ec6ea92da53856e6a18e3a28cf2032c1eb5a5fea
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
62
63 typedef struct {
64 int min, max;
65 } intel_range_t;
66
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *match_clock,
87 intel_clock_t *best_clock);
88 static bool
89 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
90 int target, int refclk, intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
92
93 static bool
94 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static inline u32 /* units of 100MHz */
103 intel_fdi_link_freq(struct drm_device *dev)
104 {
105 if (IS_GEN5(dev)) {
106 struct drm_i915_private *dev_priv = dev->dev_private;
107 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108 } else
109 return 27;
110 }
111
112 static const intel_limit_t intel_limits_i8xx_dvo = {
113 .dot = { .min = 25000, .max = 350000 },
114 .vco = { .min = 930000, .max = 1400000 },
115 .n = { .min = 3, .max = 16 },
116 .m = { .min = 96, .max = 140 },
117 .m1 = { .min = 18, .max = 26 },
118 .m2 = { .min = 6, .max = 16 },
119 .p = { .min = 4, .max = 128 },
120 .p1 = { .min = 2, .max = 33 },
121 .p2 = { .dot_limit = 165000,
122 .p2_slow = 4, .p2_fast = 2 },
123 .find_pll = intel_find_best_PLL,
124 };
125
126 static const intel_limit_t intel_limits_i8xx_lvds = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 1, .max = 6 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 14, .p2_fast = 7 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i9xx_sdvo = {
141 .dot = { .min = 20000, .max = 400000 },
142 .vco = { .min = 1400000, .max = 2800000 },
143 .n = { .min = 1, .max = 6 },
144 .m = { .min = 70, .max = 120 },
145 .m1 = { .min = 10, .max = 22 },
146 .m2 = { .min = 5, .max = 9 },
147 .p = { .min = 5, .max = 80 },
148 .p1 = { .min = 1, .max = 8 },
149 .p2 = { .dot_limit = 200000,
150 .p2_slow = 10, .p2_fast = 5 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_lvds = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 7, .max = 98 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 112000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168
169 static const intel_limit_t intel_limits_g4x_sdvo = {
170 .dot = { .min = 25000, .max = 270000 },
171 .vco = { .min = 1750000, .max = 3500000},
172 .n = { .min = 1, .max = 4 },
173 .m = { .min = 104, .max = 138 },
174 .m1 = { .min = 17, .max = 23 },
175 .m2 = { .min = 5, .max = 11 },
176 .p = { .min = 10, .max = 30 },
177 .p1 = { .min = 1, .max = 3},
178 .p2 = { .dot_limit = 270000,
179 .p2_slow = 10,
180 .p2_fast = 10
181 },
182 .find_pll = intel_g4x_find_best_PLL,
183 };
184
185 static const intel_limit_t intel_limits_g4x_hdmi = {
186 .dot = { .min = 22000, .max = 400000 },
187 .vco = { .min = 1750000, .max = 3500000},
188 .n = { .min = 1, .max = 4 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 16, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 5, .max = 80 },
193 .p1 = { .min = 1, .max = 8},
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 10, .p2_fast = 5 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
200 .dot = { .min = 20000, .max = 115000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 28, .max = 112 },
207 .p1 = { .min = 2, .max = 8 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 14, .p2_fast = 14
210 },
211 .find_pll = intel_g4x_find_best_PLL,
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215 .dot = { .min = 80000, .max = 224000 },
216 .vco = { .min = 1750000, .max = 3500000 },
217 .n = { .min = 1, .max = 3 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 14, .max = 42 },
222 .p1 = { .min = 2, .max = 6 },
223 .p2 = { .dot_limit = 0,
224 .p2_slow = 7, .p2_fast = 7
225 },
226 .find_pll = intel_g4x_find_best_PLL,
227 };
228
229 static const intel_limit_t intel_limits_g4x_display_port = {
230 .dot = { .min = 161670, .max = 227000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 2 },
233 .m = { .min = 97, .max = 108 },
234 .m1 = { .min = 0x10, .max = 0x12 },
235 .m2 = { .min = 0x05, .max = 0x06 },
236 .p = { .min = 10, .max = 20 },
237 .p1 = { .min = 1, .max = 2},
238 .p2 = { .dot_limit = 0,
239 .p2_slow = 10, .p2_fast = 10 },
240 .find_pll = intel_find_pll_g4x_dp,
241 };
242
243 static const intel_limit_t intel_limits_pineview_sdvo = {
244 .dot = { .min = 20000, .max = 400000},
245 .vco = { .min = 1700000, .max = 3500000 },
246 /* Pineview's Ncounter is a ring counter */
247 .n = { .min = 3, .max = 6 },
248 .m = { .min = 2, .max = 256 },
249 /* Pineview only has one combined m divider, which we treat as m2. */
250 .m1 = { .min = 0, .max = 0 },
251 .m2 = { .min = 0, .max = 254 },
252 .p = { .min = 5, .max = 80 },
253 .p1 = { .min = 1, .max = 8 },
254 .p2 = { .dot_limit = 200000,
255 .p2_slow = 10, .p2_fast = 5 },
256 .find_pll = intel_find_best_PLL,
257 };
258
259 static const intel_limit_t intel_limits_pineview_lvds = {
260 .dot = { .min = 20000, .max = 400000 },
261 .vco = { .min = 1700000, .max = 3500000 },
262 .n = { .min = 3, .max = 6 },
263 .m = { .min = 2, .max = 256 },
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 7, .max = 112 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 112000,
269 .p2_slow = 14, .p2_fast = 14 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 /* Ironlake / Sandybridge
274 *
275 * We calculate clock using (register_value + 2) for N/M1/M2, so here
276 * the range value for them is (actual_value - 2).
277 */
278 static const intel_limit_t intel_limits_ironlake_dac = {
279 .dot = { .min = 25000, .max = 350000 },
280 .vco = { .min = 1760000, .max = 3510000 },
281 .n = { .min = 1, .max = 5 },
282 .m = { .min = 79, .max = 127 },
283 .m1 = { .min = 12, .max = 22 },
284 .m2 = { .min = 5, .max = 9 },
285 .p = { .min = 5, .max = 80 },
286 .p1 = { .min = 1, .max = 8 },
287 .p2 = { .dot_limit = 225000,
288 .p2_slow = 10, .p2_fast = 5 },
289 .find_pll = intel_g4x_find_best_PLL,
290 };
291
292 static const intel_limit_t intel_limits_ironlake_single_lvds = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 3 },
296 .m = { .min = 79, .max = 118 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 28, .max = 112 },
300 .p1 = { .min = 2, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 14, .p2_fast = 14 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 14, .max = 56 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 7, .p2_fast = 7 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 /* LVDS 100mhz refclk limits. */
321 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
322 .dot = { .min = 25000, .max = 350000 },
323 .vco = { .min = 1760000, .max = 3510000 },
324 .n = { .min = 1, .max = 2 },
325 .m = { .min = 79, .max = 126 },
326 .m1 = { .min = 12, .max = 22 },
327 .m2 = { .min = 5, .max = 9 },
328 .p = { .min = 28, .max = 112 },
329 .p1 = { .min = 2, .max = 8 },
330 .p2 = { .dot_limit = 225000,
331 .p2_slow = 14, .p2_fast = 14 },
332 .find_pll = intel_g4x_find_best_PLL,
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 3 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 14, .max = 42 },
343 .p1 = { .min = 2, .max = 6 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 7, .p2_fast = 7 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_display_port = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000},
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 81, .max = 90 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 10, .max = 20 },
357 .p1 = { .min = 1, .max = 2},
358 .p2 = { .dot_limit = 0,
359 .p2_slow = 10, .p2_fast = 10 },
360 .find_pll = intel_find_pll_ironlake_dp,
361 };
362
363 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
364 int refclk)
365 {
366 struct drm_device *dev = crtc->dev;
367 struct drm_i915_private *dev_priv = dev->dev_private;
368 const intel_limit_t *limit;
369
370 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
371 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
372 LVDS_CLKB_POWER_UP) {
373 /* LVDS dual channel */
374 if (refclk == 100000)
375 limit = &intel_limits_ironlake_dual_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_dual_lvds;
378 } else {
379 if (refclk == 100000)
380 limit = &intel_limits_ironlake_single_lvds_100m;
381 else
382 limit = &intel_limits_ironlake_single_lvds;
383 }
384 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
385 HAS_eDP)
386 limit = &intel_limits_ironlake_display_port;
387 else
388 limit = &intel_limits_ironlake_dac;
389
390 return limit;
391 }
392
393 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
394 {
395 struct drm_device *dev = crtc->dev;
396 struct drm_i915_private *dev_priv = dev->dev_private;
397 const intel_limit_t *limit;
398
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
400 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
401 LVDS_CLKB_POWER_UP)
402 /* LVDS with dual channel */
403 limit = &intel_limits_g4x_dual_channel_lvds;
404 else
405 /* LVDS with dual channel */
406 limit = &intel_limits_g4x_single_channel_lvds;
407 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
408 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
409 limit = &intel_limits_g4x_hdmi;
410 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
411 limit = &intel_limits_g4x_sdvo;
412 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
413 limit = &intel_limits_g4x_display_port;
414 } else /* The option is for other outputs */
415 limit = &intel_limits_i9xx_sdvo;
416
417 return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422 struct drm_device *dev = crtc->dev;
423 const intel_limit_t *limit;
424
425 if (HAS_PCH_SPLIT(dev))
426 limit = intel_ironlake_limit(crtc, refclk);
427 else if (IS_G4X(dev)) {
428 limit = intel_g4x_limit(crtc);
429 } else if (IS_PINEVIEW(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_pineview_lvds;
432 else
433 limit = &intel_limits_pineview_sdvo;
434 } else if (!IS_GEN2(dev)) {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i9xx_lvds;
437 else
438 limit = &intel_limits_i9xx_sdvo;
439 } else {
440 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
441 limit = &intel_limits_i8xx_lvds;
442 else
443 limit = &intel_limits_i8xx_dvo;
444 }
445 return limit;
446 }
447
448 /* m1 is reserved as 0 in Pineview, n is a ring counter */
449 static void pineview_clock(int refclk, intel_clock_t *clock)
450 {
451 clock->m = clock->m2 + 2;
452 clock->p = clock->p1 * clock->p2;
453 clock->vco = refclk * clock->m / clock->n;
454 clock->dot = clock->vco / clock->p;
455 }
456
457 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
458 {
459 if (IS_PINEVIEW(dev)) {
460 pineview_clock(refclk, clock);
461 return;
462 }
463 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
464 clock->p = clock->p1 * clock->p2;
465 clock->vco = refclk * clock->m / (clock->n + 2);
466 clock->dot = clock->vco / clock->p;
467 }
468
469 /**
470 * Returns whether any output on the specified pipe is of the specified type
471 */
472 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
473 {
474 struct drm_device *dev = crtc->dev;
475 struct drm_mode_config *mode_config = &dev->mode_config;
476 struct intel_encoder *encoder;
477
478 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
479 if (encoder->base.crtc == crtc && encoder->type == type)
480 return true;
481
482 return false;
483 }
484
485 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
486 /**
487 * Returns whether the given set of divisors are valid for a given refclk with
488 * the given connectors.
489 */
490
491 static bool intel_PLL_is_valid(struct drm_device *dev,
492 const intel_limit_t *limit,
493 const intel_clock_t *clock)
494 {
495 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
496 INTELPllInvalid("p1 out of range\n");
497 if (clock->p < limit->p.min || limit->p.max < clock->p)
498 INTELPllInvalid("p out of range\n");
499 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
500 INTELPllInvalid("m2 out of range\n");
501 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
502 INTELPllInvalid("m1 out of range\n");
503 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
504 INTELPllInvalid("m1 <= m2\n");
505 if (clock->m < limit->m.min || limit->m.max < clock->m)
506 INTELPllInvalid("m out of range\n");
507 if (clock->n < limit->n.min || limit->n.max < clock->n)
508 INTELPllInvalid("n out of range\n");
509 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
510 INTELPllInvalid("vco out of range\n");
511 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
512 * connector, etc., rather than just a single range.
513 */
514 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
515 INTELPllInvalid("dot out of range\n");
516
517 return true;
518 }
519
520 static bool
521 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
522 int target, int refclk, intel_clock_t *match_clock,
523 intel_clock_t *best_clock)
524
525 {
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 intel_clock_t clock;
529 int err = target;
530
531 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
532 (I915_READ(LVDS)) != 0) {
533 /*
534 * For LVDS, if the panel is on, just rely on its current
535 * settings for dual-channel. We haven't figured out how to
536 * reliably set up different single/dual channel state, if we
537 * even can.
538 */
539 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
540 LVDS_CLKB_POWER_UP)
541 clock.p2 = limit->p2.p2_fast;
542 else
543 clock.p2 = limit->p2.p2_slow;
544 } else {
545 if (target < limit->p2.dot_limit)
546 clock.p2 = limit->p2.p2_slow;
547 else
548 clock.p2 = limit->p2.p2_fast;
549 }
550
551 memset(best_clock, 0, sizeof(*best_clock));
552
553 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
554 clock.m1++) {
555 for (clock.m2 = limit->m2.min;
556 clock.m2 <= limit->m2.max; clock.m2++) {
557 /* m1 is always 0 in Pineview */
558 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
559 break;
560 for (clock.n = limit->n.min;
561 clock.n <= limit->n.max; clock.n++) {
562 for (clock.p1 = limit->p1.min;
563 clock.p1 <= limit->p1.max; clock.p1++) {
564 int this_err;
565
566 intel_clock(dev, refclk, &clock);
567 if (!intel_PLL_is_valid(dev, limit,
568 &clock))
569 continue;
570 if (match_clock &&
571 clock.p != match_clock->p)
572 continue;
573
574 this_err = abs(clock.dot - target);
575 if (this_err < err) {
576 *best_clock = clock;
577 err = this_err;
578 }
579 }
580 }
581 }
582 }
583
584 return (err != target);
585 }
586
587 static bool
588 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
589 int target, int refclk, intel_clock_t *match_clock,
590 intel_clock_t *best_clock)
591 {
592 struct drm_device *dev = crtc->dev;
593 struct drm_i915_private *dev_priv = dev->dev_private;
594 intel_clock_t clock;
595 int max_n;
596 bool found;
597 /* approximately equals target * 0.00585 */
598 int err_most = (target >> 8) + (target >> 9);
599 found = false;
600
601 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
602 int lvds_reg;
603
604 if (HAS_PCH_SPLIT(dev))
605 lvds_reg = PCH_LVDS;
606 else
607 lvds_reg = LVDS;
608 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
609 LVDS_CLKB_POWER_UP)
610 clock.p2 = limit->p2.p2_fast;
611 else
612 clock.p2 = limit->p2.p2_slow;
613 } else {
614 if (target < limit->p2.dot_limit)
615 clock.p2 = limit->p2.p2_slow;
616 else
617 clock.p2 = limit->p2.p2_fast;
618 }
619
620 memset(best_clock, 0, sizeof(*best_clock));
621 max_n = limit->n.max;
622 /* based on hardware requirement, prefer smaller n to precision */
623 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
624 /* based on hardware requirement, prefere larger m1,m2 */
625 for (clock.m1 = limit->m1.max;
626 clock.m1 >= limit->m1.min; clock.m1--) {
627 for (clock.m2 = limit->m2.max;
628 clock.m2 >= limit->m2.min; clock.m2--) {
629 for (clock.p1 = limit->p1.max;
630 clock.p1 >= limit->p1.min; clock.p1--) {
631 int this_err;
632
633 intel_clock(dev, refclk, &clock);
634 if (!intel_PLL_is_valid(dev, limit,
635 &clock))
636 continue;
637 if (match_clock &&
638 clock.p != match_clock->p)
639 continue;
640
641 this_err = abs(clock.dot - target);
642 if (this_err < err_most) {
643 *best_clock = clock;
644 err_most = this_err;
645 max_n = clock.n;
646 found = true;
647 }
648 }
649 }
650 }
651 }
652 return found;
653 }
654
655 static bool
656 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
657 int target, int refclk, intel_clock_t *match_clock,
658 intel_clock_t *best_clock)
659 {
660 struct drm_device *dev = crtc->dev;
661 intel_clock_t clock;
662
663 if (target < 200000) {
664 clock.n = 1;
665 clock.p1 = 2;
666 clock.p2 = 10;
667 clock.m1 = 12;
668 clock.m2 = 9;
669 } else {
670 clock.n = 2;
671 clock.p1 = 1;
672 clock.p2 = 10;
673 clock.m1 = 14;
674 clock.m2 = 8;
675 }
676 intel_clock(dev, refclk, &clock);
677 memcpy(best_clock, &clock, sizeof(intel_clock_t));
678 return true;
679 }
680
681 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
682 static bool
683 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
686 {
687 intel_clock_t clock;
688 if (target < 200000) {
689 clock.p1 = 2;
690 clock.p2 = 10;
691 clock.n = 2;
692 clock.m1 = 23;
693 clock.m2 = 8;
694 } else {
695 clock.p1 = 1;
696 clock.p2 = 10;
697 clock.n = 1;
698 clock.m1 = 14;
699 clock.m2 = 2;
700 }
701 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
702 clock.p = (clock.p1 * clock.p2);
703 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
704 clock.vco = 0;
705 memcpy(best_clock, &clock, sizeof(intel_clock_t));
706 return true;
707 }
708
709 /**
710 * intel_wait_for_vblank - wait for vblank on a given pipe
711 * @dev: drm device
712 * @pipe: pipe to wait for
713 *
714 * Wait for vblank to occur on a given pipe. Needed for various bits of
715 * mode setting code.
716 */
717 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
718 {
719 struct drm_i915_private *dev_priv = dev->dev_private;
720 int pipestat_reg = PIPESTAT(pipe);
721
722 /* Clear existing vblank status. Note this will clear any other
723 * sticky status fields as well.
724 *
725 * This races with i915_driver_irq_handler() with the result
726 * that either function could miss a vblank event. Here it is not
727 * fatal, as we will either wait upon the next vblank interrupt or
728 * timeout. Generally speaking intel_wait_for_vblank() is only
729 * called during modeset at which time the GPU should be idle and
730 * should *not* be performing page flips and thus not waiting on
731 * vblanks...
732 * Currently, the result of us stealing a vblank from the irq
733 * handler is that a single frame will be skipped during swapbuffers.
734 */
735 I915_WRITE(pipestat_reg,
736 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
737
738 /* Wait for vblank interrupt bit to set */
739 if (wait_for(I915_READ(pipestat_reg) &
740 PIPE_VBLANK_INTERRUPT_STATUS,
741 50))
742 DRM_DEBUG_KMS("vblank wait timed out\n");
743 }
744
745 /*
746 * intel_wait_for_pipe_off - wait for pipe to turn off
747 * @dev: drm device
748 * @pipe: pipe to wait for
749 *
750 * After disabling a pipe, we can't wait for vblank in the usual way,
751 * spinning on the vblank interrupt status bit, since we won't actually
752 * see an interrupt when the pipe is disabled.
753 *
754 * On Gen4 and above:
755 * wait for the pipe register state bit to turn off
756 *
757 * Otherwise:
758 * wait for the display line value to settle (it usually
759 * ends up stopping at the start of the next frame).
760 *
761 */
762 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765
766 if (INTEL_INFO(dev)->gen >= 4) {
767 int reg = PIPECONF(pipe);
768
769 /* Wait for the Pipe State to go off */
770 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
771 100))
772 DRM_DEBUG_KMS("pipe_off wait timed out\n");
773 } else {
774 u32 last_line;
775 int reg = PIPEDSL(pipe);
776 unsigned long timeout = jiffies + msecs_to_jiffies(100);
777
778 /* Wait for the display line to settle */
779 do {
780 last_line = I915_READ(reg) & DSL_LINEMASK;
781 mdelay(5);
782 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
783 time_after(timeout, jiffies));
784 if (time_after(jiffies, timeout))
785 DRM_DEBUG_KMS("pipe_off wait timed out\n");
786 }
787 }
788
789 static const char *state_string(bool enabled)
790 {
791 return enabled ? "on" : "off";
792 }
793
794 /* Only for pre-ILK configs */
795 static void assert_pll(struct drm_i915_private *dev_priv,
796 enum pipe pipe, bool state)
797 {
798 int reg;
799 u32 val;
800 bool cur_state;
801
802 reg = DPLL(pipe);
803 val = I915_READ(reg);
804 cur_state = !!(val & DPLL_VCO_ENABLE);
805 WARN(cur_state != state,
806 "PLL state assertion failure (expected %s, current %s)\n",
807 state_string(state), state_string(cur_state));
808 }
809 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
810 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
811
812 /* For ILK+ */
813 static void assert_pch_pll(struct drm_i915_private *dev_priv,
814 enum pipe pipe, bool state)
815 {
816 int reg;
817 u32 val;
818 bool cur_state;
819
820 if (HAS_PCH_CPT(dev_priv->dev)) {
821 u32 pch_dpll;
822
823 pch_dpll = I915_READ(PCH_DPLL_SEL);
824
825 /* Make sure the selected PLL is enabled to the transcoder */
826 WARN(!((pch_dpll >> (4 * pipe)) & 8),
827 "transcoder %d PLL not enabled\n", pipe);
828
829 /* Convert the transcoder pipe number to a pll pipe number */
830 pipe = (pch_dpll >> (4 * pipe)) & 1;
831 }
832
833 reg = PCH_DPLL(pipe);
834 val = I915_READ(reg);
835 cur_state = !!(val & DPLL_VCO_ENABLE);
836 WARN(cur_state != state,
837 "PCH PLL state assertion failure (expected %s, current %s)\n",
838 state_string(state), state_string(cur_state));
839 }
840 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
841 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
842
843 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
844 enum pipe pipe, bool state)
845 {
846 int reg;
847 u32 val;
848 bool cur_state;
849
850 reg = FDI_TX_CTL(pipe);
851 val = I915_READ(reg);
852 cur_state = !!(val & FDI_TX_ENABLE);
853 WARN(cur_state != state,
854 "FDI TX state assertion failure (expected %s, current %s)\n",
855 state_string(state), state_string(cur_state));
856 }
857 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
858 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
859
860 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
861 enum pipe pipe, bool state)
862 {
863 int reg;
864 u32 val;
865 bool cur_state;
866
867 reg = FDI_RX_CTL(pipe);
868 val = I915_READ(reg);
869 cur_state = !!(val & FDI_RX_ENABLE);
870 WARN(cur_state != state,
871 "FDI RX state assertion failure (expected %s, current %s)\n",
872 state_string(state), state_string(cur_state));
873 }
874 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
875 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
876
877 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879 {
880 int reg;
881 u32 val;
882
883 /* ILK FDI PLL is always enabled */
884 if (dev_priv->info->gen == 5)
885 return;
886
887 reg = FDI_TX_CTL(pipe);
888 val = I915_READ(reg);
889 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
890 }
891
892 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
893 enum pipe pipe)
894 {
895 int reg;
896 u32 val;
897
898 reg = FDI_RX_CTL(pipe);
899 val = I915_READ(reg);
900 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
901 }
902
903 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904 enum pipe pipe)
905 {
906 int pp_reg, lvds_reg;
907 u32 val;
908 enum pipe panel_pipe = PIPE_A;
909 bool locked = true;
910
911 if (HAS_PCH_SPLIT(dev_priv->dev)) {
912 pp_reg = PCH_PP_CONTROL;
913 lvds_reg = PCH_LVDS;
914 } else {
915 pp_reg = PP_CONTROL;
916 lvds_reg = LVDS;
917 }
918
919 val = I915_READ(pp_reg);
920 if (!(val & PANEL_POWER_ON) ||
921 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922 locked = false;
923
924 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925 panel_pipe = PIPE_B;
926
927 WARN(panel_pipe == pipe && locked,
928 "panel assertion failure, pipe %c regs locked\n",
929 pipe_name(pipe));
930 }
931
932 void assert_pipe(struct drm_i915_private *dev_priv,
933 enum pipe pipe, bool state)
934 {
935 int reg;
936 u32 val;
937 bool cur_state;
938
939 /* if we need the pipe A quirk it must be always on */
940 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
941 state = true;
942
943 reg = PIPECONF(pipe);
944 val = I915_READ(reg);
945 cur_state = !!(val & PIPECONF_ENABLE);
946 WARN(cur_state != state,
947 "pipe %c assertion failure (expected %s, current %s)\n",
948 pipe_name(pipe), state_string(state), state_string(cur_state));
949 }
950
951 static void assert_plane(struct drm_i915_private *dev_priv,
952 enum plane plane, bool state)
953 {
954 int reg;
955 u32 val;
956 bool cur_state;
957
958 reg = DSPCNTR(plane);
959 val = I915_READ(reg);
960 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
961 WARN(cur_state != state,
962 "plane %c assertion failure (expected %s, current %s)\n",
963 plane_name(plane), state_string(state), state_string(cur_state));
964 }
965
966 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
967 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
968
969 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
970 enum pipe pipe)
971 {
972 int reg, i;
973 u32 val;
974 int cur_pipe;
975
976 /* Planes are fixed to pipes on ILK+ */
977 if (HAS_PCH_SPLIT(dev_priv->dev)) {
978 reg = DSPCNTR(pipe);
979 val = I915_READ(reg);
980 WARN((val & DISPLAY_PLANE_ENABLE),
981 "plane %c assertion failure, should be disabled but not\n",
982 plane_name(pipe));
983 return;
984 }
985
986 /* Need to check both planes against the pipe */
987 for (i = 0; i < 2; i++) {
988 reg = DSPCNTR(i);
989 val = I915_READ(reg);
990 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
991 DISPPLANE_SEL_PIPE_SHIFT;
992 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
993 "plane %c assertion failure, should be off on pipe %c but is still active\n",
994 plane_name(i), pipe_name(pipe));
995 }
996 }
997
998 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
999 {
1000 u32 val;
1001 bool enabled;
1002
1003 val = I915_READ(PCH_DREF_CONTROL);
1004 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1005 DREF_SUPERSPREAD_SOURCE_MASK));
1006 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1007 }
1008
1009 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1010 enum pipe pipe)
1011 {
1012 int reg;
1013 u32 val;
1014 bool enabled;
1015
1016 reg = TRANSCONF(pipe);
1017 val = I915_READ(reg);
1018 enabled = !!(val & TRANS_ENABLE);
1019 WARN(enabled,
1020 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1021 pipe_name(pipe));
1022 }
1023
1024 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1025 enum pipe pipe, u32 port_sel, u32 val)
1026 {
1027 if ((val & DP_PORT_EN) == 0)
1028 return false;
1029
1030 if (HAS_PCH_CPT(dev_priv->dev)) {
1031 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1032 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1033 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1034 return false;
1035 } else {
1036 if ((val & DP_PIPE_MASK) != (pipe << 30))
1037 return false;
1038 }
1039 return true;
1040 }
1041
1042 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1043 enum pipe pipe, u32 val)
1044 {
1045 if ((val & PORT_ENABLE) == 0)
1046 return false;
1047
1048 if (HAS_PCH_CPT(dev_priv->dev)) {
1049 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1050 return false;
1051 } else {
1052 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1053 return false;
1054 }
1055 return true;
1056 }
1057
1058 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, u32 val)
1060 {
1061 if ((val & LVDS_PORT_EN) == 0)
1062 return false;
1063
1064 if (HAS_PCH_CPT(dev_priv->dev)) {
1065 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1066 return false;
1067 } else {
1068 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1069 return false;
1070 }
1071 return true;
1072 }
1073
1074 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1075 enum pipe pipe, u32 val)
1076 {
1077 if ((val & ADPA_DAC_ENABLE) == 0)
1078 return false;
1079 if (HAS_PCH_CPT(dev_priv->dev)) {
1080 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1081 return false;
1082 } else {
1083 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1084 return false;
1085 }
1086 return true;
1087 }
1088
1089 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, int reg, u32 port_sel)
1091 {
1092 u32 val = I915_READ(reg);
1093 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1094 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1095 reg, pipe_name(pipe));
1096 }
1097
1098 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1099 enum pipe pipe, int reg)
1100 {
1101 u32 val = I915_READ(reg);
1102 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1103 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1104 reg, pipe_name(pipe));
1105 }
1106
1107 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1108 enum pipe pipe)
1109 {
1110 int reg;
1111 u32 val;
1112
1113 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1114 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1115 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1116
1117 reg = PCH_ADPA;
1118 val = I915_READ(reg);
1119 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1120 "PCH VGA enabled on transcoder %c, should be disabled\n",
1121 pipe_name(pipe));
1122
1123 reg = PCH_LVDS;
1124 val = I915_READ(reg);
1125 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1126 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1127 pipe_name(pipe));
1128
1129 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1130 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1131 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1132 }
1133
1134 /**
1135 * intel_enable_pll - enable a PLL
1136 * @dev_priv: i915 private structure
1137 * @pipe: pipe PLL to enable
1138 *
1139 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1140 * make sure the PLL reg is writable first though, since the panel write
1141 * protect mechanism may be enabled.
1142 *
1143 * Note! This is for pre-ILK only.
1144 */
1145 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1146 {
1147 int reg;
1148 u32 val;
1149
1150 /* No really, not for ILK+ */
1151 BUG_ON(dev_priv->info->gen >= 5);
1152
1153 /* PLL is protected by panel, make sure we can write it */
1154 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1155 assert_panel_unlocked(dev_priv, pipe);
1156
1157 reg = DPLL(pipe);
1158 val = I915_READ(reg);
1159 val |= DPLL_VCO_ENABLE;
1160
1161 /* We do this three times for luck */
1162 I915_WRITE(reg, val);
1163 POSTING_READ(reg);
1164 udelay(150); /* wait for warmup */
1165 I915_WRITE(reg, val);
1166 POSTING_READ(reg);
1167 udelay(150); /* wait for warmup */
1168 I915_WRITE(reg, val);
1169 POSTING_READ(reg);
1170 udelay(150); /* wait for warmup */
1171 }
1172
1173 /**
1174 * intel_disable_pll - disable a PLL
1175 * @dev_priv: i915 private structure
1176 * @pipe: pipe PLL to disable
1177 *
1178 * Disable the PLL for @pipe, making sure the pipe is off first.
1179 *
1180 * Note! This is for pre-ILK only.
1181 */
1182 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1183 {
1184 int reg;
1185 u32 val;
1186
1187 /* Don't disable pipe A or pipe A PLLs if needed */
1188 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1189 return;
1190
1191 /* Make sure the pipe isn't still relying on us */
1192 assert_pipe_disabled(dev_priv, pipe);
1193
1194 reg = DPLL(pipe);
1195 val = I915_READ(reg);
1196 val &= ~DPLL_VCO_ENABLE;
1197 I915_WRITE(reg, val);
1198 POSTING_READ(reg);
1199 }
1200
1201 /**
1202 * intel_enable_pch_pll - enable PCH PLL
1203 * @dev_priv: i915 private structure
1204 * @pipe: pipe PLL to enable
1205 *
1206 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1207 * drives the transcoder clock.
1208 */
1209 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1210 enum pipe pipe)
1211 {
1212 int reg;
1213 u32 val;
1214
1215 if (pipe > 1)
1216 return;
1217
1218 /* PCH only available on ILK+ */
1219 BUG_ON(dev_priv->info->gen < 5);
1220
1221 /* PCH refclock must be enabled first */
1222 assert_pch_refclk_enabled(dev_priv);
1223
1224 reg = PCH_DPLL(pipe);
1225 val = I915_READ(reg);
1226 val |= DPLL_VCO_ENABLE;
1227 I915_WRITE(reg, val);
1228 POSTING_READ(reg);
1229 udelay(200);
1230 }
1231
1232 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 int reg;
1236 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1237 pll_sel = TRANSC_DPLL_ENABLE;
1238
1239 if (pipe > 1)
1240 return;
1241
1242 /* PCH only available on ILK+ */
1243 BUG_ON(dev_priv->info->gen < 5);
1244
1245 /* Make sure transcoder isn't still depending on us */
1246 assert_transcoder_disabled(dev_priv, pipe);
1247
1248 if (pipe == 0)
1249 pll_sel |= TRANSC_DPLLA_SEL;
1250 else if (pipe == 1)
1251 pll_sel |= TRANSC_DPLLB_SEL;
1252
1253
1254 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1255 return;
1256
1257 reg = PCH_DPLL(pipe);
1258 val = I915_READ(reg);
1259 val &= ~DPLL_VCO_ENABLE;
1260 I915_WRITE(reg, val);
1261 POSTING_READ(reg);
1262 udelay(200);
1263 }
1264
1265 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267 {
1268 int reg;
1269 u32 val, pipeconf_val;
1270 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1271
1272 /* PCH only available on ILK+ */
1273 BUG_ON(dev_priv->info->gen < 5);
1274
1275 /* Make sure PCH DPLL is enabled */
1276 assert_pch_pll_enabled(dev_priv, pipe);
1277
1278 /* FDI must be feeding us bits for PCH ports */
1279 assert_fdi_tx_enabled(dev_priv, pipe);
1280 assert_fdi_rx_enabled(dev_priv, pipe);
1281
1282 reg = TRANSCONF(pipe);
1283 val = I915_READ(reg);
1284 pipeconf_val = I915_READ(PIPECONF(pipe));
1285
1286 if (HAS_PCH_IBX(dev_priv->dev)) {
1287 /*
1288 * make the BPC in transcoder be consistent with
1289 * that in pipeconf reg.
1290 */
1291 val &= ~PIPE_BPC_MASK;
1292 val |= pipeconf_val & PIPE_BPC_MASK;
1293 }
1294
1295 val &= ~TRANS_INTERLACE_MASK;
1296 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1297 if (HAS_PCH_IBX(dev_priv->dev) &&
1298 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1299 val |= TRANS_LEGACY_INTERLACED_ILK;
1300 else
1301 val |= TRANS_INTERLACED;
1302 else
1303 val |= TRANS_PROGRESSIVE;
1304
1305 I915_WRITE(reg, val | TRANS_ENABLE);
1306 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1307 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1308 }
1309
1310 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1311 enum pipe pipe)
1312 {
1313 int reg;
1314 u32 val;
1315
1316 /* FDI relies on the transcoder */
1317 assert_fdi_tx_disabled(dev_priv, pipe);
1318 assert_fdi_rx_disabled(dev_priv, pipe);
1319
1320 /* Ports must be off as well */
1321 assert_pch_ports_disabled(dev_priv, pipe);
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 val &= ~TRANS_ENABLE;
1326 I915_WRITE(reg, val);
1327 /* wait for PCH transcoder off, transcoder state */
1328 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1329 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1330 }
1331
1332 /**
1333 * intel_enable_pipe - enable a pipe, asserting requirements
1334 * @dev_priv: i915 private structure
1335 * @pipe: pipe to enable
1336 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1337 *
1338 * Enable @pipe, making sure that various hardware specific requirements
1339 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1340 *
1341 * @pipe should be %PIPE_A or %PIPE_B.
1342 *
1343 * Will wait until the pipe is actually running (i.e. first vblank) before
1344 * returning.
1345 */
1346 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1347 bool pch_port)
1348 {
1349 int reg;
1350 u32 val;
1351
1352 /*
1353 * A pipe without a PLL won't actually be able to drive bits from
1354 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1355 * need the check.
1356 */
1357 if (!HAS_PCH_SPLIT(dev_priv->dev))
1358 assert_pll_enabled(dev_priv, pipe);
1359 else {
1360 if (pch_port) {
1361 /* if driving the PCH, we need FDI enabled */
1362 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1363 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1364 }
1365 /* FIXME: assert CPU port conditions for SNB+ */
1366 }
1367
1368 reg = PIPECONF(pipe);
1369 val = I915_READ(reg);
1370 if (val & PIPECONF_ENABLE)
1371 return;
1372
1373 I915_WRITE(reg, val | PIPECONF_ENABLE);
1374 intel_wait_for_vblank(dev_priv->dev, pipe);
1375 }
1376
1377 /**
1378 * intel_disable_pipe - disable a pipe, asserting requirements
1379 * @dev_priv: i915 private structure
1380 * @pipe: pipe to disable
1381 *
1382 * Disable @pipe, making sure that various hardware specific requirements
1383 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1384 *
1385 * @pipe should be %PIPE_A or %PIPE_B.
1386 *
1387 * Will wait until the pipe has shut down before returning.
1388 */
1389 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1390 enum pipe pipe)
1391 {
1392 int reg;
1393 u32 val;
1394
1395 /*
1396 * Make sure planes won't keep trying to pump pixels to us,
1397 * or we might hang the display.
1398 */
1399 assert_planes_disabled(dev_priv, pipe);
1400
1401 /* Don't disable pipe A or pipe A PLLs if needed */
1402 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1403 return;
1404
1405 reg = PIPECONF(pipe);
1406 val = I915_READ(reg);
1407 if ((val & PIPECONF_ENABLE) == 0)
1408 return;
1409
1410 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1411 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1412 }
1413
1414 /*
1415 * Plane regs are double buffered, going from enabled->disabled needs a
1416 * trigger in order to latch. The display address reg provides this.
1417 */
1418 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1419 enum plane plane)
1420 {
1421 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1422 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1423 }
1424
1425 /**
1426 * intel_enable_plane - enable a display plane on a given pipe
1427 * @dev_priv: i915 private structure
1428 * @plane: plane to enable
1429 * @pipe: pipe being fed
1430 *
1431 * Enable @plane on @pipe, making sure that @pipe is running first.
1432 */
1433 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1434 enum plane plane, enum pipe pipe)
1435 {
1436 int reg;
1437 u32 val;
1438
1439 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1440 assert_pipe_enabled(dev_priv, pipe);
1441
1442 reg = DSPCNTR(plane);
1443 val = I915_READ(reg);
1444 if (val & DISPLAY_PLANE_ENABLE)
1445 return;
1446
1447 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1448 intel_flush_display_plane(dev_priv, plane);
1449 intel_wait_for_vblank(dev_priv->dev, pipe);
1450 }
1451
1452 /**
1453 * intel_disable_plane - disable a display plane
1454 * @dev_priv: i915 private structure
1455 * @plane: plane to disable
1456 * @pipe: pipe consuming the data
1457 *
1458 * Disable @plane; should be an independent operation.
1459 */
1460 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1461 enum plane plane, enum pipe pipe)
1462 {
1463 int reg;
1464 u32 val;
1465
1466 reg = DSPCNTR(plane);
1467 val = I915_READ(reg);
1468 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1469 return;
1470
1471 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1472 intel_flush_display_plane(dev_priv, plane);
1473 intel_wait_for_vblank(dev_priv->dev, pipe);
1474 }
1475
1476 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1477 enum pipe pipe, int reg, u32 port_sel)
1478 {
1479 u32 val = I915_READ(reg);
1480 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1481 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1482 I915_WRITE(reg, val & ~DP_PORT_EN);
1483 }
1484 }
1485
1486 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1487 enum pipe pipe, int reg)
1488 {
1489 u32 val = I915_READ(reg);
1490 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1491 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1492 reg, pipe);
1493 I915_WRITE(reg, val & ~PORT_ENABLE);
1494 }
1495 }
1496
1497 /* Disable any ports connected to this transcoder */
1498 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1499 enum pipe pipe)
1500 {
1501 u32 reg, val;
1502
1503 val = I915_READ(PCH_PP_CONTROL);
1504 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1505
1506 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1507 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1508 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1509
1510 reg = PCH_ADPA;
1511 val = I915_READ(reg);
1512 if (adpa_pipe_enabled(dev_priv, val, pipe))
1513 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1514
1515 reg = PCH_LVDS;
1516 val = I915_READ(reg);
1517 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1518 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1519 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1520 POSTING_READ(reg);
1521 udelay(100);
1522 }
1523
1524 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1525 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1526 disable_pch_hdmi(dev_priv, pipe, HDMID);
1527 }
1528
1529 static void i8xx_disable_fbc(struct drm_device *dev)
1530 {
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 u32 fbc_ctl;
1533
1534 /* Disable compression */
1535 fbc_ctl = I915_READ(FBC_CONTROL);
1536 if ((fbc_ctl & FBC_CTL_EN) == 0)
1537 return;
1538
1539 fbc_ctl &= ~FBC_CTL_EN;
1540 I915_WRITE(FBC_CONTROL, fbc_ctl);
1541
1542 /* Wait for compressing bit to clear */
1543 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1544 DRM_DEBUG_KMS("FBC idle timed out\n");
1545 return;
1546 }
1547
1548 DRM_DEBUG_KMS("disabled FBC\n");
1549 }
1550
1551 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 {
1553 struct drm_device *dev = crtc->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_framebuffer *fb = crtc->fb;
1556 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557 struct drm_i915_gem_object *obj = intel_fb->obj;
1558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559 int cfb_pitch;
1560 int plane, i;
1561 u32 fbc_ctl, fbc_ctl2;
1562
1563 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1564 if (fb->pitches[0] < cfb_pitch)
1565 cfb_pitch = fb->pitches[0];
1566
1567 /* FBC_CTL wants 64B units */
1568 cfb_pitch = (cfb_pitch / 64) - 1;
1569 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1570
1571 /* Clear old tags */
1572 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1573 I915_WRITE(FBC_TAG + (i * 4), 0);
1574
1575 /* Set it up... */
1576 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1577 fbc_ctl2 |= plane;
1578 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1579 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1580
1581 /* enable it... */
1582 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1583 if (IS_I945GM(dev))
1584 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1585 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1586 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1587 fbc_ctl |= obj->fence_reg;
1588 I915_WRITE(FBC_CONTROL, fbc_ctl);
1589
1590 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1591 cfb_pitch, crtc->y, intel_crtc->plane);
1592 }
1593
1594 static bool i8xx_fbc_enabled(struct drm_device *dev)
1595 {
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597
1598 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1599 }
1600
1601 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1602 {
1603 struct drm_device *dev = crtc->dev;
1604 struct drm_i915_private *dev_priv = dev->dev_private;
1605 struct drm_framebuffer *fb = crtc->fb;
1606 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1607 struct drm_i915_gem_object *obj = intel_fb->obj;
1608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1609 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1610 unsigned long stall_watermark = 200;
1611 u32 dpfc_ctl;
1612
1613 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1614 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1615 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1616
1617 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1618 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1619 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1620 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1621
1622 /* enable it... */
1623 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1624
1625 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1626 }
1627
1628 static void g4x_disable_fbc(struct drm_device *dev)
1629 {
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 u32 dpfc_ctl;
1632
1633 /* Disable compression */
1634 dpfc_ctl = I915_READ(DPFC_CONTROL);
1635 if (dpfc_ctl & DPFC_CTL_EN) {
1636 dpfc_ctl &= ~DPFC_CTL_EN;
1637 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1638
1639 DRM_DEBUG_KMS("disabled FBC\n");
1640 }
1641 }
1642
1643 static bool g4x_fbc_enabled(struct drm_device *dev)
1644 {
1645 struct drm_i915_private *dev_priv = dev->dev_private;
1646
1647 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1648 }
1649
1650 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1651 {
1652 struct drm_i915_private *dev_priv = dev->dev_private;
1653 u32 blt_ecoskpd;
1654
1655 /* Make sure blitter notifies FBC of writes */
1656 gen6_gt_force_wake_get(dev_priv);
1657 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1658 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1659 GEN6_BLITTER_LOCK_SHIFT;
1660 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1661 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1662 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1663 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1664 GEN6_BLITTER_LOCK_SHIFT);
1665 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1666 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1667 gen6_gt_force_wake_put(dev_priv);
1668 }
1669
1670 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1671 {
1672 struct drm_device *dev = crtc->dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 struct drm_framebuffer *fb = crtc->fb;
1675 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1676 struct drm_i915_gem_object *obj = intel_fb->obj;
1677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1678 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1679 unsigned long stall_watermark = 200;
1680 u32 dpfc_ctl;
1681
1682 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1683 dpfc_ctl &= DPFC_RESERVED;
1684 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1685 /* Set persistent mode for front-buffer rendering, ala X. */
1686 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1687 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1688 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1689
1690 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1691 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1692 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1693 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1694 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1695 /* enable it... */
1696 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1697
1698 if (IS_GEN6(dev)) {
1699 I915_WRITE(SNB_DPFC_CTL_SA,
1700 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1701 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1702 sandybridge_blit_fbc_update(dev);
1703 }
1704
1705 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1706 }
1707
1708 static void ironlake_disable_fbc(struct drm_device *dev)
1709 {
1710 struct drm_i915_private *dev_priv = dev->dev_private;
1711 u32 dpfc_ctl;
1712
1713 /* Disable compression */
1714 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1715 if (dpfc_ctl & DPFC_CTL_EN) {
1716 dpfc_ctl &= ~DPFC_CTL_EN;
1717 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1718
1719 DRM_DEBUG_KMS("disabled FBC\n");
1720 }
1721 }
1722
1723 static bool ironlake_fbc_enabled(struct drm_device *dev)
1724 {
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1728 }
1729
1730 bool intel_fbc_enabled(struct drm_device *dev)
1731 {
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733
1734 if (!dev_priv->display.fbc_enabled)
1735 return false;
1736
1737 return dev_priv->display.fbc_enabled(dev);
1738 }
1739
1740 static void intel_fbc_work_fn(struct work_struct *__work)
1741 {
1742 struct intel_fbc_work *work =
1743 container_of(to_delayed_work(__work),
1744 struct intel_fbc_work, work);
1745 struct drm_device *dev = work->crtc->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748 mutex_lock(&dev->struct_mutex);
1749 if (work == dev_priv->fbc_work) {
1750 /* Double check that we haven't switched fb without cancelling
1751 * the prior work.
1752 */
1753 if (work->crtc->fb == work->fb) {
1754 dev_priv->display.enable_fbc(work->crtc,
1755 work->interval);
1756
1757 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1758 dev_priv->cfb_fb = work->crtc->fb->base.id;
1759 dev_priv->cfb_y = work->crtc->y;
1760 }
1761
1762 dev_priv->fbc_work = NULL;
1763 }
1764 mutex_unlock(&dev->struct_mutex);
1765
1766 kfree(work);
1767 }
1768
1769 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1770 {
1771 if (dev_priv->fbc_work == NULL)
1772 return;
1773
1774 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1775
1776 /* Synchronisation is provided by struct_mutex and checking of
1777 * dev_priv->fbc_work, so we can perform the cancellation
1778 * entirely asynchronously.
1779 */
1780 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1781 /* tasklet was killed before being run, clean up */
1782 kfree(dev_priv->fbc_work);
1783
1784 /* Mark the work as no longer wanted so that if it does
1785 * wake-up (because the work was already running and waiting
1786 * for our mutex), it will discover that is no longer
1787 * necessary to run.
1788 */
1789 dev_priv->fbc_work = NULL;
1790 }
1791
1792 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1793 {
1794 struct intel_fbc_work *work;
1795 struct drm_device *dev = crtc->dev;
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797
1798 if (!dev_priv->display.enable_fbc)
1799 return;
1800
1801 intel_cancel_fbc_work(dev_priv);
1802
1803 work = kzalloc(sizeof *work, GFP_KERNEL);
1804 if (work == NULL) {
1805 dev_priv->display.enable_fbc(crtc, interval);
1806 return;
1807 }
1808
1809 work->crtc = crtc;
1810 work->fb = crtc->fb;
1811 work->interval = interval;
1812 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1813
1814 dev_priv->fbc_work = work;
1815
1816 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1817
1818 /* Delay the actual enabling to let pageflipping cease and the
1819 * display to settle before starting the compression. Note that
1820 * this delay also serves a second purpose: it allows for a
1821 * vblank to pass after disabling the FBC before we attempt
1822 * to modify the control registers.
1823 *
1824 * A more complicated solution would involve tracking vblanks
1825 * following the termination of the page-flipping sequence
1826 * and indeed performing the enable as a co-routine and not
1827 * waiting synchronously upon the vblank.
1828 */
1829 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1830 }
1831
1832 void intel_disable_fbc(struct drm_device *dev)
1833 {
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1835
1836 intel_cancel_fbc_work(dev_priv);
1837
1838 if (!dev_priv->display.disable_fbc)
1839 return;
1840
1841 dev_priv->display.disable_fbc(dev);
1842 dev_priv->cfb_plane = -1;
1843 }
1844
1845 /**
1846 * intel_update_fbc - enable/disable FBC as needed
1847 * @dev: the drm_device
1848 *
1849 * Set up the framebuffer compression hardware at mode set time. We
1850 * enable it if possible:
1851 * - plane A only (on pre-965)
1852 * - no pixel mulitply/line duplication
1853 * - no alpha buffer discard
1854 * - no dual wide
1855 * - framebuffer <= 2048 in width, 1536 in height
1856 *
1857 * We can't assume that any compression will take place (worst case),
1858 * so the compressed buffer has to be the same size as the uncompressed
1859 * one. It also must reside (along with the line length buffer) in
1860 * stolen memory.
1861 *
1862 * We need to enable/disable FBC on a global basis.
1863 */
1864 static void intel_update_fbc(struct drm_device *dev)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 struct drm_crtc *crtc = NULL, *tmp_crtc;
1868 struct intel_crtc *intel_crtc;
1869 struct drm_framebuffer *fb;
1870 struct intel_framebuffer *intel_fb;
1871 struct drm_i915_gem_object *obj;
1872 int enable_fbc;
1873
1874 DRM_DEBUG_KMS("\n");
1875
1876 if (!i915_powersave)
1877 return;
1878
1879 if (!I915_HAS_FBC(dev))
1880 return;
1881
1882 /*
1883 * If FBC is already on, we just have to verify that we can
1884 * keep it that way...
1885 * Need to disable if:
1886 * - more than one pipe is active
1887 * - changing FBC params (stride, fence, mode)
1888 * - new fb is too large to fit in compressed buffer
1889 * - going to an unsupported config (interlace, pixel multiply, etc.)
1890 */
1891 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1892 if (tmp_crtc->enabled && tmp_crtc->fb) {
1893 if (crtc) {
1894 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1895 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1896 goto out_disable;
1897 }
1898 crtc = tmp_crtc;
1899 }
1900 }
1901
1902 if (!crtc || crtc->fb == NULL) {
1903 DRM_DEBUG_KMS("no output, disabling\n");
1904 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1905 goto out_disable;
1906 }
1907
1908 intel_crtc = to_intel_crtc(crtc);
1909 fb = crtc->fb;
1910 intel_fb = to_intel_framebuffer(fb);
1911 obj = intel_fb->obj;
1912
1913 enable_fbc = i915_enable_fbc;
1914 if (enable_fbc < 0) {
1915 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1916 enable_fbc = 1;
1917 if (INTEL_INFO(dev)->gen <= 6)
1918 enable_fbc = 0;
1919 }
1920 if (!enable_fbc) {
1921 DRM_DEBUG_KMS("fbc disabled per module param\n");
1922 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1923 goto out_disable;
1924 }
1925 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1926 DRM_DEBUG_KMS("framebuffer too large, disabling "
1927 "compression\n");
1928 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1929 goto out_disable;
1930 }
1931 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1932 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1933 DRM_DEBUG_KMS("mode incompatible with compression, "
1934 "disabling\n");
1935 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1936 goto out_disable;
1937 }
1938 if ((crtc->mode.hdisplay > 2048) ||
1939 (crtc->mode.vdisplay > 1536)) {
1940 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1941 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1942 goto out_disable;
1943 }
1944 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1945 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1946 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1947 goto out_disable;
1948 }
1949
1950 /* The use of a CPU fence is mandatory in order to detect writes
1951 * by the CPU to the scanout and trigger updates to the FBC.
1952 */
1953 if (obj->tiling_mode != I915_TILING_X ||
1954 obj->fence_reg == I915_FENCE_REG_NONE) {
1955 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1956 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1957 goto out_disable;
1958 }
1959
1960 /* If the kernel debugger is active, always disable compression */
1961 if (in_dbg_master())
1962 goto out_disable;
1963
1964 /* If the scanout has not changed, don't modify the FBC settings.
1965 * Note that we make the fundamental assumption that the fb->obj
1966 * cannot be unpinned (and have its GTT offset and fence revoked)
1967 * without first being decoupled from the scanout and FBC disabled.
1968 */
1969 if (dev_priv->cfb_plane == intel_crtc->plane &&
1970 dev_priv->cfb_fb == fb->base.id &&
1971 dev_priv->cfb_y == crtc->y)
1972 return;
1973
1974 if (intel_fbc_enabled(dev)) {
1975 /* We update FBC along two paths, after changing fb/crtc
1976 * configuration (modeswitching) and after page-flipping
1977 * finishes. For the latter, we know that not only did
1978 * we disable the FBC at the start of the page-flip
1979 * sequence, but also more than one vblank has passed.
1980 *
1981 * For the former case of modeswitching, it is possible
1982 * to switch between two FBC valid configurations
1983 * instantaneously so we do need to disable the FBC
1984 * before we can modify its control registers. We also
1985 * have to wait for the next vblank for that to take
1986 * effect. However, since we delay enabling FBC we can
1987 * assume that a vblank has passed since disabling and
1988 * that we can safely alter the registers in the deferred
1989 * callback.
1990 *
1991 * In the scenario that we go from a valid to invalid
1992 * and then back to valid FBC configuration we have
1993 * no strict enforcement that a vblank occurred since
1994 * disabling the FBC. However, along all current pipe
1995 * disabling paths we do need to wait for a vblank at
1996 * some point. And we wait before enabling FBC anyway.
1997 */
1998 DRM_DEBUG_KMS("disabling active FBC for update\n");
1999 intel_disable_fbc(dev);
2000 }
2001
2002 intel_enable_fbc(crtc, 500);
2003 return;
2004
2005 out_disable:
2006 /* Multiple disables should be harmless */
2007 if (intel_fbc_enabled(dev)) {
2008 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2009 intel_disable_fbc(dev);
2010 }
2011 }
2012
2013 int
2014 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2015 struct drm_i915_gem_object *obj,
2016 struct intel_ring_buffer *pipelined)
2017 {
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019 u32 alignment;
2020 int ret;
2021
2022 switch (obj->tiling_mode) {
2023 case I915_TILING_NONE:
2024 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2025 alignment = 128 * 1024;
2026 else if (INTEL_INFO(dev)->gen >= 4)
2027 alignment = 4 * 1024;
2028 else
2029 alignment = 64 * 1024;
2030 break;
2031 case I915_TILING_X:
2032 /* pin() will align the object as required by fence */
2033 alignment = 0;
2034 break;
2035 case I915_TILING_Y:
2036 /* FIXME: Is this true? */
2037 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2038 return -EINVAL;
2039 default:
2040 BUG();
2041 }
2042
2043 dev_priv->mm.interruptible = false;
2044 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2045 if (ret)
2046 goto err_interruptible;
2047
2048 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2049 * fence, whereas 965+ only requires a fence if using
2050 * framebuffer compression. For simplicity, we always install
2051 * a fence as the cost is not that onerous.
2052 */
2053 if (obj->tiling_mode != I915_TILING_NONE) {
2054 ret = i915_gem_object_get_fence(obj, pipelined);
2055 if (ret)
2056 goto err_unpin;
2057
2058 i915_gem_object_pin_fence(obj);
2059 }
2060
2061 dev_priv->mm.interruptible = true;
2062 return 0;
2063
2064 err_unpin:
2065 i915_gem_object_unpin(obj);
2066 err_interruptible:
2067 dev_priv->mm.interruptible = true;
2068 return ret;
2069 }
2070
2071 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2072 {
2073 i915_gem_object_unpin_fence(obj);
2074 i915_gem_object_unpin(obj);
2075 }
2076
2077 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2078 int x, int y)
2079 {
2080 struct drm_device *dev = crtc->dev;
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2083 struct intel_framebuffer *intel_fb;
2084 struct drm_i915_gem_object *obj;
2085 int plane = intel_crtc->plane;
2086 unsigned long Start, Offset;
2087 u32 dspcntr;
2088 u32 reg;
2089
2090 switch (plane) {
2091 case 0:
2092 case 1:
2093 break;
2094 default:
2095 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2096 return -EINVAL;
2097 }
2098
2099 intel_fb = to_intel_framebuffer(fb);
2100 obj = intel_fb->obj;
2101
2102 reg = DSPCNTR(plane);
2103 dspcntr = I915_READ(reg);
2104 /* Mask out pixel format bits in case we change it */
2105 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2106 switch (fb->bits_per_pixel) {
2107 case 8:
2108 dspcntr |= DISPPLANE_8BPP;
2109 break;
2110 case 16:
2111 if (fb->depth == 15)
2112 dspcntr |= DISPPLANE_15_16BPP;
2113 else
2114 dspcntr |= DISPPLANE_16BPP;
2115 break;
2116 case 24:
2117 case 32:
2118 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2119 break;
2120 default:
2121 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2122 return -EINVAL;
2123 }
2124 if (INTEL_INFO(dev)->gen >= 4) {
2125 if (obj->tiling_mode != I915_TILING_NONE)
2126 dspcntr |= DISPPLANE_TILED;
2127 else
2128 dspcntr &= ~DISPPLANE_TILED;
2129 }
2130
2131 I915_WRITE(reg, dspcntr);
2132
2133 Start = obj->gtt_offset;
2134 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2135
2136 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2137 Start, Offset, x, y, fb->pitches[0]);
2138 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2139 if (INTEL_INFO(dev)->gen >= 4) {
2140 I915_WRITE(DSPSURF(plane), Start);
2141 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2142 I915_WRITE(DSPADDR(plane), Offset);
2143 } else
2144 I915_WRITE(DSPADDR(plane), Start + Offset);
2145 POSTING_READ(reg);
2146
2147 return 0;
2148 }
2149
2150 static int ironlake_update_plane(struct drm_crtc *crtc,
2151 struct drm_framebuffer *fb, int x, int y)
2152 {
2153 struct drm_device *dev = crtc->dev;
2154 struct drm_i915_private *dev_priv = dev->dev_private;
2155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2156 struct intel_framebuffer *intel_fb;
2157 struct drm_i915_gem_object *obj;
2158 int plane = intel_crtc->plane;
2159 unsigned long Start, Offset;
2160 u32 dspcntr;
2161 u32 reg;
2162
2163 switch (plane) {
2164 case 0:
2165 case 1:
2166 case 2:
2167 break;
2168 default:
2169 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2170 return -EINVAL;
2171 }
2172
2173 intel_fb = to_intel_framebuffer(fb);
2174 obj = intel_fb->obj;
2175
2176 reg = DSPCNTR(plane);
2177 dspcntr = I915_READ(reg);
2178 /* Mask out pixel format bits in case we change it */
2179 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2180 switch (fb->bits_per_pixel) {
2181 case 8:
2182 dspcntr |= DISPPLANE_8BPP;
2183 break;
2184 case 16:
2185 if (fb->depth != 16)
2186 return -EINVAL;
2187
2188 dspcntr |= DISPPLANE_16BPP;
2189 break;
2190 case 24:
2191 case 32:
2192 if (fb->depth == 24)
2193 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2194 else if (fb->depth == 30)
2195 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2196 else
2197 return -EINVAL;
2198 break;
2199 default:
2200 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2201 return -EINVAL;
2202 }
2203
2204 if (obj->tiling_mode != I915_TILING_NONE)
2205 dspcntr |= DISPPLANE_TILED;
2206 else
2207 dspcntr &= ~DISPPLANE_TILED;
2208
2209 /* must disable */
2210 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2211
2212 I915_WRITE(reg, dspcntr);
2213
2214 Start = obj->gtt_offset;
2215 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2216
2217 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2218 Start, Offset, x, y, fb->pitches[0]);
2219 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2220 I915_WRITE(DSPSURF(plane), Start);
2221 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2222 I915_WRITE(DSPADDR(plane), Offset);
2223 POSTING_READ(reg);
2224
2225 return 0;
2226 }
2227
2228 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2229 static int
2230 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2231 int x, int y, enum mode_set_atomic state)
2232 {
2233 struct drm_device *dev = crtc->dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 int ret;
2236
2237 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2238 if (ret)
2239 return ret;
2240
2241 intel_update_fbc(dev);
2242 intel_increase_pllclock(crtc);
2243
2244 return 0;
2245 }
2246
2247 static int
2248 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2249 struct drm_framebuffer *old_fb)
2250 {
2251 struct drm_device *dev = crtc->dev;
2252 struct drm_i915_master_private *master_priv;
2253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2254 int ret;
2255
2256 /* no fb bound */
2257 if (!crtc->fb) {
2258 DRM_ERROR("No FB bound\n");
2259 return 0;
2260 }
2261
2262 switch (intel_crtc->plane) {
2263 case 0:
2264 case 1:
2265 break;
2266 case 2:
2267 if (IS_IVYBRIDGE(dev))
2268 break;
2269 /* fall through otherwise */
2270 default:
2271 DRM_ERROR("no plane for crtc\n");
2272 return -EINVAL;
2273 }
2274
2275 mutex_lock(&dev->struct_mutex);
2276 ret = intel_pin_and_fence_fb_obj(dev,
2277 to_intel_framebuffer(crtc->fb)->obj,
2278 NULL);
2279 if (ret != 0) {
2280 mutex_unlock(&dev->struct_mutex);
2281 DRM_ERROR("pin & fence failed\n");
2282 return ret;
2283 }
2284
2285 if (old_fb) {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2288
2289 wait_event(dev_priv->pending_flip_queue,
2290 atomic_read(&dev_priv->mm.wedged) ||
2291 atomic_read(&obj->pending_flip) == 0);
2292
2293 /* Big Hammer, we also need to ensure that any pending
2294 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2295 * current scanout is retired before unpinning the old
2296 * framebuffer.
2297 *
2298 * This should only fail upon a hung GPU, in which case we
2299 * can safely continue.
2300 */
2301 ret = i915_gem_object_finish_gpu(obj);
2302 (void) ret;
2303 }
2304
2305 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2306 LEAVE_ATOMIC_MODE_SET);
2307 if (ret) {
2308 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2309 mutex_unlock(&dev->struct_mutex);
2310 DRM_ERROR("failed to update base address\n");
2311 return ret;
2312 }
2313
2314 if (old_fb) {
2315 intel_wait_for_vblank(dev, intel_crtc->pipe);
2316 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2317 }
2318
2319 mutex_unlock(&dev->struct_mutex);
2320
2321 if (!dev->primary->master)
2322 return 0;
2323
2324 master_priv = dev->primary->master->driver_priv;
2325 if (!master_priv->sarea_priv)
2326 return 0;
2327
2328 if (intel_crtc->pipe) {
2329 master_priv->sarea_priv->pipeB_x = x;
2330 master_priv->sarea_priv->pipeB_y = y;
2331 } else {
2332 master_priv->sarea_priv->pipeA_x = x;
2333 master_priv->sarea_priv->pipeA_y = y;
2334 }
2335
2336 return 0;
2337 }
2338
2339 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2340 {
2341 struct drm_device *dev = crtc->dev;
2342 struct drm_i915_private *dev_priv = dev->dev_private;
2343 u32 dpa_ctl;
2344
2345 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2346 dpa_ctl = I915_READ(DP_A);
2347 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2348
2349 if (clock < 200000) {
2350 u32 temp;
2351 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2352 /* workaround for 160Mhz:
2353 1) program 0x4600c bits 15:0 = 0x8124
2354 2) program 0x46010 bit 0 = 1
2355 3) program 0x46034 bit 24 = 1
2356 4) program 0x64000 bit 14 = 1
2357 */
2358 temp = I915_READ(0x4600c);
2359 temp &= 0xffff0000;
2360 I915_WRITE(0x4600c, temp | 0x8124);
2361
2362 temp = I915_READ(0x46010);
2363 I915_WRITE(0x46010, temp | 1);
2364
2365 temp = I915_READ(0x46034);
2366 I915_WRITE(0x46034, temp | (1 << 24));
2367 } else {
2368 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2369 }
2370 I915_WRITE(DP_A, dpa_ctl);
2371
2372 POSTING_READ(DP_A);
2373 udelay(500);
2374 }
2375
2376 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2377 {
2378 struct drm_device *dev = crtc->dev;
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2381 int pipe = intel_crtc->pipe;
2382 u32 reg, temp;
2383
2384 /* enable normal train */
2385 reg = FDI_TX_CTL(pipe);
2386 temp = I915_READ(reg);
2387 if (IS_IVYBRIDGE(dev)) {
2388 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2389 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2390 } else {
2391 temp &= ~FDI_LINK_TRAIN_NONE;
2392 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2393 }
2394 I915_WRITE(reg, temp);
2395
2396 reg = FDI_RX_CTL(pipe);
2397 temp = I915_READ(reg);
2398 if (HAS_PCH_CPT(dev)) {
2399 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2400 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2401 } else {
2402 temp &= ~FDI_LINK_TRAIN_NONE;
2403 temp |= FDI_LINK_TRAIN_NONE;
2404 }
2405 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2406
2407 /* wait one idle pattern time */
2408 POSTING_READ(reg);
2409 udelay(1000);
2410
2411 /* IVB wants error correction enabled */
2412 if (IS_IVYBRIDGE(dev))
2413 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2414 FDI_FE_ERRC_ENABLE);
2415 }
2416
2417 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 u32 flags = I915_READ(SOUTH_CHICKEN1);
2421
2422 flags |= FDI_PHASE_SYNC_OVR(pipe);
2423 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2424 flags |= FDI_PHASE_SYNC_EN(pipe);
2425 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2426 POSTING_READ(SOUTH_CHICKEN1);
2427 }
2428
2429 /* The FDI link training functions for ILK/Ibexpeak. */
2430 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2431 {
2432 struct drm_device *dev = crtc->dev;
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2435 int pipe = intel_crtc->pipe;
2436 int plane = intel_crtc->plane;
2437 u32 reg, temp, tries;
2438
2439 /* FDI needs bits from pipe & plane first */
2440 assert_pipe_enabled(dev_priv, pipe);
2441 assert_plane_enabled(dev_priv, plane);
2442
2443 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2444 for train result */
2445 reg = FDI_RX_IMR(pipe);
2446 temp = I915_READ(reg);
2447 temp &= ~FDI_RX_SYMBOL_LOCK;
2448 temp &= ~FDI_RX_BIT_LOCK;
2449 I915_WRITE(reg, temp);
2450 I915_READ(reg);
2451 udelay(150);
2452
2453 /* enable CPU FDI TX and PCH FDI RX */
2454 reg = FDI_TX_CTL(pipe);
2455 temp = I915_READ(reg);
2456 temp &= ~(7 << 19);
2457 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2458 temp &= ~FDI_LINK_TRAIN_NONE;
2459 temp |= FDI_LINK_TRAIN_PATTERN_1;
2460 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2461
2462 reg = FDI_RX_CTL(pipe);
2463 temp = I915_READ(reg);
2464 temp &= ~FDI_LINK_TRAIN_NONE;
2465 temp |= FDI_LINK_TRAIN_PATTERN_1;
2466 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2467
2468 POSTING_READ(reg);
2469 udelay(150);
2470
2471 /* Ironlake workaround, enable clock pointer after FDI enable*/
2472 if (HAS_PCH_IBX(dev)) {
2473 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2474 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2475 FDI_RX_PHASE_SYNC_POINTER_EN);
2476 }
2477
2478 reg = FDI_RX_IIR(pipe);
2479 for (tries = 0; tries < 5; tries++) {
2480 temp = I915_READ(reg);
2481 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2482
2483 if ((temp & FDI_RX_BIT_LOCK)) {
2484 DRM_DEBUG_KMS("FDI train 1 done.\n");
2485 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486 break;
2487 }
2488 }
2489 if (tries == 5)
2490 DRM_ERROR("FDI train 1 fail!\n");
2491
2492 /* Train 2 */
2493 reg = FDI_TX_CTL(pipe);
2494 temp = I915_READ(reg);
2495 temp &= ~FDI_LINK_TRAIN_NONE;
2496 temp |= FDI_LINK_TRAIN_PATTERN_2;
2497 I915_WRITE(reg, temp);
2498
2499 reg = FDI_RX_CTL(pipe);
2500 temp = I915_READ(reg);
2501 temp &= ~FDI_LINK_TRAIN_NONE;
2502 temp |= FDI_LINK_TRAIN_PATTERN_2;
2503 I915_WRITE(reg, temp);
2504
2505 POSTING_READ(reg);
2506 udelay(150);
2507
2508 reg = FDI_RX_IIR(pipe);
2509 for (tries = 0; tries < 5; tries++) {
2510 temp = I915_READ(reg);
2511 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2512
2513 if (temp & FDI_RX_SYMBOL_LOCK) {
2514 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2515 DRM_DEBUG_KMS("FDI train 2 done.\n");
2516 break;
2517 }
2518 }
2519 if (tries == 5)
2520 DRM_ERROR("FDI train 2 fail!\n");
2521
2522 DRM_DEBUG_KMS("FDI train done\n");
2523
2524 }
2525
2526 static const int snb_b_fdi_train_param[] = {
2527 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2528 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2529 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2530 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2531 };
2532
2533 /* The FDI link training functions for SNB/Cougarpoint. */
2534 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2535 {
2536 struct drm_device *dev = crtc->dev;
2537 struct drm_i915_private *dev_priv = dev->dev_private;
2538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2539 int pipe = intel_crtc->pipe;
2540 u32 reg, temp, i;
2541
2542 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2543 for train result */
2544 reg = FDI_RX_IMR(pipe);
2545 temp = I915_READ(reg);
2546 temp &= ~FDI_RX_SYMBOL_LOCK;
2547 temp &= ~FDI_RX_BIT_LOCK;
2548 I915_WRITE(reg, temp);
2549
2550 POSTING_READ(reg);
2551 udelay(150);
2552
2553 /* enable CPU FDI TX and PCH FDI RX */
2554 reg = FDI_TX_CTL(pipe);
2555 temp = I915_READ(reg);
2556 temp &= ~(7 << 19);
2557 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2558 temp &= ~FDI_LINK_TRAIN_NONE;
2559 temp |= FDI_LINK_TRAIN_PATTERN_1;
2560 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2561 /* SNB-B */
2562 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2563 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2564
2565 reg = FDI_RX_CTL(pipe);
2566 temp = I915_READ(reg);
2567 if (HAS_PCH_CPT(dev)) {
2568 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2569 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2570 } else {
2571 temp &= ~FDI_LINK_TRAIN_NONE;
2572 temp |= FDI_LINK_TRAIN_PATTERN_1;
2573 }
2574 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2575
2576 POSTING_READ(reg);
2577 udelay(150);
2578
2579 if (HAS_PCH_CPT(dev))
2580 cpt_phase_pointer_enable(dev, pipe);
2581
2582 for (i = 0; i < 4; i++) {
2583 reg = FDI_TX_CTL(pipe);
2584 temp = I915_READ(reg);
2585 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586 temp |= snb_b_fdi_train_param[i];
2587 I915_WRITE(reg, temp);
2588
2589 POSTING_READ(reg);
2590 udelay(500);
2591
2592 reg = FDI_RX_IIR(pipe);
2593 temp = I915_READ(reg);
2594 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2595
2596 if (temp & FDI_RX_BIT_LOCK) {
2597 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2598 DRM_DEBUG_KMS("FDI train 1 done.\n");
2599 break;
2600 }
2601 }
2602 if (i == 4)
2603 DRM_ERROR("FDI train 1 fail!\n");
2604
2605 /* Train 2 */
2606 reg = FDI_TX_CTL(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_LINK_TRAIN_NONE;
2609 temp |= FDI_LINK_TRAIN_PATTERN_2;
2610 if (IS_GEN6(dev)) {
2611 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2612 /* SNB-B */
2613 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2614 }
2615 I915_WRITE(reg, temp);
2616
2617 reg = FDI_RX_CTL(pipe);
2618 temp = I915_READ(reg);
2619 if (HAS_PCH_CPT(dev)) {
2620 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2621 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2622 } else {
2623 temp &= ~FDI_LINK_TRAIN_NONE;
2624 temp |= FDI_LINK_TRAIN_PATTERN_2;
2625 }
2626 I915_WRITE(reg, temp);
2627
2628 POSTING_READ(reg);
2629 udelay(150);
2630
2631 for (i = 0; i < 4; i++) {
2632 reg = FDI_TX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2635 temp |= snb_b_fdi_train_param[i];
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(500);
2640
2641 reg = FDI_RX_IIR(pipe);
2642 temp = I915_READ(reg);
2643 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2644
2645 if (temp & FDI_RX_SYMBOL_LOCK) {
2646 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2647 DRM_DEBUG_KMS("FDI train 2 done.\n");
2648 break;
2649 }
2650 }
2651 if (i == 4)
2652 DRM_ERROR("FDI train 2 fail!\n");
2653
2654 DRM_DEBUG_KMS("FDI train done.\n");
2655 }
2656
2657 /* Manual link training for Ivy Bridge A0 parts */
2658 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2659 {
2660 struct drm_device *dev = crtc->dev;
2661 struct drm_i915_private *dev_priv = dev->dev_private;
2662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2663 int pipe = intel_crtc->pipe;
2664 u32 reg, temp, i;
2665
2666 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2667 for train result */
2668 reg = FDI_RX_IMR(pipe);
2669 temp = I915_READ(reg);
2670 temp &= ~FDI_RX_SYMBOL_LOCK;
2671 temp &= ~FDI_RX_BIT_LOCK;
2672 I915_WRITE(reg, temp);
2673
2674 POSTING_READ(reg);
2675 udelay(150);
2676
2677 /* enable CPU FDI TX and PCH FDI RX */
2678 reg = FDI_TX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~(7 << 19);
2681 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2682 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2683 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2684 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2685 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2686 temp |= FDI_COMPOSITE_SYNC;
2687 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2688
2689 reg = FDI_RX_CTL(pipe);
2690 temp = I915_READ(reg);
2691 temp &= ~FDI_LINK_TRAIN_AUTO;
2692 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2693 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2694 temp |= FDI_COMPOSITE_SYNC;
2695 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2696
2697 POSTING_READ(reg);
2698 udelay(150);
2699
2700 if (HAS_PCH_CPT(dev))
2701 cpt_phase_pointer_enable(dev, pipe);
2702
2703 for (i = 0; i < 4; i++) {
2704 reg = FDI_TX_CTL(pipe);
2705 temp = I915_READ(reg);
2706 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2707 temp |= snb_b_fdi_train_param[i];
2708 I915_WRITE(reg, temp);
2709
2710 POSTING_READ(reg);
2711 udelay(500);
2712
2713 reg = FDI_RX_IIR(pipe);
2714 temp = I915_READ(reg);
2715 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2716
2717 if (temp & FDI_RX_BIT_LOCK ||
2718 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2719 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2720 DRM_DEBUG_KMS("FDI train 1 done.\n");
2721 break;
2722 }
2723 }
2724 if (i == 4)
2725 DRM_ERROR("FDI train 1 fail!\n");
2726
2727 /* Train 2 */
2728 reg = FDI_TX_CTL(pipe);
2729 temp = I915_READ(reg);
2730 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2731 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2732 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2733 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2734 I915_WRITE(reg, temp);
2735
2736 reg = FDI_RX_CTL(pipe);
2737 temp = I915_READ(reg);
2738 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2739 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2740 I915_WRITE(reg, temp);
2741
2742 POSTING_READ(reg);
2743 udelay(150);
2744
2745 for (i = 0; i < 4; i++) {
2746 reg = FDI_TX_CTL(pipe);
2747 temp = I915_READ(reg);
2748 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2749 temp |= snb_b_fdi_train_param[i];
2750 I915_WRITE(reg, temp);
2751
2752 POSTING_READ(reg);
2753 udelay(500);
2754
2755 reg = FDI_RX_IIR(pipe);
2756 temp = I915_READ(reg);
2757 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2758
2759 if (temp & FDI_RX_SYMBOL_LOCK) {
2760 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2761 DRM_DEBUG_KMS("FDI train 2 done.\n");
2762 break;
2763 }
2764 }
2765 if (i == 4)
2766 DRM_ERROR("FDI train 2 fail!\n");
2767
2768 DRM_DEBUG_KMS("FDI train done.\n");
2769 }
2770
2771 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2772 {
2773 struct drm_device *dev = crtc->dev;
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2776 int pipe = intel_crtc->pipe;
2777 u32 reg, temp;
2778
2779 /* Write the TU size bits so error detection works */
2780 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2781 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2782
2783 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2784 reg = FDI_RX_CTL(pipe);
2785 temp = I915_READ(reg);
2786 temp &= ~((0x7 << 19) | (0x7 << 16));
2787 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2788 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2789 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2790
2791 POSTING_READ(reg);
2792 udelay(200);
2793
2794 /* Switch from Rawclk to PCDclk */
2795 temp = I915_READ(reg);
2796 I915_WRITE(reg, temp | FDI_PCDCLK);
2797
2798 POSTING_READ(reg);
2799 udelay(200);
2800
2801 /* Enable CPU FDI TX PLL, always on for Ironlake */
2802 reg = FDI_TX_CTL(pipe);
2803 temp = I915_READ(reg);
2804 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2805 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2806
2807 POSTING_READ(reg);
2808 udelay(100);
2809 }
2810 }
2811
2812 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2813 {
2814 struct drm_i915_private *dev_priv = dev->dev_private;
2815 u32 flags = I915_READ(SOUTH_CHICKEN1);
2816
2817 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2818 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2819 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2820 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2821 POSTING_READ(SOUTH_CHICKEN1);
2822 }
2823 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2824 {
2825 struct drm_device *dev = crtc->dev;
2826 struct drm_i915_private *dev_priv = dev->dev_private;
2827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2828 int pipe = intel_crtc->pipe;
2829 u32 reg, temp;
2830
2831 /* disable CPU FDI tx and PCH FDI rx */
2832 reg = FDI_TX_CTL(pipe);
2833 temp = I915_READ(reg);
2834 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2835 POSTING_READ(reg);
2836
2837 reg = FDI_RX_CTL(pipe);
2838 temp = I915_READ(reg);
2839 temp &= ~(0x7 << 16);
2840 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2841 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2842
2843 POSTING_READ(reg);
2844 udelay(100);
2845
2846 /* Ironlake workaround, disable clock pointer after downing FDI */
2847 if (HAS_PCH_IBX(dev)) {
2848 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2849 I915_WRITE(FDI_RX_CHICKEN(pipe),
2850 I915_READ(FDI_RX_CHICKEN(pipe) &
2851 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2852 } else if (HAS_PCH_CPT(dev)) {
2853 cpt_phase_pointer_disable(dev, pipe);
2854 }
2855
2856 /* still set train pattern 1 */
2857 reg = FDI_TX_CTL(pipe);
2858 temp = I915_READ(reg);
2859 temp &= ~FDI_LINK_TRAIN_NONE;
2860 temp |= FDI_LINK_TRAIN_PATTERN_1;
2861 I915_WRITE(reg, temp);
2862
2863 reg = FDI_RX_CTL(pipe);
2864 temp = I915_READ(reg);
2865 if (HAS_PCH_CPT(dev)) {
2866 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2867 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2868 } else {
2869 temp &= ~FDI_LINK_TRAIN_NONE;
2870 temp |= FDI_LINK_TRAIN_PATTERN_1;
2871 }
2872 /* BPC in FDI rx is consistent with that in PIPECONF */
2873 temp &= ~(0x07 << 16);
2874 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2875 I915_WRITE(reg, temp);
2876
2877 POSTING_READ(reg);
2878 udelay(100);
2879 }
2880
2881 /*
2882 * When we disable a pipe, we need to clear any pending scanline wait events
2883 * to avoid hanging the ring, which we assume we are waiting on.
2884 */
2885 static void intel_clear_scanline_wait(struct drm_device *dev)
2886 {
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 struct intel_ring_buffer *ring;
2889 u32 tmp;
2890
2891 if (IS_GEN2(dev))
2892 /* Can't break the hang on i8xx */
2893 return;
2894
2895 ring = LP_RING(dev_priv);
2896 tmp = I915_READ_CTL(ring);
2897 if (tmp & RING_WAIT)
2898 I915_WRITE_CTL(ring, tmp);
2899 }
2900
2901 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2902 {
2903 struct drm_i915_gem_object *obj;
2904 struct drm_i915_private *dev_priv;
2905
2906 if (crtc->fb == NULL)
2907 return;
2908
2909 obj = to_intel_framebuffer(crtc->fb)->obj;
2910 dev_priv = crtc->dev->dev_private;
2911 wait_event(dev_priv->pending_flip_queue,
2912 atomic_read(&obj->pending_flip) == 0);
2913 }
2914
2915 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2916 {
2917 struct drm_device *dev = crtc->dev;
2918 struct drm_mode_config *mode_config = &dev->mode_config;
2919 struct intel_encoder *encoder;
2920
2921 /*
2922 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2923 * must be driven by its own crtc; no sharing is possible.
2924 */
2925 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2926 if (encoder->base.crtc != crtc)
2927 continue;
2928
2929 switch (encoder->type) {
2930 case INTEL_OUTPUT_EDP:
2931 if (!intel_encoder_is_pch_edp(&encoder->base))
2932 return false;
2933 continue;
2934 }
2935 }
2936
2937 return true;
2938 }
2939
2940 /*
2941 * Enable PCH resources required for PCH ports:
2942 * - PCH PLLs
2943 * - FDI training & RX/TX
2944 * - update transcoder timings
2945 * - DP transcoding bits
2946 * - transcoder
2947 */
2948 static void ironlake_pch_enable(struct drm_crtc *crtc)
2949 {
2950 struct drm_device *dev = crtc->dev;
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2953 int pipe = intel_crtc->pipe;
2954 u32 reg, temp, transc_sel;
2955
2956 /* For PCH output, training FDI link */
2957 dev_priv->display.fdi_link_train(crtc);
2958
2959 intel_enable_pch_pll(dev_priv, pipe);
2960
2961 if (HAS_PCH_CPT(dev)) {
2962 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2963 TRANSC_DPLLB_SEL;
2964
2965 /* Be sure PCH DPLL SEL is set */
2966 temp = I915_READ(PCH_DPLL_SEL);
2967 if (pipe == 0) {
2968 temp &= ~(TRANSA_DPLLB_SEL);
2969 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2970 } else if (pipe == 1) {
2971 temp &= ~(TRANSB_DPLLB_SEL);
2972 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2973 } else if (pipe == 2) {
2974 temp &= ~(TRANSC_DPLLB_SEL);
2975 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2976 }
2977 I915_WRITE(PCH_DPLL_SEL, temp);
2978 }
2979
2980 /* set transcoder timing, panel must allow it */
2981 assert_panel_unlocked(dev_priv, pipe);
2982 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2983 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2984 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2985
2986 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2987 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2988 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2989 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
2990
2991 intel_fdi_normal_train(crtc);
2992
2993 /* For PCH DP, enable TRANS_DP_CTL */
2994 if (HAS_PCH_CPT(dev) &&
2995 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2996 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2997 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2998 reg = TRANS_DP_CTL(pipe);
2999 temp = I915_READ(reg);
3000 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3001 TRANS_DP_SYNC_MASK |
3002 TRANS_DP_BPC_MASK);
3003 temp |= (TRANS_DP_OUTPUT_ENABLE |
3004 TRANS_DP_ENH_FRAMING);
3005 temp |= bpc << 9; /* same format but at 11:9 */
3006
3007 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3008 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3009 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3010 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3011
3012 switch (intel_trans_dp_port_sel(crtc)) {
3013 case PCH_DP_B:
3014 temp |= TRANS_DP_PORT_SEL_B;
3015 break;
3016 case PCH_DP_C:
3017 temp |= TRANS_DP_PORT_SEL_C;
3018 break;
3019 case PCH_DP_D:
3020 temp |= TRANS_DP_PORT_SEL_D;
3021 break;
3022 default:
3023 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3024 temp |= TRANS_DP_PORT_SEL_B;
3025 break;
3026 }
3027
3028 I915_WRITE(reg, temp);
3029 }
3030
3031 intel_enable_transcoder(dev_priv, pipe);
3032 }
3033
3034 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3035 {
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3038 u32 temp;
3039
3040 temp = I915_READ(dslreg);
3041 udelay(500);
3042 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3043 /* Without this, mode sets may fail silently on FDI */
3044 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3045 udelay(250);
3046 I915_WRITE(tc2reg, 0);
3047 if (wait_for(I915_READ(dslreg) != temp, 5))
3048 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3049 }
3050 }
3051
3052 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3053 {
3054 struct drm_device *dev = crtc->dev;
3055 struct drm_i915_private *dev_priv = dev->dev_private;
3056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3057 int pipe = intel_crtc->pipe;
3058 int plane = intel_crtc->plane;
3059 u32 temp;
3060 bool is_pch_port;
3061
3062 if (intel_crtc->active)
3063 return;
3064
3065 intel_crtc->active = true;
3066 intel_update_watermarks(dev);
3067
3068 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3069 temp = I915_READ(PCH_LVDS);
3070 if ((temp & LVDS_PORT_EN) == 0)
3071 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3072 }
3073
3074 is_pch_port = intel_crtc_driving_pch(crtc);
3075
3076 if (is_pch_port)
3077 ironlake_fdi_pll_enable(crtc);
3078 else
3079 ironlake_fdi_disable(crtc);
3080
3081 /* Enable panel fitting for LVDS */
3082 if (dev_priv->pch_pf_size &&
3083 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3084 /* Force use of hard-coded filter coefficients
3085 * as some pre-programmed values are broken,
3086 * e.g. x201.
3087 */
3088 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3089 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3090 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3091 }
3092
3093 /*
3094 * On ILK+ LUT must be loaded before the pipe is running but with
3095 * clocks enabled
3096 */
3097 intel_crtc_load_lut(crtc);
3098
3099 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3100 intel_enable_plane(dev_priv, plane, pipe);
3101
3102 if (is_pch_port)
3103 ironlake_pch_enable(crtc);
3104
3105 mutex_lock(&dev->struct_mutex);
3106 intel_update_fbc(dev);
3107 mutex_unlock(&dev->struct_mutex);
3108
3109 intel_crtc_update_cursor(crtc, true);
3110 }
3111
3112 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3113 {
3114 struct drm_device *dev = crtc->dev;
3115 struct drm_i915_private *dev_priv = dev->dev_private;
3116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3117 int pipe = intel_crtc->pipe;
3118 int plane = intel_crtc->plane;
3119 u32 reg, temp;
3120
3121 if (!intel_crtc->active)
3122 return;
3123
3124 intel_crtc_wait_for_pending_flips(crtc);
3125 drm_vblank_off(dev, pipe);
3126 intel_crtc_update_cursor(crtc, false);
3127
3128 intel_disable_plane(dev_priv, plane, pipe);
3129
3130 if (dev_priv->cfb_plane == plane)
3131 intel_disable_fbc(dev);
3132
3133 intel_disable_pipe(dev_priv, pipe);
3134
3135 /* Disable PF */
3136 I915_WRITE(PF_CTL(pipe), 0);
3137 I915_WRITE(PF_WIN_SZ(pipe), 0);
3138
3139 ironlake_fdi_disable(crtc);
3140
3141 /* This is a horrible layering violation; we should be doing this in
3142 * the connector/encoder ->prepare instead, but we don't always have
3143 * enough information there about the config to know whether it will
3144 * actually be necessary or just cause undesired flicker.
3145 */
3146 intel_disable_pch_ports(dev_priv, pipe);
3147
3148 intel_disable_transcoder(dev_priv, pipe);
3149
3150 if (HAS_PCH_CPT(dev)) {
3151 /* disable TRANS_DP_CTL */
3152 reg = TRANS_DP_CTL(pipe);
3153 temp = I915_READ(reg);
3154 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3155 temp |= TRANS_DP_PORT_SEL_NONE;
3156 I915_WRITE(reg, temp);
3157
3158 /* disable DPLL_SEL */
3159 temp = I915_READ(PCH_DPLL_SEL);
3160 switch (pipe) {
3161 case 0:
3162 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3163 break;
3164 case 1:
3165 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3166 break;
3167 case 2:
3168 /* C shares PLL A or B */
3169 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3170 break;
3171 default:
3172 BUG(); /* wtf */
3173 }
3174 I915_WRITE(PCH_DPLL_SEL, temp);
3175 }
3176
3177 /* disable PCH DPLL */
3178 if (!intel_crtc->no_pll)
3179 intel_disable_pch_pll(dev_priv, pipe);
3180
3181 /* Switch from PCDclk to Rawclk */
3182 reg = FDI_RX_CTL(pipe);
3183 temp = I915_READ(reg);
3184 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3185
3186 /* Disable CPU FDI TX PLL */
3187 reg = FDI_TX_CTL(pipe);
3188 temp = I915_READ(reg);
3189 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3190
3191 POSTING_READ(reg);
3192 udelay(100);
3193
3194 reg = FDI_RX_CTL(pipe);
3195 temp = I915_READ(reg);
3196 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3197
3198 /* Wait for the clocks to turn off. */
3199 POSTING_READ(reg);
3200 udelay(100);
3201
3202 intel_crtc->active = false;
3203 intel_update_watermarks(dev);
3204
3205 mutex_lock(&dev->struct_mutex);
3206 intel_update_fbc(dev);
3207 intel_clear_scanline_wait(dev);
3208 mutex_unlock(&dev->struct_mutex);
3209 }
3210
3211 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3212 {
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 int pipe = intel_crtc->pipe;
3215 int plane = intel_crtc->plane;
3216
3217 /* XXX: When our outputs are all unaware of DPMS modes other than off
3218 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3219 */
3220 switch (mode) {
3221 case DRM_MODE_DPMS_ON:
3222 case DRM_MODE_DPMS_STANDBY:
3223 case DRM_MODE_DPMS_SUSPEND:
3224 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3225 ironlake_crtc_enable(crtc);
3226 break;
3227
3228 case DRM_MODE_DPMS_OFF:
3229 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3230 ironlake_crtc_disable(crtc);
3231 break;
3232 }
3233 }
3234
3235 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3236 {
3237 if (!enable && intel_crtc->overlay) {
3238 struct drm_device *dev = intel_crtc->base.dev;
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240
3241 mutex_lock(&dev->struct_mutex);
3242 dev_priv->mm.interruptible = false;
3243 (void) intel_overlay_switch_off(intel_crtc->overlay);
3244 dev_priv->mm.interruptible = true;
3245 mutex_unlock(&dev->struct_mutex);
3246 }
3247
3248 /* Let userspace switch the overlay on again. In most cases userspace
3249 * has to recompute where to put it anyway.
3250 */
3251 }
3252
3253 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3254 {
3255 struct drm_device *dev = crtc->dev;
3256 struct drm_i915_private *dev_priv = dev->dev_private;
3257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3258 int pipe = intel_crtc->pipe;
3259 int plane = intel_crtc->plane;
3260
3261 if (intel_crtc->active)
3262 return;
3263
3264 intel_crtc->active = true;
3265 intel_update_watermarks(dev);
3266
3267 intel_enable_pll(dev_priv, pipe);
3268 intel_enable_pipe(dev_priv, pipe, false);
3269 intel_enable_plane(dev_priv, plane, pipe);
3270
3271 intel_crtc_load_lut(crtc);
3272 intel_update_fbc(dev);
3273
3274 /* Give the overlay scaler a chance to enable if it's on this pipe */
3275 intel_crtc_dpms_overlay(intel_crtc, true);
3276 intel_crtc_update_cursor(crtc, true);
3277 }
3278
3279 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3280 {
3281 struct drm_device *dev = crtc->dev;
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 int pipe = intel_crtc->pipe;
3285 int plane = intel_crtc->plane;
3286
3287 if (!intel_crtc->active)
3288 return;
3289
3290 /* Give the overlay scaler a chance to disable if it's on this pipe */
3291 intel_crtc_wait_for_pending_flips(crtc);
3292 drm_vblank_off(dev, pipe);
3293 intel_crtc_dpms_overlay(intel_crtc, false);
3294 intel_crtc_update_cursor(crtc, false);
3295
3296 if (dev_priv->cfb_plane == plane)
3297 intel_disable_fbc(dev);
3298
3299 intel_disable_plane(dev_priv, plane, pipe);
3300 intel_disable_pipe(dev_priv, pipe);
3301 intel_disable_pll(dev_priv, pipe);
3302
3303 intel_crtc->active = false;
3304 intel_update_fbc(dev);
3305 intel_update_watermarks(dev);
3306 intel_clear_scanline_wait(dev);
3307 }
3308
3309 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3310 {
3311 /* XXX: When our outputs are all unaware of DPMS modes other than off
3312 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3313 */
3314 switch (mode) {
3315 case DRM_MODE_DPMS_ON:
3316 case DRM_MODE_DPMS_STANDBY:
3317 case DRM_MODE_DPMS_SUSPEND:
3318 i9xx_crtc_enable(crtc);
3319 break;
3320 case DRM_MODE_DPMS_OFF:
3321 i9xx_crtc_disable(crtc);
3322 break;
3323 }
3324 }
3325
3326 /**
3327 * Sets the power management mode of the pipe and plane.
3328 */
3329 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3330 {
3331 struct drm_device *dev = crtc->dev;
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3333 struct drm_i915_master_private *master_priv;
3334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3335 int pipe = intel_crtc->pipe;
3336 bool enabled;
3337
3338 if (intel_crtc->dpms_mode == mode)
3339 return;
3340
3341 intel_crtc->dpms_mode = mode;
3342
3343 dev_priv->display.dpms(crtc, mode);
3344
3345 if (!dev->primary->master)
3346 return;
3347
3348 master_priv = dev->primary->master->driver_priv;
3349 if (!master_priv->sarea_priv)
3350 return;
3351
3352 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3353
3354 switch (pipe) {
3355 case 0:
3356 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3357 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3358 break;
3359 case 1:
3360 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3361 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3362 break;
3363 default:
3364 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3365 break;
3366 }
3367 }
3368
3369 static void intel_crtc_disable(struct drm_crtc *crtc)
3370 {
3371 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3372 struct drm_device *dev = crtc->dev;
3373
3374 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3375 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3376 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3377
3378 if (crtc->fb) {
3379 mutex_lock(&dev->struct_mutex);
3380 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3381 mutex_unlock(&dev->struct_mutex);
3382 }
3383 }
3384
3385 /* Prepare for a mode set.
3386 *
3387 * Note we could be a lot smarter here. We need to figure out which outputs
3388 * will be enabled, which disabled (in short, how the config will changes)
3389 * and perform the minimum necessary steps to accomplish that, e.g. updating
3390 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3391 * panel fitting is in the proper state, etc.
3392 */
3393 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3394 {
3395 i9xx_crtc_disable(crtc);
3396 }
3397
3398 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3399 {
3400 i9xx_crtc_enable(crtc);
3401 }
3402
3403 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3404 {
3405 ironlake_crtc_disable(crtc);
3406 }
3407
3408 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3409 {
3410 ironlake_crtc_enable(crtc);
3411 }
3412
3413 void intel_encoder_prepare(struct drm_encoder *encoder)
3414 {
3415 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3416 /* lvds has its own version of prepare see intel_lvds_prepare */
3417 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3418 }
3419
3420 void intel_encoder_commit(struct drm_encoder *encoder)
3421 {
3422 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3423 struct drm_device *dev = encoder->dev;
3424 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3425 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3426
3427 /* lvds has its own version of commit see intel_lvds_commit */
3428 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3429
3430 if (HAS_PCH_CPT(dev))
3431 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3432 }
3433
3434 void intel_encoder_destroy(struct drm_encoder *encoder)
3435 {
3436 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3437
3438 drm_encoder_cleanup(encoder);
3439 kfree(intel_encoder);
3440 }
3441
3442 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3443 struct drm_display_mode *mode,
3444 struct drm_display_mode *adjusted_mode)
3445 {
3446 struct drm_device *dev = crtc->dev;
3447
3448 if (HAS_PCH_SPLIT(dev)) {
3449 /* FDI link clock is fixed at 2.7G */
3450 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3451 return false;
3452 }
3453
3454 /* All interlaced capable intel hw wants timings in frames. */
3455 drm_mode_set_crtcinfo(adjusted_mode, 0);
3456
3457 return true;
3458 }
3459
3460 static int i945_get_display_clock_speed(struct drm_device *dev)
3461 {
3462 return 400000;
3463 }
3464
3465 static int i915_get_display_clock_speed(struct drm_device *dev)
3466 {
3467 return 333000;
3468 }
3469
3470 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3471 {
3472 return 200000;
3473 }
3474
3475 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3476 {
3477 u16 gcfgc = 0;
3478
3479 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3480
3481 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3482 return 133000;
3483 else {
3484 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3485 case GC_DISPLAY_CLOCK_333_MHZ:
3486 return 333000;
3487 default:
3488 case GC_DISPLAY_CLOCK_190_200_MHZ:
3489 return 190000;
3490 }
3491 }
3492 }
3493
3494 static int i865_get_display_clock_speed(struct drm_device *dev)
3495 {
3496 return 266000;
3497 }
3498
3499 static int i855_get_display_clock_speed(struct drm_device *dev)
3500 {
3501 u16 hpllcc = 0;
3502 /* Assume that the hardware is in the high speed state. This
3503 * should be the default.
3504 */
3505 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3506 case GC_CLOCK_133_200:
3507 case GC_CLOCK_100_200:
3508 return 200000;
3509 case GC_CLOCK_166_250:
3510 return 250000;
3511 case GC_CLOCK_100_133:
3512 return 133000;
3513 }
3514
3515 /* Shouldn't happen */
3516 return 0;
3517 }
3518
3519 static int i830_get_display_clock_speed(struct drm_device *dev)
3520 {
3521 return 133000;
3522 }
3523
3524 struct fdi_m_n {
3525 u32 tu;
3526 u32 gmch_m;
3527 u32 gmch_n;
3528 u32 link_m;
3529 u32 link_n;
3530 };
3531
3532 static void
3533 fdi_reduce_ratio(u32 *num, u32 *den)
3534 {
3535 while (*num > 0xffffff || *den > 0xffffff) {
3536 *num >>= 1;
3537 *den >>= 1;
3538 }
3539 }
3540
3541 static void
3542 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3543 int link_clock, struct fdi_m_n *m_n)
3544 {
3545 m_n->tu = 64; /* default size */
3546
3547 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3548 m_n->gmch_m = bits_per_pixel * pixel_clock;
3549 m_n->gmch_n = link_clock * nlanes * 8;
3550 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3551
3552 m_n->link_m = pixel_clock;
3553 m_n->link_n = link_clock;
3554 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3555 }
3556
3557
3558 struct intel_watermark_params {
3559 unsigned long fifo_size;
3560 unsigned long max_wm;
3561 unsigned long default_wm;
3562 unsigned long guard_size;
3563 unsigned long cacheline_size;
3564 };
3565
3566 /* Pineview has different values for various configs */
3567 static const struct intel_watermark_params pineview_display_wm = {
3568 PINEVIEW_DISPLAY_FIFO,
3569 PINEVIEW_MAX_WM,
3570 PINEVIEW_DFT_WM,
3571 PINEVIEW_GUARD_WM,
3572 PINEVIEW_FIFO_LINE_SIZE
3573 };
3574 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3575 PINEVIEW_DISPLAY_FIFO,
3576 PINEVIEW_MAX_WM,
3577 PINEVIEW_DFT_HPLLOFF_WM,
3578 PINEVIEW_GUARD_WM,
3579 PINEVIEW_FIFO_LINE_SIZE
3580 };
3581 static const struct intel_watermark_params pineview_cursor_wm = {
3582 PINEVIEW_CURSOR_FIFO,
3583 PINEVIEW_CURSOR_MAX_WM,
3584 PINEVIEW_CURSOR_DFT_WM,
3585 PINEVIEW_CURSOR_GUARD_WM,
3586 PINEVIEW_FIFO_LINE_SIZE,
3587 };
3588 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3589 PINEVIEW_CURSOR_FIFO,
3590 PINEVIEW_CURSOR_MAX_WM,
3591 PINEVIEW_CURSOR_DFT_WM,
3592 PINEVIEW_CURSOR_GUARD_WM,
3593 PINEVIEW_FIFO_LINE_SIZE
3594 };
3595 static const struct intel_watermark_params g4x_wm_info = {
3596 G4X_FIFO_SIZE,
3597 G4X_MAX_WM,
3598 G4X_MAX_WM,
3599 2,
3600 G4X_FIFO_LINE_SIZE,
3601 };
3602 static const struct intel_watermark_params g4x_cursor_wm_info = {
3603 I965_CURSOR_FIFO,
3604 I965_CURSOR_MAX_WM,
3605 I965_CURSOR_DFT_WM,
3606 2,
3607 G4X_FIFO_LINE_SIZE,
3608 };
3609 static const struct intel_watermark_params i965_cursor_wm_info = {
3610 I965_CURSOR_FIFO,
3611 I965_CURSOR_MAX_WM,
3612 I965_CURSOR_DFT_WM,
3613 2,
3614 I915_FIFO_LINE_SIZE,
3615 };
3616 static const struct intel_watermark_params i945_wm_info = {
3617 I945_FIFO_SIZE,
3618 I915_MAX_WM,
3619 1,
3620 2,
3621 I915_FIFO_LINE_SIZE
3622 };
3623 static const struct intel_watermark_params i915_wm_info = {
3624 I915_FIFO_SIZE,
3625 I915_MAX_WM,
3626 1,
3627 2,
3628 I915_FIFO_LINE_SIZE
3629 };
3630 static const struct intel_watermark_params i855_wm_info = {
3631 I855GM_FIFO_SIZE,
3632 I915_MAX_WM,
3633 1,
3634 2,
3635 I830_FIFO_LINE_SIZE
3636 };
3637 static const struct intel_watermark_params i830_wm_info = {
3638 I830_FIFO_SIZE,
3639 I915_MAX_WM,
3640 1,
3641 2,
3642 I830_FIFO_LINE_SIZE
3643 };
3644
3645 static const struct intel_watermark_params ironlake_display_wm_info = {
3646 ILK_DISPLAY_FIFO,
3647 ILK_DISPLAY_MAXWM,
3648 ILK_DISPLAY_DFTWM,
3649 2,
3650 ILK_FIFO_LINE_SIZE
3651 };
3652 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3653 ILK_CURSOR_FIFO,
3654 ILK_CURSOR_MAXWM,
3655 ILK_CURSOR_DFTWM,
3656 2,
3657 ILK_FIFO_LINE_SIZE
3658 };
3659 static const struct intel_watermark_params ironlake_display_srwm_info = {
3660 ILK_DISPLAY_SR_FIFO,
3661 ILK_DISPLAY_MAX_SRWM,
3662 ILK_DISPLAY_DFT_SRWM,
3663 2,
3664 ILK_FIFO_LINE_SIZE
3665 };
3666 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3667 ILK_CURSOR_SR_FIFO,
3668 ILK_CURSOR_MAX_SRWM,
3669 ILK_CURSOR_DFT_SRWM,
3670 2,
3671 ILK_FIFO_LINE_SIZE
3672 };
3673
3674 static const struct intel_watermark_params sandybridge_display_wm_info = {
3675 SNB_DISPLAY_FIFO,
3676 SNB_DISPLAY_MAXWM,
3677 SNB_DISPLAY_DFTWM,
3678 2,
3679 SNB_FIFO_LINE_SIZE
3680 };
3681 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3682 SNB_CURSOR_FIFO,
3683 SNB_CURSOR_MAXWM,
3684 SNB_CURSOR_DFTWM,
3685 2,
3686 SNB_FIFO_LINE_SIZE
3687 };
3688 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3689 SNB_DISPLAY_SR_FIFO,
3690 SNB_DISPLAY_MAX_SRWM,
3691 SNB_DISPLAY_DFT_SRWM,
3692 2,
3693 SNB_FIFO_LINE_SIZE
3694 };
3695 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3696 SNB_CURSOR_SR_FIFO,
3697 SNB_CURSOR_MAX_SRWM,
3698 SNB_CURSOR_DFT_SRWM,
3699 2,
3700 SNB_FIFO_LINE_SIZE
3701 };
3702
3703
3704 /**
3705 * intel_calculate_wm - calculate watermark level
3706 * @clock_in_khz: pixel clock
3707 * @wm: chip FIFO params
3708 * @pixel_size: display pixel size
3709 * @latency_ns: memory latency for the platform
3710 *
3711 * Calculate the watermark level (the level at which the display plane will
3712 * start fetching from memory again). Each chip has a different display
3713 * FIFO size and allocation, so the caller needs to figure that out and pass
3714 * in the correct intel_watermark_params structure.
3715 *
3716 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3717 * on the pixel size. When it reaches the watermark level, it'll start
3718 * fetching FIFO line sized based chunks from memory until the FIFO fills
3719 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3720 * will occur, and a display engine hang could result.
3721 */
3722 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3723 const struct intel_watermark_params *wm,
3724 int fifo_size,
3725 int pixel_size,
3726 unsigned long latency_ns)
3727 {
3728 long entries_required, wm_size;
3729
3730 /*
3731 * Note: we need to make sure we don't overflow for various clock &
3732 * latency values.
3733 * clocks go from a few thousand to several hundred thousand.
3734 * latency is usually a few thousand
3735 */
3736 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3737 1000;
3738 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3739
3740 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3741
3742 wm_size = fifo_size - (entries_required + wm->guard_size);
3743
3744 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3745
3746 /* Don't promote wm_size to unsigned... */
3747 if (wm_size > (long)wm->max_wm)
3748 wm_size = wm->max_wm;
3749 if (wm_size <= 0)
3750 wm_size = wm->default_wm;
3751 return wm_size;
3752 }
3753
3754 struct cxsr_latency {
3755 int is_desktop;
3756 int is_ddr3;
3757 unsigned long fsb_freq;
3758 unsigned long mem_freq;
3759 unsigned long display_sr;
3760 unsigned long display_hpll_disable;
3761 unsigned long cursor_sr;
3762 unsigned long cursor_hpll_disable;
3763 };
3764
3765 static const struct cxsr_latency cxsr_latency_table[] = {
3766 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3767 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3768 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3769 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3770 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3771
3772 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3773 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3774 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3775 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3776 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3777
3778 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3779 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3780 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3781 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3782 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3783
3784 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3785 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3786 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3787 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3788 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3789
3790 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3791 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3792 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3793 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3794 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3795
3796 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3797 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3798 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3799 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3800 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3801 };
3802
3803 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3804 int is_ddr3,
3805 int fsb,
3806 int mem)
3807 {
3808 const struct cxsr_latency *latency;
3809 int i;
3810
3811 if (fsb == 0 || mem == 0)
3812 return NULL;
3813
3814 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3815 latency = &cxsr_latency_table[i];
3816 if (is_desktop == latency->is_desktop &&
3817 is_ddr3 == latency->is_ddr3 &&
3818 fsb == latency->fsb_freq && mem == latency->mem_freq)
3819 return latency;
3820 }
3821
3822 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3823
3824 return NULL;
3825 }
3826
3827 static void pineview_disable_cxsr(struct drm_device *dev)
3828 {
3829 struct drm_i915_private *dev_priv = dev->dev_private;
3830
3831 /* deactivate cxsr */
3832 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3833 }
3834
3835 /*
3836 * Latency for FIFO fetches is dependent on several factors:
3837 * - memory configuration (speed, channels)
3838 * - chipset
3839 * - current MCH state
3840 * It can be fairly high in some situations, so here we assume a fairly
3841 * pessimal value. It's a tradeoff between extra memory fetches (if we
3842 * set this value too high, the FIFO will fetch frequently to stay full)
3843 * and power consumption (set it too low to save power and we might see
3844 * FIFO underruns and display "flicker").
3845 *
3846 * A value of 5us seems to be a good balance; safe for very low end
3847 * platforms but not overly aggressive on lower latency configs.
3848 */
3849 static const int latency_ns = 5000;
3850
3851 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3852 {
3853 struct drm_i915_private *dev_priv = dev->dev_private;
3854 uint32_t dsparb = I915_READ(DSPARB);
3855 int size;
3856
3857 size = dsparb & 0x7f;
3858 if (plane)
3859 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3860
3861 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3862 plane ? "B" : "A", size);
3863
3864 return size;
3865 }
3866
3867 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3868 {
3869 struct drm_i915_private *dev_priv = dev->dev_private;
3870 uint32_t dsparb = I915_READ(DSPARB);
3871 int size;
3872
3873 size = dsparb & 0x1ff;
3874 if (plane)
3875 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3876 size >>= 1; /* Convert to cachelines */
3877
3878 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3879 plane ? "B" : "A", size);
3880
3881 return size;
3882 }
3883
3884 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3885 {
3886 struct drm_i915_private *dev_priv = dev->dev_private;
3887 uint32_t dsparb = I915_READ(DSPARB);
3888 int size;
3889
3890 size = dsparb & 0x7f;
3891 size >>= 2; /* Convert to cachelines */
3892
3893 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3894 plane ? "B" : "A",
3895 size);
3896
3897 return size;
3898 }
3899
3900 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3901 {
3902 struct drm_i915_private *dev_priv = dev->dev_private;
3903 uint32_t dsparb = I915_READ(DSPARB);
3904 int size;
3905
3906 size = dsparb & 0x7f;
3907 size >>= 1; /* Convert to cachelines */
3908
3909 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3910 plane ? "B" : "A", size);
3911
3912 return size;
3913 }
3914
3915 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3916 {
3917 struct drm_crtc *crtc, *enabled = NULL;
3918
3919 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3920 if (crtc->enabled && crtc->fb) {
3921 if (enabled)
3922 return NULL;
3923 enabled = crtc;
3924 }
3925 }
3926
3927 return enabled;
3928 }
3929
3930 static void pineview_update_wm(struct drm_device *dev)
3931 {
3932 struct drm_i915_private *dev_priv = dev->dev_private;
3933 struct drm_crtc *crtc;
3934 const struct cxsr_latency *latency;
3935 u32 reg;
3936 unsigned long wm;
3937
3938 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3939 dev_priv->fsb_freq, dev_priv->mem_freq);
3940 if (!latency) {
3941 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3942 pineview_disable_cxsr(dev);
3943 return;
3944 }
3945
3946 crtc = single_enabled_crtc(dev);
3947 if (crtc) {
3948 int clock = crtc->mode.clock;
3949 int pixel_size = crtc->fb->bits_per_pixel / 8;
3950
3951 /* Display SR */
3952 wm = intel_calculate_wm(clock, &pineview_display_wm,
3953 pineview_display_wm.fifo_size,
3954 pixel_size, latency->display_sr);
3955 reg = I915_READ(DSPFW1);
3956 reg &= ~DSPFW_SR_MASK;
3957 reg |= wm << DSPFW_SR_SHIFT;
3958 I915_WRITE(DSPFW1, reg);
3959 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3960
3961 /* cursor SR */
3962 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3963 pineview_display_wm.fifo_size,
3964 pixel_size, latency->cursor_sr);
3965 reg = I915_READ(DSPFW3);
3966 reg &= ~DSPFW_CURSOR_SR_MASK;
3967 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3968 I915_WRITE(DSPFW3, reg);
3969
3970 /* Display HPLL off SR */
3971 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3972 pineview_display_hplloff_wm.fifo_size,
3973 pixel_size, latency->display_hpll_disable);
3974 reg = I915_READ(DSPFW3);
3975 reg &= ~DSPFW_HPLL_SR_MASK;
3976 reg |= wm & DSPFW_HPLL_SR_MASK;
3977 I915_WRITE(DSPFW3, reg);
3978
3979 /* cursor HPLL off SR */
3980 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3981 pineview_display_hplloff_wm.fifo_size,
3982 pixel_size, latency->cursor_hpll_disable);
3983 reg = I915_READ(DSPFW3);
3984 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3985 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3986 I915_WRITE(DSPFW3, reg);
3987 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3988
3989 /* activate cxsr */
3990 I915_WRITE(DSPFW3,
3991 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3992 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3993 } else {
3994 pineview_disable_cxsr(dev);
3995 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3996 }
3997 }
3998
3999 static bool g4x_compute_wm0(struct drm_device *dev,
4000 int plane,
4001 const struct intel_watermark_params *display,
4002 int display_latency_ns,
4003 const struct intel_watermark_params *cursor,
4004 int cursor_latency_ns,
4005 int *plane_wm,
4006 int *cursor_wm)
4007 {
4008 struct drm_crtc *crtc;
4009 int htotal, hdisplay, clock, pixel_size;
4010 int line_time_us, line_count;
4011 int entries, tlb_miss;
4012
4013 crtc = intel_get_crtc_for_plane(dev, plane);
4014 if (crtc->fb == NULL || !crtc->enabled) {
4015 *cursor_wm = cursor->guard_size;
4016 *plane_wm = display->guard_size;
4017 return false;
4018 }
4019
4020 htotal = crtc->mode.htotal;
4021 hdisplay = crtc->mode.hdisplay;
4022 clock = crtc->mode.clock;
4023 pixel_size = crtc->fb->bits_per_pixel / 8;
4024
4025 /* Use the small buffer method to calculate plane watermark */
4026 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4027 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4028 if (tlb_miss > 0)
4029 entries += tlb_miss;
4030 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4031 *plane_wm = entries + display->guard_size;
4032 if (*plane_wm > (int)display->max_wm)
4033 *plane_wm = display->max_wm;
4034
4035 /* Use the large buffer method to calculate cursor watermark */
4036 line_time_us = ((htotal * 1000) / clock);
4037 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4038 entries = line_count * 64 * pixel_size;
4039 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4040 if (tlb_miss > 0)
4041 entries += tlb_miss;
4042 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4043 *cursor_wm = entries + cursor->guard_size;
4044 if (*cursor_wm > (int)cursor->max_wm)
4045 *cursor_wm = (int)cursor->max_wm;
4046
4047 return true;
4048 }
4049
4050 /*
4051 * Check the wm result.
4052 *
4053 * If any calculated watermark values is larger than the maximum value that
4054 * can be programmed into the associated watermark register, that watermark
4055 * must be disabled.
4056 */
4057 static bool g4x_check_srwm(struct drm_device *dev,
4058 int display_wm, int cursor_wm,
4059 const struct intel_watermark_params *display,
4060 const struct intel_watermark_params *cursor)
4061 {
4062 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4063 display_wm, cursor_wm);
4064
4065 if (display_wm > display->max_wm) {
4066 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4067 display_wm, display->max_wm);
4068 return false;
4069 }
4070
4071 if (cursor_wm > cursor->max_wm) {
4072 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4073 cursor_wm, cursor->max_wm);
4074 return false;
4075 }
4076
4077 if (!(display_wm || cursor_wm)) {
4078 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4079 return false;
4080 }
4081
4082 return true;
4083 }
4084
4085 static bool g4x_compute_srwm(struct drm_device *dev,
4086 int plane,
4087 int latency_ns,
4088 const struct intel_watermark_params *display,
4089 const struct intel_watermark_params *cursor,
4090 int *display_wm, int *cursor_wm)
4091 {
4092 struct drm_crtc *crtc;
4093 int hdisplay, htotal, pixel_size, clock;
4094 unsigned long line_time_us;
4095 int line_count, line_size;
4096 int small, large;
4097 int entries;
4098
4099 if (!latency_ns) {
4100 *display_wm = *cursor_wm = 0;
4101 return false;
4102 }
4103
4104 crtc = intel_get_crtc_for_plane(dev, plane);
4105 hdisplay = crtc->mode.hdisplay;
4106 htotal = crtc->mode.htotal;
4107 clock = crtc->mode.clock;
4108 pixel_size = crtc->fb->bits_per_pixel / 8;
4109
4110 line_time_us = (htotal * 1000) / clock;
4111 line_count = (latency_ns / line_time_us + 1000) / 1000;
4112 line_size = hdisplay * pixel_size;
4113
4114 /* Use the minimum of the small and large buffer method for primary */
4115 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4116 large = line_count * line_size;
4117
4118 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4119 *display_wm = entries + display->guard_size;
4120
4121 /* calculate the self-refresh watermark for display cursor */
4122 entries = line_count * pixel_size * 64;
4123 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4124 *cursor_wm = entries + cursor->guard_size;
4125
4126 return g4x_check_srwm(dev,
4127 *display_wm, *cursor_wm,
4128 display, cursor);
4129 }
4130
4131 #define single_plane_enabled(mask) is_power_of_2(mask)
4132
4133 static void g4x_update_wm(struct drm_device *dev)
4134 {
4135 static const int sr_latency_ns = 12000;
4136 struct drm_i915_private *dev_priv = dev->dev_private;
4137 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4138 int plane_sr, cursor_sr;
4139 unsigned int enabled = 0;
4140
4141 if (g4x_compute_wm0(dev, 0,
4142 &g4x_wm_info, latency_ns,
4143 &g4x_cursor_wm_info, latency_ns,
4144 &planea_wm, &cursora_wm))
4145 enabled |= 1;
4146
4147 if (g4x_compute_wm0(dev, 1,
4148 &g4x_wm_info, latency_ns,
4149 &g4x_cursor_wm_info, latency_ns,
4150 &planeb_wm, &cursorb_wm))
4151 enabled |= 2;
4152
4153 plane_sr = cursor_sr = 0;
4154 if (single_plane_enabled(enabled) &&
4155 g4x_compute_srwm(dev, ffs(enabled) - 1,
4156 sr_latency_ns,
4157 &g4x_wm_info,
4158 &g4x_cursor_wm_info,
4159 &plane_sr, &cursor_sr))
4160 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4161 else
4162 I915_WRITE(FW_BLC_SELF,
4163 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4164
4165 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4166 planea_wm, cursora_wm,
4167 planeb_wm, cursorb_wm,
4168 plane_sr, cursor_sr);
4169
4170 I915_WRITE(DSPFW1,
4171 (plane_sr << DSPFW_SR_SHIFT) |
4172 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4173 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4174 planea_wm);
4175 I915_WRITE(DSPFW2,
4176 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4177 (cursora_wm << DSPFW_CURSORA_SHIFT));
4178 /* HPLL off in SR has some issues on G4x... disable it */
4179 I915_WRITE(DSPFW3,
4180 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4181 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4182 }
4183
4184 static void i965_update_wm(struct drm_device *dev)
4185 {
4186 struct drm_i915_private *dev_priv = dev->dev_private;
4187 struct drm_crtc *crtc;
4188 int srwm = 1;
4189 int cursor_sr = 16;
4190
4191 /* Calc sr entries for one plane configs */
4192 crtc = single_enabled_crtc(dev);
4193 if (crtc) {
4194 /* self-refresh has much higher latency */
4195 static const int sr_latency_ns = 12000;
4196 int clock = crtc->mode.clock;
4197 int htotal = crtc->mode.htotal;
4198 int hdisplay = crtc->mode.hdisplay;
4199 int pixel_size = crtc->fb->bits_per_pixel / 8;
4200 unsigned long line_time_us;
4201 int entries;
4202
4203 line_time_us = ((htotal * 1000) / clock);
4204
4205 /* Use ns/us then divide to preserve precision */
4206 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4207 pixel_size * hdisplay;
4208 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4209 srwm = I965_FIFO_SIZE - entries;
4210 if (srwm < 0)
4211 srwm = 1;
4212 srwm &= 0x1ff;
4213 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4214 entries, srwm);
4215
4216 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4217 pixel_size * 64;
4218 entries = DIV_ROUND_UP(entries,
4219 i965_cursor_wm_info.cacheline_size);
4220 cursor_sr = i965_cursor_wm_info.fifo_size -
4221 (entries + i965_cursor_wm_info.guard_size);
4222
4223 if (cursor_sr > i965_cursor_wm_info.max_wm)
4224 cursor_sr = i965_cursor_wm_info.max_wm;
4225
4226 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4227 "cursor %d\n", srwm, cursor_sr);
4228
4229 if (IS_CRESTLINE(dev))
4230 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4231 } else {
4232 /* Turn off self refresh if both pipes are enabled */
4233 if (IS_CRESTLINE(dev))
4234 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4235 & ~FW_BLC_SELF_EN);
4236 }
4237
4238 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4239 srwm);
4240
4241 /* 965 has limitations... */
4242 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4243 (8 << 16) | (8 << 8) | (8 << 0));
4244 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4245 /* update cursor SR watermark */
4246 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4247 }
4248
4249 static void i9xx_update_wm(struct drm_device *dev)
4250 {
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 const struct intel_watermark_params *wm_info;
4253 uint32_t fwater_lo;
4254 uint32_t fwater_hi;
4255 int cwm, srwm = 1;
4256 int fifo_size;
4257 int planea_wm, planeb_wm;
4258 struct drm_crtc *crtc, *enabled = NULL;
4259
4260 if (IS_I945GM(dev))
4261 wm_info = &i945_wm_info;
4262 else if (!IS_GEN2(dev))
4263 wm_info = &i915_wm_info;
4264 else
4265 wm_info = &i855_wm_info;
4266
4267 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4268 crtc = intel_get_crtc_for_plane(dev, 0);
4269 if (crtc->enabled && crtc->fb) {
4270 planea_wm = intel_calculate_wm(crtc->mode.clock,
4271 wm_info, fifo_size,
4272 crtc->fb->bits_per_pixel / 8,
4273 latency_ns);
4274 enabled = crtc;
4275 } else
4276 planea_wm = fifo_size - wm_info->guard_size;
4277
4278 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4279 crtc = intel_get_crtc_for_plane(dev, 1);
4280 if (crtc->enabled && crtc->fb) {
4281 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4282 wm_info, fifo_size,
4283 crtc->fb->bits_per_pixel / 8,
4284 latency_ns);
4285 if (enabled == NULL)
4286 enabled = crtc;
4287 else
4288 enabled = NULL;
4289 } else
4290 planeb_wm = fifo_size - wm_info->guard_size;
4291
4292 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4293
4294 /*
4295 * Overlay gets an aggressive default since video jitter is bad.
4296 */
4297 cwm = 2;
4298
4299 /* Play safe and disable self-refresh before adjusting watermarks. */
4300 if (IS_I945G(dev) || IS_I945GM(dev))
4301 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4302 else if (IS_I915GM(dev))
4303 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4304
4305 /* Calc sr entries for one plane configs */
4306 if (HAS_FW_BLC(dev) && enabled) {
4307 /* self-refresh has much higher latency */
4308 static const int sr_latency_ns = 6000;
4309 int clock = enabled->mode.clock;
4310 int htotal = enabled->mode.htotal;
4311 int hdisplay = enabled->mode.hdisplay;
4312 int pixel_size = enabled->fb->bits_per_pixel / 8;
4313 unsigned long line_time_us;
4314 int entries;
4315
4316 line_time_us = (htotal * 1000) / clock;
4317
4318 /* Use ns/us then divide to preserve precision */
4319 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4320 pixel_size * hdisplay;
4321 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4322 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4323 srwm = wm_info->fifo_size - entries;
4324 if (srwm < 0)
4325 srwm = 1;
4326
4327 if (IS_I945G(dev) || IS_I945GM(dev))
4328 I915_WRITE(FW_BLC_SELF,
4329 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4330 else if (IS_I915GM(dev))
4331 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4332 }
4333
4334 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4335 planea_wm, planeb_wm, cwm, srwm);
4336
4337 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4338 fwater_hi = (cwm & 0x1f);
4339
4340 /* Set request length to 8 cachelines per fetch */
4341 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4342 fwater_hi = fwater_hi | (1 << 8);
4343
4344 I915_WRITE(FW_BLC, fwater_lo);
4345 I915_WRITE(FW_BLC2, fwater_hi);
4346
4347 if (HAS_FW_BLC(dev)) {
4348 if (enabled) {
4349 if (IS_I945G(dev) || IS_I945GM(dev))
4350 I915_WRITE(FW_BLC_SELF,
4351 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4352 else if (IS_I915GM(dev))
4353 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4354 DRM_DEBUG_KMS("memory self refresh enabled\n");
4355 } else
4356 DRM_DEBUG_KMS("memory self refresh disabled\n");
4357 }
4358 }
4359
4360 static void i830_update_wm(struct drm_device *dev)
4361 {
4362 struct drm_i915_private *dev_priv = dev->dev_private;
4363 struct drm_crtc *crtc;
4364 uint32_t fwater_lo;
4365 int planea_wm;
4366
4367 crtc = single_enabled_crtc(dev);
4368 if (crtc == NULL)
4369 return;
4370
4371 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4372 dev_priv->display.get_fifo_size(dev, 0),
4373 crtc->fb->bits_per_pixel / 8,
4374 latency_ns);
4375 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4376 fwater_lo |= (3<<8) | planea_wm;
4377
4378 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4379
4380 I915_WRITE(FW_BLC, fwater_lo);
4381 }
4382
4383 #define ILK_LP0_PLANE_LATENCY 700
4384 #define ILK_LP0_CURSOR_LATENCY 1300
4385
4386 /*
4387 * Check the wm result.
4388 *
4389 * If any calculated watermark values is larger than the maximum value that
4390 * can be programmed into the associated watermark register, that watermark
4391 * must be disabled.
4392 */
4393 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4394 int fbc_wm, int display_wm, int cursor_wm,
4395 const struct intel_watermark_params *display,
4396 const struct intel_watermark_params *cursor)
4397 {
4398 struct drm_i915_private *dev_priv = dev->dev_private;
4399
4400 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4401 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4402
4403 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4404 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4405 fbc_wm, SNB_FBC_MAX_SRWM, level);
4406
4407 /* fbc has it's own way to disable FBC WM */
4408 I915_WRITE(DISP_ARB_CTL,
4409 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4410 return false;
4411 }
4412
4413 if (display_wm > display->max_wm) {
4414 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4415 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4416 return false;
4417 }
4418
4419 if (cursor_wm > cursor->max_wm) {
4420 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4421 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4422 return false;
4423 }
4424
4425 if (!(fbc_wm || display_wm || cursor_wm)) {
4426 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4427 return false;
4428 }
4429
4430 return true;
4431 }
4432
4433 /*
4434 * Compute watermark values of WM[1-3],
4435 */
4436 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4437 int latency_ns,
4438 const struct intel_watermark_params *display,
4439 const struct intel_watermark_params *cursor,
4440 int *fbc_wm, int *display_wm, int *cursor_wm)
4441 {
4442 struct drm_crtc *crtc;
4443 unsigned long line_time_us;
4444 int hdisplay, htotal, pixel_size, clock;
4445 int line_count, line_size;
4446 int small, large;
4447 int entries;
4448
4449 if (!latency_ns) {
4450 *fbc_wm = *display_wm = *cursor_wm = 0;
4451 return false;
4452 }
4453
4454 crtc = intel_get_crtc_for_plane(dev, plane);
4455 hdisplay = crtc->mode.hdisplay;
4456 htotal = crtc->mode.htotal;
4457 clock = crtc->mode.clock;
4458 pixel_size = crtc->fb->bits_per_pixel / 8;
4459
4460 line_time_us = (htotal * 1000) / clock;
4461 line_count = (latency_ns / line_time_us + 1000) / 1000;
4462 line_size = hdisplay * pixel_size;
4463
4464 /* Use the minimum of the small and large buffer method for primary */
4465 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4466 large = line_count * line_size;
4467
4468 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4469 *display_wm = entries + display->guard_size;
4470
4471 /*
4472 * Spec says:
4473 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4474 */
4475 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4476
4477 /* calculate the self-refresh watermark for display cursor */
4478 entries = line_count * pixel_size * 64;
4479 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4480 *cursor_wm = entries + cursor->guard_size;
4481
4482 return ironlake_check_srwm(dev, level,
4483 *fbc_wm, *display_wm, *cursor_wm,
4484 display, cursor);
4485 }
4486
4487 static void ironlake_update_wm(struct drm_device *dev)
4488 {
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 int fbc_wm, plane_wm, cursor_wm;
4491 unsigned int enabled;
4492
4493 enabled = 0;
4494 if (g4x_compute_wm0(dev, 0,
4495 &ironlake_display_wm_info,
4496 ILK_LP0_PLANE_LATENCY,
4497 &ironlake_cursor_wm_info,
4498 ILK_LP0_CURSOR_LATENCY,
4499 &plane_wm, &cursor_wm)) {
4500 I915_WRITE(WM0_PIPEA_ILK,
4501 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4502 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4503 " plane %d, " "cursor: %d\n",
4504 plane_wm, cursor_wm);
4505 enabled |= 1;
4506 }
4507
4508 if (g4x_compute_wm0(dev, 1,
4509 &ironlake_display_wm_info,
4510 ILK_LP0_PLANE_LATENCY,
4511 &ironlake_cursor_wm_info,
4512 ILK_LP0_CURSOR_LATENCY,
4513 &plane_wm, &cursor_wm)) {
4514 I915_WRITE(WM0_PIPEB_ILK,
4515 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4516 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4517 " plane %d, cursor: %d\n",
4518 plane_wm, cursor_wm);
4519 enabled |= 2;
4520 }
4521
4522 /*
4523 * Calculate and update the self-refresh watermark only when one
4524 * display plane is used.
4525 */
4526 I915_WRITE(WM3_LP_ILK, 0);
4527 I915_WRITE(WM2_LP_ILK, 0);
4528 I915_WRITE(WM1_LP_ILK, 0);
4529
4530 if (!single_plane_enabled(enabled))
4531 return;
4532 enabled = ffs(enabled) - 1;
4533
4534 /* WM1 */
4535 if (!ironlake_compute_srwm(dev, 1, enabled,
4536 ILK_READ_WM1_LATENCY() * 500,
4537 &ironlake_display_srwm_info,
4538 &ironlake_cursor_srwm_info,
4539 &fbc_wm, &plane_wm, &cursor_wm))
4540 return;
4541
4542 I915_WRITE(WM1_LP_ILK,
4543 WM1_LP_SR_EN |
4544 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4545 (fbc_wm << WM1_LP_FBC_SHIFT) |
4546 (plane_wm << WM1_LP_SR_SHIFT) |
4547 cursor_wm);
4548
4549 /* WM2 */
4550 if (!ironlake_compute_srwm(dev, 2, enabled,
4551 ILK_READ_WM2_LATENCY() * 500,
4552 &ironlake_display_srwm_info,
4553 &ironlake_cursor_srwm_info,
4554 &fbc_wm, &plane_wm, &cursor_wm))
4555 return;
4556
4557 I915_WRITE(WM2_LP_ILK,
4558 WM2_LP_EN |
4559 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4560 (fbc_wm << WM1_LP_FBC_SHIFT) |
4561 (plane_wm << WM1_LP_SR_SHIFT) |
4562 cursor_wm);
4563
4564 /*
4565 * WM3 is unsupported on ILK, probably because we don't have latency
4566 * data for that power state
4567 */
4568 }
4569
4570 void sandybridge_update_wm(struct drm_device *dev)
4571 {
4572 struct drm_i915_private *dev_priv = dev->dev_private;
4573 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4574 u32 val;
4575 int fbc_wm, plane_wm, cursor_wm;
4576 unsigned int enabled;
4577
4578 enabled = 0;
4579 if (g4x_compute_wm0(dev, 0,
4580 &sandybridge_display_wm_info, latency,
4581 &sandybridge_cursor_wm_info, latency,
4582 &plane_wm, &cursor_wm)) {
4583 val = I915_READ(WM0_PIPEA_ILK);
4584 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4585 I915_WRITE(WM0_PIPEA_ILK, val |
4586 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4587 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4588 " plane %d, " "cursor: %d\n",
4589 plane_wm, cursor_wm);
4590 enabled |= 1;
4591 }
4592
4593 if (g4x_compute_wm0(dev, 1,
4594 &sandybridge_display_wm_info, latency,
4595 &sandybridge_cursor_wm_info, latency,
4596 &plane_wm, &cursor_wm)) {
4597 val = I915_READ(WM0_PIPEB_ILK);
4598 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4599 I915_WRITE(WM0_PIPEB_ILK, val |
4600 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4601 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4602 " plane %d, cursor: %d\n",
4603 plane_wm, cursor_wm);
4604 enabled |= 2;
4605 }
4606
4607 /* IVB has 3 pipes */
4608 if (IS_IVYBRIDGE(dev) &&
4609 g4x_compute_wm0(dev, 2,
4610 &sandybridge_display_wm_info, latency,
4611 &sandybridge_cursor_wm_info, latency,
4612 &plane_wm, &cursor_wm)) {
4613 val = I915_READ(WM0_PIPEC_IVB);
4614 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4615 I915_WRITE(WM0_PIPEC_IVB, val |
4616 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4617 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4618 " plane %d, cursor: %d\n",
4619 plane_wm, cursor_wm);
4620 enabled |= 3;
4621 }
4622
4623 /*
4624 * Calculate and update the self-refresh watermark only when one
4625 * display plane is used.
4626 *
4627 * SNB support 3 levels of watermark.
4628 *
4629 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4630 * and disabled in the descending order
4631 *
4632 */
4633 I915_WRITE(WM3_LP_ILK, 0);
4634 I915_WRITE(WM2_LP_ILK, 0);
4635 I915_WRITE(WM1_LP_ILK, 0);
4636
4637 if (!single_plane_enabled(enabled) ||
4638 dev_priv->sprite_scaling_enabled)
4639 return;
4640 enabled = ffs(enabled) - 1;
4641
4642 /* WM1 */
4643 if (!ironlake_compute_srwm(dev, 1, enabled,
4644 SNB_READ_WM1_LATENCY() * 500,
4645 &sandybridge_display_srwm_info,
4646 &sandybridge_cursor_srwm_info,
4647 &fbc_wm, &plane_wm, &cursor_wm))
4648 return;
4649
4650 I915_WRITE(WM1_LP_ILK,
4651 WM1_LP_SR_EN |
4652 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4653 (fbc_wm << WM1_LP_FBC_SHIFT) |
4654 (plane_wm << WM1_LP_SR_SHIFT) |
4655 cursor_wm);
4656
4657 /* WM2 */
4658 if (!ironlake_compute_srwm(dev, 2, enabled,
4659 SNB_READ_WM2_LATENCY() * 500,
4660 &sandybridge_display_srwm_info,
4661 &sandybridge_cursor_srwm_info,
4662 &fbc_wm, &plane_wm, &cursor_wm))
4663 return;
4664
4665 I915_WRITE(WM2_LP_ILK,
4666 WM2_LP_EN |
4667 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4668 (fbc_wm << WM1_LP_FBC_SHIFT) |
4669 (plane_wm << WM1_LP_SR_SHIFT) |
4670 cursor_wm);
4671
4672 /* WM3 */
4673 if (!ironlake_compute_srwm(dev, 3, enabled,
4674 SNB_READ_WM3_LATENCY() * 500,
4675 &sandybridge_display_srwm_info,
4676 &sandybridge_cursor_srwm_info,
4677 &fbc_wm, &plane_wm, &cursor_wm))
4678 return;
4679
4680 I915_WRITE(WM3_LP_ILK,
4681 WM3_LP_EN |
4682 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4683 (fbc_wm << WM1_LP_FBC_SHIFT) |
4684 (plane_wm << WM1_LP_SR_SHIFT) |
4685 cursor_wm);
4686 }
4687
4688 static bool
4689 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4690 uint32_t sprite_width, int pixel_size,
4691 const struct intel_watermark_params *display,
4692 int display_latency_ns, int *sprite_wm)
4693 {
4694 struct drm_crtc *crtc;
4695 int clock;
4696 int entries, tlb_miss;
4697
4698 crtc = intel_get_crtc_for_plane(dev, plane);
4699 if (crtc->fb == NULL || !crtc->enabled) {
4700 *sprite_wm = display->guard_size;
4701 return false;
4702 }
4703
4704 clock = crtc->mode.clock;
4705
4706 /* Use the small buffer method to calculate the sprite watermark */
4707 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4708 tlb_miss = display->fifo_size*display->cacheline_size -
4709 sprite_width * 8;
4710 if (tlb_miss > 0)
4711 entries += tlb_miss;
4712 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4713 *sprite_wm = entries + display->guard_size;
4714 if (*sprite_wm > (int)display->max_wm)
4715 *sprite_wm = display->max_wm;
4716
4717 return true;
4718 }
4719
4720 static bool
4721 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4722 uint32_t sprite_width, int pixel_size,
4723 const struct intel_watermark_params *display,
4724 int latency_ns, int *sprite_wm)
4725 {
4726 struct drm_crtc *crtc;
4727 unsigned long line_time_us;
4728 int clock;
4729 int line_count, line_size;
4730 int small, large;
4731 int entries;
4732
4733 if (!latency_ns) {
4734 *sprite_wm = 0;
4735 return false;
4736 }
4737
4738 crtc = intel_get_crtc_for_plane(dev, plane);
4739 clock = crtc->mode.clock;
4740 if (!clock) {
4741 *sprite_wm = 0;
4742 return false;
4743 }
4744
4745 line_time_us = (sprite_width * 1000) / clock;
4746 if (!line_time_us) {
4747 *sprite_wm = 0;
4748 return false;
4749 }
4750
4751 line_count = (latency_ns / line_time_us + 1000) / 1000;
4752 line_size = sprite_width * pixel_size;
4753
4754 /* Use the minimum of the small and large buffer method for primary */
4755 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4756 large = line_count * line_size;
4757
4758 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4759 *sprite_wm = entries + display->guard_size;
4760
4761 return *sprite_wm > 0x3ff ? false : true;
4762 }
4763
4764 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4765 uint32_t sprite_width, int pixel_size)
4766 {
4767 struct drm_i915_private *dev_priv = dev->dev_private;
4768 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4769 u32 val;
4770 int sprite_wm, reg;
4771 int ret;
4772
4773 switch (pipe) {
4774 case 0:
4775 reg = WM0_PIPEA_ILK;
4776 break;
4777 case 1:
4778 reg = WM0_PIPEB_ILK;
4779 break;
4780 case 2:
4781 reg = WM0_PIPEC_IVB;
4782 break;
4783 default:
4784 return; /* bad pipe */
4785 }
4786
4787 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4788 &sandybridge_display_wm_info,
4789 latency, &sprite_wm);
4790 if (!ret) {
4791 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4792 pipe);
4793 return;
4794 }
4795
4796 val = I915_READ(reg);
4797 val &= ~WM0_PIPE_SPRITE_MASK;
4798 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4799 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4800
4801
4802 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4803 pixel_size,
4804 &sandybridge_display_srwm_info,
4805 SNB_READ_WM1_LATENCY() * 500,
4806 &sprite_wm);
4807 if (!ret) {
4808 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4809 pipe);
4810 return;
4811 }
4812 I915_WRITE(WM1S_LP_ILK, sprite_wm);
4813
4814 /* Only IVB has two more LP watermarks for sprite */
4815 if (!IS_IVYBRIDGE(dev))
4816 return;
4817
4818 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4819 pixel_size,
4820 &sandybridge_display_srwm_info,
4821 SNB_READ_WM2_LATENCY() * 500,
4822 &sprite_wm);
4823 if (!ret) {
4824 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4825 pipe);
4826 return;
4827 }
4828 I915_WRITE(WM2S_LP_IVB, sprite_wm);
4829
4830 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4831 pixel_size,
4832 &sandybridge_display_srwm_info,
4833 SNB_READ_WM3_LATENCY() * 500,
4834 &sprite_wm);
4835 if (!ret) {
4836 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4837 pipe);
4838 return;
4839 }
4840 I915_WRITE(WM3S_LP_IVB, sprite_wm);
4841 }
4842
4843 /**
4844 * intel_update_watermarks - update FIFO watermark values based on current modes
4845 *
4846 * Calculate watermark values for the various WM regs based on current mode
4847 * and plane configuration.
4848 *
4849 * There are several cases to deal with here:
4850 * - normal (i.e. non-self-refresh)
4851 * - self-refresh (SR) mode
4852 * - lines are large relative to FIFO size (buffer can hold up to 2)
4853 * - lines are small relative to FIFO size (buffer can hold more than 2
4854 * lines), so need to account for TLB latency
4855 *
4856 * The normal calculation is:
4857 * watermark = dotclock * bytes per pixel * latency
4858 * where latency is platform & configuration dependent (we assume pessimal
4859 * values here).
4860 *
4861 * The SR calculation is:
4862 * watermark = (trunc(latency/line time)+1) * surface width *
4863 * bytes per pixel
4864 * where
4865 * line time = htotal / dotclock
4866 * surface width = hdisplay for normal plane and 64 for cursor
4867 * and latency is assumed to be high, as above.
4868 *
4869 * The final value programmed to the register should always be rounded up,
4870 * and include an extra 2 entries to account for clock crossings.
4871 *
4872 * We don't use the sprite, so we can ignore that. And on Crestline we have
4873 * to set the non-SR watermarks to 8.
4874 */
4875 static void intel_update_watermarks(struct drm_device *dev)
4876 {
4877 struct drm_i915_private *dev_priv = dev->dev_private;
4878
4879 if (dev_priv->display.update_wm)
4880 dev_priv->display.update_wm(dev);
4881 }
4882
4883 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4884 uint32_t sprite_width, int pixel_size)
4885 {
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887
4888 if (dev_priv->display.update_sprite_wm)
4889 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4890 pixel_size);
4891 }
4892
4893 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4894 {
4895 if (i915_panel_use_ssc >= 0)
4896 return i915_panel_use_ssc != 0;
4897 return dev_priv->lvds_use_ssc
4898 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4899 }
4900
4901 /**
4902 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4903 * @crtc: CRTC structure
4904 * @mode: requested mode
4905 *
4906 * A pipe may be connected to one or more outputs. Based on the depth of the
4907 * attached framebuffer, choose a good color depth to use on the pipe.
4908 *
4909 * If possible, match the pipe depth to the fb depth. In some cases, this
4910 * isn't ideal, because the connected output supports a lesser or restricted
4911 * set of depths. Resolve that here:
4912 * LVDS typically supports only 6bpc, so clamp down in that case
4913 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4914 * Displays may support a restricted set as well, check EDID and clamp as
4915 * appropriate.
4916 * DP may want to dither down to 6bpc to fit larger modes
4917 *
4918 * RETURNS:
4919 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4920 * true if they don't match).
4921 */
4922 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4923 unsigned int *pipe_bpp,
4924 struct drm_display_mode *mode)
4925 {
4926 struct drm_device *dev = crtc->dev;
4927 struct drm_i915_private *dev_priv = dev->dev_private;
4928 struct drm_encoder *encoder;
4929 struct drm_connector *connector;
4930 unsigned int display_bpc = UINT_MAX, bpc;
4931
4932 /* Walk the encoders & connectors on this crtc, get min bpc */
4933 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4934 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4935
4936 if (encoder->crtc != crtc)
4937 continue;
4938
4939 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4940 unsigned int lvds_bpc;
4941
4942 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4943 LVDS_A3_POWER_UP)
4944 lvds_bpc = 8;
4945 else
4946 lvds_bpc = 6;
4947
4948 if (lvds_bpc < display_bpc) {
4949 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4950 display_bpc = lvds_bpc;
4951 }
4952 continue;
4953 }
4954
4955 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4956 /* Use VBT settings if we have an eDP panel */
4957 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4958
4959 if (edp_bpc < display_bpc) {
4960 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4961 display_bpc = edp_bpc;
4962 }
4963 continue;
4964 }
4965
4966 /* Not one of the known troublemakers, check the EDID */
4967 list_for_each_entry(connector, &dev->mode_config.connector_list,
4968 head) {
4969 if (connector->encoder != encoder)
4970 continue;
4971
4972 /* Don't use an invalid EDID bpc value */
4973 if (connector->display_info.bpc &&
4974 connector->display_info.bpc < display_bpc) {
4975 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4976 display_bpc = connector->display_info.bpc;
4977 }
4978 }
4979
4980 /*
4981 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4982 * through, clamp it down. (Note: >12bpc will be caught below.)
4983 */
4984 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4985 if (display_bpc > 8 && display_bpc < 12) {
4986 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4987 display_bpc = 12;
4988 } else {
4989 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4990 display_bpc = 8;
4991 }
4992 }
4993 }
4994
4995 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4996 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4997 display_bpc = 6;
4998 }
4999
5000 /*
5001 * We could just drive the pipe at the highest bpc all the time and
5002 * enable dithering as needed, but that costs bandwidth. So choose
5003 * the minimum value that expresses the full color range of the fb but
5004 * also stays within the max display bpc discovered above.
5005 */
5006
5007 switch (crtc->fb->depth) {
5008 case 8:
5009 bpc = 8; /* since we go through a colormap */
5010 break;
5011 case 15:
5012 case 16:
5013 bpc = 6; /* min is 18bpp */
5014 break;
5015 case 24:
5016 bpc = 8;
5017 break;
5018 case 30:
5019 bpc = 10;
5020 break;
5021 case 48:
5022 bpc = 12;
5023 break;
5024 default:
5025 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5026 bpc = min((unsigned int)8, display_bpc);
5027 break;
5028 }
5029
5030 display_bpc = min(display_bpc, bpc);
5031
5032 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5033 bpc, display_bpc);
5034
5035 *pipe_bpp = display_bpc * 3;
5036
5037 return display_bpc != bpc;
5038 }
5039
5040 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5041 {
5042 struct drm_device *dev = crtc->dev;
5043 struct drm_i915_private *dev_priv = dev->dev_private;
5044 int refclk;
5045
5046 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5047 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5048 refclk = dev_priv->lvds_ssc_freq * 1000;
5049 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5050 refclk / 1000);
5051 } else if (!IS_GEN2(dev)) {
5052 refclk = 96000;
5053 } else {
5054 refclk = 48000;
5055 }
5056
5057 return refclk;
5058 }
5059
5060 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5061 intel_clock_t *clock)
5062 {
5063 /* SDVO TV has fixed PLL values depend on its clock range,
5064 this mirrors vbios setting. */
5065 if (adjusted_mode->clock >= 100000
5066 && adjusted_mode->clock < 140500) {
5067 clock->p1 = 2;
5068 clock->p2 = 10;
5069 clock->n = 3;
5070 clock->m1 = 16;
5071 clock->m2 = 8;
5072 } else if (adjusted_mode->clock >= 140500
5073 && adjusted_mode->clock <= 200000) {
5074 clock->p1 = 1;
5075 clock->p2 = 10;
5076 clock->n = 6;
5077 clock->m1 = 12;
5078 clock->m2 = 8;
5079 }
5080 }
5081
5082 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5083 intel_clock_t *clock,
5084 intel_clock_t *reduced_clock)
5085 {
5086 struct drm_device *dev = crtc->dev;
5087 struct drm_i915_private *dev_priv = dev->dev_private;
5088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5089 int pipe = intel_crtc->pipe;
5090 u32 fp, fp2 = 0;
5091
5092 if (IS_PINEVIEW(dev)) {
5093 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5094 if (reduced_clock)
5095 fp2 = (1 << reduced_clock->n) << 16 |
5096 reduced_clock->m1 << 8 | reduced_clock->m2;
5097 } else {
5098 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5099 if (reduced_clock)
5100 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5101 reduced_clock->m2;
5102 }
5103
5104 I915_WRITE(FP0(pipe), fp);
5105
5106 intel_crtc->lowfreq_avail = false;
5107 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5108 reduced_clock && i915_powersave) {
5109 I915_WRITE(FP1(pipe), fp2);
5110 intel_crtc->lowfreq_avail = true;
5111 } else {
5112 I915_WRITE(FP1(pipe), fp);
5113 }
5114 }
5115
5116 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5117 struct drm_display_mode *mode,
5118 struct drm_display_mode *adjusted_mode,
5119 int x, int y,
5120 struct drm_framebuffer *old_fb)
5121 {
5122 struct drm_device *dev = crtc->dev;
5123 struct drm_i915_private *dev_priv = dev->dev_private;
5124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5125 int pipe = intel_crtc->pipe;
5126 int plane = intel_crtc->plane;
5127 int refclk, num_connectors = 0;
5128 intel_clock_t clock, reduced_clock;
5129 u32 dpll, dspcntr, pipeconf, vsyncshift;
5130 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5131 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5132 struct drm_mode_config *mode_config = &dev->mode_config;
5133 struct intel_encoder *encoder;
5134 const intel_limit_t *limit;
5135 int ret;
5136 u32 temp;
5137 u32 lvds_sync = 0;
5138
5139 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5140 if (encoder->base.crtc != crtc)
5141 continue;
5142
5143 switch (encoder->type) {
5144 case INTEL_OUTPUT_LVDS:
5145 is_lvds = true;
5146 break;
5147 case INTEL_OUTPUT_SDVO:
5148 case INTEL_OUTPUT_HDMI:
5149 is_sdvo = true;
5150 if (encoder->needs_tv_clock)
5151 is_tv = true;
5152 break;
5153 case INTEL_OUTPUT_DVO:
5154 is_dvo = true;
5155 break;
5156 case INTEL_OUTPUT_TVOUT:
5157 is_tv = true;
5158 break;
5159 case INTEL_OUTPUT_ANALOG:
5160 is_crt = true;
5161 break;
5162 case INTEL_OUTPUT_DISPLAYPORT:
5163 is_dp = true;
5164 break;
5165 }
5166
5167 num_connectors++;
5168 }
5169
5170 refclk = i9xx_get_refclk(crtc, num_connectors);
5171
5172 /*
5173 * Returns a set of divisors for the desired target clock with the given
5174 * refclk, or FALSE. The returned values represent the clock equation:
5175 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5176 */
5177 limit = intel_limit(crtc, refclk);
5178 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5179 &clock);
5180 if (!ok) {
5181 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5182 return -EINVAL;
5183 }
5184
5185 /* Ensure that the cursor is valid for the new mode before changing... */
5186 intel_crtc_update_cursor(crtc, true);
5187
5188 if (is_lvds && dev_priv->lvds_downclock_avail) {
5189 /*
5190 * Ensure we match the reduced clock's P to the target clock.
5191 * If the clocks don't match, we can't switch the display clock
5192 * by using the FP0/FP1. In such case we will disable the LVDS
5193 * downclock feature.
5194 */
5195 has_reduced_clock = limit->find_pll(limit, crtc,
5196 dev_priv->lvds_downclock,
5197 refclk,
5198 &clock,
5199 &reduced_clock);
5200 }
5201
5202 if (is_sdvo && is_tv)
5203 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5204
5205 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5206 &reduced_clock : NULL);
5207
5208 dpll = DPLL_VGA_MODE_DIS;
5209
5210 if (!IS_GEN2(dev)) {
5211 if (is_lvds)
5212 dpll |= DPLLB_MODE_LVDS;
5213 else
5214 dpll |= DPLLB_MODE_DAC_SERIAL;
5215 if (is_sdvo) {
5216 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5217 if (pixel_multiplier > 1) {
5218 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5219 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5220 }
5221 dpll |= DPLL_DVO_HIGH_SPEED;
5222 }
5223 if (is_dp)
5224 dpll |= DPLL_DVO_HIGH_SPEED;
5225
5226 /* compute bitmask from p1 value */
5227 if (IS_PINEVIEW(dev))
5228 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5229 else {
5230 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5231 if (IS_G4X(dev) && has_reduced_clock)
5232 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5233 }
5234 switch (clock.p2) {
5235 case 5:
5236 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5237 break;
5238 case 7:
5239 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5240 break;
5241 case 10:
5242 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5243 break;
5244 case 14:
5245 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5246 break;
5247 }
5248 if (INTEL_INFO(dev)->gen >= 4)
5249 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5250 } else {
5251 if (is_lvds) {
5252 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5253 } else {
5254 if (clock.p1 == 2)
5255 dpll |= PLL_P1_DIVIDE_BY_TWO;
5256 else
5257 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5258 if (clock.p2 == 4)
5259 dpll |= PLL_P2_DIVIDE_BY_4;
5260 }
5261 }
5262
5263 if (is_sdvo && is_tv)
5264 dpll |= PLL_REF_INPUT_TVCLKINBC;
5265 else if (is_tv)
5266 /* XXX: just matching BIOS for now */
5267 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5268 dpll |= 3;
5269 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5270 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5271 else
5272 dpll |= PLL_REF_INPUT_DREFCLK;
5273
5274 /* setup pipeconf */
5275 pipeconf = I915_READ(PIPECONF(pipe));
5276
5277 /* Set up the display plane register */
5278 dspcntr = DISPPLANE_GAMMA_ENABLE;
5279
5280 if (pipe == 0)
5281 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5282 else
5283 dspcntr |= DISPPLANE_SEL_PIPE_B;
5284
5285 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5286 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5287 * core speed.
5288 *
5289 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5290 * pipe == 0 check?
5291 */
5292 if (mode->clock >
5293 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5294 pipeconf |= PIPECONF_DOUBLE_WIDE;
5295 else
5296 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5297 }
5298
5299 /* default to 8bpc */
5300 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5301 if (is_dp) {
5302 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5303 pipeconf |= PIPECONF_BPP_6 |
5304 PIPECONF_DITHER_EN |
5305 PIPECONF_DITHER_TYPE_SP;
5306 }
5307 }
5308
5309 dpll |= DPLL_VCO_ENABLE;
5310
5311 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5312 drm_mode_debug_printmodeline(mode);
5313
5314 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5315
5316 POSTING_READ(DPLL(pipe));
5317 udelay(150);
5318
5319 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5320 * This is an exception to the general rule that mode_set doesn't turn
5321 * things on.
5322 */
5323 if (is_lvds) {
5324 temp = I915_READ(LVDS);
5325 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5326 if (pipe == 1) {
5327 temp |= LVDS_PIPEB_SELECT;
5328 } else {
5329 temp &= ~LVDS_PIPEB_SELECT;
5330 }
5331 /* set the corresponsding LVDS_BORDER bit */
5332 temp |= dev_priv->lvds_border_bits;
5333 /* Set the B0-B3 data pairs corresponding to whether we're going to
5334 * set the DPLLs for dual-channel mode or not.
5335 */
5336 if (clock.p2 == 7)
5337 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5338 else
5339 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5340
5341 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5342 * appropriately here, but we need to look more thoroughly into how
5343 * panels behave in the two modes.
5344 */
5345 /* set the dithering flag on LVDS as needed */
5346 if (INTEL_INFO(dev)->gen >= 4) {
5347 if (dev_priv->lvds_dither)
5348 temp |= LVDS_ENABLE_DITHER;
5349 else
5350 temp &= ~LVDS_ENABLE_DITHER;
5351 }
5352 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5353 lvds_sync |= LVDS_HSYNC_POLARITY;
5354 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5355 lvds_sync |= LVDS_VSYNC_POLARITY;
5356 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5357 != lvds_sync) {
5358 char flags[2] = "-+";
5359 DRM_INFO("Changing LVDS panel from "
5360 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5361 flags[!(temp & LVDS_HSYNC_POLARITY)],
5362 flags[!(temp & LVDS_VSYNC_POLARITY)],
5363 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5364 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5365 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5366 temp |= lvds_sync;
5367 }
5368 I915_WRITE(LVDS, temp);
5369 }
5370
5371 if (is_dp) {
5372 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5373 }
5374
5375 I915_WRITE(DPLL(pipe), dpll);
5376
5377 /* Wait for the clocks to stabilize. */
5378 POSTING_READ(DPLL(pipe));
5379 udelay(150);
5380
5381 if (INTEL_INFO(dev)->gen >= 4) {
5382 temp = 0;
5383 if (is_sdvo) {
5384 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5385 if (temp > 1)
5386 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5387 else
5388 temp = 0;
5389 }
5390 I915_WRITE(DPLL_MD(pipe), temp);
5391 } else {
5392 /* The pixel multiplier can only be updated once the
5393 * DPLL is enabled and the clocks are stable.
5394 *
5395 * So write it again.
5396 */
5397 I915_WRITE(DPLL(pipe), dpll);
5398 }
5399
5400 if (HAS_PIPE_CXSR(dev)) {
5401 if (intel_crtc->lowfreq_avail) {
5402 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5403 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5404 } else {
5405 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5406 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5407 }
5408 }
5409
5410 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5411 if (!IS_GEN2(dev) &&
5412 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5413 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5414 /* the chip adds 2 halflines automatically */
5415 adjusted_mode->crtc_vtotal -= 1;
5416 adjusted_mode->crtc_vblank_end -= 1;
5417 vsyncshift = adjusted_mode->crtc_hsync_start
5418 - adjusted_mode->crtc_htotal/2;
5419 } else {
5420 pipeconf |= PIPECONF_PROGRESSIVE;
5421 vsyncshift = 0;
5422 }
5423
5424 if (!IS_GEN3(dev))
5425 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5426
5427 I915_WRITE(HTOTAL(pipe),
5428 (adjusted_mode->crtc_hdisplay - 1) |
5429 ((adjusted_mode->crtc_htotal - 1) << 16));
5430 I915_WRITE(HBLANK(pipe),
5431 (adjusted_mode->crtc_hblank_start - 1) |
5432 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5433 I915_WRITE(HSYNC(pipe),
5434 (adjusted_mode->crtc_hsync_start - 1) |
5435 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5436
5437 I915_WRITE(VTOTAL(pipe),
5438 (adjusted_mode->crtc_vdisplay - 1) |
5439 ((adjusted_mode->crtc_vtotal - 1) << 16));
5440 I915_WRITE(VBLANK(pipe),
5441 (adjusted_mode->crtc_vblank_start - 1) |
5442 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5443 I915_WRITE(VSYNC(pipe),
5444 (adjusted_mode->crtc_vsync_start - 1) |
5445 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5446
5447 /* pipesrc and dspsize control the size that is scaled from,
5448 * which should always be the user's requested size.
5449 */
5450 I915_WRITE(DSPSIZE(plane),
5451 ((mode->vdisplay - 1) << 16) |
5452 (mode->hdisplay - 1));
5453 I915_WRITE(DSPPOS(plane), 0);
5454 I915_WRITE(PIPESRC(pipe),
5455 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5456
5457 I915_WRITE(PIPECONF(pipe), pipeconf);
5458 POSTING_READ(PIPECONF(pipe));
5459 intel_enable_pipe(dev_priv, pipe, false);
5460
5461 intel_wait_for_vblank(dev, pipe);
5462
5463 I915_WRITE(DSPCNTR(plane), dspcntr);
5464 POSTING_READ(DSPCNTR(plane));
5465 intel_enable_plane(dev_priv, plane, pipe);
5466
5467 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5468
5469 intel_update_watermarks(dev);
5470
5471 return ret;
5472 }
5473
5474 /*
5475 * Initialize reference clocks when the driver loads
5476 */
5477 void ironlake_init_pch_refclk(struct drm_device *dev)
5478 {
5479 struct drm_i915_private *dev_priv = dev->dev_private;
5480 struct drm_mode_config *mode_config = &dev->mode_config;
5481 struct intel_encoder *encoder;
5482 u32 temp;
5483 bool has_lvds = false;
5484 bool has_cpu_edp = false;
5485 bool has_pch_edp = false;
5486 bool has_panel = false;
5487 bool has_ck505 = false;
5488 bool can_ssc = false;
5489
5490 /* We need to take the global config into account */
5491 list_for_each_entry(encoder, &mode_config->encoder_list,
5492 base.head) {
5493 switch (encoder->type) {
5494 case INTEL_OUTPUT_LVDS:
5495 has_panel = true;
5496 has_lvds = true;
5497 break;
5498 case INTEL_OUTPUT_EDP:
5499 has_panel = true;
5500 if (intel_encoder_is_pch_edp(&encoder->base))
5501 has_pch_edp = true;
5502 else
5503 has_cpu_edp = true;
5504 break;
5505 }
5506 }
5507
5508 if (HAS_PCH_IBX(dev)) {
5509 has_ck505 = dev_priv->display_clock_mode;
5510 can_ssc = has_ck505;
5511 } else {
5512 has_ck505 = false;
5513 can_ssc = true;
5514 }
5515
5516 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5517 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5518 has_ck505);
5519
5520 /* Ironlake: try to setup display ref clock before DPLL
5521 * enabling. This is only under driver's control after
5522 * PCH B stepping, previous chipset stepping should be
5523 * ignoring this setting.
5524 */
5525 temp = I915_READ(PCH_DREF_CONTROL);
5526 /* Always enable nonspread source */
5527 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5528
5529 if (has_ck505)
5530 temp |= DREF_NONSPREAD_CK505_ENABLE;
5531 else
5532 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5533
5534 if (has_panel) {
5535 temp &= ~DREF_SSC_SOURCE_MASK;
5536 temp |= DREF_SSC_SOURCE_ENABLE;
5537
5538 /* SSC must be turned on before enabling the CPU output */
5539 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5540 DRM_DEBUG_KMS("Using SSC on panel\n");
5541 temp |= DREF_SSC1_ENABLE;
5542 }
5543
5544 /* Get SSC going before enabling the outputs */
5545 I915_WRITE(PCH_DREF_CONTROL, temp);
5546 POSTING_READ(PCH_DREF_CONTROL);
5547 udelay(200);
5548
5549 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5550
5551 /* Enable CPU source on CPU attached eDP */
5552 if (has_cpu_edp) {
5553 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5554 DRM_DEBUG_KMS("Using SSC on eDP\n");
5555 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5556 }
5557 else
5558 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5559 } else
5560 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5561
5562 I915_WRITE(PCH_DREF_CONTROL, temp);
5563 POSTING_READ(PCH_DREF_CONTROL);
5564 udelay(200);
5565 } else {
5566 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5567
5568 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5569
5570 /* Turn off CPU output */
5571 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5572
5573 I915_WRITE(PCH_DREF_CONTROL, temp);
5574 POSTING_READ(PCH_DREF_CONTROL);
5575 udelay(200);
5576
5577 /* Turn off the SSC source */
5578 temp &= ~DREF_SSC_SOURCE_MASK;
5579 temp |= DREF_SSC_SOURCE_DISABLE;
5580
5581 /* Turn off SSC1 */
5582 temp &= ~ DREF_SSC1_ENABLE;
5583
5584 I915_WRITE(PCH_DREF_CONTROL, temp);
5585 POSTING_READ(PCH_DREF_CONTROL);
5586 udelay(200);
5587 }
5588 }
5589
5590 static int ironlake_get_refclk(struct drm_crtc *crtc)
5591 {
5592 struct drm_device *dev = crtc->dev;
5593 struct drm_i915_private *dev_priv = dev->dev_private;
5594 struct intel_encoder *encoder;
5595 struct drm_mode_config *mode_config = &dev->mode_config;
5596 struct intel_encoder *edp_encoder = NULL;
5597 int num_connectors = 0;
5598 bool is_lvds = false;
5599
5600 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5601 if (encoder->base.crtc != crtc)
5602 continue;
5603
5604 switch (encoder->type) {
5605 case INTEL_OUTPUT_LVDS:
5606 is_lvds = true;
5607 break;
5608 case INTEL_OUTPUT_EDP:
5609 edp_encoder = encoder;
5610 break;
5611 }
5612 num_connectors++;
5613 }
5614
5615 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5616 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5617 dev_priv->lvds_ssc_freq);
5618 return dev_priv->lvds_ssc_freq * 1000;
5619 }
5620
5621 return 120000;
5622 }
5623
5624 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5625 struct drm_display_mode *mode,
5626 struct drm_display_mode *adjusted_mode,
5627 int x, int y,
5628 struct drm_framebuffer *old_fb)
5629 {
5630 struct drm_device *dev = crtc->dev;
5631 struct drm_i915_private *dev_priv = dev->dev_private;
5632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5633 int pipe = intel_crtc->pipe;
5634 int plane = intel_crtc->plane;
5635 int refclk, num_connectors = 0;
5636 intel_clock_t clock, reduced_clock;
5637 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5638 bool ok, has_reduced_clock = false, is_sdvo = false;
5639 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5640 struct intel_encoder *has_edp_encoder = NULL;
5641 struct drm_mode_config *mode_config = &dev->mode_config;
5642 struct intel_encoder *encoder;
5643 const intel_limit_t *limit;
5644 int ret;
5645 struct fdi_m_n m_n = {0};
5646 u32 temp;
5647 u32 lvds_sync = 0;
5648 int target_clock, pixel_multiplier, lane, link_bw, factor;
5649 unsigned int pipe_bpp;
5650 bool dither;
5651
5652 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5653 if (encoder->base.crtc != crtc)
5654 continue;
5655
5656 switch (encoder->type) {
5657 case INTEL_OUTPUT_LVDS:
5658 is_lvds = true;
5659 break;
5660 case INTEL_OUTPUT_SDVO:
5661 case INTEL_OUTPUT_HDMI:
5662 is_sdvo = true;
5663 if (encoder->needs_tv_clock)
5664 is_tv = true;
5665 break;
5666 case INTEL_OUTPUT_TVOUT:
5667 is_tv = true;
5668 break;
5669 case INTEL_OUTPUT_ANALOG:
5670 is_crt = true;
5671 break;
5672 case INTEL_OUTPUT_DISPLAYPORT:
5673 is_dp = true;
5674 break;
5675 case INTEL_OUTPUT_EDP:
5676 has_edp_encoder = encoder;
5677 break;
5678 }
5679
5680 num_connectors++;
5681 }
5682
5683 refclk = ironlake_get_refclk(crtc);
5684
5685 /*
5686 * Returns a set of divisors for the desired target clock with the given
5687 * refclk, or FALSE. The returned values represent the clock equation:
5688 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5689 */
5690 limit = intel_limit(crtc, refclk);
5691 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5692 &clock);
5693 if (!ok) {
5694 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5695 return -EINVAL;
5696 }
5697
5698 /* Ensure that the cursor is valid for the new mode before changing... */
5699 intel_crtc_update_cursor(crtc, true);
5700
5701 if (is_lvds && dev_priv->lvds_downclock_avail) {
5702 /*
5703 * Ensure we match the reduced clock's P to the target clock.
5704 * If the clocks don't match, we can't switch the display clock
5705 * by using the FP0/FP1. In such case we will disable the LVDS
5706 * downclock feature.
5707 */
5708 has_reduced_clock = limit->find_pll(limit, crtc,
5709 dev_priv->lvds_downclock,
5710 refclk,
5711 &clock,
5712 &reduced_clock);
5713 }
5714 /* SDVO TV has fixed PLL values depend on its clock range,
5715 this mirrors vbios setting. */
5716 if (is_sdvo && is_tv) {
5717 if (adjusted_mode->clock >= 100000
5718 && adjusted_mode->clock < 140500) {
5719 clock.p1 = 2;
5720 clock.p2 = 10;
5721 clock.n = 3;
5722 clock.m1 = 16;
5723 clock.m2 = 8;
5724 } else if (adjusted_mode->clock >= 140500
5725 && adjusted_mode->clock <= 200000) {
5726 clock.p1 = 1;
5727 clock.p2 = 10;
5728 clock.n = 6;
5729 clock.m1 = 12;
5730 clock.m2 = 8;
5731 }
5732 }
5733
5734 /* FDI link */
5735 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5736 lane = 0;
5737 /* CPU eDP doesn't require FDI link, so just set DP M/N
5738 according to current link config */
5739 if (has_edp_encoder &&
5740 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5741 target_clock = mode->clock;
5742 intel_edp_link_config(has_edp_encoder,
5743 &lane, &link_bw);
5744 } else {
5745 /* [e]DP over FDI requires target mode clock
5746 instead of link clock */
5747 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5748 target_clock = mode->clock;
5749 else
5750 target_clock = adjusted_mode->clock;
5751
5752 /* FDI is a binary signal running at ~2.7GHz, encoding
5753 * each output octet as 10 bits. The actual frequency
5754 * is stored as a divider into a 100MHz clock, and the
5755 * mode pixel clock is stored in units of 1KHz.
5756 * Hence the bw of each lane in terms of the mode signal
5757 * is:
5758 */
5759 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5760 }
5761
5762 /* determine panel color depth */
5763 temp = I915_READ(PIPECONF(pipe));
5764 temp &= ~PIPE_BPC_MASK;
5765 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5766 switch (pipe_bpp) {
5767 case 18:
5768 temp |= PIPE_6BPC;
5769 break;
5770 case 24:
5771 temp |= PIPE_8BPC;
5772 break;
5773 case 30:
5774 temp |= PIPE_10BPC;
5775 break;
5776 case 36:
5777 temp |= PIPE_12BPC;
5778 break;
5779 default:
5780 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5781 pipe_bpp);
5782 temp |= PIPE_8BPC;
5783 pipe_bpp = 24;
5784 break;
5785 }
5786
5787 intel_crtc->bpp = pipe_bpp;
5788 I915_WRITE(PIPECONF(pipe), temp);
5789
5790 if (!lane) {
5791 /*
5792 * Account for spread spectrum to avoid
5793 * oversubscribing the link. Max center spread
5794 * is 2.5%; use 5% for safety's sake.
5795 */
5796 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5797 lane = bps / (link_bw * 8) + 1;
5798 }
5799
5800 intel_crtc->fdi_lanes = lane;
5801
5802 if (pixel_multiplier > 1)
5803 link_bw *= pixel_multiplier;
5804 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5805 &m_n);
5806
5807 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5808 if (has_reduced_clock)
5809 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5810 reduced_clock.m2;
5811
5812 /* Enable autotuning of the PLL clock (if permissible) */
5813 factor = 21;
5814 if (is_lvds) {
5815 if ((intel_panel_use_ssc(dev_priv) &&
5816 dev_priv->lvds_ssc_freq == 100) ||
5817 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5818 factor = 25;
5819 } else if (is_sdvo && is_tv)
5820 factor = 20;
5821
5822 if (clock.m < factor * clock.n)
5823 fp |= FP_CB_TUNE;
5824
5825 dpll = 0;
5826
5827 if (is_lvds)
5828 dpll |= DPLLB_MODE_LVDS;
5829 else
5830 dpll |= DPLLB_MODE_DAC_SERIAL;
5831 if (is_sdvo) {
5832 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5833 if (pixel_multiplier > 1) {
5834 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5835 }
5836 dpll |= DPLL_DVO_HIGH_SPEED;
5837 }
5838 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5839 dpll |= DPLL_DVO_HIGH_SPEED;
5840
5841 /* compute bitmask from p1 value */
5842 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5843 /* also FPA1 */
5844 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5845
5846 switch (clock.p2) {
5847 case 5:
5848 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5849 break;
5850 case 7:
5851 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5852 break;
5853 case 10:
5854 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5855 break;
5856 case 14:
5857 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5858 break;
5859 }
5860
5861 if (is_sdvo && is_tv)
5862 dpll |= PLL_REF_INPUT_TVCLKINBC;
5863 else if (is_tv)
5864 /* XXX: just matching BIOS for now */
5865 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5866 dpll |= 3;
5867 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5868 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5869 else
5870 dpll |= PLL_REF_INPUT_DREFCLK;
5871
5872 /* setup pipeconf */
5873 pipeconf = I915_READ(PIPECONF(pipe));
5874
5875 /* Set up the display plane register */
5876 dspcntr = DISPPLANE_GAMMA_ENABLE;
5877
5878 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5879 drm_mode_debug_printmodeline(mode);
5880
5881 /* PCH eDP needs FDI, but CPU eDP does not */
5882 if (!intel_crtc->no_pll) {
5883 if (!has_edp_encoder ||
5884 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5885 I915_WRITE(PCH_FP0(pipe), fp);
5886 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5887
5888 POSTING_READ(PCH_DPLL(pipe));
5889 udelay(150);
5890 }
5891 } else {
5892 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5893 fp == I915_READ(PCH_FP0(0))) {
5894 intel_crtc->use_pll_a = true;
5895 DRM_DEBUG_KMS("using pipe a dpll\n");
5896 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5897 fp == I915_READ(PCH_FP0(1))) {
5898 intel_crtc->use_pll_a = false;
5899 DRM_DEBUG_KMS("using pipe b dpll\n");
5900 } else {
5901 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5902 return -EINVAL;
5903 }
5904 }
5905
5906 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5907 * This is an exception to the general rule that mode_set doesn't turn
5908 * things on.
5909 */
5910 if (is_lvds) {
5911 temp = I915_READ(PCH_LVDS);
5912 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5913 if (HAS_PCH_CPT(dev)) {
5914 temp &= ~PORT_TRANS_SEL_MASK;
5915 temp |= PORT_TRANS_SEL_CPT(pipe);
5916 } else {
5917 if (pipe == 1)
5918 temp |= LVDS_PIPEB_SELECT;
5919 else
5920 temp &= ~LVDS_PIPEB_SELECT;
5921 }
5922
5923 /* set the corresponsding LVDS_BORDER bit */
5924 temp |= dev_priv->lvds_border_bits;
5925 /* Set the B0-B3 data pairs corresponding to whether we're going to
5926 * set the DPLLs for dual-channel mode or not.
5927 */
5928 if (clock.p2 == 7)
5929 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5930 else
5931 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5932
5933 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5934 * appropriately here, but we need to look more thoroughly into how
5935 * panels behave in the two modes.
5936 */
5937 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5938 lvds_sync |= LVDS_HSYNC_POLARITY;
5939 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5940 lvds_sync |= LVDS_VSYNC_POLARITY;
5941 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5942 != lvds_sync) {
5943 char flags[2] = "-+";
5944 DRM_INFO("Changing LVDS panel from "
5945 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5946 flags[!(temp & LVDS_HSYNC_POLARITY)],
5947 flags[!(temp & LVDS_VSYNC_POLARITY)],
5948 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5949 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5950 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5951 temp |= lvds_sync;
5952 }
5953 I915_WRITE(PCH_LVDS, temp);
5954 }
5955
5956 pipeconf &= ~PIPECONF_DITHER_EN;
5957 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5958 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5959 pipeconf |= PIPECONF_DITHER_EN;
5960 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5961 }
5962 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5963 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5964 } else {
5965 /* For non-DP output, clear any trans DP clock recovery setting.*/
5966 I915_WRITE(TRANSDATA_M1(pipe), 0);
5967 I915_WRITE(TRANSDATA_N1(pipe), 0);
5968 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5969 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5970 }
5971
5972 if (!intel_crtc->no_pll &&
5973 (!has_edp_encoder ||
5974 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5975 I915_WRITE(PCH_DPLL(pipe), dpll);
5976
5977 /* Wait for the clocks to stabilize. */
5978 POSTING_READ(PCH_DPLL(pipe));
5979 udelay(150);
5980
5981 /* The pixel multiplier can only be updated once the
5982 * DPLL is enabled and the clocks are stable.
5983 *
5984 * So write it again.
5985 */
5986 I915_WRITE(PCH_DPLL(pipe), dpll);
5987 }
5988
5989 intel_crtc->lowfreq_avail = false;
5990 if (!intel_crtc->no_pll) {
5991 if (is_lvds && has_reduced_clock && i915_powersave) {
5992 I915_WRITE(PCH_FP1(pipe), fp2);
5993 intel_crtc->lowfreq_avail = true;
5994 if (HAS_PIPE_CXSR(dev)) {
5995 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5996 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5997 }
5998 } else {
5999 I915_WRITE(PCH_FP1(pipe), fp);
6000 if (HAS_PIPE_CXSR(dev)) {
6001 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6002 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6003 }
6004 }
6005 }
6006
6007 pipeconf &= ~PIPECONF_INTERLACE_MASK;
6008 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6009 pipeconf |= PIPECONF_INTERLACED_ILK;
6010 /* the chip adds 2 halflines automatically */
6011 adjusted_mode->crtc_vtotal -= 1;
6012 adjusted_mode->crtc_vblank_end -= 1;
6013 I915_WRITE(VSYNCSHIFT(pipe),
6014 adjusted_mode->crtc_hsync_start
6015 - adjusted_mode->crtc_htotal/2);
6016 } else {
6017 pipeconf |= PIPECONF_PROGRESSIVE;
6018 I915_WRITE(VSYNCSHIFT(pipe), 0);
6019 }
6020
6021 I915_WRITE(HTOTAL(pipe),
6022 (adjusted_mode->crtc_hdisplay - 1) |
6023 ((adjusted_mode->crtc_htotal - 1) << 16));
6024 I915_WRITE(HBLANK(pipe),
6025 (adjusted_mode->crtc_hblank_start - 1) |
6026 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6027 I915_WRITE(HSYNC(pipe),
6028 (adjusted_mode->crtc_hsync_start - 1) |
6029 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6030
6031 I915_WRITE(VTOTAL(pipe),
6032 (adjusted_mode->crtc_vdisplay - 1) |
6033 ((adjusted_mode->crtc_vtotal - 1) << 16));
6034 I915_WRITE(VBLANK(pipe),
6035 (adjusted_mode->crtc_vblank_start - 1) |
6036 ((adjusted_mode->crtc_vblank_end - 1) << 16));
6037 I915_WRITE(VSYNC(pipe),
6038 (adjusted_mode->crtc_vsync_start - 1) |
6039 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6040
6041 /* pipesrc controls the size that is scaled from, which should
6042 * always be the user's requested size.
6043 */
6044 I915_WRITE(PIPESRC(pipe),
6045 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6046
6047 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6048 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6049 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6050 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6051
6052 if (has_edp_encoder &&
6053 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6054 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6055 }
6056
6057 I915_WRITE(PIPECONF(pipe), pipeconf);
6058 POSTING_READ(PIPECONF(pipe));
6059
6060 intel_wait_for_vblank(dev, pipe);
6061
6062 I915_WRITE(DSPCNTR(plane), dspcntr);
6063 POSTING_READ(DSPCNTR(plane));
6064
6065 ret = intel_pipe_set_base(crtc, x, y, old_fb);
6066
6067 intel_update_watermarks(dev);
6068
6069 return ret;
6070 }
6071
6072 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6073 struct drm_display_mode *mode,
6074 struct drm_display_mode *adjusted_mode,
6075 int x, int y,
6076 struct drm_framebuffer *old_fb)
6077 {
6078 struct drm_device *dev = crtc->dev;
6079 struct drm_i915_private *dev_priv = dev->dev_private;
6080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6081 int pipe = intel_crtc->pipe;
6082 int ret;
6083
6084 drm_vblank_pre_modeset(dev, pipe);
6085
6086 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6087 x, y, old_fb);
6088 drm_vblank_post_modeset(dev, pipe);
6089
6090 if (ret)
6091 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6092 else
6093 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6094
6095 return ret;
6096 }
6097
6098 static bool intel_eld_uptodate(struct drm_connector *connector,
6099 int reg_eldv, uint32_t bits_eldv,
6100 int reg_elda, uint32_t bits_elda,
6101 int reg_edid)
6102 {
6103 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6104 uint8_t *eld = connector->eld;
6105 uint32_t i;
6106
6107 i = I915_READ(reg_eldv);
6108 i &= bits_eldv;
6109
6110 if (!eld[0])
6111 return !i;
6112
6113 if (!i)
6114 return false;
6115
6116 i = I915_READ(reg_elda);
6117 i &= ~bits_elda;
6118 I915_WRITE(reg_elda, i);
6119
6120 for (i = 0; i < eld[2]; i++)
6121 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6122 return false;
6123
6124 return true;
6125 }
6126
6127 static void g4x_write_eld(struct drm_connector *connector,
6128 struct drm_crtc *crtc)
6129 {
6130 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6131 uint8_t *eld = connector->eld;
6132 uint32_t eldv;
6133 uint32_t len;
6134 uint32_t i;
6135
6136 i = I915_READ(G4X_AUD_VID_DID);
6137
6138 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6139 eldv = G4X_ELDV_DEVCL_DEVBLC;
6140 else
6141 eldv = G4X_ELDV_DEVCTG;
6142
6143 if (intel_eld_uptodate(connector,
6144 G4X_AUD_CNTL_ST, eldv,
6145 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6146 G4X_HDMIW_HDMIEDID))
6147 return;
6148
6149 i = I915_READ(G4X_AUD_CNTL_ST);
6150 i &= ~(eldv | G4X_ELD_ADDR);
6151 len = (i >> 9) & 0x1f; /* ELD buffer size */
6152 I915_WRITE(G4X_AUD_CNTL_ST, i);
6153
6154 if (!eld[0])
6155 return;
6156
6157 len = min_t(uint8_t, eld[2], len);
6158 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6159 for (i = 0; i < len; i++)
6160 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6161
6162 i = I915_READ(G4X_AUD_CNTL_ST);
6163 i |= eldv;
6164 I915_WRITE(G4X_AUD_CNTL_ST, i);
6165 }
6166
6167 static void ironlake_write_eld(struct drm_connector *connector,
6168 struct drm_crtc *crtc)
6169 {
6170 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6171 uint8_t *eld = connector->eld;
6172 uint32_t eldv;
6173 uint32_t i;
6174 int len;
6175 int hdmiw_hdmiedid;
6176 int aud_config;
6177 int aud_cntl_st;
6178 int aud_cntrl_st2;
6179
6180 if (HAS_PCH_IBX(connector->dev)) {
6181 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6182 aud_config = IBX_AUD_CONFIG_A;
6183 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6184 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6185 } else {
6186 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6187 aud_config = CPT_AUD_CONFIG_A;
6188 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6189 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6190 }
6191
6192 i = to_intel_crtc(crtc)->pipe;
6193 hdmiw_hdmiedid += i * 0x100;
6194 aud_cntl_st += i * 0x100;
6195 aud_config += i * 0x100;
6196
6197 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6198
6199 i = I915_READ(aud_cntl_st);
6200 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6201 if (!i) {
6202 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6203 /* operate blindly on all ports */
6204 eldv = IBX_ELD_VALIDB;
6205 eldv |= IBX_ELD_VALIDB << 4;
6206 eldv |= IBX_ELD_VALIDB << 8;
6207 } else {
6208 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6209 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6210 }
6211
6212 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6213 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6214 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6215 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6216 } else
6217 I915_WRITE(aud_config, 0);
6218
6219 if (intel_eld_uptodate(connector,
6220 aud_cntrl_st2, eldv,
6221 aud_cntl_st, IBX_ELD_ADDRESS,
6222 hdmiw_hdmiedid))
6223 return;
6224
6225 i = I915_READ(aud_cntrl_st2);
6226 i &= ~eldv;
6227 I915_WRITE(aud_cntrl_st2, i);
6228
6229 if (!eld[0])
6230 return;
6231
6232 i = I915_READ(aud_cntl_st);
6233 i &= ~IBX_ELD_ADDRESS;
6234 I915_WRITE(aud_cntl_st, i);
6235
6236 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6237 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6238 for (i = 0; i < len; i++)
6239 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6240
6241 i = I915_READ(aud_cntrl_st2);
6242 i |= eldv;
6243 I915_WRITE(aud_cntrl_st2, i);
6244 }
6245
6246 void intel_write_eld(struct drm_encoder *encoder,
6247 struct drm_display_mode *mode)
6248 {
6249 struct drm_crtc *crtc = encoder->crtc;
6250 struct drm_connector *connector;
6251 struct drm_device *dev = encoder->dev;
6252 struct drm_i915_private *dev_priv = dev->dev_private;
6253
6254 connector = drm_select_eld(encoder, mode);
6255 if (!connector)
6256 return;
6257
6258 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6259 connector->base.id,
6260 drm_get_connector_name(connector),
6261 connector->encoder->base.id,
6262 drm_get_encoder_name(connector->encoder));
6263
6264 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6265
6266 if (dev_priv->display.write_eld)
6267 dev_priv->display.write_eld(connector, crtc);
6268 }
6269
6270 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6271 void intel_crtc_load_lut(struct drm_crtc *crtc)
6272 {
6273 struct drm_device *dev = crtc->dev;
6274 struct drm_i915_private *dev_priv = dev->dev_private;
6275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6276 int palreg = PALETTE(intel_crtc->pipe);
6277 int i;
6278
6279 /* The clocks have to be on to load the palette. */
6280 if (!crtc->enabled || !intel_crtc->active)
6281 return;
6282
6283 /* use legacy palette for Ironlake */
6284 if (HAS_PCH_SPLIT(dev))
6285 palreg = LGC_PALETTE(intel_crtc->pipe);
6286
6287 for (i = 0; i < 256; i++) {
6288 I915_WRITE(palreg + 4 * i,
6289 (intel_crtc->lut_r[i] << 16) |
6290 (intel_crtc->lut_g[i] << 8) |
6291 intel_crtc->lut_b[i]);
6292 }
6293 }
6294
6295 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6296 {
6297 struct drm_device *dev = crtc->dev;
6298 struct drm_i915_private *dev_priv = dev->dev_private;
6299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6300 bool visible = base != 0;
6301 u32 cntl;
6302
6303 if (intel_crtc->cursor_visible == visible)
6304 return;
6305
6306 cntl = I915_READ(_CURACNTR);
6307 if (visible) {
6308 /* On these chipsets we can only modify the base whilst
6309 * the cursor is disabled.
6310 */
6311 I915_WRITE(_CURABASE, base);
6312
6313 cntl &= ~(CURSOR_FORMAT_MASK);
6314 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6315 cntl |= CURSOR_ENABLE |
6316 CURSOR_GAMMA_ENABLE |
6317 CURSOR_FORMAT_ARGB;
6318 } else
6319 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6320 I915_WRITE(_CURACNTR, cntl);
6321
6322 intel_crtc->cursor_visible = visible;
6323 }
6324
6325 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6326 {
6327 struct drm_device *dev = crtc->dev;
6328 struct drm_i915_private *dev_priv = dev->dev_private;
6329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6330 int pipe = intel_crtc->pipe;
6331 bool visible = base != 0;
6332
6333 if (intel_crtc->cursor_visible != visible) {
6334 uint32_t cntl = I915_READ(CURCNTR(pipe));
6335 if (base) {
6336 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6337 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6338 cntl |= pipe << 28; /* Connect to correct pipe */
6339 } else {
6340 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6341 cntl |= CURSOR_MODE_DISABLE;
6342 }
6343 I915_WRITE(CURCNTR(pipe), cntl);
6344
6345 intel_crtc->cursor_visible = visible;
6346 }
6347 /* and commit changes on next vblank */
6348 I915_WRITE(CURBASE(pipe), base);
6349 }
6350
6351 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6352 {
6353 struct drm_device *dev = crtc->dev;
6354 struct drm_i915_private *dev_priv = dev->dev_private;
6355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6356 int pipe = intel_crtc->pipe;
6357 bool visible = base != 0;
6358
6359 if (intel_crtc->cursor_visible != visible) {
6360 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6361 if (base) {
6362 cntl &= ~CURSOR_MODE;
6363 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6364 } else {
6365 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6366 cntl |= CURSOR_MODE_DISABLE;
6367 }
6368 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6369
6370 intel_crtc->cursor_visible = visible;
6371 }
6372 /* and commit changes on next vblank */
6373 I915_WRITE(CURBASE_IVB(pipe), base);
6374 }
6375
6376 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6377 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6378 bool on)
6379 {
6380 struct drm_device *dev = crtc->dev;
6381 struct drm_i915_private *dev_priv = dev->dev_private;
6382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6383 int pipe = intel_crtc->pipe;
6384 int x = intel_crtc->cursor_x;
6385 int y = intel_crtc->cursor_y;
6386 u32 base, pos;
6387 bool visible;
6388
6389 pos = 0;
6390
6391 if (on && crtc->enabled && crtc->fb) {
6392 base = intel_crtc->cursor_addr;
6393 if (x > (int) crtc->fb->width)
6394 base = 0;
6395
6396 if (y > (int) crtc->fb->height)
6397 base = 0;
6398 } else
6399 base = 0;
6400
6401 if (x < 0) {
6402 if (x + intel_crtc->cursor_width < 0)
6403 base = 0;
6404
6405 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6406 x = -x;
6407 }
6408 pos |= x << CURSOR_X_SHIFT;
6409
6410 if (y < 0) {
6411 if (y + intel_crtc->cursor_height < 0)
6412 base = 0;
6413
6414 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6415 y = -y;
6416 }
6417 pos |= y << CURSOR_Y_SHIFT;
6418
6419 visible = base != 0;
6420 if (!visible && !intel_crtc->cursor_visible)
6421 return;
6422
6423 if (IS_IVYBRIDGE(dev)) {
6424 I915_WRITE(CURPOS_IVB(pipe), pos);
6425 ivb_update_cursor(crtc, base);
6426 } else {
6427 I915_WRITE(CURPOS(pipe), pos);
6428 if (IS_845G(dev) || IS_I865G(dev))
6429 i845_update_cursor(crtc, base);
6430 else
6431 i9xx_update_cursor(crtc, base);
6432 }
6433
6434 if (visible)
6435 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6436 }
6437
6438 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6439 struct drm_file *file,
6440 uint32_t handle,
6441 uint32_t width, uint32_t height)
6442 {
6443 struct drm_device *dev = crtc->dev;
6444 struct drm_i915_private *dev_priv = dev->dev_private;
6445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6446 struct drm_i915_gem_object *obj;
6447 uint32_t addr;
6448 int ret;
6449
6450 DRM_DEBUG_KMS("\n");
6451
6452 /* if we want to turn off the cursor ignore width and height */
6453 if (!handle) {
6454 DRM_DEBUG_KMS("cursor off\n");
6455 addr = 0;
6456 obj = NULL;
6457 mutex_lock(&dev->struct_mutex);
6458 goto finish;
6459 }
6460
6461 /* Currently we only support 64x64 cursors */
6462 if (width != 64 || height != 64) {
6463 DRM_ERROR("we currently only support 64x64 cursors\n");
6464 return -EINVAL;
6465 }
6466
6467 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6468 if (&obj->base == NULL)
6469 return -ENOENT;
6470
6471 if (obj->base.size < width * height * 4) {
6472 DRM_ERROR("buffer is to small\n");
6473 ret = -ENOMEM;
6474 goto fail;
6475 }
6476
6477 /* we only need to pin inside GTT if cursor is non-phy */
6478 mutex_lock(&dev->struct_mutex);
6479 if (!dev_priv->info->cursor_needs_physical) {
6480 if (obj->tiling_mode) {
6481 DRM_ERROR("cursor cannot be tiled\n");
6482 ret = -EINVAL;
6483 goto fail_locked;
6484 }
6485
6486 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6487 if (ret) {
6488 DRM_ERROR("failed to move cursor bo into the GTT\n");
6489 goto fail_locked;
6490 }
6491
6492 ret = i915_gem_object_put_fence(obj);
6493 if (ret) {
6494 DRM_ERROR("failed to release fence for cursor");
6495 goto fail_unpin;
6496 }
6497
6498 addr = obj->gtt_offset;
6499 } else {
6500 int align = IS_I830(dev) ? 16 * 1024 : 256;
6501 ret = i915_gem_attach_phys_object(dev, obj,
6502 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6503 align);
6504 if (ret) {
6505 DRM_ERROR("failed to attach phys object\n");
6506 goto fail_locked;
6507 }
6508 addr = obj->phys_obj->handle->busaddr;
6509 }
6510
6511 if (IS_GEN2(dev))
6512 I915_WRITE(CURSIZE, (height << 12) | width);
6513
6514 finish:
6515 if (intel_crtc->cursor_bo) {
6516 if (dev_priv->info->cursor_needs_physical) {
6517 if (intel_crtc->cursor_bo != obj)
6518 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6519 } else
6520 i915_gem_object_unpin(intel_crtc->cursor_bo);
6521 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6522 }
6523
6524 mutex_unlock(&dev->struct_mutex);
6525
6526 intel_crtc->cursor_addr = addr;
6527 intel_crtc->cursor_bo = obj;
6528 intel_crtc->cursor_width = width;
6529 intel_crtc->cursor_height = height;
6530
6531 intel_crtc_update_cursor(crtc, true);
6532
6533 return 0;
6534 fail_unpin:
6535 i915_gem_object_unpin(obj);
6536 fail_locked:
6537 mutex_unlock(&dev->struct_mutex);
6538 fail:
6539 drm_gem_object_unreference_unlocked(&obj->base);
6540 return ret;
6541 }
6542
6543 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6544 {
6545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6546
6547 intel_crtc->cursor_x = x;
6548 intel_crtc->cursor_y = y;
6549
6550 intel_crtc_update_cursor(crtc, true);
6551
6552 return 0;
6553 }
6554
6555 /** Sets the color ramps on behalf of RandR */
6556 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6557 u16 blue, int regno)
6558 {
6559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6560
6561 intel_crtc->lut_r[regno] = red >> 8;
6562 intel_crtc->lut_g[regno] = green >> 8;
6563 intel_crtc->lut_b[regno] = blue >> 8;
6564 }
6565
6566 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6567 u16 *blue, int regno)
6568 {
6569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6570
6571 *red = intel_crtc->lut_r[regno] << 8;
6572 *green = intel_crtc->lut_g[regno] << 8;
6573 *blue = intel_crtc->lut_b[regno] << 8;
6574 }
6575
6576 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6577 u16 *blue, uint32_t start, uint32_t size)
6578 {
6579 int end = (start + size > 256) ? 256 : start + size, i;
6580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6581
6582 for (i = start; i < end; i++) {
6583 intel_crtc->lut_r[i] = red[i] >> 8;
6584 intel_crtc->lut_g[i] = green[i] >> 8;
6585 intel_crtc->lut_b[i] = blue[i] >> 8;
6586 }
6587
6588 intel_crtc_load_lut(crtc);
6589 }
6590
6591 /**
6592 * Get a pipe with a simple mode set on it for doing load-based monitor
6593 * detection.
6594 *
6595 * It will be up to the load-detect code to adjust the pipe as appropriate for
6596 * its requirements. The pipe will be connected to no other encoders.
6597 *
6598 * Currently this code will only succeed if there is a pipe with no encoders
6599 * configured for it. In the future, it could choose to temporarily disable
6600 * some outputs to free up a pipe for its use.
6601 *
6602 * \return crtc, or NULL if no pipes are available.
6603 */
6604
6605 /* VESA 640x480x72Hz mode to set on the pipe */
6606 static struct drm_display_mode load_detect_mode = {
6607 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6608 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6609 };
6610
6611 static struct drm_framebuffer *
6612 intel_framebuffer_create(struct drm_device *dev,
6613 struct drm_mode_fb_cmd2 *mode_cmd,
6614 struct drm_i915_gem_object *obj)
6615 {
6616 struct intel_framebuffer *intel_fb;
6617 int ret;
6618
6619 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6620 if (!intel_fb) {
6621 drm_gem_object_unreference_unlocked(&obj->base);
6622 return ERR_PTR(-ENOMEM);
6623 }
6624
6625 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6626 if (ret) {
6627 drm_gem_object_unreference_unlocked(&obj->base);
6628 kfree(intel_fb);
6629 return ERR_PTR(ret);
6630 }
6631
6632 return &intel_fb->base;
6633 }
6634
6635 static u32
6636 intel_framebuffer_pitch_for_width(int width, int bpp)
6637 {
6638 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6639 return ALIGN(pitch, 64);
6640 }
6641
6642 static u32
6643 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6644 {
6645 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6646 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6647 }
6648
6649 static struct drm_framebuffer *
6650 intel_framebuffer_create_for_mode(struct drm_device *dev,
6651 struct drm_display_mode *mode,
6652 int depth, int bpp)
6653 {
6654 struct drm_i915_gem_object *obj;
6655 struct drm_mode_fb_cmd2 mode_cmd;
6656
6657 obj = i915_gem_alloc_object(dev,
6658 intel_framebuffer_size_for_mode(mode, bpp));
6659 if (obj == NULL)
6660 return ERR_PTR(-ENOMEM);
6661
6662 mode_cmd.width = mode->hdisplay;
6663 mode_cmd.height = mode->vdisplay;
6664 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6665 bpp);
6666 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6667
6668 return intel_framebuffer_create(dev, &mode_cmd, obj);
6669 }
6670
6671 static struct drm_framebuffer *
6672 mode_fits_in_fbdev(struct drm_device *dev,
6673 struct drm_display_mode *mode)
6674 {
6675 struct drm_i915_private *dev_priv = dev->dev_private;
6676 struct drm_i915_gem_object *obj;
6677 struct drm_framebuffer *fb;
6678
6679 if (dev_priv->fbdev == NULL)
6680 return NULL;
6681
6682 obj = dev_priv->fbdev->ifb.obj;
6683 if (obj == NULL)
6684 return NULL;
6685
6686 fb = &dev_priv->fbdev->ifb.base;
6687 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6688 fb->bits_per_pixel))
6689 return NULL;
6690
6691 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6692 return NULL;
6693
6694 return fb;
6695 }
6696
6697 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6698 struct drm_connector *connector,
6699 struct drm_display_mode *mode,
6700 struct intel_load_detect_pipe *old)
6701 {
6702 struct intel_crtc *intel_crtc;
6703 struct drm_crtc *possible_crtc;
6704 struct drm_encoder *encoder = &intel_encoder->base;
6705 struct drm_crtc *crtc = NULL;
6706 struct drm_device *dev = encoder->dev;
6707 struct drm_framebuffer *old_fb;
6708 int i = -1;
6709
6710 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6711 connector->base.id, drm_get_connector_name(connector),
6712 encoder->base.id, drm_get_encoder_name(encoder));
6713
6714 /*
6715 * Algorithm gets a little messy:
6716 *
6717 * - if the connector already has an assigned crtc, use it (but make
6718 * sure it's on first)
6719 *
6720 * - try to find the first unused crtc that can drive this connector,
6721 * and use that if we find one
6722 */
6723
6724 /* See if we already have a CRTC for this connector */
6725 if (encoder->crtc) {
6726 crtc = encoder->crtc;
6727
6728 intel_crtc = to_intel_crtc(crtc);
6729 old->dpms_mode = intel_crtc->dpms_mode;
6730 old->load_detect_temp = false;
6731
6732 /* Make sure the crtc and connector are running */
6733 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6734 struct drm_encoder_helper_funcs *encoder_funcs;
6735 struct drm_crtc_helper_funcs *crtc_funcs;
6736
6737 crtc_funcs = crtc->helper_private;
6738 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6739
6740 encoder_funcs = encoder->helper_private;
6741 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6742 }
6743
6744 return true;
6745 }
6746
6747 /* Find an unused one (if possible) */
6748 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6749 i++;
6750 if (!(encoder->possible_crtcs & (1 << i)))
6751 continue;
6752 if (!possible_crtc->enabled) {
6753 crtc = possible_crtc;
6754 break;
6755 }
6756 }
6757
6758 /*
6759 * If we didn't find an unused CRTC, don't use any.
6760 */
6761 if (!crtc) {
6762 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6763 return false;
6764 }
6765
6766 encoder->crtc = crtc;
6767 connector->encoder = encoder;
6768
6769 intel_crtc = to_intel_crtc(crtc);
6770 old->dpms_mode = intel_crtc->dpms_mode;
6771 old->load_detect_temp = true;
6772 old->release_fb = NULL;
6773
6774 if (!mode)
6775 mode = &load_detect_mode;
6776
6777 old_fb = crtc->fb;
6778
6779 /* We need a framebuffer large enough to accommodate all accesses
6780 * that the plane may generate whilst we perform load detection.
6781 * We can not rely on the fbcon either being present (we get called
6782 * during its initialisation to detect all boot displays, or it may
6783 * not even exist) or that it is large enough to satisfy the
6784 * requested mode.
6785 */
6786 crtc->fb = mode_fits_in_fbdev(dev, mode);
6787 if (crtc->fb == NULL) {
6788 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6789 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6790 old->release_fb = crtc->fb;
6791 } else
6792 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6793 if (IS_ERR(crtc->fb)) {
6794 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6795 crtc->fb = old_fb;
6796 return false;
6797 }
6798
6799 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6800 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6801 if (old->release_fb)
6802 old->release_fb->funcs->destroy(old->release_fb);
6803 crtc->fb = old_fb;
6804 return false;
6805 }
6806
6807 /* let the connector get through one full cycle before testing */
6808 intel_wait_for_vblank(dev, intel_crtc->pipe);
6809
6810 return true;
6811 }
6812
6813 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6814 struct drm_connector *connector,
6815 struct intel_load_detect_pipe *old)
6816 {
6817 struct drm_encoder *encoder = &intel_encoder->base;
6818 struct drm_device *dev = encoder->dev;
6819 struct drm_crtc *crtc = encoder->crtc;
6820 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6821 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6822
6823 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6824 connector->base.id, drm_get_connector_name(connector),
6825 encoder->base.id, drm_get_encoder_name(encoder));
6826
6827 if (old->load_detect_temp) {
6828 connector->encoder = NULL;
6829 drm_helper_disable_unused_functions(dev);
6830
6831 if (old->release_fb)
6832 old->release_fb->funcs->destroy(old->release_fb);
6833
6834 return;
6835 }
6836
6837 /* Switch crtc and encoder back off if necessary */
6838 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6839 encoder_funcs->dpms(encoder, old->dpms_mode);
6840 crtc_funcs->dpms(crtc, old->dpms_mode);
6841 }
6842 }
6843
6844 /* Returns the clock of the currently programmed mode of the given pipe. */
6845 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6846 {
6847 struct drm_i915_private *dev_priv = dev->dev_private;
6848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6849 int pipe = intel_crtc->pipe;
6850 u32 dpll = I915_READ(DPLL(pipe));
6851 u32 fp;
6852 intel_clock_t clock;
6853
6854 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6855 fp = I915_READ(FP0(pipe));
6856 else
6857 fp = I915_READ(FP1(pipe));
6858
6859 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6860 if (IS_PINEVIEW(dev)) {
6861 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6862 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6863 } else {
6864 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6865 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6866 }
6867
6868 if (!IS_GEN2(dev)) {
6869 if (IS_PINEVIEW(dev))
6870 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6871 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6872 else
6873 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6874 DPLL_FPA01_P1_POST_DIV_SHIFT);
6875
6876 switch (dpll & DPLL_MODE_MASK) {
6877 case DPLLB_MODE_DAC_SERIAL:
6878 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6879 5 : 10;
6880 break;
6881 case DPLLB_MODE_LVDS:
6882 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6883 7 : 14;
6884 break;
6885 default:
6886 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6887 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6888 return 0;
6889 }
6890
6891 /* XXX: Handle the 100Mhz refclk */
6892 intel_clock(dev, 96000, &clock);
6893 } else {
6894 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6895
6896 if (is_lvds) {
6897 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6898 DPLL_FPA01_P1_POST_DIV_SHIFT);
6899 clock.p2 = 14;
6900
6901 if ((dpll & PLL_REF_INPUT_MASK) ==
6902 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6903 /* XXX: might not be 66MHz */
6904 intel_clock(dev, 66000, &clock);
6905 } else
6906 intel_clock(dev, 48000, &clock);
6907 } else {
6908 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6909 clock.p1 = 2;
6910 else {
6911 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6912 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6913 }
6914 if (dpll & PLL_P2_DIVIDE_BY_4)
6915 clock.p2 = 4;
6916 else
6917 clock.p2 = 2;
6918
6919 intel_clock(dev, 48000, &clock);
6920 }
6921 }
6922
6923 /* XXX: It would be nice to validate the clocks, but we can't reuse
6924 * i830PllIsValid() because it relies on the xf86_config connector
6925 * configuration being accurate, which it isn't necessarily.
6926 */
6927
6928 return clock.dot;
6929 }
6930
6931 /** Returns the currently programmed mode of the given pipe. */
6932 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6933 struct drm_crtc *crtc)
6934 {
6935 struct drm_i915_private *dev_priv = dev->dev_private;
6936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 int pipe = intel_crtc->pipe;
6938 struct drm_display_mode *mode;
6939 int htot = I915_READ(HTOTAL(pipe));
6940 int hsync = I915_READ(HSYNC(pipe));
6941 int vtot = I915_READ(VTOTAL(pipe));
6942 int vsync = I915_READ(VSYNC(pipe));
6943
6944 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6945 if (!mode)
6946 return NULL;
6947
6948 mode->clock = intel_crtc_clock_get(dev, crtc);
6949 mode->hdisplay = (htot & 0xffff) + 1;
6950 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6951 mode->hsync_start = (hsync & 0xffff) + 1;
6952 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6953 mode->vdisplay = (vtot & 0xffff) + 1;
6954 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6955 mode->vsync_start = (vsync & 0xffff) + 1;
6956 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6957
6958 drm_mode_set_name(mode);
6959 drm_mode_set_crtcinfo(mode, 0);
6960
6961 return mode;
6962 }
6963
6964 #define GPU_IDLE_TIMEOUT 500 /* ms */
6965
6966 /* When this timer fires, we've been idle for awhile */
6967 static void intel_gpu_idle_timer(unsigned long arg)
6968 {
6969 struct drm_device *dev = (struct drm_device *)arg;
6970 drm_i915_private_t *dev_priv = dev->dev_private;
6971
6972 if (!list_empty(&dev_priv->mm.active_list)) {
6973 /* Still processing requests, so just re-arm the timer. */
6974 mod_timer(&dev_priv->idle_timer, jiffies +
6975 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6976 return;
6977 }
6978
6979 dev_priv->busy = false;
6980 queue_work(dev_priv->wq, &dev_priv->idle_work);
6981 }
6982
6983 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6984
6985 static void intel_crtc_idle_timer(unsigned long arg)
6986 {
6987 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6988 struct drm_crtc *crtc = &intel_crtc->base;
6989 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6990 struct intel_framebuffer *intel_fb;
6991
6992 intel_fb = to_intel_framebuffer(crtc->fb);
6993 if (intel_fb && intel_fb->obj->active) {
6994 /* The framebuffer is still being accessed by the GPU. */
6995 mod_timer(&intel_crtc->idle_timer, jiffies +
6996 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6997 return;
6998 }
6999
7000 intel_crtc->busy = false;
7001 queue_work(dev_priv->wq, &dev_priv->idle_work);
7002 }
7003
7004 static void intel_increase_pllclock(struct drm_crtc *crtc)
7005 {
7006 struct drm_device *dev = crtc->dev;
7007 drm_i915_private_t *dev_priv = dev->dev_private;
7008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7009 int pipe = intel_crtc->pipe;
7010 int dpll_reg = DPLL(pipe);
7011 int dpll;
7012
7013 if (HAS_PCH_SPLIT(dev))
7014 return;
7015
7016 if (!dev_priv->lvds_downclock_avail)
7017 return;
7018
7019 dpll = I915_READ(dpll_reg);
7020 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7021 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7022
7023 assert_panel_unlocked(dev_priv, pipe);
7024
7025 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7026 I915_WRITE(dpll_reg, dpll);
7027 intel_wait_for_vblank(dev, pipe);
7028
7029 dpll = I915_READ(dpll_reg);
7030 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7031 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7032 }
7033
7034 /* Schedule downclock */
7035 mod_timer(&intel_crtc->idle_timer, jiffies +
7036 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7037 }
7038
7039 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7040 {
7041 struct drm_device *dev = crtc->dev;
7042 drm_i915_private_t *dev_priv = dev->dev_private;
7043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7044 int pipe = intel_crtc->pipe;
7045 int dpll_reg = DPLL(pipe);
7046 int dpll = I915_READ(dpll_reg);
7047
7048 if (HAS_PCH_SPLIT(dev))
7049 return;
7050
7051 if (!dev_priv->lvds_downclock_avail)
7052 return;
7053
7054 /*
7055 * Since this is called by a timer, we should never get here in
7056 * the manual case.
7057 */
7058 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7059 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7060
7061 assert_panel_unlocked(dev_priv, pipe);
7062
7063 dpll |= DISPLAY_RATE_SELECT_FPA1;
7064 I915_WRITE(dpll_reg, dpll);
7065 intel_wait_for_vblank(dev, pipe);
7066 dpll = I915_READ(dpll_reg);
7067 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7068 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7069 }
7070
7071 }
7072
7073 /**
7074 * intel_idle_update - adjust clocks for idleness
7075 * @work: work struct
7076 *
7077 * Either the GPU or display (or both) went idle. Check the busy status
7078 * here and adjust the CRTC and GPU clocks as necessary.
7079 */
7080 static void intel_idle_update(struct work_struct *work)
7081 {
7082 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7083 idle_work);
7084 struct drm_device *dev = dev_priv->dev;
7085 struct drm_crtc *crtc;
7086 struct intel_crtc *intel_crtc;
7087
7088 if (!i915_powersave)
7089 return;
7090
7091 mutex_lock(&dev->struct_mutex);
7092
7093 i915_update_gfx_val(dev_priv);
7094
7095 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7096 /* Skip inactive CRTCs */
7097 if (!crtc->fb)
7098 continue;
7099
7100 intel_crtc = to_intel_crtc(crtc);
7101 if (!intel_crtc->busy)
7102 intel_decrease_pllclock(crtc);
7103 }
7104
7105
7106 mutex_unlock(&dev->struct_mutex);
7107 }
7108
7109 /**
7110 * intel_mark_busy - mark the GPU and possibly the display busy
7111 * @dev: drm device
7112 * @obj: object we're operating on
7113 *
7114 * Callers can use this function to indicate that the GPU is busy processing
7115 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7116 * buffer), we'll also mark the display as busy, so we know to increase its
7117 * clock frequency.
7118 */
7119 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7120 {
7121 drm_i915_private_t *dev_priv = dev->dev_private;
7122 struct drm_crtc *crtc = NULL;
7123 struct intel_framebuffer *intel_fb;
7124 struct intel_crtc *intel_crtc;
7125
7126 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7127 return;
7128
7129 if (!dev_priv->busy)
7130 dev_priv->busy = true;
7131 else
7132 mod_timer(&dev_priv->idle_timer, jiffies +
7133 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7134
7135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7136 if (!crtc->fb)
7137 continue;
7138
7139 intel_crtc = to_intel_crtc(crtc);
7140 intel_fb = to_intel_framebuffer(crtc->fb);
7141 if (intel_fb->obj == obj) {
7142 if (!intel_crtc->busy) {
7143 /* Non-busy -> busy, upclock */
7144 intel_increase_pllclock(crtc);
7145 intel_crtc->busy = true;
7146 } else {
7147 /* Busy -> busy, put off timer */
7148 mod_timer(&intel_crtc->idle_timer, jiffies +
7149 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7150 }
7151 }
7152 }
7153 }
7154
7155 static void intel_crtc_destroy(struct drm_crtc *crtc)
7156 {
7157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7158 struct drm_device *dev = crtc->dev;
7159 struct intel_unpin_work *work;
7160 unsigned long flags;
7161
7162 spin_lock_irqsave(&dev->event_lock, flags);
7163 work = intel_crtc->unpin_work;
7164 intel_crtc->unpin_work = NULL;
7165 spin_unlock_irqrestore(&dev->event_lock, flags);
7166
7167 if (work) {
7168 cancel_work_sync(&work->work);
7169 kfree(work);
7170 }
7171
7172 drm_crtc_cleanup(crtc);
7173
7174 kfree(intel_crtc);
7175 }
7176
7177 static void intel_unpin_work_fn(struct work_struct *__work)
7178 {
7179 struct intel_unpin_work *work =
7180 container_of(__work, struct intel_unpin_work, work);
7181
7182 mutex_lock(&work->dev->struct_mutex);
7183 intel_unpin_fb_obj(work->old_fb_obj);
7184 drm_gem_object_unreference(&work->pending_flip_obj->base);
7185 drm_gem_object_unreference(&work->old_fb_obj->base);
7186
7187 intel_update_fbc(work->dev);
7188 mutex_unlock(&work->dev->struct_mutex);
7189 kfree(work);
7190 }
7191
7192 static void do_intel_finish_page_flip(struct drm_device *dev,
7193 struct drm_crtc *crtc)
7194 {
7195 drm_i915_private_t *dev_priv = dev->dev_private;
7196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7197 struct intel_unpin_work *work;
7198 struct drm_i915_gem_object *obj;
7199 struct drm_pending_vblank_event *e;
7200 struct timeval tnow, tvbl;
7201 unsigned long flags;
7202
7203 /* Ignore early vblank irqs */
7204 if (intel_crtc == NULL)
7205 return;
7206
7207 do_gettimeofday(&tnow);
7208
7209 spin_lock_irqsave(&dev->event_lock, flags);
7210 work = intel_crtc->unpin_work;
7211 if (work == NULL || !work->pending) {
7212 spin_unlock_irqrestore(&dev->event_lock, flags);
7213 return;
7214 }
7215
7216 intel_crtc->unpin_work = NULL;
7217
7218 if (work->event) {
7219 e = work->event;
7220 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7221
7222 /* Called before vblank count and timestamps have
7223 * been updated for the vblank interval of flip
7224 * completion? Need to increment vblank count and
7225 * add one videorefresh duration to returned timestamp
7226 * to account for this. We assume this happened if we
7227 * get called over 0.9 frame durations after the last
7228 * timestamped vblank.
7229 *
7230 * This calculation can not be used with vrefresh rates
7231 * below 5Hz (10Hz to be on the safe side) without
7232 * promoting to 64 integers.
7233 */
7234 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7235 9 * crtc->framedur_ns) {
7236 e->event.sequence++;
7237 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7238 crtc->framedur_ns);
7239 }
7240
7241 e->event.tv_sec = tvbl.tv_sec;
7242 e->event.tv_usec = tvbl.tv_usec;
7243
7244 list_add_tail(&e->base.link,
7245 &e->base.file_priv->event_list);
7246 wake_up_interruptible(&e->base.file_priv->event_wait);
7247 }
7248
7249 drm_vblank_put(dev, intel_crtc->pipe);
7250
7251 spin_unlock_irqrestore(&dev->event_lock, flags);
7252
7253 obj = work->old_fb_obj;
7254
7255 atomic_clear_mask(1 << intel_crtc->plane,
7256 &obj->pending_flip.counter);
7257 if (atomic_read(&obj->pending_flip) == 0)
7258 wake_up(&dev_priv->pending_flip_queue);
7259
7260 schedule_work(&work->work);
7261
7262 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7263 }
7264
7265 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7266 {
7267 drm_i915_private_t *dev_priv = dev->dev_private;
7268 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7269
7270 do_intel_finish_page_flip(dev, crtc);
7271 }
7272
7273 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7274 {
7275 drm_i915_private_t *dev_priv = dev->dev_private;
7276 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7277
7278 do_intel_finish_page_flip(dev, crtc);
7279 }
7280
7281 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7282 {
7283 drm_i915_private_t *dev_priv = dev->dev_private;
7284 struct intel_crtc *intel_crtc =
7285 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7286 unsigned long flags;
7287
7288 spin_lock_irqsave(&dev->event_lock, flags);
7289 if (intel_crtc->unpin_work) {
7290 if ((++intel_crtc->unpin_work->pending) > 1)
7291 DRM_ERROR("Prepared flip multiple times\n");
7292 } else {
7293 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7294 }
7295 spin_unlock_irqrestore(&dev->event_lock, flags);
7296 }
7297
7298 static int intel_gen2_queue_flip(struct drm_device *dev,
7299 struct drm_crtc *crtc,
7300 struct drm_framebuffer *fb,
7301 struct drm_i915_gem_object *obj)
7302 {
7303 struct drm_i915_private *dev_priv = dev->dev_private;
7304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7305 unsigned long offset;
7306 u32 flip_mask;
7307 int ret;
7308
7309 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7310 if (ret)
7311 goto out;
7312
7313 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7314 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7315
7316 ret = BEGIN_LP_RING(6);
7317 if (ret)
7318 goto out;
7319
7320 /* Can't queue multiple flips, so wait for the previous
7321 * one to finish before executing the next.
7322 */
7323 if (intel_crtc->plane)
7324 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7325 else
7326 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7327 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7328 OUT_RING(MI_NOOP);
7329 OUT_RING(MI_DISPLAY_FLIP |
7330 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7331 OUT_RING(fb->pitches[0]);
7332 OUT_RING(obj->gtt_offset + offset);
7333 OUT_RING(0); /* aux display base address, unused */
7334 ADVANCE_LP_RING();
7335 out:
7336 return ret;
7337 }
7338
7339 static int intel_gen3_queue_flip(struct drm_device *dev,
7340 struct drm_crtc *crtc,
7341 struct drm_framebuffer *fb,
7342 struct drm_i915_gem_object *obj)
7343 {
7344 struct drm_i915_private *dev_priv = dev->dev_private;
7345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7346 unsigned long offset;
7347 u32 flip_mask;
7348 int ret;
7349
7350 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7351 if (ret)
7352 goto out;
7353
7354 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7355 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7356
7357 ret = BEGIN_LP_RING(6);
7358 if (ret)
7359 goto out;
7360
7361 if (intel_crtc->plane)
7362 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7363 else
7364 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7365 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7366 OUT_RING(MI_NOOP);
7367 OUT_RING(MI_DISPLAY_FLIP_I915 |
7368 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7369 OUT_RING(fb->pitches[0]);
7370 OUT_RING(obj->gtt_offset + offset);
7371 OUT_RING(MI_NOOP);
7372
7373 ADVANCE_LP_RING();
7374 out:
7375 return ret;
7376 }
7377
7378 static int intel_gen4_queue_flip(struct drm_device *dev,
7379 struct drm_crtc *crtc,
7380 struct drm_framebuffer *fb,
7381 struct drm_i915_gem_object *obj)
7382 {
7383 struct drm_i915_private *dev_priv = dev->dev_private;
7384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7385 uint32_t pf, pipesrc;
7386 int ret;
7387
7388 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7389 if (ret)
7390 goto out;
7391
7392 ret = BEGIN_LP_RING(4);
7393 if (ret)
7394 goto out;
7395
7396 /* i965+ uses the linear or tiled offsets from the
7397 * Display Registers (which do not change across a page-flip)
7398 * so we need only reprogram the base address.
7399 */
7400 OUT_RING(MI_DISPLAY_FLIP |
7401 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7402 OUT_RING(fb->pitches[0]);
7403 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7404
7405 /* XXX Enabling the panel-fitter across page-flip is so far
7406 * untested on non-native modes, so ignore it for now.
7407 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7408 */
7409 pf = 0;
7410 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7411 OUT_RING(pf | pipesrc);
7412 ADVANCE_LP_RING();
7413 out:
7414 return ret;
7415 }
7416
7417 static int intel_gen6_queue_flip(struct drm_device *dev,
7418 struct drm_crtc *crtc,
7419 struct drm_framebuffer *fb,
7420 struct drm_i915_gem_object *obj)
7421 {
7422 struct drm_i915_private *dev_priv = dev->dev_private;
7423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7424 uint32_t pf, pipesrc;
7425 int ret;
7426
7427 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7428 if (ret)
7429 goto out;
7430
7431 ret = BEGIN_LP_RING(4);
7432 if (ret)
7433 goto out;
7434
7435 OUT_RING(MI_DISPLAY_FLIP |
7436 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7437 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7438 OUT_RING(obj->gtt_offset);
7439
7440 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7441 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7442 OUT_RING(pf | pipesrc);
7443 ADVANCE_LP_RING();
7444 out:
7445 return ret;
7446 }
7447
7448 /*
7449 * On gen7 we currently use the blit ring because (in early silicon at least)
7450 * the render ring doesn't give us interrpts for page flip completion, which
7451 * means clients will hang after the first flip is queued. Fortunately the
7452 * blit ring generates interrupts properly, so use it instead.
7453 */
7454 static int intel_gen7_queue_flip(struct drm_device *dev,
7455 struct drm_crtc *crtc,
7456 struct drm_framebuffer *fb,
7457 struct drm_i915_gem_object *obj)
7458 {
7459 struct drm_i915_private *dev_priv = dev->dev_private;
7460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7461 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7462 int ret;
7463
7464 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7465 if (ret)
7466 goto out;
7467
7468 ret = intel_ring_begin(ring, 4);
7469 if (ret)
7470 goto out;
7471
7472 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7473 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7474 intel_ring_emit(ring, (obj->gtt_offset));
7475 intel_ring_emit(ring, (MI_NOOP));
7476 intel_ring_advance(ring);
7477 out:
7478 return ret;
7479 }
7480
7481 static int intel_default_queue_flip(struct drm_device *dev,
7482 struct drm_crtc *crtc,
7483 struct drm_framebuffer *fb,
7484 struct drm_i915_gem_object *obj)
7485 {
7486 return -ENODEV;
7487 }
7488
7489 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7490 struct drm_framebuffer *fb,
7491 struct drm_pending_vblank_event *event)
7492 {
7493 struct drm_device *dev = crtc->dev;
7494 struct drm_i915_private *dev_priv = dev->dev_private;
7495 struct intel_framebuffer *intel_fb;
7496 struct drm_i915_gem_object *obj;
7497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7498 struct intel_unpin_work *work;
7499 unsigned long flags;
7500 int ret;
7501
7502 work = kzalloc(sizeof *work, GFP_KERNEL);
7503 if (work == NULL)
7504 return -ENOMEM;
7505
7506 work->event = event;
7507 work->dev = crtc->dev;
7508 intel_fb = to_intel_framebuffer(crtc->fb);
7509 work->old_fb_obj = intel_fb->obj;
7510 INIT_WORK(&work->work, intel_unpin_work_fn);
7511
7512 ret = drm_vblank_get(dev, intel_crtc->pipe);
7513 if (ret)
7514 goto free_work;
7515
7516 /* We borrow the event spin lock for protecting unpin_work */
7517 spin_lock_irqsave(&dev->event_lock, flags);
7518 if (intel_crtc->unpin_work) {
7519 spin_unlock_irqrestore(&dev->event_lock, flags);
7520 kfree(work);
7521 drm_vblank_put(dev, intel_crtc->pipe);
7522
7523 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7524 return -EBUSY;
7525 }
7526 intel_crtc->unpin_work = work;
7527 spin_unlock_irqrestore(&dev->event_lock, flags);
7528
7529 intel_fb = to_intel_framebuffer(fb);
7530 obj = intel_fb->obj;
7531
7532 mutex_lock(&dev->struct_mutex);
7533
7534 /* Reference the objects for the scheduled work. */
7535 drm_gem_object_reference(&work->old_fb_obj->base);
7536 drm_gem_object_reference(&obj->base);
7537
7538 crtc->fb = fb;
7539
7540 work->pending_flip_obj = obj;
7541
7542 work->enable_stall_check = true;
7543
7544 /* Block clients from rendering to the new back buffer until
7545 * the flip occurs and the object is no longer visible.
7546 */
7547 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7548
7549 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7550 if (ret)
7551 goto cleanup_pending;
7552
7553 intel_disable_fbc(dev);
7554 mutex_unlock(&dev->struct_mutex);
7555
7556 trace_i915_flip_request(intel_crtc->plane, obj);
7557
7558 return 0;
7559
7560 cleanup_pending:
7561 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7562 drm_gem_object_unreference(&work->old_fb_obj->base);
7563 drm_gem_object_unreference(&obj->base);
7564 mutex_unlock(&dev->struct_mutex);
7565
7566 spin_lock_irqsave(&dev->event_lock, flags);
7567 intel_crtc->unpin_work = NULL;
7568 spin_unlock_irqrestore(&dev->event_lock, flags);
7569
7570 drm_vblank_put(dev, intel_crtc->pipe);
7571 free_work:
7572 kfree(work);
7573
7574 return ret;
7575 }
7576
7577 static void intel_sanitize_modesetting(struct drm_device *dev,
7578 int pipe, int plane)
7579 {
7580 struct drm_i915_private *dev_priv = dev->dev_private;
7581 u32 reg, val;
7582
7583 /* Clear any frame start delays used for debugging left by the BIOS */
7584 for_each_pipe(pipe) {
7585 reg = PIPECONF(pipe);
7586 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7587 }
7588
7589 if (HAS_PCH_SPLIT(dev))
7590 return;
7591
7592 /* Who knows what state these registers were left in by the BIOS or
7593 * grub?
7594 *
7595 * If we leave the registers in a conflicting state (e.g. with the
7596 * display plane reading from the other pipe than the one we intend
7597 * to use) then when we attempt to teardown the active mode, we will
7598 * not disable the pipes and planes in the correct order -- leaving
7599 * a plane reading from a disabled pipe and possibly leading to
7600 * undefined behaviour.
7601 */
7602
7603 reg = DSPCNTR(plane);
7604 val = I915_READ(reg);
7605
7606 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7607 return;
7608 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7609 return;
7610
7611 /* This display plane is active and attached to the other CPU pipe. */
7612 pipe = !pipe;
7613
7614 /* Disable the plane and wait for it to stop reading from the pipe. */
7615 intel_disable_plane(dev_priv, plane, pipe);
7616 intel_disable_pipe(dev_priv, pipe);
7617 }
7618
7619 static void intel_crtc_reset(struct drm_crtc *crtc)
7620 {
7621 struct drm_device *dev = crtc->dev;
7622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7623
7624 /* Reset flags back to the 'unknown' status so that they
7625 * will be correctly set on the initial modeset.
7626 */
7627 intel_crtc->dpms_mode = -1;
7628
7629 /* We need to fix up any BIOS configuration that conflicts with
7630 * our expectations.
7631 */
7632 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7633 }
7634
7635 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7636 .dpms = intel_crtc_dpms,
7637 .mode_fixup = intel_crtc_mode_fixup,
7638 .mode_set = intel_crtc_mode_set,
7639 .mode_set_base = intel_pipe_set_base,
7640 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7641 .load_lut = intel_crtc_load_lut,
7642 .disable = intel_crtc_disable,
7643 };
7644
7645 static const struct drm_crtc_funcs intel_crtc_funcs = {
7646 .reset = intel_crtc_reset,
7647 .cursor_set = intel_crtc_cursor_set,
7648 .cursor_move = intel_crtc_cursor_move,
7649 .gamma_set = intel_crtc_gamma_set,
7650 .set_config = drm_crtc_helper_set_config,
7651 .destroy = intel_crtc_destroy,
7652 .page_flip = intel_crtc_page_flip,
7653 };
7654
7655 static void intel_crtc_init(struct drm_device *dev, int pipe)
7656 {
7657 drm_i915_private_t *dev_priv = dev->dev_private;
7658 struct intel_crtc *intel_crtc;
7659 int i;
7660
7661 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7662 if (intel_crtc == NULL)
7663 return;
7664
7665 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7666
7667 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7668 for (i = 0; i < 256; i++) {
7669 intel_crtc->lut_r[i] = i;
7670 intel_crtc->lut_g[i] = i;
7671 intel_crtc->lut_b[i] = i;
7672 }
7673
7674 /* Swap pipes & planes for FBC on pre-965 */
7675 intel_crtc->pipe = pipe;
7676 intel_crtc->plane = pipe;
7677 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7678 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7679 intel_crtc->plane = !pipe;
7680 }
7681
7682 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7683 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7684 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7685 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7686
7687 intel_crtc_reset(&intel_crtc->base);
7688 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7689 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7690
7691 if (HAS_PCH_SPLIT(dev)) {
7692 if (pipe == 2 && IS_IVYBRIDGE(dev))
7693 intel_crtc->no_pll = true;
7694 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7695 intel_helper_funcs.commit = ironlake_crtc_commit;
7696 } else {
7697 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7698 intel_helper_funcs.commit = i9xx_crtc_commit;
7699 }
7700
7701 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7702
7703 intel_crtc->busy = false;
7704
7705 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7706 (unsigned long)intel_crtc);
7707 }
7708
7709 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7710 struct drm_file *file)
7711 {
7712 drm_i915_private_t *dev_priv = dev->dev_private;
7713 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7714 struct drm_mode_object *drmmode_obj;
7715 struct intel_crtc *crtc;
7716
7717 if (!dev_priv) {
7718 DRM_ERROR("called with no initialization\n");
7719 return -EINVAL;
7720 }
7721
7722 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7723 DRM_MODE_OBJECT_CRTC);
7724
7725 if (!drmmode_obj) {
7726 DRM_ERROR("no such CRTC id\n");
7727 return -EINVAL;
7728 }
7729
7730 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7731 pipe_from_crtc_id->pipe = crtc->pipe;
7732
7733 return 0;
7734 }
7735
7736 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7737 {
7738 struct intel_encoder *encoder;
7739 int index_mask = 0;
7740 int entry = 0;
7741
7742 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7743 if (type_mask & encoder->clone_mask)
7744 index_mask |= (1 << entry);
7745 entry++;
7746 }
7747
7748 return index_mask;
7749 }
7750
7751 static bool has_edp_a(struct drm_device *dev)
7752 {
7753 struct drm_i915_private *dev_priv = dev->dev_private;
7754
7755 if (!IS_MOBILE(dev))
7756 return false;
7757
7758 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7759 return false;
7760
7761 if (IS_GEN5(dev) &&
7762 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7763 return false;
7764
7765 return true;
7766 }
7767
7768 static void intel_setup_outputs(struct drm_device *dev)
7769 {
7770 struct drm_i915_private *dev_priv = dev->dev_private;
7771 struct intel_encoder *encoder;
7772 bool dpd_is_edp = false;
7773 bool has_lvds;
7774
7775 has_lvds = intel_lvds_init(dev);
7776 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7777 /* disable the panel fitter on everything but LVDS */
7778 I915_WRITE(PFIT_CONTROL, 0);
7779 }
7780
7781 if (HAS_PCH_SPLIT(dev)) {
7782 dpd_is_edp = intel_dpd_is_edp(dev);
7783
7784 if (has_edp_a(dev))
7785 intel_dp_init(dev, DP_A);
7786
7787 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7788 intel_dp_init(dev, PCH_DP_D);
7789 }
7790
7791 intel_crt_init(dev);
7792
7793 if (HAS_PCH_SPLIT(dev)) {
7794 int found;
7795
7796 if (I915_READ(HDMIB) & PORT_DETECTED) {
7797 /* PCH SDVOB multiplex with HDMIB */
7798 found = intel_sdvo_init(dev, PCH_SDVOB);
7799 if (!found)
7800 intel_hdmi_init(dev, HDMIB);
7801 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7802 intel_dp_init(dev, PCH_DP_B);
7803 }
7804
7805 if (I915_READ(HDMIC) & PORT_DETECTED)
7806 intel_hdmi_init(dev, HDMIC);
7807
7808 if (I915_READ(HDMID) & PORT_DETECTED)
7809 intel_hdmi_init(dev, HDMID);
7810
7811 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7812 intel_dp_init(dev, PCH_DP_C);
7813
7814 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7815 intel_dp_init(dev, PCH_DP_D);
7816
7817 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7818 bool found = false;
7819
7820 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7821 DRM_DEBUG_KMS("probing SDVOB\n");
7822 found = intel_sdvo_init(dev, SDVOB);
7823 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7824 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7825 intel_hdmi_init(dev, SDVOB);
7826 }
7827
7828 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7829 DRM_DEBUG_KMS("probing DP_B\n");
7830 intel_dp_init(dev, DP_B);
7831 }
7832 }
7833
7834 /* Before G4X SDVOC doesn't have its own detect register */
7835
7836 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7837 DRM_DEBUG_KMS("probing SDVOC\n");
7838 found = intel_sdvo_init(dev, SDVOC);
7839 }
7840
7841 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7842
7843 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7844 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7845 intel_hdmi_init(dev, SDVOC);
7846 }
7847 if (SUPPORTS_INTEGRATED_DP(dev)) {
7848 DRM_DEBUG_KMS("probing DP_C\n");
7849 intel_dp_init(dev, DP_C);
7850 }
7851 }
7852
7853 if (SUPPORTS_INTEGRATED_DP(dev) &&
7854 (I915_READ(DP_D) & DP_DETECTED)) {
7855 DRM_DEBUG_KMS("probing DP_D\n");
7856 intel_dp_init(dev, DP_D);
7857 }
7858 } else if (IS_GEN2(dev))
7859 intel_dvo_init(dev);
7860
7861 if (SUPPORTS_TV(dev))
7862 intel_tv_init(dev);
7863
7864 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7865 encoder->base.possible_crtcs = encoder->crtc_mask;
7866 encoder->base.possible_clones =
7867 intel_encoder_clones(dev, encoder->clone_mask);
7868 }
7869
7870 /* disable all the possible outputs/crtcs before entering KMS mode */
7871 drm_helper_disable_unused_functions(dev);
7872
7873 if (HAS_PCH_SPLIT(dev))
7874 ironlake_init_pch_refclk(dev);
7875 }
7876
7877 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7878 {
7879 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7880
7881 drm_framebuffer_cleanup(fb);
7882 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7883
7884 kfree(intel_fb);
7885 }
7886
7887 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7888 struct drm_file *file,
7889 unsigned int *handle)
7890 {
7891 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7892 struct drm_i915_gem_object *obj = intel_fb->obj;
7893
7894 return drm_gem_handle_create(file, &obj->base, handle);
7895 }
7896
7897 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7898 .destroy = intel_user_framebuffer_destroy,
7899 .create_handle = intel_user_framebuffer_create_handle,
7900 };
7901
7902 int intel_framebuffer_init(struct drm_device *dev,
7903 struct intel_framebuffer *intel_fb,
7904 struct drm_mode_fb_cmd2 *mode_cmd,
7905 struct drm_i915_gem_object *obj)
7906 {
7907 int ret;
7908
7909 if (obj->tiling_mode == I915_TILING_Y)
7910 return -EINVAL;
7911
7912 if (mode_cmd->pitches[0] & 63)
7913 return -EINVAL;
7914
7915 switch (mode_cmd->pixel_format) {
7916 case DRM_FORMAT_RGB332:
7917 case DRM_FORMAT_RGB565:
7918 case DRM_FORMAT_XRGB8888:
7919 case DRM_FORMAT_XBGR8888:
7920 case DRM_FORMAT_ARGB8888:
7921 case DRM_FORMAT_XRGB2101010:
7922 case DRM_FORMAT_ARGB2101010:
7923 /* RGB formats are common across chipsets */
7924 break;
7925 case DRM_FORMAT_YUYV:
7926 case DRM_FORMAT_UYVY:
7927 case DRM_FORMAT_YVYU:
7928 case DRM_FORMAT_VYUY:
7929 break;
7930 default:
7931 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7932 mode_cmd->pixel_format);
7933 return -EINVAL;
7934 }
7935
7936 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7937 if (ret) {
7938 DRM_ERROR("framebuffer init failed %d\n", ret);
7939 return ret;
7940 }
7941
7942 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7943 intel_fb->obj = obj;
7944 return 0;
7945 }
7946
7947 static struct drm_framebuffer *
7948 intel_user_framebuffer_create(struct drm_device *dev,
7949 struct drm_file *filp,
7950 struct drm_mode_fb_cmd2 *mode_cmd)
7951 {
7952 struct drm_i915_gem_object *obj;
7953
7954 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7955 mode_cmd->handles[0]));
7956 if (&obj->base == NULL)
7957 return ERR_PTR(-ENOENT);
7958
7959 return intel_framebuffer_create(dev, mode_cmd, obj);
7960 }
7961
7962 static const struct drm_mode_config_funcs intel_mode_funcs = {
7963 .fb_create = intel_user_framebuffer_create,
7964 .output_poll_changed = intel_fb_output_poll_changed,
7965 };
7966
7967 static struct drm_i915_gem_object *
7968 intel_alloc_context_page(struct drm_device *dev)
7969 {
7970 struct drm_i915_gem_object *ctx;
7971 int ret;
7972
7973 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7974
7975 ctx = i915_gem_alloc_object(dev, 4096);
7976 if (!ctx) {
7977 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7978 return NULL;
7979 }
7980
7981 ret = i915_gem_object_pin(ctx, 4096, true);
7982 if (ret) {
7983 DRM_ERROR("failed to pin power context: %d\n", ret);
7984 goto err_unref;
7985 }
7986
7987 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7988 if (ret) {
7989 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7990 goto err_unpin;
7991 }
7992
7993 return ctx;
7994
7995 err_unpin:
7996 i915_gem_object_unpin(ctx);
7997 err_unref:
7998 drm_gem_object_unreference(&ctx->base);
7999 mutex_unlock(&dev->struct_mutex);
8000 return NULL;
8001 }
8002
8003 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8004 {
8005 struct drm_i915_private *dev_priv = dev->dev_private;
8006 u16 rgvswctl;
8007
8008 rgvswctl = I915_READ16(MEMSWCTL);
8009 if (rgvswctl & MEMCTL_CMD_STS) {
8010 DRM_DEBUG("gpu busy, RCS change rejected\n");
8011 return false; /* still busy with another command */
8012 }
8013
8014 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8015 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8016 I915_WRITE16(MEMSWCTL, rgvswctl);
8017 POSTING_READ16(MEMSWCTL);
8018
8019 rgvswctl |= MEMCTL_CMD_STS;
8020 I915_WRITE16(MEMSWCTL, rgvswctl);
8021
8022 return true;
8023 }
8024
8025 void ironlake_enable_drps(struct drm_device *dev)
8026 {
8027 struct drm_i915_private *dev_priv = dev->dev_private;
8028 u32 rgvmodectl = I915_READ(MEMMODECTL);
8029 u8 fmax, fmin, fstart, vstart;
8030
8031 /* Enable temp reporting */
8032 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8033 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8034
8035 /* 100ms RC evaluation intervals */
8036 I915_WRITE(RCUPEI, 100000);
8037 I915_WRITE(RCDNEI, 100000);
8038
8039 /* Set max/min thresholds to 90ms and 80ms respectively */
8040 I915_WRITE(RCBMAXAVG, 90000);
8041 I915_WRITE(RCBMINAVG, 80000);
8042
8043 I915_WRITE(MEMIHYST, 1);
8044
8045 /* Set up min, max, and cur for interrupt handling */
8046 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8047 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8048 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8049 MEMMODE_FSTART_SHIFT;
8050
8051 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8052 PXVFREQ_PX_SHIFT;
8053
8054 dev_priv->fmax = fmax; /* IPS callback will increase this */
8055 dev_priv->fstart = fstart;
8056
8057 dev_priv->max_delay = fstart;
8058 dev_priv->min_delay = fmin;
8059 dev_priv->cur_delay = fstart;
8060
8061 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8062 fmax, fmin, fstart);
8063
8064 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8065
8066 /*
8067 * Interrupts will be enabled in ironlake_irq_postinstall
8068 */
8069
8070 I915_WRITE(VIDSTART, vstart);
8071 POSTING_READ(VIDSTART);
8072
8073 rgvmodectl |= MEMMODE_SWMODE_EN;
8074 I915_WRITE(MEMMODECTL, rgvmodectl);
8075
8076 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8077 DRM_ERROR("stuck trying to change perf mode\n");
8078 msleep(1);
8079
8080 ironlake_set_drps(dev, fstart);
8081
8082 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8083 I915_READ(0x112e0);
8084 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8085 dev_priv->last_count2 = I915_READ(0x112f4);
8086 getrawmonotonic(&dev_priv->last_time2);
8087 }
8088
8089 void ironlake_disable_drps(struct drm_device *dev)
8090 {
8091 struct drm_i915_private *dev_priv = dev->dev_private;
8092 u16 rgvswctl = I915_READ16(MEMSWCTL);
8093
8094 /* Ack interrupts, disable EFC interrupt */
8095 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8096 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8097 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8098 I915_WRITE(DEIIR, DE_PCU_EVENT);
8099 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8100
8101 /* Go back to the starting frequency */
8102 ironlake_set_drps(dev, dev_priv->fstart);
8103 msleep(1);
8104 rgvswctl |= MEMCTL_CMD_STS;
8105 I915_WRITE(MEMSWCTL, rgvswctl);
8106 msleep(1);
8107
8108 }
8109
8110 void gen6_set_rps(struct drm_device *dev, u8 val)
8111 {
8112 struct drm_i915_private *dev_priv = dev->dev_private;
8113 u32 swreq;
8114
8115 swreq = (val & 0x3ff) << 25;
8116 I915_WRITE(GEN6_RPNSWREQ, swreq);
8117 }
8118
8119 void gen6_disable_rps(struct drm_device *dev)
8120 {
8121 struct drm_i915_private *dev_priv = dev->dev_private;
8122
8123 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8124 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8125 I915_WRITE(GEN6_PMIER, 0);
8126 /* Complete PM interrupt masking here doesn't race with the rps work
8127 * item again unmasking PM interrupts because that is using a different
8128 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8129 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8130
8131 spin_lock_irq(&dev_priv->rps_lock);
8132 dev_priv->pm_iir = 0;
8133 spin_unlock_irq(&dev_priv->rps_lock);
8134
8135 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8136 }
8137
8138 static unsigned long intel_pxfreq(u32 vidfreq)
8139 {
8140 unsigned long freq;
8141 int div = (vidfreq & 0x3f0000) >> 16;
8142 int post = (vidfreq & 0x3000) >> 12;
8143 int pre = (vidfreq & 0x7);
8144
8145 if (!pre)
8146 return 0;
8147
8148 freq = ((div * 133333) / ((1<<post) * pre));
8149
8150 return freq;
8151 }
8152
8153 void intel_init_emon(struct drm_device *dev)
8154 {
8155 struct drm_i915_private *dev_priv = dev->dev_private;
8156 u32 lcfuse;
8157 u8 pxw[16];
8158 int i;
8159
8160 /* Disable to program */
8161 I915_WRITE(ECR, 0);
8162 POSTING_READ(ECR);
8163
8164 /* Program energy weights for various events */
8165 I915_WRITE(SDEW, 0x15040d00);
8166 I915_WRITE(CSIEW0, 0x007f0000);
8167 I915_WRITE(CSIEW1, 0x1e220004);
8168 I915_WRITE(CSIEW2, 0x04000004);
8169
8170 for (i = 0; i < 5; i++)
8171 I915_WRITE(PEW + (i * 4), 0);
8172 for (i = 0; i < 3; i++)
8173 I915_WRITE(DEW + (i * 4), 0);
8174
8175 /* Program P-state weights to account for frequency power adjustment */
8176 for (i = 0; i < 16; i++) {
8177 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8178 unsigned long freq = intel_pxfreq(pxvidfreq);
8179 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8180 PXVFREQ_PX_SHIFT;
8181 unsigned long val;
8182
8183 val = vid * vid;
8184 val *= (freq / 1000);
8185 val *= 255;
8186 val /= (127*127*900);
8187 if (val > 0xff)
8188 DRM_ERROR("bad pxval: %ld\n", val);
8189 pxw[i] = val;
8190 }
8191 /* Render standby states get 0 weight */
8192 pxw[14] = 0;
8193 pxw[15] = 0;
8194
8195 for (i = 0; i < 4; i++) {
8196 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8197 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8198 I915_WRITE(PXW + (i * 4), val);
8199 }
8200
8201 /* Adjust magic regs to magic values (more experimental results) */
8202 I915_WRITE(OGW0, 0);
8203 I915_WRITE(OGW1, 0);
8204 I915_WRITE(EG0, 0x00007f00);
8205 I915_WRITE(EG1, 0x0000000e);
8206 I915_WRITE(EG2, 0x000e0000);
8207 I915_WRITE(EG3, 0x68000300);
8208 I915_WRITE(EG4, 0x42000000);
8209 I915_WRITE(EG5, 0x00140031);
8210 I915_WRITE(EG6, 0);
8211 I915_WRITE(EG7, 0);
8212
8213 for (i = 0; i < 8; i++)
8214 I915_WRITE(PXWL + (i * 4), 0);
8215
8216 /* Enable PMON + select events */
8217 I915_WRITE(ECR, 0x80000019);
8218
8219 lcfuse = I915_READ(LCFUSE02);
8220
8221 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8222 }
8223
8224 static int intel_enable_rc6(struct drm_device *dev)
8225 {
8226 /*
8227 * Respect the kernel parameter if it is set
8228 */
8229 if (i915_enable_rc6 >= 0)
8230 return i915_enable_rc6;
8231
8232 /*
8233 * Disable RC6 on Ironlake
8234 */
8235 if (INTEL_INFO(dev)->gen == 5)
8236 return 0;
8237
8238 /*
8239 * Disable rc6 on Sandybridge
8240 */
8241 if (INTEL_INFO(dev)->gen == 6) {
8242 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
8243 return INTEL_RC6_ENABLE;
8244 }
8245 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8246 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8247 }
8248
8249 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8250 {
8251 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8252 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8253 u32 pcu_mbox, rc6_mask = 0;
8254 u32 gtfifodbg;
8255 int cur_freq, min_freq, max_freq;
8256 int rc6_mode;
8257 int i;
8258
8259 /* Here begins a magic sequence of register writes to enable
8260 * auto-downclocking.
8261 *
8262 * Perhaps there might be some value in exposing these to
8263 * userspace...
8264 */
8265 I915_WRITE(GEN6_RC_STATE, 0);
8266 mutex_lock(&dev_priv->dev->struct_mutex);
8267
8268 /* Clear the DBG now so we don't confuse earlier errors */
8269 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8270 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8271 I915_WRITE(GTFIFODBG, gtfifodbg);
8272 }
8273
8274 gen6_gt_force_wake_get(dev_priv);
8275
8276 /* disable the counters and set deterministic thresholds */
8277 I915_WRITE(GEN6_RC_CONTROL, 0);
8278
8279 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8280 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8281 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8282 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8283 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8284
8285 for (i = 0; i < I915_NUM_RINGS; i++)
8286 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8287
8288 I915_WRITE(GEN6_RC_SLEEP, 0);
8289 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8290 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8291 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8292 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8293
8294 rc6_mode = intel_enable_rc6(dev_priv->dev);
8295 if (rc6_mode & INTEL_RC6_ENABLE)
8296 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8297
8298 if (rc6_mode & INTEL_RC6p_ENABLE)
8299 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8300
8301 if (rc6_mode & INTEL_RC6pp_ENABLE)
8302 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8303
8304 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8305 (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8306 (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8307 (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8308
8309 I915_WRITE(GEN6_RC_CONTROL,
8310 rc6_mask |
8311 GEN6_RC_CTL_EI_MODE(1) |
8312 GEN6_RC_CTL_HW_ENABLE);
8313
8314 I915_WRITE(GEN6_RPNSWREQ,
8315 GEN6_FREQUENCY(10) |
8316 GEN6_OFFSET(0) |
8317 GEN6_AGGRESSIVE_TURBO);
8318 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8319 GEN6_FREQUENCY(12));
8320
8321 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8322 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8323 18 << 24 |
8324 6 << 16);
8325 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8326 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8327 I915_WRITE(GEN6_RP_UP_EI, 100000);
8328 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8329 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8330 I915_WRITE(GEN6_RP_CONTROL,
8331 GEN6_RP_MEDIA_TURBO |
8332 GEN6_RP_MEDIA_HW_MODE |
8333 GEN6_RP_MEDIA_IS_GFX |
8334 GEN6_RP_ENABLE |
8335 GEN6_RP_UP_BUSY_AVG |
8336 GEN6_RP_DOWN_IDLE_CONT);
8337
8338 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8339 500))
8340 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8341
8342 I915_WRITE(GEN6_PCODE_DATA, 0);
8343 I915_WRITE(GEN6_PCODE_MAILBOX,
8344 GEN6_PCODE_READY |
8345 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8346 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8347 500))
8348 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8349
8350 min_freq = (rp_state_cap & 0xff0000) >> 16;
8351 max_freq = rp_state_cap & 0xff;
8352 cur_freq = (gt_perf_status & 0xff00) >> 8;
8353
8354 /* Check for overclock support */
8355 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8356 500))
8357 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8358 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8359 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8360 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8361 500))
8362 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8363 if (pcu_mbox & (1<<31)) { /* OC supported */
8364 max_freq = pcu_mbox & 0xff;
8365 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8366 }
8367
8368 /* In units of 100MHz */
8369 dev_priv->max_delay = max_freq;
8370 dev_priv->min_delay = min_freq;
8371 dev_priv->cur_delay = cur_freq;
8372
8373 /* requires MSI enabled */
8374 I915_WRITE(GEN6_PMIER,
8375 GEN6_PM_MBOX_EVENT |
8376 GEN6_PM_THERMAL_EVENT |
8377 GEN6_PM_RP_DOWN_TIMEOUT |
8378 GEN6_PM_RP_UP_THRESHOLD |
8379 GEN6_PM_RP_DOWN_THRESHOLD |
8380 GEN6_PM_RP_UP_EI_EXPIRED |
8381 GEN6_PM_RP_DOWN_EI_EXPIRED);
8382 spin_lock_irq(&dev_priv->rps_lock);
8383 WARN_ON(dev_priv->pm_iir != 0);
8384 I915_WRITE(GEN6_PMIMR, 0);
8385 spin_unlock_irq(&dev_priv->rps_lock);
8386 /* enable all PM interrupts */
8387 I915_WRITE(GEN6_PMINTRMSK, 0);
8388
8389 gen6_gt_force_wake_put(dev_priv);
8390 mutex_unlock(&dev_priv->dev->struct_mutex);
8391 }
8392
8393 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8394 {
8395 int min_freq = 15;
8396 int gpu_freq, ia_freq, max_ia_freq;
8397 int scaling_factor = 180;
8398
8399 max_ia_freq = cpufreq_quick_get_max(0);
8400 /*
8401 * Default to measured freq if none found, PCU will ensure we don't go
8402 * over
8403 */
8404 if (!max_ia_freq)
8405 max_ia_freq = tsc_khz;
8406
8407 /* Convert from kHz to MHz */
8408 max_ia_freq /= 1000;
8409
8410 mutex_lock(&dev_priv->dev->struct_mutex);
8411
8412 /*
8413 * For each potential GPU frequency, load a ring frequency we'd like
8414 * to use for memory access. We do this by specifying the IA frequency
8415 * the PCU should use as a reference to determine the ring frequency.
8416 */
8417 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8418 gpu_freq--) {
8419 int diff = dev_priv->max_delay - gpu_freq;
8420
8421 /*
8422 * For GPU frequencies less than 750MHz, just use the lowest
8423 * ring freq.
8424 */
8425 if (gpu_freq < min_freq)
8426 ia_freq = 800;
8427 else
8428 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8429 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8430
8431 I915_WRITE(GEN6_PCODE_DATA,
8432 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8433 gpu_freq);
8434 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8435 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8436 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8437 GEN6_PCODE_READY) == 0, 10)) {
8438 DRM_ERROR("pcode write of freq table timed out\n");
8439 continue;
8440 }
8441 }
8442
8443 mutex_unlock(&dev_priv->dev->struct_mutex);
8444 }
8445
8446 static void ironlake_init_clock_gating(struct drm_device *dev)
8447 {
8448 struct drm_i915_private *dev_priv = dev->dev_private;
8449 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8450
8451 /* Required for FBC */
8452 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8453 DPFCRUNIT_CLOCK_GATE_DISABLE |
8454 DPFDUNIT_CLOCK_GATE_DISABLE;
8455 /* Required for CxSR */
8456 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8457
8458 I915_WRITE(PCH_3DCGDIS0,
8459 MARIUNIT_CLOCK_GATE_DISABLE |
8460 SVSMUNIT_CLOCK_GATE_DISABLE);
8461 I915_WRITE(PCH_3DCGDIS1,
8462 VFMUNIT_CLOCK_GATE_DISABLE);
8463
8464 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8465
8466 /*
8467 * According to the spec the following bits should be set in
8468 * order to enable memory self-refresh
8469 * The bit 22/21 of 0x42004
8470 * The bit 5 of 0x42020
8471 * The bit 15 of 0x45000
8472 */
8473 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8474 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8475 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8476 I915_WRITE(ILK_DSPCLK_GATE,
8477 (I915_READ(ILK_DSPCLK_GATE) |
8478 ILK_DPARB_CLK_GATE));
8479 I915_WRITE(DISP_ARB_CTL,
8480 (I915_READ(DISP_ARB_CTL) |
8481 DISP_FBC_WM_DIS));
8482 I915_WRITE(WM3_LP_ILK, 0);
8483 I915_WRITE(WM2_LP_ILK, 0);
8484 I915_WRITE(WM1_LP_ILK, 0);
8485
8486 /*
8487 * Based on the document from hardware guys the following bits
8488 * should be set unconditionally in order to enable FBC.
8489 * The bit 22 of 0x42000
8490 * The bit 22 of 0x42004
8491 * The bit 7,8,9 of 0x42020.
8492 */
8493 if (IS_IRONLAKE_M(dev)) {
8494 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8495 I915_READ(ILK_DISPLAY_CHICKEN1) |
8496 ILK_FBCQ_DIS);
8497 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8498 I915_READ(ILK_DISPLAY_CHICKEN2) |
8499 ILK_DPARB_GATE);
8500 I915_WRITE(ILK_DSPCLK_GATE,
8501 I915_READ(ILK_DSPCLK_GATE) |
8502 ILK_DPFC_DIS1 |
8503 ILK_DPFC_DIS2 |
8504 ILK_CLK_FBC);
8505 }
8506
8507 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8508 I915_READ(ILK_DISPLAY_CHICKEN2) |
8509 ILK_ELPIN_409_SELECT);
8510 I915_WRITE(_3D_CHICKEN2,
8511 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8512 _3D_CHICKEN2_WM_READ_PIPELINED);
8513 }
8514
8515 static void gen6_init_clock_gating(struct drm_device *dev)
8516 {
8517 struct drm_i915_private *dev_priv = dev->dev_private;
8518 int pipe;
8519 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8520
8521 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8522
8523 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8524 I915_READ(ILK_DISPLAY_CHICKEN2) |
8525 ILK_ELPIN_409_SELECT);
8526
8527 I915_WRITE(WM3_LP_ILK, 0);
8528 I915_WRITE(WM2_LP_ILK, 0);
8529 I915_WRITE(WM1_LP_ILK, 0);
8530
8531 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8532 * gating disable must be set. Failure to set it results in
8533 * flickering pixels due to Z write ordering failures after
8534 * some amount of runtime in the Mesa "fire" demo, and Unigine
8535 * Sanctuary and Tropics, and apparently anything else with
8536 * alpha test or pixel discard.
8537 *
8538 * According to the spec, bit 11 (RCCUNIT) must also be set,
8539 * but we didn't debug actual testcases to find it out.
8540 */
8541 I915_WRITE(GEN6_UCGCTL2,
8542 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8543 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8544
8545 /*
8546 * According to the spec the following bits should be
8547 * set in order to enable memory self-refresh and fbc:
8548 * The bit21 and bit22 of 0x42000
8549 * The bit21 and bit22 of 0x42004
8550 * The bit5 and bit7 of 0x42020
8551 * The bit14 of 0x70180
8552 * The bit14 of 0x71180
8553 */
8554 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8555 I915_READ(ILK_DISPLAY_CHICKEN1) |
8556 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8557 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8558 I915_READ(ILK_DISPLAY_CHICKEN2) |
8559 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8560 I915_WRITE(ILK_DSPCLK_GATE,
8561 I915_READ(ILK_DSPCLK_GATE) |
8562 ILK_DPARB_CLK_GATE |
8563 ILK_DPFD_CLK_GATE);
8564
8565 for_each_pipe(pipe) {
8566 I915_WRITE(DSPCNTR(pipe),
8567 I915_READ(DSPCNTR(pipe)) |
8568 DISPPLANE_TRICKLE_FEED_DISABLE);
8569 intel_flush_display_plane(dev_priv, pipe);
8570 }
8571 }
8572
8573 static void ivybridge_init_clock_gating(struct drm_device *dev)
8574 {
8575 struct drm_i915_private *dev_priv = dev->dev_private;
8576 int pipe;
8577 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8578
8579 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8580
8581 I915_WRITE(WM3_LP_ILK, 0);
8582 I915_WRITE(WM2_LP_ILK, 0);
8583 I915_WRITE(WM1_LP_ILK, 0);
8584
8585 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8586 * This implements the WaDisableRCZUnitClockGating workaround.
8587 */
8588 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8589
8590 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8591
8592 I915_WRITE(IVB_CHICKEN3,
8593 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8594 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8595
8596 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8597 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8598 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8599
8600 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8601 I915_WRITE(GEN7_L3CNTLREG1,
8602 GEN7_WA_FOR_GEN7_L3_CONTROL);
8603 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8604 GEN7_WA_L3_CHICKEN_MODE);
8605
8606 /* This is required by WaCatErrorRejectionIssue */
8607 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8608 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8609 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8610
8611 for_each_pipe(pipe) {
8612 I915_WRITE(DSPCNTR(pipe),
8613 I915_READ(DSPCNTR(pipe)) |
8614 DISPPLANE_TRICKLE_FEED_DISABLE);
8615 intel_flush_display_plane(dev_priv, pipe);
8616 }
8617 }
8618
8619 static void g4x_init_clock_gating(struct drm_device *dev)
8620 {
8621 struct drm_i915_private *dev_priv = dev->dev_private;
8622 uint32_t dspclk_gate;
8623
8624 I915_WRITE(RENCLK_GATE_D1, 0);
8625 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8626 GS_UNIT_CLOCK_GATE_DISABLE |
8627 CL_UNIT_CLOCK_GATE_DISABLE);
8628 I915_WRITE(RAMCLK_GATE_D, 0);
8629 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8630 OVRUNIT_CLOCK_GATE_DISABLE |
8631 OVCUNIT_CLOCK_GATE_DISABLE;
8632 if (IS_GM45(dev))
8633 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8634 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8635 }
8636
8637 static void crestline_init_clock_gating(struct drm_device *dev)
8638 {
8639 struct drm_i915_private *dev_priv = dev->dev_private;
8640
8641 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8642 I915_WRITE(RENCLK_GATE_D2, 0);
8643 I915_WRITE(DSPCLK_GATE_D, 0);
8644 I915_WRITE(RAMCLK_GATE_D, 0);
8645 I915_WRITE16(DEUC, 0);
8646 }
8647
8648 static void broadwater_init_clock_gating(struct drm_device *dev)
8649 {
8650 struct drm_i915_private *dev_priv = dev->dev_private;
8651
8652 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8653 I965_RCC_CLOCK_GATE_DISABLE |
8654 I965_RCPB_CLOCK_GATE_DISABLE |
8655 I965_ISC_CLOCK_GATE_DISABLE |
8656 I965_FBC_CLOCK_GATE_DISABLE);
8657 I915_WRITE(RENCLK_GATE_D2, 0);
8658 }
8659
8660 static void gen3_init_clock_gating(struct drm_device *dev)
8661 {
8662 struct drm_i915_private *dev_priv = dev->dev_private;
8663 u32 dstate = I915_READ(D_STATE);
8664
8665 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8666 DSTATE_DOT_CLOCK_GATING;
8667 I915_WRITE(D_STATE, dstate);
8668 }
8669
8670 static void i85x_init_clock_gating(struct drm_device *dev)
8671 {
8672 struct drm_i915_private *dev_priv = dev->dev_private;
8673
8674 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8675 }
8676
8677 static void i830_init_clock_gating(struct drm_device *dev)
8678 {
8679 struct drm_i915_private *dev_priv = dev->dev_private;
8680
8681 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8682 }
8683
8684 static void ibx_init_clock_gating(struct drm_device *dev)
8685 {
8686 struct drm_i915_private *dev_priv = dev->dev_private;
8687
8688 /*
8689 * On Ibex Peak and Cougar Point, we need to disable clock
8690 * gating for the panel power sequencer or it will fail to
8691 * start up when no ports are active.
8692 */
8693 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8694 }
8695
8696 static void cpt_init_clock_gating(struct drm_device *dev)
8697 {
8698 struct drm_i915_private *dev_priv = dev->dev_private;
8699 int pipe;
8700
8701 /*
8702 * On Ibex Peak and Cougar Point, we need to disable clock
8703 * gating for the panel power sequencer or it will fail to
8704 * start up when no ports are active.
8705 */
8706 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8707 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8708 DPLS_EDP_PPS_FIX_DIS);
8709 /* Without this, mode sets may fail silently on FDI */
8710 for_each_pipe(pipe)
8711 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8712 }
8713
8714 static void ironlake_teardown_rc6(struct drm_device *dev)
8715 {
8716 struct drm_i915_private *dev_priv = dev->dev_private;
8717
8718 if (dev_priv->renderctx) {
8719 i915_gem_object_unpin(dev_priv->renderctx);
8720 drm_gem_object_unreference(&dev_priv->renderctx->base);
8721 dev_priv->renderctx = NULL;
8722 }
8723
8724 if (dev_priv->pwrctx) {
8725 i915_gem_object_unpin(dev_priv->pwrctx);
8726 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8727 dev_priv->pwrctx = NULL;
8728 }
8729 }
8730
8731 static void ironlake_disable_rc6(struct drm_device *dev)
8732 {
8733 struct drm_i915_private *dev_priv = dev->dev_private;
8734
8735 if (I915_READ(PWRCTXA)) {
8736 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8737 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8738 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8739 50);
8740
8741 I915_WRITE(PWRCTXA, 0);
8742 POSTING_READ(PWRCTXA);
8743
8744 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8745 POSTING_READ(RSTDBYCTL);
8746 }
8747
8748 ironlake_teardown_rc6(dev);
8749 }
8750
8751 static int ironlake_setup_rc6(struct drm_device *dev)
8752 {
8753 struct drm_i915_private *dev_priv = dev->dev_private;
8754
8755 if (dev_priv->renderctx == NULL)
8756 dev_priv->renderctx = intel_alloc_context_page(dev);
8757 if (!dev_priv->renderctx)
8758 return -ENOMEM;
8759
8760 if (dev_priv->pwrctx == NULL)
8761 dev_priv->pwrctx = intel_alloc_context_page(dev);
8762 if (!dev_priv->pwrctx) {
8763 ironlake_teardown_rc6(dev);
8764 return -ENOMEM;
8765 }
8766
8767 return 0;
8768 }
8769
8770 void ironlake_enable_rc6(struct drm_device *dev)
8771 {
8772 struct drm_i915_private *dev_priv = dev->dev_private;
8773 int ret;
8774
8775 /* rc6 disabled by default due to repeated reports of hanging during
8776 * boot and resume.
8777 */
8778 if (!intel_enable_rc6(dev))
8779 return;
8780
8781 mutex_lock(&dev->struct_mutex);
8782 ret = ironlake_setup_rc6(dev);
8783 if (ret) {
8784 mutex_unlock(&dev->struct_mutex);
8785 return;
8786 }
8787
8788 /*
8789 * GPU can automatically power down the render unit if given a page
8790 * to save state.
8791 */
8792 ret = BEGIN_LP_RING(6);
8793 if (ret) {
8794 ironlake_teardown_rc6(dev);
8795 mutex_unlock(&dev->struct_mutex);
8796 return;
8797 }
8798
8799 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8800 OUT_RING(MI_SET_CONTEXT);
8801 OUT_RING(dev_priv->renderctx->gtt_offset |
8802 MI_MM_SPACE_GTT |
8803 MI_SAVE_EXT_STATE_EN |
8804 MI_RESTORE_EXT_STATE_EN |
8805 MI_RESTORE_INHIBIT);
8806 OUT_RING(MI_SUSPEND_FLUSH);
8807 OUT_RING(MI_NOOP);
8808 OUT_RING(MI_FLUSH);
8809 ADVANCE_LP_RING();
8810
8811 /*
8812 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8813 * does an implicit flush, combined with MI_FLUSH above, it should be
8814 * safe to assume that renderctx is valid
8815 */
8816 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8817 if (ret) {
8818 DRM_ERROR("failed to enable ironlake power power savings\n");
8819 ironlake_teardown_rc6(dev);
8820 mutex_unlock(&dev->struct_mutex);
8821 return;
8822 }
8823
8824 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8825 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8826 mutex_unlock(&dev->struct_mutex);
8827 }
8828
8829 void intel_init_clock_gating(struct drm_device *dev)
8830 {
8831 struct drm_i915_private *dev_priv = dev->dev_private;
8832
8833 dev_priv->display.init_clock_gating(dev);
8834
8835 if (dev_priv->display.init_pch_clock_gating)
8836 dev_priv->display.init_pch_clock_gating(dev);
8837 }
8838
8839 /* Set up chip specific display functions */
8840 static void intel_init_display(struct drm_device *dev)
8841 {
8842 struct drm_i915_private *dev_priv = dev->dev_private;
8843
8844 /* We always want a DPMS function */
8845 if (HAS_PCH_SPLIT(dev)) {
8846 dev_priv->display.dpms = ironlake_crtc_dpms;
8847 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8848 dev_priv->display.update_plane = ironlake_update_plane;
8849 } else {
8850 dev_priv->display.dpms = i9xx_crtc_dpms;
8851 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8852 dev_priv->display.update_plane = i9xx_update_plane;
8853 }
8854
8855 if (I915_HAS_FBC(dev)) {
8856 if (HAS_PCH_SPLIT(dev)) {
8857 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8858 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8859 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8860 } else if (IS_GM45(dev)) {
8861 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8862 dev_priv->display.enable_fbc = g4x_enable_fbc;
8863 dev_priv->display.disable_fbc = g4x_disable_fbc;
8864 } else if (IS_CRESTLINE(dev)) {
8865 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8866 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8867 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8868 }
8869 /* 855GM needs testing */
8870 }
8871
8872 /* Returns the core display clock speed */
8873 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8874 dev_priv->display.get_display_clock_speed =
8875 i945_get_display_clock_speed;
8876 else if (IS_I915G(dev))
8877 dev_priv->display.get_display_clock_speed =
8878 i915_get_display_clock_speed;
8879 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8880 dev_priv->display.get_display_clock_speed =
8881 i9xx_misc_get_display_clock_speed;
8882 else if (IS_I915GM(dev))
8883 dev_priv->display.get_display_clock_speed =
8884 i915gm_get_display_clock_speed;
8885 else if (IS_I865G(dev))
8886 dev_priv->display.get_display_clock_speed =
8887 i865_get_display_clock_speed;
8888 else if (IS_I85X(dev))
8889 dev_priv->display.get_display_clock_speed =
8890 i855_get_display_clock_speed;
8891 else /* 852, 830 */
8892 dev_priv->display.get_display_clock_speed =
8893 i830_get_display_clock_speed;
8894
8895 /* For FIFO watermark updates */
8896 if (HAS_PCH_SPLIT(dev)) {
8897 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8898 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8899
8900 /* IVB configs may use multi-threaded forcewake */
8901 if (IS_IVYBRIDGE(dev)) {
8902 u32 ecobus;
8903
8904 /* A small trick here - if the bios hasn't configured MT forcewake,
8905 * and if the device is in RC6, then force_wake_mt_get will not wake
8906 * the device and the ECOBUS read will return zero. Which will be
8907 * (correctly) interpreted by the test below as MT forcewake being
8908 * disabled.
8909 */
8910 mutex_lock(&dev->struct_mutex);
8911 __gen6_gt_force_wake_mt_get(dev_priv);
8912 ecobus = I915_READ_NOTRACE(ECOBUS);
8913 __gen6_gt_force_wake_mt_put(dev_priv);
8914 mutex_unlock(&dev->struct_mutex);
8915
8916 if (ecobus & FORCEWAKE_MT_ENABLE) {
8917 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8918 dev_priv->display.force_wake_get =
8919 __gen6_gt_force_wake_mt_get;
8920 dev_priv->display.force_wake_put =
8921 __gen6_gt_force_wake_mt_put;
8922 }
8923 }
8924
8925 if (HAS_PCH_IBX(dev))
8926 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8927 else if (HAS_PCH_CPT(dev))
8928 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8929
8930 if (IS_GEN5(dev)) {
8931 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8932 dev_priv->display.update_wm = ironlake_update_wm;
8933 else {
8934 DRM_DEBUG_KMS("Failed to get proper latency. "
8935 "Disable CxSR\n");
8936 dev_priv->display.update_wm = NULL;
8937 }
8938 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8939 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8940 dev_priv->display.write_eld = ironlake_write_eld;
8941 } else if (IS_GEN6(dev)) {
8942 if (SNB_READ_WM0_LATENCY()) {
8943 dev_priv->display.update_wm = sandybridge_update_wm;
8944 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8945 } else {
8946 DRM_DEBUG_KMS("Failed to read display plane latency. "
8947 "Disable CxSR\n");
8948 dev_priv->display.update_wm = NULL;
8949 }
8950 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8951 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8952 dev_priv->display.write_eld = ironlake_write_eld;
8953 } else if (IS_IVYBRIDGE(dev)) {
8954 /* FIXME: detect B0+ stepping and use auto training */
8955 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8956 if (SNB_READ_WM0_LATENCY()) {
8957 dev_priv->display.update_wm = sandybridge_update_wm;
8958 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8959 } else {
8960 DRM_DEBUG_KMS("Failed to read display plane latency. "
8961 "Disable CxSR\n");
8962 dev_priv->display.update_wm = NULL;
8963 }
8964 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8965 dev_priv->display.write_eld = ironlake_write_eld;
8966 } else
8967 dev_priv->display.update_wm = NULL;
8968 } else if (IS_PINEVIEW(dev)) {
8969 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8970 dev_priv->is_ddr3,
8971 dev_priv->fsb_freq,
8972 dev_priv->mem_freq)) {
8973 DRM_INFO("failed to find known CxSR latency "
8974 "(found ddr%s fsb freq %d, mem freq %d), "
8975 "disabling CxSR\n",
8976 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8977 dev_priv->fsb_freq, dev_priv->mem_freq);
8978 /* Disable CxSR and never update its watermark again */
8979 pineview_disable_cxsr(dev);
8980 dev_priv->display.update_wm = NULL;
8981 } else
8982 dev_priv->display.update_wm = pineview_update_wm;
8983 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8984 } else if (IS_G4X(dev)) {
8985 dev_priv->display.write_eld = g4x_write_eld;
8986 dev_priv->display.update_wm = g4x_update_wm;
8987 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8988 } else if (IS_GEN4(dev)) {
8989 dev_priv->display.update_wm = i965_update_wm;
8990 if (IS_CRESTLINE(dev))
8991 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8992 else if (IS_BROADWATER(dev))
8993 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8994 } else if (IS_GEN3(dev)) {
8995 dev_priv->display.update_wm = i9xx_update_wm;
8996 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8997 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8998 } else if (IS_I865G(dev)) {
8999 dev_priv->display.update_wm = i830_update_wm;
9000 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9001 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9002 } else if (IS_I85X(dev)) {
9003 dev_priv->display.update_wm = i9xx_update_wm;
9004 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9005 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9006 } else {
9007 dev_priv->display.update_wm = i830_update_wm;
9008 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9009 if (IS_845G(dev))
9010 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9011 else
9012 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9013 }
9014
9015 /* Default just returns -ENODEV to indicate unsupported */
9016 dev_priv->display.queue_flip = intel_default_queue_flip;
9017
9018 switch (INTEL_INFO(dev)->gen) {
9019 case 2:
9020 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9021 break;
9022
9023 case 3:
9024 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9025 break;
9026
9027 case 4:
9028 case 5:
9029 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9030 break;
9031
9032 case 6:
9033 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9034 break;
9035 case 7:
9036 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9037 break;
9038 }
9039 }
9040
9041 /*
9042 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9043 * resume, or other times. This quirk makes sure that's the case for
9044 * affected systems.
9045 */
9046 static void quirk_pipea_force(struct drm_device *dev)
9047 {
9048 struct drm_i915_private *dev_priv = dev->dev_private;
9049
9050 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9051 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
9052 }
9053
9054 /*
9055 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9056 */
9057 static void quirk_ssc_force_disable(struct drm_device *dev)
9058 {
9059 struct drm_i915_private *dev_priv = dev->dev_private;
9060 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9061 }
9062
9063 struct intel_quirk {
9064 int device;
9065 int subsystem_vendor;
9066 int subsystem_device;
9067 void (*hook)(struct drm_device *dev);
9068 };
9069
9070 struct intel_quirk intel_quirks[] = {
9071 /* HP Mini needs pipe A force quirk (LP: #322104) */
9072 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9073
9074 /* Thinkpad R31 needs pipe A force quirk */
9075 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9076 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9077 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9078
9079 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9080 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
9081 /* ThinkPad X40 needs pipe A force quirk */
9082
9083 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9084 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9085
9086 /* 855 & before need to leave pipe A & dpll A up */
9087 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9088 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9089
9090 /* Lenovo U160 cannot use SSC on LVDS */
9091 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9092
9093 /* Sony Vaio Y cannot use SSC on LVDS */
9094 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9095 };
9096
9097 static void intel_init_quirks(struct drm_device *dev)
9098 {
9099 struct pci_dev *d = dev->pdev;
9100 int i;
9101
9102 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9103 struct intel_quirk *q = &intel_quirks[i];
9104
9105 if (d->device == q->device &&
9106 (d->subsystem_vendor == q->subsystem_vendor ||
9107 q->subsystem_vendor == PCI_ANY_ID) &&
9108 (d->subsystem_device == q->subsystem_device ||
9109 q->subsystem_device == PCI_ANY_ID))
9110 q->hook(dev);
9111 }
9112 }
9113
9114 /* Disable the VGA plane that we never use */
9115 static void i915_disable_vga(struct drm_device *dev)
9116 {
9117 struct drm_i915_private *dev_priv = dev->dev_private;
9118 u8 sr1;
9119 u32 vga_reg;
9120
9121 if (HAS_PCH_SPLIT(dev))
9122 vga_reg = CPU_VGACNTRL;
9123 else
9124 vga_reg = VGACNTRL;
9125
9126 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9127 outb(1, VGA_SR_INDEX);
9128 sr1 = inb(VGA_SR_DATA);
9129 outb(sr1 | 1<<5, VGA_SR_DATA);
9130 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9131 udelay(300);
9132
9133 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9134 POSTING_READ(vga_reg);
9135 }
9136
9137 void intel_modeset_init(struct drm_device *dev)
9138 {
9139 struct drm_i915_private *dev_priv = dev->dev_private;
9140 int i, ret;
9141
9142 drm_mode_config_init(dev);
9143
9144 dev->mode_config.min_width = 0;
9145 dev->mode_config.min_height = 0;
9146
9147 dev->mode_config.preferred_depth = 24;
9148 dev->mode_config.prefer_shadow = 1;
9149
9150 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9151
9152 intel_init_quirks(dev);
9153
9154 intel_init_display(dev);
9155
9156 if (IS_GEN2(dev)) {
9157 dev->mode_config.max_width = 2048;
9158 dev->mode_config.max_height = 2048;
9159 } else if (IS_GEN3(dev)) {
9160 dev->mode_config.max_width = 4096;
9161 dev->mode_config.max_height = 4096;
9162 } else {
9163 dev->mode_config.max_width = 8192;
9164 dev->mode_config.max_height = 8192;
9165 }
9166 dev->mode_config.fb_base = dev->agp->base;
9167
9168 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9169 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9170
9171 for (i = 0; i < dev_priv->num_pipe; i++) {
9172 intel_crtc_init(dev, i);
9173 ret = intel_plane_init(dev, i);
9174 if (ret)
9175 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9176 }
9177
9178 /* Just disable it once at startup */
9179 i915_disable_vga(dev);
9180 intel_setup_outputs(dev);
9181
9182 intel_init_clock_gating(dev);
9183
9184 if (IS_IRONLAKE_M(dev)) {
9185 ironlake_enable_drps(dev);
9186 intel_init_emon(dev);
9187 }
9188
9189 if (IS_GEN6(dev) || IS_GEN7(dev)) {
9190 gen6_enable_rps(dev_priv);
9191 gen6_update_ring_freq(dev_priv);
9192 }
9193
9194 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9195 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9196 (unsigned long)dev);
9197 }
9198
9199 void intel_modeset_gem_init(struct drm_device *dev)
9200 {
9201 if (IS_IRONLAKE_M(dev))
9202 ironlake_enable_rc6(dev);
9203
9204 intel_setup_overlay(dev);
9205 }
9206
9207 void intel_modeset_cleanup(struct drm_device *dev)
9208 {
9209 struct drm_i915_private *dev_priv = dev->dev_private;
9210 struct drm_crtc *crtc;
9211 struct intel_crtc *intel_crtc;
9212
9213 drm_kms_helper_poll_fini(dev);
9214 mutex_lock(&dev->struct_mutex);
9215
9216 intel_unregister_dsm_handler();
9217
9218
9219 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9220 /* Skip inactive CRTCs */
9221 if (!crtc->fb)
9222 continue;
9223
9224 intel_crtc = to_intel_crtc(crtc);
9225 intel_increase_pllclock(crtc);
9226 }
9227
9228 intel_disable_fbc(dev);
9229
9230 if (IS_IRONLAKE_M(dev))
9231 ironlake_disable_drps(dev);
9232 if (IS_GEN6(dev) || IS_GEN7(dev))
9233 gen6_disable_rps(dev);
9234
9235 if (IS_IRONLAKE_M(dev))
9236 ironlake_disable_rc6(dev);
9237
9238 mutex_unlock(&dev->struct_mutex);
9239
9240 /* Disable the irq before mode object teardown, for the irq might
9241 * enqueue unpin/hotplug work. */
9242 drm_irq_uninstall(dev);
9243 cancel_work_sync(&dev_priv->hotplug_work);
9244 cancel_work_sync(&dev_priv->rps_work);
9245
9246 /* flush any delayed tasks or pending work */
9247 flush_scheduled_work();
9248
9249 /* Shut off idle work before the crtcs get freed. */
9250 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9251 intel_crtc = to_intel_crtc(crtc);
9252 del_timer_sync(&intel_crtc->idle_timer);
9253 }
9254 del_timer_sync(&dev_priv->idle_timer);
9255 cancel_work_sync(&dev_priv->idle_work);
9256
9257 drm_mode_config_cleanup(dev);
9258 }
9259
9260 /*
9261 * Return which encoder is currently attached for connector.
9262 */
9263 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9264 {
9265 return &intel_attached_encoder(connector)->base;
9266 }
9267
9268 void intel_connector_attach_encoder(struct intel_connector *connector,
9269 struct intel_encoder *encoder)
9270 {
9271 connector->encoder = encoder;
9272 drm_mode_connector_attach_encoder(&connector->base,
9273 &encoder->base);
9274 }
9275
9276 /*
9277 * set vga decode state - true == enable VGA decode
9278 */
9279 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9280 {
9281 struct drm_i915_private *dev_priv = dev->dev_private;
9282 u16 gmch_ctrl;
9283
9284 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9285 if (state)
9286 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9287 else
9288 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9289 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9290 return 0;
9291 }
9292
9293 #ifdef CONFIG_DEBUG_FS
9294 #include <linux/seq_file.h>
9295
9296 struct intel_display_error_state {
9297 struct intel_cursor_error_state {
9298 u32 control;
9299 u32 position;
9300 u32 base;
9301 u32 size;
9302 } cursor[2];
9303
9304 struct intel_pipe_error_state {
9305 u32 conf;
9306 u32 source;
9307
9308 u32 htotal;
9309 u32 hblank;
9310 u32 hsync;
9311 u32 vtotal;
9312 u32 vblank;
9313 u32 vsync;
9314 } pipe[2];
9315
9316 struct intel_plane_error_state {
9317 u32 control;
9318 u32 stride;
9319 u32 size;
9320 u32 pos;
9321 u32 addr;
9322 u32 surface;
9323 u32 tile_offset;
9324 } plane[2];
9325 };
9326
9327 struct intel_display_error_state *
9328 intel_display_capture_error_state(struct drm_device *dev)
9329 {
9330 drm_i915_private_t *dev_priv = dev->dev_private;
9331 struct intel_display_error_state *error;
9332 int i;
9333
9334 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9335 if (error == NULL)
9336 return NULL;
9337
9338 for (i = 0; i < 2; i++) {
9339 error->cursor[i].control = I915_READ(CURCNTR(i));
9340 error->cursor[i].position = I915_READ(CURPOS(i));
9341 error->cursor[i].base = I915_READ(CURBASE(i));
9342
9343 error->plane[i].control = I915_READ(DSPCNTR(i));
9344 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9345 error->plane[i].size = I915_READ(DSPSIZE(i));
9346 error->plane[i].pos = I915_READ(DSPPOS(i));
9347 error->plane[i].addr = I915_READ(DSPADDR(i));
9348 if (INTEL_INFO(dev)->gen >= 4) {
9349 error->plane[i].surface = I915_READ(DSPSURF(i));
9350 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9351 }
9352
9353 error->pipe[i].conf = I915_READ(PIPECONF(i));
9354 error->pipe[i].source = I915_READ(PIPESRC(i));
9355 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9356 error->pipe[i].hblank = I915_READ(HBLANK(i));
9357 error->pipe[i].hsync = I915_READ(HSYNC(i));
9358 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9359 error->pipe[i].vblank = I915_READ(VBLANK(i));
9360 error->pipe[i].vsync = I915_READ(VSYNC(i));
9361 }
9362
9363 return error;
9364 }
9365
9366 void
9367 intel_display_print_error_state(struct seq_file *m,
9368 struct drm_device *dev,
9369 struct intel_display_error_state *error)
9370 {
9371 int i;
9372
9373 for (i = 0; i < 2; i++) {
9374 seq_printf(m, "Pipe [%d]:\n", i);
9375 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9376 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9377 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9378 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9379 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9380 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9381 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9382 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9383
9384 seq_printf(m, "Plane [%d]:\n", i);
9385 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9386 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9387 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9388 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9389 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9390 if (INTEL_INFO(dev)->gen >= 4) {
9391 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9392 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9393 }
9394
9395 seq_printf(m, "Cursor [%d]:\n", i);
9396 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9397 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9398 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9399 }
9400 }
9401 #endif
This page took 0.224527 seconds and 4 git commands to generate.