcoder)));
3420 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3421 I915_READ(HSYNC(cpu_transcoder)));
3422
3423 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3424 I915_READ(VTOTAL(cpu_transcoder)));
3425 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3426 I915_READ(VBLANK(cpu_transcoder)));
3427 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3428 I915_READ(VSYNC(cpu_transcoder)));
3429 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3430 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3431 }
3432
3433 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3434 {
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 uint32_t temp;
3437
3438 temp = I915_READ(SOUTH_CHICKEN1);
3439 if (temp & FDI_BC_BIFURCATION_SELECT)
3440 return;
3441
3442 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3443 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3444
3445 temp |= FDI_BC_BIFURCATION_SELECT;
3446 DRM_DEBUG_KMS("enabling fdi C rx\n");
3447 I915_WRITE(SOUTH_CHICKEN1, temp);
3448 POSTING_READ(SOUTH_CHICKEN1);
3449 }
3450
3451 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3452 {
3453 struct drm_device *dev = intel_crtc->base.dev;
3454 struct drm_i915_private *dev_priv = dev->dev_private;
3455
3456 switch (intel_crtc->pipe) {
3457 case PIPE_A:
3458 break;
3459 case PIPE_B:
3460 if (intel_crtc->config.fdi_lanes > 2)
3461 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3462 else
3463 cpt_enable_fdi_bc_bifurcation(dev);
3464
3465 break;
3466 case PIPE_C:
3467 cpt_enable_fdi_bc_bifurcation(dev);
3468
3469 break;
3470 default:
3471 BUG();
3472 }
3473 }
3474
3475 /*
3476 * Enable PCH resources required for PCH ports:
3477 * - PCH PLLs
3478 * - FDI training & RX/TX
3479 * - update transcoder timings
3480 * - DP transcoding bits
3481 * - transcoder
3482 */
3483 static void ironlake_pch_enable(struct drm_crtc *crtc)
3484 {
3485 struct drm_device *dev = crtc->dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488 int pipe = intel_crtc->pipe;
3489 u32 reg, temp;
3490
3491 assert_pch_transcoder_disabled(dev_priv, pipe);
3492
3493 if (IS_IVYBRIDGE(dev))
3494 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3495
3496 /* Write the TU size bits before fdi link training, so that error
3497 * detection works. */
3498 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3499 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3500
3501 /* For PCH output, training FDI link */
3502 dev_priv->display.fdi_link_train(crtc);
3503
3504 /* We need to program the right clock selection before writing the pixel
3505 * mutliplier into the DPLL. */
3506 if (HAS_PCH_CPT(dev)) {
3507 u32 sel;
3508
3509 temp = I915_READ(PCH_DPLL_SEL);
3510 temp |= TRANS_DPLL_ENABLE(pipe);
3511 sel = TRANS_DPLLB_SEL(pipe);
3512 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3513 temp |= sel;
3514 else
3515 temp &= ~sel;
3516 I915_WRITE(PCH_DPLL_SEL, temp);
3517 }
3518
3519 /* XXX: pch pll's can be enabled any time before we enable the PCH
3520 * transcoder, and we actually should do this to not upset any PCH
3521 * transcoder that already use the clock when we share it.
3522 *
3523 * Note that enable_shared_dpll tries to do the right thing, but
3524 * get_shared_dpll unconditionally resets the pll - we need that to have
3525 * the right LVDS enable sequence. */
3526 intel_enable_shared_dpll(intel_crtc);
3527
3528 /* set transcoder timing, panel must allow it */
3529 assert_panel_unlocked(dev_priv, pipe);
3530 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3531
3532 intel_fdi_normal_train(crtc);
3533
3534 /* For PCH DP, enable TRANS_DP_CTL */
3535 if (HAS_PCH_CPT(dev) &&
3536 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3537 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3538 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3539 reg = TRANS_DP_CTL(pipe);
3540 temp = I915_READ(reg);
3541 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3542 TRANS_DP_SYNC_MASK |
3543 TRANS_DP_BPC_MASK);
3544 temp |= (TRANS_DP_OUTPUT_ENABLE |
3545 TRANS_DP_ENH_FRAMING);
3546 temp |= bpc << 9; /* same format but at 11:9 */
3547
3548 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3549 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3550 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3551 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3552
3553 switch (intel_trans_dp_port_sel(crtc)) {
3554 case PCH_DP_B:
3555 temp |= TRANS_DP_PORT_SEL_B;
3556 break;
3557 case PCH_DP_C:
3558 temp |= TRANS_DP_PORT_SEL_C;
3559 break;
3560 case PCH_DP_D:
3561 temp |= TRANS_DP_PORT_SEL_D;
3562 break;
3563 default:
3564 BUG();
3565 }
3566
3567 I915_WRITE(reg, temp);
3568 }
3569
3570 ironlake_enable_pch_transcoder(dev_priv, pipe);
3571 }
3572
3573 static void lpt_pch_enable(struct drm_crtc *crtc)
3574 {
3575 struct drm_device *dev = crtc->dev;
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3578 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3579
3580 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3581
3582 lpt_program_iclkip(crtc);
3583
3584 /* Set transcoder timing. */
3585 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3586
3587 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3588 }
3589
3590 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3591 {
3592 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3593
3594 if (pll == NULL)
3595 return;
3596
3597 if (pll->refcount == 0) {
3598 WARN(1, "bad %s refcount\n", pll->name);
3599 return;
3600 }
3601
3602 if (--pll->refcount == 0) {
3603 WARN_ON(pll->on);
3604 WARN_ON(pll->active);
3605 }
3606
3607 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3608 }
3609
3610 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3611 {
3612 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3613 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3614 enum intel_dpll_id i;
3615
3616 if (pll) {
3617 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3618 crtc->base.base.id, pll->name);
3619 intel_put_shared_dpll(crtc);
3620 }
3621
3622 if (HAS_PCH_IBX(dev_priv->dev)) {
3623 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3624 i = (enum intel_dpll_id) crtc->pipe;
3625 pll = &dev_priv->shared_dplls[i];
3626
3627 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3628 crtc->base.base.id, pll->name);
3629
3630 WARN_ON(pll->refcount);
3631
3632 goto found;
3633 }
3634
3635 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3636 pll = &dev_priv->shared_dplls[i];
3637
3638 /* Only want to check enabled timings first */
3639 if (pll->refcount == 0)
3640 continue;
3641
3642 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3643 sizeof(pll->hw_state)) == 0) {
3644 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3645 crtc->base.base.id,
3646 pll->name, pll->refcount, pll->active);
3647
3648 goto found;
3649 }
3650 }
3651
3652 /* Ok no matching timings, maybe there's a free one? */
3653 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3654 pll = &dev_priv->shared_dplls[i];
3655 if (pll->refcount == 0) {
3656 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3657 crtc->base.base.id, pll->name);
3658 goto found;
3659 }
3660 }
3661
3662 return NULL;
3663
3664 found:
3665 if (pll->refcount == 0)
3666 pll->hw_state = crtc->config.dpll_hw_state;
3667
3668 crtc->config.shared_dpll = i;
3669 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3670 pipe_name(crtc->pipe));
3671
3672 pll->refcount++;
3673
3674 return pll;
3675 }
3676
3677 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3678 {
3679 struct drm_i915_private *dev_priv = dev->dev_private;
3680 int dslreg = PIPEDSL(pipe);
3681 u32 temp;
3682
3683 temp = I915_READ(dslreg);
3684 udelay(500);
3685 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3686 if (wait_for(I915_READ(dslreg) != temp, 5))
3687 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3688 }
3689 }
3690
3691 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3692 {
3693 struct drm_device *dev = crtc->base.dev;
3694 struct drm_i915_private *dev_priv = dev->dev_private;
3695 int pipe = crtc->pipe;
3696
3697 if (crtc->config.pch_pfit.enabled) {
3698 /* Force use of hard-coded filter coefficients
3699 * as some pre-programmed values are broken,
3700 * e.g. x201.
3701 */
3702 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3703 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3704 PF_PIPE_SEL_IVB(pipe));
3705 else
3706 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3707 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3708 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3709 }
3710 }
3711
3712 static void intel_enable_planes(struct drm_crtc *crtc)
3713 {
3714 struct drm_device *dev = crtc->dev;
3715 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3716 struct drm_plane *plane;
3717 struct intel_plane *intel_plane;
3718
3719 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3720 intel_plane = to_intel_plane(plane);
3721 if (intel_plane->pipe == pipe)
3722 intel_plane_restore(&intel_plane->base);
3723 }
3724 }
3725
3726 static void intel_disable_planes(struct drm_crtc *crtc)
3727 {
3728 struct drm_device *dev = crtc->dev;
3729 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3730 struct drm_plane *plane;
3731 struct intel_plane *intel_plane;
3732
3733 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3734 intel_plane = to_intel_plane(plane);
3735 if (intel_plane->pipe == pipe)
3736 intel_plane_disable(&intel_plane->base);
3737 }
3738 }
3739
3740 void hsw_enable_ips(struct intel_crtc *crtc)
3741 {
3742 struct drm_device *dev = crtc->base.dev;
3743 struct drm_i915_private *dev_priv = dev->dev_private;
3744
3745 if (!crtc->config.ips_enabled)
3746 return;
3747
3748 /* We can only enable IPS after we enable a plane and wait for a vblank */
3749 intel_wait_for_vblank(dev, crtc->pipe);
3750
3751 assert_plane_enabled(dev_priv, crtc->plane);
3752 if (IS_BROADWELL(dev)) {
3753 mutex_lock(&dev_priv->rps.hw_lock);
3754 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3755 mutex_unlock(&dev_priv->rps.hw_lock);
3756 /* Quoting Art Runyan: "its not safe to expect any particular
3757 * value in IPS_CTL bit 31 after enabling IPS through the
3758 * mailbox." Moreover, the mailbox may return a bogus state,
3759 * so we need to just enable it and continue on.
3760 */
3761 } else {
3762 I915_WRITE(IPS_CTL, IPS_ENABLE);
3763 /* The bit only becomes 1 in the next vblank, so this wait here
3764 * is essentially intel_wait_for_vblank. If we don't have this
3765 * and don't wait for vblanks until the end of crtc_enable, then
3766 * the HW state readout code will complain that the expected
3767 * IPS_CTL value is not the one we read. */
3768 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3769 DRM_ERROR("Timed out waiting for IPS enable\n");
3770 }
3771 }
3772
3773 void hsw_disable_ips(struct intel_crtc *crtc)
3774 {
3775 struct drm_device *dev = crtc->base.dev;
3776 struct drm_i915_private *dev_priv = dev->dev_private;
3777
3778 if (!crtc->config.ips_enabled)
3779 return;
3780
3781 assert_plane_enabled(dev_priv, crtc->plane);
3782 if (IS_BROADWELL(dev)) {
3783 mutex_lock(&dev_priv->rps.hw_lock);
3784 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3785 mutex_unlock(&dev_priv->rps.hw_lock);
3786 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3787 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3788 DRM_ERROR("Timed out waiting for IPS disable\n");
3789 } else {
3790 I915_WRITE(IPS_CTL, 0);
3791 POSTING_READ(IPS_CTL);
3792 }
3793
3794 /* We need to wait for a vblank before we can disable the plane. */
3795 intel_wait_for_vblank(dev, crtc->pipe);
3796 }
3797
3798 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3799 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3800 {
3801 struct drm_device *dev = crtc->dev;
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3804 enum pipe pipe = intel_crtc->pipe;
3805 int palreg = PALETTE(pipe);
3806 int i;
3807 bool reenable_ips = false;
3808
3809 /* The clocks have to be on to load the palette. */
3810 if (!crtc->enabled || !intel_crtc->active)
3811 return;
3812
3813 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3814 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3815 assert_dsi_pll_enabled(dev_priv);
3816 else
3817 assert_pll_enabled(dev_priv, pipe);
3818 }
3819
3820 /* use legacy palette for Ironlake */
3821 if (HAS_PCH_SPLIT(dev))
3822 palreg = LGC_PALETTE(pipe);
3823
3824 /* Workaround : Do not read or write the pipe palette/gamma data while
3825 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3826 */
3827 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3828 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3829 GAMMA_MODE_MODE_SPLIT)) {
3830 hsw_disable_ips(intel_crtc);
3831 reenable_ips = true;
3832 }
3833
3834 for (i = 0; i < 256; i++) {
3835 I915_WRITE(palreg + 4 * i,
3836 (intel_crtc->lut_r[i] << 16) |
3837 (intel_crtc->lut_g[i] << 8) |
3838 intel_crtc->lut_b[i]);
3839 }
3840
3841 if (reenable_ips)
3842 hsw_enable_ips(intel_crtc);
3843 }
3844
3845 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3846 {
3847 if (!enable && intel_crtc->overlay) {
3848 struct drm_device *dev = intel_crtc->base.dev;
3849 struct drm_i915_private *dev_priv = dev->dev_private;
3850
3851 mutex_lock(&dev->struct_mutex);
3852 dev_priv->mm.interruptible = false;
3853 (void) intel_overlay_switch_off(intel_crtc->overlay);
3854 dev_priv->mm.interruptible = true;
3855 mutex_unlock(&dev->struct_mutex);
3856 }
3857
3858 /* Let userspace switch the overlay on again. In most cases userspace
3859 * has to recompute where to put it anyway.
3860 */
3861 }
3862
3863 /**
3864 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3865 * cursor plane briefly if not already running after enabling the display
3866 * plane.
3867 * This workaround avoids occasional blank screens when self refresh is
3868 * enabled.
3869 */
3870 static void
3871 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3872 {
3873 u32 cntl = I915_READ(CURCNTR(pipe));
3874
3875 if ((cntl & CURSOR_MODE) == 0) {
3876 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3877
3878 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3879 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3880 intel_wait_for_vblank(dev_priv->dev, pipe);
3881 I915_WRITE(CURCNTR(pipe), cntl);
3882 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3883 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3884 }
3885 }
3886
3887 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3888 {
3889 struct drm_device *dev = crtc->dev;
3890 struct drm_i915_private *dev_priv = dev->dev_private;
3891 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3892 int pipe = intel_crtc->pipe;
3893 int plane = intel_crtc->plane;
3894
3895 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3896 intel_enable_planes(crtc);
3897 /* The fixup needs to happen before cursor is enabled */
3898 if (IS_G4X(dev))
3899 g4x_fixup_plane(dev_priv, pipe);
3900 intel_crtc_update_cursor(crtc, true);
3901 intel_crtc_dpms_overlay(intel_crtc, true);
3902
3903 hsw_enable_ips(intel_crtc);
3904
3905 mutex_lock(&dev->struct_mutex);
3906 intel_update_fbc(dev);
3907 intel_edp_psr_update(dev);
3908 mutex_unlock(&dev->struct_mutex);
3909 }
3910
3911 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3912 {
3913 struct drm_device *dev = crtc->dev;
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3916 int pipe = intel_crtc->pipe;
3917 int plane = intel_crtc->plane;
3918
3919 intel_crtc_wait_for_pending_flips(crtc);
3920 drm_crtc_vblank_off(crtc);
3921
3922 if (dev_priv->fbc.plane == plane)
3923 intel_disable_fbc(dev);
3924
3925 hsw_disable_ips(intel_crtc);
3926
3927 intel_crtc_dpms_overlay(intel_crtc, false);
3928 intel_crtc_update_cursor(crtc, false);
3929 intel_disable_planes(crtc);
3930 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3931 }
3932
3933 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3934 {
3935 struct drm_device *dev = crtc->dev;
3936 struct drm_i915_private *dev_priv = dev->dev_private;
3937 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3938 struct intel_encoder *encoder;
3939 int pipe = intel_crtc->pipe;
3940 enum plane plane = intel_crtc->plane;
3941
3942 WARN_ON(!crtc->enabled);
3943
3944 if (intel_crtc->active)
3945 return;
3946
3947 if (intel_crtc->config.has_pch_encoder)
3948 intel_prepare_shared_dpll(intel_crtc);
3949
3950 if (intel_crtc->config.has_dp_encoder)
3951 intel_dp_set_m_n(intel_crtc);
3952
3953 intel_set_pipe_timings(intel_crtc);
3954
3955 if (intel_crtc->config.has_pch_encoder) {
3956 intel_cpu_transcoder_set_m_n(intel_crtc,
3957 &intel_crtc->config.fdi_m_n);
3958 }
3959
3960 ironlake_set_pipeconf(crtc);
3961
3962 /* Set up the display plane register */
3963 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3964 POSTING_READ(DSPCNTR(plane));
3965
3966 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3967 crtc->x, crtc->y);
3968
3969 intel_crtc->active = true;
3970
3971 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3972 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3973
3974 for_each_encoder_on_crtc(dev, crtc, encoder)
3975 if (encoder->pre_enable)
3976 encoder->pre_enable(encoder);
3977
3978 if (intel_crtc->config.has_pch_encoder) {
3979 /* Note: FDI PLL enabling _must_ be done before we enable the
3980 * cpu pipes, hence this is separate from all the other fdi/pch
3981 * enabling. */
3982 ironlake_fdi_pll_enable(intel_crtc);
3983 } else {
3984 assert_fdi_tx_disabled(dev_priv, pipe);
3985 assert_fdi_rx_disabled(dev_priv, pipe);
3986 }
3987
3988 ironlake_pfit_enable(intel_crtc);
3989
3990 /*
3991 * On ILK+ LUT must be loaded before the pipe is running but with
3992 * clocks enabled
3993 */
3994 intel_crtc_load_lut(crtc);
3995
3996 intel_update_watermarks(crtc);
3997 intel_enable_pipe(intel_crtc);
3998
3999 if (intel_crtc->config.has_pch_encoder)
4000 ironlake_pch_enable(crtc);
4001
4002 for_each_encoder_on_crtc(dev, crtc, encoder)
4003 encoder->enable(encoder);
4004
4005 if (HAS_PCH_CPT(dev))
4006 cpt_verify_modeset(dev, intel_crtc->pipe);
4007
4008 intel_crtc_enable_planes(crtc);
4009
4010 drm_crtc_vblank_on(crtc);
4011 }
4012
4013 /* IPS only exists on ULT machines and is tied to pipe A. */
4014 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4015 {
4016 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4017 }
4018
4019 /*
4020 * This implements the workaround described in the "notes" section of the mode
4021 * set sequence documentation. When going from no pipes or single pipe to
4022 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4023 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4024 */
4025 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4026 {
4027 struct drm_device *dev = crtc->base.dev;
4028 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4029
4030 /* We want to get the other_active_crtc only if there's only 1 other
4031 * active crtc. */
4032 for_each_intel_crtc(dev, crtc_it) {
4033 if (!crtc_it->active || crtc_it == crtc)
4034 continue;
4035
4036 if (other_active_crtc)
4037 return;
4038
4039 other_active_crtc = crtc_it;
4040 }
4041 if (!other_active_crtc)
4042 return;
4043
4044 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4045 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4046 }
4047
4048 static void haswell_crtc_enable(struct drm_crtc *crtc)
4049 {
4050 struct drm_device *dev = crtc->dev;
4051 struct drm_i915_private *dev_priv = dev->dev_private;
4052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4053 struct intel_encoder *encoder;
4054 int pipe = intel_crtc->pipe;
4055 enum plane plane = intel_crtc->plane;
4056
4057 WARN_ON(!crtc->enabled);
4058
4059 if (intel_crtc->active)
4060 return;
4061
4062 if (intel_crtc->config.has_dp_encoder)
4063 intel_dp_set_m_n(intel_crtc);
4064
4065 intel_set_pipe_timings(intel_crtc);
4066
4067 if (intel_crtc->config.has_pch_encoder) {
4068 intel_cpu_transcoder_set_m_n(intel_crtc,
4069 &intel_crtc->config.fdi_m_n);
4070 }
4071
4072 haswell_set_pipeconf(crtc);
4073
4074 intel_set_pipe_csc(crtc);
4075
4076 /* Set up the display plane register */
4077 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4078 POSTING_READ(DSPCNTR(plane));
4079
4080 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4081 crtc->x, crtc->y);
4082
4083 intel_crtc->active = true;
4084
4085 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4086 if (intel_crtc->config.has_pch_encoder)
4087 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4088
4089 if (intel_crtc->config.has_pch_encoder)
4090 dev_priv->display.fdi_link_train(crtc);
4091
4092 for_each_encoder_on_crtc(dev, crtc, encoder)
4093 if (encoder->pre_enable)
4094 encoder->pre_enable(encoder);
4095
4096 intel_ddi_enable_pipe_clock(intel_crtc);
4097
4098 ironlake_pfit_enable(intel_crtc);
4099
4100 /*
4101 * On ILK+ LUT must be loaded before the pipe is running but with
4102 * clocks enabled
4103 */
4104 intel_crtc_load_lut(crtc);
4105
4106 intel_ddi_set_pipe_settings(crtc);
4107 intel_ddi_enable_transcoder_func(crtc);
4108
4109 intel_update_watermarks(crtc);
4110 intel_enable_pipe(intel_crtc);
4111
4112 if (intel_crtc->config.has_pch_encoder)
4113 lpt_pch_enable(crtc);
4114
4115 for_each_encoder_on_crtc(dev, crtc, encoder) {
4116 encoder->enable(encoder);
4117 intel_opregion_notify_encoder(encoder, true);
4118 }
4119
4120 /* If we change the relative order between pipe/planes enabling, we need
4121 * to change the workaround. */
4122 haswell_mode_set_planes_workaround(intel_crtc);
4123 intel_crtc_enable_planes(crtc);
4124
4125 drm_crtc_vblank_on(crtc);
4126 }
4127
4128 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4129 {
4130 struct drm_device *dev = crtc->base.dev;
4131 struct drm_i915_private *dev_priv = dev->dev_private;
4132 int pipe = crtc->pipe;
4133
4134 /* To avoid upsetting the power well on haswell only disable the pfit if
4135 * it's in use. The hw state code will make sure we get this right. */
4136 if (crtc->config.pch_pfit.enabled) {
4137 I915_WRITE(PF_CTL(pipe), 0);
4138 I915_WRITE(PF_WIN_POS(pipe), 0);
4139 I915_WRITE(PF_WIN_SZ(pipe), 0);
4140 }
4141 }
4142
4143 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4144 {
4145 struct drm_device *dev = crtc->dev;
4146 struct drm_i915_private *dev_priv = dev->dev_private;
4147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4148 struct intel_encoder *encoder;
4149 int pipe = intel_crtc->pipe;
4150 u32 reg, temp;
4151
4152 if (!intel_crtc->active)
4153 return;
4154
4155 intel_crtc_disable_planes(crtc);
4156
4157 for_each_encoder_on_crtc(dev, crtc, encoder)
4158 encoder->disable(encoder);
4159
4160 if (intel_crtc->config.has_pch_encoder)
4161 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4162
4163 intel_disable_pipe(dev_priv, pipe);
4164
4165 ironlake_pfit_disable(intel_crtc);
4166
4167 for_each_encoder_on_crtc(dev, crtc, encoder)
4168 if (encoder->post_disable)
4169 encoder->post_disable(encoder);
4170
4171 if (intel_crtc->config.has_pch_encoder) {
4172 ironlake_fdi_disable(crtc);
4173
4174 ironlake_disable_pch_transcoder(dev_priv, pipe);
4175 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4176
4177 if (HAS_PCH_CPT(dev)) {
4178 /* disable TRANS_DP_CTL */
4179 reg = TRANS_DP_CTL(pipe);
4180 temp = I915_READ(reg);
4181 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4182 TRANS_DP_PORT_SEL_MASK);
4183 temp |= TRANS_DP_PORT_SEL_NONE;
4184 I915_WRITE(reg, temp);
4185
4186 /* disable DPLL_SEL */
4187 temp = I915_READ(PCH_DPLL_SEL);
4188 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4189 I915_WRITE(PCH_DPLL_SEL, temp);
4190 }
4191
4192 /* disable PCH DPLL */
4193 intel_disable_shared_dpll(intel_crtc);
4194
4195 ironlake_fdi_pll_disable(intel_crtc);
4196 }
4197
4198 intel_crtc->active = false;
4199 intel_update_watermarks(crtc);
4200
4201 mutex_lock(&dev->struct_mutex);
4202 intel_update_fbc(dev);
4203 intel_edp_psr_update(dev);
4204 mutex_unlock(&dev->struct_mutex);
4205 }
4206
4207 static void haswell_crtc_disable(struct drm_crtc *crtc)
4208 {
4209 struct drm_device *dev = crtc->dev;
4210 struct drm_i915_private *dev_priv = dev->dev_private;
4211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4212 struct intel_encoder *encoder;
4213 int pipe = intel_crtc->pipe;
4214 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4215
4216 if (!intel_crtc->active)
4217 return;
4218
4219 intel_crtc_disable_planes(crtc);
4220
4221 for_each_encoder_on_crtc(dev, crtc, encoder) {
4222 intel_opregion_notify_encoder(encoder, false);
4223 encoder->disable(encoder);
4224 }
4225
4226 if (intel_crtc->config.has_pch_encoder)
4227 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4228 intel_disable_pipe(dev_priv, pipe);
4229
4230 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4231
4232 ironlake_pfit_disable(intel_crtc);
4233
4234 intel_ddi_disable_pipe_clock(intel_crtc);
4235
4236 for_each_encoder_on_crtc(dev, crtc, encoder)
4237 if (encoder->post_disable)
4238 encoder->post_disable(encoder);
4239
4240 if (intel_crtc->config.has_pch_encoder) {
4241 lpt_disable_pch_transcoder(dev_priv);
4242 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4243 intel_ddi_fdi_disable(crtc);
4244 }
4245
4246 intel_crtc->active = false;
4247 intel_update_watermarks(crtc);
4248
4249 mutex_lock(&dev->struct_mutex);
4250 intel_update_fbc(dev);
4251 intel_edp_psr_update(dev);
4252 mutex_unlock(&dev->struct_mutex);
4253 }
4254
4255 static void ironlake_crtc_off(struct drm_crtc *crtc)
4256 {
4257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4258 intel_put_shared_dpll(intel_crtc);
4259 }
4260
4261 static void haswell_crtc_off(struct drm_crtc *crtc)
4262 {
4263 intel_ddi_put_crtc_pll(crtc);
4264 }
4265
4266 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4267 {
4268 struct drm_device *dev = crtc->base.dev;
4269 struct drm_i915_private *dev_priv = dev->dev_private;
4270 struct intel_crtc_config *pipe_config = &crtc->config;
4271
4272 if (!crtc->config.gmch_pfit.control)
4273 return;
4274
4275 /*
4276 * The panel fitter should only be adjusted whilst the pipe is disabled,
4277 * according to register description and PRM.
4278 */
4279 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4280 assert_pipe_disabled(dev_priv, crtc->pipe);
4281
4282 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4283 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4284
4285 /* Border color in case we don't scale up to the full screen. Black by
4286 * default, change to something else for debugging. */
4287 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4288 }
4289
4290 #define for_each_power_domain(domain, mask) \
4291 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4292 if ((1 << (domain)) & (mask))
4293
4294 enum intel_display_power_domain
4295 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4296 {
4297 struct drm_device *dev = intel_encoder->base.dev;
4298 struct intel_digital_port *intel_dig_port;
4299
4300 switch (intel_encoder->type) {
4301 case INTEL_OUTPUT_UNKNOWN:
4302 /* Only DDI platforms should ever use this output type */
4303 WARN_ON_ONCE(!HAS_DDI(dev));
4304 case INTEL_OUTPUT_DISPLAYPORT:
4305 case INTEL_OUTPUT_HDMI:
4306 case INTEL_OUTPUT_EDP:
4307 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4308 switch (intel_dig_port->port) {
4309 case PORT_A:
4310 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4311 case PORT_B:
4312 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4313 case PORT_C:
4314 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4315 case PORT_D:
4316 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4317 default:
4318 WARN_ON_ONCE(1);
4319 return POWER_DOMAIN_PORT_OTHER;
4320 }
4321 case INTEL_OUTPUT_ANALOG:
4322 return POWER_DOMAIN_PORT_CRT;
4323 case INTEL_OUTPUT_DSI:
4324 return POWER_DOMAIN_PORT_DSI;
4325 default:
4326 return POWER_DOMAIN_PORT_OTHER;
4327 }
4328 }
4329
4330 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4331 {
4332 struct drm_device *dev = crtc->dev;
4333 struct intel_encoder *intel_encoder;
4334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4335 enum pipe pipe = intel_crtc->pipe;
4336 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4337 unsigned long mask;
4338 enum transcoder transcoder;
4339
4340 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4341
4342 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4343 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4344 if (pfit_enabled)
4345 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4346
4347 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4348 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4349
4350 return mask;
4351 }
4352
4353 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4354 bool enable)
4355 {
4356 if (dev_priv->power_domains.init_power_on == enable)
4357 return;
4358
4359 if (enable)
4360 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4361 else
4362 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4363
4364 dev_priv->power_domains.init_power_on = enable;
4365 }
4366
4367 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4368 {
4369 struct drm_i915_private *dev_priv = dev->dev_private;
4370 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4371 struct intel_crtc *crtc;
4372
4373 /*
4374 * First get all needed power domains, then put all unneeded, to avoid
4375 * any unnecessary toggling of the power wells.
4376 */
4377 for_each_intel_crtc(dev, crtc) {
4378 enum intel_display_power_domain domain;
4379
4380 if (!crtc->base.enabled)
4381 continue;
4382
4383 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4384
4385 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4386 intel_display_power_get(dev_priv, domain);
4387 }
4388
4389 for_each_intel_crtc(dev, crtc) {
4390 enum intel_display_power_domain domain;
4391
4392 for_each_power_domain(domain, crtc->enabled_power_domains)
4393 intel_display_power_put(dev_priv, domain);
4394
4395 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4396 }
4397
4398 intel_display_set_init_power(dev_priv, false);
4399 }
4400
4401 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4402 {
4403 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4404
4405 /* Obtain SKU information */
4406 mutex_lock(&dev_priv->dpio_lock);
4407 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4408 CCK_FUSE_HPLL_FREQ_MASK;
4409 mutex_unlock(&dev_priv->dpio_lock);
4410
4411 return vco_freq[hpll_freq];
4412 }
4413
4414 /* Adjust CDclk dividers to allow high res or save power if possible */
4415 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4416 {
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418 u32 val, cmd;
4419
4420 WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4421 dev_priv->vlv_cdclk_freq = cdclk;
4422
4423 if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4424 cmd = 2;
4425 else if (cdclk == 266)
4426 cmd = 1;
4427 else
4428 cmd = 0;
4429
4430 mutex_lock(&dev_priv->rps.hw_lock);
4431 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4432 val &= ~DSPFREQGUAR_MASK;
4433 val |= (cmd << DSPFREQGUAR_SHIFT);
4434 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4435 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4436 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4437 50)) {
4438 DRM_ERROR("timed out waiting for CDclk change\n");
4439 }
4440 mutex_unlock(&dev_priv->rps.hw_lock);
4441
4442 if (cdclk == 400) {
4443 u32 divider, vco;
4444
4445 vco = valleyview_get_vco(dev_priv);
4446 divider = ((vco << 1) / cdclk) - 1;
4447
4448 mutex_lock(&dev_priv->dpio_lock);
4449 /* adjust cdclk divider */
4450 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4451 val &= ~0xf;
4452 val |= divider;
4453 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4454 mutex_unlock(&dev_priv->dpio_lock);
4455 }
4456
4457 mutex_lock(&dev_priv->dpio_lock);
4458 /* adjust self-refresh exit latency value */
4459 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4460 val &= ~0x7f;
4461
4462 /*
4463 * For high bandwidth configs, we set a higher latency in the bunit
4464 * so that the core display fetch happens in time to avoid underruns.
4465 */
4466 if (cdclk == 400)
4467 val |= 4500 / 250; /* 4.5 usec */
4468 else
4469 val |= 3000 / 250; /* 3.0 usec */
4470 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4471 mutex_unlock(&dev_priv->dpio_lock);
4472
4473 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4474 intel_i2c_reset(dev);
4475 }
4476
4477 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4478 {
4479 int cur_cdclk, vco;
4480 int divider;
4481
4482 vco = valleyview_get_vco(dev_priv);
4483
4484 mutex_lock(&dev_priv->dpio_lock);
4485 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4486 mutex_unlock(&dev_priv->dpio_lock);
4487
4488 divider &= 0xf;
4489
4490 cur_cdclk = (vco << 1) / (divider + 1);
4491
4492 return cur_cdclk;
4493 }
4494
4495 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4496 int max_pixclk)
4497 {
4498 /*
4499 * Really only a few cases to deal with, as only 4 CDclks are supported:
4500 * 200MHz
4501 * 267MHz
4502 * 320MHz
4503 * 400MHz
4504 * So we check to see whether we're above 90% of the lower bin and
4505 * adjust if needed.
4506 */
4507 if (max_pixclk > 288000) {
4508 return 400;
4509 } else if (max_pixclk > 240000) {
4510 return 320;
4511 } else
4512 return 266;
4513 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4514 }
4515
4516 /* compute the max pixel clock for new configuration */
4517 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4518 {
4519 struct drm_device *dev = dev_priv->dev;
4520 struct intel_crtc *intel_crtc;
4521 int max_pixclk = 0;
4522
4523 for_each_intel_crtc(dev, intel_crtc) {
4524 if (intel_crtc->new_enabled)
4525 max_pixclk = max(max_pixclk,
4526 intel_crtc->new_config->adjusted_mode.crtc_clock);
4527 }
4528
4529 return max_pixclk;
4530 }
4531
4532 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4533 unsigned *prepare_pipes)
4534 {
4535 struct drm_i915_private *dev_priv = dev->dev_private;
4536 struct intel_crtc *intel_crtc;
4537 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4538
4539 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4540 dev_priv->vlv_cdclk_freq)
4541 return;
4542
4543 /* disable/enable all currently active pipes while we change cdclk */
4544 for_each_intel_crtc(dev, intel_crtc)
4545 if (intel_crtc->base.enabled)
4546 *prepare_pipes |= (1 << intel_crtc->pipe);
4547 }
4548
4549 static void valleyview_modeset_global_resources(struct drm_device *dev)
4550 {
4551 struct drm_i915_private *dev_priv = dev->dev_private;
4552 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4553 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4554
4555 if (req_cdclk != dev_priv->vlv_cdclk_freq)
4556 valleyview_set_cdclk(dev, req_cdclk);
4557 modeset_update_crtc_power_domains(dev);
4558 }
4559
4560 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4561 {
4562 struct drm_device *dev = crtc->dev;
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4565 struct intel_encoder *encoder;
4566 int pipe = intel_crtc->pipe;
4567 int plane = intel_crtc->plane;
4568 bool is_dsi;
4569 u32 dspcntr;
4570
4571 WARN_ON(!crtc->enabled);
4572
4573 if (intel_crtc->active)
4574 return;
4575
4576 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4577
4578 if (!is_dsi && !IS_CHERRYVIEW(dev))
4579 vlv_prepare_pll(intel_crtc);
4580
4581 /* Set up the display plane register */
4582 dspcntr = DISPPLANE_GAMMA_ENABLE;
4583
4584 if (intel_crtc->config.has_dp_encoder)
4585 intel_dp_set_m_n(intel_crtc);
4586
4587 intel_set_pipe_timings(intel_crtc);
4588
4589 /* pipesrc and dspsize control the size that is scaled from,
4590 * which should always be the user's requested size.
4591 */
4592 I915_WRITE(DSPSIZE(plane),
4593 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4594 (intel_crtc->config.pipe_src_w - 1));
4595 I915_WRITE(DSPPOS(plane), 0);
4596
4597 i9xx_set_pipeconf(intel_crtc);
4598
4599 I915_WRITE(DSPCNTR(plane), dspcntr);
4600 POSTING_READ(DSPCNTR(plane));
4601
4602 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4603 crtc->x, crtc->y);
4604
4605 intel_crtc->active = true;
4606
4607 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4608
4609 for_each_encoder_on_crtc(dev, crtc, encoder)
4610 if (encoder->pre_pll_enable)
4611 encoder->pre_pll_enable(encoder);
4612
4613 if (!is_dsi) {
4614 if (IS_CHERRYVIEW(dev))
4615 chv_enable_pll(intel_crtc);
4616 else
4617 vlv_enable_pll(intel_crtc);
4618 }
4619
4620 for_each_encoder_on_crtc(dev, crtc, encoder)
4621 if (encoder->pre_enable)
4622 encoder->pre_enable(encoder);
4623
4624 i9xx_pfit_enable(intel_crtc);
4625
4626 intel_crtc_load_lut(crtc);
4627
4628 intel_update_watermarks(crtc);
4629 intel_enable_pipe(intel_crtc);
4630
4631 for_each_encoder_on_crtc(dev, crtc, encoder)
4632 encoder->enable(encoder);
4633
4634 intel_crtc_enable_planes(crtc);
4635
4636 drm_crtc_vblank_on(crtc);
4637
4638 /* Underruns don't raise interrupts, so check manually. */
4639 i9xx_check_fifo_underruns(dev);
4640 }
4641
4642 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4643 {
4644 struct drm_device *dev = crtc->base.dev;
4645 struct drm_i915_private *dev_priv = dev->dev_private;
4646
4647 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4648 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4649 }
4650
4651 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4652 {
4653 struct drm_device *dev = crtc->dev;
4654 struct drm_i915_private *dev_priv = dev->dev_private;
4655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4656 struct intel_encoder *encoder;
4657 int pipe = intel_crtc->pipe;
4658 int plane = intel_crtc->plane;
4659 u32 dspcntr;
4660
4661 WARN_ON(!crtc->enabled);
4662
4663 if (intel_crtc->active)
4664 return;
4665
4666 i9xx_set_pll_dividers(intel_crtc);
4667
4668 /* Set up the display plane register */
4669 dspcntr = DISPPLANE_GAMMA_ENABLE;
4670
4671 if (pipe == 0)
4672 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4673 else
4674 dspcntr |= DISPPLANE_SEL_PIPE_B;
4675
4676 if (intel_crtc->config.has_dp_encoder)
4677 intel_dp_set_m_n(intel_crtc);
4678
4679 intel_set_pipe_timings(intel_crtc);
4680
4681 /* pipesrc and dspsize control the size that is scaled from,
4682 * which should always be the user's requested size.
4683 */
4684 I915_WRITE(DSPSIZE(plane),
4685 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4686 (intel_crtc->config.pipe_src_w - 1));
4687 I915_WRITE(DSPPOS(plane), 0);
4688
4689 i9xx_set_pipeconf(intel_crtc);
4690
4691 I915_WRITE(DSPCNTR(plane), dspcntr);
4692 POSTING_READ(DSPCNTR(plane));
4693
4694 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4695 crtc->x, crtc->y);
4696
4697 intel_crtc->active = true;
4698
4699 if (!IS_GEN2(dev))
4700 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4701
4702 for_each_encoder_on_crtc(dev, crtc, encoder)
4703 if (encoder->pre_enable)
4704 encoder->pre_enable(encoder);
4705
4706 i9xx_enable_pll(intel_crtc);
4707
4708 i9xx_pfit_enable(intel_crtc);
4709
4710 intel_crtc_load_lut(crtc);
4711
4712 intel_update_watermarks(crtc);
4713 intel_enable_pipe(intel_crtc);
4714
4715 for_each_encoder_on_crtc(dev, crtc, encoder)
4716 encoder->enable(encoder);
4717
4718 intel_crtc_enable_planes(crtc);
4719
4720 /*
4721 * Gen2 reports pipe underruns whenever all planes are disabled.
4722 * So don't enable underrun reporting before at least some planes
4723 * are enabled.
4724 * FIXME: Need to fix the logic to work when we turn off all planes
4725 * but leave the pipe running.
4726 */
4727 if (IS_GEN2(dev))
4728 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4729
4730 drm_crtc_vblank_on(crtc);
4731
4732 /* Underruns don't raise interrupts, so check manually. */
4733 i9xx_check_fifo_underruns(dev);
4734 }
4735
4736 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4737 {
4738 struct drm_device *dev = crtc->base.dev;
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741 if (!crtc->config.gmch_pfit.control)
4742 return;
4743
4744 assert_pipe_disabled(dev_priv, crtc->pipe);
4745
4746 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4747 I915_READ(PFIT_CONTROL));
4748 I915_WRITE(PFIT_CONTROL, 0);
4749 }
4750
4751 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4752 {
4753 struct drm_device *dev = crtc->dev;
4754 struct drm_i915_private *dev_priv = dev->dev_private;
4755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4756 struct intel_encoder *encoder;
4757 int pipe = intel_crtc->pipe;
4758
4759 if (!intel_crtc->active)
4760 return;
4761
4762 /*
4763 * Gen2 reports pipe underruns whenever all planes are disabled.
4764 * So diasble underrun reporting before all the planes get disabled.
4765 * FIXME: Need to fix the logic to work when we turn off all planes
4766 * but leave the pipe running.
4767 */
4768 if (IS_GEN2(dev))
4769 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4770
4771 intel_crtc_disable_planes(crtc);
4772
4773 for_each_encoder_on_crtc(dev, crtc, encoder)
4774 encoder->disable(encoder);
4775
4776 /*
4777 * On gen2 planes are double buffered but the pipe isn't, so we must
4778 * wait for planes to fully turn off before disabling the pipe.
4779 */
4780 if (IS_GEN2(dev))
4781 intel_wait_for_vblank(dev, pipe);
4782
4783 intel_disable_pipe(dev_priv, pipe);
4784
4785 i9xx_pfit_disable(intel_crtc);
4786
4787 for_each_encoder_on_crtc(dev, crtc, encoder)
4788 if (encoder->post_disable)
4789 encoder->post_disable(encoder);
4790
4791 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4792 if (IS_CHERRYVIEW(dev))
4793 chv_disable_pll(dev_priv, pipe);
4794 else if (IS_VALLEYVIEW(dev))
4795 vlv_disable_pll(dev_priv, pipe);
4796 else
4797 i9xx_disable_pll(dev_priv, pipe);
4798 }
4799
4800 if (!IS_GEN2(dev))
4801 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4802
4803 intel_crtc->active = false;
4804 intel_update_watermarks(crtc);
4805
4806 mutex_lock(&dev->struct_mutex);
4807 intel_update_fbc(dev);
4808 intel_edp_psr_update(dev);
4809 mutex_unlock(&dev->struct_mutex);
4810 }
4811
4812 static void i9xx_crtc_off(struct drm_crtc *crtc)
4813 {
4814 }
4815
4816 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4817 bool enabled)
4818 {
4819 struct drm_device *dev = crtc->dev;
4820 struct drm_i915_master_private *master_priv;
4821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4822 int pipe = intel_crtc->pipe;
4823
4824 if (!dev->primary->master)
4825 return;
4826
4827 master_priv = dev->primary->master->driver_priv;
4828 if (!master_priv->sarea_priv)
4829 return;
4830
4831 switch (pipe) {
4832 case 0:
4833 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4834 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4835 break;
4836 case 1:
4837 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4838 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4839 break;
4840 default:
4841 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4842 break;
4843 }
4844 }
4845
4846 /**
4847 * Sets the power management mode of the pipe and plane.
4848 */
4849 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4850 {
4851 struct drm_device *dev = crtc->dev;
4852 struct drm_i915_private *dev_priv = dev->dev_private;
4853 struct intel_encoder *intel_encoder;
4854 bool enable = false;
4855
4856 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4857 enable |= intel_encoder->connectors_active;
4858
4859 if (enable)
4860 dev_priv->display.crtc_enable(crtc);
4861 else
4862 dev_priv->display.crtc_disable(crtc);
4863
4864 intel_crtc_update_sarea(crtc, enable);
4865 }
4866
4867 static void intel_crtc_disable(struct drm_crtc *crtc)
4868 {
4869 struct drm_device *dev = crtc->dev;
4870 struct drm_connector *connector;
4871 struct drm_i915_private *dev_priv = dev->dev_private;
4872
4873 /* crtc should still be enabled when we disable it. */
4874 WARN_ON(!crtc->enabled);
4875
4876 dev_priv->display.crtc_disable(crtc);
4877 intel_crtc_update_sarea(crtc, false);
4878 dev_priv->display.off(crtc);
4879
4880 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4881 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4882 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4883
4884 if (crtc->primary->fb) {
4885 mutex_lock(&dev->struct_mutex);
4886 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4887 mutex_unlock(&dev->struct_mutex);
4888 crtc->primary->fb = NULL;
4889 }
4890
4891 /* Update computed state. */
4892 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4893 if (!connector->encoder || !connector->encoder->crtc)
4894 continue;
4895
4896 if (connector->encoder->crtc != crtc)
4897 continue;
4898
4899 connector->dpms = DRM_MODE_DPMS_OFF;
4900 to_intel_encoder(connector->encoder)->connectors_active = false;
4901 }
4902 }
4903
4904 void intel_encoder_destroy(struct drm_encoder *encoder)
4905 {
4906 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4907
4908 drm_encoder_cleanup(encoder);
4909 kfree(intel_encoder);
4910 }
4911
4912 /* Simple dpms helper for encoders with just one connector, no cloning and only
4913 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4914 * state of the entire output pipe. */
4915 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4916 {
4917 if (mode == DRM_MODE_DPMS_ON) {
4918 encoder->connectors_active = true;
4919
4920 intel_crtc_update_dpms(encoder->base.crtc);
4921 } else {
4922 encoder->connectors_active = false;
4923
4924 intel_crtc_update_dpms(encoder->base.crtc);
4925 }
4926 }
4927
4928 /* Cross check the actual hw state with our own modeset state tracking (and it's
4929 * internal consistency). */
4930 static void intel_connector_check_state(struct intel_connector *connector)
4931 {
4932 if (connector->get_hw_state(connector)) {
4933 struct intel_encoder *encoder = connector->encoder;
4934 struct drm_crtc *crtc;
4935 bool encoder_enabled;
4936 enum pipe pipe;
4937
4938 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4939 connector->base.base.id,
4940 connector->base.name);
4941
4942 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4943 "wrong connector dpms state\n");
4944 WARN(connector->base.encoder != &encoder->base,
4945 "active connector not linked to encoder\n");
4946 WARN(!encoder->connectors_active,
4947 "encoder->connectors_active not set\n");
4948
4949 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4950 WARN(!encoder_enabled, "encoder not enabled\n");
4951 if (WARN_ON(!encoder->base.crtc))
4952 return;
4953
4954 crtc = encoder->base.crtc;
4955
4956 WARN(!crtc->enabled, "crtc not enabled\n");
4957 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4958 WARN(pipe != to_intel_crtc(crtc)->pipe,
4959 "encoder active on the wrong pipe\n");
4960 }
4961 }
4962
4963 /* Even simpler default implementation, if there's really no special case to
4964 * consider. */
4965 void intel_connector_dpms(struct drm_connector *connector, int mode)
4966 {
4967 /* All the simple cases only support two dpms states. */
4968 if (mode != DRM_MODE_DPMS_ON)
4969 mode = DRM_MODE_DPMS_OFF;
4970
4971 if (mode == connector->dpms)
4972 return;
4973
4974 connector->dpms = mode;
4975
4976 /* Only need to change hw state when actually enabled */
4977 if (connector->encoder)
4978 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4979
4980 intel_modeset_check_state(connector->dev);
4981 }
4982
4983 /* Simple connector->get_hw_state implementation for encoders that support only
4984 * one connector and no cloning and hence the encoder state determines the state
4985 * of the connector. */
4986 bool intel_connector_get_hw_state(struct intel_connector *connector)
4987 {
4988 enum pipe pipe = 0;
4989 struct intel_encoder *encoder = connector->encoder;
4990
4991 return encoder->get_hw_state(encoder, &pipe);
4992 }
4993
4994 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4995 struct intel_crtc_config *pipe_config)
4996 {
4997 struct drm_i915_private *dev_priv = dev->dev_private;
4998 struct intel_crtc *pipe_B_crtc =
4999 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5000
5001 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5002 pipe_name(pipe), pipe_config->fdi_lanes);
5003 if (pipe_config->fdi_lanes > 4) {
5004 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5005 pipe_name(pipe), pipe_config->fdi_lanes);
5006 return false;
5007 }
5008
5009 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5010 if (pipe_config->fdi_lanes > 2) {
5011 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5012 pipe_config->fdi_lanes);
5013 return false;
5014 } else {
5015 return true;
5016 }
5017 }
5018
5019 if (INTEL_INFO(dev)->num_pipes == 2)
5020 return true;
5021
5022 /* Ivybridge 3 pipe is really complicated */
5023 switch (pipe) {
5024 case PIPE_A:
5025 return true;
5026 case PIPE_B:
5027 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5028 pipe_config->fdi_lanes > 2) {
5029 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5030 pipe_name(pipe), pipe_config->fdi_lanes);
5031 return false;
5032 }
5033 return true;
5034 case PIPE_C:
5035 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5036 pipe_B_crtc->config.fdi_lanes <= 2) {
5037 if (pipe_config->fdi_lanes > 2) {
5038 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5039 pipe_name(pipe), pipe_config->fdi_lanes);
5040 return false;
5041 }
5042 } else {
5043 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5044 return false;
5045 }
5046 return true;
5047 default:
5048 BUG();
5049 }
5050 }
5051
5052 #define RETRY 1
5053 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5054 struct intel_crtc_config *pipe_config)
5055 {
5056 struct drm_device *dev = intel_crtc->base.dev;
5057 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5058 int lane, link_bw, fdi_dotclock;
5059 bool setup_ok, needs_recompute = false;
5060
5061 retry:
5062 /* FDI is a binary signal running at ~2.7GHz, encoding
5063 * each output octet as 10 bits. The actual frequency
5064 * is stored as a divider into a 100MHz clock, and the
5065 * mode pixel clock is stored in units of 1KHz.
5066 * Hence the bw of each lane in terms of the mode signal
5067 * is:
5068 */
5069 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5070
5071 fdi_dotclock = adjusted_mode->crtc_clock;
5072
5073 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5074 pipe_config->pipe_bpp);
5075
5076 pipe_config->fdi_lanes = lane;
5077
5078 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5079 link_bw, &pipe_config->fdi_m_n);
5080
5081 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5082 intel_crtc->pipe, pipe_config);
5083 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5084 pipe_config->pipe_bpp -= 2*3;
5085 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5086 pipe_config->pipe_bpp);
5087 needs_recompute = true;
5088 pipe_config->bw_constrained = true;
5089
5090 goto retry;
5091 }
5092
5093 if (needs_recompute)
5094 return RETRY;
5095
5096 return setup_ok ? 0 : -EINVAL;
5097 }
5098
5099 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5100 struct intel_crtc_config *pipe_config)
5101 {
5102 pipe_config->ips_enabled = i915.enable_ips &&
5103 hsw_crtc_supports_ips(crtc) &&
5104 pipe_config->pipe_bpp <= 24;
5105 }
5106
5107 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5108 struct intel_crtc_config *pipe_config)
5109 {
5110 struct drm_device *dev = crtc->base.dev;
5111 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5112
5113 /* FIXME should check pixel clock limits on all platforms */
5114 if (INTEL_INFO(dev)->gen < 4) {
5115 struct drm_i915_private *dev_priv = dev->dev_private;
5116 int clock_limit =
5117 dev_priv->display.get_display_clock_speed(dev);
5118
5119 /*
5120 * Enable pixel doubling when the dot clock
5121 * is > 90% of the (display) core speed.
5122 *
5123 * GDG double wide on either pipe,
5124 * otherwise pipe A only.
5125 */
5126 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5127 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5128 clock_limit *= 2;
5129 pipe_config->double_wide = true;
5130 }
5131
5132 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5133 return -EINVAL;
5134 }
5135
5136 /*
5137 * Pipe horizontal size must be even in:
5138 * - DVO ganged mode
5139 * - LVDS dual channel mode
5140 * - Double wide pipe
5141 */
5142 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5143 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5144 pipe_config->pipe_src_w &= ~1;
5145
5146 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5147 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5148 */
5149 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5150 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5151 return -EINVAL;
5152
5153 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5154 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5155 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5156 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5157 * for lvds. */
5158 pipe_config->pipe_bpp = 8*3;
5159 }
5160
5161 if (HAS_IPS(dev))
5162 hsw_compute_ips_config(crtc, pipe_config);
5163
5164 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5165 * clock survives for now. */
5166 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5167 pipe_config->shared_dpll = crtc->config.shared_dpll;
5168
5169 if (pipe_config->has_pch_encoder)
5170 return ironlake_fdi_compute_config(crtc, pipe_config);
5171
5172 return 0;
5173 }
5174
5175 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5176 {
5177 return 400000; /* FIXME */
5178 }
5179
5180 static int i945_get_display_clock_speed(struct drm_device *dev)
5181 {
5182 return 400000;
5183 }
5184
5185 static int i915_get_display_clock_speed(struct drm_device *dev)
5186 {
5187 return 333000;
5188 }
5189
5190 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5191 {
5192 return 200000;
5193 }
5194
5195 static int pnv_get_display_clock_speed(struct drm_device *dev)
5196 {
5197 u16 gcfgc = 0;
5198
5199 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5200
5201 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5202 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5203 return 267000;
5204 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5205 return 333000;
5206 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5207 return 444000;
5208 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5209 return 200000;
5210 default:
5211 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5212 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5213 return 133000;
5214 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5215 return 167000;
5216 }
5217 }
5218
5219 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5220 {
5221 u16 gcfgc = 0;
5222
5223 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5224
5225 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5226 return 133000;
5227 else {
5228 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5229 case GC_DISPLAY_CLOCK_333_MHZ:
5230 return 333000;
5231 default:
5232 case GC_DISPLAY_CLOCK_190_200_MHZ:
5233 return 190000;
5234 }
5235 }
5236 }
5237
5238 static int i865_get_display_clock_speed(struct drm_device *dev)
5239 {
5240 return 266000;
5241 }
5242
5243 static int i855_get_display_clock_speed(struct drm_device *dev)
5244 {
5245 u16 hpllcc = 0;
5246 /* Assume that the hardware is in the high speed state. This
5247 * should be the default.
5248 */
5249 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5250 case GC_CLOCK_133_200:
5251 case GC_CLOCK_100_200:
5252 return 200000;
5253 case GC_CLOCK_166_250:
5254 return 250000;
5255 case GC_CLOCK_100_133:
5256 return 133000;
5257 }
5258
5259 /* Shouldn't happen */
5260 return 0;
5261 }
5262
5263 static int i830_get_display_clock_speed(struct drm_device *dev)
5264 {
5265 return 133000;
5266 }
5267
5268 static void
5269 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5270 {
5271 while (*num > DATA_LINK_M_N_MASK ||
5272 *den > DATA_LINK_M_N_MASK) {
5273 *num >>= 1;
5274 *den >>= 1;
5275 }
5276 }
5277
5278 static void compute_m_n(unsigned int m, unsigned int n,
5279 uint32_t *ret_m, uint32_t *ret_n)
5280 {
5281 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5282 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5283 intel_reduce_m_n_ratio(ret_m, ret_n);
5284 }
5285
5286 void
5287 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5288 int pixel_clock, int link_clock,
5289 struct intel_link_m_n *m_n)
5290 {
5291 m_n->tu = 64;
5292
5293 compute_m_n(bits_per_pixel * pixel_clock,
5294 link_clock * nlanes * 8,
5295 &m_n->gmch_m, &m_n->gmch_n);
5296
5297 compute_m_n(pixel_clock, link_clock,
5298 &m_n->link_m, &m_n->link_n);
5299 }
5300
5301 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5302 {
5303 if (i915.panel_use_ssc >= 0)
5304 return i915.panel_use_ssc != 0;
5305 return dev_priv->vbt.lvds_use_ssc
5306 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5307 }
5308
5309 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5310 {
5311 struct drm_device *dev = crtc->dev;
5312 struct drm_i915_private *dev_priv = dev->dev_private;
5313 int refclk;
5314
5315 if (IS_VALLEYVIEW(dev)) {
5316 refclk = 100000;
5317 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5318 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5319 refclk = dev_priv->vbt.lvds_ssc_freq;
5320 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5321 } else if (!IS_GEN2(dev)) {
5322 refclk = 96000;
5323 } else {
5324 refclk = 48000;
5325 }
5326
5327 return refclk;
5328 }
5329
5330 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5331 {
5332 return (1 << dpll->n) << 16 | dpll->m2;
5333 }
5334
5335 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5336 {
5337 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5338 }
5339
5340 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5341 intel_clock_t *reduced_clock)
5342 {
5343 struct drm_device *dev = crtc->base.dev;
5344 u32 fp, fp2 = 0;
5345
5346 if (IS_PINEVIEW(dev)) {
5347 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5348 if (reduced_clock)
5349 fp2 = pnv_dpll_compute_fp(reduced_clock);
5350 } else {
5351 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5352 if (reduced_clock)
5353 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5354 }
5355
5356 crtc->config.dpll_hw_state.fp0 = fp;
5357
5358 crtc->lowfreq_avail = false;
5359 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5360 reduced_clock && i915.powersave) {
5361 crtc->config.dpll_hw_state.fp1 = fp2;
5362 crtc->lowfreq_avail = true;
5363 } else {
5364 crtc->config.dpll_hw_state.fp1 = fp;
5365 }
5366 }
5367
5368 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5369 pipe)
5370 {
5371 u32 reg_val;
5372
5373 /*
5374 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5375 * and set it to a reasonable value instead.
5376 */
5377 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5378 reg_val &= 0xffffff00;
5379 reg_val |= 0x00000030;
5380 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5381
5382 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5383 reg_val &= 0x8cffffff;
5384 reg_val = 0x8c000000;
5385 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5386
5387 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5388 reg_val &= 0xffffff00;
5389 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5390
5391 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5392 reg_val &= 0x00ffffff;
5393 reg_val |= 0xb0000000;
5394 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5395 }
5396
5397 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5398 struct intel_link_m_n *m_n)
5399 {
5400 struct drm_device *dev = crtc->base.dev;
5401 struct drm_i915_private *dev_priv = dev->dev_private;
5402 int pipe = crtc->pipe;
5403
5404 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5405 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5406 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5407 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5408 }
5409
5410 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5411 struct intel_link_m_n *m_n)
5412 {
5413 struct drm_device *dev = crtc->base.dev;
5414 struct drm_i915_private *dev_priv = dev->dev_private;
5415 int pipe = crtc->pipe;
5416 enum transcoder transcoder = crtc->config.cpu_transcoder;
5417
5418 if (INTEL_INFO(dev)->gen >= 5) {
5419 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5420 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5421 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5422 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5423 } else {
5424 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5425 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5426 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5427 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5428 }
5429 }
5430
5431 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5432 {
5433 if (crtc->config.has_pch_encoder)
5434 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5435 else
5436 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5437 }
5438
5439 static void vlv_update_pll(struct intel_crtc *crtc)
5440 {
5441 u32 dpll, dpll_md;
5442
5443 /*
5444 * Enable DPIO clock input. We should never disable the reference
5445 * clock for pipe B, since VGA hotplug / manual detection depends
5446 * on it.
5447 */
5448 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5449 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5450 /* We should never disable this, set it here for state tracking */
5451 if (crtc->pipe == PIPE_B)
5452 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5453 dpll |= DPLL_VCO_ENABLE;
5454 crtc->config.dpll_hw_state.dpll = dpll;
5455
5456 dpll_md = (crtc->config.pixel_multiplier - 1)
5457 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5458 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5459 }
5460
5461 static void vlv_prepare_pll(struct intel_crtc *crtc)
5462 {
5463 struct drm_device *dev = crtc->base.dev;
5464 struct drm_i915_private *dev_priv = dev->dev_private;
5465 int pipe = crtc->pipe;
5466 u32 mdiv;
5467 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5468 u32 coreclk, reg_val;
5469
5470 mutex_lock(&dev_priv->dpio_lock);
5471
5472 bestn = crtc->config.dpll.n;
5473 bestm1 = crtc->config.dpll.m1;
5474 bestm2 = crtc->config.dpll.m2;
5475 bestp1 = crtc->config.dpll.p1;
5476 bestp2 = crtc->config.dpll.p2;
5477
5478 /* See eDP HDMI DPIO driver vbios notes doc */
5479
5480 /* PLL B needs special handling */
5481 if (pipe == PIPE_B)
5482 vlv_pllb_recal_opamp(dev_priv, pipe);
5483
5484 /* Set up Tx target for periodic Rcomp update */
5485 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5486
5487 /* Disable target IRef on PLL */
5488 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5489 reg_val &= 0x00ffffff;
5490 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5491
5492 /* Disable fast lock */
5493 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5494
5495 /* Set idtafcrecal before PLL is enabled */
5496 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5497 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5498 mdiv |= ((bestn << DPIO_N_SHIFT));
5499 mdiv |= (1 << DPIO_K_SHIFT);
5500
5501 /*
5502 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5503 * but we don't support that).
5504 * Note: don't use the DAC post divider as it seems unstable.
5505 */
5506 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5507 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5508
5509 mdiv |= DPIO_ENABLE_CALIBRATION;
5510 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5511
5512 /* Set HBR and RBR LPF coefficients */
5513 if (crtc->config.port_clock == 162000 ||
5514 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5515 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5516 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5517 0x009f0003);
5518 else
5519 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5520 0x00d0000f);
5521
5522 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5523 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5524 /* Use SSC source */
5525 if (pipe == PIPE_A)
5526 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5527 0x0df40000);
5528 else
5529 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5530 0x0df70000);
5531 } else { /* HDMI or VGA */
5532 /* Use bend source */
5533 if (pipe == PIPE_A)
5534 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5535 0x0df70000);
5536 else
5537 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5538 0x0df40000);
5539 }
5540
5541 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5542 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5543 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5544 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5545 coreclk |= 0x01000000;
5546 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5547
5548 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5549 mutex_unlock(&dev_priv->dpio_lock);
5550 }
5551
5552 static void chv_update_pll(struct intel_crtc *crtc)
5553 {
5554 struct drm_device *dev = crtc->base.dev;
5555 struct drm_i915_private *dev_priv = dev->dev_private;
5556 int pipe = crtc->pipe;
5557 int dpll_reg = DPLL(crtc->pipe);
5558 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5559 u32 loopfilter, intcoeff;
5560 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5561 int refclk;
5562
5563 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5564 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5565 DPLL_VCO_ENABLE;
5566 if (pipe != PIPE_A)
5567 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5568
5569 crtc->config.dpll_hw_state.dpll_md =
5570 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5571
5572 bestn = crtc->config.dpll.n;
5573 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5574 bestm1 = crtc->config.dpll.m1;
5575 bestm2 = crtc->config.dpll.m2 >> 22;
5576 bestp1 = crtc->config.dpll.p1;
5577 bestp2 = crtc->config.dpll.p2;
5578
5579 /*
5580 * Enable Refclk and SSC
5581 */
5582 I915_WRITE(dpll_reg,
5583 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5584
5585 mutex_lock(&dev_priv->dpio_lock);
5586
5587 /* p1 and p2 divider */
5588 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5589 5 << DPIO_CHV_S1_DIV_SHIFT |
5590 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5591 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5592 1 << DPIO_CHV_K_DIV_SHIFT);
5593
5594 /* Feedback post-divider - m2 */
5595 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5596
5597 /* Feedback refclk divider - n and m1 */
5598 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5599 DPIO_CHV_M1_DIV_BY_2 |
5600 1 << DPIO_CHV_N_DIV_SHIFT);
5601
5602 /* M2 fraction division */
5603 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5604
5605 /* M2 fraction division enable */
5606 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5607 DPIO_CHV_FRAC_DIV_EN |
5608 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5609
5610 /* Loop filter */
5611 refclk = i9xx_get_refclk(&crtc->base, 0);
5612 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5613 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5614 if (refclk == 100000)
5615 intcoeff = 11;
5616 else if (refclk == 38400)
5617 intcoeff = 10;
5618 else
5619 intcoeff = 9;
5620 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5621 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5622
5623 /* AFC Recal */
5624 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5625 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5626 DPIO_AFC_RECAL);
5627
5628 mutex_unlock(&dev_priv->dpio_lock);
5629 }
5630
5631 static void i9xx_update_pll(struct intel_crtc *crtc,
5632 intel_clock_t *reduced_clock,
5633 int num_connectors)
5634 {
5635 struct drm_device *dev = crtc->base.dev;
5636 struct drm_i915_private *dev_priv = dev->dev_private;
5637 u32 dpll;
5638 bool is_sdvo;
5639 struct dpll *clock = &crtc->config.dpll;
5640
5641 i9xx_update_pll_dividers(crtc, reduced_clock);
5642
5643 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5644 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5645
5646 dpll = DPLL_VGA_MODE_DIS;
5647
5648 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5649 dpll |= DPLLB_MODE_LVDS;
5650 else
5651 dpll |= DPLLB_MODE_DAC_SERIAL;
5652
5653 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5654 dpll |= (crtc->config.pixel_multiplier - 1)
5655 << SDVO_MULTIPLIER_SHIFT_HIRES;
5656 }
5657
5658 if (is_sdvo)
5659 dpll |= DPLL_SDVO_HIGH_SPEED;
5660
5661 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5662 dpll |= DPLL_SDVO_HIGH_SPEED;
5663
5664 /* compute bitmask from p1 value */
5665 if (IS_PINEVIEW(dev))
5666 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5667 else {
5668 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5669 if (IS_G4X(dev) && reduced_clock)
5670 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5671 }
5672 switch (clock->p2) {
5673 case 5:
5674 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5675 break;
5676 case 7:
5677 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5678 break;
5679 case 10:
5680 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5681 break;
5682 case 14:
5683 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5684 break;
5685 }
5686 if (INTEL_INFO(dev)->gen >= 4)
5687 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5688
5689 if (crtc->config.sdvo_tv_clock)
5690 dpll |= PLL_REF_INPUT_TVCLKINBC;
5691 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5692 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5693 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5694 else
5695 dpll |= PLL_REF_INPUT_DREFCLK;
5696
5697 dpll |= DPLL_VCO_ENABLE;
5698 crtc->config.dpll_hw_state.dpll = dpll;
5699
5700 if (INTEL_INFO(dev)->gen >= 4) {
5701 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5702 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5703 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5704 }
5705 }
5706
5707 static void i8xx_update_pll(struct intel_crtc *crtc,
5708 intel_clock_t *reduced_clock,
5709 int num_connectors)
5710 {
5711 struct drm_device *dev = crtc->base.dev;
5712 struct drm_i915_private *dev_priv = dev->dev_private;
5713 u32 dpll;
5714 struct dpll *clock = &crtc->config.dpll;
5715
5716 i9xx_update_pll_dividers(crtc, reduced_clock);
5717
5718 dpll = DPLL_VGA_MODE_DIS;
5719
5720 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5721 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5722 } else {
5723 if (clock->p1 == 2)
5724 dpll |= PLL_P1_DIVIDE_BY_TWO;
5725 else
5726 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5727 if (clock->p2 == 4)
5728 dpll |= PLL_P2_DIVIDE_BY_4;
5729 }
5730
5731 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5732 dpll |= DPLL_DVO_2X_MODE;
5733
5734 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5735 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5736 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5737 else
5738 dpll |= PLL_REF_INPUT_DREFCLK;
5739
5740 dpll |= DPLL_VCO_ENABLE;
5741 crtc->config.dpll_hw_state.dpll = dpll;
5742 }
5743
5744 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5745 {
5746 struct drm_device *dev = intel_crtc->base.dev;
5747 struct drm_i915_private *dev_priv = dev->dev_private;
5748 enum pipe pipe = intel_crtc->pipe;
5749 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5750 struct drm_display_mode *adjusted_mode =
5751 &intel_crtc->config.adjusted_mode;
5752 uint32_t crtc_vtotal, crtc_vblank_end;
5753 int vsyncshift = 0;
5754
5755 /* We need to be careful not to changed the adjusted mode, for otherwise
5756 * the hw state checker will get angry at the mismatch. */
5757 crtc_vtotal = adjusted_mode->crtc_vtotal;
5758 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5759
5760 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5761 /* the chip adds 2 halflines automatically */
5762 crtc_vtotal -= 1;
5763 crtc_vblank_end -= 1;
5764
5765 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5766 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5767 else
5768 vsyncshift = adjusted_mode->crtc_hsync_start -
5769 adjusted_mode->crtc_htotal / 2;
5770 if (vsyncshift < 0)
5771 vsyncshift += adjusted_mode->crtc_htotal;
5772 }
5773
5774 if (INTEL_INFO(dev)->gen > 3)
5775 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5776
5777 I915_WRITE(HTOTAL(cpu_transcoder),
5778 (adjusted_mode->crtc_hdisplay - 1) |
5779 ((adjusted_mode->crtc_htotal - 1) << 16));
5780 I915_WRITE(HBLANK(cpu_transcoder),
5781 (adjusted_mode->crtc_hblank_start - 1) |
5782 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5783 I915_WRITE(HSYNC(cpu_transcoder),
5784 (adjusted_mode->crtc_hsync_start - 1) |
5785 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5786
5787 I915_WRITE(VTOTAL(cpu_transcoder),
5788 (adjusted_mode->crtc_vdisplay - 1) |
5789 ((crtc_vtotal - 1) << 16));
5790 I915_WRITE(VBLANK(cpu_transcoder),
5791 (adjusted_mode->crtc_vblank_start - 1) |
5792 ((crtc_vblank_end - 1) << 16));
5793 I915_WRITE(VSYNC(cpu_transcoder),
5794 (adjusted_mode->crtc_vsync_start - 1) |
5795 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5796
5797 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5798 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5799 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5800 * bits. */
5801 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5802 (pipe == PIPE_B || pipe == PIPE_C))
5803 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5804
5805 /* pipesrc controls the size that is scaled from, which should
5806 * always be the user's requested size.
5807 */
5808 I915_WRITE(PIPESRC(pipe),
5809 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5810 (intel_crtc->config.pipe_src_h - 1));
5811 }
5812
5813 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5814 struct intel_crtc_config *pipe_config)
5815 {
5816 struct drm_device *dev = crtc->base.dev;
5817 struct drm_i915_private *dev_priv = dev->dev_private;
5818 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5819 uint32_t tmp;
5820
5821 tmp = I915_READ(HTOTAL(cpu_transcoder));
5822 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5823 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5824 tmp = I915_READ(HBLANK(cpu_transcoder));
5825 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5826 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5827 tmp = I915_READ(HSYNC(cpu_transcoder));
5828 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5829 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5830
5831 tmp = I915_READ(VTOTAL(cpu_transcoder));
5832 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5833 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5834 tmp = I915_READ(VBLANK(cpu_transcoder));
5835 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5836 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5837 tmp = I915_READ(VSYNC(cpu_transcoder));
5838 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5839 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5840
5841 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5842 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5843 pipe_config->adjusted_mode.crtc_vtotal += 1;
5844 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5845 }
5846
5847 tmp = I915_READ(PIPESRC(crtc->pipe));
5848 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5849 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5850
5851 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5852 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5853 }
5854
5855 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5856 struct intel_crtc_config *pipe_config)
5857 {
5858 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5859 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5860 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5861 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5862
5863 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5864 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5865 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5866 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5867
5868 mode->flags = pipe_config->adjusted_mode.flags;
5869
5870 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5871 mode->flags |= pipe_config->adjusted_mode.flags;
5872 }
5873
5874 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5875 {
5876 struct drm_device *dev = intel_crtc->base.dev;
5877 struct drm_i915_private *dev_priv = dev->dev_private;
5878 uint32_t pipeconf;
5879
5880 pipeconf = 0;
5881
5882 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5883 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5884 pipeconf |= PIPECONF_ENABLE;
5885
5886 if (intel_crtc->config.double_wide)
5887 pipeconf |= PIPECONF_DOUBLE_WIDE;
5888
5889 /* only g4x and later have fancy bpc/dither controls */
5890 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5891 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5892 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5893 pipeconf |= PIPECONF_DITHER_EN |
5894 PIPECONF_DITHER_TYPE_SP;
5895
5896 switch (intel_crtc->config.pipe_bpp) {
5897 case 18:
5898 pipeconf |= PIPECONF_6BPC;
5899 break;
5900 case 24:
5901 pipeconf |= PIPECONF_8BPC;
5902 break;
5903 case 30:
5904 pipeconf |= PIPECONF_10BPC;
5905 break;
5906 default:
5907 /* Case prevented by intel_choose_pipe_bpp_dither. */
5908 BUG();
5909 }
5910 }
5911
5912 if (HAS_PIPE_CXSR(dev)) {
5913 if (intel_crtc->lowfreq_avail) {
5914 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5915 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5916 } else {
5917 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5918 }
5919 }
5920
5921 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5922 if (INTEL_INFO(dev)->gen < 4 ||
5923 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5924 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5925 else
5926 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5927 } else
5928 pipeconf |= PIPECONF_PROGRESSIVE;
5929
5930 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5931 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5932
5933 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5934 POSTING_READ(PIPECONF(intel_crtc->pipe));
5935 }
5936
5937 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5938 int x, int y,
5939 struct drm_framebuffer *fb)
5940 {
5941 struct drm_device *dev = crtc->dev;
5942 struct drm_i915_private *dev_priv = dev->dev_private;
5943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5944 int refclk, num_connectors = 0;
5945 intel_clock_t clock, reduced_clock;
5946 bool ok, has_reduced_clock = false;
5947 bool is_lvds = false, is_dsi = false;
5948 struct intel_encoder *encoder;
5949 const intel_limit_t *limit;
5950
5951 for_each_encoder_on_crtc(dev, crtc, encoder) {
5952 switch (encoder->type) {
5953 case INTEL_OUTPUT_LVDS:
5954 is_lvds = true;
5955 break;
5956 case INTEL_OUTPUT_DSI:
5957 is_dsi = true;
5958 break;
5959 }
5960
5961 num_connectors++;
5962 }
5963
5964 if (is_dsi)
5965 return 0;
5966
5967 if (!intel_crtc->config.clock_set) {
5968 refclk = i9xx_get_refclk(crtc, num_connectors);
5969
5970 /*
5971 * Returns a set of divisors for the desired target clock with
5972 * the given refclk, or FALSE. The returned values represent
5973 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5974 * 2) / p1 / p2.
5975 */
5976 limit = intel_limit(crtc, refclk);
5977 ok = dev_priv->display.find_dpll(limit, crtc,
5978 intel_crtc->config.port_clock,
5979 refclk, NULL, &clock);
5980 if (!ok) {
5981 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5982 return -EINVAL;
5983 }
5984
5985 if (is_lvds && dev_priv->lvds_downclock_avail) {
5986 /*
5987 * Ensure we match the reduced clock's P to the target
5988 * clock. If the clocks don't match, we can't switch
5989 * the display clock by using the FP0/FP1. In such case
5990 * we will disable the LVDS downclock feature.
5991 */
5992 has_reduced_clock =
5993 dev_priv->display.find_dpll(limit, crtc,
5994 dev_priv->lvds_downclock,
5995 refclk, &clock,
5996 &reduced_clock);
5997 }
5998 /* Compat-code for transition, will disappear. */
5999 intel_crtc->config.dpll.n = clock.n;
6000 intel_crtc->config.dpll.m1 = clock.m1;
6001 intel_crtc->config.dpll.m2 = clock.m2;
6002 intel_crtc->config.dpll.p1 = clock.p1;
6003 intel_crtc->config.dpll.p2 = clock.p2;
6004 }
6005
6006 if (IS_GEN2(dev)) {
6007 i8xx_update_pll(intel_crtc,
6008 has_reduced_clock ? &reduced_clock : NULL,
6009 num_connectors);
6010 } else if (IS_CHERRYVIEW(dev)) {
6011 chv_update_pll(intel_crtc);
6012 } else if (IS_VALLEYVIEW(dev)) {
6013 vlv_update_pll(intel_crtc);
6014 } else {
6015 i9xx_update_pll(intel_crtc,
6016 has_reduced_clock ? &reduced_clock : NULL,
6017 num_connectors);
6018 }
6019
6020 return 0;
6021 }
6022
6023 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6024 struct intel_crtc_config *pipe_config)
6025 {
6026 struct drm_device *dev = crtc->base.dev;
6027 struct drm_i915_private *dev_priv = dev->dev_private;
6028 uint32_t tmp;
6029
6030 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6031 return;
6032
6033 tmp = I915_READ(PFIT_CONTROL);
6034 if (!(tmp & PFIT_ENABLE))
6035 return;
6036
6037 /* Check whether the pfit is attached to our pipe. */
6038 if (INTEL_INFO(dev)->gen < 4) {
6039 if (crtc->pipe != PIPE_B)
6040 return;
6041 } else {
6042 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6043 return;
6044 }
6045
6046 pipe_config->gmch_pfit.control = tmp;
6047 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6048 if (INTEL_INFO(dev)->gen < 5)
6049 pipe_config->gmch_pfit.lvds_border_bits =
6050 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6051 }
6052
6053 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6054 struct intel_crtc_config *pipe_config)
6055 {
6056 struct drm_device *dev = crtc->base.dev;
6057 struct drm_i915_private *dev_priv = dev->dev_private;
6058 int pipe = pipe_config->cpu_transcoder;
6059 intel_clock_t clock;
6060 u32 mdiv;
6061 int refclk = 100000;
6062
6063 mutex_lock(&dev_priv->dpio_lock);
6064 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6065 mutex_unlock(&dev_priv->dpio_lock);
6066
6067 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6068 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6069 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6070 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6071 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6072
6073 vlv_clock(refclk, &clock);
6074
6075 /* clock.dot is the fast clock */
6076 pipe_config->port_clock = clock.dot / 5;
6077 }
6078
6079 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6080 struct intel_plane_config *plane_config)
6081 {
6082 struct drm_device *dev = crtc->base.dev;
6083 struct drm_i915_private *dev_priv = dev->dev_private;
6084 u32 val, base, offset;
6085 int pipe = crtc->pipe, plane = crtc->plane;
6086 int fourcc, pixel_format;
6087 int aligned_height;
6088
6089 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6090 if (!crtc->base.primary->fb) {
6091 DRM_DEBUG_KMS("failed to alloc fb\n");
6092 return;
6093 }
6094
6095 val = I915_READ(DSPCNTR(plane));
6096
6097 if (INTEL_INFO(dev)->gen >= 4)
6098 if (val & DISPPLANE_TILED)
6099 plane_config->tiled = true;
6100
6101 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6102 fourcc = intel_format_to_fourcc(pixel_format);
6103 crtc->base.primary->fb->pixel_format = fourcc;
6104 crtc->base.primary->fb->bits_per_pixel =
6105 drm_format_plane_cpp(fourcc, 0) * 8;
6106
6107 if (INTEL_INFO(dev)->gen >= 4) {
6108 if (plane_config->tiled)
6109 offset = I915_READ(DSPTILEOFF(plane));
6110 else
6111 offset = I915_READ(DSPLINOFF(plane));
6112 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6113 } else {
6114 base = I915_READ(DSPADDR(plane));
6115 }
6116 plane_config->base = base;
6117
6118 val = I915_READ(PIPESRC(pipe));
6119 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6120 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6121
6122 val = I915_READ(DSPSTRIDE(pipe));
6123 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6124
6125 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6126 plane_config->tiled);
6127
6128 plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6129 aligned_height, PAGE_SIZE);
6130
6131 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6132 pipe, plane, crtc->base.primary->fb->width,
6133 crtc->base.primary->fb->height,
6134 crtc->base.primary->fb->bits_per_pixel, base,
6135 crtc->base.primary->fb->pitches[0],
6136 plane_config->size);
6137
6138 }
6139
6140 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6141 struct intel_crtc_config *pipe_config)
6142 {
6143 struct drm_device *dev = crtc->base.dev;
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145 int pipe = pipe_config->cpu_transcoder;
6146 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6147 intel_clock_t clock;
6148 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6149 int refclk = 100000;
6150
6151 mutex_lock(&dev_priv->dpio_lock);
6152 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6153 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6154 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6155 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6156 mutex_unlock(&dev_priv->dpio_lock);
6157
6158 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6159 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6160 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6161 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6162 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6163
6164 chv_clock(refclk, &clock);
6165
6166 /* clock.dot is the fast clock */
6167 pipe_config->port_clock = clock.dot / 5;
6168 }
6169
6170 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6171 struct intel_crtc_config *pipe_config)
6172 {
6173 struct drm_device *dev = crtc->base.dev;
6174 struct drm_i915_private *dev_priv = dev->dev_private;
6175 uint32_t tmp;
6176
6177 if (!intel_display_power_enabled(dev_priv,
6178 POWER_DOMAIN_PIPE(crtc->pipe)))
6179 return false;
6180
6181 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6182 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6183
6184 tmp = I915_READ(PIPECONF(crtc->pipe));
6185 if (!(tmp & PIPECONF_ENABLE))
6186 return false;
6187
6188 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6189 switch (tmp & PIPECONF_BPC_MASK) {
6190 case PIPECONF_6BPC:
6191 pipe_config->pipe_bpp = 18;
6192 break;
6193 case PIPECONF_8BPC:
6194 pipe_config->pipe_bpp = 24;
6195 break;
6196 case PIPECONF_10BPC:
6197 pipe_config->pipe_bpp = 30;
6198 break;
6199 default:
6200 break;
6201 }
6202 }
6203
6204 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6205 pipe_config->limited_color_range = true;
6206
6207 if (INTEL_INFO(dev)->gen < 4)
6208 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6209
6210 intel_get_pipe_timings(crtc, pipe_config);
6211
6212 i9xx_get_pfit_config(crtc, pipe_config);
6213
6214 if (INTEL_INFO(dev)->gen >= 4) {
6215 tmp = I915_READ(DPLL_MD(crtc->pipe));
6216 pipe_config->pixel_multiplier =
6217 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6218 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6219 pipe_config->dpll_hw_state.dpll_md = tmp;
6220 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6221 tmp = I915_READ(DPLL(crtc->pipe));
6222 pipe_config->pixel_multiplier =
6223 ((tmp & SDVO_MULTIPLIER_MASK)
6224 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6225 } else {
6226 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6227 * port and will be fixed up in the encoder->get_config
6228 * function. */
6229 pipe_config->pixel_multiplier = 1;
6230 }
6231 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6232 if (!IS_VALLEYVIEW(dev)) {
6233 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6234 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6235 } else {
6236 /* Mask out read-only status bits. */
6237 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6238 DPLL_PORTC_READY_MASK |
6239 DPLL_PORTB_READY_MASK);
6240 }
6241
6242 if (IS_CHERRYVIEW(dev))
6243 chv_crtc_clock_get(crtc, pipe_config);
6244 else if (IS_VALLEYVIEW(dev))
6245 vlv_crtc_clock_get(crtc, pipe_config);
6246 else
6247 i9xx_crtc_clock_get(crtc, pipe_config);
6248
6249 return true;
6250 }
6251
6252 static void ironlake_init_pch_refclk(struct drm_device *dev)
6253 {
6254 struct drm_i915_private *dev_priv = dev->dev_private;
6255 struct drm_mode_config *mode_config = &dev->mode_config;
6256 struct intel_encoder *encoder;
6257 u32 val, final;
6258 bool has_lvds = false;
6259 bool has_cpu_edp = false;
6260 bool has_panel = false;
6261 bool has_ck505 = false;
6262 bool can_ssc = false;
6263
6264 /* We need to take the global config into account */
6265 list_for_each_entry(encoder, &mode_config->encoder_list,
6266 base.head) {
6267 switch (encoder->type) {
6268 case INTEL_OUTPUT_LVDS:
6269 has_panel = true;
6270 has_lvds = true;
6271 break;
6272 case INTEL_OUTPUT_EDP:
6273 has_panel = true;
6274 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6275 has_cpu_edp = true;
6276 break;
6277 }
6278 }
6279
6280 if (HAS_PCH_IBX(dev)) {
6281 has_ck505 = dev_priv->vbt.display_clock_mode;
6282 can_ssc = has_ck505;
6283 } else {
6284 has_ck505 = false;
6285 can_ssc = true;
6286 }
6287
6288 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6289 has_panel, has_lvds, has_ck505);
6290
6291 /* Ironlake: try to setup display ref clock before DPLL
6292 * enabling. This is only under driver's control after
6293 * PCH B stepping, previous chipset stepping should be
6294 * ignoring this setting.
6295 */
6296 val = I915_READ(PCH_DREF_CONTROL);
6297
6298 /* As we must carefully and slowly disable/enable each source in turn,
6299 * compute the final state we want first and check if we need to
6300 * make any changes at all.
6301 */
6302 final = val;
6303 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6304 if (has_ck505)
6305 final |= DREF_NONSPREAD_CK505_ENABLE;
6306 else
6307 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6308
6309 final &= ~DREF_SSC_SOURCE_MASK;
6310 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6311 final &= ~DREF_SSC1_ENABLE;
6312
6313 if (has_panel) {
6314 final |= DREF_SSC_SOURCE_ENABLE;
6315
6316 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6317 final |= DREF_SSC1_ENABLE;
6318
6319 if (has_cpu_edp) {
6320 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6321 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6322 else
6323 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6324 } else
6325 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6326 } else {
6327 final |= DREF_SSC_SOURCE_DISABLE;
6328 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6329 }
6330
6331 if (final == val)
6332 return;
6333
6334 /* Always enable nonspread source */
6335 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6336
6337 if (has_ck505)
6338 val |= DREF_NONSPREAD_CK505_ENABLE;
6339 else
6340 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6341
6342 if (has_panel) {
6343 val &= ~DREF_SSC_SOURCE_MASK;
6344 val |= DREF_SSC_SOURCE_ENABLE;
6345
6346 /* SSC must be turned on before enabling the CPU output */
6347 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6348 DRM_DEBUG_KMS("Using SSC on panel\n");
6349 val |= DREF_SSC1_ENABLE;
6350 } else
6351 val &= ~DREF_SSC1_ENABLE;
6352
6353 /* Get SSC going before enabling the outputs */
6354 I915_WRITE(PCH_DREF_CONTROL, val);
6355 POSTING_READ(PCH_DREF_CONTROL);
6356 udelay(200);
6357
6358 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6359
6360 /* Enable CPU source on CPU attached eDP */
6361 if (has_cpu_edp) {
6362 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6363 DRM_DEBUG_KMS("Using SSC on eDP\n");
6364 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6365 } else
6366 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6367 } else
6368 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6369
6370 I915_WRITE(PCH_DREF_CONTROL, val);
6371 POSTING_READ(PCH_DREF_CONTROL);
6372 udelay(200);
6373 } else {
6374 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6375
6376 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6377
6378 /* Turn off CPU output */
6379 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6380
6381 I915_WRITE(PCH_DREF_CONTROL, val);
6382 POSTING_READ(PCH_DREF_CONTROL);
6383 udelay(200);
6384
6385 /* Turn off the SSC source */
6386 val &= ~DREF_SSC_SOURCE_MASK;
6387 val |= DREF_SSC_SOURCE_DISABLE;
6388
6389 /* Turn off SSC1 */
6390 val &= ~DREF_SSC1_ENABLE;
6391
6392 I915_WRITE(PCH_DREF_CONTROL, val);
6393 POSTING_READ(PCH_DREF_CONTROL);
6394 udelay(200);
6395 }
6396
6397 BUG_ON(val != final);
6398 }
6399
6400 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6401 {
6402 uint32_t tmp;
6403
6404 tmp = I915_READ(SOUTH_CHICKEN2);
6405 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6406 I915_WRITE(SOUTH_CHICKEN2, tmp);
6407
6408 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6409 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6410 DRM_ERROR("FDI mPHY reset assert timeout\n");
6411
6412 tmp = I915_READ(SOUTH_CHICKEN2);
6413 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6414 I915_WRITE(SOUTH_CHICKEN2, tmp);
6415
6416 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6417 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6418 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6419 }
6420
6421 /* WaMPhyProgramming:hsw */
6422 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6423 {
6424 uint32_t tmp;
6425
6426 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6427 tmp &= ~(0xFF << 24);
6428 tmp |= (0x12 << 24);
6429 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6430
6431 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6432 tmp |= (1 << 11);
6433 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6434
6435 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6436 tmp |= (1 << 11);
6437 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6438
6439 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6440 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6441 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6442
6443 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6444 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6445 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6446
6447 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6448 tmp &= ~(7 << 13);
6449 tmp |= (5 << 13);
6450 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6451
6452 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6453 tmp &= ~(7 << 13);
6454 tmp |= (5 << 13);
6455 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6456
6457 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6458 tmp &= ~0xFF;
6459 tmp |= 0x1C;
6460 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6461
6462 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6463 tmp &= ~0xFF;
6464 tmp |= 0x1C;
6465 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6466
6467 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6468 tmp &= ~(0xFF << 16);
6469 tmp |= (0x1C << 16);
6470 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6471
6472 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6473 tmp &= ~(0xFF << 16);
6474 tmp |= (0x1C << 16);
6475 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6476
6477 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6478 tmp |= (1 << 27);
6479 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6480
6481 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6482 tmp |= (1 << 27);
6483 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6484
6485 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6486 tmp &= ~(0xF << 28);
6487 tmp |= (4 << 28);
6488 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6489
6490 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6491 tmp &= ~(0xF << 28);
6492 tmp |= (4 << 28);
6493 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6494 }
6495
6496 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6497 * Programming" based on the parameters passed:
6498 * - Sequence to enable CLKOUT_DP
6499 * - Sequence to enable CLKOUT_DP without spread
6500 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6501 */
6502 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6503 bool with_fdi)
6504 {
6505 struct drm_i915_private *dev_priv = dev->dev_private;
6506 uint32_t reg, tmp;
6507
6508 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6509 with_spread = true;
6510 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6511 with_fdi, "LP PCH doesn't have FDI\n"))
6512 with_fdi = false;
6513
6514 mutex_lock(&dev_priv->dpio_lock);
6515
6516 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6517 tmp &= ~SBI_SSCCTL_DISABLE;
6518 tmp |= SBI_SSCCTL_PATHALT;
6519 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6520
6521 udelay(24);
6522
6523 if (with_spread) {
6524 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6525 tmp &= ~SBI_SSCCTL_PATHALT;
6526 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6527
6528 if (with_fdi) {
6529 lpt_reset_fdi_mphy(dev_priv);
6530 lpt_program_fdi_mphy(dev_priv);
6531 }
6532 }
6533
6534 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6535 SBI_GEN0 : SBI_DBUFF0;
6536 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6537 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6538 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6539
6540 mutex_unlock(&dev_priv->dpio_lock);
6541 }
6542
6543 /* Sequence to disable CLKOUT_DP */
6544 static void lpt_disable_clkout_dp(struct drm_device *dev)
6545 {
6546 struct drm_i915_private *dev_priv = dev->dev_private;
6547 uint32_t reg, tmp;
6548
6549 mutex_lock(&dev_priv->dpio_lock);
6550
6551 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6552 SBI_GEN0 : SBI_DBUFF0;
6553 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6554 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6555 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6556
6557 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6558 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6559 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6560 tmp |= SBI_SSCCTL_PATHALT;
6561 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6562 udelay(32);
6563 }
6564 tmp |= SBI_SSCCTL_DISABLE;
6565 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6566 }
6567
6568 mutex_unlock(&dev_priv->dpio_lock);
6569 }
6570
6571 static void lpt_init_pch_refclk(struct drm_device *dev)
6572 {
6573 struct drm_mode_config *mode_config = &dev->mode_config;
6574 struct intel_encoder *encoder;
6575 bool has_vga = false;
6576
6577 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6578 switch (encoder->type) {
6579 case INTEL_OUTPUT_ANALOG:
6580 has_vga = true;
6581 break;
6582 }
6583 }
6584
6585 if (has_vga)
6586 lpt_enable_clkout_dp(dev, true, true);
6587 else
6588 lpt_disable_clkout_dp(dev);
6589 }
6590
6591 /*
6592 * Initialize reference clocks when the driver loads
6593 */
6594 void intel_init_pch_refclk(struct drm_device *dev)
6595 {
6596 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6597 ironlake_init_pch_refclk(dev);
6598 else if (HAS_PCH_LPT(dev))
6599 lpt_init_pch_refclk(dev);
6600 }
6601
6602 static int ironlake_get_refclk(struct drm_crtc *crtc)
6603 {
6604 struct drm_device *dev = crtc->dev;
6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 struct intel_encoder *encoder;
6607 int num_connectors = 0;
6608 bool is_lvds = false;
6609
6610 for_each_encoder_on_crtc(dev, crtc, encoder) {
6611 switch (encoder->type) {
6612 case INTEL_OUTPUT_LVDS:
6613 is_lvds = true;
6614 break;
6615 }
6616 num_connectors++;
6617 }
6618
6619 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6620 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6621 dev_priv->vbt.lvds_ssc_freq);
6622 return dev_priv->vbt.lvds_ssc_freq;
6623 }
6624
6625 return 120000;
6626 }
6627
6628 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6629 {
6630 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6632 int pipe = intel_crtc->pipe;
6633 uint32_t val;
6634
6635 val = 0;
6636
6637 switch (intel_crtc->config.pipe_bpp) {
6638 case 18:
6639 val |= PIPECONF_6BPC;
6640 break;
6641 case 24:
6642 val |= PIPECONF_8BPC;
6643 break;
6644 case 30:
6645 val |= PIPECONF_10BPC;
6646 break;
6647 case 36:
6648 val |= PIPECONF_12BPC;
6649 break;
6650 default:
6651 /* Case prevented by intel_choose_pipe_bpp_dither. */
6652 BUG();
6653 }
6654
6655 if (intel_crtc->config.dither)
6656 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6657
6658 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6659 val |= PIPECONF_INTERLACED_ILK;
6660 else
6661 val |= PIPECONF_PROGRESSIVE;
6662
6663 if (intel_crtc->config.limited_color_range)
6664 val |= PIPECONF_COLOR_RANGE_SELECT;
6665
6666 I915_WRITE(PIPECONF(pipe), val);
6667 POSTING_READ(PIPECONF(pipe));
6668 }
6669
6670 /*
6671 * Set up the pipe CSC unit.
6672 *
6673 * Currently only full range RGB to limited range RGB conversion
6674 * is supported, but eventually this should handle various
6675 * RGB<->YCbCr scenarios as well.
6676 */
6677 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6678 {
6679 struct drm_device *dev = crtc->dev;
6680 struct drm_i915_private *dev_priv = dev->dev_private;
6681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6682 int pipe = intel_crtc->pipe;
6683 uint16_t coeff = 0x7800; /* 1.0 */
6684
6685 /*
6686 * TODO: Check what kind of values actually come out of the pipe
6687 * with these coeff/postoff values and adjust to get the best
6688 * accuracy. Perhaps we even need to take the bpc value into
6689 * consideration.
6690 */
6691
6692 if (intel_crtc->config.limited_color_range)
6693 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6694
6695 /*
6696 * GY/GU and RY/RU should be the other way around according
6697 * to BSpec, but reality doesn't agree. Just set them up in
6698 * a way that results in the correct picture.
6699 */
6700 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6701 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6702
6703 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6704 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6705
6706 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6707 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6708
6709 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6710 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6711 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6712
6713 if (INTEL_INFO(dev)->gen > 6) {
6714 uint16_t postoff = 0;
6715
6716 if (intel_crtc->config.limited_color_range)
6717 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6718
6719 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6720 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6721 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6722
6723 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6724 } else {
6725 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6726
6727 if (intel_crtc->config.limited_color_range)
6728 mode |= CSC_BLACK_SCREEN_OFFSET;
6729
6730 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6731 }
6732 }
6733
6734 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6735 {
6736 struct drm_device *dev = crtc->dev;
6737 struct drm_i915_private *dev_priv = dev->dev_private;
6738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6739 enum pipe pipe = intel_crtc->pipe;
6740 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6741 uint32_t val;
6742
6743 val = 0;
6744
6745 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6746 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6747
6748 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6749 val |= PIPECONF_INTERLACED_ILK;
6750 else
6751 val |= PIPECONF_PROGRESSIVE;
6752
6753 I915_WRITE(PIPECONF(cpu_transcoder), val);
6754 POSTING_READ(PIPECONF(cpu_transcoder));
6755
6756 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6757 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6758
6759 if (IS_BROADWELL(dev)) {
6760 val = 0;
6761
6762 switch (intel_crtc->config.pipe_bpp) {
6763 case 18:
6764 val |= PIPEMISC_DITHER_6_BPC;
6765 break;
6766 case 24:
6767 val |= PIPEMISC_DITHER_8_BPC;
6768 break;
6769 case 30:
6770 val |= PIPEMISC_DITHER_10_BPC;
6771 break;
6772 case 36:
6773 val |= PIPEMISC_DITHER_12_BPC;
6774 break;
6775 default:
6776 /* Case prevented by pipe_config_set_bpp. */
6777 BUG();
6778 }
6779
6780 if (intel_crtc->config.dither)
6781 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6782
6783 I915_WRITE(PIPEMISC(pipe), val);
6784 }
6785 }
6786
6787 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6788 intel_clock_t *clock,
6789 bool *has_reduced_clock,
6790 intel_clock_t *reduced_clock)
6791 {
6792 struct drm_device *dev = crtc->dev;
6793 struct drm_i915_private *dev_priv = dev->dev_private;
6794 struct intel_encoder *intel_encoder;
6795 int refclk;
6796 const intel_limit_t *limit;
6797 bool ret, is_lvds = false;
6798
6799 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6800 switch (intel_encoder->type) {
6801 case INTEL_OUTPUT_LVDS:
6802 is_lvds = true;
6803 break;
6804 }
6805 }
6806
6807 refclk = ironlake_get_refclk(crtc);
6808
6809 /*
6810 * Returns a set of divisors for the desired target clock with the given
6811 * refclk, or FALSE. The returned values represent the clock equation:
6812 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6813 */
6814 limit = intel_limit(crtc, refclk);
6815 ret = dev_priv->display.find_dpll(limit, crtc,
6816 to_intel_crtc(crtc)->config.port_clock,
6817 refclk, NULL, clock);
6818 if (!ret)
6819 return false;
6820
6821 if (is_lvds && dev_priv->lvds_downclock_avail) {
6822 /*
6823 * Ensure we match the reduced clock's P to the target clock.
6824 * If the clocks don't match, we can't switch the display clock
6825 * by using the FP0/FP1. In such case we will disable the LVDS
6826 * downclock feature.
6827 */
6828 *has_reduced_clock =
6829 dev_priv->display.find_dpll(limit, crtc,
6830 dev_priv->lvds_downclock,
6831 refclk, clock,
6832 reduced_clock);
6833 }
6834
6835 return true;
6836 }
6837
6838 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6839 {
6840 /*
6841 * Account for spread spectrum to avoid
6842 * oversubscribing the link. Max center spread
6843 * is 2.5%; use 5% for safety's sake.
6844 */
6845 u32 bps = target_clock * bpp * 21 / 20;
6846 return DIV_ROUND_UP(bps, link_bw * 8);
6847 }
6848
6849 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6850 {
6851 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6852 }
6853
6854 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6855 u32 *fp,
6856 intel_clock_t *reduced_clock, u32 *fp2)
6857 {
6858 struct drm_crtc *crtc = &intel_crtc->base;
6859 struct drm_device *dev = crtc->dev;
6860 struct drm_i915_private *dev_priv = dev->dev_private;
6861 struct intel_encoder *intel_encoder;
6862 uint32_t dpll;
6863 int factor, num_connectors = 0;
6864 bool is_lvds = false, is_sdvo = false;
6865
6866 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6867 switch (intel_encoder->type) {
6868 case INTEL_OUTPUT_LVDS:
6869 is_lvds = true;
6870 break;
6871 case INTEL_OUTPUT_SDVO:
6872 case INTEL_OUTPUT_HDMI:
6873 is_sdvo = true;
6874 break;
6875 }
6876
6877 num_connectors++;
6878 }
6879
6880 /* Enable autotuning of the PLL clock (if permissible) */
6881 factor = 21;
6882 if (is_lvds) {
6883 if ((intel_panel_use_ssc(dev_priv) &&
6884 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6885 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6886 factor = 25;
6887 } else if (intel_crtc->config.sdvo_tv_clock)
6888 factor = 20;
6889
6890 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6891 *fp |= FP_CB_TUNE;
6892
6893 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6894 *fp2 |= FP_CB_TUNE;
6895
6896 dpll = 0;
6897
6898 if (is_lvds)
6899 dpll |= DPLLB_MODE_LVDS;
6900 else
6901 dpll |= DPLLB_MODE_DAC_SERIAL;
6902
6903 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6904 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6905
6906 if (is_sdvo)
6907 dpll |= DPLL_SDVO_HIGH_SPEED;
6908 if (intel_crtc->config.has_dp_encoder)
6909 dpll |= DPLL_SDVO_HIGH_SPEED;
6910
6911 /* compute bitmask from p1 value */
6912 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6913 /* also FPA1 */
6914 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6915
6916 switch (intel_crtc->config.dpll.p2) {
6917 case 5:
6918 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6919 break;
6920 case 7:
6921 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6922 break;
6923 case 10:
6924 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6925 break;
6926 case 14:
6927 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6928 break;
6929 }
6930
6931 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6932 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6933 else
6934 dpll |= PLL_REF_INPUT_DREFCLK;
6935
6936 return dpll | DPLL_VCO_ENABLE;
6937 }
6938
6939 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6940 int x, int y,
6941 struct drm_framebuffer *fb)
6942 {
6943 struct drm_device *dev = crtc->dev;
6944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6945 int num_connectors = 0;
6946 intel_clock_t clock, reduced_clock;
6947 u32 dpll = 0, fp = 0, fp2 = 0;
6948 bool ok, has_reduced_clock = false;
6949 bool is_lvds = false;
6950 struct intel_encoder *encoder;
6951 struct intel_shared_dpll *pll;
6952
6953 for_each_encoder_on_crtc(dev, crtc, encoder) {
6954 switch (encoder->type) {
6955 case INTEL_OUTPUT_LVDS:
6956 is_lvds = true;
6957 break;
6958 }
6959
6960 num_connectors++;
6961 }
6962
6963 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6964 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6965
6966 ok = ironlake_compute_clocks(crtc, &clock,
6967 &has_reduced_clock, &reduced_clock);
6968 if (!ok && !intel_crtc->config.clock_set) {
6969 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6970 return -EINVAL;
6971 }
6972 /* Compat-code for transition, will disappear. */
6973 if (!intel_crtc->config.clock_set) {
6974 intel_crtc->config.dpll.n = clock.n;
6975 intel_crtc->config.dpll.m1 = clock.m1;
6976 intel_crtc->config.dpll.m2 = clock.m2;
6977 intel_crtc->config.dpll.p1 = clock.p1;
6978 intel_crtc->config.dpll.p2 = clock.p2;
6979 }
6980
6981 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6982 if (intel_crtc->config.has_pch_encoder) {
6983 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6984 if (has_reduced_clock)
6985 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6986
6987 dpll = ironlake_compute_dpll(intel_crtc,
6988 &fp, &reduced_clock,
6989 has_reduced_clock ? &fp2 : NULL);
6990
6991 intel_crtc->config.dpll_hw_state.dpll = dpll;
6992 intel_crtc->config.dpll_hw_state.fp0 = fp;
6993 if (has_reduced_clock)
6994 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6995 else
6996 intel_crtc->config.dpll_hw_state.fp1 = fp;
6997
6998 pll = intel_get_shared_dpll(intel_crtc);
6999 if (pll == NULL) {
7000 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7001 pipe_name(intel_crtc->pipe));
7002 return -EINVAL;
7003 }
7004 } else
7005 intel_put_shared_dpll(intel_crtc);
7006
7007 if (is_lvds && has_reduced_clock && i915.powersave)
7008 intel_crtc->lowfreq_avail = true;
7009 else
7010 intel_crtc->lowfreq_avail = false;
7011
7012 return 0;
7013 }
7014
7015 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7016 struct intel_link_m_n *m_n)
7017 {
7018 struct drm_device *dev = crtc->base.dev;
7019 struct drm_i915_private *dev_priv = dev->dev_private;
7020 enum pipe pipe = crtc->pipe;
7021
7022 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7023 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7024 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7025 & ~TU_SIZE_MASK;
7026 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7027 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7028 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7029 }
7030
7031 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7032 enum transcoder transcoder,
7033 struct intel_link_m_n *m_n)
7034 {
7035 struct drm_device *dev = crtc->base.dev;
7036 struct drm_i915_private *dev_priv = dev->dev_private;
7037 enum pipe pipe = crtc->pipe;
7038
7039 if (INTEL_INFO(dev)->gen >= 5) {
7040 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7041 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7042 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7043 & ~TU_SIZE_MASK;
7044 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7045 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7046 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7047 } else {
7048 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7049 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7050 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7051 & ~TU_SIZE_MASK;
7052 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7053 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7054 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7055 }
7056 }
7057
7058 void intel_dp_get_m_n(struct intel_crtc *crtc,
7059 struct intel_crtc_config *pipe_config)
7060 {
7061 if (crtc->config.has_pch_encoder)
7062 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7063 else
7064 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7065 &pipe_config->dp_m_n);
7066 }
7067
7068 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7069 struct intel_crtc_config *pipe_config)
7070 {
7071 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7072 &pipe_config->fdi_m_n);
7073 }
7074
7075 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7076 struct intel_crtc_config *pipe_config)
7077 {
7078 struct drm_device *dev = crtc->base.dev;
7079 struct drm_i915_private *dev_priv = dev->dev_private;
7080 uint32_t tmp;
7081
7082 tmp = I915_READ(PF_CTL(crtc->pipe));
7083
7084 if (tmp & PF_ENABLE) {
7085 pipe_config->pch_pfit.enabled = true;
7086 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7087 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7088
7089 /* We currently do not free assignements of panel fitters on
7090 * ivb/hsw (since we don't use the higher upscaling modes which
7091 * differentiates them) so just WARN about this case for now. */
7092 if (IS_GEN7(dev)) {
7093 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7094 PF_PIPE_SEL_IVB(crtc->pipe));
7095 }
7096 }
7097 }
7098
7099 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7100 struct intel_plane_config *plane_config)
7101 {
7102 struct drm_device *dev = crtc->base.dev;
7103 struct drm_i915_private *dev_priv = dev->dev_private;
7104 u32 val, base, offset;
7105 int pipe = crtc->pipe, plane = crtc->plane;
7106 int fourcc, pixel_format;
7107 int aligned_height;
7108
7109 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7110 if (!crtc->base.primary->fb) {
7111 DRM_DEBUG_KMS("failed to alloc fb\n");
7112 return;
7113 }
7114
7115 val = I915_READ(DSPCNTR(plane));
7116
7117 if (INTEL_INFO(dev)->gen >= 4)
7118 if (val & DISPPLANE_TILED)
7119 plane_config->tiled = true;
7120
7121 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7122 fourcc = intel_format_to_fourcc(pixel_format);
7123 crtc->base.primary->fb->pixel_format = fourcc;
7124 crtc->base.primary->fb->bits_per_pixel =
7125 drm_format_plane_cpp(fourcc, 0) * 8;
7126
7127 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7128 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7129 offset = I915_READ(DSPOFFSET(plane));
7130 } else {
7131 if (plane_config->tiled)
7132 offset = I915_READ(DSPTILEOFF(plane));
7133 else
7134 offset = I915_READ(DSPLINOFF(plane));
7135 }
7136 plane_config->base = base;
7137
7138 val = I915_READ(PIPESRC(pipe));
7139 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7140 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7141
7142 val = I915_READ(DSPSTRIDE(pipe));
7143 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7144
7145 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7146 plane_config->tiled);
7147
7148 plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7149 aligned_height, PAGE_SIZE);
7150
7151 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7152 pipe, plane, crtc->base.primary->fb->width,
7153 crtc->base.primary->fb->height,
7154 crtc->base.primary->fb->bits_per_pixel, base,
7155 crtc->base.primary->fb->pitches[0],
7156 plane_config->size);
7157 }
7158
7159 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7160 struct intel_crtc_config *pipe_config)
7161 {
7162 struct drm_device *dev = crtc->base.dev;
7163 struct drm_i915_private *dev_priv = dev->dev_private;
7164 uint32_t tmp;
7165
7166 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7167 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7168
7169 tmp = I915_READ(PIPECONF(crtc->pipe));
7170 if (!(tmp & PIPECONF_ENABLE))
7171 return false;
7172
7173 switch (tmp & PIPECONF_BPC_MASK) {
7174 case PIPECONF_6BPC:
7175 pipe_config->pipe_bpp = 18;
7176 break;
7177 case PIPECONF_8BPC:
7178 pipe_config->pipe_bpp = 24;
7179 break;
7180 case PIPECONF_10BPC:
7181 pipe_config->pipe_bpp = 30;
7182 break;
7183 case PIPECONF_12BPC:
7184 pipe_config->pipe_bpp = 36;
7185 break;
7186 default:
7187 break;
7188 }
7189
7190 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7191 pipe_config->limited_color_range = true;
7192
7193 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7194 struct intel_shared_dpll *pll;
7195
7196 pipe_config->has_pch_encoder = true;
7197
7198 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7199 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7200 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7201
7202 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7203
7204 if (HAS_PCH_IBX(dev_priv->dev)) {
7205 pipe_config->shared_dpll =
7206 (enum intel_dpll_id) crtc->pipe;
7207 } else {
7208 tmp = I915_READ(PCH_DPLL_SEL);
7209 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7210 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7211 else
7212 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7213 }
7214
7215 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7216
7217 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7218 &pipe_config->dpll_hw_state));
7219
7220 tmp = pipe_config->dpll_hw_state.dpll;
7221 pipe_config->pixel_multiplier =
7222 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7223 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7224
7225 ironlake_pch_clock_get(crtc, pipe_config);
7226 } else {
7227 pipe_config->pixel_multiplier = 1;
7228 }
7229
7230 intel_get_pipe_timings(crtc, pipe_config);
7231
7232 ironlake_get_pfit_config(crtc, pipe_config);
7233
7234 return true;
7235 }
7236
7237 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7238 {
7239 struct drm_device *dev = dev_priv->dev;
7240 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7241 struct intel_crtc *crtc;
7242
7243 for_each_intel_crtc(dev, crtc)
7244 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7245 pipe_name(crtc->pipe));
7246
7247 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7248 WARN(plls->spll_refcount, "SPLL enabled\n");
7249 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7250 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7251 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7252 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7253 "CPU PWM1 enabled\n");
7254 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7255 "CPU PWM2 enabled\n");
7256 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7257 "PCH PWM1 enabled\n");
7258 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7259 "Utility pin enabled\n");
7260 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7261
7262 /*
7263 * In theory we can still leave IRQs enabled, as long as only the HPD
7264 * interrupts remain enabled. We used to check for that, but since it's
7265 * gen-specific and since we only disable LCPLL after we fully disable
7266 * the interrupts, the check below should be enough.
7267 */
7268 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7269 }
7270
7271 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7272 {
7273 struct drm_device *dev = dev_priv->dev;
7274
7275 if (IS_HASWELL(dev)) {
7276 mutex_lock(&dev_priv->rps.hw_lock);
7277 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7278 val))
7279 DRM_ERROR("Failed to disable D_COMP\n");
7280 mutex_unlock(&dev_priv->rps.hw_lock);
7281 } else {
7282 I915_WRITE(D_COMP, val);
7283 }
7284 POSTING_READ(D_COMP);
7285 }
7286
7287 /*
7288 * This function implements pieces of two sequences from BSpec:
7289 * - Sequence for display software to disable LCPLL
7290 * - Sequence for display software to allow package C8+
7291 * The steps implemented here are just the steps that actually touch the LCPLL
7292 * register. Callers should take care of disabling all the display engine
7293 * functions, doing the mode unset, fixing interrupts, etc.
7294 */
7295 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7296 bool switch_to_fclk, bool allow_power_down)
7297 {
7298 uint32_t val;
7299
7300 assert_can_disable_lcpll(dev_priv);
7301
7302 val = I915_READ(LCPLL_CTL);
7303
7304 if (switch_to_fclk) {
7305 val |= LCPLL_CD_SOURCE_FCLK;
7306 I915_WRITE(LCPLL_CTL, val);
7307
7308 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7309 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7310 DRM_ERROR("Switching to FCLK failed\n");
7311
7312 val = I915_READ(LCPLL_CTL);
7313 }
7314
7315 val |= LCPLL_PLL_DISABLE;
7316 I915_WRITE(LCPLL_CTL, val);
7317 POSTING_READ(LCPLL_CTL);
7318
7319 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7320 DRM_ERROR("LCPLL still locked\n");
7321
7322 val = I915_READ(D_COMP);
7323 val |= D_COMP_COMP_DISABLE;
7324 hsw_write_dcomp(dev_priv, val);
7325 ndelay(100);
7326
7327 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7328 DRM_ERROR("D_COMP RCOMP still in progress\n");
7329
7330 if (allow_power_down) {
7331 val = I915_READ(LCPLL_CTL);
7332 val |= LCPLL_POWER_DOWN_ALLOW;
7333 I915_WRITE(LCPLL_CTL, val);
7334 POSTING_READ(LCPLL_CTL);
7335 }
7336 }
7337
7338 /*
7339 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7340 * source.
7341 */
7342 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7343 {
7344 uint32_t val;
7345 unsigned long irqflags;
7346
7347 val = I915_READ(LCPLL_CTL);
7348
7349 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7350 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7351 return;
7352
7353 /*
7354 * Make sure we're not on PC8 state before disabling PC8, otherwise
7355 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7356 *
7357 * The other problem is that hsw_restore_lcpll() is called as part of
7358 * the runtime PM resume sequence, so we can't just call
7359 * gen6_gt_force_wake_get() because that function calls
7360 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7361 * while we are on the resume sequence. So to solve this problem we have
7362 * to call special forcewake code that doesn't touch runtime PM and
7363 * doesn't enable the forcewake delayed work.
7364 */
7365 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7366 if (dev_priv->uncore.forcewake_count++ == 0)
7367 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7368 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7369
7370 if (val & LCPLL_POWER_DOWN_ALLOW) {
7371 val &= ~LCPLL_POWER_DOWN_ALLOW;
7372 I915_WRITE(LCPLL_CTL, val);
7373 POSTING_READ(LCPLL_CTL);
7374 }
7375
7376 val = I915_READ(D_COMP);
7377 val |= D_COMP_COMP_FORCE;
7378 val &= ~D_COMP_COMP_DISABLE;
7379 hsw_write_dcomp(dev_priv, val);
7380
7381 val = I915_READ(LCPLL_CTL);
7382 val &= ~LCPLL_PLL_DISABLE;
7383 I915_WRITE(LCPLL_CTL, val);
7384
7385 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7386 DRM_ERROR("LCPLL not locked yet\n");
7387
7388 if (val & LCPLL_CD_SOURCE_FCLK) {
7389 val = I915_READ(LCPLL_CTL);
7390 val &= ~LCPLL_CD_SOURCE_FCLK;
7391 I915_WRITE(LCPLL_CTL, val);
7392
7393 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7394 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7395 DRM_ERROR("Switching back to LCPLL failed\n");
7396 }
7397
7398 /* See the big comment above. */
7399 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7400 if (--dev_priv->uncore.forcewake_count == 0)
7401 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7402 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7403 }
7404
7405 /*
7406 * Package states C8 and deeper are really deep PC states that can only be
7407 * reached when all the devices on the system allow it, so even if the graphics
7408 * device allows PC8+, it doesn't mean the system will actually get to these
7409 * states. Our driver only allows PC8+ when going into runtime PM.
7410 *
7411 * The requirements for PC8+ are that all the outputs are disabled, the power
7412 * well is disabled and most interrupts are disabled, and these are also
7413 * requirements for runtime PM. When these conditions are met, we manually do
7414 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7415 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7416 * hang the machine.
7417 *
7418 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7419 * the state of some registers, so when we come back from PC8+ we need to
7420 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7421 * need to take care of the registers kept by RC6. Notice that this happens even
7422 * if we don't put the device in PCI D3 state (which is what currently happens
7423 * because of the runtime PM support).
7424 *
7425 * For more, read "Display Sequences for Package C8" on the hardware
7426 * documentation.
7427 */
7428 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7429 {
7430 struct drm_device *dev = dev_priv->dev;
7431 uint32_t val;
7432
7433 DRM_DEBUG_KMS("Enabling package C8+\n");
7434
7435 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7436 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7437 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7438 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7439 }
7440
7441 lpt_disable_clkout_dp(dev);
7442 hsw_disable_lcpll(dev_priv, true, true);
7443 }
7444
7445 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7446 {
7447 struct drm_device *dev = dev_priv->dev;
7448 uint32_t val;
7449
7450 DRM_DEBUG_KMS("Disabling package C8+\n");
7451
7452 hsw_restore_lcpll(dev_priv);
7453 lpt_init_pch_refclk(dev);
7454
7455 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7456 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7457 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7458 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7459 }
7460
7461 intel_prepare_ddi(dev);
7462 }
7463
7464 static void snb_modeset_global_resources(struct drm_device *dev)
7465 {
7466 modeset_update_crtc_power_domains(dev);
7467 }
7468
7469 static void haswell_modeset_global_resources(struct drm_device *dev)
7470 {
7471 modeset_update_crtc_power_domains(dev);
7472 }
7473
7474 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7475 int x, int y,
7476 struct drm_framebuffer *fb)
7477 {
7478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7479
7480 if (!intel_ddi_pll_select(intel_crtc))
7481 return -EINVAL;
7482 intel_ddi_pll_enable(intel_crtc);
7483
7484 intel_crtc->lowfreq_avail = false;
7485
7486 return 0;
7487 }
7488
7489 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7490 struct intel_crtc_config *pipe_config)
7491 {
7492 struct drm_device *dev = crtc->base.dev;
7493 struct drm_i915_private *dev_priv = dev->dev_private;
7494 enum intel_display_power_domain pfit_domain;
7495 uint32_t tmp;
7496
7497 if (!intel_display_power_enabled(dev_priv,
7498 POWER_DOMAIN_PIPE(crtc->pipe)))
7499 return false;
7500
7501 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7502 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7503
7504 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7505 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7506 enum pipe trans_edp_pipe;
7507 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7508 default:
7509 WARN(1, "unknown pipe linked to edp transcoder\n");
7510 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7511 case TRANS_DDI_EDP_INPUT_A_ON:
7512 trans_edp_pipe = PIPE_A;
7513 break;
7514 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7515 trans_edp_pipe = PIPE_B;
7516 break;
7517 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7518 trans_edp_pipe = PIPE_C;
7519 break;
7520 }
7521
7522 if (trans_edp_pipe == crtc->pipe)
7523 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7524 }
7525
7526 if (!intel_display_power_enabled(dev_priv,
7527 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7528 return false;
7529
7530 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7531 if (!(tmp & PIPECONF_ENABLE))
7532 return false;
7533
7534 /*
7535 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7536 * DDI E. So just check whether this pipe is wired to DDI E and whether
7537 * the PCH transcoder is on.
7538 */
7539 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7540 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7541 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7542 pipe_config->has_pch_encoder = true;
7543
7544 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7545 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7546 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7547
7548 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7549 }
7550
7551 intel_get_pipe_timings(crtc, pipe_config);
7552
7553 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7554 if (intel_display_power_enabled(dev_priv, pfit_domain))
7555 ironlake_get_pfit_config(crtc, pipe_config);
7556
7557 if (IS_HASWELL(dev))
7558 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7559 (I915_READ(IPS_CTL) & IPS_ENABLE);
7560
7561 pipe_config->pixel_multiplier = 1;
7562
7563 return true;
7564 }
7565
7566 static struct {
7567 int clock;
7568 u32 config;
7569 } hdmi_audio_clock[] = {
7570 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7571 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7572 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7573 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7574 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7575 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7576 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7577 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7578 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7579 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7580 };
7581
7582 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7583 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7584 {
7585 int i;
7586
7587 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7588 if (mode->clock == hdmi_audio_clock[i].clock)
7589 break;
7590 }
7591
7592 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7593 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7594 i = 1;
7595 }
7596
7597 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7598 hdmi_audio_clock[i].clock,
7599 hdmi_audio_clock[i].config);
7600
7601 return hdmi_audio_clock[i].config;
7602 }
7603
7604 static bool intel_eld_uptodate(struct drm_connector *connector,
7605 int reg_eldv, uint32_t bits_eldv,
7606 int reg_elda, uint32_t bits_elda,
7607 int reg_edid)
7608 {
7609 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7610 uint8_t *eld = connector->eld;
7611 uint32_t i;
7612
7613 i = I915_READ(reg_eldv);
7614 i &= bits_eldv;
7615
7616 if (!eld[0])
7617 return !i;
7618
7619 if (!i)
7620 return false;
7621
7622 i = I915_READ(reg_elda);
7623 i &= ~bits_elda;
7624 I915_WRITE(reg_elda, i);
7625
7626 for (i = 0; i < eld[2]; i++)
7627 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7628 return false;
7629
7630 return true;
7631 }
7632
7633 static void g4x_write_eld(struct drm_connector *connector,
7634 struct drm_crtc *crtc,
7635 struct drm_display_mode *mode)
7636 {
7637 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7638 uint8_t *eld = connector->eld;
7639 uint32_t eldv;
7640 uint32_t len;
7641 uint32_t i;
7642
7643 i = I915_READ(G4X_AUD_VID_DID);
7644
7645 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7646 eldv = G4X_ELDV_DEVCL_DEVBLC;
7647 else
7648 eldv = G4X_ELDV_DEVCTG;
7649
7650 if (intel_eld_uptodate(connector,
7651 G4X_AUD_CNTL_ST, eldv,
7652 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7653 G4X_HDMIW_HDMIEDID))
7654 return;
7655
7656 i = I915_READ(G4X_AUD_CNTL_ST);
7657 i &= ~(eldv | G4X_ELD_ADDR);
7658 len = (i >> 9) & 0x1f; /* ELD buffer size */
7659 I915_WRITE(G4X_AUD_CNTL_ST, i);
7660
7661 if (!eld[0])
7662 return;
7663
7664 len = min_t(uint8_t, eld[2], len);
7665 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7666 for (i = 0; i < len; i++)
7667 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7668
7669 i = I915_READ(G4X_AUD_CNTL_ST);
7670 i |= eldv;
7671 I915_WRITE(G4X_AUD_CNTL_ST, i);
7672 }
7673
7674 static void haswell_write_eld(struct drm_connector *connector,
7675 struct drm_crtc *crtc,
7676 struct drm_display_mode *mode)
7677 {
7678 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7679 uint8_t *eld = connector->eld;
7680 uint32_t eldv;
7681 uint32_t i;
7682 int len;
7683 int pipe = to_intel_crtc(crtc)->pipe;
7684 int tmp;
7685
7686 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7687 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7688 int aud_config = HSW_AUD_CFG(pipe);
7689 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7690
7691 /* Audio output enable */
7692 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7693 tmp = I915_READ(aud_cntrl_st2);
7694 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7695 I915_WRITE(aud_cntrl_st2, tmp);
7696 POSTING_READ(aud_cntrl_st2);
7697
7698 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7699
7700 /* Set ELD valid state */
7701 tmp = I915_READ(aud_cntrl_st2);
7702 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7703 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7704 I915_WRITE(aud_cntrl_st2, tmp);
7705 tmp = I915_READ(aud_cntrl_st2);
7706 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7707
7708 /* Enable HDMI mode */
7709 tmp = I915_READ(aud_config);
7710 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7711 /* clear N_programing_enable and N_value_index */
7712 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7713 I915_WRITE(aud_config, tmp);
7714
7715 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7716
7717 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7718
7719 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7720 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7721 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7722 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7723 } else {
7724 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7725 }
7726
7727 if (intel_eld_uptodate(connector,
7728 aud_cntrl_st2, eldv,
7729 aud_cntl_st, IBX_ELD_ADDRESS,
7730 hdmiw_hdmiedid))
7731 return;
7732
7733 i = I915_READ(aud_cntrl_st2);
7734 i &= ~eldv;
7735 I915_WRITE(aud_cntrl_st2, i);
7736
7737 if (!eld[0])
7738 return;
7739
7740 i = I915_READ(aud_cntl_st);
7741 i &= ~IBX_ELD_ADDRESS;
7742 I915_WRITE(aud_cntl_st, i);
7743 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7744 DRM_DEBUG_DRIVER("port num:%d\n", i);
7745
7746 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7747 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7748 for (i = 0; i < len; i++)
7749 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7750
7751 i = I915_READ(aud_cntrl_st2);
7752 i |= eldv;
7753 I915_WRITE(aud_cntrl_st2, i);
7754
7755 }
7756
7757 static void ironlake_write_eld(struct drm_connector *connector,
7758 struct drm_crtc *crtc,
7759 struct drm_display_mode *mode)
7760 {
7761 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7762 uint8_t *eld = connector->eld;
7763 uint32_t eldv;
7764 uint32_t i;
7765 int len;
7766 int hdmiw_hdmiedid;
7767 int aud_config;
7768 int aud_cntl_st;
7769 int aud_cntrl_st2;
7770 int pipe = to_intel_crtc(crtc)->pipe;
7771
7772 if (HAS_PCH_IBX(connector->dev)) {
7773 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7774 aud_config = IBX_AUD_CFG(pipe);
7775 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7776 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7777 } else if (IS_VALLEYVIEW(connector->dev)) {
7778 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7779 aud_config = VLV_AUD_CFG(pipe);
7780 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7781 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7782 } else {
7783 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7784 aud_config = CPT_AUD_CFG(pipe);
7785 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7786 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7787 }
7788
7789 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7790
7791 if (IS_VALLEYVIEW(connector->dev)) {
7792 struct intel_encoder *intel_encoder;
7793 struct intel_digital_port *intel_dig_port;
7794
7795 intel_encoder = intel_attached_encoder(connector);
7796 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7797 i = intel_dig_port->port;
7798 } else {
7799 i = I915_READ(aud_cntl_st);
7800 i = (i >> 29) & DIP_PORT_SEL_MASK;
7801 /* DIP_Port_Select, 0x1 = PortB */
7802 }
7803
7804 if (!i) {
7805 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7806 /* operate blindly on all ports */
7807 eldv = IBX_ELD_VALIDB;
7808 eldv |= IBX_ELD_VALIDB << 4;
7809 eldv |= IBX_ELD_VALIDB << 8;
7810 } else {
7811 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7812 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7813 }
7814
7815 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7816 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7817 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7818 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7819 } else {
7820 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7821 }
7822
7823 if (intel_eld_uptodate(connector,
7824 aud_cntrl_st2, eldv,
7825 aud_cntl_st, IBX_ELD_ADDRESS,
7826 hdmiw_hdmiedid))
7827 return;
7828
7829 i = I915_READ(aud_cntrl_st2);
7830 i &= ~eldv;
7831 I915_WRITE(aud_cntrl_st2, i);
7832
7833 if (!eld[0])
7834 return;
7835
7836 i = I915_READ(aud_cntl_st);
7837 i &= ~IBX_ELD_ADDRESS;
7838 I915_WRITE(aud_cntl_st, i);
7839
7840 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7841 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7842 for (i = 0; i < len; i++)
7843 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7844
7845 i = I915_READ(aud_cntrl_st2);
7846 i |= eldv;
7847 I915_WRITE(aud_cntrl_st2, i);
7848 }
7849
7850 void intel_write_eld(struct drm_encoder *encoder,
7851 struct drm_display_mode *mode)
7852 {
7853 struct drm_crtc *crtc = encoder->crtc;
7854 struct drm_connector *connector;
7855 struct drm_device *dev = encoder->dev;
7856 struct drm_i915_private *dev_priv = dev->dev_private;
7857
7858 connector = drm_select_eld(encoder, mode);
7859 if (!connector)
7860 return;
7861
7862 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7863 connector->base.id,
7864 connector->name,
7865 connector->encoder->base.id,
7866 connector->encoder->name);
7867
7868 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7869
7870 if (dev_priv->display.write_eld)
7871 dev_priv->display.write_eld(connector, crtc, mode);
7872 }
7873
7874 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7875 {
7876 struct drm_device *dev = crtc->dev;
7877 struct drm_i915_private *dev_priv = dev->dev_private;
7878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7879 uint32_t cntl;
7880
7881 if (base != intel_crtc->cursor_base) {
7882 /* On these chipsets we can only modify the base whilst
7883 * the cursor is disabled.
7884 */
7885 if (intel_crtc->cursor_cntl) {
7886 I915_WRITE(_CURACNTR, 0);
7887 POSTING_READ(_CURACNTR);
7888 intel_crtc->cursor_cntl = 0;
7889 }
7890
7891 I915_WRITE(_CURABASE, base);
7892 POSTING_READ(_CURABASE);
7893 }
7894
7895 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7896 cntl = 0;
7897 if (base)
7898 cntl = (CURSOR_ENABLE |
7899 CURSOR_GAMMA_ENABLE |
7900 CURSOR_FORMAT_ARGB);
7901 if (intel_crtc->cursor_cntl != cntl) {
7902 I915_WRITE(_CURACNTR, cntl);
7903 POSTING_READ(_CURACNTR);
7904 intel_crtc->cursor_cntl = cntl;
7905 }
7906 }
7907
7908 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7909 {
7910 struct drm_device *dev = crtc->dev;
7911 struct drm_i915_private *dev_priv = dev->dev_private;
7912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7913 int pipe = intel_crtc->pipe;
7914 uint32_t cntl;
7915
7916 cntl = 0;
7917 if (base) {
7918 cntl = MCURSOR_GAMMA_ENABLE;
7919 switch (intel_crtc->cursor_width) {
7920 case 64:
7921 cntl |= CURSOR_MODE_64_ARGB_AX;
7922 break;
7923 case 128:
7924 cntl |= CURSOR_MODE_128_ARGB_AX;
7925 break;
7926 case 256:
7927 cntl |= CURSOR_MODE_256_ARGB_AX;
7928 break;
7929 default:
7930 WARN_ON(1);
7931 return;
7932 }
7933 cntl |= pipe << 28; /* Connect to correct pipe */
7934 }
7935 if (intel_crtc->cursor_cntl != cntl) {
7936 I915_WRITE(CURCNTR(pipe), cntl);
7937 POSTING_READ(CURCNTR(pipe));
7938 intel_crtc->cursor_cntl = cntl;
7939 }
7940
7941 /* and commit changes on next vblank */
7942 I915_WRITE(CURBASE(pipe), base);
7943 POSTING_READ(CURBASE(pipe));
7944 }
7945
7946 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7947 {
7948 struct drm_device *dev = crtc->dev;
7949 struct drm_i915_private *dev_priv = dev->dev_private;
7950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7951 int pipe = intel_crtc->pipe;
7952 uint32_t cntl;
7953
7954 cntl = 0;
7955 if (base) {
7956 cntl = MCURSOR_GAMMA_ENABLE;
7957 switch (intel_crtc->cursor_width) {
7958 case 64:
7959 cntl |= CURSOR_MODE_64_ARGB_AX;
7960 break;
7961 case 128:
7962 cntl |= CURSOR_MODE_128_ARGB_AX;
7963 break;
7964 case 256:
7965 cntl |= CURSOR_MODE_256_ARGB_AX;
7966 break;
7967 default:
7968 WARN_ON(1);
7969 return;
7970 }
7971 }
7972 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
7973 cntl |= CURSOR_PIPE_CSC_ENABLE;
7974
7975 if (intel_crtc->cursor_cntl != cntl) {
7976 I915_WRITE(CURCNTR(pipe), cntl);
7977 POSTING_READ(CURCNTR(pipe));
7978 intel_crtc->cursor_cntl = cntl;
7979 }
7980
7981 /* and commit changes on next vblank */
7982 I915_WRITE(CURBASE(pipe), base);
7983 POSTING_READ(CURBASE(pipe));
7984 }
7985
7986 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7987 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7988 bool on)
7989 {
7990 struct drm_device *dev = crtc->dev;
7991 struct drm_i915_private *dev_priv = dev->dev_private;
7992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7993 int pipe = intel_crtc->pipe;
7994 int x = intel_crtc->cursor_x;
7995 int y = intel_crtc->cursor_y;
7996 u32 base = 0, pos = 0;
7997
7998 if (on)
7999 base = intel_crtc->cursor_addr;
8000
8001 if (x >= intel_crtc->config.pipe_src_w)
8002 base = 0;
8003
8004 if (y >= intel_crtc->config.pipe_src_h)
8005 base = 0;
8006
8007 if (x < 0) {
8008 if (x + intel_crtc->cursor_width <= 0)
8009 base = 0;
8010
8011 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8012 x = -x;
8013 }
8014 pos |= x << CURSOR_X_SHIFT;
8015
8016 if (y < 0) {
8017 if (y + intel_crtc->cursor_height <= 0)
8018 base = 0;
8019
8020 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8021 y = -y;
8022 }
8023 pos |= y << CURSOR_Y_SHIFT;
8024
8025 if (base == 0 && intel_crtc->cursor_base == 0)
8026 return;
8027
8028 I915_WRITE(CURPOS(pipe), pos);
8029
8030 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8031 ivb_update_cursor(crtc, base);
8032 else if (IS_845G(dev) || IS_I865G(dev))
8033 i845_update_cursor(crtc, base);
8034 else
8035 i9xx_update_cursor(crtc, base);
8036 intel_crtc->cursor_base = base;
8037 }
8038
8039 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
8040 struct drm_file *file,
8041 uint32_t handle,
8042 uint32_t width, uint32_t height)
8043 {
8044 struct drm_device *dev = crtc->dev;
8045 struct drm_i915_private *dev_priv = dev->dev_private;
8046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8047 struct drm_i915_gem_object *obj;
8048 unsigned old_width;
8049 uint32_t addr;
8050 int ret;
8051
8052 /* if we want to turn off the cursor ignore width and height */
8053 if (!handle) {
8054 DRM_DEBUG_KMS("cursor off\n");
8055 addr = 0;
8056 obj = NULL;
8057 mutex_lock(&dev->struct_mutex);
8058 goto finish;
8059 }
8060
8061 /* Check for which cursor types we support */
8062 if (!((width == 64 && height == 64) ||
8063 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8064 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8065 DRM_DEBUG("Cursor dimension not supported\n");
8066 return -EINVAL;
8067 }
8068
8069 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
8070 if (&obj->base == NULL)
8071 return -ENOENT;
8072
8073 if (obj->base.size < width * height * 4) {
8074 DRM_DEBUG_KMS("buffer is to small\n");
8075 ret = -ENOMEM;
8076 goto fail;
8077 }
8078
8079 /* we only need to pin inside GTT if cursor is non-phy */
8080 mutex_lock(&dev->struct_mutex);
8081 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8082 unsigned alignment;
8083
8084 if (obj->tiling_mode) {
8085 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8086 ret = -EINVAL;
8087 goto fail_locked;
8088 }
8089
8090 /* Note that the w/a also requires 2 PTE of padding following
8091 * the bo. We currently fill all unused PTE with the shadow
8092 * page and so we should always have valid PTE following the
8093 * cursor preventing the VT-d warning.
8094 */
8095 alignment = 0;
8096 if (need_vtd_wa(dev))
8097 alignment = 64*1024;
8098
8099 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8100 if (ret) {
8101 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8102 goto fail_locked;
8103 }
8104
8105 ret = i915_gem_object_put_fence(obj);
8106 if (ret) {
8107 DRM_DEBUG_KMS("failed to release fence for cursor");
8108 goto fail_unpin;
8109 }
8110
8111 addr = i915_gem_obj_ggtt_offset(obj);
8112 } else {
8113 int align = IS_I830(dev) ? 16 * 1024 : 256;
8114 ret = i915_gem_object_attach_phys(obj, align);
8115 if (ret) {
8116 DRM_DEBUG_KMS("failed to attach phys object\n");
8117 goto fail_locked;
8118 }
8119 addr = obj->phys_handle->busaddr;
8120 }
8121
8122 if (IS_GEN2(dev))
8123 I915_WRITE(CURSIZE, (height << 12) | width);
8124
8125 finish:
8126 if (intel_crtc->cursor_bo) {
8127 if (!INTEL_INFO(dev)->cursor_needs_physical)
8128 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8129 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8130 }
8131
8132 mutex_unlock(&dev->struct_mutex);
8133
8134 old_width = intel_crtc->cursor_width;
8135
8136 intel_crtc->cursor_addr = addr;
8137 intel_crtc->cursor_bo = obj;
8138 intel_crtc->cursor_width = width;
8139 intel_crtc->cursor_height = height;
8140
8141 if (intel_crtc->active) {
8142 if (old_width != width)
8143 intel_update_watermarks(crtc);
8144 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8145 }
8146
8147 return 0;
8148 fail_unpin:
8149 i915_gem_object_unpin_from_display_plane(obj);
8150 fail_locked:
8151 mutex_unlock(&dev->struct_mutex);
8152 fail:
8153 drm_gem_object_unreference_unlocked(&obj->base);
8154 return ret;
8155 }
8156
8157 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8158 {
8159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8160
8161 intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8162 intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8163
8164 if (intel_crtc->active)
8165 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8166
8167 return 0;
8168 }
8169
8170 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8171 u16 *blue, uint32_t start, uint32_t size)
8172 {
8173 int end = (start + size > 256) ? 256 : start + size, i;
8174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8175
8176 for (i = start; i < end; i++) {
8177 intel_crtc->lut_r[i] = red[i] >> 8;
8178 intel_crtc->lut_g[i] = green[i] >> 8;
8179 intel_crtc->lut_b[i] = blue[i] >> 8;
8180 }
8181
8182 intel_crtc_load_lut(crtc);
8183 }
8184
8185 /* VESA 640x480x72Hz mode to set on the pipe */
8186 static struct drm_display_mode load_detect_mode = {
8187 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8188 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8189 };
8190
8191 struct drm_framebuffer *
8192 __intel_framebuffer_create(struct drm_device *dev,
8193 struct drm_mode_fb_cmd2 *mode_cmd,
8194 struct drm_i915_gem_object *obj)
8195 {
8196 struct intel_framebuffer *intel_fb;
8197 int ret;
8198
8199 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8200 if (!intel_fb) {
8201 drm_gem_object_unreference_unlocked(&obj->base);
8202 return ERR_PTR(-ENOMEM);
8203 }
8204
8205 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8206 if (ret)
8207 goto err;
8208
8209 return &intel_fb->base;
8210 err:
8211 drm_gem_object_unreference_unlocked(&obj->base);
8212 kfree(intel_fb);
8213
8214 return ERR_PTR(ret);
8215 }
8216
8217 static struct drm_framebuffer *
8218 intel_framebuffer_create(struct drm_device *dev,
8219 struct drm_mode_fb_cmd2 *mode_cmd,
8220 struct drm_i915_gem_object *obj)
8221 {
8222 struct drm_framebuffer *fb;
8223 int ret;
8224
8225 ret = i915_mutex_lock_interruptible(dev);
8226 if (ret)
8227 return ERR_PTR(ret);
8228 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8229 mutex_unlock(&dev->struct_mutex);
8230
8231 return fb;
8232 }
8233
8234 static u32
8235 intel_framebuffer_pitch_for_width(int width, int bpp)
8236 {
8237 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8238 return ALIGN(pitch, 64);
8239 }
8240
8241 static u32
8242 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8243 {
8244 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8245 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8246 }
8247
8248 static struct drm_framebuffer *
8249 intel_framebuffer_create_for_mode(struct drm_device *dev,
8250 struct drm_display_mode *mode,
8251 int depth, int bpp)
8252 {
8253 struct drm_i915_gem_object *obj;
8254 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8255
8256 obj = i915_gem_alloc_object(dev,
8257 intel_framebuffer_size_for_mode(mode, bpp));
8258 if (obj == NULL)
8259 return ERR_PTR(-ENOMEM);
8260
8261 mode_cmd.width = mode->hdisplay;
8262 mode_cmd.height = mode->vdisplay;
8263 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8264 bpp);
8265 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8266
8267 return intel_framebuffer_create(dev, &mode_cmd, obj);
8268 }
8269
8270 static struct drm_framebuffer *
8271 mode_fits_in_fbdev(struct drm_device *dev,
8272 struct drm_display_mode *mode)
8273 {
8274 #ifdef CONFIG_DRM_I915_FBDEV
8275 struct drm_i915_private *dev_priv = dev->dev_private;
8276 struct drm_i915_gem_object *obj;
8277 struct drm_framebuffer *fb;
8278
8279 if (!dev_priv->fbdev)
8280 return NULL;
8281
8282 if (!dev_priv->fbdev->fb)
8283 return NULL;
8284
8285 obj = dev_priv->fbdev->fb->obj;
8286 BUG_ON(!obj);
8287
8288 fb = &dev_priv->fbdev->fb->base;
8289 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8290 fb->bits_per_pixel))
8291 return NULL;
8292
8293 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8294 return NULL;
8295
8296 return fb;
8297 #else
8298 return NULL;
8299 #endif
8300 }
8301
8302 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8303 struct drm_display_mode *mode,
8304 struct intel_load_detect_pipe *old,
8305 struct drm_modeset_acquire_ctx *ctx)
8306 {
8307 struct intel_crtc *intel_crtc;
8308 struct intel_encoder *intel_encoder =
8309 intel_attached_encoder(connector);
8310 struct drm_crtc *possible_crtc;
8311 struct drm_encoder *encoder = &intel_encoder->base;
8312 struct drm_crtc *crtc = NULL;
8313 struct drm_device *dev = encoder->dev;
8314 struct drm_framebuffer *fb;
8315 struct drm_mode_config *config = &dev->mode_config;
8316 int ret, i = -1;
8317
8318 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8319 connector->base.id, connector->name,
8320 encoder->base.id, encoder->name);
8321
8322 drm_modeset_acquire_init(ctx, 0);
8323
8324 retry:
8325 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8326 if (ret)
8327 goto fail_unlock;
8328
8329 /*
8330 * Algorithm gets a little messy:
8331 *
8332 * - if the connector already has an assigned crtc, use it (but make
8333 * sure it's on first)
8334 *
8335 * - try to find the first unused crtc that can drive this connector,
8336 * and use that if we find one
8337 */
8338
8339 /* See if we already have a CRTC for this connector */
8340 if (encoder->crtc) {
8341 crtc = encoder->crtc;
8342
8343 ret = drm_modeset_lock(&crtc->mutex, ctx);
8344 if (ret)
8345 goto fail_unlock;
8346
8347 old->dpms_mode = connector->dpms;
8348 old->load_detect_temp = false;
8349
8350 /* Make sure the crtc and connector are running */
8351 if (connector->dpms != DRM_MODE_DPMS_ON)
8352 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8353
8354 return true;
8355 }
8356
8357 /* Find an unused one (if possible) */
8358 for_each_crtc(dev, possible_crtc) {
8359 i++;
8360 if (!(encoder->possible_crtcs & (1 << i)))
8361 continue;
8362 if (!possible_crtc->enabled) {
8363 crtc = possible_crtc;
8364 break;
8365 }
8366 }
8367
8368 /*
8369 * If we didn't find an unused CRTC, don't use any.
8370 */
8371 if (!crtc) {
8372 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8373 goto fail_unlock;
8374 }
8375
8376 ret = drm_modeset_lock(&crtc->mutex, ctx);
8377 if (ret)
8378 goto fail_unlock;
8379 intel_encoder->new_crtc = to_intel_crtc(crtc);
8380 to_intel_connector(connector)->new_encoder = intel_encoder;
8381
8382 intel_crtc = to_intel_crtc(crtc);
8383 intel_crtc->new_enabled = true;
8384 intel_crtc->new_config = &intel_crtc->config;
8385 old->dpms_mode = connector->dpms;
8386 old->load_detect_temp = true;
8387 old->release_fb = NULL;
8388
8389 if (!mode)
8390 mode = &load_detect_mode;
8391
8392 /* We need a framebuffer large enough to accommodate all accesses
8393 * that the plane may generate whilst we perform load detection.
8394 * We can not rely on the fbcon either being present (we get called
8395 * during its initialisation to detect all boot displays, or it may
8396 * not even exist) or that it is large enough to satisfy the
8397 * requested mode.
8398 */
8399 fb = mode_fits_in_fbdev(dev, mode);
8400 if (fb == NULL) {
8401 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8402 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8403 old->release_fb = fb;
8404 } else
8405 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8406 if (IS_ERR(fb)) {
8407 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8408 goto fail;
8409 }
8410
8411 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8412 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8413 if (old->release_fb)
8414 old->release_fb->funcs->destroy(old->release_fb);
8415 goto fail;
8416 }
8417
8418 /* let the connector get through one full cycle before testing */
8419 intel_wait_for_vblank(dev, intel_crtc->pipe);
8420 return true;
8421
8422 fail:
8423 intel_crtc->new_enabled = crtc->enabled;
8424 if (intel_crtc->new_enabled)
8425 intel_crtc->new_config = &intel_crtc->config;
8426 else
8427 intel_crtc->new_config = NULL;
8428 fail_unlock:
8429 if (ret == -EDEADLK) {
8430 drm_modeset_backoff(ctx);
8431 goto retry;
8432 }
8433
8434 drm_modeset_drop_locks(ctx);
8435 drm_modeset_acquire_fini(ctx);
8436
8437 return false;
8438 }
8439
8440 void intel_release_load_detect_pipe(struct drm_connector *connector,
8441 struct intel_load_detect_pipe *old,
8442 struct drm_modeset_acquire_ctx *ctx)
8443 {
8444 struct intel_encoder *intel_encoder =
8445 intel_attached_encoder(connector);
8446 struct drm_encoder *encoder = &intel_encoder->base;
8447 struct drm_crtc *crtc = encoder->crtc;
8448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8449
8450 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8451 connector->base.id, connector->name,
8452 encoder->base.id, encoder->name);
8453
8454 if (old->load_detect_temp) {
8455 to_intel_connector(connector)->new_encoder = NULL;
8456 intel_encoder->new_crtc = NULL;
8457 intel_crtc->new_enabled = false;
8458 intel_crtc->new_config = NULL;
8459 intel_set_mode(crtc, NULL, 0, 0, NULL);
8460
8461 if (old->release_fb) {
8462 drm_framebuffer_unregister_private(old->release_fb);
8463 drm_framebuffer_unreference(old->release_fb);
8464 }
8465
8466 goto unlock;
8467 return;
8468 }
8469
8470 /* Switch crtc and encoder back off if necessary */
8471 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8472 connector->funcs->dpms(connector, old->dpms_mode);
8473
8474 unlock:
8475 drm_modeset_drop_locks(ctx);
8476 drm_modeset_acquire_fini(ctx);
8477 }
8478
8479 static int i9xx_pll_refclk(struct drm_device *dev,
8480 const struct intel_crtc_config *pipe_config)
8481 {
8482 struct drm_i915_private *dev_priv = dev->dev_private;
8483 u32 dpll = pipe_config->dpll_hw_state.dpll;
8484
8485 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8486 return dev_priv->vbt.lvds_ssc_freq;
8487 else if (HAS_PCH_SPLIT(dev))
8488 return 120000;
8489 else if (!IS_GEN2(dev))
8490 return 96000;
8491 else
8492 return 48000;
8493 }
8494
8495 /* Returns the clock of the currently programmed mode of the given pipe. */
8496 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8497 struct intel_crtc_config *pipe_config)
8498 {
8499 struct drm_device *dev = crtc->base.dev;
8500 struct drm_i915_private *dev_priv = dev->dev_private;
8501 int pipe = pipe_config->cpu_transcoder;
8502 u32 dpll = pipe_config->dpll_hw_state.dpll;
8503 u32 fp;
8504 intel_clock_t clock;
8505 int refclk = i9xx_pll_refclk(dev, pipe_config);
8506
8507 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8508 fp = pipe_config->dpll_hw_state.fp0;
8509 else
8510 fp = pipe_config->dpll_hw_state.fp1;
8511
8512 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8513 if (IS_PINEVIEW(dev)) {
8514 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8515 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8516 } else {
8517 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8518 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8519 }
8520
8521 if (!IS_GEN2(dev)) {
8522 if (IS_PINEVIEW(dev))
8523 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8524 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8525 else
8526 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8527 DPLL_FPA01_P1_POST_DIV_SHIFT);
8528
8529 switch (dpll & DPLL_MODE_MASK) {
8530 case DPLLB_MODE_DAC_SERIAL:
8531 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8532 5 : 10;
8533 break;
8534 case DPLLB_MODE_LVDS:
8535 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8536 7 : 14;
8537 break;
8538 default:
8539 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8540 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8541 return;
8542 }
8543
8544 if (IS_PINEVIEW(dev))
8545 pineview_clock(refclk, &clock);
8546 else
8547 i9xx_clock(refclk, &clock);
8548 } else {
8549 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8550 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8551
8552 if (is_lvds) {
8553 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8554 DPLL_FPA01_P1_POST_DIV_SHIFT);
8555
8556 if (lvds & LVDS_CLKB_POWER_UP)
8557 clock.p2 = 7;
8558 else
8559 clock.p2 = 14;
8560 } else {
8561 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8562 clock.p1 = 2;
8563 else {
8564 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8565 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8566 }
8567 if (dpll & PLL_P2_DIVIDE_BY_4)
8568 clock.p2 = 4;
8569 else
8570 clock.p2 = 2;
8571 }
8572
8573 i9xx_clock(refclk, &clock);
8574 }
8575
8576 /*
8577 * This value includes pixel_multiplier. We will use
8578 * port_clock to compute adjusted_mode.crtc_clock in the
8579 * encoder's get_config() function.
8580 */
8581 pipe_config->port_clock = clock.dot;
8582 }
8583
8584 int intel_dotclock_calculate(int link_freq,
8585 const struct intel_link_m_n *m_n)
8586 {
8587 /*
8588 * The calculation for the data clock is:
8589 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8590 * But we want to avoid losing precison if possible, so:
8591 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8592 *
8593 * and the link clock is simpler:
8594 * link_clock = (m * link_clock) / n
8595 */
8596
8597 if (!m_n->link_n)
8598 return 0;
8599
8600 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8601 }
8602
8603 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8604 struct intel_crtc_config *pipe_config)
8605 {
8606 struct drm_device *dev = crtc->base.dev;
8607
8608 /* read out port_clock from the DPLL */
8609 i9xx_crtc_clock_get(crtc, pipe_config);
8610
8611 /*
8612 * This value does not include pixel_multiplier.
8613 * We will check that port_clock and adjusted_mode.crtc_clock
8614 * agree once we know their relationship in the encoder's
8615 * get_config() function.
8616 */
8617 pipe_config->adjusted_mode.crtc_clock =
8618 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8619 &pipe_config->fdi_m_n);
8620 }
8621
8622 /** Returns the currently programmed mode of the given pipe. */
8623 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8624 struct drm_crtc *crtc)
8625 {
8626 struct drm_i915_private *dev_priv = dev->dev_private;
8627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8628 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8629 struct drm_display_mode *mode;
8630 struct intel_crtc_config pipe_config;
8631 int htot = I915_READ(HTOTAL(cpu_transcoder));
8632 int hsync = I915_READ(HSYNC(cpu_transcoder));
8633 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8634 int vsync = I915_READ(VSYNC(cpu_transcoder));
8635 enum pipe pipe = intel_crtc->pipe;
8636
8637 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8638 if (!mode)
8639 return NULL;
8640
8641 /*
8642 * Construct a pipe_config sufficient for getting the clock info
8643 * back out of crtc_clock_get.
8644 *
8645 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8646 * to use a real value here instead.
8647 */
8648 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8649 pipe_config.pixel_multiplier = 1;
8650 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8651 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8652 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8653 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8654
8655 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8656 mode->hdisplay = (htot & 0xffff) + 1;
8657 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8658 mode->hsync_start = (hsync & 0xffff) + 1;
8659 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8660 mode->vdisplay = (vtot & 0xffff) + 1;
8661 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8662 mode->vsync_start = (vsync & 0xffff) + 1;
8663 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8664
8665 drm_mode_set_name(mode);
8666
8667 return mode;
8668 }
8669
8670 static void intel_increase_pllclock(struct drm_crtc *crtc)
8671 {
8672 struct drm_device *dev = crtc->dev;
8673 struct drm_i915_private *dev_priv = dev->dev_private;
8674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8675 int pipe = intel_crtc->pipe;
8676 int dpll_reg = DPLL(pipe);
8677 int dpll;
8678
8679 if (HAS_PCH_SPLIT(dev))
8680 return;
8681
8682 if (!dev_priv->lvds_downclock_avail)
8683 return;
8684
8685 dpll = I915_READ(dpll_reg);
8686 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8687 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8688
8689 assert_panel_unlocked(dev_priv, pipe);
8690
8691 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8692 I915_WRITE(dpll_reg, dpll);
8693 intel_wait_for_vblank(dev, pipe);
8694
8695 dpll = I915_READ(dpll_reg);
8696 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8697 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8698 }
8699 }
8700
8701 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8702 {
8703 struct drm_device *dev = crtc->dev;
8704 struct drm_i915_private *dev_priv = dev->dev_private;
8705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8706
8707 if (HAS_PCH_SPLIT(dev))
8708 return;
8709
8710 if (!dev_priv->lvds_downclock_avail)
8711 return;
8712
8713 /*
8714 * Since this is called by a timer, we should never get here in
8715 * the manual case.
8716 */
8717 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8718 int pipe = intel_crtc->pipe;
8719 int dpll_reg = DPLL(pipe);
8720 int dpll;
8721
8722 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8723
8724 assert_panel_unlocked(dev_priv, pipe);
8725
8726 dpll = I915_READ(dpll_reg);
8727 dpll |= DISPLAY_RATE_SELECT_FPA1;
8728 I915_WRITE(dpll_reg, dpll);
8729 intel_wait_for_vblank(dev, pipe);
8730 dpll = I915_READ(dpll_reg);
8731 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8732 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8733 }
8734
8735 }
8736
8737 void intel_mark_busy(struct drm_device *dev)
8738 {
8739 struct drm_i915_private *dev_priv = dev->dev_private;
8740
8741 if (dev_priv->mm.busy)
8742 return;
8743
8744 intel_runtime_pm_get(dev_priv);
8745 i915_update_gfx_val(dev_priv);
8746 dev_priv->mm.busy = true;
8747 }
8748
8749 void intel_mark_idle(struct drm_device *dev)
8750 {
8751 struct drm_i915_private *dev_priv = dev->dev_private;
8752 struct drm_crtc *crtc;
8753
8754 if (!dev_priv->mm.busy)
8755 return;
8756
8757 dev_priv->mm.busy = false;
8758
8759 if (!i915.powersave)
8760 goto out;
8761
8762 for_each_crtc(dev, crtc) {
8763 if (!crtc->primary->fb)
8764 continue;
8765
8766 intel_decrease_pllclock(crtc);
8767 }
8768
8769 if (INTEL_INFO(dev)->gen >= 6)
8770 gen6_rps_idle(dev->dev_private);
8771
8772 out:
8773 intel_runtime_pm_put(dev_priv);
8774 }
8775
8776 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8777 struct intel_engine_cs *ring)
8778 {
8779 struct drm_device *dev = obj->base.dev;
8780 struct drm_crtc *crtc;
8781
8782 if (!i915.powersave)
8783 return;
8784
8785 for_each_crtc(dev, crtc) {
8786 if (!crtc->primary->fb)
8787 continue;
8788
8789 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8790 continue;
8791
8792 intel_increase_pllclock(crtc);
8793 if (ring && intel_fbc_enabled(dev))
8794 ring->fbc_dirty = true;
8795 }
8796 }
8797
8798 static void intel_crtc_destroy(struct drm_crtc *crtc)
8799 {
8800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8801 struct drm_device *dev = crtc->dev;
8802 struct intel_unpin_work *work;
8803 unsigned long flags;
8804
8805 spin_lock_irqsave(&dev->event_lock, flags);
8806 work = intel_crtc->unpin_work;
8807 intel_crtc->unpin_work = NULL;
8808 spin_unlock_irqrestore(&dev->event_lock, flags);
8809
8810 if (work) {
8811 cancel_work_sync(&work->work);
8812 kfree(work);
8813 }
8814
8815 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8816
8817 drm_crtc_cleanup(crtc);
8818
8819 kfree(intel_crtc);
8820 }
8821
8822 static void intel_unpin_work_fn(struct work_struct *__work)
8823 {
8824 struct intel_unpin_work *work =
8825 container_of(__work, struct intel_unpin_work, work);
8826 struct drm_device *dev = work->crtc->dev;
8827
8828 mutex_lock(&dev->struct_mutex);
8829 intel_unpin_fb_obj(work->old_fb_obj);
8830 drm_gem_object_unreference(&work->pending_flip_obj->base);
8831 drm_gem_object_unreference(&work->old_fb_obj->base);
8832
8833 intel_update_fbc(dev);
8834 mutex_unlock(&dev->struct_mutex);
8835
8836 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8837 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8838
8839 kfree(work);
8840 }
8841
8842 static void do_intel_finish_page_flip(struct drm_device *dev,
8843 struct drm_crtc *crtc)
8844 {
8845 struct drm_i915_private *dev_priv = dev->dev_private;
8846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8847 struct intel_unpin_work *work;
8848 unsigned long flags;
8849
8850 /* Ignore early vblank irqs */
8851 if (intel_crtc == NULL)
8852 return;
8853
8854 spin_lock_irqsave(&dev->event_lock, flags);
8855 work = intel_crtc->unpin_work;
8856
8857 /* Ensure we don't miss a work->pending update ... */
8858 smp_rmb();
8859
8860 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8861 spin_unlock_irqrestore(&dev->event_lock, flags);
8862 return;
8863 }
8864
8865 /* and that the unpin work is consistent wrt ->pending. */
8866 smp_rmb();
8867
8868 intel_crtc->unpin_work = NULL;
8869
8870 if (work->event)
8871 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8872
8873 drm_crtc_vblank_put(crtc);
8874
8875 spin_unlock_irqrestore(&dev->event_lock, flags);
8876
8877 wake_up_all(&dev_priv->pending_flip_queue);
8878
8879 queue_work(dev_priv->wq, &work->work);
8880
8881 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8882 }
8883
8884 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8885 {
8886 struct drm_i915_private *dev_priv = dev->dev_private;
8887 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8888
8889 do_intel_finish_page_flip(dev, crtc);
8890 }
8891
8892 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8893 {
8894 struct drm_i915_private *dev_priv = dev->dev_private;
8895 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8896
8897 do_intel_finish_page_flip(dev, crtc);
8898 }
8899
8900 /* Is 'a' after or equal to 'b'? */
8901 static bool g4x_flip_count_after_eq(u32 a, u32 b)
8902 {
8903 return !((a - b) & 0x80000000);
8904 }
8905
8906 static bool page_flip_finished(struct intel_crtc *crtc)
8907 {
8908 struct drm_device *dev = crtc->base.dev;
8909 struct drm_i915_private *dev_priv = dev->dev_private;
8910
8911 /*
8912 * The relevant registers doen't exist on pre-ctg.
8913 * As the flip done interrupt doesn't trigger for mmio
8914 * flips on gmch platforms, a flip count check isn't
8915 * really needed there. But since ctg has the registers,
8916 * include it in the check anyway.
8917 */
8918 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
8919 return true;
8920
8921 /*
8922 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
8923 * used the same base address. In that case the mmio flip might
8924 * have completed, but the CS hasn't even executed the flip yet.
8925 *
8926 * A flip count check isn't enough as the CS might have updated
8927 * the base address just after start of vblank, but before we
8928 * managed to process the interrupt. This means we'd complete the
8929 * CS flip too soon.
8930 *
8931 * Combining both checks should get us a good enough result. It may
8932 * still happen that the CS flip has been executed, but has not
8933 * yet actually completed. But in case the base address is the same
8934 * anyway, we don't really care.
8935 */
8936 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
8937 crtc->unpin_work->gtt_offset &&
8938 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
8939 crtc->unpin_work->flip_count);
8940 }
8941
8942 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8943 {
8944 struct drm_i915_private *dev_priv = dev->dev_private;
8945 struct intel_crtc *intel_crtc =
8946 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8947 unsigned long flags;
8948
8949 /* NB: An MMIO update of the plane base pointer will also
8950 * generate a page-flip completion irq, i.e. every modeset
8951 * is also accompanied by a spurious intel_prepare_page_flip().
8952 */
8953 spin_lock_irqsave(&dev->event_lock, flags);
8954 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
8955 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8956 spin_unlock_irqrestore(&dev->event_lock, flags);
8957 }
8958
8959 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8960 {
8961 /* Ensure that the work item is consistent when activating it ... */
8962 smp_wmb();
8963 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8964 /* and that it is marked active as soon as the irq could fire. */
8965 smp_wmb();
8966 }
8967
8968 static int intel_gen2_queue_flip(struct drm_device *dev,
8969 struct drm_crtc *crtc,
8970 struct drm_framebuffer *fb,
8971 struct drm_i915_gem_object *obj,
8972 struct intel_engine_cs *ring,
8973 uint32_t flags)
8974 {
8975 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8976 u32 flip_mask;
8977 int ret;
8978
8979 ret = intel_ring_begin(ring, 6);
8980 if (ret)
8981 return ret;
8982
8983 /* Can't queue multiple flips, so wait for the previous
8984 * one to finish before executing the next.
8985 */
8986 if (intel_crtc->plane)
8987 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8988 else
8989 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8990 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8991 intel_ring_emit(ring, MI_NOOP);
8992 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8993 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8994 intel_ring_emit(ring, fb->pitches[0]);
8995 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8996 intel_ring_emit(ring, 0); /* aux display base address, unused */
8997
8998 intel_mark_page_flip_active(intel_crtc);
8999 __intel_ring_advance(ring);
9000 return 0;
9001 }
9002
9003 static int intel_gen3_queue_flip(struct drm_device *dev,
9004 struct drm_crtc *crtc,
9005 struct drm_framebuffer *fb,
9006 struct drm_i915_gem_object *obj,
9007 struct intel_engine_cs *ring,
9008 uint32_t flags)
9009 {
9010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9011 u32 flip_mask;
9012 int ret;
9013
9014 ret = intel_ring_begin(ring, 6);
9015 if (ret)
9016 return ret;
9017
9018 if (intel_crtc->plane)
9019 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9020 else
9021 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9022 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9023 intel_ring_emit(ring, MI_NOOP);
9024 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9025 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9026 intel_ring_emit(ring, fb->pitches[0]);
9027 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9028 intel_ring_emit(ring, MI_NOOP);
9029
9030 intel_mark_page_flip_active(intel_crtc);
9031 __intel_ring_advance(ring);
9032 return 0;
9033 }
9034
9035 static int intel_gen4_queue_flip(struct drm_device *dev,
9036 struct drm_crtc *crtc,
9037 struct drm_framebuffer *fb,
9038 struct drm_i915_gem_object *obj,
9039 struct intel_engine_cs *ring,
9040 uint32_t flags)
9041 {
9042 struct drm_i915_private *dev_priv = dev->dev_private;
9043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9044 uint32_t pf, pipesrc;
9045 int ret;
9046
9047 ret = intel_ring_begin(ring, 4);
9048 if (ret)
9049 return ret;
9050
9051 /* i965+ uses the linear or tiled offsets from the
9052 * Display Registers (which do not change across a page-flip)
9053 * so we need only reprogram the base address.
9054 */
9055 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9056 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9057 intel_ring_emit(ring, fb->pitches[0]);
9058 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9059 obj->tiling_mode);
9060
9061 /* XXX Enabling the panel-fitter across page-flip is so far
9062 * untested on non-native modes, so ignore it for now.
9063 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9064 */
9065 pf = 0;
9066 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9067 intel_ring_emit(ring, pf | pipesrc);
9068
9069 intel_mark_page_flip_active(intel_crtc);
9070 __intel_ring_advance(ring);
9071 return 0;
9072 }
9073
9074 static int intel_gen6_queue_flip(struct drm_device *dev,
9075 struct drm_crtc *crtc,
9076 struct drm_framebuffer *fb,
9077 struct drm_i915_gem_object *obj,
9078 struct intel_engine_cs *ring,
9079 uint32_t flags)
9080 {
9081 struct drm_i915_private *dev_priv = dev->dev_private;
9082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9083 uint32_t pf, pipesrc;
9084 int ret;
9085
9086 ret = intel_ring_begin(ring, 4);
9087 if (ret)
9088 return ret;
9089
9090 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9091 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9092 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9093 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9094
9095 /* Contrary to the suggestions in the documentation,
9096 * "Enable Panel Fitter" does not seem to be required when page
9097 * flipping with a non-native mode, and worse causes a normal
9098 * modeset to fail.
9099 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9100 */
9101 pf = 0;
9102 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9103 intel_ring_emit(ring, pf | pipesrc);
9104
9105 intel_mark_page_flip_active(intel_crtc);
9106 __intel_ring_advance(ring);
9107 return 0;
9108 }
9109
9110 static int intel_gen7_queue_flip(struct drm_device *dev,
9111 struct drm_crtc *crtc,
9112 struct drm_framebuffer *fb,
9113 struct drm_i915_gem_object *obj,
9114 struct intel_engine_cs *ring,
9115 uint32_t flags)
9116 {
9117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9118 uint32_t plane_bit = 0;
9119 int len, ret;
9120
9121 switch (intel_crtc->plane) {
9122 case PLANE_A:
9123 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9124 break;
9125 case PLANE_B:
9126 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9127 break;
9128 case PLANE_C:
9129 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9130 break;
9131 default:
9132 WARN_ONCE(1, "unknown plane in flip command\n");
9133 return -ENODEV;
9134 }
9135
9136 len = 4;
9137 if (ring->id == RCS) {
9138 len += 6;
9139 /*
9140 * On Gen 8, SRM is now taking an extra dword to accommodate
9141 * 48bits addresses, and we need a NOOP for the batch size to
9142 * stay even.
9143 */
9144 if (IS_GEN8(dev))
9145 len += 2;
9146 }
9147
9148 /*
9149 * BSpec MI_DISPLAY_FLIP for IVB:
9150 * "The full packet must be contained within the same cache line."
9151 *
9152 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9153 * cacheline, if we ever start emitting more commands before
9154 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9155 * then do the cacheline alignment, and finally emit the
9156 * MI_DISPLAY_FLIP.
9157 */
9158 ret = intel_ring_cacheline_align(ring);
9159 if (ret)
9160 return ret;
9161
9162 ret = intel_ring_begin(ring, len);
9163 if (ret)
9164 return ret;
9165
9166 /* Unmask the flip-done completion message. Note that the bspec says that
9167 * we should do this for both the BCS and RCS, and that we must not unmask
9168 * more than one flip event at any time (or ensure that one flip message
9169 * can be sent by waiting for flip-done prior to queueing new flips).
9170 * Experimentation says that BCS works despite DERRMR masking all
9171 * flip-done completion events and that unmasking all planes at once
9172 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9173 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9174 */
9175 if (ring->id == RCS) {
9176 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9177 intel_ring_emit(ring, DERRMR);
9178 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9179 DERRMR_PIPEB_PRI_FLIP_DONE |
9180 DERRMR_PIPEC_PRI_FLIP_DONE));
9181 if (IS_GEN8(dev))
9182 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9183 MI_SRM_LRM_GLOBAL_GTT);
9184 else
9185 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9186 MI_SRM_LRM_GLOBAL_GTT);
9187 intel_ring_emit(ring, DERRMR);
9188 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9189 if (IS_GEN8(dev)) {
9190 intel_ring_emit(ring, 0);
9191 intel_ring_emit(ring, MI_NOOP);
9192 }
9193 }
9194
9195 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9196 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9197 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9198 intel_ring_emit(ring, (MI_NOOP));
9199
9200 intel_mark_page_flip_active(intel_crtc);
9201 __intel_ring_advance(ring);
9202 return 0;
9203 }
9204
9205 static int intel_default_queue_flip(struct drm_device *dev,
9206 struct drm_crtc *crtc,
9207 struct drm_framebuffer *fb,
9208 struct drm_i915_gem_object *obj,
9209 struct intel_engine_cs *ring,
9210 uint32_t flags)
9211 {
9212 return -ENODEV;
9213 }
9214
9215 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9216 struct drm_framebuffer *fb,
9217 struct drm_pending_vblank_event *event,
9218 uint32_t page_flip_flags)
9219 {
9220 struct drm_device *dev = crtc->dev;
9221 struct drm_i915_private *dev_priv = dev->dev_private;
9222 struct drm_framebuffer *old_fb = crtc->primary->fb;
9223 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9225 struct intel_unpin_work *work;
9226 struct intel_engine_cs *ring;
9227 unsigned long flags;
9228 int ret;
9229
9230 /* Can't change pixel format via MI display flips. */
9231 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9232 return -EINVAL;
9233
9234 /*
9235 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9236 * Note that pitch changes could also affect these register.
9237 */
9238 if (INTEL_INFO(dev)->gen > 3 &&
9239 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9240 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9241 return -EINVAL;
9242
9243 if (i915_terminally_wedged(&dev_priv->gpu_error))
9244 goto out_hang;
9245
9246 work = kzalloc(sizeof(*work), GFP_KERNEL);
9247 if (work == NULL)
9248 return -ENOMEM;
9249
9250 work->event = event;
9251 work->crtc = crtc;
9252 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9253 INIT_WORK(&work->work, intel_unpin_work_fn);
9254
9255 ret = drm_crtc_vblank_get(crtc);
9256 if (ret)
9257 goto free_work;
9258
9259 /* We borrow the event spin lock for protecting unpin_work */
9260 spin_lock_irqsave(&dev->event_lock, flags);
9261 if (intel_crtc->unpin_work) {
9262 spin_unlock_irqrestore(&dev->event_lock, flags);
9263 kfree(work);
9264 drm_crtc_vblank_put(crtc);
9265
9266 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9267 return -EBUSY;
9268 }
9269 intel_crtc->unpin_work = work;
9270 spin_unlock_irqrestore(&dev->event_lock, flags);
9271
9272 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9273 flush_workqueue(dev_priv->wq);
9274
9275 ret = i915_mutex_lock_interruptible(dev);
9276 if (ret)
9277 goto cleanup;
9278
9279 /* Reference the objects for the scheduled work. */
9280 drm_gem_object_reference(&work->old_fb_obj->base);
9281 drm_gem_object_reference(&obj->base);
9282
9283 crtc->primary->fb = fb;
9284
9285 work->pending_flip_obj = obj;
9286
9287 work->enable_stall_check = true;
9288
9289 atomic_inc(&intel_crtc->unpin_work_count);
9290 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9291
9292 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9293 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(intel_crtc->pipe)) + 1;
9294
9295 if (IS_VALLEYVIEW(dev)) {
9296 ring = &dev_priv->ring[BCS];
9297 } else if (INTEL_INFO(dev)->gen >= 7) {
9298 ring = obj->ring;
9299 if (ring == NULL || ring->id != RCS)
9300 ring = &dev_priv->ring[BCS];
9301 } else {
9302 ring = &dev_priv->ring[RCS];
9303 }
9304
9305 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9306 if (ret)
9307 goto cleanup_pending;
9308
9309 work->gtt_offset =
9310 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9311
9312 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring, page_flip_flags);
9313 if (ret)
9314 goto cleanup_unpin;
9315
9316 intel_disable_fbc(dev);
9317 intel_mark_fb_busy(obj, NULL);
9318 mutex_unlock(&dev->struct_mutex);
9319
9320 trace_i915_flip_request(intel_crtc->plane, obj);
9321
9322 return 0;
9323
9324 cleanup_unpin:
9325 intel_unpin_fb_obj(obj);
9326 cleanup_pending:
9327 atomic_dec(&intel_crtc->unpin_work_count);
9328 crtc->primary->fb = old_fb;
9329 drm_gem_object_unreference(&work->old_fb_obj->base);
9330 drm_gem_object_unreference(&obj->base);
9331 mutex_unlock(&dev->struct_mutex);
9332
9333 cleanup:
9334 spin_lock_irqsave(&dev->event_lock, flags);
9335 intel_crtc->unpin_work = NULL;
9336 spin_unlock_irqrestore(&dev->event_lock, flags);
9337
9338 drm_crtc_vblank_put(crtc);
9339 free_work:
9340 kfree(work);
9341
9342 if (ret == -EIO) {
9343 out_hang:
9344 intel_crtc_wait_for_pending_flips(crtc);
9345 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9346 if (ret == 0 && event)
9347 drm_send_vblank_event(dev, intel_crtc->pipe, event);
9348 }
9349 return ret;
9350 }
9351
9352 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9353 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9354 .load_lut = intel_crtc_load_lut,
9355 };
9356
9357 /**
9358 * intel_modeset_update_staged_output_state
9359 *
9360 * Updates the staged output configuration state, e.g. after we've read out the
9361 * current hw state.
9362 */
9363 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9364 {
9365 struct intel_crtc *crtc;
9366 struct intel_encoder *encoder;
9367 struct intel_connector *connector;
9368
9369 list_for_each_entry(connector, &dev->mode_config.connector_list,
9370 base.head) {
9371 connector->new_encoder =
9372 to_intel_encoder(connector->base.encoder);
9373 }
9374
9375 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9376 base.head) {
9377 encoder->new_crtc =
9378 to_intel_crtc(encoder->base.crtc);
9379 }
9380
9381 for_each_intel_crtc(dev, crtc) {
9382 crtc->new_enabled = crtc->base.enabled;
9383
9384 if (crtc->new_enabled)
9385 crtc->new_config = &crtc->config;
9386 else
9387 crtc->new_config = NULL;
9388 }
9389 }
9390
9391 /**
9392 * intel_modeset_commit_output_state
9393 *
9394 * This function copies the stage display pipe configuration to the real one.
9395 */
9396 static void intel_modeset_commit_output_state(struct drm_device *dev)
9397 {
9398 struct intel_crtc *crtc;
9399 struct intel_encoder *encoder;
9400 struct intel_connector *connector;
9401
9402 list_for_each_entry(connector, &dev->mode_config.connector_list,
9403 base.head) {
9404 connector->base.encoder = &connector->new_encoder->base;
9405 }
9406
9407 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9408 base.head) {
9409 encoder->base.crtc = &encoder->new_crtc->base;
9410 }
9411
9412 for_each_intel_crtc(dev, crtc) {
9413 crtc->base.enabled = crtc->new_enabled;
9414 }
9415 }
9416
9417 static void
9418 connected_sink_compute_bpp(struct intel_connector *connector,
9419 struct intel_crtc_config *pipe_config)
9420 {
9421 int bpp = pipe_config->pipe_bpp;
9422
9423 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9424 connector->base.base.id,
9425 connector->base.name);
9426
9427 /* Don't use an invalid EDID bpc value */
9428 if (connector->base.display_info.bpc &&
9429 connector->base.display_info.bpc * 3 < bpp) {
9430 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9431 bpp, connector->base.display_info.bpc*3);
9432 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9433 }
9434
9435 /* Clamp bpp to 8 on screens without EDID 1.4 */
9436 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9437 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9438 bpp);
9439 pipe_config->pipe_bpp = 24;
9440 }
9441 }
9442
9443 static int
9444 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9445 struct drm_framebuffer *fb,
9446 struct intel_crtc_config *pipe_config)
9447 {
9448 struct drm_device *dev = crtc->base.dev;
9449 struct intel_connector *connector;
9450 int bpp;
9451
9452 switch (fb->pixel_format) {
9453 case DRM_FORMAT_C8:
9454 bpp = 8*3; /* since we go through a colormap */
9455 break;
9456 case DRM_FORMAT_XRGB1555:
9457 case DRM_FORMAT_ARGB1555:
9458 /* checked in intel_framebuffer_init already */
9459 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9460 return -EINVAL;
9461 case DRM_FORMAT_RGB565:
9462 bpp = 6*3; /* min is 18bpp */
9463 break;
9464 case DRM_FORMAT_XBGR8888:
9465 case DRM_FORMAT_ABGR8888:
9466 /* checked in intel_framebuffer_init already */
9467 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9468 return -EINVAL;
9469 case DRM_FORMAT_XRGB8888:
9470 case DRM_FORMAT_ARGB8888:
9471 bpp = 8*3;
9472 break;
9473 case DRM_FORMAT_XRGB2101010:
9474 case DRM_FORMAT_ARGB2101010:
9475 case DRM_FORMAT_XBGR2101010:
9476 case DRM_FORMAT_ABGR2101010:
9477 /* checked in intel_framebuffer_init already */
9478 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9479 return -EINVAL;
9480 bpp = 10*3;
9481 break;
9482 /* TODO: gen4+ supports 16 bpc floating point, too. */
9483 default:
9484 DRM_DEBUG_KMS("unsupported depth\n");
9485 return -EINVAL;
9486 }
9487
9488 pipe_config->pipe_bpp = bpp;
9489
9490 /* Clamp display bpp to EDID value */
9491 list_for_each_entry(connector, &dev->mode_config.connector_list,
9492 base.head) {
9493 if (!connector->new_encoder ||
9494 connector->new_encoder->new_crtc != crtc)
9495 continue;
9496
9497 connected_sink_compute_bpp(connector, pipe_config);
9498 }
9499
9500 return bpp;
9501 }
9502
9503 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9504 {
9505 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9506 "type: 0x%x flags: 0x%x\n",
9507 mode->crtc_clock,
9508 mode->crtc_hdisplay, mode->crtc_hsync_start,
9509 mode->crtc_hsync_end, mode->crtc_htotal,
9510 mode->crtc_vdisplay, mode->crtc_vsync_start,
9511 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9512 }
9513
9514 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9515 struct intel_crtc_config *pipe_config,
9516 const char *context)
9517 {
9518 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9519 context, pipe_name(crtc->pipe));
9520
9521 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9522 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9523 pipe_config->pipe_bpp, pipe_config->dither);
9524 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9525 pipe_config->has_pch_encoder,
9526 pipe_config->fdi_lanes,
9527 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9528 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9529 pipe_config->fdi_m_n.tu);
9530 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9531 pipe_config->has_dp_encoder,
9532 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9533 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9534 pipe_config->dp_m_n.tu);
9535 DRM_DEBUG_KMS("requested mode:\n");
9536 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9537 DRM_DEBUG_KMS("adjusted mode:\n");
9538 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9539 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9540 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9541 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9542 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9543 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9544 pipe_config->gmch_pfit.control,
9545 pipe_config->gmch_pfit.pgm_ratios,
9546 pipe_config->gmch_pfit.lvds_border_bits);
9547 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9548 pipe_config->pch_pfit.pos,
9549 pipe_config->pch_pfit.size,
9550 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9551 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9552 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9553 }
9554
9555 static bool encoders_cloneable(const struct intel_encoder *a,
9556 const struct intel_encoder *b)
9557 {
9558 /* masks could be asymmetric, so check both ways */
9559 return a == b || (a->cloneable & (1 << b->type) &&
9560 b->cloneable & (1 << a->type));
9561 }
9562
9563 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9564 struct intel_encoder *encoder)
9565 {
9566 struct drm_device *dev = crtc->base.dev;
9567 struct intel_encoder *source_encoder;
9568
9569 list_for_each_entry(source_encoder,
9570 &dev->mode_config.encoder_list, base.head) {
9571 if (source_encoder->new_crtc != crtc)
9572 continue;
9573
9574 if (!encoders_cloneable(encoder, source_encoder))
9575 return false;
9576 }
9577
9578 return true;
9579 }
9580
9581 static bool check_encoder_cloning(struct intel_crtc *crtc)
9582 {
9583 struct drm_device *dev = crtc->base.dev;
9584 struct intel_encoder *encoder;
9585
9586 list_for_each_entry(encoder,
9587 &dev->mode_config.encoder_list, base.head) {
9588 if (encoder->new_crtc != crtc)
9589 continue;
9590
9591 if (!check_single_encoder_cloning(crtc, encoder))
9592 return false;
9593 }
9594
9595 return true;
9596 }
9597
9598 static struct intel_crtc_config *
9599 intel_modeset_pipe_config(struct drm_crtc *crtc,
9600 struct drm_framebuffer *fb,
9601 struct drm_display_mode *mode)
9602 {
9603 struct drm_device *dev = crtc->dev;
9604 struct intel_encoder *encoder;
9605 struct intel_crtc_config *pipe_config;
9606 int plane_bpp, ret = -EINVAL;
9607 bool retry = true;
9608
9609 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9610 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9611 return ERR_PTR(-EINVAL);
9612 }
9613
9614 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9615 if (!pipe_config)
9616 return ERR_PTR(-ENOMEM);
9617
9618 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9619 drm_mode_copy(&pipe_config->requested_mode, mode);
9620
9621 pipe_config->cpu_transcoder =
9622 (enum transcoder) to_intel_crtc(crtc)->pipe;
9623 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9624
9625 /*
9626 * Sanitize sync polarity flags based on requested ones. If neither
9627 * positive or negative polarity is requested, treat this as meaning
9628 * negative polarity.
9629 */
9630 if (!(pipe_config->adjusted_mode.flags &
9631 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9632 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9633
9634 if (!(pipe_config->adjusted_mode.flags &
9635 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9636 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9637
9638 /* Compute a starting value for pipe_config->pipe_bpp taking the source
9639 * plane pixel format and any sink constraints into account. Returns the
9640 * source plane bpp so that dithering can be selected on mismatches
9641 * after encoders and crtc also have had their say. */
9642 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9643 fb, pipe_config);
9644 if (plane_bpp < 0)
9645 goto fail;
9646
9647 /*
9648 * Determine the real pipe dimensions. Note that stereo modes can
9649 * increase the actual pipe size due to the frame doubling and
9650 * insertion of additional space for blanks between the frame. This
9651 * is stored in the crtc timings. We use the requested mode to do this
9652 * computation to clearly distinguish it from the adjusted mode, which
9653 * can be changed by the connectors in the below retry loop.
9654 */
9655 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9656 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9657 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9658
9659 encoder_retry:
9660 /* Ensure the port clock defaults are reset when retrying. */
9661 pipe_config->port_clock = 0;
9662 pipe_config->pixel_multiplier = 1;
9663
9664 /* Fill in default crtc timings, allow encoders to overwrite them. */
9665 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9666
9667 /* Pass our mode to the connectors and the CRTC to give them a chance to
9668 * adjust it according to limitations or connector properties, and also
9669 * a chance to reject the mode entirely.
9670 */
9671 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9672 base.head) {
9673
9674 if (&encoder->new_crtc->base != crtc)
9675 continue;
9676
9677 if (!(encoder->compute_config(encoder, pipe_config))) {
9678 DRM_DEBUG_KMS("Encoder config failure\n");
9679 goto fail;
9680 }
9681 }
9682
9683 /* Set default port clock if not overwritten by the encoder. Needs to be
9684 * done afterwards in case the encoder adjusts the mode. */
9685 if (!pipe_config->port_clock)
9686 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9687 * pipe_config->pixel_multiplier;
9688
9689 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9690 if (ret < 0) {
9691 DRM_DEBUG_KMS("CRTC fixup failed\n");
9692 goto fail;
9693 }
9694
9695 if (ret == RETRY) {
9696 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9697 ret = -EINVAL;
9698 goto fail;
9699 }
9700
9701 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9702 retry = false;
9703 goto encoder_retry;
9704 }
9705
9706 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9707 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9708 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9709
9710 return pipe_config;
9711 fail:
9712 kfree(pipe_config);
9713 return ERR_PTR(ret);
9714 }
9715
9716 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9717 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9718 static void
9719 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9720 unsigned *prepare_pipes, unsigned *disable_pipes)
9721 {
9722 struct intel_crtc *intel_crtc;
9723 struct drm_device *dev = crtc->dev;
9724 struct intel_encoder *encoder;
9725 struct intel_connector *connector;
9726 struct drm_crtc *tmp_crtc;
9727
9728 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9729
9730 /* Check which crtcs have changed outputs connected to them, these need
9731 * to be part of the prepare_pipes mask. We don't (yet) support global
9732 * modeset across multiple crtcs, so modeset_pipes will only have one
9733 * bit set at most. */
9734 list_for_each_entry(connector, &dev->mode_config.connector_list,
9735 base.head) {
9736 if (connector->base.encoder == &connector->new_encoder->base)
9737 continue;
9738
9739 if (connector->base.encoder) {
9740 tmp_crtc = connector->base.encoder->crtc;
9741
9742 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9743 }
9744
9745 if (connector->new_encoder)
9746 *prepare_pipes |=
9747 1 << connector->new_encoder->new_crtc->pipe;
9748 }
9749
9750 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9751 base.head) {
9752 if (encoder->base.crtc == &encoder->new_crtc->base)
9753 continue;
9754
9755 if (encoder->base.crtc) {
9756 tmp_crtc = encoder->base.crtc;
9757
9758 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9759 }
9760
9761 if (encoder->new_crtc)
9762 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9763 }
9764
9765 /* Check for pipes that will be enabled/disabled ... */
9766 for_each_intel_crtc(dev, intel_crtc) {
9767 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9768 continue;
9769
9770 if (!intel_crtc->new_enabled)
9771 *disable_pipes |= 1 << intel_crtc->pipe;
9772 else
9773 *prepare_pipes |= 1 << intel_crtc->pipe;
9774 }
9775
9776
9777 /* set_mode is also used to update properties on life display pipes. */
9778 intel_crtc = to_intel_crtc(crtc);
9779 if (intel_crtc->new_enabled)
9780 *prepare_pipes |= 1 << intel_crtc->pipe;
9781
9782 /*
9783 * For simplicity do a full modeset on any pipe where the output routing
9784 * changed. We could be more clever, but that would require us to be
9785 * more careful with calling the relevant encoder->mode_set functions.
9786 */
9787 if (*prepare_pipes)
9788 *modeset_pipes = *prepare_pipes;
9789
9790 /* ... and mask these out. */
9791 *modeset_pipes &= ~(*disable_pipes);
9792 *prepare_pipes &= ~(*disable_pipes);
9793
9794 /*
9795 * HACK: We don't (yet) fully support global modesets. intel_set_config
9796 * obies this rule, but the modeset restore mode of
9797 * intel_modeset_setup_hw_state does not.
9798 */
9799 *modeset_pipes &= 1 << intel_crtc->pipe;
9800 *prepare_pipes &= 1 << intel_crtc->pipe;
9801
9802 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9803 *modeset_pipes, *prepare_pipes, *disable_pipes);
9804 }
9805
9806 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9807 {
9808 struct drm_encoder *encoder;
9809 struct drm_device *dev = crtc->dev;
9810
9811 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9812 if (encoder->crtc == crtc)
9813 return true;
9814
9815 return false;
9816 }
9817
9818 static void
9819 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9820 {
9821 struct intel_encoder *intel_encoder;
9822 struct intel_crtc *intel_crtc;
9823 struct drm_connector *connector;
9824
9825 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9826 base.head) {
9827 if (!intel_encoder->base.crtc)
9828 continue;
9829
9830 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9831
9832 if (prepare_pipes & (1 << intel_crtc->pipe))
9833 intel_encoder->connectors_active = false;
9834 }
9835
9836 intel_modeset_commit_output_state(dev);
9837
9838 /* Double check state. */
9839 for_each_intel_crtc(dev, intel_crtc) {
9840 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9841 WARN_ON(intel_crtc->new_config &&
9842 intel_crtc->new_config != &intel_crtc->config);
9843 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9844 }
9845
9846 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9847 if (!connector->encoder || !connector->encoder->crtc)
9848 continue;
9849
9850 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9851
9852 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9853 struct drm_property *dpms_property =
9854 dev->mode_config.dpms_property;
9855
9856 connector->dpms = DRM_MODE_DPMS_ON;
9857 drm_object_property_set_value(&connector->base,
9858 dpms_property,
9859 DRM_MODE_DPMS_ON);
9860
9861 intel_encoder = to_intel_encoder(connector->encoder);
9862 intel_encoder->connectors_active = true;
9863 }
9864 }
9865
9866 }
9867
9868 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9869 {
9870 int diff;
9871
9872 if (clock1 == clock2)
9873 return true;
9874
9875 if (!clock1 || !clock2)
9876 return false;
9877
9878 diff = abs(clock1 - clock2);
9879
9880 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9881 return true;
9882
9883 return false;
9884 }
9885
9886 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9887 list_for_each_entry((intel_crtc), \
9888 &(dev)->mode_config.crtc_list, \
9889 base.head) \
9890 if (mask & (1 <<(intel_crtc)->pipe))
9891
9892 static bool
9893 intel_pipe_config_compare(struct drm_device *dev,
9894 struct intel_crtc_config *current_config,
9895 struct intel_crtc_config *pipe_config)
9896 {
9897 #define PIPE_CONF_CHECK_X(name) \
9898 if (current_config->name != pipe_config->name) { \
9899 DRM_ERROR("mismatch in " #name " " \
9900 "(expected 0x%08x, found 0x%08x)\n", \
9901 current_config->name, \
9902 pipe_config->name); \
9903 return false; \
9904 }
9905
9906 #define PIPE_CONF_CHECK_I(name) \
9907 if (current_config->name != pipe_config->name) { \
9908 DRM_ERROR("mismatch in " #name " " \
9909 "(expected %i, found %i)\n", \
9910 current_config->name, \
9911 pipe_config->name); \
9912 return false; \
9913 }
9914
9915 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
9916 if ((current_config->name ^ pipe_config->name) & (mask)) { \
9917 DRM_ERROR("mismatch in " #name "(" #mask ") " \
9918 "(expected %i, found %i)\n", \
9919 current_config->name & (mask), \
9920 pipe_config->name & (mask)); \
9921 return false; \
9922 }
9923
9924 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9925 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9926 DRM_ERROR("mismatch in " #name " " \
9927 "(expected %i, found %i)\n", \
9928 current_config->name, \
9929 pipe_config->name); \
9930 return false; \
9931 }
9932
9933 #define PIPE_CONF_QUIRK(quirk) \
9934 ((current_config->quirks | pipe_config->quirks) & (quirk))
9935
9936 PIPE_CONF_CHECK_I(cpu_transcoder);
9937
9938 PIPE_CONF_CHECK_I(has_pch_encoder);
9939 PIPE_CONF_CHECK_I(fdi_lanes);
9940 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9941 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9942 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9943 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9944 PIPE_CONF_CHECK_I(fdi_m_n.tu);
9945
9946 PIPE_CONF_CHECK_I(has_dp_encoder);
9947 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9948 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9949 PIPE_CONF_CHECK_I(dp_m_n.link_m);
9950 PIPE_CONF_CHECK_I(dp_m_n.link_n);
9951 PIPE_CONF_CHECK_I(dp_m_n.tu);
9952
9953 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9954 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9955 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9956 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9957 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9958 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9959
9960 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9961 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9962 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9963 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9964 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9965 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9966
9967 PIPE_CONF_CHECK_I(pixel_multiplier);
9968 PIPE_CONF_CHECK_I(has_hdmi_sink);
9969 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
9970 IS_VALLEYVIEW(dev))
9971 PIPE_CONF_CHECK_I(limited_color_range);
9972
9973 PIPE_CONF_CHECK_I(has_audio);
9974
9975 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9976 DRM_MODE_FLAG_INTERLACE);
9977
9978 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9979 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9980 DRM_MODE_FLAG_PHSYNC);
9981 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9982 DRM_MODE_FLAG_NHSYNC);
9983 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9984 DRM_MODE_FLAG_PVSYNC);
9985 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9986 DRM_MODE_FLAG_NVSYNC);
9987 }
9988
9989 PIPE_CONF_CHECK_I(pipe_src_w);
9990 PIPE_CONF_CHECK_I(pipe_src_h);
9991
9992 /*
9993 * FIXME: BIOS likes to set up a cloned config with lvds+external
9994 * screen. Since we don't yet re-compute the pipe config when moving
9995 * just the lvds port away to another pipe the sw tracking won't match.
9996 *
9997 * Proper atomic modesets with recomputed global state will fix this.
9998 * Until then just don't check gmch state for inherited modes.
9999 */
10000 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10001 PIPE_CONF_CHECK_I(gmch_pfit.control);
10002 /* pfit ratios are autocomputed by the hw on gen4+ */
10003 if (INTEL_INFO(dev)->gen < 4)
10004 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10005 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10006 }
10007
10008 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10009 if (current_config->pch_pfit.enabled) {
10010 PIPE_CONF_CHECK_I(pch_pfit.pos);
10011 PIPE_CONF_CHECK_I(pch_pfit.size);
10012 }
10013
10014 /* BDW+ don't expose a synchronous way to read the state */
10015 if (IS_HASWELL(dev))
10016 PIPE_CONF_CHECK_I(ips_enabled);
10017
10018 PIPE_CONF_CHECK_I(double_wide);
10019
10020 PIPE_CONF_CHECK_I(shared_dpll);
10021 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10022 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10023 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10024 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10025
10026 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10027 PIPE_CONF_CHECK_I(pipe_bpp);
10028
10029 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10030 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10031
10032 #undef PIPE_CONF_CHECK_X
10033 #undef PIPE_CONF_CHECK_I
10034 #undef PIPE_CONF_CHECK_FLAGS
10035 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10036 #undef PIPE_CONF_QUIRK
10037
10038 return true;
10039 }
10040
10041 static void
10042 check_connector_state(struct drm_device *dev)
10043 {
10044 struct intel_connector *connector;
10045
10046 list_for_each_entry(connector, &dev->mode_config.connector_list,
10047 base.head) {
10048 /* This also checks the encoder/connector hw state with the
10049 * ->get_hw_state callbacks. */
10050 intel_connector_check_state(connector);
10051
10052 WARN(&connector->new_encoder->base != connector->base.encoder,
10053 "connector's staged encoder doesn't match current encoder\n");
10054 }
10055 }
10056
10057 static void
10058 check_encoder_state(struct drm_device *dev)
10059 {
10060 struct intel_encoder *encoder;
10061 struct intel_connector *connector;
10062
10063 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10064 base.head) {
10065 bool enabled = false;
10066 bool active = false;
10067 enum pipe pipe, tracked_pipe;
10068
10069 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10070 encoder->base.base.id,
10071 encoder->base.name);
10072
10073 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10074 "encoder's stage crtc doesn't match current crtc\n");
10075 WARN(encoder->connectors_active && !encoder->base.crtc,
10076 "encoder's active_connectors set, but no crtc\n");
10077
10078 list_for_each_entry(connector, &dev->mode_config.connector_list,
10079 base.head) {
10080 if (connector->base.encoder != &encoder->base)
10081 continue;
10082 enabled = true;
10083 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10084 active = true;
10085 }
10086 WARN(!!encoder->base.crtc != enabled,
10087 "encoder's enabled state mismatch "
10088 "(expected %i, found %i)\n",
10089 !!encoder->base.crtc, enabled);
10090 WARN(active && !encoder->base.crtc,
10091 "active encoder with no crtc\n");
10092
10093 WARN(encoder->connectors_active != active,
10094 "encoder's computed active state doesn't match tracked active state "
10095 "(expected %i, found %i)\n", active, encoder->connectors_active);
10096
10097 active = encoder->get_hw_state(encoder, &pipe);
10098 WARN(active != encoder->connectors_active,
10099 "encoder's hw state doesn't match sw tracking "
10100 "(expected %i, found %i)\n",
10101 encoder->connectors_active, active);
10102
10103 if (!encoder->base.crtc)
10104 continue;
10105
10106 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10107 WARN(active && pipe != tracked_pipe,
10108 "active encoder's pipe doesn't match"
10109 "(expected %i, found %i)\n",
10110 tracked_pipe, pipe);
10111
10112 }
10113 }
10114
10115 static void
10116 check_crtc_state(struct drm_device *dev)
10117 {
10118 struct drm_i915_private *dev_priv = dev->dev_private;
10119 struct intel_crtc *crtc;
10120 struct intel_encoder *encoder;
10121 struct intel_crtc_config pipe_config;
10122
10123 for_each_intel_crtc(dev, crtc) {
10124 bool enabled = false;
10125 bool active = false;
10126
10127 memset(&pipe_config, 0, sizeof(pipe_config));
10128
10129 DRM_DEBUG_KMS("[CRTC:%d]\n",
10130 crtc->base.base.id);
10131
10132 WARN(crtc->active && !crtc->base.enabled,
10133 "active crtc, but not enabled in sw tracking\n");
10134
10135 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10136 base.head) {
10137 if (encoder->base.crtc != &crtc->base)
10138 continue;
10139 enabled = true;
10140 if (encoder->connectors_active)
10141 active = true;
10142 }
10143
10144 WARN(active != crtc->active,
10145 "crtc's computed active state doesn't match tracked active state "
10146 "(expected %i, found %i)\n", active, crtc->active);
10147 WARN(enabled != crtc->base.enabled,
10148 "crtc's computed enabled state doesn't match tracked enabled state "
10149 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10150
10151 active = dev_priv->display.get_pipe_config(crtc,
10152 &pipe_config);
10153
10154 /* hw state is inconsistent with the pipe A quirk */
10155 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10156 active = crtc->active;
10157
10158 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10159 base.head) {
10160 enum pipe pipe;
10161 if (encoder->base.crtc != &crtc->base)
10162 continue;
10163 if (encoder->get_hw_state(encoder, &pipe))
10164 encoder->get_config(encoder, &pipe_config);
10165 }
10166
10167 WARN(crtc->active != active,
10168 "crtc active state doesn't match with hw state "
10169 "(expected %i, found %i)\n", crtc->active, active);
10170
10171 if (active &&
10172 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10173 WARN(1, "pipe state doesn't match!\n");
10174 intel_dump_pipe_config(crtc, &pipe_config,
10175 "[hw state]");
10176 intel_dump_pipe_config(crtc, &crtc->config,
10177 "[sw state]");
10178 }
10179 }
10180 }
10181
10182 static void
10183 check_shared_dpll_state(struct drm_device *dev)
10184 {
10185 struct drm_i915_private *dev_priv = dev->dev_private;
10186 struct intel_crtc *crtc;
10187 struct intel_dpll_hw_state dpll_hw_state;
10188 int i;
10189
10190 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10191 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10192 int enabled_crtcs = 0, active_crtcs = 0;
10193 bool active;
10194
10195 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10196
10197 DRM_DEBUG_KMS("%s\n", pll->name);
10198
10199 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10200
10201 WARN(pll->active > pll->refcount,
10202 "more active pll users than references: %i vs %i\n",
10203 pll->active, pll->refcount);
10204 WARN(pll->active && !pll->on,
10205 "pll in active use but not on in sw tracking\n");
10206 WARN(pll->on && !pll->active,
10207 "pll in on but not on in use in sw tracking\n");
10208 WARN(pll->on != active,
10209 "pll on state mismatch (expected %i, found %i)\n",
10210 pll->on, active);
10211
10212 for_each_intel_crtc(dev, crtc) {
10213 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10214 enabled_crtcs++;
10215 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10216 active_crtcs++;
10217 }
10218 WARN(pll->active != active_crtcs,
10219 "pll active crtcs mismatch (expected %i, found %i)\n",
10220 pll->active, active_crtcs);
10221 WARN(pll->refcount != enabled_crtcs,
10222 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10223 pll->refcount, enabled_crtcs);
10224
10225 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10226 sizeof(dpll_hw_state)),
10227 "pll hw state mismatch\n");
10228 }
10229 }
10230
10231 void
10232 intel_modeset_check_state(struct drm_device *dev)
10233 {
10234 check_connector_state(dev);
10235 check_encoder_state(dev);
10236 check_crtc_state(dev);
10237 check_shared_dpll_state(dev);
10238 }
10239
10240 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10241 int dotclock)
10242 {
10243 /*
10244 * FDI already provided one idea for the dotclock.
10245 * Yell if the encoder disagrees.
10246 */
10247 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10248 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10249 pipe_config->adjusted_mode.crtc_clock, dotclock);
10250 }
10251
10252 static void update_scanline_offset(struct intel_crtc *crtc)
10253 {
10254 struct drm_device *dev = crtc->base.dev;
10255
10256 /*
10257 * The scanline counter increments at the leading edge of hsync.
10258 *
10259 * On most platforms it starts counting from vtotal-1 on the
10260 * first active line. That means the scanline counter value is
10261 * always one less than what we would expect. Ie. just after
10262 * start of vblank, which also occurs at start of hsync (on the
10263 * last active line), the scanline counter will read vblank_start-1.
10264 *
10265 * On gen2 the scanline counter starts counting from 1 instead
10266 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10267 * to keep the value positive), instead of adding one.
10268 *
10269 * On HSW+ the behaviour of the scanline counter depends on the output
10270 * type. For DP ports it behaves like most other platforms, but on HDMI
10271 * there's an extra 1 line difference. So we need to add two instead of
10272 * one to the value.
10273 */
10274 if (IS_GEN2(dev)) {
10275 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10276 int vtotal;
10277
10278 vtotal = mode->crtc_vtotal;
10279 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10280 vtotal /= 2;
10281
10282 crtc->scanline_offset = vtotal - 1;
10283 } else if (HAS_DDI(dev) &&
10284 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10285 crtc->scanline_offset = 2;
10286 } else
10287 crtc->scanline_offset = 1;
10288 }
10289
10290 static int __intel_set_mode(struct drm_crtc *crtc,
10291 struct drm_display_mode *mode,
10292 int x, int y, struct drm_framebuffer *fb)
10293 {
10294 struct drm_device *dev = crtc->dev;
10295 struct drm_i915_private *dev_priv = dev->dev_private;
10296 struct drm_display_mode *saved_mode;
10297 struct intel_crtc_config *pipe_config = NULL;
10298 struct intel_crtc *intel_crtc;
10299 unsigned disable_pipes, prepare_pipes, modeset_pipes;
10300 int ret = 0;
10301
10302 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10303 if (!saved_mode)
10304 return -ENOMEM;
10305
10306 intel_modeset_affected_pipes(crtc, &modeset_pipes,
10307 &prepare_pipes, &disable_pipes);
10308
10309 *saved_mode = crtc->mode;
10310
10311 /* Hack: Because we don't (yet) support global modeset on multiple
10312 * crtcs, we don't keep track of the new mode for more than one crtc.
10313 * Hence simply check whether any bit is set in modeset_pipes in all the
10314 * pieces of code that are not yet converted to deal with mutliple crtcs
10315 * changing their mode at the same time. */
10316 if (modeset_pipes) {
10317 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10318 if (IS_ERR(pipe_config)) {
10319 ret = PTR_ERR(pipe_config);
10320 pipe_config = NULL;
10321
10322 goto out;
10323 }
10324 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10325 "[modeset]");
10326 to_intel_crtc(crtc)->new_config = pipe_config;
10327 }
10328
10329 /*
10330 * See if the config requires any additional preparation, e.g.
10331 * to adjust global state with pipes off. We need to do this
10332 * here so we can get the modeset_pipe updated config for the new
10333 * mode set on this crtc. For other crtcs we need to use the
10334 * adjusted_mode bits in the crtc directly.
10335 */
10336 if (IS_VALLEYVIEW(dev)) {
10337 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10338
10339 /* may have added more to prepare_pipes than we should */
10340 prepare_pipes &= ~disable_pipes;
10341 }
10342
10343 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10344 intel_crtc_disable(&intel_crtc->base);
10345
10346 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10347 if (intel_crtc->base.enabled)
10348 dev_priv->display.crtc_disable(&intel_crtc->base);
10349 }
10350
10351 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10352 * to set it here already despite that we pass it down the callchain.
10353 */
10354 if (modeset_pipes) {
10355 crtc->mode = *mode;
10356 /* mode_set/enable/disable functions rely on a correct pipe
10357 * config. */
10358 to_intel_crtc(crtc)->config = *pipe_config;
10359 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10360
10361 /*
10362 * Calculate and store various constants which
10363 * are later needed by vblank and swap-completion
10364 * timestamping. They are derived from true hwmode.
10365 */
10366 drm_calc_timestamping_constants(crtc,
10367 &pipe_config->adjusted_mode);
10368 }
10369
10370 /* Only after disabling all output pipelines that will be changed can we
10371 * update the the output configuration. */
10372 intel_modeset_update_state(dev, prepare_pipes);
10373
10374 if (dev_priv->display.modeset_global_resources)
10375 dev_priv->display.modeset_global_resources(dev);
10376
10377 /* Set up the DPLL and any encoders state that needs to adjust or depend
10378 * on the DPLL.
10379 */
10380 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10381 struct drm_framebuffer *old_fb;
10382
10383 mutex_lock(&dev->struct_mutex);
10384 ret = intel_pin_and_fence_fb_obj(dev,
10385 to_intel_framebuffer(fb)->obj,
10386 NULL);
10387 if (ret != 0) {
10388 DRM_ERROR("pin & fence failed\n");
10389 mutex_unlock(&dev->struct_mutex);
10390 goto done;
10391 }
10392 old_fb = crtc->primary->fb;
10393 if (old_fb)
10394 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
10395 mutex_unlock(&dev->struct_mutex);
10396
10397 crtc->primary->fb = fb;
10398 crtc->x = x;
10399 crtc->y = y;
10400
10401 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10402 x, y, fb);
10403 if (ret)
10404 goto done;
10405 }
10406
10407 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10408 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10409 update_scanline_offset(intel_crtc);
10410
10411 dev_priv->display.crtc_enable(&intel_crtc->base);
10412 }
10413
10414 /* FIXME: add subpixel order */
10415 done:
10416 if (ret && crtc->enabled)
10417 crtc->mode = *saved_mode;
10418
10419 out:
10420 kfree(pipe_config);
10421 kfree(saved_mode);
10422 return ret;
10423 }
10424
10425 static int intel_set_mode(struct drm_crtc *crtc,
10426 struct drm_display_mode *mode,
10427 int x, int y, struct drm_framebuffer *fb)
10428 {
10429 int ret;
10430
10431 ret = __intel_set_mode(crtc, mode, x, y, fb);
10432
10433 if (ret == 0)
10434 intel_modeset_check_state(crtc->dev);
10435
10436 return ret;
10437 }
10438
10439 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10440 {
10441 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10442 }
10443
10444 #undef for_each_intel_crtc_masked
10445
10446 static void intel_set_config_free(struct intel_set_config *config)
10447 {
10448 if (!config)
10449 return;
10450
10451 kfree(config->save_connector_encoders);
10452 kfree(config->save_encoder_crtcs);
10453 kfree(config->save_crtc_enabled);
10454 kfree(config);
10455 }
10456
10457 static int intel_set_config_save_state(struct drm_device *dev,
10458 struct intel_set_config *config)
10459 {
10460 struct drm_crtc *crtc;
10461 struct drm_encoder *encoder;
10462 struct drm_connector *connector;
10463 int count;
10464
10465 config->save_crtc_enabled =
10466 kcalloc(dev->mode_config.num_crtc,
10467 sizeof(bool), GFP_KERNEL);
10468 if (!config->save_crtc_enabled)
10469 return -ENOMEM;
10470
10471 config->save_encoder_crtcs =
10472 kcalloc(dev->mode_config.num_encoder,
10473 sizeof(struct drm_crtc *), GFP_KERNEL);
10474 if (!config->save_encoder_crtcs)
10475 return -ENOMEM;
10476
10477 config->save_connector_encoders =
10478 kcalloc(dev->mode_config.num_connector,
10479 sizeof(struct drm_encoder *), GFP_KERNEL);
10480 if (!config->save_connector_encoders)
10481 return -ENOMEM;
10482
10483 /* Copy data. Note that driver private data is not affected.
10484 * Should anything bad happen only the expected state is
10485 * restored, not the drivers personal bookkeeping.
10486 */
10487 count = 0;
10488 for_each_crtc(dev, crtc) {
10489 config->save_crtc_enabled[count++] = crtc->enabled;
10490 }
10491
10492 count = 0;
10493 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10494 config->save_encoder_crtcs[count++] = encoder->crtc;
10495 }
10496
10497 count = 0;
10498 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10499 config->save_connector_encoders[count++] = connector->encoder;
10500 }
10501
10502 return 0;
10503 }
10504
10505 static void intel_set_config_restore_state(struct drm_device *dev,
10506 struct intel_set_config *config)
10507 {
10508 struct intel_crtc *crtc;
10509 struct intel_encoder *encoder;
10510 struct intel_connector *connector;
10511 int count;
10512
10513 count = 0;
10514 for_each_intel_crtc(dev, crtc) {
10515 crtc->new_enabled = config->save_crtc_enabled[count++];
10516
10517 if (crtc->new_enabled)
10518 crtc->new_config = &crtc->config;
10519 else
10520 crtc->new_config = NULL;
10521 }
10522
10523 count = 0;
10524 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10525 encoder->new_crtc =
10526 to_intel_crtc(config->save_encoder_crtcs[count++]);
10527 }
10528
10529 count = 0;
10530 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10531 connector->new_encoder =
10532 to_intel_encoder(config->save_connector_encoders[count++]);
10533 }
10534 }
10535
10536 static bool
10537 is_crtc_connector_off(struct drm_mode_set *set)
10538 {
10539 int i;
10540
10541 if (set->num_connectors == 0)
10542 return false;
10543
10544 if (WARN_ON(set->connectors == NULL))
10545 return false;
10546
10547 for (i = 0; i < set->num_connectors; i++)
10548 if (set->connectors[i]->encoder &&
10549 set->connectors[i]->encoder->crtc == set->crtc &&
10550 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10551 return true;
10552
10553 return false;
10554 }
10555
10556 static void
10557 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10558 struct intel_set_config *config)
10559 {
10560
10561 /* We should be able to check here if the fb has the same properties
10562 * and then just flip_or_move it */
10563 if (is_crtc_connector_off(set)) {
10564 config->mode_changed = true;
10565 } else if (set->crtc->primary->fb != set->fb) {
10566 /* If we have no fb then treat it as a full mode set */
10567 if (set->crtc->primary->fb == NULL) {
10568 struct intel_crtc *intel_crtc =
10569 to_intel_crtc(set->crtc);
10570
10571 if (intel_crtc->active && i915.fastboot) {
10572 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10573 config->fb_changed = true;
10574 } else {
10575 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10576 config->mode_changed = true;
10577 }
10578 } else if (set->fb == NULL) {
10579 config->mode_changed = true;
10580 } else if (set->fb->pixel_format !=
10581 set->crtc->primary->fb->pixel_format) {
10582 config->mode_changed = true;
10583 } else {
10584 config->fb_changed = true;
10585 }
10586 }
10587
10588 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10589 config->fb_changed = true;
10590
10591 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10592 DRM_DEBUG_KMS("modes are different, full mode set\n");
10593 drm_mode_debug_printmodeline(&set->crtc->mode);
10594 drm_mode_debug_printmodeline(set->mode);
10595 config->mode_changed = true;
10596 }
10597
10598 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10599 set->crtc->base.id, config->mode_changed, config->fb_changed);
10600 }
10601
10602 static int
10603 intel_modeset_stage_output_state(struct drm_device *dev,
10604 struct drm_mode_set *set,
10605 struct intel_set_config *config)
10606 {
10607 struct intel_connector *connector;
10608 struct intel_encoder *encoder;
10609 struct intel_crtc *crtc;
10610 int ro;
10611
10612 /* The upper layers ensure that we either disable a crtc or have a list
10613 * of connectors. For paranoia, double-check this. */
10614 WARN_ON(!set->fb && (set->num_connectors != 0));
10615 WARN_ON(set->fb && (set->num_connectors == 0));
10616
10617 list_for_each_entry(connector, &dev->mode_config.connector_list,
10618 base.head) {
10619 /* Otherwise traverse passed in connector list and get encoders
10620 * for them. */
10621 for (ro = 0; ro < set->num_connectors; ro++) {
10622 if (set->connectors[ro] == &connector->base) {
10623 connector->new_encoder = connector->encoder;
10624 break;
10625 }
10626 }
10627
10628 /* If we disable the crtc, disable all its connectors. Also, if
10629 * the connector is on the changing crtc but not on the new
10630 * connector list, disable it. */
10631 if ((!set->fb || ro == set->num_connectors) &&
10632 connector->base.encoder &&
10633 connector->base.encoder->crtc == set->crtc) {
10634 connector->new_encoder = NULL;
10635
10636 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10637 connector->base.base.id,
10638 connector->base.name);
10639 }
10640
10641
10642 if (&connector->new_encoder->base != connector->base.encoder) {
10643 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10644 config->mode_changed = true;
10645 }
10646 }
10647 /* connector->new_encoder is now updated for all connectors. */
10648
10649 /* Update crtc of enabled connectors. */
10650 list_for_each_entry(connector, &dev->mode_config.connector_list,
10651 base.head) {
10652 struct drm_crtc *new_crtc;
10653
10654 if (!connector->new_encoder)
10655 continue;
10656
10657 new_crtc = connector->new_encoder->base.crtc;
10658
10659 for (ro = 0; ro < set->num_connectors; ro++) {
10660 if (set->connectors[ro] == &connector->base)
10661 new_crtc = set->crtc;
10662 }
10663
10664 /* Make sure the new CRTC will work with the encoder */
10665 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10666 new_crtc)) {
10667 return -EINVAL;
10668 }
10669 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10670
10671 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10672 connector->base.base.id,
10673 connector->base.name,
10674 new_crtc->base.id);
10675 }
10676
10677 /* Check for any encoders that needs to be disabled. */
10678 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10679 base.head) {
10680 int num_connectors = 0;
10681 list_for_each_entry(connector,
10682 &dev->mode_config.connector_list,
10683 base.head) {
10684 if (connector->new_encoder == encoder) {
10685 WARN_ON(!connector->new_encoder->new_crtc);
10686 num_connectors++;
10687 }
10688 }
10689
10690 if (num_connectors == 0)
10691 encoder->new_crtc = NULL;
10692 else if (num_connectors > 1)
10693 return -EINVAL;
10694
10695 /* Only now check for crtc changes so we don't miss encoders
10696 * that will be disabled. */
10697 if (&encoder->new_crtc->base != encoder->base.crtc) {
10698 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10699 config->mode_changed = true;
10700 }
10701 }
10702 /* Now we've also updated encoder->new_crtc for all encoders. */
10703
10704 for_each_intel_crtc(dev, crtc) {
10705 crtc->new_enabled = false;
10706
10707 list_for_each_entry(encoder,
10708 &dev->mode_config.encoder_list,
10709 base.head) {
10710 if (encoder->new_crtc == crtc) {
10711 crtc->new_enabled = true;
10712 break;
10713 }
10714 }
10715
10716 if (crtc->new_enabled != crtc->base.enabled) {
10717 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10718 crtc->new_enabled ? "en" : "dis");
10719 config->mode_changed = true;
10720 }
10721
10722 if (crtc->new_enabled)
10723 crtc->new_config = &crtc->config;
10724 else
10725 crtc->new_config = NULL;
10726 }
10727
10728 return 0;
10729 }
10730
10731 static void disable_crtc_nofb(struct intel_crtc *crtc)
10732 {
10733 struct drm_device *dev = crtc->base.dev;
10734 struct intel_encoder *encoder;
10735 struct intel_connector *connector;
10736
10737 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10738 pipe_name(crtc->pipe));
10739
10740 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10741 if (connector->new_encoder &&
10742 connector->new_encoder->new_crtc == crtc)
10743 connector->new_encoder = NULL;
10744 }
10745
10746 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10747 if (encoder->new_crtc == crtc)
10748 encoder->new_crtc = NULL;
10749 }
10750
10751 crtc->new_enabled = false;
10752 crtc->new_config = NULL;
10753 }
10754
10755 static int intel_crtc_set_config(struct drm_mode_set *set)
10756 {
10757 struct drm_device *dev;
10758 struct drm_mode_set save_set;
10759 struct intel_set_config *config;
10760 int ret;
10761
10762 BUG_ON(!set);
10763 BUG_ON(!set->crtc);
10764 BUG_ON(!set->crtc->helper_private);
10765
10766 /* Enforce sane interface api - has been abused by the fb helper. */
10767 BUG_ON(!set->mode && set->fb);
10768 BUG_ON(set->fb && set->num_connectors == 0);
10769
10770 if (set->fb) {
10771 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10772 set->crtc->base.id, set->fb->base.id,
10773 (int)set->num_connectors, set->x, set->y);
10774 } else {
10775 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10776 }
10777
10778 dev = set->crtc->dev;
10779
10780 ret = -ENOMEM;
10781 config = kzalloc(sizeof(*config), GFP_KERNEL);
10782 if (!config)
10783 goto out_config;
10784
10785 ret = intel_set_config_save_state(dev, config);
10786 if (ret)
10787 goto out_config;
10788
10789 save_set.crtc = set->crtc;
10790 save_set.mode = &set->crtc->mode;
10791 save_set.x = set->crtc->x;
10792 save_set.y = set->crtc->y;
10793 save_set.fb = set->crtc->primary->fb;
10794
10795 /* Compute whether we need a full modeset, only an fb base update or no
10796 * change at all. In the future we might also check whether only the
10797 * mode changed, e.g. for LVDS where we only change the panel fitter in
10798 * such cases. */
10799 intel_set_config_compute_mode_changes(set, config);
10800
10801 ret = intel_modeset_stage_output_state(dev, set, config);
10802 if (ret)
10803 goto fail;
10804
10805 if (config->mode_changed) {
10806 ret = intel_set_mode(set->crtc, set->mode,
10807 set->x, set->y, set->fb);
10808 } else if (config->fb_changed) {
10809 intel_crtc_wait_for_pending_flips(set->crtc);
10810
10811 ret = intel_pipe_set_base(set->crtc,
10812 set->x, set->y, set->fb);
10813 /*
10814 * In the fastboot case this may be our only check of the
10815 * state after boot. It would be better to only do it on
10816 * the first update, but we don't have a nice way of doing that
10817 * (and really, set_config isn't used much for high freq page
10818 * flipping, so increasing its cost here shouldn't be a big
10819 * deal).
10820 */
10821 if (i915.fastboot && ret == 0)
10822 intel_modeset_check_state(set->crtc->dev);
10823 }
10824
10825 if (ret) {
10826 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10827 set->crtc->base.id, ret);
10828 fail:
10829 intel_set_config_restore_state(dev, config);
10830
10831 /*
10832 * HACK: if the pipe was on, but we didn't have a framebuffer,
10833 * force the pipe off to avoid oopsing in the modeset code
10834 * due to fb==NULL. This should only happen during boot since
10835 * we don't yet reconstruct the FB from the hardware state.
10836 */
10837 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10838 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10839
10840 /* Try to restore the config */
10841 if (config->mode_changed &&
10842 intel_set_mode(save_set.crtc, save_set.mode,
10843 save_set.x, save_set.y, save_set.fb))
10844 DRM_ERROR("failed to restore config after modeset failure\n");
10845 }
10846
10847 out_config:
10848 intel_set_config_free(config);
10849 return ret;
10850 }
10851
10852 static const struct drm_crtc_funcs intel_crtc_funcs = {
10853 .cursor_set = intel_crtc_cursor_set,
10854 .cursor_move = intel_crtc_cursor_move,
10855 .gamma_set = intel_crtc_gamma_set,
10856 .set_config = intel_crtc_set_config,
10857 .destroy = intel_crtc_destroy,
10858 .page_flip = intel_crtc_page_flip,
10859 };
10860
10861 static void intel_cpu_pll_init(struct drm_device *dev)
10862 {
10863 if (HAS_DDI(dev))
10864 intel_ddi_pll_init(dev);
10865 }
10866
10867 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10868 struct intel_shared_dpll *pll,
10869 struct intel_dpll_hw_state *hw_state)
10870 {
10871 uint32_t val;
10872
10873 val = I915_READ(PCH_DPLL(pll->id));
10874 hw_state->dpll = val;
10875 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10876 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10877
10878 return val & DPLL_VCO_ENABLE;
10879 }
10880
10881 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10882 struct intel_shared_dpll *pll)
10883 {
10884 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10885 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10886 }
10887
10888 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10889 struct intel_shared_dpll *pll)
10890 {
10891 /* PCH refclock must be enabled first */
10892 ibx_assert_pch_refclk_enabled(dev_priv);
10893
10894 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10895
10896 /* Wait for the clocks to stabilize. */
10897 POSTING_READ(PCH_DPLL(pll->id));
10898 udelay(150);
10899
10900 /* The pixel multiplier can only be updated once the
10901 * DPLL is enabled and the clocks are stable.
10902 *
10903 * So write it again.
10904 */
10905 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10906 POSTING_READ(PCH_DPLL(pll->id));
10907 udelay(200);
10908 }
10909
10910 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10911 struct intel_shared_dpll *pll)
10912 {
10913 struct drm_device *dev = dev_priv->dev;
10914 struct intel_crtc *crtc;
10915
10916 /* Make sure no transcoder isn't still depending on us. */
10917 for_each_intel_crtc(dev, crtc) {
10918 if (intel_crtc_to_shared_dpll(crtc) == pll)
10919 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10920 }
10921
10922 I915_WRITE(PCH_DPLL(pll->id), 0);
10923 POSTING_READ(PCH_DPLL(pll->id));
10924 udelay(200);
10925 }
10926
10927 static char *ibx_pch_dpll_names[] = {
10928 "PCH DPLL A",
10929 "PCH DPLL B",
10930 };
10931
10932 static void ibx_pch_dpll_init(struct drm_device *dev)
10933 {
10934 struct drm_i915_private *dev_priv = dev->dev_private;
10935 int i;
10936
10937 dev_priv->num_shared_dpll = 2;
10938
10939 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10940 dev_priv->shared_dplls[i].id = i;
10941 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10942 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10943 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10944 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10945 dev_priv->shared_dplls[i].get_hw_state =
10946 ibx_pch_dpll_get_hw_state;
10947 }
10948 }
10949
10950 static void intel_shared_dpll_init(struct drm_device *dev)
10951 {
10952 struct drm_i915_private *dev_priv = dev->dev_private;
10953
10954 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10955 ibx_pch_dpll_init(dev);
10956 else
10957 dev_priv->num_shared_dpll = 0;
10958
10959 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10960 }
10961
10962 static void intel_crtc_init(struct drm_device *dev, int pipe)
10963 {
10964 struct drm_i915_private *dev_priv = dev->dev_private;
10965 struct intel_crtc *intel_crtc;
10966 int i;
10967
10968 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10969 if (intel_crtc == NULL)
10970 return;
10971
10972 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10973
10974 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10975 for (i = 0; i < 256; i++) {
10976 intel_crtc->lut_r[i] = i;
10977 intel_crtc->lut_g[i] = i;
10978 intel_crtc->lut_b[i] = i;
10979 }
10980
10981 /*
10982 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10983 * is hooked to plane B. Hence we want plane A feeding pipe B.
10984 */
10985 intel_crtc->pipe = pipe;
10986 intel_crtc->plane = pipe;
10987 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10988 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10989 intel_crtc->plane = !pipe;
10990 }
10991
10992 intel_crtc->cursor_base = ~0;
10993 intel_crtc->cursor_cntl = ~0;
10994
10995 init_waitqueue_head(&intel_crtc->vbl_wait);
10996
10997 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10998 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10999 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11000 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11001
11002 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11003
11004 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11005 }
11006
11007 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11008 {
11009 struct drm_encoder *encoder = connector->base.encoder;
11010 struct drm_device *dev = connector->base.dev;
11011
11012 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11013
11014 if (!encoder)
11015 return INVALID_PIPE;
11016
11017 return to_intel_crtc(encoder->crtc)->pipe;
11018 }
11019
11020 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11021 struct drm_file *file)
11022 {
11023 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11024 struct drm_mode_object *drmmode_obj;
11025 struct intel_crtc *crtc;
11026
11027 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11028 return -ENODEV;
11029
11030 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11031 DRM_MODE_OBJECT_CRTC);
11032
11033 if (!drmmode_obj) {
11034 DRM_ERROR("no such CRTC id\n");
11035 return -ENOENT;
11036 }
11037
11038 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11039 pipe_from_crtc_id->pipe = crtc->pipe;
11040
11041 return 0;
11042 }
11043
11044 static int intel_encoder_clones(struct intel_encoder *encoder)
11045 {
11046 struct drm_device *dev = encoder->base.dev;
11047 struct intel_encoder *source_encoder;
11048 int index_mask = 0;
11049 int entry = 0;
11050
11051 list_for_each_entry(source_encoder,
11052 &dev->mode_config.encoder_list, base.head) {
11053 if (encoders_cloneable(encoder, source_encoder))
11054 index_mask |= (1 << entry);
11055
11056 entry++;
11057 }
11058
11059 return index_mask;
11060 }
11061
11062 static bool has_edp_a(struct drm_device *dev)
11063 {
11064 struct drm_i915_private *dev_priv = dev->dev_private;
11065
11066 if (!IS_MOBILE(dev))
11067 return false;
11068
11069 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11070 return false;
11071
11072 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11073 return false;
11074
11075 return true;
11076 }
11077
11078 const char *intel_output_name(int output)
11079 {
11080 static const char *names[] = {
11081 [INTEL_OUTPUT_UNUSED] = "Unused",
11082 [INTEL_OUTPUT_ANALOG] = "Analog",
11083 [INTEL_OUTPUT_DVO] = "DVO",
11084 [INTEL_OUTPUT_SDVO] = "SDVO",
11085 [INTEL_OUTPUT_LVDS] = "LVDS",
11086 [INTEL_OUTPUT_TVOUT] = "TV",
11087 [INTEL_OUTPUT_HDMI] = "HDMI",
11088 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11089 [INTEL_OUTPUT_EDP] = "eDP",
11090 [INTEL_OUTPUT_DSI] = "DSI",
11091 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11092 };
11093
11094 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11095 return "Invalid";
11096
11097 return names[output];
11098 }
11099
11100 static bool intel_crt_present(struct drm_device *dev)
11101 {
11102 struct drm_i915_private *dev_priv = dev->dev_private;
11103
11104 if (IS_ULT(dev))
11105 return false;
11106
11107 if (IS_CHERRYVIEW(dev))
11108 return false;
11109
11110 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11111 return false;
11112
11113 return true;
11114 }
11115
11116 static void intel_setup_outputs(struct drm_device *dev)
11117 {
11118 struct drm_i915_private *dev_priv = dev->dev_private;
11119 struct intel_encoder *encoder;
11120 bool dpd_is_edp = false;
11121
11122 intel_lvds_init(dev);
11123
11124 if (intel_crt_present(dev))
11125 intel_crt_init(dev);
11126
11127 if (HAS_DDI(dev)) {
11128 int found;
11129
11130 /* Haswell uses DDI functions to detect digital outputs */
11131 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11132 /* DDI A only supports eDP */
11133 if (found)
11134 intel_ddi_init(dev, PORT_A);
11135
11136 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11137 * register */
11138 found = I915_READ(SFUSE_STRAP);
11139
11140 if (found & SFUSE_STRAP_DDIB_DETECTED)
11141 intel_ddi_init(dev, PORT_B);
11142 if (found & SFUSE_STRAP_DDIC_DETECTED)
11143 intel_ddi_init(dev, PORT_C);
11144 if (found & SFUSE_STRAP_DDID_DETECTED)
11145 intel_ddi_init(dev, PORT_D);
11146 } else if (HAS_PCH_SPLIT(dev)) {
11147 int found;
11148 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11149
11150 if (has_edp_a(dev))
11151 intel_dp_init(dev, DP_A, PORT_A);
11152
11153 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11154 /* PCH SDVOB multiplex with HDMIB */
11155 found = intel_sdvo_init(dev, PCH_SDVOB, true);
11156 if (!found)
11157 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11158 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11159 intel_dp_init(dev, PCH_DP_B, PORT_B);
11160 }
11161
11162 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11163 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11164
11165 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11166 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11167
11168 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11169 intel_dp_init(dev, PCH_DP_C, PORT_C);
11170
11171 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11172 intel_dp_init(dev, PCH_DP_D, PORT_D);
11173 } else if (IS_VALLEYVIEW(dev)) {
11174 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11175 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11176 PORT_B);
11177 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11178 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11179 }
11180
11181 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11182 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11183 PORT_C);
11184 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11185 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11186 }
11187
11188 if (IS_CHERRYVIEW(dev)) {
11189 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11190 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11191 PORT_D);
11192 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11193 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11194 }
11195 }
11196
11197 intel_dsi_init(dev);
11198 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11199 bool found = false;
11200
11201 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11202 DRM_DEBUG_KMS("probing SDVOB\n");
11203 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11204 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11205 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11206 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11207 }
11208
11209 if (!found && SUPPORTS_INTEGRATED_DP(dev))
11210 intel_dp_init(dev, DP_B, PORT_B);
11211 }
11212
11213 /* Before G4X SDVOC doesn't have its own detect register */
11214
11215 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11216 DRM_DEBUG_KMS("probing SDVOC\n");
11217 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11218 }
11219
11220 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11221
11222 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11223 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11224 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11225 }
11226 if (SUPPORTS_INTEGRATED_DP(dev))
11227 intel_dp_init(dev, DP_C, PORT_C);
11228 }
11229
11230 if (SUPPORTS_INTEGRATED_DP(dev) &&
11231 (I915_READ(DP_D) & DP_DETECTED))
11232 intel_dp_init(dev, DP_D, PORT_D);
11233 } else if (IS_GEN2(dev))
11234 intel_dvo_init(dev);
11235
11236 if (SUPPORTS_TV(dev))
11237 intel_tv_init(dev);
11238
11239 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11240 encoder->base.possible_crtcs = encoder->crtc_mask;
11241 encoder->base.possible_clones =
11242 intel_encoder_clones(encoder);
11243 }
11244
11245 intel_init_pch_refclk(dev);
11246
11247 drm_helper_move_panel_connectors_to_head(dev);
11248 }
11249
11250 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11251 {
11252 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11253
11254 drm_framebuffer_cleanup(fb);
11255 WARN_ON(!intel_fb->obj->framebuffer_references--);
11256 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11257 kfree(intel_fb);
11258 }
11259
11260 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11261 struct drm_file *file,
11262 unsigned int *handle)
11263 {
11264 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11265 struct drm_i915_gem_object *obj = intel_fb->obj;
11266
11267 return drm_gem_handle_create(file, &obj->base, handle);
11268 }
11269
11270 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11271 .destroy = intel_user_framebuffer_destroy,
11272 .create_handle = intel_user_framebuffer_create_handle,
11273 };
11274
11275 static int intel_framebuffer_init(struct drm_device *dev,
11276 struct intel_framebuffer *intel_fb,
11277 struct drm_mode_fb_cmd2 *mode_cmd,
11278 struct drm_i915_gem_object *obj)
11279 {
11280 int aligned_height;
11281 int pitch_limit;
11282 int ret;
11283
11284 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11285
11286 if (obj->tiling_mode == I915_TILING_Y) {
11287 DRM_DEBUG("hardware does not support tiling Y\n");
11288 return -EINVAL;
11289 }
11290
11291 if (mode_cmd->pitches[0] & 63) {
11292 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11293 mode_cmd->pitches[0]);
11294 return -EINVAL;
11295 }
11296
11297 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11298 pitch_limit = 32*1024;
11299 } else if (INTEL_INFO(dev)->gen >= 4) {
11300 if (obj->tiling_mode)
11301 pitch_limit = 16*1024;
11302 else
11303 pitch_limit = 32*1024;
11304 } else if (INTEL_INFO(dev)->gen >= 3) {
11305 if (obj->tiling_mode)
11306 pitch_limit = 8*1024;
11307 else
11308 pitch_limit = 16*1024;
11309 } else
11310 /* XXX DSPC is limited to 4k tiled */
11311 pitch_limit = 8*1024;
11312
11313 if (mode_cmd->pitches[0] > pitch_limit) {
11314 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11315 obj->tiling_mode ? "tiled" : "linear",
11316 mode_cmd->pitches[0], pitch_limit);
11317 return -EINVAL;
11318 }
11319
11320 if (obj->tiling_mode != I915_TILING_NONE &&
11321 mode_cmd->pitches[0] != obj->stride) {
11322 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11323 mode_cmd->pitches[0], obj->stride);
11324 return -EINVAL;
11325 }
11326
11327 /* Reject formats not supported by any plane early. */
11328 switch (mode_cmd->pixel_format) {
11329 case DRM_FORMAT_C8:
11330 case DRM_FORMAT_RGB565:
11331 case DRM_FORMAT_XRGB8888:
11332 case DRM_FORMAT_ARGB8888:
11333 break;
11334 case DRM_FORMAT_XRGB1555:
11335 case DRM_FORMAT_ARGB1555:
11336 if (INTEL_INFO(dev)->gen > 3) {
11337 DRM_DEBUG("unsupported pixel format: %s\n",
11338 drm_get_format_name(mode_cmd->pixel_format));
11339 return -EINVAL;
11340 }
11341 break;
11342 case DRM_FORMAT_XBGR8888:
11343 case DRM_FORMAT_ABGR8888:
11344 case DRM_FORMAT_XRGB2101010:
11345 case DRM_FORMAT_ARGB2101010:
11346 case DRM_FORMAT_XBGR2101010:
11347 case DRM_FORMAT_ABGR2101010:
11348 if (INTEL_INFO(dev)->gen < 4) {
11349 DRM_DEBUG("unsupported pixel format: %s\n",
11350 drm_get_format_name(mode_cmd->pixel_format));
11351 return -EINVAL;
11352 }
11353 break;
11354 case DRM_FORMAT_YUYV:
11355 case DRM_FORMAT_UYVY:
11356 case DRM_FORMAT_YVYU:
11357 case DRM_FORMAT_VYUY:
11358 if (INTEL_INFO(dev)->gen < 5) {
11359 DRM_DEBUG("unsupported pixel format: %s\n",
11360 drm_get_format_name(mode_cmd->pixel_format));
11361 return -EINVAL;
11362 }
11363 break;
11364 default:
11365 DRM_DEBUG("unsupported pixel format: %s\n",
11366 drm_get_format_name(mode_cmd->pixel_format));
11367 return -EINVAL;
11368 }
11369
11370 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11371 if (mode_cmd->offsets[0] != 0)
11372 return -EINVAL;
11373
11374 aligned_height = intel_align_height(dev, mode_cmd->height,
11375 obj->tiling_mode);
11376 /* FIXME drm helper for size checks (especially planar formats)? */
11377 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11378 return -EINVAL;
11379
11380 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11381 intel_fb->obj = obj;
11382 intel_fb->obj->framebuffer_references++;
11383
11384 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11385 if (ret) {
11386 DRM_ERROR("framebuffer init failed %d\n", ret);
11387 return ret;
11388 }
11389
11390 return 0;
11391 }
11392
11393 static struct drm_framebuffer *
11394 intel_user_framebuffer_create(struct drm_device *dev,
11395 struct drm_file *filp,
11396 struct drm_mode_fb_cmd2 *mode_cmd)
11397 {
11398 struct drm_i915_gem_object *obj;
11399
11400 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11401 mode_cmd->handles[0]));
11402 if (&obj->base == NULL)
11403 return ERR_PTR(-ENOENT);
11404
11405 return intel_framebuffer_create(dev, mode_cmd, obj);
11406 }
11407
11408 #ifndef CONFIG_DRM_I915_FBDEV
11409 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11410 {
11411 }
11412 #endif
11413
11414 static const struct drm_mode_config_funcs intel_mode_funcs = {
11415 .fb_create = intel_user_framebuffer_create,
11416 .output_poll_changed = intel_fbdev_output_poll_changed,
11417 };
11418
11419 /* Set up chip specific display functions */
11420 static void intel_init_display(struct drm_device *dev)
11421 {
11422 struct drm_i915_private *dev_priv = dev->dev_private;
11423
11424 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11425 dev_priv->display.find_dpll = g4x_find_best_dpll;
11426 else if (IS_CHERRYVIEW(dev))
11427 dev_priv->display.find_dpll = chv_find_best_dpll;
11428 else if (IS_VALLEYVIEW(dev))
11429 dev_priv->display.find_dpll = vlv_find_best_dpll;
11430 else if (IS_PINEVIEW(dev))
11431 dev_priv->display.find_dpll = pnv_find_best_dpll;
11432 else
11433 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11434
11435 if (HAS_DDI(dev)) {
11436 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11437 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11438 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11439 dev_priv->display.crtc_enable = haswell_crtc_enable;
11440 dev_priv->display.crtc_disable = haswell_crtc_disable;
11441 dev_priv->display.off = haswell_crtc_off;
11442 dev_priv->display.update_primary_plane =
11443 ironlake_update_primary_plane;
11444 } else if (HAS_PCH_SPLIT(dev)) {
11445 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11446 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11447 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11448 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11449 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11450 dev_priv->display.off = ironlake_crtc_off;
11451 dev_priv->display.update_primary_plane =
11452 ironlake_update_primary_plane;
11453 } else if (IS_VALLEYVIEW(dev)) {
11454 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11455 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11456 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11457 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11458 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11459 dev_priv->display.off = i9xx_crtc_off;
11460 dev_priv->display.update_primary_plane =
11461 i9xx_update_primary_plane;
11462 } else {
11463 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11464 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11465 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11466 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11467 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11468 dev_priv->display.off = i9xx_crtc_off;
11469 dev_priv->display.update_primary_plane =
11470 i9xx_update_primary_plane;
11471 }
11472
11473 /* Returns the core display clock speed */
11474 if (IS_VALLEYVIEW(dev))
11475 dev_priv->display.get_display_clock_speed =
11476 valleyview_get_display_clock_speed;
11477 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11478 dev_priv->display.get_display_clock_speed =
11479 i945_get_display_clock_speed;
11480 else if (IS_I915G(dev))
11481 dev_priv->display.get_display_clock_speed =
11482 i915_get_display_clock_speed;
11483 else if (IS_I945GM(dev) || IS_845G(dev))
11484 dev_priv->display.get_display_clock_speed =
11485 i9xx_misc_get_display_clock_speed;
11486 else if (IS_PINEVIEW(dev))
11487 dev_priv->display.get_display_clock_speed =
11488 pnv_get_display_clock_speed;
11489 else if (IS_I915GM(dev))
11490 dev_priv->display.get_display_clock_speed =
11491 i915gm_get_display_clock_speed;
11492 else if (IS_I865G(dev))
11493 dev_priv->display.get_display_clock_speed =
11494 i865_get_display_clock_speed;
11495 else if (IS_I85X(dev))
11496 dev_priv->display.get_display_clock_speed =
11497 i855_get_display_clock_speed;
11498 else /* 852, 830 */
11499 dev_priv->display.get_display_clock_speed =
11500 i830_get_display_clock_speed;
11501
11502 if (HAS_PCH_SPLIT(dev)) {
11503 if (IS_GEN5(dev)) {
11504 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11505 dev_priv->display.write_eld = ironlake_write_eld;
11506 } else if (IS_GEN6(dev)) {
11507 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11508 dev_priv->display.write_eld = ironlake_write_eld;
11509 dev_priv->display.modeset_global_resources =
11510 snb_modeset_global_resources;
11511 } else if (IS_IVYBRIDGE(dev)) {
11512 /* FIXME: detect B0+ stepping and use auto training */
11513 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11514 dev_priv->display.write_eld = ironlake_write_eld;
11515 dev_priv->display.modeset_global_resources =
11516 ivb_modeset_global_resources;
11517 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11518 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11519 dev_priv->display.write_eld = haswell_write_eld;
11520 dev_priv->display.modeset_global_resources =
11521 haswell_modeset_global_resources;
11522 }
11523 } else if (IS_G4X(dev)) {
11524 dev_priv->display.write_eld = g4x_write_eld;
11525 } else if (IS_VALLEYVIEW(dev)) {
11526 dev_priv->display.modeset_global_resources =
11527 valleyview_modeset_global_resources;
11528 dev_priv->display.write_eld = ironlake_write_eld;
11529 }
11530
11531 /* Default just returns -ENODEV to indicate unsupported */
11532 dev_priv->display.queue_flip = intel_default_queue_flip;
11533
11534 switch (INTEL_INFO(dev)->gen) {
11535 case 2:
11536 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11537 break;
11538
11539 case 3:
11540 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11541 break;
11542
11543 case 4:
11544 case 5:
11545 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11546 break;
11547
11548 case 6:
11549 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11550 break;
11551 case 7:
11552 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11553 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11554 break;
11555 }
11556
11557 intel_panel_init_backlight_funcs(dev);
11558 }
11559
11560 /*
11561 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11562 * resume, or other times. This quirk makes sure that's the case for
11563 * affected systems.
11564 */
11565 static void quirk_pipea_force(struct drm_device *dev)
11566 {
11567 struct drm_i915_private *dev_priv = dev->dev_private;
11568
11569 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11570 DRM_INFO("applying pipe a force quirk\n");
11571 }
11572
11573 /*
11574 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11575 */
11576 static void quirk_ssc_force_disable(struct drm_device *dev)
11577 {
11578 struct drm_i915_private *dev_priv = dev->dev_private;
11579 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11580 DRM_INFO("applying lvds SSC disable quirk\n");
11581 }
11582
11583 /*
11584 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11585 * brightness value
11586 */
11587 static void quirk_invert_brightness(struct drm_device *dev)
11588 {
11589 struct drm_i915_private *dev_priv = dev->dev_private;
11590 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11591 DRM_INFO("applying inverted panel brightness quirk\n");
11592 }
11593
11594 /* Some VBT's incorrectly indicate no backlight is present */
11595 static void quirk_backlight_present(struct drm_device *dev)
11596 {
11597 struct drm_i915_private *dev_priv = dev->dev_private;
11598 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
11599 DRM_INFO("applying backlight present quirk\n");
11600 }
11601
11602 struct intel_quirk {
11603 int device;
11604 int subsystem_vendor;
11605 int subsystem_device;
11606 void (*hook)(struct drm_device *dev);
11607 };
11608
11609 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11610 struct intel_dmi_quirk {
11611 void (*hook)(struct drm_device *dev);
11612 const struct dmi_system_id (*dmi_id_list)[];
11613 };
11614
11615 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11616 {
11617 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11618 return 1;
11619 }
11620
11621 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11622 {
11623 .dmi_id_list = &(const struct dmi_system_id[]) {
11624 {
11625 .callback = intel_dmi_reverse_brightness,
11626 .ident = "NCR Corporation",
11627 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11628 DMI_MATCH(DMI_PRODUCT_NAME, ""),
11629 },
11630 },
11631 { } /* terminating entry */
11632 },
11633 .hook = quirk_invert_brightness,
11634 },
11635 };
11636
11637 static struct intel_quirk intel_quirks[] = {
11638 /* HP Mini needs pipe A force quirk (LP: #322104) */
11639 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11640
11641 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11642 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11643
11644 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11645 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11646
11647 /* Lenovo U160 cannot use SSC on LVDS */
11648 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11649
11650 /* Sony Vaio Y cannot use SSC on LVDS */
11651 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11652
11653 /* Acer Aspire 5734Z must invert backlight brightness */
11654 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11655
11656 /* Acer/eMachines G725 */
11657 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11658
11659 /* Acer/eMachines e725 */
11660 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11661
11662 /* Acer/Packard Bell NCL20 */
11663 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11664
11665 /* Acer Aspire 4736Z */
11666 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11667
11668 /* Acer Aspire 5336 */
11669 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11670
11671 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
11672 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
11673
11674 /* Toshiba CB35 Chromebook (Celeron 2955U) */
11675 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
11676 };
11677
11678 static void intel_init_quirks(struct drm_device *dev)
11679 {
11680 struct pci_dev *d = dev->pdev;
11681 int i;
11682
11683 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11684 struct intel_quirk *q = &intel_quirks[i];
11685
11686 if (d->device == q->device &&
11687 (d->subsystem_vendor == q->subsystem_vendor ||
11688 q->subsystem_vendor == PCI_ANY_ID) &&
11689 (d->subsystem_device == q->subsystem_device ||
11690 q->subsystem_device == PCI_ANY_ID))
11691 q->hook(dev);
11692 }
11693 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11694 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11695 intel_dmi_quirks[i].hook(dev);
11696 }
11697 }
11698
11699 /* Disable the VGA plane that we never use */
11700 static void i915_disable_vga(struct drm_device *dev)
11701 {
11702 struct drm_i915_private *dev_priv = dev->dev_private;
11703 u8 sr1;
11704 u32 vga_reg = i915_vgacntrl_reg(dev);
11705
11706 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11707 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11708 outb(SR01, VGA_SR_INDEX);
11709 sr1 = inb(VGA_SR_DATA);
11710 outb(sr1 | 1<<5, VGA_SR_DATA);
11711 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11712 udelay(300);
11713
11714 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11715 POSTING_READ(vga_reg);
11716 }
11717
11718 void intel_modeset_init_hw(struct drm_device *dev)
11719 {
11720 intel_prepare_ddi(dev);
11721
11722 intel_init_clock_gating(dev);
11723
11724 intel_reset_dpio(dev);
11725
11726 intel_enable_gt_powersave(dev);
11727 }
11728
11729 void intel_modeset_suspend_hw(struct drm_device *dev)
11730 {
11731 intel_suspend_hw(dev);
11732 }
11733
11734 void intel_modeset_init(struct drm_device *dev)
11735 {
11736 struct drm_i915_private *dev_priv = dev->dev_private;
11737 int sprite, ret;
11738 enum pipe pipe;
11739 struct intel_crtc *crtc;
11740
11741 drm_mode_config_init(dev);
11742
11743 dev->mode_config.min_width = 0;
11744 dev->mode_config.min_height = 0;
11745
11746 dev->mode_config.preferred_depth = 24;
11747 dev->mode_config.prefer_shadow = 1;
11748
11749 dev->mode_config.funcs = &intel_mode_funcs;
11750
11751 intel_init_quirks(dev);
11752
11753 intel_init_pm(dev);
11754
11755 if (INTEL_INFO(dev)->num_pipes == 0)
11756 return;
11757
11758 intel_init_display(dev);
11759
11760 if (IS_GEN2(dev)) {
11761 dev->mode_config.max_width = 2048;
11762 dev->mode_config.max_height = 2048;
11763 } else if (IS_GEN3(dev)) {
11764 dev->mode_config.max_width = 4096;
11765 dev->mode_config.max_height = 4096;
11766 } else {
11767 dev->mode_config.max_width = 8192;
11768 dev->mode_config.max_height = 8192;
11769 }
11770
11771 if (IS_GEN2(dev)) {
11772 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11773 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11774 } else {
11775 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11776 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11777 }
11778
11779 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11780
11781 DRM_DEBUG_KMS("%d display pipe%s available.\n",
11782 INTEL_INFO(dev)->num_pipes,
11783 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11784
11785 for_each_pipe(pipe) {
11786 intel_crtc_init(dev, pipe);
11787 for_each_sprite(pipe, sprite) {
11788 ret = intel_plane_init(dev, pipe, sprite);
11789 if (ret)
11790 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11791 pipe_name(pipe), sprite_name(pipe, sprite), ret);
11792 }
11793 }
11794
11795 intel_init_dpio(dev);
11796 intel_reset_dpio(dev);
11797
11798 intel_cpu_pll_init(dev);
11799 intel_shared_dpll_init(dev);
11800
11801 /* Just disable it once at startup */
11802 i915_disable_vga(dev);
11803 intel_setup_outputs(dev);
11804
11805 /* Just in case the BIOS is doing something questionable. */
11806 intel_disable_fbc(dev);
11807
11808 drm_modeset_lock_all(dev);
11809 intel_modeset_setup_hw_state(dev, false);
11810 drm_modeset_unlock_all(dev);
11811
11812 for_each_intel_crtc(dev, crtc) {
11813 if (!crtc->active)
11814 continue;
11815
11816 /*
11817 * Note that reserving the BIOS fb up front prevents us
11818 * from stuffing other stolen allocations like the ring
11819 * on top. This prevents some ugliness at boot time, and
11820 * can even allow for smooth boot transitions if the BIOS
11821 * fb is large enough for the active pipe configuration.
11822 */
11823 if (dev_priv->display.get_plane_config) {
11824 dev_priv->display.get_plane_config(crtc,
11825 &crtc->plane_config);
11826 /*
11827 * If the fb is shared between multiple heads, we'll
11828 * just get the first one.
11829 */
11830 intel_find_plane_obj(crtc, &crtc->plane_config);
11831 }
11832 }
11833 }
11834
11835 static void intel_enable_pipe_a(struct drm_device *dev)
11836 {
11837 struct intel_connector *connector;
11838 struct drm_connector *crt = NULL;
11839 struct intel_load_detect_pipe load_detect_temp;
11840 struct drm_modeset_acquire_ctx ctx;
11841
11842 /* We can't just switch on the pipe A, we need to set things up with a
11843 * proper mode and output configuration. As a gross hack, enable pipe A
11844 * by enabling the load detect pipe once. */
11845 list_for_each_entry(connector,
11846 &dev->mode_config.connector_list,
11847 base.head) {
11848 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11849 crt = &connector->base;
11850 break;
11851 }
11852 }
11853
11854 if (!crt)
11855 return;
11856
11857 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
11858 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
11859
11860
11861 }
11862
11863 static bool
11864 intel_check_plane_mapping(struct intel_crtc *crtc)
11865 {
11866 struct drm_device *dev = crtc->base.dev;
11867 struct drm_i915_private *dev_priv = dev->dev_private;
11868 u32 reg, val;
11869
11870 if (INTEL_INFO(dev)->num_pipes == 1)
11871 return true;
11872
11873 reg = DSPCNTR(!crtc->plane);
11874 val = I915_READ(reg);
11875
11876 if ((val & DISPLAY_PLANE_ENABLE) &&
11877 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11878 return false;
11879
11880 return true;
11881 }
11882
11883 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11884 {
11885 struct drm_device *dev = crtc->base.dev;
11886 struct drm_i915_private *dev_priv = dev->dev_private;
11887 u32 reg;
11888
11889 /* Clear any frame start delays used for debugging left by the BIOS */
11890 reg = PIPECONF(crtc->config.cpu_transcoder);
11891 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11892
11893 /* restore vblank interrupts to correct state */
11894 if (crtc->active)
11895 drm_vblank_on(dev, crtc->pipe);
11896 else
11897 drm_vblank_off(dev, crtc->pipe);
11898
11899 /* We need to sanitize the plane -> pipe mapping first because this will
11900 * disable the crtc (and hence change the state) if it is wrong. Note
11901 * that gen4+ has a fixed plane -> pipe mapping. */
11902 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11903 struct intel_connector *connector;
11904 bool plane;
11905
11906 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11907 crtc->base.base.id);
11908
11909 /* Pipe has the wrong plane attached and the plane is active.
11910 * Temporarily change the plane mapping and disable everything
11911 * ... */
11912 plane = crtc->plane;
11913 crtc->plane = !plane;
11914 dev_priv->display.crtc_disable(&crtc->base);
11915 crtc->plane = plane;
11916
11917 /* ... and break all links. */
11918 list_for_each_entry(connector, &dev->mode_config.connector_list,
11919 base.head) {
11920 if (connector->encoder->base.crtc != &crtc->base)
11921 continue;
11922
11923 connector->base.dpms = DRM_MODE_DPMS_OFF;
11924 connector->base.encoder = NULL;
11925 }
11926 /* multiple connectors may have the same encoder:
11927 * handle them and break crtc link separately */
11928 list_for_each_entry(connector, &dev->mode_config.connector_list,
11929 base.head)
11930 if (connector->encoder->base.crtc == &crtc->base) {
11931 connector->encoder->base.crtc = NULL;
11932 connector->encoder->connectors_active = false;
11933 }
11934
11935 WARN_ON(crtc->active);
11936 crtc->base.enabled = false;
11937 }
11938
11939 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11940 crtc->pipe == PIPE_A && !crtc->active) {
11941 /* BIOS forgot to enable pipe A, this mostly happens after
11942 * resume. Force-enable the pipe to fix this, the update_dpms
11943 * call below we restore the pipe to the right state, but leave
11944 * the required bits on. */
11945 intel_enable_pipe_a(dev);
11946 }
11947
11948 /* Adjust the state of the output pipe according to whether we
11949 * have active connectors/encoders. */
11950 intel_crtc_update_dpms(&crtc->base);
11951
11952 if (crtc->active != crtc->base.enabled) {
11953 struct intel_encoder *encoder;
11954
11955 /* This can happen either due to bugs in the get_hw_state
11956 * functions or because the pipe is force-enabled due to the
11957 * pipe A quirk. */
11958 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11959 crtc->base.base.id,
11960 crtc->base.enabled ? "enabled" : "disabled",
11961 crtc->active ? "enabled" : "disabled");
11962
11963 crtc->base.enabled = crtc->active;
11964
11965 /* Because we only establish the connector -> encoder ->
11966 * crtc links if something is active, this means the
11967 * crtc is now deactivated. Break the links. connector
11968 * -> encoder links are only establish when things are
11969 * actually up, hence no need to break them. */
11970 WARN_ON(crtc->active);
11971
11972 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11973 WARN_ON(encoder->connectors_active);
11974 encoder->base.crtc = NULL;
11975 }
11976 }
11977
11978 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
11979 /*
11980 * We start out with underrun reporting disabled to avoid races.
11981 * For correct bookkeeping mark this on active crtcs.
11982 *
11983 * Also on gmch platforms we dont have any hardware bits to
11984 * disable the underrun reporting. Which means we need to start
11985 * out with underrun reporting disabled also on inactive pipes,
11986 * since otherwise we'll complain about the garbage we read when
11987 * e.g. coming up after runtime pm.
11988 *
11989 * No protection against concurrent access is required - at
11990 * worst a fifo underrun happens which also sets this to false.
11991 */
11992 crtc->cpu_fifo_underrun_disabled = true;
11993 crtc->pch_fifo_underrun_disabled = true;
11994
11995 update_scanline_offset(crtc);
11996 }
11997 }
11998
11999 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12000 {
12001 struct intel_connector *connector;
12002 struct drm_device *dev = encoder->base.dev;
12003
12004 /* We need to check both for a crtc link (meaning that the
12005 * encoder is active and trying to read from a pipe) and the
12006 * pipe itself being active. */
12007 bool has_active_crtc = encoder->base.crtc &&
12008 to_intel_crtc(encoder->base.crtc)->active;
12009
12010 if (encoder->connectors_active && !has_active_crtc) {
12011 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12012 encoder->base.base.id,
12013 encoder->base.name);
12014
12015 /* Connector is active, but has no active pipe. This is
12016 * fallout from our resume register restoring. Disable
12017 * the encoder manually again. */
12018 if (encoder->base.crtc) {
12019 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12020 encoder->base.base.id,
12021 encoder->base.name);
12022 encoder->disable(encoder);
12023 }
12024 encoder->base.crtc = NULL;
12025 encoder->connectors_active = false;
12026
12027 /* Inconsistent output/port/pipe state happens presumably due to
12028 * a bug in one of the get_hw_state functions. Or someplace else
12029 * in our code, like the register restore mess on resume. Clamp
12030 * things to off as a safer default. */
12031 list_for_each_entry(connector,
12032 &dev->mode_config.connector_list,
12033 base.head) {
12034 if (connector->encoder != encoder)
12035 continue;
12036 connector->base.dpms = DRM_MODE_DPMS_OFF;
12037 connector->base.encoder = NULL;
12038 }
12039 }
12040 /* Enabled encoders without active connectors will be fixed in
12041 * the crtc fixup. */
12042 }
12043
12044 void i915_redisable_vga_power_on(struct drm_device *dev)
12045 {
12046 struct drm_i915_private *dev_priv = dev->dev_private;
12047 u32 vga_reg = i915_vgacntrl_reg(dev);
12048
12049 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12050 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12051 i915_disable_vga(dev);
12052 }
12053 }
12054
12055 void i915_redisable_vga(struct drm_device *dev)
12056 {
12057 struct drm_i915_private *dev_priv = dev->dev_private;
12058
12059 /* This function can be called both from intel_modeset_setup_hw_state or
12060 * at a very early point in our resume sequence, where the power well
12061 * structures are not yet restored. Since this function is at a very
12062 * paranoid "someone might have enabled VGA while we were not looking"
12063 * level, just check if the power well is enabled instead of trying to
12064 * follow the "don't touch the power well if we don't need it" policy
12065 * the rest of the driver uses. */
12066 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12067 return;
12068
12069 i915_redisable_vga_power_on(dev);
12070 }
12071
12072 static bool primary_get_hw_state(struct intel_crtc *crtc)
12073 {
12074 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12075
12076 if (!crtc->active)
12077 return false;
12078
12079 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12080 }
12081
12082 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12083 {
12084 struct drm_i915_private *dev_priv = dev->dev_private;
12085 enum pipe pipe;
12086 struct intel_crtc *crtc;
12087 struct intel_encoder *encoder;
12088 struct intel_connector *connector;
12089 int i;
12090
12091 for_each_intel_crtc(dev, crtc) {
12092 memset(&crtc->config, 0, sizeof(crtc->config));
12093
12094 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12095
12096 crtc->active = dev_priv->display.get_pipe_config(crtc,
12097 &crtc->config);
12098
12099 crtc->base.enabled = crtc->active;
12100 crtc->primary_enabled = primary_get_hw_state(crtc);
12101
12102 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12103 crtc->base.base.id,
12104 crtc->active ? "enabled" : "disabled");
12105 }
12106
12107 /* FIXME: Smash this into the new shared dpll infrastructure. */
12108 if (HAS_DDI(dev))
12109 intel_ddi_setup_hw_pll_state(dev);
12110
12111 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12112 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12113
12114 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12115 pll->active = 0;
12116 for_each_intel_crtc(dev, crtc) {
12117 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12118 pll->active++;
12119 }
12120 pll->refcount = pll->active;
12121
12122 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12123 pll->name, pll->refcount, pll->on);
12124 }
12125
12126 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12127 base.head) {
12128 pipe = 0;
12129
12130 if (encoder->get_hw_state(encoder, &pipe)) {
12131 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12132 encoder->base.crtc = &crtc->base;
12133 encoder->get_config(encoder, &crtc->config);
12134 } else {
12135 encoder->base.crtc = NULL;
12136 }
12137
12138 encoder->connectors_active = false;
12139 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12140 encoder->base.base.id,
12141 encoder->base.name,
12142 encoder->base.crtc ? "enabled" : "disabled",
12143 pipe_name(pipe));
12144 }
12145
12146 list_for_each_entry(connector, &dev->mode_config.connector_list,
12147 base.head) {
12148 if (connector->get_hw_state(connector)) {
12149 connector->base.dpms = DRM_MODE_DPMS_ON;
12150 connector->encoder->connectors_active = true;
12151 connector->base.encoder = &connector->encoder->base;
12152 } else {
12153 connector->base.dpms = DRM_MODE_DPMS_OFF;
12154 connector->base.encoder = NULL;
12155 }
12156 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12157 connector->base.base.id,
12158 connector->base.name,
12159 connector->base.encoder ? "enabled" : "disabled");
12160 }
12161 }
12162
12163 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12164 * and i915 state tracking structures. */
12165 void intel_modeset_setup_hw_state(struct drm_device *dev,
12166 bool force_restore)
12167 {
12168 struct drm_i915_private *dev_priv = dev->dev_private;
12169 enum pipe pipe;
12170 struct intel_crtc *crtc;
12171 struct intel_encoder *encoder;
12172 int i;
12173
12174 intel_modeset_readout_hw_state(dev);
12175
12176 /*
12177 * Now that we have the config, copy it to each CRTC struct
12178 * Note that this could go away if we move to using crtc_config
12179 * checking everywhere.
12180 */
12181 for_each_intel_crtc(dev, crtc) {
12182 if (crtc->active && i915.fastboot) {
12183 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
12184 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12185 crtc->base.base.id);
12186 drm_mode_debug_printmodeline(&crtc->base.mode);
12187 }
12188 }
12189
12190 /* HW state is read out, now we need to sanitize this mess. */
12191 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12192 base.head) {
12193 intel_sanitize_encoder(encoder);
12194 }
12195
12196 for_each_pipe(pipe) {
12197 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12198 intel_sanitize_crtc(crtc);
12199 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
12200 }
12201
12202 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12203 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12204
12205 if (!pll->on || pll->active)
12206 continue;
12207
12208 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12209
12210 pll->disable(dev_priv, pll);
12211 pll->on = false;
12212 }
12213
12214 if (HAS_PCH_SPLIT(dev))
12215 ilk_wm_get_hw_state(dev);
12216
12217 if (force_restore) {
12218 i915_redisable_vga(dev);
12219
12220 /*
12221 * We need to use raw interfaces for restoring state to avoid
12222 * checking (bogus) intermediate states.
12223 */
12224 for_each_pipe(pipe) {
12225 struct drm_crtc *crtc =
12226 dev_priv->pipe_to_crtc_mapping[pipe];
12227
12228 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12229 crtc->primary->fb);
12230 }
12231 } else {
12232 intel_modeset_update_staged_output_state(dev);
12233 }
12234
12235 intel_modeset_check_state(dev);
12236 }
12237
12238 void intel_modeset_gem_init(struct drm_device *dev)
12239 {
12240 struct drm_crtc *c;
12241 struct intel_framebuffer *fb;
12242
12243 mutex_lock(&dev->struct_mutex);
12244 intel_init_gt_powersave(dev);
12245 mutex_unlock(&dev->struct_mutex);
12246
12247 intel_modeset_init_hw(dev);
12248
12249 intel_setup_overlay(dev);
12250
12251 /*
12252 * Make sure any fbs we allocated at startup are properly
12253 * pinned & fenced. When we do the allocation it's too early
12254 * for this.
12255 */
12256 mutex_lock(&dev->struct_mutex);
12257 for_each_crtc(dev, c) {
12258 if (!c->primary->fb)
12259 continue;
12260
12261 fb = to_intel_framebuffer(c->primary->fb);
12262 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12263 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12264 to_intel_crtc(c)->pipe);
12265 drm_framebuffer_unreference(c->primary->fb);
12266 c->primary->fb = NULL;
12267 }
12268 }
12269 mutex_unlock(&dev->struct_mutex);
12270 }
12271
12272 void intel_connector_unregister(struct intel_connector *intel_connector)
12273 {
12274 struct drm_connector *connector = &intel_connector->base;
12275
12276 intel_panel_destroy_backlight(connector);
12277 drm_sysfs_connector_remove(connector);
12278 }
12279
12280 void intel_modeset_cleanup(struct drm_device *dev)
12281 {
12282 struct drm_i915_private *dev_priv = dev->dev_private;
12283 struct drm_crtc *crtc;
12284 struct drm_connector *connector;
12285
12286 /*
12287 * Interrupts and polling as the first thing to avoid creating havoc.
12288 * Too much stuff here (turning of rps, connectors, ...) would
12289 * experience fancy races otherwise.
12290 */
12291 drm_irq_uninstall(dev);
12292 cancel_work_sync(&dev_priv->hotplug_work);
12293 /*
12294 * Due to the hpd irq storm handling the hotplug work can re-arm the
12295 * poll handlers. Hence disable polling after hpd handling is shut down.
12296 */
12297 drm_kms_helper_poll_fini(dev);
12298
12299 mutex_lock(&dev->struct_mutex);
12300
12301 intel_unregister_dsm_handler();
12302
12303 for_each_crtc(dev, crtc) {
12304 /* Skip inactive CRTCs */
12305 if (!crtc->primary->fb)
12306 continue;
12307
12308 intel_increase_pllclock(crtc);
12309 }
12310
12311 intel_disable_fbc(dev);
12312
12313 intel_disable_gt_powersave(dev);
12314
12315 ironlake_teardown_rc6(dev);
12316
12317 mutex_unlock(&dev->struct_mutex);
12318
12319 /* flush any delayed tasks or pending work */
12320 flush_scheduled_work();
12321
12322 /* destroy the backlight and sysfs files before encoders/connectors */
12323 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12324 struct intel_connector *intel_connector;
12325
12326 intel_connector = to_intel_connector(connector);
12327 intel_connector->unregister(intel_connector);
12328 }
12329
12330 drm_mode_config_cleanup(dev);
12331
12332 intel_cleanup_overlay(dev);
12333
12334 mutex_lock(&dev->struct_mutex);
12335 intel_cleanup_gt_powersave(dev);
12336 mutex_unlock(&dev->struct_mutex);
12337 }
12338
12339 /*
12340 * Return which encoder is currently attached for connector.
12341 */
12342 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12343 {
12344 return &intel_attached_encoder(connector)->base;
12345 }
12346
12347 void intel_connector_attach_encoder(struct intel_connector *connector,
12348 struct intel_encoder *encoder)
12349 {
12350 connector->encoder = encoder;
12351 drm_mode_connector_attach_encoder(&connector->base,
12352 &encoder->base);
12353 }
12354
12355 /*
12356 * set vga decode state - true == enable VGA decode
12357 */
12358 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12359 {
12360 struct drm_i915_private *dev_priv = dev->dev_private;
12361 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12362 u16 gmch_ctrl;
12363
12364 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12365 DRM_ERROR("failed to read control word\n");
12366 return -EIO;
12367 }
12368
12369 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12370 return 0;
12371
12372 if (state)
12373 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12374 else
12375 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12376
12377 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12378 DRM_ERROR("failed to write control word\n");
12379 return -EIO;
12380 }
12381
12382 return 0;
12383 }
12384
12385 struct intel_display_error_state {
12386
12387 u32 power_well_driver;
12388
12389 int num_transcoders;
12390
12391 struct intel_cursor_error_state {
12392 u32 control;
12393 u32 position;
12394 u32 base;
12395 u32 size;
12396 } cursor[I915_MAX_PIPES];
12397
12398 struct intel_pipe_error_state {
12399 bool power_domain_on;
12400 u32 source;
12401 u32 stat;
12402 } pipe[I915_MAX_PIPES];
12403
12404 struct intel_plane_error_state {
12405 u32 control;
12406 u32 stride;
12407 u32 size;
12408 u32 pos;
12409 u32 addr;
12410 u32 surface;
12411 u32 tile_offset;
12412 } plane[I915_MAX_PIPES];
12413
12414 struct intel_transcoder_error_state {
12415 bool power_domain_on;
12416 enum transcoder cpu_transcoder;
12417
12418 u32 conf;
12419
12420 u32 htotal;
12421 u32 hblank;
12422 u32 hsync;
12423 u32 vtotal;
12424 u32 vblank;
12425 u32 vsync;
12426 } transcoder[4];
12427 };
12428
12429 struct intel_display_error_state *
12430 intel_display_capture_error_state(struct drm_device *dev)
12431 {
12432 struct drm_i915_private *dev_priv = dev->dev_private;
12433 struct intel_display_error_state *error;
12434 int transcoders[] = {
12435 TRANSCODER_A,
12436 TRANSCODER_B,
12437 TRANSCODER_C,
12438 TRANSCODER_EDP,
12439 };
12440 int i;
12441
12442 if (INTEL_INFO(dev)->num_pipes == 0)
12443 return NULL;
12444
12445 error = kzalloc(sizeof(*error), GFP_ATOMIC);
12446 if (error == NULL)
12447 return NULL;
12448
12449 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12450 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12451
12452 for_each_pipe(i) {
12453 error->pipe[i].power_domain_on =
12454 intel_display_power_enabled_unlocked(dev_priv,
12455 POWER_DOMAIN_PIPE(i));
12456 if (!error->pipe[i].power_domain_on)
12457 continue;
12458
12459 error->cursor[i].control = I915_READ(CURCNTR(i));
12460 error->cursor[i].position = I915_READ(CURPOS(i));
12461 error->cursor[i].base = I915_READ(CURBASE(i));
12462
12463 error->plane[i].control = I915_READ(DSPCNTR(i));
12464 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12465 if (INTEL_INFO(dev)->gen <= 3) {
12466 error->plane[i].size = I915_READ(DSPSIZE(i));
12467 error->plane[i].pos = I915_READ(DSPPOS(i));
12468 }
12469 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12470 error->plane[i].addr = I915_READ(DSPADDR(i));
12471 if (INTEL_INFO(dev)->gen >= 4) {
12472 error->plane[i].surface = I915_READ(DSPSURF(i));
12473 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12474 }
12475
12476 error->pipe[i].source = I915_READ(PIPESRC(i));
12477
12478 if (!HAS_PCH_SPLIT(dev))
12479 error->pipe[i].stat = I915_READ(PIPESTAT(i));
12480 }
12481
12482 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12483 if (HAS_DDI(dev_priv->dev))
12484 error->num_transcoders++; /* Account for eDP. */
12485
12486 for (i = 0; i < error->num_transcoders; i++) {
12487 enum transcoder cpu_transcoder = transcoders[i];
12488
12489 error->transcoder[i].power_domain_on =
12490 intel_display_power_enabled_unlocked(dev_priv,
12491 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12492 if (!error->transcoder[i].power_domain_on)
12493 continue;
12494
12495 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12496
12497 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12498 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12499 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12500 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12501 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12502 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12503 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12504 }
12505
12506 return error;
12507 }
12508
12509 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12510
12511 void
12512 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12513 struct drm_device *dev,
12514 struct intel_display_error_state *error)
12515 {
12516 int i;
12517
12518 if (!error)
12519 return;
12520
12521 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12522 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12523 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12524 error->power_well_driver);
12525 for_each_pipe(i) {
12526 err_printf(m, "Pipe [%d]:\n", i);
12527 err_printf(m, " Power: %s\n",
12528 error->pipe[i].power_domain_on ? "on" : "off");
12529 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
12530 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
12531
12532 err_printf(m, "Plane [%d]:\n", i);
12533 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
12534 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
12535 if (INTEL_INFO(dev)->gen <= 3) {
12536 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
12537 err_printf(m, " POS: %08x\n", error->plane[i].pos);
12538 }
12539 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12540 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
12541 if (INTEL_INFO(dev)->gen >= 4) {
12542 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
12543 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
12544 }
12545
12546 err_printf(m, "Cursor [%d]:\n", i);
12547 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
12548 err_printf(m, " POS: %08x\n", error->cursor[i].position);
12549 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
12550 }
12551
12552 for (i = 0; i < error->num_transcoders; i++) {
12553 err_printf(m, "CPU transcoder: %c\n",
12554 transcoder_name(error->transcoder[i].cpu_transcoder));
12555 err_printf(m, " Power: %s\n",
12556 error->transcoder[i].power_domain_on ? "on" : "off");
12557 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
12558 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
12559 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
12560 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
12561 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
12562 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
12563 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
12564 }
12565 }
This page took 0.377554 seconds and 5 git commands to generate.