drm/i915: Ensure plane->state->fb stays in sync with plane->fb
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_dp_helper.h>
42 #include <drm/drm_crtc_helper.h>
43 #include <drm/drm_plane_helper.h>
44 #include <drm/drm_rect.h>
45 #include <linux/dma_remapping.h>
46
47 /* Primary plane formats supported by all gen */
48 #define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
53
54 /* Primary plane formats for gen <= 3 */
55 static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
59 };
60
61 /* Primary plane formats for gen >= 4 */
62 static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
70 };
71
72 /* Cursor formats */
73 static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
75 };
76
77 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
78
79 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
80 struct intel_crtc_state *pipe_config);
81 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
82 struct intel_crtc_state *pipe_config);
83
84 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
86 static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
90 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
92 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
95 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
96 static void haswell_set_pipeconf(struct drm_crtc *crtc);
97 static void intel_set_pipe_csc(struct drm_crtc *crtc);
98 static void vlv_prepare_pll(struct intel_crtc *crtc,
99 const struct intel_crtc_state *pipe_config);
100 static void chv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
415 {
416 struct drm_device *dev = crtc->base.dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424 }
425
426 /**
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
431 */
432 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433 {
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
440
441 return false;
442 }
443
444 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
445 int refclk)
446 {
447 struct drm_device *dev = crtc->base.dev;
448 const intel_limit_t *limit;
449
450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
451 if (intel_is_dual_link_lvds(dev)) {
452 if (refclk == 100000)
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
457 if (refclk == 100000)
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
461 }
462 } else
463 limit = &intel_limits_ironlake_dac;
464
465 return limit;
466 }
467
468 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
469 {
470 struct drm_device *dev = crtc->base.dev;
471 const intel_limit_t *limit;
472
473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
474 if (intel_is_dual_link_lvds(dev))
475 limit = &intel_limits_g4x_dual_channel_lvds;
476 else
477 limit = &intel_limits_g4x_single_channel_lvds;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
480 limit = &intel_limits_g4x_hdmi;
481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
482 limit = &intel_limits_g4x_sdvo;
483 } else /* The option is for other outputs */
484 limit = &intel_limits_i9xx_sdvo;
485
486 return limit;
487 }
488
489 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
490 {
491 struct drm_device *dev = crtc->base.dev;
492 const intel_limit_t *limit;
493
494 if (HAS_PCH_SPLIT(dev))
495 limit = intel_ironlake_limit(crtc, refclk);
496 else if (IS_G4X(dev)) {
497 limit = intel_g4x_limit(crtc);
498 } else if (IS_PINEVIEW(dev)) {
499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
500 limit = &intel_limits_pineview_lvds;
501 else
502 limit = &intel_limits_pineview_sdvo;
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
505 } else if (IS_VALLEYVIEW(dev)) {
506 limit = &intel_limits_vlv;
507 } else if (!IS_GEN2(dev)) {
508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
512 } else {
513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
514 limit = &intel_limits_i8xx_lvds;
515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
516 limit = &intel_limits_i8xx_dvo;
517 else
518 limit = &intel_limits_i8xx_dac;
519 }
520 return limit;
521 }
522
523 /* m1 is reserved as 0 in Pineview, n is a ring counter */
524 static void pineview_clock(int refclk, intel_clock_t *clock)
525 {
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
532 }
533
534 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535 {
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537 }
538
539 static void i9xx_clock(int refclk, intel_clock_t *clock)
540 {
541 clock->m = i9xx_dpll_compute_m(clock);
542 clock->p = clock->p1 * clock->p2;
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
547 }
548
549 static void chv_clock(int refclk, intel_clock_t *clock)
550 {
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558 }
559
560 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
561 /**
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
564 */
565
566 static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
569 {
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
573 INTELPllInvalid("p1 out of range\n");
574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
575 INTELPllInvalid("m2 out of range\n");
576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
577 INTELPllInvalid("m1 out of range\n");
578
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
582
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 }
589
590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
591 INTELPllInvalid("vco out of range\n");
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
596 INTELPllInvalid("dot out of range\n");
597
598 return true;
599 }
600
601 static bool
602 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
605 {
606 struct drm_device *dev = crtc->base.dev;
607 intel_clock_t clock;
608 int err = target;
609
610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
611 /*
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
615 */
616 if (intel_is_dual_link_lvds(dev))
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
625 }
626
627 memset(best_clock, 0, sizeof(*best_clock));
628
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
633 if (clock.m2 >= clock.m1)
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
639 int this_err;
640
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
653 }
654 }
655 }
656 }
657 }
658
659 return (err != target);
660 }
661
662 static bool
663 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
666 {
667 struct drm_device *dev = crtc->base.dev;
668 intel_clock_t clock;
669 int err = target;
670
671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
672 /*
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
676 */
677 if (intel_is_dual_link_lvds(dev))
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
686 }
687
688 memset(best_clock, 0, sizeof(*best_clock));
689
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
698 int this_err;
699
700 pineview_clock(refclk, &clock);
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719 }
720
721 static bool
722 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
725 {
726 struct drm_device *dev = crtc->base.dev;
727 intel_clock_t clock;
728 int max_n;
729 bool found;
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
732 found = false;
733
734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
735 if (intel_is_dual_link_lvds(dev))
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
748 /* based on hardware requirement, prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirement, prefere larger m1,m2 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
759 i9xx_clock(refclk, &clock);
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
762 continue;
763
764 this_err = abs(clock.dot - target);
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
775 return found;
776 }
777
778 static bool
779 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
782 {
783 struct drm_device *dev = crtc->base.dev;
784 intel_clock_t clock;
785 unsigned int bestppm = 1000000;
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
788 bool found = false;
789
790 target *= 5; /* fast clock */
791
792 memset(best_clock, 0, sizeof(*best_clock));
793
794 /* based on hardware requirement, prefer smaller n to precision */
795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799 clock.p = clock.p1 * clock.p2;
800 /* based on hardware requirement, prefer bigger m1,m2 values */
801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
802 unsigned int ppm, diff;
803
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
806
807 vlv_clock(refclk, &clock);
808
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
811 continue;
812
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
815
816 if (ppm < 100 && clock.p > best_clock->p) {
817 bestppm = 0;
818 *best_clock = clock;
819 found = true;
820 }
821
822 if (bestppm >= 10 && ppm < bestppm - 10) {
823 bestppm = ppm;
824 *best_clock = clock;
825 found = true;
826 }
827 }
828 }
829 }
830 }
831
832 return found;
833 }
834
835 static bool
836 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839 {
840 struct drm_device *dev = crtc->base.dev;
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
844
845 memset(best_clock, 0, sizeof(*best_clock));
846
847 /*
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
851 */
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
854
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860 clock.p = clock.p1 * clock.p2;
861
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
864
865 if (m2 > INT_MAX/clock.m1)
866 continue;
867
868 clock.m2 = m2;
869
870 chv_clock(refclk, &clock);
871
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
874
875 /* based on hardware requirement, prefer bigger p
876 */
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
880 }
881 }
882 }
883
884 return found;
885 }
886
887 bool intel_crtc_active(struct drm_crtc *crtc)
888 {
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
893 *
894 * We can ditch the adjusted_mode.crtc_clock check as soon
895 * as Haswell has gained clock readout/fastboot support.
896 *
897 * We can ditch the crtc->primary->fb check as soon as we can
898 * properly reconstruct framebuffers.
899 */
900 return intel_crtc->active && crtc->primary->fb &&
901 intel_crtc->config->base.adjusted_mode.crtc_clock;
902 }
903
904 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905 enum pipe pipe)
906 {
907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
910 return intel_crtc->config->cpu_transcoder;
911 }
912
913 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
914 {
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 reg = PIPEDSL(pipe);
917 u32 line1, line2;
918 u32 line_mask;
919
920 if (IS_GEN2(dev))
921 line_mask = DSL_LINEMASK_GEN2;
922 else
923 line_mask = DSL_LINEMASK_GEN3;
924
925 line1 = I915_READ(reg) & line_mask;
926 mdelay(5);
927 line2 = I915_READ(reg) & line_mask;
928
929 return line1 == line2;
930 }
931
932 /*
933 * intel_wait_for_pipe_off - wait for pipe to turn off
934 * @crtc: crtc whose pipe to wait for
935 *
936 * After disabling a pipe, we can't wait for vblank in the usual way,
937 * spinning on the vblank interrupt status bit, since we won't actually
938 * see an interrupt when the pipe is disabled.
939 *
940 * On Gen4 and above:
941 * wait for the pipe register state bit to turn off
942 *
943 * Otherwise:
944 * wait for the display line value to settle (it usually
945 * ends up stopping at the start of the next frame).
946 *
947 */
948 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
949 {
950 struct drm_device *dev = crtc->base.dev;
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
953 enum pipe pipe = crtc->pipe;
954
955 if (INTEL_INFO(dev)->gen >= 4) {
956 int reg = PIPECONF(cpu_transcoder);
957
958 /* Wait for the Pipe State to go off */
959 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960 100))
961 WARN(1, "pipe_off wait timed out\n");
962 } else {
963 /* Wait for the display line to settle */
964 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
965 WARN(1, "pipe_off wait timed out\n");
966 }
967 }
968
969 /*
970 * ibx_digital_port_connected - is the specified port connected?
971 * @dev_priv: i915 private structure
972 * @port: the port to test
973 *
974 * Returns true if @port is connected, false otherwise.
975 */
976 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977 struct intel_digital_port *port)
978 {
979 u32 bit;
980
981 if (HAS_PCH_IBX(dev_priv->dev)) {
982 switch (port->port) {
983 case PORT_B:
984 bit = SDE_PORTB_HOTPLUG;
985 break;
986 case PORT_C:
987 bit = SDE_PORTC_HOTPLUG;
988 break;
989 case PORT_D:
990 bit = SDE_PORTD_HOTPLUG;
991 break;
992 default:
993 return true;
994 }
995 } else {
996 switch (port->port) {
997 case PORT_B:
998 bit = SDE_PORTB_HOTPLUG_CPT;
999 break;
1000 case PORT_C:
1001 bit = SDE_PORTC_HOTPLUG_CPT;
1002 break;
1003 case PORT_D:
1004 bit = SDE_PORTD_HOTPLUG_CPT;
1005 break;
1006 default:
1007 return true;
1008 }
1009 }
1010
1011 return I915_READ(SDEISR) & bit;
1012 }
1013
1014 static const char *state_string(bool enabled)
1015 {
1016 return enabled ? "on" : "off";
1017 }
1018
1019 /* Only for pre-ILK configs */
1020 void assert_pll(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, bool state)
1022 {
1023 int reg;
1024 u32 val;
1025 bool cur_state;
1026
1027 reg = DPLL(pipe);
1028 val = I915_READ(reg);
1029 cur_state = !!(val & DPLL_VCO_ENABLE);
1030 I915_STATE_WARN(cur_state != state,
1031 "PLL state assertion failure (expected %s, current %s)\n",
1032 state_string(state), state_string(cur_state));
1033 }
1034
1035 /* XXX: the dsi pll is shared between MIPI DSI ports */
1036 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1037 {
1038 u32 val;
1039 bool cur_state;
1040
1041 mutex_lock(&dev_priv->dpio_lock);
1042 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043 mutex_unlock(&dev_priv->dpio_lock);
1044
1045 cur_state = val & DSI_PLL_VCO_EN;
1046 I915_STATE_WARN(cur_state != state,
1047 "DSI PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1049 }
1050 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1052
1053 struct intel_shared_dpll *
1054 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1055 {
1056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1057
1058 if (crtc->config->shared_dpll < 0)
1059 return NULL;
1060
1061 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1062 }
1063
1064 /* For ILK+ */
1065 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066 struct intel_shared_dpll *pll,
1067 bool state)
1068 {
1069 bool cur_state;
1070 struct intel_dpll_hw_state hw_state;
1071
1072 if (WARN (!pll,
1073 "asserting DPLL %s with no DPLL\n", state_string(state)))
1074 return;
1075
1076 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1077 I915_STATE_WARN(cur_state != state,
1078 "%s assertion failure (expected %s, current %s)\n",
1079 pll->name, state_string(state), state_string(cur_state));
1080 }
1081
1082 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083 enum pipe pipe, bool state)
1084 {
1085 int reg;
1086 u32 val;
1087 bool cur_state;
1088 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089 pipe);
1090
1091 if (HAS_DDI(dev_priv->dev)) {
1092 /* DDI does not have a specific FDI_TX register */
1093 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1094 val = I915_READ(reg);
1095 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1096 } else {
1097 reg = FDI_TX_CTL(pipe);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & FDI_TX_ENABLE);
1100 }
1101 I915_STATE_WARN(cur_state != state,
1102 "FDI TX state assertion failure (expected %s, current %s)\n",
1103 state_string(state), state_string(cur_state));
1104 }
1105 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1107
1108 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1110 {
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1114
1115 reg = FDI_RX_CTL(pipe);
1116 val = I915_READ(reg);
1117 cur_state = !!(val & FDI_RX_ENABLE);
1118 I915_STATE_WARN(cur_state != state,
1119 "FDI RX state assertion failure (expected %s, current %s)\n",
1120 state_string(state), state_string(cur_state));
1121 }
1122 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1124
1125 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127 {
1128 int reg;
1129 u32 val;
1130
1131 /* ILK FDI PLL is always enabled */
1132 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1133 return;
1134
1135 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1136 if (HAS_DDI(dev_priv->dev))
1137 return;
1138
1139 reg = FDI_TX_CTL(pipe);
1140 val = I915_READ(reg);
1141 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1142 }
1143
1144 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146 {
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1154 I915_STATE_WARN(cur_state != state,
1155 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157 }
1158
1159 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1161 {
1162 struct drm_device *dev = dev_priv->dev;
1163 int pp_reg;
1164 u32 val;
1165 enum pipe panel_pipe = PIPE_A;
1166 bool locked = true;
1167
1168 if (WARN_ON(HAS_DDI(dev)))
1169 return;
1170
1171 if (HAS_PCH_SPLIT(dev)) {
1172 u32 port_sel;
1173
1174 pp_reg = PCH_PP_CONTROL;
1175 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1176
1177 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179 panel_pipe = PIPE_B;
1180 /* XXX: else fix for eDP */
1181 } else if (IS_VALLEYVIEW(dev)) {
1182 /* presumably write lock depends on pipe, not port select */
1183 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184 panel_pipe = pipe;
1185 } else {
1186 pp_reg = PP_CONTROL;
1187 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188 panel_pipe = PIPE_B;
1189 }
1190
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
1193 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1194 locked = false;
1195
1196 I915_STATE_WARN(panel_pipe == pipe && locked,
1197 "panel assertion failure, pipe %c regs locked\n",
1198 pipe_name(pipe));
1199 }
1200
1201 static void assert_cursor(struct drm_i915_private *dev_priv,
1202 enum pipe pipe, bool state)
1203 {
1204 struct drm_device *dev = dev_priv->dev;
1205 bool cur_state;
1206
1207 if (IS_845G(dev) || IS_I865G(dev))
1208 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1209 else
1210 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1211
1212 I915_STATE_WARN(cur_state != state,
1213 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214 pipe_name(pipe), state_string(state), state_string(cur_state));
1215 }
1216 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1218
1219 void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
1221 {
1222 int reg;
1223 u32 val;
1224 bool cur_state;
1225 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226 pipe);
1227
1228 /* if we need the pipe quirk it must be always on */
1229 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1231 state = true;
1232
1233 if (!intel_display_power_is_enabled(dev_priv,
1234 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1235 cur_state = false;
1236 } else {
1237 reg = PIPECONF(cpu_transcoder);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & PIPECONF_ENABLE);
1240 }
1241
1242 I915_STATE_WARN(cur_state != state,
1243 "pipe %c assertion failure (expected %s, current %s)\n",
1244 pipe_name(pipe), state_string(state), state_string(cur_state));
1245 }
1246
1247 static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
1249 {
1250 int reg;
1251 u32 val;
1252 bool cur_state;
1253
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1257 I915_STATE_WARN(cur_state != state,
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
1260 }
1261
1262 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
1265 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267 {
1268 struct drm_device *dev = dev_priv->dev;
1269 int reg, i;
1270 u32 val;
1271 int cur_pipe;
1272
1273 /* Primary planes are fixed to pipes on gen4+ */
1274 if (INTEL_INFO(dev)->gen >= 4) {
1275 reg = DSPCNTR(pipe);
1276 val = I915_READ(reg);
1277 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1278 "plane %c assertion failure, should be disabled but not\n",
1279 plane_name(pipe));
1280 return;
1281 }
1282
1283 /* Need to check both planes against the pipe */
1284 for_each_pipe(dev_priv, i) {
1285 reg = DSPCNTR(i);
1286 val = I915_READ(reg);
1287 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288 DISPPLANE_SEL_PIPE_SHIFT;
1289 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1290 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291 plane_name(i), pipe_name(pipe));
1292 }
1293 }
1294
1295 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe)
1297 {
1298 struct drm_device *dev = dev_priv->dev;
1299 int reg, sprite;
1300 u32 val;
1301
1302 if (INTEL_INFO(dev)->gen >= 9) {
1303 for_each_sprite(pipe, sprite) {
1304 val = I915_READ(PLANE_CTL(pipe, sprite));
1305 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1306 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307 sprite, pipe_name(pipe));
1308 }
1309 } else if (IS_VALLEYVIEW(dev)) {
1310 for_each_sprite(pipe, sprite) {
1311 reg = SPCNTR(pipe, sprite);
1312 val = I915_READ(reg);
1313 I915_STATE_WARN(val & SP_ENABLE,
1314 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1315 sprite_name(pipe, sprite), pipe_name(pipe));
1316 }
1317 } else if (INTEL_INFO(dev)->gen >= 7) {
1318 reg = SPRCTL(pipe);
1319 val = I915_READ(reg);
1320 I915_STATE_WARN(val & SPRITE_ENABLE,
1321 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1322 plane_name(pipe), pipe_name(pipe));
1323 } else if (INTEL_INFO(dev)->gen >= 5) {
1324 reg = DVSCNTR(pipe);
1325 val = I915_READ(reg);
1326 I915_STATE_WARN(val & DVS_ENABLE,
1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1328 plane_name(pipe), pipe_name(pipe));
1329 }
1330 }
1331
1332 static void assert_vblank_disabled(struct drm_crtc *crtc)
1333 {
1334 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1335 drm_crtc_vblank_put(crtc);
1336 }
1337
1338 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1339 {
1340 u32 val;
1341 bool enabled;
1342
1343 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1344
1345 val = I915_READ(PCH_DREF_CONTROL);
1346 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347 DREF_SUPERSPREAD_SOURCE_MASK));
1348 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1349 }
1350
1351 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe)
1353 {
1354 int reg;
1355 u32 val;
1356 bool enabled;
1357
1358 reg = PCH_TRANSCONF(pipe);
1359 val = I915_READ(reg);
1360 enabled = !!(val & TRANS_ENABLE);
1361 I915_STATE_WARN(enabled,
1362 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363 pipe_name(pipe));
1364 }
1365
1366 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 port_sel, u32 val)
1368 {
1369 if ((val & DP_PORT_EN) == 0)
1370 return false;
1371
1372 if (HAS_PCH_CPT(dev_priv->dev)) {
1373 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389 {
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1402 }
1403 return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408 {
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv->dev)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424 {
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv->dev)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, int reg, u32 port_sel)
1439 {
1440 u32 val = I915_READ(reg);
1441 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1442 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1443 reg, pipe_name(pipe));
1444
1445 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1446 && (val & DP_PIPEB_SELECT),
1447 "IBX PCH dp port still using transcoder B\n");
1448 }
1449
1450 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, int reg)
1452 {
1453 u32 val = I915_READ(reg);
1454 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1455 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1456 reg, pipe_name(pipe));
1457
1458 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1459 && (val & SDVO_PIPE_B_SELECT),
1460 "IBX PCH hdmi port still using transcoder B\n");
1461 }
1462
1463 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465 {
1466 int reg;
1467 u32 val;
1468
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473 reg = PCH_ADPA;
1474 val = I915_READ(reg);
1475 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1476 "PCH VGA enabled on transcoder %c, should be disabled\n",
1477 pipe_name(pipe));
1478
1479 reg = PCH_LVDS;
1480 val = I915_READ(reg);
1481 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1482 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1483 pipe_name(pipe));
1484
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1488 }
1489
1490 static void intel_init_dpio(struct drm_device *dev)
1491 {
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494 if (!IS_VALLEYVIEW(dev))
1495 return;
1496
1497 /*
1498 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499 * CHV x1 PHY (DP/HDMI D)
1500 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1501 */
1502 if (IS_CHERRYVIEW(dev)) {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505 } else {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1507 }
1508 }
1509
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511 const struct intel_crtc_state *pipe_config)
1512 {
1513 struct drm_device *dev = crtc->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 int reg = DPLL(crtc->pipe);
1516 u32 dpll = pipe_config->dpll_hw_state.dpll;
1517
1518 assert_pipe_disabled(dev_priv, crtc->pipe);
1519
1520 /* No really, not for ILK+ */
1521 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1522
1523 /* PLL is protected by panel, make sure we can write it */
1524 if (IS_MOBILE(dev_priv->dev))
1525 assert_panel_unlocked(dev_priv, crtc->pipe);
1526
1527 I915_WRITE(reg, dpll);
1528 POSTING_READ(reg);
1529 udelay(150);
1530
1531 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1533
1534 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1535 POSTING_READ(DPLL_MD(crtc->pipe));
1536
1537 /* We do this three times for luck */
1538 I915_WRITE(reg, dpll);
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
1541 I915_WRITE(reg, dpll);
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544 I915_WRITE(reg, dpll);
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
1547 }
1548
1549 static void chv_enable_pll(struct intel_crtc *crtc,
1550 const struct intel_crtc_state *pipe_config)
1551 {
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int pipe = crtc->pipe;
1555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1556 u32 tmp;
1557
1558 assert_pipe_disabled(dev_priv, crtc->pipe);
1559
1560 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1561
1562 mutex_lock(&dev_priv->dpio_lock);
1563
1564 /* Enable back the 10bit clock to display controller */
1565 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566 tmp |= DPIO_DCLKP_EN;
1567 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1568
1569 /*
1570 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1571 */
1572 udelay(1);
1573
1574 /* Enable PLL */
1575 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1576
1577 /* Check PLL is locked */
1578 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1579 DRM_ERROR("PLL %d failed to lock\n", pipe);
1580
1581 /* not sure when this should be written */
1582 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1583 POSTING_READ(DPLL_MD(pipe));
1584
1585 mutex_unlock(&dev_priv->dpio_lock);
1586 }
1587
1588 static int intel_num_dvo_pipes(struct drm_device *dev)
1589 {
1590 struct intel_crtc *crtc;
1591 int count = 0;
1592
1593 for_each_intel_crtc(dev, crtc)
1594 count += crtc->active &&
1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1596
1597 return count;
1598 }
1599
1600 static void i9xx_enable_pll(struct intel_crtc *crtc)
1601 {
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 int reg = DPLL(crtc->pipe);
1605 u32 dpll = crtc->config->dpll_hw_state.dpll;
1606
1607 assert_pipe_disabled(dev_priv, crtc->pipe);
1608
1609 /* No really, not for ILK+ */
1610 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1611
1612 /* PLL is protected by panel, make sure we can write it */
1613 if (IS_MOBILE(dev) && !IS_I830(dev))
1614 assert_panel_unlocked(dev_priv, crtc->pipe);
1615
1616 /* Enable DVO 2x clock on both PLLs if necessary */
1617 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1618 /*
1619 * It appears to be important that we don't enable this
1620 * for the current pipe before otherwise configuring the
1621 * PLL. No idea how this should be handled if multiple
1622 * DVO outputs are enabled simultaneosly.
1623 */
1624 dpll |= DPLL_DVO_2X_MODE;
1625 I915_WRITE(DPLL(!crtc->pipe),
1626 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1627 }
1628
1629 /* Wait for the clocks to stabilize. */
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (INTEL_INFO(dev)->gen >= 4) {
1634 I915_WRITE(DPLL_MD(crtc->pipe),
1635 crtc->config->dpll_hw_state.dpll_md);
1636 } else {
1637 /* The pixel multiplier can only be updated once the
1638 * DPLL is enabled and the clocks are stable.
1639 *
1640 * So write it again.
1641 */
1642 I915_WRITE(reg, dpll);
1643 }
1644
1645 /* We do this three times for luck */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 I915_WRITE(reg, dpll);
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655 }
1656
1657 /**
1658 * i9xx_disable_pll - disable a PLL
1659 * @dev_priv: i915 private structure
1660 * @pipe: pipe PLL to disable
1661 *
1662 * Disable the PLL for @pipe, making sure the pipe is off first.
1663 *
1664 * Note! This is for pre-ILK only.
1665 */
1666 static void i9xx_disable_pll(struct intel_crtc *crtc)
1667 {
1668 struct drm_device *dev = crtc->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 enum pipe pipe = crtc->pipe;
1671
1672 /* Disable DVO 2x clock on both PLLs if necessary */
1673 if (IS_I830(dev) &&
1674 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1675 intel_num_dvo_pipes(dev) == 1) {
1676 I915_WRITE(DPLL(PIPE_B),
1677 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678 I915_WRITE(DPLL(PIPE_A),
1679 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1680 }
1681
1682 /* Don't disable pipe or pipe PLLs if needed */
1683 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1685 return;
1686
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1689
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
1692 }
1693
1694 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695 {
1696 u32 val = 0;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 /*
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1704 */
1705 if (pipe == PIPE_B)
1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
1709
1710 }
1711
1712 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713 {
1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1715 u32 val;
1716
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
1719
1720 /* Set PLL en = 0 */
1721 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
1726
1727 mutex_lock(&dev_priv->dpio_lock);
1728
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743 }
1744
1745 mutex_unlock(&dev_priv->dpio_lock);
1746 }
1747
1748 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
1750 {
1751 u32 port_mask;
1752 int dpll_reg;
1753
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
1766 break;
1767 default:
1768 BUG();
1769 }
1770
1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1773 port_name(dport->port), I915_READ(dpll_reg));
1774 }
1775
1776 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777 {
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
1782 if (WARN_ON(pll == NULL))
1783 return;
1784
1785 WARN_ON(!pll->config.crtc_mask);
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791 pll->mode_set(dev_priv, pll);
1792 }
1793 }
1794
1795 /**
1796 * intel_enable_shared_dpll - enable PCH PLL
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1799 *
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1802 */
1803 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1804 {
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
1809 if (WARN_ON(pll == NULL))
1810 return;
1811
1812 if (WARN_ON(pll->config.crtc_mask == 0))
1813 return;
1814
1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1816 pll->name, pll->active, pll->on,
1817 crtc->base.base.id);
1818
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
1821 assert_shared_dpll_enabled(dev_priv, pll);
1822 return;
1823 }
1824 WARN_ON(pll->on);
1825
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1829 pll->enable(dev_priv, pll);
1830 pll->on = true;
1831 }
1832
1833 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1834 {
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1838
1839 /* PCH only available on ILK+ */
1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
1841 if (WARN_ON(pll == NULL))
1842 return;
1843
1844 if (WARN_ON(pll->config.crtc_mask == 0))
1845 return;
1846
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
1849 crtc->base.base.id);
1850
1851 if (WARN_ON(pll->active == 0)) {
1852 assert_shared_dpll_disabled(dev_priv, pll);
1853 return;
1854 }
1855
1856 assert_shared_dpll_enabled(dev_priv, pll);
1857 WARN_ON(!pll->on);
1858 if (--pll->active)
1859 return;
1860
1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1862 pll->disable(dev_priv, pll);
1863 pll->on = false;
1864
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1866 }
1867
1868 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
1870 {
1871 struct drm_device *dev = dev_priv->dev;
1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1874 uint32_t reg, val, pipeconf_val;
1875
1876 /* PCH only available on ILK+ */
1877 BUG_ON(!HAS_PCH_SPLIT(dev));
1878
1879 /* Make sure PCH DPLL is enabled */
1880 assert_shared_dpll_enabled(dev_priv,
1881 intel_crtc_to_shared_dpll(intel_crtc));
1882
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1886
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
1894 }
1895
1896 reg = PCH_TRANSCONF(pipe);
1897 val = I915_READ(reg);
1898 pipeconf_val = I915_READ(PIPECONF(pipe));
1899
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1901 /*
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1904 */
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
1907 }
1908
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1911 if (HAS_PCH_IBX(dev_priv->dev) &&
1912 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1922 }
1923
1924 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1925 enum transcoder cpu_transcoder)
1926 {
1927 u32 val, pipeconf_val;
1928
1929 /* PCH only available on ILK+ */
1930 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1931
1932 /* FDI must be feeding us bits for PCH ports */
1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1935
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1940
1941 val = TRANS_ENABLE;
1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1943
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
1946 val |= TRANS_INTERLACED;
1947 else
1948 val |= TRANS_PROGRESSIVE;
1949
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1952 DRM_ERROR("Failed to enable PCH transcoder\n");
1953 }
1954
1955 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
1957 {
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
1960
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1964
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1967
1968 reg = PCH_TRANSCONF(pipe);
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1975
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1982 }
1983 }
1984
1985 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1986 {
1987 u32 val;
1988
1989 val = I915_READ(LPT_TRANSCONF);
1990 val &= ~TRANS_ENABLE;
1991 I915_WRITE(LPT_TRANSCONF, val);
1992 /* wait for PCH transcoder off, transcoder state */
1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1994 DRM_ERROR("Failed to disable PCH transcoder\n");
1995
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1999 I915_WRITE(_TRANSA_CHICKEN2, val);
2000 }
2001
2002 /**
2003 * intel_enable_pipe - enable a pipe, asserting requirements
2004 * @crtc: crtc responsible for the pipe
2005 *
2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2008 */
2009 static void intel_enable_pipe(struct intel_crtc *crtc)
2010 {
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
2016 enum pipe pch_transcoder;
2017 int reg;
2018 u32 val;
2019
2020 assert_planes_disabled(dev_priv, pipe);
2021 assert_cursor_disabled(dev_priv, pipe);
2022 assert_sprites_disabled(dev_priv, pipe);
2023
2024 if (HAS_PCH_LPT(dev_priv->dev))
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2028
2029 /*
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2033 */
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
2035 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
2039 else {
2040 if (crtc->config->has_pch_encoder) {
2041 /* if driving the PCH, we need FDI enabled */
2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
2045 }
2046 /* FIXME: assert CPU port conditions for SNB+ */
2047 }
2048
2049 reg = PIPECONF(cpu_transcoder);
2050 val = I915_READ(reg);
2051 if (val & PIPECONF_ENABLE) {
2052 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2054 return;
2055 }
2056
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
2058 POSTING_READ(reg);
2059 }
2060
2061 /**
2062 * intel_disable_pipe - disable a pipe, asserting requirements
2063 * @crtc: crtc whose pipes is to be disabled
2064 *
2065 * Disable the pipe of @crtc, making sure that various hardware
2066 * specific requirements are met, if applicable, e.g. plane
2067 * disabled, panel fitter off, etc.
2068 *
2069 * Will wait until the pipe has shut down before returning.
2070 */
2071 static void intel_disable_pipe(struct intel_crtc *crtc)
2072 {
2073 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2075 enum pipe pipe = crtc->pipe;
2076 int reg;
2077 u32 val;
2078
2079 /*
2080 * Make sure planes won't keep trying to pump pixels to us,
2081 * or we might hang the display.
2082 */
2083 assert_planes_disabled(dev_priv, pipe);
2084 assert_cursor_disabled(dev_priv, pipe);
2085 assert_sprites_disabled(dev_priv, pipe);
2086
2087 reg = PIPECONF(cpu_transcoder);
2088 val = I915_READ(reg);
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
2092 /*
2093 * Double wide has implications for planes
2094 * so best keep it disabled when not needed.
2095 */
2096 if (crtc->config->double_wide)
2097 val &= ~PIPECONF_DOUBLE_WIDE;
2098
2099 /* Don't disable pipe or pipe PLLs if needed */
2100 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2102 val &= ~PIPECONF_ENABLE;
2103
2104 I915_WRITE(reg, val);
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 intel_wait_for_pipe_off(crtc);
2107 }
2108
2109 /*
2110 * Plane regs are double buffered, going from enabled->disabled needs a
2111 * trigger in order to latch. The display address reg provides this.
2112 */
2113 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114 enum plane plane)
2115 {
2116 struct drm_device *dev = dev_priv->dev;
2117 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2118
2119 I915_WRITE(reg, I915_READ(reg));
2120 POSTING_READ(reg);
2121 }
2122
2123 /**
2124 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2125 * @plane: plane to be enabled
2126 * @crtc: crtc for the plane
2127 *
2128 * Enable @plane on @crtc, making sure that the pipe is running first.
2129 */
2130 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131 struct drm_crtc *crtc)
2132 {
2133 struct drm_device *dev = plane->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136
2137 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2138 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2139
2140 if (intel_crtc->primary_enabled)
2141 return;
2142
2143 intel_crtc->primary_enabled = true;
2144
2145 dev_priv->display.update_primary_plane(crtc, plane->fb,
2146 crtc->x, crtc->y);
2147
2148 /*
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2152 */
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
2155 }
2156
2157 /**
2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
2159 * @plane: plane to be disabled
2160 * @crtc: crtc for the plane
2161 *
2162 * Disable @plane on @crtc, making sure that the pipe is running first.
2163 */
2164 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165 struct drm_crtc *crtc)
2166 {
2167 struct drm_device *dev = plane->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170
2171 if (WARN_ON(!intel_crtc->active))
2172 return;
2173
2174 if (!intel_crtc->primary_enabled)
2175 return;
2176
2177 intel_crtc->primary_enabled = false;
2178
2179 dev_priv->display.update_primary_plane(crtc, plane->fb,
2180 crtc->x, crtc->y);
2181 }
2182
2183 static bool need_vtd_wa(struct drm_device *dev)
2184 {
2185 #ifdef CONFIG_INTEL_IOMMU
2186 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187 return true;
2188 #endif
2189 return false;
2190 }
2191
2192 int
2193 intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
2194 {
2195 int tile_height;
2196
2197 tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
2198 return ALIGN(height, tile_height);
2199 }
2200
2201 int
2202 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2203 struct drm_framebuffer *fb,
2204 struct intel_engine_cs *pipelined)
2205 {
2206 struct drm_device *dev = fb->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2209 u32 alignment;
2210 int ret;
2211
2212 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2213
2214 switch (obj->tiling_mode) {
2215 case I915_TILING_NONE:
2216 if (INTEL_INFO(dev)->gen >= 9)
2217 alignment = 256 * 1024;
2218 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2219 alignment = 128 * 1024;
2220 else if (INTEL_INFO(dev)->gen >= 4)
2221 alignment = 4 * 1024;
2222 else
2223 alignment = 64 * 1024;
2224 break;
2225 case I915_TILING_X:
2226 if (INTEL_INFO(dev)->gen >= 9)
2227 alignment = 256 * 1024;
2228 else {
2229 /* pin() will align the object as required by fence */
2230 alignment = 0;
2231 }
2232 break;
2233 case I915_TILING_Y:
2234 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2235 return -EINVAL;
2236 default:
2237 BUG();
2238 }
2239
2240 /* Note that the w/a also requires 64 PTE of padding following the
2241 * bo. We currently fill all unused PTE with the shadow page and so
2242 * we should always have valid PTE following the scanout preventing
2243 * the VT-d warning.
2244 */
2245 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2246 alignment = 256 * 1024;
2247
2248 /*
2249 * Global gtt pte registers are special registers which actually forward
2250 * writes to a chunk of system memory. Which means that there is no risk
2251 * that the register values disappear as soon as we call
2252 * intel_runtime_pm_put(), so it is correct to wrap only the
2253 * pin/unpin/fence and not more.
2254 */
2255 intel_runtime_pm_get(dev_priv);
2256
2257 dev_priv->mm.interruptible = false;
2258 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2259 if (ret)
2260 goto err_interruptible;
2261
2262 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2263 * fence, whereas 965+ only requires a fence if using
2264 * framebuffer compression. For simplicity, we always install
2265 * a fence as the cost is not that onerous.
2266 */
2267 ret = i915_gem_object_get_fence(obj);
2268 if (ret)
2269 goto err_unpin;
2270
2271 i915_gem_object_pin_fence(obj);
2272
2273 dev_priv->mm.interruptible = true;
2274 intel_runtime_pm_put(dev_priv);
2275 return 0;
2276
2277 err_unpin:
2278 i915_gem_object_unpin_from_display_plane(obj);
2279 err_interruptible:
2280 dev_priv->mm.interruptible = true;
2281 intel_runtime_pm_put(dev_priv);
2282 return ret;
2283 }
2284
2285 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2286 {
2287 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2288
2289 i915_gem_object_unpin_fence(obj);
2290 i915_gem_object_unpin_from_display_plane(obj);
2291 }
2292
2293 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2294 * is assumed to be a power-of-two. */
2295 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2296 unsigned int tiling_mode,
2297 unsigned int cpp,
2298 unsigned int pitch)
2299 {
2300 if (tiling_mode != I915_TILING_NONE) {
2301 unsigned int tile_rows, tiles;
2302
2303 tile_rows = *y / 8;
2304 *y %= 8;
2305
2306 tiles = *x / (512/cpp);
2307 *x %= 512/cpp;
2308
2309 return tile_rows * pitch * 8 + tiles * 4096;
2310 } else {
2311 unsigned int offset;
2312
2313 offset = *y * pitch + *x * cpp;
2314 *y = 0;
2315 *x = (offset & 4095) / cpp;
2316 return offset & -4096;
2317 }
2318 }
2319
2320 static int i9xx_format_to_fourcc(int format)
2321 {
2322 switch (format) {
2323 case DISPPLANE_8BPP:
2324 return DRM_FORMAT_C8;
2325 case DISPPLANE_BGRX555:
2326 return DRM_FORMAT_XRGB1555;
2327 case DISPPLANE_BGRX565:
2328 return DRM_FORMAT_RGB565;
2329 default:
2330 case DISPPLANE_BGRX888:
2331 return DRM_FORMAT_XRGB8888;
2332 case DISPPLANE_RGBX888:
2333 return DRM_FORMAT_XBGR8888;
2334 case DISPPLANE_BGRX101010:
2335 return DRM_FORMAT_XRGB2101010;
2336 case DISPPLANE_RGBX101010:
2337 return DRM_FORMAT_XBGR2101010;
2338 }
2339 }
2340
2341 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2342 {
2343 switch (format) {
2344 case PLANE_CTL_FORMAT_RGB_565:
2345 return DRM_FORMAT_RGB565;
2346 default:
2347 case PLANE_CTL_FORMAT_XRGB_8888:
2348 if (rgb_order) {
2349 if (alpha)
2350 return DRM_FORMAT_ABGR8888;
2351 else
2352 return DRM_FORMAT_XBGR8888;
2353 } else {
2354 if (alpha)
2355 return DRM_FORMAT_ARGB8888;
2356 else
2357 return DRM_FORMAT_XRGB8888;
2358 }
2359 case PLANE_CTL_FORMAT_XRGB_2101010:
2360 if (rgb_order)
2361 return DRM_FORMAT_XBGR2101010;
2362 else
2363 return DRM_FORMAT_XRGB2101010;
2364 }
2365 }
2366
2367 static bool
2368 intel_alloc_plane_obj(struct intel_crtc *crtc,
2369 struct intel_initial_plane_config *plane_config)
2370 {
2371 struct drm_device *dev = crtc->base.dev;
2372 struct drm_i915_gem_object *obj = NULL;
2373 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2374 u32 base = plane_config->base;
2375
2376 if (plane_config->size == 0)
2377 return false;
2378
2379 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2380 plane_config->size);
2381 if (!obj)
2382 return false;
2383
2384 obj->tiling_mode = plane_config->tiling;
2385 if (obj->tiling_mode == I915_TILING_X)
2386 obj->stride = crtc->base.primary->fb->pitches[0];
2387
2388 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2389 mode_cmd.width = crtc->base.primary->fb->width;
2390 mode_cmd.height = crtc->base.primary->fb->height;
2391 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2392
2393 mutex_lock(&dev->struct_mutex);
2394
2395 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2396 &mode_cmd, obj)) {
2397 DRM_DEBUG_KMS("intel fb init failed\n");
2398 goto out_unref_obj;
2399 }
2400
2401 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2402 mutex_unlock(&dev->struct_mutex);
2403
2404 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2405 return true;
2406
2407 out_unref_obj:
2408 drm_gem_object_unreference(&obj->base);
2409 mutex_unlock(&dev->struct_mutex);
2410 return false;
2411 }
2412
2413 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2414 static void
2415 update_state_fb(struct drm_plane *plane)
2416 {
2417 if (plane->fb == plane->state->fb)
2418 return;
2419
2420 if (plane->state->fb)
2421 drm_framebuffer_unreference(plane->state->fb);
2422 plane->state->fb = plane->fb;
2423 if (plane->state->fb)
2424 drm_framebuffer_reference(plane->state->fb);
2425 }
2426
2427 static void
2428 intel_find_plane_obj(struct intel_crtc *intel_crtc,
2429 struct intel_initial_plane_config *plane_config)
2430 {
2431 struct drm_device *dev = intel_crtc->base.dev;
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct drm_crtc *c;
2434 struct intel_crtc *i;
2435 struct drm_i915_gem_object *obj;
2436
2437 if (!intel_crtc->base.primary->fb)
2438 return;
2439
2440 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2441 return;
2442
2443 kfree(intel_crtc->base.primary->fb);
2444 intel_crtc->base.primary->fb = NULL;
2445
2446 /*
2447 * Failed to alloc the obj, check to see if we should share
2448 * an fb with another CRTC instead
2449 */
2450 for_each_crtc(dev, c) {
2451 i = to_intel_crtc(c);
2452
2453 if (c == &intel_crtc->base)
2454 continue;
2455
2456 if (!i->active)
2457 continue;
2458
2459 obj = intel_fb_obj(c->primary->fb);
2460 if (obj == NULL)
2461 continue;
2462
2463 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2464 if (obj->tiling_mode != I915_TILING_NONE)
2465 dev_priv->preserve_bios_swizzle = true;
2466
2467 drm_framebuffer_reference(c->primary->fb);
2468 intel_crtc->base.primary->fb = c->primary->fb;
2469 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2470 break;
2471 }
2472 }
2473
2474 update_state_fb(intel_crtc->base.primary);
2475 }
2476
2477 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2478 struct drm_framebuffer *fb,
2479 int x, int y)
2480 {
2481 struct drm_device *dev = crtc->dev;
2482 struct drm_i915_private *dev_priv = dev->dev_private;
2483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2484 struct drm_i915_gem_object *obj;
2485 int plane = intel_crtc->plane;
2486 unsigned long linear_offset;
2487 u32 dspcntr;
2488 u32 reg = DSPCNTR(plane);
2489 int pixel_size;
2490
2491 if (!intel_crtc->primary_enabled) {
2492 I915_WRITE(reg, 0);
2493 if (INTEL_INFO(dev)->gen >= 4)
2494 I915_WRITE(DSPSURF(plane), 0);
2495 else
2496 I915_WRITE(DSPADDR(plane), 0);
2497 POSTING_READ(reg);
2498 return;
2499 }
2500
2501 obj = intel_fb_obj(fb);
2502 if (WARN_ON(obj == NULL))
2503 return;
2504
2505 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2506
2507 dspcntr = DISPPLANE_GAMMA_ENABLE;
2508
2509 dspcntr |= DISPLAY_PLANE_ENABLE;
2510
2511 if (INTEL_INFO(dev)->gen < 4) {
2512 if (intel_crtc->pipe == PIPE_B)
2513 dspcntr |= DISPPLANE_SEL_PIPE_B;
2514
2515 /* pipesrc and dspsize control the size that is scaled from,
2516 * which should always be the user's requested size.
2517 */
2518 I915_WRITE(DSPSIZE(plane),
2519 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2520 (intel_crtc->config->pipe_src_w - 1));
2521 I915_WRITE(DSPPOS(plane), 0);
2522 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2523 I915_WRITE(PRIMSIZE(plane),
2524 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2525 (intel_crtc->config->pipe_src_w - 1));
2526 I915_WRITE(PRIMPOS(plane), 0);
2527 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2528 }
2529
2530 switch (fb->pixel_format) {
2531 case DRM_FORMAT_C8:
2532 dspcntr |= DISPPLANE_8BPP;
2533 break;
2534 case DRM_FORMAT_XRGB1555:
2535 case DRM_FORMAT_ARGB1555:
2536 dspcntr |= DISPPLANE_BGRX555;
2537 break;
2538 case DRM_FORMAT_RGB565:
2539 dspcntr |= DISPPLANE_BGRX565;
2540 break;
2541 case DRM_FORMAT_XRGB8888:
2542 case DRM_FORMAT_ARGB8888:
2543 dspcntr |= DISPPLANE_BGRX888;
2544 break;
2545 case DRM_FORMAT_XBGR8888:
2546 case DRM_FORMAT_ABGR8888:
2547 dspcntr |= DISPPLANE_RGBX888;
2548 break;
2549 case DRM_FORMAT_XRGB2101010:
2550 case DRM_FORMAT_ARGB2101010:
2551 dspcntr |= DISPPLANE_BGRX101010;
2552 break;
2553 case DRM_FORMAT_XBGR2101010:
2554 case DRM_FORMAT_ABGR2101010:
2555 dspcntr |= DISPPLANE_RGBX101010;
2556 break;
2557 default:
2558 BUG();
2559 }
2560
2561 if (INTEL_INFO(dev)->gen >= 4 &&
2562 obj->tiling_mode != I915_TILING_NONE)
2563 dspcntr |= DISPPLANE_TILED;
2564
2565 if (IS_G4X(dev))
2566 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2567
2568 linear_offset = y * fb->pitches[0] + x * pixel_size;
2569
2570 if (INTEL_INFO(dev)->gen >= 4) {
2571 intel_crtc->dspaddr_offset =
2572 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2573 pixel_size,
2574 fb->pitches[0]);
2575 linear_offset -= intel_crtc->dspaddr_offset;
2576 } else {
2577 intel_crtc->dspaddr_offset = linear_offset;
2578 }
2579
2580 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2581 dspcntr |= DISPPLANE_ROTATE_180;
2582
2583 x += (intel_crtc->config->pipe_src_w - 1);
2584 y += (intel_crtc->config->pipe_src_h - 1);
2585
2586 /* Finding the last pixel of the last line of the display
2587 data and adding to linear_offset*/
2588 linear_offset +=
2589 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2590 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2591 }
2592
2593 I915_WRITE(reg, dspcntr);
2594
2595 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2596 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2597 fb->pitches[0]);
2598 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2599 if (INTEL_INFO(dev)->gen >= 4) {
2600 I915_WRITE(DSPSURF(plane),
2601 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2602 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2603 I915_WRITE(DSPLINOFF(plane), linear_offset);
2604 } else
2605 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2606 POSTING_READ(reg);
2607 }
2608
2609 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2610 struct drm_framebuffer *fb,
2611 int x, int y)
2612 {
2613 struct drm_device *dev = crtc->dev;
2614 struct drm_i915_private *dev_priv = dev->dev_private;
2615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2616 struct drm_i915_gem_object *obj;
2617 int plane = intel_crtc->plane;
2618 unsigned long linear_offset;
2619 u32 dspcntr;
2620 u32 reg = DSPCNTR(plane);
2621 int pixel_size;
2622
2623 if (!intel_crtc->primary_enabled) {
2624 I915_WRITE(reg, 0);
2625 I915_WRITE(DSPSURF(plane), 0);
2626 POSTING_READ(reg);
2627 return;
2628 }
2629
2630 obj = intel_fb_obj(fb);
2631 if (WARN_ON(obj == NULL))
2632 return;
2633
2634 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2635
2636 dspcntr = DISPPLANE_GAMMA_ENABLE;
2637
2638 dspcntr |= DISPLAY_PLANE_ENABLE;
2639
2640 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2641 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2642
2643 switch (fb->pixel_format) {
2644 case DRM_FORMAT_C8:
2645 dspcntr |= DISPPLANE_8BPP;
2646 break;
2647 case DRM_FORMAT_RGB565:
2648 dspcntr |= DISPPLANE_BGRX565;
2649 break;
2650 case DRM_FORMAT_XRGB8888:
2651 case DRM_FORMAT_ARGB8888:
2652 dspcntr |= DISPPLANE_BGRX888;
2653 break;
2654 case DRM_FORMAT_XBGR8888:
2655 case DRM_FORMAT_ABGR8888:
2656 dspcntr |= DISPPLANE_RGBX888;
2657 break;
2658 case DRM_FORMAT_XRGB2101010:
2659 case DRM_FORMAT_ARGB2101010:
2660 dspcntr |= DISPPLANE_BGRX101010;
2661 break;
2662 case DRM_FORMAT_XBGR2101010:
2663 case DRM_FORMAT_ABGR2101010:
2664 dspcntr |= DISPPLANE_RGBX101010;
2665 break;
2666 default:
2667 BUG();
2668 }
2669
2670 if (obj->tiling_mode != I915_TILING_NONE)
2671 dspcntr |= DISPPLANE_TILED;
2672
2673 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2674 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2675
2676 linear_offset = y * fb->pitches[0] + x * pixel_size;
2677 intel_crtc->dspaddr_offset =
2678 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2679 pixel_size,
2680 fb->pitches[0]);
2681 linear_offset -= intel_crtc->dspaddr_offset;
2682 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2683 dspcntr |= DISPPLANE_ROTATE_180;
2684
2685 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2686 x += (intel_crtc->config->pipe_src_w - 1);
2687 y += (intel_crtc->config->pipe_src_h - 1);
2688
2689 /* Finding the last pixel of the last line of the display
2690 data and adding to linear_offset*/
2691 linear_offset +=
2692 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2693 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2694 }
2695 }
2696
2697 I915_WRITE(reg, dspcntr);
2698
2699 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2700 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2701 fb->pitches[0]);
2702 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2703 I915_WRITE(DSPSURF(plane),
2704 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2705 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2706 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2707 } else {
2708 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2709 I915_WRITE(DSPLINOFF(plane), linear_offset);
2710 }
2711 POSTING_READ(reg);
2712 }
2713
2714 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2715 struct drm_framebuffer *fb,
2716 int x, int y)
2717 {
2718 struct drm_device *dev = crtc->dev;
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2721 struct intel_framebuffer *intel_fb;
2722 struct drm_i915_gem_object *obj;
2723 int pipe = intel_crtc->pipe;
2724 u32 plane_ctl, stride;
2725
2726 if (!intel_crtc->primary_enabled) {
2727 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2728 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2729 POSTING_READ(PLANE_CTL(pipe, 0));
2730 return;
2731 }
2732
2733 plane_ctl = PLANE_CTL_ENABLE |
2734 PLANE_CTL_PIPE_GAMMA_ENABLE |
2735 PLANE_CTL_PIPE_CSC_ENABLE;
2736
2737 switch (fb->pixel_format) {
2738 case DRM_FORMAT_RGB565:
2739 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2740 break;
2741 case DRM_FORMAT_XRGB8888:
2742 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2743 break;
2744 case DRM_FORMAT_XBGR8888:
2745 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2746 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2747 break;
2748 case DRM_FORMAT_XRGB2101010:
2749 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2750 break;
2751 case DRM_FORMAT_XBGR2101010:
2752 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2753 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2754 break;
2755 default:
2756 BUG();
2757 }
2758
2759 intel_fb = to_intel_framebuffer(fb);
2760 obj = intel_fb->obj;
2761
2762 /*
2763 * The stride is either expressed as a multiple of 64 bytes chunks for
2764 * linear buffers or in number of tiles for tiled buffers.
2765 */
2766 switch (obj->tiling_mode) {
2767 case I915_TILING_NONE:
2768 stride = fb->pitches[0] >> 6;
2769 break;
2770 case I915_TILING_X:
2771 plane_ctl |= PLANE_CTL_TILED_X;
2772 stride = fb->pitches[0] >> 9;
2773 break;
2774 default:
2775 BUG();
2776 }
2777
2778 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2779 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2780 plane_ctl |= PLANE_CTL_ROTATE_180;
2781
2782 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2783
2784 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2785 i915_gem_obj_ggtt_offset(obj),
2786 x, y, fb->width, fb->height,
2787 fb->pitches[0]);
2788
2789 I915_WRITE(PLANE_POS(pipe, 0), 0);
2790 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2791 I915_WRITE(PLANE_SIZE(pipe, 0),
2792 (intel_crtc->config->pipe_src_h - 1) << 16 |
2793 (intel_crtc->config->pipe_src_w - 1));
2794 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2795 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2796
2797 POSTING_READ(PLANE_SURF(pipe, 0));
2798 }
2799
2800 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2801 static int
2802 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2803 int x, int y, enum mode_set_atomic state)
2804 {
2805 struct drm_device *dev = crtc->dev;
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807
2808 if (dev_priv->display.disable_fbc)
2809 dev_priv->display.disable_fbc(dev);
2810
2811 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2812
2813 return 0;
2814 }
2815
2816 static void intel_complete_page_flips(struct drm_device *dev)
2817 {
2818 struct drm_crtc *crtc;
2819
2820 for_each_crtc(dev, crtc) {
2821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822 enum plane plane = intel_crtc->plane;
2823
2824 intel_prepare_page_flip(dev, plane);
2825 intel_finish_page_flip_plane(dev, plane);
2826 }
2827 }
2828
2829 static void intel_update_primary_planes(struct drm_device *dev)
2830 {
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832 struct drm_crtc *crtc;
2833
2834 for_each_crtc(dev, crtc) {
2835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2836
2837 drm_modeset_lock(&crtc->mutex, NULL);
2838 /*
2839 * FIXME: Once we have proper support for primary planes (and
2840 * disabling them without disabling the entire crtc) allow again
2841 * a NULL crtc->primary->fb.
2842 */
2843 if (intel_crtc->active && crtc->primary->fb)
2844 dev_priv->display.update_primary_plane(crtc,
2845 crtc->primary->fb,
2846 crtc->x,
2847 crtc->y);
2848 drm_modeset_unlock(&crtc->mutex);
2849 }
2850 }
2851
2852 void intel_prepare_reset(struct drm_device *dev)
2853 {
2854 struct drm_i915_private *dev_priv = to_i915(dev);
2855 struct intel_crtc *crtc;
2856
2857 /* no reset support for gen2 */
2858 if (IS_GEN2(dev))
2859 return;
2860
2861 /* reset doesn't touch the display */
2862 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2863 return;
2864
2865 drm_modeset_lock_all(dev);
2866
2867 /*
2868 * Disabling the crtcs gracefully seems nicer. Also the
2869 * g33 docs say we should at least disable all the planes.
2870 */
2871 for_each_intel_crtc(dev, crtc) {
2872 if (crtc->active)
2873 dev_priv->display.crtc_disable(&crtc->base);
2874 }
2875 }
2876
2877 void intel_finish_reset(struct drm_device *dev)
2878 {
2879 struct drm_i915_private *dev_priv = to_i915(dev);
2880
2881 /*
2882 * Flips in the rings will be nuked by the reset,
2883 * so complete all pending flips so that user space
2884 * will get its events and not get stuck.
2885 */
2886 intel_complete_page_flips(dev);
2887
2888 /* no reset support for gen2 */
2889 if (IS_GEN2(dev))
2890 return;
2891
2892 /* reset doesn't touch the display */
2893 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2894 /*
2895 * Flips in the rings have been nuked by the reset,
2896 * so update the base address of all primary
2897 * planes to the the last fb to make sure we're
2898 * showing the correct fb after a reset.
2899 */
2900 intel_update_primary_planes(dev);
2901 return;
2902 }
2903
2904 /*
2905 * The display has been reset as well,
2906 * so need a full re-initialization.
2907 */
2908 intel_runtime_pm_disable_interrupts(dev_priv);
2909 intel_runtime_pm_enable_interrupts(dev_priv);
2910
2911 intel_modeset_init_hw(dev);
2912
2913 spin_lock_irq(&dev_priv->irq_lock);
2914 if (dev_priv->display.hpd_irq_setup)
2915 dev_priv->display.hpd_irq_setup(dev);
2916 spin_unlock_irq(&dev_priv->irq_lock);
2917
2918 intel_modeset_setup_hw_state(dev, true);
2919
2920 intel_hpd_init(dev_priv);
2921
2922 drm_modeset_unlock_all(dev);
2923 }
2924
2925 static int
2926 intel_finish_fb(struct drm_framebuffer *old_fb)
2927 {
2928 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2929 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2930 bool was_interruptible = dev_priv->mm.interruptible;
2931 int ret;
2932
2933 /* Big Hammer, we also need to ensure that any pending
2934 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2935 * current scanout is retired before unpinning the old
2936 * framebuffer.
2937 *
2938 * This should only fail upon a hung GPU, in which case we
2939 * can safely continue.
2940 */
2941 dev_priv->mm.interruptible = false;
2942 ret = i915_gem_object_finish_gpu(obj);
2943 dev_priv->mm.interruptible = was_interruptible;
2944
2945 return ret;
2946 }
2947
2948 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2949 {
2950 struct drm_device *dev = crtc->dev;
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2953 bool pending;
2954
2955 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2956 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2957 return false;
2958
2959 spin_lock_irq(&dev->event_lock);
2960 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2961 spin_unlock_irq(&dev->event_lock);
2962
2963 return pending;
2964 }
2965
2966 static void intel_update_pipe_size(struct intel_crtc *crtc)
2967 {
2968 struct drm_device *dev = crtc->base.dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970 const struct drm_display_mode *adjusted_mode;
2971
2972 if (!i915.fastboot)
2973 return;
2974
2975 /*
2976 * Update pipe size and adjust fitter if needed: the reason for this is
2977 * that in compute_mode_changes we check the native mode (not the pfit
2978 * mode) to see if we can flip rather than do a full mode set. In the
2979 * fastboot case, we'll flip, but if we don't update the pipesrc and
2980 * pfit state, we'll end up with a big fb scanned out into the wrong
2981 * sized surface.
2982 *
2983 * To fix this properly, we need to hoist the checks up into
2984 * compute_mode_changes (or above), check the actual pfit state and
2985 * whether the platform allows pfit disable with pipe active, and only
2986 * then update the pipesrc and pfit state, even on the flip path.
2987 */
2988
2989 adjusted_mode = &crtc->config->base.adjusted_mode;
2990
2991 I915_WRITE(PIPESRC(crtc->pipe),
2992 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2993 (adjusted_mode->crtc_vdisplay - 1));
2994 if (!crtc->config->pch_pfit.enabled &&
2995 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2996 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2997 I915_WRITE(PF_CTL(crtc->pipe), 0);
2998 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2999 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3000 }
3001 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3002 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3003 }
3004
3005 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3006 {
3007 struct drm_device *dev = crtc->dev;
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3010 int pipe = intel_crtc->pipe;
3011 u32 reg, temp;
3012
3013 /* enable normal train */
3014 reg = FDI_TX_CTL(pipe);
3015 temp = I915_READ(reg);
3016 if (IS_IVYBRIDGE(dev)) {
3017 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3018 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3019 } else {
3020 temp &= ~FDI_LINK_TRAIN_NONE;
3021 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3022 }
3023 I915_WRITE(reg, temp);
3024
3025 reg = FDI_RX_CTL(pipe);
3026 temp = I915_READ(reg);
3027 if (HAS_PCH_CPT(dev)) {
3028 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3029 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3030 } else {
3031 temp &= ~FDI_LINK_TRAIN_NONE;
3032 temp |= FDI_LINK_TRAIN_NONE;
3033 }
3034 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3035
3036 /* wait one idle pattern time */
3037 POSTING_READ(reg);
3038 udelay(1000);
3039
3040 /* IVB wants error correction enabled */
3041 if (IS_IVYBRIDGE(dev))
3042 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3043 FDI_FE_ERRC_ENABLE);
3044 }
3045
3046 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3047 {
3048 return crtc->base.enabled && crtc->active &&
3049 crtc->config->has_pch_encoder;
3050 }
3051
3052 static void ivb_modeset_global_resources(struct drm_device *dev)
3053 {
3054 struct drm_i915_private *dev_priv = dev->dev_private;
3055 struct intel_crtc *pipe_B_crtc =
3056 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3057 struct intel_crtc *pipe_C_crtc =
3058 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3059 uint32_t temp;
3060
3061 /*
3062 * When everything is off disable fdi C so that we could enable fdi B
3063 * with all lanes. Note that we don't care about enabled pipes without
3064 * an enabled pch encoder.
3065 */
3066 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3067 !pipe_has_enabled_pch(pipe_C_crtc)) {
3068 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3069 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3070
3071 temp = I915_READ(SOUTH_CHICKEN1);
3072 temp &= ~FDI_BC_BIFURCATION_SELECT;
3073 DRM_DEBUG_KMS("disabling fdi C rx\n");
3074 I915_WRITE(SOUTH_CHICKEN1, temp);
3075 }
3076 }
3077
3078 /* The FDI link training functions for ILK/Ibexpeak. */
3079 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3080 {
3081 struct drm_device *dev = crtc->dev;
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3084 int pipe = intel_crtc->pipe;
3085 u32 reg, temp, tries;
3086
3087 /* FDI needs bits from pipe first */
3088 assert_pipe_enabled(dev_priv, pipe);
3089
3090 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3091 for train result */
3092 reg = FDI_RX_IMR(pipe);
3093 temp = I915_READ(reg);
3094 temp &= ~FDI_RX_SYMBOL_LOCK;
3095 temp &= ~FDI_RX_BIT_LOCK;
3096 I915_WRITE(reg, temp);
3097 I915_READ(reg);
3098 udelay(150);
3099
3100 /* enable CPU FDI TX and PCH FDI RX */
3101 reg = FDI_TX_CTL(pipe);
3102 temp = I915_READ(reg);
3103 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3104 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3105 temp &= ~FDI_LINK_TRAIN_NONE;
3106 temp |= FDI_LINK_TRAIN_PATTERN_1;
3107 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3108
3109 reg = FDI_RX_CTL(pipe);
3110 temp = I915_READ(reg);
3111 temp &= ~FDI_LINK_TRAIN_NONE;
3112 temp |= FDI_LINK_TRAIN_PATTERN_1;
3113 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3114
3115 POSTING_READ(reg);
3116 udelay(150);
3117
3118 /* Ironlake workaround, enable clock pointer after FDI enable*/
3119 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3120 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3121 FDI_RX_PHASE_SYNC_POINTER_EN);
3122
3123 reg = FDI_RX_IIR(pipe);
3124 for (tries = 0; tries < 5; tries++) {
3125 temp = I915_READ(reg);
3126 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3127
3128 if ((temp & FDI_RX_BIT_LOCK)) {
3129 DRM_DEBUG_KMS("FDI train 1 done.\n");
3130 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3131 break;
3132 }
3133 }
3134 if (tries == 5)
3135 DRM_ERROR("FDI train 1 fail!\n");
3136
3137 /* Train 2 */
3138 reg = FDI_TX_CTL(pipe);
3139 temp = I915_READ(reg);
3140 temp &= ~FDI_LINK_TRAIN_NONE;
3141 temp |= FDI_LINK_TRAIN_PATTERN_2;
3142 I915_WRITE(reg, temp);
3143
3144 reg = FDI_RX_CTL(pipe);
3145 temp = I915_READ(reg);
3146 temp &= ~FDI_LINK_TRAIN_NONE;
3147 temp |= FDI_LINK_TRAIN_PATTERN_2;
3148 I915_WRITE(reg, temp);
3149
3150 POSTING_READ(reg);
3151 udelay(150);
3152
3153 reg = FDI_RX_IIR(pipe);
3154 for (tries = 0; tries < 5; tries++) {
3155 temp = I915_READ(reg);
3156 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3157
3158 if (temp & FDI_RX_SYMBOL_LOCK) {
3159 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3160 DRM_DEBUG_KMS("FDI train 2 done.\n");
3161 break;
3162 }
3163 }
3164 if (tries == 5)
3165 DRM_ERROR("FDI train 2 fail!\n");
3166
3167 DRM_DEBUG_KMS("FDI train done\n");
3168
3169 }
3170
3171 static const int snb_b_fdi_train_param[] = {
3172 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3173 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3174 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3175 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3176 };
3177
3178 /* The FDI link training functions for SNB/Cougarpoint. */
3179 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3180 {
3181 struct drm_device *dev = crtc->dev;
3182 struct drm_i915_private *dev_priv = dev->dev_private;
3183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184 int pipe = intel_crtc->pipe;
3185 u32 reg, temp, i, retry;
3186
3187 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3188 for train result */
3189 reg = FDI_RX_IMR(pipe);
3190 temp = I915_READ(reg);
3191 temp &= ~FDI_RX_SYMBOL_LOCK;
3192 temp &= ~FDI_RX_BIT_LOCK;
3193 I915_WRITE(reg, temp);
3194
3195 POSTING_READ(reg);
3196 udelay(150);
3197
3198 /* enable CPU FDI TX and PCH FDI RX */
3199 reg = FDI_TX_CTL(pipe);
3200 temp = I915_READ(reg);
3201 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3202 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3203 temp &= ~FDI_LINK_TRAIN_NONE;
3204 temp |= FDI_LINK_TRAIN_PATTERN_1;
3205 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3206 /* SNB-B */
3207 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3208 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3209
3210 I915_WRITE(FDI_RX_MISC(pipe),
3211 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3212
3213 reg = FDI_RX_CTL(pipe);
3214 temp = I915_READ(reg);
3215 if (HAS_PCH_CPT(dev)) {
3216 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3217 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3218 } else {
3219 temp &= ~FDI_LINK_TRAIN_NONE;
3220 temp |= FDI_LINK_TRAIN_PATTERN_1;
3221 }
3222 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3223
3224 POSTING_READ(reg);
3225 udelay(150);
3226
3227 for (i = 0; i < 4; i++) {
3228 reg = FDI_TX_CTL(pipe);
3229 temp = I915_READ(reg);
3230 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3231 temp |= snb_b_fdi_train_param[i];
3232 I915_WRITE(reg, temp);
3233
3234 POSTING_READ(reg);
3235 udelay(500);
3236
3237 for (retry = 0; retry < 5; retry++) {
3238 reg = FDI_RX_IIR(pipe);
3239 temp = I915_READ(reg);
3240 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3241 if (temp & FDI_RX_BIT_LOCK) {
3242 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3243 DRM_DEBUG_KMS("FDI train 1 done.\n");
3244 break;
3245 }
3246 udelay(50);
3247 }
3248 if (retry < 5)
3249 break;
3250 }
3251 if (i == 4)
3252 DRM_ERROR("FDI train 1 fail!\n");
3253
3254 /* Train 2 */
3255 reg = FDI_TX_CTL(pipe);
3256 temp = I915_READ(reg);
3257 temp &= ~FDI_LINK_TRAIN_NONE;
3258 temp |= FDI_LINK_TRAIN_PATTERN_2;
3259 if (IS_GEN6(dev)) {
3260 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3261 /* SNB-B */
3262 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3263 }
3264 I915_WRITE(reg, temp);
3265
3266 reg = FDI_RX_CTL(pipe);
3267 temp = I915_READ(reg);
3268 if (HAS_PCH_CPT(dev)) {
3269 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3270 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3271 } else {
3272 temp &= ~FDI_LINK_TRAIN_NONE;
3273 temp |= FDI_LINK_TRAIN_PATTERN_2;
3274 }
3275 I915_WRITE(reg, temp);
3276
3277 POSTING_READ(reg);
3278 udelay(150);
3279
3280 for (i = 0; i < 4; i++) {
3281 reg = FDI_TX_CTL(pipe);
3282 temp = I915_READ(reg);
3283 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3284 temp |= snb_b_fdi_train_param[i];
3285 I915_WRITE(reg, temp);
3286
3287 POSTING_READ(reg);
3288 udelay(500);
3289
3290 for (retry = 0; retry < 5; retry++) {
3291 reg = FDI_RX_IIR(pipe);
3292 temp = I915_READ(reg);
3293 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3294 if (temp & FDI_RX_SYMBOL_LOCK) {
3295 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3296 DRM_DEBUG_KMS("FDI train 2 done.\n");
3297 break;
3298 }
3299 udelay(50);
3300 }
3301 if (retry < 5)
3302 break;
3303 }
3304 if (i == 4)
3305 DRM_ERROR("FDI train 2 fail!\n");
3306
3307 DRM_DEBUG_KMS("FDI train done.\n");
3308 }
3309
3310 /* Manual link training for Ivy Bridge A0 parts */
3311 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3312 {
3313 struct drm_device *dev = crtc->dev;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3316 int pipe = intel_crtc->pipe;
3317 u32 reg, temp, i, j;
3318
3319 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3320 for train result */
3321 reg = FDI_RX_IMR(pipe);
3322 temp = I915_READ(reg);
3323 temp &= ~FDI_RX_SYMBOL_LOCK;
3324 temp &= ~FDI_RX_BIT_LOCK;
3325 I915_WRITE(reg, temp);
3326
3327 POSTING_READ(reg);
3328 udelay(150);
3329
3330 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3331 I915_READ(FDI_RX_IIR(pipe)));
3332
3333 /* Try each vswing and preemphasis setting twice before moving on */
3334 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3335 /* disable first in case we need to retry */
3336 reg = FDI_TX_CTL(pipe);
3337 temp = I915_READ(reg);
3338 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3339 temp &= ~FDI_TX_ENABLE;
3340 I915_WRITE(reg, temp);
3341
3342 reg = FDI_RX_CTL(pipe);
3343 temp = I915_READ(reg);
3344 temp &= ~FDI_LINK_TRAIN_AUTO;
3345 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3346 temp &= ~FDI_RX_ENABLE;
3347 I915_WRITE(reg, temp);
3348
3349 /* enable CPU FDI TX and PCH FDI RX */
3350 reg = FDI_TX_CTL(pipe);
3351 temp = I915_READ(reg);
3352 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3353 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3354 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3355 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3356 temp |= snb_b_fdi_train_param[j/2];
3357 temp |= FDI_COMPOSITE_SYNC;
3358 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3359
3360 I915_WRITE(FDI_RX_MISC(pipe),
3361 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3362
3363 reg = FDI_RX_CTL(pipe);
3364 temp = I915_READ(reg);
3365 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3366 temp |= FDI_COMPOSITE_SYNC;
3367 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3368
3369 POSTING_READ(reg);
3370 udelay(1); /* should be 0.5us */
3371
3372 for (i = 0; i < 4; i++) {
3373 reg = FDI_RX_IIR(pipe);
3374 temp = I915_READ(reg);
3375 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3376
3377 if (temp & FDI_RX_BIT_LOCK ||
3378 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3379 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3380 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3381 i);
3382 break;
3383 }
3384 udelay(1); /* should be 0.5us */
3385 }
3386 if (i == 4) {
3387 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3388 continue;
3389 }
3390
3391 /* Train 2 */
3392 reg = FDI_TX_CTL(pipe);
3393 temp = I915_READ(reg);
3394 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3395 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3396 I915_WRITE(reg, temp);
3397
3398 reg = FDI_RX_CTL(pipe);
3399 temp = I915_READ(reg);
3400 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3401 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3402 I915_WRITE(reg, temp);
3403
3404 POSTING_READ(reg);
3405 udelay(2); /* should be 1.5us */
3406
3407 for (i = 0; i < 4; i++) {
3408 reg = FDI_RX_IIR(pipe);
3409 temp = I915_READ(reg);
3410 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3411
3412 if (temp & FDI_RX_SYMBOL_LOCK ||
3413 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3414 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3415 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3416 i);
3417 goto train_done;
3418 }
3419 udelay(2); /* should be 1.5us */
3420 }
3421 if (i == 4)
3422 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3423 }
3424
3425 train_done:
3426 DRM_DEBUG_KMS("FDI train done.\n");
3427 }
3428
3429 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3430 {
3431 struct drm_device *dev = intel_crtc->base.dev;
3432 struct drm_i915_private *dev_priv = dev->dev_private;
3433 int pipe = intel_crtc->pipe;
3434 u32 reg, temp;
3435
3436
3437 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3438 reg = FDI_RX_CTL(pipe);
3439 temp = I915_READ(reg);
3440 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3441 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3442 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3443 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3444
3445 POSTING_READ(reg);
3446 udelay(200);
3447
3448 /* Switch from Rawclk to PCDclk */
3449 temp = I915_READ(reg);
3450 I915_WRITE(reg, temp | FDI_PCDCLK);
3451
3452 POSTING_READ(reg);
3453 udelay(200);
3454
3455 /* Enable CPU FDI TX PLL, always on for Ironlake */
3456 reg = FDI_TX_CTL(pipe);
3457 temp = I915_READ(reg);
3458 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3459 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3460
3461 POSTING_READ(reg);
3462 udelay(100);
3463 }
3464 }
3465
3466 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3467 {
3468 struct drm_device *dev = intel_crtc->base.dev;
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 int pipe = intel_crtc->pipe;
3471 u32 reg, temp;
3472
3473 /* Switch from PCDclk to Rawclk */
3474 reg = FDI_RX_CTL(pipe);
3475 temp = I915_READ(reg);
3476 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3477
3478 /* Disable CPU FDI TX PLL */
3479 reg = FDI_TX_CTL(pipe);
3480 temp = I915_READ(reg);
3481 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3482
3483 POSTING_READ(reg);
3484 udelay(100);
3485
3486 reg = FDI_RX_CTL(pipe);
3487 temp = I915_READ(reg);
3488 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3489
3490 /* Wait for the clocks to turn off. */
3491 POSTING_READ(reg);
3492 udelay(100);
3493 }
3494
3495 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3496 {
3497 struct drm_device *dev = crtc->dev;
3498 struct drm_i915_private *dev_priv = dev->dev_private;
3499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3500 int pipe = intel_crtc->pipe;
3501 u32 reg, temp;
3502
3503 /* disable CPU FDI tx and PCH FDI rx */
3504 reg = FDI_TX_CTL(pipe);
3505 temp = I915_READ(reg);
3506 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3507 POSTING_READ(reg);
3508
3509 reg = FDI_RX_CTL(pipe);
3510 temp = I915_READ(reg);
3511 temp &= ~(0x7 << 16);
3512 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3513 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3514
3515 POSTING_READ(reg);
3516 udelay(100);
3517
3518 /* Ironlake workaround, disable clock pointer after downing FDI */
3519 if (HAS_PCH_IBX(dev))
3520 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3521
3522 /* still set train pattern 1 */
3523 reg = FDI_TX_CTL(pipe);
3524 temp = I915_READ(reg);
3525 temp &= ~FDI_LINK_TRAIN_NONE;
3526 temp |= FDI_LINK_TRAIN_PATTERN_1;
3527 I915_WRITE(reg, temp);
3528
3529 reg = FDI_RX_CTL(pipe);
3530 temp = I915_READ(reg);
3531 if (HAS_PCH_CPT(dev)) {
3532 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3534 } else {
3535 temp &= ~FDI_LINK_TRAIN_NONE;
3536 temp |= FDI_LINK_TRAIN_PATTERN_1;
3537 }
3538 /* BPC in FDI rx is consistent with that in PIPECONF */
3539 temp &= ~(0x07 << 16);
3540 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3541 I915_WRITE(reg, temp);
3542
3543 POSTING_READ(reg);
3544 udelay(100);
3545 }
3546
3547 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3548 {
3549 struct intel_crtc *crtc;
3550
3551 /* Note that we don't need to be called with mode_config.lock here
3552 * as our list of CRTC objects is static for the lifetime of the
3553 * device and so cannot disappear as we iterate. Similarly, we can
3554 * happily treat the predicates as racy, atomic checks as userspace
3555 * cannot claim and pin a new fb without at least acquring the
3556 * struct_mutex and so serialising with us.
3557 */
3558 for_each_intel_crtc(dev, crtc) {
3559 if (atomic_read(&crtc->unpin_work_count) == 0)
3560 continue;
3561
3562 if (crtc->unpin_work)
3563 intel_wait_for_vblank(dev, crtc->pipe);
3564
3565 return true;
3566 }
3567
3568 return false;
3569 }
3570
3571 static void page_flip_completed(struct intel_crtc *intel_crtc)
3572 {
3573 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3574 struct intel_unpin_work *work = intel_crtc->unpin_work;
3575
3576 /* ensure that the unpin work is consistent wrt ->pending. */
3577 smp_rmb();
3578 intel_crtc->unpin_work = NULL;
3579
3580 if (work->event)
3581 drm_send_vblank_event(intel_crtc->base.dev,
3582 intel_crtc->pipe,
3583 work->event);
3584
3585 drm_crtc_vblank_put(&intel_crtc->base);
3586
3587 wake_up_all(&dev_priv->pending_flip_queue);
3588 queue_work(dev_priv->wq, &work->work);
3589
3590 trace_i915_flip_complete(intel_crtc->plane,
3591 work->pending_flip_obj);
3592 }
3593
3594 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3595 {
3596 struct drm_device *dev = crtc->dev;
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598
3599 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3600 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3601 !intel_crtc_has_pending_flip(crtc),
3602 60*HZ) == 0)) {
3603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3604
3605 spin_lock_irq(&dev->event_lock);
3606 if (intel_crtc->unpin_work) {
3607 WARN_ONCE(1, "Removing stuck page flip\n");
3608 page_flip_completed(intel_crtc);
3609 }
3610 spin_unlock_irq(&dev->event_lock);
3611 }
3612
3613 if (crtc->primary->fb) {
3614 mutex_lock(&dev->struct_mutex);
3615 intel_finish_fb(crtc->primary->fb);
3616 mutex_unlock(&dev->struct_mutex);
3617 }
3618 }
3619
3620 /* Program iCLKIP clock to the desired frequency */
3621 static void lpt_program_iclkip(struct drm_crtc *crtc)
3622 {
3623 struct drm_device *dev = crtc->dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3626 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3627 u32 temp;
3628
3629 mutex_lock(&dev_priv->dpio_lock);
3630
3631 /* It is necessary to ungate the pixclk gate prior to programming
3632 * the divisors, and gate it back when it is done.
3633 */
3634 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3635
3636 /* Disable SSCCTL */
3637 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3638 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3639 SBI_SSCCTL_DISABLE,
3640 SBI_ICLK);
3641
3642 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3643 if (clock == 20000) {
3644 auxdiv = 1;
3645 divsel = 0x41;
3646 phaseinc = 0x20;
3647 } else {
3648 /* The iCLK virtual clock root frequency is in MHz,
3649 * but the adjusted_mode->crtc_clock in in KHz. To get the
3650 * divisors, it is necessary to divide one by another, so we
3651 * convert the virtual clock precision to KHz here for higher
3652 * precision.
3653 */
3654 u32 iclk_virtual_root_freq = 172800 * 1000;
3655 u32 iclk_pi_range = 64;
3656 u32 desired_divisor, msb_divisor_value, pi_value;
3657
3658 desired_divisor = (iclk_virtual_root_freq / clock);
3659 msb_divisor_value = desired_divisor / iclk_pi_range;
3660 pi_value = desired_divisor % iclk_pi_range;
3661
3662 auxdiv = 0;
3663 divsel = msb_divisor_value - 2;
3664 phaseinc = pi_value;
3665 }
3666
3667 /* This should not happen with any sane values */
3668 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3669 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3670 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3671 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3672
3673 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3674 clock,
3675 auxdiv,
3676 divsel,
3677 phasedir,
3678 phaseinc);
3679
3680 /* Program SSCDIVINTPHASE6 */
3681 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3682 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3683 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3684 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3685 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3686 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3687 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3688 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3689
3690 /* Program SSCAUXDIV */
3691 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3692 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3693 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3694 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3695
3696 /* Enable modulator and associated divider */
3697 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3698 temp &= ~SBI_SSCCTL_DISABLE;
3699 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3700
3701 /* Wait for initialization time */
3702 udelay(24);
3703
3704 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3705
3706 mutex_unlock(&dev_priv->dpio_lock);
3707 }
3708
3709 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3710 enum pipe pch_transcoder)
3711 {
3712 struct drm_device *dev = crtc->base.dev;
3713 struct drm_i915_private *dev_priv = dev->dev_private;
3714 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3715
3716 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3717 I915_READ(HTOTAL(cpu_transcoder)));
3718 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3719 I915_READ(HBLANK(cpu_transcoder)));
3720 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3721 I915_READ(HSYNC(cpu_transcoder)));
3722
3723 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3724 I915_READ(VTOTAL(cpu_transcoder)));
3725 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3726 I915_READ(VBLANK(cpu_transcoder)));
3727 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3728 I915_READ(VSYNC(cpu_transcoder)));
3729 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3730 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3731 }
3732
3733 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3734 {
3735 struct drm_i915_private *dev_priv = dev->dev_private;
3736 uint32_t temp;
3737
3738 temp = I915_READ(SOUTH_CHICKEN1);
3739 if (temp & FDI_BC_BIFURCATION_SELECT)
3740 return;
3741
3742 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3743 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3744
3745 temp |= FDI_BC_BIFURCATION_SELECT;
3746 DRM_DEBUG_KMS("enabling fdi C rx\n");
3747 I915_WRITE(SOUTH_CHICKEN1, temp);
3748 POSTING_READ(SOUTH_CHICKEN1);
3749 }
3750
3751 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3752 {
3753 struct drm_device *dev = intel_crtc->base.dev;
3754 struct drm_i915_private *dev_priv = dev->dev_private;
3755
3756 switch (intel_crtc->pipe) {
3757 case PIPE_A:
3758 break;
3759 case PIPE_B:
3760 if (intel_crtc->config->fdi_lanes > 2)
3761 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3762 else
3763 cpt_enable_fdi_bc_bifurcation(dev);
3764
3765 break;
3766 case PIPE_C:
3767 cpt_enable_fdi_bc_bifurcation(dev);
3768
3769 break;
3770 default:
3771 BUG();
3772 }
3773 }
3774
3775 /*
3776 * Enable PCH resources required for PCH ports:
3777 * - PCH PLLs
3778 * - FDI training & RX/TX
3779 * - update transcoder timings
3780 * - DP transcoding bits
3781 * - transcoder
3782 */
3783 static void ironlake_pch_enable(struct drm_crtc *crtc)
3784 {
3785 struct drm_device *dev = crtc->dev;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788 int pipe = intel_crtc->pipe;
3789 u32 reg, temp;
3790
3791 assert_pch_transcoder_disabled(dev_priv, pipe);
3792
3793 if (IS_IVYBRIDGE(dev))
3794 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3795
3796 /* Write the TU size bits before fdi link training, so that error
3797 * detection works. */
3798 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3799 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3800
3801 /* For PCH output, training FDI link */
3802 dev_priv->display.fdi_link_train(crtc);
3803
3804 /* We need to program the right clock selection before writing the pixel
3805 * mutliplier into the DPLL. */
3806 if (HAS_PCH_CPT(dev)) {
3807 u32 sel;
3808
3809 temp = I915_READ(PCH_DPLL_SEL);
3810 temp |= TRANS_DPLL_ENABLE(pipe);
3811 sel = TRANS_DPLLB_SEL(pipe);
3812 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3813 temp |= sel;
3814 else
3815 temp &= ~sel;
3816 I915_WRITE(PCH_DPLL_SEL, temp);
3817 }
3818
3819 /* XXX: pch pll's can be enabled any time before we enable the PCH
3820 * transcoder, and we actually should do this to not upset any PCH
3821 * transcoder that already use the clock when we share it.
3822 *
3823 * Note that enable_shared_dpll tries to do the right thing, but
3824 * get_shared_dpll unconditionally resets the pll - we need that to have
3825 * the right LVDS enable sequence. */
3826 intel_enable_shared_dpll(intel_crtc);
3827
3828 /* set transcoder timing, panel must allow it */
3829 assert_panel_unlocked(dev_priv, pipe);
3830 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3831
3832 intel_fdi_normal_train(crtc);
3833
3834 /* For PCH DP, enable TRANS_DP_CTL */
3835 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3836 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3837 reg = TRANS_DP_CTL(pipe);
3838 temp = I915_READ(reg);
3839 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3840 TRANS_DP_SYNC_MASK |
3841 TRANS_DP_BPC_MASK);
3842 temp |= (TRANS_DP_OUTPUT_ENABLE |
3843 TRANS_DP_ENH_FRAMING);
3844 temp |= bpc << 9; /* same format but at 11:9 */
3845
3846 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3847 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3848 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3849 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3850
3851 switch (intel_trans_dp_port_sel(crtc)) {
3852 case PCH_DP_B:
3853 temp |= TRANS_DP_PORT_SEL_B;
3854 break;
3855 case PCH_DP_C:
3856 temp |= TRANS_DP_PORT_SEL_C;
3857 break;
3858 case PCH_DP_D:
3859 temp |= TRANS_DP_PORT_SEL_D;
3860 break;
3861 default:
3862 BUG();
3863 }
3864
3865 I915_WRITE(reg, temp);
3866 }
3867
3868 ironlake_enable_pch_transcoder(dev_priv, pipe);
3869 }
3870
3871 static void lpt_pch_enable(struct drm_crtc *crtc)
3872 {
3873 struct drm_device *dev = crtc->dev;
3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3876 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3877
3878 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3879
3880 lpt_program_iclkip(crtc);
3881
3882 /* Set transcoder timing. */
3883 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3884
3885 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3886 }
3887
3888 void intel_put_shared_dpll(struct intel_crtc *crtc)
3889 {
3890 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3891
3892 if (pll == NULL)
3893 return;
3894
3895 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3896 WARN(1, "bad %s crtc mask\n", pll->name);
3897 return;
3898 }
3899
3900 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3901 if (pll->config.crtc_mask == 0) {
3902 WARN_ON(pll->on);
3903 WARN_ON(pll->active);
3904 }
3905
3906 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
3907 }
3908
3909 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3910 struct intel_crtc_state *crtc_state)
3911 {
3912 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3913 struct intel_shared_dpll *pll;
3914 enum intel_dpll_id i;
3915
3916 if (HAS_PCH_IBX(dev_priv->dev)) {
3917 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3918 i = (enum intel_dpll_id) crtc->pipe;
3919 pll = &dev_priv->shared_dplls[i];
3920
3921 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3922 crtc->base.base.id, pll->name);
3923
3924 WARN_ON(pll->new_config->crtc_mask);
3925
3926 goto found;
3927 }
3928
3929 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3930 pll = &dev_priv->shared_dplls[i];
3931
3932 /* Only want to check enabled timings first */
3933 if (pll->new_config->crtc_mask == 0)
3934 continue;
3935
3936 if (memcmp(&crtc_state->dpll_hw_state,
3937 &pll->new_config->hw_state,
3938 sizeof(pll->new_config->hw_state)) == 0) {
3939 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3940 crtc->base.base.id, pll->name,
3941 pll->new_config->crtc_mask,
3942 pll->active);
3943 goto found;
3944 }
3945 }
3946
3947 /* Ok no matching timings, maybe there's a free one? */
3948 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3949 pll = &dev_priv->shared_dplls[i];
3950 if (pll->new_config->crtc_mask == 0) {
3951 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3952 crtc->base.base.id, pll->name);
3953 goto found;
3954 }
3955 }
3956
3957 return NULL;
3958
3959 found:
3960 if (pll->new_config->crtc_mask == 0)
3961 pll->new_config->hw_state = crtc_state->dpll_hw_state;
3962
3963 crtc_state->shared_dpll = i;
3964 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3965 pipe_name(crtc->pipe));
3966
3967 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3968
3969 return pll;
3970 }
3971
3972 /**
3973 * intel_shared_dpll_start_config - start a new PLL staged config
3974 * @dev_priv: DRM device
3975 * @clear_pipes: mask of pipes that will have their PLLs freed
3976 *
3977 * Starts a new PLL staged config, copying the current config but
3978 * releasing the references of pipes specified in clear_pipes.
3979 */
3980 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3981 unsigned clear_pipes)
3982 {
3983 struct intel_shared_dpll *pll;
3984 enum intel_dpll_id i;
3985
3986 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3987 pll = &dev_priv->shared_dplls[i];
3988
3989 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3990 GFP_KERNEL);
3991 if (!pll->new_config)
3992 goto cleanup;
3993
3994 pll->new_config->crtc_mask &= ~clear_pipes;
3995 }
3996
3997 return 0;
3998
3999 cleanup:
4000 while (--i >= 0) {
4001 pll = &dev_priv->shared_dplls[i];
4002 kfree(pll->new_config);
4003 pll->new_config = NULL;
4004 }
4005
4006 return -ENOMEM;
4007 }
4008
4009 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4010 {
4011 struct intel_shared_dpll *pll;
4012 enum intel_dpll_id i;
4013
4014 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4015 pll = &dev_priv->shared_dplls[i];
4016
4017 WARN_ON(pll->new_config == &pll->config);
4018
4019 pll->config = *pll->new_config;
4020 kfree(pll->new_config);
4021 pll->new_config = NULL;
4022 }
4023 }
4024
4025 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4026 {
4027 struct intel_shared_dpll *pll;
4028 enum intel_dpll_id i;
4029
4030 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4031 pll = &dev_priv->shared_dplls[i];
4032
4033 WARN_ON(pll->new_config == &pll->config);
4034
4035 kfree(pll->new_config);
4036 pll->new_config = NULL;
4037 }
4038 }
4039
4040 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4041 {
4042 struct drm_i915_private *dev_priv = dev->dev_private;
4043 int dslreg = PIPEDSL(pipe);
4044 u32 temp;
4045
4046 temp = I915_READ(dslreg);
4047 udelay(500);
4048 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4049 if (wait_for(I915_READ(dslreg) != temp, 5))
4050 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4051 }
4052 }
4053
4054 static void skylake_pfit_enable(struct intel_crtc *crtc)
4055 {
4056 struct drm_device *dev = crtc->base.dev;
4057 struct drm_i915_private *dev_priv = dev->dev_private;
4058 int pipe = crtc->pipe;
4059
4060 if (crtc->config->pch_pfit.enabled) {
4061 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4062 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4063 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4064 }
4065 }
4066
4067 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4068 {
4069 struct drm_device *dev = crtc->base.dev;
4070 struct drm_i915_private *dev_priv = dev->dev_private;
4071 int pipe = crtc->pipe;
4072
4073 if (crtc->config->pch_pfit.enabled) {
4074 /* Force use of hard-coded filter coefficients
4075 * as some pre-programmed values are broken,
4076 * e.g. x201.
4077 */
4078 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4079 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4080 PF_PIPE_SEL_IVB(pipe));
4081 else
4082 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4083 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4084 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4085 }
4086 }
4087
4088 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4089 {
4090 struct drm_device *dev = crtc->dev;
4091 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4092 struct drm_plane *plane;
4093 struct intel_plane *intel_plane;
4094
4095 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4096 intel_plane = to_intel_plane(plane);
4097 if (intel_plane->pipe == pipe)
4098 intel_plane_restore(&intel_plane->base);
4099 }
4100 }
4101
4102 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4103 {
4104 struct drm_device *dev = crtc->dev;
4105 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4106 struct drm_plane *plane;
4107 struct intel_plane *intel_plane;
4108
4109 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4110 intel_plane = to_intel_plane(plane);
4111 if (intel_plane->pipe == pipe)
4112 plane->funcs->disable_plane(plane);
4113 }
4114 }
4115
4116 void hsw_enable_ips(struct intel_crtc *crtc)
4117 {
4118 struct drm_device *dev = crtc->base.dev;
4119 struct drm_i915_private *dev_priv = dev->dev_private;
4120
4121 if (!crtc->config->ips_enabled)
4122 return;
4123
4124 /* We can only enable IPS after we enable a plane and wait for a vblank */
4125 intel_wait_for_vblank(dev, crtc->pipe);
4126
4127 assert_plane_enabled(dev_priv, crtc->plane);
4128 if (IS_BROADWELL(dev)) {
4129 mutex_lock(&dev_priv->rps.hw_lock);
4130 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4131 mutex_unlock(&dev_priv->rps.hw_lock);
4132 /* Quoting Art Runyan: "its not safe to expect any particular
4133 * value in IPS_CTL bit 31 after enabling IPS through the
4134 * mailbox." Moreover, the mailbox may return a bogus state,
4135 * so we need to just enable it and continue on.
4136 */
4137 } else {
4138 I915_WRITE(IPS_CTL, IPS_ENABLE);
4139 /* The bit only becomes 1 in the next vblank, so this wait here
4140 * is essentially intel_wait_for_vblank. If we don't have this
4141 * and don't wait for vblanks until the end of crtc_enable, then
4142 * the HW state readout code will complain that the expected
4143 * IPS_CTL value is not the one we read. */
4144 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4145 DRM_ERROR("Timed out waiting for IPS enable\n");
4146 }
4147 }
4148
4149 void hsw_disable_ips(struct intel_crtc *crtc)
4150 {
4151 struct drm_device *dev = crtc->base.dev;
4152 struct drm_i915_private *dev_priv = dev->dev_private;
4153
4154 if (!crtc->config->ips_enabled)
4155 return;
4156
4157 assert_plane_enabled(dev_priv, crtc->plane);
4158 if (IS_BROADWELL(dev)) {
4159 mutex_lock(&dev_priv->rps.hw_lock);
4160 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4161 mutex_unlock(&dev_priv->rps.hw_lock);
4162 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4163 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4164 DRM_ERROR("Timed out waiting for IPS disable\n");
4165 } else {
4166 I915_WRITE(IPS_CTL, 0);
4167 POSTING_READ(IPS_CTL);
4168 }
4169
4170 /* We need to wait for a vblank before we can disable the plane. */
4171 intel_wait_for_vblank(dev, crtc->pipe);
4172 }
4173
4174 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4175 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4176 {
4177 struct drm_device *dev = crtc->dev;
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4180 enum pipe pipe = intel_crtc->pipe;
4181 int palreg = PALETTE(pipe);
4182 int i;
4183 bool reenable_ips = false;
4184
4185 /* The clocks have to be on to load the palette. */
4186 if (!crtc->enabled || !intel_crtc->active)
4187 return;
4188
4189 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4190 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4191 assert_dsi_pll_enabled(dev_priv);
4192 else
4193 assert_pll_enabled(dev_priv, pipe);
4194 }
4195
4196 /* use legacy palette for Ironlake */
4197 if (!HAS_GMCH_DISPLAY(dev))
4198 palreg = LGC_PALETTE(pipe);
4199
4200 /* Workaround : Do not read or write the pipe palette/gamma data while
4201 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4202 */
4203 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4204 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4205 GAMMA_MODE_MODE_SPLIT)) {
4206 hsw_disable_ips(intel_crtc);
4207 reenable_ips = true;
4208 }
4209
4210 for (i = 0; i < 256; i++) {
4211 I915_WRITE(palreg + 4 * i,
4212 (intel_crtc->lut_r[i] << 16) |
4213 (intel_crtc->lut_g[i] << 8) |
4214 intel_crtc->lut_b[i]);
4215 }
4216
4217 if (reenable_ips)
4218 hsw_enable_ips(intel_crtc);
4219 }
4220
4221 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4222 {
4223 if (!enable && intel_crtc->overlay) {
4224 struct drm_device *dev = intel_crtc->base.dev;
4225 struct drm_i915_private *dev_priv = dev->dev_private;
4226
4227 mutex_lock(&dev->struct_mutex);
4228 dev_priv->mm.interruptible = false;
4229 (void) intel_overlay_switch_off(intel_crtc->overlay);
4230 dev_priv->mm.interruptible = true;
4231 mutex_unlock(&dev->struct_mutex);
4232 }
4233
4234 /* Let userspace switch the overlay on again. In most cases userspace
4235 * has to recompute where to put it anyway.
4236 */
4237 }
4238
4239 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4240 {
4241 struct drm_device *dev = crtc->dev;
4242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4243 int pipe = intel_crtc->pipe;
4244
4245 intel_enable_primary_hw_plane(crtc->primary, crtc);
4246 intel_enable_sprite_planes(crtc);
4247 intel_crtc_update_cursor(crtc, true);
4248 intel_crtc_dpms_overlay(intel_crtc, true);
4249
4250 hsw_enable_ips(intel_crtc);
4251
4252 mutex_lock(&dev->struct_mutex);
4253 intel_fbc_update(dev);
4254 mutex_unlock(&dev->struct_mutex);
4255
4256 /*
4257 * FIXME: Once we grow proper nuclear flip support out of this we need
4258 * to compute the mask of flip planes precisely. For the time being
4259 * consider this a flip from a NULL plane.
4260 */
4261 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4262 }
4263
4264 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4265 {
4266 struct drm_device *dev = crtc->dev;
4267 struct drm_i915_private *dev_priv = dev->dev_private;
4268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4269 int pipe = intel_crtc->pipe;
4270 int plane = intel_crtc->plane;
4271
4272 intel_crtc_wait_for_pending_flips(crtc);
4273
4274 if (dev_priv->fbc.plane == plane)
4275 intel_fbc_disable(dev);
4276
4277 hsw_disable_ips(intel_crtc);
4278
4279 intel_crtc_dpms_overlay(intel_crtc, false);
4280 intel_crtc_update_cursor(crtc, false);
4281 intel_disable_sprite_planes(crtc);
4282 intel_disable_primary_hw_plane(crtc->primary, crtc);
4283
4284 /*
4285 * FIXME: Once we grow proper nuclear flip support out of this we need
4286 * to compute the mask of flip planes precisely. For the time being
4287 * consider this a flip to a NULL plane.
4288 */
4289 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4290 }
4291
4292 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4293 {
4294 struct drm_device *dev = crtc->dev;
4295 struct drm_i915_private *dev_priv = dev->dev_private;
4296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4297 struct intel_encoder *encoder;
4298 int pipe = intel_crtc->pipe;
4299
4300 WARN_ON(!crtc->enabled);
4301
4302 if (intel_crtc->active)
4303 return;
4304
4305 if (intel_crtc->config->has_pch_encoder)
4306 intel_prepare_shared_dpll(intel_crtc);
4307
4308 if (intel_crtc->config->has_dp_encoder)
4309 intel_dp_set_m_n(intel_crtc);
4310
4311 intel_set_pipe_timings(intel_crtc);
4312
4313 if (intel_crtc->config->has_pch_encoder) {
4314 intel_cpu_transcoder_set_m_n(intel_crtc,
4315 &intel_crtc->config->fdi_m_n, NULL);
4316 }
4317
4318 ironlake_set_pipeconf(crtc);
4319
4320 intel_crtc->active = true;
4321
4322 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4323 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4324
4325 for_each_encoder_on_crtc(dev, crtc, encoder)
4326 if (encoder->pre_enable)
4327 encoder->pre_enable(encoder);
4328
4329 if (intel_crtc->config->has_pch_encoder) {
4330 /* Note: FDI PLL enabling _must_ be done before we enable the
4331 * cpu pipes, hence this is separate from all the other fdi/pch
4332 * enabling. */
4333 ironlake_fdi_pll_enable(intel_crtc);
4334 } else {
4335 assert_fdi_tx_disabled(dev_priv, pipe);
4336 assert_fdi_rx_disabled(dev_priv, pipe);
4337 }
4338
4339 ironlake_pfit_enable(intel_crtc);
4340
4341 /*
4342 * On ILK+ LUT must be loaded before the pipe is running but with
4343 * clocks enabled
4344 */
4345 intel_crtc_load_lut(crtc);
4346
4347 intel_update_watermarks(crtc);
4348 intel_enable_pipe(intel_crtc);
4349
4350 if (intel_crtc->config->has_pch_encoder)
4351 ironlake_pch_enable(crtc);
4352
4353 assert_vblank_disabled(crtc);
4354 drm_crtc_vblank_on(crtc);
4355
4356 for_each_encoder_on_crtc(dev, crtc, encoder)
4357 encoder->enable(encoder);
4358
4359 if (HAS_PCH_CPT(dev))
4360 cpt_verify_modeset(dev, intel_crtc->pipe);
4361
4362 intel_crtc_enable_planes(crtc);
4363 }
4364
4365 /* IPS only exists on ULT machines and is tied to pipe A. */
4366 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4367 {
4368 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4369 }
4370
4371 /*
4372 * This implements the workaround described in the "notes" section of the mode
4373 * set sequence documentation. When going from no pipes or single pipe to
4374 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4375 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4376 */
4377 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4378 {
4379 struct drm_device *dev = crtc->base.dev;
4380 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4381
4382 /* We want to get the other_active_crtc only if there's only 1 other
4383 * active crtc. */
4384 for_each_intel_crtc(dev, crtc_it) {
4385 if (!crtc_it->active || crtc_it == crtc)
4386 continue;
4387
4388 if (other_active_crtc)
4389 return;
4390
4391 other_active_crtc = crtc_it;
4392 }
4393 if (!other_active_crtc)
4394 return;
4395
4396 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4397 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4398 }
4399
4400 static void haswell_crtc_enable(struct drm_crtc *crtc)
4401 {
4402 struct drm_device *dev = crtc->dev;
4403 struct drm_i915_private *dev_priv = dev->dev_private;
4404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4405 struct intel_encoder *encoder;
4406 int pipe = intel_crtc->pipe;
4407
4408 WARN_ON(!crtc->enabled);
4409
4410 if (intel_crtc->active)
4411 return;
4412
4413 if (intel_crtc_to_shared_dpll(intel_crtc))
4414 intel_enable_shared_dpll(intel_crtc);
4415
4416 if (intel_crtc->config->has_dp_encoder)
4417 intel_dp_set_m_n(intel_crtc);
4418
4419 intel_set_pipe_timings(intel_crtc);
4420
4421 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4422 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4423 intel_crtc->config->pixel_multiplier - 1);
4424 }
4425
4426 if (intel_crtc->config->has_pch_encoder) {
4427 intel_cpu_transcoder_set_m_n(intel_crtc,
4428 &intel_crtc->config->fdi_m_n, NULL);
4429 }
4430
4431 haswell_set_pipeconf(crtc);
4432
4433 intel_set_pipe_csc(crtc);
4434
4435 intel_crtc->active = true;
4436
4437 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4438 for_each_encoder_on_crtc(dev, crtc, encoder)
4439 if (encoder->pre_enable)
4440 encoder->pre_enable(encoder);
4441
4442 if (intel_crtc->config->has_pch_encoder) {
4443 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4444 true);
4445 dev_priv->display.fdi_link_train(crtc);
4446 }
4447
4448 intel_ddi_enable_pipe_clock(intel_crtc);
4449
4450 if (IS_SKYLAKE(dev))
4451 skylake_pfit_enable(intel_crtc);
4452 else
4453 ironlake_pfit_enable(intel_crtc);
4454
4455 /*
4456 * On ILK+ LUT must be loaded before the pipe is running but with
4457 * clocks enabled
4458 */
4459 intel_crtc_load_lut(crtc);
4460
4461 intel_ddi_set_pipe_settings(crtc);
4462 intel_ddi_enable_transcoder_func(crtc);
4463
4464 intel_update_watermarks(crtc);
4465 intel_enable_pipe(intel_crtc);
4466
4467 if (intel_crtc->config->has_pch_encoder)
4468 lpt_pch_enable(crtc);
4469
4470 if (intel_crtc->config->dp_encoder_is_mst)
4471 intel_ddi_set_vc_payload_alloc(crtc, true);
4472
4473 assert_vblank_disabled(crtc);
4474 drm_crtc_vblank_on(crtc);
4475
4476 for_each_encoder_on_crtc(dev, crtc, encoder) {
4477 encoder->enable(encoder);
4478 intel_opregion_notify_encoder(encoder, true);
4479 }
4480
4481 /* If we change the relative order between pipe/planes enabling, we need
4482 * to change the workaround. */
4483 haswell_mode_set_planes_workaround(intel_crtc);
4484 intel_crtc_enable_planes(crtc);
4485 }
4486
4487 static void skylake_pfit_disable(struct intel_crtc *crtc)
4488 {
4489 struct drm_device *dev = crtc->base.dev;
4490 struct drm_i915_private *dev_priv = dev->dev_private;
4491 int pipe = crtc->pipe;
4492
4493 /* To avoid upsetting the power well on haswell only disable the pfit if
4494 * it's in use. The hw state code will make sure we get this right. */
4495 if (crtc->config->pch_pfit.enabled) {
4496 I915_WRITE(PS_CTL(pipe), 0);
4497 I915_WRITE(PS_WIN_POS(pipe), 0);
4498 I915_WRITE(PS_WIN_SZ(pipe), 0);
4499 }
4500 }
4501
4502 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4503 {
4504 struct drm_device *dev = crtc->base.dev;
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506 int pipe = crtc->pipe;
4507
4508 /* To avoid upsetting the power well on haswell only disable the pfit if
4509 * it's in use. The hw state code will make sure we get this right. */
4510 if (crtc->config->pch_pfit.enabled) {
4511 I915_WRITE(PF_CTL(pipe), 0);
4512 I915_WRITE(PF_WIN_POS(pipe), 0);
4513 I915_WRITE(PF_WIN_SZ(pipe), 0);
4514 }
4515 }
4516
4517 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4518 {
4519 struct drm_device *dev = crtc->dev;
4520 struct drm_i915_private *dev_priv = dev->dev_private;
4521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4522 struct intel_encoder *encoder;
4523 int pipe = intel_crtc->pipe;
4524 u32 reg, temp;
4525
4526 if (!intel_crtc->active)
4527 return;
4528
4529 intel_crtc_disable_planes(crtc);
4530
4531 for_each_encoder_on_crtc(dev, crtc, encoder)
4532 encoder->disable(encoder);
4533
4534 drm_crtc_vblank_off(crtc);
4535 assert_vblank_disabled(crtc);
4536
4537 if (intel_crtc->config->has_pch_encoder)
4538 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4539
4540 intel_disable_pipe(intel_crtc);
4541
4542 ironlake_pfit_disable(intel_crtc);
4543
4544 for_each_encoder_on_crtc(dev, crtc, encoder)
4545 if (encoder->post_disable)
4546 encoder->post_disable(encoder);
4547
4548 if (intel_crtc->config->has_pch_encoder) {
4549 ironlake_fdi_disable(crtc);
4550
4551 ironlake_disable_pch_transcoder(dev_priv, pipe);
4552
4553 if (HAS_PCH_CPT(dev)) {
4554 /* disable TRANS_DP_CTL */
4555 reg = TRANS_DP_CTL(pipe);
4556 temp = I915_READ(reg);
4557 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4558 TRANS_DP_PORT_SEL_MASK);
4559 temp |= TRANS_DP_PORT_SEL_NONE;
4560 I915_WRITE(reg, temp);
4561
4562 /* disable DPLL_SEL */
4563 temp = I915_READ(PCH_DPLL_SEL);
4564 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4565 I915_WRITE(PCH_DPLL_SEL, temp);
4566 }
4567
4568 /* disable PCH DPLL */
4569 intel_disable_shared_dpll(intel_crtc);
4570
4571 ironlake_fdi_pll_disable(intel_crtc);
4572 }
4573
4574 intel_crtc->active = false;
4575 intel_update_watermarks(crtc);
4576
4577 mutex_lock(&dev->struct_mutex);
4578 intel_fbc_update(dev);
4579 mutex_unlock(&dev->struct_mutex);
4580 }
4581
4582 static void haswell_crtc_disable(struct drm_crtc *crtc)
4583 {
4584 struct drm_device *dev = crtc->dev;
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4587 struct intel_encoder *encoder;
4588 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4589
4590 if (!intel_crtc->active)
4591 return;
4592
4593 intel_crtc_disable_planes(crtc);
4594
4595 for_each_encoder_on_crtc(dev, crtc, encoder) {
4596 intel_opregion_notify_encoder(encoder, false);
4597 encoder->disable(encoder);
4598 }
4599
4600 drm_crtc_vblank_off(crtc);
4601 assert_vblank_disabled(crtc);
4602
4603 if (intel_crtc->config->has_pch_encoder)
4604 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4605 false);
4606 intel_disable_pipe(intel_crtc);
4607
4608 if (intel_crtc->config->dp_encoder_is_mst)
4609 intel_ddi_set_vc_payload_alloc(crtc, false);
4610
4611 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4612
4613 if (IS_SKYLAKE(dev))
4614 skylake_pfit_disable(intel_crtc);
4615 else
4616 ironlake_pfit_disable(intel_crtc);
4617
4618 intel_ddi_disable_pipe_clock(intel_crtc);
4619
4620 if (intel_crtc->config->has_pch_encoder) {
4621 lpt_disable_pch_transcoder(dev_priv);
4622 intel_ddi_fdi_disable(crtc);
4623 }
4624
4625 for_each_encoder_on_crtc(dev, crtc, encoder)
4626 if (encoder->post_disable)
4627 encoder->post_disable(encoder);
4628
4629 intel_crtc->active = false;
4630 intel_update_watermarks(crtc);
4631
4632 mutex_lock(&dev->struct_mutex);
4633 intel_fbc_update(dev);
4634 mutex_unlock(&dev->struct_mutex);
4635
4636 if (intel_crtc_to_shared_dpll(intel_crtc))
4637 intel_disable_shared_dpll(intel_crtc);
4638 }
4639
4640 static void ironlake_crtc_off(struct drm_crtc *crtc)
4641 {
4642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4643 intel_put_shared_dpll(intel_crtc);
4644 }
4645
4646
4647 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4648 {
4649 struct drm_device *dev = crtc->base.dev;
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651 struct intel_crtc_state *pipe_config = crtc->config;
4652
4653 if (!pipe_config->gmch_pfit.control)
4654 return;
4655
4656 /*
4657 * The panel fitter should only be adjusted whilst the pipe is disabled,
4658 * according to register description and PRM.
4659 */
4660 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4661 assert_pipe_disabled(dev_priv, crtc->pipe);
4662
4663 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4664 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4665
4666 /* Border color in case we don't scale up to the full screen. Black by
4667 * default, change to something else for debugging. */
4668 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4669 }
4670
4671 static enum intel_display_power_domain port_to_power_domain(enum port port)
4672 {
4673 switch (port) {
4674 case PORT_A:
4675 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4676 case PORT_B:
4677 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4678 case PORT_C:
4679 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4680 case PORT_D:
4681 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4682 default:
4683 WARN_ON_ONCE(1);
4684 return POWER_DOMAIN_PORT_OTHER;
4685 }
4686 }
4687
4688 #define for_each_power_domain(domain, mask) \
4689 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4690 if ((1 << (domain)) & (mask))
4691
4692 enum intel_display_power_domain
4693 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4694 {
4695 struct drm_device *dev = intel_encoder->base.dev;
4696 struct intel_digital_port *intel_dig_port;
4697
4698 switch (intel_encoder->type) {
4699 case INTEL_OUTPUT_UNKNOWN:
4700 /* Only DDI platforms should ever use this output type */
4701 WARN_ON_ONCE(!HAS_DDI(dev));
4702 case INTEL_OUTPUT_DISPLAYPORT:
4703 case INTEL_OUTPUT_HDMI:
4704 case INTEL_OUTPUT_EDP:
4705 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4706 return port_to_power_domain(intel_dig_port->port);
4707 case INTEL_OUTPUT_DP_MST:
4708 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4709 return port_to_power_domain(intel_dig_port->port);
4710 case INTEL_OUTPUT_ANALOG:
4711 return POWER_DOMAIN_PORT_CRT;
4712 case INTEL_OUTPUT_DSI:
4713 return POWER_DOMAIN_PORT_DSI;
4714 default:
4715 return POWER_DOMAIN_PORT_OTHER;
4716 }
4717 }
4718
4719 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4720 {
4721 struct drm_device *dev = crtc->dev;
4722 struct intel_encoder *intel_encoder;
4723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4724 enum pipe pipe = intel_crtc->pipe;
4725 unsigned long mask;
4726 enum transcoder transcoder;
4727
4728 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4729
4730 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4731 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4732 if (intel_crtc->config->pch_pfit.enabled ||
4733 intel_crtc->config->pch_pfit.force_thru)
4734 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4735
4736 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4737 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4738
4739 return mask;
4740 }
4741
4742 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4743 {
4744 struct drm_i915_private *dev_priv = dev->dev_private;
4745 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4746 struct intel_crtc *crtc;
4747
4748 /*
4749 * First get all needed power domains, then put all unneeded, to avoid
4750 * any unnecessary toggling of the power wells.
4751 */
4752 for_each_intel_crtc(dev, crtc) {
4753 enum intel_display_power_domain domain;
4754
4755 if (!crtc->base.enabled)
4756 continue;
4757
4758 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4759
4760 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4761 intel_display_power_get(dev_priv, domain);
4762 }
4763
4764 if (dev_priv->display.modeset_global_resources)
4765 dev_priv->display.modeset_global_resources(dev);
4766
4767 for_each_intel_crtc(dev, crtc) {
4768 enum intel_display_power_domain domain;
4769
4770 for_each_power_domain(domain, crtc->enabled_power_domains)
4771 intel_display_power_put(dev_priv, domain);
4772
4773 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4774 }
4775
4776 intel_display_set_init_power(dev_priv, false);
4777 }
4778
4779 /* returns HPLL frequency in kHz */
4780 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4781 {
4782 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4783
4784 /* Obtain SKU information */
4785 mutex_lock(&dev_priv->dpio_lock);
4786 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4787 CCK_FUSE_HPLL_FREQ_MASK;
4788 mutex_unlock(&dev_priv->dpio_lock);
4789
4790 return vco_freq[hpll_freq] * 1000;
4791 }
4792
4793 static void vlv_update_cdclk(struct drm_device *dev)
4794 {
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796
4797 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4798 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4799 dev_priv->vlv_cdclk_freq);
4800
4801 /*
4802 * Program the gmbus_freq based on the cdclk frequency.
4803 * BSpec erroneously claims we should aim for 4MHz, but
4804 * in fact 1MHz is the correct frequency.
4805 */
4806 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4807 }
4808
4809 /* Adjust CDclk dividers to allow high res or save power if possible */
4810 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4811 {
4812 struct drm_i915_private *dev_priv = dev->dev_private;
4813 u32 val, cmd;
4814
4815 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4816
4817 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4818 cmd = 2;
4819 else if (cdclk == 266667)
4820 cmd = 1;
4821 else
4822 cmd = 0;
4823
4824 mutex_lock(&dev_priv->rps.hw_lock);
4825 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4826 val &= ~DSPFREQGUAR_MASK;
4827 val |= (cmd << DSPFREQGUAR_SHIFT);
4828 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4829 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4830 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4831 50)) {
4832 DRM_ERROR("timed out waiting for CDclk change\n");
4833 }
4834 mutex_unlock(&dev_priv->rps.hw_lock);
4835
4836 if (cdclk == 400000) {
4837 u32 divider;
4838
4839 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4840
4841 mutex_lock(&dev_priv->dpio_lock);
4842 /* adjust cdclk divider */
4843 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4844 val &= ~DISPLAY_FREQUENCY_VALUES;
4845 val |= divider;
4846 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4847
4848 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4849 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4850 50))
4851 DRM_ERROR("timed out waiting for CDclk change\n");
4852 mutex_unlock(&dev_priv->dpio_lock);
4853 }
4854
4855 mutex_lock(&dev_priv->dpio_lock);
4856 /* adjust self-refresh exit latency value */
4857 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4858 val &= ~0x7f;
4859
4860 /*
4861 * For high bandwidth configs, we set a higher latency in the bunit
4862 * so that the core display fetch happens in time to avoid underruns.
4863 */
4864 if (cdclk == 400000)
4865 val |= 4500 / 250; /* 4.5 usec */
4866 else
4867 val |= 3000 / 250; /* 3.0 usec */
4868 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4869 mutex_unlock(&dev_priv->dpio_lock);
4870
4871 vlv_update_cdclk(dev);
4872 }
4873
4874 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4875 {
4876 struct drm_i915_private *dev_priv = dev->dev_private;
4877 u32 val, cmd;
4878
4879 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4880
4881 switch (cdclk) {
4882 case 400000:
4883 cmd = 3;
4884 break;
4885 case 333333:
4886 case 320000:
4887 cmd = 2;
4888 break;
4889 case 266667:
4890 cmd = 1;
4891 break;
4892 case 200000:
4893 cmd = 0;
4894 break;
4895 default:
4896 MISSING_CASE(cdclk);
4897 return;
4898 }
4899
4900 mutex_lock(&dev_priv->rps.hw_lock);
4901 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4902 val &= ~DSPFREQGUAR_MASK_CHV;
4903 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4904 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4905 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4906 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4907 50)) {
4908 DRM_ERROR("timed out waiting for CDclk change\n");
4909 }
4910 mutex_unlock(&dev_priv->rps.hw_lock);
4911
4912 vlv_update_cdclk(dev);
4913 }
4914
4915 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4916 int max_pixclk)
4917 {
4918 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4919
4920 /* FIXME: Punit isn't quite ready yet */
4921 if (IS_CHERRYVIEW(dev_priv->dev))
4922 return 400000;
4923
4924 /*
4925 * Really only a few cases to deal with, as only 4 CDclks are supported:
4926 * 200MHz
4927 * 267MHz
4928 * 320/333MHz (depends on HPLL freq)
4929 * 400MHz
4930 * So we check to see whether we're above 90% of the lower bin and
4931 * adjust if needed.
4932 *
4933 * We seem to get an unstable or solid color picture at 200MHz.
4934 * Not sure what's wrong. For now use 200MHz only when all pipes
4935 * are off.
4936 */
4937 if (max_pixclk > freq_320*9/10)
4938 return 400000;
4939 else if (max_pixclk > 266667*9/10)
4940 return freq_320;
4941 else if (max_pixclk > 0)
4942 return 266667;
4943 else
4944 return 200000;
4945 }
4946
4947 /* compute the max pixel clock for new configuration */
4948 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4949 {
4950 struct drm_device *dev = dev_priv->dev;
4951 struct intel_crtc *intel_crtc;
4952 int max_pixclk = 0;
4953
4954 for_each_intel_crtc(dev, intel_crtc) {
4955 if (intel_crtc->new_enabled)
4956 max_pixclk = max(max_pixclk,
4957 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
4958 }
4959
4960 return max_pixclk;
4961 }
4962
4963 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4964 unsigned *prepare_pipes)
4965 {
4966 struct drm_i915_private *dev_priv = dev->dev_private;
4967 struct intel_crtc *intel_crtc;
4968 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4969
4970 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4971 dev_priv->vlv_cdclk_freq)
4972 return;
4973
4974 /* disable/enable all currently active pipes while we change cdclk */
4975 for_each_intel_crtc(dev, intel_crtc)
4976 if (intel_crtc->base.enabled)
4977 *prepare_pipes |= (1 << intel_crtc->pipe);
4978 }
4979
4980 static void valleyview_modeset_global_resources(struct drm_device *dev)
4981 {
4982 struct drm_i915_private *dev_priv = dev->dev_private;
4983 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4984 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4985
4986 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4987 /*
4988 * FIXME: We can end up here with all power domains off, yet
4989 * with a CDCLK frequency other than the minimum. To account
4990 * for this take the PIPE-A power domain, which covers the HW
4991 * blocks needed for the following programming. This can be
4992 * removed once it's guaranteed that we get here either with
4993 * the minimum CDCLK set, or the required power domains
4994 * enabled.
4995 */
4996 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4997
4998 if (IS_CHERRYVIEW(dev))
4999 cherryview_set_cdclk(dev, req_cdclk);
5000 else
5001 valleyview_set_cdclk(dev, req_cdclk);
5002
5003 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5004 }
5005 }
5006
5007 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5008 {
5009 struct drm_device *dev = crtc->dev;
5010 struct drm_i915_private *dev_priv = to_i915(dev);
5011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5012 struct intel_encoder *encoder;
5013 int pipe = intel_crtc->pipe;
5014 bool is_dsi;
5015
5016 WARN_ON(!crtc->enabled);
5017
5018 if (intel_crtc->active)
5019 return;
5020
5021 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5022
5023 if (!is_dsi) {
5024 if (IS_CHERRYVIEW(dev))
5025 chv_prepare_pll(intel_crtc, intel_crtc->config);
5026 else
5027 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5028 }
5029
5030 if (intel_crtc->config->has_dp_encoder)
5031 intel_dp_set_m_n(intel_crtc);
5032
5033 intel_set_pipe_timings(intel_crtc);
5034
5035 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5036 struct drm_i915_private *dev_priv = dev->dev_private;
5037
5038 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5039 I915_WRITE(CHV_CANVAS(pipe), 0);
5040 }
5041
5042 i9xx_set_pipeconf(intel_crtc);
5043
5044 intel_crtc->active = true;
5045
5046 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5047
5048 for_each_encoder_on_crtc(dev, crtc, encoder)
5049 if (encoder->pre_pll_enable)
5050 encoder->pre_pll_enable(encoder);
5051
5052 if (!is_dsi) {
5053 if (IS_CHERRYVIEW(dev))
5054 chv_enable_pll(intel_crtc, intel_crtc->config);
5055 else
5056 vlv_enable_pll(intel_crtc, intel_crtc->config);
5057 }
5058
5059 for_each_encoder_on_crtc(dev, crtc, encoder)
5060 if (encoder->pre_enable)
5061 encoder->pre_enable(encoder);
5062
5063 i9xx_pfit_enable(intel_crtc);
5064
5065 intel_crtc_load_lut(crtc);
5066
5067 intel_update_watermarks(crtc);
5068 intel_enable_pipe(intel_crtc);
5069
5070 assert_vblank_disabled(crtc);
5071 drm_crtc_vblank_on(crtc);
5072
5073 for_each_encoder_on_crtc(dev, crtc, encoder)
5074 encoder->enable(encoder);
5075
5076 intel_crtc_enable_planes(crtc);
5077
5078 /* Underruns don't raise interrupts, so check manually. */
5079 i9xx_check_fifo_underruns(dev_priv);
5080 }
5081
5082 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5083 {
5084 struct drm_device *dev = crtc->base.dev;
5085 struct drm_i915_private *dev_priv = dev->dev_private;
5086
5087 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5088 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5089 }
5090
5091 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5092 {
5093 struct drm_device *dev = crtc->dev;
5094 struct drm_i915_private *dev_priv = to_i915(dev);
5095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5096 struct intel_encoder *encoder;
5097 int pipe = intel_crtc->pipe;
5098
5099 WARN_ON(!crtc->enabled);
5100
5101 if (intel_crtc->active)
5102 return;
5103
5104 i9xx_set_pll_dividers(intel_crtc);
5105
5106 if (intel_crtc->config->has_dp_encoder)
5107 intel_dp_set_m_n(intel_crtc);
5108
5109 intel_set_pipe_timings(intel_crtc);
5110
5111 i9xx_set_pipeconf(intel_crtc);
5112
5113 intel_crtc->active = true;
5114
5115 if (!IS_GEN2(dev))
5116 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5117
5118 for_each_encoder_on_crtc(dev, crtc, encoder)
5119 if (encoder->pre_enable)
5120 encoder->pre_enable(encoder);
5121
5122 i9xx_enable_pll(intel_crtc);
5123
5124 i9xx_pfit_enable(intel_crtc);
5125
5126 intel_crtc_load_lut(crtc);
5127
5128 intel_update_watermarks(crtc);
5129 intel_enable_pipe(intel_crtc);
5130
5131 assert_vblank_disabled(crtc);
5132 drm_crtc_vblank_on(crtc);
5133
5134 for_each_encoder_on_crtc(dev, crtc, encoder)
5135 encoder->enable(encoder);
5136
5137 intel_crtc_enable_planes(crtc);
5138
5139 /*
5140 * Gen2 reports pipe underruns whenever all planes are disabled.
5141 * So don't enable underrun reporting before at least some planes
5142 * are enabled.
5143 * FIXME: Need to fix the logic to work when we turn off all planes
5144 * but leave the pipe running.
5145 */
5146 if (IS_GEN2(dev))
5147 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5148
5149 /* Underruns don't raise interrupts, so check manually. */
5150 i9xx_check_fifo_underruns(dev_priv);
5151 }
5152
5153 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5154 {
5155 struct drm_device *dev = crtc->base.dev;
5156 struct drm_i915_private *dev_priv = dev->dev_private;
5157
5158 if (!crtc->config->gmch_pfit.control)
5159 return;
5160
5161 assert_pipe_disabled(dev_priv, crtc->pipe);
5162
5163 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5164 I915_READ(PFIT_CONTROL));
5165 I915_WRITE(PFIT_CONTROL, 0);
5166 }
5167
5168 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5169 {
5170 struct drm_device *dev = crtc->dev;
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5173 struct intel_encoder *encoder;
5174 int pipe = intel_crtc->pipe;
5175
5176 if (!intel_crtc->active)
5177 return;
5178
5179 /*
5180 * Gen2 reports pipe underruns whenever all planes are disabled.
5181 * So diasble underrun reporting before all the planes get disabled.
5182 * FIXME: Need to fix the logic to work when we turn off all planes
5183 * but leave the pipe running.
5184 */
5185 if (IS_GEN2(dev))
5186 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5187
5188 /*
5189 * Vblank time updates from the shadow to live plane control register
5190 * are blocked if the memory self-refresh mode is active at that
5191 * moment. So to make sure the plane gets truly disabled, disable
5192 * first the self-refresh mode. The self-refresh enable bit in turn
5193 * will be checked/applied by the HW only at the next frame start
5194 * event which is after the vblank start event, so we need to have a
5195 * wait-for-vblank between disabling the plane and the pipe.
5196 */
5197 intel_set_memory_cxsr(dev_priv, false);
5198 intel_crtc_disable_planes(crtc);
5199
5200 /*
5201 * On gen2 planes are double buffered but the pipe isn't, so we must
5202 * wait for planes to fully turn off before disabling the pipe.
5203 * We also need to wait on all gmch platforms because of the
5204 * self-refresh mode constraint explained above.
5205 */
5206 intel_wait_for_vblank(dev, pipe);
5207
5208 for_each_encoder_on_crtc(dev, crtc, encoder)
5209 encoder->disable(encoder);
5210
5211 drm_crtc_vblank_off(crtc);
5212 assert_vblank_disabled(crtc);
5213
5214 intel_disable_pipe(intel_crtc);
5215
5216 i9xx_pfit_disable(intel_crtc);
5217
5218 for_each_encoder_on_crtc(dev, crtc, encoder)
5219 if (encoder->post_disable)
5220 encoder->post_disable(encoder);
5221
5222 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5223 if (IS_CHERRYVIEW(dev))
5224 chv_disable_pll(dev_priv, pipe);
5225 else if (IS_VALLEYVIEW(dev))
5226 vlv_disable_pll(dev_priv, pipe);
5227 else
5228 i9xx_disable_pll(intel_crtc);
5229 }
5230
5231 if (!IS_GEN2(dev))
5232 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5233
5234 intel_crtc->active = false;
5235 intel_update_watermarks(crtc);
5236
5237 mutex_lock(&dev->struct_mutex);
5238 intel_fbc_update(dev);
5239 mutex_unlock(&dev->struct_mutex);
5240 }
5241
5242 static void i9xx_crtc_off(struct drm_crtc *crtc)
5243 {
5244 }
5245
5246 /* Master function to enable/disable CRTC and corresponding power wells */
5247 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5248 {
5249 struct drm_device *dev = crtc->dev;
5250 struct drm_i915_private *dev_priv = dev->dev_private;
5251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5252 enum intel_display_power_domain domain;
5253 unsigned long domains;
5254
5255 if (enable) {
5256 if (!intel_crtc->active) {
5257 domains = get_crtc_power_domains(crtc);
5258 for_each_power_domain(domain, domains)
5259 intel_display_power_get(dev_priv, domain);
5260 intel_crtc->enabled_power_domains = domains;
5261
5262 dev_priv->display.crtc_enable(crtc);
5263 }
5264 } else {
5265 if (intel_crtc->active) {
5266 dev_priv->display.crtc_disable(crtc);
5267
5268 domains = intel_crtc->enabled_power_domains;
5269 for_each_power_domain(domain, domains)
5270 intel_display_power_put(dev_priv, domain);
5271 intel_crtc->enabled_power_domains = 0;
5272 }
5273 }
5274 }
5275
5276 /**
5277 * Sets the power management mode of the pipe and plane.
5278 */
5279 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5280 {
5281 struct drm_device *dev = crtc->dev;
5282 struct intel_encoder *intel_encoder;
5283 bool enable = false;
5284
5285 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5286 enable |= intel_encoder->connectors_active;
5287
5288 intel_crtc_control(crtc, enable);
5289 }
5290
5291 static void intel_crtc_disable(struct drm_crtc *crtc)
5292 {
5293 struct drm_device *dev = crtc->dev;
5294 struct drm_connector *connector;
5295 struct drm_i915_private *dev_priv = dev->dev_private;
5296
5297 /* crtc should still be enabled when we disable it. */
5298 WARN_ON(!crtc->enabled);
5299
5300 dev_priv->display.crtc_disable(crtc);
5301 dev_priv->display.off(crtc);
5302
5303 crtc->primary->funcs->disable_plane(crtc->primary);
5304
5305 /* Update computed state. */
5306 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5307 if (!connector->encoder || !connector->encoder->crtc)
5308 continue;
5309
5310 if (connector->encoder->crtc != crtc)
5311 continue;
5312
5313 connector->dpms = DRM_MODE_DPMS_OFF;
5314 to_intel_encoder(connector->encoder)->connectors_active = false;
5315 }
5316 }
5317
5318 void intel_encoder_destroy(struct drm_encoder *encoder)
5319 {
5320 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5321
5322 drm_encoder_cleanup(encoder);
5323 kfree(intel_encoder);
5324 }
5325
5326 /* Simple dpms helper for encoders with just one connector, no cloning and only
5327 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5328 * state of the entire output pipe. */
5329 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5330 {
5331 if (mode == DRM_MODE_DPMS_ON) {
5332 encoder->connectors_active = true;
5333
5334 intel_crtc_update_dpms(encoder->base.crtc);
5335 } else {
5336 encoder->connectors_active = false;
5337
5338 intel_crtc_update_dpms(encoder->base.crtc);
5339 }
5340 }
5341
5342 /* Cross check the actual hw state with our own modeset state tracking (and it's
5343 * internal consistency). */
5344 static void intel_connector_check_state(struct intel_connector *connector)
5345 {
5346 if (connector->get_hw_state(connector)) {
5347 struct intel_encoder *encoder = connector->encoder;
5348 struct drm_crtc *crtc;
5349 bool encoder_enabled;
5350 enum pipe pipe;
5351
5352 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5353 connector->base.base.id,
5354 connector->base.name);
5355
5356 /* there is no real hw state for MST connectors */
5357 if (connector->mst_port)
5358 return;
5359
5360 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5361 "wrong connector dpms state\n");
5362 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5363 "active connector not linked to encoder\n");
5364
5365 if (encoder) {
5366 I915_STATE_WARN(!encoder->connectors_active,
5367 "encoder->connectors_active not set\n");
5368
5369 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5370 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5371 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5372 return;
5373
5374 crtc = encoder->base.crtc;
5375
5376 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5377 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5378 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5379 "encoder active on the wrong pipe\n");
5380 }
5381 }
5382 }
5383
5384 /* Even simpler default implementation, if there's really no special case to
5385 * consider. */
5386 void intel_connector_dpms(struct drm_connector *connector, int mode)
5387 {
5388 /* All the simple cases only support two dpms states. */
5389 if (mode != DRM_MODE_DPMS_ON)
5390 mode = DRM_MODE_DPMS_OFF;
5391
5392 if (mode == connector->dpms)
5393 return;
5394
5395 connector->dpms = mode;
5396
5397 /* Only need to change hw state when actually enabled */
5398 if (connector->encoder)
5399 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5400
5401 intel_modeset_check_state(connector->dev);
5402 }
5403
5404 /* Simple connector->get_hw_state implementation for encoders that support only
5405 * one connector and no cloning and hence the encoder state determines the state
5406 * of the connector. */
5407 bool intel_connector_get_hw_state(struct intel_connector *connector)
5408 {
5409 enum pipe pipe = 0;
5410 struct intel_encoder *encoder = connector->encoder;
5411
5412 return encoder->get_hw_state(encoder, &pipe);
5413 }
5414
5415 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5416 struct intel_crtc_state *pipe_config)
5417 {
5418 struct drm_i915_private *dev_priv = dev->dev_private;
5419 struct intel_crtc *pipe_B_crtc =
5420 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5421
5422 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5423 pipe_name(pipe), pipe_config->fdi_lanes);
5424 if (pipe_config->fdi_lanes > 4) {
5425 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5426 pipe_name(pipe), pipe_config->fdi_lanes);
5427 return false;
5428 }
5429
5430 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5431 if (pipe_config->fdi_lanes > 2) {
5432 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5433 pipe_config->fdi_lanes);
5434 return false;
5435 } else {
5436 return true;
5437 }
5438 }
5439
5440 if (INTEL_INFO(dev)->num_pipes == 2)
5441 return true;
5442
5443 /* Ivybridge 3 pipe is really complicated */
5444 switch (pipe) {
5445 case PIPE_A:
5446 return true;
5447 case PIPE_B:
5448 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5449 pipe_config->fdi_lanes > 2) {
5450 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5451 pipe_name(pipe), pipe_config->fdi_lanes);
5452 return false;
5453 }
5454 return true;
5455 case PIPE_C:
5456 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5457 pipe_B_crtc->config->fdi_lanes <= 2) {
5458 if (pipe_config->fdi_lanes > 2) {
5459 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5460 pipe_name(pipe), pipe_config->fdi_lanes);
5461 return false;
5462 }
5463 } else {
5464 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5465 return false;
5466 }
5467 return true;
5468 default:
5469 BUG();
5470 }
5471 }
5472
5473 #define RETRY 1
5474 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5475 struct intel_crtc_state *pipe_config)
5476 {
5477 struct drm_device *dev = intel_crtc->base.dev;
5478 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5479 int lane, link_bw, fdi_dotclock;
5480 bool setup_ok, needs_recompute = false;
5481
5482 retry:
5483 /* FDI is a binary signal running at ~2.7GHz, encoding
5484 * each output octet as 10 bits. The actual frequency
5485 * is stored as a divider into a 100MHz clock, and the
5486 * mode pixel clock is stored in units of 1KHz.
5487 * Hence the bw of each lane in terms of the mode signal
5488 * is:
5489 */
5490 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5491
5492 fdi_dotclock = adjusted_mode->crtc_clock;
5493
5494 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5495 pipe_config->pipe_bpp);
5496
5497 pipe_config->fdi_lanes = lane;
5498
5499 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5500 link_bw, &pipe_config->fdi_m_n);
5501
5502 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5503 intel_crtc->pipe, pipe_config);
5504 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5505 pipe_config->pipe_bpp -= 2*3;
5506 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5507 pipe_config->pipe_bpp);
5508 needs_recompute = true;
5509 pipe_config->bw_constrained = true;
5510
5511 goto retry;
5512 }
5513
5514 if (needs_recompute)
5515 return RETRY;
5516
5517 return setup_ok ? 0 : -EINVAL;
5518 }
5519
5520 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5521 struct intel_crtc_state *pipe_config)
5522 {
5523 pipe_config->ips_enabled = i915.enable_ips &&
5524 hsw_crtc_supports_ips(crtc) &&
5525 pipe_config->pipe_bpp <= 24;
5526 }
5527
5528 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5529 struct intel_crtc_state *pipe_config)
5530 {
5531 struct drm_device *dev = crtc->base.dev;
5532 struct drm_i915_private *dev_priv = dev->dev_private;
5533 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5534
5535 /* FIXME should check pixel clock limits on all platforms */
5536 if (INTEL_INFO(dev)->gen < 4) {
5537 int clock_limit =
5538 dev_priv->display.get_display_clock_speed(dev);
5539
5540 /*
5541 * Enable pixel doubling when the dot clock
5542 * is > 90% of the (display) core speed.
5543 *
5544 * GDG double wide on either pipe,
5545 * otherwise pipe A only.
5546 */
5547 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5548 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5549 clock_limit *= 2;
5550 pipe_config->double_wide = true;
5551 }
5552
5553 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5554 return -EINVAL;
5555 }
5556
5557 /*
5558 * Pipe horizontal size must be even in:
5559 * - DVO ganged mode
5560 * - LVDS dual channel mode
5561 * - Double wide pipe
5562 */
5563 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5564 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5565 pipe_config->pipe_src_w &= ~1;
5566
5567 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5568 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5569 */
5570 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5571 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5572 return -EINVAL;
5573
5574 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5575 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5576 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5577 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5578 * for lvds. */
5579 pipe_config->pipe_bpp = 8*3;
5580 }
5581
5582 if (HAS_IPS(dev))
5583 hsw_compute_ips_config(crtc, pipe_config);
5584
5585 if (pipe_config->has_pch_encoder)
5586 return ironlake_fdi_compute_config(crtc, pipe_config);
5587
5588 return 0;
5589 }
5590
5591 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5592 {
5593 struct drm_i915_private *dev_priv = dev->dev_private;
5594 u32 val;
5595 int divider;
5596
5597 /* FIXME: Punit isn't quite ready yet */
5598 if (IS_CHERRYVIEW(dev))
5599 return 400000;
5600
5601 if (dev_priv->hpll_freq == 0)
5602 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5603
5604 mutex_lock(&dev_priv->dpio_lock);
5605 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5606 mutex_unlock(&dev_priv->dpio_lock);
5607
5608 divider = val & DISPLAY_FREQUENCY_VALUES;
5609
5610 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5611 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5612 "cdclk change in progress\n");
5613
5614 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5615 }
5616
5617 static int i945_get_display_clock_speed(struct drm_device *dev)
5618 {
5619 return 400000;
5620 }
5621
5622 static int i915_get_display_clock_speed(struct drm_device *dev)
5623 {
5624 return 333000;
5625 }
5626
5627 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5628 {
5629 return 200000;
5630 }
5631
5632 static int pnv_get_display_clock_speed(struct drm_device *dev)
5633 {
5634 u16 gcfgc = 0;
5635
5636 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5637
5638 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5639 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5640 return 267000;
5641 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5642 return 333000;
5643 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5644 return 444000;
5645 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5646 return 200000;
5647 default:
5648 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5649 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5650 return 133000;
5651 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5652 return 167000;
5653 }
5654 }
5655
5656 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5657 {
5658 u16 gcfgc = 0;
5659
5660 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5661
5662 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5663 return 133000;
5664 else {
5665 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5666 case GC_DISPLAY_CLOCK_333_MHZ:
5667 return 333000;
5668 default:
5669 case GC_DISPLAY_CLOCK_190_200_MHZ:
5670 return 190000;
5671 }
5672 }
5673 }
5674
5675 static int i865_get_display_clock_speed(struct drm_device *dev)
5676 {
5677 return 266000;
5678 }
5679
5680 static int i855_get_display_clock_speed(struct drm_device *dev)
5681 {
5682 u16 hpllcc = 0;
5683 /* Assume that the hardware is in the high speed state. This
5684 * should be the default.
5685 */
5686 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5687 case GC_CLOCK_133_200:
5688 case GC_CLOCK_100_200:
5689 return 200000;
5690 case GC_CLOCK_166_250:
5691 return 250000;
5692 case GC_CLOCK_100_133:
5693 return 133000;
5694 }
5695
5696 /* Shouldn't happen */
5697 return 0;
5698 }
5699
5700 static int i830_get_display_clock_speed(struct drm_device *dev)
5701 {
5702 return 133000;
5703 }
5704
5705 static void
5706 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5707 {
5708 while (*num > DATA_LINK_M_N_MASK ||
5709 *den > DATA_LINK_M_N_MASK) {
5710 *num >>= 1;
5711 *den >>= 1;
5712 }
5713 }
5714
5715 static void compute_m_n(unsigned int m, unsigned int n,
5716 uint32_t *ret_m, uint32_t *ret_n)
5717 {
5718 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5719 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5720 intel_reduce_m_n_ratio(ret_m, ret_n);
5721 }
5722
5723 void
5724 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5725 int pixel_clock, int link_clock,
5726 struct intel_link_m_n *m_n)
5727 {
5728 m_n->tu = 64;
5729
5730 compute_m_n(bits_per_pixel * pixel_clock,
5731 link_clock * nlanes * 8,
5732 &m_n->gmch_m, &m_n->gmch_n);
5733
5734 compute_m_n(pixel_clock, link_clock,
5735 &m_n->link_m, &m_n->link_n);
5736 }
5737
5738 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5739 {
5740 if (i915.panel_use_ssc >= 0)
5741 return i915.panel_use_ssc != 0;
5742 return dev_priv->vbt.lvds_use_ssc
5743 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5744 }
5745
5746 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5747 {
5748 struct drm_device *dev = crtc->base.dev;
5749 struct drm_i915_private *dev_priv = dev->dev_private;
5750 int refclk;
5751
5752 if (IS_VALLEYVIEW(dev)) {
5753 refclk = 100000;
5754 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5755 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5756 refclk = dev_priv->vbt.lvds_ssc_freq;
5757 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5758 } else if (!IS_GEN2(dev)) {
5759 refclk = 96000;
5760 } else {
5761 refclk = 48000;
5762 }
5763
5764 return refclk;
5765 }
5766
5767 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5768 {
5769 return (1 << dpll->n) << 16 | dpll->m2;
5770 }
5771
5772 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5773 {
5774 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5775 }
5776
5777 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5778 struct intel_crtc_state *crtc_state,
5779 intel_clock_t *reduced_clock)
5780 {
5781 struct drm_device *dev = crtc->base.dev;
5782 u32 fp, fp2 = 0;
5783
5784 if (IS_PINEVIEW(dev)) {
5785 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5786 if (reduced_clock)
5787 fp2 = pnv_dpll_compute_fp(reduced_clock);
5788 } else {
5789 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5790 if (reduced_clock)
5791 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5792 }
5793
5794 crtc_state->dpll_hw_state.fp0 = fp;
5795
5796 crtc->lowfreq_avail = false;
5797 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5798 reduced_clock && i915.powersave) {
5799 crtc_state->dpll_hw_state.fp1 = fp2;
5800 crtc->lowfreq_avail = true;
5801 } else {
5802 crtc_state->dpll_hw_state.fp1 = fp;
5803 }
5804 }
5805
5806 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5807 pipe)
5808 {
5809 u32 reg_val;
5810
5811 /*
5812 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5813 * and set it to a reasonable value instead.
5814 */
5815 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5816 reg_val &= 0xffffff00;
5817 reg_val |= 0x00000030;
5818 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5819
5820 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5821 reg_val &= 0x8cffffff;
5822 reg_val = 0x8c000000;
5823 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5824
5825 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5826 reg_val &= 0xffffff00;
5827 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5828
5829 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5830 reg_val &= 0x00ffffff;
5831 reg_val |= 0xb0000000;
5832 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5833 }
5834
5835 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5836 struct intel_link_m_n *m_n)
5837 {
5838 struct drm_device *dev = crtc->base.dev;
5839 struct drm_i915_private *dev_priv = dev->dev_private;
5840 int pipe = crtc->pipe;
5841
5842 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5843 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5844 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5845 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5846 }
5847
5848 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5849 struct intel_link_m_n *m_n,
5850 struct intel_link_m_n *m2_n2)
5851 {
5852 struct drm_device *dev = crtc->base.dev;
5853 struct drm_i915_private *dev_priv = dev->dev_private;
5854 int pipe = crtc->pipe;
5855 enum transcoder transcoder = crtc->config->cpu_transcoder;
5856
5857 if (INTEL_INFO(dev)->gen >= 5) {
5858 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5859 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5860 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5861 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5862 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5863 * for gen < 8) and if DRRS is supported (to make sure the
5864 * registers are not unnecessarily accessed).
5865 */
5866 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5867 crtc->config->has_drrs) {
5868 I915_WRITE(PIPE_DATA_M2(transcoder),
5869 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5870 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5871 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5872 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5873 }
5874 } else {
5875 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5876 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5877 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5878 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5879 }
5880 }
5881
5882 void intel_dp_set_m_n(struct intel_crtc *crtc)
5883 {
5884 if (crtc->config->has_pch_encoder)
5885 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
5886 else
5887 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5888 &crtc->config->dp_m2_n2);
5889 }
5890
5891 static void vlv_update_pll(struct intel_crtc *crtc,
5892 struct intel_crtc_state *pipe_config)
5893 {
5894 u32 dpll, dpll_md;
5895
5896 /*
5897 * Enable DPIO clock input. We should never disable the reference
5898 * clock for pipe B, since VGA hotplug / manual detection depends
5899 * on it.
5900 */
5901 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5902 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5903 /* We should never disable this, set it here for state tracking */
5904 if (crtc->pipe == PIPE_B)
5905 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5906 dpll |= DPLL_VCO_ENABLE;
5907 pipe_config->dpll_hw_state.dpll = dpll;
5908
5909 dpll_md = (pipe_config->pixel_multiplier - 1)
5910 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5911 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5912 }
5913
5914 static void vlv_prepare_pll(struct intel_crtc *crtc,
5915 const struct intel_crtc_state *pipe_config)
5916 {
5917 struct drm_device *dev = crtc->base.dev;
5918 struct drm_i915_private *dev_priv = dev->dev_private;
5919 int pipe = crtc->pipe;
5920 u32 mdiv;
5921 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5922 u32 coreclk, reg_val;
5923
5924 mutex_lock(&dev_priv->dpio_lock);
5925
5926 bestn = pipe_config->dpll.n;
5927 bestm1 = pipe_config->dpll.m1;
5928 bestm2 = pipe_config->dpll.m2;
5929 bestp1 = pipe_config->dpll.p1;
5930 bestp2 = pipe_config->dpll.p2;
5931
5932 /* See eDP HDMI DPIO driver vbios notes doc */
5933
5934 /* PLL B needs special handling */
5935 if (pipe == PIPE_B)
5936 vlv_pllb_recal_opamp(dev_priv, pipe);
5937
5938 /* Set up Tx target for periodic Rcomp update */
5939 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5940
5941 /* Disable target IRef on PLL */
5942 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5943 reg_val &= 0x00ffffff;
5944 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5945
5946 /* Disable fast lock */
5947 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5948
5949 /* Set idtafcrecal before PLL is enabled */
5950 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5951 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5952 mdiv |= ((bestn << DPIO_N_SHIFT));
5953 mdiv |= (1 << DPIO_K_SHIFT);
5954
5955 /*
5956 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5957 * but we don't support that).
5958 * Note: don't use the DAC post divider as it seems unstable.
5959 */
5960 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5961 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5962
5963 mdiv |= DPIO_ENABLE_CALIBRATION;
5964 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5965
5966 /* Set HBR and RBR LPF coefficients */
5967 if (pipe_config->port_clock == 162000 ||
5968 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5969 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5970 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5971 0x009f0003);
5972 else
5973 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5974 0x00d0000f);
5975
5976 if (pipe_config->has_dp_encoder) {
5977 /* Use SSC source */
5978 if (pipe == PIPE_A)
5979 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5980 0x0df40000);
5981 else
5982 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5983 0x0df70000);
5984 } else { /* HDMI or VGA */
5985 /* Use bend source */
5986 if (pipe == PIPE_A)
5987 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5988 0x0df70000);
5989 else
5990 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5991 0x0df40000);
5992 }
5993
5994 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5995 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5996 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5997 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5998 coreclk |= 0x01000000;
5999 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6000
6001 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6002 mutex_unlock(&dev_priv->dpio_lock);
6003 }
6004
6005 static void chv_update_pll(struct intel_crtc *crtc,
6006 struct intel_crtc_state *pipe_config)
6007 {
6008 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6009 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6010 DPLL_VCO_ENABLE;
6011 if (crtc->pipe != PIPE_A)
6012 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6013
6014 pipe_config->dpll_hw_state.dpll_md =
6015 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6016 }
6017
6018 static void chv_prepare_pll(struct intel_crtc *crtc,
6019 const struct intel_crtc_state *pipe_config)
6020 {
6021 struct drm_device *dev = crtc->base.dev;
6022 struct drm_i915_private *dev_priv = dev->dev_private;
6023 int pipe = crtc->pipe;
6024 int dpll_reg = DPLL(crtc->pipe);
6025 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6026 u32 loopfilter, intcoeff;
6027 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6028 int refclk;
6029
6030 bestn = pipe_config->dpll.n;
6031 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6032 bestm1 = pipe_config->dpll.m1;
6033 bestm2 = pipe_config->dpll.m2 >> 22;
6034 bestp1 = pipe_config->dpll.p1;
6035 bestp2 = pipe_config->dpll.p2;
6036
6037 /*
6038 * Enable Refclk and SSC
6039 */
6040 I915_WRITE(dpll_reg,
6041 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6042
6043 mutex_lock(&dev_priv->dpio_lock);
6044
6045 /* p1 and p2 divider */
6046 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6047 5 << DPIO_CHV_S1_DIV_SHIFT |
6048 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6049 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6050 1 << DPIO_CHV_K_DIV_SHIFT);
6051
6052 /* Feedback post-divider - m2 */
6053 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6054
6055 /* Feedback refclk divider - n and m1 */
6056 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6057 DPIO_CHV_M1_DIV_BY_2 |
6058 1 << DPIO_CHV_N_DIV_SHIFT);
6059
6060 /* M2 fraction division */
6061 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6062
6063 /* M2 fraction division enable */
6064 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6065 DPIO_CHV_FRAC_DIV_EN |
6066 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6067
6068 /* Loop filter */
6069 refclk = i9xx_get_refclk(crtc, 0);
6070 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6071 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6072 if (refclk == 100000)
6073 intcoeff = 11;
6074 else if (refclk == 38400)
6075 intcoeff = 10;
6076 else
6077 intcoeff = 9;
6078 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6079 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6080
6081 /* AFC Recal */
6082 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6083 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6084 DPIO_AFC_RECAL);
6085
6086 mutex_unlock(&dev_priv->dpio_lock);
6087 }
6088
6089 /**
6090 * vlv_force_pll_on - forcibly enable just the PLL
6091 * @dev_priv: i915 private structure
6092 * @pipe: pipe PLL to enable
6093 * @dpll: PLL configuration
6094 *
6095 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6096 * in cases where we need the PLL enabled even when @pipe is not going to
6097 * be enabled.
6098 */
6099 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6100 const struct dpll *dpll)
6101 {
6102 struct intel_crtc *crtc =
6103 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6104 struct intel_crtc_state pipe_config = {
6105 .pixel_multiplier = 1,
6106 .dpll = *dpll,
6107 };
6108
6109 if (IS_CHERRYVIEW(dev)) {
6110 chv_update_pll(crtc, &pipe_config);
6111 chv_prepare_pll(crtc, &pipe_config);
6112 chv_enable_pll(crtc, &pipe_config);
6113 } else {
6114 vlv_update_pll(crtc, &pipe_config);
6115 vlv_prepare_pll(crtc, &pipe_config);
6116 vlv_enable_pll(crtc, &pipe_config);
6117 }
6118 }
6119
6120 /**
6121 * vlv_force_pll_off - forcibly disable just the PLL
6122 * @dev_priv: i915 private structure
6123 * @pipe: pipe PLL to disable
6124 *
6125 * Disable the PLL for @pipe. To be used in cases where we need
6126 * the PLL enabled even when @pipe is not going to be enabled.
6127 */
6128 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6129 {
6130 if (IS_CHERRYVIEW(dev))
6131 chv_disable_pll(to_i915(dev), pipe);
6132 else
6133 vlv_disable_pll(to_i915(dev), pipe);
6134 }
6135
6136 static void i9xx_update_pll(struct intel_crtc *crtc,
6137 struct intel_crtc_state *crtc_state,
6138 intel_clock_t *reduced_clock,
6139 int num_connectors)
6140 {
6141 struct drm_device *dev = crtc->base.dev;
6142 struct drm_i915_private *dev_priv = dev->dev_private;
6143 u32 dpll;
6144 bool is_sdvo;
6145 struct dpll *clock = &crtc_state->dpll;
6146
6147 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6148
6149 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6150 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6151
6152 dpll = DPLL_VGA_MODE_DIS;
6153
6154 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6155 dpll |= DPLLB_MODE_LVDS;
6156 else
6157 dpll |= DPLLB_MODE_DAC_SERIAL;
6158
6159 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6160 dpll |= (crtc_state->pixel_multiplier - 1)
6161 << SDVO_MULTIPLIER_SHIFT_HIRES;
6162 }
6163
6164 if (is_sdvo)
6165 dpll |= DPLL_SDVO_HIGH_SPEED;
6166
6167 if (crtc_state->has_dp_encoder)
6168 dpll |= DPLL_SDVO_HIGH_SPEED;
6169
6170 /* compute bitmask from p1 value */
6171 if (IS_PINEVIEW(dev))
6172 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6173 else {
6174 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6175 if (IS_G4X(dev) && reduced_clock)
6176 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6177 }
6178 switch (clock->p2) {
6179 case 5:
6180 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6181 break;
6182 case 7:
6183 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6184 break;
6185 case 10:
6186 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6187 break;
6188 case 14:
6189 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6190 break;
6191 }
6192 if (INTEL_INFO(dev)->gen >= 4)
6193 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6194
6195 if (crtc_state->sdvo_tv_clock)
6196 dpll |= PLL_REF_INPUT_TVCLKINBC;
6197 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6198 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6199 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6200 else
6201 dpll |= PLL_REF_INPUT_DREFCLK;
6202
6203 dpll |= DPLL_VCO_ENABLE;
6204 crtc_state->dpll_hw_state.dpll = dpll;
6205
6206 if (INTEL_INFO(dev)->gen >= 4) {
6207 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6208 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6209 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6210 }
6211 }
6212
6213 static void i8xx_update_pll(struct intel_crtc *crtc,
6214 struct intel_crtc_state *crtc_state,
6215 intel_clock_t *reduced_clock,
6216 int num_connectors)
6217 {
6218 struct drm_device *dev = crtc->base.dev;
6219 struct drm_i915_private *dev_priv = dev->dev_private;
6220 u32 dpll;
6221 struct dpll *clock = &crtc_state->dpll;
6222
6223 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6224
6225 dpll = DPLL_VGA_MODE_DIS;
6226
6227 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6228 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6229 } else {
6230 if (clock->p1 == 2)
6231 dpll |= PLL_P1_DIVIDE_BY_TWO;
6232 else
6233 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6234 if (clock->p2 == 4)
6235 dpll |= PLL_P2_DIVIDE_BY_4;
6236 }
6237
6238 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6239 dpll |= DPLL_DVO_2X_MODE;
6240
6241 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6242 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6243 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6244 else
6245 dpll |= PLL_REF_INPUT_DREFCLK;
6246
6247 dpll |= DPLL_VCO_ENABLE;
6248 crtc_state->dpll_hw_state.dpll = dpll;
6249 }
6250
6251 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6252 {
6253 struct drm_device *dev = intel_crtc->base.dev;
6254 struct drm_i915_private *dev_priv = dev->dev_private;
6255 enum pipe pipe = intel_crtc->pipe;
6256 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6257 struct drm_display_mode *adjusted_mode =
6258 &intel_crtc->config->base.adjusted_mode;
6259 uint32_t crtc_vtotal, crtc_vblank_end;
6260 int vsyncshift = 0;
6261
6262 /* We need to be careful not to changed the adjusted mode, for otherwise
6263 * the hw state checker will get angry at the mismatch. */
6264 crtc_vtotal = adjusted_mode->crtc_vtotal;
6265 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6266
6267 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6268 /* the chip adds 2 halflines automatically */
6269 crtc_vtotal -= 1;
6270 crtc_vblank_end -= 1;
6271
6272 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6273 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6274 else
6275 vsyncshift = adjusted_mode->crtc_hsync_start -
6276 adjusted_mode->crtc_htotal / 2;
6277 if (vsyncshift < 0)
6278 vsyncshift += adjusted_mode->crtc_htotal;
6279 }
6280
6281 if (INTEL_INFO(dev)->gen > 3)
6282 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6283
6284 I915_WRITE(HTOTAL(cpu_transcoder),
6285 (adjusted_mode->crtc_hdisplay - 1) |
6286 ((adjusted_mode->crtc_htotal - 1) << 16));
6287 I915_WRITE(HBLANK(cpu_transcoder),
6288 (adjusted_mode->crtc_hblank_start - 1) |
6289 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6290 I915_WRITE(HSYNC(cpu_transcoder),
6291 (adjusted_mode->crtc_hsync_start - 1) |
6292 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6293
6294 I915_WRITE(VTOTAL(cpu_transcoder),
6295 (adjusted_mode->crtc_vdisplay - 1) |
6296 ((crtc_vtotal - 1) << 16));
6297 I915_WRITE(VBLANK(cpu_transcoder),
6298 (adjusted_mode->crtc_vblank_start - 1) |
6299 ((crtc_vblank_end - 1) << 16));
6300 I915_WRITE(VSYNC(cpu_transcoder),
6301 (adjusted_mode->crtc_vsync_start - 1) |
6302 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6303
6304 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6305 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6306 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6307 * bits. */
6308 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6309 (pipe == PIPE_B || pipe == PIPE_C))
6310 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6311
6312 /* pipesrc controls the size that is scaled from, which should
6313 * always be the user's requested size.
6314 */
6315 I915_WRITE(PIPESRC(pipe),
6316 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6317 (intel_crtc->config->pipe_src_h - 1));
6318 }
6319
6320 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6321 struct intel_crtc_state *pipe_config)
6322 {
6323 struct drm_device *dev = crtc->base.dev;
6324 struct drm_i915_private *dev_priv = dev->dev_private;
6325 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6326 uint32_t tmp;
6327
6328 tmp = I915_READ(HTOTAL(cpu_transcoder));
6329 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6330 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6331 tmp = I915_READ(HBLANK(cpu_transcoder));
6332 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6333 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6334 tmp = I915_READ(HSYNC(cpu_transcoder));
6335 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6336 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6337
6338 tmp = I915_READ(VTOTAL(cpu_transcoder));
6339 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6340 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6341 tmp = I915_READ(VBLANK(cpu_transcoder));
6342 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6343 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6344 tmp = I915_READ(VSYNC(cpu_transcoder));
6345 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6346 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6347
6348 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6349 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6350 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6351 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6352 }
6353
6354 tmp = I915_READ(PIPESRC(crtc->pipe));
6355 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6356 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6357
6358 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6359 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6360 }
6361
6362 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6363 struct intel_crtc_state *pipe_config)
6364 {
6365 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6366 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6367 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6368 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6369
6370 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6371 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6372 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6373 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6374
6375 mode->flags = pipe_config->base.adjusted_mode.flags;
6376
6377 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6378 mode->flags |= pipe_config->base.adjusted_mode.flags;
6379 }
6380
6381 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6382 {
6383 struct drm_device *dev = intel_crtc->base.dev;
6384 struct drm_i915_private *dev_priv = dev->dev_private;
6385 uint32_t pipeconf;
6386
6387 pipeconf = 0;
6388
6389 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6390 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6391 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6392
6393 if (intel_crtc->config->double_wide)
6394 pipeconf |= PIPECONF_DOUBLE_WIDE;
6395
6396 /* only g4x and later have fancy bpc/dither controls */
6397 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6398 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6399 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6400 pipeconf |= PIPECONF_DITHER_EN |
6401 PIPECONF_DITHER_TYPE_SP;
6402
6403 switch (intel_crtc->config->pipe_bpp) {
6404 case 18:
6405 pipeconf |= PIPECONF_6BPC;
6406 break;
6407 case 24:
6408 pipeconf |= PIPECONF_8BPC;
6409 break;
6410 case 30:
6411 pipeconf |= PIPECONF_10BPC;
6412 break;
6413 default:
6414 /* Case prevented by intel_choose_pipe_bpp_dither. */
6415 BUG();
6416 }
6417 }
6418
6419 if (HAS_PIPE_CXSR(dev)) {
6420 if (intel_crtc->lowfreq_avail) {
6421 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6422 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6423 } else {
6424 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6425 }
6426 }
6427
6428 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6429 if (INTEL_INFO(dev)->gen < 4 ||
6430 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6431 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6432 else
6433 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6434 } else
6435 pipeconf |= PIPECONF_PROGRESSIVE;
6436
6437 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6438 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6439
6440 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6441 POSTING_READ(PIPECONF(intel_crtc->pipe));
6442 }
6443
6444 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6445 struct intel_crtc_state *crtc_state)
6446 {
6447 struct drm_device *dev = crtc->base.dev;
6448 struct drm_i915_private *dev_priv = dev->dev_private;
6449 int refclk, num_connectors = 0;
6450 intel_clock_t clock, reduced_clock;
6451 bool ok, has_reduced_clock = false;
6452 bool is_lvds = false, is_dsi = false;
6453 struct intel_encoder *encoder;
6454 const intel_limit_t *limit;
6455
6456 for_each_intel_encoder(dev, encoder) {
6457 if (encoder->new_crtc != crtc)
6458 continue;
6459
6460 switch (encoder->type) {
6461 case INTEL_OUTPUT_LVDS:
6462 is_lvds = true;
6463 break;
6464 case INTEL_OUTPUT_DSI:
6465 is_dsi = true;
6466 break;
6467 default:
6468 break;
6469 }
6470
6471 num_connectors++;
6472 }
6473
6474 if (is_dsi)
6475 return 0;
6476
6477 if (!crtc_state->clock_set) {
6478 refclk = i9xx_get_refclk(crtc, num_connectors);
6479
6480 /*
6481 * Returns a set of divisors for the desired target clock with
6482 * the given refclk, or FALSE. The returned values represent
6483 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6484 * 2) / p1 / p2.
6485 */
6486 limit = intel_limit(crtc, refclk);
6487 ok = dev_priv->display.find_dpll(limit, crtc,
6488 crtc_state->port_clock,
6489 refclk, NULL, &clock);
6490 if (!ok) {
6491 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6492 return -EINVAL;
6493 }
6494
6495 if (is_lvds && dev_priv->lvds_downclock_avail) {
6496 /*
6497 * Ensure we match the reduced clock's P to the target
6498 * clock. If the clocks don't match, we can't switch
6499 * the display clock by using the FP0/FP1. In such case
6500 * we will disable the LVDS downclock feature.
6501 */
6502 has_reduced_clock =
6503 dev_priv->display.find_dpll(limit, crtc,
6504 dev_priv->lvds_downclock,
6505 refclk, &clock,
6506 &reduced_clock);
6507 }
6508 /* Compat-code for transition, will disappear. */
6509 crtc_state->dpll.n = clock.n;
6510 crtc_state->dpll.m1 = clock.m1;
6511 crtc_state->dpll.m2 = clock.m2;
6512 crtc_state->dpll.p1 = clock.p1;
6513 crtc_state->dpll.p2 = clock.p2;
6514 }
6515
6516 if (IS_GEN2(dev)) {
6517 i8xx_update_pll(crtc, crtc_state,
6518 has_reduced_clock ? &reduced_clock : NULL,
6519 num_connectors);
6520 } else if (IS_CHERRYVIEW(dev)) {
6521 chv_update_pll(crtc, crtc_state);
6522 } else if (IS_VALLEYVIEW(dev)) {
6523 vlv_update_pll(crtc, crtc_state);
6524 } else {
6525 i9xx_update_pll(crtc, crtc_state,
6526 has_reduced_clock ? &reduced_clock : NULL,
6527 num_connectors);
6528 }
6529
6530 return 0;
6531 }
6532
6533 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6534 struct intel_crtc_state *pipe_config)
6535 {
6536 struct drm_device *dev = crtc->base.dev;
6537 struct drm_i915_private *dev_priv = dev->dev_private;
6538 uint32_t tmp;
6539
6540 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6541 return;
6542
6543 tmp = I915_READ(PFIT_CONTROL);
6544 if (!(tmp & PFIT_ENABLE))
6545 return;
6546
6547 /* Check whether the pfit is attached to our pipe. */
6548 if (INTEL_INFO(dev)->gen < 4) {
6549 if (crtc->pipe != PIPE_B)
6550 return;
6551 } else {
6552 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6553 return;
6554 }
6555
6556 pipe_config->gmch_pfit.control = tmp;
6557 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6558 if (INTEL_INFO(dev)->gen < 5)
6559 pipe_config->gmch_pfit.lvds_border_bits =
6560 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6561 }
6562
6563 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6564 struct intel_crtc_state *pipe_config)
6565 {
6566 struct drm_device *dev = crtc->base.dev;
6567 struct drm_i915_private *dev_priv = dev->dev_private;
6568 int pipe = pipe_config->cpu_transcoder;
6569 intel_clock_t clock;
6570 u32 mdiv;
6571 int refclk = 100000;
6572
6573 /* In case of MIPI DPLL will not even be used */
6574 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6575 return;
6576
6577 mutex_lock(&dev_priv->dpio_lock);
6578 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6579 mutex_unlock(&dev_priv->dpio_lock);
6580
6581 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6582 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6583 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6584 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6585 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6586
6587 vlv_clock(refclk, &clock);
6588
6589 /* clock.dot is the fast clock */
6590 pipe_config->port_clock = clock.dot / 5;
6591 }
6592
6593 static void
6594 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6595 struct intel_initial_plane_config *plane_config)
6596 {
6597 struct drm_device *dev = crtc->base.dev;
6598 struct drm_i915_private *dev_priv = dev->dev_private;
6599 u32 val, base, offset;
6600 int pipe = crtc->pipe, plane = crtc->plane;
6601 int fourcc, pixel_format;
6602 int aligned_height;
6603 struct drm_framebuffer *fb;
6604 struct intel_framebuffer *intel_fb;
6605
6606 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6607 if (!intel_fb) {
6608 DRM_DEBUG_KMS("failed to alloc fb\n");
6609 return;
6610 }
6611
6612 fb = &intel_fb->base;
6613
6614 val = I915_READ(DSPCNTR(plane));
6615
6616 if (INTEL_INFO(dev)->gen >= 4)
6617 if (val & DISPPLANE_TILED)
6618 plane_config->tiling = I915_TILING_X;
6619
6620 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6621 fourcc = i9xx_format_to_fourcc(pixel_format);
6622 fb->pixel_format = fourcc;
6623 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6624
6625 if (INTEL_INFO(dev)->gen >= 4) {
6626 if (plane_config->tiling)
6627 offset = I915_READ(DSPTILEOFF(plane));
6628 else
6629 offset = I915_READ(DSPLINOFF(plane));
6630 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6631 } else {
6632 base = I915_READ(DSPADDR(plane));
6633 }
6634 plane_config->base = base;
6635
6636 val = I915_READ(PIPESRC(pipe));
6637 fb->width = ((val >> 16) & 0xfff) + 1;
6638 fb->height = ((val >> 0) & 0xfff) + 1;
6639
6640 val = I915_READ(DSPSTRIDE(pipe));
6641 fb->pitches[0] = val & 0xffffffc0;
6642
6643 aligned_height = intel_fb_align_height(dev, fb->height,
6644 plane_config->tiling);
6645
6646 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
6647
6648 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6649 pipe_name(pipe), plane, fb->width, fb->height,
6650 fb->bits_per_pixel, base, fb->pitches[0],
6651 plane_config->size);
6652
6653 crtc->base.primary->fb = fb;
6654 update_state_fb(crtc->base.primary);
6655 }
6656
6657 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6658 struct intel_crtc_state *pipe_config)
6659 {
6660 struct drm_device *dev = crtc->base.dev;
6661 struct drm_i915_private *dev_priv = dev->dev_private;
6662 int pipe = pipe_config->cpu_transcoder;
6663 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6664 intel_clock_t clock;
6665 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6666 int refclk = 100000;
6667
6668 mutex_lock(&dev_priv->dpio_lock);
6669 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6670 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6671 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6672 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6673 mutex_unlock(&dev_priv->dpio_lock);
6674
6675 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6676 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6677 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6678 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6679 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6680
6681 chv_clock(refclk, &clock);
6682
6683 /* clock.dot is the fast clock */
6684 pipe_config->port_clock = clock.dot / 5;
6685 }
6686
6687 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6688 struct intel_crtc_state *pipe_config)
6689 {
6690 struct drm_device *dev = crtc->base.dev;
6691 struct drm_i915_private *dev_priv = dev->dev_private;
6692 uint32_t tmp;
6693
6694 if (!intel_display_power_is_enabled(dev_priv,
6695 POWER_DOMAIN_PIPE(crtc->pipe)))
6696 return false;
6697
6698 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6699 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6700
6701 tmp = I915_READ(PIPECONF(crtc->pipe));
6702 if (!(tmp & PIPECONF_ENABLE))
6703 return false;
6704
6705 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6706 switch (tmp & PIPECONF_BPC_MASK) {
6707 case PIPECONF_6BPC:
6708 pipe_config->pipe_bpp = 18;
6709 break;
6710 case PIPECONF_8BPC:
6711 pipe_config->pipe_bpp = 24;
6712 break;
6713 case PIPECONF_10BPC:
6714 pipe_config->pipe_bpp = 30;
6715 break;
6716 default:
6717 break;
6718 }
6719 }
6720
6721 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6722 pipe_config->limited_color_range = true;
6723
6724 if (INTEL_INFO(dev)->gen < 4)
6725 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6726
6727 intel_get_pipe_timings(crtc, pipe_config);
6728
6729 i9xx_get_pfit_config(crtc, pipe_config);
6730
6731 if (INTEL_INFO(dev)->gen >= 4) {
6732 tmp = I915_READ(DPLL_MD(crtc->pipe));
6733 pipe_config->pixel_multiplier =
6734 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6735 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6736 pipe_config->dpll_hw_state.dpll_md = tmp;
6737 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6738 tmp = I915_READ(DPLL(crtc->pipe));
6739 pipe_config->pixel_multiplier =
6740 ((tmp & SDVO_MULTIPLIER_MASK)
6741 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6742 } else {
6743 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6744 * port and will be fixed up in the encoder->get_config
6745 * function. */
6746 pipe_config->pixel_multiplier = 1;
6747 }
6748 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6749 if (!IS_VALLEYVIEW(dev)) {
6750 /*
6751 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6752 * on 830. Filter it out here so that we don't
6753 * report errors due to that.
6754 */
6755 if (IS_I830(dev))
6756 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6757
6758 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6759 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6760 } else {
6761 /* Mask out read-only status bits. */
6762 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6763 DPLL_PORTC_READY_MASK |
6764 DPLL_PORTB_READY_MASK);
6765 }
6766
6767 if (IS_CHERRYVIEW(dev))
6768 chv_crtc_clock_get(crtc, pipe_config);
6769 else if (IS_VALLEYVIEW(dev))
6770 vlv_crtc_clock_get(crtc, pipe_config);
6771 else
6772 i9xx_crtc_clock_get(crtc, pipe_config);
6773
6774 return true;
6775 }
6776
6777 static void ironlake_init_pch_refclk(struct drm_device *dev)
6778 {
6779 struct drm_i915_private *dev_priv = dev->dev_private;
6780 struct intel_encoder *encoder;
6781 u32 val, final;
6782 bool has_lvds = false;
6783 bool has_cpu_edp = false;
6784 bool has_panel = false;
6785 bool has_ck505 = false;
6786 bool can_ssc = false;
6787
6788 /* We need to take the global config into account */
6789 for_each_intel_encoder(dev, encoder) {
6790 switch (encoder->type) {
6791 case INTEL_OUTPUT_LVDS:
6792 has_panel = true;
6793 has_lvds = true;
6794 break;
6795 case INTEL_OUTPUT_EDP:
6796 has_panel = true;
6797 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6798 has_cpu_edp = true;
6799 break;
6800 default:
6801 break;
6802 }
6803 }
6804
6805 if (HAS_PCH_IBX(dev)) {
6806 has_ck505 = dev_priv->vbt.display_clock_mode;
6807 can_ssc = has_ck505;
6808 } else {
6809 has_ck505 = false;
6810 can_ssc = true;
6811 }
6812
6813 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6814 has_panel, has_lvds, has_ck505);
6815
6816 /* Ironlake: try to setup display ref clock before DPLL
6817 * enabling. This is only under driver's control after
6818 * PCH B stepping, previous chipset stepping should be
6819 * ignoring this setting.
6820 */
6821 val = I915_READ(PCH_DREF_CONTROL);
6822
6823 /* As we must carefully and slowly disable/enable each source in turn,
6824 * compute the final state we want first and check if we need to
6825 * make any changes at all.
6826 */
6827 final = val;
6828 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6829 if (has_ck505)
6830 final |= DREF_NONSPREAD_CK505_ENABLE;
6831 else
6832 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6833
6834 final &= ~DREF_SSC_SOURCE_MASK;
6835 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6836 final &= ~DREF_SSC1_ENABLE;
6837
6838 if (has_panel) {
6839 final |= DREF_SSC_SOURCE_ENABLE;
6840
6841 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6842 final |= DREF_SSC1_ENABLE;
6843
6844 if (has_cpu_edp) {
6845 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6846 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6847 else
6848 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6849 } else
6850 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6851 } else {
6852 final |= DREF_SSC_SOURCE_DISABLE;
6853 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6854 }
6855
6856 if (final == val)
6857 return;
6858
6859 /* Always enable nonspread source */
6860 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6861
6862 if (has_ck505)
6863 val |= DREF_NONSPREAD_CK505_ENABLE;
6864 else
6865 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6866
6867 if (has_panel) {
6868 val &= ~DREF_SSC_SOURCE_MASK;
6869 val |= DREF_SSC_SOURCE_ENABLE;
6870
6871 /* SSC must be turned on before enabling the CPU output */
6872 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6873 DRM_DEBUG_KMS("Using SSC on panel\n");
6874 val |= DREF_SSC1_ENABLE;
6875 } else
6876 val &= ~DREF_SSC1_ENABLE;
6877
6878 /* Get SSC going before enabling the outputs */
6879 I915_WRITE(PCH_DREF_CONTROL, val);
6880 POSTING_READ(PCH_DREF_CONTROL);
6881 udelay(200);
6882
6883 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6884
6885 /* Enable CPU source on CPU attached eDP */
6886 if (has_cpu_edp) {
6887 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6888 DRM_DEBUG_KMS("Using SSC on eDP\n");
6889 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6890 } else
6891 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6892 } else
6893 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6894
6895 I915_WRITE(PCH_DREF_CONTROL, val);
6896 POSTING_READ(PCH_DREF_CONTROL);
6897 udelay(200);
6898 } else {
6899 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6900
6901 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6902
6903 /* Turn off CPU output */
6904 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6905
6906 I915_WRITE(PCH_DREF_CONTROL, val);
6907 POSTING_READ(PCH_DREF_CONTROL);
6908 udelay(200);
6909
6910 /* Turn off the SSC source */
6911 val &= ~DREF_SSC_SOURCE_MASK;
6912 val |= DREF_SSC_SOURCE_DISABLE;
6913
6914 /* Turn off SSC1 */
6915 val &= ~DREF_SSC1_ENABLE;
6916
6917 I915_WRITE(PCH_DREF_CONTROL, val);
6918 POSTING_READ(PCH_DREF_CONTROL);
6919 udelay(200);
6920 }
6921
6922 BUG_ON(val != final);
6923 }
6924
6925 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6926 {
6927 uint32_t tmp;
6928
6929 tmp = I915_READ(SOUTH_CHICKEN2);
6930 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6931 I915_WRITE(SOUTH_CHICKEN2, tmp);
6932
6933 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6934 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6935 DRM_ERROR("FDI mPHY reset assert timeout\n");
6936
6937 tmp = I915_READ(SOUTH_CHICKEN2);
6938 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6939 I915_WRITE(SOUTH_CHICKEN2, tmp);
6940
6941 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6942 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6943 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6944 }
6945
6946 /* WaMPhyProgramming:hsw */
6947 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6948 {
6949 uint32_t tmp;
6950
6951 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6952 tmp &= ~(0xFF << 24);
6953 tmp |= (0x12 << 24);
6954 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6955
6956 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6957 tmp |= (1 << 11);
6958 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6959
6960 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6961 tmp |= (1 << 11);
6962 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6963
6964 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6965 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6966 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6967
6968 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6969 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6970 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6971
6972 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6973 tmp &= ~(7 << 13);
6974 tmp |= (5 << 13);
6975 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6976
6977 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6978 tmp &= ~(7 << 13);
6979 tmp |= (5 << 13);
6980 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6981
6982 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6983 tmp &= ~0xFF;
6984 tmp |= 0x1C;
6985 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6986
6987 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6988 tmp &= ~0xFF;
6989 tmp |= 0x1C;
6990 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6991
6992 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6993 tmp &= ~(0xFF << 16);
6994 tmp |= (0x1C << 16);
6995 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6996
6997 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6998 tmp &= ~(0xFF << 16);
6999 tmp |= (0x1C << 16);
7000 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7001
7002 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7003 tmp |= (1 << 27);
7004 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7005
7006 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7007 tmp |= (1 << 27);
7008 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7009
7010 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7011 tmp &= ~(0xF << 28);
7012 tmp |= (4 << 28);
7013 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7014
7015 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7016 tmp &= ~(0xF << 28);
7017 tmp |= (4 << 28);
7018 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7019 }
7020
7021 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7022 * Programming" based on the parameters passed:
7023 * - Sequence to enable CLKOUT_DP
7024 * - Sequence to enable CLKOUT_DP without spread
7025 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7026 */
7027 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7028 bool with_fdi)
7029 {
7030 struct drm_i915_private *dev_priv = dev->dev_private;
7031 uint32_t reg, tmp;
7032
7033 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7034 with_spread = true;
7035 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7036 with_fdi, "LP PCH doesn't have FDI\n"))
7037 with_fdi = false;
7038
7039 mutex_lock(&dev_priv->dpio_lock);
7040
7041 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7042 tmp &= ~SBI_SSCCTL_DISABLE;
7043 tmp |= SBI_SSCCTL_PATHALT;
7044 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7045
7046 udelay(24);
7047
7048 if (with_spread) {
7049 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7050 tmp &= ~SBI_SSCCTL_PATHALT;
7051 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7052
7053 if (with_fdi) {
7054 lpt_reset_fdi_mphy(dev_priv);
7055 lpt_program_fdi_mphy(dev_priv);
7056 }
7057 }
7058
7059 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7060 SBI_GEN0 : SBI_DBUFF0;
7061 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7062 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7063 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7064
7065 mutex_unlock(&dev_priv->dpio_lock);
7066 }
7067
7068 /* Sequence to disable CLKOUT_DP */
7069 static void lpt_disable_clkout_dp(struct drm_device *dev)
7070 {
7071 struct drm_i915_private *dev_priv = dev->dev_private;
7072 uint32_t reg, tmp;
7073
7074 mutex_lock(&dev_priv->dpio_lock);
7075
7076 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7077 SBI_GEN0 : SBI_DBUFF0;
7078 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7079 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7080 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7081
7082 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7083 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7084 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7085 tmp |= SBI_SSCCTL_PATHALT;
7086 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7087 udelay(32);
7088 }
7089 tmp |= SBI_SSCCTL_DISABLE;
7090 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7091 }
7092
7093 mutex_unlock(&dev_priv->dpio_lock);
7094 }
7095
7096 static void lpt_init_pch_refclk(struct drm_device *dev)
7097 {
7098 struct intel_encoder *encoder;
7099 bool has_vga = false;
7100
7101 for_each_intel_encoder(dev, encoder) {
7102 switch (encoder->type) {
7103 case INTEL_OUTPUT_ANALOG:
7104 has_vga = true;
7105 break;
7106 default:
7107 break;
7108 }
7109 }
7110
7111 if (has_vga)
7112 lpt_enable_clkout_dp(dev, true, true);
7113 else
7114 lpt_disable_clkout_dp(dev);
7115 }
7116
7117 /*
7118 * Initialize reference clocks when the driver loads
7119 */
7120 void intel_init_pch_refclk(struct drm_device *dev)
7121 {
7122 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7123 ironlake_init_pch_refclk(dev);
7124 else if (HAS_PCH_LPT(dev))
7125 lpt_init_pch_refclk(dev);
7126 }
7127
7128 static int ironlake_get_refclk(struct drm_crtc *crtc)
7129 {
7130 struct drm_device *dev = crtc->dev;
7131 struct drm_i915_private *dev_priv = dev->dev_private;
7132 struct intel_encoder *encoder;
7133 int num_connectors = 0;
7134 bool is_lvds = false;
7135
7136 for_each_intel_encoder(dev, encoder) {
7137 if (encoder->new_crtc != to_intel_crtc(crtc))
7138 continue;
7139
7140 switch (encoder->type) {
7141 case INTEL_OUTPUT_LVDS:
7142 is_lvds = true;
7143 break;
7144 default:
7145 break;
7146 }
7147 num_connectors++;
7148 }
7149
7150 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7151 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7152 dev_priv->vbt.lvds_ssc_freq);
7153 return dev_priv->vbt.lvds_ssc_freq;
7154 }
7155
7156 return 120000;
7157 }
7158
7159 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7160 {
7161 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7163 int pipe = intel_crtc->pipe;
7164 uint32_t val;
7165
7166 val = 0;
7167
7168 switch (intel_crtc->config->pipe_bpp) {
7169 case 18:
7170 val |= PIPECONF_6BPC;
7171 break;
7172 case 24:
7173 val |= PIPECONF_8BPC;
7174 break;
7175 case 30:
7176 val |= PIPECONF_10BPC;
7177 break;
7178 case 36:
7179 val |= PIPECONF_12BPC;
7180 break;
7181 default:
7182 /* Case prevented by intel_choose_pipe_bpp_dither. */
7183 BUG();
7184 }
7185
7186 if (intel_crtc->config->dither)
7187 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7188
7189 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7190 val |= PIPECONF_INTERLACED_ILK;
7191 else
7192 val |= PIPECONF_PROGRESSIVE;
7193
7194 if (intel_crtc->config->limited_color_range)
7195 val |= PIPECONF_COLOR_RANGE_SELECT;
7196
7197 I915_WRITE(PIPECONF(pipe), val);
7198 POSTING_READ(PIPECONF(pipe));
7199 }
7200
7201 /*
7202 * Set up the pipe CSC unit.
7203 *
7204 * Currently only full range RGB to limited range RGB conversion
7205 * is supported, but eventually this should handle various
7206 * RGB<->YCbCr scenarios as well.
7207 */
7208 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7209 {
7210 struct drm_device *dev = crtc->dev;
7211 struct drm_i915_private *dev_priv = dev->dev_private;
7212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7213 int pipe = intel_crtc->pipe;
7214 uint16_t coeff = 0x7800; /* 1.0 */
7215
7216 /*
7217 * TODO: Check what kind of values actually come out of the pipe
7218 * with these coeff/postoff values and adjust to get the best
7219 * accuracy. Perhaps we even need to take the bpc value into
7220 * consideration.
7221 */
7222
7223 if (intel_crtc->config->limited_color_range)
7224 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7225
7226 /*
7227 * GY/GU and RY/RU should be the other way around according
7228 * to BSpec, but reality doesn't agree. Just set them up in
7229 * a way that results in the correct picture.
7230 */
7231 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7232 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7233
7234 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7235 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7236
7237 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7238 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7239
7240 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7241 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7242 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7243
7244 if (INTEL_INFO(dev)->gen > 6) {
7245 uint16_t postoff = 0;
7246
7247 if (intel_crtc->config->limited_color_range)
7248 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7249
7250 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7251 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7252 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7253
7254 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7255 } else {
7256 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7257
7258 if (intel_crtc->config->limited_color_range)
7259 mode |= CSC_BLACK_SCREEN_OFFSET;
7260
7261 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7262 }
7263 }
7264
7265 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7266 {
7267 struct drm_device *dev = crtc->dev;
7268 struct drm_i915_private *dev_priv = dev->dev_private;
7269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7270 enum pipe pipe = intel_crtc->pipe;
7271 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7272 uint32_t val;
7273
7274 val = 0;
7275
7276 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7277 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7278
7279 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7280 val |= PIPECONF_INTERLACED_ILK;
7281 else
7282 val |= PIPECONF_PROGRESSIVE;
7283
7284 I915_WRITE(PIPECONF(cpu_transcoder), val);
7285 POSTING_READ(PIPECONF(cpu_transcoder));
7286
7287 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7288 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7289
7290 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7291 val = 0;
7292
7293 switch (intel_crtc->config->pipe_bpp) {
7294 case 18:
7295 val |= PIPEMISC_DITHER_6_BPC;
7296 break;
7297 case 24:
7298 val |= PIPEMISC_DITHER_8_BPC;
7299 break;
7300 case 30:
7301 val |= PIPEMISC_DITHER_10_BPC;
7302 break;
7303 case 36:
7304 val |= PIPEMISC_DITHER_12_BPC;
7305 break;
7306 default:
7307 /* Case prevented by pipe_config_set_bpp. */
7308 BUG();
7309 }
7310
7311 if (intel_crtc->config->dither)
7312 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7313
7314 I915_WRITE(PIPEMISC(pipe), val);
7315 }
7316 }
7317
7318 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7319 struct intel_crtc_state *crtc_state,
7320 intel_clock_t *clock,
7321 bool *has_reduced_clock,
7322 intel_clock_t *reduced_clock)
7323 {
7324 struct drm_device *dev = crtc->dev;
7325 struct drm_i915_private *dev_priv = dev->dev_private;
7326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7327 int refclk;
7328 const intel_limit_t *limit;
7329 bool ret, is_lvds = false;
7330
7331 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7332
7333 refclk = ironlake_get_refclk(crtc);
7334
7335 /*
7336 * Returns a set of divisors for the desired target clock with the given
7337 * refclk, or FALSE. The returned values represent the clock equation:
7338 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7339 */
7340 limit = intel_limit(intel_crtc, refclk);
7341 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7342 crtc_state->port_clock,
7343 refclk, NULL, clock);
7344 if (!ret)
7345 return false;
7346
7347 if (is_lvds && dev_priv->lvds_downclock_avail) {
7348 /*
7349 * Ensure we match the reduced clock's P to the target clock.
7350 * If the clocks don't match, we can't switch the display clock
7351 * by using the FP0/FP1. In such case we will disable the LVDS
7352 * downclock feature.
7353 */
7354 *has_reduced_clock =
7355 dev_priv->display.find_dpll(limit, intel_crtc,
7356 dev_priv->lvds_downclock,
7357 refclk, clock,
7358 reduced_clock);
7359 }
7360
7361 return true;
7362 }
7363
7364 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7365 {
7366 /*
7367 * Account for spread spectrum to avoid
7368 * oversubscribing the link. Max center spread
7369 * is 2.5%; use 5% for safety's sake.
7370 */
7371 u32 bps = target_clock * bpp * 21 / 20;
7372 return DIV_ROUND_UP(bps, link_bw * 8);
7373 }
7374
7375 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7376 {
7377 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7378 }
7379
7380 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7381 struct intel_crtc_state *crtc_state,
7382 u32 *fp,
7383 intel_clock_t *reduced_clock, u32 *fp2)
7384 {
7385 struct drm_crtc *crtc = &intel_crtc->base;
7386 struct drm_device *dev = crtc->dev;
7387 struct drm_i915_private *dev_priv = dev->dev_private;
7388 struct intel_encoder *intel_encoder;
7389 uint32_t dpll;
7390 int factor, num_connectors = 0;
7391 bool is_lvds = false, is_sdvo = false;
7392
7393 for_each_intel_encoder(dev, intel_encoder) {
7394 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7395 continue;
7396
7397 switch (intel_encoder->type) {
7398 case INTEL_OUTPUT_LVDS:
7399 is_lvds = true;
7400 break;
7401 case INTEL_OUTPUT_SDVO:
7402 case INTEL_OUTPUT_HDMI:
7403 is_sdvo = true;
7404 break;
7405 default:
7406 break;
7407 }
7408
7409 num_connectors++;
7410 }
7411
7412 /* Enable autotuning of the PLL clock (if permissible) */
7413 factor = 21;
7414 if (is_lvds) {
7415 if ((intel_panel_use_ssc(dev_priv) &&
7416 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7417 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7418 factor = 25;
7419 } else if (crtc_state->sdvo_tv_clock)
7420 factor = 20;
7421
7422 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7423 *fp |= FP_CB_TUNE;
7424
7425 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7426 *fp2 |= FP_CB_TUNE;
7427
7428 dpll = 0;
7429
7430 if (is_lvds)
7431 dpll |= DPLLB_MODE_LVDS;
7432 else
7433 dpll |= DPLLB_MODE_DAC_SERIAL;
7434
7435 dpll |= (crtc_state->pixel_multiplier - 1)
7436 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7437
7438 if (is_sdvo)
7439 dpll |= DPLL_SDVO_HIGH_SPEED;
7440 if (crtc_state->has_dp_encoder)
7441 dpll |= DPLL_SDVO_HIGH_SPEED;
7442
7443 /* compute bitmask from p1 value */
7444 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7445 /* also FPA1 */
7446 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7447
7448 switch (crtc_state->dpll.p2) {
7449 case 5:
7450 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7451 break;
7452 case 7:
7453 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7454 break;
7455 case 10:
7456 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7457 break;
7458 case 14:
7459 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7460 break;
7461 }
7462
7463 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7464 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7465 else
7466 dpll |= PLL_REF_INPUT_DREFCLK;
7467
7468 return dpll | DPLL_VCO_ENABLE;
7469 }
7470
7471 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7472 struct intel_crtc_state *crtc_state)
7473 {
7474 struct drm_device *dev = crtc->base.dev;
7475 intel_clock_t clock, reduced_clock;
7476 u32 dpll = 0, fp = 0, fp2 = 0;
7477 bool ok, has_reduced_clock = false;
7478 bool is_lvds = false;
7479 struct intel_shared_dpll *pll;
7480
7481 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7482
7483 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7484 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7485
7486 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7487 &has_reduced_clock, &reduced_clock);
7488 if (!ok && !crtc_state->clock_set) {
7489 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7490 return -EINVAL;
7491 }
7492 /* Compat-code for transition, will disappear. */
7493 if (!crtc_state->clock_set) {
7494 crtc_state->dpll.n = clock.n;
7495 crtc_state->dpll.m1 = clock.m1;
7496 crtc_state->dpll.m2 = clock.m2;
7497 crtc_state->dpll.p1 = clock.p1;
7498 crtc_state->dpll.p2 = clock.p2;
7499 }
7500
7501 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7502 if (crtc_state->has_pch_encoder) {
7503 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7504 if (has_reduced_clock)
7505 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7506
7507 dpll = ironlake_compute_dpll(crtc, crtc_state,
7508 &fp, &reduced_clock,
7509 has_reduced_clock ? &fp2 : NULL);
7510
7511 crtc_state->dpll_hw_state.dpll = dpll;
7512 crtc_state->dpll_hw_state.fp0 = fp;
7513 if (has_reduced_clock)
7514 crtc_state->dpll_hw_state.fp1 = fp2;
7515 else
7516 crtc_state->dpll_hw_state.fp1 = fp;
7517
7518 pll = intel_get_shared_dpll(crtc, crtc_state);
7519 if (pll == NULL) {
7520 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7521 pipe_name(crtc->pipe));
7522 return -EINVAL;
7523 }
7524 }
7525
7526 if (is_lvds && has_reduced_clock && i915.powersave)
7527 crtc->lowfreq_avail = true;
7528 else
7529 crtc->lowfreq_avail = false;
7530
7531 return 0;
7532 }
7533
7534 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7535 struct intel_link_m_n *m_n)
7536 {
7537 struct drm_device *dev = crtc->base.dev;
7538 struct drm_i915_private *dev_priv = dev->dev_private;
7539 enum pipe pipe = crtc->pipe;
7540
7541 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7542 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7543 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7544 & ~TU_SIZE_MASK;
7545 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7546 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7547 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7548 }
7549
7550 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7551 enum transcoder transcoder,
7552 struct intel_link_m_n *m_n,
7553 struct intel_link_m_n *m2_n2)
7554 {
7555 struct drm_device *dev = crtc->base.dev;
7556 struct drm_i915_private *dev_priv = dev->dev_private;
7557 enum pipe pipe = crtc->pipe;
7558
7559 if (INTEL_INFO(dev)->gen >= 5) {
7560 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7561 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7562 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7563 & ~TU_SIZE_MASK;
7564 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7565 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7566 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7567 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7568 * gen < 8) and if DRRS is supported (to make sure the
7569 * registers are not unnecessarily read).
7570 */
7571 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7572 crtc->config->has_drrs) {
7573 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7574 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7575 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7576 & ~TU_SIZE_MASK;
7577 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7578 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7579 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7580 }
7581 } else {
7582 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7583 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7584 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7585 & ~TU_SIZE_MASK;
7586 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7587 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7588 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7589 }
7590 }
7591
7592 void intel_dp_get_m_n(struct intel_crtc *crtc,
7593 struct intel_crtc_state *pipe_config)
7594 {
7595 if (pipe_config->has_pch_encoder)
7596 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7597 else
7598 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7599 &pipe_config->dp_m_n,
7600 &pipe_config->dp_m2_n2);
7601 }
7602
7603 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7604 struct intel_crtc_state *pipe_config)
7605 {
7606 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7607 &pipe_config->fdi_m_n, NULL);
7608 }
7609
7610 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7611 struct intel_crtc_state *pipe_config)
7612 {
7613 struct drm_device *dev = crtc->base.dev;
7614 struct drm_i915_private *dev_priv = dev->dev_private;
7615 uint32_t tmp;
7616
7617 tmp = I915_READ(PS_CTL(crtc->pipe));
7618
7619 if (tmp & PS_ENABLE) {
7620 pipe_config->pch_pfit.enabled = true;
7621 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7622 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7623 }
7624 }
7625
7626 static void
7627 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7628 struct intel_initial_plane_config *plane_config)
7629 {
7630 struct drm_device *dev = crtc->base.dev;
7631 struct drm_i915_private *dev_priv = dev->dev_private;
7632 u32 val, base, offset, stride_mult;
7633 int pipe = crtc->pipe;
7634 int fourcc, pixel_format;
7635 int aligned_height;
7636 struct drm_framebuffer *fb;
7637 struct intel_framebuffer *intel_fb;
7638
7639 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7640 if (!intel_fb) {
7641 DRM_DEBUG_KMS("failed to alloc fb\n");
7642 return;
7643 }
7644
7645 fb = &intel_fb->base;
7646
7647 val = I915_READ(PLANE_CTL(pipe, 0));
7648 if (val & PLANE_CTL_TILED_MASK)
7649 plane_config->tiling = I915_TILING_X;
7650
7651 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7652 fourcc = skl_format_to_fourcc(pixel_format,
7653 val & PLANE_CTL_ORDER_RGBX,
7654 val & PLANE_CTL_ALPHA_MASK);
7655 fb->pixel_format = fourcc;
7656 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7657
7658 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7659 plane_config->base = base;
7660
7661 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7662
7663 val = I915_READ(PLANE_SIZE(pipe, 0));
7664 fb->height = ((val >> 16) & 0xfff) + 1;
7665 fb->width = ((val >> 0) & 0x1fff) + 1;
7666
7667 val = I915_READ(PLANE_STRIDE(pipe, 0));
7668 switch (plane_config->tiling) {
7669 case I915_TILING_NONE:
7670 stride_mult = 64;
7671 break;
7672 case I915_TILING_X:
7673 stride_mult = 512;
7674 break;
7675 default:
7676 MISSING_CASE(plane_config->tiling);
7677 goto error;
7678 }
7679 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7680
7681 aligned_height = intel_fb_align_height(dev, fb->height,
7682 plane_config->tiling);
7683
7684 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7685
7686 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7687 pipe_name(pipe), fb->width, fb->height,
7688 fb->bits_per_pixel, base, fb->pitches[0],
7689 plane_config->size);
7690
7691 crtc->base.primary->fb = fb;
7692 update_state_fb(crtc->base.primary);
7693 return;
7694
7695 error:
7696 kfree(fb);
7697 }
7698
7699 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7700 struct intel_crtc_state *pipe_config)
7701 {
7702 struct drm_device *dev = crtc->base.dev;
7703 struct drm_i915_private *dev_priv = dev->dev_private;
7704 uint32_t tmp;
7705
7706 tmp = I915_READ(PF_CTL(crtc->pipe));
7707
7708 if (tmp & PF_ENABLE) {
7709 pipe_config->pch_pfit.enabled = true;
7710 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7711 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7712
7713 /* We currently do not free assignements of panel fitters on
7714 * ivb/hsw (since we don't use the higher upscaling modes which
7715 * differentiates them) so just WARN about this case for now. */
7716 if (IS_GEN7(dev)) {
7717 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7718 PF_PIPE_SEL_IVB(crtc->pipe));
7719 }
7720 }
7721 }
7722
7723 static void
7724 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7725 struct intel_initial_plane_config *plane_config)
7726 {
7727 struct drm_device *dev = crtc->base.dev;
7728 struct drm_i915_private *dev_priv = dev->dev_private;
7729 u32 val, base, offset;
7730 int pipe = crtc->pipe;
7731 int fourcc, pixel_format;
7732 int aligned_height;
7733 struct drm_framebuffer *fb;
7734 struct intel_framebuffer *intel_fb;
7735
7736 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7737 if (!intel_fb) {
7738 DRM_DEBUG_KMS("failed to alloc fb\n");
7739 return;
7740 }
7741
7742 fb = &intel_fb->base;
7743
7744 val = I915_READ(DSPCNTR(pipe));
7745
7746 if (INTEL_INFO(dev)->gen >= 4)
7747 if (val & DISPPLANE_TILED)
7748 plane_config->tiling = I915_TILING_X;
7749
7750 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7751 fourcc = i9xx_format_to_fourcc(pixel_format);
7752 fb->pixel_format = fourcc;
7753 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7754
7755 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7756 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7757 offset = I915_READ(DSPOFFSET(pipe));
7758 } else {
7759 if (plane_config->tiling)
7760 offset = I915_READ(DSPTILEOFF(pipe));
7761 else
7762 offset = I915_READ(DSPLINOFF(pipe));
7763 }
7764 plane_config->base = base;
7765
7766 val = I915_READ(PIPESRC(pipe));
7767 fb->width = ((val >> 16) & 0xfff) + 1;
7768 fb->height = ((val >> 0) & 0xfff) + 1;
7769
7770 val = I915_READ(DSPSTRIDE(pipe));
7771 fb->pitches[0] = val & 0xffffffc0;
7772
7773 aligned_height = intel_fb_align_height(dev, fb->height,
7774 plane_config->tiling);
7775
7776 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
7777
7778 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7779 pipe_name(pipe), fb->width, fb->height,
7780 fb->bits_per_pixel, base, fb->pitches[0],
7781 plane_config->size);
7782
7783 crtc->base.primary->fb = fb;
7784 update_state_fb(crtc->base.primary);
7785 }
7786
7787 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7788 struct intel_crtc_state *pipe_config)
7789 {
7790 struct drm_device *dev = crtc->base.dev;
7791 struct drm_i915_private *dev_priv = dev->dev_private;
7792 uint32_t tmp;
7793
7794 if (!intel_display_power_is_enabled(dev_priv,
7795 POWER_DOMAIN_PIPE(crtc->pipe)))
7796 return false;
7797
7798 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7799 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7800
7801 tmp = I915_READ(PIPECONF(crtc->pipe));
7802 if (!(tmp & PIPECONF_ENABLE))
7803 return false;
7804
7805 switch (tmp & PIPECONF_BPC_MASK) {
7806 case PIPECONF_6BPC:
7807 pipe_config->pipe_bpp = 18;
7808 break;
7809 case PIPECONF_8BPC:
7810 pipe_config->pipe_bpp = 24;
7811 break;
7812 case PIPECONF_10BPC:
7813 pipe_config->pipe_bpp = 30;
7814 break;
7815 case PIPECONF_12BPC:
7816 pipe_config->pipe_bpp = 36;
7817 break;
7818 default:
7819 break;
7820 }
7821
7822 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7823 pipe_config->limited_color_range = true;
7824
7825 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7826 struct intel_shared_dpll *pll;
7827
7828 pipe_config->has_pch_encoder = true;
7829
7830 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7831 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7832 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7833
7834 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7835
7836 if (HAS_PCH_IBX(dev_priv->dev)) {
7837 pipe_config->shared_dpll =
7838 (enum intel_dpll_id) crtc->pipe;
7839 } else {
7840 tmp = I915_READ(PCH_DPLL_SEL);
7841 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7842 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7843 else
7844 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7845 }
7846
7847 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7848
7849 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7850 &pipe_config->dpll_hw_state));
7851
7852 tmp = pipe_config->dpll_hw_state.dpll;
7853 pipe_config->pixel_multiplier =
7854 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7855 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7856
7857 ironlake_pch_clock_get(crtc, pipe_config);
7858 } else {
7859 pipe_config->pixel_multiplier = 1;
7860 }
7861
7862 intel_get_pipe_timings(crtc, pipe_config);
7863
7864 ironlake_get_pfit_config(crtc, pipe_config);
7865
7866 return true;
7867 }
7868
7869 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7870 {
7871 struct drm_device *dev = dev_priv->dev;
7872 struct intel_crtc *crtc;
7873
7874 for_each_intel_crtc(dev, crtc)
7875 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7876 pipe_name(crtc->pipe));
7877
7878 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7879 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7880 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7881 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7882 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7883 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7884 "CPU PWM1 enabled\n");
7885 if (IS_HASWELL(dev))
7886 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7887 "CPU PWM2 enabled\n");
7888 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7889 "PCH PWM1 enabled\n");
7890 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7891 "Utility pin enabled\n");
7892 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7893
7894 /*
7895 * In theory we can still leave IRQs enabled, as long as only the HPD
7896 * interrupts remain enabled. We used to check for that, but since it's
7897 * gen-specific and since we only disable LCPLL after we fully disable
7898 * the interrupts, the check below should be enough.
7899 */
7900 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7901 }
7902
7903 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7904 {
7905 struct drm_device *dev = dev_priv->dev;
7906
7907 if (IS_HASWELL(dev))
7908 return I915_READ(D_COMP_HSW);
7909 else
7910 return I915_READ(D_COMP_BDW);
7911 }
7912
7913 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7914 {
7915 struct drm_device *dev = dev_priv->dev;
7916
7917 if (IS_HASWELL(dev)) {
7918 mutex_lock(&dev_priv->rps.hw_lock);
7919 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7920 val))
7921 DRM_ERROR("Failed to write to D_COMP\n");
7922 mutex_unlock(&dev_priv->rps.hw_lock);
7923 } else {
7924 I915_WRITE(D_COMP_BDW, val);
7925 POSTING_READ(D_COMP_BDW);
7926 }
7927 }
7928
7929 /*
7930 * This function implements pieces of two sequences from BSpec:
7931 * - Sequence for display software to disable LCPLL
7932 * - Sequence for display software to allow package C8+
7933 * The steps implemented here are just the steps that actually touch the LCPLL
7934 * register. Callers should take care of disabling all the display engine
7935 * functions, doing the mode unset, fixing interrupts, etc.
7936 */
7937 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7938 bool switch_to_fclk, bool allow_power_down)
7939 {
7940 uint32_t val;
7941
7942 assert_can_disable_lcpll(dev_priv);
7943
7944 val = I915_READ(LCPLL_CTL);
7945
7946 if (switch_to_fclk) {
7947 val |= LCPLL_CD_SOURCE_FCLK;
7948 I915_WRITE(LCPLL_CTL, val);
7949
7950 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7951 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7952 DRM_ERROR("Switching to FCLK failed\n");
7953
7954 val = I915_READ(LCPLL_CTL);
7955 }
7956
7957 val |= LCPLL_PLL_DISABLE;
7958 I915_WRITE(LCPLL_CTL, val);
7959 POSTING_READ(LCPLL_CTL);
7960
7961 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7962 DRM_ERROR("LCPLL still locked\n");
7963
7964 val = hsw_read_dcomp(dev_priv);
7965 val |= D_COMP_COMP_DISABLE;
7966 hsw_write_dcomp(dev_priv, val);
7967 ndelay(100);
7968
7969 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7970 1))
7971 DRM_ERROR("D_COMP RCOMP still in progress\n");
7972
7973 if (allow_power_down) {
7974 val = I915_READ(LCPLL_CTL);
7975 val |= LCPLL_POWER_DOWN_ALLOW;
7976 I915_WRITE(LCPLL_CTL, val);
7977 POSTING_READ(LCPLL_CTL);
7978 }
7979 }
7980
7981 /*
7982 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7983 * source.
7984 */
7985 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7986 {
7987 uint32_t val;
7988
7989 val = I915_READ(LCPLL_CTL);
7990
7991 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7992 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7993 return;
7994
7995 /*
7996 * Make sure we're not on PC8 state before disabling PC8, otherwise
7997 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7998 */
7999 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8000
8001 if (val & LCPLL_POWER_DOWN_ALLOW) {
8002 val &= ~LCPLL_POWER_DOWN_ALLOW;
8003 I915_WRITE(LCPLL_CTL, val);
8004 POSTING_READ(LCPLL_CTL);
8005 }
8006
8007 val = hsw_read_dcomp(dev_priv);
8008 val |= D_COMP_COMP_FORCE;
8009 val &= ~D_COMP_COMP_DISABLE;
8010 hsw_write_dcomp(dev_priv, val);
8011
8012 val = I915_READ(LCPLL_CTL);
8013 val &= ~LCPLL_PLL_DISABLE;
8014 I915_WRITE(LCPLL_CTL, val);
8015
8016 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8017 DRM_ERROR("LCPLL not locked yet\n");
8018
8019 if (val & LCPLL_CD_SOURCE_FCLK) {
8020 val = I915_READ(LCPLL_CTL);
8021 val &= ~LCPLL_CD_SOURCE_FCLK;
8022 I915_WRITE(LCPLL_CTL, val);
8023
8024 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8025 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8026 DRM_ERROR("Switching back to LCPLL failed\n");
8027 }
8028
8029 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8030 }
8031
8032 /*
8033 * Package states C8 and deeper are really deep PC states that can only be
8034 * reached when all the devices on the system allow it, so even if the graphics
8035 * device allows PC8+, it doesn't mean the system will actually get to these
8036 * states. Our driver only allows PC8+ when going into runtime PM.
8037 *
8038 * The requirements for PC8+ are that all the outputs are disabled, the power
8039 * well is disabled and most interrupts are disabled, and these are also
8040 * requirements for runtime PM. When these conditions are met, we manually do
8041 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8042 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8043 * hang the machine.
8044 *
8045 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8046 * the state of some registers, so when we come back from PC8+ we need to
8047 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8048 * need to take care of the registers kept by RC6. Notice that this happens even
8049 * if we don't put the device in PCI D3 state (which is what currently happens
8050 * because of the runtime PM support).
8051 *
8052 * For more, read "Display Sequences for Package C8" on the hardware
8053 * documentation.
8054 */
8055 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8056 {
8057 struct drm_device *dev = dev_priv->dev;
8058 uint32_t val;
8059
8060 DRM_DEBUG_KMS("Enabling package C8+\n");
8061
8062 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8063 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8064 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8065 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8066 }
8067
8068 lpt_disable_clkout_dp(dev);
8069 hsw_disable_lcpll(dev_priv, true, true);
8070 }
8071
8072 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8073 {
8074 struct drm_device *dev = dev_priv->dev;
8075 uint32_t val;
8076
8077 DRM_DEBUG_KMS("Disabling package C8+\n");
8078
8079 hsw_restore_lcpll(dev_priv);
8080 lpt_init_pch_refclk(dev);
8081
8082 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8083 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8084 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8085 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8086 }
8087
8088 intel_prepare_ddi(dev);
8089 }
8090
8091 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8092 struct intel_crtc_state *crtc_state)
8093 {
8094 if (!intel_ddi_pll_select(crtc, crtc_state))
8095 return -EINVAL;
8096
8097 crtc->lowfreq_avail = false;
8098
8099 return 0;
8100 }
8101
8102 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8103 enum port port,
8104 struct intel_crtc_state *pipe_config)
8105 {
8106 u32 temp, dpll_ctl1;
8107
8108 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8109 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8110
8111 switch (pipe_config->ddi_pll_sel) {
8112 case SKL_DPLL0:
8113 /*
8114 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8115 * of the shared DPLL framework and thus needs to be read out
8116 * separately
8117 */
8118 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8119 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8120 break;
8121 case SKL_DPLL1:
8122 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8123 break;
8124 case SKL_DPLL2:
8125 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8126 break;
8127 case SKL_DPLL3:
8128 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8129 break;
8130 }
8131 }
8132
8133 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8134 enum port port,
8135 struct intel_crtc_state *pipe_config)
8136 {
8137 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8138
8139 switch (pipe_config->ddi_pll_sel) {
8140 case PORT_CLK_SEL_WRPLL1:
8141 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8142 break;
8143 case PORT_CLK_SEL_WRPLL2:
8144 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8145 break;
8146 }
8147 }
8148
8149 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8150 struct intel_crtc_state *pipe_config)
8151 {
8152 struct drm_device *dev = crtc->base.dev;
8153 struct drm_i915_private *dev_priv = dev->dev_private;
8154 struct intel_shared_dpll *pll;
8155 enum port port;
8156 uint32_t tmp;
8157
8158 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8159
8160 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8161
8162 if (IS_SKYLAKE(dev))
8163 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8164 else
8165 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8166
8167 if (pipe_config->shared_dpll >= 0) {
8168 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8169
8170 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8171 &pipe_config->dpll_hw_state));
8172 }
8173
8174 /*
8175 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8176 * DDI E. So just check whether this pipe is wired to DDI E and whether
8177 * the PCH transcoder is on.
8178 */
8179 if (INTEL_INFO(dev)->gen < 9 &&
8180 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8181 pipe_config->has_pch_encoder = true;
8182
8183 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8184 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8185 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8186
8187 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8188 }
8189 }
8190
8191 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8192 struct intel_crtc_state *pipe_config)
8193 {
8194 struct drm_device *dev = crtc->base.dev;
8195 struct drm_i915_private *dev_priv = dev->dev_private;
8196 enum intel_display_power_domain pfit_domain;
8197 uint32_t tmp;
8198
8199 if (!intel_display_power_is_enabled(dev_priv,
8200 POWER_DOMAIN_PIPE(crtc->pipe)))
8201 return false;
8202
8203 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8204 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8205
8206 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8207 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8208 enum pipe trans_edp_pipe;
8209 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8210 default:
8211 WARN(1, "unknown pipe linked to edp transcoder\n");
8212 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8213 case TRANS_DDI_EDP_INPUT_A_ON:
8214 trans_edp_pipe = PIPE_A;
8215 break;
8216 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8217 trans_edp_pipe = PIPE_B;
8218 break;
8219 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8220 trans_edp_pipe = PIPE_C;
8221 break;
8222 }
8223
8224 if (trans_edp_pipe == crtc->pipe)
8225 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8226 }
8227
8228 if (!intel_display_power_is_enabled(dev_priv,
8229 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8230 return false;
8231
8232 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8233 if (!(tmp & PIPECONF_ENABLE))
8234 return false;
8235
8236 haswell_get_ddi_port_state(crtc, pipe_config);
8237
8238 intel_get_pipe_timings(crtc, pipe_config);
8239
8240 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8241 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8242 if (IS_SKYLAKE(dev))
8243 skylake_get_pfit_config(crtc, pipe_config);
8244 else
8245 ironlake_get_pfit_config(crtc, pipe_config);
8246 }
8247
8248 if (IS_HASWELL(dev))
8249 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8250 (I915_READ(IPS_CTL) & IPS_ENABLE);
8251
8252 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8253 pipe_config->pixel_multiplier =
8254 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8255 } else {
8256 pipe_config->pixel_multiplier = 1;
8257 }
8258
8259 return true;
8260 }
8261
8262 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8263 {
8264 struct drm_device *dev = crtc->dev;
8265 struct drm_i915_private *dev_priv = dev->dev_private;
8266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8267 uint32_t cntl = 0, size = 0;
8268
8269 if (base) {
8270 unsigned int width = intel_crtc->cursor_width;
8271 unsigned int height = intel_crtc->cursor_height;
8272 unsigned int stride = roundup_pow_of_two(width) * 4;
8273
8274 switch (stride) {
8275 default:
8276 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8277 width, stride);
8278 stride = 256;
8279 /* fallthrough */
8280 case 256:
8281 case 512:
8282 case 1024:
8283 case 2048:
8284 break;
8285 }
8286
8287 cntl |= CURSOR_ENABLE |
8288 CURSOR_GAMMA_ENABLE |
8289 CURSOR_FORMAT_ARGB |
8290 CURSOR_STRIDE(stride);
8291
8292 size = (height << 12) | width;
8293 }
8294
8295 if (intel_crtc->cursor_cntl != 0 &&
8296 (intel_crtc->cursor_base != base ||
8297 intel_crtc->cursor_size != size ||
8298 intel_crtc->cursor_cntl != cntl)) {
8299 /* On these chipsets we can only modify the base/size/stride
8300 * whilst the cursor is disabled.
8301 */
8302 I915_WRITE(_CURACNTR, 0);
8303 POSTING_READ(_CURACNTR);
8304 intel_crtc->cursor_cntl = 0;
8305 }
8306
8307 if (intel_crtc->cursor_base != base) {
8308 I915_WRITE(_CURABASE, base);
8309 intel_crtc->cursor_base = base;
8310 }
8311
8312 if (intel_crtc->cursor_size != size) {
8313 I915_WRITE(CURSIZE, size);
8314 intel_crtc->cursor_size = size;
8315 }
8316
8317 if (intel_crtc->cursor_cntl != cntl) {
8318 I915_WRITE(_CURACNTR, cntl);
8319 POSTING_READ(_CURACNTR);
8320 intel_crtc->cursor_cntl = cntl;
8321 }
8322 }
8323
8324 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8325 {
8326 struct drm_device *dev = crtc->dev;
8327 struct drm_i915_private *dev_priv = dev->dev_private;
8328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8329 int pipe = intel_crtc->pipe;
8330 uint32_t cntl;
8331
8332 cntl = 0;
8333 if (base) {
8334 cntl = MCURSOR_GAMMA_ENABLE;
8335 switch (intel_crtc->cursor_width) {
8336 case 64:
8337 cntl |= CURSOR_MODE_64_ARGB_AX;
8338 break;
8339 case 128:
8340 cntl |= CURSOR_MODE_128_ARGB_AX;
8341 break;
8342 case 256:
8343 cntl |= CURSOR_MODE_256_ARGB_AX;
8344 break;
8345 default:
8346 MISSING_CASE(intel_crtc->cursor_width);
8347 return;
8348 }
8349 cntl |= pipe << 28; /* Connect to correct pipe */
8350
8351 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8352 cntl |= CURSOR_PIPE_CSC_ENABLE;
8353 }
8354
8355 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8356 cntl |= CURSOR_ROTATE_180;
8357
8358 if (intel_crtc->cursor_cntl != cntl) {
8359 I915_WRITE(CURCNTR(pipe), cntl);
8360 POSTING_READ(CURCNTR(pipe));
8361 intel_crtc->cursor_cntl = cntl;
8362 }
8363
8364 /* and commit changes on next vblank */
8365 I915_WRITE(CURBASE(pipe), base);
8366 POSTING_READ(CURBASE(pipe));
8367
8368 intel_crtc->cursor_base = base;
8369 }
8370
8371 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8372 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8373 bool on)
8374 {
8375 struct drm_device *dev = crtc->dev;
8376 struct drm_i915_private *dev_priv = dev->dev_private;
8377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8378 int pipe = intel_crtc->pipe;
8379 int x = crtc->cursor_x;
8380 int y = crtc->cursor_y;
8381 u32 base = 0, pos = 0;
8382
8383 if (on)
8384 base = intel_crtc->cursor_addr;
8385
8386 if (x >= intel_crtc->config->pipe_src_w)
8387 base = 0;
8388
8389 if (y >= intel_crtc->config->pipe_src_h)
8390 base = 0;
8391
8392 if (x < 0) {
8393 if (x + intel_crtc->cursor_width <= 0)
8394 base = 0;
8395
8396 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8397 x = -x;
8398 }
8399 pos |= x << CURSOR_X_SHIFT;
8400
8401 if (y < 0) {
8402 if (y + intel_crtc->cursor_height <= 0)
8403 base = 0;
8404
8405 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8406 y = -y;
8407 }
8408 pos |= y << CURSOR_Y_SHIFT;
8409
8410 if (base == 0 && intel_crtc->cursor_base == 0)
8411 return;
8412
8413 I915_WRITE(CURPOS(pipe), pos);
8414
8415 /* ILK+ do this automagically */
8416 if (HAS_GMCH_DISPLAY(dev) &&
8417 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8418 base += (intel_crtc->cursor_height *
8419 intel_crtc->cursor_width - 1) * 4;
8420 }
8421
8422 if (IS_845G(dev) || IS_I865G(dev))
8423 i845_update_cursor(crtc, base);
8424 else
8425 i9xx_update_cursor(crtc, base);
8426 }
8427
8428 static bool cursor_size_ok(struct drm_device *dev,
8429 uint32_t width, uint32_t height)
8430 {
8431 if (width == 0 || height == 0)
8432 return false;
8433
8434 /*
8435 * 845g/865g are special in that they are only limited by
8436 * the width of their cursors, the height is arbitrary up to
8437 * the precision of the register. Everything else requires
8438 * square cursors, limited to a few power-of-two sizes.
8439 */
8440 if (IS_845G(dev) || IS_I865G(dev)) {
8441 if ((width & 63) != 0)
8442 return false;
8443
8444 if (width > (IS_845G(dev) ? 64 : 512))
8445 return false;
8446
8447 if (height > 1023)
8448 return false;
8449 } else {
8450 switch (width | height) {
8451 case 256:
8452 case 128:
8453 if (IS_GEN2(dev))
8454 return false;
8455 case 64:
8456 break;
8457 default:
8458 return false;
8459 }
8460 }
8461
8462 return true;
8463 }
8464
8465 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8466 u16 *blue, uint32_t start, uint32_t size)
8467 {
8468 int end = (start + size > 256) ? 256 : start + size, i;
8469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8470
8471 for (i = start; i < end; i++) {
8472 intel_crtc->lut_r[i] = red[i] >> 8;
8473 intel_crtc->lut_g[i] = green[i] >> 8;
8474 intel_crtc->lut_b[i] = blue[i] >> 8;
8475 }
8476
8477 intel_crtc_load_lut(crtc);
8478 }
8479
8480 /* VESA 640x480x72Hz mode to set on the pipe */
8481 static struct drm_display_mode load_detect_mode = {
8482 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8483 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8484 };
8485
8486 struct drm_framebuffer *
8487 __intel_framebuffer_create(struct drm_device *dev,
8488 struct drm_mode_fb_cmd2 *mode_cmd,
8489 struct drm_i915_gem_object *obj)
8490 {
8491 struct intel_framebuffer *intel_fb;
8492 int ret;
8493
8494 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8495 if (!intel_fb) {
8496 drm_gem_object_unreference(&obj->base);
8497 return ERR_PTR(-ENOMEM);
8498 }
8499
8500 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8501 if (ret)
8502 goto err;
8503
8504 return &intel_fb->base;
8505 err:
8506 drm_gem_object_unreference(&obj->base);
8507 kfree(intel_fb);
8508
8509 return ERR_PTR(ret);
8510 }
8511
8512 static struct drm_framebuffer *
8513 intel_framebuffer_create(struct drm_device *dev,
8514 struct drm_mode_fb_cmd2 *mode_cmd,
8515 struct drm_i915_gem_object *obj)
8516 {
8517 struct drm_framebuffer *fb;
8518 int ret;
8519
8520 ret = i915_mutex_lock_interruptible(dev);
8521 if (ret)
8522 return ERR_PTR(ret);
8523 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8524 mutex_unlock(&dev->struct_mutex);
8525
8526 return fb;
8527 }
8528
8529 static u32
8530 intel_framebuffer_pitch_for_width(int width, int bpp)
8531 {
8532 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8533 return ALIGN(pitch, 64);
8534 }
8535
8536 static u32
8537 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8538 {
8539 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8540 return PAGE_ALIGN(pitch * mode->vdisplay);
8541 }
8542
8543 static struct drm_framebuffer *
8544 intel_framebuffer_create_for_mode(struct drm_device *dev,
8545 struct drm_display_mode *mode,
8546 int depth, int bpp)
8547 {
8548 struct drm_i915_gem_object *obj;
8549 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8550
8551 obj = i915_gem_alloc_object(dev,
8552 intel_framebuffer_size_for_mode(mode, bpp));
8553 if (obj == NULL)
8554 return ERR_PTR(-ENOMEM);
8555
8556 mode_cmd.width = mode->hdisplay;
8557 mode_cmd.height = mode->vdisplay;
8558 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8559 bpp);
8560 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8561
8562 return intel_framebuffer_create(dev, &mode_cmd, obj);
8563 }
8564
8565 static struct drm_framebuffer *
8566 mode_fits_in_fbdev(struct drm_device *dev,
8567 struct drm_display_mode *mode)
8568 {
8569 #ifdef CONFIG_DRM_I915_FBDEV
8570 struct drm_i915_private *dev_priv = dev->dev_private;
8571 struct drm_i915_gem_object *obj;
8572 struct drm_framebuffer *fb;
8573
8574 if (!dev_priv->fbdev)
8575 return NULL;
8576
8577 if (!dev_priv->fbdev->fb)
8578 return NULL;
8579
8580 obj = dev_priv->fbdev->fb->obj;
8581 BUG_ON(!obj);
8582
8583 fb = &dev_priv->fbdev->fb->base;
8584 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8585 fb->bits_per_pixel))
8586 return NULL;
8587
8588 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8589 return NULL;
8590
8591 return fb;
8592 #else
8593 return NULL;
8594 #endif
8595 }
8596
8597 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8598 struct drm_display_mode *mode,
8599 struct intel_load_detect_pipe *old,
8600 struct drm_modeset_acquire_ctx *ctx)
8601 {
8602 struct intel_crtc *intel_crtc;
8603 struct intel_encoder *intel_encoder =
8604 intel_attached_encoder(connector);
8605 struct drm_crtc *possible_crtc;
8606 struct drm_encoder *encoder = &intel_encoder->base;
8607 struct drm_crtc *crtc = NULL;
8608 struct drm_device *dev = encoder->dev;
8609 struct drm_framebuffer *fb;
8610 struct drm_mode_config *config = &dev->mode_config;
8611 int ret, i = -1;
8612
8613 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8614 connector->base.id, connector->name,
8615 encoder->base.id, encoder->name);
8616
8617 retry:
8618 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8619 if (ret)
8620 goto fail_unlock;
8621
8622 /*
8623 * Algorithm gets a little messy:
8624 *
8625 * - if the connector already has an assigned crtc, use it (but make
8626 * sure it's on first)
8627 *
8628 * - try to find the first unused crtc that can drive this connector,
8629 * and use that if we find one
8630 */
8631
8632 /* See if we already have a CRTC for this connector */
8633 if (encoder->crtc) {
8634 crtc = encoder->crtc;
8635
8636 ret = drm_modeset_lock(&crtc->mutex, ctx);
8637 if (ret)
8638 goto fail_unlock;
8639 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8640 if (ret)
8641 goto fail_unlock;
8642
8643 old->dpms_mode = connector->dpms;
8644 old->load_detect_temp = false;
8645
8646 /* Make sure the crtc and connector are running */
8647 if (connector->dpms != DRM_MODE_DPMS_ON)
8648 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8649
8650 return true;
8651 }
8652
8653 /* Find an unused one (if possible) */
8654 for_each_crtc(dev, possible_crtc) {
8655 i++;
8656 if (!(encoder->possible_crtcs & (1 << i)))
8657 continue;
8658 if (possible_crtc->enabled)
8659 continue;
8660 /* This can occur when applying the pipe A quirk on resume. */
8661 if (to_intel_crtc(possible_crtc)->new_enabled)
8662 continue;
8663
8664 crtc = possible_crtc;
8665 break;
8666 }
8667
8668 /*
8669 * If we didn't find an unused CRTC, don't use any.
8670 */
8671 if (!crtc) {
8672 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8673 goto fail_unlock;
8674 }
8675
8676 ret = drm_modeset_lock(&crtc->mutex, ctx);
8677 if (ret)
8678 goto fail_unlock;
8679 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8680 if (ret)
8681 goto fail_unlock;
8682 intel_encoder->new_crtc = to_intel_crtc(crtc);
8683 to_intel_connector(connector)->new_encoder = intel_encoder;
8684
8685 intel_crtc = to_intel_crtc(crtc);
8686 intel_crtc->new_enabled = true;
8687 intel_crtc->new_config = intel_crtc->config;
8688 old->dpms_mode = connector->dpms;
8689 old->load_detect_temp = true;
8690 old->release_fb = NULL;
8691
8692 if (!mode)
8693 mode = &load_detect_mode;
8694
8695 /* We need a framebuffer large enough to accommodate all accesses
8696 * that the plane may generate whilst we perform load detection.
8697 * We can not rely on the fbcon either being present (we get called
8698 * during its initialisation to detect all boot displays, or it may
8699 * not even exist) or that it is large enough to satisfy the
8700 * requested mode.
8701 */
8702 fb = mode_fits_in_fbdev(dev, mode);
8703 if (fb == NULL) {
8704 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8705 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8706 old->release_fb = fb;
8707 } else
8708 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8709 if (IS_ERR(fb)) {
8710 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8711 goto fail;
8712 }
8713
8714 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8715 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8716 if (old->release_fb)
8717 old->release_fb->funcs->destroy(old->release_fb);
8718 goto fail;
8719 }
8720
8721 /* let the connector get through one full cycle before testing */
8722 intel_wait_for_vblank(dev, intel_crtc->pipe);
8723 return true;
8724
8725 fail:
8726 intel_crtc->new_enabled = crtc->enabled;
8727 if (intel_crtc->new_enabled)
8728 intel_crtc->new_config = intel_crtc->config;
8729 else
8730 intel_crtc->new_config = NULL;
8731 fail_unlock:
8732 if (ret == -EDEADLK) {
8733 drm_modeset_backoff(ctx);
8734 goto retry;
8735 }
8736
8737 return false;
8738 }
8739
8740 void intel_release_load_detect_pipe(struct drm_connector *connector,
8741 struct intel_load_detect_pipe *old)
8742 {
8743 struct intel_encoder *intel_encoder =
8744 intel_attached_encoder(connector);
8745 struct drm_encoder *encoder = &intel_encoder->base;
8746 struct drm_crtc *crtc = encoder->crtc;
8747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8748
8749 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8750 connector->base.id, connector->name,
8751 encoder->base.id, encoder->name);
8752
8753 if (old->load_detect_temp) {
8754 to_intel_connector(connector)->new_encoder = NULL;
8755 intel_encoder->new_crtc = NULL;
8756 intel_crtc->new_enabled = false;
8757 intel_crtc->new_config = NULL;
8758 intel_set_mode(crtc, NULL, 0, 0, NULL);
8759
8760 if (old->release_fb) {
8761 drm_framebuffer_unregister_private(old->release_fb);
8762 drm_framebuffer_unreference(old->release_fb);
8763 }
8764
8765 return;
8766 }
8767
8768 /* Switch crtc and encoder back off if necessary */
8769 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8770 connector->funcs->dpms(connector, old->dpms_mode);
8771 }
8772
8773 static int i9xx_pll_refclk(struct drm_device *dev,
8774 const struct intel_crtc_state *pipe_config)
8775 {
8776 struct drm_i915_private *dev_priv = dev->dev_private;
8777 u32 dpll = pipe_config->dpll_hw_state.dpll;
8778
8779 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8780 return dev_priv->vbt.lvds_ssc_freq;
8781 else if (HAS_PCH_SPLIT(dev))
8782 return 120000;
8783 else if (!IS_GEN2(dev))
8784 return 96000;
8785 else
8786 return 48000;
8787 }
8788
8789 /* Returns the clock of the currently programmed mode of the given pipe. */
8790 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8791 struct intel_crtc_state *pipe_config)
8792 {
8793 struct drm_device *dev = crtc->base.dev;
8794 struct drm_i915_private *dev_priv = dev->dev_private;
8795 int pipe = pipe_config->cpu_transcoder;
8796 u32 dpll = pipe_config->dpll_hw_state.dpll;
8797 u32 fp;
8798 intel_clock_t clock;
8799 int refclk = i9xx_pll_refclk(dev, pipe_config);
8800
8801 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8802 fp = pipe_config->dpll_hw_state.fp0;
8803 else
8804 fp = pipe_config->dpll_hw_state.fp1;
8805
8806 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8807 if (IS_PINEVIEW(dev)) {
8808 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8809 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8810 } else {
8811 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8812 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8813 }
8814
8815 if (!IS_GEN2(dev)) {
8816 if (IS_PINEVIEW(dev))
8817 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8818 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8819 else
8820 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8821 DPLL_FPA01_P1_POST_DIV_SHIFT);
8822
8823 switch (dpll & DPLL_MODE_MASK) {
8824 case DPLLB_MODE_DAC_SERIAL:
8825 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8826 5 : 10;
8827 break;
8828 case DPLLB_MODE_LVDS:
8829 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8830 7 : 14;
8831 break;
8832 default:
8833 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8834 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8835 return;
8836 }
8837
8838 if (IS_PINEVIEW(dev))
8839 pineview_clock(refclk, &clock);
8840 else
8841 i9xx_clock(refclk, &clock);
8842 } else {
8843 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8844 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8845
8846 if (is_lvds) {
8847 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8848 DPLL_FPA01_P1_POST_DIV_SHIFT);
8849
8850 if (lvds & LVDS_CLKB_POWER_UP)
8851 clock.p2 = 7;
8852 else
8853 clock.p2 = 14;
8854 } else {
8855 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8856 clock.p1 = 2;
8857 else {
8858 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8859 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8860 }
8861 if (dpll & PLL_P2_DIVIDE_BY_4)
8862 clock.p2 = 4;
8863 else
8864 clock.p2 = 2;
8865 }
8866
8867 i9xx_clock(refclk, &clock);
8868 }
8869
8870 /*
8871 * This value includes pixel_multiplier. We will use
8872 * port_clock to compute adjusted_mode.crtc_clock in the
8873 * encoder's get_config() function.
8874 */
8875 pipe_config->port_clock = clock.dot;
8876 }
8877
8878 int intel_dotclock_calculate(int link_freq,
8879 const struct intel_link_m_n *m_n)
8880 {
8881 /*
8882 * The calculation for the data clock is:
8883 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8884 * But we want to avoid losing precison if possible, so:
8885 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8886 *
8887 * and the link clock is simpler:
8888 * link_clock = (m * link_clock) / n
8889 */
8890
8891 if (!m_n->link_n)
8892 return 0;
8893
8894 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8895 }
8896
8897 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8898 struct intel_crtc_state *pipe_config)
8899 {
8900 struct drm_device *dev = crtc->base.dev;
8901
8902 /* read out port_clock from the DPLL */
8903 i9xx_crtc_clock_get(crtc, pipe_config);
8904
8905 /*
8906 * This value does not include pixel_multiplier.
8907 * We will check that port_clock and adjusted_mode.crtc_clock
8908 * agree once we know their relationship in the encoder's
8909 * get_config() function.
8910 */
8911 pipe_config->base.adjusted_mode.crtc_clock =
8912 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8913 &pipe_config->fdi_m_n);
8914 }
8915
8916 /** Returns the currently programmed mode of the given pipe. */
8917 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8918 struct drm_crtc *crtc)
8919 {
8920 struct drm_i915_private *dev_priv = dev->dev_private;
8921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8922 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8923 struct drm_display_mode *mode;
8924 struct intel_crtc_state pipe_config;
8925 int htot = I915_READ(HTOTAL(cpu_transcoder));
8926 int hsync = I915_READ(HSYNC(cpu_transcoder));
8927 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8928 int vsync = I915_READ(VSYNC(cpu_transcoder));
8929 enum pipe pipe = intel_crtc->pipe;
8930
8931 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8932 if (!mode)
8933 return NULL;
8934
8935 /*
8936 * Construct a pipe_config sufficient for getting the clock info
8937 * back out of crtc_clock_get.
8938 *
8939 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8940 * to use a real value here instead.
8941 */
8942 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8943 pipe_config.pixel_multiplier = 1;
8944 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8945 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8946 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8947 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8948
8949 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8950 mode->hdisplay = (htot & 0xffff) + 1;
8951 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8952 mode->hsync_start = (hsync & 0xffff) + 1;
8953 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8954 mode->vdisplay = (vtot & 0xffff) + 1;
8955 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8956 mode->vsync_start = (vsync & 0xffff) + 1;
8957 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8958
8959 drm_mode_set_name(mode);
8960
8961 return mode;
8962 }
8963
8964 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8965 {
8966 struct drm_device *dev = crtc->dev;
8967 struct drm_i915_private *dev_priv = dev->dev_private;
8968 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8969
8970 if (!HAS_GMCH_DISPLAY(dev))
8971 return;
8972
8973 if (!dev_priv->lvds_downclock_avail)
8974 return;
8975
8976 /*
8977 * Since this is called by a timer, we should never get here in
8978 * the manual case.
8979 */
8980 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8981 int pipe = intel_crtc->pipe;
8982 int dpll_reg = DPLL(pipe);
8983 int dpll;
8984
8985 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8986
8987 assert_panel_unlocked(dev_priv, pipe);
8988
8989 dpll = I915_READ(dpll_reg);
8990 dpll |= DISPLAY_RATE_SELECT_FPA1;
8991 I915_WRITE(dpll_reg, dpll);
8992 intel_wait_for_vblank(dev, pipe);
8993 dpll = I915_READ(dpll_reg);
8994 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8995 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8996 }
8997
8998 }
8999
9000 void intel_mark_busy(struct drm_device *dev)
9001 {
9002 struct drm_i915_private *dev_priv = dev->dev_private;
9003
9004 if (dev_priv->mm.busy)
9005 return;
9006
9007 intel_runtime_pm_get(dev_priv);
9008 i915_update_gfx_val(dev_priv);
9009 dev_priv->mm.busy = true;
9010 }
9011
9012 void intel_mark_idle(struct drm_device *dev)
9013 {
9014 struct drm_i915_private *dev_priv = dev->dev_private;
9015 struct drm_crtc *crtc;
9016
9017 if (!dev_priv->mm.busy)
9018 return;
9019
9020 dev_priv->mm.busy = false;
9021
9022 if (!i915.powersave)
9023 goto out;
9024
9025 for_each_crtc(dev, crtc) {
9026 if (!crtc->primary->fb)
9027 continue;
9028
9029 intel_decrease_pllclock(crtc);
9030 }
9031
9032 if (INTEL_INFO(dev)->gen >= 6)
9033 gen6_rps_idle(dev->dev_private);
9034
9035 out:
9036 intel_runtime_pm_put(dev_priv);
9037 }
9038
9039 static void intel_crtc_set_state(struct intel_crtc *crtc,
9040 struct intel_crtc_state *crtc_state)
9041 {
9042 kfree(crtc->config);
9043 crtc->config = crtc_state;
9044 crtc->base.state = &crtc_state->base;
9045 }
9046
9047 static void intel_crtc_destroy(struct drm_crtc *crtc)
9048 {
9049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9050 struct drm_device *dev = crtc->dev;
9051 struct intel_unpin_work *work;
9052
9053 spin_lock_irq(&dev->event_lock);
9054 work = intel_crtc->unpin_work;
9055 intel_crtc->unpin_work = NULL;
9056 spin_unlock_irq(&dev->event_lock);
9057
9058 if (work) {
9059 cancel_work_sync(&work->work);
9060 kfree(work);
9061 }
9062
9063 intel_crtc_set_state(intel_crtc, NULL);
9064 drm_crtc_cleanup(crtc);
9065
9066 kfree(intel_crtc);
9067 }
9068
9069 static void intel_unpin_work_fn(struct work_struct *__work)
9070 {
9071 struct intel_unpin_work *work =
9072 container_of(__work, struct intel_unpin_work, work);
9073 struct drm_device *dev = work->crtc->dev;
9074 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9075
9076 mutex_lock(&dev->struct_mutex);
9077 intel_unpin_fb_obj(intel_fb_obj(work->old_fb));
9078 drm_gem_object_unreference(&work->pending_flip_obj->base);
9079 drm_framebuffer_unreference(work->old_fb);
9080
9081 intel_fbc_update(dev);
9082
9083 if (work->flip_queued_req)
9084 i915_gem_request_assign(&work->flip_queued_req, NULL);
9085 mutex_unlock(&dev->struct_mutex);
9086
9087 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9088
9089 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9090 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9091
9092 kfree(work);
9093 }
9094
9095 static void do_intel_finish_page_flip(struct drm_device *dev,
9096 struct drm_crtc *crtc)
9097 {
9098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9099 struct intel_unpin_work *work;
9100 unsigned long flags;
9101
9102 /* Ignore early vblank irqs */
9103 if (intel_crtc == NULL)
9104 return;
9105
9106 /*
9107 * This is called both by irq handlers and the reset code (to complete
9108 * lost pageflips) so needs the full irqsave spinlocks.
9109 */
9110 spin_lock_irqsave(&dev->event_lock, flags);
9111 work = intel_crtc->unpin_work;
9112
9113 /* Ensure we don't miss a work->pending update ... */
9114 smp_rmb();
9115
9116 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9117 spin_unlock_irqrestore(&dev->event_lock, flags);
9118 return;
9119 }
9120
9121 page_flip_completed(intel_crtc);
9122
9123 spin_unlock_irqrestore(&dev->event_lock, flags);
9124 }
9125
9126 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9127 {
9128 struct drm_i915_private *dev_priv = dev->dev_private;
9129 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9130
9131 do_intel_finish_page_flip(dev, crtc);
9132 }
9133
9134 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9135 {
9136 struct drm_i915_private *dev_priv = dev->dev_private;
9137 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9138
9139 do_intel_finish_page_flip(dev, crtc);
9140 }
9141
9142 /* Is 'a' after or equal to 'b'? */
9143 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9144 {
9145 return !((a - b) & 0x80000000);
9146 }
9147
9148 static bool page_flip_finished(struct intel_crtc *crtc)
9149 {
9150 struct drm_device *dev = crtc->base.dev;
9151 struct drm_i915_private *dev_priv = dev->dev_private;
9152
9153 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9154 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9155 return true;
9156
9157 /*
9158 * The relevant registers doen't exist on pre-ctg.
9159 * As the flip done interrupt doesn't trigger for mmio
9160 * flips on gmch platforms, a flip count check isn't
9161 * really needed there. But since ctg has the registers,
9162 * include it in the check anyway.
9163 */
9164 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9165 return true;
9166
9167 /*
9168 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9169 * used the same base address. In that case the mmio flip might
9170 * have completed, but the CS hasn't even executed the flip yet.
9171 *
9172 * A flip count check isn't enough as the CS might have updated
9173 * the base address just after start of vblank, but before we
9174 * managed to process the interrupt. This means we'd complete the
9175 * CS flip too soon.
9176 *
9177 * Combining both checks should get us a good enough result. It may
9178 * still happen that the CS flip has been executed, but has not
9179 * yet actually completed. But in case the base address is the same
9180 * anyway, we don't really care.
9181 */
9182 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9183 crtc->unpin_work->gtt_offset &&
9184 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9185 crtc->unpin_work->flip_count);
9186 }
9187
9188 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9189 {
9190 struct drm_i915_private *dev_priv = dev->dev_private;
9191 struct intel_crtc *intel_crtc =
9192 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9193 unsigned long flags;
9194
9195
9196 /*
9197 * This is called both by irq handlers and the reset code (to complete
9198 * lost pageflips) so needs the full irqsave spinlocks.
9199 *
9200 * NB: An MMIO update of the plane base pointer will also
9201 * generate a page-flip completion irq, i.e. every modeset
9202 * is also accompanied by a spurious intel_prepare_page_flip().
9203 */
9204 spin_lock_irqsave(&dev->event_lock, flags);
9205 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9206 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9207 spin_unlock_irqrestore(&dev->event_lock, flags);
9208 }
9209
9210 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9211 {
9212 /* Ensure that the work item is consistent when activating it ... */
9213 smp_wmb();
9214 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9215 /* and that it is marked active as soon as the irq could fire. */
9216 smp_wmb();
9217 }
9218
9219 static int intel_gen2_queue_flip(struct drm_device *dev,
9220 struct drm_crtc *crtc,
9221 struct drm_framebuffer *fb,
9222 struct drm_i915_gem_object *obj,
9223 struct intel_engine_cs *ring,
9224 uint32_t flags)
9225 {
9226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9227 u32 flip_mask;
9228 int ret;
9229
9230 ret = intel_ring_begin(ring, 6);
9231 if (ret)
9232 return ret;
9233
9234 /* Can't queue multiple flips, so wait for the previous
9235 * one to finish before executing the next.
9236 */
9237 if (intel_crtc->plane)
9238 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9239 else
9240 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9241 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9242 intel_ring_emit(ring, MI_NOOP);
9243 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9244 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9245 intel_ring_emit(ring, fb->pitches[0]);
9246 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9247 intel_ring_emit(ring, 0); /* aux display base address, unused */
9248
9249 intel_mark_page_flip_active(intel_crtc);
9250 __intel_ring_advance(ring);
9251 return 0;
9252 }
9253
9254 static int intel_gen3_queue_flip(struct drm_device *dev,
9255 struct drm_crtc *crtc,
9256 struct drm_framebuffer *fb,
9257 struct drm_i915_gem_object *obj,
9258 struct intel_engine_cs *ring,
9259 uint32_t flags)
9260 {
9261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9262 u32 flip_mask;
9263 int ret;
9264
9265 ret = intel_ring_begin(ring, 6);
9266 if (ret)
9267 return ret;
9268
9269 if (intel_crtc->plane)
9270 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9271 else
9272 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9273 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9274 intel_ring_emit(ring, MI_NOOP);
9275 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9276 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9277 intel_ring_emit(ring, fb->pitches[0]);
9278 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9279 intel_ring_emit(ring, MI_NOOP);
9280
9281 intel_mark_page_flip_active(intel_crtc);
9282 __intel_ring_advance(ring);
9283 return 0;
9284 }
9285
9286 static int intel_gen4_queue_flip(struct drm_device *dev,
9287 struct drm_crtc *crtc,
9288 struct drm_framebuffer *fb,
9289 struct drm_i915_gem_object *obj,
9290 struct intel_engine_cs *ring,
9291 uint32_t flags)
9292 {
9293 struct drm_i915_private *dev_priv = dev->dev_private;
9294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9295 uint32_t pf, pipesrc;
9296 int ret;
9297
9298 ret = intel_ring_begin(ring, 4);
9299 if (ret)
9300 return ret;
9301
9302 /* i965+ uses the linear or tiled offsets from the
9303 * Display Registers (which do not change across a page-flip)
9304 * so we need only reprogram the base address.
9305 */
9306 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9307 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9308 intel_ring_emit(ring, fb->pitches[0]);
9309 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9310 obj->tiling_mode);
9311
9312 /* XXX Enabling the panel-fitter across page-flip is so far
9313 * untested on non-native modes, so ignore it for now.
9314 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9315 */
9316 pf = 0;
9317 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9318 intel_ring_emit(ring, pf | pipesrc);
9319
9320 intel_mark_page_flip_active(intel_crtc);
9321 __intel_ring_advance(ring);
9322 return 0;
9323 }
9324
9325 static int intel_gen6_queue_flip(struct drm_device *dev,
9326 struct drm_crtc *crtc,
9327 struct drm_framebuffer *fb,
9328 struct drm_i915_gem_object *obj,
9329 struct intel_engine_cs *ring,
9330 uint32_t flags)
9331 {
9332 struct drm_i915_private *dev_priv = dev->dev_private;
9333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9334 uint32_t pf, pipesrc;
9335 int ret;
9336
9337 ret = intel_ring_begin(ring, 4);
9338 if (ret)
9339 return ret;
9340
9341 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9342 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9343 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9344 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9345
9346 /* Contrary to the suggestions in the documentation,
9347 * "Enable Panel Fitter" does not seem to be required when page
9348 * flipping with a non-native mode, and worse causes a normal
9349 * modeset to fail.
9350 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9351 */
9352 pf = 0;
9353 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9354 intel_ring_emit(ring, pf | pipesrc);
9355
9356 intel_mark_page_flip_active(intel_crtc);
9357 __intel_ring_advance(ring);
9358 return 0;
9359 }
9360
9361 static int intel_gen7_queue_flip(struct drm_device *dev,
9362 struct drm_crtc *crtc,
9363 struct drm_framebuffer *fb,
9364 struct drm_i915_gem_object *obj,
9365 struct intel_engine_cs *ring,
9366 uint32_t flags)
9367 {
9368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9369 uint32_t plane_bit = 0;
9370 int len, ret;
9371
9372 switch (intel_crtc->plane) {
9373 case PLANE_A:
9374 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9375 break;
9376 case PLANE_B:
9377 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9378 break;
9379 case PLANE_C:
9380 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9381 break;
9382 default:
9383 WARN_ONCE(1, "unknown plane in flip command\n");
9384 return -ENODEV;
9385 }
9386
9387 len = 4;
9388 if (ring->id == RCS) {
9389 len += 6;
9390 /*
9391 * On Gen 8, SRM is now taking an extra dword to accommodate
9392 * 48bits addresses, and we need a NOOP for the batch size to
9393 * stay even.
9394 */
9395 if (IS_GEN8(dev))
9396 len += 2;
9397 }
9398
9399 /*
9400 * BSpec MI_DISPLAY_FLIP for IVB:
9401 * "The full packet must be contained within the same cache line."
9402 *
9403 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9404 * cacheline, if we ever start emitting more commands before
9405 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9406 * then do the cacheline alignment, and finally emit the
9407 * MI_DISPLAY_FLIP.
9408 */
9409 ret = intel_ring_cacheline_align(ring);
9410 if (ret)
9411 return ret;
9412
9413 ret = intel_ring_begin(ring, len);
9414 if (ret)
9415 return ret;
9416
9417 /* Unmask the flip-done completion message. Note that the bspec says that
9418 * we should do this for both the BCS and RCS, and that we must not unmask
9419 * more than one flip event at any time (or ensure that one flip message
9420 * can be sent by waiting for flip-done prior to queueing new flips).
9421 * Experimentation says that BCS works despite DERRMR masking all
9422 * flip-done completion events and that unmasking all planes at once
9423 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9424 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9425 */
9426 if (ring->id == RCS) {
9427 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9428 intel_ring_emit(ring, DERRMR);
9429 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9430 DERRMR_PIPEB_PRI_FLIP_DONE |
9431 DERRMR_PIPEC_PRI_FLIP_DONE));
9432 if (IS_GEN8(dev))
9433 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9434 MI_SRM_LRM_GLOBAL_GTT);
9435 else
9436 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9437 MI_SRM_LRM_GLOBAL_GTT);
9438 intel_ring_emit(ring, DERRMR);
9439 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9440 if (IS_GEN8(dev)) {
9441 intel_ring_emit(ring, 0);
9442 intel_ring_emit(ring, MI_NOOP);
9443 }
9444 }
9445
9446 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9447 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9448 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9449 intel_ring_emit(ring, (MI_NOOP));
9450
9451 intel_mark_page_flip_active(intel_crtc);
9452 __intel_ring_advance(ring);
9453 return 0;
9454 }
9455
9456 static bool use_mmio_flip(struct intel_engine_cs *ring,
9457 struct drm_i915_gem_object *obj)
9458 {
9459 /*
9460 * This is not being used for older platforms, because
9461 * non-availability of flip done interrupt forces us to use
9462 * CS flips. Older platforms derive flip done using some clever
9463 * tricks involving the flip_pending status bits and vblank irqs.
9464 * So using MMIO flips there would disrupt this mechanism.
9465 */
9466
9467 if (ring == NULL)
9468 return true;
9469
9470 if (INTEL_INFO(ring->dev)->gen < 5)
9471 return false;
9472
9473 if (i915.use_mmio_flip < 0)
9474 return false;
9475 else if (i915.use_mmio_flip > 0)
9476 return true;
9477 else if (i915.enable_execlists)
9478 return true;
9479 else
9480 return ring != i915_gem_request_get_ring(obj->last_read_req);
9481 }
9482
9483 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9484 {
9485 struct drm_device *dev = intel_crtc->base.dev;
9486 struct drm_i915_private *dev_priv = dev->dev_private;
9487 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9488 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9489 struct drm_i915_gem_object *obj = intel_fb->obj;
9490 const enum pipe pipe = intel_crtc->pipe;
9491 u32 ctl, stride;
9492
9493 ctl = I915_READ(PLANE_CTL(pipe, 0));
9494 ctl &= ~PLANE_CTL_TILED_MASK;
9495 if (obj->tiling_mode == I915_TILING_X)
9496 ctl |= PLANE_CTL_TILED_X;
9497
9498 /*
9499 * The stride is either expressed as a multiple of 64 bytes chunks for
9500 * linear buffers or in number of tiles for tiled buffers.
9501 */
9502 stride = fb->pitches[0] >> 6;
9503 if (obj->tiling_mode == I915_TILING_X)
9504 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9505
9506 /*
9507 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9508 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9509 */
9510 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9511 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9512
9513 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9514 POSTING_READ(PLANE_SURF(pipe, 0));
9515 }
9516
9517 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9518 {
9519 struct drm_device *dev = intel_crtc->base.dev;
9520 struct drm_i915_private *dev_priv = dev->dev_private;
9521 struct intel_framebuffer *intel_fb =
9522 to_intel_framebuffer(intel_crtc->base.primary->fb);
9523 struct drm_i915_gem_object *obj = intel_fb->obj;
9524 u32 dspcntr;
9525 u32 reg;
9526
9527 reg = DSPCNTR(intel_crtc->plane);
9528 dspcntr = I915_READ(reg);
9529
9530 if (obj->tiling_mode != I915_TILING_NONE)
9531 dspcntr |= DISPPLANE_TILED;
9532 else
9533 dspcntr &= ~DISPPLANE_TILED;
9534
9535 I915_WRITE(reg, dspcntr);
9536
9537 I915_WRITE(DSPSURF(intel_crtc->plane),
9538 intel_crtc->unpin_work->gtt_offset);
9539 POSTING_READ(DSPSURF(intel_crtc->plane));
9540
9541 }
9542
9543 /*
9544 * XXX: This is the temporary way to update the plane registers until we get
9545 * around to using the usual plane update functions for MMIO flips
9546 */
9547 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9548 {
9549 struct drm_device *dev = intel_crtc->base.dev;
9550 bool atomic_update;
9551 u32 start_vbl_count;
9552
9553 intel_mark_page_flip_active(intel_crtc);
9554
9555 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9556
9557 if (INTEL_INFO(dev)->gen >= 9)
9558 skl_do_mmio_flip(intel_crtc);
9559 else
9560 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9561 ilk_do_mmio_flip(intel_crtc);
9562
9563 if (atomic_update)
9564 intel_pipe_update_end(intel_crtc, start_vbl_count);
9565 }
9566
9567 static void intel_mmio_flip_work_func(struct work_struct *work)
9568 {
9569 struct intel_crtc *crtc =
9570 container_of(work, struct intel_crtc, mmio_flip.work);
9571 struct intel_mmio_flip *mmio_flip;
9572
9573 mmio_flip = &crtc->mmio_flip;
9574 if (mmio_flip->req)
9575 WARN_ON(__i915_wait_request(mmio_flip->req,
9576 crtc->reset_counter,
9577 false, NULL, NULL) != 0);
9578
9579 intel_do_mmio_flip(crtc);
9580 if (mmio_flip->req) {
9581 mutex_lock(&crtc->base.dev->struct_mutex);
9582 i915_gem_request_assign(&mmio_flip->req, NULL);
9583 mutex_unlock(&crtc->base.dev->struct_mutex);
9584 }
9585 }
9586
9587 static int intel_queue_mmio_flip(struct drm_device *dev,
9588 struct drm_crtc *crtc,
9589 struct drm_framebuffer *fb,
9590 struct drm_i915_gem_object *obj,
9591 struct intel_engine_cs *ring,
9592 uint32_t flags)
9593 {
9594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9595
9596 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9597 obj->last_write_req);
9598
9599 schedule_work(&intel_crtc->mmio_flip.work);
9600
9601 return 0;
9602 }
9603
9604 static int intel_gen9_queue_flip(struct drm_device *dev,
9605 struct drm_crtc *crtc,
9606 struct drm_framebuffer *fb,
9607 struct drm_i915_gem_object *obj,
9608 struct intel_engine_cs *ring,
9609 uint32_t flags)
9610 {
9611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9612 uint32_t plane = 0, stride;
9613 int ret;
9614
9615 switch(intel_crtc->pipe) {
9616 case PIPE_A:
9617 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9618 break;
9619 case PIPE_B:
9620 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9621 break;
9622 case PIPE_C:
9623 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9624 break;
9625 default:
9626 WARN_ONCE(1, "unknown plane in flip command\n");
9627 return -ENODEV;
9628 }
9629
9630 switch (obj->tiling_mode) {
9631 case I915_TILING_NONE:
9632 stride = fb->pitches[0] >> 6;
9633 break;
9634 case I915_TILING_X:
9635 stride = fb->pitches[0] >> 9;
9636 break;
9637 default:
9638 WARN_ONCE(1, "unknown tiling in flip command\n");
9639 return -ENODEV;
9640 }
9641
9642 ret = intel_ring_begin(ring, 10);
9643 if (ret)
9644 return ret;
9645
9646 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9647 intel_ring_emit(ring, DERRMR);
9648 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9649 DERRMR_PIPEB_PRI_FLIP_DONE |
9650 DERRMR_PIPEC_PRI_FLIP_DONE));
9651 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9652 MI_SRM_LRM_GLOBAL_GTT);
9653 intel_ring_emit(ring, DERRMR);
9654 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9655 intel_ring_emit(ring, 0);
9656
9657 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9658 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9659 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9660
9661 intel_mark_page_flip_active(intel_crtc);
9662 __intel_ring_advance(ring);
9663
9664 return 0;
9665 }
9666
9667 static int intel_default_queue_flip(struct drm_device *dev,
9668 struct drm_crtc *crtc,
9669 struct drm_framebuffer *fb,
9670 struct drm_i915_gem_object *obj,
9671 struct intel_engine_cs *ring,
9672 uint32_t flags)
9673 {
9674 return -ENODEV;
9675 }
9676
9677 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9678 struct drm_crtc *crtc)
9679 {
9680 struct drm_i915_private *dev_priv = dev->dev_private;
9681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9682 struct intel_unpin_work *work = intel_crtc->unpin_work;
9683 u32 addr;
9684
9685 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9686 return true;
9687
9688 if (!work->enable_stall_check)
9689 return false;
9690
9691 if (work->flip_ready_vblank == 0) {
9692 if (work->flip_queued_req &&
9693 !i915_gem_request_completed(work->flip_queued_req, true))
9694 return false;
9695
9696 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9697 }
9698
9699 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9700 return false;
9701
9702 /* Potential stall - if we see that the flip has happened,
9703 * assume a missed interrupt. */
9704 if (INTEL_INFO(dev)->gen >= 4)
9705 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9706 else
9707 addr = I915_READ(DSPADDR(intel_crtc->plane));
9708
9709 /* There is a potential issue here with a false positive after a flip
9710 * to the same address. We could address this by checking for a
9711 * non-incrementing frame counter.
9712 */
9713 return addr == work->gtt_offset;
9714 }
9715
9716 void intel_check_page_flip(struct drm_device *dev, int pipe)
9717 {
9718 struct drm_i915_private *dev_priv = dev->dev_private;
9719 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9721
9722 WARN_ON(!in_irq());
9723
9724 if (crtc == NULL)
9725 return;
9726
9727 spin_lock(&dev->event_lock);
9728 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9729 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9730 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9731 page_flip_completed(intel_crtc);
9732 }
9733 spin_unlock(&dev->event_lock);
9734 }
9735
9736 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9737 struct drm_framebuffer *fb,
9738 struct drm_pending_vblank_event *event,
9739 uint32_t page_flip_flags)
9740 {
9741 struct drm_device *dev = crtc->dev;
9742 struct drm_i915_private *dev_priv = dev->dev_private;
9743 struct drm_framebuffer *old_fb = crtc->primary->fb;
9744 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9745 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9746 struct drm_plane *primary = crtc->primary;
9747 enum pipe pipe = intel_crtc->pipe;
9748 struct intel_unpin_work *work;
9749 struct intel_engine_cs *ring;
9750 int ret;
9751
9752 /*
9753 * drm_mode_page_flip_ioctl() should already catch this, but double
9754 * check to be safe. In the future we may enable pageflipping from
9755 * a disabled primary plane.
9756 */
9757 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9758 return -EBUSY;
9759
9760 /* Can't change pixel format via MI display flips. */
9761 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9762 return -EINVAL;
9763
9764 /*
9765 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9766 * Note that pitch changes could also affect these register.
9767 */
9768 if (INTEL_INFO(dev)->gen > 3 &&
9769 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9770 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9771 return -EINVAL;
9772
9773 if (i915_terminally_wedged(&dev_priv->gpu_error))
9774 goto out_hang;
9775
9776 work = kzalloc(sizeof(*work), GFP_KERNEL);
9777 if (work == NULL)
9778 return -ENOMEM;
9779
9780 work->event = event;
9781 work->crtc = crtc;
9782 work->old_fb = old_fb;
9783 INIT_WORK(&work->work, intel_unpin_work_fn);
9784
9785 ret = drm_crtc_vblank_get(crtc);
9786 if (ret)
9787 goto free_work;
9788
9789 /* We borrow the event spin lock for protecting unpin_work */
9790 spin_lock_irq(&dev->event_lock);
9791 if (intel_crtc->unpin_work) {
9792 /* Before declaring the flip queue wedged, check if
9793 * the hardware completed the operation behind our backs.
9794 */
9795 if (__intel_pageflip_stall_check(dev, crtc)) {
9796 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9797 page_flip_completed(intel_crtc);
9798 } else {
9799 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9800 spin_unlock_irq(&dev->event_lock);
9801
9802 drm_crtc_vblank_put(crtc);
9803 kfree(work);
9804 return -EBUSY;
9805 }
9806 }
9807 intel_crtc->unpin_work = work;
9808 spin_unlock_irq(&dev->event_lock);
9809
9810 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9811 flush_workqueue(dev_priv->wq);
9812
9813 ret = i915_mutex_lock_interruptible(dev);
9814 if (ret)
9815 goto cleanup;
9816
9817 /* Reference the objects for the scheduled work. */
9818 drm_framebuffer_reference(work->old_fb);
9819 drm_gem_object_reference(&obj->base);
9820
9821 crtc->primary->fb = fb;
9822 update_state_fb(crtc->primary);
9823
9824 work->pending_flip_obj = obj;
9825
9826 atomic_inc(&intel_crtc->unpin_work_count);
9827 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9828
9829 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9830 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9831
9832 if (IS_VALLEYVIEW(dev)) {
9833 ring = &dev_priv->ring[BCS];
9834 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
9835 /* vlv: DISPLAY_FLIP fails to change tiling */
9836 ring = NULL;
9837 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9838 ring = &dev_priv->ring[BCS];
9839 } else if (INTEL_INFO(dev)->gen >= 7) {
9840 ring = i915_gem_request_get_ring(obj->last_read_req);
9841 if (ring == NULL || ring->id != RCS)
9842 ring = &dev_priv->ring[BCS];
9843 } else {
9844 ring = &dev_priv->ring[RCS];
9845 }
9846
9847 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9848 if (ret)
9849 goto cleanup_pending;
9850
9851 work->gtt_offset =
9852 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9853
9854 if (use_mmio_flip(ring, obj)) {
9855 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9856 page_flip_flags);
9857 if (ret)
9858 goto cleanup_unpin;
9859
9860 i915_gem_request_assign(&work->flip_queued_req,
9861 obj->last_write_req);
9862 } else {
9863 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9864 page_flip_flags);
9865 if (ret)
9866 goto cleanup_unpin;
9867
9868 i915_gem_request_assign(&work->flip_queued_req,
9869 intel_ring_get_request(ring));
9870 }
9871
9872 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9873 work->enable_stall_check = true;
9874
9875 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
9876 INTEL_FRONTBUFFER_PRIMARY(pipe));
9877
9878 intel_fbc_disable(dev);
9879 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9880 mutex_unlock(&dev->struct_mutex);
9881
9882 trace_i915_flip_request(intel_crtc->plane, obj);
9883
9884 return 0;
9885
9886 cleanup_unpin:
9887 intel_unpin_fb_obj(obj);
9888 cleanup_pending:
9889 atomic_dec(&intel_crtc->unpin_work_count);
9890 crtc->primary->fb = old_fb;
9891 update_state_fb(crtc->primary);
9892 drm_framebuffer_unreference(work->old_fb);
9893 drm_gem_object_unreference(&obj->base);
9894 mutex_unlock(&dev->struct_mutex);
9895
9896 cleanup:
9897 spin_lock_irq(&dev->event_lock);
9898 intel_crtc->unpin_work = NULL;
9899 spin_unlock_irq(&dev->event_lock);
9900
9901 drm_crtc_vblank_put(crtc);
9902 free_work:
9903 kfree(work);
9904
9905 if (ret == -EIO) {
9906 out_hang:
9907 ret = intel_plane_restore(primary);
9908 if (ret == 0 && event) {
9909 spin_lock_irq(&dev->event_lock);
9910 drm_send_vblank_event(dev, pipe, event);
9911 spin_unlock_irq(&dev->event_lock);
9912 }
9913 }
9914 return ret;
9915 }
9916
9917 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9918 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9919 .load_lut = intel_crtc_load_lut,
9920 .atomic_begin = intel_begin_crtc_commit,
9921 .atomic_flush = intel_finish_crtc_commit,
9922 };
9923
9924 /**
9925 * intel_modeset_update_staged_output_state
9926 *
9927 * Updates the staged output configuration state, e.g. after we've read out the
9928 * current hw state.
9929 */
9930 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9931 {
9932 struct intel_crtc *crtc;
9933 struct intel_encoder *encoder;
9934 struct intel_connector *connector;
9935
9936 list_for_each_entry(connector, &dev->mode_config.connector_list,
9937 base.head) {
9938 connector->new_encoder =
9939 to_intel_encoder(connector->base.encoder);
9940 }
9941
9942 for_each_intel_encoder(dev, encoder) {
9943 encoder->new_crtc =
9944 to_intel_crtc(encoder->base.crtc);
9945 }
9946
9947 for_each_intel_crtc(dev, crtc) {
9948 crtc->new_enabled = crtc->base.enabled;
9949
9950 if (crtc->new_enabled)
9951 crtc->new_config = crtc->config;
9952 else
9953 crtc->new_config = NULL;
9954 }
9955 }
9956
9957 /**
9958 * intel_modeset_commit_output_state
9959 *
9960 * This function copies the stage display pipe configuration to the real one.
9961 */
9962 static void intel_modeset_commit_output_state(struct drm_device *dev)
9963 {
9964 struct intel_crtc *crtc;
9965 struct intel_encoder *encoder;
9966 struct intel_connector *connector;
9967
9968 list_for_each_entry(connector, &dev->mode_config.connector_list,
9969 base.head) {
9970 connector->base.encoder = &connector->new_encoder->base;
9971 }
9972
9973 for_each_intel_encoder(dev, encoder) {
9974 encoder->base.crtc = &encoder->new_crtc->base;
9975 }
9976
9977 for_each_intel_crtc(dev, crtc) {
9978 crtc->base.enabled = crtc->new_enabled;
9979 }
9980 }
9981
9982 static void
9983 connected_sink_compute_bpp(struct intel_connector *connector,
9984 struct intel_crtc_state *pipe_config)
9985 {
9986 int bpp = pipe_config->pipe_bpp;
9987
9988 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9989 connector->base.base.id,
9990 connector->base.name);
9991
9992 /* Don't use an invalid EDID bpc value */
9993 if (connector->base.display_info.bpc &&
9994 connector->base.display_info.bpc * 3 < bpp) {
9995 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9996 bpp, connector->base.display_info.bpc*3);
9997 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9998 }
9999
10000 /* Clamp bpp to 8 on screens without EDID 1.4 */
10001 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10002 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10003 bpp);
10004 pipe_config->pipe_bpp = 24;
10005 }
10006 }
10007
10008 static int
10009 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10010 struct drm_framebuffer *fb,
10011 struct intel_crtc_state *pipe_config)
10012 {
10013 struct drm_device *dev = crtc->base.dev;
10014 struct intel_connector *connector;
10015 int bpp;
10016
10017 switch (fb->pixel_format) {
10018 case DRM_FORMAT_C8:
10019 bpp = 8*3; /* since we go through a colormap */
10020 break;
10021 case DRM_FORMAT_XRGB1555:
10022 case DRM_FORMAT_ARGB1555:
10023 /* checked in intel_framebuffer_init already */
10024 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10025 return -EINVAL;
10026 case DRM_FORMAT_RGB565:
10027 bpp = 6*3; /* min is 18bpp */
10028 break;
10029 case DRM_FORMAT_XBGR8888:
10030 case DRM_FORMAT_ABGR8888:
10031 /* checked in intel_framebuffer_init already */
10032 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10033 return -EINVAL;
10034 case DRM_FORMAT_XRGB8888:
10035 case DRM_FORMAT_ARGB8888:
10036 bpp = 8*3;
10037 break;
10038 case DRM_FORMAT_XRGB2101010:
10039 case DRM_FORMAT_ARGB2101010:
10040 case DRM_FORMAT_XBGR2101010:
10041 case DRM_FORMAT_ABGR2101010:
10042 /* checked in intel_framebuffer_init already */
10043 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10044 return -EINVAL;
10045 bpp = 10*3;
10046 break;
10047 /* TODO: gen4+ supports 16 bpc floating point, too. */
10048 default:
10049 DRM_DEBUG_KMS("unsupported depth\n");
10050 return -EINVAL;
10051 }
10052
10053 pipe_config->pipe_bpp = bpp;
10054
10055 /* Clamp display bpp to EDID value */
10056 list_for_each_entry(connector, &dev->mode_config.connector_list,
10057 base.head) {
10058 if (!connector->new_encoder ||
10059 connector->new_encoder->new_crtc != crtc)
10060 continue;
10061
10062 connected_sink_compute_bpp(connector, pipe_config);
10063 }
10064
10065 return bpp;
10066 }
10067
10068 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10069 {
10070 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10071 "type: 0x%x flags: 0x%x\n",
10072 mode->crtc_clock,
10073 mode->crtc_hdisplay, mode->crtc_hsync_start,
10074 mode->crtc_hsync_end, mode->crtc_htotal,
10075 mode->crtc_vdisplay, mode->crtc_vsync_start,
10076 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10077 }
10078
10079 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10080 struct intel_crtc_state *pipe_config,
10081 const char *context)
10082 {
10083 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10084 context, pipe_name(crtc->pipe));
10085
10086 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10087 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10088 pipe_config->pipe_bpp, pipe_config->dither);
10089 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10090 pipe_config->has_pch_encoder,
10091 pipe_config->fdi_lanes,
10092 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10093 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10094 pipe_config->fdi_m_n.tu);
10095 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10096 pipe_config->has_dp_encoder,
10097 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10098 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10099 pipe_config->dp_m_n.tu);
10100
10101 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10102 pipe_config->has_dp_encoder,
10103 pipe_config->dp_m2_n2.gmch_m,
10104 pipe_config->dp_m2_n2.gmch_n,
10105 pipe_config->dp_m2_n2.link_m,
10106 pipe_config->dp_m2_n2.link_n,
10107 pipe_config->dp_m2_n2.tu);
10108
10109 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10110 pipe_config->has_audio,
10111 pipe_config->has_infoframe);
10112
10113 DRM_DEBUG_KMS("requested mode:\n");
10114 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10115 DRM_DEBUG_KMS("adjusted mode:\n");
10116 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10117 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10118 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10119 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10120 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10121 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10122 pipe_config->gmch_pfit.control,
10123 pipe_config->gmch_pfit.pgm_ratios,
10124 pipe_config->gmch_pfit.lvds_border_bits);
10125 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10126 pipe_config->pch_pfit.pos,
10127 pipe_config->pch_pfit.size,
10128 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10129 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10130 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10131 }
10132
10133 static bool encoders_cloneable(const struct intel_encoder *a,
10134 const struct intel_encoder *b)
10135 {
10136 /* masks could be asymmetric, so check both ways */
10137 return a == b || (a->cloneable & (1 << b->type) &&
10138 b->cloneable & (1 << a->type));
10139 }
10140
10141 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10142 struct intel_encoder *encoder)
10143 {
10144 struct drm_device *dev = crtc->base.dev;
10145 struct intel_encoder *source_encoder;
10146
10147 for_each_intel_encoder(dev, source_encoder) {
10148 if (source_encoder->new_crtc != crtc)
10149 continue;
10150
10151 if (!encoders_cloneable(encoder, source_encoder))
10152 return false;
10153 }
10154
10155 return true;
10156 }
10157
10158 static bool check_encoder_cloning(struct intel_crtc *crtc)
10159 {
10160 struct drm_device *dev = crtc->base.dev;
10161 struct intel_encoder *encoder;
10162
10163 for_each_intel_encoder(dev, encoder) {
10164 if (encoder->new_crtc != crtc)
10165 continue;
10166
10167 if (!check_single_encoder_cloning(crtc, encoder))
10168 return false;
10169 }
10170
10171 return true;
10172 }
10173
10174 static bool check_digital_port_conflicts(struct drm_device *dev)
10175 {
10176 struct intel_connector *connector;
10177 unsigned int used_ports = 0;
10178
10179 /*
10180 * Walk the connector list instead of the encoder
10181 * list to detect the problem on ddi platforms
10182 * where there's just one encoder per digital port.
10183 */
10184 list_for_each_entry(connector,
10185 &dev->mode_config.connector_list, base.head) {
10186 struct intel_encoder *encoder = connector->new_encoder;
10187
10188 if (!encoder)
10189 continue;
10190
10191 WARN_ON(!encoder->new_crtc);
10192
10193 switch (encoder->type) {
10194 unsigned int port_mask;
10195 case INTEL_OUTPUT_UNKNOWN:
10196 if (WARN_ON(!HAS_DDI(dev)))
10197 break;
10198 case INTEL_OUTPUT_DISPLAYPORT:
10199 case INTEL_OUTPUT_HDMI:
10200 case INTEL_OUTPUT_EDP:
10201 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10202
10203 /* the same port mustn't appear more than once */
10204 if (used_ports & port_mask)
10205 return false;
10206
10207 used_ports |= port_mask;
10208 default:
10209 break;
10210 }
10211 }
10212
10213 return true;
10214 }
10215
10216 static struct intel_crtc_state *
10217 intel_modeset_pipe_config(struct drm_crtc *crtc,
10218 struct drm_framebuffer *fb,
10219 struct drm_display_mode *mode)
10220 {
10221 struct drm_device *dev = crtc->dev;
10222 struct intel_encoder *encoder;
10223 struct intel_crtc_state *pipe_config;
10224 int plane_bpp, ret = -EINVAL;
10225 bool retry = true;
10226
10227 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10228 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10229 return ERR_PTR(-EINVAL);
10230 }
10231
10232 if (!check_digital_port_conflicts(dev)) {
10233 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10234 return ERR_PTR(-EINVAL);
10235 }
10236
10237 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10238 if (!pipe_config)
10239 return ERR_PTR(-ENOMEM);
10240
10241 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10242 drm_mode_copy(&pipe_config->base.mode, mode);
10243
10244 pipe_config->cpu_transcoder =
10245 (enum transcoder) to_intel_crtc(crtc)->pipe;
10246 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10247
10248 /*
10249 * Sanitize sync polarity flags based on requested ones. If neither
10250 * positive or negative polarity is requested, treat this as meaning
10251 * negative polarity.
10252 */
10253 if (!(pipe_config->base.adjusted_mode.flags &
10254 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10255 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10256
10257 if (!(pipe_config->base.adjusted_mode.flags &
10258 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10259 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10260
10261 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10262 * plane pixel format and any sink constraints into account. Returns the
10263 * source plane bpp so that dithering can be selected on mismatches
10264 * after encoders and crtc also have had their say. */
10265 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10266 fb, pipe_config);
10267 if (plane_bpp < 0)
10268 goto fail;
10269
10270 /*
10271 * Determine the real pipe dimensions. Note that stereo modes can
10272 * increase the actual pipe size due to the frame doubling and
10273 * insertion of additional space for blanks between the frame. This
10274 * is stored in the crtc timings. We use the requested mode to do this
10275 * computation to clearly distinguish it from the adjusted mode, which
10276 * can be changed by the connectors in the below retry loop.
10277 */
10278 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10279 &pipe_config->pipe_src_w,
10280 &pipe_config->pipe_src_h);
10281
10282 encoder_retry:
10283 /* Ensure the port clock defaults are reset when retrying. */
10284 pipe_config->port_clock = 0;
10285 pipe_config->pixel_multiplier = 1;
10286
10287 /* Fill in default crtc timings, allow encoders to overwrite them. */
10288 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10289 CRTC_STEREO_DOUBLE);
10290
10291 /* Pass our mode to the connectors and the CRTC to give them a chance to
10292 * adjust it according to limitations or connector properties, and also
10293 * a chance to reject the mode entirely.
10294 */
10295 for_each_intel_encoder(dev, encoder) {
10296
10297 if (&encoder->new_crtc->base != crtc)
10298 continue;
10299
10300 if (!(encoder->compute_config(encoder, pipe_config))) {
10301 DRM_DEBUG_KMS("Encoder config failure\n");
10302 goto fail;
10303 }
10304 }
10305
10306 /* Set default port clock if not overwritten by the encoder. Needs to be
10307 * done afterwards in case the encoder adjusts the mode. */
10308 if (!pipe_config->port_clock)
10309 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10310 * pipe_config->pixel_multiplier;
10311
10312 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10313 if (ret < 0) {
10314 DRM_DEBUG_KMS("CRTC fixup failed\n");
10315 goto fail;
10316 }
10317
10318 if (ret == RETRY) {
10319 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10320 ret = -EINVAL;
10321 goto fail;
10322 }
10323
10324 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10325 retry = false;
10326 goto encoder_retry;
10327 }
10328
10329 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10330 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10331 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10332
10333 return pipe_config;
10334 fail:
10335 kfree(pipe_config);
10336 return ERR_PTR(ret);
10337 }
10338
10339 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10340 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10341 static void
10342 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10343 unsigned *prepare_pipes, unsigned *disable_pipes)
10344 {
10345 struct intel_crtc *intel_crtc;
10346 struct drm_device *dev = crtc->dev;
10347 struct intel_encoder *encoder;
10348 struct intel_connector *connector;
10349 struct drm_crtc *tmp_crtc;
10350
10351 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10352
10353 /* Check which crtcs have changed outputs connected to them, these need
10354 * to be part of the prepare_pipes mask. We don't (yet) support global
10355 * modeset across multiple crtcs, so modeset_pipes will only have one
10356 * bit set at most. */
10357 list_for_each_entry(connector, &dev->mode_config.connector_list,
10358 base.head) {
10359 if (connector->base.encoder == &connector->new_encoder->base)
10360 continue;
10361
10362 if (connector->base.encoder) {
10363 tmp_crtc = connector->base.encoder->crtc;
10364
10365 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10366 }
10367
10368 if (connector->new_encoder)
10369 *prepare_pipes |=
10370 1 << connector->new_encoder->new_crtc->pipe;
10371 }
10372
10373 for_each_intel_encoder(dev, encoder) {
10374 if (encoder->base.crtc == &encoder->new_crtc->base)
10375 continue;
10376
10377 if (encoder->base.crtc) {
10378 tmp_crtc = encoder->base.crtc;
10379
10380 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10381 }
10382
10383 if (encoder->new_crtc)
10384 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10385 }
10386
10387 /* Check for pipes that will be enabled/disabled ... */
10388 for_each_intel_crtc(dev, intel_crtc) {
10389 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10390 continue;
10391
10392 if (!intel_crtc->new_enabled)
10393 *disable_pipes |= 1 << intel_crtc->pipe;
10394 else
10395 *prepare_pipes |= 1 << intel_crtc->pipe;
10396 }
10397
10398
10399 /* set_mode is also used to update properties on life display pipes. */
10400 intel_crtc = to_intel_crtc(crtc);
10401 if (intel_crtc->new_enabled)
10402 *prepare_pipes |= 1 << intel_crtc->pipe;
10403
10404 /*
10405 * For simplicity do a full modeset on any pipe where the output routing
10406 * changed. We could be more clever, but that would require us to be
10407 * more careful with calling the relevant encoder->mode_set functions.
10408 */
10409 if (*prepare_pipes)
10410 *modeset_pipes = *prepare_pipes;
10411
10412 /* ... and mask these out. */
10413 *modeset_pipes &= ~(*disable_pipes);
10414 *prepare_pipes &= ~(*disable_pipes);
10415
10416 /*
10417 * HACK: We don't (yet) fully support global modesets. intel_set_config
10418 * obies this rule, but the modeset restore mode of
10419 * intel_modeset_setup_hw_state does not.
10420 */
10421 *modeset_pipes &= 1 << intel_crtc->pipe;
10422 *prepare_pipes &= 1 << intel_crtc->pipe;
10423
10424 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10425 *modeset_pipes, *prepare_pipes, *disable_pipes);
10426 }
10427
10428 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10429 {
10430 struct drm_encoder *encoder;
10431 struct drm_device *dev = crtc->dev;
10432
10433 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10434 if (encoder->crtc == crtc)
10435 return true;
10436
10437 return false;
10438 }
10439
10440 static void
10441 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10442 {
10443 struct drm_i915_private *dev_priv = dev->dev_private;
10444 struct intel_encoder *intel_encoder;
10445 struct intel_crtc *intel_crtc;
10446 struct drm_connector *connector;
10447
10448 intel_shared_dpll_commit(dev_priv);
10449
10450 for_each_intel_encoder(dev, intel_encoder) {
10451 if (!intel_encoder->base.crtc)
10452 continue;
10453
10454 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10455
10456 if (prepare_pipes & (1 << intel_crtc->pipe))
10457 intel_encoder->connectors_active = false;
10458 }
10459
10460 intel_modeset_commit_output_state(dev);
10461
10462 /* Double check state. */
10463 for_each_intel_crtc(dev, intel_crtc) {
10464 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10465 WARN_ON(intel_crtc->new_config &&
10466 intel_crtc->new_config != intel_crtc->config);
10467 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10468 }
10469
10470 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10471 if (!connector->encoder || !connector->encoder->crtc)
10472 continue;
10473
10474 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10475
10476 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10477 struct drm_property *dpms_property =
10478 dev->mode_config.dpms_property;
10479
10480 connector->dpms = DRM_MODE_DPMS_ON;
10481 drm_object_property_set_value(&connector->base,
10482 dpms_property,
10483 DRM_MODE_DPMS_ON);
10484
10485 intel_encoder = to_intel_encoder(connector->encoder);
10486 intel_encoder->connectors_active = true;
10487 }
10488 }
10489
10490 }
10491
10492 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10493 {
10494 int diff;
10495
10496 if (clock1 == clock2)
10497 return true;
10498
10499 if (!clock1 || !clock2)
10500 return false;
10501
10502 diff = abs(clock1 - clock2);
10503
10504 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10505 return true;
10506
10507 return false;
10508 }
10509
10510 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10511 list_for_each_entry((intel_crtc), \
10512 &(dev)->mode_config.crtc_list, \
10513 base.head) \
10514 if (mask & (1 <<(intel_crtc)->pipe))
10515
10516 static bool
10517 intel_pipe_config_compare(struct drm_device *dev,
10518 struct intel_crtc_state *current_config,
10519 struct intel_crtc_state *pipe_config)
10520 {
10521 #define PIPE_CONF_CHECK_X(name) \
10522 if (current_config->name != pipe_config->name) { \
10523 DRM_ERROR("mismatch in " #name " " \
10524 "(expected 0x%08x, found 0x%08x)\n", \
10525 current_config->name, \
10526 pipe_config->name); \
10527 return false; \
10528 }
10529
10530 #define PIPE_CONF_CHECK_I(name) \
10531 if (current_config->name != pipe_config->name) { \
10532 DRM_ERROR("mismatch in " #name " " \
10533 "(expected %i, found %i)\n", \
10534 current_config->name, \
10535 pipe_config->name); \
10536 return false; \
10537 }
10538
10539 /* This is required for BDW+ where there is only one set of registers for
10540 * switching between high and low RR.
10541 * This macro can be used whenever a comparison has to be made between one
10542 * hw state and multiple sw state variables.
10543 */
10544 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10545 if ((current_config->name != pipe_config->name) && \
10546 (current_config->alt_name != pipe_config->name)) { \
10547 DRM_ERROR("mismatch in " #name " " \
10548 "(expected %i or %i, found %i)\n", \
10549 current_config->name, \
10550 current_config->alt_name, \
10551 pipe_config->name); \
10552 return false; \
10553 }
10554
10555 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10556 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10557 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10558 "(expected %i, found %i)\n", \
10559 current_config->name & (mask), \
10560 pipe_config->name & (mask)); \
10561 return false; \
10562 }
10563
10564 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10565 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10566 DRM_ERROR("mismatch in " #name " " \
10567 "(expected %i, found %i)\n", \
10568 current_config->name, \
10569 pipe_config->name); \
10570 return false; \
10571 }
10572
10573 #define PIPE_CONF_QUIRK(quirk) \
10574 ((current_config->quirks | pipe_config->quirks) & (quirk))
10575
10576 PIPE_CONF_CHECK_I(cpu_transcoder);
10577
10578 PIPE_CONF_CHECK_I(has_pch_encoder);
10579 PIPE_CONF_CHECK_I(fdi_lanes);
10580 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10581 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10582 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10583 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10584 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10585
10586 PIPE_CONF_CHECK_I(has_dp_encoder);
10587
10588 if (INTEL_INFO(dev)->gen < 8) {
10589 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10590 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10591 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10592 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10593 PIPE_CONF_CHECK_I(dp_m_n.tu);
10594
10595 if (current_config->has_drrs) {
10596 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10597 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10598 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10599 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10600 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10601 }
10602 } else {
10603 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10604 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10605 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10606 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10607 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10608 }
10609
10610 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10611 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10612 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10613 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10614 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10615 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10616
10617 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10618 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10619 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10620 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10621 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10622 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10623
10624 PIPE_CONF_CHECK_I(pixel_multiplier);
10625 PIPE_CONF_CHECK_I(has_hdmi_sink);
10626 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10627 IS_VALLEYVIEW(dev))
10628 PIPE_CONF_CHECK_I(limited_color_range);
10629 PIPE_CONF_CHECK_I(has_infoframe);
10630
10631 PIPE_CONF_CHECK_I(has_audio);
10632
10633 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10634 DRM_MODE_FLAG_INTERLACE);
10635
10636 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10637 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10638 DRM_MODE_FLAG_PHSYNC);
10639 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10640 DRM_MODE_FLAG_NHSYNC);
10641 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10642 DRM_MODE_FLAG_PVSYNC);
10643 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10644 DRM_MODE_FLAG_NVSYNC);
10645 }
10646
10647 PIPE_CONF_CHECK_I(pipe_src_w);
10648 PIPE_CONF_CHECK_I(pipe_src_h);
10649
10650 /*
10651 * FIXME: BIOS likes to set up a cloned config with lvds+external
10652 * screen. Since we don't yet re-compute the pipe config when moving
10653 * just the lvds port away to another pipe the sw tracking won't match.
10654 *
10655 * Proper atomic modesets with recomputed global state will fix this.
10656 * Until then just don't check gmch state for inherited modes.
10657 */
10658 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10659 PIPE_CONF_CHECK_I(gmch_pfit.control);
10660 /* pfit ratios are autocomputed by the hw on gen4+ */
10661 if (INTEL_INFO(dev)->gen < 4)
10662 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10663 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10664 }
10665
10666 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10667 if (current_config->pch_pfit.enabled) {
10668 PIPE_CONF_CHECK_I(pch_pfit.pos);
10669 PIPE_CONF_CHECK_I(pch_pfit.size);
10670 }
10671
10672 /* BDW+ don't expose a synchronous way to read the state */
10673 if (IS_HASWELL(dev))
10674 PIPE_CONF_CHECK_I(ips_enabled);
10675
10676 PIPE_CONF_CHECK_I(double_wide);
10677
10678 PIPE_CONF_CHECK_X(ddi_pll_sel);
10679
10680 PIPE_CONF_CHECK_I(shared_dpll);
10681 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10682 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10683 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10684 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10685 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10686 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10687 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10688 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10689
10690 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10691 PIPE_CONF_CHECK_I(pipe_bpp);
10692
10693 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10694 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10695
10696 #undef PIPE_CONF_CHECK_X
10697 #undef PIPE_CONF_CHECK_I
10698 #undef PIPE_CONF_CHECK_I_ALT
10699 #undef PIPE_CONF_CHECK_FLAGS
10700 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10701 #undef PIPE_CONF_QUIRK
10702
10703 return true;
10704 }
10705
10706 static void check_wm_state(struct drm_device *dev)
10707 {
10708 struct drm_i915_private *dev_priv = dev->dev_private;
10709 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10710 struct intel_crtc *intel_crtc;
10711 int plane;
10712
10713 if (INTEL_INFO(dev)->gen < 9)
10714 return;
10715
10716 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10717 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10718
10719 for_each_intel_crtc(dev, intel_crtc) {
10720 struct skl_ddb_entry *hw_entry, *sw_entry;
10721 const enum pipe pipe = intel_crtc->pipe;
10722
10723 if (!intel_crtc->active)
10724 continue;
10725
10726 /* planes */
10727 for_each_plane(pipe, plane) {
10728 hw_entry = &hw_ddb.plane[pipe][plane];
10729 sw_entry = &sw_ddb->plane[pipe][plane];
10730
10731 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10732 continue;
10733
10734 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10735 "(expected (%u,%u), found (%u,%u))\n",
10736 pipe_name(pipe), plane + 1,
10737 sw_entry->start, sw_entry->end,
10738 hw_entry->start, hw_entry->end);
10739 }
10740
10741 /* cursor */
10742 hw_entry = &hw_ddb.cursor[pipe];
10743 sw_entry = &sw_ddb->cursor[pipe];
10744
10745 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10746 continue;
10747
10748 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10749 "(expected (%u,%u), found (%u,%u))\n",
10750 pipe_name(pipe),
10751 sw_entry->start, sw_entry->end,
10752 hw_entry->start, hw_entry->end);
10753 }
10754 }
10755
10756 static void
10757 check_connector_state(struct drm_device *dev)
10758 {
10759 struct intel_connector *connector;
10760
10761 list_for_each_entry(connector, &dev->mode_config.connector_list,
10762 base.head) {
10763 /* This also checks the encoder/connector hw state with the
10764 * ->get_hw_state callbacks. */
10765 intel_connector_check_state(connector);
10766
10767 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10768 "connector's staged encoder doesn't match current encoder\n");
10769 }
10770 }
10771
10772 static void
10773 check_encoder_state(struct drm_device *dev)
10774 {
10775 struct intel_encoder *encoder;
10776 struct intel_connector *connector;
10777
10778 for_each_intel_encoder(dev, encoder) {
10779 bool enabled = false;
10780 bool active = false;
10781 enum pipe pipe, tracked_pipe;
10782
10783 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10784 encoder->base.base.id,
10785 encoder->base.name);
10786
10787 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10788 "encoder's stage crtc doesn't match current crtc\n");
10789 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10790 "encoder's active_connectors set, but no crtc\n");
10791
10792 list_for_each_entry(connector, &dev->mode_config.connector_list,
10793 base.head) {
10794 if (connector->base.encoder != &encoder->base)
10795 continue;
10796 enabled = true;
10797 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10798 active = true;
10799 }
10800 /*
10801 * for MST connectors if we unplug the connector is gone
10802 * away but the encoder is still connected to a crtc
10803 * until a modeset happens in response to the hotplug.
10804 */
10805 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10806 continue;
10807
10808 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10809 "encoder's enabled state mismatch "
10810 "(expected %i, found %i)\n",
10811 !!encoder->base.crtc, enabled);
10812 I915_STATE_WARN(active && !encoder->base.crtc,
10813 "active encoder with no crtc\n");
10814
10815 I915_STATE_WARN(encoder->connectors_active != active,
10816 "encoder's computed active state doesn't match tracked active state "
10817 "(expected %i, found %i)\n", active, encoder->connectors_active);
10818
10819 active = encoder->get_hw_state(encoder, &pipe);
10820 I915_STATE_WARN(active != encoder->connectors_active,
10821 "encoder's hw state doesn't match sw tracking "
10822 "(expected %i, found %i)\n",
10823 encoder->connectors_active, active);
10824
10825 if (!encoder->base.crtc)
10826 continue;
10827
10828 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10829 I915_STATE_WARN(active && pipe != tracked_pipe,
10830 "active encoder's pipe doesn't match"
10831 "(expected %i, found %i)\n",
10832 tracked_pipe, pipe);
10833
10834 }
10835 }
10836
10837 static void
10838 check_crtc_state(struct drm_device *dev)
10839 {
10840 struct drm_i915_private *dev_priv = dev->dev_private;
10841 struct intel_crtc *crtc;
10842 struct intel_encoder *encoder;
10843 struct intel_crtc_state pipe_config;
10844
10845 for_each_intel_crtc(dev, crtc) {
10846 bool enabled = false;
10847 bool active = false;
10848
10849 memset(&pipe_config, 0, sizeof(pipe_config));
10850
10851 DRM_DEBUG_KMS("[CRTC:%d]\n",
10852 crtc->base.base.id);
10853
10854 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10855 "active crtc, but not enabled in sw tracking\n");
10856
10857 for_each_intel_encoder(dev, encoder) {
10858 if (encoder->base.crtc != &crtc->base)
10859 continue;
10860 enabled = true;
10861 if (encoder->connectors_active)
10862 active = true;
10863 }
10864
10865 I915_STATE_WARN(active != crtc->active,
10866 "crtc's computed active state doesn't match tracked active state "
10867 "(expected %i, found %i)\n", active, crtc->active);
10868 I915_STATE_WARN(enabled != crtc->base.enabled,
10869 "crtc's computed enabled state doesn't match tracked enabled state "
10870 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10871
10872 active = dev_priv->display.get_pipe_config(crtc,
10873 &pipe_config);
10874
10875 /* hw state is inconsistent with the pipe quirk */
10876 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10877 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10878 active = crtc->active;
10879
10880 for_each_intel_encoder(dev, encoder) {
10881 enum pipe pipe;
10882 if (encoder->base.crtc != &crtc->base)
10883 continue;
10884 if (encoder->get_hw_state(encoder, &pipe))
10885 encoder->get_config(encoder, &pipe_config);
10886 }
10887
10888 I915_STATE_WARN(crtc->active != active,
10889 "crtc active state doesn't match with hw state "
10890 "(expected %i, found %i)\n", crtc->active, active);
10891
10892 if (active &&
10893 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
10894 I915_STATE_WARN(1, "pipe state doesn't match!\n");
10895 intel_dump_pipe_config(crtc, &pipe_config,
10896 "[hw state]");
10897 intel_dump_pipe_config(crtc, crtc->config,
10898 "[sw state]");
10899 }
10900 }
10901 }
10902
10903 static void
10904 check_shared_dpll_state(struct drm_device *dev)
10905 {
10906 struct drm_i915_private *dev_priv = dev->dev_private;
10907 struct intel_crtc *crtc;
10908 struct intel_dpll_hw_state dpll_hw_state;
10909 int i;
10910
10911 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10912 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10913 int enabled_crtcs = 0, active_crtcs = 0;
10914 bool active;
10915
10916 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10917
10918 DRM_DEBUG_KMS("%s\n", pll->name);
10919
10920 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10921
10922 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10923 "more active pll users than references: %i vs %i\n",
10924 pll->active, hweight32(pll->config.crtc_mask));
10925 I915_STATE_WARN(pll->active && !pll->on,
10926 "pll in active use but not on in sw tracking\n");
10927 I915_STATE_WARN(pll->on && !pll->active,
10928 "pll in on but not on in use in sw tracking\n");
10929 I915_STATE_WARN(pll->on != active,
10930 "pll on state mismatch (expected %i, found %i)\n",
10931 pll->on, active);
10932
10933 for_each_intel_crtc(dev, crtc) {
10934 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10935 enabled_crtcs++;
10936 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10937 active_crtcs++;
10938 }
10939 I915_STATE_WARN(pll->active != active_crtcs,
10940 "pll active crtcs mismatch (expected %i, found %i)\n",
10941 pll->active, active_crtcs);
10942 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10943 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10944 hweight32(pll->config.crtc_mask), enabled_crtcs);
10945
10946 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10947 sizeof(dpll_hw_state)),
10948 "pll hw state mismatch\n");
10949 }
10950 }
10951
10952 void
10953 intel_modeset_check_state(struct drm_device *dev)
10954 {
10955 check_wm_state(dev);
10956 check_connector_state(dev);
10957 check_encoder_state(dev);
10958 check_crtc_state(dev);
10959 check_shared_dpll_state(dev);
10960 }
10961
10962 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
10963 int dotclock)
10964 {
10965 /*
10966 * FDI already provided one idea for the dotclock.
10967 * Yell if the encoder disagrees.
10968 */
10969 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
10970 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10971 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
10972 }
10973
10974 static void update_scanline_offset(struct intel_crtc *crtc)
10975 {
10976 struct drm_device *dev = crtc->base.dev;
10977
10978 /*
10979 * The scanline counter increments at the leading edge of hsync.
10980 *
10981 * On most platforms it starts counting from vtotal-1 on the
10982 * first active line. That means the scanline counter value is
10983 * always one less than what we would expect. Ie. just after
10984 * start of vblank, which also occurs at start of hsync (on the
10985 * last active line), the scanline counter will read vblank_start-1.
10986 *
10987 * On gen2 the scanline counter starts counting from 1 instead
10988 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10989 * to keep the value positive), instead of adding one.
10990 *
10991 * On HSW+ the behaviour of the scanline counter depends on the output
10992 * type. For DP ports it behaves like most other platforms, but on HDMI
10993 * there's an extra 1 line difference. So we need to add two instead of
10994 * one to the value.
10995 */
10996 if (IS_GEN2(dev)) {
10997 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
10998 int vtotal;
10999
11000 vtotal = mode->crtc_vtotal;
11001 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11002 vtotal /= 2;
11003
11004 crtc->scanline_offset = vtotal - 1;
11005 } else if (HAS_DDI(dev) &&
11006 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11007 crtc->scanline_offset = 2;
11008 } else
11009 crtc->scanline_offset = 1;
11010 }
11011
11012 static struct intel_crtc_state *
11013 intel_modeset_compute_config(struct drm_crtc *crtc,
11014 struct drm_display_mode *mode,
11015 struct drm_framebuffer *fb,
11016 unsigned *modeset_pipes,
11017 unsigned *prepare_pipes,
11018 unsigned *disable_pipes)
11019 {
11020 struct intel_crtc_state *pipe_config = NULL;
11021
11022 intel_modeset_affected_pipes(crtc, modeset_pipes,
11023 prepare_pipes, disable_pipes);
11024
11025 if ((*modeset_pipes) == 0)
11026 goto out;
11027
11028 /*
11029 * Note this needs changes when we start tracking multiple modes
11030 * and crtcs. At that point we'll need to compute the whole config
11031 * (i.e. one pipe_config for each crtc) rather than just the one
11032 * for this crtc.
11033 */
11034 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11035 if (IS_ERR(pipe_config)) {
11036 goto out;
11037 }
11038 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11039 "[modeset]");
11040
11041 out:
11042 return pipe_config;
11043 }
11044
11045 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11046 unsigned modeset_pipes,
11047 unsigned disable_pipes)
11048 {
11049 struct drm_i915_private *dev_priv = to_i915(dev);
11050 unsigned clear_pipes = modeset_pipes | disable_pipes;
11051 struct intel_crtc *intel_crtc;
11052 int ret = 0;
11053
11054 if (!dev_priv->display.crtc_compute_clock)
11055 return 0;
11056
11057 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11058 if (ret)
11059 goto done;
11060
11061 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11062 struct intel_crtc_state *state = intel_crtc->new_config;
11063 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11064 state);
11065 if (ret) {
11066 intel_shared_dpll_abort_config(dev_priv);
11067 goto done;
11068 }
11069 }
11070
11071 done:
11072 return ret;
11073 }
11074
11075 static int __intel_set_mode(struct drm_crtc *crtc,
11076 struct drm_display_mode *mode,
11077 int x, int y, struct drm_framebuffer *fb,
11078 struct intel_crtc_state *pipe_config,
11079 unsigned modeset_pipes,
11080 unsigned prepare_pipes,
11081 unsigned disable_pipes)
11082 {
11083 struct drm_device *dev = crtc->dev;
11084 struct drm_i915_private *dev_priv = dev->dev_private;
11085 struct drm_display_mode *saved_mode;
11086 struct intel_crtc *intel_crtc;
11087 int ret = 0;
11088
11089 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11090 if (!saved_mode)
11091 return -ENOMEM;
11092
11093 *saved_mode = crtc->mode;
11094
11095 if (modeset_pipes)
11096 to_intel_crtc(crtc)->new_config = pipe_config;
11097
11098 /*
11099 * See if the config requires any additional preparation, e.g.
11100 * to adjust global state with pipes off. We need to do this
11101 * here so we can get the modeset_pipe updated config for the new
11102 * mode set on this crtc. For other crtcs we need to use the
11103 * adjusted_mode bits in the crtc directly.
11104 */
11105 if (IS_VALLEYVIEW(dev)) {
11106 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11107
11108 /* may have added more to prepare_pipes than we should */
11109 prepare_pipes &= ~disable_pipes;
11110 }
11111
11112 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11113 if (ret)
11114 goto done;
11115
11116 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11117 intel_crtc_disable(&intel_crtc->base);
11118
11119 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11120 if (intel_crtc->base.enabled)
11121 dev_priv->display.crtc_disable(&intel_crtc->base);
11122 }
11123
11124 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11125 * to set it here already despite that we pass it down the callchain.
11126 *
11127 * Note we'll need to fix this up when we start tracking multiple
11128 * pipes; here we assume a single modeset_pipe and only track the
11129 * single crtc and mode.
11130 */
11131 if (modeset_pipes) {
11132 crtc->mode = *mode;
11133 /* mode_set/enable/disable functions rely on a correct pipe
11134 * config. */
11135 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11136
11137 /*
11138 * Calculate and store various constants which
11139 * are later needed by vblank and swap-completion
11140 * timestamping. They are derived from true hwmode.
11141 */
11142 drm_calc_timestamping_constants(crtc,
11143 &pipe_config->base.adjusted_mode);
11144 }
11145
11146 /* Only after disabling all output pipelines that will be changed can we
11147 * update the the output configuration. */
11148 intel_modeset_update_state(dev, prepare_pipes);
11149
11150 modeset_update_crtc_power_domains(dev);
11151
11152 /* Set up the DPLL and any encoders state that needs to adjust or depend
11153 * on the DPLL.
11154 */
11155 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11156 struct drm_plane *primary = intel_crtc->base.primary;
11157 int vdisplay, hdisplay;
11158
11159 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11160 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11161 fb, 0, 0,
11162 hdisplay, vdisplay,
11163 x << 16, y << 16,
11164 hdisplay << 16, vdisplay << 16);
11165 }
11166
11167 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11168 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11169 update_scanline_offset(intel_crtc);
11170
11171 dev_priv->display.crtc_enable(&intel_crtc->base);
11172 }
11173
11174 /* FIXME: add subpixel order */
11175 done:
11176 if (ret && crtc->enabled)
11177 crtc->mode = *saved_mode;
11178
11179 kfree(saved_mode);
11180 return ret;
11181 }
11182
11183 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11184 struct drm_display_mode *mode,
11185 int x, int y, struct drm_framebuffer *fb,
11186 struct intel_crtc_state *pipe_config,
11187 unsigned modeset_pipes,
11188 unsigned prepare_pipes,
11189 unsigned disable_pipes)
11190 {
11191 int ret;
11192
11193 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11194 prepare_pipes, disable_pipes);
11195
11196 if (ret == 0)
11197 intel_modeset_check_state(crtc->dev);
11198
11199 return ret;
11200 }
11201
11202 static int intel_set_mode(struct drm_crtc *crtc,
11203 struct drm_display_mode *mode,
11204 int x, int y, struct drm_framebuffer *fb)
11205 {
11206 struct intel_crtc_state *pipe_config;
11207 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11208
11209 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11210 &modeset_pipes,
11211 &prepare_pipes,
11212 &disable_pipes);
11213
11214 if (IS_ERR(pipe_config))
11215 return PTR_ERR(pipe_config);
11216
11217 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11218 modeset_pipes, prepare_pipes,
11219 disable_pipes);
11220 }
11221
11222 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11223 {
11224 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11225 }
11226
11227 #undef for_each_intel_crtc_masked
11228
11229 static void intel_set_config_free(struct intel_set_config *config)
11230 {
11231 if (!config)
11232 return;
11233
11234 kfree(config->save_connector_encoders);
11235 kfree(config->save_encoder_crtcs);
11236 kfree(config->save_crtc_enabled);
11237 kfree(config);
11238 }
11239
11240 static int intel_set_config_save_state(struct drm_device *dev,
11241 struct intel_set_config *config)
11242 {
11243 struct drm_crtc *crtc;
11244 struct drm_encoder *encoder;
11245 struct drm_connector *connector;
11246 int count;
11247
11248 config->save_crtc_enabled =
11249 kcalloc(dev->mode_config.num_crtc,
11250 sizeof(bool), GFP_KERNEL);
11251 if (!config->save_crtc_enabled)
11252 return -ENOMEM;
11253
11254 config->save_encoder_crtcs =
11255 kcalloc(dev->mode_config.num_encoder,
11256 sizeof(struct drm_crtc *), GFP_KERNEL);
11257 if (!config->save_encoder_crtcs)
11258 return -ENOMEM;
11259
11260 config->save_connector_encoders =
11261 kcalloc(dev->mode_config.num_connector,
11262 sizeof(struct drm_encoder *), GFP_KERNEL);
11263 if (!config->save_connector_encoders)
11264 return -ENOMEM;
11265
11266 /* Copy data. Note that driver private data is not affected.
11267 * Should anything bad happen only the expected state is
11268 * restored, not the drivers personal bookkeeping.
11269 */
11270 count = 0;
11271 for_each_crtc(dev, crtc) {
11272 config->save_crtc_enabled[count++] = crtc->enabled;
11273 }
11274
11275 count = 0;
11276 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11277 config->save_encoder_crtcs[count++] = encoder->crtc;
11278 }
11279
11280 count = 0;
11281 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11282 config->save_connector_encoders[count++] = connector->encoder;
11283 }
11284
11285 return 0;
11286 }
11287
11288 static void intel_set_config_restore_state(struct drm_device *dev,
11289 struct intel_set_config *config)
11290 {
11291 struct intel_crtc *crtc;
11292 struct intel_encoder *encoder;
11293 struct intel_connector *connector;
11294 int count;
11295
11296 count = 0;
11297 for_each_intel_crtc(dev, crtc) {
11298 crtc->new_enabled = config->save_crtc_enabled[count++];
11299
11300 if (crtc->new_enabled)
11301 crtc->new_config = crtc->config;
11302 else
11303 crtc->new_config = NULL;
11304 }
11305
11306 count = 0;
11307 for_each_intel_encoder(dev, encoder) {
11308 encoder->new_crtc =
11309 to_intel_crtc(config->save_encoder_crtcs[count++]);
11310 }
11311
11312 count = 0;
11313 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11314 connector->new_encoder =
11315 to_intel_encoder(config->save_connector_encoders[count++]);
11316 }
11317 }
11318
11319 static bool
11320 is_crtc_connector_off(struct drm_mode_set *set)
11321 {
11322 int i;
11323
11324 if (set->num_connectors == 0)
11325 return false;
11326
11327 if (WARN_ON(set->connectors == NULL))
11328 return false;
11329
11330 for (i = 0; i < set->num_connectors; i++)
11331 if (set->connectors[i]->encoder &&
11332 set->connectors[i]->encoder->crtc == set->crtc &&
11333 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11334 return true;
11335
11336 return false;
11337 }
11338
11339 static void
11340 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11341 struct intel_set_config *config)
11342 {
11343
11344 /* We should be able to check here if the fb has the same properties
11345 * and then just flip_or_move it */
11346 if (is_crtc_connector_off(set)) {
11347 config->mode_changed = true;
11348 } else if (set->crtc->primary->fb != set->fb) {
11349 /*
11350 * If we have no fb, we can only flip as long as the crtc is
11351 * active, otherwise we need a full mode set. The crtc may
11352 * be active if we've only disabled the primary plane, or
11353 * in fastboot situations.
11354 */
11355 if (set->crtc->primary->fb == NULL) {
11356 struct intel_crtc *intel_crtc =
11357 to_intel_crtc(set->crtc);
11358
11359 if (intel_crtc->active) {
11360 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11361 config->fb_changed = true;
11362 } else {
11363 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11364 config->mode_changed = true;
11365 }
11366 } else if (set->fb == NULL) {
11367 config->mode_changed = true;
11368 } else if (set->fb->pixel_format !=
11369 set->crtc->primary->fb->pixel_format) {
11370 config->mode_changed = true;
11371 } else {
11372 config->fb_changed = true;
11373 }
11374 }
11375
11376 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11377 config->fb_changed = true;
11378
11379 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11380 DRM_DEBUG_KMS("modes are different, full mode set\n");
11381 drm_mode_debug_printmodeline(&set->crtc->mode);
11382 drm_mode_debug_printmodeline(set->mode);
11383 config->mode_changed = true;
11384 }
11385
11386 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11387 set->crtc->base.id, config->mode_changed, config->fb_changed);
11388 }
11389
11390 static int
11391 intel_modeset_stage_output_state(struct drm_device *dev,
11392 struct drm_mode_set *set,
11393 struct intel_set_config *config)
11394 {
11395 struct intel_connector *connector;
11396 struct intel_encoder *encoder;
11397 struct intel_crtc *crtc;
11398 int ro;
11399
11400 /* The upper layers ensure that we either disable a crtc or have a list
11401 * of connectors. For paranoia, double-check this. */
11402 WARN_ON(!set->fb && (set->num_connectors != 0));
11403 WARN_ON(set->fb && (set->num_connectors == 0));
11404
11405 list_for_each_entry(connector, &dev->mode_config.connector_list,
11406 base.head) {
11407 /* Otherwise traverse passed in connector list and get encoders
11408 * for them. */
11409 for (ro = 0; ro < set->num_connectors; ro++) {
11410 if (set->connectors[ro] == &connector->base) {
11411 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11412 break;
11413 }
11414 }
11415
11416 /* If we disable the crtc, disable all its connectors. Also, if
11417 * the connector is on the changing crtc but not on the new
11418 * connector list, disable it. */
11419 if ((!set->fb || ro == set->num_connectors) &&
11420 connector->base.encoder &&
11421 connector->base.encoder->crtc == set->crtc) {
11422 connector->new_encoder = NULL;
11423
11424 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11425 connector->base.base.id,
11426 connector->base.name);
11427 }
11428
11429
11430 if (&connector->new_encoder->base != connector->base.encoder) {
11431 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11432 config->mode_changed = true;
11433 }
11434 }
11435 /* connector->new_encoder is now updated for all connectors. */
11436
11437 /* Update crtc of enabled connectors. */
11438 list_for_each_entry(connector, &dev->mode_config.connector_list,
11439 base.head) {
11440 struct drm_crtc *new_crtc;
11441
11442 if (!connector->new_encoder)
11443 continue;
11444
11445 new_crtc = connector->new_encoder->base.crtc;
11446
11447 for (ro = 0; ro < set->num_connectors; ro++) {
11448 if (set->connectors[ro] == &connector->base)
11449 new_crtc = set->crtc;
11450 }
11451
11452 /* Make sure the new CRTC will work with the encoder */
11453 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11454 new_crtc)) {
11455 return -EINVAL;
11456 }
11457 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11458
11459 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11460 connector->base.base.id,
11461 connector->base.name,
11462 new_crtc->base.id);
11463 }
11464
11465 /* Check for any encoders that needs to be disabled. */
11466 for_each_intel_encoder(dev, encoder) {
11467 int num_connectors = 0;
11468 list_for_each_entry(connector,
11469 &dev->mode_config.connector_list,
11470 base.head) {
11471 if (connector->new_encoder == encoder) {
11472 WARN_ON(!connector->new_encoder->new_crtc);
11473 num_connectors++;
11474 }
11475 }
11476
11477 if (num_connectors == 0)
11478 encoder->new_crtc = NULL;
11479 else if (num_connectors > 1)
11480 return -EINVAL;
11481
11482 /* Only now check for crtc changes so we don't miss encoders
11483 * that will be disabled. */
11484 if (&encoder->new_crtc->base != encoder->base.crtc) {
11485 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11486 config->mode_changed = true;
11487 }
11488 }
11489 /* Now we've also updated encoder->new_crtc for all encoders. */
11490 list_for_each_entry(connector, &dev->mode_config.connector_list,
11491 base.head) {
11492 if (connector->new_encoder)
11493 if (connector->new_encoder != connector->encoder)
11494 connector->encoder = connector->new_encoder;
11495 }
11496 for_each_intel_crtc(dev, crtc) {
11497 crtc->new_enabled = false;
11498
11499 for_each_intel_encoder(dev, encoder) {
11500 if (encoder->new_crtc == crtc) {
11501 crtc->new_enabled = true;
11502 break;
11503 }
11504 }
11505
11506 if (crtc->new_enabled != crtc->base.enabled) {
11507 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11508 crtc->new_enabled ? "en" : "dis");
11509 config->mode_changed = true;
11510 }
11511
11512 if (crtc->new_enabled)
11513 crtc->new_config = crtc->config;
11514 else
11515 crtc->new_config = NULL;
11516 }
11517
11518 return 0;
11519 }
11520
11521 static void disable_crtc_nofb(struct intel_crtc *crtc)
11522 {
11523 struct drm_device *dev = crtc->base.dev;
11524 struct intel_encoder *encoder;
11525 struct intel_connector *connector;
11526
11527 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11528 pipe_name(crtc->pipe));
11529
11530 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11531 if (connector->new_encoder &&
11532 connector->new_encoder->new_crtc == crtc)
11533 connector->new_encoder = NULL;
11534 }
11535
11536 for_each_intel_encoder(dev, encoder) {
11537 if (encoder->new_crtc == crtc)
11538 encoder->new_crtc = NULL;
11539 }
11540
11541 crtc->new_enabled = false;
11542 crtc->new_config = NULL;
11543 }
11544
11545 static int intel_crtc_set_config(struct drm_mode_set *set)
11546 {
11547 struct drm_device *dev;
11548 struct drm_mode_set save_set;
11549 struct intel_set_config *config;
11550 struct intel_crtc_state *pipe_config;
11551 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11552 int ret;
11553
11554 BUG_ON(!set);
11555 BUG_ON(!set->crtc);
11556 BUG_ON(!set->crtc->helper_private);
11557
11558 /* Enforce sane interface api - has been abused by the fb helper. */
11559 BUG_ON(!set->mode && set->fb);
11560 BUG_ON(set->fb && set->num_connectors == 0);
11561
11562 if (set->fb) {
11563 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11564 set->crtc->base.id, set->fb->base.id,
11565 (int)set->num_connectors, set->x, set->y);
11566 } else {
11567 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11568 }
11569
11570 dev = set->crtc->dev;
11571
11572 ret = -ENOMEM;
11573 config = kzalloc(sizeof(*config), GFP_KERNEL);
11574 if (!config)
11575 goto out_config;
11576
11577 ret = intel_set_config_save_state(dev, config);
11578 if (ret)
11579 goto out_config;
11580
11581 save_set.crtc = set->crtc;
11582 save_set.mode = &set->crtc->mode;
11583 save_set.x = set->crtc->x;
11584 save_set.y = set->crtc->y;
11585 save_set.fb = set->crtc->primary->fb;
11586
11587 /* Compute whether we need a full modeset, only an fb base update or no
11588 * change at all. In the future we might also check whether only the
11589 * mode changed, e.g. for LVDS where we only change the panel fitter in
11590 * such cases. */
11591 intel_set_config_compute_mode_changes(set, config);
11592
11593 ret = intel_modeset_stage_output_state(dev, set, config);
11594 if (ret)
11595 goto fail;
11596
11597 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11598 set->fb,
11599 &modeset_pipes,
11600 &prepare_pipes,
11601 &disable_pipes);
11602 if (IS_ERR(pipe_config)) {
11603 ret = PTR_ERR(pipe_config);
11604 goto fail;
11605 } else if (pipe_config) {
11606 if (pipe_config->has_audio !=
11607 to_intel_crtc(set->crtc)->config->has_audio)
11608 config->mode_changed = true;
11609
11610 /*
11611 * Note we have an issue here with infoframes: current code
11612 * only updates them on the full mode set path per hw
11613 * requirements. So here we should be checking for any
11614 * required changes and forcing a mode set.
11615 */
11616 }
11617
11618 /* set_mode will free it in the mode_changed case */
11619 if (!config->mode_changed)
11620 kfree(pipe_config);
11621
11622 intel_update_pipe_size(to_intel_crtc(set->crtc));
11623
11624 if (config->mode_changed) {
11625 ret = intel_set_mode_pipes(set->crtc, set->mode,
11626 set->x, set->y, set->fb, pipe_config,
11627 modeset_pipes, prepare_pipes,
11628 disable_pipes);
11629 } else if (config->fb_changed) {
11630 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11631 struct drm_plane *primary = set->crtc->primary;
11632 int vdisplay, hdisplay;
11633
11634 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11635 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11636 0, 0, hdisplay, vdisplay,
11637 set->x << 16, set->y << 16,
11638 hdisplay << 16, vdisplay << 16);
11639
11640 /*
11641 * We need to make sure the primary plane is re-enabled if it
11642 * has previously been turned off.
11643 */
11644 if (!intel_crtc->primary_enabled && ret == 0) {
11645 WARN_ON(!intel_crtc->active);
11646 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11647 }
11648
11649 /*
11650 * In the fastboot case this may be our only check of the
11651 * state after boot. It would be better to only do it on
11652 * the first update, but we don't have a nice way of doing that
11653 * (and really, set_config isn't used much for high freq page
11654 * flipping, so increasing its cost here shouldn't be a big
11655 * deal).
11656 */
11657 if (i915.fastboot && ret == 0)
11658 intel_modeset_check_state(set->crtc->dev);
11659 }
11660
11661 if (ret) {
11662 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11663 set->crtc->base.id, ret);
11664 fail:
11665 intel_set_config_restore_state(dev, config);
11666
11667 /*
11668 * HACK: if the pipe was on, but we didn't have a framebuffer,
11669 * force the pipe off to avoid oopsing in the modeset code
11670 * due to fb==NULL. This should only happen during boot since
11671 * we don't yet reconstruct the FB from the hardware state.
11672 */
11673 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11674 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11675
11676 /* Try to restore the config */
11677 if (config->mode_changed &&
11678 intel_set_mode(save_set.crtc, save_set.mode,
11679 save_set.x, save_set.y, save_set.fb))
11680 DRM_ERROR("failed to restore config after modeset failure\n");
11681 }
11682
11683 out_config:
11684 intel_set_config_free(config);
11685 return ret;
11686 }
11687
11688 static const struct drm_crtc_funcs intel_crtc_funcs = {
11689 .gamma_set = intel_crtc_gamma_set,
11690 .set_config = intel_crtc_set_config,
11691 .destroy = intel_crtc_destroy,
11692 .page_flip = intel_crtc_page_flip,
11693 .atomic_duplicate_state = intel_crtc_duplicate_state,
11694 .atomic_destroy_state = intel_crtc_destroy_state,
11695 };
11696
11697 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11698 struct intel_shared_dpll *pll,
11699 struct intel_dpll_hw_state *hw_state)
11700 {
11701 uint32_t val;
11702
11703 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11704 return false;
11705
11706 val = I915_READ(PCH_DPLL(pll->id));
11707 hw_state->dpll = val;
11708 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11709 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11710
11711 return val & DPLL_VCO_ENABLE;
11712 }
11713
11714 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11715 struct intel_shared_dpll *pll)
11716 {
11717 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11718 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11719 }
11720
11721 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11722 struct intel_shared_dpll *pll)
11723 {
11724 /* PCH refclock must be enabled first */
11725 ibx_assert_pch_refclk_enabled(dev_priv);
11726
11727 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11728
11729 /* Wait for the clocks to stabilize. */
11730 POSTING_READ(PCH_DPLL(pll->id));
11731 udelay(150);
11732
11733 /* The pixel multiplier can only be updated once the
11734 * DPLL is enabled and the clocks are stable.
11735 *
11736 * So write it again.
11737 */
11738 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11739 POSTING_READ(PCH_DPLL(pll->id));
11740 udelay(200);
11741 }
11742
11743 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11744 struct intel_shared_dpll *pll)
11745 {
11746 struct drm_device *dev = dev_priv->dev;
11747 struct intel_crtc *crtc;
11748
11749 /* Make sure no transcoder isn't still depending on us. */
11750 for_each_intel_crtc(dev, crtc) {
11751 if (intel_crtc_to_shared_dpll(crtc) == pll)
11752 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11753 }
11754
11755 I915_WRITE(PCH_DPLL(pll->id), 0);
11756 POSTING_READ(PCH_DPLL(pll->id));
11757 udelay(200);
11758 }
11759
11760 static char *ibx_pch_dpll_names[] = {
11761 "PCH DPLL A",
11762 "PCH DPLL B",
11763 };
11764
11765 static void ibx_pch_dpll_init(struct drm_device *dev)
11766 {
11767 struct drm_i915_private *dev_priv = dev->dev_private;
11768 int i;
11769
11770 dev_priv->num_shared_dpll = 2;
11771
11772 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11773 dev_priv->shared_dplls[i].id = i;
11774 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11775 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11776 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11777 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11778 dev_priv->shared_dplls[i].get_hw_state =
11779 ibx_pch_dpll_get_hw_state;
11780 }
11781 }
11782
11783 static void intel_shared_dpll_init(struct drm_device *dev)
11784 {
11785 struct drm_i915_private *dev_priv = dev->dev_private;
11786
11787 if (HAS_DDI(dev))
11788 intel_ddi_pll_init(dev);
11789 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11790 ibx_pch_dpll_init(dev);
11791 else
11792 dev_priv->num_shared_dpll = 0;
11793
11794 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11795 }
11796
11797 /**
11798 * intel_prepare_plane_fb - Prepare fb for usage on plane
11799 * @plane: drm plane to prepare for
11800 * @fb: framebuffer to prepare for presentation
11801 *
11802 * Prepares a framebuffer for usage on a display plane. Generally this
11803 * involves pinning the underlying object and updating the frontbuffer tracking
11804 * bits. Some older platforms need special physical address handling for
11805 * cursor planes.
11806 *
11807 * Returns 0 on success, negative error code on failure.
11808 */
11809 int
11810 intel_prepare_plane_fb(struct drm_plane *plane,
11811 struct drm_framebuffer *fb)
11812 {
11813 struct drm_device *dev = plane->dev;
11814 struct intel_plane *intel_plane = to_intel_plane(plane);
11815 enum pipe pipe = intel_plane->pipe;
11816 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11817 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11818 unsigned frontbuffer_bits = 0;
11819 int ret = 0;
11820
11821 if (!obj)
11822 return 0;
11823
11824 switch (plane->type) {
11825 case DRM_PLANE_TYPE_PRIMARY:
11826 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11827 break;
11828 case DRM_PLANE_TYPE_CURSOR:
11829 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11830 break;
11831 case DRM_PLANE_TYPE_OVERLAY:
11832 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11833 break;
11834 }
11835
11836 mutex_lock(&dev->struct_mutex);
11837
11838 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11839 INTEL_INFO(dev)->cursor_needs_physical) {
11840 int align = IS_I830(dev) ? 16 * 1024 : 256;
11841 ret = i915_gem_object_attach_phys(obj, align);
11842 if (ret)
11843 DRM_DEBUG_KMS("failed to attach phys object\n");
11844 } else {
11845 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11846 }
11847
11848 if (ret == 0)
11849 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11850
11851 mutex_unlock(&dev->struct_mutex);
11852
11853 return ret;
11854 }
11855
11856 /**
11857 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11858 * @plane: drm plane to clean up for
11859 * @fb: old framebuffer that was on plane
11860 *
11861 * Cleans up a framebuffer that has just been removed from a plane.
11862 */
11863 void
11864 intel_cleanup_plane_fb(struct drm_plane *plane,
11865 struct drm_framebuffer *fb)
11866 {
11867 struct drm_device *dev = plane->dev;
11868 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11869
11870 if (WARN_ON(!obj))
11871 return;
11872
11873 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11874 !INTEL_INFO(dev)->cursor_needs_physical) {
11875 mutex_lock(&dev->struct_mutex);
11876 intel_unpin_fb_obj(obj);
11877 mutex_unlock(&dev->struct_mutex);
11878 }
11879 }
11880
11881 static int
11882 intel_check_primary_plane(struct drm_plane *plane,
11883 struct intel_plane_state *state)
11884 {
11885 struct drm_device *dev = plane->dev;
11886 struct drm_i915_private *dev_priv = dev->dev_private;
11887 struct drm_crtc *crtc = state->base.crtc;
11888 struct intel_crtc *intel_crtc;
11889 struct drm_framebuffer *fb = state->base.fb;
11890 struct drm_rect *dest = &state->dst;
11891 struct drm_rect *src = &state->src;
11892 const struct drm_rect *clip = &state->clip;
11893 int ret;
11894
11895 crtc = crtc ? crtc : plane->crtc;
11896 intel_crtc = to_intel_crtc(crtc);
11897
11898 ret = drm_plane_helper_check_update(plane, crtc, fb,
11899 src, dest, clip,
11900 DRM_PLANE_HELPER_NO_SCALING,
11901 DRM_PLANE_HELPER_NO_SCALING,
11902 false, true, &state->visible);
11903 if (ret)
11904 return ret;
11905
11906 if (intel_crtc->active) {
11907 intel_crtc->atomic.wait_for_flips = true;
11908
11909 /*
11910 * FBC does not work on some platforms for rotated
11911 * planes, so disable it when rotation is not 0 and
11912 * update it when rotation is set back to 0.
11913 *
11914 * FIXME: This is redundant with the fbc update done in
11915 * the primary plane enable function except that that
11916 * one is done too late. We eventually need to unify
11917 * this.
11918 */
11919 if (intel_crtc->primary_enabled &&
11920 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11921 dev_priv->fbc.plane == intel_crtc->plane &&
11922 state->base.rotation != BIT(DRM_ROTATE_0)) {
11923 intel_crtc->atomic.disable_fbc = true;
11924 }
11925
11926 if (state->visible) {
11927 /*
11928 * BDW signals flip done immediately if the plane
11929 * is disabled, even if the plane enable is already
11930 * armed to occur at the next vblank :(
11931 */
11932 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11933 intel_crtc->atomic.wait_vblank = true;
11934 }
11935
11936 intel_crtc->atomic.fb_bits |=
11937 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11938
11939 intel_crtc->atomic.update_fbc = true;
11940 }
11941
11942 return 0;
11943 }
11944
11945 static void
11946 intel_commit_primary_plane(struct drm_plane *plane,
11947 struct intel_plane_state *state)
11948 {
11949 struct drm_crtc *crtc = state->base.crtc;
11950 struct drm_framebuffer *fb = state->base.fb;
11951 struct drm_device *dev = plane->dev;
11952 struct drm_i915_private *dev_priv = dev->dev_private;
11953 struct intel_crtc *intel_crtc;
11954 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11955 struct intel_plane *intel_plane = to_intel_plane(plane);
11956 struct drm_rect *src = &state->src;
11957
11958 crtc = crtc ? crtc : plane->crtc;
11959 intel_crtc = to_intel_crtc(crtc);
11960
11961 plane->fb = fb;
11962 crtc->x = src->x1 >> 16;
11963 crtc->y = src->y1 >> 16;
11964
11965 intel_plane->obj = obj;
11966
11967 if (intel_crtc->active) {
11968 if (state->visible) {
11969 /* FIXME: kill this fastboot hack */
11970 intel_update_pipe_size(intel_crtc);
11971
11972 intel_crtc->primary_enabled = true;
11973
11974 dev_priv->display.update_primary_plane(crtc, plane->fb,
11975 crtc->x, crtc->y);
11976 } else {
11977 /*
11978 * If clipping results in a non-visible primary plane,
11979 * we'll disable the primary plane. Note that this is
11980 * a bit different than what happens if userspace
11981 * explicitly disables the plane by passing fb=0
11982 * because plane->fb still gets set and pinned.
11983 */
11984 intel_disable_primary_hw_plane(plane, crtc);
11985 }
11986 }
11987 }
11988
11989 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
11990 {
11991 struct drm_device *dev = crtc->dev;
11992 struct drm_i915_private *dev_priv = dev->dev_private;
11993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11994 struct intel_plane *intel_plane;
11995 struct drm_plane *p;
11996 unsigned fb_bits = 0;
11997
11998 /* Track fb's for any planes being disabled */
11999 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12000 intel_plane = to_intel_plane(p);
12001
12002 if (intel_crtc->atomic.disabled_planes &
12003 (1 << drm_plane_index(p))) {
12004 switch (p->type) {
12005 case DRM_PLANE_TYPE_PRIMARY:
12006 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12007 break;
12008 case DRM_PLANE_TYPE_CURSOR:
12009 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12010 break;
12011 case DRM_PLANE_TYPE_OVERLAY:
12012 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12013 break;
12014 }
12015
12016 mutex_lock(&dev->struct_mutex);
12017 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12018 mutex_unlock(&dev->struct_mutex);
12019 }
12020 }
12021
12022 if (intel_crtc->atomic.wait_for_flips)
12023 intel_crtc_wait_for_pending_flips(crtc);
12024
12025 if (intel_crtc->atomic.disable_fbc)
12026 intel_fbc_disable(dev);
12027
12028 if (intel_crtc->atomic.pre_disable_primary)
12029 intel_pre_disable_primary(crtc);
12030
12031 if (intel_crtc->atomic.update_wm)
12032 intel_update_watermarks(crtc);
12033
12034 intel_runtime_pm_get(dev_priv);
12035
12036 /* Perform vblank evasion around commit operation */
12037 if (intel_crtc->active)
12038 intel_crtc->atomic.evade =
12039 intel_pipe_update_start(intel_crtc,
12040 &intel_crtc->atomic.start_vbl_count);
12041 }
12042
12043 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12044 {
12045 struct drm_device *dev = crtc->dev;
12046 struct drm_i915_private *dev_priv = dev->dev_private;
12047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12048 struct drm_plane *p;
12049
12050 if (intel_crtc->atomic.evade)
12051 intel_pipe_update_end(intel_crtc,
12052 intel_crtc->atomic.start_vbl_count);
12053
12054 intel_runtime_pm_put(dev_priv);
12055
12056 if (intel_crtc->atomic.wait_vblank)
12057 intel_wait_for_vblank(dev, intel_crtc->pipe);
12058
12059 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12060
12061 if (intel_crtc->atomic.update_fbc) {
12062 mutex_lock(&dev->struct_mutex);
12063 intel_fbc_update(dev);
12064 mutex_unlock(&dev->struct_mutex);
12065 }
12066
12067 if (intel_crtc->atomic.post_enable_primary)
12068 intel_post_enable_primary(crtc);
12069
12070 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12071 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12072 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12073 false, false);
12074
12075 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12076 }
12077
12078 /**
12079 * intel_plane_destroy - destroy a plane
12080 * @plane: plane to destroy
12081 *
12082 * Common destruction function for all types of planes (primary, cursor,
12083 * sprite).
12084 */
12085 void intel_plane_destroy(struct drm_plane *plane)
12086 {
12087 struct intel_plane *intel_plane = to_intel_plane(plane);
12088 drm_plane_cleanup(plane);
12089 kfree(intel_plane);
12090 }
12091
12092 const struct drm_plane_funcs intel_plane_funcs = {
12093 .update_plane = drm_atomic_helper_update_plane,
12094 .disable_plane = drm_atomic_helper_disable_plane,
12095 .destroy = intel_plane_destroy,
12096 .set_property = drm_atomic_helper_plane_set_property,
12097 .atomic_get_property = intel_plane_atomic_get_property,
12098 .atomic_set_property = intel_plane_atomic_set_property,
12099 .atomic_duplicate_state = intel_plane_duplicate_state,
12100 .atomic_destroy_state = intel_plane_destroy_state,
12101
12102 };
12103
12104 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12105 int pipe)
12106 {
12107 struct intel_plane *primary;
12108 struct intel_plane_state *state;
12109 const uint32_t *intel_primary_formats;
12110 int num_formats;
12111
12112 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12113 if (primary == NULL)
12114 return NULL;
12115
12116 state = intel_create_plane_state(&primary->base);
12117 if (!state) {
12118 kfree(primary);
12119 return NULL;
12120 }
12121 primary->base.state = &state->base;
12122
12123 primary->can_scale = false;
12124 primary->max_downscale = 1;
12125 primary->pipe = pipe;
12126 primary->plane = pipe;
12127 primary->check_plane = intel_check_primary_plane;
12128 primary->commit_plane = intel_commit_primary_plane;
12129 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12130 primary->plane = !pipe;
12131
12132 if (INTEL_INFO(dev)->gen <= 3) {
12133 intel_primary_formats = intel_primary_formats_gen2;
12134 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12135 } else {
12136 intel_primary_formats = intel_primary_formats_gen4;
12137 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12138 }
12139
12140 drm_universal_plane_init(dev, &primary->base, 0,
12141 &intel_plane_funcs,
12142 intel_primary_formats, num_formats,
12143 DRM_PLANE_TYPE_PRIMARY);
12144
12145 if (INTEL_INFO(dev)->gen >= 4) {
12146 if (!dev->mode_config.rotation_property)
12147 dev->mode_config.rotation_property =
12148 drm_mode_create_rotation_property(dev,
12149 BIT(DRM_ROTATE_0) |
12150 BIT(DRM_ROTATE_180));
12151 if (dev->mode_config.rotation_property)
12152 drm_object_attach_property(&primary->base.base,
12153 dev->mode_config.rotation_property,
12154 state->base.rotation);
12155 }
12156
12157 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12158
12159 return &primary->base;
12160 }
12161
12162 static int
12163 intel_check_cursor_plane(struct drm_plane *plane,
12164 struct intel_plane_state *state)
12165 {
12166 struct drm_crtc *crtc = state->base.crtc;
12167 struct drm_device *dev = plane->dev;
12168 struct drm_framebuffer *fb = state->base.fb;
12169 struct drm_rect *dest = &state->dst;
12170 struct drm_rect *src = &state->src;
12171 const struct drm_rect *clip = &state->clip;
12172 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12173 struct intel_crtc *intel_crtc;
12174 unsigned stride;
12175 int ret;
12176
12177 crtc = crtc ? crtc : plane->crtc;
12178 intel_crtc = to_intel_crtc(crtc);
12179
12180 ret = drm_plane_helper_check_update(plane, crtc, fb,
12181 src, dest, clip,
12182 DRM_PLANE_HELPER_NO_SCALING,
12183 DRM_PLANE_HELPER_NO_SCALING,
12184 true, true, &state->visible);
12185 if (ret)
12186 return ret;
12187
12188
12189 /* if we want to turn off the cursor ignore width and height */
12190 if (!obj)
12191 goto finish;
12192
12193 /* Check for which cursor types we support */
12194 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12195 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12196 state->base.crtc_w, state->base.crtc_h);
12197 return -EINVAL;
12198 }
12199
12200 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12201 if (obj->base.size < stride * state->base.crtc_h) {
12202 DRM_DEBUG_KMS("buffer is too small\n");
12203 return -ENOMEM;
12204 }
12205
12206 if (fb == crtc->cursor->fb)
12207 return 0;
12208
12209 /* we only need to pin inside GTT if cursor is non-phy */
12210 mutex_lock(&dev->struct_mutex);
12211 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12212 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12213 ret = -EINVAL;
12214 }
12215 mutex_unlock(&dev->struct_mutex);
12216
12217 finish:
12218 if (intel_crtc->active) {
12219 if (intel_crtc->cursor_width != state->base.crtc_w)
12220 intel_crtc->atomic.update_wm = true;
12221
12222 intel_crtc->atomic.fb_bits |=
12223 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12224 }
12225
12226 return ret;
12227 }
12228
12229 static void
12230 intel_commit_cursor_plane(struct drm_plane *plane,
12231 struct intel_plane_state *state)
12232 {
12233 struct drm_crtc *crtc = state->base.crtc;
12234 struct drm_device *dev = plane->dev;
12235 struct intel_crtc *intel_crtc;
12236 struct intel_plane *intel_plane = to_intel_plane(plane);
12237 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12238 uint32_t addr;
12239
12240 crtc = crtc ? crtc : plane->crtc;
12241 intel_crtc = to_intel_crtc(crtc);
12242
12243 plane->fb = state->base.fb;
12244 crtc->cursor_x = state->base.crtc_x;
12245 crtc->cursor_y = state->base.crtc_y;
12246
12247 intel_plane->obj = obj;
12248
12249 if (intel_crtc->cursor_bo == obj)
12250 goto update;
12251
12252 if (!obj)
12253 addr = 0;
12254 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12255 addr = i915_gem_obj_ggtt_offset(obj);
12256 else
12257 addr = obj->phys_handle->busaddr;
12258
12259 intel_crtc->cursor_addr = addr;
12260 intel_crtc->cursor_bo = obj;
12261 update:
12262 intel_crtc->cursor_width = state->base.crtc_w;
12263 intel_crtc->cursor_height = state->base.crtc_h;
12264
12265 if (intel_crtc->active)
12266 intel_crtc_update_cursor(crtc, state->visible);
12267 }
12268
12269 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12270 int pipe)
12271 {
12272 struct intel_plane *cursor;
12273 struct intel_plane_state *state;
12274
12275 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12276 if (cursor == NULL)
12277 return NULL;
12278
12279 state = intel_create_plane_state(&cursor->base);
12280 if (!state) {
12281 kfree(cursor);
12282 return NULL;
12283 }
12284 cursor->base.state = &state->base;
12285
12286 cursor->can_scale = false;
12287 cursor->max_downscale = 1;
12288 cursor->pipe = pipe;
12289 cursor->plane = pipe;
12290 cursor->check_plane = intel_check_cursor_plane;
12291 cursor->commit_plane = intel_commit_cursor_plane;
12292
12293 drm_universal_plane_init(dev, &cursor->base, 0,
12294 &intel_plane_funcs,
12295 intel_cursor_formats,
12296 ARRAY_SIZE(intel_cursor_formats),
12297 DRM_PLANE_TYPE_CURSOR);
12298
12299 if (INTEL_INFO(dev)->gen >= 4) {
12300 if (!dev->mode_config.rotation_property)
12301 dev->mode_config.rotation_property =
12302 drm_mode_create_rotation_property(dev,
12303 BIT(DRM_ROTATE_0) |
12304 BIT(DRM_ROTATE_180));
12305 if (dev->mode_config.rotation_property)
12306 drm_object_attach_property(&cursor->base.base,
12307 dev->mode_config.rotation_property,
12308 state->base.rotation);
12309 }
12310
12311 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12312
12313 return &cursor->base;
12314 }
12315
12316 static void intel_crtc_init(struct drm_device *dev, int pipe)
12317 {
12318 struct drm_i915_private *dev_priv = dev->dev_private;
12319 struct intel_crtc *intel_crtc;
12320 struct intel_crtc_state *crtc_state = NULL;
12321 struct drm_plane *primary = NULL;
12322 struct drm_plane *cursor = NULL;
12323 int i, ret;
12324
12325 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12326 if (intel_crtc == NULL)
12327 return;
12328
12329 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12330 if (!crtc_state)
12331 goto fail;
12332 intel_crtc_set_state(intel_crtc, crtc_state);
12333
12334 primary = intel_primary_plane_create(dev, pipe);
12335 if (!primary)
12336 goto fail;
12337
12338 cursor = intel_cursor_plane_create(dev, pipe);
12339 if (!cursor)
12340 goto fail;
12341
12342 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12343 cursor, &intel_crtc_funcs);
12344 if (ret)
12345 goto fail;
12346
12347 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12348 for (i = 0; i < 256; i++) {
12349 intel_crtc->lut_r[i] = i;
12350 intel_crtc->lut_g[i] = i;
12351 intel_crtc->lut_b[i] = i;
12352 }
12353
12354 /*
12355 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12356 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12357 */
12358 intel_crtc->pipe = pipe;
12359 intel_crtc->plane = pipe;
12360 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12361 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12362 intel_crtc->plane = !pipe;
12363 }
12364
12365 intel_crtc->cursor_base = ~0;
12366 intel_crtc->cursor_cntl = ~0;
12367 intel_crtc->cursor_size = ~0;
12368
12369 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12370 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12371 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12372 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12373
12374 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12375
12376 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12377
12378 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12379 return;
12380
12381 fail:
12382 if (primary)
12383 drm_plane_cleanup(primary);
12384 if (cursor)
12385 drm_plane_cleanup(cursor);
12386 kfree(crtc_state);
12387 kfree(intel_crtc);
12388 }
12389
12390 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12391 {
12392 struct drm_encoder *encoder = connector->base.encoder;
12393 struct drm_device *dev = connector->base.dev;
12394
12395 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12396
12397 if (!encoder || WARN_ON(!encoder->crtc))
12398 return INVALID_PIPE;
12399
12400 return to_intel_crtc(encoder->crtc)->pipe;
12401 }
12402
12403 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12404 struct drm_file *file)
12405 {
12406 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12407 struct drm_crtc *drmmode_crtc;
12408 struct intel_crtc *crtc;
12409
12410 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12411 return -ENODEV;
12412
12413 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12414
12415 if (!drmmode_crtc) {
12416 DRM_ERROR("no such CRTC id\n");
12417 return -ENOENT;
12418 }
12419
12420 crtc = to_intel_crtc(drmmode_crtc);
12421 pipe_from_crtc_id->pipe = crtc->pipe;
12422
12423 return 0;
12424 }
12425
12426 static int intel_encoder_clones(struct intel_encoder *encoder)
12427 {
12428 struct drm_device *dev = encoder->base.dev;
12429 struct intel_encoder *source_encoder;
12430 int index_mask = 0;
12431 int entry = 0;
12432
12433 for_each_intel_encoder(dev, source_encoder) {
12434 if (encoders_cloneable(encoder, source_encoder))
12435 index_mask |= (1 << entry);
12436
12437 entry++;
12438 }
12439
12440 return index_mask;
12441 }
12442
12443 static bool has_edp_a(struct drm_device *dev)
12444 {
12445 struct drm_i915_private *dev_priv = dev->dev_private;
12446
12447 if (!IS_MOBILE(dev))
12448 return false;
12449
12450 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12451 return false;
12452
12453 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12454 return false;
12455
12456 return true;
12457 }
12458
12459 static bool intel_crt_present(struct drm_device *dev)
12460 {
12461 struct drm_i915_private *dev_priv = dev->dev_private;
12462
12463 if (INTEL_INFO(dev)->gen >= 9)
12464 return false;
12465
12466 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12467 return false;
12468
12469 if (IS_CHERRYVIEW(dev))
12470 return false;
12471
12472 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12473 return false;
12474
12475 return true;
12476 }
12477
12478 static void intel_setup_outputs(struct drm_device *dev)
12479 {
12480 struct drm_i915_private *dev_priv = dev->dev_private;
12481 struct intel_encoder *encoder;
12482 struct drm_connector *connector;
12483 bool dpd_is_edp = false;
12484
12485 intel_lvds_init(dev);
12486
12487 if (intel_crt_present(dev))
12488 intel_crt_init(dev);
12489
12490 if (HAS_DDI(dev)) {
12491 int found;
12492
12493 /* Haswell uses DDI functions to detect digital outputs */
12494 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12495 /* DDI A only supports eDP */
12496 if (found)
12497 intel_ddi_init(dev, PORT_A);
12498
12499 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12500 * register */
12501 found = I915_READ(SFUSE_STRAP);
12502
12503 if (found & SFUSE_STRAP_DDIB_DETECTED)
12504 intel_ddi_init(dev, PORT_B);
12505 if (found & SFUSE_STRAP_DDIC_DETECTED)
12506 intel_ddi_init(dev, PORT_C);
12507 if (found & SFUSE_STRAP_DDID_DETECTED)
12508 intel_ddi_init(dev, PORT_D);
12509 } else if (HAS_PCH_SPLIT(dev)) {
12510 int found;
12511 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12512
12513 if (has_edp_a(dev))
12514 intel_dp_init(dev, DP_A, PORT_A);
12515
12516 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12517 /* PCH SDVOB multiplex with HDMIB */
12518 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12519 if (!found)
12520 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12521 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12522 intel_dp_init(dev, PCH_DP_B, PORT_B);
12523 }
12524
12525 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12526 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12527
12528 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12529 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12530
12531 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12532 intel_dp_init(dev, PCH_DP_C, PORT_C);
12533
12534 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12535 intel_dp_init(dev, PCH_DP_D, PORT_D);
12536 } else if (IS_VALLEYVIEW(dev)) {
12537 /*
12538 * The DP_DETECTED bit is the latched state of the DDC
12539 * SDA pin at boot. However since eDP doesn't require DDC
12540 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12541 * eDP ports may have been muxed to an alternate function.
12542 * Thus we can't rely on the DP_DETECTED bit alone to detect
12543 * eDP ports. Consult the VBT as well as DP_DETECTED to
12544 * detect eDP ports.
12545 */
12546 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12547 !intel_dp_is_edp(dev, PORT_B))
12548 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12549 PORT_B);
12550 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12551 intel_dp_is_edp(dev, PORT_B))
12552 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12553
12554 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12555 !intel_dp_is_edp(dev, PORT_C))
12556 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12557 PORT_C);
12558 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12559 intel_dp_is_edp(dev, PORT_C))
12560 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12561
12562 if (IS_CHERRYVIEW(dev)) {
12563 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12564 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12565 PORT_D);
12566 /* eDP not supported on port D, so don't check VBT */
12567 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12568 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12569 }
12570
12571 intel_dsi_init(dev);
12572 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12573 bool found = false;
12574
12575 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12576 DRM_DEBUG_KMS("probing SDVOB\n");
12577 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12578 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12579 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12580 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12581 }
12582
12583 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12584 intel_dp_init(dev, DP_B, PORT_B);
12585 }
12586
12587 /* Before G4X SDVOC doesn't have its own detect register */
12588
12589 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12590 DRM_DEBUG_KMS("probing SDVOC\n");
12591 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12592 }
12593
12594 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12595
12596 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12597 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12598 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12599 }
12600 if (SUPPORTS_INTEGRATED_DP(dev))
12601 intel_dp_init(dev, DP_C, PORT_C);
12602 }
12603
12604 if (SUPPORTS_INTEGRATED_DP(dev) &&
12605 (I915_READ(DP_D) & DP_DETECTED))
12606 intel_dp_init(dev, DP_D, PORT_D);
12607 } else if (IS_GEN2(dev))
12608 intel_dvo_init(dev);
12609
12610 if (SUPPORTS_TV(dev))
12611 intel_tv_init(dev);
12612
12613 /*
12614 * FIXME: We don't have full atomic support yet, but we want to be
12615 * able to enable/test plane updates via the atomic interface in the
12616 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12617 * will take some atomic codepaths to lookup properties during
12618 * drmModeGetConnector() that unconditionally dereference
12619 * connector->state.
12620 *
12621 * We create a dummy connector state here for each connector to ensure
12622 * the DRM core doesn't try to dereference a NULL connector->state.
12623 * The actual connector properties will never be updated or contain
12624 * useful information, but since we're doing this specifically for
12625 * testing/debug of the plane operations (and only when a specific
12626 * kernel module option is given), that shouldn't really matter.
12627 *
12628 * Once atomic support for crtc's + connectors lands, this loop should
12629 * be removed since we'll be setting up real connector state, which
12630 * will contain Intel-specific properties.
12631 */
12632 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12633 list_for_each_entry(connector,
12634 &dev->mode_config.connector_list,
12635 head) {
12636 if (!WARN_ON(connector->state)) {
12637 connector->state =
12638 kzalloc(sizeof(*connector->state),
12639 GFP_KERNEL);
12640 }
12641 }
12642 }
12643
12644 intel_psr_init(dev);
12645
12646 for_each_intel_encoder(dev, encoder) {
12647 encoder->base.possible_crtcs = encoder->crtc_mask;
12648 encoder->base.possible_clones =
12649 intel_encoder_clones(encoder);
12650 }
12651
12652 intel_init_pch_refclk(dev);
12653
12654 drm_helper_move_panel_connectors_to_head(dev);
12655 }
12656
12657 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12658 {
12659 struct drm_device *dev = fb->dev;
12660 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12661
12662 drm_framebuffer_cleanup(fb);
12663 mutex_lock(&dev->struct_mutex);
12664 WARN_ON(!intel_fb->obj->framebuffer_references--);
12665 drm_gem_object_unreference(&intel_fb->obj->base);
12666 mutex_unlock(&dev->struct_mutex);
12667 kfree(intel_fb);
12668 }
12669
12670 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12671 struct drm_file *file,
12672 unsigned int *handle)
12673 {
12674 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12675 struct drm_i915_gem_object *obj = intel_fb->obj;
12676
12677 return drm_gem_handle_create(file, &obj->base, handle);
12678 }
12679
12680 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12681 .destroy = intel_user_framebuffer_destroy,
12682 .create_handle = intel_user_framebuffer_create_handle,
12683 };
12684
12685 static int intel_framebuffer_init(struct drm_device *dev,
12686 struct intel_framebuffer *intel_fb,
12687 struct drm_mode_fb_cmd2 *mode_cmd,
12688 struct drm_i915_gem_object *obj)
12689 {
12690 int aligned_height;
12691 int pitch_limit;
12692 int ret;
12693
12694 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12695
12696 if (obj->tiling_mode == I915_TILING_Y) {
12697 DRM_DEBUG("hardware does not support tiling Y\n");
12698 return -EINVAL;
12699 }
12700
12701 if (mode_cmd->pitches[0] & 63) {
12702 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12703 mode_cmd->pitches[0]);
12704 return -EINVAL;
12705 }
12706
12707 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12708 pitch_limit = 32*1024;
12709 } else if (INTEL_INFO(dev)->gen >= 4) {
12710 if (obj->tiling_mode)
12711 pitch_limit = 16*1024;
12712 else
12713 pitch_limit = 32*1024;
12714 } else if (INTEL_INFO(dev)->gen >= 3) {
12715 if (obj->tiling_mode)
12716 pitch_limit = 8*1024;
12717 else
12718 pitch_limit = 16*1024;
12719 } else
12720 /* XXX DSPC is limited to 4k tiled */
12721 pitch_limit = 8*1024;
12722
12723 if (mode_cmd->pitches[0] > pitch_limit) {
12724 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12725 obj->tiling_mode ? "tiled" : "linear",
12726 mode_cmd->pitches[0], pitch_limit);
12727 return -EINVAL;
12728 }
12729
12730 if (obj->tiling_mode != I915_TILING_NONE &&
12731 mode_cmd->pitches[0] != obj->stride) {
12732 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12733 mode_cmd->pitches[0], obj->stride);
12734 return -EINVAL;
12735 }
12736
12737 /* Reject formats not supported by any plane early. */
12738 switch (mode_cmd->pixel_format) {
12739 case DRM_FORMAT_C8:
12740 case DRM_FORMAT_RGB565:
12741 case DRM_FORMAT_XRGB8888:
12742 case DRM_FORMAT_ARGB8888:
12743 break;
12744 case DRM_FORMAT_XRGB1555:
12745 case DRM_FORMAT_ARGB1555:
12746 if (INTEL_INFO(dev)->gen > 3) {
12747 DRM_DEBUG("unsupported pixel format: %s\n",
12748 drm_get_format_name(mode_cmd->pixel_format));
12749 return -EINVAL;
12750 }
12751 break;
12752 case DRM_FORMAT_XBGR8888:
12753 case DRM_FORMAT_ABGR8888:
12754 case DRM_FORMAT_XRGB2101010:
12755 case DRM_FORMAT_ARGB2101010:
12756 case DRM_FORMAT_XBGR2101010:
12757 case DRM_FORMAT_ABGR2101010:
12758 if (INTEL_INFO(dev)->gen < 4) {
12759 DRM_DEBUG("unsupported pixel format: %s\n",
12760 drm_get_format_name(mode_cmd->pixel_format));
12761 return -EINVAL;
12762 }
12763 break;
12764 case DRM_FORMAT_YUYV:
12765 case DRM_FORMAT_UYVY:
12766 case DRM_FORMAT_YVYU:
12767 case DRM_FORMAT_VYUY:
12768 if (INTEL_INFO(dev)->gen < 5) {
12769 DRM_DEBUG("unsupported pixel format: %s\n",
12770 drm_get_format_name(mode_cmd->pixel_format));
12771 return -EINVAL;
12772 }
12773 break;
12774 default:
12775 DRM_DEBUG("unsupported pixel format: %s\n",
12776 drm_get_format_name(mode_cmd->pixel_format));
12777 return -EINVAL;
12778 }
12779
12780 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12781 if (mode_cmd->offsets[0] != 0)
12782 return -EINVAL;
12783
12784 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12785 obj->tiling_mode);
12786 /* FIXME drm helper for size checks (especially planar formats)? */
12787 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12788 return -EINVAL;
12789
12790 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12791 intel_fb->obj = obj;
12792 intel_fb->obj->framebuffer_references++;
12793
12794 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12795 if (ret) {
12796 DRM_ERROR("framebuffer init failed %d\n", ret);
12797 return ret;
12798 }
12799
12800 return 0;
12801 }
12802
12803 static struct drm_framebuffer *
12804 intel_user_framebuffer_create(struct drm_device *dev,
12805 struct drm_file *filp,
12806 struct drm_mode_fb_cmd2 *mode_cmd)
12807 {
12808 struct drm_i915_gem_object *obj;
12809
12810 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12811 mode_cmd->handles[0]));
12812 if (&obj->base == NULL)
12813 return ERR_PTR(-ENOENT);
12814
12815 return intel_framebuffer_create(dev, mode_cmd, obj);
12816 }
12817
12818 #ifndef CONFIG_DRM_I915_FBDEV
12819 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12820 {
12821 }
12822 #endif
12823
12824 static const struct drm_mode_config_funcs intel_mode_funcs = {
12825 .fb_create = intel_user_framebuffer_create,
12826 .output_poll_changed = intel_fbdev_output_poll_changed,
12827 .atomic_check = intel_atomic_check,
12828 .atomic_commit = intel_atomic_commit,
12829 };
12830
12831 /* Set up chip specific display functions */
12832 static void intel_init_display(struct drm_device *dev)
12833 {
12834 struct drm_i915_private *dev_priv = dev->dev_private;
12835
12836 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12837 dev_priv->display.find_dpll = g4x_find_best_dpll;
12838 else if (IS_CHERRYVIEW(dev))
12839 dev_priv->display.find_dpll = chv_find_best_dpll;
12840 else if (IS_VALLEYVIEW(dev))
12841 dev_priv->display.find_dpll = vlv_find_best_dpll;
12842 else if (IS_PINEVIEW(dev))
12843 dev_priv->display.find_dpll = pnv_find_best_dpll;
12844 else
12845 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12846
12847 if (INTEL_INFO(dev)->gen >= 9) {
12848 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12849 dev_priv->display.get_initial_plane_config =
12850 skylake_get_initial_plane_config;
12851 dev_priv->display.crtc_compute_clock =
12852 haswell_crtc_compute_clock;
12853 dev_priv->display.crtc_enable = haswell_crtc_enable;
12854 dev_priv->display.crtc_disable = haswell_crtc_disable;
12855 dev_priv->display.off = ironlake_crtc_off;
12856 dev_priv->display.update_primary_plane =
12857 skylake_update_primary_plane;
12858 } else if (HAS_DDI(dev)) {
12859 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12860 dev_priv->display.get_initial_plane_config =
12861 ironlake_get_initial_plane_config;
12862 dev_priv->display.crtc_compute_clock =
12863 haswell_crtc_compute_clock;
12864 dev_priv->display.crtc_enable = haswell_crtc_enable;
12865 dev_priv->display.crtc_disable = haswell_crtc_disable;
12866 dev_priv->display.off = ironlake_crtc_off;
12867 dev_priv->display.update_primary_plane =
12868 ironlake_update_primary_plane;
12869 } else if (HAS_PCH_SPLIT(dev)) {
12870 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12871 dev_priv->display.get_initial_plane_config =
12872 ironlake_get_initial_plane_config;
12873 dev_priv->display.crtc_compute_clock =
12874 ironlake_crtc_compute_clock;
12875 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12876 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12877 dev_priv->display.off = ironlake_crtc_off;
12878 dev_priv->display.update_primary_plane =
12879 ironlake_update_primary_plane;
12880 } else if (IS_VALLEYVIEW(dev)) {
12881 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12882 dev_priv->display.get_initial_plane_config =
12883 i9xx_get_initial_plane_config;
12884 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12885 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12886 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12887 dev_priv->display.off = i9xx_crtc_off;
12888 dev_priv->display.update_primary_plane =
12889 i9xx_update_primary_plane;
12890 } else {
12891 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12892 dev_priv->display.get_initial_plane_config =
12893 i9xx_get_initial_plane_config;
12894 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12895 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12896 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12897 dev_priv->display.off = i9xx_crtc_off;
12898 dev_priv->display.update_primary_plane =
12899 i9xx_update_primary_plane;
12900 }
12901
12902 /* Returns the core display clock speed */
12903 if (IS_VALLEYVIEW(dev))
12904 dev_priv->display.get_display_clock_speed =
12905 valleyview_get_display_clock_speed;
12906 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12907 dev_priv->display.get_display_clock_speed =
12908 i945_get_display_clock_speed;
12909 else if (IS_I915G(dev))
12910 dev_priv->display.get_display_clock_speed =
12911 i915_get_display_clock_speed;
12912 else if (IS_I945GM(dev) || IS_845G(dev))
12913 dev_priv->display.get_display_clock_speed =
12914 i9xx_misc_get_display_clock_speed;
12915 else if (IS_PINEVIEW(dev))
12916 dev_priv->display.get_display_clock_speed =
12917 pnv_get_display_clock_speed;
12918 else if (IS_I915GM(dev))
12919 dev_priv->display.get_display_clock_speed =
12920 i915gm_get_display_clock_speed;
12921 else if (IS_I865G(dev))
12922 dev_priv->display.get_display_clock_speed =
12923 i865_get_display_clock_speed;
12924 else if (IS_I85X(dev))
12925 dev_priv->display.get_display_clock_speed =
12926 i855_get_display_clock_speed;
12927 else /* 852, 830 */
12928 dev_priv->display.get_display_clock_speed =
12929 i830_get_display_clock_speed;
12930
12931 if (IS_GEN5(dev)) {
12932 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12933 } else if (IS_GEN6(dev)) {
12934 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12935 } else if (IS_IVYBRIDGE(dev)) {
12936 /* FIXME: detect B0+ stepping and use auto training */
12937 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12938 dev_priv->display.modeset_global_resources =
12939 ivb_modeset_global_resources;
12940 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12941 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12942 } else if (IS_VALLEYVIEW(dev)) {
12943 dev_priv->display.modeset_global_resources =
12944 valleyview_modeset_global_resources;
12945 }
12946
12947 /* Default just returns -ENODEV to indicate unsupported */
12948 dev_priv->display.queue_flip = intel_default_queue_flip;
12949
12950 switch (INTEL_INFO(dev)->gen) {
12951 case 2:
12952 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12953 break;
12954
12955 case 3:
12956 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12957 break;
12958
12959 case 4:
12960 case 5:
12961 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12962 break;
12963
12964 case 6:
12965 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12966 break;
12967 case 7:
12968 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12969 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12970 break;
12971 case 9:
12972 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12973 break;
12974 }
12975
12976 intel_panel_init_backlight_funcs(dev);
12977
12978 mutex_init(&dev_priv->pps_mutex);
12979 }
12980
12981 /*
12982 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12983 * resume, or other times. This quirk makes sure that's the case for
12984 * affected systems.
12985 */
12986 static void quirk_pipea_force(struct drm_device *dev)
12987 {
12988 struct drm_i915_private *dev_priv = dev->dev_private;
12989
12990 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12991 DRM_INFO("applying pipe a force quirk\n");
12992 }
12993
12994 static void quirk_pipeb_force(struct drm_device *dev)
12995 {
12996 struct drm_i915_private *dev_priv = dev->dev_private;
12997
12998 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12999 DRM_INFO("applying pipe b force quirk\n");
13000 }
13001
13002 /*
13003 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13004 */
13005 static void quirk_ssc_force_disable(struct drm_device *dev)
13006 {
13007 struct drm_i915_private *dev_priv = dev->dev_private;
13008 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13009 DRM_INFO("applying lvds SSC disable quirk\n");
13010 }
13011
13012 /*
13013 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13014 * brightness value
13015 */
13016 static void quirk_invert_brightness(struct drm_device *dev)
13017 {
13018 struct drm_i915_private *dev_priv = dev->dev_private;
13019 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13020 DRM_INFO("applying inverted panel brightness quirk\n");
13021 }
13022
13023 /* Some VBT's incorrectly indicate no backlight is present */
13024 static void quirk_backlight_present(struct drm_device *dev)
13025 {
13026 struct drm_i915_private *dev_priv = dev->dev_private;
13027 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13028 DRM_INFO("applying backlight present quirk\n");
13029 }
13030
13031 struct intel_quirk {
13032 int device;
13033 int subsystem_vendor;
13034 int subsystem_device;
13035 void (*hook)(struct drm_device *dev);
13036 };
13037
13038 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13039 struct intel_dmi_quirk {
13040 void (*hook)(struct drm_device *dev);
13041 const struct dmi_system_id (*dmi_id_list)[];
13042 };
13043
13044 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13045 {
13046 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13047 return 1;
13048 }
13049
13050 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13051 {
13052 .dmi_id_list = &(const struct dmi_system_id[]) {
13053 {
13054 .callback = intel_dmi_reverse_brightness,
13055 .ident = "NCR Corporation",
13056 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13057 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13058 },
13059 },
13060 { } /* terminating entry */
13061 },
13062 .hook = quirk_invert_brightness,
13063 },
13064 };
13065
13066 static struct intel_quirk intel_quirks[] = {
13067 /* HP Mini needs pipe A force quirk (LP: #322104) */
13068 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13069
13070 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13071 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13072
13073 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13074 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13075
13076 /* 830 needs to leave pipe A & dpll A up */
13077 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13078
13079 /* 830 needs to leave pipe B & dpll B up */
13080 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13081
13082 /* Lenovo U160 cannot use SSC on LVDS */
13083 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13084
13085 /* Sony Vaio Y cannot use SSC on LVDS */
13086 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13087
13088 /* Acer Aspire 5734Z must invert backlight brightness */
13089 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13090
13091 /* Acer/eMachines G725 */
13092 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13093
13094 /* Acer/eMachines e725 */
13095 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13096
13097 /* Acer/Packard Bell NCL20 */
13098 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13099
13100 /* Acer Aspire 4736Z */
13101 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13102
13103 /* Acer Aspire 5336 */
13104 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13105
13106 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13107 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13108
13109 /* Acer C720 Chromebook (Core i3 4005U) */
13110 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13111
13112 /* Apple Macbook 2,1 (Core 2 T7400) */
13113 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13114
13115 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13116 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13117
13118 /* HP Chromebook 14 (Celeron 2955U) */
13119 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13120 };
13121
13122 static void intel_init_quirks(struct drm_device *dev)
13123 {
13124 struct pci_dev *d = dev->pdev;
13125 int i;
13126
13127 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13128 struct intel_quirk *q = &intel_quirks[i];
13129
13130 if (d->device == q->device &&
13131 (d->subsystem_vendor == q->subsystem_vendor ||
13132 q->subsystem_vendor == PCI_ANY_ID) &&
13133 (d->subsystem_device == q->subsystem_device ||
13134 q->subsystem_device == PCI_ANY_ID))
13135 q->hook(dev);
13136 }
13137 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13138 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13139 intel_dmi_quirks[i].hook(dev);
13140 }
13141 }
13142
13143 /* Disable the VGA plane that we never use */
13144 static void i915_disable_vga(struct drm_device *dev)
13145 {
13146 struct drm_i915_private *dev_priv = dev->dev_private;
13147 u8 sr1;
13148 u32 vga_reg = i915_vgacntrl_reg(dev);
13149
13150 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13151 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13152 outb(SR01, VGA_SR_INDEX);
13153 sr1 = inb(VGA_SR_DATA);
13154 outb(sr1 | 1<<5, VGA_SR_DATA);
13155 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13156 udelay(300);
13157
13158 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13159 POSTING_READ(vga_reg);
13160 }
13161
13162 void intel_modeset_init_hw(struct drm_device *dev)
13163 {
13164 intel_prepare_ddi(dev);
13165
13166 if (IS_VALLEYVIEW(dev))
13167 vlv_update_cdclk(dev);
13168
13169 intel_init_clock_gating(dev);
13170
13171 intel_enable_gt_powersave(dev);
13172 }
13173
13174 void intel_modeset_init(struct drm_device *dev)
13175 {
13176 struct drm_i915_private *dev_priv = dev->dev_private;
13177 int sprite, ret;
13178 enum pipe pipe;
13179 struct intel_crtc *crtc;
13180
13181 drm_mode_config_init(dev);
13182
13183 dev->mode_config.min_width = 0;
13184 dev->mode_config.min_height = 0;
13185
13186 dev->mode_config.preferred_depth = 24;
13187 dev->mode_config.prefer_shadow = 1;
13188
13189 dev->mode_config.funcs = &intel_mode_funcs;
13190
13191 intel_init_quirks(dev);
13192
13193 intel_init_pm(dev);
13194
13195 if (INTEL_INFO(dev)->num_pipes == 0)
13196 return;
13197
13198 intel_init_display(dev);
13199 intel_init_audio(dev);
13200
13201 if (IS_GEN2(dev)) {
13202 dev->mode_config.max_width = 2048;
13203 dev->mode_config.max_height = 2048;
13204 } else if (IS_GEN3(dev)) {
13205 dev->mode_config.max_width = 4096;
13206 dev->mode_config.max_height = 4096;
13207 } else {
13208 dev->mode_config.max_width = 8192;
13209 dev->mode_config.max_height = 8192;
13210 }
13211
13212 if (IS_845G(dev) || IS_I865G(dev)) {
13213 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13214 dev->mode_config.cursor_height = 1023;
13215 } else if (IS_GEN2(dev)) {
13216 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13217 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13218 } else {
13219 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13220 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13221 }
13222
13223 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13224
13225 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13226 INTEL_INFO(dev)->num_pipes,
13227 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13228
13229 for_each_pipe(dev_priv, pipe) {
13230 intel_crtc_init(dev, pipe);
13231 for_each_sprite(pipe, sprite) {
13232 ret = intel_plane_init(dev, pipe, sprite);
13233 if (ret)
13234 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13235 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13236 }
13237 }
13238
13239 intel_init_dpio(dev);
13240
13241 intel_shared_dpll_init(dev);
13242
13243 /* Just disable it once at startup */
13244 i915_disable_vga(dev);
13245 intel_setup_outputs(dev);
13246
13247 /* Just in case the BIOS is doing something questionable. */
13248 intel_fbc_disable(dev);
13249
13250 drm_modeset_lock_all(dev);
13251 intel_modeset_setup_hw_state(dev, false);
13252 drm_modeset_unlock_all(dev);
13253
13254 for_each_intel_crtc(dev, crtc) {
13255 if (!crtc->active)
13256 continue;
13257
13258 /*
13259 * Note that reserving the BIOS fb up front prevents us
13260 * from stuffing other stolen allocations like the ring
13261 * on top. This prevents some ugliness at boot time, and
13262 * can even allow for smooth boot transitions if the BIOS
13263 * fb is large enough for the active pipe configuration.
13264 */
13265 if (dev_priv->display.get_initial_plane_config) {
13266 dev_priv->display.get_initial_plane_config(crtc,
13267 &crtc->plane_config);
13268 /*
13269 * If the fb is shared between multiple heads, we'll
13270 * just get the first one.
13271 */
13272 intel_find_plane_obj(crtc, &crtc->plane_config);
13273 }
13274 }
13275 }
13276
13277 static void intel_enable_pipe_a(struct drm_device *dev)
13278 {
13279 struct intel_connector *connector;
13280 struct drm_connector *crt = NULL;
13281 struct intel_load_detect_pipe load_detect_temp;
13282 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13283
13284 /* We can't just switch on the pipe A, we need to set things up with a
13285 * proper mode and output configuration. As a gross hack, enable pipe A
13286 * by enabling the load detect pipe once. */
13287 list_for_each_entry(connector,
13288 &dev->mode_config.connector_list,
13289 base.head) {
13290 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13291 crt = &connector->base;
13292 break;
13293 }
13294 }
13295
13296 if (!crt)
13297 return;
13298
13299 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13300 intel_release_load_detect_pipe(crt, &load_detect_temp);
13301 }
13302
13303 static bool
13304 intel_check_plane_mapping(struct intel_crtc *crtc)
13305 {
13306 struct drm_device *dev = crtc->base.dev;
13307 struct drm_i915_private *dev_priv = dev->dev_private;
13308 u32 reg, val;
13309
13310 if (INTEL_INFO(dev)->num_pipes == 1)
13311 return true;
13312
13313 reg = DSPCNTR(!crtc->plane);
13314 val = I915_READ(reg);
13315
13316 if ((val & DISPLAY_PLANE_ENABLE) &&
13317 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13318 return false;
13319
13320 return true;
13321 }
13322
13323 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13324 {
13325 struct drm_device *dev = crtc->base.dev;
13326 struct drm_i915_private *dev_priv = dev->dev_private;
13327 u32 reg;
13328
13329 /* Clear any frame start delays used for debugging left by the BIOS */
13330 reg = PIPECONF(crtc->config->cpu_transcoder);
13331 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13332
13333 /* restore vblank interrupts to correct state */
13334 if (crtc->active) {
13335 update_scanline_offset(crtc);
13336 drm_vblank_on(dev, crtc->pipe);
13337 } else
13338 drm_vblank_off(dev, crtc->pipe);
13339
13340 /* We need to sanitize the plane -> pipe mapping first because this will
13341 * disable the crtc (and hence change the state) if it is wrong. Note
13342 * that gen4+ has a fixed plane -> pipe mapping. */
13343 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13344 struct intel_connector *connector;
13345 bool plane;
13346
13347 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13348 crtc->base.base.id);
13349
13350 /* Pipe has the wrong plane attached and the plane is active.
13351 * Temporarily change the plane mapping and disable everything
13352 * ... */
13353 plane = crtc->plane;
13354 crtc->plane = !plane;
13355 crtc->primary_enabled = true;
13356 dev_priv->display.crtc_disable(&crtc->base);
13357 crtc->plane = plane;
13358
13359 /* ... and break all links. */
13360 list_for_each_entry(connector, &dev->mode_config.connector_list,
13361 base.head) {
13362 if (connector->encoder->base.crtc != &crtc->base)
13363 continue;
13364
13365 connector->base.dpms = DRM_MODE_DPMS_OFF;
13366 connector->base.encoder = NULL;
13367 }
13368 /* multiple connectors may have the same encoder:
13369 * handle them and break crtc link separately */
13370 list_for_each_entry(connector, &dev->mode_config.connector_list,
13371 base.head)
13372 if (connector->encoder->base.crtc == &crtc->base) {
13373 connector->encoder->base.crtc = NULL;
13374 connector->encoder->connectors_active = false;
13375 }
13376
13377 WARN_ON(crtc->active);
13378 crtc->base.enabled = false;
13379 }
13380
13381 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13382 crtc->pipe == PIPE_A && !crtc->active) {
13383 /* BIOS forgot to enable pipe A, this mostly happens after
13384 * resume. Force-enable the pipe to fix this, the update_dpms
13385 * call below we restore the pipe to the right state, but leave
13386 * the required bits on. */
13387 intel_enable_pipe_a(dev);
13388 }
13389
13390 /* Adjust the state of the output pipe according to whether we
13391 * have active connectors/encoders. */
13392 intel_crtc_update_dpms(&crtc->base);
13393
13394 if (crtc->active != crtc->base.enabled) {
13395 struct intel_encoder *encoder;
13396
13397 /* This can happen either due to bugs in the get_hw_state
13398 * functions or because the pipe is force-enabled due to the
13399 * pipe A quirk. */
13400 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13401 crtc->base.base.id,
13402 crtc->base.enabled ? "enabled" : "disabled",
13403 crtc->active ? "enabled" : "disabled");
13404
13405 crtc->base.enabled = crtc->active;
13406
13407 /* Because we only establish the connector -> encoder ->
13408 * crtc links if something is active, this means the
13409 * crtc is now deactivated. Break the links. connector
13410 * -> encoder links are only establish when things are
13411 * actually up, hence no need to break them. */
13412 WARN_ON(crtc->active);
13413
13414 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13415 WARN_ON(encoder->connectors_active);
13416 encoder->base.crtc = NULL;
13417 }
13418 }
13419
13420 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13421 /*
13422 * We start out with underrun reporting disabled to avoid races.
13423 * For correct bookkeeping mark this on active crtcs.
13424 *
13425 * Also on gmch platforms we dont have any hardware bits to
13426 * disable the underrun reporting. Which means we need to start
13427 * out with underrun reporting disabled also on inactive pipes,
13428 * since otherwise we'll complain about the garbage we read when
13429 * e.g. coming up after runtime pm.
13430 *
13431 * No protection against concurrent access is required - at
13432 * worst a fifo underrun happens which also sets this to false.
13433 */
13434 crtc->cpu_fifo_underrun_disabled = true;
13435 crtc->pch_fifo_underrun_disabled = true;
13436 }
13437 }
13438
13439 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13440 {
13441 struct intel_connector *connector;
13442 struct drm_device *dev = encoder->base.dev;
13443
13444 /* We need to check both for a crtc link (meaning that the
13445 * encoder is active and trying to read from a pipe) and the
13446 * pipe itself being active. */
13447 bool has_active_crtc = encoder->base.crtc &&
13448 to_intel_crtc(encoder->base.crtc)->active;
13449
13450 if (encoder->connectors_active && !has_active_crtc) {
13451 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13452 encoder->base.base.id,
13453 encoder->base.name);
13454
13455 /* Connector is active, but has no active pipe. This is
13456 * fallout from our resume register restoring. Disable
13457 * the encoder manually again. */
13458 if (encoder->base.crtc) {
13459 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13460 encoder->base.base.id,
13461 encoder->base.name);
13462 encoder->disable(encoder);
13463 if (encoder->post_disable)
13464 encoder->post_disable(encoder);
13465 }
13466 encoder->base.crtc = NULL;
13467 encoder->connectors_active = false;
13468
13469 /* Inconsistent output/port/pipe state happens presumably due to
13470 * a bug in one of the get_hw_state functions. Or someplace else
13471 * in our code, like the register restore mess on resume. Clamp
13472 * things to off as a safer default. */
13473 list_for_each_entry(connector,
13474 &dev->mode_config.connector_list,
13475 base.head) {
13476 if (connector->encoder != encoder)
13477 continue;
13478 connector->base.dpms = DRM_MODE_DPMS_OFF;
13479 connector->base.encoder = NULL;
13480 }
13481 }
13482 /* Enabled encoders without active connectors will be fixed in
13483 * the crtc fixup. */
13484 }
13485
13486 void i915_redisable_vga_power_on(struct drm_device *dev)
13487 {
13488 struct drm_i915_private *dev_priv = dev->dev_private;
13489 u32 vga_reg = i915_vgacntrl_reg(dev);
13490
13491 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13492 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13493 i915_disable_vga(dev);
13494 }
13495 }
13496
13497 void i915_redisable_vga(struct drm_device *dev)
13498 {
13499 struct drm_i915_private *dev_priv = dev->dev_private;
13500
13501 /* This function can be called both from intel_modeset_setup_hw_state or
13502 * at a very early point in our resume sequence, where the power well
13503 * structures are not yet restored. Since this function is at a very
13504 * paranoid "someone might have enabled VGA while we were not looking"
13505 * level, just check if the power well is enabled instead of trying to
13506 * follow the "don't touch the power well if we don't need it" policy
13507 * the rest of the driver uses. */
13508 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13509 return;
13510
13511 i915_redisable_vga_power_on(dev);
13512 }
13513
13514 static bool primary_get_hw_state(struct intel_crtc *crtc)
13515 {
13516 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13517
13518 if (!crtc->active)
13519 return false;
13520
13521 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13522 }
13523
13524 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13525 {
13526 struct drm_i915_private *dev_priv = dev->dev_private;
13527 enum pipe pipe;
13528 struct intel_crtc *crtc;
13529 struct intel_encoder *encoder;
13530 struct intel_connector *connector;
13531 int i;
13532
13533 for_each_intel_crtc(dev, crtc) {
13534 memset(crtc->config, 0, sizeof(*crtc->config));
13535
13536 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13537
13538 crtc->active = dev_priv->display.get_pipe_config(crtc,
13539 crtc->config);
13540
13541 crtc->base.enabled = crtc->active;
13542 crtc->primary_enabled = primary_get_hw_state(crtc);
13543
13544 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13545 crtc->base.base.id,
13546 crtc->active ? "enabled" : "disabled");
13547 }
13548
13549 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13550 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13551
13552 pll->on = pll->get_hw_state(dev_priv, pll,
13553 &pll->config.hw_state);
13554 pll->active = 0;
13555 pll->config.crtc_mask = 0;
13556 for_each_intel_crtc(dev, crtc) {
13557 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13558 pll->active++;
13559 pll->config.crtc_mask |= 1 << crtc->pipe;
13560 }
13561 }
13562
13563 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13564 pll->name, pll->config.crtc_mask, pll->on);
13565
13566 if (pll->config.crtc_mask)
13567 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13568 }
13569
13570 for_each_intel_encoder(dev, encoder) {
13571 pipe = 0;
13572
13573 if (encoder->get_hw_state(encoder, &pipe)) {
13574 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13575 encoder->base.crtc = &crtc->base;
13576 encoder->get_config(encoder, crtc->config);
13577 } else {
13578 encoder->base.crtc = NULL;
13579 }
13580
13581 encoder->connectors_active = false;
13582 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13583 encoder->base.base.id,
13584 encoder->base.name,
13585 encoder->base.crtc ? "enabled" : "disabled",
13586 pipe_name(pipe));
13587 }
13588
13589 list_for_each_entry(connector, &dev->mode_config.connector_list,
13590 base.head) {
13591 if (connector->get_hw_state(connector)) {
13592 connector->base.dpms = DRM_MODE_DPMS_ON;
13593 connector->encoder->connectors_active = true;
13594 connector->base.encoder = &connector->encoder->base;
13595 } else {
13596 connector->base.dpms = DRM_MODE_DPMS_OFF;
13597 connector->base.encoder = NULL;
13598 }
13599 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13600 connector->base.base.id,
13601 connector->base.name,
13602 connector->base.encoder ? "enabled" : "disabled");
13603 }
13604 }
13605
13606 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13607 * and i915 state tracking structures. */
13608 void intel_modeset_setup_hw_state(struct drm_device *dev,
13609 bool force_restore)
13610 {
13611 struct drm_i915_private *dev_priv = dev->dev_private;
13612 enum pipe pipe;
13613 struct intel_crtc *crtc;
13614 struct intel_encoder *encoder;
13615 int i;
13616
13617 intel_modeset_readout_hw_state(dev);
13618
13619 /*
13620 * Now that we have the config, copy it to each CRTC struct
13621 * Note that this could go away if we move to using crtc_config
13622 * checking everywhere.
13623 */
13624 for_each_intel_crtc(dev, crtc) {
13625 if (crtc->active && i915.fastboot) {
13626 intel_mode_from_pipe_config(&crtc->base.mode,
13627 crtc->config);
13628 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13629 crtc->base.base.id);
13630 drm_mode_debug_printmodeline(&crtc->base.mode);
13631 }
13632 }
13633
13634 /* HW state is read out, now we need to sanitize this mess. */
13635 for_each_intel_encoder(dev, encoder) {
13636 intel_sanitize_encoder(encoder);
13637 }
13638
13639 for_each_pipe(dev_priv, pipe) {
13640 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13641 intel_sanitize_crtc(crtc);
13642 intel_dump_pipe_config(crtc, crtc->config,
13643 "[setup_hw_state]");
13644 }
13645
13646 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13647 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13648
13649 if (!pll->on || pll->active)
13650 continue;
13651
13652 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13653
13654 pll->disable(dev_priv, pll);
13655 pll->on = false;
13656 }
13657
13658 if (IS_GEN9(dev))
13659 skl_wm_get_hw_state(dev);
13660 else if (HAS_PCH_SPLIT(dev))
13661 ilk_wm_get_hw_state(dev);
13662
13663 if (force_restore) {
13664 i915_redisable_vga(dev);
13665
13666 /*
13667 * We need to use raw interfaces for restoring state to avoid
13668 * checking (bogus) intermediate states.
13669 */
13670 for_each_pipe(dev_priv, pipe) {
13671 struct drm_crtc *crtc =
13672 dev_priv->pipe_to_crtc_mapping[pipe];
13673
13674 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13675 crtc->primary->fb);
13676 }
13677 } else {
13678 intel_modeset_update_staged_output_state(dev);
13679 }
13680
13681 intel_modeset_check_state(dev);
13682 }
13683
13684 void intel_modeset_gem_init(struct drm_device *dev)
13685 {
13686 struct drm_i915_private *dev_priv = dev->dev_private;
13687 struct drm_crtc *c;
13688 struct drm_i915_gem_object *obj;
13689
13690 mutex_lock(&dev->struct_mutex);
13691 intel_init_gt_powersave(dev);
13692 mutex_unlock(&dev->struct_mutex);
13693
13694 /*
13695 * There may be no VBT; and if the BIOS enabled SSC we can
13696 * just keep using it to avoid unnecessary flicker. Whereas if the
13697 * BIOS isn't using it, don't assume it will work even if the VBT
13698 * indicates as much.
13699 */
13700 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13701 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13702 DREF_SSC1_ENABLE);
13703
13704 intel_modeset_init_hw(dev);
13705
13706 intel_setup_overlay(dev);
13707
13708 /*
13709 * Make sure any fbs we allocated at startup are properly
13710 * pinned & fenced. When we do the allocation it's too early
13711 * for this.
13712 */
13713 mutex_lock(&dev->struct_mutex);
13714 for_each_crtc(dev, c) {
13715 obj = intel_fb_obj(c->primary->fb);
13716 if (obj == NULL)
13717 continue;
13718
13719 if (intel_pin_and_fence_fb_obj(c->primary,
13720 c->primary->fb,
13721 NULL)) {
13722 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13723 to_intel_crtc(c)->pipe);
13724 drm_framebuffer_unreference(c->primary->fb);
13725 c->primary->fb = NULL;
13726 update_state_fb(c->primary);
13727 }
13728 }
13729 mutex_unlock(&dev->struct_mutex);
13730
13731 intel_backlight_register(dev);
13732 }
13733
13734 void intel_connector_unregister(struct intel_connector *intel_connector)
13735 {
13736 struct drm_connector *connector = &intel_connector->base;
13737
13738 intel_panel_destroy_backlight(connector);
13739 drm_connector_unregister(connector);
13740 }
13741
13742 void intel_modeset_cleanup(struct drm_device *dev)
13743 {
13744 struct drm_i915_private *dev_priv = dev->dev_private;
13745 struct drm_connector *connector;
13746
13747 intel_disable_gt_powersave(dev);
13748
13749 intel_backlight_unregister(dev);
13750
13751 /*
13752 * Interrupts and polling as the first thing to avoid creating havoc.
13753 * Too much stuff here (turning of connectors, ...) would
13754 * experience fancy races otherwise.
13755 */
13756 intel_irq_uninstall(dev_priv);
13757
13758 /*
13759 * Due to the hpd irq storm handling the hotplug work can re-arm the
13760 * poll handlers. Hence disable polling after hpd handling is shut down.
13761 */
13762 drm_kms_helper_poll_fini(dev);
13763
13764 mutex_lock(&dev->struct_mutex);
13765
13766 intel_unregister_dsm_handler();
13767
13768 intel_fbc_disable(dev);
13769
13770 ironlake_teardown_rc6(dev);
13771
13772 mutex_unlock(&dev->struct_mutex);
13773
13774 /* flush any delayed tasks or pending work */
13775 flush_scheduled_work();
13776
13777 /* destroy the backlight and sysfs files before encoders/connectors */
13778 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13779 struct intel_connector *intel_connector;
13780
13781 intel_connector = to_intel_connector(connector);
13782 intel_connector->unregister(intel_connector);
13783 }
13784
13785 drm_mode_config_cleanup(dev);
13786
13787 intel_cleanup_overlay(dev);
13788
13789 mutex_lock(&dev->struct_mutex);
13790 intel_cleanup_gt_powersave(dev);
13791 mutex_unlock(&dev->struct_mutex);
13792 }
13793
13794 /*
13795 * Return which encoder is currently attached for connector.
13796 */
13797 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13798 {
13799 return &intel_attached_encoder(connector)->base;
13800 }
13801
13802 void intel_connector_attach_encoder(struct intel_connector *connector,
13803 struct intel_encoder *encoder)
13804 {
13805 connector->encoder = encoder;
13806 drm_mode_connector_attach_encoder(&connector->base,
13807 &encoder->base);
13808 }
13809
13810 /*
13811 * set vga decode state - true == enable VGA decode
13812 */
13813 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13814 {
13815 struct drm_i915_private *dev_priv = dev->dev_private;
13816 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13817 u16 gmch_ctrl;
13818
13819 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13820 DRM_ERROR("failed to read control word\n");
13821 return -EIO;
13822 }
13823
13824 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13825 return 0;
13826
13827 if (state)
13828 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13829 else
13830 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13831
13832 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13833 DRM_ERROR("failed to write control word\n");
13834 return -EIO;
13835 }
13836
13837 return 0;
13838 }
13839
13840 struct intel_display_error_state {
13841
13842 u32 power_well_driver;
13843
13844 int num_transcoders;
13845
13846 struct intel_cursor_error_state {
13847 u32 control;
13848 u32 position;
13849 u32 base;
13850 u32 size;
13851 } cursor[I915_MAX_PIPES];
13852
13853 struct intel_pipe_error_state {
13854 bool power_domain_on;
13855 u32 source;
13856 u32 stat;
13857 } pipe[I915_MAX_PIPES];
13858
13859 struct intel_plane_error_state {
13860 u32 control;
13861 u32 stride;
13862 u32 size;
13863 u32 pos;
13864 u32 addr;
13865 u32 surface;
13866 u32 tile_offset;
13867 } plane[I915_MAX_PIPES];
13868
13869 struct intel_transcoder_error_state {
13870 bool power_domain_on;
13871 enum transcoder cpu_transcoder;
13872
13873 u32 conf;
13874
13875 u32 htotal;
13876 u32 hblank;
13877 u32 hsync;
13878 u32 vtotal;
13879 u32 vblank;
13880 u32 vsync;
13881 } transcoder[4];
13882 };
13883
13884 struct intel_display_error_state *
13885 intel_display_capture_error_state(struct drm_device *dev)
13886 {
13887 struct drm_i915_private *dev_priv = dev->dev_private;
13888 struct intel_display_error_state *error;
13889 int transcoders[] = {
13890 TRANSCODER_A,
13891 TRANSCODER_B,
13892 TRANSCODER_C,
13893 TRANSCODER_EDP,
13894 };
13895 int i;
13896
13897 if (INTEL_INFO(dev)->num_pipes == 0)
13898 return NULL;
13899
13900 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13901 if (error == NULL)
13902 return NULL;
13903
13904 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13905 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13906
13907 for_each_pipe(dev_priv, i) {
13908 error->pipe[i].power_domain_on =
13909 __intel_display_power_is_enabled(dev_priv,
13910 POWER_DOMAIN_PIPE(i));
13911 if (!error->pipe[i].power_domain_on)
13912 continue;
13913
13914 error->cursor[i].control = I915_READ(CURCNTR(i));
13915 error->cursor[i].position = I915_READ(CURPOS(i));
13916 error->cursor[i].base = I915_READ(CURBASE(i));
13917
13918 error->plane[i].control = I915_READ(DSPCNTR(i));
13919 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13920 if (INTEL_INFO(dev)->gen <= 3) {
13921 error->plane[i].size = I915_READ(DSPSIZE(i));
13922 error->plane[i].pos = I915_READ(DSPPOS(i));
13923 }
13924 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13925 error->plane[i].addr = I915_READ(DSPADDR(i));
13926 if (INTEL_INFO(dev)->gen >= 4) {
13927 error->plane[i].surface = I915_READ(DSPSURF(i));
13928 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13929 }
13930
13931 error->pipe[i].source = I915_READ(PIPESRC(i));
13932
13933 if (HAS_GMCH_DISPLAY(dev))
13934 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13935 }
13936
13937 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13938 if (HAS_DDI(dev_priv->dev))
13939 error->num_transcoders++; /* Account for eDP. */
13940
13941 for (i = 0; i < error->num_transcoders; i++) {
13942 enum transcoder cpu_transcoder = transcoders[i];
13943
13944 error->transcoder[i].power_domain_on =
13945 __intel_display_power_is_enabled(dev_priv,
13946 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13947 if (!error->transcoder[i].power_domain_on)
13948 continue;
13949
13950 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13951
13952 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13953 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13954 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13955 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13956 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13957 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13958 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13959 }
13960
13961 return error;
13962 }
13963
13964 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13965
13966 void
13967 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13968 struct drm_device *dev,
13969 struct intel_display_error_state *error)
13970 {
13971 struct drm_i915_private *dev_priv = dev->dev_private;
13972 int i;
13973
13974 if (!error)
13975 return;
13976
13977 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13978 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13979 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13980 error->power_well_driver);
13981 for_each_pipe(dev_priv, i) {
13982 err_printf(m, "Pipe [%d]:\n", i);
13983 err_printf(m, " Power: %s\n",
13984 error->pipe[i].power_domain_on ? "on" : "off");
13985 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13986 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13987
13988 err_printf(m, "Plane [%d]:\n", i);
13989 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13990 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13991 if (INTEL_INFO(dev)->gen <= 3) {
13992 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13993 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13994 }
13995 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13996 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13997 if (INTEL_INFO(dev)->gen >= 4) {
13998 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13999 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14000 }
14001
14002 err_printf(m, "Cursor [%d]:\n", i);
14003 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14004 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14005 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14006 }
14007
14008 for (i = 0; i < error->num_transcoders; i++) {
14009 err_printf(m, "CPU transcoder: %c\n",
14010 transcoder_name(error->transcoder[i].cpu_transcoder));
14011 err_printf(m, " Power: %s\n",
14012 error->transcoder[i].power_domain_on ? "on" : "off");
14013 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14014 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14015 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14016 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14017 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14018 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14019 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14020 }
14021 }
14022
14023 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14024 {
14025 struct intel_crtc *crtc;
14026
14027 for_each_intel_crtc(dev, crtc) {
14028 struct intel_unpin_work *work;
14029
14030 spin_lock_irq(&dev->event_lock);
14031
14032 work = crtc->unpin_work;
14033
14034 if (work && work->event &&
14035 work->event->base.file_priv == file) {
14036 kfree(work->event);
14037 work->event = NULL;
14038 }
14039
14040 spin_unlock_irq(&dev->event_lock);
14041 }
14042 }
This page took 0.419278 seconds and 5 git commands to generate.