drm/i915: Fix locking for intel_enable_pipe_a()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void intel_dp_set_m_n(struct intel_crtc *crtc);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103
104 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105 {
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110 }
111
112 typedef struct {
113 int min, max;
114 } intel_range_t;
115
116 typedef struct {
117 int dot_limit;
118 int p2_slow, p2_fast;
119 } intel_p2_t;
120
121 typedef struct intel_limit intel_limit_t;
122 struct intel_limit {
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
125 };
126
127 int
128 intel_pch_rawclk(struct drm_device *dev)
129 {
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135 }
136
137 static inline u32 /* units of 100MHz */
138 intel_fdi_link_freq(struct drm_device *dev)
139 {
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
145 }
146
147 static const intel_limit_t intel_limits_i8xx_dac = {
148 .dot = { .min = 25000, .max = 350000 },
149 .vco = { .min = 908000, .max = 1512000 },
150 .n = { .min = 2, .max = 16 },
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
158 };
159
160 static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
162 .vco = { .min = 908000, .max = 1512000 },
163 .n = { .min = 2, .max = 16 },
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_lvds = {
174 .dot = { .min = 25000, .max = 350000 },
175 .vco = { .min = 908000, .max = 1512000 },
176 .n = { .min = 2, .max = 16 },
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
184 };
185
186 static const intel_limit_t intel_limits_i9xx_sdvo = {
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_lvds = {
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
210 };
211
212
213 static const intel_limit_t intel_limits_g4x_sdvo = {
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
225 },
226 };
227
228 static const intel_limit_t intel_limits_g4x_hdmi = {
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
239 };
240
241 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
252 },
253 };
254
255 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
266 },
267 };
268
269 static const intel_limit_t intel_limits_pineview_sdvo = {
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
272 /* Pineview's Ncounter is a ring counter */
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
275 /* Pineview only has one combined m divider, which we treat as m2. */
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
282 };
283
284 static const intel_limit_t intel_limits_pineview_lvds = {
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
295 };
296
297 /* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
302 static const intel_limit_t intel_limits_ironlake_dac = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const intel_limit_t intel_limits_ironlake_single_lvds = {
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
339 };
340
341 /* LVDS 100mhz refclk limits. */
342 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
350 .p1 = { .min = 2, .max = 8 },
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
353 };
354
355 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
363 .p1 = { .min = 2, .max = 6 },
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
366 };
367
368 static const intel_limit_t intel_limits_vlv = {
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
376 .vco = { .min = 4000000, .max = 6000000 },
377 .n = { .min = 1, .max = 7 },
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
380 .p1 = { .min = 2, .max = 3 },
381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
382 };
383
384 static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398 };
399
400 static void vlv_clock(int refclk, intel_clock_t *clock)
401 {
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
408 }
409
410 /**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
413 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414 {
415 struct drm_device *dev = crtc->dev;
416 struct intel_encoder *encoder;
417
418 for_each_encoder_on_crtc(dev, crtc, encoder)
419 if (encoder->type == type)
420 return true;
421
422 return false;
423 }
424
425 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426 int refclk)
427 {
428 struct drm_device *dev = crtc->dev;
429 const intel_limit_t *limit;
430
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
432 if (intel_is_dual_link_lvds(dev)) {
433 if (refclk == 100000)
434 limit = &intel_limits_ironlake_dual_lvds_100m;
435 else
436 limit = &intel_limits_ironlake_dual_lvds;
437 } else {
438 if (refclk == 100000)
439 limit = &intel_limits_ironlake_single_lvds_100m;
440 else
441 limit = &intel_limits_ironlake_single_lvds;
442 }
443 } else
444 limit = &intel_limits_ironlake_dac;
445
446 return limit;
447 }
448
449 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450 {
451 struct drm_device *dev = crtc->dev;
452 const intel_limit_t *limit;
453
454 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
455 if (intel_is_dual_link_lvds(dev))
456 limit = &intel_limits_g4x_dual_channel_lvds;
457 else
458 limit = &intel_limits_g4x_single_channel_lvds;
459 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
461 limit = &intel_limits_g4x_hdmi;
462 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
463 limit = &intel_limits_g4x_sdvo;
464 } else /* The option is for other outputs */
465 limit = &intel_limits_i9xx_sdvo;
466
467 return limit;
468 }
469
470 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
471 {
472 struct drm_device *dev = crtc->dev;
473 const intel_limit_t *limit;
474
475 if (HAS_PCH_SPLIT(dev))
476 limit = intel_ironlake_limit(crtc, refclk);
477 else if (IS_G4X(dev)) {
478 limit = intel_g4x_limit(crtc);
479 } else if (IS_PINEVIEW(dev)) {
480 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
481 limit = &intel_limits_pineview_lvds;
482 else
483 limit = &intel_limits_pineview_sdvo;
484 } else if (IS_CHERRYVIEW(dev)) {
485 limit = &intel_limits_chv;
486 } else if (IS_VALLEYVIEW(dev)) {
487 limit = &intel_limits_vlv;
488 } else if (!IS_GEN2(dev)) {
489 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490 limit = &intel_limits_i9xx_lvds;
491 else
492 limit = &intel_limits_i9xx_sdvo;
493 } else {
494 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
495 limit = &intel_limits_i8xx_lvds;
496 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
497 limit = &intel_limits_i8xx_dvo;
498 else
499 limit = &intel_limits_i8xx_dac;
500 }
501 return limit;
502 }
503
504 /* m1 is reserved as 0 in Pineview, n is a ring counter */
505 static void pineview_clock(int refclk, intel_clock_t *clock)
506 {
507 clock->m = clock->m2 + 2;
508 clock->p = clock->p1 * clock->p2;
509 if (WARN_ON(clock->n == 0 || clock->p == 0))
510 return;
511 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
513 }
514
515 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516 {
517 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518 }
519
520 static void i9xx_clock(int refclk, intel_clock_t *clock)
521 {
522 clock->m = i9xx_dpll_compute_m(clock);
523 clock->p = clock->p1 * clock->p2;
524 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525 return;
526 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
528 }
529
530 static void chv_clock(int refclk, intel_clock_t *clock)
531 {
532 clock->m = clock->m1 * clock->m2;
533 clock->p = clock->p1 * clock->p2;
534 if (WARN_ON(clock->n == 0 || clock->p == 0))
535 return;
536 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537 clock->n << 22);
538 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539 }
540
541 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
542 /**
543 * Returns whether the given set of divisors are valid for a given refclk with
544 * the given connectors.
545 */
546
547 static bool intel_PLL_is_valid(struct drm_device *dev,
548 const intel_limit_t *limit,
549 const intel_clock_t *clock)
550 {
551 if (clock->n < limit->n.min || limit->n.max < clock->n)
552 INTELPllInvalid("n out of range\n");
553 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
554 INTELPllInvalid("p1 out of range\n");
555 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
556 INTELPllInvalid("m2 out of range\n");
557 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
558 INTELPllInvalid("m1 out of range\n");
559
560 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561 if (clock->m1 <= clock->m2)
562 INTELPllInvalid("m1 <= m2\n");
563
564 if (!IS_VALLEYVIEW(dev)) {
565 if (clock->p < limit->p.min || limit->p.max < clock->p)
566 INTELPllInvalid("p out of range\n");
567 if (clock->m < limit->m.min || limit->m.max < clock->m)
568 INTELPllInvalid("m out of range\n");
569 }
570
571 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
572 INTELPllInvalid("vco out of range\n");
573 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574 * connector, etc., rather than just a single range.
575 */
576 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
577 INTELPllInvalid("dot out of range\n");
578
579 return true;
580 }
581
582 static bool
583 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
584 int target, int refclk, intel_clock_t *match_clock,
585 intel_clock_t *best_clock)
586 {
587 struct drm_device *dev = crtc->dev;
588 intel_clock_t clock;
589 int err = target;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592 /*
593 * For LVDS just rely on its current settings for dual-channel.
594 * We haven't figured out how to reliably set up different
595 * single/dual channel state, if we even can.
596 */
597 if (intel_is_dual_link_lvds(dev))
598 clock.p2 = limit->p2.p2_fast;
599 else
600 clock.p2 = limit->p2.p2_slow;
601 } else {
602 if (target < limit->p2.dot_limit)
603 clock.p2 = limit->p2.p2_slow;
604 else
605 clock.p2 = limit->p2.p2_fast;
606 }
607
608 memset(best_clock, 0, sizeof(*best_clock));
609
610 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611 clock.m1++) {
612 for (clock.m2 = limit->m2.min;
613 clock.m2 <= limit->m2.max; clock.m2++) {
614 if (clock.m2 >= clock.m1)
615 break;
616 for (clock.n = limit->n.min;
617 clock.n <= limit->n.max; clock.n++) {
618 for (clock.p1 = limit->p1.min;
619 clock.p1 <= limit->p1.max; clock.p1++) {
620 int this_err;
621
622 i9xx_clock(refclk, &clock);
623 if (!intel_PLL_is_valid(dev, limit,
624 &clock))
625 continue;
626 if (match_clock &&
627 clock.p != match_clock->p)
628 continue;
629
630 this_err = abs(clock.dot - target);
631 if (this_err < err) {
632 *best_clock = clock;
633 err = this_err;
634 }
635 }
636 }
637 }
638 }
639
640 return (err != target);
641 }
642
643 static bool
644 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *match_clock,
646 intel_clock_t *best_clock)
647 {
648 struct drm_device *dev = crtc->dev;
649 intel_clock_t clock;
650 int err = target;
651
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 /*
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
657 */
658 if (intel_is_dual_link_lvds(dev))
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
669 memset(best_clock, 0, sizeof(*best_clock));
670
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
675 for (clock.n = limit->n.min;
676 clock.n <= limit->n.max; clock.n++) {
677 for (clock.p1 = limit->p1.min;
678 clock.p1 <= limit->p1.max; clock.p1++) {
679 int this_err;
680
681 pineview_clock(refclk, &clock);
682 if (!intel_PLL_is_valid(dev, limit,
683 &clock))
684 continue;
685 if (match_clock &&
686 clock.p != match_clock->p)
687 continue;
688
689 this_err = abs(clock.dot - target);
690 if (this_err < err) {
691 *best_clock = clock;
692 err = this_err;
693 }
694 }
695 }
696 }
697 }
698
699 return (err != target);
700 }
701
702 static bool
703 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704 int target, int refclk, intel_clock_t *match_clock,
705 intel_clock_t *best_clock)
706 {
707 struct drm_device *dev = crtc->dev;
708 intel_clock_t clock;
709 int max_n;
710 bool found;
711 /* approximately equals target * 0.00585 */
712 int err_most = (target >> 8) + (target >> 9);
713 found = false;
714
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
716 if (intel_is_dual_link_lvds(dev))
717 clock.p2 = limit->p2.p2_fast;
718 else
719 clock.p2 = limit->p2.p2_slow;
720 } else {
721 if (target < limit->p2.dot_limit)
722 clock.p2 = limit->p2.p2_slow;
723 else
724 clock.p2 = limit->p2.p2_fast;
725 }
726
727 memset(best_clock, 0, sizeof(*best_clock));
728 max_n = limit->n.max;
729 /* based on hardware requirement, prefer smaller n to precision */
730 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
731 /* based on hardware requirement, prefere larger m1,m2 */
732 for (clock.m1 = limit->m1.max;
733 clock.m1 >= limit->m1.min; clock.m1--) {
734 for (clock.m2 = limit->m2.max;
735 clock.m2 >= limit->m2.min; clock.m2--) {
736 for (clock.p1 = limit->p1.max;
737 clock.p1 >= limit->p1.min; clock.p1--) {
738 int this_err;
739
740 i9xx_clock(refclk, &clock);
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
743 continue;
744
745 this_err = abs(clock.dot - target);
746 if (this_err < err_most) {
747 *best_clock = clock;
748 err_most = this_err;
749 max_n = clock.n;
750 found = true;
751 }
752 }
753 }
754 }
755 }
756 return found;
757 }
758
759 static bool
760 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761 int target, int refclk, intel_clock_t *match_clock,
762 intel_clock_t *best_clock)
763 {
764 struct drm_device *dev = crtc->dev;
765 intel_clock_t clock;
766 unsigned int bestppm = 1000000;
767 /* min update 19.2 MHz */
768 int max_n = min(limit->n.max, refclk / 19200);
769 bool found = false;
770
771 target *= 5; /* fast clock */
772
773 memset(best_clock, 0, sizeof(*best_clock));
774
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
778 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
779 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
780 clock.p = clock.p1 * clock.p2;
781 /* based on hardware requirement, prefer bigger m1,m2 values */
782 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
783 unsigned int ppm, diff;
784
785 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786 refclk * clock.m1);
787
788 vlv_clock(refclk, &clock);
789
790 if (!intel_PLL_is_valid(dev, limit,
791 &clock))
792 continue;
793
794 diff = abs(clock.dot - target);
795 ppm = div_u64(1000000ULL * diff, target);
796
797 if (ppm < 100 && clock.p > best_clock->p) {
798 bestppm = 0;
799 *best_clock = clock;
800 found = true;
801 }
802
803 if (bestppm >= 10 && ppm < bestppm - 10) {
804 bestppm = ppm;
805 *best_clock = clock;
806 found = true;
807 }
808 }
809 }
810 }
811 }
812
813 return found;
814 }
815
816 static bool
817 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820 {
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
823 uint64_t m2;
824 int found = false;
825
826 memset(best_clock, 0, sizeof(*best_clock));
827
828 /*
829 * Based on hardware doc, the n always set to 1, and m1 always
830 * set to 2. If requires to support 200Mhz refclk, we need to
831 * revisit this because n may not 1 anymore.
832 */
833 clock.n = 1, clock.m1 = 2;
834 target *= 5; /* fast clock */
835
836 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837 for (clock.p2 = limit->p2.p2_fast;
838 clock.p2 >= limit->p2.p2_slow;
839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841 clock.p = clock.p1 * clock.p2;
842
843 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844 clock.n) << 22, refclk * clock.m1);
845
846 if (m2 > INT_MAX/clock.m1)
847 continue;
848
849 clock.m2 = m2;
850
851 chv_clock(refclk, &clock);
852
853 if (!intel_PLL_is_valid(dev, limit, &clock))
854 continue;
855
856 /* based on hardware requirement, prefer bigger p
857 */
858 if (clock.p > best_clock->p) {
859 *best_clock = clock;
860 found = true;
861 }
862 }
863 }
864
865 return found;
866 }
867
868 bool intel_crtc_active(struct drm_crtc *crtc)
869 {
870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872 /* Be paranoid as we can arrive here with only partial
873 * state retrieved from the hardware during setup.
874 *
875 * We can ditch the adjusted_mode.crtc_clock check as soon
876 * as Haswell has gained clock readout/fastboot support.
877 *
878 * We can ditch the crtc->primary->fb check as soon as we can
879 * properly reconstruct framebuffers.
880 */
881 return intel_crtc->active && crtc->primary->fb &&
882 intel_crtc->config.adjusted_mode.crtc_clock;
883 }
884
885 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887 {
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 return intel_crtc->config.cpu_transcoder;
892 }
893
894 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
895 {
896 struct drm_i915_private *dev_priv = dev->dev_private;
897 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902 WARN(1, "vblank wait timed out\n");
903 }
904
905 /**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914 {
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 int pipestat_reg = PIPESTAT(pipe);
917
918 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919 g4x_wait_for_vblank(dev, pipe);
920 return;
921 }
922
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939 /* Wait for vblank interrupt bit to set */
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944 }
945
946 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947 {
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 u32 reg = PIPEDSL(pipe);
950 u32 line1, line2;
951 u32 line_mask;
952
953 if (IS_GEN2(dev))
954 line_mask = DSL_LINEMASK_GEN2;
955 else
956 line_mask = DSL_LINEMASK_GEN3;
957
958 line1 = I915_READ(reg) & line_mask;
959 mdelay(5);
960 line2 = I915_READ(reg) & line_mask;
961
962 return line1 == line2;
963 }
964
965 /*
966 * intel_wait_for_pipe_off - wait for pipe to turn off
967 * @dev: drm device
968 * @pipe: pipe to wait for
969 *
970 * After disabling a pipe, we can't wait for vblank in the usual way,
971 * spinning on the vblank interrupt status bit, since we won't actually
972 * see an interrupt when the pipe is disabled.
973 *
974 * On Gen4 and above:
975 * wait for the pipe register state bit to turn off
976 *
977 * Otherwise:
978 * wait for the display line value to settle (it usually
979 * ends up stopping at the start of the next frame).
980 *
981 */
982 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
983 {
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986 pipe);
987
988 if (INTEL_INFO(dev)->gen >= 4) {
989 int reg = PIPECONF(cpu_transcoder);
990
991 /* Wait for the Pipe State to go off */
992 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993 100))
994 WARN(1, "pipe_off wait timed out\n");
995 } else {
996 /* Wait for the display line to settle */
997 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
998 WARN(1, "pipe_off wait timed out\n");
999 }
1000 }
1001
1002 /*
1003 * ibx_digital_port_connected - is the specified port connected?
1004 * @dev_priv: i915 private structure
1005 * @port: the port to test
1006 *
1007 * Returns true if @port is connected, false otherwise.
1008 */
1009 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010 struct intel_digital_port *port)
1011 {
1012 u32 bit;
1013
1014 if (HAS_PCH_IBX(dev_priv->dev)) {
1015 switch (port->port) {
1016 case PORT_B:
1017 bit = SDE_PORTB_HOTPLUG;
1018 break;
1019 case PORT_C:
1020 bit = SDE_PORTC_HOTPLUG;
1021 break;
1022 case PORT_D:
1023 bit = SDE_PORTD_HOTPLUG;
1024 break;
1025 default:
1026 return true;
1027 }
1028 } else {
1029 switch (port->port) {
1030 case PORT_B:
1031 bit = SDE_PORTB_HOTPLUG_CPT;
1032 break;
1033 case PORT_C:
1034 bit = SDE_PORTC_HOTPLUG_CPT;
1035 break;
1036 case PORT_D:
1037 bit = SDE_PORTD_HOTPLUG_CPT;
1038 break;
1039 default:
1040 return true;
1041 }
1042 }
1043
1044 return I915_READ(SDEISR) & bit;
1045 }
1046
1047 static const char *state_string(bool enabled)
1048 {
1049 return enabled ? "on" : "off";
1050 }
1051
1052 /* Only for pre-ILK configs */
1053 void assert_pll(struct drm_i915_private *dev_priv,
1054 enum pipe pipe, bool state)
1055 {
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DPLL(pipe);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DPLL_VCO_ENABLE);
1063 WARN(cur_state != state,
1064 "PLL state assertion failure (expected %s, current %s)\n",
1065 state_string(state), state_string(cur_state));
1066 }
1067
1068 /* XXX: the dsi pll is shared between MIPI DSI ports */
1069 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070 {
1071 u32 val;
1072 bool cur_state;
1073
1074 mutex_lock(&dev_priv->dpio_lock);
1075 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076 mutex_unlock(&dev_priv->dpio_lock);
1077
1078 cur_state = val & DSI_PLL_VCO_EN;
1079 WARN(cur_state != state,
1080 "DSI PLL state assertion failure (expected %s, current %s)\n",
1081 state_string(state), state_string(cur_state));
1082 }
1083 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
1086 struct intel_shared_dpll *
1087 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088 {
1089 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
1091 if (crtc->config.shared_dpll < 0)
1092 return NULL;
1093
1094 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1095 }
1096
1097 /* For ILK+ */
1098 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099 struct intel_shared_dpll *pll,
1100 bool state)
1101 {
1102 bool cur_state;
1103 struct intel_dpll_hw_state hw_state;
1104
1105 if (WARN (!pll,
1106 "asserting DPLL %s with no DPLL\n", state_string(state)))
1107 return;
1108
1109 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1110 WARN(cur_state != state,
1111 "%s assertion failure (expected %s, current %s)\n",
1112 pll->name, state_string(state), state_string(cur_state));
1113 }
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117 {
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
1123
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160 {
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
1165 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1166 return;
1167
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv->dev))
1170 return;
1171
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 int reg;
1181 u32 val;
1182 bool cur_state;
1183
1184 reg = FDI_RX_CTL(pipe);
1185 val = I915_READ(reg);
1186 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187 WARN(cur_state != state,
1188 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189 state_string(state), state_string(cur_state));
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194 {
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
1198 bool locked = true;
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
1218 pipe_name(pipe));
1219 }
1220
1221 static void assert_cursor(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
1223 {
1224 struct drm_device *dev = dev_priv->dev;
1225 bool cur_state;
1226
1227 if (IS_845G(dev) || IS_I865G(dev))
1228 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1229 else
1230 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1231
1232 WARN(cur_state != state,
1233 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234 pipe_name(pipe), state_string(state), state_string(cur_state));
1235 }
1236 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
1239 void assert_pipe(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 int reg;
1243 u32 val;
1244 bool cur_state;
1245 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246 pipe);
1247
1248 /* if we need the pipe A quirk it must be always on */
1249 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250 state = true;
1251
1252 if (!intel_display_power_enabled(dev_priv,
1253 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1254 cur_state = false;
1255 } else {
1256 reg = PIPECONF(cpu_transcoder);
1257 val = I915_READ(reg);
1258 cur_state = !!(val & PIPECONF_ENABLE);
1259 }
1260
1261 WARN(cur_state != state,
1262 "pipe %c assertion failure (expected %s, current %s)\n",
1263 pipe_name(pipe), state_string(state), state_string(cur_state));
1264 }
1265
1266 static void assert_plane(struct drm_i915_private *dev_priv,
1267 enum plane plane, bool state)
1268 {
1269 int reg;
1270 u32 val;
1271 bool cur_state;
1272
1273 reg = DSPCNTR(plane);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276 WARN(cur_state != state,
1277 "plane %c assertion failure (expected %s, current %s)\n",
1278 plane_name(plane), state_string(state), state_string(cur_state));
1279 }
1280
1281 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
1284 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286 {
1287 struct drm_device *dev = dev_priv->dev;
1288 int reg, i;
1289 u32 val;
1290 int cur_pipe;
1291
1292 /* Primary planes are fixed to pipes on gen4+ */
1293 if (INTEL_INFO(dev)->gen >= 4) {
1294 reg = DSPCNTR(pipe);
1295 val = I915_READ(reg);
1296 WARN(val & DISPLAY_PLANE_ENABLE,
1297 "plane %c assertion failure, should be disabled but not\n",
1298 plane_name(pipe));
1299 return;
1300 }
1301
1302 /* Need to check both planes against the pipe */
1303 for_each_pipe(i) {
1304 reg = DSPCNTR(i);
1305 val = I915_READ(reg);
1306 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307 DISPPLANE_SEL_PIPE_SHIFT;
1308 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1309 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310 plane_name(i), pipe_name(pipe));
1311 }
1312 }
1313
1314 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315 enum pipe pipe)
1316 {
1317 struct drm_device *dev = dev_priv->dev;
1318 int reg, sprite;
1319 u32 val;
1320
1321 if (IS_VALLEYVIEW(dev)) {
1322 for_each_sprite(pipe, sprite) {
1323 reg = SPCNTR(pipe, sprite);
1324 val = I915_READ(reg);
1325 WARN(val & SP_ENABLE,
1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1327 sprite_name(pipe, sprite), pipe_name(pipe));
1328 }
1329 } else if (INTEL_INFO(dev)->gen >= 7) {
1330 reg = SPRCTL(pipe);
1331 val = I915_READ(reg);
1332 WARN(val & SPRITE_ENABLE,
1333 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1334 plane_name(pipe), pipe_name(pipe));
1335 } else if (INTEL_INFO(dev)->gen >= 5) {
1336 reg = DVSCNTR(pipe);
1337 val = I915_READ(reg);
1338 WARN(val & DVS_ENABLE,
1339 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1340 plane_name(pipe), pipe_name(pipe));
1341 }
1342 }
1343
1344 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1345 {
1346 u32 val;
1347 bool enabled;
1348
1349 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1350
1351 val = I915_READ(PCH_DREF_CONTROL);
1352 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353 DREF_SUPERSPREAD_SOURCE_MASK));
1354 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355 }
1356
1357 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
1359 {
1360 int reg;
1361 u32 val;
1362 bool enabled;
1363
1364 reg = PCH_TRANSCONF(pipe);
1365 val = I915_READ(reg);
1366 enabled = !!(val & TRANS_ENABLE);
1367 WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv->dev)) {
1379 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382 return false;
1383 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385 return false;
1386 } else {
1387 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388 return false;
1389 }
1390 return true;
1391 }
1392
1393 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe, u32 val)
1395 {
1396 if ((val & SDVO_ENABLE) == 0)
1397 return false;
1398
1399 if (HAS_PCH_CPT(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1401 return false;
1402 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404 return false;
1405 } else {
1406 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1407 return false;
1408 }
1409 return true;
1410 }
1411
1412 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe, u32 val)
1414 {
1415 if ((val & LVDS_PORT_EN) == 0)
1416 return false;
1417
1418 if (HAS_PCH_CPT(dev_priv->dev)) {
1419 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420 return false;
1421 } else {
1422 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423 return false;
1424 }
1425 return true;
1426 }
1427
1428 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429 enum pipe pipe, u32 val)
1430 {
1431 if ((val & ADPA_DAC_ENABLE) == 0)
1432 return false;
1433 if (HAS_PCH_CPT(dev_priv->dev)) {
1434 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435 return false;
1436 } else {
1437 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438 return false;
1439 }
1440 return true;
1441 }
1442
1443 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1444 enum pipe pipe, int reg, u32 port_sel)
1445 {
1446 u32 val = I915_READ(reg);
1447 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449 reg, pipe_name(pipe));
1450
1451 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
1453 "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, int reg)
1458 {
1459 u32 val = I915_READ(reg);
1460 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462 reg, pipe_name(pipe));
1463
1464 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1465 && (val & SDVO_PIPE_B_SELECT),
1466 "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471 {
1472 int reg;
1473 u32 val;
1474
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1478
1479 reg = PCH_ADPA;
1480 val = I915_READ(reg);
1481 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1482 "PCH VGA enabled on transcoder %c, should be disabled\n",
1483 pipe_name(pipe));
1484
1485 reg = PCH_LVDS;
1486 val = I915_READ(reg);
1487 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1488 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1489 pipe_name(pipe));
1490
1491 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1494 }
1495
1496 static void intel_init_dpio(struct drm_device *dev)
1497 {
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500 if (!IS_VALLEYVIEW(dev))
1501 return;
1502
1503 /*
1504 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505 * CHV x1 PHY (DP/HDMI D)
1506 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507 */
1508 if (IS_CHERRYVIEW(dev)) {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511 } else {
1512 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513 }
1514 }
1515
1516 static void intel_reset_dpio(struct drm_device *dev)
1517 {
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520 if (IS_CHERRYVIEW(dev)) {
1521 enum dpio_phy phy;
1522 u32 val;
1523
1524 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525 /* Poll for phypwrgood signal */
1526 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527 PHY_POWERGOOD(phy), 1))
1528 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530 /*
1531 * Deassert common lane reset for PHY.
1532 *
1533 * This should only be done on init and resume from S3
1534 * with both PLLs disabled, or we risk losing DPIO and
1535 * PLL synchronization.
1536 */
1537 val = I915_READ(DISPLAY_PHY_CONTROL);
1538 I915_WRITE(DISPLAY_PHY_CONTROL,
1539 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540 }
1541 }
1542 }
1543
1544 static void vlv_enable_pll(struct intel_crtc *crtc)
1545 {
1546 struct drm_device *dev = crtc->base.dev;
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 int reg = DPLL(crtc->pipe);
1549 u32 dpll = crtc->config.dpll_hw_state.dpll;
1550
1551 assert_pipe_disabled(dev_priv, crtc->pipe);
1552
1553 /* No really, not for ILK+ */
1554 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1555
1556 /* PLL is protected by panel, make sure we can write it */
1557 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1558 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560 I915_WRITE(reg, dpll);
1561 POSTING_READ(reg);
1562 udelay(150);
1563
1564 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1565 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1566
1567 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1568 POSTING_READ(DPLL_MD(crtc->pipe));
1569
1570 /* We do this three times for luck */
1571 I915_WRITE(reg, dpll);
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
1574 I915_WRITE(reg, dpll);
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577 I915_WRITE(reg, dpll);
1578 POSTING_READ(reg);
1579 udelay(150); /* wait for warmup */
1580 }
1581
1582 static void chv_enable_pll(struct intel_crtc *crtc)
1583 {
1584 struct drm_device *dev = crtc->base.dev;
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 int pipe = crtc->pipe;
1587 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1588 u32 tmp;
1589
1590 assert_pipe_disabled(dev_priv, crtc->pipe);
1591
1592 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1593
1594 mutex_lock(&dev_priv->dpio_lock);
1595
1596 /* Enable back the 10bit clock to display controller */
1597 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1598 tmp |= DPIO_DCLKP_EN;
1599 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1600
1601 /*
1602 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1603 */
1604 udelay(1);
1605
1606 /* Enable PLL */
1607 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1608
1609 /* Check PLL is locked */
1610 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1611 DRM_ERROR("PLL %d failed to lock\n", pipe);
1612
1613 /* not sure when this should be written */
1614 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1615 POSTING_READ(DPLL_MD(pipe));
1616
1617 mutex_unlock(&dev_priv->dpio_lock);
1618 }
1619
1620 static void i9xx_enable_pll(struct intel_crtc *crtc)
1621 {
1622 struct drm_device *dev = crtc->base.dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 int reg = DPLL(crtc->pipe);
1625 u32 dpll = crtc->config.dpll_hw_state.dpll;
1626
1627 assert_pipe_disabled(dev_priv, crtc->pipe);
1628
1629 /* No really, not for ILK+ */
1630 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1631
1632 /* PLL is protected by panel, make sure we can write it */
1633 if (IS_MOBILE(dev) && !IS_I830(dev))
1634 assert_panel_unlocked(dev_priv, crtc->pipe);
1635
1636 I915_WRITE(reg, dpll);
1637
1638 /* Wait for the clocks to stabilize. */
1639 POSTING_READ(reg);
1640 udelay(150);
1641
1642 if (INTEL_INFO(dev)->gen >= 4) {
1643 I915_WRITE(DPLL_MD(crtc->pipe),
1644 crtc->config.dpll_hw_state.dpll_md);
1645 } else {
1646 /* The pixel multiplier can only be updated once the
1647 * DPLL is enabled and the clocks are stable.
1648 *
1649 * So write it again.
1650 */
1651 I915_WRITE(reg, dpll);
1652 }
1653
1654 /* We do this three times for luck */
1655 I915_WRITE(reg, dpll);
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 }
1665
1666 /**
1667 * i9xx_disable_pll - disable a PLL
1668 * @dev_priv: i915 private structure
1669 * @pipe: pipe PLL to disable
1670 *
1671 * Disable the PLL for @pipe, making sure the pipe is off first.
1672 *
1673 * Note! This is for pre-ILK only.
1674 */
1675 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677 /* Don't disable pipe A or pipe A PLLs if needed */
1678 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1679 return;
1680
1681 /* Make sure the pipe isn't still relying on us */
1682 assert_pipe_disabled(dev_priv, pipe);
1683
1684 I915_WRITE(DPLL(pipe), 0);
1685 POSTING_READ(DPLL(pipe));
1686 }
1687
1688 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1689 {
1690 u32 val = 0;
1691
1692 /* Make sure the pipe isn't still relying on us */
1693 assert_pipe_disabled(dev_priv, pipe);
1694
1695 /*
1696 * Leave integrated clock source and reference clock enabled for pipe B.
1697 * The latter is needed for VGA hotplug / manual detection.
1698 */
1699 if (pipe == PIPE_B)
1700 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1701 I915_WRITE(DPLL(pipe), val);
1702 POSTING_READ(DPLL(pipe));
1703
1704 }
1705
1706 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1707 {
1708 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1709 u32 val;
1710
1711 /* Make sure the pipe isn't still relying on us */
1712 assert_pipe_disabled(dev_priv, pipe);
1713
1714 /* Set PLL en = 0 */
1715 val = DPLL_SSC_REF_CLOCK_CHV;
1716 if (pipe != PIPE_A)
1717 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1718 I915_WRITE(DPLL(pipe), val);
1719 POSTING_READ(DPLL(pipe));
1720
1721 mutex_lock(&dev_priv->dpio_lock);
1722
1723 /* Disable 10bit clock to display controller */
1724 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1725 val &= ~DPIO_DCLKP_EN;
1726 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1727
1728 /* disable left/right clock distribution */
1729 if (pipe != PIPE_B) {
1730 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1731 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1732 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1733 } else {
1734 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1735 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1736 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1737 }
1738
1739 mutex_unlock(&dev_priv->dpio_lock);
1740 }
1741
1742 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1743 struct intel_digital_port *dport)
1744 {
1745 u32 port_mask;
1746 int dpll_reg;
1747
1748 switch (dport->port) {
1749 case PORT_B:
1750 port_mask = DPLL_PORTB_READY_MASK;
1751 dpll_reg = DPLL(0);
1752 break;
1753 case PORT_C:
1754 port_mask = DPLL_PORTC_READY_MASK;
1755 dpll_reg = DPLL(0);
1756 break;
1757 case PORT_D:
1758 port_mask = DPLL_PORTD_READY_MASK;
1759 dpll_reg = DPIO_PHY_STATUS;
1760 break;
1761 default:
1762 BUG();
1763 }
1764
1765 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1766 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1767 port_name(dport->port), I915_READ(dpll_reg));
1768 }
1769
1770 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1771 {
1772 struct drm_device *dev = crtc->base.dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776 if (WARN_ON(pll == NULL))
1777 return;
1778
1779 WARN_ON(!pll->refcount);
1780 if (pll->active == 0) {
1781 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1782 WARN_ON(pll->on);
1783 assert_shared_dpll_disabled(dev_priv, pll);
1784
1785 pll->mode_set(dev_priv, pll);
1786 }
1787 }
1788
1789 /**
1790 * intel_enable_shared_dpll - enable PCH PLL
1791 * @dev_priv: i915 private structure
1792 * @pipe: pipe PLL to enable
1793 *
1794 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1795 * drives the transcoder clock.
1796 */
1797 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1798 {
1799 struct drm_device *dev = crtc->base.dev;
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1802
1803 if (WARN_ON(pll == NULL))
1804 return;
1805
1806 if (WARN_ON(pll->refcount == 0))
1807 return;
1808
1809 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1810 pll->name, pll->active, pll->on,
1811 crtc->base.base.id);
1812
1813 if (pll->active++) {
1814 WARN_ON(!pll->on);
1815 assert_shared_dpll_enabled(dev_priv, pll);
1816 return;
1817 }
1818 WARN_ON(pll->on);
1819
1820 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1821
1822 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1823 pll->enable(dev_priv, pll);
1824 pll->on = true;
1825 }
1826
1827 void intel_disable_shared_dpll(struct intel_crtc *crtc)
1828 {
1829 struct drm_device *dev = crtc->base.dev;
1830 struct drm_i915_private *dev_priv = dev->dev_private;
1831 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1832
1833 /* PCH only available on ILK+ */
1834 BUG_ON(INTEL_INFO(dev)->gen < 5);
1835 if (WARN_ON(pll == NULL))
1836 return;
1837
1838 if (WARN_ON(pll->refcount == 0))
1839 return;
1840
1841 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1842 pll->name, pll->active, pll->on,
1843 crtc->base.base.id);
1844
1845 if (WARN_ON(pll->active == 0)) {
1846 assert_shared_dpll_disabled(dev_priv, pll);
1847 return;
1848 }
1849
1850 assert_shared_dpll_enabled(dev_priv, pll);
1851 WARN_ON(!pll->on);
1852 if (--pll->active)
1853 return;
1854
1855 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1856 pll->disable(dev_priv, pll);
1857 pll->on = false;
1858
1859 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1860 }
1861
1862 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1863 enum pipe pipe)
1864 {
1865 struct drm_device *dev = dev_priv->dev;
1866 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1868 uint32_t reg, val, pipeconf_val;
1869
1870 /* PCH only available on ILK+ */
1871 BUG_ON(INTEL_INFO(dev)->gen < 5);
1872
1873 /* Make sure PCH DPLL is enabled */
1874 assert_shared_dpll_enabled(dev_priv,
1875 intel_crtc_to_shared_dpll(intel_crtc));
1876
1877 /* FDI must be feeding us bits for PCH ports */
1878 assert_fdi_tx_enabled(dev_priv, pipe);
1879 assert_fdi_rx_enabled(dev_priv, pipe);
1880
1881 if (HAS_PCH_CPT(dev)) {
1882 /* Workaround: Set the timing override bit before enabling the
1883 * pch transcoder. */
1884 reg = TRANS_CHICKEN2(pipe);
1885 val = I915_READ(reg);
1886 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1887 I915_WRITE(reg, val);
1888 }
1889
1890 reg = PCH_TRANSCONF(pipe);
1891 val = I915_READ(reg);
1892 pipeconf_val = I915_READ(PIPECONF(pipe));
1893
1894 if (HAS_PCH_IBX(dev_priv->dev)) {
1895 /*
1896 * make the BPC in transcoder be consistent with
1897 * that in pipeconf reg.
1898 */
1899 val &= ~PIPECONF_BPC_MASK;
1900 val |= pipeconf_val & PIPECONF_BPC_MASK;
1901 }
1902
1903 val &= ~TRANS_INTERLACE_MASK;
1904 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1905 if (HAS_PCH_IBX(dev_priv->dev) &&
1906 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1907 val |= TRANS_LEGACY_INTERLACED_ILK;
1908 else
1909 val |= TRANS_INTERLACED;
1910 else
1911 val |= TRANS_PROGRESSIVE;
1912
1913 I915_WRITE(reg, val | TRANS_ENABLE);
1914 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1915 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1916 }
1917
1918 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1919 enum transcoder cpu_transcoder)
1920 {
1921 u32 val, pipeconf_val;
1922
1923 /* PCH only available on ILK+ */
1924 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1925
1926 /* FDI must be feeding us bits for PCH ports */
1927 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1928 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1929
1930 /* Workaround: set timing override bit. */
1931 val = I915_READ(_TRANSA_CHICKEN2);
1932 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1933 I915_WRITE(_TRANSA_CHICKEN2, val);
1934
1935 val = TRANS_ENABLE;
1936 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1937
1938 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1939 PIPECONF_INTERLACED_ILK)
1940 val |= TRANS_INTERLACED;
1941 else
1942 val |= TRANS_PROGRESSIVE;
1943
1944 I915_WRITE(LPT_TRANSCONF, val);
1945 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1946 DRM_ERROR("Failed to enable PCH transcoder\n");
1947 }
1948
1949 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1950 enum pipe pipe)
1951 {
1952 struct drm_device *dev = dev_priv->dev;
1953 uint32_t reg, val;
1954
1955 /* FDI relies on the transcoder */
1956 assert_fdi_tx_disabled(dev_priv, pipe);
1957 assert_fdi_rx_disabled(dev_priv, pipe);
1958
1959 /* Ports must be off as well */
1960 assert_pch_ports_disabled(dev_priv, pipe);
1961
1962 reg = PCH_TRANSCONF(pipe);
1963 val = I915_READ(reg);
1964 val &= ~TRANS_ENABLE;
1965 I915_WRITE(reg, val);
1966 /* wait for PCH transcoder off, transcoder state */
1967 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1968 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1969
1970 if (!HAS_PCH_IBX(dev)) {
1971 /* Workaround: Clear the timing override chicken bit again. */
1972 reg = TRANS_CHICKEN2(pipe);
1973 val = I915_READ(reg);
1974 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1975 I915_WRITE(reg, val);
1976 }
1977 }
1978
1979 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1980 {
1981 u32 val;
1982
1983 val = I915_READ(LPT_TRANSCONF);
1984 val &= ~TRANS_ENABLE;
1985 I915_WRITE(LPT_TRANSCONF, val);
1986 /* wait for PCH transcoder off, transcoder state */
1987 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1988 DRM_ERROR("Failed to disable PCH transcoder\n");
1989
1990 /* Workaround: clear timing override bit. */
1991 val = I915_READ(_TRANSA_CHICKEN2);
1992 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1993 I915_WRITE(_TRANSA_CHICKEN2, val);
1994 }
1995
1996 /**
1997 * intel_enable_pipe - enable a pipe, asserting requirements
1998 * @crtc: crtc responsible for the pipe
1999 *
2000 * Enable @crtc's pipe, making sure that various hardware specific requirements
2001 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2002 */
2003 static void intel_enable_pipe(struct intel_crtc *crtc)
2004 {
2005 struct drm_device *dev = crtc->base.dev;
2006 struct drm_i915_private *dev_priv = dev->dev_private;
2007 enum pipe pipe = crtc->pipe;
2008 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2009 pipe);
2010 enum pipe pch_transcoder;
2011 int reg;
2012 u32 val;
2013
2014 assert_planes_disabled(dev_priv, pipe);
2015 assert_cursor_disabled(dev_priv, pipe);
2016 assert_sprites_disabled(dev_priv, pipe);
2017
2018 if (HAS_PCH_LPT(dev_priv->dev))
2019 pch_transcoder = TRANSCODER_A;
2020 else
2021 pch_transcoder = pipe;
2022
2023 /*
2024 * A pipe without a PLL won't actually be able to drive bits from
2025 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2026 * need the check.
2027 */
2028 if (!HAS_PCH_SPLIT(dev_priv->dev))
2029 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2030 assert_dsi_pll_enabled(dev_priv);
2031 else
2032 assert_pll_enabled(dev_priv, pipe);
2033 else {
2034 if (crtc->config.has_pch_encoder) {
2035 /* if driving the PCH, we need FDI enabled */
2036 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2037 assert_fdi_tx_pll_enabled(dev_priv,
2038 (enum pipe) cpu_transcoder);
2039 }
2040 /* FIXME: assert CPU port conditions for SNB+ */
2041 }
2042
2043 reg = PIPECONF(cpu_transcoder);
2044 val = I915_READ(reg);
2045 if (val & PIPECONF_ENABLE) {
2046 WARN_ON(!(pipe == PIPE_A &&
2047 dev_priv->quirks & QUIRK_PIPEA_FORCE));
2048 return;
2049 }
2050
2051 I915_WRITE(reg, val | PIPECONF_ENABLE);
2052 POSTING_READ(reg);
2053 }
2054
2055 /**
2056 * intel_disable_pipe - disable a pipe, asserting requirements
2057 * @dev_priv: i915 private structure
2058 * @pipe: pipe to disable
2059 *
2060 * Disable @pipe, making sure that various hardware specific requirements
2061 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2062 *
2063 * @pipe should be %PIPE_A or %PIPE_B.
2064 *
2065 * Will wait until the pipe has shut down before returning.
2066 */
2067 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2068 enum pipe pipe)
2069 {
2070 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2071 pipe);
2072 int reg;
2073 u32 val;
2074
2075 /*
2076 * Make sure planes won't keep trying to pump pixels to us,
2077 * or we might hang the display.
2078 */
2079 assert_planes_disabled(dev_priv, pipe);
2080 assert_cursor_disabled(dev_priv, pipe);
2081 assert_sprites_disabled(dev_priv, pipe);
2082
2083 /* Don't disable pipe A or pipe A PLLs if needed */
2084 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2085 return;
2086
2087 reg = PIPECONF(cpu_transcoder);
2088 val = I915_READ(reg);
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
2092 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2093 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2094 }
2095
2096 /*
2097 * Plane regs are double buffered, going from enabled->disabled needs a
2098 * trigger in order to latch. The display address reg provides this.
2099 */
2100 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2101 enum plane plane)
2102 {
2103 struct drm_device *dev = dev_priv->dev;
2104 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2105
2106 I915_WRITE(reg, I915_READ(reg));
2107 POSTING_READ(reg);
2108 }
2109
2110 /**
2111 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2112 * @dev_priv: i915 private structure
2113 * @plane: plane to enable
2114 * @pipe: pipe being fed
2115 *
2116 * Enable @plane on @pipe, making sure that @pipe is running first.
2117 */
2118 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2119 enum plane plane, enum pipe pipe)
2120 {
2121 struct drm_device *dev = dev_priv->dev;
2122 struct intel_crtc *intel_crtc =
2123 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2124 int reg;
2125 u32 val;
2126
2127 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2128 assert_pipe_enabled(dev_priv, pipe);
2129
2130 if (intel_crtc->primary_enabled)
2131 return;
2132
2133 intel_crtc->primary_enabled = true;
2134
2135 reg = DSPCNTR(plane);
2136 val = I915_READ(reg);
2137 WARN_ON(val & DISPLAY_PLANE_ENABLE);
2138
2139 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2140 intel_flush_primary_plane(dev_priv, plane);
2141
2142 /*
2143 * BDW signals flip done immediately if the plane
2144 * is disabled, even if the plane enable is already
2145 * armed to occur at the next vblank :(
2146 */
2147 if (IS_BROADWELL(dev))
2148 intel_wait_for_vblank(dev, intel_crtc->pipe);
2149 }
2150
2151 /**
2152 * intel_disable_primary_hw_plane - disable the primary hardware plane
2153 * @dev_priv: i915 private structure
2154 * @plane: plane to disable
2155 * @pipe: pipe consuming the data
2156 *
2157 * Disable @plane; should be an independent operation.
2158 */
2159 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2160 enum plane plane, enum pipe pipe)
2161 {
2162 struct intel_crtc *intel_crtc =
2163 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2164 int reg;
2165 u32 val;
2166
2167 if (!intel_crtc->primary_enabled)
2168 return;
2169
2170 intel_crtc->primary_enabled = false;
2171
2172 reg = DSPCNTR(plane);
2173 val = I915_READ(reg);
2174 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2175
2176 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2177 intel_flush_primary_plane(dev_priv, plane);
2178 }
2179
2180 static bool need_vtd_wa(struct drm_device *dev)
2181 {
2182 #ifdef CONFIG_INTEL_IOMMU
2183 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2184 return true;
2185 #endif
2186 return false;
2187 }
2188
2189 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2190 {
2191 int tile_height;
2192
2193 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2194 return ALIGN(height, tile_height);
2195 }
2196
2197 int
2198 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2199 struct drm_i915_gem_object *obj,
2200 struct intel_engine_cs *pipelined)
2201 {
2202 struct drm_i915_private *dev_priv = dev->dev_private;
2203 u32 alignment;
2204 int ret;
2205
2206 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2207
2208 switch (obj->tiling_mode) {
2209 case I915_TILING_NONE:
2210 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2211 alignment = 128 * 1024;
2212 else if (INTEL_INFO(dev)->gen >= 4)
2213 alignment = 4 * 1024;
2214 else
2215 alignment = 64 * 1024;
2216 break;
2217 case I915_TILING_X:
2218 /* pin() will align the object as required by fence */
2219 alignment = 0;
2220 break;
2221 case I915_TILING_Y:
2222 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2223 return -EINVAL;
2224 default:
2225 BUG();
2226 }
2227
2228 /* Note that the w/a also requires 64 PTE of padding following the
2229 * bo. We currently fill all unused PTE with the shadow page and so
2230 * we should always have valid PTE following the scanout preventing
2231 * the VT-d warning.
2232 */
2233 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2234 alignment = 256 * 1024;
2235
2236 dev_priv->mm.interruptible = false;
2237 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2238 if (ret)
2239 goto err_interruptible;
2240
2241 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2242 * fence, whereas 965+ only requires a fence if using
2243 * framebuffer compression. For simplicity, we always install
2244 * a fence as the cost is not that onerous.
2245 */
2246 ret = i915_gem_object_get_fence(obj);
2247 if (ret)
2248 goto err_unpin;
2249
2250 i915_gem_object_pin_fence(obj);
2251
2252 dev_priv->mm.interruptible = true;
2253 return 0;
2254
2255 err_unpin:
2256 i915_gem_object_unpin_from_display_plane(obj);
2257 err_interruptible:
2258 dev_priv->mm.interruptible = true;
2259 return ret;
2260 }
2261
2262 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2263 {
2264 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2265
2266 i915_gem_object_unpin_fence(obj);
2267 i915_gem_object_unpin_from_display_plane(obj);
2268 }
2269
2270 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2271 * is assumed to be a power-of-two. */
2272 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2273 unsigned int tiling_mode,
2274 unsigned int cpp,
2275 unsigned int pitch)
2276 {
2277 if (tiling_mode != I915_TILING_NONE) {
2278 unsigned int tile_rows, tiles;
2279
2280 tile_rows = *y / 8;
2281 *y %= 8;
2282
2283 tiles = *x / (512/cpp);
2284 *x %= 512/cpp;
2285
2286 return tile_rows * pitch * 8 + tiles * 4096;
2287 } else {
2288 unsigned int offset;
2289
2290 offset = *y * pitch + *x * cpp;
2291 *y = 0;
2292 *x = (offset & 4095) / cpp;
2293 return offset & -4096;
2294 }
2295 }
2296
2297 int intel_format_to_fourcc(int format)
2298 {
2299 switch (format) {
2300 case DISPPLANE_8BPP:
2301 return DRM_FORMAT_C8;
2302 case DISPPLANE_BGRX555:
2303 return DRM_FORMAT_XRGB1555;
2304 case DISPPLANE_BGRX565:
2305 return DRM_FORMAT_RGB565;
2306 default:
2307 case DISPPLANE_BGRX888:
2308 return DRM_FORMAT_XRGB8888;
2309 case DISPPLANE_RGBX888:
2310 return DRM_FORMAT_XBGR8888;
2311 case DISPPLANE_BGRX101010:
2312 return DRM_FORMAT_XRGB2101010;
2313 case DISPPLANE_RGBX101010:
2314 return DRM_FORMAT_XBGR2101010;
2315 }
2316 }
2317
2318 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2319 struct intel_plane_config *plane_config)
2320 {
2321 struct drm_device *dev = crtc->base.dev;
2322 struct drm_i915_gem_object *obj = NULL;
2323 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2324 u32 base = plane_config->base;
2325
2326 if (plane_config->size == 0)
2327 return false;
2328
2329 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2330 plane_config->size);
2331 if (!obj)
2332 return false;
2333
2334 if (plane_config->tiled) {
2335 obj->tiling_mode = I915_TILING_X;
2336 obj->stride = crtc->base.primary->fb->pitches[0];
2337 }
2338
2339 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2340 mode_cmd.width = crtc->base.primary->fb->width;
2341 mode_cmd.height = crtc->base.primary->fb->height;
2342 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2343
2344 mutex_lock(&dev->struct_mutex);
2345
2346 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2347 &mode_cmd, obj)) {
2348 DRM_DEBUG_KMS("intel fb init failed\n");
2349 goto out_unref_obj;
2350 }
2351
2352 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2353 mutex_unlock(&dev->struct_mutex);
2354
2355 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2356 return true;
2357
2358 out_unref_obj:
2359 drm_gem_object_unreference(&obj->base);
2360 mutex_unlock(&dev->struct_mutex);
2361 return false;
2362 }
2363
2364 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2365 struct intel_plane_config *plane_config)
2366 {
2367 struct drm_device *dev = intel_crtc->base.dev;
2368 struct drm_crtc *c;
2369 struct intel_crtc *i;
2370 struct drm_i915_gem_object *obj;
2371
2372 if (!intel_crtc->base.primary->fb)
2373 return;
2374
2375 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2376 return;
2377
2378 kfree(intel_crtc->base.primary->fb);
2379 intel_crtc->base.primary->fb = NULL;
2380
2381 /*
2382 * Failed to alloc the obj, check to see if we should share
2383 * an fb with another CRTC instead
2384 */
2385 for_each_crtc(dev, c) {
2386 i = to_intel_crtc(c);
2387
2388 if (c == &intel_crtc->base)
2389 continue;
2390
2391 if (!i->active)
2392 continue;
2393
2394 obj = intel_fb_obj(c->primary->fb);
2395 if (obj == NULL)
2396 continue;
2397
2398 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2399 drm_framebuffer_reference(c->primary->fb);
2400 intel_crtc->base.primary->fb = c->primary->fb;
2401 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2402 break;
2403 }
2404 }
2405 }
2406
2407 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2408 struct drm_framebuffer *fb,
2409 int x, int y)
2410 {
2411 struct drm_device *dev = crtc->dev;
2412 struct drm_i915_private *dev_priv = dev->dev_private;
2413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2414 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2415 int plane = intel_crtc->plane;
2416 unsigned long linear_offset;
2417 u32 dspcntr;
2418 u32 reg;
2419
2420 reg = DSPCNTR(plane);
2421 dspcntr = I915_READ(reg);
2422 /* Mask out pixel format bits in case we change it */
2423 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2424 switch (fb->pixel_format) {
2425 case DRM_FORMAT_C8:
2426 dspcntr |= DISPPLANE_8BPP;
2427 break;
2428 case DRM_FORMAT_XRGB1555:
2429 case DRM_FORMAT_ARGB1555:
2430 dspcntr |= DISPPLANE_BGRX555;
2431 break;
2432 case DRM_FORMAT_RGB565:
2433 dspcntr |= DISPPLANE_BGRX565;
2434 break;
2435 case DRM_FORMAT_XRGB8888:
2436 case DRM_FORMAT_ARGB8888:
2437 dspcntr |= DISPPLANE_BGRX888;
2438 break;
2439 case DRM_FORMAT_XBGR8888:
2440 case DRM_FORMAT_ABGR8888:
2441 dspcntr |= DISPPLANE_RGBX888;
2442 break;
2443 case DRM_FORMAT_XRGB2101010:
2444 case DRM_FORMAT_ARGB2101010:
2445 dspcntr |= DISPPLANE_BGRX101010;
2446 break;
2447 case DRM_FORMAT_XBGR2101010:
2448 case DRM_FORMAT_ABGR2101010:
2449 dspcntr |= DISPPLANE_RGBX101010;
2450 break;
2451 default:
2452 BUG();
2453 }
2454
2455 if (INTEL_INFO(dev)->gen >= 4) {
2456 if (obj->tiling_mode != I915_TILING_NONE)
2457 dspcntr |= DISPPLANE_TILED;
2458 else
2459 dspcntr &= ~DISPPLANE_TILED;
2460 }
2461
2462 if (IS_G4X(dev))
2463 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2464
2465 I915_WRITE(reg, dspcntr);
2466
2467 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2468
2469 if (INTEL_INFO(dev)->gen >= 4) {
2470 intel_crtc->dspaddr_offset =
2471 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2472 fb->bits_per_pixel / 8,
2473 fb->pitches[0]);
2474 linear_offset -= intel_crtc->dspaddr_offset;
2475 } else {
2476 intel_crtc->dspaddr_offset = linear_offset;
2477 }
2478
2479 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2480 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2481 fb->pitches[0]);
2482 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2483 if (INTEL_INFO(dev)->gen >= 4) {
2484 I915_WRITE(DSPSURF(plane),
2485 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2486 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2487 I915_WRITE(DSPLINOFF(plane), linear_offset);
2488 } else
2489 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2490 POSTING_READ(reg);
2491 }
2492
2493 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2494 struct drm_framebuffer *fb,
2495 int x, int y)
2496 {
2497 struct drm_device *dev = crtc->dev;
2498 struct drm_i915_private *dev_priv = dev->dev_private;
2499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2500 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2501 int plane = intel_crtc->plane;
2502 unsigned long linear_offset;
2503 u32 dspcntr;
2504 u32 reg;
2505
2506 reg = DSPCNTR(plane);
2507 dspcntr = I915_READ(reg);
2508 /* Mask out pixel format bits in case we change it */
2509 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2510 switch (fb->pixel_format) {
2511 case DRM_FORMAT_C8:
2512 dspcntr |= DISPPLANE_8BPP;
2513 break;
2514 case DRM_FORMAT_RGB565:
2515 dspcntr |= DISPPLANE_BGRX565;
2516 break;
2517 case DRM_FORMAT_XRGB8888:
2518 case DRM_FORMAT_ARGB8888:
2519 dspcntr |= DISPPLANE_BGRX888;
2520 break;
2521 case DRM_FORMAT_XBGR8888:
2522 case DRM_FORMAT_ABGR8888:
2523 dspcntr |= DISPPLANE_RGBX888;
2524 break;
2525 case DRM_FORMAT_XRGB2101010:
2526 case DRM_FORMAT_ARGB2101010:
2527 dspcntr |= DISPPLANE_BGRX101010;
2528 break;
2529 case DRM_FORMAT_XBGR2101010:
2530 case DRM_FORMAT_ABGR2101010:
2531 dspcntr |= DISPPLANE_RGBX101010;
2532 break;
2533 default:
2534 BUG();
2535 }
2536
2537 if (obj->tiling_mode != I915_TILING_NONE)
2538 dspcntr |= DISPPLANE_TILED;
2539 else
2540 dspcntr &= ~DISPPLANE_TILED;
2541
2542 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2543 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2544 else
2545 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2546
2547 I915_WRITE(reg, dspcntr);
2548
2549 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2550 intel_crtc->dspaddr_offset =
2551 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2552 fb->bits_per_pixel / 8,
2553 fb->pitches[0]);
2554 linear_offset -= intel_crtc->dspaddr_offset;
2555
2556 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2557 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2558 fb->pitches[0]);
2559 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2560 I915_WRITE(DSPSURF(plane),
2561 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2562 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2563 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2564 } else {
2565 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2566 I915_WRITE(DSPLINOFF(plane), linear_offset);
2567 }
2568 POSTING_READ(reg);
2569 }
2570
2571 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2572 static int
2573 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2574 int x, int y, enum mode_set_atomic state)
2575 {
2576 struct drm_device *dev = crtc->dev;
2577 struct drm_i915_private *dev_priv = dev->dev_private;
2578
2579 if (dev_priv->display.disable_fbc)
2580 dev_priv->display.disable_fbc(dev);
2581 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2582
2583 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2584
2585 return 0;
2586 }
2587
2588 void intel_display_handle_reset(struct drm_device *dev)
2589 {
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct drm_crtc *crtc;
2592
2593 /*
2594 * Flips in the rings have been nuked by the reset,
2595 * so complete all pending flips so that user space
2596 * will get its events and not get stuck.
2597 *
2598 * Also update the base address of all primary
2599 * planes to the the last fb to make sure we're
2600 * showing the correct fb after a reset.
2601 *
2602 * Need to make two loops over the crtcs so that we
2603 * don't try to grab a crtc mutex before the
2604 * pending_flip_queue really got woken up.
2605 */
2606
2607 for_each_crtc(dev, crtc) {
2608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2609 enum plane plane = intel_crtc->plane;
2610
2611 intel_prepare_page_flip(dev, plane);
2612 intel_finish_page_flip_plane(dev, plane);
2613 }
2614
2615 for_each_crtc(dev, crtc) {
2616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2617
2618 drm_modeset_lock(&crtc->mutex, NULL);
2619 /*
2620 * FIXME: Once we have proper support for primary planes (and
2621 * disabling them without disabling the entire crtc) allow again
2622 * a NULL crtc->primary->fb.
2623 */
2624 if (intel_crtc->active && crtc->primary->fb)
2625 dev_priv->display.update_primary_plane(crtc,
2626 crtc->primary->fb,
2627 crtc->x,
2628 crtc->y);
2629 drm_modeset_unlock(&crtc->mutex);
2630 }
2631 }
2632
2633 static int
2634 intel_finish_fb(struct drm_framebuffer *old_fb)
2635 {
2636 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2637 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2638 bool was_interruptible = dev_priv->mm.interruptible;
2639 int ret;
2640
2641 /* Big Hammer, we also need to ensure that any pending
2642 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2643 * current scanout is retired before unpinning the old
2644 * framebuffer.
2645 *
2646 * This should only fail upon a hung GPU, in which case we
2647 * can safely continue.
2648 */
2649 dev_priv->mm.interruptible = false;
2650 ret = i915_gem_object_finish_gpu(obj);
2651 dev_priv->mm.interruptible = was_interruptible;
2652
2653 return ret;
2654 }
2655
2656 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2657 {
2658 struct drm_device *dev = crtc->dev;
2659 struct drm_i915_private *dev_priv = dev->dev_private;
2660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2661 unsigned long flags;
2662 bool pending;
2663
2664 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2665 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2666 return false;
2667
2668 spin_lock_irqsave(&dev->event_lock, flags);
2669 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2670 spin_unlock_irqrestore(&dev->event_lock, flags);
2671
2672 return pending;
2673 }
2674
2675 static int
2676 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2677 struct drm_framebuffer *fb)
2678 {
2679 struct drm_device *dev = crtc->dev;
2680 struct drm_i915_private *dev_priv = dev->dev_private;
2681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2682 enum pipe pipe = intel_crtc->pipe;
2683 struct drm_framebuffer *old_fb = crtc->primary->fb;
2684 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2685 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2686 int ret;
2687
2688 if (intel_crtc_has_pending_flip(crtc)) {
2689 DRM_ERROR("pipe is still busy with an old pageflip\n");
2690 return -EBUSY;
2691 }
2692
2693 /* no fb bound */
2694 if (!fb) {
2695 DRM_ERROR("No FB bound\n");
2696 return 0;
2697 }
2698
2699 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2700 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2701 plane_name(intel_crtc->plane),
2702 INTEL_INFO(dev)->num_pipes);
2703 return -EINVAL;
2704 }
2705
2706 mutex_lock(&dev->struct_mutex);
2707 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2708 if (ret == 0)
2709 i915_gem_track_fb(old_obj, obj,
2710 INTEL_FRONTBUFFER_PRIMARY(pipe));
2711 mutex_unlock(&dev->struct_mutex);
2712 if (ret != 0) {
2713 DRM_ERROR("pin & fence failed\n");
2714 return ret;
2715 }
2716
2717 /*
2718 * Update pipe size and adjust fitter if needed: the reason for this is
2719 * that in compute_mode_changes we check the native mode (not the pfit
2720 * mode) to see if we can flip rather than do a full mode set. In the
2721 * fastboot case, we'll flip, but if we don't update the pipesrc and
2722 * pfit state, we'll end up with a big fb scanned out into the wrong
2723 * sized surface.
2724 *
2725 * To fix this properly, we need to hoist the checks up into
2726 * compute_mode_changes (or above), check the actual pfit state and
2727 * whether the platform allows pfit disable with pipe active, and only
2728 * then update the pipesrc and pfit state, even on the flip path.
2729 */
2730 if (i915.fastboot) {
2731 const struct drm_display_mode *adjusted_mode =
2732 &intel_crtc->config.adjusted_mode;
2733
2734 I915_WRITE(PIPESRC(intel_crtc->pipe),
2735 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2736 (adjusted_mode->crtc_vdisplay - 1));
2737 if (!intel_crtc->config.pch_pfit.enabled &&
2738 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2739 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2740 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2741 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2742 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2743 }
2744 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2745 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2746 }
2747
2748 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2749
2750 if (intel_crtc->active)
2751 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2752
2753 crtc->primary->fb = fb;
2754 crtc->x = x;
2755 crtc->y = y;
2756
2757 if (old_fb) {
2758 if (intel_crtc->active && old_fb != fb)
2759 intel_wait_for_vblank(dev, intel_crtc->pipe);
2760 mutex_lock(&dev->struct_mutex);
2761 intel_unpin_fb_obj(old_obj);
2762 mutex_unlock(&dev->struct_mutex);
2763 }
2764
2765 mutex_lock(&dev->struct_mutex);
2766 intel_update_fbc(dev);
2767 mutex_unlock(&dev->struct_mutex);
2768
2769 return 0;
2770 }
2771
2772 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2773 {
2774 struct drm_device *dev = crtc->dev;
2775 struct drm_i915_private *dev_priv = dev->dev_private;
2776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2777 int pipe = intel_crtc->pipe;
2778 u32 reg, temp;
2779
2780 /* enable normal train */
2781 reg = FDI_TX_CTL(pipe);
2782 temp = I915_READ(reg);
2783 if (IS_IVYBRIDGE(dev)) {
2784 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2785 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2786 } else {
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2789 }
2790 I915_WRITE(reg, temp);
2791
2792 reg = FDI_RX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 if (HAS_PCH_CPT(dev)) {
2795 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2796 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2797 } else {
2798 temp &= ~FDI_LINK_TRAIN_NONE;
2799 temp |= FDI_LINK_TRAIN_NONE;
2800 }
2801 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2802
2803 /* wait one idle pattern time */
2804 POSTING_READ(reg);
2805 udelay(1000);
2806
2807 /* IVB wants error correction enabled */
2808 if (IS_IVYBRIDGE(dev))
2809 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2810 FDI_FE_ERRC_ENABLE);
2811 }
2812
2813 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2814 {
2815 return crtc->base.enabled && crtc->active &&
2816 crtc->config.has_pch_encoder;
2817 }
2818
2819 static void ivb_modeset_global_resources(struct drm_device *dev)
2820 {
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 struct intel_crtc *pipe_B_crtc =
2823 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2824 struct intel_crtc *pipe_C_crtc =
2825 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2826 uint32_t temp;
2827
2828 /*
2829 * When everything is off disable fdi C so that we could enable fdi B
2830 * with all lanes. Note that we don't care about enabled pipes without
2831 * an enabled pch encoder.
2832 */
2833 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2834 !pipe_has_enabled_pch(pipe_C_crtc)) {
2835 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2836 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2837
2838 temp = I915_READ(SOUTH_CHICKEN1);
2839 temp &= ~FDI_BC_BIFURCATION_SELECT;
2840 DRM_DEBUG_KMS("disabling fdi C rx\n");
2841 I915_WRITE(SOUTH_CHICKEN1, temp);
2842 }
2843 }
2844
2845 /* The FDI link training functions for ILK/Ibexpeak. */
2846 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2847 {
2848 struct drm_device *dev = crtc->dev;
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851 int pipe = intel_crtc->pipe;
2852 u32 reg, temp, tries;
2853
2854 /* FDI needs bits from pipe first */
2855 assert_pipe_enabled(dev_priv, pipe);
2856
2857 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2858 for train result */
2859 reg = FDI_RX_IMR(pipe);
2860 temp = I915_READ(reg);
2861 temp &= ~FDI_RX_SYMBOL_LOCK;
2862 temp &= ~FDI_RX_BIT_LOCK;
2863 I915_WRITE(reg, temp);
2864 I915_READ(reg);
2865 udelay(150);
2866
2867 /* enable CPU FDI TX and PCH FDI RX */
2868 reg = FDI_TX_CTL(pipe);
2869 temp = I915_READ(reg);
2870 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2871 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2872 temp &= ~FDI_LINK_TRAIN_NONE;
2873 temp |= FDI_LINK_TRAIN_PATTERN_1;
2874 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2875
2876 reg = FDI_RX_CTL(pipe);
2877 temp = I915_READ(reg);
2878 temp &= ~FDI_LINK_TRAIN_NONE;
2879 temp |= FDI_LINK_TRAIN_PATTERN_1;
2880 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2881
2882 POSTING_READ(reg);
2883 udelay(150);
2884
2885 /* Ironlake workaround, enable clock pointer after FDI enable*/
2886 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2887 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2888 FDI_RX_PHASE_SYNC_POINTER_EN);
2889
2890 reg = FDI_RX_IIR(pipe);
2891 for (tries = 0; tries < 5; tries++) {
2892 temp = I915_READ(reg);
2893 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2894
2895 if ((temp & FDI_RX_BIT_LOCK)) {
2896 DRM_DEBUG_KMS("FDI train 1 done.\n");
2897 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2898 break;
2899 }
2900 }
2901 if (tries == 5)
2902 DRM_ERROR("FDI train 1 fail!\n");
2903
2904 /* Train 2 */
2905 reg = FDI_TX_CTL(pipe);
2906 temp = I915_READ(reg);
2907 temp &= ~FDI_LINK_TRAIN_NONE;
2908 temp |= FDI_LINK_TRAIN_PATTERN_2;
2909 I915_WRITE(reg, temp);
2910
2911 reg = FDI_RX_CTL(pipe);
2912 temp = I915_READ(reg);
2913 temp &= ~FDI_LINK_TRAIN_NONE;
2914 temp |= FDI_LINK_TRAIN_PATTERN_2;
2915 I915_WRITE(reg, temp);
2916
2917 POSTING_READ(reg);
2918 udelay(150);
2919
2920 reg = FDI_RX_IIR(pipe);
2921 for (tries = 0; tries < 5; tries++) {
2922 temp = I915_READ(reg);
2923 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925 if (temp & FDI_RX_SYMBOL_LOCK) {
2926 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2927 DRM_DEBUG_KMS("FDI train 2 done.\n");
2928 break;
2929 }
2930 }
2931 if (tries == 5)
2932 DRM_ERROR("FDI train 2 fail!\n");
2933
2934 DRM_DEBUG_KMS("FDI train done\n");
2935
2936 }
2937
2938 static const int snb_b_fdi_train_param[] = {
2939 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2940 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2941 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2942 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2943 };
2944
2945 /* The FDI link training functions for SNB/Cougarpoint. */
2946 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2947 {
2948 struct drm_device *dev = crtc->dev;
2949 struct drm_i915_private *dev_priv = dev->dev_private;
2950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2951 int pipe = intel_crtc->pipe;
2952 u32 reg, temp, i, retry;
2953
2954 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2955 for train result */
2956 reg = FDI_RX_IMR(pipe);
2957 temp = I915_READ(reg);
2958 temp &= ~FDI_RX_SYMBOL_LOCK;
2959 temp &= ~FDI_RX_BIT_LOCK;
2960 I915_WRITE(reg, temp);
2961
2962 POSTING_READ(reg);
2963 udelay(150);
2964
2965 /* enable CPU FDI TX and PCH FDI RX */
2966 reg = FDI_TX_CTL(pipe);
2967 temp = I915_READ(reg);
2968 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2969 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2970 temp &= ~FDI_LINK_TRAIN_NONE;
2971 temp |= FDI_LINK_TRAIN_PATTERN_1;
2972 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2973 /* SNB-B */
2974 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2975 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2976
2977 I915_WRITE(FDI_RX_MISC(pipe),
2978 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2979
2980 reg = FDI_RX_CTL(pipe);
2981 temp = I915_READ(reg);
2982 if (HAS_PCH_CPT(dev)) {
2983 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2985 } else {
2986 temp &= ~FDI_LINK_TRAIN_NONE;
2987 temp |= FDI_LINK_TRAIN_PATTERN_1;
2988 }
2989 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2990
2991 POSTING_READ(reg);
2992 udelay(150);
2993
2994 for (i = 0; i < 4; i++) {
2995 reg = FDI_TX_CTL(pipe);
2996 temp = I915_READ(reg);
2997 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2998 temp |= snb_b_fdi_train_param[i];
2999 I915_WRITE(reg, temp);
3000
3001 POSTING_READ(reg);
3002 udelay(500);
3003
3004 for (retry = 0; retry < 5; retry++) {
3005 reg = FDI_RX_IIR(pipe);
3006 temp = I915_READ(reg);
3007 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3008 if (temp & FDI_RX_BIT_LOCK) {
3009 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3010 DRM_DEBUG_KMS("FDI train 1 done.\n");
3011 break;
3012 }
3013 udelay(50);
3014 }
3015 if (retry < 5)
3016 break;
3017 }
3018 if (i == 4)
3019 DRM_ERROR("FDI train 1 fail!\n");
3020
3021 /* Train 2 */
3022 reg = FDI_TX_CTL(pipe);
3023 temp = I915_READ(reg);
3024 temp &= ~FDI_LINK_TRAIN_NONE;
3025 temp |= FDI_LINK_TRAIN_PATTERN_2;
3026 if (IS_GEN6(dev)) {
3027 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3028 /* SNB-B */
3029 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3030 }
3031 I915_WRITE(reg, temp);
3032
3033 reg = FDI_RX_CTL(pipe);
3034 temp = I915_READ(reg);
3035 if (HAS_PCH_CPT(dev)) {
3036 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3037 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3038 } else {
3039 temp &= ~FDI_LINK_TRAIN_NONE;
3040 temp |= FDI_LINK_TRAIN_PATTERN_2;
3041 }
3042 I915_WRITE(reg, temp);
3043
3044 POSTING_READ(reg);
3045 udelay(150);
3046
3047 for (i = 0; i < 4; i++) {
3048 reg = FDI_TX_CTL(pipe);
3049 temp = I915_READ(reg);
3050 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3051 temp |= snb_b_fdi_train_param[i];
3052 I915_WRITE(reg, temp);
3053
3054 POSTING_READ(reg);
3055 udelay(500);
3056
3057 for (retry = 0; retry < 5; retry++) {
3058 reg = FDI_RX_IIR(pipe);
3059 temp = I915_READ(reg);
3060 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3061 if (temp & FDI_RX_SYMBOL_LOCK) {
3062 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3063 DRM_DEBUG_KMS("FDI train 2 done.\n");
3064 break;
3065 }
3066 udelay(50);
3067 }
3068 if (retry < 5)
3069 break;
3070 }
3071 if (i == 4)
3072 DRM_ERROR("FDI train 2 fail!\n");
3073
3074 DRM_DEBUG_KMS("FDI train done.\n");
3075 }
3076
3077 /* Manual link training for Ivy Bridge A0 parts */
3078 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3079 {
3080 struct drm_device *dev = crtc->dev;
3081 struct drm_i915_private *dev_priv = dev->dev_private;
3082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3083 int pipe = intel_crtc->pipe;
3084 u32 reg, temp, i, j;
3085
3086 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3087 for train result */
3088 reg = FDI_RX_IMR(pipe);
3089 temp = I915_READ(reg);
3090 temp &= ~FDI_RX_SYMBOL_LOCK;
3091 temp &= ~FDI_RX_BIT_LOCK;
3092 I915_WRITE(reg, temp);
3093
3094 POSTING_READ(reg);
3095 udelay(150);
3096
3097 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3098 I915_READ(FDI_RX_IIR(pipe)));
3099
3100 /* Try each vswing and preemphasis setting twice before moving on */
3101 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3102 /* disable first in case we need to retry */
3103 reg = FDI_TX_CTL(pipe);
3104 temp = I915_READ(reg);
3105 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3106 temp &= ~FDI_TX_ENABLE;
3107 I915_WRITE(reg, temp);
3108
3109 reg = FDI_RX_CTL(pipe);
3110 temp = I915_READ(reg);
3111 temp &= ~FDI_LINK_TRAIN_AUTO;
3112 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3113 temp &= ~FDI_RX_ENABLE;
3114 I915_WRITE(reg, temp);
3115
3116 /* enable CPU FDI TX and PCH FDI RX */
3117 reg = FDI_TX_CTL(pipe);
3118 temp = I915_READ(reg);
3119 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3120 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3121 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3122 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3123 temp |= snb_b_fdi_train_param[j/2];
3124 temp |= FDI_COMPOSITE_SYNC;
3125 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3126
3127 I915_WRITE(FDI_RX_MISC(pipe),
3128 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3129
3130 reg = FDI_RX_CTL(pipe);
3131 temp = I915_READ(reg);
3132 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3133 temp |= FDI_COMPOSITE_SYNC;
3134 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3135
3136 POSTING_READ(reg);
3137 udelay(1); /* should be 0.5us */
3138
3139 for (i = 0; i < 4; i++) {
3140 reg = FDI_RX_IIR(pipe);
3141 temp = I915_READ(reg);
3142 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3143
3144 if (temp & FDI_RX_BIT_LOCK ||
3145 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3146 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3147 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3148 i);
3149 break;
3150 }
3151 udelay(1); /* should be 0.5us */
3152 }
3153 if (i == 4) {
3154 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3155 continue;
3156 }
3157
3158 /* Train 2 */
3159 reg = FDI_TX_CTL(pipe);
3160 temp = I915_READ(reg);
3161 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3162 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3163 I915_WRITE(reg, temp);
3164
3165 reg = FDI_RX_CTL(pipe);
3166 temp = I915_READ(reg);
3167 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3168 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3169 I915_WRITE(reg, temp);
3170
3171 POSTING_READ(reg);
3172 udelay(2); /* should be 1.5us */
3173
3174 for (i = 0; i < 4; i++) {
3175 reg = FDI_RX_IIR(pipe);
3176 temp = I915_READ(reg);
3177 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3178
3179 if (temp & FDI_RX_SYMBOL_LOCK ||
3180 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3181 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3182 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3183 i);
3184 goto train_done;
3185 }
3186 udelay(2); /* should be 1.5us */
3187 }
3188 if (i == 4)
3189 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3190 }
3191
3192 train_done:
3193 DRM_DEBUG_KMS("FDI train done.\n");
3194 }
3195
3196 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3197 {
3198 struct drm_device *dev = intel_crtc->base.dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 int pipe = intel_crtc->pipe;
3201 u32 reg, temp;
3202
3203
3204 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3205 reg = FDI_RX_CTL(pipe);
3206 temp = I915_READ(reg);
3207 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3208 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3209 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3210 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3211
3212 POSTING_READ(reg);
3213 udelay(200);
3214
3215 /* Switch from Rawclk to PCDclk */
3216 temp = I915_READ(reg);
3217 I915_WRITE(reg, temp | FDI_PCDCLK);
3218
3219 POSTING_READ(reg);
3220 udelay(200);
3221
3222 /* Enable CPU FDI TX PLL, always on for Ironlake */
3223 reg = FDI_TX_CTL(pipe);
3224 temp = I915_READ(reg);
3225 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3226 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3227
3228 POSTING_READ(reg);
3229 udelay(100);
3230 }
3231 }
3232
3233 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3234 {
3235 struct drm_device *dev = intel_crtc->base.dev;
3236 struct drm_i915_private *dev_priv = dev->dev_private;
3237 int pipe = intel_crtc->pipe;
3238 u32 reg, temp;
3239
3240 /* Switch from PCDclk to Rawclk */
3241 reg = FDI_RX_CTL(pipe);
3242 temp = I915_READ(reg);
3243 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3244
3245 /* Disable CPU FDI TX PLL */
3246 reg = FDI_TX_CTL(pipe);
3247 temp = I915_READ(reg);
3248 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3249
3250 POSTING_READ(reg);
3251 udelay(100);
3252
3253 reg = FDI_RX_CTL(pipe);
3254 temp = I915_READ(reg);
3255 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3256
3257 /* Wait for the clocks to turn off. */
3258 POSTING_READ(reg);
3259 udelay(100);
3260 }
3261
3262 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3263 {
3264 struct drm_device *dev = crtc->dev;
3265 struct drm_i915_private *dev_priv = dev->dev_private;
3266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3267 int pipe = intel_crtc->pipe;
3268 u32 reg, temp;
3269
3270 /* disable CPU FDI tx and PCH FDI rx */
3271 reg = FDI_TX_CTL(pipe);
3272 temp = I915_READ(reg);
3273 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3274 POSTING_READ(reg);
3275
3276 reg = FDI_RX_CTL(pipe);
3277 temp = I915_READ(reg);
3278 temp &= ~(0x7 << 16);
3279 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3280 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3281
3282 POSTING_READ(reg);
3283 udelay(100);
3284
3285 /* Ironlake workaround, disable clock pointer after downing FDI */
3286 if (HAS_PCH_IBX(dev))
3287 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3288
3289 /* still set train pattern 1 */
3290 reg = FDI_TX_CTL(pipe);
3291 temp = I915_READ(reg);
3292 temp &= ~FDI_LINK_TRAIN_NONE;
3293 temp |= FDI_LINK_TRAIN_PATTERN_1;
3294 I915_WRITE(reg, temp);
3295
3296 reg = FDI_RX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 if (HAS_PCH_CPT(dev)) {
3299 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3301 } else {
3302 temp &= ~FDI_LINK_TRAIN_NONE;
3303 temp |= FDI_LINK_TRAIN_PATTERN_1;
3304 }
3305 /* BPC in FDI rx is consistent with that in PIPECONF */
3306 temp &= ~(0x07 << 16);
3307 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3308 I915_WRITE(reg, temp);
3309
3310 POSTING_READ(reg);
3311 udelay(100);
3312 }
3313
3314 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3315 {
3316 struct intel_crtc *crtc;
3317
3318 /* Note that we don't need to be called with mode_config.lock here
3319 * as our list of CRTC objects is static for the lifetime of the
3320 * device and so cannot disappear as we iterate. Similarly, we can
3321 * happily treat the predicates as racy, atomic checks as userspace
3322 * cannot claim and pin a new fb without at least acquring the
3323 * struct_mutex and so serialising with us.
3324 */
3325 for_each_intel_crtc(dev, crtc) {
3326 if (atomic_read(&crtc->unpin_work_count) == 0)
3327 continue;
3328
3329 if (crtc->unpin_work)
3330 intel_wait_for_vblank(dev, crtc->pipe);
3331
3332 return true;
3333 }
3334
3335 return false;
3336 }
3337
3338 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3339 {
3340 struct drm_device *dev = crtc->dev;
3341 struct drm_i915_private *dev_priv = dev->dev_private;
3342
3343 if (crtc->primary->fb == NULL)
3344 return;
3345
3346 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3347
3348 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3349 !intel_crtc_has_pending_flip(crtc),
3350 60*HZ) == 0);
3351
3352 mutex_lock(&dev->struct_mutex);
3353 intel_finish_fb(crtc->primary->fb);
3354 mutex_unlock(&dev->struct_mutex);
3355 }
3356
3357 /* Program iCLKIP clock to the desired frequency */
3358 static void lpt_program_iclkip(struct drm_crtc *crtc)
3359 {
3360 struct drm_device *dev = crtc->dev;
3361 struct drm_i915_private *dev_priv = dev->dev_private;
3362 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3363 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3364 u32 temp;
3365
3366 mutex_lock(&dev_priv->dpio_lock);
3367
3368 /* It is necessary to ungate the pixclk gate prior to programming
3369 * the divisors, and gate it back when it is done.
3370 */
3371 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3372
3373 /* Disable SSCCTL */
3374 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3375 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3376 SBI_SSCCTL_DISABLE,
3377 SBI_ICLK);
3378
3379 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3380 if (clock == 20000) {
3381 auxdiv = 1;
3382 divsel = 0x41;
3383 phaseinc = 0x20;
3384 } else {
3385 /* The iCLK virtual clock root frequency is in MHz,
3386 * but the adjusted_mode->crtc_clock in in KHz. To get the
3387 * divisors, it is necessary to divide one by another, so we
3388 * convert the virtual clock precision to KHz here for higher
3389 * precision.
3390 */
3391 u32 iclk_virtual_root_freq = 172800 * 1000;
3392 u32 iclk_pi_range = 64;
3393 u32 desired_divisor, msb_divisor_value, pi_value;
3394
3395 desired_divisor = (iclk_virtual_root_freq / clock);
3396 msb_divisor_value = desired_divisor / iclk_pi_range;
3397 pi_value = desired_divisor % iclk_pi_range;
3398
3399 auxdiv = 0;
3400 divsel = msb_divisor_value - 2;
3401 phaseinc = pi_value;
3402 }
3403
3404 /* This should not happen with any sane values */
3405 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3406 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3407 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3408 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3409
3410 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3411 clock,
3412 auxdiv,
3413 divsel,
3414 phasedir,
3415 phaseinc);
3416
3417 /* Program SSCDIVINTPHASE6 */
3418 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3419 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3420 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3421 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3422 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3423 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3424 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3425 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3426
3427 /* Program SSCAUXDIV */
3428 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3429 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3430 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3431 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3432
3433 /* Enable modulator and associated divider */
3434 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3435 temp &= ~SBI_SSCCTL_DISABLE;
3436 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3437
3438 /* Wait for initialization time */
3439 udelay(24);
3440
3441 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3442
3443 mutex_unlock(&dev_priv->dpio_lock);
3444 }
3445
3446 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3447 enum pipe pch_transcoder)
3448 {
3449 struct drm_device *dev = crtc->base.dev;
3450 struct drm_i915_private *dev_priv = dev->dev_private;
3451 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3452
3453 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3454 I915_READ(HTOTAL(cpu_transcoder)));
3455 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3456 I915_READ(HBLANK(cpu_transcoder)));
3457 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3458 I915_READ(HSYNC(cpu_transcoder)));
3459
3460 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3461 I915_READ(VTOTAL(cpu_transcoder)));
3462 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3463 I915_READ(VBLANK(cpu_transcoder)));
3464 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3465 I915_READ(VSYNC(cpu_transcoder)));
3466 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3467 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3468 }
3469
3470 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3471 {
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 uint32_t temp;
3474
3475 temp = I915_READ(SOUTH_CHICKEN1);
3476 if (temp & FDI_BC_BIFURCATION_SELECT)
3477 return;
3478
3479 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3480 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3481
3482 temp |= FDI_BC_BIFURCATION_SELECT;
3483 DRM_DEBUG_KMS("enabling fdi C rx\n");
3484 I915_WRITE(SOUTH_CHICKEN1, temp);
3485 POSTING_READ(SOUTH_CHICKEN1);
3486 }
3487
3488 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3489 {
3490 struct drm_device *dev = intel_crtc->base.dev;
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493 switch (intel_crtc->pipe) {
3494 case PIPE_A:
3495 break;
3496 case PIPE_B:
3497 if (intel_crtc->config.fdi_lanes > 2)
3498 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3499 else
3500 cpt_enable_fdi_bc_bifurcation(dev);
3501
3502 break;
3503 case PIPE_C:
3504 cpt_enable_fdi_bc_bifurcation(dev);
3505
3506 break;
3507 default:
3508 BUG();
3509 }
3510 }
3511
3512 /*
3513 * Enable PCH resources required for PCH ports:
3514 * - PCH PLLs
3515 * - FDI training & RX/TX
3516 * - update transcoder timings
3517 * - DP transcoding bits
3518 * - transcoder
3519 */
3520 static void ironlake_pch_enable(struct drm_crtc *crtc)
3521 {
3522 struct drm_device *dev = crtc->dev;
3523 struct drm_i915_private *dev_priv = dev->dev_private;
3524 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3525 int pipe = intel_crtc->pipe;
3526 u32 reg, temp;
3527
3528 assert_pch_transcoder_disabled(dev_priv, pipe);
3529
3530 if (IS_IVYBRIDGE(dev))
3531 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3532
3533 /* Write the TU size bits before fdi link training, so that error
3534 * detection works. */
3535 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3536 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3537
3538 /* For PCH output, training FDI link */
3539 dev_priv->display.fdi_link_train(crtc);
3540
3541 /* We need to program the right clock selection before writing the pixel
3542 * mutliplier into the DPLL. */
3543 if (HAS_PCH_CPT(dev)) {
3544 u32 sel;
3545
3546 temp = I915_READ(PCH_DPLL_SEL);
3547 temp |= TRANS_DPLL_ENABLE(pipe);
3548 sel = TRANS_DPLLB_SEL(pipe);
3549 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3550 temp |= sel;
3551 else
3552 temp &= ~sel;
3553 I915_WRITE(PCH_DPLL_SEL, temp);
3554 }
3555
3556 /* XXX: pch pll's can be enabled any time before we enable the PCH
3557 * transcoder, and we actually should do this to not upset any PCH
3558 * transcoder that already use the clock when we share it.
3559 *
3560 * Note that enable_shared_dpll tries to do the right thing, but
3561 * get_shared_dpll unconditionally resets the pll - we need that to have
3562 * the right LVDS enable sequence. */
3563 intel_enable_shared_dpll(intel_crtc);
3564
3565 /* set transcoder timing, panel must allow it */
3566 assert_panel_unlocked(dev_priv, pipe);
3567 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3568
3569 intel_fdi_normal_train(crtc);
3570
3571 /* For PCH DP, enable TRANS_DP_CTL */
3572 if (HAS_PCH_CPT(dev) &&
3573 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3574 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3575 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3576 reg = TRANS_DP_CTL(pipe);
3577 temp = I915_READ(reg);
3578 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3579 TRANS_DP_SYNC_MASK |
3580 TRANS_DP_BPC_MASK);
3581 temp |= (TRANS_DP_OUTPUT_ENABLE |
3582 TRANS_DP_ENH_FRAMING);
3583 temp |= bpc << 9; /* same format but at 11:9 */
3584
3585 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3586 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3587 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3588 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3589
3590 switch (intel_trans_dp_port_sel(crtc)) {
3591 case PCH_DP_B:
3592 temp |= TRANS_DP_PORT_SEL_B;
3593 break;
3594 case PCH_DP_C:
3595 temp |= TRANS_DP_PORT_SEL_C;
3596 break;
3597 case PCH_DP_D:
3598 temp |= TRANS_DP_PORT_SEL_D;
3599 break;
3600 default:
3601 BUG();
3602 }
3603
3604 I915_WRITE(reg, temp);
3605 }
3606
3607 ironlake_enable_pch_transcoder(dev_priv, pipe);
3608 }
3609
3610 static void lpt_pch_enable(struct drm_crtc *crtc)
3611 {
3612 struct drm_device *dev = crtc->dev;
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3616
3617 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3618
3619 lpt_program_iclkip(crtc);
3620
3621 /* Set transcoder timing. */
3622 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3623
3624 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3625 }
3626
3627 void intel_put_shared_dpll(struct intel_crtc *crtc)
3628 {
3629 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3630
3631 if (pll == NULL)
3632 return;
3633
3634 if (pll->refcount == 0) {
3635 WARN(1, "bad %s refcount\n", pll->name);
3636 return;
3637 }
3638
3639 if (--pll->refcount == 0) {
3640 WARN_ON(pll->on);
3641 WARN_ON(pll->active);
3642 }
3643
3644 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3645 }
3646
3647 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3648 {
3649 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3650 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3651 enum intel_dpll_id i;
3652
3653 if (pll) {
3654 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3655 crtc->base.base.id, pll->name);
3656 intel_put_shared_dpll(crtc);
3657 }
3658
3659 if (HAS_PCH_IBX(dev_priv->dev)) {
3660 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3661 i = (enum intel_dpll_id) crtc->pipe;
3662 pll = &dev_priv->shared_dplls[i];
3663
3664 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3665 crtc->base.base.id, pll->name);
3666
3667 WARN_ON(pll->refcount);
3668
3669 goto found;
3670 }
3671
3672 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3673 pll = &dev_priv->shared_dplls[i];
3674
3675 /* Only want to check enabled timings first */
3676 if (pll->refcount == 0)
3677 continue;
3678
3679 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3680 sizeof(pll->hw_state)) == 0) {
3681 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3682 crtc->base.base.id,
3683 pll->name, pll->refcount, pll->active);
3684
3685 goto found;
3686 }
3687 }
3688
3689 /* Ok no matching timings, maybe there's a free one? */
3690 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3691 pll = &dev_priv->shared_dplls[i];
3692 if (pll->refcount == 0) {
3693 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3694 crtc->base.base.id, pll->name);
3695 goto found;
3696 }
3697 }
3698
3699 return NULL;
3700
3701 found:
3702 if (pll->refcount == 0)
3703 pll->hw_state = crtc->config.dpll_hw_state;
3704
3705 crtc->config.shared_dpll = i;
3706 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3707 pipe_name(crtc->pipe));
3708
3709 pll->refcount++;
3710
3711 return pll;
3712 }
3713
3714 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3715 {
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 int dslreg = PIPEDSL(pipe);
3718 u32 temp;
3719
3720 temp = I915_READ(dslreg);
3721 udelay(500);
3722 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3723 if (wait_for(I915_READ(dslreg) != temp, 5))
3724 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3725 }
3726 }
3727
3728 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3729 {
3730 struct drm_device *dev = crtc->base.dev;
3731 struct drm_i915_private *dev_priv = dev->dev_private;
3732 int pipe = crtc->pipe;
3733
3734 if (crtc->config.pch_pfit.enabled) {
3735 /* Force use of hard-coded filter coefficients
3736 * as some pre-programmed values are broken,
3737 * e.g. x201.
3738 */
3739 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3740 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3741 PF_PIPE_SEL_IVB(pipe));
3742 else
3743 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3744 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3745 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3746 }
3747 }
3748
3749 static void intel_enable_planes(struct drm_crtc *crtc)
3750 {
3751 struct drm_device *dev = crtc->dev;
3752 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3753 struct drm_plane *plane;
3754 struct intel_plane *intel_plane;
3755
3756 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3757 intel_plane = to_intel_plane(plane);
3758 if (intel_plane->pipe == pipe)
3759 intel_plane_restore(&intel_plane->base);
3760 }
3761 }
3762
3763 static void intel_disable_planes(struct drm_crtc *crtc)
3764 {
3765 struct drm_device *dev = crtc->dev;
3766 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3767 struct drm_plane *plane;
3768 struct intel_plane *intel_plane;
3769
3770 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3771 intel_plane = to_intel_plane(plane);
3772 if (intel_plane->pipe == pipe)
3773 intel_plane_disable(&intel_plane->base);
3774 }
3775 }
3776
3777 void hsw_enable_ips(struct intel_crtc *crtc)
3778 {
3779 struct drm_device *dev = crtc->base.dev;
3780 struct drm_i915_private *dev_priv = dev->dev_private;
3781
3782 if (!crtc->config.ips_enabled)
3783 return;
3784
3785 /* We can only enable IPS after we enable a plane and wait for a vblank */
3786 intel_wait_for_vblank(dev, crtc->pipe);
3787
3788 assert_plane_enabled(dev_priv, crtc->plane);
3789 if (IS_BROADWELL(dev)) {
3790 mutex_lock(&dev_priv->rps.hw_lock);
3791 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3792 mutex_unlock(&dev_priv->rps.hw_lock);
3793 /* Quoting Art Runyan: "its not safe to expect any particular
3794 * value in IPS_CTL bit 31 after enabling IPS through the
3795 * mailbox." Moreover, the mailbox may return a bogus state,
3796 * so we need to just enable it and continue on.
3797 */
3798 } else {
3799 I915_WRITE(IPS_CTL, IPS_ENABLE);
3800 /* The bit only becomes 1 in the next vblank, so this wait here
3801 * is essentially intel_wait_for_vblank. If we don't have this
3802 * and don't wait for vblanks until the end of crtc_enable, then
3803 * the HW state readout code will complain that the expected
3804 * IPS_CTL value is not the one we read. */
3805 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3806 DRM_ERROR("Timed out waiting for IPS enable\n");
3807 }
3808 }
3809
3810 void hsw_disable_ips(struct intel_crtc *crtc)
3811 {
3812 struct drm_device *dev = crtc->base.dev;
3813 struct drm_i915_private *dev_priv = dev->dev_private;
3814
3815 if (!crtc->config.ips_enabled)
3816 return;
3817
3818 assert_plane_enabled(dev_priv, crtc->plane);
3819 if (IS_BROADWELL(dev)) {
3820 mutex_lock(&dev_priv->rps.hw_lock);
3821 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3822 mutex_unlock(&dev_priv->rps.hw_lock);
3823 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3824 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3825 DRM_ERROR("Timed out waiting for IPS disable\n");
3826 } else {
3827 I915_WRITE(IPS_CTL, 0);
3828 POSTING_READ(IPS_CTL);
3829 }
3830
3831 /* We need to wait for a vblank before we can disable the plane. */
3832 intel_wait_for_vblank(dev, crtc->pipe);
3833 }
3834
3835 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3836 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3837 {
3838 struct drm_device *dev = crtc->dev;
3839 struct drm_i915_private *dev_priv = dev->dev_private;
3840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3841 enum pipe pipe = intel_crtc->pipe;
3842 int palreg = PALETTE(pipe);
3843 int i;
3844 bool reenable_ips = false;
3845
3846 /* The clocks have to be on to load the palette. */
3847 if (!crtc->enabled || !intel_crtc->active)
3848 return;
3849
3850 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3851 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3852 assert_dsi_pll_enabled(dev_priv);
3853 else
3854 assert_pll_enabled(dev_priv, pipe);
3855 }
3856
3857 /* use legacy palette for Ironlake */
3858 if (!HAS_GMCH_DISPLAY(dev))
3859 palreg = LGC_PALETTE(pipe);
3860
3861 /* Workaround : Do not read or write the pipe palette/gamma data while
3862 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3863 */
3864 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3865 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3866 GAMMA_MODE_MODE_SPLIT)) {
3867 hsw_disable_ips(intel_crtc);
3868 reenable_ips = true;
3869 }
3870
3871 for (i = 0; i < 256; i++) {
3872 I915_WRITE(palreg + 4 * i,
3873 (intel_crtc->lut_r[i] << 16) |
3874 (intel_crtc->lut_g[i] << 8) |
3875 intel_crtc->lut_b[i]);
3876 }
3877
3878 if (reenable_ips)
3879 hsw_enable_ips(intel_crtc);
3880 }
3881
3882 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3883 {
3884 if (!enable && intel_crtc->overlay) {
3885 struct drm_device *dev = intel_crtc->base.dev;
3886 struct drm_i915_private *dev_priv = dev->dev_private;
3887
3888 mutex_lock(&dev->struct_mutex);
3889 dev_priv->mm.interruptible = false;
3890 (void) intel_overlay_switch_off(intel_crtc->overlay);
3891 dev_priv->mm.interruptible = true;
3892 mutex_unlock(&dev->struct_mutex);
3893 }
3894
3895 /* Let userspace switch the overlay on again. In most cases userspace
3896 * has to recompute where to put it anyway.
3897 */
3898 }
3899
3900 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3901 {
3902 struct drm_device *dev = crtc->dev;
3903 struct drm_i915_private *dev_priv = dev->dev_private;
3904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3905 int pipe = intel_crtc->pipe;
3906 int plane = intel_crtc->plane;
3907
3908 drm_vblank_on(dev, pipe);
3909
3910 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3911 intel_enable_planes(crtc);
3912 intel_crtc_update_cursor(crtc, true);
3913 intel_crtc_dpms_overlay(intel_crtc, true);
3914
3915 hsw_enable_ips(intel_crtc);
3916
3917 mutex_lock(&dev->struct_mutex);
3918 intel_update_fbc(dev);
3919 mutex_unlock(&dev->struct_mutex);
3920
3921 /*
3922 * FIXME: Once we grow proper nuclear flip support out of this we need
3923 * to compute the mask of flip planes precisely. For the time being
3924 * consider this a flip from a NULL plane.
3925 */
3926 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3927 }
3928
3929 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3930 {
3931 struct drm_device *dev = crtc->dev;
3932 struct drm_i915_private *dev_priv = dev->dev_private;
3933 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3934 int pipe = intel_crtc->pipe;
3935 int plane = intel_crtc->plane;
3936
3937 intel_crtc_wait_for_pending_flips(crtc);
3938
3939 if (dev_priv->fbc.plane == plane)
3940 intel_disable_fbc(dev);
3941
3942 hsw_disable_ips(intel_crtc);
3943
3944 intel_crtc_dpms_overlay(intel_crtc, false);
3945 intel_crtc_update_cursor(crtc, false);
3946 intel_disable_planes(crtc);
3947 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3948
3949 /*
3950 * FIXME: Once we grow proper nuclear flip support out of this we need
3951 * to compute the mask of flip planes precisely. For the time being
3952 * consider this a flip to a NULL plane.
3953 */
3954 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3955
3956 drm_vblank_off(dev, pipe);
3957 }
3958
3959 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3960 {
3961 struct drm_device *dev = crtc->dev;
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964 struct intel_encoder *encoder;
3965 int pipe = intel_crtc->pipe;
3966 enum plane plane = intel_crtc->plane;
3967
3968 WARN_ON(!crtc->enabled);
3969
3970 if (intel_crtc->active)
3971 return;
3972
3973 if (intel_crtc->config.has_pch_encoder)
3974 intel_prepare_shared_dpll(intel_crtc);
3975
3976 if (intel_crtc->config.has_dp_encoder)
3977 intel_dp_set_m_n(intel_crtc);
3978
3979 intel_set_pipe_timings(intel_crtc);
3980
3981 if (intel_crtc->config.has_pch_encoder) {
3982 intel_cpu_transcoder_set_m_n(intel_crtc,
3983 &intel_crtc->config.fdi_m_n);
3984 }
3985
3986 ironlake_set_pipeconf(crtc);
3987
3988 /* Set up the display plane register */
3989 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3990 POSTING_READ(DSPCNTR(plane));
3991
3992 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3993 crtc->x, crtc->y);
3994
3995 intel_crtc->active = true;
3996
3997 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3998 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3999
4000 for_each_encoder_on_crtc(dev, crtc, encoder)
4001 if (encoder->pre_enable)
4002 encoder->pre_enable(encoder);
4003
4004 if (intel_crtc->config.has_pch_encoder) {
4005 /* Note: FDI PLL enabling _must_ be done before we enable the
4006 * cpu pipes, hence this is separate from all the other fdi/pch
4007 * enabling. */
4008 ironlake_fdi_pll_enable(intel_crtc);
4009 } else {
4010 assert_fdi_tx_disabled(dev_priv, pipe);
4011 assert_fdi_rx_disabled(dev_priv, pipe);
4012 }
4013
4014 ironlake_pfit_enable(intel_crtc);
4015
4016 /*
4017 * On ILK+ LUT must be loaded before the pipe is running but with
4018 * clocks enabled
4019 */
4020 intel_crtc_load_lut(crtc);
4021
4022 intel_update_watermarks(crtc);
4023 intel_enable_pipe(intel_crtc);
4024
4025 if (intel_crtc->config.has_pch_encoder)
4026 ironlake_pch_enable(crtc);
4027
4028 for_each_encoder_on_crtc(dev, crtc, encoder)
4029 encoder->enable(encoder);
4030
4031 if (HAS_PCH_CPT(dev))
4032 cpt_verify_modeset(dev, intel_crtc->pipe);
4033
4034 intel_crtc_enable_planes(crtc);
4035 }
4036
4037 /* IPS only exists on ULT machines and is tied to pipe A. */
4038 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4039 {
4040 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4041 }
4042
4043 /*
4044 * This implements the workaround described in the "notes" section of the mode
4045 * set sequence documentation. When going from no pipes or single pipe to
4046 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4047 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4048 */
4049 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4050 {
4051 struct drm_device *dev = crtc->base.dev;
4052 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4053
4054 /* We want to get the other_active_crtc only if there's only 1 other
4055 * active crtc. */
4056 for_each_intel_crtc(dev, crtc_it) {
4057 if (!crtc_it->active || crtc_it == crtc)
4058 continue;
4059
4060 if (other_active_crtc)
4061 return;
4062
4063 other_active_crtc = crtc_it;
4064 }
4065 if (!other_active_crtc)
4066 return;
4067
4068 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4069 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4070 }
4071
4072 static void haswell_crtc_enable(struct drm_crtc *crtc)
4073 {
4074 struct drm_device *dev = crtc->dev;
4075 struct drm_i915_private *dev_priv = dev->dev_private;
4076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4077 struct intel_encoder *encoder;
4078 int pipe = intel_crtc->pipe;
4079 enum plane plane = intel_crtc->plane;
4080
4081 WARN_ON(!crtc->enabled);
4082
4083 if (intel_crtc->active)
4084 return;
4085
4086 if (intel_crtc_to_shared_dpll(intel_crtc))
4087 intel_enable_shared_dpll(intel_crtc);
4088
4089 if (intel_crtc->config.has_dp_encoder)
4090 intel_dp_set_m_n(intel_crtc);
4091
4092 intel_set_pipe_timings(intel_crtc);
4093
4094 if (intel_crtc->config.has_pch_encoder) {
4095 intel_cpu_transcoder_set_m_n(intel_crtc,
4096 &intel_crtc->config.fdi_m_n);
4097 }
4098
4099 haswell_set_pipeconf(crtc);
4100
4101 intel_set_pipe_csc(crtc);
4102
4103 /* Set up the display plane register */
4104 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4105 POSTING_READ(DSPCNTR(plane));
4106
4107 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4108 crtc->x, crtc->y);
4109
4110 intel_crtc->active = true;
4111
4112 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4113 for_each_encoder_on_crtc(dev, crtc, encoder)
4114 if (encoder->pre_enable)
4115 encoder->pre_enable(encoder);
4116
4117 if (intel_crtc->config.has_pch_encoder) {
4118 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4119 dev_priv->display.fdi_link_train(crtc);
4120 }
4121
4122 intel_ddi_enable_pipe_clock(intel_crtc);
4123
4124 ironlake_pfit_enable(intel_crtc);
4125
4126 /*
4127 * On ILK+ LUT must be loaded before the pipe is running but with
4128 * clocks enabled
4129 */
4130 intel_crtc_load_lut(crtc);
4131
4132 intel_ddi_set_pipe_settings(crtc);
4133 intel_ddi_enable_transcoder_func(crtc);
4134
4135 intel_update_watermarks(crtc);
4136 intel_enable_pipe(intel_crtc);
4137
4138 if (intel_crtc->config.has_pch_encoder)
4139 lpt_pch_enable(crtc);
4140
4141 if (intel_crtc->config.dp_encoder_is_mst)
4142 intel_ddi_set_vc_payload_alloc(crtc, true);
4143
4144 for_each_encoder_on_crtc(dev, crtc, encoder) {
4145 encoder->enable(encoder);
4146 intel_opregion_notify_encoder(encoder, true);
4147 }
4148
4149 /* If we change the relative order between pipe/planes enabling, we need
4150 * to change the workaround. */
4151 haswell_mode_set_planes_workaround(intel_crtc);
4152 intel_crtc_enable_planes(crtc);
4153 }
4154
4155 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4156 {
4157 struct drm_device *dev = crtc->base.dev;
4158 struct drm_i915_private *dev_priv = dev->dev_private;
4159 int pipe = crtc->pipe;
4160
4161 /* To avoid upsetting the power well on haswell only disable the pfit if
4162 * it's in use. The hw state code will make sure we get this right. */
4163 if (crtc->config.pch_pfit.enabled) {
4164 I915_WRITE(PF_CTL(pipe), 0);
4165 I915_WRITE(PF_WIN_POS(pipe), 0);
4166 I915_WRITE(PF_WIN_SZ(pipe), 0);
4167 }
4168 }
4169
4170 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4171 {
4172 struct drm_device *dev = crtc->dev;
4173 struct drm_i915_private *dev_priv = dev->dev_private;
4174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175 struct intel_encoder *encoder;
4176 int pipe = intel_crtc->pipe;
4177 u32 reg, temp;
4178
4179 if (!intel_crtc->active)
4180 return;
4181
4182 intel_crtc_disable_planes(crtc);
4183
4184 for_each_encoder_on_crtc(dev, crtc, encoder)
4185 encoder->disable(encoder);
4186
4187 if (intel_crtc->config.has_pch_encoder)
4188 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4189
4190 intel_disable_pipe(dev_priv, pipe);
4191
4192 if (intel_crtc->config.dp_encoder_is_mst)
4193 intel_ddi_set_vc_payload_alloc(crtc, false);
4194
4195 ironlake_pfit_disable(intel_crtc);
4196
4197 for_each_encoder_on_crtc(dev, crtc, encoder)
4198 if (encoder->post_disable)
4199 encoder->post_disable(encoder);
4200
4201 if (intel_crtc->config.has_pch_encoder) {
4202 ironlake_fdi_disable(crtc);
4203
4204 ironlake_disable_pch_transcoder(dev_priv, pipe);
4205 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4206
4207 if (HAS_PCH_CPT(dev)) {
4208 /* disable TRANS_DP_CTL */
4209 reg = TRANS_DP_CTL(pipe);
4210 temp = I915_READ(reg);
4211 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4212 TRANS_DP_PORT_SEL_MASK);
4213 temp |= TRANS_DP_PORT_SEL_NONE;
4214 I915_WRITE(reg, temp);
4215
4216 /* disable DPLL_SEL */
4217 temp = I915_READ(PCH_DPLL_SEL);
4218 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4219 I915_WRITE(PCH_DPLL_SEL, temp);
4220 }
4221
4222 /* disable PCH DPLL */
4223 intel_disable_shared_dpll(intel_crtc);
4224
4225 ironlake_fdi_pll_disable(intel_crtc);
4226 }
4227
4228 intel_crtc->active = false;
4229 intel_update_watermarks(crtc);
4230
4231 mutex_lock(&dev->struct_mutex);
4232 intel_update_fbc(dev);
4233 mutex_unlock(&dev->struct_mutex);
4234 }
4235
4236 static void haswell_crtc_disable(struct drm_crtc *crtc)
4237 {
4238 struct drm_device *dev = crtc->dev;
4239 struct drm_i915_private *dev_priv = dev->dev_private;
4240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4241 struct intel_encoder *encoder;
4242 int pipe = intel_crtc->pipe;
4243 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4244
4245 if (!intel_crtc->active)
4246 return;
4247
4248 intel_crtc_disable_planes(crtc);
4249
4250 for_each_encoder_on_crtc(dev, crtc, encoder) {
4251 intel_opregion_notify_encoder(encoder, false);
4252 encoder->disable(encoder);
4253 }
4254
4255 if (intel_crtc->config.has_pch_encoder)
4256 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4257 intel_disable_pipe(dev_priv, pipe);
4258
4259 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4260
4261 ironlake_pfit_disable(intel_crtc);
4262
4263 intel_ddi_disable_pipe_clock(intel_crtc);
4264
4265 if (intel_crtc->config.has_pch_encoder) {
4266 lpt_disable_pch_transcoder(dev_priv);
4267 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4268 intel_ddi_fdi_disable(crtc);
4269 }
4270
4271 for_each_encoder_on_crtc(dev, crtc, encoder)
4272 if (encoder->post_disable)
4273 encoder->post_disable(encoder);
4274
4275 intel_crtc->active = false;
4276 intel_update_watermarks(crtc);
4277
4278 mutex_lock(&dev->struct_mutex);
4279 intel_update_fbc(dev);
4280 mutex_unlock(&dev->struct_mutex);
4281
4282 if (intel_crtc_to_shared_dpll(intel_crtc))
4283 intel_disable_shared_dpll(intel_crtc);
4284 }
4285
4286 static void ironlake_crtc_off(struct drm_crtc *crtc)
4287 {
4288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4289 intel_put_shared_dpll(intel_crtc);
4290 }
4291
4292
4293 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4294 {
4295 struct drm_device *dev = crtc->base.dev;
4296 struct drm_i915_private *dev_priv = dev->dev_private;
4297 struct intel_crtc_config *pipe_config = &crtc->config;
4298
4299 if (!crtc->config.gmch_pfit.control)
4300 return;
4301
4302 /*
4303 * The panel fitter should only be adjusted whilst the pipe is disabled,
4304 * according to register description and PRM.
4305 */
4306 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4307 assert_pipe_disabled(dev_priv, crtc->pipe);
4308
4309 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4310 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4311
4312 /* Border color in case we don't scale up to the full screen. Black by
4313 * default, change to something else for debugging. */
4314 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4315 }
4316
4317 static enum intel_display_power_domain port_to_power_domain(enum port port)
4318 {
4319 switch (port) {
4320 case PORT_A:
4321 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4322 case PORT_B:
4323 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4324 case PORT_C:
4325 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4326 case PORT_D:
4327 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4328 default:
4329 WARN_ON_ONCE(1);
4330 return POWER_DOMAIN_PORT_OTHER;
4331 }
4332 }
4333
4334 #define for_each_power_domain(domain, mask) \
4335 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4336 if ((1 << (domain)) & (mask))
4337
4338 enum intel_display_power_domain
4339 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4340 {
4341 struct drm_device *dev = intel_encoder->base.dev;
4342 struct intel_digital_port *intel_dig_port;
4343
4344 switch (intel_encoder->type) {
4345 case INTEL_OUTPUT_UNKNOWN:
4346 /* Only DDI platforms should ever use this output type */
4347 WARN_ON_ONCE(!HAS_DDI(dev));
4348 case INTEL_OUTPUT_DISPLAYPORT:
4349 case INTEL_OUTPUT_HDMI:
4350 case INTEL_OUTPUT_EDP:
4351 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4352 return port_to_power_domain(intel_dig_port->port);
4353 case INTEL_OUTPUT_DP_MST:
4354 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4355 return port_to_power_domain(intel_dig_port->port);
4356 case INTEL_OUTPUT_ANALOG:
4357 return POWER_DOMAIN_PORT_CRT;
4358 case INTEL_OUTPUT_DSI:
4359 return POWER_DOMAIN_PORT_DSI;
4360 default:
4361 return POWER_DOMAIN_PORT_OTHER;
4362 }
4363 }
4364
4365 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4366 {
4367 struct drm_device *dev = crtc->dev;
4368 struct intel_encoder *intel_encoder;
4369 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4370 enum pipe pipe = intel_crtc->pipe;
4371 unsigned long mask;
4372 enum transcoder transcoder;
4373
4374 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4375
4376 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4377 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4378 if (intel_crtc->config.pch_pfit.enabled ||
4379 intel_crtc->config.pch_pfit.force_thru)
4380 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4381
4382 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4383 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4384
4385 return mask;
4386 }
4387
4388 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4389 bool enable)
4390 {
4391 if (dev_priv->power_domains.init_power_on == enable)
4392 return;
4393
4394 if (enable)
4395 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4396 else
4397 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4398
4399 dev_priv->power_domains.init_power_on = enable;
4400 }
4401
4402 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4403 {
4404 struct drm_i915_private *dev_priv = dev->dev_private;
4405 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4406 struct intel_crtc *crtc;
4407
4408 /*
4409 * First get all needed power domains, then put all unneeded, to avoid
4410 * any unnecessary toggling of the power wells.
4411 */
4412 for_each_intel_crtc(dev, crtc) {
4413 enum intel_display_power_domain domain;
4414
4415 if (!crtc->base.enabled)
4416 continue;
4417
4418 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4419
4420 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4421 intel_display_power_get(dev_priv, domain);
4422 }
4423
4424 for_each_intel_crtc(dev, crtc) {
4425 enum intel_display_power_domain domain;
4426
4427 for_each_power_domain(domain, crtc->enabled_power_domains)
4428 intel_display_power_put(dev_priv, domain);
4429
4430 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4431 }
4432
4433 intel_display_set_init_power(dev_priv, false);
4434 }
4435
4436 /* returns HPLL frequency in kHz */
4437 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4438 {
4439 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4440
4441 /* Obtain SKU information */
4442 mutex_lock(&dev_priv->dpio_lock);
4443 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4444 CCK_FUSE_HPLL_FREQ_MASK;
4445 mutex_unlock(&dev_priv->dpio_lock);
4446
4447 return vco_freq[hpll_freq] * 1000;
4448 }
4449
4450 static void vlv_update_cdclk(struct drm_device *dev)
4451 {
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453
4454 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4455 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4456 dev_priv->vlv_cdclk_freq);
4457
4458 /*
4459 * Program the gmbus_freq based on the cdclk frequency.
4460 * BSpec erroneously claims we should aim for 4MHz, but
4461 * in fact 1MHz is the correct frequency.
4462 */
4463 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4464 }
4465
4466 /* Adjust CDclk dividers to allow high res or save power if possible */
4467 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4468 {
4469 struct drm_i915_private *dev_priv = dev->dev_private;
4470 u32 val, cmd;
4471
4472 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4473
4474 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4475 cmd = 2;
4476 else if (cdclk == 266667)
4477 cmd = 1;
4478 else
4479 cmd = 0;
4480
4481 mutex_lock(&dev_priv->rps.hw_lock);
4482 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4483 val &= ~DSPFREQGUAR_MASK;
4484 val |= (cmd << DSPFREQGUAR_SHIFT);
4485 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4486 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4487 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4488 50)) {
4489 DRM_ERROR("timed out waiting for CDclk change\n");
4490 }
4491 mutex_unlock(&dev_priv->rps.hw_lock);
4492
4493 if (cdclk == 400000) {
4494 u32 divider, vco;
4495
4496 vco = valleyview_get_vco(dev_priv);
4497 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4498
4499 mutex_lock(&dev_priv->dpio_lock);
4500 /* adjust cdclk divider */
4501 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4502 val &= ~DISPLAY_FREQUENCY_VALUES;
4503 val |= divider;
4504 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4505
4506 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4507 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4508 50))
4509 DRM_ERROR("timed out waiting for CDclk change\n");
4510 mutex_unlock(&dev_priv->dpio_lock);
4511 }
4512
4513 mutex_lock(&dev_priv->dpio_lock);
4514 /* adjust self-refresh exit latency value */
4515 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4516 val &= ~0x7f;
4517
4518 /*
4519 * For high bandwidth configs, we set a higher latency in the bunit
4520 * so that the core display fetch happens in time to avoid underruns.
4521 */
4522 if (cdclk == 400000)
4523 val |= 4500 / 250; /* 4.5 usec */
4524 else
4525 val |= 3000 / 250; /* 3.0 usec */
4526 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4527 mutex_unlock(&dev_priv->dpio_lock);
4528
4529 vlv_update_cdclk(dev);
4530 }
4531
4532 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4533 int max_pixclk)
4534 {
4535 int vco = valleyview_get_vco(dev_priv);
4536 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4537
4538 /*
4539 * Really only a few cases to deal with, as only 4 CDclks are supported:
4540 * 200MHz
4541 * 267MHz
4542 * 320/333MHz (depends on HPLL freq)
4543 * 400MHz
4544 * So we check to see whether we're above 90% of the lower bin and
4545 * adjust if needed.
4546 *
4547 * We seem to get an unstable or solid color picture at 200MHz.
4548 * Not sure what's wrong. For now use 200MHz only when all pipes
4549 * are off.
4550 */
4551 if (max_pixclk > freq_320*9/10)
4552 return 400000;
4553 else if (max_pixclk > 266667*9/10)
4554 return freq_320;
4555 else if (max_pixclk > 0)
4556 return 266667;
4557 else
4558 return 200000;
4559 }
4560
4561 /* compute the max pixel clock for new configuration */
4562 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4563 {
4564 struct drm_device *dev = dev_priv->dev;
4565 struct intel_crtc *intel_crtc;
4566 int max_pixclk = 0;
4567
4568 for_each_intel_crtc(dev, intel_crtc) {
4569 if (intel_crtc->new_enabled)
4570 max_pixclk = max(max_pixclk,
4571 intel_crtc->new_config->adjusted_mode.crtc_clock);
4572 }
4573
4574 return max_pixclk;
4575 }
4576
4577 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4578 unsigned *prepare_pipes)
4579 {
4580 struct drm_i915_private *dev_priv = dev->dev_private;
4581 struct intel_crtc *intel_crtc;
4582 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4583
4584 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4585 dev_priv->vlv_cdclk_freq)
4586 return;
4587
4588 /* disable/enable all currently active pipes while we change cdclk */
4589 for_each_intel_crtc(dev, intel_crtc)
4590 if (intel_crtc->base.enabled)
4591 *prepare_pipes |= (1 << intel_crtc->pipe);
4592 }
4593
4594 static void valleyview_modeset_global_resources(struct drm_device *dev)
4595 {
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4598 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4599
4600 if (req_cdclk != dev_priv->vlv_cdclk_freq)
4601 valleyview_set_cdclk(dev, req_cdclk);
4602 modeset_update_crtc_power_domains(dev);
4603 }
4604
4605 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4606 {
4607 struct drm_device *dev = crtc->dev;
4608 struct drm_i915_private *dev_priv = dev->dev_private;
4609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4610 struct intel_encoder *encoder;
4611 int pipe = intel_crtc->pipe;
4612 int plane = intel_crtc->plane;
4613 bool is_dsi;
4614 u32 dspcntr;
4615
4616 WARN_ON(!crtc->enabled);
4617
4618 if (intel_crtc->active)
4619 return;
4620
4621 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4622
4623 if (!is_dsi && !IS_CHERRYVIEW(dev))
4624 vlv_prepare_pll(intel_crtc);
4625
4626 /* Set up the display plane register */
4627 dspcntr = DISPPLANE_GAMMA_ENABLE;
4628
4629 if (intel_crtc->config.has_dp_encoder)
4630 intel_dp_set_m_n(intel_crtc);
4631
4632 intel_set_pipe_timings(intel_crtc);
4633
4634 /* pipesrc and dspsize control the size that is scaled from,
4635 * which should always be the user's requested size.
4636 */
4637 I915_WRITE(DSPSIZE(plane),
4638 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4639 (intel_crtc->config.pipe_src_w - 1));
4640 I915_WRITE(DSPPOS(plane), 0);
4641
4642 i9xx_set_pipeconf(intel_crtc);
4643
4644 I915_WRITE(DSPCNTR(plane), dspcntr);
4645 POSTING_READ(DSPCNTR(plane));
4646
4647 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4648 crtc->x, crtc->y);
4649
4650 intel_crtc->active = true;
4651
4652 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4653
4654 for_each_encoder_on_crtc(dev, crtc, encoder)
4655 if (encoder->pre_pll_enable)
4656 encoder->pre_pll_enable(encoder);
4657
4658 if (!is_dsi) {
4659 if (IS_CHERRYVIEW(dev))
4660 chv_enable_pll(intel_crtc);
4661 else
4662 vlv_enable_pll(intel_crtc);
4663 }
4664
4665 for_each_encoder_on_crtc(dev, crtc, encoder)
4666 if (encoder->pre_enable)
4667 encoder->pre_enable(encoder);
4668
4669 i9xx_pfit_enable(intel_crtc);
4670
4671 intel_crtc_load_lut(crtc);
4672
4673 intel_update_watermarks(crtc);
4674 intel_enable_pipe(intel_crtc);
4675
4676 for_each_encoder_on_crtc(dev, crtc, encoder)
4677 encoder->enable(encoder);
4678
4679 intel_crtc_enable_planes(crtc);
4680
4681 /* Underruns don't raise interrupts, so check manually. */
4682 i9xx_check_fifo_underruns(dev);
4683 }
4684
4685 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4686 {
4687 struct drm_device *dev = crtc->base.dev;
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4691 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4692 }
4693
4694 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4695 {
4696 struct drm_device *dev = crtc->dev;
4697 struct drm_i915_private *dev_priv = dev->dev_private;
4698 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4699 struct intel_encoder *encoder;
4700 int pipe = intel_crtc->pipe;
4701 int plane = intel_crtc->plane;
4702 u32 dspcntr;
4703
4704 WARN_ON(!crtc->enabled);
4705
4706 if (intel_crtc->active)
4707 return;
4708
4709 i9xx_set_pll_dividers(intel_crtc);
4710
4711 /* Set up the display plane register */
4712 dspcntr = DISPPLANE_GAMMA_ENABLE;
4713
4714 if (pipe == 0)
4715 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4716 else
4717 dspcntr |= DISPPLANE_SEL_PIPE_B;
4718
4719 if (intel_crtc->config.has_dp_encoder)
4720 intel_dp_set_m_n(intel_crtc);
4721
4722 intel_set_pipe_timings(intel_crtc);
4723
4724 /* pipesrc and dspsize control the size that is scaled from,
4725 * which should always be the user's requested size.
4726 */
4727 I915_WRITE(DSPSIZE(plane),
4728 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4729 (intel_crtc->config.pipe_src_w - 1));
4730 I915_WRITE(DSPPOS(plane), 0);
4731
4732 i9xx_set_pipeconf(intel_crtc);
4733
4734 I915_WRITE(DSPCNTR(plane), dspcntr);
4735 POSTING_READ(DSPCNTR(plane));
4736
4737 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4738 crtc->x, crtc->y);
4739
4740 intel_crtc->active = true;
4741
4742 if (!IS_GEN2(dev))
4743 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4744
4745 for_each_encoder_on_crtc(dev, crtc, encoder)
4746 if (encoder->pre_enable)
4747 encoder->pre_enable(encoder);
4748
4749 i9xx_enable_pll(intel_crtc);
4750
4751 i9xx_pfit_enable(intel_crtc);
4752
4753 intel_crtc_load_lut(crtc);
4754
4755 intel_update_watermarks(crtc);
4756 intel_enable_pipe(intel_crtc);
4757
4758 for_each_encoder_on_crtc(dev, crtc, encoder)
4759 encoder->enable(encoder);
4760
4761 intel_crtc_enable_planes(crtc);
4762
4763 /*
4764 * Gen2 reports pipe underruns whenever all planes are disabled.
4765 * So don't enable underrun reporting before at least some planes
4766 * are enabled.
4767 * FIXME: Need to fix the logic to work when we turn off all planes
4768 * but leave the pipe running.
4769 */
4770 if (IS_GEN2(dev))
4771 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4772
4773 /* Underruns don't raise interrupts, so check manually. */
4774 i9xx_check_fifo_underruns(dev);
4775 }
4776
4777 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4778 {
4779 struct drm_device *dev = crtc->base.dev;
4780 struct drm_i915_private *dev_priv = dev->dev_private;
4781
4782 if (!crtc->config.gmch_pfit.control)
4783 return;
4784
4785 assert_pipe_disabled(dev_priv, crtc->pipe);
4786
4787 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4788 I915_READ(PFIT_CONTROL));
4789 I915_WRITE(PFIT_CONTROL, 0);
4790 }
4791
4792 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4793 {
4794 struct drm_device *dev = crtc->dev;
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4797 struct intel_encoder *encoder;
4798 int pipe = intel_crtc->pipe;
4799
4800 if (!intel_crtc->active)
4801 return;
4802
4803 /*
4804 * Gen2 reports pipe underruns whenever all planes are disabled.
4805 * So diasble underrun reporting before all the planes get disabled.
4806 * FIXME: Need to fix the logic to work when we turn off all planes
4807 * but leave the pipe running.
4808 */
4809 if (IS_GEN2(dev))
4810 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4811
4812 /*
4813 * Vblank time updates from the shadow to live plane control register
4814 * are blocked if the memory self-refresh mode is active at that
4815 * moment. So to make sure the plane gets truly disabled, disable
4816 * first the self-refresh mode. The self-refresh enable bit in turn
4817 * will be checked/applied by the HW only at the next frame start
4818 * event which is after the vblank start event, so we need to have a
4819 * wait-for-vblank between disabling the plane and the pipe.
4820 */
4821 intel_set_memory_cxsr(dev_priv, false);
4822 intel_crtc_disable_planes(crtc);
4823
4824 for_each_encoder_on_crtc(dev, crtc, encoder)
4825 encoder->disable(encoder);
4826
4827 /*
4828 * On gen2 planes are double buffered but the pipe isn't, so we must
4829 * wait for planes to fully turn off before disabling the pipe.
4830 * We also need to wait on all gmch platforms because of the
4831 * self-refresh mode constraint explained above.
4832 */
4833 intel_wait_for_vblank(dev, pipe);
4834
4835 intel_disable_pipe(dev_priv, pipe);
4836
4837 i9xx_pfit_disable(intel_crtc);
4838
4839 for_each_encoder_on_crtc(dev, crtc, encoder)
4840 if (encoder->post_disable)
4841 encoder->post_disable(encoder);
4842
4843 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4844 if (IS_CHERRYVIEW(dev))
4845 chv_disable_pll(dev_priv, pipe);
4846 else if (IS_VALLEYVIEW(dev))
4847 vlv_disable_pll(dev_priv, pipe);
4848 else
4849 i9xx_disable_pll(dev_priv, pipe);
4850 }
4851
4852 if (!IS_GEN2(dev))
4853 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4854
4855 intel_crtc->active = false;
4856 intel_update_watermarks(crtc);
4857
4858 mutex_lock(&dev->struct_mutex);
4859 intel_update_fbc(dev);
4860 mutex_unlock(&dev->struct_mutex);
4861 }
4862
4863 static void i9xx_crtc_off(struct drm_crtc *crtc)
4864 {
4865 }
4866
4867 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4868 bool enabled)
4869 {
4870 struct drm_device *dev = crtc->dev;
4871 struct drm_i915_master_private *master_priv;
4872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4873 int pipe = intel_crtc->pipe;
4874
4875 if (!dev->primary->master)
4876 return;
4877
4878 master_priv = dev->primary->master->driver_priv;
4879 if (!master_priv->sarea_priv)
4880 return;
4881
4882 switch (pipe) {
4883 case 0:
4884 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4885 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4886 break;
4887 case 1:
4888 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4889 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4890 break;
4891 default:
4892 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4893 break;
4894 }
4895 }
4896
4897 /* Master function to enable/disable CRTC and corresponding power wells */
4898 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4899 {
4900 struct drm_device *dev = crtc->dev;
4901 struct drm_i915_private *dev_priv = dev->dev_private;
4902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4903 enum intel_display_power_domain domain;
4904 unsigned long domains;
4905
4906 if (enable) {
4907 if (!intel_crtc->active) {
4908 domains = get_crtc_power_domains(crtc);
4909 for_each_power_domain(domain, domains)
4910 intel_display_power_get(dev_priv, domain);
4911 intel_crtc->enabled_power_domains = domains;
4912
4913 dev_priv->display.crtc_enable(crtc);
4914 }
4915 } else {
4916 if (intel_crtc->active) {
4917 dev_priv->display.crtc_disable(crtc);
4918
4919 domains = intel_crtc->enabled_power_domains;
4920 for_each_power_domain(domain, domains)
4921 intel_display_power_put(dev_priv, domain);
4922 intel_crtc->enabled_power_domains = 0;
4923 }
4924 }
4925 }
4926
4927 /**
4928 * Sets the power management mode of the pipe and plane.
4929 */
4930 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4931 {
4932 struct drm_device *dev = crtc->dev;
4933 struct intel_encoder *intel_encoder;
4934 bool enable = false;
4935
4936 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4937 enable |= intel_encoder->connectors_active;
4938
4939 intel_crtc_control(crtc, enable);
4940
4941 intel_crtc_update_sarea(crtc, enable);
4942 }
4943
4944 static void intel_crtc_disable(struct drm_crtc *crtc)
4945 {
4946 struct drm_device *dev = crtc->dev;
4947 struct drm_connector *connector;
4948 struct drm_i915_private *dev_priv = dev->dev_private;
4949 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4950 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4951
4952 /* crtc should still be enabled when we disable it. */
4953 WARN_ON(!crtc->enabled);
4954
4955 dev_priv->display.crtc_disable(crtc);
4956 intel_crtc_update_sarea(crtc, false);
4957 dev_priv->display.off(crtc);
4958
4959 if (crtc->primary->fb) {
4960 mutex_lock(&dev->struct_mutex);
4961 intel_unpin_fb_obj(old_obj);
4962 i915_gem_track_fb(old_obj, NULL,
4963 INTEL_FRONTBUFFER_PRIMARY(pipe));
4964 mutex_unlock(&dev->struct_mutex);
4965 crtc->primary->fb = NULL;
4966 }
4967
4968 /* Update computed state. */
4969 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4970 if (!connector->encoder || !connector->encoder->crtc)
4971 continue;
4972
4973 if (connector->encoder->crtc != crtc)
4974 continue;
4975
4976 connector->dpms = DRM_MODE_DPMS_OFF;
4977 to_intel_encoder(connector->encoder)->connectors_active = false;
4978 }
4979 }
4980
4981 void intel_encoder_destroy(struct drm_encoder *encoder)
4982 {
4983 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4984
4985 drm_encoder_cleanup(encoder);
4986 kfree(intel_encoder);
4987 }
4988
4989 /* Simple dpms helper for encoders with just one connector, no cloning and only
4990 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4991 * state of the entire output pipe. */
4992 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4993 {
4994 if (mode == DRM_MODE_DPMS_ON) {
4995 encoder->connectors_active = true;
4996
4997 intel_crtc_update_dpms(encoder->base.crtc);
4998 } else {
4999 encoder->connectors_active = false;
5000
5001 intel_crtc_update_dpms(encoder->base.crtc);
5002 }
5003 }
5004
5005 /* Cross check the actual hw state with our own modeset state tracking (and it's
5006 * internal consistency). */
5007 static void intel_connector_check_state(struct intel_connector *connector)
5008 {
5009 if (connector->get_hw_state(connector)) {
5010 struct intel_encoder *encoder = connector->encoder;
5011 struct drm_crtc *crtc;
5012 bool encoder_enabled;
5013 enum pipe pipe;
5014
5015 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5016 connector->base.base.id,
5017 connector->base.name);
5018
5019 /* there is no real hw state for MST connectors */
5020 if (connector->mst_port)
5021 return;
5022
5023 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5024 "wrong connector dpms state\n");
5025 WARN(connector->base.encoder != &encoder->base,
5026 "active connector not linked to encoder\n");
5027
5028 if (encoder) {
5029 WARN(!encoder->connectors_active,
5030 "encoder->connectors_active not set\n");
5031
5032 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5033 WARN(!encoder_enabled, "encoder not enabled\n");
5034 if (WARN_ON(!encoder->base.crtc))
5035 return;
5036
5037 crtc = encoder->base.crtc;
5038
5039 WARN(!crtc->enabled, "crtc not enabled\n");
5040 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5041 WARN(pipe != to_intel_crtc(crtc)->pipe,
5042 "encoder active on the wrong pipe\n");
5043 }
5044 }
5045 }
5046
5047 /* Even simpler default implementation, if there's really no special case to
5048 * consider. */
5049 void intel_connector_dpms(struct drm_connector *connector, int mode)
5050 {
5051 /* All the simple cases only support two dpms states. */
5052 if (mode != DRM_MODE_DPMS_ON)
5053 mode = DRM_MODE_DPMS_OFF;
5054
5055 if (mode == connector->dpms)
5056 return;
5057
5058 connector->dpms = mode;
5059
5060 /* Only need to change hw state when actually enabled */
5061 if (connector->encoder)
5062 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5063
5064 intel_modeset_check_state(connector->dev);
5065 }
5066
5067 /* Simple connector->get_hw_state implementation for encoders that support only
5068 * one connector and no cloning and hence the encoder state determines the state
5069 * of the connector. */
5070 bool intel_connector_get_hw_state(struct intel_connector *connector)
5071 {
5072 enum pipe pipe = 0;
5073 struct intel_encoder *encoder = connector->encoder;
5074
5075 return encoder->get_hw_state(encoder, &pipe);
5076 }
5077
5078 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5079 struct intel_crtc_config *pipe_config)
5080 {
5081 struct drm_i915_private *dev_priv = dev->dev_private;
5082 struct intel_crtc *pipe_B_crtc =
5083 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5084
5085 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5086 pipe_name(pipe), pipe_config->fdi_lanes);
5087 if (pipe_config->fdi_lanes > 4) {
5088 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5089 pipe_name(pipe), pipe_config->fdi_lanes);
5090 return false;
5091 }
5092
5093 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5094 if (pipe_config->fdi_lanes > 2) {
5095 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5096 pipe_config->fdi_lanes);
5097 return false;
5098 } else {
5099 return true;
5100 }
5101 }
5102
5103 if (INTEL_INFO(dev)->num_pipes == 2)
5104 return true;
5105
5106 /* Ivybridge 3 pipe is really complicated */
5107 switch (pipe) {
5108 case PIPE_A:
5109 return true;
5110 case PIPE_B:
5111 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5112 pipe_config->fdi_lanes > 2) {
5113 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5114 pipe_name(pipe), pipe_config->fdi_lanes);
5115 return false;
5116 }
5117 return true;
5118 case PIPE_C:
5119 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5120 pipe_B_crtc->config.fdi_lanes <= 2) {
5121 if (pipe_config->fdi_lanes > 2) {
5122 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5123 pipe_name(pipe), pipe_config->fdi_lanes);
5124 return false;
5125 }
5126 } else {
5127 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5128 return false;
5129 }
5130 return true;
5131 default:
5132 BUG();
5133 }
5134 }
5135
5136 #define RETRY 1
5137 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5138 struct intel_crtc_config *pipe_config)
5139 {
5140 struct drm_device *dev = intel_crtc->base.dev;
5141 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5142 int lane, link_bw, fdi_dotclock;
5143 bool setup_ok, needs_recompute = false;
5144
5145 retry:
5146 /* FDI is a binary signal running at ~2.7GHz, encoding
5147 * each output octet as 10 bits. The actual frequency
5148 * is stored as a divider into a 100MHz clock, and the
5149 * mode pixel clock is stored in units of 1KHz.
5150 * Hence the bw of each lane in terms of the mode signal
5151 * is:
5152 */
5153 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5154
5155 fdi_dotclock = adjusted_mode->crtc_clock;
5156
5157 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5158 pipe_config->pipe_bpp);
5159
5160 pipe_config->fdi_lanes = lane;
5161
5162 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5163 link_bw, &pipe_config->fdi_m_n);
5164
5165 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5166 intel_crtc->pipe, pipe_config);
5167 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5168 pipe_config->pipe_bpp -= 2*3;
5169 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5170 pipe_config->pipe_bpp);
5171 needs_recompute = true;
5172 pipe_config->bw_constrained = true;
5173
5174 goto retry;
5175 }
5176
5177 if (needs_recompute)
5178 return RETRY;
5179
5180 return setup_ok ? 0 : -EINVAL;
5181 }
5182
5183 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5184 struct intel_crtc_config *pipe_config)
5185 {
5186 pipe_config->ips_enabled = i915.enable_ips &&
5187 hsw_crtc_supports_ips(crtc) &&
5188 pipe_config->pipe_bpp <= 24;
5189 }
5190
5191 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5192 struct intel_crtc_config *pipe_config)
5193 {
5194 struct drm_device *dev = crtc->base.dev;
5195 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5196
5197 /* FIXME should check pixel clock limits on all platforms */
5198 if (INTEL_INFO(dev)->gen < 4) {
5199 struct drm_i915_private *dev_priv = dev->dev_private;
5200 int clock_limit =
5201 dev_priv->display.get_display_clock_speed(dev);
5202
5203 /*
5204 * Enable pixel doubling when the dot clock
5205 * is > 90% of the (display) core speed.
5206 *
5207 * GDG double wide on either pipe,
5208 * otherwise pipe A only.
5209 */
5210 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5211 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5212 clock_limit *= 2;
5213 pipe_config->double_wide = true;
5214 }
5215
5216 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5217 return -EINVAL;
5218 }
5219
5220 /*
5221 * Pipe horizontal size must be even in:
5222 * - DVO ganged mode
5223 * - LVDS dual channel mode
5224 * - Double wide pipe
5225 */
5226 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5227 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5228 pipe_config->pipe_src_w &= ~1;
5229
5230 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5231 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5232 */
5233 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5234 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5235 return -EINVAL;
5236
5237 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5238 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5239 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5240 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5241 * for lvds. */
5242 pipe_config->pipe_bpp = 8*3;
5243 }
5244
5245 if (HAS_IPS(dev))
5246 hsw_compute_ips_config(crtc, pipe_config);
5247
5248 /*
5249 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5250 * old clock survives for now.
5251 */
5252 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5253 pipe_config->shared_dpll = crtc->config.shared_dpll;
5254
5255 if (pipe_config->has_pch_encoder)
5256 return ironlake_fdi_compute_config(crtc, pipe_config);
5257
5258 return 0;
5259 }
5260
5261 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5262 {
5263 struct drm_i915_private *dev_priv = dev->dev_private;
5264 int vco = valleyview_get_vco(dev_priv);
5265 u32 val;
5266 int divider;
5267
5268 mutex_lock(&dev_priv->dpio_lock);
5269 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5270 mutex_unlock(&dev_priv->dpio_lock);
5271
5272 divider = val & DISPLAY_FREQUENCY_VALUES;
5273
5274 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5275 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5276 "cdclk change in progress\n");
5277
5278 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5279 }
5280
5281 static int i945_get_display_clock_speed(struct drm_device *dev)
5282 {
5283 return 400000;
5284 }
5285
5286 static int i915_get_display_clock_speed(struct drm_device *dev)
5287 {
5288 return 333000;
5289 }
5290
5291 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5292 {
5293 return 200000;
5294 }
5295
5296 static int pnv_get_display_clock_speed(struct drm_device *dev)
5297 {
5298 u16 gcfgc = 0;
5299
5300 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5301
5302 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5303 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5304 return 267000;
5305 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5306 return 333000;
5307 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5308 return 444000;
5309 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5310 return 200000;
5311 default:
5312 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5313 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5314 return 133000;
5315 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5316 return 167000;
5317 }
5318 }
5319
5320 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5321 {
5322 u16 gcfgc = 0;
5323
5324 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5325
5326 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5327 return 133000;
5328 else {
5329 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5330 case GC_DISPLAY_CLOCK_333_MHZ:
5331 return 333000;
5332 default:
5333 case GC_DISPLAY_CLOCK_190_200_MHZ:
5334 return 190000;
5335 }
5336 }
5337 }
5338
5339 static int i865_get_display_clock_speed(struct drm_device *dev)
5340 {
5341 return 266000;
5342 }
5343
5344 static int i855_get_display_clock_speed(struct drm_device *dev)
5345 {
5346 u16 hpllcc = 0;
5347 /* Assume that the hardware is in the high speed state. This
5348 * should be the default.
5349 */
5350 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5351 case GC_CLOCK_133_200:
5352 case GC_CLOCK_100_200:
5353 return 200000;
5354 case GC_CLOCK_166_250:
5355 return 250000;
5356 case GC_CLOCK_100_133:
5357 return 133000;
5358 }
5359
5360 /* Shouldn't happen */
5361 return 0;
5362 }
5363
5364 static int i830_get_display_clock_speed(struct drm_device *dev)
5365 {
5366 return 133000;
5367 }
5368
5369 static void
5370 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5371 {
5372 while (*num > DATA_LINK_M_N_MASK ||
5373 *den > DATA_LINK_M_N_MASK) {
5374 *num >>= 1;
5375 *den >>= 1;
5376 }
5377 }
5378
5379 static void compute_m_n(unsigned int m, unsigned int n,
5380 uint32_t *ret_m, uint32_t *ret_n)
5381 {
5382 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5383 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5384 intel_reduce_m_n_ratio(ret_m, ret_n);
5385 }
5386
5387 void
5388 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5389 int pixel_clock, int link_clock,
5390 struct intel_link_m_n *m_n)
5391 {
5392 m_n->tu = 64;
5393
5394 compute_m_n(bits_per_pixel * pixel_clock,
5395 link_clock * nlanes * 8,
5396 &m_n->gmch_m, &m_n->gmch_n);
5397
5398 compute_m_n(pixel_clock, link_clock,
5399 &m_n->link_m, &m_n->link_n);
5400 }
5401
5402 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5403 {
5404 if (i915.panel_use_ssc >= 0)
5405 return i915.panel_use_ssc != 0;
5406 return dev_priv->vbt.lvds_use_ssc
5407 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5408 }
5409
5410 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5411 {
5412 struct drm_device *dev = crtc->dev;
5413 struct drm_i915_private *dev_priv = dev->dev_private;
5414 int refclk;
5415
5416 if (IS_VALLEYVIEW(dev)) {
5417 refclk = 100000;
5418 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5419 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5420 refclk = dev_priv->vbt.lvds_ssc_freq;
5421 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5422 } else if (!IS_GEN2(dev)) {
5423 refclk = 96000;
5424 } else {
5425 refclk = 48000;
5426 }
5427
5428 return refclk;
5429 }
5430
5431 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5432 {
5433 return (1 << dpll->n) << 16 | dpll->m2;
5434 }
5435
5436 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5437 {
5438 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5439 }
5440
5441 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5442 intel_clock_t *reduced_clock)
5443 {
5444 struct drm_device *dev = crtc->base.dev;
5445 u32 fp, fp2 = 0;
5446
5447 if (IS_PINEVIEW(dev)) {
5448 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5449 if (reduced_clock)
5450 fp2 = pnv_dpll_compute_fp(reduced_clock);
5451 } else {
5452 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5453 if (reduced_clock)
5454 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5455 }
5456
5457 crtc->config.dpll_hw_state.fp0 = fp;
5458
5459 crtc->lowfreq_avail = false;
5460 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5461 reduced_clock && i915.powersave) {
5462 crtc->config.dpll_hw_state.fp1 = fp2;
5463 crtc->lowfreq_avail = true;
5464 } else {
5465 crtc->config.dpll_hw_state.fp1 = fp;
5466 }
5467 }
5468
5469 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5470 pipe)
5471 {
5472 u32 reg_val;
5473
5474 /*
5475 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5476 * and set it to a reasonable value instead.
5477 */
5478 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5479 reg_val &= 0xffffff00;
5480 reg_val |= 0x00000030;
5481 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5482
5483 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5484 reg_val &= 0x8cffffff;
5485 reg_val = 0x8c000000;
5486 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5487
5488 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5489 reg_val &= 0xffffff00;
5490 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5491
5492 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5493 reg_val &= 0x00ffffff;
5494 reg_val |= 0xb0000000;
5495 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5496 }
5497
5498 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5499 struct intel_link_m_n *m_n)
5500 {
5501 struct drm_device *dev = crtc->base.dev;
5502 struct drm_i915_private *dev_priv = dev->dev_private;
5503 int pipe = crtc->pipe;
5504
5505 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5506 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5507 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5508 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5509 }
5510
5511 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5512 struct intel_link_m_n *m_n)
5513 {
5514 struct drm_device *dev = crtc->base.dev;
5515 struct drm_i915_private *dev_priv = dev->dev_private;
5516 int pipe = crtc->pipe;
5517 enum transcoder transcoder = crtc->config.cpu_transcoder;
5518
5519 if (INTEL_INFO(dev)->gen >= 5) {
5520 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5521 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5522 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5523 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5524 } else {
5525 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5526 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5527 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5528 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5529 }
5530 }
5531
5532 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5533 {
5534 if (crtc->config.has_pch_encoder)
5535 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5536 else
5537 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5538 }
5539
5540 static void vlv_update_pll(struct intel_crtc *crtc)
5541 {
5542 u32 dpll, dpll_md;
5543
5544 /*
5545 * Enable DPIO clock input. We should never disable the reference
5546 * clock for pipe B, since VGA hotplug / manual detection depends
5547 * on it.
5548 */
5549 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5550 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5551 /* We should never disable this, set it here for state tracking */
5552 if (crtc->pipe == PIPE_B)
5553 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5554 dpll |= DPLL_VCO_ENABLE;
5555 crtc->config.dpll_hw_state.dpll = dpll;
5556
5557 dpll_md = (crtc->config.pixel_multiplier - 1)
5558 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5559 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5560 }
5561
5562 static void vlv_prepare_pll(struct intel_crtc *crtc)
5563 {
5564 struct drm_device *dev = crtc->base.dev;
5565 struct drm_i915_private *dev_priv = dev->dev_private;
5566 int pipe = crtc->pipe;
5567 u32 mdiv;
5568 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5569 u32 coreclk, reg_val;
5570
5571 mutex_lock(&dev_priv->dpio_lock);
5572
5573 bestn = crtc->config.dpll.n;
5574 bestm1 = crtc->config.dpll.m1;
5575 bestm2 = crtc->config.dpll.m2;
5576 bestp1 = crtc->config.dpll.p1;
5577 bestp2 = crtc->config.dpll.p2;
5578
5579 /* See eDP HDMI DPIO driver vbios notes doc */
5580
5581 /* PLL B needs special handling */
5582 if (pipe == PIPE_B)
5583 vlv_pllb_recal_opamp(dev_priv, pipe);
5584
5585 /* Set up Tx target for periodic Rcomp update */
5586 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5587
5588 /* Disable target IRef on PLL */
5589 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5590 reg_val &= 0x00ffffff;
5591 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5592
5593 /* Disable fast lock */
5594 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5595
5596 /* Set idtafcrecal before PLL is enabled */
5597 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5598 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5599 mdiv |= ((bestn << DPIO_N_SHIFT));
5600 mdiv |= (1 << DPIO_K_SHIFT);
5601
5602 /*
5603 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5604 * but we don't support that).
5605 * Note: don't use the DAC post divider as it seems unstable.
5606 */
5607 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5608 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5609
5610 mdiv |= DPIO_ENABLE_CALIBRATION;
5611 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5612
5613 /* Set HBR and RBR LPF coefficients */
5614 if (crtc->config.port_clock == 162000 ||
5615 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5616 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5617 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5618 0x009f0003);
5619 else
5620 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5621 0x00d0000f);
5622
5623 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5624 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5625 /* Use SSC source */
5626 if (pipe == PIPE_A)
5627 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5628 0x0df40000);
5629 else
5630 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5631 0x0df70000);
5632 } else { /* HDMI or VGA */
5633 /* Use bend source */
5634 if (pipe == PIPE_A)
5635 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5636 0x0df70000);
5637 else
5638 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5639 0x0df40000);
5640 }
5641
5642 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5643 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5644 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5645 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5646 coreclk |= 0x01000000;
5647 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5648
5649 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5650 mutex_unlock(&dev_priv->dpio_lock);
5651 }
5652
5653 static void chv_update_pll(struct intel_crtc *crtc)
5654 {
5655 struct drm_device *dev = crtc->base.dev;
5656 struct drm_i915_private *dev_priv = dev->dev_private;
5657 int pipe = crtc->pipe;
5658 int dpll_reg = DPLL(crtc->pipe);
5659 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5660 u32 loopfilter, intcoeff;
5661 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5662 int refclk;
5663
5664 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5665 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5666 DPLL_VCO_ENABLE;
5667 if (pipe != PIPE_A)
5668 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5669
5670 crtc->config.dpll_hw_state.dpll_md =
5671 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5672
5673 bestn = crtc->config.dpll.n;
5674 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5675 bestm1 = crtc->config.dpll.m1;
5676 bestm2 = crtc->config.dpll.m2 >> 22;
5677 bestp1 = crtc->config.dpll.p1;
5678 bestp2 = crtc->config.dpll.p2;
5679
5680 /*
5681 * Enable Refclk and SSC
5682 */
5683 I915_WRITE(dpll_reg,
5684 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5685
5686 mutex_lock(&dev_priv->dpio_lock);
5687
5688 /* p1 and p2 divider */
5689 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5690 5 << DPIO_CHV_S1_DIV_SHIFT |
5691 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5692 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5693 1 << DPIO_CHV_K_DIV_SHIFT);
5694
5695 /* Feedback post-divider - m2 */
5696 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5697
5698 /* Feedback refclk divider - n and m1 */
5699 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5700 DPIO_CHV_M1_DIV_BY_2 |
5701 1 << DPIO_CHV_N_DIV_SHIFT);
5702
5703 /* M2 fraction division */
5704 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5705
5706 /* M2 fraction division enable */
5707 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5708 DPIO_CHV_FRAC_DIV_EN |
5709 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5710
5711 /* Loop filter */
5712 refclk = i9xx_get_refclk(&crtc->base, 0);
5713 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5714 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5715 if (refclk == 100000)
5716 intcoeff = 11;
5717 else if (refclk == 38400)
5718 intcoeff = 10;
5719 else
5720 intcoeff = 9;
5721 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5722 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5723
5724 /* AFC Recal */
5725 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5726 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5727 DPIO_AFC_RECAL);
5728
5729 mutex_unlock(&dev_priv->dpio_lock);
5730 }
5731
5732 static void i9xx_update_pll(struct intel_crtc *crtc,
5733 intel_clock_t *reduced_clock,
5734 int num_connectors)
5735 {
5736 struct drm_device *dev = crtc->base.dev;
5737 struct drm_i915_private *dev_priv = dev->dev_private;
5738 u32 dpll;
5739 bool is_sdvo;
5740 struct dpll *clock = &crtc->config.dpll;
5741
5742 i9xx_update_pll_dividers(crtc, reduced_clock);
5743
5744 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5745 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5746
5747 dpll = DPLL_VGA_MODE_DIS;
5748
5749 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5750 dpll |= DPLLB_MODE_LVDS;
5751 else
5752 dpll |= DPLLB_MODE_DAC_SERIAL;
5753
5754 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5755 dpll |= (crtc->config.pixel_multiplier - 1)
5756 << SDVO_MULTIPLIER_SHIFT_HIRES;
5757 }
5758
5759 if (is_sdvo)
5760 dpll |= DPLL_SDVO_HIGH_SPEED;
5761
5762 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5763 dpll |= DPLL_SDVO_HIGH_SPEED;
5764
5765 /* compute bitmask from p1 value */
5766 if (IS_PINEVIEW(dev))
5767 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5768 else {
5769 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5770 if (IS_G4X(dev) && reduced_clock)
5771 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5772 }
5773 switch (clock->p2) {
5774 case 5:
5775 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5776 break;
5777 case 7:
5778 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5779 break;
5780 case 10:
5781 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5782 break;
5783 case 14:
5784 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5785 break;
5786 }
5787 if (INTEL_INFO(dev)->gen >= 4)
5788 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5789
5790 if (crtc->config.sdvo_tv_clock)
5791 dpll |= PLL_REF_INPUT_TVCLKINBC;
5792 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5793 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5794 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5795 else
5796 dpll |= PLL_REF_INPUT_DREFCLK;
5797
5798 dpll |= DPLL_VCO_ENABLE;
5799 crtc->config.dpll_hw_state.dpll = dpll;
5800
5801 if (INTEL_INFO(dev)->gen >= 4) {
5802 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5803 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5804 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5805 }
5806 }
5807
5808 static void i8xx_update_pll(struct intel_crtc *crtc,
5809 intel_clock_t *reduced_clock,
5810 int num_connectors)
5811 {
5812 struct drm_device *dev = crtc->base.dev;
5813 struct drm_i915_private *dev_priv = dev->dev_private;
5814 u32 dpll;
5815 struct dpll *clock = &crtc->config.dpll;
5816
5817 i9xx_update_pll_dividers(crtc, reduced_clock);
5818
5819 dpll = DPLL_VGA_MODE_DIS;
5820
5821 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5822 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5823 } else {
5824 if (clock->p1 == 2)
5825 dpll |= PLL_P1_DIVIDE_BY_TWO;
5826 else
5827 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5828 if (clock->p2 == 4)
5829 dpll |= PLL_P2_DIVIDE_BY_4;
5830 }
5831
5832 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5833 dpll |= DPLL_DVO_2X_MODE;
5834
5835 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5836 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5837 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5838 else
5839 dpll |= PLL_REF_INPUT_DREFCLK;
5840
5841 dpll |= DPLL_VCO_ENABLE;
5842 crtc->config.dpll_hw_state.dpll = dpll;
5843 }
5844
5845 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5846 {
5847 struct drm_device *dev = intel_crtc->base.dev;
5848 struct drm_i915_private *dev_priv = dev->dev_private;
5849 enum pipe pipe = intel_crtc->pipe;
5850 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5851 struct drm_display_mode *adjusted_mode =
5852 &intel_crtc->config.adjusted_mode;
5853 uint32_t crtc_vtotal, crtc_vblank_end;
5854 int vsyncshift = 0;
5855
5856 /* We need to be careful not to changed the adjusted mode, for otherwise
5857 * the hw state checker will get angry at the mismatch. */
5858 crtc_vtotal = adjusted_mode->crtc_vtotal;
5859 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5860
5861 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5862 /* the chip adds 2 halflines automatically */
5863 crtc_vtotal -= 1;
5864 crtc_vblank_end -= 1;
5865
5866 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5867 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5868 else
5869 vsyncshift = adjusted_mode->crtc_hsync_start -
5870 adjusted_mode->crtc_htotal / 2;
5871 if (vsyncshift < 0)
5872 vsyncshift += adjusted_mode->crtc_htotal;
5873 }
5874
5875 if (INTEL_INFO(dev)->gen > 3)
5876 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5877
5878 I915_WRITE(HTOTAL(cpu_transcoder),
5879 (adjusted_mode->crtc_hdisplay - 1) |
5880 ((adjusted_mode->crtc_htotal - 1) << 16));
5881 I915_WRITE(HBLANK(cpu_transcoder),
5882 (adjusted_mode->crtc_hblank_start - 1) |
5883 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5884 I915_WRITE(HSYNC(cpu_transcoder),
5885 (adjusted_mode->crtc_hsync_start - 1) |
5886 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5887
5888 I915_WRITE(VTOTAL(cpu_transcoder),
5889 (adjusted_mode->crtc_vdisplay - 1) |
5890 ((crtc_vtotal - 1) << 16));
5891 I915_WRITE(VBLANK(cpu_transcoder),
5892 (adjusted_mode->crtc_vblank_start - 1) |
5893 ((crtc_vblank_end - 1) << 16));
5894 I915_WRITE(VSYNC(cpu_transcoder),
5895 (adjusted_mode->crtc_vsync_start - 1) |
5896 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5897
5898 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5899 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5900 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5901 * bits. */
5902 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5903 (pipe == PIPE_B || pipe == PIPE_C))
5904 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5905
5906 /* pipesrc controls the size that is scaled from, which should
5907 * always be the user's requested size.
5908 */
5909 I915_WRITE(PIPESRC(pipe),
5910 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5911 (intel_crtc->config.pipe_src_h - 1));
5912 }
5913
5914 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5915 struct intel_crtc_config *pipe_config)
5916 {
5917 struct drm_device *dev = crtc->base.dev;
5918 struct drm_i915_private *dev_priv = dev->dev_private;
5919 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5920 uint32_t tmp;
5921
5922 tmp = I915_READ(HTOTAL(cpu_transcoder));
5923 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5924 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5925 tmp = I915_READ(HBLANK(cpu_transcoder));
5926 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5927 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5928 tmp = I915_READ(HSYNC(cpu_transcoder));
5929 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5930 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5931
5932 tmp = I915_READ(VTOTAL(cpu_transcoder));
5933 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5934 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5935 tmp = I915_READ(VBLANK(cpu_transcoder));
5936 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5937 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5938 tmp = I915_READ(VSYNC(cpu_transcoder));
5939 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5940 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5941
5942 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5943 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5944 pipe_config->adjusted_mode.crtc_vtotal += 1;
5945 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5946 }
5947
5948 tmp = I915_READ(PIPESRC(crtc->pipe));
5949 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5950 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5951
5952 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5953 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5954 }
5955
5956 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5957 struct intel_crtc_config *pipe_config)
5958 {
5959 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5960 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5961 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5962 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5963
5964 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5965 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5966 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5967 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5968
5969 mode->flags = pipe_config->adjusted_mode.flags;
5970
5971 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5972 mode->flags |= pipe_config->adjusted_mode.flags;
5973 }
5974
5975 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5976 {
5977 struct drm_device *dev = intel_crtc->base.dev;
5978 struct drm_i915_private *dev_priv = dev->dev_private;
5979 uint32_t pipeconf;
5980
5981 pipeconf = 0;
5982
5983 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5984 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5985 pipeconf |= PIPECONF_ENABLE;
5986
5987 if (intel_crtc->config.double_wide)
5988 pipeconf |= PIPECONF_DOUBLE_WIDE;
5989
5990 /* only g4x and later have fancy bpc/dither controls */
5991 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5992 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5993 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5994 pipeconf |= PIPECONF_DITHER_EN |
5995 PIPECONF_DITHER_TYPE_SP;
5996
5997 switch (intel_crtc->config.pipe_bpp) {
5998 case 18:
5999 pipeconf |= PIPECONF_6BPC;
6000 break;
6001 case 24:
6002 pipeconf |= PIPECONF_8BPC;
6003 break;
6004 case 30:
6005 pipeconf |= PIPECONF_10BPC;
6006 break;
6007 default:
6008 /* Case prevented by intel_choose_pipe_bpp_dither. */
6009 BUG();
6010 }
6011 }
6012
6013 if (HAS_PIPE_CXSR(dev)) {
6014 if (intel_crtc->lowfreq_avail) {
6015 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6016 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6017 } else {
6018 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6019 }
6020 }
6021
6022 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6023 if (INTEL_INFO(dev)->gen < 4 ||
6024 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6025 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6026 else
6027 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6028 } else
6029 pipeconf |= PIPECONF_PROGRESSIVE;
6030
6031 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6032 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6033
6034 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6035 POSTING_READ(PIPECONF(intel_crtc->pipe));
6036 }
6037
6038 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6039 int x, int y,
6040 struct drm_framebuffer *fb)
6041 {
6042 struct drm_device *dev = crtc->dev;
6043 struct drm_i915_private *dev_priv = dev->dev_private;
6044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6045 int refclk, num_connectors = 0;
6046 intel_clock_t clock, reduced_clock;
6047 bool ok, has_reduced_clock = false;
6048 bool is_lvds = false, is_dsi = false;
6049 struct intel_encoder *encoder;
6050 const intel_limit_t *limit;
6051
6052 for_each_encoder_on_crtc(dev, crtc, encoder) {
6053 switch (encoder->type) {
6054 case INTEL_OUTPUT_LVDS:
6055 is_lvds = true;
6056 break;
6057 case INTEL_OUTPUT_DSI:
6058 is_dsi = true;
6059 break;
6060 }
6061
6062 num_connectors++;
6063 }
6064
6065 if (is_dsi)
6066 return 0;
6067
6068 if (!intel_crtc->config.clock_set) {
6069 refclk = i9xx_get_refclk(crtc, num_connectors);
6070
6071 /*
6072 * Returns a set of divisors for the desired target clock with
6073 * the given refclk, or FALSE. The returned values represent
6074 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6075 * 2) / p1 / p2.
6076 */
6077 limit = intel_limit(crtc, refclk);
6078 ok = dev_priv->display.find_dpll(limit, crtc,
6079 intel_crtc->config.port_clock,
6080 refclk, NULL, &clock);
6081 if (!ok) {
6082 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6083 return -EINVAL;
6084 }
6085
6086 if (is_lvds && dev_priv->lvds_downclock_avail) {
6087 /*
6088 * Ensure we match the reduced clock's P to the target
6089 * clock. If the clocks don't match, we can't switch
6090 * the display clock by using the FP0/FP1. In such case
6091 * we will disable the LVDS downclock feature.
6092 */
6093 has_reduced_clock =
6094 dev_priv->display.find_dpll(limit, crtc,
6095 dev_priv->lvds_downclock,
6096 refclk, &clock,
6097 &reduced_clock);
6098 }
6099 /* Compat-code for transition, will disappear. */
6100 intel_crtc->config.dpll.n = clock.n;
6101 intel_crtc->config.dpll.m1 = clock.m1;
6102 intel_crtc->config.dpll.m2 = clock.m2;
6103 intel_crtc->config.dpll.p1 = clock.p1;
6104 intel_crtc->config.dpll.p2 = clock.p2;
6105 }
6106
6107 if (IS_GEN2(dev)) {
6108 i8xx_update_pll(intel_crtc,
6109 has_reduced_clock ? &reduced_clock : NULL,
6110 num_connectors);
6111 } else if (IS_CHERRYVIEW(dev)) {
6112 chv_update_pll(intel_crtc);
6113 } else if (IS_VALLEYVIEW(dev)) {
6114 vlv_update_pll(intel_crtc);
6115 } else {
6116 i9xx_update_pll(intel_crtc,
6117 has_reduced_clock ? &reduced_clock : NULL,
6118 num_connectors);
6119 }
6120
6121 return 0;
6122 }
6123
6124 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6125 struct intel_crtc_config *pipe_config)
6126 {
6127 struct drm_device *dev = crtc->base.dev;
6128 struct drm_i915_private *dev_priv = dev->dev_private;
6129 uint32_t tmp;
6130
6131 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6132 return;
6133
6134 tmp = I915_READ(PFIT_CONTROL);
6135 if (!(tmp & PFIT_ENABLE))
6136 return;
6137
6138 /* Check whether the pfit is attached to our pipe. */
6139 if (INTEL_INFO(dev)->gen < 4) {
6140 if (crtc->pipe != PIPE_B)
6141 return;
6142 } else {
6143 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6144 return;
6145 }
6146
6147 pipe_config->gmch_pfit.control = tmp;
6148 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6149 if (INTEL_INFO(dev)->gen < 5)
6150 pipe_config->gmch_pfit.lvds_border_bits =
6151 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6152 }
6153
6154 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6155 struct intel_crtc_config *pipe_config)
6156 {
6157 struct drm_device *dev = crtc->base.dev;
6158 struct drm_i915_private *dev_priv = dev->dev_private;
6159 int pipe = pipe_config->cpu_transcoder;
6160 intel_clock_t clock;
6161 u32 mdiv;
6162 int refclk = 100000;
6163
6164 /* In case of MIPI DPLL will not even be used */
6165 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6166 return;
6167
6168 mutex_lock(&dev_priv->dpio_lock);
6169 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6170 mutex_unlock(&dev_priv->dpio_lock);
6171
6172 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6173 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6174 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6175 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6176 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6177
6178 vlv_clock(refclk, &clock);
6179
6180 /* clock.dot is the fast clock */
6181 pipe_config->port_clock = clock.dot / 5;
6182 }
6183
6184 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6185 struct intel_plane_config *plane_config)
6186 {
6187 struct drm_device *dev = crtc->base.dev;
6188 struct drm_i915_private *dev_priv = dev->dev_private;
6189 u32 val, base, offset;
6190 int pipe = crtc->pipe, plane = crtc->plane;
6191 int fourcc, pixel_format;
6192 int aligned_height;
6193
6194 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6195 if (!crtc->base.primary->fb) {
6196 DRM_DEBUG_KMS("failed to alloc fb\n");
6197 return;
6198 }
6199
6200 val = I915_READ(DSPCNTR(plane));
6201
6202 if (INTEL_INFO(dev)->gen >= 4)
6203 if (val & DISPPLANE_TILED)
6204 plane_config->tiled = true;
6205
6206 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6207 fourcc = intel_format_to_fourcc(pixel_format);
6208 crtc->base.primary->fb->pixel_format = fourcc;
6209 crtc->base.primary->fb->bits_per_pixel =
6210 drm_format_plane_cpp(fourcc, 0) * 8;
6211
6212 if (INTEL_INFO(dev)->gen >= 4) {
6213 if (plane_config->tiled)
6214 offset = I915_READ(DSPTILEOFF(plane));
6215 else
6216 offset = I915_READ(DSPLINOFF(plane));
6217 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6218 } else {
6219 base = I915_READ(DSPADDR(plane));
6220 }
6221 plane_config->base = base;
6222
6223 val = I915_READ(PIPESRC(pipe));
6224 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6225 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6226
6227 val = I915_READ(DSPSTRIDE(pipe));
6228 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6229
6230 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6231 plane_config->tiled);
6232
6233 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6234 aligned_height);
6235
6236 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6237 pipe, plane, crtc->base.primary->fb->width,
6238 crtc->base.primary->fb->height,
6239 crtc->base.primary->fb->bits_per_pixel, base,
6240 crtc->base.primary->fb->pitches[0],
6241 plane_config->size);
6242
6243 }
6244
6245 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6246 struct intel_crtc_config *pipe_config)
6247 {
6248 struct drm_device *dev = crtc->base.dev;
6249 struct drm_i915_private *dev_priv = dev->dev_private;
6250 int pipe = pipe_config->cpu_transcoder;
6251 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6252 intel_clock_t clock;
6253 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6254 int refclk = 100000;
6255
6256 mutex_lock(&dev_priv->dpio_lock);
6257 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6258 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6259 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6260 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6261 mutex_unlock(&dev_priv->dpio_lock);
6262
6263 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6264 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6265 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6266 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6267 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6268
6269 chv_clock(refclk, &clock);
6270
6271 /* clock.dot is the fast clock */
6272 pipe_config->port_clock = clock.dot / 5;
6273 }
6274
6275 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6276 struct intel_crtc_config *pipe_config)
6277 {
6278 struct drm_device *dev = crtc->base.dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280 uint32_t tmp;
6281
6282 if (!intel_display_power_enabled(dev_priv,
6283 POWER_DOMAIN_PIPE(crtc->pipe)))
6284 return false;
6285
6286 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6287 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6288
6289 tmp = I915_READ(PIPECONF(crtc->pipe));
6290 if (!(tmp & PIPECONF_ENABLE))
6291 return false;
6292
6293 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6294 switch (tmp & PIPECONF_BPC_MASK) {
6295 case PIPECONF_6BPC:
6296 pipe_config->pipe_bpp = 18;
6297 break;
6298 case PIPECONF_8BPC:
6299 pipe_config->pipe_bpp = 24;
6300 break;
6301 case PIPECONF_10BPC:
6302 pipe_config->pipe_bpp = 30;
6303 break;
6304 default:
6305 break;
6306 }
6307 }
6308
6309 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6310 pipe_config->limited_color_range = true;
6311
6312 if (INTEL_INFO(dev)->gen < 4)
6313 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6314
6315 intel_get_pipe_timings(crtc, pipe_config);
6316
6317 i9xx_get_pfit_config(crtc, pipe_config);
6318
6319 if (INTEL_INFO(dev)->gen >= 4) {
6320 tmp = I915_READ(DPLL_MD(crtc->pipe));
6321 pipe_config->pixel_multiplier =
6322 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6323 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6324 pipe_config->dpll_hw_state.dpll_md = tmp;
6325 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6326 tmp = I915_READ(DPLL(crtc->pipe));
6327 pipe_config->pixel_multiplier =
6328 ((tmp & SDVO_MULTIPLIER_MASK)
6329 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6330 } else {
6331 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6332 * port and will be fixed up in the encoder->get_config
6333 * function. */
6334 pipe_config->pixel_multiplier = 1;
6335 }
6336 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6337 if (!IS_VALLEYVIEW(dev)) {
6338 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6339 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6340 } else {
6341 /* Mask out read-only status bits. */
6342 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6343 DPLL_PORTC_READY_MASK |
6344 DPLL_PORTB_READY_MASK);
6345 }
6346
6347 if (IS_CHERRYVIEW(dev))
6348 chv_crtc_clock_get(crtc, pipe_config);
6349 else if (IS_VALLEYVIEW(dev))
6350 vlv_crtc_clock_get(crtc, pipe_config);
6351 else
6352 i9xx_crtc_clock_get(crtc, pipe_config);
6353
6354 return true;
6355 }
6356
6357 static void ironlake_init_pch_refclk(struct drm_device *dev)
6358 {
6359 struct drm_i915_private *dev_priv = dev->dev_private;
6360 struct drm_mode_config *mode_config = &dev->mode_config;
6361 struct intel_encoder *encoder;
6362 u32 val, final;
6363 bool has_lvds = false;
6364 bool has_cpu_edp = false;
6365 bool has_panel = false;
6366 bool has_ck505 = false;
6367 bool can_ssc = false;
6368
6369 /* We need to take the global config into account */
6370 list_for_each_entry(encoder, &mode_config->encoder_list,
6371 base.head) {
6372 switch (encoder->type) {
6373 case INTEL_OUTPUT_LVDS:
6374 has_panel = true;
6375 has_lvds = true;
6376 break;
6377 case INTEL_OUTPUT_EDP:
6378 has_panel = true;
6379 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6380 has_cpu_edp = true;
6381 break;
6382 }
6383 }
6384
6385 if (HAS_PCH_IBX(dev)) {
6386 has_ck505 = dev_priv->vbt.display_clock_mode;
6387 can_ssc = has_ck505;
6388 } else {
6389 has_ck505 = false;
6390 can_ssc = true;
6391 }
6392
6393 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6394 has_panel, has_lvds, has_ck505);
6395
6396 /* Ironlake: try to setup display ref clock before DPLL
6397 * enabling. This is only under driver's control after
6398 * PCH B stepping, previous chipset stepping should be
6399 * ignoring this setting.
6400 */
6401 val = I915_READ(PCH_DREF_CONTROL);
6402
6403 /* As we must carefully and slowly disable/enable each source in turn,
6404 * compute the final state we want first and check if we need to
6405 * make any changes at all.
6406 */
6407 final = val;
6408 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6409 if (has_ck505)
6410 final |= DREF_NONSPREAD_CK505_ENABLE;
6411 else
6412 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6413
6414 final &= ~DREF_SSC_SOURCE_MASK;
6415 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6416 final &= ~DREF_SSC1_ENABLE;
6417
6418 if (has_panel) {
6419 final |= DREF_SSC_SOURCE_ENABLE;
6420
6421 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6422 final |= DREF_SSC1_ENABLE;
6423
6424 if (has_cpu_edp) {
6425 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6426 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6427 else
6428 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6429 } else
6430 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6431 } else {
6432 final |= DREF_SSC_SOURCE_DISABLE;
6433 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6434 }
6435
6436 if (final == val)
6437 return;
6438
6439 /* Always enable nonspread source */
6440 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6441
6442 if (has_ck505)
6443 val |= DREF_NONSPREAD_CK505_ENABLE;
6444 else
6445 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6446
6447 if (has_panel) {
6448 val &= ~DREF_SSC_SOURCE_MASK;
6449 val |= DREF_SSC_SOURCE_ENABLE;
6450
6451 /* SSC must be turned on before enabling the CPU output */
6452 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6453 DRM_DEBUG_KMS("Using SSC on panel\n");
6454 val |= DREF_SSC1_ENABLE;
6455 } else
6456 val &= ~DREF_SSC1_ENABLE;
6457
6458 /* Get SSC going before enabling the outputs */
6459 I915_WRITE(PCH_DREF_CONTROL, val);
6460 POSTING_READ(PCH_DREF_CONTROL);
6461 udelay(200);
6462
6463 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6464
6465 /* Enable CPU source on CPU attached eDP */
6466 if (has_cpu_edp) {
6467 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6468 DRM_DEBUG_KMS("Using SSC on eDP\n");
6469 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6470 } else
6471 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6472 } else
6473 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6474
6475 I915_WRITE(PCH_DREF_CONTROL, val);
6476 POSTING_READ(PCH_DREF_CONTROL);
6477 udelay(200);
6478 } else {
6479 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6480
6481 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6482
6483 /* Turn off CPU output */
6484 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6485
6486 I915_WRITE(PCH_DREF_CONTROL, val);
6487 POSTING_READ(PCH_DREF_CONTROL);
6488 udelay(200);
6489
6490 /* Turn off the SSC source */
6491 val &= ~DREF_SSC_SOURCE_MASK;
6492 val |= DREF_SSC_SOURCE_DISABLE;
6493
6494 /* Turn off SSC1 */
6495 val &= ~DREF_SSC1_ENABLE;
6496
6497 I915_WRITE(PCH_DREF_CONTROL, val);
6498 POSTING_READ(PCH_DREF_CONTROL);
6499 udelay(200);
6500 }
6501
6502 BUG_ON(val != final);
6503 }
6504
6505 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6506 {
6507 uint32_t tmp;
6508
6509 tmp = I915_READ(SOUTH_CHICKEN2);
6510 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6511 I915_WRITE(SOUTH_CHICKEN2, tmp);
6512
6513 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6514 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6515 DRM_ERROR("FDI mPHY reset assert timeout\n");
6516
6517 tmp = I915_READ(SOUTH_CHICKEN2);
6518 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6519 I915_WRITE(SOUTH_CHICKEN2, tmp);
6520
6521 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6522 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6523 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6524 }
6525
6526 /* WaMPhyProgramming:hsw */
6527 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6528 {
6529 uint32_t tmp;
6530
6531 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6532 tmp &= ~(0xFF << 24);
6533 tmp |= (0x12 << 24);
6534 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6535
6536 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6537 tmp |= (1 << 11);
6538 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6539
6540 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6541 tmp |= (1 << 11);
6542 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6543
6544 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6545 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6546 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6547
6548 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6549 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6550 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6551
6552 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6553 tmp &= ~(7 << 13);
6554 tmp |= (5 << 13);
6555 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6556
6557 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6558 tmp &= ~(7 << 13);
6559 tmp |= (5 << 13);
6560 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6561
6562 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6563 tmp &= ~0xFF;
6564 tmp |= 0x1C;
6565 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6566
6567 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6568 tmp &= ~0xFF;
6569 tmp |= 0x1C;
6570 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6571
6572 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6573 tmp &= ~(0xFF << 16);
6574 tmp |= (0x1C << 16);
6575 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6576
6577 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6578 tmp &= ~(0xFF << 16);
6579 tmp |= (0x1C << 16);
6580 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6581
6582 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6583 tmp |= (1 << 27);
6584 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6585
6586 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6587 tmp |= (1 << 27);
6588 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6589
6590 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6591 tmp &= ~(0xF << 28);
6592 tmp |= (4 << 28);
6593 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6594
6595 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6596 tmp &= ~(0xF << 28);
6597 tmp |= (4 << 28);
6598 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6599 }
6600
6601 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6602 * Programming" based on the parameters passed:
6603 * - Sequence to enable CLKOUT_DP
6604 * - Sequence to enable CLKOUT_DP without spread
6605 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6606 */
6607 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6608 bool with_fdi)
6609 {
6610 struct drm_i915_private *dev_priv = dev->dev_private;
6611 uint32_t reg, tmp;
6612
6613 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6614 with_spread = true;
6615 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6616 with_fdi, "LP PCH doesn't have FDI\n"))
6617 with_fdi = false;
6618
6619 mutex_lock(&dev_priv->dpio_lock);
6620
6621 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6622 tmp &= ~SBI_SSCCTL_DISABLE;
6623 tmp |= SBI_SSCCTL_PATHALT;
6624 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6625
6626 udelay(24);
6627
6628 if (with_spread) {
6629 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6630 tmp &= ~SBI_SSCCTL_PATHALT;
6631 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6632
6633 if (with_fdi) {
6634 lpt_reset_fdi_mphy(dev_priv);
6635 lpt_program_fdi_mphy(dev_priv);
6636 }
6637 }
6638
6639 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6640 SBI_GEN0 : SBI_DBUFF0;
6641 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6642 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6643 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6644
6645 mutex_unlock(&dev_priv->dpio_lock);
6646 }
6647
6648 /* Sequence to disable CLKOUT_DP */
6649 static void lpt_disable_clkout_dp(struct drm_device *dev)
6650 {
6651 struct drm_i915_private *dev_priv = dev->dev_private;
6652 uint32_t reg, tmp;
6653
6654 mutex_lock(&dev_priv->dpio_lock);
6655
6656 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6657 SBI_GEN0 : SBI_DBUFF0;
6658 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6659 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6660 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6661
6662 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6663 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6664 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6665 tmp |= SBI_SSCCTL_PATHALT;
6666 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6667 udelay(32);
6668 }
6669 tmp |= SBI_SSCCTL_DISABLE;
6670 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6671 }
6672
6673 mutex_unlock(&dev_priv->dpio_lock);
6674 }
6675
6676 static void lpt_init_pch_refclk(struct drm_device *dev)
6677 {
6678 struct drm_mode_config *mode_config = &dev->mode_config;
6679 struct intel_encoder *encoder;
6680 bool has_vga = false;
6681
6682 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6683 switch (encoder->type) {
6684 case INTEL_OUTPUT_ANALOG:
6685 has_vga = true;
6686 break;
6687 }
6688 }
6689
6690 if (has_vga)
6691 lpt_enable_clkout_dp(dev, true, true);
6692 else
6693 lpt_disable_clkout_dp(dev);
6694 }
6695
6696 /*
6697 * Initialize reference clocks when the driver loads
6698 */
6699 void intel_init_pch_refclk(struct drm_device *dev)
6700 {
6701 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6702 ironlake_init_pch_refclk(dev);
6703 else if (HAS_PCH_LPT(dev))
6704 lpt_init_pch_refclk(dev);
6705 }
6706
6707 static int ironlake_get_refclk(struct drm_crtc *crtc)
6708 {
6709 struct drm_device *dev = crtc->dev;
6710 struct drm_i915_private *dev_priv = dev->dev_private;
6711 struct intel_encoder *encoder;
6712 int num_connectors = 0;
6713 bool is_lvds = false;
6714
6715 for_each_encoder_on_crtc(dev, crtc, encoder) {
6716 switch (encoder->type) {
6717 case INTEL_OUTPUT_LVDS:
6718 is_lvds = true;
6719 break;
6720 }
6721 num_connectors++;
6722 }
6723
6724 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6725 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6726 dev_priv->vbt.lvds_ssc_freq);
6727 return dev_priv->vbt.lvds_ssc_freq;
6728 }
6729
6730 return 120000;
6731 }
6732
6733 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6734 {
6735 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737 int pipe = intel_crtc->pipe;
6738 uint32_t val;
6739
6740 val = 0;
6741
6742 switch (intel_crtc->config.pipe_bpp) {
6743 case 18:
6744 val |= PIPECONF_6BPC;
6745 break;
6746 case 24:
6747 val |= PIPECONF_8BPC;
6748 break;
6749 case 30:
6750 val |= PIPECONF_10BPC;
6751 break;
6752 case 36:
6753 val |= PIPECONF_12BPC;
6754 break;
6755 default:
6756 /* Case prevented by intel_choose_pipe_bpp_dither. */
6757 BUG();
6758 }
6759
6760 if (intel_crtc->config.dither)
6761 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6762
6763 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6764 val |= PIPECONF_INTERLACED_ILK;
6765 else
6766 val |= PIPECONF_PROGRESSIVE;
6767
6768 if (intel_crtc->config.limited_color_range)
6769 val |= PIPECONF_COLOR_RANGE_SELECT;
6770
6771 I915_WRITE(PIPECONF(pipe), val);
6772 POSTING_READ(PIPECONF(pipe));
6773 }
6774
6775 /*
6776 * Set up the pipe CSC unit.
6777 *
6778 * Currently only full range RGB to limited range RGB conversion
6779 * is supported, but eventually this should handle various
6780 * RGB<->YCbCr scenarios as well.
6781 */
6782 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6783 {
6784 struct drm_device *dev = crtc->dev;
6785 struct drm_i915_private *dev_priv = dev->dev_private;
6786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6787 int pipe = intel_crtc->pipe;
6788 uint16_t coeff = 0x7800; /* 1.0 */
6789
6790 /*
6791 * TODO: Check what kind of values actually come out of the pipe
6792 * with these coeff/postoff values and adjust to get the best
6793 * accuracy. Perhaps we even need to take the bpc value into
6794 * consideration.
6795 */
6796
6797 if (intel_crtc->config.limited_color_range)
6798 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6799
6800 /*
6801 * GY/GU and RY/RU should be the other way around according
6802 * to BSpec, but reality doesn't agree. Just set them up in
6803 * a way that results in the correct picture.
6804 */
6805 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6806 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6807
6808 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6809 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6810
6811 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6812 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6813
6814 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6815 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6816 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6817
6818 if (INTEL_INFO(dev)->gen > 6) {
6819 uint16_t postoff = 0;
6820
6821 if (intel_crtc->config.limited_color_range)
6822 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6823
6824 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6825 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6826 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6827
6828 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6829 } else {
6830 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6831
6832 if (intel_crtc->config.limited_color_range)
6833 mode |= CSC_BLACK_SCREEN_OFFSET;
6834
6835 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6836 }
6837 }
6838
6839 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6840 {
6841 struct drm_device *dev = crtc->dev;
6842 struct drm_i915_private *dev_priv = dev->dev_private;
6843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6844 enum pipe pipe = intel_crtc->pipe;
6845 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6846 uint32_t val;
6847
6848 val = 0;
6849
6850 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6851 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6852
6853 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6854 val |= PIPECONF_INTERLACED_ILK;
6855 else
6856 val |= PIPECONF_PROGRESSIVE;
6857
6858 I915_WRITE(PIPECONF(cpu_transcoder), val);
6859 POSTING_READ(PIPECONF(cpu_transcoder));
6860
6861 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6862 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6863
6864 if (IS_BROADWELL(dev)) {
6865 val = 0;
6866
6867 switch (intel_crtc->config.pipe_bpp) {
6868 case 18:
6869 val |= PIPEMISC_DITHER_6_BPC;
6870 break;
6871 case 24:
6872 val |= PIPEMISC_DITHER_8_BPC;
6873 break;
6874 case 30:
6875 val |= PIPEMISC_DITHER_10_BPC;
6876 break;
6877 case 36:
6878 val |= PIPEMISC_DITHER_12_BPC;
6879 break;
6880 default:
6881 /* Case prevented by pipe_config_set_bpp. */
6882 BUG();
6883 }
6884
6885 if (intel_crtc->config.dither)
6886 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6887
6888 I915_WRITE(PIPEMISC(pipe), val);
6889 }
6890 }
6891
6892 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6893 intel_clock_t *clock,
6894 bool *has_reduced_clock,
6895 intel_clock_t *reduced_clock)
6896 {
6897 struct drm_device *dev = crtc->dev;
6898 struct drm_i915_private *dev_priv = dev->dev_private;
6899 struct intel_encoder *intel_encoder;
6900 int refclk;
6901 const intel_limit_t *limit;
6902 bool ret, is_lvds = false;
6903
6904 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6905 switch (intel_encoder->type) {
6906 case INTEL_OUTPUT_LVDS:
6907 is_lvds = true;
6908 break;
6909 }
6910 }
6911
6912 refclk = ironlake_get_refclk(crtc);
6913
6914 /*
6915 * Returns a set of divisors for the desired target clock with the given
6916 * refclk, or FALSE. The returned values represent the clock equation:
6917 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6918 */
6919 limit = intel_limit(crtc, refclk);
6920 ret = dev_priv->display.find_dpll(limit, crtc,
6921 to_intel_crtc(crtc)->config.port_clock,
6922 refclk, NULL, clock);
6923 if (!ret)
6924 return false;
6925
6926 if (is_lvds && dev_priv->lvds_downclock_avail) {
6927 /*
6928 * Ensure we match the reduced clock's P to the target clock.
6929 * If the clocks don't match, we can't switch the display clock
6930 * by using the FP0/FP1. In such case we will disable the LVDS
6931 * downclock feature.
6932 */
6933 *has_reduced_clock =
6934 dev_priv->display.find_dpll(limit, crtc,
6935 dev_priv->lvds_downclock,
6936 refclk, clock,
6937 reduced_clock);
6938 }
6939
6940 return true;
6941 }
6942
6943 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6944 {
6945 /*
6946 * Account for spread spectrum to avoid
6947 * oversubscribing the link. Max center spread
6948 * is 2.5%; use 5% for safety's sake.
6949 */
6950 u32 bps = target_clock * bpp * 21 / 20;
6951 return DIV_ROUND_UP(bps, link_bw * 8);
6952 }
6953
6954 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6955 {
6956 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6957 }
6958
6959 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6960 u32 *fp,
6961 intel_clock_t *reduced_clock, u32 *fp2)
6962 {
6963 struct drm_crtc *crtc = &intel_crtc->base;
6964 struct drm_device *dev = crtc->dev;
6965 struct drm_i915_private *dev_priv = dev->dev_private;
6966 struct intel_encoder *intel_encoder;
6967 uint32_t dpll;
6968 int factor, num_connectors = 0;
6969 bool is_lvds = false, is_sdvo = false;
6970
6971 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6972 switch (intel_encoder->type) {
6973 case INTEL_OUTPUT_LVDS:
6974 is_lvds = true;
6975 break;
6976 case INTEL_OUTPUT_SDVO:
6977 case INTEL_OUTPUT_HDMI:
6978 is_sdvo = true;
6979 break;
6980 }
6981
6982 num_connectors++;
6983 }
6984
6985 /* Enable autotuning of the PLL clock (if permissible) */
6986 factor = 21;
6987 if (is_lvds) {
6988 if ((intel_panel_use_ssc(dev_priv) &&
6989 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6990 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6991 factor = 25;
6992 } else if (intel_crtc->config.sdvo_tv_clock)
6993 factor = 20;
6994
6995 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6996 *fp |= FP_CB_TUNE;
6997
6998 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6999 *fp2 |= FP_CB_TUNE;
7000
7001 dpll = 0;
7002
7003 if (is_lvds)
7004 dpll |= DPLLB_MODE_LVDS;
7005 else
7006 dpll |= DPLLB_MODE_DAC_SERIAL;
7007
7008 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7009 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7010
7011 if (is_sdvo)
7012 dpll |= DPLL_SDVO_HIGH_SPEED;
7013 if (intel_crtc->config.has_dp_encoder)
7014 dpll |= DPLL_SDVO_HIGH_SPEED;
7015
7016 /* compute bitmask from p1 value */
7017 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7018 /* also FPA1 */
7019 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7020
7021 switch (intel_crtc->config.dpll.p2) {
7022 case 5:
7023 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7024 break;
7025 case 7:
7026 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7027 break;
7028 case 10:
7029 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7030 break;
7031 case 14:
7032 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7033 break;
7034 }
7035
7036 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7037 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7038 else
7039 dpll |= PLL_REF_INPUT_DREFCLK;
7040
7041 return dpll | DPLL_VCO_ENABLE;
7042 }
7043
7044 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7045 int x, int y,
7046 struct drm_framebuffer *fb)
7047 {
7048 struct drm_device *dev = crtc->dev;
7049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7050 int num_connectors = 0;
7051 intel_clock_t clock, reduced_clock;
7052 u32 dpll = 0, fp = 0, fp2 = 0;
7053 bool ok, has_reduced_clock = false;
7054 bool is_lvds = false;
7055 struct intel_encoder *encoder;
7056 struct intel_shared_dpll *pll;
7057
7058 for_each_encoder_on_crtc(dev, crtc, encoder) {
7059 switch (encoder->type) {
7060 case INTEL_OUTPUT_LVDS:
7061 is_lvds = true;
7062 break;
7063 }
7064
7065 num_connectors++;
7066 }
7067
7068 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7069 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7070
7071 ok = ironlake_compute_clocks(crtc, &clock,
7072 &has_reduced_clock, &reduced_clock);
7073 if (!ok && !intel_crtc->config.clock_set) {
7074 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7075 return -EINVAL;
7076 }
7077 /* Compat-code for transition, will disappear. */
7078 if (!intel_crtc->config.clock_set) {
7079 intel_crtc->config.dpll.n = clock.n;
7080 intel_crtc->config.dpll.m1 = clock.m1;
7081 intel_crtc->config.dpll.m2 = clock.m2;
7082 intel_crtc->config.dpll.p1 = clock.p1;
7083 intel_crtc->config.dpll.p2 = clock.p2;
7084 }
7085
7086 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7087 if (intel_crtc->config.has_pch_encoder) {
7088 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7089 if (has_reduced_clock)
7090 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7091
7092 dpll = ironlake_compute_dpll(intel_crtc,
7093 &fp, &reduced_clock,
7094 has_reduced_clock ? &fp2 : NULL);
7095
7096 intel_crtc->config.dpll_hw_state.dpll = dpll;
7097 intel_crtc->config.dpll_hw_state.fp0 = fp;
7098 if (has_reduced_clock)
7099 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7100 else
7101 intel_crtc->config.dpll_hw_state.fp1 = fp;
7102
7103 pll = intel_get_shared_dpll(intel_crtc);
7104 if (pll == NULL) {
7105 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7106 pipe_name(intel_crtc->pipe));
7107 return -EINVAL;
7108 }
7109 } else
7110 intel_put_shared_dpll(intel_crtc);
7111
7112 if (is_lvds && has_reduced_clock && i915.powersave)
7113 intel_crtc->lowfreq_avail = true;
7114 else
7115 intel_crtc->lowfreq_avail = false;
7116
7117 return 0;
7118 }
7119
7120 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7121 struct intel_link_m_n *m_n)
7122 {
7123 struct drm_device *dev = crtc->base.dev;
7124 struct drm_i915_private *dev_priv = dev->dev_private;
7125 enum pipe pipe = crtc->pipe;
7126
7127 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7128 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7129 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7130 & ~TU_SIZE_MASK;
7131 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7132 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7133 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7134 }
7135
7136 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7137 enum transcoder transcoder,
7138 struct intel_link_m_n *m_n)
7139 {
7140 struct drm_device *dev = crtc->base.dev;
7141 struct drm_i915_private *dev_priv = dev->dev_private;
7142 enum pipe pipe = crtc->pipe;
7143
7144 if (INTEL_INFO(dev)->gen >= 5) {
7145 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7146 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7147 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7148 & ~TU_SIZE_MASK;
7149 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7150 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7151 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7152 } else {
7153 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7154 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7155 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7156 & ~TU_SIZE_MASK;
7157 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7158 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7159 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7160 }
7161 }
7162
7163 void intel_dp_get_m_n(struct intel_crtc *crtc,
7164 struct intel_crtc_config *pipe_config)
7165 {
7166 if (crtc->config.has_pch_encoder)
7167 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7168 else
7169 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7170 &pipe_config->dp_m_n);
7171 }
7172
7173 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7174 struct intel_crtc_config *pipe_config)
7175 {
7176 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7177 &pipe_config->fdi_m_n);
7178 }
7179
7180 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7181 struct intel_crtc_config *pipe_config)
7182 {
7183 struct drm_device *dev = crtc->base.dev;
7184 struct drm_i915_private *dev_priv = dev->dev_private;
7185 uint32_t tmp;
7186
7187 tmp = I915_READ(PF_CTL(crtc->pipe));
7188
7189 if (tmp & PF_ENABLE) {
7190 pipe_config->pch_pfit.enabled = true;
7191 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7192 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7193
7194 /* We currently do not free assignements of panel fitters on
7195 * ivb/hsw (since we don't use the higher upscaling modes which
7196 * differentiates them) so just WARN about this case for now. */
7197 if (IS_GEN7(dev)) {
7198 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7199 PF_PIPE_SEL_IVB(crtc->pipe));
7200 }
7201 }
7202 }
7203
7204 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7205 struct intel_plane_config *plane_config)
7206 {
7207 struct drm_device *dev = crtc->base.dev;
7208 struct drm_i915_private *dev_priv = dev->dev_private;
7209 u32 val, base, offset;
7210 int pipe = crtc->pipe, plane = crtc->plane;
7211 int fourcc, pixel_format;
7212 int aligned_height;
7213
7214 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7215 if (!crtc->base.primary->fb) {
7216 DRM_DEBUG_KMS("failed to alloc fb\n");
7217 return;
7218 }
7219
7220 val = I915_READ(DSPCNTR(plane));
7221
7222 if (INTEL_INFO(dev)->gen >= 4)
7223 if (val & DISPPLANE_TILED)
7224 plane_config->tiled = true;
7225
7226 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7227 fourcc = intel_format_to_fourcc(pixel_format);
7228 crtc->base.primary->fb->pixel_format = fourcc;
7229 crtc->base.primary->fb->bits_per_pixel =
7230 drm_format_plane_cpp(fourcc, 0) * 8;
7231
7232 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7233 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7234 offset = I915_READ(DSPOFFSET(plane));
7235 } else {
7236 if (plane_config->tiled)
7237 offset = I915_READ(DSPTILEOFF(plane));
7238 else
7239 offset = I915_READ(DSPLINOFF(plane));
7240 }
7241 plane_config->base = base;
7242
7243 val = I915_READ(PIPESRC(pipe));
7244 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7245 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7246
7247 val = I915_READ(DSPSTRIDE(pipe));
7248 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7249
7250 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7251 plane_config->tiled);
7252
7253 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7254 aligned_height);
7255
7256 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7257 pipe, plane, crtc->base.primary->fb->width,
7258 crtc->base.primary->fb->height,
7259 crtc->base.primary->fb->bits_per_pixel, base,
7260 crtc->base.primary->fb->pitches[0],
7261 plane_config->size);
7262 }
7263
7264 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7265 struct intel_crtc_config *pipe_config)
7266 {
7267 struct drm_device *dev = crtc->base.dev;
7268 struct drm_i915_private *dev_priv = dev->dev_private;
7269 uint32_t tmp;
7270
7271 if (!intel_display_power_enabled(dev_priv,
7272 POWER_DOMAIN_PIPE(crtc->pipe)))
7273 return false;
7274
7275 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7276 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7277
7278 tmp = I915_READ(PIPECONF(crtc->pipe));
7279 if (!(tmp & PIPECONF_ENABLE))
7280 return false;
7281
7282 switch (tmp & PIPECONF_BPC_MASK) {
7283 case PIPECONF_6BPC:
7284 pipe_config->pipe_bpp = 18;
7285 break;
7286 case PIPECONF_8BPC:
7287 pipe_config->pipe_bpp = 24;
7288 break;
7289 case PIPECONF_10BPC:
7290 pipe_config->pipe_bpp = 30;
7291 break;
7292 case PIPECONF_12BPC:
7293 pipe_config->pipe_bpp = 36;
7294 break;
7295 default:
7296 break;
7297 }
7298
7299 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7300 pipe_config->limited_color_range = true;
7301
7302 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7303 struct intel_shared_dpll *pll;
7304
7305 pipe_config->has_pch_encoder = true;
7306
7307 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7308 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7309 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7310
7311 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7312
7313 if (HAS_PCH_IBX(dev_priv->dev)) {
7314 pipe_config->shared_dpll =
7315 (enum intel_dpll_id) crtc->pipe;
7316 } else {
7317 tmp = I915_READ(PCH_DPLL_SEL);
7318 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7319 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7320 else
7321 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7322 }
7323
7324 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7325
7326 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7327 &pipe_config->dpll_hw_state));
7328
7329 tmp = pipe_config->dpll_hw_state.dpll;
7330 pipe_config->pixel_multiplier =
7331 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7332 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7333
7334 ironlake_pch_clock_get(crtc, pipe_config);
7335 } else {
7336 pipe_config->pixel_multiplier = 1;
7337 }
7338
7339 intel_get_pipe_timings(crtc, pipe_config);
7340
7341 ironlake_get_pfit_config(crtc, pipe_config);
7342
7343 return true;
7344 }
7345
7346 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7347 {
7348 struct drm_device *dev = dev_priv->dev;
7349 struct intel_crtc *crtc;
7350
7351 for_each_intel_crtc(dev, crtc)
7352 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7353 pipe_name(crtc->pipe));
7354
7355 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7356 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7357 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7358 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7359 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7360 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7361 "CPU PWM1 enabled\n");
7362 if (IS_HASWELL(dev))
7363 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7364 "CPU PWM2 enabled\n");
7365 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7366 "PCH PWM1 enabled\n");
7367 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7368 "Utility pin enabled\n");
7369 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7370
7371 /*
7372 * In theory we can still leave IRQs enabled, as long as only the HPD
7373 * interrupts remain enabled. We used to check for that, but since it's
7374 * gen-specific and since we only disable LCPLL after we fully disable
7375 * the interrupts, the check below should be enough.
7376 */
7377 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7378 }
7379
7380 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7381 {
7382 struct drm_device *dev = dev_priv->dev;
7383
7384 if (IS_HASWELL(dev))
7385 return I915_READ(D_COMP_HSW);
7386 else
7387 return I915_READ(D_COMP_BDW);
7388 }
7389
7390 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7391 {
7392 struct drm_device *dev = dev_priv->dev;
7393
7394 if (IS_HASWELL(dev)) {
7395 mutex_lock(&dev_priv->rps.hw_lock);
7396 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7397 val))
7398 DRM_ERROR("Failed to write to D_COMP\n");
7399 mutex_unlock(&dev_priv->rps.hw_lock);
7400 } else {
7401 I915_WRITE(D_COMP_BDW, val);
7402 POSTING_READ(D_COMP_BDW);
7403 }
7404 }
7405
7406 /*
7407 * This function implements pieces of two sequences from BSpec:
7408 * - Sequence for display software to disable LCPLL
7409 * - Sequence for display software to allow package C8+
7410 * The steps implemented here are just the steps that actually touch the LCPLL
7411 * register. Callers should take care of disabling all the display engine
7412 * functions, doing the mode unset, fixing interrupts, etc.
7413 */
7414 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7415 bool switch_to_fclk, bool allow_power_down)
7416 {
7417 uint32_t val;
7418
7419 assert_can_disable_lcpll(dev_priv);
7420
7421 val = I915_READ(LCPLL_CTL);
7422
7423 if (switch_to_fclk) {
7424 val |= LCPLL_CD_SOURCE_FCLK;
7425 I915_WRITE(LCPLL_CTL, val);
7426
7427 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7428 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7429 DRM_ERROR("Switching to FCLK failed\n");
7430
7431 val = I915_READ(LCPLL_CTL);
7432 }
7433
7434 val |= LCPLL_PLL_DISABLE;
7435 I915_WRITE(LCPLL_CTL, val);
7436 POSTING_READ(LCPLL_CTL);
7437
7438 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7439 DRM_ERROR("LCPLL still locked\n");
7440
7441 val = hsw_read_dcomp(dev_priv);
7442 val |= D_COMP_COMP_DISABLE;
7443 hsw_write_dcomp(dev_priv, val);
7444 ndelay(100);
7445
7446 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7447 1))
7448 DRM_ERROR("D_COMP RCOMP still in progress\n");
7449
7450 if (allow_power_down) {
7451 val = I915_READ(LCPLL_CTL);
7452 val |= LCPLL_POWER_DOWN_ALLOW;
7453 I915_WRITE(LCPLL_CTL, val);
7454 POSTING_READ(LCPLL_CTL);
7455 }
7456 }
7457
7458 /*
7459 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7460 * source.
7461 */
7462 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7463 {
7464 uint32_t val;
7465 unsigned long irqflags;
7466
7467 val = I915_READ(LCPLL_CTL);
7468
7469 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7470 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7471 return;
7472
7473 /*
7474 * Make sure we're not on PC8 state before disabling PC8, otherwise
7475 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7476 *
7477 * The other problem is that hsw_restore_lcpll() is called as part of
7478 * the runtime PM resume sequence, so we can't just call
7479 * gen6_gt_force_wake_get() because that function calls
7480 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7481 * while we are on the resume sequence. So to solve this problem we have
7482 * to call special forcewake code that doesn't touch runtime PM and
7483 * doesn't enable the forcewake delayed work.
7484 */
7485 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7486 if (dev_priv->uncore.forcewake_count++ == 0)
7487 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7488 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7489
7490 if (val & LCPLL_POWER_DOWN_ALLOW) {
7491 val &= ~LCPLL_POWER_DOWN_ALLOW;
7492 I915_WRITE(LCPLL_CTL, val);
7493 POSTING_READ(LCPLL_CTL);
7494 }
7495
7496 val = hsw_read_dcomp(dev_priv);
7497 val |= D_COMP_COMP_FORCE;
7498 val &= ~D_COMP_COMP_DISABLE;
7499 hsw_write_dcomp(dev_priv, val);
7500
7501 val = I915_READ(LCPLL_CTL);
7502 val &= ~LCPLL_PLL_DISABLE;
7503 I915_WRITE(LCPLL_CTL, val);
7504
7505 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7506 DRM_ERROR("LCPLL not locked yet\n");
7507
7508 if (val & LCPLL_CD_SOURCE_FCLK) {
7509 val = I915_READ(LCPLL_CTL);
7510 val &= ~LCPLL_CD_SOURCE_FCLK;
7511 I915_WRITE(LCPLL_CTL, val);
7512
7513 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7514 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7515 DRM_ERROR("Switching back to LCPLL failed\n");
7516 }
7517
7518 /* See the big comment above. */
7519 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7520 if (--dev_priv->uncore.forcewake_count == 0)
7521 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7522 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7523 }
7524
7525 /*
7526 * Package states C8 and deeper are really deep PC states that can only be
7527 * reached when all the devices on the system allow it, so even if the graphics
7528 * device allows PC8+, it doesn't mean the system will actually get to these
7529 * states. Our driver only allows PC8+ when going into runtime PM.
7530 *
7531 * The requirements for PC8+ are that all the outputs are disabled, the power
7532 * well is disabled and most interrupts are disabled, and these are also
7533 * requirements for runtime PM. When these conditions are met, we manually do
7534 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7535 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7536 * hang the machine.
7537 *
7538 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7539 * the state of some registers, so when we come back from PC8+ we need to
7540 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7541 * need to take care of the registers kept by RC6. Notice that this happens even
7542 * if we don't put the device in PCI D3 state (which is what currently happens
7543 * because of the runtime PM support).
7544 *
7545 * For more, read "Display Sequences for Package C8" on the hardware
7546 * documentation.
7547 */
7548 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7549 {
7550 struct drm_device *dev = dev_priv->dev;
7551 uint32_t val;
7552
7553 DRM_DEBUG_KMS("Enabling package C8+\n");
7554
7555 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7556 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7557 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7558 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7559 }
7560
7561 lpt_disable_clkout_dp(dev);
7562 hsw_disable_lcpll(dev_priv, true, true);
7563 }
7564
7565 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7566 {
7567 struct drm_device *dev = dev_priv->dev;
7568 uint32_t val;
7569
7570 DRM_DEBUG_KMS("Disabling package C8+\n");
7571
7572 hsw_restore_lcpll(dev_priv);
7573 lpt_init_pch_refclk(dev);
7574
7575 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7576 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7577 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7578 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7579 }
7580
7581 intel_prepare_ddi(dev);
7582 }
7583
7584 static void snb_modeset_global_resources(struct drm_device *dev)
7585 {
7586 modeset_update_crtc_power_domains(dev);
7587 }
7588
7589 static void haswell_modeset_global_resources(struct drm_device *dev)
7590 {
7591 modeset_update_crtc_power_domains(dev);
7592 }
7593
7594 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7595 int x, int y,
7596 struct drm_framebuffer *fb)
7597 {
7598 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7599
7600 if (!intel_ddi_pll_select(intel_crtc))
7601 return -EINVAL;
7602
7603 intel_crtc->lowfreq_avail = false;
7604
7605 return 0;
7606 }
7607
7608 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7609 struct intel_crtc_config *pipe_config)
7610 {
7611 struct drm_device *dev = crtc->base.dev;
7612 struct drm_i915_private *dev_priv = dev->dev_private;
7613 struct intel_shared_dpll *pll;
7614 enum port port;
7615 uint32_t tmp;
7616
7617 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7618
7619 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7620
7621 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7622
7623 switch (pipe_config->ddi_pll_sel) {
7624 case PORT_CLK_SEL_WRPLL1:
7625 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7626 break;
7627 case PORT_CLK_SEL_WRPLL2:
7628 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7629 break;
7630 }
7631
7632 if (pipe_config->shared_dpll >= 0) {
7633 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7634
7635 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7636 &pipe_config->dpll_hw_state));
7637 }
7638
7639 /*
7640 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7641 * DDI E. So just check whether this pipe is wired to DDI E and whether
7642 * the PCH transcoder is on.
7643 */
7644 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7645 pipe_config->has_pch_encoder = true;
7646
7647 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7648 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7649 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7650
7651 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7652 }
7653 }
7654
7655 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7656 struct intel_crtc_config *pipe_config)
7657 {
7658 struct drm_device *dev = crtc->base.dev;
7659 struct drm_i915_private *dev_priv = dev->dev_private;
7660 enum intel_display_power_domain pfit_domain;
7661 uint32_t tmp;
7662
7663 if (!intel_display_power_enabled(dev_priv,
7664 POWER_DOMAIN_PIPE(crtc->pipe)))
7665 return false;
7666
7667 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7668 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7669
7670 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7671 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7672 enum pipe trans_edp_pipe;
7673 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7674 default:
7675 WARN(1, "unknown pipe linked to edp transcoder\n");
7676 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7677 case TRANS_DDI_EDP_INPUT_A_ON:
7678 trans_edp_pipe = PIPE_A;
7679 break;
7680 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7681 trans_edp_pipe = PIPE_B;
7682 break;
7683 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7684 trans_edp_pipe = PIPE_C;
7685 break;
7686 }
7687
7688 if (trans_edp_pipe == crtc->pipe)
7689 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7690 }
7691
7692 if (!intel_display_power_enabled(dev_priv,
7693 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7694 return false;
7695
7696 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7697 if (!(tmp & PIPECONF_ENABLE))
7698 return false;
7699
7700 haswell_get_ddi_port_state(crtc, pipe_config);
7701
7702 intel_get_pipe_timings(crtc, pipe_config);
7703
7704 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7705 if (intel_display_power_enabled(dev_priv, pfit_domain))
7706 ironlake_get_pfit_config(crtc, pipe_config);
7707
7708 if (IS_HASWELL(dev))
7709 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7710 (I915_READ(IPS_CTL) & IPS_ENABLE);
7711
7712 pipe_config->pixel_multiplier = 1;
7713
7714 return true;
7715 }
7716
7717 static struct {
7718 int clock;
7719 u32 config;
7720 } hdmi_audio_clock[] = {
7721 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7722 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7723 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7724 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7725 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7726 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7727 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7728 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7729 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7730 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7731 };
7732
7733 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7734 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7735 {
7736 int i;
7737
7738 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7739 if (mode->clock == hdmi_audio_clock[i].clock)
7740 break;
7741 }
7742
7743 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7744 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7745 i = 1;
7746 }
7747
7748 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7749 hdmi_audio_clock[i].clock,
7750 hdmi_audio_clock[i].config);
7751
7752 return hdmi_audio_clock[i].config;
7753 }
7754
7755 static bool intel_eld_uptodate(struct drm_connector *connector,
7756 int reg_eldv, uint32_t bits_eldv,
7757 int reg_elda, uint32_t bits_elda,
7758 int reg_edid)
7759 {
7760 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7761 uint8_t *eld = connector->eld;
7762 uint32_t i;
7763
7764 i = I915_READ(reg_eldv);
7765 i &= bits_eldv;
7766
7767 if (!eld[0])
7768 return !i;
7769
7770 if (!i)
7771 return false;
7772
7773 i = I915_READ(reg_elda);
7774 i &= ~bits_elda;
7775 I915_WRITE(reg_elda, i);
7776
7777 for (i = 0; i < eld[2]; i++)
7778 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7779 return false;
7780
7781 return true;
7782 }
7783
7784 static void g4x_write_eld(struct drm_connector *connector,
7785 struct drm_crtc *crtc,
7786 struct drm_display_mode *mode)
7787 {
7788 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7789 uint8_t *eld = connector->eld;
7790 uint32_t eldv;
7791 uint32_t len;
7792 uint32_t i;
7793
7794 i = I915_READ(G4X_AUD_VID_DID);
7795
7796 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7797 eldv = G4X_ELDV_DEVCL_DEVBLC;
7798 else
7799 eldv = G4X_ELDV_DEVCTG;
7800
7801 if (intel_eld_uptodate(connector,
7802 G4X_AUD_CNTL_ST, eldv,
7803 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7804 G4X_HDMIW_HDMIEDID))
7805 return;
7806
7807 i = I915_READ(G4X_AUD_CNTL_ST);
7808 i &= ~(eldv | G4X_ELD_ADDR);
7809 len = (i >> 9) & 0x1f; /* ELD buffer size */
7810 I915_WRITE(G4X_AUD_CNTL_ST, i);
7811
7812 if (!eld[0])
7813 return;
7814
7815 len = min_t(uint8_t, eld[2], len);
7816 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7817 for (i = 0; i < len; i++)
7818 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7819
7820 i = I915_READ(G4X_AUD_CNTL_ST);
7821 i |= eldv;
7822 I915_WRITE(G4X_AUD_CNTL_ST, i);
7823 }
7824
7825 static void haswell_write_eld(struct drm_connector *connector,
7826 struct drm_crtc *crtc,
7827 struct drm_display_mode *mode)
7828 {
7829 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7830 uint8_t *eld = connector->eld;
7831 uint32_t eldv;
7832 uint32_t i;
7833 int len;
7834 int pipe = to_intel_crtc(crtc)->pipe;
7835 int tmp;
7836
7837 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7838 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7839 int aud_config = HSW_AUD_CFG(pipe);
7840 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7841
7842 /* Audio output enable */
7843 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7844 tmp = I915_READ(aud_cntrl_st2);
7845 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7846 I915_WRITE(aud_cntrl_st2, tmp);
7847 POSTING_READ(aud_cntrl_st2);
7848
7849 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7850
7851 /* Set ELD valid state */
7852 tmp = I915_READ(aud_cntrl_st2);
7853 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7854 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7855 I915_WRITE(aud_cntrl_st2, tmp);
7856 tmp = I915_READ(aud_cntrl_st2);
7857 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7858
7859 /* Enable HDMI mode */
7860 tmp = I915_READ(aud_config);
7861 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7862 /* clear N_programing_enable and N_value_index */
7863 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7864 I915_WRITE(aud_config, tmp);
7865
7866 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7867
7868 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7869
7870 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7871 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7872 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7873 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7874 } else {
7875 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7876 }
7877
7878 if (intel_eld_uptodate(connector,
7879 aud_cntrl_st2, eldv,
7880 aud_cntl_st, IBX_ELD_ADDRESS,
7881 hdmiw_hdmiedid))
7882 return;
7883
7884 i = I915_READ(aud_cntrl_st2);
7885 i &= ~eldv;
7886 I915_WRITE(aud_cntrl_st2, i);
7887
7888 if (!eld[0])
7889 return;
7890
7891 i = I915_READ(aud_cntl_st);
7892 i &= ~IBX_ELD_ADDRESS;
7893 I915_WRITE(aud_cntl_st, i);
7894 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7895 DRM_DEBUG_DRIVER("port num:%d\n", i);
7896
7897 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7898 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7899 for (i = 0; i < len; i++)
7900 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7901
7902 i = I915_READ(aud_cntrl_st2);
7903 i |= eldv;
7904 I915_WRITE(aud_cntrl_st2, i);
7905
7906 }
7907
7908 static void ironlake_write_eld(struct drm_connector *connector,
7909 struct drm_crtc *crtc,
7910 struct drm_display_mode *mode)
7911 {
7912 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7913 uint8_t *eld = connector->eld;
7914 uint32_t eldv;
7915 uint32_t i;
7916 int len;
7917 int hdmiw_hdmiedid;
7918 int aud_config;
7919 int aud_cntl_st;
7920 int aud_cntrl_st2;
7921 int pipe = to_intel_crtc(crtc)->pipe;
7922
7923 if (HAS_PCH_IBX(connector->dev)) {
7924 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7925 aud_config = IBX_AUD_CFG(pipe);
7926 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7927 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7928 } else if (IS_VALLEYVIEW(connector->dev)) {
7929 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7930 aud_config = VLV_AUD_CFG(pipe);
7931 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7932 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7933 } else {
7934 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7935 aud_config = CPT_AUD_CFG(pipe);
7936 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7937 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7938 }
7939
7940 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7941
7942 if (IS_VALLEYVIEW(connector->dev)) {
7943 struct intel_encoder *intel_encoder;
7944 struct intel_digital_port *intel_dig_port;
7945
7946 intel_encoder = intel_attached_encoder(connector);
7947 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7948 i = intel_dig_port->port;
7949 } else {
7950 i = I915_READ(aud_cntl_st);
7951 i = (i >> 29) & DIP_PORT_SEL_MASK;
7952 /* DIP_Port_Select, 0x1 = PortB */
7953 }
7954
7955 if (!i) {
7956 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7957 /* operate blindly on all ports */
7958 eldv = IBX_ELD_VALIDB;
7959 eldv |= IBX_ELD_VALIDB << 4;
7960 eldv |= IBX_ELD_VALIDB << 8;
7961 } else {
7962 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7963 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7964 }
7965
7966 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7967 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7968 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7969 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7970 } else {
7971 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7972 }
7973
7974 if (intel_eld_uptodate(connector,
7975 aud_cntrl_st2, eldv,
7976 aud_cntl_st, IBX_ELD_ADDRESS,
7977 hdmiw_hdmiedid))
7978 return;
7979
7980 i = I915_READ(aud_cntrl_st2);
7981 i &= ~eldv;
7982 I915_WRITE(aud_cntrl_st2, i);
7983
7984 if (!eld[0])
7985 return;
7986
7987 i = I915_READ(aud_cntl_st);
7988 i &= ~IBX_ELD_ADDRESS;
7989 I915_WRITE(aud_cntl_st, i);
7990
7991 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7992 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7993 for (i = 0; i < len; i++)
7994 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7995
7996 i = I915_READ(aud_cntrl_st2);
7997 i |= eldv;
7998 I915_WRITE(aud_cntrl_st2, i);
7999 }
8000
8001 void intel_write_eld(struct drm_encoder *encoder,
8002 struct drm_display_mode *mode)
8003 {
8004 struct drm_crtc *crtc = encoder->crtc;
8005 struct drm_connector *connector;
8006 struct drm_device *dev = encoder->dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008
8009 connector = drm_select_eld(encoder, mode);
8010 if (!connector)
8011 return;
8012
8013 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8014 connector->base.id,
8015 connector->name,
8016 connector->encoder->base.id,
8017 connector->encoder->name);
8018
8019 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8020
8021 if (dev_priv->display.write_eld)
8022 dev_priv->display.write_eld(connector, crtc, mode);
8023 }
8024
8025 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8026 {
8027 struct drm_device *dev = crtc->dev;
8028 struct drm_i915_private *dev_priv = dev->dev_private;
8029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8030 uint32_t cntl;
8031
8032 if (base != intel_crtc->cursor_base) {
8033 /* On these chipsets we can only modify the base whilst
8034 * the cursor is disabled.
8035 */
8036 if (intel_crtc->cursor_cntl) {
8037 I915_WRITE(_CURACNTR, 0);
8038 POSTING_READ(_CURACNTR);
8039 intel_crtc->cursor_cntl = 0;
8040 }
8041
8042 I915_WRITE(_CURABASE, base);
8043 POSTING_READ(_CURABASE);
8044 }
8045
8046 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8047 cntl = 0;
8048 if (base)
8049 cntl = (CURSOR_ENABLE |
8050 CURSOR_GAMMA_ENABLE |
8051 CURSOR_FORMAT_ARGB);
8052 if (intel_crtc->cursor_cntl != cntl) {
8053 I915_WRITE(_CURACNTR, cntl);
8054 POSTING_READ(_CURACNTR);
8055 intel_crtc->cursor_cntl = cntl;
8056 }
8057 }
8058
8059 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8060 {
8061 struct drm_device *dev = crtc->dev;
8062 struct drm_i915_private *dev_priv = dev->dev_private;
8063 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8064 int pipe = intel_crtc->pipe;
8065 uint32_t cntl;
8066
8067 cntl = 0;
8068 if (base) {
8069 cntl = MCURSOR_GAMMA_ENABLE;
8070 switch (intel_crtc->cursor_width) {
8071 case 64:
8072 cntl |= CURSOR_MODE_64_ARGB_AX;
8073 break;
8074 case 128:
8075 cntl |= CURSOR_MODE_128_ARGB_AX;
8076 break;
8077 case 256:
8078 cntl |= CURSOR_MODE_256_ARGB_AX;
8079 break;
8080 default:
8081 WARN_ON(1);
8082 return;
8083 }
8084 cntl |= pipe << 28; /* Connect to correct pipe */
8085 }
8086 if (intel_crtc->cursor_cntl != cntl) {
8087 I915_WRITE(CURCNTR(pipe), cntl);
8088 POSTING_READ(CURCNTR(pipe));
8089 intel_crtc->cursor_cntl = cntl;
8090 }
8091
8092 /* and commit changes on next vblank */
8093 I915_WRITE(CURBASE(pipe), base);
8094 POSTING_READ(CURBASE(pipe));
8095 }
8096
8097 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8098 {
8099 struct drm_device *dev = crtc->dev;
8100 struct drm_i915_private *dev_priv = dev->dev_private;
8101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8102 int pipe = intel_crtc->pipe;
8103 uint32_t cntl;
8104
8105 cntl = 0;
8106 if (base) {
8107 cntl = MCURSOR_GAMMA_ENABLE;
8108 switch (intel_crtc->cursor_width) {
8109 case 64:
8110 cntl |= CURSOR_MODE_64_ARGB_AX;
8111 break;
8112 case 128:
8113 cntl |= CURSOR_MODE_128_ARGB_AX;
8114 break;
8115 case 256:
8116 cntl |= CURSOR_MODE_256_ARGB_AX;
8117 break;
8118 default:
8119 WARN_ON(1);
8120 return;
8121 }
8122 }
8123 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8124 cntl |= CURSOR_PIPE_CSC_ENABLE;
8125
8126 if (intel_crtc->cursor_cntl != cntl) {
8127 I915_WRITE(CURCNTR(pipe), cntl);
8128 POSTING_READ(CURCNTR(pipe));
8129 intel_crtc->cursor_cntl = cntl;
8130 }
8131
8132 /* and commit changes on next vblank */
8133 I915_WRITE(CURBASE(pipe), base);
8134 POSTING_READ(CURBASE(pipe));
8135 }
8136
8137 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8138 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8139 bool on)
8140 {
8141 struct drm_device *dev = crtc->dev;
8142 struct drm_i915_private *dev_priv = dev->dev_private;
8143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8144 int pipe = intel_crtc->pipe;
8145 int x = crtc->cursor_x;
8146 int y = crtc->cursor_y;
8147 u32 base = 0, pos = 0;
8148
8149 if (on)
8150 base = intel_crtc->cursor_addr;
8151
8152 if (x >= intel_crtc->config.pipe_src_w)
8153 base = 0;
8154
8155 if (y >= intel_crtc->config.pipe_src_h)
8156 base = 0;
8157
8158 if (x < 0) {
8159 if (x + intel_crtc->cursor_width <= 0)
8160 base = 0;
8161
8162 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8163 x = -x;
8164 }
8165 pos |= x << CURSOR_X_SHIFT;
8166
8167 if (y < 0) {
8168 if (y + intel_crtc->cursor_height <= 0)
8169 base = 0;
8170
8171 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8172 y = -y;
8173 }
8174 pos |= y << CURSOR_Y_SHIFT;
8175
8176 if (base == 0 && intel_crtc->cursor_base == 0)
8177 return;
8178
8179 I915_WRITE(CURPOS(pipe), pos);
8180
8181 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8182 ivb_update_cursor(crtc, base);
8183 else if (IS_845G(dev) || IS_I865G(dev))
8184 i845_update_cursor(crtc, base);
8185 else
8186 i9xx_update_cursor(crtc, base);
8187 intel_crtc->cursor_base = base;
8188 }
8189
8190 /*
8191 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8192 *
8193 * Note that the object's reference will be consumed if the update fails. If
8194 * the update succeeds, the reference of the old object (if any) will be
8195 * consumed.
8196 */
8197 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8198 struct drm_i915_gem_object *obj,
8199 uint32_t width, uint32_t height)
8200 {
8201 struct drm_device *dev = crtc->dev;
8202 struct drm_i915_private *dev_priv = dev->dev_private;
8203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8204 enum pipe pipe = intel_crtc->pipe;
8205 unsigned old_width;
8206 uint32_t addr;
8207 int ret;
8208
8209 /* if we want to turn off the cursor ignore width and height */
8210 if (!obj) {
8211 DRM_DEBUG_KMS("cursor off\n");
8212 addr = 0;
8213 obj = NULL;
8214 mutex_lock(&dev->struct_mutex);
8215 goto finish;
8216 }
8217
8218 /* Check for which cursor types we support */
8219 if (!((width == 64 && height == 64) ||
8220 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8221 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8222 DRM_DEBUG("Cursor dimension not supported\n");
8223 return -EINVAL;
8224 }
8225
8226 if (obj->base.size < width * height * 4) {
8227 DRM_DEBUG_KMS("buffer is too small\n");
8228 ret = -ENOMEM;
8229 goto fail;
8230 }
8231
8232 /* we only need to pin inside GTT if cursor is non-phy */
8233 mutex_lock(&dev->struct_mutex);
8234 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8235 unsigned alignment;
8236
8237 if (obj->tiling_mode) {
8238 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8239 ret = -EINVAL;
8240 goto fail_locked;
8241 }
8242
8243 /* Note that the w/a also requires 2 PTE of padding following
8244 * the bo. We currently fill all unused PTE with the shadow
8245 * page and so we should always have valid PTE following the
8246 * cursor preventing the VT-d warning.
8247 */
8248 alignment = 0;
8249 if (need_vtd_wa(dev))
8250 alignment = 64*1024;
8251
8252 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8253 if (ret) {
8254 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8255 goto fail_locked;
8256 }
8257
8258 ret = i915_gem_object_put_fence(obj);
8259 if (ret) {
8260 DRM_DEBUG_KMS("failed to release fence for cursor");
8261 goto fail_unpin;
8262 }
8263
8264 addr = i915_gem_obj_ggtt_offset(obj);
8265 } else {
8266 int align = IS_I830(dev) ? 16 * 1024 : 256;
8267 ret = i915_gem_object_attach_phys(obj, align);
8268 if (ret) {
8269 DRM_DEBUG_KMS("failed to attach phys object\n");
8270 goto fail_locked;
8271 }
8272 addr = obj->phys_handle->busaddr;
8273 }
8274
8275 if (IS_GEN2(dev))
8276 I915_WRITE(CURSIZE, (height << 12) | width);
8277
8278 finish:
8279 if (intel_crtc->cursor_bo) {
8280 if (!INTEL_INFO(dev)->cursor_needs_physical)
8281 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8282 }
8283
8284 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8285 INTEL_FRONTBUFFER_CURSOR(pipe));
8286 mutex_unlock(&dev->struct_mutex);
8287
8288 old_width = intel_crtc->cursor_width;
8289
8290 intel_crtc->cursor_addr = addr;
8291 intel_crtc->cursor_bo = obj;
8292 intel_crtc->cursor_width = width;
8293 intel_crtc->cursor_height = height;
8294
8295 if (intel_crtc->active) {
8296 if (old_width != width)
8297 intel_update_watermarks(crtc);
8298 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8299 }
8300
8301 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8302
8303 return 0;
8304 fail_unpin:
8305 i915_gem_object_unpin_from_display_plane(obj);
8306 fail_locked:
8307 mutex_unlock(&dev->struct_mutex);
8308 fail:
8309 drm_gem_object_unreference_unlocked(&obj->base);
8310 return ret;
8311 }
8312
8313 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8314 u16 *blue, uint32_t start, uint32_t size)
8315 {
8316 int end = (start + size > 256) ? 256 : start + size, i;
8317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8318
8319 for (i = start; i < end; i++) {
8320 intel_crtc->lut_r[i] = red[i] >> 8;
8321 intel_crtc->lut_g[i] = green[i] >> 8;
8322 intel_crtc->lut_b[i] = blue[i] >> 8;
8323 }
8324
8325 intel_crtc_load_lut(crtc);
8326 }
8327
8328 /* VESA 640x480x72Hz mode to set on the pipe */
8329 static struct drm_display_mode load_detect_mode = {
8330 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8331 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8332 };
8333
8334 struct drm_framebuffer *
8335 __intel_framebuffer_create(struct drm_device *dev,
8336 struct drm_mode_fb_cmd2 *mode_cmd,
8337 struct drm_i915_gem_object *obj)
8338 {
8339 struct intel_framebuffer *intel_fb;
8340 int ret;
8341
8342 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8343 if (!intel_fb) {
8344 drm_gem_object_unreference_unlocked(&obj->base);
8345 return ERR_PTR(-ENOMEM);
8346 }
8347
8348 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8349 if (ret)
8350 goto err;
8351
8352 return &intel_fb->base;
8353 err:
8354 drm_gem_object_unreference_unlocked(&obj->base);
8355 kfree(intel_fb);
8356
8357 return ERR_PTR(ret);
8358 }
8359
8360 static struct drm_framebuffer *
8361 intel_framebuffer_create(struct drm_device *dev,
8362 struct drm_mode_fb_cmd2 *mode_cmd,
8363 struct drm_i915_gem_object *obj)
8364 {
8365 struct drm_framebuffer *fb;
8366 int ret;
8367
8368 ret = i915_mutex_lock_interruptible(dev);
8369 if (ret)
8370 return ERR_PTR(ret);
8371 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8372 mutex_unlock(&dev->struct_mutex);
8373
8374 return fb;
8375 }
8376
8377 static u32
8378 intel_framebuffer_pitch_for_width(int width, int bpp)
8379 {
8380 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8381 return ALIGN(pitch, 64);
8382 }
8383
8384 static u32
8385 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8386 {
8387 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8388 return PAGE_ALIGN(pitch * mode->vdisplay);
8389 }
8390
8391 static struct drm_framebuffer *
8392 intel_framebuffer_create_for_mode(struct drm_device *dev,
8393 struct drm_display_mode *mode,
8394 int depth, int bpp)
8395 {
8396 struct drm_i915_gem_object *obj;
8397 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8398
8399 obj = i915_gem_alloc_object(dev,
8400 intel_framebuffer_size_for_mode(mode, bpp));
8401 if (obj == NULL)
8402 return ERR_PTR(-ENOMEM);
8403
8404 mode_cmd.width = mode->hdisplay;
8405 mode_cmd.height = mode->vdisplay;
8406 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8407 bpp);
8408 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8409
8410 return intel_framebuffer_create(dev, &mode_cmd, obj);
8411 }
8412
8413 static struct drm_framebuffer *
8414 mode_fits_in_fbdev(struct drm_device *dev,
8415 struct drm_display_mode *mode)
8416 {
8417 #ifdef CONFIG_DRM_I915_FBDEV
8418 struct drm_i915_private *dev_priv = dev->dev_private;
8419 struct drm_i915_gem_object *obj;
8420 struct drm_framebuffer *fb;
8421
8422 if (!dev_priv->fbdev)
8423 return NULL;
8424
8425 if (!dev_priv->fbdev->fb)
8426 return NULL;
8427
8428 obj = dev_priv->fbdev->fb->obj;
8429 BUG_ON(!obj);
8430
8431 fb = &dev_priv->fbdev->fb->base;
8432 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8433 fb->bits_per_pixel))
8434 return NULL;
8435
8436 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8437 return NULL;
8438
8439 return fb;
8440 #else
8441 return NULL;
8442 #endif
8443 }
8444
8445 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8446 struct drm_display_mode *mode,
8447 struct intel_load_detect_pipe *old,
8448 struct drm_modeset_acquire_ctx *ctx)
8449 {
8450 struct intel_crtc *intel_crtc;
8451 struct intel_encoder *intel_encoder =
8452 intel_attached_encoder(connector);
8453 struct drm_crtc *possible_crtc;
8454 struct drm_encoder *encoder = &intel_encoder->base;
8455 struct drm_crtc *crtc = NULL;
8456 struct drm_device *dev = encoder->dev;
8457 struct drm_framebuffer *fb;
8458 struct drm_mode_config *config = &dev->mode_config;
8459 int ret, i = -1;
8460
8461 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8462 connector->base.id, connector->name,
8463 encoder->base.id, encoder->name);
8464
8465 retry:
8466 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8467 if (ret)
8468 goto fail_unlock;
8469
8470 /*
8471 * Algorithm gets a little messy:
8472 *
8473 * - if the connector already has an assigned crtc, use it (but make
8474 * sure it's on first)
8475 *
8476 * - try to find the first unused crtc that can drive this connector,
8477 * and use that if we find one
8478 */
8479
8480 /* See if we already have a CRTC for this connector */
8481 if (encoder->crtc) {
8482 crtc = encoder->crtc;
8483
8484 ret = drm_modeset_lock(&crtc->mutex, ctx);
8485 if (ret)
8486 goto fail_unlock;
8487
8488 old->dpms_mode = connector->dpms;
8489 old->load_detect_temp = false;
8490
8491 /* Make sure the crtc and connector are running */
8492 if (connector->dpms != DRM_MODE_DPMS_ON)
8493 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8494
8495 return true;
8496 }
8497
8498 /* Find an unused one (if possible) */
8499 for_each_crtc(dev, possible_crtc) {
8500 i++;
8501 if (!(encoder->possible_crtcs & (1 << i)))
8502 continue;
8503 if (!possible_crtc->enabled) {
8504 crtc = possible_crtc;
8505 break;
8506 }
8507 }
8508
8509 /*
8510 * If we didn't find an unused CRTC, don't use any.
8511 */
8512 if (!crtc) {
8513 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8514 goto fail_unlock;
8515 }
8516
8517 ret = drm_modeset_lock(&crtc->mutex, ctx);
8518 if (ret)
8519 goto fail_unlock;
8520 intel_encoder->new_crtc = to_intel_crtc(crtc);
8521 to_intel_connector(connector)->new_encoder = intel_encoder;
8522
8523 intel_crtc = to_intel_crtc(crtc);
8524 intel_crtc->new_enabled = true;
8525 intel_crtc->new_config = &intel_crtc->config;
8526 old->dpms_mode = connector->dpms;
8527 old->load_detect_temp = true;
8528 old->release_fb = NULL;
8529
8530 if (!mode)
8531 mode = &load_detect_mode;
8532
8533 /* We need a framebuffer large enough to accommodate all accesses
8534 * that the plane may generate whilst we perform load detection.
8535 * We can not rely on the fbcon either being present (we get called
8536 * during its initialisation to detect all boot displays, or it may
8537 * not even exist) or that it is large enough to satisfy the
8538 * requested mode.
8539 */
8540 fb = mode_fits_in_fbdev(dev, mode);
8541 if (fb == NULL) {
8542 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8543 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8544 old->release_fb = fb;
8545 } else
8546 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8547 if (IS_ERR(fb)) {
8548 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8549 goto fail;
8550 }
8551
8552 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8553 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8554 if (old->release_fb)
8555 old->release_fb->funcs->destroy(old->release_fb);
8556 goto fail;
8557 }
8558
8559 /* let the connector get through one full cycle before testing */
8560 intel_wait_for_vblank(dev, intel_crtc->pipe);
8561 return true;
8562
8563 fail:
8564 intel_crtc->new_enabled = crtc->enabled;
8565 if (intel_crtc->new_enabled)
8566 intel_crtc->new_config = &intel_crtc->config;
8567 else
8568 intel_crtc->new_config = NULL;
8569 fail_unlock:
8570 if (ret == -EDEADLK) {
8571 drm_modeset_backoff(ctx);
8572 goto retry;
8573 }
8574
8575 return false;
8576 }
8577
8578 void intel_release_load_detect_pipe(struct drm_connector *connector,
8579 struct intel_load_detect_pipe *old)
8580 {
8581 struct intel_encoder *intel_encoder =
8582 intel_attached_encoder(connector);
8583 struct drm_encoder *encoder = &intel_encoder->base;
8584 struct drm_crtc *crtc = encoder->crtc;
8585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8586
8587 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8588 connector->base.id, connector->name,
8589 encoder->base.id, encoder->name);
8590
8591 if (old->load_detect_temp) {
8592 to_intel_connector(connector)->new_encoder = NULL;
8593 intel_encoder->new_crtc = NULL;
8594 intel_crtc->new_enabled = false;
8595 intel_crtc->new_config = NULL;
8596 intel_set_mode(crtc, NULL, 0, 0, NULL);
8597
8598 if (old->release_fb) {
8599 drm_framebuffer_unregister_private(old->release_fb);
8600 drm_framebuffer_unreference(old->release_fb);
8601 }
8602
8603 return;
8604 }
8605
8606 /* Switch crtc and encoder back off if necessary */
8607 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8608 connector->funcs->dpms(connector, old->dpms_mode);
8609 }
8610
8611 static int i9xx_pll_refclk(struct drm_device *dev,
8612 const struct intel_crtc_config *pipe_config)
8613 {
8614 struct drm_i915_private *dev_priv = dev->dev_private;
8615 u32 dpll = pipe_config->dpll_hw_state.dpll;
8616
8617 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8618 return dev_priv->vbt.lvds_ssc_freq;
8619 else if (HAS_PCH_SPLIT(dev))
8620 return 120000;
8621 else if (!IS_GEN2(dev))
8622 return 96000;
8623 else
8624 return 48000;
8625 }
8626
8627 /* Returns the clock of the currently programmed mode of the given pipe. */
8628 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8629 struct intel_crtc_config *pipe_config)
8630 {
8631 struct drm_device *dev = crtc->base.dev;
8632 struct drm_i915_private *dev_priv = dev->dev_private;
8633 int pipe = pipe_config->cpu_transcoder;
8634 u32 dpll = pipe_config->dpll_hw_state.dpll;
8635 u32 fp;
8636 intel_clock_t clock;
8637 int refclk = i9xx_pll_refclk(dev, pipe_config);
8638
8639 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8640 fp = pipe_config->dpll_hw_state.fp0;
8641 else
8642 fp = pipe_config->dpll_hw_state.fp1;
8643
8644 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8645 if (IS_PINEVIEW(dev)) {
8646 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8647 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8648 } else {
8649 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8650 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8651 }
8652
8653 if (!IS_GEN2(dev)) {
8654 if (IS_PINEVIEW(dev))
8655 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8656 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8657 else
8658 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8659 DPLL_FPA01_P1_POST_DIV_SHIFT);
8660
8661 switch (dpll & DPLL_MODE_MASK) {
8662 case DPLLB_MODE_DAC_SERIAL:
8663 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8664 5 : 10;
8665 break;
8666 case DPLLB_MODE_LVDS:
8667 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8668 7 : 14;
8669 break;
8670 default:
8671 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8672 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8673 return;
8674 }
8675
8676 if (IS_PINEVIEW(dev))
8677 pineview_clock(refclk, &clock);
8678 else
8679 i9xx_clock(refclk, &clock);
8680 } else {
8681 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8682 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8683
8684 if (is_lvds) {
8685 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8686 DPLL_FPA01_P1_POST_DIV_SHIFT);
8687
8688 if (lvds & LVDS_CLKB_POWER_UP)
8689 clock.p2 = 7;
8690 else
8691 clock.p2 = 14;
8692 } else {
8693 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8694 clock.p1 = 2;
8695 else {
8696 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8697 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8698 }
8699 if (dpll & PLL_P2_DIVIDE_BY_4)
8700 clock.p2 = 4;
8701 else
8702 clock.p2 = 2;
8703 }
8704
8705 i9xx_clock(refclk, &clock);
8706 }
8707
8708 /*
8709 * This value includes pixel_multiplier. We will use
8710 * port_clock to compute adjusted_mode.crtc_clock in the
8711 * encoder's get_config() function.
8712 */
8713 pipe_config->port_clock = clock.dot;
8714 }
8715
8716 int intel_dotclock_calculate(int link_freq,
8717 const struct intel_link_m_n *m_n)
8718 {
8719 /*
8720 * The calculation for the data clock is:
8721 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8722 * But we want to avoid losing precison if possible, so:
8723 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8724 *
8725 * and the link clock is simpler:
8726 * link_clock = (m * link_clock) / n
8727 */
8728
8729 if (!m_n->link_n)
8730 return 0;
8731
8732 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8733 }
8734
8735 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8736 struct intel_crtc_config *pipe_config)
8737 {
8738 struct drm_device *dev = crtc->base.dev;
8739
8740 /* read out port_clock from the DPLL */
8741 i9xx_crtc_clock_get(crtc, pipe_config);
8742
8743 /*
8744 * This value does not include pixel_multiplier.
8745 * We will check that port_clock and adjusted_mode.crtc_clock
8746 * agree once we know their relationship in the encoder's
8747 * get_config() function.
8748 */
8749 pipe_config->adjusted_mode.crtc_clock =
8750 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8751 &pipe_config->fdi_m_n);
8752 }
8753
8754 /** Returns the currently programmed mode of the given pipe. */
8755 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8756 struct drm_crtc *crtc)
8757 {
8758 struct drm_i915_private *dev_priv = dev->dev_private;
8759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8760 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8761 struct drm_display_mode *mode;
8762 struct intel_crtc_config pipe_config;
8763 int htot = I915_READ(HTOTAL(cpu_transcoder));
8764 int hsync = I915_READ(HSYNC(cpu_transcoder));
8765 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8766 int vsync = I915_READ(VSYNC(cpu_transcoder));
8767 enum pipe pipe = intel_crtc->pipe;
8768
8769 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8770 if (!mode)
8771 return NULL;
8772
8773 /*
8774 * Construct a pipe_config sufficient for getting the clock info
8775 * back out of crtc_clock_get.
8776 *
8777 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8778 * to use a real value here instead.
8779 */
8780 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8781 pipe_config.pixel_multiplier = 1;
8782 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8783 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8784 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8785 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8786
8787 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8788 mode->hdisplay = (htot & 0xffff) + 1;
8789 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8790 mode->hsync_start = (hsync & 0xffff) + 1;
8791 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8792 mode->vdisplay = (vtot & 0xffff) + 1;
8793 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8794 mode->vsync_start = (vsync & 0xffff) + 1;
8795 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8796
8797 drm_mode_set_name(mode);
8798
8799 return mode;
8800 }
8801
8802 static void intel_increase_pllclock(struct drm_device *dev,
8803 enum pipe pipe)
8804 {
8805 struct drm_i915_private *dev_priv = dev->dev_private;
8806 int dpll_reg = DPLL(pipe);
8807 int dpll;
8808
8809 if (!HAS_GMCH_DISPLAY(dev))
8810 return;
8811
8812 if (!dev_priv->lvds_downclock_avail)
8813 return;
8814
8815 dpll = I915_READ(dpll_reg);
8816 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8817 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8818
8819 assert_panel_unlocked(dev_priv, pipe);
8820
8821 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8822 I915_WRITE(dpll_reg, dpll);
8823 intel_wait_for_vblank(dev, pipe);
8824
8825 dpll = I915_READ(dpll_reg);
8826 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8827 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8828 }
8829 }
8830
8831 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8832 {
8833 struct drm_device *dev = crtc->dev;
8834 struct drm_i915_private *dev_priv = dev->dev_private;
8835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8836
8837 if (!HAS_GMCH_DISPLAY(dev))
8838 return;
8839
8840 if (!dev_priv->lvds_downclock_avail)
8841 return;
8842
8843 /*
8844 * Since this is called by a timer, we should never get here in
8845 * the manual case.
8846 */
8847 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8848 int pipe = intel_crtc->pipe;
8849 int dpll_reg = DPLL(pipe);
8850 int dpll;
8851
8852 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8853
8854 assert_panel_unlocked(dev_priv, pipe);
8855
8856 dpll = I915_READ(dpll_reg);
8857 dpll |= DISPLAY_RATE_SELECT_FPA1;
8858 I915_WRITE(dpll_reg, dpll);
8859 intel_wait_for_vblank(dev, pipe);
8860 dpll = I915_READ(dpll_reg);
8861 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8862 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8863 }
8864
8865 }
8866
8867 void intel_mark_busy(struct drm_device *dev)
8868 {
8869 struct drm_i915_private *dev_priv = dev->dev_private;
8870
8871 if (dev_priv->mm.busy)
8872 return;
8873
8874 intel_runtime_pm_get(dev_priv);
8875 i915_update_gfx_val(dev_priv);
8876 dev_priv->mm.busy = true;
8877 }
8878
8879 void intel_mark_idle(struct drm_device *dev)
8880 {
8881 struct drm_i915_private *dev_priv = dev->dev_private;
8882 struct drm_crtc *crtc;
8883
8884 if (!dev_priv->mm.busy)
8885 return;
8886
8887 dev_priv->mm.busy = false;
8888
8889 if (!i915.powersave)
8890 goto out;
8891
8892 for_each_crtc(dev, crtc) {
8893 if (!crtc->primary->fb)
8894 continue;
8895
8896 intel_decrease_pllclock(crtc);
8897 }
8898
8899 if (INTEL_INFO(dev)->gen >= 6)
8900 gen6_rps_idle(dev->dev_private);
8901
8902 out:
8903 intel_runtime_pm_put(dev_priv);
8904 }
8905
8906
8907 /**
8908 * intel_mark_fb_busy - mark given planes as busy
8909 * @dev: DRM device
8910 * @frontbuffer_bits: bits for the affected planes
8911 * @ring: optional ring for asynchronous commands
8912 *
8913 * This function gets called every time the screen contents change. It can be
8914 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8915 */
8916 static void intel_mark_fb_busy(struct drm_device *dev,
8917 unsigned frontbuffer_bits,
8918 struct intel_engine_cs *ring)
8919 {
8920 enum pipe pipe;
8921
8922 if (!i915.powersave)
8923 return;
8924
8925 for_each_pipe(pipe) {
8926 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
8927 continue;
8928
8929 intel_increase_pllclock(dev, pipe);
8930 if (ring && intel_fbc_enabled(dev))
8931 ring->fbc_dirty = true;
8932 }
8933 }
8934
8935 /**
8936 * intel_fb_obj_invalidate - invalidate frontbuffer object
8937 * @obj: GEM object to invalidate
8938 * @ring: set for asynchronous rendering
8939 *
8940 * This function gets called every time rendering on the given object starts and
8941 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8942 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8943 * until the rendering completes or a flip on this frontbuffer plane is
8944 * scheduled.
8945 */
8946 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8947 struct intel_engine_cs *ring)
8948 {
8949 struct drm_device *dev = obj->base.dev;
8950 struct drm_i915_private *dev_priv = dev->dev_private;
8951
8952 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8953
8954 if (!obj->frontbuffer_bits)
8955 return;
8956
8957 if (ring) {
8958 mutex_lock(&dev_priv->fb_tracking.lock);
8959 dev_priv->fb_tracking.busy_bits
8960 |= obj->frontbuffer_bits;
8961 dev_priv->fb_tracking.flip_bits
8962 &= ~obj->frontbuffer_bits;
8963 mutex_unlock(&dev_priv->fb_tracking.lock);
8964 }
8965
8966 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8967
8968 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
8969 }
8970
8971 /**
8972 * intel_frontbuffer_flush - flush frontbuffer
8973 * @dev: DRM device
8974 * @frontbuffer_bits: frontbuffer plane tracking bits
8975 *
8976 * This function gets called every time rendering on the given planes has
8977 * completed and frontbuffer caching can be started again. Flushes will get
8978 * delayed if they're blocked by some oustanding asynchronous rendering.
8979 *
8980 * Can be called without any locks held.
8981 */
8982 void intel_frontbuffer_flush(struct drm_device *dev,
8983 unsigned frontbuffer_bits)
8984 {
8985 struct drm_i915_private *dev_priv = dev->dev_private;
8986
8987 /* Delay flushing when rings are still busy.*/
8988 mutex_lock(&dev_priv->fb_tracking.lock);
8989 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8990 mutex_unlock(&dev_priv->fb_tracking.lock);
8991
8992 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8993
8994 intel_edp_psr_flush(dev, frontbuffer_bits);
8995 }
8996
8997 /**
8998 * intel_fb_obj_flush - flush frontbuffer object
8999 * @obj: GEM object to flush
9000 * @retire: set when retiring asynchronous rendering
9001 *
9002 * This function gets called every time rendering on the given object has
9003 * completed and frontbuffer caching can be started again. If @retire is true
9004 * then any delayed flushes will be unblocked.
9005 */
9006 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9007 bool retire)
9008 {
9009 struct drm_device *dev = obj->base.dev;
9010 struct drm_i915_private *dev_priv = dev->dev_private;
9011 unsigned frontbuffer_bits;
9012
9013 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9014
9015 if (!obj->frontbuffer_bits)
9016 return;
9017
9018 frontbuffer_bits = obj->frontbuffer_bits;
9019
9020 if (retire) {
9021 mutex_lock(&dev_priv->fb_tracking.lock);
9022 /* Filter out new bits since rendering started. */
9023 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9024
9025 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9026 mutex_unlock(&dev_priv->fb_tracking.lock);
9027 }
9028
9029 intel_frontbuffer_flush(dev, frontbuffer_bits);
9030 }
9031
9032 /**
9033 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9034 * @dev: DRM device
9035 * @frontbuffer_bits: frontbuffer plane tracking bits
9036 *
9037 * This function gets called after scheduling a flip on @obj. The actual
9038 * frontbuffer flushing will be delayed until completion is signalled with
9039 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9040 * flush will be cancelled.
9041 *
9042 * Can be called without any locks held.
9043 */
9044 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9045 unsigned frontbuffer_bits)
9046 {
9047 struct drm_i915_private *dev_priv = dev->dev_private;
9048
9049 mutex_lock(&dev_priv->fb_tracking.lock);
9050 dev_priv->fb_tracking.flip_bits
9051 |= frontbuffer_bits;
9052 mutex_unlock(&dev_priv->fb_tracking.lock);
9053 }
9054
9055 /**
9056 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9057 * @dev: DRM device
9058 * @frontbuffer_bits: frontbuffer plane tracking bits
9059 *
9060 * This function gets called after the flip has been latched and will complete
9061 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9062 *
9063 * Can be called without any locks held.
9064 */
9065 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9066 unsigned frontbuffer_bits)
9067 {
9068 struct drm_i915_private *dev_priv = dev->dev_private;
9069
9070 mutex_lock(&dev_priv->fb_tracking.lock);
9071 /* Mask any cancelled flips. */
9072 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9073 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9074 mutex_unlock(&dev_priv->fb_tracking.lock);
9075
9076 intel_frontbuffer_flush(dev, frontbuffer_bits);
9077 }
9078
9079 static void intel_crtc_destroy(struct drm_crtc *crtc)
9080 {
9081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9082 struct drm_device *dev = crtc->dev;
9083 struct intel_unpin_work *work;
9084 unsigned long flags;
9085
9086 spin_lock_irqsave(&dev->event_lock, flags);
9087 work = intel_crtc->unpin_work;
9088 intel_crtc->unpin_work = NULL;
9089 spin_unlock_irqrestore(&dev->event_lock, flags);
9090
9091 if (work) {
9092 cancel_work_sync(&work->work);
9093 kfree(work);
9094 }
9095
9096 drm_crtc_cleanup(crtc);
9097
9098 kfree(intel_crtc);
9099 }
9100
9101 static void intel_unpin_work_fn(struct work_struct *__work)
9102 {
9103 struct intel_unpin_work *work =
9104 container_of(__work, struct intel_unpin_work, work);
9105 struct drm_device *dev = work->crtc->dev;
9106 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9107
9108 mutex_lock(&dev->struct_mutex);
9109 intel_unpin_fb_obj(work->old_fb_obj);
9110 drm_gem_object_unreference(&work->pending_flip_obj->base);
9111 drm_gem_object_unreference(&work->old_fb_obj->base);
9112
9113 intel_update_fbc(dev);
9114 mutex_unlock(&dev->struct_mutex);
9115
9116 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9117
9118 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9119 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9120
9121 kfree(work);
9122 }
9123
9124 static void do_intel_finish_page_flip(struct drm_device *dev,
9125 struct drm_crtc *crtc)
9126 {
9127 struct drm_i915_private *dev_priv = dev->dev_private;
9128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9129 struct intel_unpin_work *work;
9130 unsigned long flags;
9131
9132 /* Ignore early vblank irqs */
9133 if (intel_crtc == NULL)
9134 return;
9135
9136 spin_lock_irqsave(&dev->event_lock, flags);
9137 work = intel_crtc->unpin_work;
9138
9139 /* Ensure we don't miss a work->pending update ... */
9140 smp_rmb();
9141
9142 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9143 spin_unlock_irqrestore(&dev->event_lock, flags);
9144 return;
9145 }
9146
9147 /* and that the unpin work is consistent wrt ->pending. */
9148 smp_rmb();
9149
9150 intel_crtc->unpin_work = NULL;
9151
9152 if (work->event)
9153 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9154
9155 drm_crtc_vblank_put(crtc);
9156
9157 spin_unlock_irqrestore(&dev->event_lock, flags);
9158
9159 wake_up_all(&dev_priv->pending_flip_queue);
9160
9161 queue_work(dev_priv->wq, &work->work);
9162
9163 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9164 }
9165
9166 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9167 {
9168 struct drm_i915_private *dev_priv = dev->dev_private;
9169 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9170
9171 do_intel_finish_page_flip(dev, crtc);
9172 }
9173
9174 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9175 {
9176 struct drm_i915_private *dev_priv = dev->dev_private;
9177 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9178
9179 do_intel_finish_page_flip(dev, crtc);
9180 }
9181
9182 /* Is 'a' after or equal to 'b'? */
9183 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9184 {
9185 return !((a - b) & 0x80000000);
9186 }
9187
9188 static bool page_flip_finished(struct intel_crtc *crtc)
9189 {
9190 struct drm_device *dev = crtc->base.dev;
9191 struct drm_i915_private *dev_priv = dev->dev_private;
9192
9193 /*
9194 * The relevant registers doen't exist on pre-ctg.
9195 * As the flip done interrupt doesn't trigger for mmio
9196 * flips on gmch platforms, a flip count check isn't
9197 * really needed there. But since ctg has the registers,
9198 * include it in the check anyway.
9199 */
9200 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9201 return true;
9202
9203 /*
9204 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9205 * used the same base address. In that case the mmio flip might
9206 * have completed, but the CS hasn't even executed the flip yet.
9207 *
9208 * A flip count check isn't enough as the CS might have updated
9209 * the base address just after start of vblank, but before we
9210 * managed to process the interrupt. This means we'd complete the
9211 * CS flip too soon.
9212 *
9213 * Combining both checks should get us a good enough result. It may
9214 * still happen that the CS flip has been executed, but has not
9215 * yet actually completed. But in case the base address is the same
9216 * anyway, we don't really care.
9217 */
9218 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9219 crtc->unpin_work->gtt_offset &&
9220 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9221 crtc->unpin_work->flip_count);
9222 }
9223
9224 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9225 {
9226 struct drm_i915_private *dev_priv = dev->dev_private;
9227 struct intel_crtc *intel_crtc =
9228 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9229 unsigned long flags;
9230
9231 /* NB: An MMIO update of the plane base pointer will also
9232 * generate a page-flip completion irq, i.e. every modeset
9233 * is also accompanied by a spurious intel_prepare_page_flip().
9234 */
9235 spin_lock_irqsave(&dev->event_lock, flags);
9236 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9237 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9238 spin_unlock_irqrestore(&dev->event_lock, flags);
9239 }
9240
9241 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9242 {
9243 /* Ensure that the work item is consistent when activating it ... */
9244 smp_wmb();
9245 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9246 /* and that it is marked active as soon as the irq could fire. */
9247 smp_wmb();
9248 }
9249
9250 static int intel_gen2_queue_flip(struct drm_device *dev,
9251 struct drm_crtc *crtc,
9252 struct drm_framebuffer *fb,
9253 struct drm_i915_gem_object *obj,
9254 struct intel_engine_cs *ring,
9255 uint32_t flags)
9256 {
9257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9258 u32 flip_mask;
9259 int ret;
9260
9261 ret = intel_ring_begin(ring, 6);
9262 if (ret)
9263 return ret;
9264
9265 /* Can't queue multiple flips, so wait for the previous
9266 * one to finish before executing the next.
9267 */
9268 if (intel_crtc->plane)
9269 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9270 else
9271 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9272 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9273 intel_ring_emit(ring, MI_NOOP);
9274 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9275 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9276 intel_ring_emit(ring, fb->pitches[0]);
9277 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9278 intel_ring_emit(ring, 0); /* aux display base address, unused */
9279
9280 intel_mark_page_flip_active(intel_crtc);
9281 __intel_ring_advance(ring);
9282 return 0;
9283 }
9284
9285 static int intel_gen3_queue_flip(struct drm_device *dev,
9286 struct drm_crtc *crtc,
9287 struct drm_framebuffer *fb,
9288 struct drm_i915_gem_object *obj,
9289 struct intel_engine_cs *ring,
9290 uint32_t flags)
9291 {
9292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9293 u32 flip_mask;
9294 int ret;
9295
9296 ret = intel_ring_begin(ring, 6);
9297 if (ret)
9298 return ret;
9299
9300 if (intel_crtc->plane)
9301 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9302 else
9303 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9304 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9305 intel_ring_emit(ring, MI_NOOP);
9306 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9307 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9308 intel_ring_emit(ring, fb->pitches[0]);
9309 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9310 intel_ring_emit(ring, MI_NOOP);
9311
9312 intel_mark_page_flip_active(intel_crtc);
9313 __intel_ring_advance(ring);
9314 return 0;
9315 }
9316
9317 static int intel_gen4_queue_flip(struct drm_device *dev,
9318 struct drm_crtc *crtc,
9319 struct drm_framebuffer *fb,
9320 struct drm_i915_gem_object *obj,
9321 struct intel_engine_cs *ring,
9322 uint32_t flags)
9323 {
9324 struct drm_i915_private *dev_priv = dev->dev_private;
9325 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9326 uint32_t pf, pipesrc;
9327 int ret;
9328
9329 ret = intel_ring_begin(ring, 4);
9330 if (ret)
9331 return ret;
9332
9333 /* i965+ uses the linear or tiled offsets from the
9334 * Display Registers (which do not change across a page-flip)
9335 * so we need only reprogram the base address.
9336 */
9337 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9338 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9339 intel_ring_emit(ring, fb->pitches[0]);
9340 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9341 obj->tiling_mode);
9342
9343 /* XXX Enabling the panel-fitter across page-flip is so far
9344 * untested on non-native modes, so ignore it for now.
9345 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9346 */
9347 pf = 0;
9348 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9349 intel_ring_emit(ring, pf | pipesrc);
9350
9351 intel_mark_page_flip_active(intel_crtc);
9352 __intel_ring_advance(ring);
9353 return 0;
9354 }
9355
9356 static int intel_gen6_queue_flip(struct drm_device *dev,
9357 struct drm_crtc *crtc,
9358 struct drm_framebuffer *fb,
9359 struct drm_i915_gem_object *obj,
9360 struct intel_engine_cs *ring,
9361 uint32_t flags)
9362 {
9363 struct drm_i915_private *dev_priv = dev->dev_private;
9364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9365 uint32_t pf, pipesrc;
9366 int ret;
9367
9368 ret = intel_ring_begin(ring, 4);
9369 if (ret)
9370 return ret;
9371
9372 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9373 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9374 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9375 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9376
9377 /* Contrary to the suggestions in the documentation,
9378 * "Enable Panel Fitter" does not seem to be required when page
9379 * flipping with a non-native mode, and worse causes a normal
9380 * modeset to fail.
9381 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9382 */
9383 pf = 0;
9384 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9385 intel_ring_emit(ring, pf | pipesrc);
9386
9387 intel_mark_page_flip_active(intel_crtc);
9388 __intel_ring_advance(ring);
9389 return 0;
9390 }
9391
9392 static int intel_gen7_queue_flip(struct drm_device *dev,
9393 struct drm_crtc *crtc,
9394 struct drm_framebuffer *fb,
9395 struct drm_i915_gem_object *obj,
9396 struct intel_engine_cs *ring,
9397 uint32_t flags)
9398 {
9399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9400 uint32_t plane_bit = 0;
9401 int len, ret;
9402
9403 switch (intel_crtc->plane) {
9404 case PLANE_A:
9405 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9406 break;
9407 case PLANE_B:
9408 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9409 break;
9410 case PLANE_C:
9411 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9412 break;
9413 default:
9414 WARN_ONCE(1, "unknown plane in flip command\n");
9415 return -ENODEV;
9416 }
9417
9418 len = 4;
9419 if (ring->id == RCS) {
9420 len += 6;
9421 /*
9422 * On Gen 8, SRM is now taking an extra dword to accommodate
9423 * 48bits addresses, and we need a NOOP for the batch size to
9424 * stay even.
9425 */
9426 if (IS_GEN8(dev))
9427 len += 2;
9428 }
9429
9430 /*
9431 * BSpec MI_DISPLAY_FLIP for IVB:
9432 * "The full packet must be contained within the same cache line."
9433 *
9434 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9435 * cacheline, if we ever start emitting more commands before
9436 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9437 * then do the cacheline alignment, and finally emit the
9438 * MI_DISPLAY_FLIP.
9439 */
9440 ret = intel_ring_cacheline_align(ring);
9441 if (ret)
9442 return ret;
9443
9444 ret = intel_ring_begin(ring, len);
9445 if (ret)
9446 return ret;
9447
9448 /* Unmask the flip-done completion message. Note that the bspec says that
9449 * we should do this for both the BCS and RCS, and that we must not unmask
9450 * more than one flip event at any time (or ensure that one flip message
9451 * can be sent by waiting for flip-done prior to queueing new flips).
9452 * Experimentation says that BCS works despite DERRMR masking all
9453 * flip-done completion events and that unmasking all planes at once
9454 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9455 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9456 */
9457 if (ring->id == RCS) {
9458 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9459 intel_ring_emit(ring, DERRMR);
9460 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9461 DERRMR_PIPEB_PRI_FLIP_DONE |
9462 DERRMR_PIPEC_PRI_FLIP_DONE));
9463 if (IS_GEN8(dev))
9464 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9465 MI_SRM_LRM_GLOBAL_GTT);
9466 else
9467 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9468 MI_SRM_LRM_GLOBAL_GTT);
9469 intel_ring_emit(ring, DERRMR);
9470 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9471 if (IS_GEN8(dev)) {
9472 intel_ring_emit(ring, 0);
9473 intel_ring_emit(ring, MI_NOOP);
9474 }
9475 }
9476
9477 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9478 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9479 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9480 intel_ring_emit(ring, (MI_NOOP));
9481
9482 intel_mark_page_flip_active(intel_crtc);
9483 __intel_ring_advance(ring);
9484 return 0;
9485 }
9486
9487 static bool use_mmio_flip(struct intel_engine_cs *ring,
9488 struct drm_i915_gem_object *obj)
9489 {
9490 /*
9491 * This is not being used for older platforms, because
9492 * non-availability of flip done interrupt forces us to use
9493 * CS flips. Older platforms derive flip done using some clever
9494 * tricks involving the flip_pending status bits and vblank irqs.
9495 * So using MMIO flips there would disrupt this mechanism.
9496 */
9497
9498 if (ring == NULL)
9499 return true;
9500
9501 if (INTEL_INFO(ring->dev)->gen < 5)
9502 return false;
9503
9504 if (i915.use_mmio_flip < 0)
9505 return false;
9506 else if (i915.use_mmio_flip > 0)
9507 return true;
9508 else
9509 return ring != obj->ring;
9510 }
9511
9512 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9513 {
9514 struct drm_device *dev = intel_crtc->base.dev;
9515 struct drm_i915_private *dev_priv = dev->dev_private;
9516 struct intel_framebuffer *intel_fb =
9517 to_intel_framebuffer(intel_crtc->base.primary->fb);
9518 struct drm_i915_gem_object *obj = intel_fb->obj;
9519 u32 dspcntr;
9520 u32 reg;
9521
9522 intel_mark_page_flip_active(intel_crtc);
9523
9524 reg = DSPCNTR(intel_crtc->plane);
9525 dspcntr = I915_READ(reg);
9526
9527 if (INTEL_INFO(dev)->gen >= 4) {
9528 if (obj->tiling_mode != I915_TILING_NONE)
9529 dspcntr |= DISPPLANE_TILED;
9530 else
9531 dspcntr &= ~DISPPLANE_TILED;
9532 }
9533 I915_WRITE(reg, dspcntr);
9534
9535 I915_WRITE(DSPSURF(intel_crtc->plane),
9536 intel_crtc->unpin_work->gtt_offset);
9537 POSTING_READ(DSPSURF(intel_crtc->plane));
9538 }
9539
9540 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9541 {
9542 struct intel_engine_cs *ring;
9543 int ret;
9544
9545 lockdep_assert_held(&obj->base.dev->struct_mutex);
9546
9547 if (!obj->last_write_seqno)
9548 return 0;
9549
9550 ring = obj->ring;
9551
9552 if (i915_seqno_passed(ring->get_seqno(ring, true),
9553 obj->last_write_seqno))
9554 return 0;
9555
9556 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9557 if (ret)
9558 return ret;
9559
9560 if (WARN_ON(!ring->irq_get(ring)))
9561 return 0;
9562
9563 return 1;
9564 }
9565
9566 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9567 {
9568 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9569 struct intel_crtc *intel_crtc;
9570 unsigned long irq_flags;
9571 u32 seqno;
9572
9573 seqno = ring->get_seqno(ring, false);
9574
9575 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9576 for_each_intel_crtc(ring->dev, intel_crtc) {
9577 struct intel_mmio_flip *mmio_flip;
9578
9579 mmio_flip = &intel_crtc->mmio_flip;
9580 if (mmio_flip->seqno == 0)
9581 continue;
9582
9583 if (ring->id != mmio_flip->ring_id)
9584 continue;
9585
9586 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9587 intel_do_mmio_flip(intel_crtc);
9588 mmio_flip->seqno = 0;
9589 ring->irq_put(ring);
9590 }
9591 }
9592 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9593 }
9594
9595 static int intel_queue_mmio_flip(struct drm_device *dev,
9596 struct drm_crtc *crtc,
9597 struct drm_framebuffer *fb,
9598 struct drm_i915_gem_object *obj,
9599 struct intel_engine_cs *ring,
9600 uint32_t flags)
9601 {
9602 struct drm_i915_private *dev_priv = dev->dev_private;
9603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9604 unsigned long irq_flags;
9605 int ret;
9606
9607 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9608 return -EBUSY;
9609
9610 ret = intel_postpone_flip(obj);
9611 if (ret < 0)
9612 return ret;
9613 if (ret == 0) {
9614 intel_do_mmio_flip(intel_crtc);
9615 return 0;
9616 }
9617
9618 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9619 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9620 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9621 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9622
9623 /*
9624 * Double check to catch cases where irq fired before
9625 * mmio flip data was ready
9626 */
9627 intel_notify_mmio_flip(obj->ring);
9628 return 0;
9629 }
9630
9631 static int intel_default_queue_flip(struct drm_device *dev,
9632 struct drm_crtc *crtc,
9633 struct drm_framebuffer *fb,
9634 struct drm_i915_gem_object *obj,
9635 struct intel_engine_cs *ring,
9636 uint32_t flags)
9637 {
9638 return -ENODEV;
9639 }
9640
9641 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9642 struct drm_framebuffer *fb,
9643 struct drm_pending_vblank_event *event,
9644 uint32_t page_flip_flags)
9645 {
9646 struct drm_device *dev = crtc->dev;
9647 struct drm_i915_private *dev_priv = dev->dev_private;
9648 struct drm_framebuffer *old_fb = crtc->primary->fb;
9649 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9651 enum pipe pipe = intel_crtc->pipe;
9652 struct intel_unpin_work *work;
9653 struct intel_engine_cs *ring;
9654 unsigned long flags;
9655 int ret;
9656
9657 /*
9658 * drm_mode_page_flip_ioctl() should already catch this, but double
9659 * check to be safe. In the future we may enable pageflipping from
9660 * a disabled primary plane.
9661 */
9662 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9663 return -EBUSY;
9664
9665 /* Can't change pixel format via MI display flips. */
9666 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9667 return -EINVAL;
9668
9669 /*
9670 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9671 * Note that pitch changes could also affect these register.
9672 */
9673 if (INTEL_INFO(dev)->gen > 3 &&
9674 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9675 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9676 return -EINVAL;
9677
9678 if (i915_terminally_wedged(&dev_priv->gpu_error))
9679 goto out_hang;
9680
9681 work = kzalloc(sizeof(*work), GFP_KERNEL);
9682 if (work == NULL)
9683 return -ENOMEM;
9684
9685 work->event = event;
9686 work->crtc = crtc;
9687 work->old_fb_obj = intel_fb_obj(old_fb);
9688 INIT_WORK(&work->work, intel_unpin_work_fn);
9689
9690 ret = drm_crtc_vblank_get(crtc);
9691 if (ret)
9692 goto free_work;
9693
9694 /* We borrow the event spin lock for protecting unpin_work */
9695 spin_lock_irqsave(&dev->event_lock, flags);
9696 if (intel_crtc->unpin_work) {
9697 spin_unlock_irqrestore(&dev->event_lock, flags);
9698 kfree(work);
9699 drm_crtc_vblank_put(crtc);
9700
9701 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9702 return -EBUSY;
9703 }
9704 intel_crtc->unpin_work = work;
9705 spin_unlock_irqrestore(&dev->event_lock, flags);
9706
9707 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9708 flush_workqueue(dev_priv->wq);
9709
9710 ret = i915_mutex_lock_interruptible(dev);
9711 if (ret)
9712 goto cleanup;
9713
9714 /* Reference the objects for the scheduled work. */
9715 drm_gem_object_reference(&work->old_fb_obj->base);
9716 drm_gem_object_reference(&obj->base);
9717
9718 crtc->primary->fb = fb;
9719
9720 work->pending_flip_obj = obj;
9721
9722 work->enable_stall_check = true;
9723
9724 atomic_inc(&intel_crtc->unpin_work_count);
9725 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9726
9727 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9728 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9729
9730 if (IS_VALLEYVIEW(dev)) {
9731 ring = &dev_priv->ring[BCS];
9732 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9733 /* vlv: DISPLAY_FLIP fails to change tiling */
9734 ring = NULL;
9735 } else if (IS_IVYBRIDGE(dev)) {
9736 ring = &dev_priv->ring[BCS];
9737 } else if (INTEL_INFO(dev)->gen >= 7) {
9738 ring = obj->ring;
9739 if (ring == NULL || ring->id != RCS)
9740 ring = &dev_priv->ring[BCS];
9741 } else {
9742 ring = &dev_priv->ring[RCS];
9743 }
9744
9745 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9746 if (ret)
9747 goto cleanup_pending;
9748
9749 work->gtt_offset =
9750 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9751
9752 if (use_mmio_flip(ring, obj))
9753 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9754 page_flip_flags);
9755 else
9756 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9757 page_flip_flags);
9758 if (ret)
9759 goto cleanup_unpin;
9760
9761 i915_gem_track_fb(work->old_fb_obj, obj,
9762 INTEL_FRONTBUFFER_PRIMARY(pipe));
9763
9764 intel_disable_fbc(dev);
9765 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9766 mutex_unlock(&dev->struct_mutex);
9767
9768 trace_i915_flip_request(intel_crtc->plane, obj);
9769
9770 return 0;
9771
9772 cleanup_unpin:
9773 intel_unpin_fb_obj(obj);
9774 cleanup_pending:
9775 atomic_dec(&intel_crtc->unpin_work_count);
9776 crtc->primary->fb = old_fb;
9777 drm_gem_object_unreference(&work->old_fb_obj->base);
9778 drm_gem_object_unreference(&obj->base);
9779 mutex_unlock(&dev->struct_mutex);
9780
9781 cleanup:
9782 spin_lock_irqsave(&dev->event_lock, flags);
9783 intel_crtc->unpin_work = NULL;
9784 spin_unlock_irqrestore(&dev->event_lock, flags);
9785
9786 drm_crtc_vblank_put(crtc);
9787 free_work:
9788 kfree(work);
9789
9790 if (ret == -EIO) {
9791 out_hang:
9792 intel_crtc_wait_for_pending_flips(crtc);
9793 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9794 if (ret == 0 && event)
9795 drm_send_vblank_event(dev, pipe, event);
9796 }
9797 return ret;
9798 }
9799
9800 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9801 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9802 .load_lut = intel_crtc_load_lut,
9803 };
9804
9805 /**
9806 * intel_modeset_update_staged_output_state
9807 *
9808 * Updates the staged output configuration state, e.g. after we've read out the
9809 * current hw state.
9810 */
9811 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9812 {
9813 struct intel_crtc *crtc;
9814 struct intel_encoder *encoder;
9815 struct intel_connector *connector;
9816
9817 list_for_each_entry(connector, &dev->mode_config.connector_list,
9818 base.head) {
9819 connector->new_encoder =
9820 to_intel_encoder(connector->base.encoder);
9821 }
9822
9823 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9824 base.head) {
9825 encoder->new_crtc =
9826 to_intel_crtc(encoder->base.crtc);
9827 }
9828
9829 for_each_intel_crtc(dev, crtc) {
9830 crtc->new_enabled = crtc->base.enabled;
9831
9832 if (crtc->new_enabled)
9833 crtc->new_config = &crtc->config;
9834 else
9835 crtc->new_config = NULL;
9836 }
9837 }
9838
9839 /**
9840 * intel_modeset_commit_output_state
9841 *
9842 * This function copies the stage display pipe configuration to the real one.
9843 */
9844 static void intel_modeset_commit_output_state(struct drm_device *dev)
9845 {
9846 struct intel_crtc *crtc;
9847 struct intel_encoder *encoder;
9848 struct intel_connector *connector;
9849
9850 list_for_each_entry(connector, &dev->mode_config.connector_list,
9851 base.head) {
9852 connector->base.encoder = &connector->new_encoder->base;
9853 }
9854
9855 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9856 base.head) {
9857 encoder->base.crtc = &encoder->new_crtc->base;
9858 }
9859
9860 for_each_intel_crtc(dev, crtc) {
9861 crtc->base.enabled = crtc->new_enabled;
9862 }
9863 }
9864
9865 static void
9866 connected_sink_compute_bpp(struct intel_connector *connector,
9867 struct intel_crtc_config *pipe_config)
9868 {
9869 int bpp = pipe_config->pipe_bpp;
9870
9871 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9872 connector->base.base.id,
9873 connector->base.name);
9874
9875 /* Don't use an invalid EDID bpc value */
9876 if (connector->base.display_info.bpc &&
9877 connector->base.display_info.bpc * 3 < bpp) {
9878 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9879 bpp, connector->base.display_info.bpc*3);
9880 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9881 }
9882
9883 /* Clamp bpp to 8 on screens without EDID 1.4 */
9884 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9885 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9886 bpp);
9887 pipe_config->pipe_bpp = 24;
9888 }
9889 }
9890
9891 static int
9892 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9893 struct drm_framebuffer *fb,
9894 struct intel_crtc_config *pipe_config)
9895 {
9896 struct drm_device *dev = crtc->base.dev;
9897 struct intel_connector *connector;
9898 int bpp;
9899
9900 switch (fb->pixel_format) {
9901 case DRM_FORMAT_C8:
9902 bpp = 8*3; /* since we go through a colormap */
9903 break;
9904 case DRM_FORMAT_XRGB1555:
9905 case DRM_FORMAT_ARGB1555:
9906 /* checked in intel_framebuffer_init already */
9907 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9908 return -EINVAL;
9909 case DRM_FORMAT_RGB565:
9910 bpp = 6*3; /* min is 18bpp */
9911 break;
9912 case DRM_FORMAT_XBGR8888:
9913 case DRM_FORMAT_ABGR8888:
9914 /* checked in intel_framebuffer_init already */
9915 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9916 return -EINVAL;
9917 case DRM_FORMAT_XRGB8888:
9918 case DRM_FORMAT_ARGB8888:
9919 bpp = 8*3;
9920 break;
9921 case DRM_FORMAT_XRGB2101010:
9922 case DRM_FORMAT_ARGB2101010:
9923 case DRM_FORMAT_XBGR2101010:
9924 case DRM_FORMAT_ABGR2101010:
9925 /* checked in intel_framebuffer_init already */
9926 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9927 return -EINVAL;
9928 bpp = 10*3;
9929 break;
9930 /* TODO: gen4+ supports 16 bpc floating point, too. */
9931 default:
9932 DRM_DEBUG_KMS("unsupported depth\n");
9933 return -EINVAL;
9934 }
9935
9936 pipe_config->pipe_bpp = bpp;
9937
9938 /* Clamp display bpp to EDID value */
9939 list_for_each_entry(connector, &dev->mode_config.connector_list,
9940 base.head) {
9941 if (!connector->new_encoder ||
9942 connector->new_encoder->new_crtc != crtc)
9943 continue;
9944
9945 connected_sink_compute_bpp(connector, pipe_config);
9946 }
9947
9948 return bpp;
9949 }
9950
9951 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9952 {
9953 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9954 "type: 0x%x flags: 0x%x\n",
9955 mode->crtc_clock,
9956 mode->crtc_hdisplay, mode->crtc_hsync_start,
9957 mode->crtc_hsync_end, mode->crtc_htotal,
9958 mode->crtc_vdisplay, mode->crtc_vsync_start,
9959 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9960 }
9961
9962 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9963 struct intel_crtc_config *pipe_config,
9964 const char *context)
9965 {
9966 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9967 context, pipe_name(crtc->pipe));
9968
9969 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9970 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9971 pipe_config->pipe_bpp, pipe_config->dither);
9972 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9973 pipe_config->has_pch_encoder,
9974 pipe_config->fdi_lanes,
9975 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9976 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9977 pipe_config->fdi_m_n.tu);
9978 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9979 pipe_config->has_dp_encoder,
9980 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9981 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9982 pipe_config->dp_m_n.tu);
9983 DRM_DEBUG_KMS("requested mode:\n");
9984 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9985 DRM_DEBUG_KMS("adjusted mode:\n");
9986 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9987 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9988 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9989 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9990 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9991 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9992 pipe_config->gmch_pfit.control,
9993 pipe_config->gmch_pfit.pgm_ratios,
9994 pipe_config->gmch_pfit.lvds_border_bits);
9995 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9996 pipe_config->pch_pfit.pos,
9997 pipe_config->pch_pfit.size,
9998 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9999 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10000 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10001 }
10002
10003 static bool encoders_cloneable(const struct intel_encoder *a,
10004 const struct intel_encoder *b)
10005 {
10006 /* masks could be asymmetric, so check both ways */
10007 return a == b || (a->cloneable & (1 << b->type) &&
10008 b->cloneable & (1 << a->type));
10009 }
10010
10011 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10012 struct intel_encoder *encoder)
10013 {
10014 struct drm_device *dev = crtc->base.dev;
10015 struct intel_encoder *source_encoder;
10016
10017 list_for_each_entry(source_encoder,
10018 &dev->mode_config.encoder_list, base.head) {
10019 if (source_encoder->new_crtc != crtc)
10020 continue;
10021
10022 if (!encoders_cloneable(encoder, source_encoder))
10023 return false;
10024 }
10025
10026 return true;
10027 }
10028
10029 static bool check_encoder_cloning(struct intel_crtc *crtc)
10030 {
10031 struct drm_device *dev = crtc->base.dev;
10032 struct intel_encoder *encoder;
10033
10034 list_for_each_entry(encoder,
10035 &dev->mode_config.encoder_list, base.head) {
10036 if (encoder->new_crtc != crtc)
10037 continue;
10038
10039 if (!check_single_encoder_cloning(crtc, encoder))
10040 return false;
10041 }
10042
10043 return true;
10044 }
10045
10046 static struct intel_crtc_config *
10047 intel_modeset_pipe_config(struct drm_crtc *crtc,
10048 struct drm_framebuffer *fb,
10049 struct drm_display_mode *mode)
10050 {
10051 struct drm_device *dev = crtc->dev;
10052 struct intel_encoder *encoder;
10053 struct intel_crtc_config *pipe_config;
10054 int plane_bpp, ret = -EINVAL;
10055 bool retry = true;
10056
10057 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10058 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10059 return ERR_PTR(-EINVAL);
10060 }
10061
10062 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10063 if (!pipe_config)
10064 return ERR_PTR(-ENOMEM);
10065
10066 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10067 drm_mode_copy(&pipe_config->requested_mode, mode);
10068
10069 pipe_config->cpu_transcoder =
10070 (enum transcoder) to_intel_crtc(crtc)->pipe;
10071 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10072
10073 /*
10074 * Sanitize sync polarity flags based on requested ones. If neither
10075 * positive or negative polarity is requested, treat this as meaning
10076 * negative polarity.
10077 */
10078 if (!(pipe_config->adjusted_mode.flags &
10079 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10080 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10081
10082 if (!(pipe_config->adjusted_mode.flags &
10083 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10084 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10085
10086 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10087 * plane pixel format and any sink constraints into account. Returns the
10088 * source plane bpp so that dithering can be selected on mismatches
10089 * after encoders and crtc also have had their say. */
10090 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10091 fb, pipe_config);
10092 if (plane_bpp < 0)
10093 goto fail;
10094
10095 /*
10096 * Determine the real pipe dimensions. Note that stereo modes can
10097 * increase the actual pipe size due to the frame doubling and
10098 * insertion of additional space for blanks between the frame. This
10099 * is stored in the crtc timings. We use the requested mode to do this
10100 * computation to clearly distinguish it from the adjusted mode, which
10101 * can be changed by the connectors in the below retry loop.
10102 */
10103 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10104 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10105 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10106
10107 encoder_retry:
10108 /* Ensure the port clock defaults are reset when retrying. */
10109 pipe_config->port_clock = 0;
10110 pipe_config->pixel_multiplier = 1;
10111
10112 /* Fill in default crtc timings, allow encoders to overwrite them. */
10113 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10114
10115 /* Pass our mode to the connectors and the CRTC to give them a chance to
10116 * adjust it according to limitations or connector properties, and also
10117 * a chance to reject the mode entirely.
10118 */
10119 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10120 base.head) {
10121
10122 if (&encoder->new_crtc->base != crtc)
10123 continue;
10124
10125 if (!(encoder->compute_config(encoder, pipe_config))) {
10126 DRM_DEBUG_KMS("Encoder config failure\n");
10127 goto fail;
10128 }
10129 }
10130
10131 /* Set default port clock if not overwritten by the encoder. Needs to be
10132 * done afterwards in case the encoder adjusts the mode. */
10133 if (!pipe_config->port_clock)
10134 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10135 * pipe_config->pixel_multiplier;
10136
10137 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10138 if (ret < 0) {
10139 DRM_DEBUG_KMS("CRTC fixup failed\n");
10140 goto fail;
10141 }
10142
10143 if (ret == RETRY) {
10144 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10145 ret = -EINVAL;
10146 goto fail;
10147 }
10148
10149 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10150 retry = false;
10151 goto encoder_retry;
10152 }
10153
10154 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10155 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10156 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10157
10158 return pipe_config;
10159 fail:
10160 kfree(pipe_config);
10161 return ERR_PTR(ret);
10162 }
10163
10164 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10165 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10166 static void
10167 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10168 unsigned *prepare_pipes, unsigned *disable_pipes)
10169 {
10170 struct intel_crtc *intel_crtc;
10171 struct drm_device *dev = crtc->dev;
10172 struct intel_encoder *encoder;
10173 struct intel_connector *connector;
10174 struct drm_crtc *tmp_crtc;
10175
10176 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10177
10178 /* Check which crtcs have changed outputs connected to them, these need
10179 * to be part of the prepare_pipes mask. We don't (yet) support global
10180 * modeset across multiple crtcs, so modeset_pipes will only have one
10181 * bit set at most. */
10182 list_for_each_entry(connector, &dev->mode_config.connector_list,
10183 base.head) {
10184 if (connector->base.encoder == &connector->new_encoder->base)
10185 continue;
10186
10187 if (connector->base.encoder) {
10188 tmp_crtc = connector->base.encoder->crtc;
10189
10190 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10191 }
10192
10193 if (connector->new_encoder)
10194 *prepare_pipes |=
10195 1 << connector->new_encoder->new_crtc->pipe;
10196 }
10197
10198 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10199 base.head) {
10200 if (encoder->base.crtc == &encoder->new_crtc->base)
10201 continue;
10202
10203 if (encoder->base.crtc) {
10204 tmp_crtc = encoder->base.crtc;
10205
10206 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10207 }
10208
10209 if (encoder->new_crtc)
10210 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10211 }
10212
10213 /* Check for pipes that will be enabled/disabled ... */
10214 for_each_intel_crtc(dev, intel_crtc) {
10215 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10216 continue;
10217
10218 if (!intel_crtc->new_enabled)
10219 *disable_pipes |= 1 << intel_crtc->pipe;
10220 else
10221 *prepare_pipes |= 1 << intel_crtc->pipe;
10222 }
10223
10224
10225 /* set_mode is also used to update properties on life display pipes. */
10226 intel_crtc = to_intel_crtc(crtc);
10227 if (intel_crtc->new_enabled)
10228 *prepare_pipes |= 1 << intel_crtc->pipe;
10229
10230 /*
10231 * For simplicity do a full modeset on any pipe where the output routing
10232 * changed. We could be more clever, but that would require us to be
10233 * more careful with calling the relevant encoder->mode_set functions.
10234 */
10235 if (*prepare_pipes)
10236 *modeset_pipes = *prepare_pipes;
10237
10238 /* ... and mask these out. */
10239 *modeset_pipes &= ~(*disable_pipes);
10240 *prepare_pipes &= ~(*disable_pipes);
10241
10242 /*
10243 * HACK: We don't (yet) fully support global modesets. intel_set_config
10244 * obies this rule, but the modeset restore mode of
10245 * intel_modeset_setup_hw_state does not.
10246 */
10247 *modeset_pipes &= 1 << intel_crtc->pipe;
10248 *prepare_pipes &= 1 << intel_crtc->pipe;
10249
10250 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10251 *modeset_pipes, *prepare_pipes, *disable_pipes);
10252 }
10253
10254 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10255 {
10256 struct drm_encoder *encoder;
10257 struct drm_device *dev = crtc->dev;
10258
10259 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10260 if (encoder->crtc == crtc)
10261 return true;
10262
10263 return false;
10264 }
10265
10266 static void
10267 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10268 {
10269 struct intel_encoder *intel_encoder;
10270 struct intel_crtc *intel_crtc;
10271 struct drm_connector *connector;
10272
10273 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10274 base.head) {
10275 if (!intel_encoder->base.crtc)
10276 continue;
10277
10278 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10279
10280 if (prepare_pipes & (1 << intel_crtc->pipe))
10281 intel_encoder->connectors_active = false;
10282 }
10283
10284 intel_modeset_commit_output_state(dev);
10285
10286 /* Double check state. */
10287 for_each_intel_crtc(dev, intel_crtc) {
10288 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10289 WARN_ON(intel_crtc->new_config &&
10290 intel_crtc->new_config != &intel_crtc->config);
10291 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10292 }
10293
10294 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10295 if (!connector->encoder || !connector->encoder->crtc)
10296 continue;
10297
10298 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10299
10300 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10301 struct drm_property *dpms_property =
10302 dev->mode_config.dpms_property;
10303
10304 connector->dpms = DRM_MODE_DPMS_ON;
10305 drm_object_property_set_value(&connector->base,
10306 dpms_property,
10307 DRM_MODE_DPMS_ON);
10308
10309 intel_encoder = to_intel_encoder(connector->encoder);
10310 intel_encoder->connectors_active = true;
10311 }
10312 }
10313
10314 }
10315
10316 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10317 {
10318 int diff;
10319
10320 if (clock1 == clock2)
10321 return true;
10322
10323 if (!clock1 || !clock2)
10324 return false;
10325
10326 diff = abs(clock1 - clock2);
10327
10328 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10329 return true;
10330
10331 return false;
10332 }
10333
10334 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10335 list_for_each_entry((intel_crtc), \
10336 &(dev)->mode_config.crtc_list, \
10337 base.head) \
10338 if (mask & (1 <<(intel_crtc)->pipe))
10339
10340 static bool
10341 intel_pipe_config_compare(struct drm_device *dev,
10342 struct intel_crtc_config *current_config,
10343 struct intel_crtc_config *pipe_config)
10344 {
10345 #define PIPE_CONF_CHECK_X(name) \
10346 if (current_config->name != pipe_config->name) { \
10347 DRM_ERROR("mismatch in " #name " " \
10348 "(expected 0x%08x, found 0x%08x)\n", \
10349 current_config->name, \
10350 pipe_config->name); \
10351 return false; \
10352 }
10353
10354 #define PIPE_CONF_CHECK_I(name) \
10355 if (current_config->name != pipe_config->name) { \
10356 DRM_ERROR("mismatch in " #name " " \
10357 "(expected %i, found %i)\n", \
10358 current_config->name, \
10359 pipe_config->name); \
10360 return false; \
10361 }
10362
10363 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10364 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10365 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10366 "(expected %i, found %i)\n", \
10367 current_config->name & (mask), \
10368 pipe_config->name & (mask)); \
10369 return false; \
10370 }
10371
10372 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10373 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10374 DRM_ERROR("mismatch in " #name " " \
10375 "(expected %i, found %i)\n", \
10376 current_config->name, \
10377 pipe_config->name); \
10378 return false; \
10379 }
10380
10381 #define PIPE_CONF_QUIRK(quirk) \
10382 ((current_config->quirks | pipe_config->quirks) & (quirk))
10383
10384 PIPE_CONF_CHECK_I(cpu_transcoder);
10385
10386 PIPE_CONF_CHECK_I(has_pch_encoder);
10387 PIPE_CONF_CHECK_I(fdi_lanes);
10388 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10389 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10390 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10391 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10392 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10393
10394 PIPE_CONF_CHECK_I(has_dp_encoder);
10395 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10396 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10397 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10398 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10399 PIPE_CONF_CHECK_I(dp_m_n.tu);
10400
10401 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10402 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10403 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10404 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10405 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10406 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10407
10408 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10409 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10410 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10411 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10412 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10413 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10414
10415 PIPE_CONF_CHECK_I(pixel_multiplier);
10416 PIPE_CONF_CHECK_I(has_hdmi_sink);
10417 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10418 IS_VALLEYVIEW(dev))
10419 PIPE_CONF_CHECK_I(limited_color_range);
10420
10421 PIPE_CONF_CHECK_I(has_audio);
10422
10423 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10424 DRM_MODE_FLAG_INTERLACE);
10425
10426 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10427 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10428 DRM_MODE_FLAG_PHSYNC);
10429 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10430 DRM_MODE_FLAG_NHSYNC);
10431 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10432 DRM_MODE_FLAG_PVSYNC);
10433 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10434 DRM_MODE_FLAG_NVSYNC);
10435 }
10436
10437 PIPE_CONF_CHECK_I(pipe_src_w);
10438 PIPE_CONF_CHECK_I(pipe_src_h);
10439
10440 /*
10441 * FIXME: BIOS likes to set up a cloned config with lvds+external
10442 * screen. Since we don't yet re-compute the pipe config when moving
10443 * just the lvds port away to another pipe the sw tracking won't match.
10444 *
10445 * Proper atomic modesets with recomputed global state will fix this.
10446 * Until then just don't check gmch state for inherited modes.
10447 */
10448 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10449 PIPE_CONF_CHECK_I(gmch_pfit.control);
10450 /* pfit ratios are autocomputed by the hw on gen4+ */
10451 if (INTEL_INFO(dev)->gen < 4)
10452 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10453 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10454 }
10455
10456 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10457 if (current_config->pch_pfit.enabled) {
10458 PIPE_CONF_CHECK_I(pch_pfit.pos);
10459 PIPE_CONF_CHECK_I(pch_pfit.size);
10460 }
10461
10462 /* BDW+ don't expose a synchronous way to read the state */
10463 if (IS_HASWELL(dev))
10464 PIPE_CONF_CHECK_I(ips_enabled);
10465
10466 PIPE_CONF_CHECK_I(double_wide);
10467
10468 PIPE_CONF_CHECK_X(ddi_pll_sel);
10469
10470 PIPE_CONF_CHECK_I(shared_dpll);
10471 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10472 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10473 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10474 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10475 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10476
10477 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10478 PIPE_CONF_CHECK_I(pipe_bpp);
10479
10480 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10481 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10482
10483 #undef PIPE_CONF_CHECK_X
10484 #undef PIPE_CONF_CHECK_I
10485 #undef PIPE_CONF_CHECK_FLAGS
10486 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10487 #undef PIPE_CONF_QUIRK
10488
10489 return true;
10490 }
10491
10492 static void
10493 check_connector_state(struct drm_device *dev)
10494 {
10495 struct intel_connector *connector;
10496
10497 list_for_each_entry(connector, &dev->mode_config.connector_list,
10498 base.head) {
10499 /* This also checks the encoder/connector hw state with the
10500 * ->get_hw_state callbacks. */
10501 intel_connector_check_state(connector);
10502
10503 WARN(&connector->new_encoder->base != connector->base.encoder,
10504 "connector's staged encoder doesn't match current encoder\n");
10505 }
10506 }
10507
10508 static void
10509 check_encoder_state(struct drm_device *dev)
10510 {
10511 struct intel_encoder *encoder;
10512 struct intel_connector *connector;
10513
10514 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10515 base.head) {
10516 bool enabled = false;
10517 bool active = false;
10518 enum pipe pipe, tracked_pipe;
10519
10520 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10521 encoder->base.base.id,
10522 encoder->base.name);
10523
10524 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10525 "encoder's stage crtc doesn't match current crtc\n");
10526 WARN(encoder->connectors_active && !encoder->base.crtc,
10527 "encoder's active_connectors set, but no crtc\n");
10528
10529 list_for_each_entry(connector, &dev->mode_config.connector_list,
10530 base.head) {
10531 if (connector->base.encoder != &encoder->base)
10532 continue;
10533 enabled = true;
10534 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10535 active = true;
10536 }
10537 /*
10538 * for MST connectors if we unplug the connector is gone
10539 * away but the encoder is still connected to a crtc
10540 * until a modeset happens in response to the hotplug.
10541 */
10542 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10543 continue;
10544
10545 WARN(!!encoder->base.crtc != enabled,
10546 "encoder's enabled state mismatch "
10547 "(expected %i, found %i)\n",
10548 !!encoder->base.crtc, enabled);
10549 WARN(active && !encoder->base.crtc,
10550 "active encoder with no crtc\n");
10551
10552 WARN(encoder->connectors_active != active,
10553 "encoder's computed active state doesn't match tracked active state "
10554 "(expected %i, found %i)\n", active, encoder->connectors_active);
10555
10556 active = encoder->get_hw_state(encoder, &pipe);
10557 WARN(active != encoder->connectors_active,
10558 "encoder's hw state doesn't match sw tracking "
10559 "(expected %i, found %i)\n",
10560 encoder->connectors_active, active);
10561
10562 if (!encoder->base.crtc)
10563 continue;
10564
10565 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10566 WARN(active && pipe != tracked_pipe,
10567 "active encoder's pipe doesn't match"
10568 "(expected %i, found %i)\n",
10569 tracked_pipe, pipe);
10570
10571 }
10572 }
10573
10574 static void
10575 check_crtc_state(struct drm_device *dev)
10576 {
10577 struct drm_i915_private *dev_priv = dev->dev_private;
10578 struct intel_crtc *crtc;
10579 struct intel_encoder *encoder;
10580 struct intel_crtc_config pipe_config;
10581
10582 for_each_intel_crtc(dev, crtc) {
10583 bool enabled = false;
10584 bool active = false;
10585
10586 memset(&pipe_config, 0, sizeof(pipe_config));
10587
10588 DRM_DEBUG_KMS("[CRTC:%d]\n",
10589 crtc->base.base.id);
10590
10591 WARN(crtc->active && !crtc->base.enabled,
10592 "active crtc, but not enabled in sw tracking\n");
10593
10594 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10595 base.head) {
10596 if (encoder->base.crtc != &crtc->base)
10597 continue;
10598 enabled = true;
10599 if (encoder->connectors_active)
10600 active = true;
10601 }
10602
10603 WARN(active != crtc->active,
10604 "crtc's computed active state doesn't match tracked active state "
10605 "(expected %i, found %i)\n", active, crtc->active);
10606 WARN(enabled != crtc->base.enabled,
10607 "crtc's computed enabled state doesn't match tracked enabled state "
10608 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10609
10610 active = dev_priv->display.get_pipe_config(crtc,
10611 &pipe_config);
10612
10613 /* hw state is inconsistent with the pipe A quirk */
10614 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10615 active = crtc->active;
10616
10617 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10618 base.head) {
10619 enum pipe pipe;
10620 if (encoder->base.crtc != &crtc->base)
10621 continue;
10622 if (encoder->get_hw_state(encoder, &pipe))
10623 encoder->get_config(encoder, &pipe_config);
10624 }
10625
10626 WARN(crtc->active != active,
10627 "crtc active state doesn't match with hw state "
10628 "(expected %i, found %i)\n", crtc->active, active);
10629
10630 if (active &&
10631 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10632 WARN(1, "pipe state doesn't match!\n");
10633 intel_dump_pipe_config(crtc, &pipe_config,
10634 "[hw state]");
10635 intel_dump_pipe_config(crtc, &crtc->config,
10636 "[sw state]");
10637 }
10638 }
10639 }
10640
10641 static void
10642 check_shared_dpll_state(struct drm_device *dev)
10643 {
10644 struct drm_i915_private *dev_priv = dev->dev_private;
10645 struct intel_crtc *crtc;
10646 struct intel_dpll_hw_state dpll_hw_state;
10647 int i;
10648
10649 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10650 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10651 int enabled_crtcs = 0, active_crtcs = 0;
10652 bool active;
10653
10654 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10655
10656 DRM_DEBUG_KMS("%s\n", pll->name);
10657
10658 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10659
10660 WARN(pll->active > pll->refcount,
10661 "more active pll users than references: %i vs %i\n",
10662 pll->active, pll->refcount);
10663 WARN(pll->active && !pll->on,
10664 "pll in active use but not on in sw tracking\n");
10665 WARN(pll->on && !pll->active,
10666 "pll in on but not on in use in sw tracking\n");
10667 WARN(pll->on != active,
10668 "pll on state mismatch (expected %i, found %i)\n",
10669 pll->on, active);
10670
10671 for_each_intel_crtc(dev, crtc) {
10672 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10673 enabled_crtcs++;
10674 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10675 active_crtcs++;
10676 }
10677 WARN(pll->active != active_crtcs,
10678 "pll active crtcs mismatch (expected %i, found %i)\n",
10679 pll->active, active_crtcs);
10680 WARN(pll->refcount != enabled_crtcs,
10681 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10682 pll->refcount, enabled_crtcs);
10683
10684 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10685 sizeof(dpll_hw_state)),
10686 "pll hw state mismatch\n");
10687 }
10688 }
10689
10690 void
10691 intel_modeset_check_state(struct drm_device *dev)
10692 {
10693 check_connector_state(dev);
10694 check_encoder_state(dev);
10695 check_crtc_state(dev);
10696 check_shared_dpll_state(dev);
10697 }
10698
10699 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10700 int dotclock)
10701 {
10702 /*
10703 * FDI already provided one idea for the dotclock.
10704 * Yell if the encoder disagrees.
10705 */
10706 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10707 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10708 pipe_config->adjusted_mode.crtc_clock, dotclock);
10709 }
10710
10711 static void update_scanline_offset(struct intel_crtc *crtc)
10712 {
10713 struct drm_device *dev = crtc->base.dev;
10714
10715 /*
10716 * The scanline counter increments at the leading edge of hsync.
10717 *
10718 * On most platforms it starts counting from vtotal-1 on the
10719 * first active line. That means the scanline counter value is
10720 * always one less than what we would expect. Ie. just after
10721 * start of vblank, which also occurs at start of hsync (on the
10722 * last active line), the scanline counter will read vblank_start-1.
10723 *
10724 * On gen2 the scanline counter starts counting from 1 instead
10725 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10726 * to keep the value positive), instead of adding one.
10727 *
10728 * On HSW+ the behaviour of the scanline counter depends on the output
10729 * type. For DP ports it behaves like most other platforms, but on HDMI
10730 * there's an extra 1 line difference. So we need to add two instead of
10731 * one to the value.
10732 */
10733 if (IS_GEN2(dev)) {
10734 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10735 int vtotal;
10736
10737 vtotal = mode->crtc_vtotal;
10738 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10739 vtotal /= 2;
10740
10741 crtc->scanline_offset = vtotal - 1;
10742 } else if (HAS_DDI(dev) &&
10743 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10744 crtc->scanline_offset = 2;
10745 } else
10746 crtc->scanline_offset = 1;
10747 }
10748
10749 static int __intel_set_mode(struct drm_crtc *crtc,
10750 struct drm_display_mode *mode,
10751 int x, int y, struct drm_framebuffer *fb)
10752 {
10753 struct drm_device *dev = crtc->dev;
10754 struct drm_i915_private *dev_priv = dev->dev_private;
10755 struct drm_display_mode *saved_mode;
10756 struct intel_crtc_config *pipe_config = NULL;
10757 struct intel_crtc *intel_crtc;
10758 unsigned disable_pipes, prepare_pipes, modeset_pipes;
10759 int ret = 0;
10760
10761 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10762 if (!saved_mode)
10763 return -ENOMEM;
10764
10765 intel_modeset_affected_pipes(crtc, &modeset_pipes,
10766 &prepare_pipes, &disable_pipes);
10767
10768 *saved_mode = crtc->mode;
10769
10770 /* Hack: Because we don't (yet) support global modeset on multiple
10771 * crtcs, we don't keep track of the new mode for more than one crtc.
10772 * Hence simply check whether any bit is set in modeset_pipes in all the
10773 * pieces of code that are not yet converted to deal with mutliple crtcs
10774 * changing their mode at the same time. */
10775 if (modeset_pipes) {
10776 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10777 if (IS_ERR(pipe_config)) {
10778 ret = PTR_ERR(pipe_config);
10779 pipe_config = NULL;
10780
10781 goto out;
10782 }
10783 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10784 "[modeset]");
10785 to_intel_crtc(crtc)->new_config = pipe_config;
10786 }
10787
10788 /*
10789 * See if the config requires any additional preparation, e.g.
10790 * to adjust global state with pipes off. We need to do this
10791 * here so we can get the modeset_pipe updated config for the new
10792 * mode set on this crtc. For other crtcs we need to use the
10793 * adjusted_mode bits in the crtc directly.
10794 */
10795 if (IS_VALLEYVIEW(dev)) {
10796 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10797
10798 /* may have added more to prepare_pipes than we should */
10799 prepare_pipes &= ~disable_pipes;
10800 }
10801
10802 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10803 intel_crtc_disable(&intel_crtc->base);
10804
10805 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10806 if (intel_crtc->base.enabled)
10807 dev_priv->display.crtc_disable(&intel_crtc->base);
10808 }
10809
10810 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10811 * to set it here already despite that we pass it down the callchain.
10812 */
10813 if (modeset_pipes) {
10814 crtc->mode = *mode;
10815 /* mode_set/enable/disable functions rely on a correct pipe
10816 * config. */
10817 to_intel_crtc(crtc)->config = *pipe_config;
10818 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10819
10820 /*
10821 * Calculate and store various constants which
10822 * are later needed by vblank and swap-completion
10823 * timestamping. They are derived from true hwmode.
10824 */
10825 drm_calc_timestamping_constants(crtc,
10826 &pipe_config->adjusted_mode);
10827 }
10828
10829 /* Only after disabling all output pipelines that will be changed can we
10830 * update the the output configuration. */
10831 intel_modeset_update_state(dev, prepare_pipes);
10832
10833 if (dev_priv->display.modeset_global_resources)
10834 dev_priv->display.modeset_global_resources(dev);
10835
10836 /* Set up the DPLL and any encoders state that needs to adjust or depend
10837 * on the DPLL.
10838 */
10839 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10840 struct drm_framebuffer *old_fb = crtc->primary->fb;
10841 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10842 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10843
10844 mutex_lock(&dev->struct_mutex);
10845 ret = intel_pin_and_fence_fb_obj(dev,
10846 obj,
10847 NULL);
10848 if (ret != 0) {
10849 DRM_ERROR("pin & fence failed\n");
10850 mutex_unlock(&dev->struct_mutex);
10851 goto done;
10852 }
10853 if (old_fb)
10854 intel_unpin_fb_obj(old_obj);
10855 i915_gem_track_fb(old_obj, obj,
10856 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10857 mutex_unlock(&dev->struct_mutex);
10858
10859 crtc->primary->fb = fb;
10860 crtc->x = x;
10861 crtc->y = y;
10862
10863 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10864 x, y, fb);
10865 if (ret)
10866 goto done;
10867 }
10868
10869 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10870 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10871 update_scanline_offset(intel_crtc);
10872
10873 dev_priv->display.crtc_enable(&intel_crtc->base);
10874 }
10875
10876 /* FIXME: add subpixel order */
10877 done:
10878 if (ret && crtc->enabled)
10879 crtc->mode = *saved_mode;
10880
10881 out:
10882 kfree(pipe_config);
10883 kfree(saved_mode);
10884 return ret;
10885 }
10886
10887 static int intel_set_mode(struct drm_crtc *crtc,
10888 struct drm_display_mode *mode,
10889 int x, int y, struct drm_framebuffer *fb)
10890 {
10891 int ret;
10892
10893 ret = __intel_set_mode(crtc, mode, x, y, fb);
10894
10895 if (ret == 0)
10896 intel_modeset_check_state(crtc->dev);
10897
10898 return ret;
10899 }
10900
10901 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10902 {
10903 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10904 }
10905
10906 #undef for_each_intel_crtc_masked
10907
10908 static void intel_set_config_free(struct intel_set_config *config)
10909 {
10910 if (!config)
10911 return;
10912
10913 kfree(config->save_connector_encoders);
10914 kfree(config->save_encoder_crtcs);
10915 kfree(config->save_crtc_enabled);
10916 kfree(config);
10917 }
10918
10919 static int intel_set_config_save_state(struct drm_device *dev,
10920 struct intel_set_config *config)
10921 {
10922 struct drm_crtc *crtc;
10923 struct drm_encoder *encoder;
10924 struct drm_connector *connector;
10925 int count;
10926
10927 config->save_crtc_enabled =
10928 kcalloc(dev->mode_config.num_crtc,
10929 sizeof(bool), GFP_KERNEL);
10930 if (!config->save_crtc_enabled)
10931 return -ENOMEM;
10932
10933 config->save_encoder_crtcs =
10934 kcalloc(dev->mode_config.num_encoder,
10935 sizeof(struct drm_crtc *), GFP_KERNEL);
10936 if (!config->save_encoder_crtcs)
10937 return -ENOMEM;
10938
10939 config->save_connector_encoders =
10940 kcalloc(dev->mode_config.num_connector,
10941 sizeof(struct drm_encoder *), GFP_KERNEL);
10942 if (!config->save_connector_encoders)
10943 return -ENOMEM;
10944
10945 /* Copy data. Note that driver private data is not affected.
10946 * Should anything bad happen only the expected state is
10947 * restored, not the drivers personal bookkeeping.
10948 */
10949 count = 0;
10950 for_each_crtc(dev, crtc) {
10951 config->save_crtc_enabled[count++] = crtc->enabled;
10952 }
10953
10954 count = 0;
10955 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10956 config->save_encoder_crtcs[count++] = encoder->crtc;
10957 }
10958
10959 count = 0;
10960 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10961 config->save_connector_encoders[count++] = connector->encoder;
10962 }
10963
10964 return 0;
10965 }
10966
10967 static void intel_set_config_restore_state(struct drm_device *dev,
10968 struct intel_set_config *config)
10969 {
10970 struct intel_crtc *crtc;
10971 struct intel_encoder *encoder;
10972 struct intel_connector *connector;
10973 int count;
10974
10975 count = 0;
10976 for_each_intel_crtc(dev, crtc) {
10977 crtc->new_enabled = config->save_crtc_enabled[count++];
10978
10979 if (crtc->new_enabled)
10980 crtc->new_config = &crtc->config;
10981 else
10982 crtc->new_config = NULL;
10983 }
10984
10985 count = 0;
10986 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10987 encoder->new_crtc =
10988 to_intel_crtc(config->save_encoder_crtcs[count++]);
10989 }
10990
10991 count = 0;
10992 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10993 connector->new_encoder =
10994 to_intel_encoder(config->save_connector_encoders[count++]);
10995 }
10996 }
10997
10998 static bool
10999 is_crtc_connector_off(struct drm_mode_set *set)
11000 {
11001 int i;
11002
11003 if (set->num_connectors == 0)
11004 return false;
11005
11006 if (WARN_ON(set->connectors == NULL))
11007 return false;
11008
11009 for (i = 0; i < set->num_connectors; i++)
11010 if (set->connectors[i]->encoder &&
11011 set->connectors[i]->encoder->crtc == set->crtc &&
11012 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11013 return true;
11014
11015 return false;
11016 }
11017
11018 static void
11019 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11020 struct intel_set_config *config)
11021 {
11022
11023 /* We should be able to check here if the fb has the same properties
11024 * and then just flip_or_move it */
11025 if (is_crtc_connector_off(set)) {
11026 config->mode_changed = true;
11027 } else if (set->crtc->primary->fb != set->fb) {
11028 /*
11029 * If we have no fb, we can only flip as long as the crtc is
11030 * active, otherwise we need a full mode set. The crtc may
11031 * be active if we've only disabled the primary plane, or
11032 * in fastboot situations.
11033 */
11034 if (set->crtc->primary->fb == NULL) {
11035 struct intel_crtc *intel_crtc =
11036 to_intel_crtc(set->crtc);
11037
11038 if (intel_crtc->active) {
11039 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11040 config->fb_changed = true;
11041 } else {
11042 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11043 config->mode_changed = true;
11044 }
11045 } else if (set->fb == NULL) {
11046 config->mode_changed = true;
11047 } else if (set->fb->pixel_format !=
11048 set->crtc->primary->fb->pixel_format) {
11049 config->mode_changed = true;
11050 } else {
11051 config->fb_changed = true;
11052 }
11053 }
11054
11055 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11056 config->fb_changed = true;
11057
11058 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11059 DRM_DEBUG_KMS("modes are different, full mode set\n");
11060 drm_mode_debug_printmodeline(&set->crtc->mode);
11061 drm_mode_debug_printmodeline(set->mode);
11062 config->mode_changed = true;
11063 }
11064
11065 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11066 set->crtc->base.id, config->mode_changed, config->fb_changed);
11067 }
11068
11069 static int
11070 intel_modeset_stage_output_state(struct drm_device *dev,
11071 struct drm_mode_set *set,
11072 struct intel_set_config *config)
11073 {
11074 struct intel_connector *connector;
11075 struct intel_encoder *encoder;
11076 struct intel_crtc *crtc;
11077 int ro;
11078
11079 /* The upper layers ensure that we either disable a crtc or have a list
11080 * of connectors. For paranoia, double-check this. */
11081 WARN_ON(!set->fb && (set->num_connectors != 0));
11082 WARN_ON(set->fb && (set->num_connectors == 0));
11083
11084 list_for_each_entry(connector, &dev->mode_config.connector_list,
11085 base.head) {
11086 /* Otherwise traverse passed in connector list and get encoders
11087 * for them. */
11088 for (ro = 0; ro < set->num_connectors; ro++) {
11089 if (set->connectors[ro] == &connector->base) {
11090 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11091 break;
11092 }
11093 }
11094
11095 /* If we disable the crtc, disable all its connectors. Also, if
11096 * the connector is on the changing crtc but not on the new
11097 * connector list, disable it. */
11098 if ((!set->fb || ro == set->num_connectors) &&
11099 connector->base.encoder &&
11100 connector->base.encoder->crtc == set->crtc) {
11101 connector->new_encoder = NULL;
11102
11103 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11104 connector->base.base.id,
11105 connector->base.name);
11106 }
11107
11108
11109 if (&connector->new_encoder->base != connector->base.encoder) {
11110 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11111 config->mode_changed = true;
11112 }
11113 }
11114 /* connector->new_encoder is now updated for all connectors. */
11115
11116 /* Update crtc of enabled connectors. */
11117 list_for_each_entry(connector, &dev->mode_config.connector_list,
11118 base.head) {
11119 struct drm_crtc *new_crtc;
11120
11121 if (!connector->new_encoder)
11122 continue;
11123
11124 new_crtc = connector->new_encoder->base.crtc;
11125
11126 for (ro = 0; ro < set->num_connectors; ro++) {
11127 if (set->connectors[ro] == &connector->base)
11128 new_crtc = set->crtc;
11129 }
11130
11131 /* Make sure the new CRTC will work with the encoder */
11132 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11133 new_crtc)) {
11134 return -EINVAL;
11135 }
11136 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11137
11138 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11139 connector->base.base.id,
11140 connector->base.name,
11141 new_crtc->base.id);
11142 }
11143
11144 /* Check for any encoders that needs to be disabled. */
11145 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11146 base.head) {
11147 int num_connectors = 0;
11148 list_for_each_entry(connector,
11149 &dev->mode_config.connector_list,
11150 base.head) {
11151 if (connector->new_encoder == encoder) {
11152 WARN_ON(!connector->new_encoder->new_crtc);
11153 num_connectors++;
11154 }
11155 }
11156
11157 if (num_connectors == 0)
11158 encoder->new_crtc = NULL;
11159 else if (num_connectors > 1)
11160 return -EINVAL;
11161
11162 /* Only now check for crtc changes so we don't miss encoders
11163 * that will be disabled. */
11164 if (&encoder->new_crtc->base != encoder->base.crtc) {
11165 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11166 config->mode_changed = true;
11167 }
11168 }
11169 /* Now we've also updated encoder->new_crtc for all encoders. */
11170 list_for_each_entry(connector, &dev->mode_config.connector_list,
11171 base.head) {
11172 if (connector->new_encoder)
11173 if (connector->new_encoder != connector->encoder)
11174 connector->encoder = connector->new_encoder;
11175 }
11176 for_each_intel_crtc(dev, crtc) {
11177 crtc->new_enabled = false;
11178
11179 list_for_each_entry(encoder,
11180 &dev->mode_config.encoder_list,
11181 base.head) {
11182 if (encoder->new_crtc == crtc) {
11183 crtc->new_enabled = true;
11184 break;
11185 }
11186 }
11187
11188 if (crtc->new_enabled != crtc->base.enabled) {
11189 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11190 crtc->new_enabled ? "en" : "dis");
11191 config->mode_changed = true;
11192 }
11193
11194 if (crtc->new_enabled)
11195 crtc->new_config = &crtc->config;
11196 else
11197 crtc->new_config = NULL;
11198 }
11199
11200 return 0;
11201 }
11202
11203 static void disable_crtc_nofb(struct intel_crtc *crtc)
11204 {
11205 struct drm_device *dev = crtc->base.dev;
11206 struct intel_encoder *encoder;
11207 struct intel_connector *connector;
11208
11209 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11210 pipe_name(crtc->pipe));
11211
11212 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11213 if (connector->new_encoder &&
11214 connector->new_encoder->new_crtc == crtc)
11215 connector->new_encoder = NULL;
11216 }
11217
11218 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11219 if (encoder->new_crtc == crtc)
11220 encoder->new_crtc = NULL;
11221 }
11222
11223 crtc->new_enabled = false;
11224 crtc->new_config = NULL;
11225 }
11226
11227 static int intel_crtc_set_config(struct drm_mode_set *set)
11228 {
11229 struct drm_device *dev;
11230 struct drm_mode_set save_set;
11231 struct intel_set_config *config;
11232 int ret;
11233
11234 BUG_ON(!set);
11235 BUG_ON(!set->crtc);
11236 BUG_ON(!set->crtc->helper_private);
11237
11238 /* Enforce sane interface api - has been abused by the fb helper. */
11239 BUG_ON(!set->mode && set->fb);
11240 BUG_ON(set->fb && set->num_connectors == 0);
11241
11242 if (set->fb) {
11243 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11244 set->crtc->base.id, set->fb->base.id,
11245 (int)set->num_connectors, set->x, set->y);
11246 } else {
11247 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11248 }
11249
11250 dev = set->crtc->dev;
11251
11252 ret = -ENOMEM;
11253 config = kzalloc(sizeof(*config), GFP_KERNEL);
11254 if (!config)
11255 goto out_config;
11256
11257 ret = intel_set_config_save_state(dev, config);
11258 if (ret)
11259 goto out_config;
11260
11261 save_set.crtc = set->crtc;
11262 save_set.mode = &set->crtc->mode;
11263 save_set.x = set->crtc->x;
11264 save_set.y = set->crtc->y;
11265 save_set.fb = set->crtc->primary->fb;
11266
11267 /* Compute whether we need a full modeset, only an fb base update or no
11268 * change at all. In the future we might also check whether only the
11269 * mode changed, e.g. for LVDS where we only change the panel fitter in
11270 * such cases. */
11271 intel_set_config_compute_mode_changes(set, config);
11272
11273 ret = intel_modeset_stage_output_state(dev, set, config);
11274 if (ret)
11275 goto fail;
11276
11277 if (config->mode_changed) {
11278 ret = intel_set_mode(set->crtc, set->mode,
11279 set->x, set->y, set->fb);
11280 } else if (config->fb_changed) {
11281 struct drm_i915_private *dev_priv = dev->dev_private;
11282 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11283
11284 intel_crtc_wait_for_pending_flips(set->crtc);
11285
11286 ret = intel_pipe_set_base(set->crtc,
11287 set->x, set->y, set->fb);
11288
11289 /*
11290 * We need to make sure the primary plane is re-enabled if it
11291 * has previously been turned off.
11292 */
11293 if (!intel_crtc->primary_enabled && ret == 0) {
11294 WARN_ON(!intel_crtc->active);
11295 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11296 intel_crtc->pipe);
11297 }
11298
11299 /*
11300 * In the fastboot case this may be our only check of the
11301 * state after boot. It would be better to only do it on
11302 * the first update, but we don't have a nice way of doing that
11303 * (and really, set_config isn't used much for high freq page
11304 * flipping, so increasing its cost here shouldn't be a big
11305 * deal).
11306 */
11307 if (i915.fastboot && ret == 0)
11308 intel_modeset_check_state(set->crtc->dev);
11309 }
11310
11311 if (ret) {
11312 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11313 set->crtc->base.id, ret);
11314 fail:
11315 intel_set_config_restore_state(dev, config);
11316
11317 /*
11318 * HACK: if the pipe was on, but we didn't have a framebuffer,
11319 * force the pipe off to avoid oopsing in the modeset code
11320 * due to fb==NULL. This should only happen during boot since
11321 * we don't yet reconstruct the FB from the hardware state.
11322 */
11323 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11324 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11325
11326 /* Try to restore the config */
11327 if (config->mode_changed &&
11328 intel_set_mode(save_set.crtc, save_set.mode,
11329 save_set.x, save_set.y, save_set.fb))
11330 DRM_ERROR("failed to restore config after modeset failure\n");
11331 }
11332
11333 out_config:
11334 intel_set_config_free(config);
11335 return ret;
11336 }
11337
11338 static const struct drm_crtc_funcs intel_crtc_funcs = {
11339 .gamma_set = intel_crtc_gamma_set,
11340 .set_config = intel_crtc_set_config,
11341 .destroy = intel_crtc_destroy,
11342 .page_flip = intel_crtc_page_flip,
11343 };
11344
11345 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11346 struct intel_shared_dpll *pll,
11347 struct intel_dpll_hw_state *hw_state)
11348 {
11349 uint32_t val;
11350
11351 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11352 return false;
11353
11354 val = I915_READ(PCH_DPLL(pll->id));
11355 hw_state->dpll = val;
11356 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11357 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11358
11359 return val & DPLL_VCO_ENABLE;
11360 }
11361
11362 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11363 struct intel_shared_dpll *pll)
11364 {
11365 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11366 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11367 }
11368
11369 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11370 struct intel_shared_dpll *pll)
11371 {
11372 /* PCH refclock must be enabled first */
11373 ibx_assert_pch_refclk_enabled(dev_priv);
11374
11375 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11376
11377 /* Wait for the clocks to stabilize. */
11378 POSTING_READ(PCH_DPLL(pll->id));
11379 udelay(150);
11380
11381 /* The pixel multiplier can only be updated once the
11382 * DPLL is enabled and the clocks are stable.
11383 *
11384 * So write it again.
11385 */
11386 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11387 POSTING_READ(PCH_DPLL(pll->id));
11388 udelay(200);
11389 }
11390
11391 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11392 struct intel_shared_dpll *pll)
11393 {
11394 struct drm_device *dev = dev_priv->dev;
11395 struct intel_crtc *crtc;
11396
11397 /* Make sure no transcoder isn't still depending on us. */
11398 for_each_intel_crtc(dev, crtc) {
11399 if (intel_crtc_to_shared_dpll(crtc) == pll)
11400 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11401 }
11402
11403 I915_WRITE(PCH_DPLL(pll->id), 0);
11404 POSTING_READ(PCH_DPLL(pll->id));
11405 udelay(200);
11406 }
11407
11408 static char *ibx_pch_dpll_names[] = {
11409 "PCH DPLL A",
11410 "PCH DPLL B",
11411 };
11412
11413 static void ibx_pch_dpll_init(struct drm_device *dev)
11414 {
11415 struct drm_i915_private *dev_priv = dev->dev_private;
11416 int i;
11417
11418 dev_priv->num_shared_dpll = 2;
11419
11420 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11421 dev_priv->shared_dplls[i].id = i;
11422 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11423 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11424 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11425 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11426 dev_priv->shared_dplls[i].get_hw_state =
11427 ibx_pch_dpll_get_hw_state;
11428 }
11429 }
11430
11431 static void intel_shared_dpll_init(struct drm_device *dev)
11432 {
11433 struct drm_i915_private *dev_priv = dev->dev_private;
11434
11435 if (HAS_DDI(dev))
11436 intel_ddi_pll_init(dev);
11437 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11438 ibx_pch_dpll_init(dev);
11439 else
11440 dev_priv->num_shared_dpll = 0;
11441
11442 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11443 }
11444
11445 static int
11446 intel_primary_plane_disable(struct drm_plane *plane)
11447 {
11448 struct drm_device *dev = plane->dev;
11449 struct drm_i915_private *dev_priv = dev->dev_private;
11450 struct intel_plane *intel_plane = to_intel_plane(plane);
11451 struct intel_crtc *intel_crtc;
11452
11453 if (!plane->fb)
11454 return 0;
11455
11456 BUG_ON(!plane->crtc);
11457
11458 intel_crtc = to_intel_crtc(plane->crtc);
11459
11460 /*
11461 * Even though we checked plane->fb above, it's still possible that
11462 * the primary plane has been implicitly disabled because the crtc
11463 * coordinates given weren't visible, or because we detected
11464 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11465 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11466 * In either case, we need to unpin the FB and let the fb pointer get
11467 * updated, but otherwise we don't need to touch the hardware.
11468 */
11469 if (!intel_crtc->primary_enabled)
11470 goto disable_unpin;
11471
11472 intel_crtc_wait_for_pending_flips(plane->crtc);
11473 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11474 intel_plane->pipe);
11475 disable_unpin:
11476 mutex_lock(&dev->struct_mutex);
11477 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11478 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11479 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11480 mutex_unlock(&dev->struct_mutex);
11481 plane->fb = NULL;
11482
11483 return 0;
11484 }
11485
11486 static int
11487 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11488 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11489 unsigned int crtc_w, unsigned int crtc_h,
11490 uint32_t src_x, uint32_t src_y,
11491 uint32_t src_w, uint32_t src_h)
11492 {
11493 struct drm_device *dev = crtc->dev;
11494 struct drm_i915_private *dev_priv = dev->dev_private;
11495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11496 struct intel_plane *intel_plane = to_intel_plane(plane);
11497 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11498 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11499 struct drm_rect dest = {
11500 /* integer pixels */
11501 .x1 = crtc_x,
11502 .y1 = crtc_y,
11503 .x2 = crtc_x + crtc_w,
11504 .y2 = crtc_y + crtc_h,
11505 };
11506 struct drm_rect src = {
11507 /* 16.16 fixed point */
11508 .x1 = src_x,
11509 .y1 = src_y,
11510 .x2 = src_x + src_w,
11511 .y2 = src_y + src_h,
11512 };
11513 const struct drm_rect clip = {
11514 /* integer pixels */
11515 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11516 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11517 };
11518 bool visible;
11519 int ret;
11520
11521 ret = drm_plane_helper_check_update(plane, crtc, fb,
11522 &src, &dest, &clip,
11523 DRM_PLANE_HELPER_NO_SCALING,
11524 DRM_PLANE_HELPER_NO_SCALING,
11525 false, true, &visible);
11526
11527 if (ret)
11528 return ret;
11529
11530 /*
11531 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11532 * updating the fb pointer, and returning without touching the
11533 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11534 * turn on the display with all planes setup as desired.
11535 */
11536 if (!crtc->enabled) {
11537 mutex_lock(&dev->struct_mutex);
11538
11539 /*
11540 * If we already called setplane while the crtc was disabled,
11541 * we may have an fb pinned; unpin it.
11542 */
11543 if (plane->fb)
11544 intel_unpin_fb_obj(old_obj);
11545
11546 i915_gem_track_fb(old_obj, obj,
11547 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11548
11549 /* Pin and return without programming hardware */
11550 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11551 mutex_unlock(&dev->struct_mutex);
11552
11553 return ret;
11554 }
11555
11556 intel_crtc_wait_for_pending_flips(crtc);
11557
11558 /*
11559 * If clipping results in a non-visible primary plane, we'll disable
11560 * the primary plane. Note that this is a bit different than what
11561 * happens if userspace explicitly disables the plane by passing fb=0
11562 * because plane->fb still gets set and pinned.
11563 */
11564 if (!visible) {
11565 mutex_lock(&dev->struct_mutex);
11566
11567 /*
11568 * Try to pin the new fb first so that we can bail out if we
11569 * fail.
11570 */
11571 if (plane->fb != fb) {
11572 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11573 if (ret) {
11574 mutex_unlock(&dev->struct_mutex);
11575 return ret;
11576 }
11577 }
11578
11579 i915_gem_track_fb(old_obj, obj,
11580 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11581
11582 if (intel_crtc->primary_enabled)
11583 intel_disable_primary_hw_plane(dev_priv,
11584 intel_plane->plane,
11585 intel_plane->pipe);
11586
11587
11588 if (plane->fb != fb)
11589 if (plane->fb)
11590 intel_unpin_fb_obj(old_obj);
11591
11592 mutex_unlock(&dev->struct_mutex);
11593
11594 return 0;
11595 }
11596
11597 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11598 if (ret)
11599 return ret;
11600
11601 if (!intel_crtc->primary_enabled)
11602 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11603 intel_crtc->pipe);
11604
11605 return 0;
11606 }
11607
11608 /* Common destruction function for both primary and cursor planes */
11609 static void intel_plane_destroy(struct drm_plane *plane)
11610 {
11611 struct intel_plane *intel_plane = to_intel_plane(plane);
11612 drm_plane_cleanup(plane);
11613 kfree(intel_plane);
11614 }
11615
11616 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11617 .update_plane = intel_primary_plane_setplane,
11618 .disable_plane = intel_primary_plane_disable,
11619 .destroy = intel_plane_destroy,
11620 };
11621
11622 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11623 int pipe)
11624 {
11625 struct intel_plane *primary;
11626 const uint32_t *intel_primary_formats;
11627 int num_formats;
11628
11629 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11630 if (primary == NULL)
11631 return NULL;
11632
11633 primary->can_scale = false;
11634 primary->max_downscale = 1;
11635 primary->pipe = pipe;
11636 primary->plane = pipe;
11637 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11638 primary->plane = !pipe;
11639
11640 if (INTEL_INFO(dev)->gen <= 3) {
11641 intel_primary_formats = intel_primary_formats_gen2;
11642 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11643 } else {
11644 intel_primary_formats = intel_primary_formats_gen4;
11645 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11646 }
11647
11648 drm_universal_plane_init(dev, &primary->base, 0,
11649 &intel_primary_plane_funcs,
11650 intel_primary_formats, num_formats,
11651 DRM_PLANE_TYPE_PRIMARY);
11652 return &primary->base;
11653 }
11654
11655 static int
11656 intel_cursor_plane_disable(struct drm_plane *plane)
11657 {
11658 if (!plane->fb)
11659 return 0;
11660
11661 BUG_ON(!plane->crtc);
11662
11663 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11664 }
11665
11666 static int
11667 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11668 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11669 unsigned int crtc_w, unsigned int crtc_h,
11670 uint32_t src_x, uint32_t src_y,
11671 uint32_t src_w, uint32_t src_h)
11672 {
11673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11674 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11675 struct drm_i915_gem_object *obj = intel_fb->obj;
11676 struct drm_rect dest = {
11677 /* integer pixels */
11678 .x1 = crtc_x,
11679 .y1 = crtc_y,
11680 .x2 = crtc_x + crtc_w,
11681 .y2 = crtc_y + crtc_h,
11682 };
11683 struct drm_rect src = {
11684 /* 16.16 fixed point */
11685 .x1 = src_x,
11686 .y1 = src_y,
11687 .x2 = src_x + src_w,
11688 .y2 = src_y + src_h,
11689 };
11690 const struct drm_rect clip = {
11691 /* integer pixels */
11692 .x2 = intel_crtc->config.pipe_src_w,
11693 .y2 = intel_crtc->config.pipe_src_h,
11694 };
11695 bool visible;
11696 int ret;
11697
11698 ret = drm_plane_helper_check_update(plane, crtc, fb,
11699 &src, &dest, &clip,
11700 DRM_PLANE_HELPER_NO_SCALING,
11701 DRM_PLANE_HELPER_NO_SCALING,
11702 true, true, &visible);
11703 if (ret)
11704 return ret;
11705
11706 crtc->cursor_x = crtc_x;
11707 crtc->cursor_y = crtc_y;
11708 if (fb != crtc->cursor->fb) {
11709 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11710 } else {
11711 intel_crtc_update_cursor(crtc, visible);
11712 return 0;
11713 }
11714 }
11715 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11716 .update_plane = intel_cursor_plane_update,
11717 .disable_plane = intel_cursor_plane_disable,
11718 .destroy = intel_plane_destroy,
11719 };
11720
11721 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11722 int pipe)
11723 {
11724 struct intel_plane *cursor;
11725
11726 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11727 if (cursor == NULL)
11728 return NULL;
11729
11730 cursor->can_scale = false;
11731 cursor->max_downscale = 1;
11732 cursor->pipe = pipe;
11733 cursor->plane = pipe;
11734
11735 drm_universal_plane_init(dev, &cursor->base, 0,
11736 &intel_cursor_plane_funcs,
11737 intel_cursor_formats,
11738 ARRAY_SIZE(intel_cursor_formats),
11739 DRM_PLANE_TYPE_CURSOR);
11740 return &cursor->base;
11741 }
11742
11743 static void intel_crtc_init(struct drm_device *dev, int pipe)
11744 {
11745 struct drm_i915_private *dev_priv = dev->dev_private;
11746 struct intel_crtc *intel_crtc;
11747 struct drm_plane *primary = NULL;
11748 struct drm_plane *cursor = NULL;
11749 int i, ret;
11750
11751 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11752 if (intel_crtc == NULL)
11753 return;
11754
11755 primary = intel_primary_plane_create(dev, pipe);
11756 if (!primary)
11757 goto fail;
11758
11759 cursor = intel_cursor_plane_create(dev, pipe);
11760 if (!cursor)
11761 goto fail;
11762
11763 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11764 cursor, &intel_crtc_funcs);
11765 if (ret)
11766 goto fail;
11767
11768 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11769 for (i = 0; i < 256; i++) {
11770 intel_crtc->lut_r[i] = i;
11771 intel_crtc->lut_g[i] = i;
11772 intel_crtc->lut_b[i] = i;
11773 }
11774
11775 /*
11776 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11777 * is hooked to pipe B. Hence we want plane A feeding pipe B.
11778 */
11779 intel_crtc->pipe = pipe;
11780 intel_crtc->plane = pipe;
11781 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11782 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11783 intel_crtc->plane = !pipe;
11784 }
11785
11786 intel_crtc->cursor_base = ~0;
11787 intel_crtc->cursor_cntl = ~0;
11788
11789 init_waitqueue_head(&intel_crtc->vbl_wait);
11790
11791 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11792 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11793 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11794 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11795
11796 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11797
11798 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11799 return;
11800
11801 fail:
11802 if (primary)
11803 drm_plane_cleanup(primary);
11804 if (cursor)
11805 drm_plane_cleanup(cursor);
11806 kfree(intel_crtc);
11807 }
11808
11809 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11810 {
11811 struct drm_encoder *encoder = connector->base.encoder;
11812 struct drm_device *dev = connector->base.dev;
11813
11814 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11815
11816 if (!encoder)
11817 return INVALID_PIPE;
11818
11819 return to_intel_crtc(encoder->crtc)->pipe;
11820 }
11821
11822 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11823 struct drm_file *file)
11824 {
11825 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11826 struct drm_crtc *drmmode_crtc;
11827 struct intel_crtc *crtc;
11828
11829 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11830 return -ENODEV;
11831
11832 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
11833
11834 if (!drmmode_crtc) {
11835 DRM_ERROR("no such CRTC id\n");
11836 return -ENOENT;
11837 }
11838
11839 crtc = to_intel_crtc(drmmode_crtc);
11840 pipe_from_crtc_id->pipe = crtc->pipe;
11841
11842 return 0;
11843 }
11844
11845 static int intel_encoder_clones(struct intel_encoder *encoder)
11846 {
11847 struct drm_device *dev = encoder->base.dev;
11848 struct intel_encoder *source_encoder;
11849 int index_mask = 0;
11850 int entry = 0;
11851
11852 list_for_each_entry(source_encoder,
11853 &dev->mode_config.encoder_list, base.head) {
11854 if (encoders_cloneable(encoder, source_encoder))
11855 index_mask |= (1 << entry);
11856
11857 entry++;
11858 }
11859
11860 return index_mask;
11861 }
11862
11863 static bool has_edp_a(struct drm_device *dev)
11864 {
11865 struct drm_i915_private *dev_priv = dev->dev_private;
11866
11867 if (!IS_MOBILE(dev))
11868 return false;
11869
11870 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11871 return false;
11872
11873 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11874 return false;
11875
11876 return true;
11877 }
11878
11879 const char *intel_output_name(int output)
11880 {
11881 static const char *names[] = {
11882 [INTEL_OUTPUT_UNUSED] = "Unused",
11883 [INTEL_OUTPUT_ANALOG] = "Analog",
11884 [INTEL_OUTPUT_DVO] = "DVO",
11885 [INTEL_OUTPUT_SDVO] = "SDVO",
11886 [INTEL_OUTPUT_LVDS] = "LVDS",
11887 [INTEL_OUTPUT_TVOUT] = "TV",
11888 [INTEL_OUTPUT_HDMI] = "HDMI",
11889 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11890 [INTEL_OUTPUT_EDP] = "eDP",
11891 [INTEL_OUTPUT_DSI] = "DSI",
11892 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11893 };
11894
11895 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11896 return "Invalid";
11897
11898 return names[output];
11899 }
11900
11901 static bool intel_crt_present(struct drm_device *dev)
11902 {
11903 struct drm_i915_private *dev_priv = dev->dev_private;
11904
11905 if (IS_ULT(dev))
11906 return false;
11907
11908 if (IS_CHERRYVIEW(dev))
11909 return false;
11910
11911 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11912 return false;
11913
11914 return true;
11915 }
11916
11917 static void intel_setup_outputs(struct drm_device *dev)
11918 {
11919 struct drm_i915_private *dev_priv = dev->dev_private;
11920 struct intel_encoder *encoder;
11921 bool dpd_is_edp = false;
11922
11923 intel_lvds_init(dev);
11924
11925 if (intel_crt_present(dev))
11926 intel_crt_init(dev);
11927
11928 if (HAS_DDI(dev)) {
11929 int found;
11930
11931 /* Haswell uses DDI functions to detect digital outputs */
11932 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11933 /* DDI A only supports eDP */
11934 if (found)
11935 intel_ddi_init(dev, PORT_A);
11936
11937 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11938 * register */
11939 found = I915_READ(SFUSE_STRAP);
11940
11941 if (found & SFUSE_STRAP_DDIB_DETECTED)
11942 intel_ddi_init(dev, PORT_B);
11943 if (found & SFUSE_STRAP_DDIC_DETECTED)
11944 intel_ddi_init(dev, PORT_C);
11945 if (found & SFUSE_STRAP_DDID_DETECTED)
11946 intel_ddi_init(dev, PORT_D);
11947 } else if (HAS_PCH_SPLIT(dev)) {
11948 int found;
11949 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11950
11951 if (has_edp_a(dev))
11952 intel_dp_init(dev, DP_A, PORT_A);
11953
11954 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11955 /* PCH SDVOB multiplex with HDMIB */
11956 found = intel_sdvo_init(dev, PCH_SDVOB, true);
11957 if (!found)
11958 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11959 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11960 intel_dp_init(dev, PCH_DP_B, PORT_B);
11961 }
11962
11963 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11964 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11965
11966 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11967 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11968
11969 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11970 intel_dp_init(dev, PCH_DP_C, PORT_C);
11971
11972 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11973 intel_dp_init(dev, PCH_DP_D, PORT_D);
11974 } else if (IS_VALLEYVIEW(dev)) {
11975 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11976 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11977 PORT_B);
11978 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11979 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11980 }
11981
11982 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11983 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11984 PORT_C);
11985 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11986 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11987 }
11988
11989 if (IS_CHERRYVIEW(dev)) {
11990 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11991 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11992 PORT_D);
11993 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11994 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11995 }
11996 }
11997
11998 intel_dsi_init(dev);
11999 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12000 bool found = false;
12001
12002 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12003 DRM_DEBUG_KMS("probing SDVOB\n");
12004 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12005 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12006 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12007 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12008 }
12009
12010 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12011 intel_dp_init(dev, DP_B, PORT_B);
12012 }
12013
12014 /* Before G4X SDVOC doesn't have its own detect register */
12015
12016 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12017 DRM_DEBUG_KMS("probing SDVOC\n");
12018 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12019 }
12020
12021 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12022
12023 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12024 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12025 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12026 }
12027 if (SUPPORTS_INTEGRATED_DP(dev))
12028 intel_dp_init(dev, DP_C, PORT_C);
12029 }
12030
12031 if (SUPPORTS_INTEGRATED_DP(dev) &&
12032 (I915_READ(DP_D) & DP_DETECTED))
12033 intel_dp_init(dev, DP_D, PORT_D);
12034 } else if (IS_GEN2(dev))
12035 intel_dvo_init(dev);
12036
12037 if (SUPPORTS_TV(dev))
12038 intel_tv_init(dev);
12039
12040 intel_edp_psr_init(dev);
12041
12042 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12043 encoder->base.possible_crtcs = encoder->crtc_mask;
12044 encoder->base.possible_clones =
12045 intel_encoder_clones(encoder);
12046 }
12047
12048 intel_init_pch_refclk(dev);
12049
12050 drm_helper_move_panel_connectors_to_head(dev);
12051 }
12052
12053 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12054 {
12055 struct drm_device *dev = fb->dev;
12056 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12057
12058 drm_framebuffer_cleanup(fb);
12059 mutex_lock(&dev->struct_mutex);
12060 WARN_ON(!intel_fb->obj->framebuffer_references--);
12061 drm_gem_object_unreference(&intel_fb->obj->base);
12062 mutex_unlock(&dev->struct_mutex);
12063 kfree(intel_fb);
12064 }
12065
12066 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12067 struct drm_file *file,
12068 unsigned int *handle)
12069 {
12070 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12071 struct drm_i915_gem_object *obj = intel_fb->obj;
12072
12073 return drm_gem_handle_create(file, &obj->base, handle);
12074 }
12075
12076 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12077 .destroy = intel_user_framebuffer_destroy,
12078 .create_handle = intel_user_framebuffer_create_handle,
12079 };
12080
12081 static int intel_framebuffer_init(struct drm_device *dev,
12082 struct intel_framebuffer *intel_fb,
12083 struct drm_mode_fb_cmd2 *mode_cmd,
12084 struct drm_i915_gem_object *obj)
12085 {
12086 int aligned_height;
12087 int pitch_limit;
12088 int ret;
12089
12090 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12091
12092 if (obj->tiling_mode == I915_TILING_Y) {
12093 DRM_DEBUG("hardware does not support tiling Y\n");
12094 return -EINVAL;
12095 }
12096
12097 if (mode_cmd->pitches[0] & 63) {
12098 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12099 mode_cmd->pitches[0]);
12100 return -EINVAL;
12101 }
12102
12103 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12104 pitch_limit = 32*1024;
12105 } else if (INTEL_INFO(dev)->gen >= 4) {
12106 if (obj->tiling_mode)
12107 pitch_limit = 16*1024;
12108 else
12109 pitch_limit = 32*1024;
12110 } else if (INTEL_INFO(dev)->gen >= 3) {
12111 if (obj->tiling_mode)
12112 pitch_limit = 8*1024;
12113 else
12114 pitch_limit = 16*1024;
12115 } else
12116 /* XXX DSPC is limited to 4k tiled */
12117 pitch_limit = 8*1024;
12118
12119 if (mode_cmd->pitches[0] > pitch_limit) {
12120 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12121 obj->tiling_mode ? "tiled" : "linear",
12122 mode_cmd->pitches[0], pitch_limit);
12123 return -EINVAL;
12124 }
12125
12126 if (obj->tiling_mode != I915_TILING_NONE &&
12127 mode_cmd->pitches[0] != obj->stride) {
12128 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12129 mode_cmd->pitches[0], obj->stride);
12130 return -EINVAL;
12131 }
12132
12133 /* Reject formats not supported by any plane early. */
12134 switch (mode_cmd->pixel_format) {
12135 case DRM_FORMAT_C8:
12136 case DRM_FORMAT_RGB565:
12137 case DRM_FORMAT_XRGB8888:
12138 case DRM_FORMAT_ARGB8888:
12139 break;
12140 case DRM_FORMAT_XRGB1555:
12141 case DRM_FORMAT_ARGB1555:
12142 if (INTEL_INFO(dev)->gen > 3) {
12143 DRM_DEBUG("unsupported pixel format: %s\n",
12144 drm_get_format_name(mode_cmd->pixel_format));
12145 return -EINVAL;
12146 }
12147 break;
12148 case DRM_FORMAT_XBGR8888:
12149 case DRM_FORMAT_ABGR8888:
12150 case DRM_FORMAT_XRGB2101010:
12151 case DRM_FORMAT_ARGB2101010:
12152 case DRM_FORMAT_XBGR2101010:
12153 case DRM_FORMAT_ABGR2101010:
12154 if (INTEL_INFO(dev)->gen < 4) {
12155 DRM_DEBUG("unsupported pixel format: %s\n",
12156 drm_get_format_name(mode_cmd->pixel_format));
12157 return -EINVAL;
12158 }
12159 break;
12160 case DRM_FORMAT_YUYV:
12161 case DRM_FORMAT_UYVY:
12162 case DRM_FORMAT_YVYU:
12163 case DRM_FORMAT_VYUY:
12164 if (INTEL_INFO(dev)->gen < 5) {
12165 DRM_DEBUG("unsupported pixel format: %s\n",
12166 drm_get_format_name(mode_cmd->pixel_format));
12167 return -EINVAL;
12168 }
12169 break;
12170 default:
12171 DRM_DEBUG("unsupported pixel format: %s\n",
12172 drm_get_format_name(mode_cmd->pixel_format));
12173 return -EINVAL;
12174 }
12175
12176 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12177 if (mode_cmd->offsets[0] != 0)
12178 return -EINVAL;
12179
12180 aligned_height = intel_align_height(dev, mode_cmd->height,
12181 obj->tiling_mode);
12182 /* FIXME drm helper for size checks (especially planar formats)? */
12183 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12184 return -EINVAL;
12185
12186 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12187 intel_fb->obj = obj;
12188 intel_fb->obj->framebuffer_references++;
12189
12190 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12191 if (ret) {
12192 DRM_ERROR("framebuffer init failed %d\n", ret);
12193 return ret;
12194 }
12195
12196 return 0;
12197 }
12198
12199 static struct drm_framebuffer *
12200 intel_user_framebuffer_create(struct drm_device *dev,
12201 struct drm_file *filp,
12202 struct drm_mode_fb_cmd2 *mode_cmd)
12203 {
12204 struct drm_i915_gem_object *obj;
12205
12206 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12207 mode_cmd->handles[0]));
12208 if (&obj->base == NULL)
12209 return ERR_PTR(-ENOENT);
12210
12211 return intel_framebuffer_create(dev, mode_cmd, obj);
12212 }
12213
12214 #ifndef CONFIG_DRM_I915_FBDEV
12215 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12216 {
12217 }
12218 #endif
12219
12220 static const struct drm_mode_config_funcs intel_mode_funcs = {
12221 .fb_create = intel_user_framebuffer_create,
12222 .output_poll_changed = intel_fbdev_output_poll_changed,
12223 };
12224
12225 /* Set up chip specific display functions */
12226 static void intel_init_display(struct drm_device *dev)
12227 {
12228 struct drm_i915_private *dev_priv = dev->dev_private;
12229
12230 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12231 dev_priv->display.find_dpll = g4x_find_best_dpll;
12232 else if (IS_CHERRYVIEW(dev))
12233 dev_priv->display.find_dpll = chv_find_best_dpll;
12234 else if (IS_VALLEYVIEW(dev))
12235 dev_priv->display.find_dpll = vlv_find_best_dpll;
12236 else if (IS_PINEVIEW(dev))
12237 dev_priv->display.find_dpll = pnv_find_best_dpll;
12238 else
12239 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12240
12241 if (HAS_DDI(dev)) {
12242 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12243 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12244 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12245 dev_priv->display.crtc_enable = haswell_crtc_enable;
12246 dev_priv->display.crtc_disable = haswell_crtc_disable;
12247 dev_priv->display.off = ironlake_crtc_off;
12248 dev_priv->display.update_primary_plane =
12249 ironlake_update_primary_plane;
12250 } else if (HAS_PCH_SPLIT(dev)) {
12251 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12252 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12253 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12254 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12255 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12256 dev_priv->display.off = ironlake_crtc_off;
12257 dev_priv->display.update_primary_plane =
12258 ironlake_update_primary_plane;
12259 } else if (IS_VALLEYVIEW(dev)) {
12260 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12261 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12262 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12263 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12264 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12265 dev_priv->display.off = i9xx_crtc_off;
12266 dev_priv->display.update_primary_plane =
12267 i9xx_update_primary_plane;
12268 } else {
12269 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12270 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12271 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12272 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12273 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12274 dev_priv->display.off = i9xx_crtc_off;
12275 dev_priv->display.update_primary_plane =
12276 i9xx_update_primary_plane;
12277 }
12278
12279 /* Returns the core display clock speed */
12280 if (IS_VALLEYVIEW(dev))
12281 dev_priv->display.get_display_clock_speed =
12282 valleyview_get_display_clock_speed;
12283 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12284 dev_priv->display.get_display_clock_speed =
12285 i945_get_display_clock_speed;
12286 else if (IS_I915G(dev))
12287 dev_priv->display.get_display_clock_speed =
12288 i915_get_display_clock_speed;
12289 else if (IS_I945GM(dev) || IS_845G(dev))
12290 dev_priv->display.get_display_clock_speed =
12291 i9xx_misc_get_display_clock_speed;
12292 else if (IS_PINEVIEW(dev))
12293 dev_priv->display.get_display_clock_speed =
12294 pnv_get_display_clock_speed;
12295 else if (IS_I915GM(dev))
12296 dev_priv->display.get_display_clock_speed =
12297 i915gm_get_display_clock_speed;
12298 else if (IS_I865G(dev))
12299 dev_priv->display.get_display_clock_speed =
12300 i865_get_display_clock_speed;
12301 else if (IS_I85X(dev))
12302 dev_priv->display.get_display_clock_speed =
12303 i855_get_display_clock_speed;
12304 else /* 852, 830 */
12305 dev_priv->display.get_display_clock_speed =
12306 i830_get_display_clock_speed;
12307
12308 if (HAS_PCH_SPLIT(dev)) {
12309 if (IS_GEN5(dev)) {
12310 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12311 dev_priv->display.write_eld = ironlake_write_eld;
12312 } else if (IS_GEN6(dev)) {
12313 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12314 dev_priv->display.write_eld = ironlake_write_eld;
12315 dev_priv->display.modeset_global_resources =
12316 snb_modeset_global_resources;
12317 } else if (IS_IVYBRIDGE(dev)) {
12318 /* FIXME: detect B0+ stepping and use auto training */
12319 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12320 dev_priv->display.write_eld = ironlake_write_eld;
12321 dev_priv->display.modeset_global_resources =
12322 ivb_modeset_global_resources;
12323 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12324 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12325 dev_priv->display.write_eld = haswell_write_eld;
12326 dev_priv->display.modeset_global_resources =
12327 haswell_modeset_global_resources;
12328 }
12329 } else if (IS_G4X(dev)) {
12330 dev_priv->display.write_eld = g4x_write_eld;
12331 } else if (IS_VALLEYVIEW(dev)) {
12332 dev_priv->display.modeset_global_resources =
12333 valleyview_modeset_global_resources;
12334 dev_priv->display.write_eld = ironlake_write_eld;
12335 }
12336
12337 /* Default just returns -ENODEV to indicate unsupported */
12338 dev_priv->display.queue_flip = intel_default_queue_flip;
12339
12340 switch (INTEL_INFO(dev)->gen) {
12341 case 2:
12342 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12343 break;
12344
12345 case 3:
12346 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12347 break;
12348
12349 case 4:
12350 case 5:
12351 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12352 break;
12353
12354 case 6:
12355 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12356 break;
12357 case 7:
12358 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12359 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12360 break;
12361 }
12362
12363 intel_panel_init_backlight_funcs(dev);
12364 }
12365
12366 /*
12367 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12368 * resume, or other times. This quirk makes sure that's the case for
12369 * affected systems.
12370 */
12371 static void quirk_pipea_force(struct drm_device *dev)
12372 {
12373 struct drm_i915_private *dev_priv = dev->dev_private;
12374
12375 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12376 DRM_INFO("applying pipe a force quirk\n");
12377 }
12378
12379 /*
12380 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12381 */
12382 static void quirk_ssc_force_disable(struct drm_device *dev)
12383 {
12384 struct drm_i915_private *dev_priv = dev->dev_private;
12385 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12386 DRM_INFO("applying lvds SSC disable quirk\n");
12387 }
12388
12389 /*
12390 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12391 * brightness value
12392 */
12393 static void quirk_invert_brightness(struct drm_device *dev)
12394 {
12395 struct drm_i915_private *dev_priv = dev->dev_private;
12396 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12397 DRM_INFO("applying inverted panel brightness quirk\n");
12398 }
12399
12400 /* Some VBT's incorrectly indicate no backlight is present */
12401 static void quirk_backlight_present(struct drm_device *dev)
12402 {
12403 struct drm_i915_private *dev_priv = dev->dev_private;
12404 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12405 DRM_INFO("applying backlight present quirk\n");
12406 }
12407
12408 struct intel_quirk {
12409 int device;
12410 int subsystem_vendor;
12411 int subsystem_device;
12412 void (*hook)(struct drm_device *dev);
12413 };
12414
12415 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12416 struct intel_dmi_quirk {
12417 void (*hook)(struct drm_device *dev);
12418 const struct dmi_system_id (*dmi_id_list)[];
12419 };
12420
12421 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12422 {
12423 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12424 return 1;
12425 }
12426
12427 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12428 {
12429 .dmi_id_list = &(const struct dmi_system_id[]) {
12430 {
12431 .callback = intel_dmi_reverse_brightness,
12432 .ident = "NCR Corporation",
12433 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12434 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12435 },
12436 },
12437 { } /* terminating entry */
12438 },
12439 .hook = quirk_invert_brightness,
12440 },
12441 };
12442
12443 static struct intel_quirk intel_quirks[] = {
12444 /* HP Mini needs pipe A force quirk (LP: #322104) */
12445 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12446
12447 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12448 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12449
12450 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12451 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12452
12453 /* Lenovo U160 cannot use SSC on LVDS */
12454 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12455
12456 /* Sony Vaio Y cannot use SSC on LVDS */
12457 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12458
12459 /* Acer Aspire 5734Z must invert backlight brightness */
12460 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12461
12462 /* Acer/eMachines G725 */
12463 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12464
12465 /* Acer/eMachines e725 */
12466 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12467
12468 /* Acer/Packard Bell NCL20 */
12469 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12470
12471 /* Acer Aspire 4736Z */
12472 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12473
12474 /* Acer Aspire 5336 */
12475 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12476
12477 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12478 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12479
12480 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12481 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12482
12483 /* HP Chromebook 14 (Celeron 2955U) */
12484 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12485 };
12486
12487 static void intel_init_quirks(struct drm_device *dev)
12488 {
12489 struct pci_dev *d = dev->pdev;
12490 int i;
12491
12492 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12493 struct intel_quirk *q = &intel_quirks[i];
12494
12495 if (d->device == q->device &&
12496 (d->subsystem_vendor == q->subsystem_vendor ||
12497 q->subsystem_vendor == PCI_ANY_ID) &&
12498 (d->subsystem_device == q->subsystem_device ||
12499 q->subsystem_device == PCI_ANY_ID))
12500 q->hook(dev);
12501 }
12502 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12503 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12504 intel_dmi_quirks[i].hook(dev);
12505 }
12506 }
12507
12508 /* Disable the VGA plane that we never use */
12509 static void i915_disable_vga(struct drm_device *dev)
12510 {
12511 struct drm_i915_private *dev_priv = dev->dev_private;
12512 u8 sr1;
12513 u32 vga_reg = i915_vgacntrl_reg(dev);
12514
12515 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12516 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12517 outb(SR01, VGA_SR_INDEX);
12518 sr1 = inb(VGA_SR_DATA);
12519 outb(sr1 | 1<<5, VGA_SR_DATA);
12520 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12521 udelay(300);
12522
12523 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12524 POSTING_READ(vga_reg);
12525 }
12526
12527 void intel_modeset_init_hw(struct drm_device *dev)
12528 {
12529 intel_prepare_ddi(dev);
12530
12531 if (IS_VALLEYVIEW(dev))
12532 vlv_update_cdclk(dev);
12533
12534 intel_init_clock_gating(dev);
12535
12536 intel_reset_dpio(dev);
12537
12538 intel_enable_gt_powersave(dev);
12539 }
12540
12541 void intel_modeset_suspend_hw(struct drm_device *dev)
12542 {
12543 intel_suspend_hw(dev);
12544 }
12545
12546 void intel_modeset_init(struct drm_device *dev)
12547 {
12548 struct drm_i915_private *dev_priv = dev->dev_private;
12549 int sprite, ret;
12550 enum pipe pipe;
12551 struct intel_crtc *crtc;
12552
12553 drm_mode_config_init(dev);
12554
12555 dev->mode_config.min_width = 0;
12556 dev->mode_config.min_height = 0;
12557
12558 dev->mode_config.preferred_depth = 24;
12559 dev->mode_config.prefer_shadow = 1;
12560
12561 dev->mode_config.funcs = &intel_mode_funcs;
12562
12563 intel_init_quirks(dev);
12564
12565 intel_init_pm(dev);
12566
12567 if (INTEL_INFO(dev)->num_pipes == 0)
12568 return;
12569
12570 intel_init_display(dev);
12571
12572 if (IS_GEN2(dev)) {
12573 dev->mode_config.max_width = 2048;
12574 dev->mode_config.max_height = 2048;
12575 } else if (IS_GEN3(dev)) {
12576 dev->mode_config.max_width = 4096;
12577 dev->mode_config.max_height = 4096;
12578 } else {
12579 dev->mode_config.max_width = 8192;
12580 dev->mode_config.max_height = 8192;
12581 }
12582
12583 if (IS_GEN2(dev)) {
12584 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12585 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12586 } else {
12587 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12588 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12589 }
12590
12591 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12592
12593 DRM_DEBUG_KMS("%d display pipe%s available.\n",
12594 INTEL_INFO(dev)->num_pipes,
12595 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12596
12597 for_each_pipe(pipe) {
12598 intel_crtc_init(dev, pipe);
12599 for_each_sprite(pipe, sprite) {
12600 ret = intel_plane_init(dev, pipe, sprite);
12601 if (ret)
12602 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12603 pipe_name(pipe), sprite_name(pipe, sprite), ret);
12604 }
12605 }
12606
12607 intel_init_dpio(dev);
12608 intel_reset_dpio(dev);
12609
12610 intel_shared_dpll_init(dev);
12611
12612 /* Just disable it once at startup */
12613 i915_disable_vga(dev);
12614 intel_setup_outputs(dev);
12615
12616 /* Just in case the BIOS is doing something questionable. */
12617 intel_disable_fbc(dev);
12618
12619 drm_modeset_lock_all(dev);
12620 intel_modeset_setup_hw_state(dev, false);
12621 drm_modeset_unlock_all(dev);
12622
12623 for_each_intel_crtc(dev, crtc) {
12624 if (!crtc->active)
12625 continue;
12626
12627 /*
12628 * Note that reserving the BIOS fb up front prevents us
12629 * from stuffing other stolen allocations like the ring
12630 * on top. This prevents some ugliness at boot time, and
12631 * can even allow for smooth boot transitions if the BIOS
12632 * fb is large enough for the active pipe configuration.
12633 */
12634 if (dev_priv->display.get_plane_config) {
12635 dev_priv->display.get_plane_config(crtc,
12636 &crtc->plane_config);
12637 /*
12638 * If the fb is shared between multiple heads, we'll
12639 * just get the first one.
12640 */
12641 intel_find_plane_obj(crtc, &crtc->plane_config);
12642 }
12643 }
12644 }
12645
12646 static void intel_enable_pipe_a(struct drm_device *dev)
12647 {
12648 struct intel_connector *connector;
12649 struct drm_connector *crt = NULL;
12650 struct intel_load_detect_pipe load_detect_temp;
12651 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12652
12653 /* We can't just switch on the pipe A, we need to set things up with a
12654 * proper mode and output configuration. As a gross hack, enable pipe A
12655 * by enabling the load detect pipe once. */
12656 list_for_each_entry(connector,
12657 &dev->mode_config.connector_list,
12658 base.head) {
12659 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12660 crt = &connector->base;
12661 break;
12662 }
12663 }
12664
12665 if (!crt)
12666 return;
12667
12668 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12669 intel_release_load_detect_pipe(crt, &load_detect_temp);
12670 }
12671
12672 static bool
12673 intel_check_plane_mapping(struct intel_crtc *crtc)
12674 {
12675 struct drm_device *dev = crtc->base.dev;
12676 struct drm_i915_private *dev_priv = dev->dev_private;
12677 u32 reg, val;
12678
12679 if (INTEL_INFO(dev)->num_pipes == 1)
12680 return true;
12681
12682 reg = DSPCNTR(!crtc->plane);
12683 val = I915_READ(reg);
12684
12685 if ((val & DISPLAY_PLANE_ENABLE) &&
12686 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12687 return false;
12688
12689 return true;
12690 }
12691
12692 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12693 {
12694 struct drm_device *dev = crtc->base.dev;
12695 struct drm_i915_private *dev_priv = dev->dev_private;
12696 u32 reg;
12697
12698 /* Clear any frame start delays used for debugging left by the BIOS */
12699 reg = PIPECONF(crtc->config.cpu_transcoder);
12700 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12701
12702 /* restore vblank interrupts to correct state */
12703 if (crtc->active)
12704 drm_vblank_on(dev, crtc->pipe);
12705 else
12706 drm_vblank_off(dev, crtc->pipe);
12707
12708 /* We need to sanitize the plane -> pipe mapping first because this will
12709 * disable the crtc (and hence change the state) if it is wrong. Note
12710 * that gen4+ has a fixed plane -> pipe mapping. */
12711 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12712 struct intel_connector *connector;
12713 bool plane;
12714
12715 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12716 crtc->base.base.id);
12717
12718 /* Pipe has the wrong plane attached and the plane is active.
12719 * Temporarily change the plane mapping and disable everything
12720 * ... */
12721 plane = crtc->plane;
12722 crtc->plane = !plane;
12723 crtc->primary_enabled = true;
12724 dev_priv->display.crtc_disable(&crtc->base);
12725 crtc->plane = plane;
12726
12727 /* ... and break all links. */
12728 list_for_each_entry(connector, &dev->mode_config.connector_list,
12729 base.head) {
12730 if (connector->encoder->base.crtc != &crtc->base)
12731 continue;
12732
12733 connector->base.dpms = DRM_MODE_DPMS_OFF;
12734 connector->base.encoder = NULL;
12735 }
12736 /* multiple connectors may have the same encoder:
12737 * handle them and break crtc link separately */
12738 list_for_each_entry(connector, &dev->mode_config.connector_list,
12739 base.head)
12740 if (connector->encoder->base.crtc == &crtc->base) {
12741 connector->encoder->base.crtc = NULL;
12742 connector->encoder->connectors_active = false;
12743 }
12744
12745 WARN_ON(crtc->active);
12746 crtc->base.enabled = false;
12747 }
12748
12749 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12750 crtc->pipe == PIPE_A && !crtc->active) {
12751 /* BIOS forgot to enable pipe A, this mostly happens after
12752 * resume. Force-enable the pipe to fix this, the update_dpms
12753 * call below we restore the pipe to the right state, but leave
12754 * the required bits on. */
12755 intel_enable_pipe_a(dev);
12756 }
12757
12758 /* Adjust the state of the output pipe according to whether we
12759 * have active connectors/encoders. */
12760 intel_crtc_update_dpms(&crtc->base);
12761
12762 if (crtc->active != crtc->base.enabled) {
12763 struct intel_encoder *encoder;
12764
12765 /* This can happen either due to bugs in the get_hw_state
12766 * functions or because the pipe is force-enabled due to the
12767 * pipe A quirk. */
12768 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12769 crtc->base.base.id,
12770 crtc->base.enabled ? "enabled" : "disabled",
12771 crtc->active ? "enabled" : "disabled");
12772
12773 crtc->base.enabled = crtc->active;
12774
12775 /* Because we only establish the connector -> encoder ->
12776 * crtc links if something is active, this means the
12777 * crtc is now deactivated. Break the links. connector
12778 * -> encoder links are only establish when things are
12779 * actually up, hence no need to break them. */
12780 WARN_ON(crtc->active);
12781
12782 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12783 WARN_ON(encoder->connectors_active);
12784 encoder->base.crtc = NULL;
12785 }
12786 }
12787
12788 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12789 /*
12790 * We start out with underrun reporting disabled to avoid races.
12791 * For correct bookkeeping mark this on active crtcs.
12792 *
12793 * Also on gmch platforms we dont have any hardware bits to
12794 * disable the underrun reporting. Which means we need to start
12795 * out with underrun reporting disabled also on inactive pipes,
12796 * since otherwise we'll complain about the garbage we read when
12797 * e.g. coming up after runtime pm.
12798 *
12799 * No protection against concurrent access is required - at
12800 * worst a fifo underrun happens which also sets this to false.
12801 */
12802 crtc->cpu_fifo_underrun_disabled = true;
12803 crtc->pch_fifo_underrun_disabled = true;
12804
12805 update_scanline_offset(crtc);
12806 }
12807 }
12808
12809 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12810 {
12811 struct intel_connector *connector;
12812 struct drm_device *dev = encoder->base.dev;
12813
12814 /* We need to check both for a crtc link (meaning that the
12815 * encoder is active and trying to read from a pipe) and the
12816 * pipe itself being active. */
12817 bool has_active_crtc = encoder->base.crtc &&
12818 to_intel_crtc(encoder->base.crtc)->active;
12819
12820 if (encoder->connectors_active && !has_active_crtc) {
12821 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12822 encoder->base.base.id,
12823 encoder->base.name);
12824
12825 /* Connector is active, but has no active pipe. This is
12826 * fallout from our resume register restoring. Disable
12827 * the encoder manually again. */
12828 if (encoder->base.crtc) {
12829 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12830 encoder->base.base.id,
12831 encoder->base.name);
12832 encoder->disable(encoder);
12833 if (encoder->post_disable)
12834 encoder->post_disable(encoder);
12835 }
12836 encoder->base.crtc = NULL;
12837 encoder->connectors_active = false;
12838
12839 /* Inconsistent output/port/pipe state happens presumably due to
12840 * a bug in one of the get_hw_state functions. Or someplace else
12841 * in our code, like the register restore mess on resume. Clamp
12842 * things to off as a safer default. */
12843 list_for_each_entry(connector,
12844 &dev->mode_config.connector_list,
12845 base.head) {
12846 if (connector->encoder != encoder)
12847 continue;
12848 connector->base.dpms = DRM_MODE_DPMS_OFF;
12849 connector->base.encoder = NULL;
12850 }
12851 }
12852 /* Enabled encoders without active connectors will be fixed in
12853 * the crtc fixup. */
12854 }
12855
12856 void i915_redisable_vga_power_on(struct drm_device *dev)
12857 {
12858 struct drm_i915_private *dev_priv = dev->dev_private;
12859 u32 vga_reg = i915_vgacntrl_reg(dev);
12860
12861 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12862 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12863 i915_disable_vga(dev);
12864 }
12865 }
12866
12867 void i915_redisable_vga(struct drm_device *dev)
12868 {
12869 struct drm_i915_private *dev_priv = dev->dev_private;
12870
12871 /* This function can be called both from intel_modeset_setup_hw_state or
12872 * at a very early point in our resume sequence, where the power well
12873 * structures are not yet restored. Since this function is at a very
12874 * paranoid "someone might have enabled VGA while we were not looking"
12875 * level, just check if the power well is enabled instead of trying to
12876 * follow the "don't touch the power well if we don't need it" policy
12877 * the rest of the driver uses. */
12878 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12879 return;
12880
12881 i915_redisable_vga_power_on(dev);
12882 }
12883
12884 static bool primary_get_hw_state(struct intel_crtc *crtc)
12885 {
12886 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12887
12888 if (!crtc->active)
12889 return false;
12890
12891 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12892 }
12893
12894 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12895 {
12896 struct drm_i915_private *dev_priv = dev->dev_private;
12897 enum pipe pipe;
12898 struct intel_crtc *crtc;
12899 struct intel_encoder *encoder;
12900 struct intel_connector *connector;
12901 int i;
12902
12903 for_each_intel_crtc(dev, crtc) {
12904 memset(&crtc->config, 0, sizeof(crtc->config));
12905
12906 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12907
12908 crtc->active = dev_priv->display.get_pipe_config(crtc,
12909 &crtc->config);
12910
12911 crtc->base.enabled = crtc->active;
12912 crtc->primary_enabled = primary_get_hw_state(crtc);
12913
12914 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12915 crtc->base.base.id,
12916 crtc->active ? "enabled" : "disabled");
12917 }
12918
12919 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12920 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12921
12922 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12923 pll->active = 0;
12924 for_each_intel_crtc(dev, crtc) {
12925 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12926 pll->active++;
12927 }
12928 pll->refcount = pll->active;
12929
12930 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12931 pll->name, pll->refcount, pll->on);
12932
12933 if (pll->refcount)
12934 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
12935 }
12936
12937 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12938 base.head) {
12939 pipe = 0;
12940
12941 if (encoder->get_hw_state(encoder, &pipe)) {
12942 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12943 encoder->base.crtc = &crtc->base;
12944 encoder->get_config(encoder, &crtc->config);
12945 } else {
12946 encoder->base.crtc = NULL;
12947 }
12948
12949 encoder->connectors_active = false;
12950 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12951 encoder->base.base.id,
12952 encoder->base.name,
12953 encoder->base.crtc ? "enabled" : "disabled",
12954 pipe_name(pipe));
12955 }
12956
12957 list_for_each_entry(connector, &dev->mode_config.connector_list,
12958 base.head) {
12959 if (connector->get_hw_state(connector)) {
12960 connector->base.dpms = DRM_MODE_DPMS_ON;
12961 connector->encoder->connectors_active = true;
12962 connector->base.encoder = &connector->encoder->base;
12963 } else {
12964 connector->base.dpms = DRM_MODE_DPMS_OFF;
12965 connector->base.encoder = NULL;
12966 }
12967 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12968 connector->base.base.id,
12969 connector->base.name,
12970 connector->base.encoder ? "enabled" : "disabled");
12971 }
12972 }
12973
12974 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12975 * and i915 state tracking structures. */
12976 void intel_modeset_setup_hw_state(struct drm_device *dev,
12977 bool force_restore)
12978 {
12979 struct drm_i915_private *dev_priv = dev->dev_private;
12980 enum pipe pipe;
12981 struct intel_crtc *crtc;
12982 struct intel_encoder *encoder;
12983 int i;
12984
12985 intel_modeset_readout_hw_state(dev);
12986
12987 /*
12988 * Now that we have the config, copy it to each CRTC struct
12989 * Note that this could go away if we move to using crtc_config
12990 * checking everywhere.
12991 */
12992 for_each_intel_crtc(dev, crtc) {
12993 if (crtc->active && i915.fastboot) {
12994 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
12995 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12996 crtc->base.base.id);
12997 drm_mode_debug_printmodeline(&crtc->base.mode);
12998 }
12999 }
13000
13001 /* HW state is read out, now we need to sanitize this mess. */
13002 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13003 base.head) {
13004 intel_sanitize_encoder(encoder);
13005 }
13006
13007 for_each_pipe(pipe) {
13008 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13009 intel_sanitize_crtc(crtc);
13010 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13011 }
13012
13013 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13014 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13015
13016 if (!pll->on || pll->active)
13017 continue;
13018
13019 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13020
13021 pll->disable(dev_priv, pll);
13022 pll->on = false;
13023 }
13024
13025 if (HAS_PCH_SPLIT(dev))
13026 ilk_wm_get_hw_state(dev);
13027
13028 if (force_restore) {
13029 i915_redisable_vga(dev);
13030
13031 /*
13032 * We need to use raw interfaces for restoring state to avoid
13033 * checking (bogus) intermediate states.
13034 */
13035 for_each_pipe(pipe) {
13036 struct drm_crtc *crtc =
13037 dev_priv->pipe_to_crtc_mapping[pipe];
13038
13039 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13040 crtc->primary->fb);
13041 }
13042 } else {
13043 intel_modeset_update_staged_output_state(dev);
13044 }
13045
13046 intel_modeset_check_state(dev);
13047 }
13048
13049 void intel_modeset_gem_init(struct drm_device *dev)
13050 {
13051 struct drm_crtc *c;
13052 struct drm_i915_gem_object *obj;
13053
13054 mutex_lock(&dev->struct_mutex);
13055 intel_init_gt_powersave(dev);
13056 mutex_unlock(&dev->struct_mutex);
13057
13058 intel_modeset_init_hw(dev);
13059
13060 intel_setup_overlay(dev);
13061
13062 /*
13063 * Make sure any fbs we allocated at startup are properly
13064 * pinned & fenced. When we do the allocation it's too early
13065 * for this.
13066 */
13067 mutex_lock(&dev->struct_mutex);
13068 for_each_crtc(dev, c) {
13069 obj = intel_fb_obj(c->primary->fb);
13070 if (obj == NULL)
13071 continue;
13072
13073 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13074 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13075 to_intel_crtc(c)->pipe);
13076 drm_framebuffer_unreference(c->primary->fb);
13077 c->primary->fb = NULL;
13078 }
13079 }
13080 mutex_unlock(&dev->struct_mutex);
13081 }
13082
13083 void intel_connector_unregister(struct intel_connector *intel_connector)
13084 {
13085 struct drm_connector *connector = &intel_connector->base;
13086
13087 intel_panel_destroy_backlight(connector);
13088 drm_connector_unregister(connector);
13089 }
13090
13091 void intel_modeset_cleanup(struct drm_device *dev)
13092 {
13093 struct drm_i915_private *dev_priv = dev->dev_private;
13094 struct drm_connector *connector;
13095
13096 /*
13097 * Interrupts and polling as the first thing to avoid creating havoc.
13098 * Too much stuff here (turning of rps, connectors, ...) would
13099 * experience fancy races otherwise.
13100 */
13101 drm_irq_uninstall(dev);
13102 cancel_work_sync(&dev_priv->hotplug_work);
13103 dev_priv->pm._irqs_disabled = true;
13104
13105 /*
13106 * Due to the hpd irq storm handling the hotplug work can re-arm the
13107 * poll handlers. Hence disable polling after hpd handling is shut down.
13108 */
13109 drm_kms_helper_poll_fini(dev);
13110
13111 mutex_lock(&dev->struct_mutex);
13112
13113 intel_unregister_dsm_handler();
13114
13115 intel_disable_fbc(dev);
13116
13117 intel_disable_gt_powersave(dev);
13118
13119 ironlake_teardown_rc6(dev);
13120
13121 mutex_unlock(&dev->struct_mutex);
13122
13123 /* flush any delayed tasks or pending work */
13124 flush_scheduled_work();
13125
13126 /* destroy the backlight and sysfs files before encoders/connectors */
13127 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13128 struct intel_connector *intel_connector;
13129
13130 intel_connector = to_intel_connector(connector);
13131 intel_connector->unregister(intel_connector);
13132 }
13133
13134 drm_mode_config_cleanup(dev);
13135
13136 intel_cleanup_overlay(dev);
13137
13138 mutex_lock(&dev->struct_mutex);
13139 intel_cleanup_gt_powersave(dev);
13140 mutex_unlock(&dev->struct_mutex);
13141 }
13142
13143 /*
13144 * Return which encoder is currently attached for connector.
13145 */
13146 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13147 {
13148 return &intel_attached_encoder(connector)->base;
13149 }
13150
13151 void intel_connector_attach_encoder(struct intel_connector *connector,
13152 struct intel_encoder *encoder)
13153 {
13154 connector->encoder = encoder;
13155 drm_mode_connector_attach_encoder(&connector->base,
13156 &encoder->base);
13157 }
13158
13159 /*
13160 * set vga decode state - true == enable VGA decode
13161 */
13162 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13163 {
13164 struct drm_i915_private *dev_priv = dev->dev_private;
13165 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13166 u16 gmch_ctrl;
13167
13168 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13169 DRM_ERROR("failed to read control word\n");
13170 return -EIO;
13171 }
13172
13173 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13174 return 0;
13175
13176 if (state)
13177 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13178 else
13179 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13180
13181 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13182 DRM_ERROR("failed to write control word\n");
13183 return -EIO;
13184 }
13185
13186 return 0;
13187 }
13188
13189 struct intel_display_error_state {
13190
13191 u32 power_well_driver;
13192
13193 int num_transcoders;
13194
13195 struct intel_cursor_error_state {
13196 u32 control;
13197 u32 position;
13198 u32 base;
13199 u32 size;
13200 } cursor[I915_MAX_PIPES];
13201
13202 struct intel_pipe_error_state {
13203 bool power_domain_on;
13204 u32 source;
13205 u32 stat;
13206 } pipe[I915_MAX_PIPES];
13207
13208 struct intel_plane_error_state {
13209 u32 control;
13210 u32 stride;
13211 u32 size;
13212 u32 pos;
13213 u32 addr;
13214 u32 surface;
13215 u32 tile_offset;
13216 } plane[I915_MAX_PIPES];
13217
13218 struct intel_transcoder_error_state {
13219 bool power_domain_on;
13220 enum transcoder cpu_transcoder;
13221
13222 u32 conf;
13223
13224 u32 htotal;
13225 u32 hblank;
13226 u32 hsync;
13227 u32 vtotal;
13228 u32 vblank;
13229 u32 vsync;
13230 } transcoder[4];
13231 };
13232
13233 struct intel_display_error_state *
13234 intel_display_capture_error_state(struct drm_device *dev)
13235 {
13236 struct drm_i915_private *dev_priv = dev->dev_private;
13237 struct intel_display_error_state *error;
13238 int transcoders[] = {
13239 TRANSCODER_A,
13240 TRANSCODER_B,
13241 TRANSCODER_C,
13242 TRANSCODER_EDP,
13243 };
13244 int i;
13245
13246 if (INTEL_INFO(dev)->num_pipes == 0)
13247 return NULL;
13248
13249 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13250 if (error == NULL)
13251 return NULL;
13252
13253 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13254 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13255
13256 for_each_pipe(i) {
13257 error->pipe[i].power_domain_on =
13258 intel_display_power_enabled_unlocked(dev_priv,
13259 POWER_DOMAIN_PIPE(i));
13260 if (!error->pipe[i].power_domain_on)
13261 continue;
13262
13263 error->cursor[i].control = I915_READ(CURCNTR(i));
13264 error->cursor[i].position = I915_READ(CURPOS(i));
13265 error->cursor[i].base = I915_READ(CURBASE(i));
13266
13267 error->plane[i].control = I915_READ(DSPCNTR(i));
13268 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13269 if (INTEL_INFO(dev)->gen <= 3) {
13270 error->plane[i].size = I915_READ(DSPSIZE(i));
13271 error->plane[i].pos = I915_READ(DSPPOS(i));
13272 }
13273 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13274 error->plane[i].addr = I915_READ(DSPADDR(i));
13275 if (INTEL_INFO(dev)->gen >= 4) {
13276 error->plane[i].surface = I915_READ(DSPSURF(i));
13277 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13278 }
13279
13280 error->pipe[i].source = I915_READ(PIPESRC(i));
13281
13282 if (HAS_GMCH_DISPLAY(dev))
13283 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13284 }
13285
13286 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13287 if (HAS_DDI(dev_priv->dev))
13288 error->num_transcoders++; /* Account for eDP. */
13289
13290 for (i = 0; i < error->num_transcoders; i++) {
13291 enum transcoder cpu_transcoder = transcoders[i];
13292
13293 error->transcoder[i].power_domain_on =
13294 intel_display_power_enabled_unlocked(dev_priv,
13295 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13296 if (!error->transcoder[i].power_domain_on)
13297 continue;
13298
13299 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13300
13301 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13302 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13303 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13304 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13305 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13306 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13307 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13308 }
13309
13310 return error;
13311 }
13312
13313 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13314
13315 void
13316 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13317 struct drm_device *dev,
13318 struct intel_display_error_state *error)
13319 {
13320 int i;
13321
13322 if (!error)
13323 return;
13324
13325 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13326 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13327 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13328 error->power_well_driver);
13329 for_each_pipe(i) {
13330 err_printf(m, "Pipe [%d]:\n", i);
13331 err_printf(m, " Power: %s\n",
13332 error->pipe[i].power_domain_on ? "on" : "off");
13333 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13334 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13335
13336 err_printf(m, "Plane [%d]:\n", i);
13337 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13338 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13339 if (INTEL_INFO(dev)->gen <= 3) {
13340 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13341 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13342 }
13343 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13344 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13345 if (INTEL_INFO(dev)->gen >= 4) {
13346 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13347 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13348 }
13349
13350 err_printf(m, "Cursor [%d]:\n", i);
13351 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13352 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13353 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13354 }
13355
13356 for (i = 0; i < error->num_transcoders; i++) {
13357 err_printf(m, "CPU transcoder: %c\n",
13358 transcoder_name(error->transcoder[i].cpu_transcoder));
13359 err_printf(m, " Power: %s\n",
13360 error->transcoder[i].power_domain_on ? "on" : "off");
13361 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13362 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13363 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13364 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13365 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13366 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13367 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13368 }
13369 }
This page took 0.657078 seconds and 5 git commands to generate.