drm/i915: special-case dirtyfb for frontbuffer tracking
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_framebuffer_init(struct drm_device *dev,
90 struct intel_framebuffer *ifb,
91 struct drm_mode_fb_cmd2 *mode_cmd,
92 struct drm_i915_gem_object *obj);
93 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
95 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
96 struct intel_link_m_n *m_n,
97 struct intel_link_m_n *m2_n2);
98 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
99 static void haswell_set_pipeconf(struct drm_crtc *crtc);
100 static void intel_set_pipe_csc(struct drm_crtc *crtc);
101 static void vlv_prepare_pll(struct intel_crtc *crtc,
102 const struct intel_crtc_state *pipe_config);
103 static void chv_prepare_pll(struct intel_crtc *crtc,
104 const struct intel_crtc_state *pipe_config);
105 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
106 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
107 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108 struct intel_crtc_state *crtc_state);
109 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110 int num_connectors);
111 static void intel_modeset_setup_hw_state(struct drm_device *dev);
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4800000, .max = 6480000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static const intel_limit_t intel_limits_bxt = {
402 /* FIXME: find real dot limits */
403 .dot = { .min = 0, .max = INT_MAX },
404 .vco = { .min = 4800000, .max = 6700000 },
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 /* FIXME: find real m2 limits */
408 .m2 = { .min = 2 << 22, .max = 255 << 22 },
409 .p1 = { .min = 2, .max = 4 },
410 .p2 = { .p2_slow = 1, .p2_fast = 20 },
411 };
412
413 static bool
414 needs_modeset(struct drm_crtc_state *state)
415 {
416 return state->mode_changed || state->active_changed;
417 }
418
419 /**
420 * Returns whether any output on the specified pipe is of the specified type
421 */
422 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
423 {
424 struct drm_device *dev = crtc->base.dev;
425 struct intel_encoder *encoder;
426
427 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
428 if (encoder->type == type)
429 return true;
430
431 return false;
432 }
433
434 /**
435 * Returns whether any output on the specified pipe will have the specified
436 * type after a staged modeset is complete, i.e., the same as
437 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438 * encoder->crtc.
439 */
440 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441 int type)
442 {
443 struct drm_atomic_state *state = crtc_state->base.state;
444 struct drm_connector *connector;
445 struct drm_connector_state *connector_state;
446 struct intel_encoder *encoder;
447 int i, num_connectors = 0;
448
449 for_each_connector_in_state(state, connector, connector_state, i) {
450 if (connector_state->crtc != crtc_state->base.crtc)
451 continue;
452
453 num_connectors++;
454
455 encoder = to_intel_encoder(connector_state->best_encoder);
456 if (encoder->type == type)
457 return true;
458 }
459
460 WARN_ON(num_connectors == 0);
461
462 return false;
463 }
464
465 static const intel_limit_t *
466 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
467 {
468 struct drm_device *dev = crtc_state->base.crtc->dev;
469 const intel_limit_t *limit;
470
471 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
472 if (intel_is_dual_link_lvds(dev)) {
473 if (refclk == 100000)
474 limit = &intel_limits_ironlake_dual_lvds_100m;
475 else
476 limit = &intel_limits_ironlake_dual_lvds;
477 } else {
478 if (refclk == 100000)
479 limit = &intel_limits_ironlake_single_lvds_100m;
480 else
481 limit = &intel_limits_ironlake_single_lvds;
482 }
483 } else
484 limit = &intel_limits_ironlake_dac;
485
486 return limit;
487 }
488
489 static const intel_limit_t *
490 intel_g4x_limit(struct intel_crtc_state *crtc_state)
491 {
492 struct drm_device *dev = crtc_state->base.crtc->dev;
493 const intel_limit_t *limit;
494
495 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
496 if (intel_is_dual_link_lvds(dev))
497 limit = &intel_limits_g4x_dual_channel_lvds;
498 else
499 limit = &intel_limits_g4x_single_channel_lvds;
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
502 limit = &intel_limits_g4x_hdmi;
503 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
504 limit = &intel_limits_g4x_sdvo;
505 } else /* The option is for other outputs */
506 limit = &intel_limits_i9xx_sdvo;
507
508 return limit;
509 }
510
511 static const intel_limit_t *
512 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
513 {
514 struct drm_device *dev = crtc_state->base.crtc->dev;
515 const intel_limit_t *limit;
516
517 if (IS_BROXTON(dev))
518 limit = &intel_limits_bxt;
519 else if (HAS_PCH_SPLIT(dev))
520 limit = intel_ironlake_limit(crtc_state, refclk);
521 else if (IS_G4X(dev)) {
522 limit = intel_g4x_limit(crtc_state);
523 } else if (IS_PINEVIEW(dev)) {
524 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
525 limit = &intel_limits_pineview_lvds;
526 else
527 limit = &intel_limits_pineview_sdvo;
528 } else if (IS_CHERRYVIEW(dev)) {
529 limit = &intel_limits_chv;
530 } else if (IS_VALLEYVIEW(dev)) {
531 limit = &intel_limits_vlv;
532 } else if (!IS_GEN2(dev)) {
533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_i9xx_lvds;
535 else
536 limit = &intel_limits_i9xx_sdvo;
537 } else {
538 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_i8xx_lvds;
540 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
541 limit = &intel_limits_i8xx_dvo;
542 else
543 limit = &intel_limits_i8xx_dac;
544 }
545 return limit;
546 }
547
548 /*
549 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552 * The helpers' return value is the rate of the clock that is fed to the
553 * display engine's pipe which can be the above fast dot clock rate or a
554 * divided-down version of it.
555 */
556 /* m1 is reserved as 0 in Pineview, n is a ring counter */
557 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
558 {
559 clock->m = clock->m2 + 2;
560 clock->p = clock->p1 * clock->p2;
561 if (WARN_ON(clock->n == 0 || clock->p == 0))
562 return 0;
563 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
565
566 return clock->dot;
567 }
568
569 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570 {
571 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572 }
573
574 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
575 {
576 clock->m = i9xx_dpll_compute_m(clock);
577 clock->p = clock->p1 * clock->p2;
578 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
579 return 0;
580 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
582
583 return clock->dot;
584 }
585
586 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
587 {
588 clock->m = clock->m1 * clock->m2;
589 clock->p = clock->p1 * clock->p2;
590 if (WARN_ON(clock->n == 0 || clock->p == 0))
591 return 0;
592 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594
595 return clock->dot / 5;
596 }
597
598 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
599 {
600 clock->m = clock->m1 * clock->m2;
601 clock->p = clock->p1 * clock->p2;
602 if (WARN_ON(clock->n == 0 || clock->p == 0))
603 return 0;
604 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605 clock->n << 22);
606 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607
608 return clock->dot / 5;
609 }
610
611 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
612 /**
613 * Returns whether the given set of divisors are valid for a given refclk with
614 * the given connectors.
615 */
616
617 static bool intel_PLL_is_valid(struct drm_device *dev,
618 const intel_limit_t *limit,
619 const intel_clock_t *clock)
620 {
621 if (clock->n < limit->n.min || limit->n.max < clock->n)
622 INTELPllInvalid("n out of range\n");
623 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
624 INTELPllInvalid("p1 out of range\n");
625 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
626 INTELPllInvalid("m2 out of range\n");
627 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
628 INTELPllInvalid("m1 out of range\n");
629
630 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
631 if (clock->m1 <= clock->m2)
632 INTELPllInvalid("m1 <= m2\n");
633
634 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
635 if (clock->p < limit->p.min || limit->p.max < clock->p)
636 INTELPllInvalid("p out of range\n");
637 if (clock->m < limit->m.min || limit->m.max < clock->m)
638 INTELPllInvalid("m out of range\n");
639 }
640
641 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
642 INTELPllInvalid("vco out of range\n");
643 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644 * connector, etc., rather than just a single range.
645 */
646 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
647 INTELPllInvalid("dot out of range\n");
648
649 return true;
650 }
651
652 static int
653 i9xx_select_p2_div(const intel_limit_t *limit,
654 const struct intel_crtc_state *crtc_state,
655 int target)
656 {
657 struct drm_device *dev = crtc_state->base.crtc->dev;
658
659 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
660 /*
661 * For LVDS just rely on its current settings for dual-channel.
662 * We haven't figured out how to reliably set up different
663 * single/dual channel state, if we even can.
664 */
665 if (intel_is_dual_link_lvds(dev))
666 return limit->p2.p2_fast;
667 else
668 return limit->p2.p2_slow;
669 } else {
670 if (target < limit->p2.dot_limit)
671 return limit->p2.p2_slow;
672 else
673 return limit->p2.p2_fast;
674 }
675 }
676
677 static bool
678 i9xx_find_best_dpll(const intel_limit_t *limit,
679 struct intel_crtc_state *crtc_state,
680 int target, int refclk, intel_clock_t *match_clock,
681 intel_clock_t *best_clock)
682 {
683 struct drm_device *dev = crtc_state->base.crtc->dev;
684 intel_clock_t clock;
685 int err = target;
686
687 memset(best_clock, 0, sizeof(*best_clock));
688
689 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692 clock.m1++) {
693 for (clock.m2 = limit->m2.min;
694 clock.m2 <= limit->m2.max; clock.m2++) {
695 if (clock.m2 >= clock.m1)
696 break;
697 for (clock.n = limit->n.min;
698 clock.n <= limit->n.max; clock.n++) {
699 for (clock.p1 = limit->p1.min;
700 clock.p1 <= limit->p1.max; clock.p1++) {
701 int this_err;
702
703 i9xx_calc_dpll_params(refclk, &clock);
704 if (!intel_PLL_is_valid(dev, limit,
705 &clock))
706 continue;
707 if (match_clock &&
708 clock.p != match_clock->p)
709 continue;
710
711 this_err = abs(clock.dot - target);
712 if (this_err < err) {
713 *best_clock = clock;
714 err = this_err;
715 }
716 }
717 }
718 }
719 }
720
721 return (err != target);
722 }
723
724 static bool
725 pnv_find_best_dpll(const intel_limit_t *limit,
726 struct intel_crtc_state *crtc_state,
727 int target, int refclk, intel_clock_t *match_clock,
728 intel_clock_t *best_clock)
729 {
730 struct drm_device *dev = crtc_state->base.crtc->dev;
731 intel_clock_t clock;
732 int err = target;
733
734 memset(best_clock, 0, sizeof(*best_clock));
735
736 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
738 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739 clock.m1++) {
740 for (clock.m2 = limit->m2.min;
741 clock.m2 <= limit->m2.max; clock.m2++) {
742 for (clock.n = limit->n.min;
743 clock.n <= limit->n.max; clock.n++) {
744 for (clock.p1 = limit->p1.min;
745 clock.p1 <= limit->p1.max; clock.p1++) {
746 int this_err;
747
748 pnv_calc_dpll_params(refclk, &clock);
749 if (!intel_PLL_is_valid(dev, limit,
750 &clock))
751 continue;
752 if (match_clock &&
753 clock.p != match_clock->p)
754 continue;
755
756 this_err = abs(clock.dot - target);
757 if (this_err < err) {
758 *best_clock = clock;
759 err = this_err;
760 }
761 }
762 }
763 }
764 }
765
766 return (err != target);
767 }
768
769 static bool
770 g4x_find_best_dpll(const intel_limit_t *limit,
771 struct intel_crtc_state *crtc_state,
772 int target, int refclk, intel_clock_t *match_clock,
773 intel_clock_t *best_clock)
774 {
775 struct drm_device *dev = crtc_state->base.crtc->dev;
776 intel_clock_t clock;
777 int max_n;
778 bool found = false;
779 /* approximately equals target * 0.00585 */
780 int err_most = (target >> 8) + (target >> 9);
781
782 memset(best_clock, 0, sizeof(*best_clock));
783
784 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786 max_n = limit->n.max;
787 /* based on hardware requirement, prefer smaller n to precision */
788 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
789 /* based on hardware requirement, prefere larger m1,m2 */
790 for (clock.m1 = limit->m1.max;
791 clock.m1 >= limit->m1.min; clock.m1--) {
792 for (clock.m2 = limit->m2.max;
793 clock.m2 >= limit->m2.min; clock.m2--) {
794 for (clock.p1 = limit->p1.max;
795 clock.p1 >= limit->p1.min; clock.p1--) {
796 int this_err;
797
798 i9xx_calc_dpll_params(refclk, &clock);
799 if (!intel_PLL_is_valid(dev, limit,
800 &clock))
801 continue;
802
803 this_err = abs(clock.dot - target);
804 if (this_err < err_most) {
805 *best_clock = clock;
806 err_most = this_err;
807 max_n = clock.n;
808 found = true;
809 }
810 }
811 }
812 }
813 }
814 return found;
815 }
816
817 /*
818 * Check if the calculated PLL configuration is more optimal compared to the
819 * best configuration and error found so far. Return the calculated error.
820 */
821 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822 const intel_clock_t *calculated_clock,
823 const intel_clock_t *best_clock,
824 unsigned int best_error_ppm,
825 unsigned int *error_ppm)
826 {
827 /*
828 * For CHV ignore the error and consider only the P value.
829 * Prefer a bigger P value based on HW requirements.
830 */
831 if (IS_CHERRYVIEW(dev)) {
832 *error_ppm = 0;
833
834 return calculated_clock->p > best_clock->p;
835 }
836
837 if (WARN_ON_ONCE(!target_freq))
838 return false;
839
840 *error_ppm = div_u64(1000000ULL *
841 abs(target_freq - calculated_clock->dot),
842 target_freq);
843 /*
844 * Prefer a better P value over a better (smaller) error if the error
845 * is small. Ensure this preference for future configurations too by
846 * setting the error to 0.
847 */
848 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849 *error_ppm = 0;
850
851 return true;
852 }
853
854 return *error_ppm + 10 < best_error_ppm;
855 }
856
857 static bool
858 vlv_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
862 {
863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
864 struct drm_device *dev = crtc->base.dev;
865 intel_clock_t clock;
866 unsigned int bestppm = 1000000;
867 /* min update 19.2 MHz */
868 int max_n = min(limit->n.max, refclk / 19200);
869 bool found = false;
870
871 target *= 5; /* fast clock */
872
873 memset(best_clock, 0, sizeof(*best_clock));
874
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
878 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
879 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
880 clock.p = clock.p1 * clock.p2;
881 /* based on hardware requirement, prefer bigger m1,m2 values */
882 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
883 unsigned int ppm;
884
885 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886 refclk * clock.m1);
887
888 vlv_calc_dpll_params(refclk, &clock);
889
890 if (!intel_PLL_is_valid(dev, limit,
891 &clock))
892 continue;
893
894 if (!vlv_PLL_is_optimal(dev, target,
895 &clock,
896 best_clock,
897 bestppm, &ppm))
898 continue;
899
900 *best_clock = clock;
901 bestppm = ppm;
902 found = true;
903 }
904 }
905 }
906 }
907
908 return found;
909 }
910
911 static bool
912 chv_find_best_dpll(const intel_limit_t *limit,
913 struct intel_crtc_state *crtc_state,
914 int target, int refclk, intel_clock_t *match_clock,
915 intel_clock_t *best_clock)
916 {
917 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
918 struct drm_device *dev = crtc->base.dev;
919 unsigned int best_error_ppm;
920 intel_clock_t clock;
921 uint64_t m2;
922 int found = false;
923
924 memset(best_clock, 0, sizeof(*best_clock));
925 best_error_ppm = 1000000;
926
927 /*
928 * Based on hardware doc, the n always set to 1, and m1 always
929 * set to 2. If requires to support 200Mhz refclk, we need to
930 * revisit this because n may not 1 anymore.
931 */
932 clock.n = 1, clock.m1 = 2;
933 target *= 5; /* fast clock */
934
935 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936 for (clock.p2 = limit->p2.p2_fast;
937 clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 unsigned int error_ppm;
940
941 clock.p = clock.p1 * clock.p2;
942
943 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944 clock.n) << 22, refclk * clock.m1);
945
946 if (m2 > INT_MAX/clock.m1)
947 continue;
948
949 clock.m2 = m2;
950
951 chv_calc_dpll_params(refclk, &clock);
952
953 if (!intel_PLL_is_valid(dev, limit, &clock))
954 continue;
955
956 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957 best_error_ppm, &error_ppm))
958 continue;
959
960 *best_clock = clock;
961 best_error_ppm = error_ppm;
962 found = true;
963 }
964 }
965
966 return found;
967 }
968
969 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970 intel_clock_t *best_clock)
971 {
972 int refclk = i9xx_get_refclk(crtc_state, 0);
973
974 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975 target_clock, refclk, NULL, best_clock);
976 }
977
978 bool intel_crtc_active(struct drm_crtc *crtc)
979 {
980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982 /* Be paranoid as we can arrive here with only partial
983 * state retrieved from the hardware during setup.
984 *
985 * We can ditch the adjusted_mode.crtc_clock check as soon
986 * as Haswell has gained clock readout/fastboot support.
987 *
988 * We can ditch the crtc->primary->fb check as soon as we can
989 * properly reconstruct framebuffers.
990 *
991 * FIXME: The intel_crtc->active here should be switched to
992 * crtc->state->active once we have proper CRTC states wired up
993 * for atomic.
994 */
995 return intel_crtc->active && crtc->primary->state->fb &&
996 intel_crtc->config->base.adjusted_mode.crtc_clock;
997 }
998
999 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000 enum pipe pipe)
1001 {
1002 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
1005 return intel_crtc->config->cpu_transcoder;
1006 }
1007
1008 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009 {
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 reg = PIPEDSL(pipe);
1012 u32 line1, line2;
1013 u32 line_mask;
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 line1 = I915_READ(reg) & line_mask;
1021 msleep(5);
1022 line2 = I915_READ(reg) & line_mask;
1023
1024 return line1 == line2;
1025 }
1026
1027 /*
1028 * intel_wait_for_pipe_off - wait for pipe to turn off
1029 * @crtc: crtc whose pipe to wait for
1030 *
1031 * After disabling a pipe, we can't wait for vblank in the usual way,
1032 * spinning on the vblank interrupt status bit, since we won't actually
1033 * see an interrupt when the pipe is disabled.
1034 *
1035 * On Gen4 and above:
1036 * wait for the pipe register state bit to turn off
1037 *
1038 * Otherwise:
1039 * wait for the display line value to settle (it usually
1040 * ends up stopping at the start of the next frame).
1041 *
1042 */
1043 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1044 {
1045 struct drm_device *dev = crtc->base.dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1048 enum pipe pipe = crtc->pipe;
1049
1050 if (INTEL_INFO(dev)->gen >= 4) {
1051 int reg = PIPECONF(cpu_transcoder);
1052
1053 /* Wait for the Pipe State to go off */
1054 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055 100))
1056 WARN(1, "pipe_off wait timed out\n");
1057 } else {
1058 /* Wait for the display line to settle */
1059 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1060 WARN(1, "pipe_off wait timed out\n");
1061 }
1062 }
1063
1064 /*
1065 * ibx_digital_port_connected - is the specified port connected?
1066 * @dev_priv: i915 private structure
1067 * @port: the port to test
1068 *
1069 * Returns true if @port is connected, false otherwise.
1070 */
1071 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072 struct intel_digital_port *port)
1073 {
1074 u32 bit;
1075
1076 if (HAS_PCH_IBX(dev_priv->dev)) {
1077 switch (port->port) {
1078 case PORT_B:
1079 bit = SDE_PORTB_HOTPLUG;
1080 break;
1081 case PORT_C:
1082 bit = SDE_PORTC_HOTPLUG;
1083 break;
1084 case PORT_D:
1085 bit = SDE_PORTD_HOTPLUG;
1086 break;
1087 default:
1088 return true;
1089 }
1090 } else {
1091 switch (port->port) {
1092 case PORT_B:
1093 bit = SDE_PORTB_HOTPLUG_CPT;
1094 break;
1095 case PORT_C:
1096 bit = SDE_PORTC_HOTPLUG_CPT;
1097 break;
1098 case PORT_D:
1099 bit = SDE_PORTD_HOTPLUG_CPT;
1100 break;
1101 default:
1102 return true;
1103 }
1104 }
1105
1106 return I915_READ(SDEISR) & bit;
1107 }
1108
1109 static const char *state_string(bool enabled)
1110 {
1111 return enabled ? "on" : "off";
1112 }
1113
1114 /* Only for pre-ILK configs */
1115 void assert_pll(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117 {
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121
1122 reg = DPLL(pipe);
1123 val = I915_READ(reg);
1124 cur_state = !!(val & DPLL_VCO_ENABLE);
1125 I915_STATE_WARN(cur_state != state,
1126 "PLL state assertion failure (expected %s, current %s)\n",
1127 state_string(state), state_string(cur_state));
1128 }
1129
1130 /* XXX: the dsi pll is shared between MIPI DSI ports */
1131 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1132 {
1133 u32 val;
1134 bool cur_state;
1135
1136 mutex_lock(&dev_priv->sb_lock);
1137 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1138 mutex_unlock(&dev_priv->sb_lock);
1139
1140 cur_state = val & DSI_PLL_VCO_EN;
1141 I915_STATE_WARN(cur_state != state,
1142 "DSI PLL state assertion failure (expected %s, current %s)\n",
1143 state_string(state), state_string(cur_state));
1144 }
1145 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1146 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1147
1148 struct intel_shared_dpll *
1149 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1150 {
1151 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1152
1153 if (crtc->config->shared_dpll < 0)
1154 return NULL;
1155
1156 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1157 }
1158
1159 /* For ILK+ */
1160 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1161 struct intel_shared_dpll *pll,
1162 bool state)
1163 {
1164 bool cur_state;
1165 struct intel_dpll_hw_state hw_state;
1166
1167 if (WARN (!pll,
1168 "asserting DPLL %s with no DPLL\n", state_string(state)))
1169 return;
1170
1171 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1172 I915_STATE_WARN(cur_state != state,
1173 "%s assertion failure (expected %s, current %s)\n",
1174 pll->name, state_string(state), state_string(cur_state));
1175 }
1176
1177 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 int reg;
1181 u32 val;
1182 bool cur_state;
1183 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1184 pipe);
1185
1186 if (HAS_DDI(dev_priv->dev)) {
1187 /* DDI does not have a specific FDI_TX register */
1188 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1189 val = I915_READ(reg);
1190 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1191 } else {
1192 reg = FDI_TX_CTL(pipe);
1193 val = I915_READ(reg);
1194 cur_state = !!(val & FDI_TX_ENABLE);
1195 }
1196 I915_STATE_WARN(cur_state != state,
1197 "FDI TX state assertion failure (expected %s, current %s)\n",
1198 state_string(state), state_string(cur_state));
1199 }
1200 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1201 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1202
1203 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1204 enum pipe pipe, bool state)
1205 {
1206 int reg;
1207 u32 val;
1208 bool cur_state;
1209
1210 reg = FDI_RX_CTL(pipe);
1211 val = I915_READ(reg);
1212 cur_state = !!(val & FDI_RX_ENABLE);
1213 I915_STATE_WARN(cur_state != state,
1214 "FDI RX state assertion failure (expected %s, current %s)\n",
1215 state_string(state), state_string(cur_state));
1216 }
1217 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1218 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1219
1220 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1221 enum pipe pipe)
1222 {
1223 int reg;
1224 u32 val;
1225
1226 /* ILK FDI PLL is always enabled */
1227 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1228 return;
1229
1230 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1231 if (HAS_DDI(dev_priv->dev))
1232 return;
1233
1234 reg = FDI_TX_CTL(pipe);
1235 val = I915_READ(reg);
1236 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1237 }
1238
1239 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 int reg;
1243 u32 val;
1244 bool cur_state;
1245
1246 reg = FDI_RX_CTL(pipe);
1247 val = I915_READ(reg);
1248 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1249 I915_STATE_WARN(cur_state != state,
1250 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1251 state_string(state), state_string(cur_state));
1252 }
1253
1254 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256 {
1257 struct drm_device *dev = dev_priv->dev;
1258 int pp_reg;
1259 u32 val;
1260 enum pipe panel_pipe = PIPE_A;
1261 bool locked = true;
1262
1263 if (WARN_ON(HAS_DDI(dev)))
1264 return;
1265
1266 if (HAS_PCH_SPLIT(dev)) {
1267 u32 port_sel;
1268
1269 pp_reg = PCH_PP_CONTROL;
1270 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1271
1272 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1273 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1274 panel_pipe = PIPE_B;
1275 /* XXX: else fix for eDP */
1276 } else if (IS_VALLEYVIEW(dev)) {
1277 /* presumably write lock depends on pipe, not port select */
1278 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1279 panel_pipe = pipe;
1280 } else {
1281 pp_reg = PP_CONTROL;
1282 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1283 panel_pipe = PIPE_B;
1284 }
1285
1286 val = I915_READ(pp_reg);
1287 if (!(val & PANEL_POWER_ON) ||
1288 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1289 locked = false;
1290
1291 I915_STATE_WARN(panel_pipe == pipe && locked,
1292 "panel assertion failure, pipe %c regs locked\n",
1293 pipe_name(pipe));
1294 }
1295
1296 static void assert_cursor(struct drm_i915_private *dev_priv,
1297 enum pipe pipe, bool state)
1298 {
1299 struct drm_device *dev = dev_priv->dev;
1300 bool cur_state;
1301
1302 if (IS_845G(dev) || IS_I865G(dev))
1303 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1304 else
1305 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1306
1307 I915_STATE_WARN(cur_state != state,
1308 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1309 pipe_name(pipe), state_string(state), state_string(cur_state));
1310 }
1311 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1312 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1313
1314 void assert_pipe(struct drm_i915_private *dev_priv,
1315 enum pipe pipe, bool state)
1316 {
1317 int reg;
1318 u32 val;
1319 bool cur_state;
1320 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1321 pipe);
1322
1323 /* if we need the pipe quirk it must be always on */
1324 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1325 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1326 state = true;
1327
1328 if (!intel_display_power_is_enabled(dev_priv,
1329 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1330 cur_state = false;
1331 } else {
1332 reg = PIPECONF(cpu_transcoder);
1333 val = I915_READ(reg);
1334 cur_state = !!(val & PIPECONF_ENABLE);
1335 }
1336
1337 I915_STATE_WARN(cur_state != state,
1338 "pipe %c assertion failure (expected %s, current %s)\n",
1339 pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341
1342 static void assert_plane(struct drm_i915_private *dev_priv,
1343 enum plane plane, bool state)
1344 {
1345 int reg;
1346 u32 val;
1347 bool cur_state;
1348
1349 reg = DSPCNTR(plane);
1350 val = I915_READ(reg);
1351 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1352 I915_STATE_WARN(cur_state != state,
1353 "plane %c assertion failure (expected %s, current %s)\n",
1354 plane_name(plane), state_string(state), state_string(cur_state));
1355 }
1356
1357 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1358 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1359
1360 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1361 enum pipe pipe)
1362 {
1363 struct drm_device *dev = dev_priv->dev;
1364 int reg, i;
1365 u32 val;
1366 int cur_pipe;
1367
1368 /* Primary planes are fixed to pipes on gen4+ */
1369 if (INTEL_INFO(dev)->gen >= 4) {
1370 reg = DSPCNTR(pipe);
1371 val = I915_READ(reg);
1372 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1373 "plane %c assertion failure, should be disabled but not\n",
1374 plane_name(pipe));
1375 return;
1376 }
1377
1378 /* Need to check both planes against the pipe */
1379 for_each_pipe(dev_priv, i) {
1380 reg = DSPCNTR(i);
1381 val = I915_READ(reg);
1382 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1383 DISPPLANE_SEL_PIPE_SHIFT;
1384 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1385 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1386 plane_name(i), pipe_name(pipe));
1387 }
1388 }
1389
1390 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392 {
1393 struct drm_device *dev = dev_priv->dev;
1394 int reg, sprite;
1395 u32 val;
1396
1397 if (INTEL_INFO(dev)->gen >= 9) {
1398 for_each_sprite(dev_priv, pipe, sprite) {
1399 val = I915_READ(PLANE_CTL(pipe, sprite));
1400 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1401 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1402 sprite, pipe_name(pipe));
1403 }
1404 } else if (IS_VALLEYVIEW(dev)) {
1405 for_each_sprite(dev_priv, pipe, sprite) {
1406 reg = SPCNTR(pipe, sprite);
1407 val = I915_READ(reg);
1408 I915_STATE_WARN(val & SP_ENABLE,
1409 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1410 sprite_name(pipe, sprite), pipe_name(pipe));
1411 }
1412 } else if (INTEL_INFO(dev)->gen >= 7) {
1413 reg = SPRCTL(pipe);
1414 val = I915_READ(reg);
1415 I915_STATE_WARN(val & SPRITE_ENABLE,
1416 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417 plane_name(pipe), pipe_name(pipe));
1418 } else if (INTEL_INFO(dev)->gen >= 5) {
1419 reg = DVSCNTR(pipe);
1420 val = I915_READ(reg);
1421 I915_STATE_WARN(val & DVS_ENABLE,
1422 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1423 plane_name(pipe), pipe_name(pipe));
1424 }
1425 }
1426
1427 static void assert_vblank_disabled(struct drm_crtc *crtc)
1428 {
1429 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1430 drm_crtc_vblank_put(crtc);
1431 }
1432
1433 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1434 {
1435 u32 val;
1436 bool enabled;
1437
1438 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1439
1440 val = I915_READ(PCH_DREF_CONTROL);
1441 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1442 DREF_SUPERSPREAD_SOURCE_MASK));
1443 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1444 }
1445
1446 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1447 enum pipe pipe)
1448 {
1449 int reg;
1450 u32 val;
1451 bool enabled;
1452
1453 reg = PCH_TRANSCONF(pipe);
1454 val = I915_READ(reg);
1455 enabled = !!(val & TRANS_ENABLE);
1456 I915_STATE_WARN(enabled,
1457 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1458 pipe_name(pipe));
1459 }
1460
1461 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1462 enum pipe pipe, u32 port_sel, u32 val)
1463 {
1464 if ((val & DP_PORT_EN) == 0)
1465 return false;
1466
1467 if (HAS_PCH_CPT(dev_priv->dev)) {
1468 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1469 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1470 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1471 return false;
1472 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1473 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1474 return false;
1475 } else {
1476 if ((val & DP_PIPE_MASK) != (pipe << 30))
1477 return false;
1478 }
1479 return true;
1480 }
1481
1482 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1483 enum pipe pipe, u32 val)
1484 {
1485 if ((val & SDVO_ENABLE) == 0)
1486 return false;
1487
1488 if (HAS_PCH_CPT(dev_priv->dev)) {
1489 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1490 return false;
1491 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1492 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1493 return false;
1494 } else {
1495 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1496 return false;
1497 }
1498 return true;
1499 }
1500
1501 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1502 enum pipe pipe, u32 val)
1503 {
1504 if ((val & LVDS_PORT_EN) == 0)
1505 return false;
1506
1507 if (HAS_PCH_CPT(dev_priv->dev)) {
1508 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1509 return false;
1510 } else {
1511 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1512 return false;
1513 }
1514 return true;
1515 }
1516
1517 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519 {
1520 if ((val & ADPA_DAC_ENABLE) == 0)
1521 return false;
1522 if (HAS_PCH_CPT(dev_priv->dev)) {
1523 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524 return false;
1525 } else {
1526 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1527 return false;
1528 }
1529 return true;
1530 }
1531
1532 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1533 enum pipe pipe, int reg, u32 port_sel)
1534 {
1535 u32 val = I915_READ(reg);
1536 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1537 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1538 reg, pipe_name(pipe));
1539
1540 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1541 && (val & DP_PIPEB_SELECT),
1542 "IBX PCH dp port still using transcoder B\n");
1543 }
1544
1545 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1546 enum pipe pipe, int reg)
1547 {
1548 u32 val = I915_READ(reg);
1549 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1550 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1551 reg, pipe_name(pipe));
1552
1553 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1554 && (val & SDVO_PIPE_B_SELECT),
1555 "IBX PCH hdmi port still using transcoder B\n");
1556 }
1557
1558 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1559 enum pipe pipe)
1560 {
1561 int reg;
1562 u32 val;
1563
1564 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1565 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1566 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1567
1568 reg = PCH_ADPA;
1569 val = I915_READ(reg);
1570 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1571 "PCH VGA enabled on transcoder %c, should be disabled\n",
1572 pipe_name(pipe));
1573
1574 reg = PCH_LVDS;
1575 val = I915_READ(reg);
1576 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1577 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1578 pipe_name(pipe));
1579
1580 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1581 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1582 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1583 }
1584
1585 static void intel_init_dpio(struct drm_device *dev)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589 if (!IS_VALLEYVIEW(dev))
1590 return;
1591
1592 /*
1593 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1594 * CHV x1 PHY (DP/HDMI D)
1595 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1596 */
1597 if (IS_CHERRYVIEW(dev)) {
1598 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1599 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1600 } else {
1601 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1602 }
1603 }
1604
1605 static void vlv_enable_pll(struct intel_crtc *crtc,
1606 const struct intel_crtc_state *pipe_config)
1607 {
1608 struct drm_device *dev = crtc->base.dev;
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 int reg = DPLL(crtc->pipe);
1611 u32 dpll = pipe_config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* No really, not for ILK+ */
1616 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1617
1618 /* PLL is protected by panel, make sure we can write it */
1619 if (IS_MOBILE(dev_priv->dev))
1620 assert_panel_unlocked(dev_priv, crtc->pipe);
1621
1622 I915_WRITE(reg, dpll);
1623 POSTING_READ(reg);
1624 udelay(150);
1625
1626 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1627 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1628
1629 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1630 POSTING_READ(DPLL_MD(crtc->pipe));
1631
1632 /* We do this three times for luck */
1633 I915_WRITE(reg, dpll);
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636 I915_WRITE(reg, dpll);
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
1639 I915_WRITE(reg, dpll);
1640 POSTING_READ(reg);
1641 udelay(150); /* wait for warmup */
1642 }
1643
1644 static void chv_enable_pll(struct intel_crtc *crtc,
1645 const struct intel_crtc_state *pipe_config)
1646 {
1647 struct drm_device *dev = crtc->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int pipe = crtc->pipe;
1650 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1651 u32 tmp;
1652
1653 assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1656
1657 mutex_lock(&dev_priv->sb_lock);
1658
1659 /* Enable back the 10bit clock to display controller */
1660 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1661 tmp |= DPIO_DCLKP_EN;
1662 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1663
1664 mutex_unlock(&dev_priv->sb_lock);
1665
1666 /*
1667 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1668 */
1669 udelay(1);
1670
1671 /* Enable PLL */
1672 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1673
1674 /* Check PLL is locked */
1675 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1676 DRM_ERROR("PLL %d failed to lock\n", pipe);
1677
1678 /* not sure when this should be written */
1679 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1680 POSTING_READ(DPLL_MD(pipe));
1681 }
1682
1683 static int intel_num_dvo_pipes(struct drm_device *dev)
1684 {
1685 struct intel_crtc *crtc;
1686 int count = 0;
1687
1688 for_each_intel_crtc(dev, crtc)
1689 count += crtc->base.state->active &&
1690 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1691
1692 return count;
1693 }
1694
1695 static void i9xx_enable_pll(struct intel_crtc *crtc)
1696 {
1697 struct drm_device *dev = crtc->base.dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 int reg = DPLL(crtc->pipe);
1700 u32 dpll = crtc->config->dpll_hw_state.dpll;
1701
1702 assert_pipe_disabled(dev_priv, crtc->pipe);
1703
1704 /* No really, not for ILK+ */
1705 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1706
1707 /* PLL is protected by panel, make sure we can write it */
1708 if (IS_MOBILE(dev) && !IS_I830(dev))
1709 assert_panel_unlocked(dev_priv, crtc->pipe);
1710
1711 /* Enable DVO 2x clock on both PLLs if necessary */
1712 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1713 /*
1714 * It appears to be important that we don't enable this
1715 * for the current pipe before otherwise configuring the
1716 * PLL. No idea how this should be handled if multiple
1717 * DVO outputs are enabled simultaneosly.
1718 */
1719 dpll |= DPLL_DVO_2X_MODE;
1720 I915_WRITE(DPLL(!crtc->pipe),
1721 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1722 }
1723
1724 /* Wait for the clocks to stabilize. */
1725 POSTING_READ(reg);
1726 udelay(150);
1727
1728 if (INTEL_INFO(dev)->gen >= 4) {
1729 I915_WRITE(DPLL_MD(crtc->pipe),
1730 crtc->config->dpll_hw_state.dpll_md);
1731 } else {
1732 /* The pixel multiplier can only be updated once the
1733 * DPLL is enabled and the clocks are stable.
1734 *
1735 * So write it again.
1736 */
1737 I915_WRITE(reg, dpll);
1738 }
1739
1740 /* We do this three times for luck */
1741 I915_WRITE(reg, dpll);
1742 POSTING_READ(reg);
1743 udelay(150); /* wait for warmup */
1744 I915_WRITE(reg, dpll);
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
1747 I915_WRITE(reg, dpll);
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
1750 }
1751
1752 /**
1753 * i9xx_disable_pll - disable a PLL
1754 * @dev_priv: i915 private structure
1755 * @pipe: pipe PLL to disable
1756 *
1757 * Disable the PLL for @pipe, making sure the pipe is off first.
1758 *
1759 * Note! This is for pre-ILK only.
1760 */
1761 static void i9xx_disable_pll(struct intel_crtc *crtc)
1762 {
1763 struct drm_device *dev = crtc->base.dev;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 enum pipe pipe = crtc->pipe;
1766
1767 /* Disable DVO 2x clock on both PLLs if necessary */
1768 if (IS_I830(dev) &&
1769 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1770 !intel_num_dvo_pipes(dev)) {
1771 I915_WRITE(DPLL(PIPE_B),
1772 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773 I915_WRITE(DPLL(PIPE_A),
1774 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775 }
1776
1777 /* Don't disable pipe or pipe PLLs if needed */
1778 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1780 return;
1781
1782 /* Make sure the pipe isn't still relying on us */
1783 assert_pipe_disabled(dev_priv, pipe);
1784
1785 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1786 POSTING_READ(DPLL(pipe));
1787 }
1788
1789 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790 {
1791 u32 val;
1792
1793 /* Make sure the pipe isn't still relying on us */
1794 assert_pipe_disabled(dev_priv, pipe);
1795
1796 /*
1797 * Leave integrated clock source and reference clock enabled for pipe B.
1798 * The latter is needed for VGA hotplug / manual detection.
1799 */
1800 val = DPLL_VGA_MODE_DIS;
1801 if (pipe == PIPE_B)
1802 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1803 I915_WRITE(DPLL(pipe), val);
1804 POSTING_READ(DPLL(pipe));
1805
1806 }
1807
1808 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809 {
1810 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1811 u32 val;
1812
1813 /* Make sure the pipe isn't still relying on us */
1814 assert_pipe_disabled(dev_priv, pipe);
1815
1816 /* Set PLL en = 0 */
1817 val = DPLL_SSC_REF_CLK_CHV |
1818 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1819 if (pipe != PIPE_A)
1820 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821 I915_WRITE(DPLL(pipe), val);
1822 POSTING_READ(DPLL(pipe));
1823
1824 mutex_lock(&dev_priv->sb_lock);
1825
1826 /* Disable 10bit clock to display controller */
1827 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828 val &= ~DPIO_DCLKP_EN;
1829 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
1831 /* disable left/right clock distribution */
1832 if (pipe != PIPE_B) {
1833 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1834 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1835 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1836 } else {
1837 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1838 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1839 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1840 }
1841
1842 mutex_unlock(&dev_priv->sb_lock);
1843 }
1844
1845 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1846 struct intel_digital_port *dport,
1847 unsigned int expected_mask)
1848 {
1849 u32 port_mask;
1850 int dpll_reg;
1851
1852 switch (dport->port) {
1853 case PORT_B:
1854 port_mask = DPLL_PORTB_READY_MASK;
1855 dpll_reg = DPLL(0);
1856 break;
1857 case PORT_C:
1858 port_mask = DPLL_PORTC_READY_MASK;
1859 dpll_reg = DPLL(0);
1860 expected_mask <<= 4;
1861 break;
1862 case PORT_D:
1863 port_mask = DPLL_PORTD_READY_MASK;
1864 dpll_reg = DPIO_PHY_STATUS;
1865 break;
1866 default:
1867 BUG();
1868 }
1869
1870 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1871 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1872 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1873 }
1874
1875 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876 {
1877 struct drm_device *dev = crtc->base.dev;
1878 struct drm_i915_private *dev_priv = dev->dev_private;
1879 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
1881 if (WARN_ON(pll == NULL))
1882 return;
1883
1884 WARN_ON(!pll->config.crtc_mask);
1885 if (pll->active == 0) {
1886 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887 WARN_ON(pll->on);
1888 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890 pll->mode_set(dev_priv, pll);
1891 }
1892 }
1893
1894 /**
1895 * intel_enable_shared_dpll - enable PCH PLL
1896 * @dev_priv: i915 private structure
1897 * @pipe: pipe PLL to enable
1898 *
1899 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900 * drives the transcoder clock.
1901 */
1902 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1903 {
1904 struct drm_device *dev = crtc->base.dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1907
1908 if (WARN_ON(pll == NULL))
1909 return;
1910
1911 if (WARN_ON(pll->config.crtc_mask == 0))
1912 return;
1913
1914 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1915 pll->name, pll->active, pll->on,
1916 crtc->base.base.id);
1917
1918 if (pll->active++) {
1919 WARN_ON(!pll->on);
1920 assert_shared_dpll_enabled(dev_priv, pll);
1921 return;
1922 }
1923 WARN_ON(pll->on);
1924
1925 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
1927 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1928 pll->enable(dev_priv, pll);
1929 pll->on = true;
1930 }
1931
1932 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1933 {
1934 struct drm_device *dev = crtc->base.dev;
1935 struct drm_i915_private *dev_priv = dev->dev_private;
1936 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1937
1938 /* PCH only available on ILK+ */
1939 BUG_ON(INTEL_INFO(dev)->gen < 5);
1940 if (pll == NULL)
1941 return;
1942
1943 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1944 return;
1945
1946 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1947 pll->name, pll->active, pll->on,
1948 crtc->base.base.id);
1949
1950 if (WARN_ON(pll->active == 0)) {
1951 assert_shared_dpll_disabled(dev_priv, pll);
1952 return;
1953 }
1954
1955 assert_shared_dpll_enabled(dev_priv, pll);
1956 WARN_ON(!pll->on);
1957 if (--pll->active)
1958 return;
1959
1960 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1961 pll->disable(dev_priv, pll);
1962 pll->on = false;
1963
1964 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1965 }
1966
1967 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1968 enum pipe pipe)
1969 {
1970 struct drm_device *dev = dev_priv->dev;
1971 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1973 uint32_t reg, val, pipeconf_val;
1974
1975 /* PCH only available on ILK+ */
1976 BUG_ON(!HAS_PCH_SPLIT(dev));
1977
1978 /* Make sure PCH DPLL is enabled */
1979 assert_shared_dpll_enabled(dev_priv,
1980 intel_crtc_to_shared_dpll(intel_crtc));
1981
1982 /* FDI must be feeding us bits for PCH ports */
1983 assert_fdi_tx_enabled(dev_priv, pipe);
1984 assert_fdi_rx_enabled(dev_priv, pipe);
1985
1986 if (HAS_PCH_CPT(dev)) {
1987 /* Workaround: Set the timing override bit before enabling the
1988 * pch transcoder. */
1989 reg = TRANS_CHICKEN2(pipe);
1990 val = I915_READ(reg);
1991 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1992 I915_WRITE(reg, val);
1993 }
1994
1995 reg = PCH_TRANSCONF(pipe);
1996 val = I915_READ(reg);
1997 pipeconf_val = I915_READ(PIPECONF(pipe));
1998
1999 if (HAS_PCH_IBX(dev_priv->dev)) {
2000 /*
2001 * Make the BPC in transcoder be consistent with
2002 * that in pipeconf reg. For HDMI we must use 8bpc
2003 * here for both 8bpc and 12bpc.
2004 */
2005 val &= ~PIPECONF_BPC_MASK;
2006 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2007 val |= PIPECONF_8BPC;
2008 else
2009 val |= pipeconf_val & PIPECONF_BPC_MASK;
2010 }
2011
2012 val &= ~TRANS_INTERLACE_MASK;
2013 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2014 if (HAS_PCH_IBX(dev_priv->dev) &&
2015 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2016 val |= TRANS_LEGACY_INTERLACED_ILK;
2017 else
2018 val |= TRANS_INTERLACED;
2019 else
2020 val |= TRANS_PROGRESSIVE;
2021
2022 I915_WRITE(reg, val | TRANS_ENABLE);
2023 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2024 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2025 }
2026
2027 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2028 enum transcoder cpu_transcoder)
2029 {
2030 u32 val, pipeconf_val;
2031
2032 /* PCH only available on ILK+ */
2033 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2034
2035 /* FDI must be feeding us bits for PCH ports */
2036 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2037 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2038
2039 /* Workaround: set timing override bit. */
2040 val = I915_READ(_TRANSA_CHICKEN2);
2041 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2042 I915_WRITE(_TRANSA_CHICKEN2, val);
2043
2044 val = TRANS_ENABLE;
2045 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2046
2047 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2048 PIPECONF_INTERLACED_ILK)
2049 val |= TRANS_INTERLACED;
2050 else
2051 val |= TRANS_PROGRESSIVE;
2052
2053 I915_WRITE(LPT_TRANSCONF, val);
2054 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2055 DRM_ERROR("Failed to enable PCH transcoder\n");
2056 }
2057
2058 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2059 enum pipe pipe)
2060 {
2061 struct drm_device *dev = dev_priv->dev;
2062 uint32_t reg, val;
2063
2064 /* FDI relies on the transcoder */
2065 assert_fdi_tx_disabled(dev_priv, pipe);
2066 assert_fdi_rx_disabled(dev_priv, pipe);
2067
2068 /* Ports must be off as well */
2069 assert_pch_ports_disabled(dev_priv, pipe);
2070
2071 reg = PCH_TRANSCONF(pipe);
2072 val = I915_READ(reg);
2073 val &= ~TRANS_ENABLE;
2074 I915_WRITE(reg, val);
2075 /* wait for PCH transcoder off, transcoder state */
2076 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2077 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2078
2079 if (!HAS_PCH_IBX(dev)) {
2080 /* Workaround: Clear the timing override chicken bit again. */
2081 reg = TRANS_CHICKEN2(pipe);
2082 val = I915_READ(reg);
2083 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2084 I915_WRITE(reg, val);
2085 }
2086 }
2087
2088 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2089 {
2090 u32 val;
2091
2092 val = I915_READ(LPT_TRANSCONF);
2093 val &= ~TRANS_ENABLE;
2094 I915_WRITE(LPT_TRANSCONF, val);
2095 /* wait for PCH transcoder off, transcoder state */
2096 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2097 DRM_ERROR("Failed to disable PCH transcoder\n");
2098
2099 /* Workaround: clear timing override bit. */
2100 val = I915_READ(_TRANSA_CHICKEN2);
2101 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2102 I915_WRITE(_TRANSA_CHICKEN2, val);
2103 }
2104
2105 /**
2106 * intel_enable_pipe - enable a pipe, asserting requirements
2107 * @crtc: crtc responsible for the pipe
2108 *
2109 * Enable @crtc's pipe, making sure that various hardware specific requirements
2110 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2111 */
2112 static void intel_enable_pipe(struct intel_crtc *crtc)
2113 {
2114 struct drm_device *dev = crtc->base.dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 enum pipe pipe = crtc->pipe;
2117 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2118 pipe);
2119 enum pipe pch_transcoder;
2120 int reg;
2121 u32 val;
2122
2123 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2124
2125 assert_planes_disabled(dev_priv, pipe);
2126 assert_cursor_disabled(dev_priv, pipe);
2127 assert_sprites_disabled(dev_priv, pipe);
2128
2129 if (HAS_PCH_LPT(dev_priv->dev))
2130 pch_transcoder = TRANSCODER_A;
2131 else
2132 pch_transcoder = pipe;
2133
2134 /*
2135 * A pipe without a PLL won't actually be able to drive bits from
2136 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2137 * need the check.
2138 */
2139 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2140 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2141 assert_dsi_pll_enabled(dev_priv);
2142 else
2143 assert_pll_enabled(dev_priv, pipe);
2144 else {
2145 if (crtc->config->has_pch_encoder) {
2146 /* if driving the PCH, we need FDI enabled */
2147 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2148 assert_fdi_tx_pll_enabled(dev_priv,
2149 (enum pipe) cpu_transcoder);
2150 }
2151 /* FIXME: assert CPU port conditions for SNB+ */
2152 }
2153
2154 reg = PIPECONF(cpu_transcoder);
2155 val = I915_READ(reg);
2156 if (val & PIPECONF_ENABLE) {
2157 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2158 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2159 return;
2160 }
2161
2162 I915_WRITE(reg, val | PIPECONF_ENABLE);
2163 POSTING_READ(reg);
2164 }
2165
2166 /**
2167 * intel_disable_pipe - disable a pipe, asserting requirements
2168 * @crtc: crtc whose pipes is to be disabled
2169 *
2170 * Disable the pipe of @crtc, making sure that various hardware
2171 * specific requirements are met, if applicable, e.g. plane
2172 * disabled, panel fitter off, etc.
2173 *
2174 * Will wait until the pipe has shut down before returning.
2175 */
2176 static void intel_disable_pipe(struct intel_crtc *crtc)
2177 {
2178 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2179 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2180 enum pipe pipe = crtc->pipe;
2181 int reg;
2182 u32 val;
2183
2184 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2185
2186 /*
2187 * Make sure planes won't keep trying to pump pixels to us,
2188 * or we might hang the display.
2189 */
2190 assert_planes_disabled(dev_priv, pipe);
2191 assert_cursor_disabled(dev_priv, pipe);
2192 assert_sprites_disabled(dev_priv, pipe);
2193
2194 reg = PIPECONF(cpu_transcoder);
2195 val = I915_READ(reg);
2196 if ((val & PIPECONF_ENABLE) == 0)
2197 return;
2198
2199 /*
2200 * Double wide has implications for planes
2201 * so best keep it disabled when not needed.
2202 */
2203 if (crtc->config->double_wide)
2204 val &= ~PIPECONF_DOUBLE_WIDE;
2205
2206 /* Don't disable pipe or pipe PLLs if needed */
2207 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2208 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2209 val &= ~PIPECONF_ENABLE;
2210
2211 I915_WRITE(reg, val);
2212 if ((val & PIPECONF_ENABLE) == 0)
2213 intel_wait_for_pipe_off(crtc);
2214 }
2215
2216 static bool need_vtd_wa(struct drm_device *dev)
2217 {
2218 #ifdef CONFIG_INTEL_IOMMU
2219 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2220 return true;
2221 #endif
2222 return false;
2223 }
2224
2225 unsigned int
2226 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2227 uint64_t fb_format_modifier)
2228 {
2229 unsigned int tile_height;
2230 uint32_t pixel_bytes;
2231
2232 switch (fb_format_modifier) {
2233 case DRM_FORMAT_MOD_NONE:
2234 tile_height = 1;
2235 break;
2236 case I915_FORMAT_MOD_X_TILED:
2237 tile_height = IS_GEN2(dev) ? 16 : 8;
2238 break;
2239 case I915_FORMAT_MOD_Y_TILED:
2240 tile_height = 32;
2241 break;
2242 case I915_FORMAT_MOD_Yf_TILED:
2243 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2244 switch (pixel_bytes) {
2245 default:
2246 case 1:
2247 tile_height = 64;
2248 break;
2249 case 2:
2250 case 4:
2251 tile_height = 32;
2252 break;
2253 case 8:
2254 tile_height = 16;
2255 break;
2256 case 16:
2257 WARN_ONCE(1,
2258 "128-bit pixels are not supported for display!");
2259 tile_height = 16;
2260 break;
2261 }
2262 break;
2263 default:
2264 MISSING_CASE(fb_format_modifier);
2265 tile_height = 1;
2266 break;
2267 }
2268
2269 return tile_height;
2270 }
2271
2272 unsigned int
2273 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2274 uint32_t pixel_format, uint64_t fb_format_modifier)
2275 {
2276 return ALIGN(height, intel_tile_height(dev, pixel_format,
2277 fb_format_modifier));
2278 }
2279
2280 static int
2281 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2282 const struct drm_plane_state *plane_state)
2283 {
2284 struct intel_rotation_info *info = &view->rotation_info;
2285 unsigned int tile_height, tile_pitch;
2286
2287 *view = i915_ggtt_view_normal;
2288
2289 if (!plane_state)
2290 return 0;
2291
2292 if (!intel_rotation_90_or_270(plane_state->rotation))
2293 return 0;
2294
2295 *view = i915_ggtt_view_rotated;
2296
2297 info->height = fb->height;
2298 info->pixel_format = fb->pixel_format;
2299 info->pitch = fb->pitches[0];
2300 info->fb_modifier = fb->modifier[0];
2301
2302 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2303 fb->modifier[0]);
2304 tile_pitch = PAGE_SIZE / tile_height;
2305 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2306 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2307 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2308
2309 return 0;
2310 }
2311
2312 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2313 {
2314 if (INTEL_INFO(dev_priv)->gen >= 9)
2315 return 256 * 1024;
2316 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2317 IS_VALLEYVIEW(dev_priv))
2318 return 128 * 1024;
2319 else if (INTEL_INFO(dev_priv)->gen >= 4)
2320 return 4 * 1024;
2321 else
2322 return 0;
2323 }
2324
2325 int
2326 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2327 struct drm_framebuffer *fb,
2328 const struct drm_plane_state *plane_state,
2329 struct intel_engine_cs *pipelined,
2330 struct drm_i915_gem_request **pipelined_request)
2331 {
2332 struct drm_device *dev = fb->dev;
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2335 struct i915_ggtt_view view;
2336 u32 alignment;
2337 int ret;
2338
2339 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2340
2341 switch (fb->modifier[0]) {
2342 case DRM_FORMAT_MOD_NONE:
2343 alignment = intel_linear_alignment(dev_priv);
2344 break;
2345 case I915_FORMAT_MOD_X_TILED:
2346 if (INTEL_INFO(dev)->gen >= 9)
2347 alignment = 256 * 1024;
2348 else {
2349 /* pin() will align the object as required by fence */
2350 alignment = 0;
2351 }
2352 break;
2353 case I915_FORMAT_MOD_Y_TILED:
2354 case I915_FORMAT_MOD_Yf_TILED:
2355 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2356 "Y tiling bo slipped through, driver bug!\n"))
2357 return -EINVAL;
2358 alignment = 1 * 1024 * 1024;
2359 break;
2360 default:
2361 MISSING_CASE(fb->modifier[0]);
2362 return -EINVAL;
2363 }
2364
2365 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2366 if (ret)
2367 return ret;
2368
2369 /* Note that the w/a also requires 64 PTE of padding following the
2370 * bo. We currently fill all unused PTE with the shadow page and so
2371 * we should always have valid PTE following the scanout preventing
2372 * the VT-d warning.
2373 */
2374 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2375 alignment = 256 * 1024;
2376
2377 /*
2378 * Global gtt pte registers are special registers which actually forward
2379 * writes to a chunk of system memory. Which means that there is no risk
2380 * that the register values disappear as soon as we call
2381 * intel_runtime_pm_put(), so it is correct to wrap only the
2382 * pin/unpin/fence and not more.
2383 */
2384 intel_runtime_pm_get(dev_priv);
2385
2386 dev_priv->mm.interruptible = false;
2387 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2388 pipelined_request, &view);
2389 if (ret)
2390 goto err_interruptible;
2391
2392 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2393 * fence, whereas 965+ only requires a fence if using
2394 * framebuffer compression. For simplicity, we always install
2395 * a fence as the cost is not that onerous.
2396 */
2397 ret = i915_gem_object_get_fence(obj);
2398 if (ret)
2399 goto err_unpin;
2400
2401 i915_gem_object_pin_fence(obj);
2402
2403 dev_priv->mm.interruptible = true;
2404 intel_runtime_pm_put(dev_priv);
2405 return 0;
2406
2407 err_unpin:
2408 i915_gem_object_unpin_from_display_plane(obj, &view);
2409 err_interruptible:
2410 dev_priv->mm.interruptible = true;
2411 intel_runtime_pm_put(dev_priv);
2412 return ret;
2413 }
2414
2415 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2416 const struct drm_plane_state *plane_state)
2417 {
2418 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2419 struct i915_ggtt_view view;
2420 int ret;
2421
2422 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2423
2424 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2425 WARN_ONCE(ret, "Couldn't get view from plane state!");
2426
2427 i915_gem_object_unpin_fence(obj);
2428 i915_gem_object_unpin_from_display_plane(obj, &view);
2429 }
2430
2431 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2432 * is assumed to be a power-of-two. */
2433 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2434 int *x, int *y,
2435 unsigned int tiling_mode,
2436 unsigned int cpp,
2437 unsigned int pitch)
2438 {
2439 if (tiling_mode != I915_TILING_NONE) {
2440 unsigned int tile_rows, tiles;
2441
2442 tile_rows = *y / 8;
2443 *y %= 8;
2444
2445 tiles = *x / (512/cpp);
2446 *x %= 512/cpp;
2447
2448 return tile_rows * pitch * 8 + tiles * 4096;
2449 } else {
2450 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2451 unsigned int offset;
2452
2453 offset = *y * pitch + *x * cpp;
2454 *y = (offset & alignment) / pitch;
2455 *x = ((offset & alignment) - *y * pitch) / cpp;
2456 return offset & ~alignment;
2457 }
2458 }
2459
2460 static int i9xx_format_to_fourcc(int format)
2461 {
2462 switch (format) {
2463 case DISPPLANE_8BPP:
2464 return DRM_FORMAT_C8;
2465 case DISPPLANE_BGRX555:
2466 return DRM_FORMAT_XRGB1555;
2467 case DISPPLANE_BGRX565:
2468 return DRM_FORMAT_RGB565;
2469 default:
2470 case DISPPLANE_BGRX888:
2471 return DRM_FORMAT_XRGB8888;
2472 case DISPPLANE_RGBX888:
2473 return DRM_FORMAT_XBGR8888;
2474 case DISPPLANE_BGRX101010:
2475 return DRM_FORMAT_XRGB2101010;
2476 case DISPPLANE_RGBX101010:
2477 return DRM_FORMAT_XBGR2101010;
2478 }
2479 }
2480
2481 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2482 {
2483 switch (format) {
2484 case PLANE_CTL_FORMAT_RGB_565:
2485 return DRM_FORMAT_RGB565;
2486 default:
2487 case PLANE_CTL_FORMAT_XRGB_8888:
2488 if (rgb_order) {
2489 if (alpha)
2490 return DRM_FORMAT_ABGR8888;
2491 else
2492 return DRM_FORMAT_XBGR8888;
2493 } else {
2494 if (alpha)
2495 return DRM_FORMAT_ARGB8888;
2496 else
2497 return DRM_FORMAT_XRGB8888;
2498 }
2499 case PLANE_CTL_FORMAT_XRGB_2101010:
2500 if (rgb_order)
2501 return DRM_FORMAT_XBGR2101010;
2502 else
2503 return DRM_FORMAT_XRGB2101010;
2504 }
2505 }
2506
2507 static bool
2508 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2509 struct intel_initial_plane_config *plane_config)
2510 {
2511 struct drm_device *dev = crtc->base.dev;
2512 struct drm_i915_gem_object *obj = NULL;
2513 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2514 struct drm_framebuffer *fb = &plane_config->fb->base;
2515 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2516 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2517 PAGE_SIZE);
2518
2519 size_aligned -= base_aligned;
2520
2521 if (plane_config->size == 0)
2522 return false;
2523
2524 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2525 base_aligned,
2526 base_aligned,
2527 size_aligned);
2528 if (!obj)
2529 return false;
2530
2531 obj->tiling_mode = plane_config->tiling;
2532 if (obj->tiling_mode == I915_TILING_X)
2533 obj->stride = fb->pitches[0];
2534
2535 mode_cmd.pixel_format = fb->pixel_format;
2536 mode_cmd.width = fb->width;
2537 mode_cmd.height = fb->height;
2538 mode_cmd.pitches[0] = fb->pitches[0];
2539 mode_cmd.modifier[0] = fb->modifier[0];
2540 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2541
2542 mutex_lock(&dev->struct_mutex);
2543 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2544 &mode_cmd, obj)) {
2545 DRM_DEBUG_KMS("intel fb init failed\n");
2546 goto out_unref_obj;
2547 }
2548 mutex_unlock(&dev->struct_mutex);
2549
2550 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2551 return true;
2552
2553 out_unref_obj:
2554 drm_gem_object_unreference(&obj->base);
2555 mutex_unlock(&dev->struct_mutex);
2556 return false;
2557 }
2558
2559 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2560 static void
2561 update_state_fb(struct drm_plane *plane)
2562 {
2563 if (plane->fb == plane->state->fb)
2564 return;
2565
2566 if (plane->state->fb)
2567 drm_framebuffer_unreference(plane->state->fb);
2568 plane->state->fb = plane->fb;
2569 if (plane->state->fb)
2570 drm_framebuffer_reference(plane->state->fb);
2571 }
2572
2573 static void
2574 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2575 struct intel_initial_plane_config *plane_config)
2576 {
2577 struct drm_device *dev = intel_crtc->base.dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct drm_crtc *c;
2580 struct intel_crtc *i;
2581 struct drm_i915_gem_object *obj;
2582 struct drm_plane *primary = intel_crtc->base.primary;
2583 struct drm_plane_state *plane_state = primary->state;
2584 struct drm_framebuffer *fb;
2585
2586 if (!plane_config->fb)
2587 return;
2588
2589 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2590 fb = &plane_config->fb->base;
2591 goto valid_fb;
2592 }
2593
2594 kfree(plane_config->fb);
2595
2596 /*
2597 * Failed to alloc the obj, check to see if we should share
2598 * an fb with another CRTC instead
2599 */
2600 for_each_crtc(dev, c) {
2601 i = to_intel_crtc(c);
2602
2603 if (c == &intel_crtc->base)
2604 continue;
2605
2606 if (!i->active)
2607 continue;
2608
2609 fb = c->primary->fb;
2610 if (!fb)
2611 continue;
2612
2613 obj = intel_fb_obj(fb);
2614 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2615 drm_framebuffer_reference(fb);
2616 goto valid_fb;
2617 }
2618 }
2619
2620 return;
2621
2622 valid_fb:
2623 plane_state->src_x = plane_state->src_y = 0;
2624 plane_state->src_w = fb->width << 16;
2625 plane_state->src_h = fb->height << 16;
2626
2627 plane_state->crtc_x = plane_state->src_y = 0;
2628 plane_state->crtc_w = fb->width;
2629 plane_state->crtc_h = fb->height;
2630
2631 obj = intel_fb_obj(fb);
2632 if (obj->tiling_mode != I915_TILING_NONE)
2633 dev_priv->preserve_bios_swizzle = true;
2634
2635 drm_framebuffer_reference(fb);
2636 primary->fb = primary->state->fb = fb;
2637 primary->crtc = primary->state->crtc = &intel_crtc->base;
2638 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2639 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2640 }
2641
2642 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2643 struct drm_framebuffer *fb,
2644 int x, int y)
2645 {
2646 struct drm_device *dev = crtc->dev;
2647 struct drm_i915_private *dev_priv = dev->dev_private;
2648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2649 struct drm_plane *primary = crtc->primary;
2650 bool visible = to_intel_plane_state(primary->state)->visible;
2651 struct drm_i915_gem_object *obj;
2652 int plane = intel_crtc->plane;
2653 unsigned long linear_offset;
2654 u32 dspcntr;
2655 u32 reg = DSPCNTR(plane);
2656 int pixel_size;
2657
2658 if (!visible || !fb) {
2659 I915_WRITE(reg, 0);
2660 if (INTEL_INFO(dev)->gen >= 4)
2661 I915_WRITE(DSPSURF(plane), 0);
2662 else
2663 I915_WRITE(DSPADDR(plane), 0);
2664 POSTING_READ(reg);
2665 return;
2666 }
2667
2668 obj = intel_fb_obj(fb);
2669 if (WARN_ON(obj == NULL))
2670 return;
2671
2672 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2673
2674 dspcntr = DISPPLANE_GAMMA_ENABLE;
2675
2676 dspcntr |= DISPLAY_PLANE_ENABLE;
2677
2678 if (INTEL_INFO(dev)->gen < 4) {
2679 if (intel_crtc->pipe == PIPE_B)
2680 dspcntr |= DISPPLANE_SEL_PIPE_B;
2681
2682 /* pipesrc and dspsize control the size that is scaled from,
2683 * which should always be the user's requested size.
2684 */
2685 I915_WRITE(DSPSIZE(plane),
2686 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2687 (intel_crtc->config->pipe_src_w - 1));
2688 I915_WRITE(DSPPOS(plane), 0);
2689 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2690 I915_WRITE(PRIMSIZE(plane),
2691 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2692 (intel_crtc->config->pipe_src_w - 1));
2693 I915_WRITE(PRIMPOS(plane), 0);
2694 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2695 }
2696
2697 switch (fb->pixel_format) {
2698 case DRM_FORMAT_C8:
2699 dspcntr |= DISPPLANE_8BPP;
2700 break;
2701 case DRM_FORMAT_XRGB1555:
2702 dspcntr |= DISPPLANE_BGRX555;
2703 break;
2704 case DRM_FORMAT_RGB565:
2705 dspcntr |= DISPPLANE_BGRX565;
2706 break;
2707 case DRM_FORMAT_XRGB8888:
2708 dspcntr |= DISPPLANE_BGRX888;
2709 break;
2710 case DRM_FORMAT_XBGR8888:
2711 dspcntr |= DISPPLANE_RGBX888;
2712 break;
2713 case DRM_FORMAT_XRGB2101010:
2714 dspcntr |= DISPPLANE_BGRX101010;
2715 break;
2716 case DRM_FORMAT_XBGR2101010:
2717 dspcntr |= DISPPLANE_RGBX101010;
2718 break;
2719 default:
2720 BUG();
2721 }
2722
2723 if (INTEL_INFO(dev)->gen >= 4 &&
2724 obj->tiling_mode != I915_TILING_NONE)
2725 dspcntr |= DISPPLANE_TILED;
2726
2727 if (IS_G4X(dev))
2728 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2729
2730 linear_offset = y * fb->pitches[0] + x * pixel_size;
2731
2732 if (INTEL_INFO(dev)->gen >= 4) {
2733 intel_crtc->dspaddr_offset =
2734 intel_gen4_compute_page_offset(dev_priv,
2735 &x, &y, obj->tiling_mode,
2736 pixel_size,
2737 fb->pitches[0]);
2738 linear_offset -= intel_crtc->dspaddr_offset;
2739 } else {
2740 intel_crtc->dspaddr_offset = linear_offset;
2741 }
2742
2743 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2744 dspcntr |= DISPPLANE_ROTATE_180;
2745
2746 x += (intel_crtc->config->pipe_src_w - 1);
2747 y += (intel_crtc->config->pipe_src_h - 1);
2748
2749 /* Finding the last pixel of the last line of the display
2750 data and adding to linear_offset*/
2751 linear_offset +=
2752 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2753 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2754 }
2755
2756 I915_WRITE(reg, dspcntr);
2757
2758 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2759 if (INTEL_INFO(dev)->gen >= 4) {
2760 I915_WRITE(DSPSURF(plane),
2761 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2762 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2763 I915_WRITE(DSPLINOFF(plane), linear_offset);
2764 } else
2765 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2766 POSTING_READ(reg);
2767 }
2768
2769 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2770 struct drm_framebuffer *fb,
2771 int x, int y)
2772 {
2773 struct drm_device *dev = crtc->dev;
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2776 struct drm_plane *primary = crtc->primary;
2777 bool visible = to_intel_plane_state(primary->state)->visible;
2778 struct drm_i915_gem_object *obj;
2779 int plane = intel_crtc->plane;
2780 unsigned long linear_offset;
2781 u32 dspcntr;
2782 u32 reg = DSPCNTR(plane);
2783 int pixel_size;
2784
2785 if (!visible || !fb) {
2786 I915_WRITE(reg, 0);
2787 I915_WRITE(DSPSURF(plane), 0);
2788 POSTING_READ(reg);
2789 return;
2790 }
2791
2792 obj = intel_fb_obj(fb);
2793 if (WARN_ON(obj == NULL))
2794 return;
2795
2796 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2797
2798 dspcntr = DISPPLANE_GAMMA_ENABLE;
2799
2800 dspcntr |= DISPLAY_PLANE_ENABLE;
2801
2802 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2803 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2804
2805 switch (fb->pixel_format) {
2806 case DRM_FORMAT_C8:
2807 dspcntr |= DISPPLANE_8BPP;
2808 break;
2809 case DRM_FORMAT_RGB565:
2810 dspcntr |= DISPPLANE_BGRX565;
2811 break;
2812 case DRM_FORMAT_XRGB8888:
2813 dspcntr |= DISPPLANE_BGRX888;
2814 break;
2815 case DRM_FORMAT_XBGR8888:
2816 dspcntr |= DISPPLANE_RGBX888;
2817 break;
2818 case DRM_FORMAT_XRGB2101010:
2819 dspcntr |= DISPPLANE_BGRX101010;
2820 break;
2821 case DRM_FORMAT_XBGR2101010:
2822 dspcntr |= DISPPLANE_RGBX101010;
2823 break;
2824 default:
2825 BUG();
2826 }
2827
2828 if (obj->tiling_mode != I915_TILING_NONE)
2829 dspcntr |= DISPPLANE_TILED;
2830
2831 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2832 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2833
2834 linear_offset = y * fb->pitches[0] + x * pixel_size;
2835 intel_crtc->dspaddr_offset =
2836 intel_gen4_compute_page_offset(dev_priv,
2837 &x, &y, obj->tiling_mode,
2838 pixel_size,
2839 fb->pitches[0]);
2840 linear_offset -= intel_crtc->dspaddr_offset;
2841 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2842 dspcntr |= DISPPLANE_ROTATE_180;
2843
2844 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2845 x += (intel_crtc->config->pipe_src_w - 1);
2846 y += (intel_crtc->config->pipe_src_h - 1);
2847
2848 /* Finding the last pixel of the last line of the display
2849 data and adding to linear_offset*/
2850 linear_offset +=
2851 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2852 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2853 }
2854 }
2855
2856 I915_WRITE(reg, dspcntr);
2857
2858 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2859 I915_WRITE(DSPSURF(plane),
2860 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2861 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2862 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2863 } else {
2864 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2865 I915_WRITE(DSPLINOFF(plane), linear_offset);
2866 }
2867 POSTING_READ(reg);
2868 }
2869
2870 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2871 uint32_t pixel_format)
2872 {
2873 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2874
2875 /*
2876 * The stride is either expressed as a multiple of 64 bytes
2877 * chunks for linear buffers or in number of tiles for tiled
2878 * buffers.
2879 */
2880 switch (fb_modifier) {
2881 case DRM_FORMAT_MOD_NONE:
2882 return 64;
2883 case I915_FORMAT_MOD_X_TILED:
2884 if (INTEL_INFO(dev)->gen == 2)
2885 return 128;
2886 return 512;
2887 case I915_FORMAT_MOD_Y_TILED:
2888 /* No need to check for old gens and Y tiling since this is
2889 * about the display engine and those will be blocked before
2890 * we get here.
2891 */
2892 return 128;
2893 case I915_FORMAT_MOD_Yf_TILED:
2894 if (bits_per_pixel == 8)
2895 return 64;
2896 else
2897 return 128;
2898 default:
2899 MISSING_CASE(fb_modifier);
2900 return 64;
2901 }
2902 }
2903
2904 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2905 struct drm_i915_gem_object *obj)
2906 {
2907 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2908
2909 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2910 view = &i915_ggtt_view_rotated;
2911
2912 return i915_gem_obj_ggtt_offset_view(obj, view);
2913 }
2914
2915 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2916 {
2917 struct drm_device *dev = intel_crtc->base.dev;
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919
2920 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2921 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2922 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2923 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2924 intel_crtc->base.base.id, intel_crtc->pipe, id);
2925 }
2926
2927 /*
2928 * This function detaches (aka. unbinds) unused scalers in hardware
2929 */
2930 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2931 {
2932 struct intel_crtc_scaler_state *scaler_state;
2933 int i;
2934
2935 scaler_state = &intel_crtc->config->scaler_state;
2936
2937 /* loop through and disable scalers that aren't in use */
2938 for (i = 0; i < intel_crtc->num_scalers; i++) {
2939 if (!scaler_state->scalers[i].in_use)
2940 skl_detach_scaler(intel_crtc, i);
2941 }
2942 }
2943
2944 u32 skl_plane_ctl_format(uint32_t pixel_format)
2945 {
2946 switch (pixel_format) {
2947 case DRM_FORMAT_C8:
2948 return PLANE_CTL_FORMAT_INDEXED;
2949 case DRM_FORMAT_RGB565:
2950 return PLANE_CTL_FORMAT_RGB_565;
2951 case DRM_FORMAT_XBGR8888:
2952 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2953 case DRM_FORMAT_XRGB8888:
2954 return PLANE_CTL_FORMAT_XRGB_8888;
2955 /*
2956 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2957 * to be already pre-multiplied. We need to add a knob (or a different
2958 * DRM_FORMAT) for user-space to configure that.
2959 */
2960 case DRM_FORMAT_ABGR8888:
2961 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2962 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2963 case DRM_FORMAT_ARGB8888:
2964 return PLANE_CTL_FORMAT_XRGB_8888 |
2965 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2966 case DRM_FORMAT_XRGB2101010:
2967 return PLANE_CTL_FORMAT_XRGB_2101010;
2968 case DRM_FORMAT_XBGR2101010:
2969 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2970 case DRM_FORMAT_YUYV:
2971 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2972 case DRM_FORMAT_YVYU:
2973 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2974 case DRM_FORMAT_UYVY:
2975 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2976 case DRM_FORMAT_VYUY:
2977 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2978 default:
2979 MISSING_CASE(pixel_format);
2980 }
2981
2982 return 0;
2983 }
2984
2985 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2986 {
2987 switch (fb_modifier) {
2988 case DRM_FORMAT_MOD_NONE:
2989 break;
2990 case I915_FORMAT_MOD_X_TILED:
2991 return PLANE_CTL_TILED_X;
2992 case I915_FORMAT_MOD_Y_TILED:
2993 return PLANE_CTL_TILED_Y;
2994 case I915_FORMAT_MOD_Yf_TILED:
2995 return PLANE_CTL_TILED_YF;
2996 default:
2997 MISSING_CASE(fb_modifier);
2998 }
2999
3000 return 0;
3001 }
3002
3003 u32 skl_plane_ctl_rotation(unsigned int rotation)
3004 {
3005 switch (rotation) {
3006 case BIT(DRM_ROTATE_0):
3007 break;
3008 /*
3009 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3010 * while i915 HW rotation is clockwise, thats why this swapping.
3011 */
3012 case BIT(DRM_ROTATE_90):
3013 return PLANE_CTL_ROTATE_270;
3014 case BIT(DRM_ROTATE_180):
3015 return PLANE_CTL_ROTATE_180;
3016 case BIT(DRM_ROTATE_270):
3017 return PLANE_CTL_ROTATE_90;
3018 default:
3019 MISSING_CASE(rotation);
3020 }
3021
3022 return 0;
3023 }
3024
3025 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3026 struct drm_framebuffer *fb,
3027 int x, int y)
3028 {
3029 struct drm_device *dev = crtc->dev;
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3032 struct drm_plane *plane = crtc->primary;
3033 bool visible = to_intel_plane_state(plane->state)->visible;
3034 struct drm_i915_gem_object *obj;
3035 int pipe = intel_crtc->pipe;
3036 u32 plane_ctl, stride_div, stride;
3037 u32 tile_height, plane_offset, plane_size;
3038 unsigned int rotation;
3039 int x_offset, y_offset;
3040 unsigned long surf_addr;
3041 struct intel_crtc_state *crtc_state = intel_crtc->config;
3042 struct intel_plane_state *plane_state;
3043 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3044 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3045 int scaler_id = -1;
3046
3047 plane_state = to_intel_plane_state(plane->state);
3048
3049 if (!visible || !fb) {
3050 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3051 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3052 POSTING_READ(PLANE_CTL(pipe, 0));
3053 return;
3054 }
3055
3056 plane_ctl = PLANE_CTL_ENABLE |
3057 PLANE_CTL_PIPE_GAMMA_ENABLE |
3058 PLANE_CTL_PIPE_CSC_ENABLE;
3059
3060 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3061 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3062 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3063
3064 rotation = plane->state->rotation;
3065 plane_ctl |= skl_plane_ctl_rotation(rotation);
3066
3067 obj = intel_fb_obj(fb);
3068 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3069 fb->pixel_format);
3070 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3071
3072 /*
3073 * FIXME: intel_plane_state->src, dst aren't set when transitional
3074 * update_plane helpers are called from legacy paths.
3075 * Once full atomic crtc is available, below check can be avoided.
3076 */
3077 if (drm_rect_width(&plane_state->src)) {
3078 scaler_id = plane_state->scaler_id;
3079 src_x = plane_state->src.x1 >> 16;
3080 src_y = plane_state->src.y1 >> 16;
3081 src_w = drm_rect_width(&plane_state->src) >> 16;
3082 src_h = drm_rect_height(&plane_state->src) >> 16;
3083 dst_x = plane_state->dst.x1;
3084 dst_y = plane_state->dst.y1;
3085 dst_w = drm_rect_width(&plane_state->dst);
3086 dst_h = drm_rect_height(&plane_state->dst);
3087
3088 WARN_ON(x != src_x || y != src_y);
3089 } else {
3090 src_w = intel_crtc->config->pipe_src_w;
3091 src_h = intel_crtc->config->pipe_src_h;
3092 }
3093
3094 if (intel_rotation_90_or_270(rotation)) {
3095 /* stride = Surface height in tiles */
3096 tile_height = intel_tile_height(dev, fb->pixel_format,
3097 fb->modifier[0]);
3098 stride = DIV_ROUND_UP(fb->height, tile_height);
3099 x_offset = stride * tile_height - y - src_h;
3100 y_offset = x;
3101 plane_size = (src_w - 1) << 16 | (src_h - 1);
3102 } else {
3103 stride = fb->pitches[0] / stride_div;
3104 x_offset = x;
3105 y_offset = y;
3106 plane_size = (src_h - 1) << 16 | (src_w - 1);
3107 }
3108 plane_offset = y_offset << 16 | x_offset;
3109
3110 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3111 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3112 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3113 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3114
3115 if (scaler_id >= 0) {
3116 uint32_t ps_ctrl = 0;
3117
3118 WARN_ON(!dst_w || !dst_h);
3119 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3120 crtc_state->scaler_state.scalers[scaler_id].mode;
3121 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3122 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3123 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3124 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3125 I915_WRITE(PLANE_POS(pipe, 0), 0);
3126 } else {
3127 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3128 }
3129
3130 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3131
3132 POSTING_READ(PLANE_SURF(pipe, 0));
3133 }
3134
3135 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3136 static int
3137 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3138 int x, int y, enum mode_set_atomic state)
3139 {
3140 struct drm_device *dev = crtc->dev;
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3142
3143 if (dev_priv->fbc.disable_fbc)
3144 dev_priv->fbc.disable_fbc(dev_priv);
3145
3146 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3147
3148 return 0;
3149 }
3150
3151 static void intel_complete_page_flips(struct drm_device *dev)
3152 {
3153 struct drm_crtc *crtc;
3154
3155 for_each_crtc(dev, crtc) {
3156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3157 enum plane plane = intel_crtc->plane;
3158
3159 intel_prepare_page_flip(dev, plane);
3160 intel_finish_page_flip_plane(dev, plane);
3161 }
3162 }
3163
3164 static void intel_update_primary_planes(struct drm_device *dev)
3165 {
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct drm_crtc *crtc;
3168
3169 for_each_crtc(dev, crtc) {
3170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3171
3172 drm_modeset_lock(&crtc->mutex, NULL);
3173 /*
3174 * FIXME: Once we have proper support for primary planes (and
3175 * disabling them without disabling the entire crtc) allow again
3176 * a NULL crtc->primary->fb.
3177 */
3178 if (intel_crtc->active && crtc->primary->fb)
3179 dev_priv->display.update_primary_plane(crtc,
3180 crtc->primary->fb,
3181 crtc->x,
3182 crtc->y);
3183 drm_modeset_unlock(&crtc->mutex);
3184 }
3185 }
3186
3187 void intel_prepare_reset(struct drm_device *dev)
3188 {
3189 /* no reset support for gen2 */
3190 if (IS_GEN2(dev))
3191 return;
3192
3193 /* reset doesn't touch the display */
3194 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3195 return;
3196
3197 drm_modeset_lock_all(dev);
3198 /*
3199 * Disabling the crtcs gracefully seems nicer. Also the
3200 * g33 docs say we should at least disable all the planes.
3201 */
3202 intel_display_suspend(dev);
3203 }
3204
3205 void intel_finish_reset(struct drm_device *dev)
3206 {
3207 struct drm_i915_private *dev_priv = to_i915(dev);
3208
3209 /*
3210 * Flips in the rings will be nuked by the reset,
3211 * so complete all pending flips so that user space
3212 * will get its events and not get stuck.
3213 */
3214 intel_complete_page_flips(dev);
3215
3216 /* no reset support for gen2 */
3217 if (IS_GEN2(dev))
3218 return;
3219
3220 /* reset doesn't touch the display */
3221 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3222 /*
3223 * Flips in the rings have been nuked by the reset,
3224 * so update the base address of all primary
3225 * planes to the the last fb to make sure we're
3226 * showing the correct fb after a reset.
3227 */
3228 intel_update_primary_planes(dev);
3229 return;
3230 }
3231
3232 /*
3233 * The display has been reset as well,
3234 * so need a full re-initialization.
3235 */
3236 intel_runtime_pm_disable_interrupts(dev_priv);
3237 intel_runtime_pm_enable_interrupts(dev_priv);
3238
3239 intel_modeset_init_hw(dev);
3240
3241 spin_lock_irq(&dev_priv->irq_lock);
3242 if (dev_priv->display.hpd_irq_setup)
3243 dev_priv->display.hpd_irq_setup(dev);
3244 spin_unlock_irq(&dev_priv->irq_lock);
3245
3246 intel_display_resume(dev);
3247
3248 intel_hpd_init(dev_priv);
3249
3250 drm_modeset_unlock_all(dev);
3251 }
3252
3253 static void
3254 intel_finish_fb(struct drm_framebuffer *old_fb)
3255 {
3256 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3257 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3258 bool was_interruptible = dev_priv->mm.interruptible;
3259 int ret;
3260
3261 /* Big Hammer, we also need to ensure that any pending
3262 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3263 * current scanout is retired before unpinning the old
3264 * framebuffer. Note that we rely on userspace rendering
3265 * into the buffer attached to the pipe they are waiting
3266 * on. If not, userspace generates a GPU hang with IPEHR
3267 * point to the MI_WAIT_FOR_EVENT.
3268 *
3269 * This should only fail upon a hung GPU, in which case we
3270 * can safely continue.
3271 */
3272 dev_priv->mm.interruptible = false;
3273 ret = i915_gem_object_wait_rendering(obj, true);
3274 dev_priv->mm.interruptible = was_interruptible;
3275
3276 WARN_ON(ret);
3277 }
3278
3279 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3280 {
3281 struct drm_device *dev = crtc->dev;
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 bool pending;
3285
3286 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3287 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3288 return false;
3289
3290 spin_lock_irq(&dev->event_lock);
3291 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3292 spin_unlock_irq(&dev->event_lock);
3293
3294 return pending;
3295 }
3296
3297 static void intel_update_pipe_size(struct intel_crtc *crtc)
3298 {
3299 struct drm_device *dev = crtc->base.dev;
3300 struct drm_i915_private *dev_priv = dev->dev_private;
3301 const struct drm_display_mode *adjusted_mode;
3302
3303 if (!i915.fastboot)
3304 return;
3305
3306 /*
3307 * Update pipe size and adjust fitter if needed: the reason for this is
3308 * that in compute_mode_changes we check the native mode (not the pfit
3309 * mode) to see if we can flip rather than do a full mode set. In the
3310 * fastboot case, we'll flip, but if we don't update the pipesrc and
3311 * pfit state, we'll end up with a big fb scanned out into the wrong
3312 * sized surface.
3313 *
3314 * To fix this properly, we need to hoist the checks up into
3315 * compute_mode_changes (or above), check the actual pfit state and
3316 * whether the platform allows pfit disable with pipe active, and only
3317 * then update the pipesrc and pfit state, even on the flip path.
3318 */
3319
3320 adjusted_mode = &crtc->config->base.adjusted_mode;
3321
3322 I915_WRITE(PIPESRC(crtc->pipe),
3323 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3324 (adjusted_mode->crtc_vdisplay - 1));
3325 if (!crtc->config->pch_pfit.enabled &&
3326 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3327 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3328 I915_WRITE(PF_CTL(crtc->pipe), 0);
3329 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3330 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3331 }
3332 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3333 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3334 }
3335
3336 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3337 {
3338 struct drm_device *dev = crtc->dev;
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3341 int pipe = intel_crtc->pipe;
3342 u32 reg, temp;
3343
3344 /* enable normal train */
3345 reg = FDI_TX_CTL(pipe);
3346 temp = I915_READ(reg);
3347 if (IS_IVYBRIDGE(dev)) {
3348 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3350 } else {
3351 temp &= ~FDI_LINK_TRAIN_NONE;
3352 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3353 }
3354 I915_WRITE(reg, temp);
3355
3356 reg = FDI_RX_CTL(pipe);
3357 temp = I915_READ(reg);
3358 if (HAS_PCH_CPT(dev)) {
3359 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3360 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3361 } else {
3362 temp &= ~FDI_LINK_TRAIN_NONE;
3363 temp |= FDI_LINK_TRAIN_NONE;
3364 }
3365 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3366
3367 /* wait one idle pattern time */
3368 POSTING_READ(reg);
3369 udelay(1000);
3370
3371 /* IVB wants error correction enabled */
3372 if (IS_IVYBRIDGE(dev))
3373 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3374 FDI_FE_ERRC_ENABLE);
3375 }
3376
3377 /* The FDI link training functions for ILK/Ibexpeak. */
3378 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3379 {
3380 struct drm_device *dev = crtc->dev;
3381 struct drm_i915_private *dev_priv = dev->dev_private;
3382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3383 int pipe = intel_crtc->pipe;
3384 u32 reg, temp, tries;
3385
3386 /* FDI needs bits from pipe first */
3387 assert_pipe_enabled(dev_priv, pipe);
3388
3389 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3390 for train result */
3391 reg = FDI_RX_IMR(pipe);
3392 temp = I915_READ(reg);
3393 temp &= ~FDI_RX_SYMBOL_LOCK;
3394 temp &= ~FDI_RX_BIT_LOCK;
3395 I915_WRITE(reg, temp);
3396 I915_READ(reg);
3397 udelay(150);
3398
3399 /* enable CPU FDI TX and PCH FDI RX */
3400 reg = FDI_TX_CTL(pipe);
3401 temp = I915_READ(reg);
3402 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3403 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3404 temp &= ~FDI_LINK_TRAIN_NONE;
3405 temp |= FDI_LINK_TRAIN_PATTERN_1;
3406 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3407
3408 reg = FDI_RX_CTL(pipe);
3409 temp = I915_READ(reg);
3410 temp &= ~FDI_LINK_TRAIN_NONE;
3411 temp |= FDI_LINK_TRAIN_PATTERN_1;
3412 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3413
3414 POSTING_READ(reg);
3415 udelay(150);
3416
3417 /* Ironlake workaround, enable clock pointer after FDI enable*/
3418 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3419 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3420 FDI_RX_PHASE_SYNC_POINTER_EN);
3421
3422 reg = FDI_RX_IIR(pipe);
3423 for (tries = 0; tries < 5; tries++) {
3424 temp = I915_READ(reg);
3425 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3426
3427 if ((temp & FDI_RX_BIT_LOCK)) {
3428 DRM_DEBUG_KMS("FDI train 1 done.\n");
3429 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3430 break;
3431 }
3432 }
3433 if (tries == 5)
3434 DRM_ERROR("FDI train 1 fail!\n");
3435
3436 /* Train 2 */
3437 reg = FDI_TX_CTL(pipe);
3438 temp = I915_READ(reg);
3439 temp &= ~FDI_LINK_TRAIN_NONE;
3440 temp |= FDI_LINK_TRAIN_PATTERN_2;
3441 I915_WRITE(reg, temp);
3442
3443 reg = FDI_RX_CTL(pipe);
3444 temp = I915_READ(reg);
3445 temp &= ~FDI_LINK_TRAIN_NONE;
3446 temp |= FDI_LINK_TRAIN_PATTERN_2;
3447 I915_WRITE(reg, temp);
3448
3449 POSTING_READ(reg);
3450 udelay(150);
3451
3452 reg = FDI_RX_IIR(pipe);
3453 for (tries = 0; tries < 5; tries++) {
3454 temp = I915_READ(reg);
3455 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3456
3457 if (temp & FDI_RX_SYMBOL_LOCK) {
3458 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3459 DRM_DEBUG_KMS("FDI train 2 done.\n");
3460 break;
3461 }
3462 }
3463 if (tries == 5)
3464 DRM_ERROR("FDI train 2 fail!\n");
3465
3466 DRM_DEBUG_KMS("FDI train done\n");
3467
3468 }
3469
3470 static const int snb_b_fdi_train_param[] = {
3471 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3472 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3473 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3474 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3475 };
3476
3477 /* The FDI link training functions for SNB/Cougarpoint. */
3478 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3479 {
3480 struct drm_device *dev = crtc->dev;
3481 struct drm_i915_private *dev_priv = dev->dev_private;
3482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3483 int pipe = intel_crtc->pipe;
3484 u32 reg, temp, i, retry;
3485
3486 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3487 for train result */
3488 reg = FDI_RX_IMR(pipe);
3489 temp = I915_READ(reg);
3490 temp &= ~FDI_RX_SYMBOL_LOCK;
3491 temp &= ~FDI_RX_BIT_LOCK;
3492 I915_WRITE(reg, temp);
3493
3494 POSTING_READ(reg);
3495 udelay(150);
3496
3497 /* enable CPU FDI TX and PCH FDI RX */
3498 reg = FDI_TX_CTL(pipe);
3499 temp = I915_READ(reg);
3500 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3501 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3502 temp &= ~FDI_LINK_TRAIN_NONE;
3503 temp |= FDI_LINK_TRAIN_PATTERN_1;
3504 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3505 /* SNB-B */
3506 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3507 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3508
3509 I915_WRITE(FDI_RX_MISC(pipe),
3510 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3511
3512 reg = FDI_RX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 if (HAS_PCH_CPT(dev)) {
3515 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3516 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3517 } else {
3518 temp &= ~FDI_LINK_TRAIN_NONE;
3519 temp |= FDI_LINK_TRAIN_PATTERN_1;
3520 }
3521 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3522
3523 POSTING_READ(reg);
3524 udelay(150);
3525
3526 for (i = 0; i < 4; i++) {
3527 reg = FDI_TX_CTL(pipe);
3528 temp = I915_READ(reg);
3529 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3530 temp |= snb_b_fdi_train_param[i];
3531 I915_WRITE(reg, temp);
3532
3533 POSTING_READ(reg);
3534 udelay(500);
3535
3536 for (retry = 0; retry < 5; retry++) {
3537 reg = FDI_RX_IIR(pipe);
3538 temp = I915_READ(reg);
3539 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3540 if (temp & FDI_RX_BIT_LOCK) {
3541 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3542 DRM_DEBUG_KMS("FDI train 1 done.\n");
3543 break;
3544 }
3545 udelay(50);
3546 }
3547 if (retry < 5)
3548 break;
3549 }
3550 if (i == 4)
3551 DRM_ERROR("FDI train 1 fail!\n");
3552
3553 /* Train 2 */
3554 reg = FDI_TX_CTL(pipe);
3555 temp = I915_READ(reg);
3556 temp &= ~FDI_LINK_TRAIN_NONE;
3557 temp |= FDI_LINK_TRAIN_PATTERN_2;
3558 if (IS_GEN6(dev)) {
3559 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560 /* SNB-B */
3561 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3562 }
3563 I915_WRITE(reg, temp);
3564
3565 reg = FDI_RX_CTL(pipe);
3566 temp = I915_READ(reg);
3567 if (HAS_PCH_CPT(dev)) {
3568 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3569 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3570 } else {
3571 temp &= ~FDI_LINK_TRAIN_NONE;
3572 temp |= FDI_LINK_TRAIN_PATTERN_2;
3573 }
3574 I915_WRITE(reg, temp);
3575
3576 POSTING_READ(reg);
3577 udelay(150);
3578
3579 for (i = 0; i < 4; i++) {
3580 reg = FDI_TX_CTL(pipe);
3581 temp = I915_READ(reg);
3582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3583 temp |= snb_b_fdi_train_param[i];
3584 I915_WRITE(reg, temp);
3585
3586 POSTING_READ(reg);
3587 udelay(500);
3588
3589 for (retry = 0; retry < 5; retry++) {
3590 reg = FDI_RX_IIR(pipe);
3591 temp = I915_READ(reg);
3592 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3593 if (temp & FDI_RX_SYMBOL_LOCK) {
3594 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3595 DRM_DEBUG_KMS("FDI train 2 done.\n");
3596 break;
3597 }
3598 udelay(50);
3599 }
3600 if (retry < 5)
3601 break;
3602 }
3603 if (i == 4)
3604 DRM_ERROR("FDI train 2 fail!\n");
3605
3606 DRM_DEBUG_KMS("FDI train done.\n");
3607 }
3608
3609 /* Manual link training for Ivy Bridge A0 parts */
3610 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3611 {
3612 struct drm_device *dev = crtc->dev;
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615 int pipe = intel_crtc->pipe;
3616 u32 reg, temp, i, j;
3617
3618 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3619 for train result */
3620 reg = FDI_RX_IMR(pipe);
3621 temp = I915_READ(reg);
3622 temp &= ~FDI_RX_SYMBOL_LOCK;
3623 temp &= ~FDI_RX_BIT_LOCK;
3624 I915_WRITE(reg, temp);
3625
3626 POSTING_READ(reg);
3627 udelay(150);
3628
3629 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3630 I915_READ(FDI_RX_IIR(pipe)));
3631
3632 /* Try each vswing and preemphasis setting twice before moving on */
3633 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3634 /* disable first in case we need to retry */
3635 reg = FDI_TX_CTL(pipe);
3636 temp = I915_READ(reg);
3637 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3638 temp &= ~FDI_TX_ENABLE;
3639 I915_WRITE(reg, temp);
3640
3641 reg = FDI_RX_CTL(pipe);
3642 temp = I915_READ(reg);
3643 temp &= ~FDI_LINK_TRAIN_AUTO;
3644 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3645 temp &= ~FDI_RX_ENABLE;
3646 I915_WRITE(reg, temp);
3647
3648 /* enable CPU FDI TX and PCH FDI RX */
3649 reg = FDI_TX_CTL(pipe);
3650 temp = I915_READ(reg);
3651 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3652 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3653 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3654 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3655 temp |= snb_b_fdi_train_param[j/2];
3656 temp |= FDI_COMPOSITE_SYNC;
3657 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3658
3659 I915_WRITE(FDI_RX_MISC(pipe),
3660 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3661
3662 reg = FDI_RX_CTL(pipe);
3663 temp = I915_READ(reg);
3664 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3665 temp |= FDI_COMPOSITE_SYNC;
3666 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3667
3668 POSTING_READ(reg);
3669 udelay(1); /* should be 0.5us */
3670
3671 for (i = 0; i < 4; i++) {
3672 reg = FDI_RX_IIR(pipe);
3673 temp = I915_READ(reg);
3674 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3675
3676 if (temp & FDI_RX_BIT_LOCK ||
3677 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3678 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3679 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3680 i);
3681 break;
3682 }
3683 udelay(1); /* should be 0.5us */
3684 }
3685 if (i == 4) {
3686 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3687 continue;
3688 }
3689
3690 /* Train 2 */
3691 reg = FDI_TX_CTL(pipe);
3692 temp = I915_READ(reg);
3693 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3694 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3695 I915_WRITE(reg, temp);
3696
3697 reg = FDI_RX_CTL(pipe);
3698 temp = I915_READ(reg);
3699 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3700 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3701 I915_WRITE(reg, temp);
3702
3703 POSTING_READ(reg);
3704 udelay(2); /* should be 1.5us */
3705
3706 for (i = 0; i < 4; i++) {
3707 reg = FDI_RX_IIR(pipe);
3708 temp = I915_READ(reg);
3709 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3710
3711 if (temp & FDI_RX_SYMBOL_LOCK ||
3712 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3713 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3714 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3715 i);
3716 goto train_done;
3717 }
3718 udelay(2); /* should be 1.5us */
3719 }
3720 if (i == 4)
3721 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3722 }
3723
3724 train_done:
3725 DRM_DEBUG_KMS("FDI train done.\n");
3726 }
3727
3728 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3729 {
3730 struct drm_device *dev = intel_crtc->base.dev;
3731 struct drm_i915_private *dev_priv = dev->dev_private;
3732 int pipe = intel_crtc->pipe;
3733 u32 reg, temp;
3734
3735
3736 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3737 reg = FDI_RX_CTL(pipe);
3738 temp = I915_READ(reg);
3739 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3740 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3741 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3742 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3743
3744 POSTING_READ(reg);
3745 udelay(200);
3746
3747 /* Switch from Rawclk to PCDclk */
3748 temp = I915_READ(reg);
3749 I915_WRITE(reg, temp | FDI_PCDCLK);
3750
3751 POSTING_READ(reg);
3752 udelay(200);
3753
3754 /* Enable CPU FDI TX PLL, always on for Ironlake */
3755 reg = FDI_TX_CTL(pipe);
3756 temp = I915_READ(reg);
3757 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3758 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3759
3760 POSTING_READ(reg);
3761 udelay(100);
3762 }
3763 }
3764
3765 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3766 {
3767 struct drm_device *dev = intel_crtc->base.dev;
3768 struct drm_i915_private *dev_priv = dev->dev_private;
3769 int pipe = intel_crtc->pipe;
3770 u32 reg, temp;
3771
3772 /* Switch from PCDclk to Rawclk */
3773 reg = FDI_RX_CTL(pipe);
3774 temp = I915_READ(reg);
3775 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3776
3777 /* Disable CPU FDI TX PLL */
3778 reg = FDI_TX_CTL(pipe);
3779 temp = I915_READ(reg);
3780 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3781
3782 POSTING_READ(reg);
3783 udelay(100);
3784
3785 reg = FDI_RX_CTL(pipe);
3786 temp = I915_READ(reg);
3787 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3788
3789 /* Wait for the clocks to turn off. */
3790 POSTING_READ(reg);
3791 udelay(100);
3792 }
3793
3794 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3795 {
3796 struct drm_device *dev = crtc->dev;
3797 struct drm_i915_private *dev_priv = dev->dev_private;
3798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3799 int pipe = intel_crtc->pipe;
3800 u32 reg, temp;
3801
3802 /* disable CPU FDI tx and PCH FDI rx */
3803 reg = FDI_TX_CTL(pipe);
3804 temp = I915_READ(reg);
3805 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3806 POSTING_READ(reg);
3807
3808 reg = FDI_RX_CTL(pipe);
3809 temp = I915_READ(reg);
3810 temp &= ~(0x7 << 16);
3811 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3812 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3813
3814 POSTING_READ(reg);
3815 udelay(100);
3816
3817 /* Ironlake workaround, disable clock pointer after downing FDI */
3818 if (HAS_PCH_IBX(dev))
3819 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3820
3821 /* still set train pattern 1 */
3822 reg = FDI_TX_CTL(pipe);
3823 temp = I915_READ(reg);
3824 temp &= ~FDI_LINK_TRAIN_NONE;
3825 temp |= FDI_LINK_TRAIN_PATTERN_1;
3826 I915_WRITE(reg, temp);
3827
3828 reg = FDI_RX_CTL(pipe);
3829 temp = I915_READ(reg);
3830 if (HAS_PCH_CPT(dev)) {
3831 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3832 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3833 } else {
3834 temp &= ~FDI_LINK_TRAIN_NONE;
3835 temp |= FDI_LINK_TRAIN_PATTERN_1;
3836 }
3837 /* BPC in FDI rx is consistent with that in PIPECONF */
3838 temp &= ~(0x07 << 16);
3839 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3840 I915_WRITE(reg, temp);
3841
3842 POSTING_READ(reg);
3843 udelay(100);
3844 }
3845
3846 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3847 {
3848 struct intel_crtc *crtc;
3849
3850 /* Note that we don't need to be called with mode_config.lock here
3851 * as our list of CRTC objects is static for the lifetime of the
3852 * device and so cannot disappear as we iterate. Similarly, we can
3853 * happily treat the predicates as racy, atomic checks as userspace
3854 * cannot claim and pin a new fb without at least acquring the
3855 * struct_mutex and so serialising with us.
3856 */
3857 for_each_intel_crtc(dev, crtc) {
3858 if (atomic_read(&crtc->unpin_work_count) == 0)
3859 continue;
3860
3861 if (crtc->unpin_work)
3862 intel_wait_for_vblank(dev, crtc->pipe);
3863
3864 return true;
3865 }
3866
3867 return false;
3868 }
3869
3870 static void page_flip_completed(struct intel_crtc *intel_crtc)
3871 {
3872 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3873 struct intel_unpin_work *work = intel_crtc->unpin_work;
3874
3875 /* ensure that the unpin work is consistent wrt ->pending. */
3876 smp_rmb();
3877 intel_crtc->unpin_work = NULL;
3878
3879 if (work->event)
3880 drm_send_vblank_event(intel_crtc->base.dev,
3881 intel_crtc->pipe,
3882 work->event);
3883
3884 drm_crtc_vblank_put(&intel_crtc->base);
3885
3886 wake_up_all(&dev_priv->pending_flip_queue);
3887 queue_work(dev_priv->wq, &work->work);
3888
3889 trace_i915_flip_complete(intel_crtc->plane,
3890 work->pending_flip_obj);
3891 }
3892
3893 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3894 {
3895 struct drm_device *dev = crtc->dev;
3896 struct drm_i915_private *dev_priv = dev->dev_private;
3897
3898 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3899 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3900 !intel_crtc_has_pending_flip(crtc),
3901 60*HZ) == 0)) {
3902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3903
3904 spin_lock_irq(&dev->event_lock);
3905 if (intel_crtc->unpin_work) {
3906 WARN_ONCE(1, "Removing stuck page flip\n");
3907 page_flip_completed(intel_crtc);
3908 }
3909 spin_unlock_irq(&dev->event_lock);
3910 }
3911
3912 if (crtc->primary->fb) {
3913 mutex_lock(&dev->struct_mutex);
3914 intel_finish_fb(crtc->primary->fb);
3915 mutex_unlock(&dev->struct_mutex);
3916 }
3917 }
3918
3919 /* Program iCLKIP clock to the desired frequency */
3920 static void lpt_program_iclkip(struct drm_crtc *crtc)
3921 {
3922 struct drm_device *dev = crtc->dev;
3923 struct drm_i915_private *dev_priv = dev->dev_private;
3924 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3925 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3926 u32 temp;
3927
3928 mutex_lock(&dev_priv->sb_lock);
3929
3930 /* It is necessary to ungate the pixclk gate prior to programming
3931 * the divisors, and gate it back when it is done.
3932 */
3933 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3934
3935 /* Disable SSCCTL */
3936 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3937 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3938 SBI_SSCCTL_DISABLE,
3939 SBI_ICLK);
3940
3941 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3942 if (clock == 20000) {
3943 auxdiv = 1;
3944 divsel = 0x41;
3945 phaseinc = 0x20;
3946 } else {
3947 /* The iCLK virtual clock root frequency is in MHz,
3948 * but the adjusted_mode->crtc_clock in in KHz. To get the
3949 * divisors, it is necessary to divide one by another, so we
3950 * convert the virtual clock precision to KHz here for higher
3951 * precision.
3952 */
3953 u32 iclk_virtual_root_freq = 172800 * 1000;
3954 u32 iclk_pi_range = 64;
3955 u32 desired_divisor, msb_divisor_value, pi_value;
3956
3957 desired_divisor = (iclk_virtual_root_freq / clock);
3958 msb_divisor_value = desired_divisor / iclk_pi_range;
3959 pi_value = desired_divisor % iclk_pi_range;
3960
3961 auxdiv = 0;
3962 divsel = msb_divisor_value - 2;
3963 phaseinc = pi_value;
3964 }
3965
3966 /* This should not happen with any sane values */
3967 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3968 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3969 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3970 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3971
3972 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3973 clock,
3974 auxdiv,
3975 divsel,
3976 phasedir,
3977 phaseinc);
3978
3979 /* Program SSCDIVINTPHASE6 */
3980 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3981 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3982 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3983 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3984 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3985 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3986 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3987 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3988
3989 /* Program SSCAUXDIV */
3990 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3991 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3992 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3993 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3994
3995 /* Enable modulator and associated divider */
3996 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3997 temp &= ~SBI_SSCCTL_DISABLE;
3998 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3999
4000 /* Wait for initialization time */
4001 udelay(24);
4002
4003 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4004
4005 mutex_unlock(&dev_priv->sb_lock);
4006 }
4007
4008 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4009 enum pipe pch_transcoder)
4010 {
4011 struct drm_device *dev = crtc->base.dev;
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4014
4015 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4016 I915_READ(HTOTAL(cpu_transcoder)));
4017 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4018 I915_READ(HBLANK(cpu_transcoder)));
4019 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4020 I915_READ(HSYNC(cpu_transcoder)));
4021
4022 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4023 I915_READ(VTOTAL(cpu_transcoder)));
4024 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4025 I915_READ(VBLANK(cpu_transcoder)));
4026 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4027 I915_READ(VSYNC(cpu_transcoder)));
4028 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4029 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4030 }
4031
4032 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4033 {
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 uint32_t temp;
4036
4037 temp = I915_READ(SOUTH_CHICKEN1);
4038 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4039 return;
4040
4041 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4042 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4043
4044 temp &= ~FDI_BC_BIFURCATION_SELECT;
4045 if (enable)
4046 temp |= FDI_BC_BIFURCATION_SELECT;
4047
4048 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4049 I915_WRITE(SOUTH_CHICKEN1, temp);
4050 POSTING_READ(SOUTH_CHICKEN1);
4051 }
4052
4053 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4054 {
4055 struct drm_device *dev = intel_crtc->base.dev;
4056
4057 switch (intel_crtc->pipe) {
4058 case PIPE_A:
4059 break;
4060 case PIPE_B:
4061 if (intel_crtc->config->fdi_lanes > 2)
4062 cpt_set_fdi_bc_bifurcation(dev, false);
4063 else
4064 cpt_set_fdi_bc_bifurcation(dev, true);
4065
4066 break;
4067 case PIPE_C:
4068 cpt_set_fdi_bc_bifurcation(dev, true);
4069
4070 break;
4071 default:
4072 BUG();
4073 }
4074 }
4075
4076 /*
4077 * Enable PCH resources required for PCH ports:
4078 * - PCH PLLs
4079 * - FDI training & RX/TX
4080 * - update transcoder timings
4081 * - DP transcoding bits
4082 * - transcoder
4083 */
4084 static void ironlake_pch_enable(struct drm_crtc *crtc)
4085 {
4086 struct drm_device *dev = crtc->dev;
4087 struct drm_i915_private *dev_priv = dev->dev_private;
4088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4089 int pipe = intel_crtc->pipe;
4090 u32 reg, temp;
4091
4092 assert_pch_transcoder_disabled(dev_priv, pipe);
4093
4094 if (IS_IVYBRIDGE(dev))
4095 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4096
4097 /* Write the TU size bits before fdi link training, so that error
4098 * detection works. */
4099 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4100 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4101
4102 /* For PCH output, training FDI link */
4103 dev_priv->display.fdi_link_train(crtc);
4104
4105 /* We need to program the right clock selection before writing the pixel
4106 * mutliplier into the DPLL. */
4107 if (HAS_PCH_CPT(dev)) {
4108 u32 sel;
4109
4110 temp = I915_READ(PCH_DPLL_SEL);
4111 temp |= TRANS_DPLL_ENABLE(pipe);
4112 sel = TRANS_DPLLB_SEL(pipe);
4113 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4114 temp |= sel;
4115 else
4116 temp &= ~sel;
4117 I915_WRITE(PCH_DPLL_SEL, temp);
4118 }
4119
4120 /* XXX: pch pll's can be enabled any time before we enable the PCH
4121 * transcoder, and we actually should do this to not upset any PCH
4122 * transcoder that already use the clock when we share it.
4123 *
4124 * Note that enable_shared_dpll tries to do the right thing, but
4125 * get_shared_dpll unconditionally resets the pll - we need that to have
4126 * the right LVDS enable sequence. */
4127 intel_enable_shared_dpll(intel_crtc);
4128
4129 /* set transcoder timing, panel must allow it */
4130 assert_panel_unlocked(dev_priv, pipe);
4131 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4132
4133 intel_fdi_normal_train(crtc);
4134
4135 /* For PCH DP, enable TRANS_DP_CTL */
4136 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4137 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4138 reg = TRANS_DP_CTL(pipe);
4139 temp = I915_READ(reg);
4140 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4141 TRANS_DP_SYNC_MASK |
4142 TRANS_DP_BPC_MASK);
4143 temp |= TRANS_DP_OUTPUT_ENABLE;
4144 temp |= bpc << 9; /* same format but at 11:9 */
4145
4146 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4147 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4148 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4149 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4150
4151 switch (intel_trans_dp_port_sel(crtc)) {
4152 case PCH_DP_B:
4153 temp |= TRANS_DP_PORT_SEL_B;
4154 break;
4155 case PCH_DP_C:
4156 temp |= TRANS_DP_PORT_SEL_C;
4157 break;
4158 case PCH_DP_D:
4159 temp |= TRANS_DP_PORT_SEL_D;
4160 break;
4161 default:
4162 BUG();
4163 }
4164
4165 I915_WRITE(reg, temp);
4166 }
4167
4168 ironlake_enable_pch_transcoder(dev_priv, pipe);
4169 }
4170
4171 static void lpt_pch_enable(struct drm_crtc *crtc)
4172 {
4173 struct drm_device *dev = crtc->dev;
4174 struct drm_i915_private *dev_priv = dev->dev_private;
4175 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4176 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4177
4178 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4179
4180 lpt_program_iclkip(crtc);
4181
4182 /* Set transcoder timing. */
4183 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4184
4185 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4186 }
4187
4188 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4189 struct intel_crtc_state *crtc_state)
4190 {
4191 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4192 struct intel_shared_dpll *pll;
4193 struct intel_shared_dpll_config *shared_dpll;
4194 enum intel_dpll_id i;
4195
4196 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4197
4198 if (HAS_PCH_IBX(dev_priv->dev)) {
4199 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4200 i = (enum intel_dpll_id) crtc->pipe;
4201 pll = &dev_priv->shared_dplls[i];
4202
4203 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4204 crtc->base.base.id, pll->name);
4205
4206 WARN_ON(shared_dpll[i].crtc_mask);
4207
4208 goto found;
4209 }
4210
4211 if (IS_BROXTON(dev_priv->dev)) {
4212 /* PLL is attached to port in bxt */
4213 struct intel_encoder *encoder;
4214 struct intel_digital_port *intel_dig_port;
4215
4216 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4217 if (WARN_ON(!encoder))
4218 return NULL;
4219
4220 intel_dig_port = enc_to_dig_port(&encoder->base);
4221 /* 1:1 mapping between ports and PLLs */
4222 i = (enum intel_dpll_id)intel_dig_port->port;
4223 pll = &dev_priv->shared_dplls[i];
4224 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4225 crtc->base.base.id, pll->name);
4226 WARN_ON(shared_dpll[i].crtc_mask);
4227
4228 goto found;
4229 }
4230
4231 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4232 pll = &dev_priv->shared_dplls[i];
4233
4234 /* Only want to check enabled timings first */
4235 if (shared_dpll[i].crtc_mask == 0)
4236 continue;
4237
4238 if (memcmp(&crtc_state->dpll_hw_state,
4239 &shared_dpll[i].hw_state,
4240 sizeof(crtc_state->dpll_hw_state)) == 0) {
4241 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4242 crtc->base.base.id, pll->name,
4243 shared_dpll[i].crtc_mask,
4244 pll->active);
4245 goto found;
4246 }
4247 }
4248
4249 /* Ok no matching timings, maybe there's a free one? */
4250 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4251 pll = &dev_priv->shared_dplls[i];
4252 if (shared_dpll[i].crtc_mask == 0) {
4253 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4254 crtc->base.base.id, pll->name);
4255 goto found;
4256 }
4257 }
4258
4259 return NULL;
4260
4261 found:
4262 if (shared_dpll[i].crtc_mask == 0)
4263 shared_dpll[i].hw_state =
4264 crtc_state->dpll_hw_state;
4265
4266 crtc_state->shared_dpll = i;
4267 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4268 pipe_name(crtc->pipe));
4269
4270 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4271
4272 return pll;
4273 }
4274
4275 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4276 {
4277 struct drm_i915_private *dev_priv = to_i915(state->dev);
4278 struct intel_shared_dpll_config *shared_dpll;
4279 struct intel_shared_dpll *pll;
4280 enum intel_dpll_id i;
4281
4282 if (!to_intel_atomic_state(state)->dpll_set)
4283 return;
4284
4285 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4286 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4287 pll = &dev_priv->shared_dplls[i];
4288 pll->config = shared_dpll[i];
4289 }
4290 }
4291
4292 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4293 {
4294 struct drm_i915_private *dev_priv = dev->dev_private;
4295 int dslreg = PIPEDSL(pipe);
4296 u32 temp;
4297
4298 temp = I915_READ(dslreg);
4299 udelay(500);
4300 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4301 if (wait_for(I915_READ(dslreg) != temp, 5))
4302 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4303 }
4304 }
4305
4306 static int
4307 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4308 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4309 int src_w, int src_h, int dst_w, int dst_h)
4310 {
4311 struct intel_crtc_scaler_state *scaler_state =
4312 &crtc_state->scaler_state;
4313 struct intel_crtc *intel_crtc =
4314 to_intel_crtc(crtc_state->base.crtc);
4315 int need_scaling;
4316
4317 need_scaling = intel_rotation_90_or_270(rotation) ?
4318 (src_h != dst_w || src_w != dst_h):
4319 (src_w != dst_w || src_h != dst_h);
4320
4321 /*
4322 * if plane is being disabled or scaler is no more required or force detach
4323 * - free scaler binded to this plane/crtc
4324 * - in order to do this, update crtc->scaler_usage
4325 *
4326 * Here scaler state in crtc_state is set free so that
4327 * scaler can be assigned to other user. Actual register
4328 * update to free the scaler is done in plane/panel-fit programming.
4329 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4330 */
4331 if (force_detach || !need_scaling) {
4332 if (*scaler_id >= 0) {
4333 scaler_state->scaler_users &= ~(1 << scaler_user);
4334 scaler_state->scalers[*scaler_id].in_use = 0;
4335
4336 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4337 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4338 intel_crtc->pipe, scaler_user, *scaler_id,
4339 scaler_state->scaler_users);
4340 *scaler_id = -1;
4341 }
4342 return 0;
4343 }
4344
4345 /* range checks */
4346 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4347 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4348
4349 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4350 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4351 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4352 "size is out of scaler range\n",
4353 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4354 return -EINVAL;
4355 }
4356
4357 /* mark this plane as a scaler user in crtc_state */
4358 scaler_state->scaler_users |= (1 << scaler_user);
4359 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4360 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4361 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4362 scaler_state->scaler_users);
4363
4364 return 0;
4365 }
4366
4367 /**
4368 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4369 *
4370 * @state: crtc's scaler state
4371 *
4372 * Return
4373 * 0 - scaler_usage updated successfully
4374 * error - requested scaling cannot be supported or other error condition
4375 */
4376 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4377 {
4378 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4379 struct drm_display_mode *adjusted_mode =
4380 &state->base.adjusted_mode;
4381
4382 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4383 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4384
4385 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4386 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4387 state->pipe_src_w, state->pipe_src_h,
4388 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4389 }
4390
4391 /**
4392 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4393 *
4394 * @state: crtc's scaler state
4395 * @plane_state: atomic plane state to update
4396 *
4397 * Return
4398 * 0 - scaler_usage updated successfully
4399 * error - requested scaling cannot be supported or other error condition
4400 */
4401 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4402 struct intel_plane_state *plane_state)
4403 {
4404
4405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4406 struct intel_plane *intel_plane =
4407 to_intel_plane(plane_state->base.plane);
4408 struct drm_framebuffer *fb = plane_state->base.fb;
4409 int ret;
4410
4411 bool force_detach = !fb || !plane_state->visible;
4412
4413 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4414 intel_plane->base.base.id, intel_crtc->pipe,
4415 drm_plane_index(&intel_plane->base));
4416
4417 ret = skl_update_scaler(crtc_state, force_detach,
4418 drm_plane_index(&intel_plane->base),
4419 &plane_state->scaler_id,
4420 plane_state->base.rotation,
4421 drm_rect_width(&plane_state->src) >> 16,
4422 drm_rect_height(&plane_state->src) >> 16,
4423 drm_rect_width(&plane_state->dst),
4424 drm_rect_height(&plane_state->dst));
4425
4426 if (ret || plane_state->scaler_id < 0)
4427 return ret;
4428
4429 /* check colorkey */
4430 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4431 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4432 intel_plane->base.base.id);
4433 return -EINVAL;
4434 }
4435
4436 /* Check src format */
4437 switch (fb->pixel_format) {
4438 case DRM_FORMAT_RGB565:
4439 case DRM_FORMAT_XBGR8888:
4440 case DRM_FORMAT_XRGB8888:
4441 case DRM_FORMAT_ABGR8888:
4442 case DRM_FORMAT_ARGB8888:
4443 case DRM_FORMAT_XRGB2101010:
4444 case DRM_FORMAT_XBGR2101010:
4445 case DRM_FORMAT_YUYV:
4446 case DRM_FORMAT_YVYU:
4447 case DRM_FORMAT_UYVY:
4448 case DRM_FORMAT_VYUY:
4449 break;
4450 default:
4451 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4452 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4453 return -EINVAL;
4454 }
4455
4456 return 0;
4457 }
4458
4459 static void skylake_scaler_disable(struct intel_crtc *crtc)
4460 {
4461 int i;
4462
4463 for (i = 0; i < crtc->num_scalers; i++)
4464 skl_detach_scaler(crtc, i);
4465 }
4466
4467 static void skylake_pfit_enable(struct intel_crtc *crtc)
4468 {
4469 struct drm_device *dev = crtc->base.dev;
4470 struct drm_i915_private *dev_priv = dev->dev_private;
4471 int pipe = crtc->pipe;
4472 struct intel_crtc_scaler_state *scaler_state =
4473 &crtc->config->scaler_state;
4474
4475 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4476
4477 if (crtc->config->pch_pfit.enabled) {
4478 int id;
4479
4480 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4481 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4482 return;
4483 }
4484
4485 id = scaler_state->scaler_id;
4486 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4487 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4488 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4489 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4490
4491 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4492 }
4493 }
4494
4495 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4496 {
4497 struct drm_device *dev = crtc->base.dev;
4498 struct drm_i915_private *dev_priv = dev->dev_private;
4499 int pipe = crtc->pipe;
4500
4501 if (crtc->config->pch_pfit.enabled) {
4502 /* Force use of hard-coded filter coefficients
4503 * as some pre-programmed values are broken,
4504 * e.g. x201.
4505 */
4506 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4507 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4508 PF_PIPE_SEL_IVB(pipe));
4509 else
4510 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4511 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4512 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4513 }
4514 }
4515
4516 void hsw_enable_ips(struct intel_crtc *crtc)
4517 {
4518 struct drm_device *dev = crtc->base.dev;
4519 struct drm_i915_private *dev_priv = dev->dev_private;
4520
4521 if (!crtc->config->ips_enabled)
4522 return;
4523
4524 /* We can only enable IPS after we enable a plane and wait for a vblank */
4525 intel_wait_for_vblank(dev, crtc->pipe);
4526
4527 assert_plane_enabled(dev_priv, crtc->plane);
4528 if (IS_BROADWELL(dev)) {
4529 mutex_lock(&dev_priv->rps.hw_lock);
4530 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4531 mutex_unlock(&dev_priv->rps.hw_lock);
4532 /* Quoting Art Runyan: "its not safe to expect any particular
4533 * value in IPS_CTL bit 31 after enabling IPS through the
4534 * mailbox." Moreover, the mailbox may return a bogus state,
4535 * so we need to just enable it and continue on.
4536 */
4537 } else {
4538 I915_WRITE(IPS_CTL, IPS_ENABLE);
4539 /* The bit only becomes 1 in the next vblank, so this wait here
4540 * is essentially intel_wait_for_vblank. If we don't have this
4541 * and don't wait for vblanks until the end of crtc_enable, then
4542 * the HW state readout code will complain that the expected
4543 * IPS_CTL value is not the one we read. */
4544 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4545 DRM_ERROR("Timed out waiting for IPS enable\n");
4546 }
4547 }
4548
4549 void hsw_disable_ips(struct intel_crtc *crtc)
4550 {
4551 struct drm_device *dev = crtc->base.dev;
4552 struct drm_i915_private *dev_priv = dev->dev_private;
4553
4554 if (!crtc->config->ips_enabled)
4555 return;
4556
4557 assert_plane_enabled(dev_priv, crtc->plane);
4558 if (IS_BROADWELL(dev)) {
4559 mutex_lock(&dev_priv->rps.hw_lock);
4560 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4561 mutex_unlock(&dev_priv->rps.hw_lock);
4562 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4563 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4564 DRM_ERROR("Timed out waiting for IPS disable\n");
4565 } else {
4566 I915_WRITE(IPS_CTL, 0);
4567 POSTING_READ(IPS_CTL);
4568 }
4569
4570 /* We need to wait for a vblank before we can disable the plane. */
4571 intel_wait_for_vblank(dev, crtc->pipe);
4572 }
4573
4574 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4575 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4576 {
4577 struct drm_device *dev = crtc->dev;
4578 struct drm_i915_private *dev_priv = dev->dev_private;
4579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4580 enum pipe pipe = intel_crtc->pipe;
4581 int palreg = PALETTE(pipe);
4582 int i;
4583 bool reenable_ips = false;
4584
4585 /* The clocks have to be on to load the palette. */
4586 if (!crtc->state->active)
4587 return;
4588
4589 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4590 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4591 assert_dsi_pll_enabled(dev_priv);
4592 else
4593 assert_pll_enabled(dev_priv, pipe);
4594 }
4595
4596 /* use legacy palette for Ironlake */
4597 if (!HAS_GMCH_DISPLAY(dev))
4598 palreg = LGC_PALETTE(pipe);
4599
4600 /* Workaround : Do not read or write the pipe palette/gamma data while
4601 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4602 */
4603 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4604 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4605 GAMMA_MODE_MODE_SPLIT)) {
4606 hsw_disable_ips(intel_crtc);
4607 reenable_ips = true;
4608 }
4609
4610 for (i = 0; i < 256; i++) {
4611 I915_WRITE(palreg + 4 * i,
4612 (intel_crtc->lut_r[i] << 16) |
4613 (intel_crtc->lut_g[i] << 8) |
4614 intel_crtc->lut_b[i]);
4615 }
4616
4617 if (reenable_ips)
4618 hsw_enable_ips(intel_crtc);
4619 }
4620
4621 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4622 {
4623 if (intel_crtc->overlay) {
4624 struct drm_device *dev = intel_crtc->base.dev;
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626
4627 mutex_lock(&dev->struct_mutex);
4628 dev_priv->mm.interruptible = false;
4629 (void) intel_overlay_switch_off(intel_crtc->overlay);
4630 dev_priv->mm.interruptible = true;
4631 mutex_unlock(&dev->struct_mutex);
4632 }
4633
4634 /* Let userspace switch the overlay on again. In most cases userspace
4635 * has to recompute where to put it anyway.
4636 */
4637 }
4638
4639 /**
4640 * intel_post_enable_primary - Perform operations after enabling primary plane
4641 * @crtc: the CRTC whose primary plane was just enabled
4642 *
4643 * Performs potentially sleeping operations that must be done after the primary
4644 * plane is enabled, such as updating FBC and IPS. Note that this may be
4645 * called due to an explicit primary plane update, or due to an implicit
4646 * re-enable that is caused when a sprite plane is updated to no longer
4647 * completely hide the primary plane.
4648 */
4649 static void
4650 intel_post_enable_primary(struct drm_crtc *crtc)
4651 {
4652 struct drm_device *dev = crtc->dev;
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4655 int pipe = intel_crtc->pipe;
4656
4657 /*
4658 * BDW signals flip done immediately if the plane
4659 * is disabled, even if the plane enable is already
4660 * armed to occur at the next vblank :(
4661 */
4662 if (IS_BROADWELL(dev))
4663 intel_wait_for_vblank(dev, pipe);
4664
4665 /*
4666 * FIXME IPS should be fine as long as one plane is
4667 * enabled, but in practice it seems to have problems
4668 * when going from primary only to sprite only and vice
4669 * versa.
4670 */
4671 hsw_enable_ips(intel_crtc);
4672
4673 /*
4674 * Gen2 reports pipe underruns whenever all planes are disabled.
4675 * So don't enable underrun reporting before at least some planes
4676 * are enabled.
4677 * FIXME: Need to fix the logic to work when we turn off all planes
4678 * but leave the pipe running.
4679 */
4680 if (IS_GEN2(dev))
4681 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4682
4683 /* Underruns don't raise interrupts, so check manually. */
4684 if (HAS_GMCH_DISPLAY(dev))
4685 i9xx_check_fifo_underruns(dev_priv);
4686 }
4687
4688 /**
4689 * intel_pre_disable_primary - Perform operations before disabling primary plane
4690 * @crtc: the CRTC whose primary plane is to be disabled
4691 *
4692 * Performs potentially sleeping operations that must be done before the
4693 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4694 * be called due to an explicit primary plane update, or due to an implicit
4695 * disable that is caused when a sprite plane completely hides the primary
4696 * plane.
4697 */
4698 static void
4699 intel_pre_disable_primary(struct drm_crtc *crtc)
4700 {
4701 struct drm_device *dev = crtc->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4704 int pipe = intel_crtc->pipe;
4705
4706 /*
4707 * Gen2 reports pipe underruns whenever all planes are disabled.
4708 * So diasble underrun reporting before all the planes get disabled.
4709 * FIXME: Need to fix the logic to work when we turn off all planes
4710 * but leave the pipe running.
4711 */
4712 if (IS_GEN2(dev))
4713 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4714
4715 /*
4716 * Vblank time updates from the shadow to live plane control register
4717 * are blocked if the memory self-refresh mode is active at that
4718 * moment. So to make sure the plane gets truly disabled, disable
4719 * first the self-refresh mode. The self-refresh enable bit in turn
4720 * will be checked/applied by the HW only at the next frame start
4721 * event which is after the vblank start event, so we need to have a
4722 * wait-for-vblank between disabling the plane and the pipe.
4723 */
4724 if (HAS_GMCH_DISPLAY(dev)) {
4725 intel_set_memory_cxsr(dev_priv, false);
4726 dev_priv->wm.vlv.cxsr = false;
4727 intel_wait_for_vblank(dev, pipe);
4728 }
4729
4730 /*
4731 * FIXME IPS should be fine as long as one plane is
4732 * enabled, but in practice it seems to have problems
4733 * when going from primary only to sprite only and vice
4734 * versa.
4735 */
4736 hsw_disable_ips(intel_crtc);
4737 }
4738
4739 static void intel_post_plane_update(struct intel_crtc *crtc)
4740 {
4741 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4742 struct drm_device *dev = crtc->base.dev;
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744 struct drm_plane *plane;
4745
4746 if (atomic->wait_vblank)
4747 intel_wait_for_vblank(dev, crtc->pipe);
4748
4749 intel_frontbuffer_flip(dev, atomic->fb_bits);
4750
4751 if (atomic->disable_cxsr)
4752 crtc->wm.cxsr_allowed = true;
4753
4754 if (crtc->atomic.update_wm_post)
4755 intel_update_watermarks(&crtc->base);
4756
4757 if (atomic->update_fbc)
4758 intel_fbc_update(dev_priv);
4759
4760 if (atomic->post_enable_primary)
4761 intel_post_enable_primary(&crtc->base);
4762
4763 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4764 intel_update_sprite_watermarks(plane, &crtc->base,
4765 0, 0, 0, false, false);
4766
4767 memset(atomic, 0, sizeof(*atomic));
4768 }
4769
4770 static void intel_pre_plane_update(struct intel_crtc *crtc)
4771 {
4772 struct drm_device *dev = crtc->base.dev;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4775 struct drm_plane *p;
4776
4777 /* Track fb's for any planes being disabled */
4778 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4779 struct intel_plane *plane = to_intel_plane(p);
4780
4781 mutex_lock(&dev->struct_mutex);
4782 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4783 plane->frontbuffer_bit);
4784 mutex_unlock(&dev->struct_mutex);
4785 }
4786
4787 if (atomic->wait_for_flips)
4788 intel_crtc_wait_for_pending_flips(&crtc->base);
4789
4790 if (atomic->disable_fbc)
4791 intel_fbc_disable_crtc(crtc);
4792
4793 if (crtc->atomic.disable_ips)
4794 hsw_disable_ips(crtc);
4795
4796 if (atomic->pre_disable_primary)
4797 intel_pre_disable_primary(&crtc->base);
4798
4799 if (atomic->disable_cxsr) {
4800 crtc->wm.cxsr_allowed = false;
4801 intel_set_memory_cxsr(dev_priv, false);
4802 }
4803 }
4804
4805 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4806 {
4807 struct drm_device *dev = crtc->dev;
4808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4809 struct drm_plane *p;
4810 int pipe = intel_crtc->pipe;
4811
4812 intel_crtc_dpms_overlay_disable(intel_crtc);
4813
4814 drm_for_each_plane_mask(p, dev, plane_mask)
4815 to_intel_plane(p)->disable_plane(p, crtc);
4816
4817 /*
4818 * FIXME: Once we grow proper nuclear flip support out of this we need
4819 * to compute the mask of flip planes precisely. For the time being
4820 * consider this a flip to a NULL plane.
4821 */
4822 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4823 }
4824
4825 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4826 {
4827 struct drm_device *dev = crtc->dev;
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4830 struct intel_encoder *encoder;
4831 int pipe = intel_crtc->pipe;
4832
4833 if (WARN_ON(intel_crtc->active))
4834 return;
4835
4836 if (intel_crtc->config->has_pch_encoder)
4837 intel_prepare_shared_dpll(intel_crtc);
4838
4839 if (intel_crtc->config->has_dp_encoder)
4840 intel_dp_set_m_n(intel_crtc, M1_N1);
4841
4842 intel_set_pipe_timings(intel_crtc);
4843
4844 if (intel_crtc->config->has_pch_encoder) {
4845 intel_cpu_transcoder_set_m_n(intel_crtc,
4846 &intel_crtc->config->fdi_m_n, NULL);
4847 }
4848
4849 ironlake_set_pipeconf(crtc);
4850
4851 intel_crtc->active = true;
4852
4853 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4854 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4855
4856 for_each_encoder_on_crtc(dev, crtc, encoder)
4857 if (encoder->pre_enable)
4858 encoder->pre_enable(encoder);
4859
4860 if (intel_crtc->config->has_pch_encoder) {
4861 /* Note: FDI PLL enabling _must_ be done before we enable the
4862 * cpu pipes, hence this is separate from all the other fdi/pch
4863 * enabling. */
4864 ironlake_fdi_pll_enable(intel_crtc);
4865 } else {
4866 assert_fdi_tx_disabled(dev_priv, pipe);
4867 assert_fdi_rx_disabled(dev_priv, pipe);
4868 }
4869
4870 ironlake_pfit_enable(intel_crtc);
4871
4872 /*
4873 * On ILK+ LUT must be loaded before the pipe is running but with
4874 * clocks enabled
4875 */
4876 intel_crtc_load_lut(crtc);
4877
4878 intel_update_watermarks(crtc);
4879 intel_enable_pipe(intel_crtc);
4880
4881 if (intel_crtc->config->has_pch_encoder)
4882 ironlake_pch_enable(crtc);
4883
4884 assert_vblank_disabled(crtc);
4885 drm_crtc_vblank_on(crtc);
4886
4887 for_each_encoder_on_crtc(dev, crtc, encoder)
4888 encoder->enable(encoder);
4889
4890 if (HAS_PCH_CPT(dev))
4891 cpt_verify_modeset(dev, intel_crtc->pipe);
4892 }
4893
4894 /* IPS only exists on ULT machines and is tied to pipe A. */
4895 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4896 {
4897 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4898 }
4899
4900 static void haswell_crtc_enable(struct drm_crtc *crtc)
4901 {
4902 struct drm_device *dev = crtc->dev;
4903 struct drm_i915_private *dev_priv = dev->dev_private;
4904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4905 struct intel_encoder *encoder;
4906 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4907 struct intel_crtc_state *pipe_config =
4908 to_intel_crtc_state(crtc->state);
4909
4910 if (WARN_ON(intel_crtc->active))
4911 return;
4912
4913 if (intel_crtc_to_shared_dpll(intel_crtc))
4914 intel_enable_shared_dpll(intel_crtc);
4915
4916 if (intel_crtc->config->has_dp_encoder)
4917 intel_dp_set_m_n(intel_crtc, M1_N1);
4918
4919 intel_set_pipe_timings(intel_crtc);
4920
4921 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4922 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4923 intel_crtc->config->pixel_multiplier - 1);
4924 }
4925
4926 if (intel_crtc->config->has_pch_encoder) {
4927 intel_cpu_transcoder_set_m_n(intel_crtc,
4928 &intel_crtc->config->fdi_m_n, NULL);
4929 }
4930
4931 haswell_set_pipeconf(crtc);
4932
4933 intel_set_pipe_csc(crtc);
4934
4935 intel_crtc->active = true;
4936
4937 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4938 for_each_encoder_on_crtc(dev, crtc, encoder)
4939 if (encoder->pre_enable)
4940 encoder->pre_enable(encoder);
4941
4942 if (intel_crtc->config->has_pch_encoder) {
4943 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4944 true);
4945 dev_priv->display.fdi_link_train(crtc);
4946 }
4947
4948 intel_ddi_enable_pipe_clock(intel_crtc);
4949
4950 if (INTEL_INFO(dev)->gen == 9)
4951 skylake_pfit_enable(intel_crtc);
4952 else if (INTEL_INFO(dev)->gen < 9)
4953 ironlake_pfit_enable(intel_crtc);
4954 else
4955 MISSING_CASE(INTEL_INFO(dev)->gen);
4956
4957 /*
4958 * On ILK+ LUT must be loaded before the pipe is running but with
4959 * clocks enabled
4960 */
4961 intel_crtc_load_lut(crtc);
4962
4963 intel_ddi_set_pipe_settings(crtc);
4964 intel_ddi_enable_transcoder_func(crtc);
4965
4966 intel_update_watermarks(crtc);
4967 intel_enable_pipe(intel_crtc);
4968
4969 if (intel_crtc->config->has_pch_encoder)
4970 lpt_pch_enable(crtc);
4971
4972 if (intel_crtc->config->dp_encoder_is_mst)
4973 intel_ddi_set_vc_payload_alloc(crtc, true);
4974
4975 assert_vblank_disabled(crtc);
4976 drm_crtc_vblank_on(crtc);
4977
4978 for_each_encoder_on_crtc(dev, crtc, encoder) {
4979 encoder->enable(encoder);
4980 intel_opregion_notify_encoder(encoder, true);
4981 }
4982
4983 /* If we change the relative order between pipe/planes enabling, we need
4984 * to change the workaround. */
4985 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4986 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4987 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4988 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4989 }
4990 }
4991
4992 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4993 {
4994 struct drm_device *dev = crtc->base.dev;
4995 struct drm_i915_private *dev_priv = dev->dev_private;
4996 int pipe = crtc->pipe;
4997
4998 /* To avoid upsetting the power well on haswell only disable the pfit if
4999 * it's in use. The hw state code will make sure we get this right. */
5000 if (crtc->config->pch_pfit.enabled) {
5001 I915_WRITE(PF_CTL(pipe), 0);
5002 I915_WRITE(PF_WIN_POS(pipe), 0);
5003 I915_WRITE(PF_WIN_SZ(pipe), 0);
5004 }
5005 }
5006
5007 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5008 {
5009 struct drm_device *dev = crtc->dev;
5010 struct drm_i915_private *dev_priv = dev->dev_private;
5011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5012 struct intel_encoder *encoder;
5013 int pipe = intel_crtc->pipe;
5014 u32 reg, temp;
5015
5016 for_each_encoder_on_crtc(dev, crtc, encoder)
5017 encoder->disable(encoder);
5018
5019 drm_crtc_vblank_off(crtc);
5020 assert_vblank_disabled(crtc);
5021
5022 if (intel_crtc->config->has_pch_encoder)
5023 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5024
5025 intel_disable_pipe(intel_crtc);
5026
5027 ironlake_pfit_disable(intel_crtc);
5028
5029 if (intel_crtc->config->has_pch_encoder)
5030 ironlake_fdi_disable(crtc);
5031
5032 for_each_encoder_on_crtc(dev, crtc, encoder)
5033 if (encoder->post_disable)
5034 encoder->post_disable(encoder);
5035
5036 if (intel_crtc->config->has_pch_encoder) {
5037 ironlake_disable_pch_transcoder(dev_priv, pipe);
5038
5039 if (HAS_PCH_CPT(dev)) {
5040 /* disable TRANS_DP_CTL */
5041 reg = TRANS_DP_CTL(pipe);
5042 temp = I915_READ(reg);
5043 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5044 TRANS_DP_PORT_SEL_MASK);
5045 temp |= TRANS_DP_PORT_SEL_NONE;
5046 I915_WRITE(reg, temp);
5047
5048 /* disable DPLL_SEL */
5049 temp = I915_READ(PCH_DPLL_SEL);
5050 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5051 I915_WRITE(PCH_DPLL_SEL, temp);
5052 }
5053
5054 ironlake_fdi_pll_disable(intel_crtc);
5055 }
5056
5057 intel_crtc->active = false;
5058 intel_update_watermarks(crtc);
5059 }
5060
5061 static void haswell_crtc_disable(struct drm_crtc *crtc)
5062 {
5063 struct drm_device *dev = crtc->dev;
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5066 struct intel_encoder *encoder;
5067 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5068
5069 for_each_encoder_on_crtc(dev, crtc, encoder) {
5070 intel_opregion_notify_encoder(encoder, false);
5071 encoder->disable(encoder);
5072 }
5073
5074 drm_crtc_vblank_off(crtc);
5075 assert_vblank_disabled(crtc);
5076
5077 if (intel_crtc->config->has_pch_encoder)
5078 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5079 false);
5080 intel_disable_pipe(intel_crtc);
5081
5082 if (intel_crtc->config->dp_encoder_is_mst)
5083 intel_ddi_set_vc_payload_alloc(crtc, false);
5084
5085 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5086
5087 if (INTEL_INFO(dev)->gen == 9)
5088 skylake_scaler_disable(intel_crtc);
5089 else if (INTEL_INFO(dev)->gen < 9)
5090 ironlake_pfit_disable(intel_crtc);
5091 else
5092 MISSING_CASE(INTEL_INFO(dev)->gen);
5093
5094 intel_ddi_disable_pipe_clock(intel_crtc);
5095
5096 if (intel_crtc->config->has_pch_encoder) {
5097 lpt_disable_pch_transcoder(dev_priv);
5098 intel_ddi_fdi_disable(crtc);
5099 }
5100
5101 for_each_encoder_on_crtc(dev, crtc, encoder)
5102 if (encoder->post_disable)
5103 encoder->post_disable(encoder);
5104
5105 intel_crtc->active = false;
5106 intel_update_watermarks(crtc);
5107 }
5108
5109 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5110 {
5111 struct drm_device *dev = crtc->base.dev;
5112 struct drm_i915_private *dev_priv = dev->dev_private;
5113 struct intel_crtc_state *pipe_config = crtc->config;
5114
5115 if (!pipe_config->gmch_pfit.control)
5116 return;
5117
5118 /*
5119 * The panel fitter should only be adjusted whilst the pipe is disabled,
5120 * according to register description and PRM.
5121 */
5122 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5123 assert_pipe_disabled(dev_priv, crtc->pipe);
5124
5125 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5126 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5127
5128 /* Border color in case we don't scale up to the full screen. Black by
5129 * default, change to something else for debugging. */
5130 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5131 }
5132
5133 static enum intel_display_power_domain port_to_power_domain(enum port port)
5134 {
5135 switch (port) {
5136 case PORT_A:
5137 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5138 case PORT_B:
5139 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5140 case PORT_C:
5141 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5142 case PORT_D:
5143 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5144 default:
5145 WARN_ON_ONCE(1);
5146 return POWER_DOMAIN_PORT_OTHER;
5147 }
5148 }
5149
5150 #define for_each_power_domain(domain, mask) \
5151 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5152 if ((1 << (domain)) & (mask))
5153
5154 enum intel_display_power_domain
5155 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5156 {
5157 struct drm_device *dev = intel_encoder->base.dev;
5158 struct intel_digital_port *intel_dig_port;
5159
5160 switch (intel_encoder->type) {
5161 case INTEL_OUTPUT_UNKNOWN:
5162 /* Only DDI platforms should ever use this output type */
5163 WARN_ON_ONCE(!HAS_DDI(dev));
5164 case INTEL_OUTPUT_DISPLAYPORT:
5165 case INTEL_OUTPUT_HDMI:
5166 case INTEL_OUTPUT_EDP:
5167 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5168 return port_to_power_domain(intel_dig_port->port);
5169 case INTEL_OUTPUT_DP_MST:
5170 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5171 return port_to_power_domain(intel_dig_port->port);
5172 case INTEL_OUTPUT_ANALOG:
5173 return POWER_DOMAIN_PORT_CRT;
5174 case INTEL_OUTPUT_DSI:
5175 return POWER_DOMAIN_PORT_DSI;
5176 default:
5177 return POWER_DOMAIN_PORT_OTHER;
5178 }
5179 }
5180
5181 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5182 {
5183 struct drm_device *dev = crtc->dev;
5184 struct intel_encoder *intel_encoder;
5185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5186 enum pipe pipe = intel_crtc->pipe;
5187 unsigned long mask;
5188 enum transcoder transcoder;
5189
5190 if (!crtc->state->active)
5191 return 0;
5192
5193 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5194
5195 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5196 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5197 if (intel_crtc->config->pch_pfit.enabled ||
5198 intel_crtc->config->pch_pfit.force_thru)
5199 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5200
5201 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5202 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5203
5204 return mask;
5205 }
5206
5207 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5208 {
5209 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5211 enum intel_display_power_domain domain;
5212 unsigned long domains, new_domains, old_domains;
5213
5214 old_domains = intel_crtc->enabled_power_domains;
5215 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5216
5217 domains = new_domains & ~old_domains;
5218
5219 for_each_power_domain(domain, domains)
5220 intel_display_power_get(dev_priv, domain);
5221
5222 return old_domains & ~new_domains;
5223 }
5224
5225 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5226 unsigned long domains)
5227 {
5228 enum intel_display_power_domain domain;
5229
5230 for_each_power_domain(domain, domains)
5231 intel_display_power_put(dev_priv, domain);
5232 }
5233
5234 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5235 {
5236 struct drm_device *dev = state->dev;
5237 struct drm_i915_private *dev_priv = dev->dev_private;
5238 unsigned long put_domains[I915_MAX_PIPES] = {};
5239 struct drm_crtc_state *crtc_state;
5240 struct drm_crtc *crtc;
5241 int i;
5242
5243 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5244 if (needs_modeset(crtc->state))
5245 put_domains[to_intel_crtc(crtc)->pipe] =
5246 modeset_get_crtc_power_domains(crtc);
5247 }
5248
5249 if (dev_priv->display.modeset_commit_cdclk) {
5250 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5251
5252 if (cdclk != dev_priv->cdclk_freq &&
5253 !WARN_ON(!state->allow_modeset))
5254 dev_priv->display.modeset_commit_cdclk(state);
5255 }
5256
5257 for (i = 0; i < I915_MAX_PIPES; i++)
5258 if (put_domains[i])
5259 modeset_put_power_domains(dev_priv, put_domains[i]);
5260 }
5261
5262 static void intel_update_max_cdclk(struct drm_device *dev)
5263 {
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265
5266 if (IS_SKYLAKE(dev)) {
5267 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5268
5269 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5270 dev_priv->max_cdclk_freq = 675000;
5271 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5272 dev_priv->max_cdclk_freq = 540000;
5273 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5274 dev_priv->max_cdclk_freq = 450000;
5275 else
5276 dev_priv->max_cdclk_freq = 337500;
5277 } else if (IS_BROADWELL(dev)) {
5278 /*
5279 * FIXME with extra cooling we can allow
5280 * 540 MHz for ULX and 675 Mhz for ULT.
5281 * How can we know if extra cooling is
5282 * available? PCI ID, VTB, something else?
5283 */
5284 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5285 dev_priv->max_cdclk_freq = 450000;
5286 else if (IS_BDW_ULX(dev))
5287 dev_priv->max_cdclk_freq = 450000;
5288 else if (IS_BDW_ULT(dev))
5289 dev_priv->max_cdclk_freq = 540000;
5290 else
5291 dev_priv->max_cdclk_freq = 675000;
5292 } else if (IS_CHERRYVIEW(dev)) {
5293 dev_priv->max_cdclk_freq = 320000;
5294 } else if (IS_VALLEYVIEW(dev)) {
5295 dev_priv->max_cdclk_freq = 400000;
5296 } else {
5297 /* otherwise assume cdclk is fixed */
5298 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5299 }
5300
5301 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5302 dev_priv->max_cdclk_freq);
5303 }
5304
5305 static void intel_update_cdclk(struct drm_device *dev)
5306 {
5307 struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5310 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5311 dev_priv->cdclk_freq);
5312
5313 /*
5314 * Program the gmbus_freq based on the cdclk frequency.
5315 * BSpec erroneously claims we should aim for 4MHz, but
5316 * in fact 1MHz is the correct frequency.
5317 */
5318 if (IS_VALLEYVIEW(dev)) {
5319 /*
5320 * Program the gmbus_freq based on the cdclk frequency.
5321 * BSpec erroneously claims we should aim for 4MHz, but
5322 * in fact 1MHz is the correct frequency.
5323 */
5324 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5325 }
5326
5327 if (dev_priv->max_cdclk_freq == 0)
5328 intel_update_max_cdclk(dev);
5329 }
5330
5331 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5332 {
5333 struct drm_i915_private *dev_priv = dev->dev_private;
5334 uint32_t divider;
5335 uint32_t ratio;
5336 uint32_t current_freq;
5337 int ret;
5338
5339 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5340 switch (frequency) {
5341 case 144000:
5342 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5343 ratio = BXT_DE_PLL_RATIO(60);
5344 break;
5345 case 288000:
5346 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5347 ratio = BXT_DE_PLL_RATIO(60);
5348 break;
5349 case 384000:
5350 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5351 ratio = BXT_DE_PLL_RATIO(60);
5352 break;
5353 case 576000:
5354 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5355 ratio = BXT_DE_PLL_RATIO(60);
5356 break;
5357 case 624000:
5358 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5359 ratio = BXT_DE_PLL_RATIO(65);
5360 break;
5361 case 19200:
5362 /*
5363 * Bypass frequency with DE PLL disabled. Init ratio, divider
5364 * to suppress GCC warning.
5365 */
5366 ratio = 0;
5367 divider = 0;
5368 break;
5369 default:
5370 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5371
5372 return;
5373 }
5374
5375 mutex_lock(&dev_priv->rps.hw_lock);
5376 /* Inform power controller of upcoming frequency change */
5377 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5378 0x80000000);
5379 mutex_unlock(&dev_priv->rps.hw_lock);
5380
5381 if (ret) {
5382 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5383 ret, frequency);
5384 return;
5385 }
5386
5387 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5388 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5389 current_freq = current_freq * 500 + 1000;
5390
5391 /*
5392 * DE PLL has to be disabled when
5393 * - setting to 19.2MHz (bypass, PLL isn't used)
5394 * - before setting to 624MHz (PLL needs toggling)
5395 * - before setting to any frequency from 624MHz (PLL needs toggling)
5396 */
5397 if (frequency == 19200 || frequency == 624000 ||
5398 current_freq == 624000) {
5399 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5400 /* Timeout 200us */
5401 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5402 1))
5403 DRM_ERROR("timout waiting for DE PLL unlock\n");
5404 }
5405
5406 if (frequency != 19200) {
5407 uint32_t val;
5408
5409 val = I915_READ(BXT_DE_PLL_CTL);
5410 val &= ~BXT_DE_PLL_RATIO_MASK;
5411 val |= ratio;
5412 I915_WRITE(BXT_DE_PLL_CTL, val);
5413
5414 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5415 /* Timeout 200us */
5416 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5417 DRM_ERROR("timeout waiting for DE PLL lock\n");
5418
5419 val = I915_READ(CDCLK_CTL);
5420 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5421 val |= divider;
5422 /*
5423 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5424 * enable otherwise.
5425 */
5426 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5427 if (frequency >= 500000)
5428 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5429
5430 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5431 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5432 val |= (frequency - 1000) / 500;
5433 I915_WRITE(CDCLK_CTL, val);
5434 }
5435
5436 mutex_lock(&dev_priv->rps.hw_lock);
5437 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5438 DIV_ROUND_UP(frequency, 25000));
5439 mutex_unlock(&dev_priv->rps.hw_lock);
5440
5441 if (ret) {
5442 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5443 ret, frequency);
5444 return;
5445 }
5446
5447 intel_update_cdclk(dev);
5448 }
5449
5450 void broxton_init_cdclk(struct drm_device *dev)
5451 {
5452 struct drm_i915_private *dev_priv = dev->dev_private;
5453 uint32_t val;
5454
5455 /*
5456 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5457 * or else the reset will hang because there is no PCH to respond.
5458 * Move the handshake programming to initialization sequence.
5459 * Previously was left up to BIOS.
5460 */
5461 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5462 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5463 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5464
5465 /* Enable PG1 for cdclk */
5466 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5467
5468 /* check if cd clock is enabled */
5469 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5470 DRM_DEBUG_KMS("Display already initialized\n");
5471 return;
5472 }
5473
5474 /*
5475 * FIXME:
5476 * - The initial CDCLK needs to be read from VBT.
5477 * Need to make this change after VBT has changes for BXT.
5478 * - check if setting the max (or any) cdclk freq is really necessary
5479 * here, it belongs to modeset time
5480 */
5481 broxton_set_cdclk(dev, 624000);
5482
5483 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5484 POSTING_READ(DBUF_CTL);
5485
5486 udelay(10);
5487
5488 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5489 DRM_ERROR("DBuf power enable timeout!\n");
5490 }
5491
5492 void broxton_uninit_cdclk(struct drm_device *dev)
5493 {
5494 struct drm_i915_private *dev_priv = dev->dev_private;
5495
5496 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5497 POSTING_READ(DBUF_CTL);
5498
5499 udelay(10);
5500
5501 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5502 DRM_ERROR("DBuf power disable timeout!\n");
5503
5504 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5505 broxton_set_cdclk(dev, 19200);
5506
5507 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5508 }
5509
5510 static const struct skl_cdclk_entry {
5511 unsigned int freq;
5512 unsigned int vco;
5513 } skl_cdclk_frequencies[] = {
5514 { .freq = 308570, .vco = 8640 },
5515 { .freq = 337500, .vco = 8100 },
5516 { .freq = 432000, .vco = 8640 },
5517 { .freq = 450000, .vco = 8100 },
5518 { .freq = 540000, .vco = 8100 },
5519 { .freq = 617140, .vco = 8640 },
5520 { .freq = 675000, .vco = 8100 },
5521 };
5522
5523 static unsigned int skl_cdclk_decimal(unsigned int freq)
5524 {
5525 return (freq - 1000) / 500;
5526 }
5527
5528 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5529 {
5530 unsigned int i;
5531
5532 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5533 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5534
5535 if (e->freq == freq)
5536 return e->vco;
5537 }
5538
5539 return 8100;
5540 }
5541
5542 static void
5543 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5544 {
5545 unsigned int min_freq;
5546 u32 val;
5547
5548 /* select the minimum CDCLK before enabling DPLL 0 */
5549 val = I915_READ(CDCLK_CTL);
5550 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5551 val |= CDCLK_FREQ_337_308;
5552
5553 if (required_vco == 8640)
5554 min_freq = 308570;
5555 else
5556 min_freq = 337500;
5557
5558 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5559
5560 I915_WRITE(CDCLK_CTL, val);
5561 POSTING_READ(CDCLK_CTL);
5562
5563 /*
5564 * We always enable DPLL0 with the lowest link rate possible, but still
5565 * taking into account the VCO required to operate the eDP panel at the
5566 * desired frequency. The usual DP link rates operate with a VCO of
5567 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5568 * The modeset code is responsible for the selection of the exact link
5569 * rate later on, with the constraint of choosing a frequency that
5570 * works with required_vco.
5571 */
5572 val = I915_READ(DPLL_CTRL1);
5573
5574 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5575 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5576 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5577 if (required_vco == 8640)
5578 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5579 SKL_DPLL0);
5580 else
5581 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5582 SKL_DPLL0);
5583
5584 I915_WRITE(DPLL_CTRL1, val);
5585 POSTING_READ(DPLL_CTRL1);
5586
5587 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5588
5589 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5590 DRM_ERROR("DPLL0 not locked\n");
5591 }
5592
5593 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5594 {
5595 int ret;
5596 u32 val;
5597
5598 /* inform PCU we want to change CDCLK */
5599 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5600 mutex_lock(&dev_priv->rps.hw_lock);
5601 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5602 mutex_unlock(&dev_priv->rps.hw_lock);
5603
5604 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5605 }
5606
5607 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5608 {
5609 unsigned int i;
5610
5611 for (i = 0; i < 15; i++) {
5612 if (skl_cdclk_pcu_ready(dev_priv))
5613 return true;
5614 udelay(10);
5615 }
5616
5617 return false;
5618 }
5619
5620 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5621 {
5622 struct drm_device *dev = dev_priv->dev;
5623 u32 freq_select, pcu_ack;
5624
5625 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5626
5627 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5628 DRM_ERROR("failed to inform PCU about cdclk change\n");
5629 return;
5630 }
5631
5632 /* set CDCLK_CTL */
5633 switch(freq) {
5634 case 450000:
5635 case 432000:
5636 freq_select = CDCLK_FREQ_450_432;
5637 pcu_ack = 1;
5638 break;
5639 case 540000:
5640 freq_select = CDCLK_FREQ_540;
5641 pcu_ack = 2;
5642 break;
5643 case 308570:
5644 case 337500:
5645 default:
5646 freq_select = CDCLK_FREQ_337_308;
5647 pcu_ack = 0;
5648 break;
5649 case 617140:
5650 case 675000:
5651 freq_select = CDCLK_FREQ_675_617;
5652 pcu_ack = 3;
5653 break;
5654 }
5655
5656 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5657 POSTING_READ(CDCLK_CTL);
5658
5659 /* inform PCU of the change */
5660 mutex_lock(&dev_priv->rps.hw_lock);
5661 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5662 mutex_unlock(&dev_priv->rps.hw_lock);
5663
5664 intel_update_cdclk(dev);
5665 }
5666
5667 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5668 {
5669 /* disable DBUF power */
5670 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5671 POSTING_READ(DBUF_CTL);
5672
5673 udelay(10);
5674
5675 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5676 DRM_ERROR("DBuf power disable timeout\n");
5677
5678 /* disable DPLL0 */
5679 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5680 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5681 DRM_ERROR("Couldn't disable DPLL0\n");
5682
5683 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5684 }
5685
5686 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5687 {
5688 u32 val;
5689 unsigned int required_vco;
5690
5691 /* enable PCH reset handshake */
5692 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5693 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5694
5695 /* enable PG1 and Misc I/O */
5696 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5697
5698 /* DPLL0 already enabed !? */
5699 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5700 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5701 return;
5702 }
5703
5704 /* enable DPLL0 */
5705 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5706 skl_dpll0_enable(dev_priv, required_vco);
5707
5708 /* set CDCLK to the frequency the BIOS chose */
5709 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5710
5711 /* enable DBUF power */
5712 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5713 POSTING_READ(DBUF_CTL);
5714
5715 udelay(10);
5716
5717 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5718 DRM_ERROR("DBuf power enable timeout\n");
5719 }
5720
5721 /* returns HPLL frequency in kHz */
5722 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5723 {
5724 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5725
5726 /* Obtain SKU information */
5727 mutex_lock(&dev_priv->sb_lock);
5728 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5729 CCK_FUSE_HPLL_FREQ_MASK;
5730 mutex_unlock(&dev_priv->sb_lock);
5731
5732 return vco_freq[hpll_freq] * 1000;
5733 }
5734
5735 /* Adjust CDclk dividers to allow high res or save power if possible */
5736 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5737 {
5738 struct drm_i915_private *dev_priv = dev->dev_private;
5739 u32 val, cmd;
5740
5741 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5742 != dev_priv->cdclk_freq);
5743
5744 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5745 cmd = 2;
5746 else if (cdclk == 266667)
5747 cmd = 1;
5748 else
5749 cmd = 0;
5750
5751 mutex_lock(&dev_priv->rps.hw_lock);
5752 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5753 val &= ~DSPFREQGUAR_MASK;
5754 val |= (cmd << DSPFREQGUAR_SHIFT);
5755 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5756 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5757 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5758 50)) {
5759 DRM_ERROR("timed out waiting for CDclk change\n");
5760 }
5761 mutex_unlock(&dev_priv->rps.hw_lock);
5762
5763 mutex_lock(&dev_priv->sb_lock);
5764
5765 if (cdclk == 400000) {
5766 u32 divider;
5767
5768 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5769
5770 /* adjust cdclk divider */
5771 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5772 val &= ~DISPLAY_FREQUENCY_VALUES;
5773 val |= divider;
5774 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5775
5776 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5777 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5778 50))
5779 DRM_ERROR("timed out waiting for CDclk change\n");
5780 }
5781
5782 /* adjust self-refresh exit latency value */
5783 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5784 val &= ~0x7f;
5785
5786 /*
5787 * For high bandwidth configs, we set a higher latency in the bunit
5788 * so that the core display fetch happens in time to avoid underruns.
5789 */
5790 if (cdclk == 400000)
5791 val |= 4500 / 250; /* 4.5 usec */
5792 else
5793 val |= 3000 / 250; /* 3.0 usec */
5794 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5795
5796 mutex_unlock(&dev_priv->sb_lock);
5797
5798 intel_update_cdclk(dev);
5799 }
5800
5801 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5802 {
5803 struct drm_i915_private *dev_priv = dev->dev_private;
5804 u32 val, cmd;
5805
5806 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5807 != dev_priv->cdclk_freq);
5808
5809 switch (cdclk) {
5810 case 333333:
5811 case 320000:
5812 case 266667:
5813 case 200000:
5814 break;
5815 default:
5816 MISSING_CASE(cdclk);
5817 return;
5818 }
5819
5820 /*
5821 * Specs are full of misinformation, but testing on actual
5822 * hardware has shown that we just need to write the desired
5823 * CCK divider into the Punit register.
5824 */
5825 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5826
5827 mutex_lock(&dev_priv->rps.hw_lock);
5828 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5829 val &= ~DSPFREQGUAR_MASK_CHV;
5830 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5831 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5832 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5833 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5834 50)) {
5835 DRM_ERROR("timed out waiting for CDclk change\n");
5836 }
5837 mutex_unlock(&dev_priv->rps.hw_lock);
5838
5839 intel_update_cdclk(dev);
5840 }
5841
5842 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5843 int max_pixclk)
5844 {
5845 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5846 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5847
5848 /*
5849 * Really only a few cases to deal with, as only 4 CDclks are supported:
5850 * 200MHz
5851 * 267MHz
5852 * 320/333MHz (depends on HPLL freq)
5853 * 400MHz (VLV only)
5854 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5855 * of the lower bin and adjust if needed.
5856 *
5857 * We seem to get an unstable or solid color picture at 200MHz.
5858 * Not sure what's wrong. For now use 200MHz only when all pipes
5859 * are off.
5860 */
5861 if (!IS_CHERRYVIEW(dev_priv) &&
5862 max_pixclk > freq_320*limit/100)
5863 return 400000;
5864 else if (max_pixclk > 266667*limit/100)
5865 return freq_320;
5866 else if (max_pixclk > 0)
5867 return 266667;
5868 else
5869 return 200000;
5870 }
5871
5872 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5873 int max_pixclk)
5874 {
5875 /*
5876 * FIXME:
5877 * - remove the guardband, it's not needed on BXT
5878 * - set 19.2MHz bypass frequency if there are no active pipes
5879 */
5880 if (max_pixclk > 576000*9/10)
5881 return 624000;
5882 else if (max_pixclk > 384000*9/10)
5883 return 576000;
5884 else if (max_pixclk > 288000*9/10)
5885 return 384000;
5886 else if (max_pixclk > 144000*9/10)
5887 return 288000;
5888 else
5889 return 144000;
5890 }
5891
5892 /* Compute the max pixel clock for new configuration. Uses atomic state if
5893 * that's non-NULL, look at current state otherwise. */
5894 static int intel_mode_max_pixclk(struct drm_device *dev,
5895 struct drm_atomic_state *state)
5896 {
5897 struct intel_crtc *intel_crtc;
5898 struct intel_crtc_state *crtc_state;
5899 int max_pixclk = 0;
5900
5901 for_each_intel_crtc(dev, intel_crtc) {
5902 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5903 if (IS_ERR(crtc_state))
5904 return PTR_ERR(crtc_state);
5905
5906 if (!crtc_state->base.enable)
5907 continue;
5908
5909 max_pixclk = max(max_pixclk,
5910 crtc_state->base.adjusted_mode.crtc_clock);
5911 }
5912
5913 return max_pixclk;
5914 }
5915
5916 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5917 {
5918 struct drm_device *dev = state->dev;
5919 struct drm_i915_private *dev_priv = dev->dev_private;
5920 int max_pixclk = intel_mode_max_pixclk(dev, state);
5921
5922 if (max_pixclk < 0)
5923 return max_pixclk;
5924
5925 to_intel_atomic_state(state)->cdclk =
5926 valleyview_calc_cdclk(dev_priv, max_pixclk);
5927
5928 return 0;
5929 }
5930
5931 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5932 {
5933 struct drm_device *dev = state->dev;
5934 struct drm_i915_private *dev_priv = dev->dev_private;
5935 int max_pixclk = intel_mode_max_pixclk(dev, state);
5936
5937 if (max_pixclk < 0)
5938 return max_pixclk;
5939
5940 to_intel_atomic_state(state)->cdclk =
5941 broxton_calc_cdclk(dev_priv, max_pixclk);
5942
5943 return 0;
5944 }
5945
5946 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5947 {
5948 unsigned int credits, default_credits;
5949
5950 if (IS_CHERRYVIEW(dev_priv))
5951 default_credits = PFI_CREDIT(12);
5952 else
5953 default_credits = PFI_CREDIT(8);
5954
5955 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5956 /* CHV suggested value is 31 or 63 */
5957 if (IS_CHERRYVIEW(dev_priv))
5958 credits = PFI_CREDIT_63;
5959 else
5960 credits = PFI_CREDIT(15);
5961 } else {
5962 credits = default_credits;
5963 }
5964
5965 /*
5966 * WA - write default credits before re-programming
5967 * FIXME: should we also set the resend bit here?
5968 */
5969 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5970 default_credits);
5971
5972 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5973 credits | PFI_CREDIT_RESEND);
5974
5975 /*
5976 * FIXME is this guaranteed to clear
5977 * immediately or should we poll for it?
5978 */
5979 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5980 }
5981
5982 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5983 {
5984 struct drm_device *dev = old_state->dev;
5985 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5986 struct drm_i915_private *dev_priv = dev->dev_private;
5987
5988 /*
5989 * FIXME: We can end up here with all power domains off, yet
5990 * with a CDCLK frequency other than the minimum. To account
5991 * for this take the PIPE-A power domain, which covers the HW
5992 * blocks needed for the following programming. This can be
5993 * removed once it's guaranteed that we get here either with
5994 * the minimum CDCLK set, or the required power domains
5995 * enabled.
5996 */
5997 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5998
5999 if (IS_CHERRYVIEW(dev))
6000 cherryview_set_cdclk(dev, req_cdclk);
6001 else
6002 valleyview_set_cdclk(dev, req_cdclk);
6003
6004 vlv_program_pfi_credits(dev_priv);
6005
6006 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6007 }
6008
6009 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6010 {
6011 struct drm_device *dev = crtc->dev;
6012 struct drm_i915_private *dev_priv = to_i915(dev);
6013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6014 struct intel_encoder *encoder;
6015 int pipe = intel_crtc->pipe;
6016 bool is_dsi;
6017
6018 if (WARN_ON(intel_crtc->active))
6019 return;
6020
6021 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6022
6023 if (!is_dsi) {
6024 if (IS_CHERRYVIEW(dev))
6025 chv_prepare_pll(intel_crtc, intel_crtc->config);
6026 else
6027 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6028 }
6029
6030 if (intel_crtc->config->has_dp_encoder)
6031 intel_dp_set_m_n(intel_crtc, M1_N1);
6032
6033 intel_set_pipe_timings(intel_crtc);
6034
6035 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037
6038 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6039 I915_WRITE(CHV_CANVAS(pipe), 0);
6040 }
6041
6042 i9xx_set_pipeconf(intel_crtc);
6043
6044 intel_crtc->active = true;
6045
6046 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6047
6048 for_each_encoder_on_crtc(dev, crtc, encoder)
6049 if (encoder->pre_pll_enable)
6050 encoder->pre_pll_enable(encoder);
6051
6052 if (!is_dsi) {
6053 if (IS_CHERRYVIEW(dev))
6054 chv_enable_pll(intel_crtc, intel_crtc->config);
6055 else
6056 vlv_enable_pll(intel_crtc, intel_crtc->config);
6057 }
6058
6059 for_each_encoder_on_crtc(dev, crtc, encoder)
6060 if (encoder->pre_enable)
6061 encoder->pre_enable(encoder);
6062
6063 i9xx_pfit_enable(intel_crtc);
6064
6065 intel_crtc_load_lut(crtc);
6066
6067 intel_enable_pipe(intel_crtc);
6068
6069 assert_vblank_disabled(crtc);
6070 drm_crtc_vblank_on(crtc);
6071
6072 for_each_encoder_on_crtc(dev, crtc, encoder)
6073 encoder->enable(encoder);
6074 }
6075
6076 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6077 {
6078 struct drm_device *dev = crtc->base.dev;
6079 struct drm_i915_private *dev_priv = dev->dev_private;
6080
6081 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6082 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6083 }
6084
6085 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6086 {
6087 struct drm_device *dev = crtc->dev;
6088 struct drm_i915_private *dev_priv = to_i915(dev);
6089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6090 struct intel_encoder *encoder;
6091 int pipe = intel_crtc->pipe;
6092
6093 if (WARN_ON(intel_crtc->active))
6094 return;
6095
6096 i9xx_set_pll_dividers(intel_crtc);
6097
6098 if (intel_crtc->config->has_dp_encoder)
6099 intel_dp_set_m_n(intel_crtc, M1_N1);
6100
6101 intel_set_pipe_timings(intel_crtc);
6102
6103 i9xx_set_pipeconf(intel_crtc);
6104
6105 intel_crtc->active = true;
6106
6107 if (!IS_GEN2(dev))
6108 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6109
6110 for_each_encoder_on_crtc(dev, crtc, encoder)
6111 if (encoder->pre_enable)
6112 encoder->pre_enable(encoder);
6113
6114 i9xx_enable_pll(intel_crtc);
6115
6116 i9xx_pfit_enable(intel_crtc);
6117
6118 intel_crtc_load_lut(crtc);
6119
6120 intel_update_watermarks(crtc);
6121 intel_enable_pipe(intel_crtc);
6122
6123 assert_vblank_disabled(crtc);
6124 drm_crtc_vblank_on(crtc);
6125
6126 for_each_encoder_on_crtc(dev, crtc, encoder)
6127 encoder->enable(encoder);
6128 }
6129
6130 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6131 {
6132 struct drm_device *dev = crtc->base.dev;
6133 struct drm_i915_private *dev_priv = dev->dev_private;
6134
6135 if (!crtc->config->gmch_pfit.control)
6136 return;
6137
6138 assert_pipe_disabled(dev_priv, crtc->pipe);
6139
6140 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6141 I915_READ(PFIT_CONTROL));
6142 I915_WRITE(PFIT_CONTROL, 0);
6143 }
6144
6145 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6146 {
6147 struct drm_device *dev = crtc->dev;
6148 struct drm_i915_private *dev_priv = dev->dev_private;
6149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6150 struct intel_encoder *encoder;
6151 int pipe = intel_crtc->pipe;
6152
6153 /*
6154 * On gen2 planes are double buffered but the pipe isn't, so we must
6155 * wait for planes to fully turn off before disabling the pipe.
6156 * We also need to wait on all gmch platforms because of the
6157 * self-refresh mode constraint explained above.
6158 */
6159 intel_wait_for_vblank(dev, pipe);
6160
6161 for_each_encoder_on_crtc(dev, crtc, encoder)
6162 encoder->disable(encoder);
6163
6164 drm_crtc_vblank_off(crtc);
6165 assert_vblank_disabled(crtc);
6166
6167 intel_disable_pipe(intel_crtc);
6168
6169 i9xx_pfit_disable(intel_crtc);
6170
6171 for_each_encoder_on_crtc(dev, crtc, encoder)
6172 if (encoder->post_disable)
6173 encoder->post_disable(encoder);
6174
6175 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6176 if (IS_CHERRYVIEW(dev))
6177 chv_disable_pll(dev_priv, pipe);
6178 else if (IS_VALLEYVIEW(dev))
6179 vlv_disable_pll(dev_priv, pipe);
6180 else
6181 i9xx_disable_pll(intel_crtc);
6182 }
6183
6184 if (!IS_GEN2(dev))
6185 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6186
6187 intel_crtc->active = false;
6188 intel_update_watermarks(crtc);
6189 }
6190
6191 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6192 {
6193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6194 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6195 enum intel_display_power_domain domain;
6196 unsigned long domains;
6197
6198 if (!intel_crtc->active)
6199 return;
6200
6201 if (to_intel_plane_state(crtc->primary->state)->visible) {
6202 intel_crtc_wait_for_pending_flips(crtc);
6203 intel_pre_disable_primary(crtc);
6204 }
6205
6206 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6207 dev_priv->display.crtc_disable(crtc);
6208 intel_disable_shared_dpll(intel_crtc);
6209
6210 domains = intel_crtc->enabled_power_domains;
6211 for_each_power_domain(domain, domains)
6212 intel_display_power_put(dev_priv, domain);
6213 intel_crtc->enabled_power_domains = 0;
6214 }
6215
6216 /*
6217 * turn all crtc's off, but do not adjust state
6218 * This has to be paired with a call to intel_modeset_setup_hw_state.
6219 */
6220 int intel_display_suspend(struct drm_device *dev)
6221 {
6222 struct drm_mode_config *config = &dev->mode_config;
6223 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6224 struct drm_atomic_state *state;
6225 struct drm_crtc *crtc;
6226 unsigned crtc_mask = 0;
6227 int ret = 0;
6228
6229 if (WARN_ON(!ctx))
6230 return 0;
6231
6232 lockdep_assert_held(&ctx->ww_ctx);
6233 state = drm_atomic_state_alloc(dev);
6234 if (WARN_ON(!state))
6235 return -ENOMEM;
6236
6237 state->acquire_ctx = ctx;
6238 state->allow_modeset = true;
6239
6240 for_each_crtc(dev, crtc) {
6241 struct drm_crtc_state *crtc_state =
6242 drm_atomic_get_crtc_state(state, crtc);
6243
6244 ret = PTR_ERR_OR_ZERO(crtc_state);
6245 if (ret)
6246 goto free;
6247
6248 if (!crtc_state->active)
6249 continue;
6250
6251 crtc_state->active = false;
6252 crtc_mask |= 1 << drm_crtc_index(crtc);
6253 }
6254
6255 if (crtc_mask) {
6256 ret = drm_atomic_commit(state);
6257
6258 if (!ret) {
6259 for_each_crtc(dev, crtc)
6260 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6261 crtc->state->active = true;
6262
6263 return ret;
6264 }
6265 }
6266
6267 free:
6268 if (ret)
6269 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6270 drm_atomic_state_free(state);
6271 return ret;
6272 }
6273
6274 /* Master function to enable/disable CRTC and corresponding power wells */
6275 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6276 {
6277 struct drm_device *dev = crtc->dev;
6278 struct drm_mode_config *config = &dev->mode_config;
6279 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281 struct intel_crtc_state *pipe_config;
6282 struct drm_atomic_state *state;
6283 int ret;
6284
6285 if (enable == intel_crtc->active)
6286 return 0;
6287
6288 if (enable && !crtc->state->enable)
6289 return 0;
6290
6291 /* this function should be called with drm_modeset_lock_all for now */
6292 if (WARN_ON(!ctx))
6293 return -EIO;
6294 lockdep_assert_held(&ctx->ww_ctx);
6295
6296 state = drm_atomic_state_alloc(dev);
6297 if (WARN_ON(!state))
6298 return -ENOMEM;
6299
6300 state->acquire_ctx = ctx;
6301 state->allow_modeset = true;
6302
6303 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6304 if (IS_ERR(pipe_config)) {
6305 ret = PTR_ERR(pipe_config);
6306 goto err;
6307 }
6308 pipe_config->base.active = enable;
6309
6310 ret = drm_atomic_commit(state);
6311 if (!ret)
6312 return ret;
6313
6314 err:
6315 DRM_ERROR("Updating crtc active failed with %i\n", ret);
6316 drm_atomic_state_free(state);
6317 return ret;
6318 }
6319
6320 /**
6321 * Sets the power management mode of the pipe and plane.
6322 */
6323 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6324 {
6325 struct drm_device *dev = crtc->dev;
6326 struct intel_encoder *intel_encoder;
6327 bool enable = false;
6328
6329 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6330 enable |= intel_encoder->connectors_active;
6331
6332 intel_crtc_control(crtc, enable);
6333 }
6334
6335 void intel_encoder_destroy(struct drm_encoder *encoder)
6336 {
6337 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6338
6339 drm_encoder_cleanup(encoder);
6340 kfree(intel_encoder);
6341 }
6342
6343 /* Simple dpms helper for encoders with just one connector, no cloning and only
6344 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6345 * state of the entire output pipe. */
6346 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6347 {
6348 if (mode == DRM_MODE_DPMS_ON) {
6349 encoder->connectors_active = true;
6350
6351 intel_crtc_update_dpms(encoder->base.crtc);
6352 } else {
6353 encoder->connectors_active = false;
6354
6355 intel_crtc_update_dpms(encoder->base.crtc);
6356 }
6357 }
6358
6359 /* Cross check the actual hw state with our own modeset state tracking (and it's
6360 * internal consistency). */
6361 static void intel_connector_check_state(struct intel_connector *connector)
6362 {
6363 if (connector->get_hw_state(connector)) {
6364 struct intel_encoder *encoder = connector->encoder;
6365 struct drm_crtc *crtc;
6366 bool encoder_enabled;
6367 enum pipe pipe;
6368
6369 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6370 connector->base.base.id,
6371 connector->base.name);
6372
6373 /* there is no real hw state for MST connectors */
6374 if (connector->mst_port)
6375 return;
6376
6377 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6378 "wrong connector dpms state\n");
6379 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6380 "active connector not linked to encoder\n");
6381
6382 if (encoder) {
6383 I915_STATE_WARN(!encoder->connectors_active,
6384 "encoder->connectors_active not set\n");
6385
6386 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6387 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6388 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6389 return;
6390
6391 crtc = encoder->base.crtc;
6392
6393 I915_STATE_WARN(!crtc->state->enable,
6394 "crtc not enabled\n");
6395 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6396 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6397 "encoder active on the wrong pipe\n");
6398 }
6399 }
6400 }
6401
6402 int intel_connector_init(struct intel_connector *connector)
6403 {
6404 struct drm_connector_state *connector_state;
6405
6406 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6407 if (!connector_state)
6408 return -ENOMEM;
6409
6410 connector->base.state = connector_state;
6411 return 0;
6412 }
6413
6414 struct intel_connector *intel_connector_alloc(void)
6415 {
6416 struct intel_connector *connector;
6417
6418 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6419 if (!connector)
6420 return NULL;
6421
6422 if (intel_connector_init(connector) < 0) {
6423 kfree(connector);
6424 return NULL;
6425 }
6426
6427 return connector;
6428 }
6429
6430 /* Even simpler default implementation, if there's really no special case to
6431 * consider. */
6432 void intel_connector_dpms(struct drm_connector *connector, int mode)
6433 {
6434 /* All the simple cases only support two dpms states. */
6435 if (mode != DRM_MODE_DPMS_ON)
6436 mode = DRM_MODE_DPMS_OFF;
6437
6438 if (mode == connector->dpms)
6439 return;
6440
6441 connector->dpms = mode;
6442
6443 /* Only need to change hw state when actually enabled */
6444 if (connector->encoder)
6445 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6446
6447 intel_modeset_check_state(connector->dev);
6448 }
6449
6450 /* Simple connector->get_hw_state implementation for encoders that support only
6451 * one connector and no cloning and hence the encoder state determines the state
6452 * of the connector. */
6453 bool intel_connector_get_hw_state(struct intel_connector *connector)
6454 {
6455 enum pipe pipe = 0;
6456 struct intel_encoder *encoder = connector->encoder;
6457
6458 return encoder->get_hw_state(encoder, &pipe);
6459 }
6460
6461 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6462 {
6463 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6464 return crtc_state->fdi_lanes;
6465
6466 return 0;
6467 }
6468
6469 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6470 struct intel_crtc_state *pipe_config)
6471 {
6472 struct drm_atomic_state *state = pipe_config->base.state;
6473 struct intel_crtc *other_crtc;
6474 struct intel_crtc_state *other_crtc_state;
6475
6476 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6477 pipe_name(pipe), pipe_config->fdi_lanes);
6478 if (pipe_config->fdi_lanes > 4) {
6479 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6480 pipe_name(pipe), pipe_config->fdi_lanes);
6481 return -EINVAL;
6482 }
6483
6484 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6485 if (pipe_config->fdi_lanes > 2) {
6486 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6487 pipe_config->fdi_lanes);
6488 return -EINVAL;
6489 } else {
6490 return 0;
6491 }
6492 }
6493
6494 if (INTEL_INFO(dev)->num_pipes == 2)
6495 return 0;
6496
6497 /* Ivybridge 3 pipe is really complicated */
6498 switch (pipe) {
6499 case PIPE_A:
6500 return 0;
6501 case PIPE_B:
6502 if (pipe_config->fdi_lanes <= 2)
6503 return 0;
6504
6505 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6506 other_crtc_state =
6507 intel_atomic_get_crtc_state(state, other_crtc);
6508 if (IS_ERR(other_crtc_state))
6509 return PTR_ERR(other_crtc_state);
6510
6511 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6512 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6513 pipe_name(pipe), pipe_config->fdi_lanes);
6514 return -EINVAL;
6515 }
6516 return 0;
6517 case PIPE_C:
6518 if (pipe_config->fdi_lanes > 2) {
6519 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6520 pipe_name(pipe), pipe_config->fdi_lanes);
6521 return -EINVAL;
6522 }
6523
6524 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6525 other_crtc_state =
6526 intel_atomic_get_crtc_state(state, other_crtc);
6527 if (IS_ERR(other_crtc_state))
6528 return PTR_ERR(other_crtc_state);
6529
6530 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6531 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6532 return -EINVAL;
6533 }
6534 return 0;
6535 default:
6536 BUG();
6537 }
6538 }
6539
6540 #define RETRY 1
6541 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6542 struct intel_crtc_state *pipe_config)
6543 {
6544 struct drm_device *dev = intel_crtc->base.dev;
6545 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6546 int lane, link_bw, fdi_dotclock, ret;
6547 bool needs_recompute = false;
6548
6549 retry:
6550 /* FDI is a binary signal running at ~2.7GHz, encoding
6551 * each output octet as 10 bits. The actual frequency
6552 * is stored as a divider into a 100MHz clock, and the
6553 * mode pixel clock is stored in units of 1KHz.
6554 * Hence the bw of each lane in terms of the mode signal
6555 * is:
6556 */
6557 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6558
6559 fdi_dotclock = adjusted_mode->crtc_clock;
6560
6561 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6562 pipe_config->pipe_bpp);
6563
6564 pipe_config->fdi_lanes = lane;
6565
6566 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6567 link_bw, &pipe_config->fdi_m_n);
6568
6569 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6570 intel_crtc->pipe, pipe_config);
6571 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6572 pipe_config->pipe_bpp -= 2*3;
6573 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6574 pipe_config->pipe_bpp);
6575 needs_recompute = true;
6576 pipe_config->bw_constrained = true;
6577
6578 goto retry;
6579 }
6580
6581 if (needs_recompute)
6582 return RETRY;
6583
6584 return ret;
6585 }
6586
6587 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6588 struct intel_crtc_state *pipe_config)
6589 {
6590 if (pipe_config->pipe_bpp > 24)
6591 return false;
6592
6593 /* HSW can handle pixel rate up to cdclk? */
6594 if (IS_HASWELL(dev_priv->dev))
6595 return true;
6596
6597 /*
6598 * We compare against max which means we must take
6599 * the increased cdclk requirement into account when
6600 * calculating the new cdclk.
6601 *
6602 * Should measure whether using a lower cdclk w/o IPS
6603 */
6604 return ilk_pipe_pixel_rate(pipe_config) <=
6605 dev_priv->max_cdclk_freq * 95 / 100;
6606 }
6607
6608 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6609 struct intel_crtc_state *pipe_config)
6610 {
6611 struct drm_device *dev = crtc->base.dev;
6612 struct drm_i915_private *dev_priv = dev->dev_private;
6613
6614 pipe_config->ips_enabled = i915.enable_ips &&
6615 hsw_crtc_supports_ips(crtc) &&
6616 pipe_config_supports_ips(dev_priv, pipe_config);
6617 }
6618
6619 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6620 struct intel_crtc_state *pipe_config)
6621 {
6622 struct drm_device *dev = crtc->base.dev;
6623 struct drm_i915_private *dev_priv = dev->dev_private;
6624 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6625
6626 /* FIXME should check pixel clock limits on all platforms */
6627 if (INTEL_INFO(dev)->gen < 4) {
6628 int clock_limit = dev_priv->max_cdclk_freq;
6629
6630 /*
6631 * Enable pixel doubling when the dot clock
6632 * is > 90% of the (display) core speed.
6633 *
6634 * GDG double wide on either pipe,
6635 * otherwise pipe A only.
6636 */
6637 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6638 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6639 clock_limit *= 2;
6640 pipe_config->double_wide = true;
6641 }
6642
6643 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6644 return -EINVAL;
6645 }
6646
6647 /*
6648 * Pipe horizontal size must be even in:
6649 * - DVO ganged mode
6650 * - LVDS dual channel mode
6651 * - Double wide pipe
6652 */
6653 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6654 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6655 pipe_config->pipe_src_w &= ~1;
6656
6657 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6658 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6659 */
6660 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6661 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6662 return -EINVAL;
6663
6664 if (HAS_IPS(dev))
6665 hsw_compute_ips_config(crtc, pipe_config);
6666
6667 if (pipe_config->has_pch_encoder)
6668 return ironlake_fdi_compute_config(crtc, pipe_config);
6669
6670 return 0;
6671 }
6672
6673 static int skylake_get_display_clock_speed(struct drm_device *dev)
6674 {
6675 struct drm_i915_private *dev_priv = to_i915(dev);
6676 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6677 uint32_t cdctl = I915_READ(CDCLK_CTL);
6678 uint32_t linkrate;
6679
6680 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6681 return 24000; /* 24MHz is the cd freq with NSSC ref */
6682
6683 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6684 return 540000;
6685
6686 linkrate = (I915_READ(DPLL_CTRL1) &
6687 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6688
6689 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6690 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6691 /* vco 8640 */
6692 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6693 case CDCLK_FREQ_450_432:
6694 return 432000;
6695 case CDCLK_FREQ_337_308:
6696 return 308570;
6697 case CDCLK_FREQ_675_617:
6698 return 617140;
6699 default:
6700 WARN(1, "Unknown cd freq selection\n");
6701 }
6702 } else {
6703 /* vco 8100 */
6704 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6705 case CDCLK_FREQ_450_432:
6706 return 450000;
6707 case CDCLK_FREQ_337_308:
6708 return 337500;
6709 case CDCLK_FREQ_675_617:
6710 return 675000;
6711 default:
6712 WARN(1, "Unknown cd freq selection\n");
6713 }
6714 }
6715
6716 /* error case, do as if DPLL0 isn't enabled */
6717 return 24000;
6718 }
6719
6720 static int broxton_get_display_clock_speed(struct drm_device *dev)
6721 {
6722 struct drm_i915_private *dev_priv = to_i915(dev);
6723 uint32_t cdctl = I915_READ(CDCLK_CTL);
6724 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6725 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6726 int cdclk;
6727
6728 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6729 return 19200;
6730
6731 cdclk = 19200 * pll_ratio / 2;
6732
6733 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6734 case BXT_CDCLK_CD2X_DIV_SEL_1:
6735 return cdclk; /* 576MHz or 624MHz */
6736 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6737 return cdclk * 2 / 3; /* 384MHz */
6738 case BXT_CDCLK_CD2X_DIV_SEL_2:
6739 return cdclk / 2; /* 288MHz */
6740 case BXT_CDCLK_CD2X_DIV_SEL_4:
6741 return cdclk / 4; /* 144MHz */
6742 }
6743
6744 /* error case, do as if DE PLL isn't enabled */
6745 return 19200;
6746 }
6747
6748 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6749 {
6750 struct drm_i915_private *dev_priv = dev->dev_private;
6751 uint32_t lcpll = I915_READ(LCPLL_CTL);
6752 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6753
6754 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6755 return 800000;
6756 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6757 return 450000;
6758 else if (freq == LCPLL_CLK_FREQ_450)
6759 return 450000;
6760 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6761 return 540000;
6762 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6763 return 337500;
6764 else
6765 return 675000;
6766 }
6767
6768 static int haswell_get_display_clock_speed(struct drm_device *dev)
6769 {
6770 struct drm_i915_private *dev_priv = dev->dev_private;
6771 uint32_t lcpll = I915_READ(LCPLL_CTL);
6772 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6773
6774 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6775 return 800000;
6776 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6777 return 450000;
6778 else if (freq == LCPLL_CLK_FREQ_450)
6779 return 450000;
6780 else if (IS_HSW_ULT(dev))
6781 return 337500;
6782 else
6783 return 540000;
6784 }
6785
6786 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6787 {
6788 struct drm_i915_private *dev_priv = dev->dev_private;
6789 u32 val;
6790 int divider;
6791
6792 if (dev_priv->hpll_freq == 0)
6793 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6794
6795 mutex_lock(&dev_priv->sb_lock);
6796 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6797 mutex_unlock(&dev_priv->sb_lock);
6798
6799 divider = val & DISPLAY_FREQUENCY_VALUES;
6800
6801 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6802 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6803 "cdclk change in progress\n");
6804
6805 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6806 }
6807
6808 static int ilk_get_display_clock_speed(struct drm_device *dev)
6809 {
6810 return 450000;
6811 }
6812
6813 static int i945_get_display_clock_speed(struct drm_device *dev)
6814 {
6815 return 400000;
6816 }
6817
6818 static int i915_get_display_clock_speed(struct drm_device *dev)
6819 {
6820 return 333333;
6821 }
6822
6823 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6824 {
6825 return 200000;
6826 }
6827
6828 static int pnv_get_display_clock_speed(struct drm_device *dev)
6829 {
6830 u16 gcfgc = 0;
6831
6832 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6833
6834 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6835 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6836 return 266667;
6837 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6838 return 333333;
6839 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6840 return 444444;
6841 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6842 return 200000;
6843 default:
6844 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6845 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6846 return 133333;
6847 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6848 return 166667;
6849 }
6850 }
6851
6852 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6853 {
6854 u16 gcfgc = 0;
6855
6856 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6857
6858 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6859 return 133333;
6860 else {
6861 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6862 case GC_DISPLAY_CLOCK_333_MHZ:
6863 return 333333;
6864 default:
6865 case GC_DISPLAY_CLOCK_190_200_MHZ:
6866 return 190000;
6867 }
6868 }
6869 }
6870
6871 static int i865_get_display_clock_speed(struct drm_device *dev)
6872 {
6873 return 266667;
6874 }
6875
6876 static int i85x_get_display_clock_speed(struct drm_device *dev)
6877 {
6878 u16 hpllcc = 0;
6879
6880 /*
6881 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6882 * encoding is different :(
6883 * FIXME is this the right way to detect 852GM/852GMV?
6884 */
6885 if (dev->pdev->revision == 0x1)
6886 return 133333;
6887
6888 pci_bus_read_config_word(dev->pdev->bus,
6889 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6890
6891 /* Assume that the hardware is in the high speed state. This
6892 * should be the default.
6893 */
6894 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6895 case GC_CLOCK_133_200:
6896 case GC_CLOCK_133_200_2:
6897 case GC_CLOCK_100_200:
6898 return 200000;
6899 case GC_CLOCK_166_250:
6900 return 250000;
6901 case GC_CLOCK_100_133:
6902 return 133333;
6903 case GC_CLOCK_133_266:
6904 case GC_CLOCK_133_266_2:
6905 case GC_CLOCK_166_266:
6906 return 266667;
6907 }
6908
6909 /* Shouldn't happen */
6910 return 0;
6911 }
6912
6913 static int i830_get_display_clock_speed(struct drm_device *dev)
6914 {
6915 return 133333;
6916 }
6917
6918 static unsigned int intel_hpll_vco(struct drm_device *dev)
6919 {
6920 struct drm_i915_private *dev_priv = dev->dev_private;
6921 static const unsigned int blb_vco[8] = {
6922 [0] = 3200000,
6923 [1] = 4000000,
6924 [2] = 5333333,
6925 [3] = 4800000,
6926 [4] = 6400000,
6927 };
6928 static const unsigned int pnv_vco[8] = {
6929 [0] = 3200000,
6930 [1] = 4000000,
6931 [2] = 5333333,
6932 [3] = 4800000,
6933 [4] = 2666667,
6934 };
6935 static const unsigned int cl_vco[8] = {
6936 [0] = 3200000,
6937 [1] = 4000000,
6938 [2] = 5333333,
6939 [3] = 6400000,
6940 [4] = 3333333,
6941 [5] = 3566667,
6942 [6] = 4266667,
6943 };
6944 static const unsigned int elk_vco[8] = {
6945 [0] = 3200000,
6946 [1] = 4000000,
6947 [2] = 5333333,
6948 [3] = 4800000,
6949 };
6950 static const unsigned int ctg_vco[8] = {
6951 [0] = 3200000,
6952 [1] = 4000000,
6953 [2] = 5333333,
6954 [3] = 6400000,
6955 [4] = 2666667,
6956 [5] = 4266667,
6957 };
6958 const unsigned int *vco_table;
6959 unsigned int vco;
6960 uint8_t tmp = 0;
6961
6962 /* FIXME other chipsets? */
6963 if (IS_GM45(dev))
6964 vco_table = ctg_vco;
6965 else if (IS_G4X(dev))
6966 vco_table = elk_vco;
6967 else if (IS_CRESTLINE(dev))
6968 vco_table = cl_vco;
6969 else if (IS_PINEVIEW(dev))
6970 vco_table = pnv_vco;
6971 else if (IS_G33(dev))
6972 vco_table = blb_vco;
6973 else
6974 return 0;
6975
6976 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6977
6978 vco = vco_table[tmp & 0x7];
6979 if (vco == 0)
6980 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6981 else
6982 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6983
6984 return vco;
6985 }
6986
6987 static int gm45_get_display_clock_speed(struct drm_device *dev)
6988 {
6989 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6990 uint16_t tmp = 0;
6991
6992 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6993
6994 cdclk_sel = (tmp >> 12) & 0x1;
6995
6996 switch (vco) {
6997 case 2666667:
6998 case 4000000:
6999 case 5333333:
7000 return cdclk_sel ? 333333 : 222222;
7001 case 3200000:
7002 return cdclk_sel ? 320000 : 228571;
7003 default:
7004 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7005 return 222222;
7006 }
7007 }
7008
7009 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7010 {
7011 static const uint8_t div_3200[] = { 16, 10, 8 };
7012 static const uint8_t div_4000[] = { 20, 12, 10 };
7013 static const uint8_t div_5333[] = { 24, 16, 14 };
7014 const uint8_t *div_table;
7015 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7016 uint16_t tmp = 0;
7017
7018 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7019
7020 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7021
7022 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7023 goto fail;
7024
7025 switch (vco) {
7026 case 3200000:
7027 div_table = div_3200;
7028 break;
7029 case 4000000:
7030 div_table = div_4000;
7031 break;
7032 case 5333333:
7033 div_table = div_5333;
7034 break;
7035 default:
7036 goto fail;
7037 }
7038
7039 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7040
7041 fail:
7042 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7043 return 200000;
7044 }
7045
7046 static int g33_get_display_clock_speed(struct drm_device *dev)
7047 {
7048 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7049 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7050 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7051 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7052 const uint8_t *div_table;
7053 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7054 uint16_t tmp = 0;
7055
7056 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7057
7058 cdclk_sel = (tmp >> 4) & 0x7;
7059
7060 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7061 goto fail;
7062
7063 switch (vco) {
7064 case 3200000:
7065 div_table = div_3200;
7066 break;
7067 case 4000000:
7068 div_table = div_4000;
7069 break;
7070 case 4800000:
7071 div_table = div_4800;
7072 break;
7073 case 5333333:
7074 div_table = div_5333;
7075 break;
7076 default:
7077 goto fail;
7078 }
7079
7080 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7081
7082 fail:
7083 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7084 return 190476;
7085 }
7086
7087 static void
7088 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7089 {
7090 while (*num > DATA_LINK_M_N_MASK ||
7091 *den > DATA_LINK_M_N_MASK) {
7092 *num >>= 1;
7093 *den >>= 1;
7094 }
7095 }
7096
7097 static void compute_m_n(unsigned int m, unsigned int n,
7098 uint32_t *ret_m, uint32_t *ret_n)
7099 {
7100 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7101 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7102 intel_reduce_m_n_ratio(ret_m, ret_n);
7103 }
7104
7105 void
7106 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7107 int pixel_clock, int link_clock,
7108 struct intel_link_m_n *m_n)
7109 {
7110 m_n->tu = 64;
7111
7112 compute_m_n(bits_per_pixel * pixel_clock,
7113 link_clock * nlanes * 8,
7114 &m_n->gmch_m, &m_n->gmch_n);
7115
7116 compute_m_n(pixel_clock, link_clock,
7117 &m_n->link_m, &m_n->link_n);
7118 }
7119
7120 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7121 {
7122 if (i915.panel_use_ssc >= 0)
7123 return i915.panel_use_ssc != 0;
7124 return dev_priv->vbt.lvds_use_ssc
7125 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7126 }
7127
7128 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7129 int num_connectors)
7130 {
7131 struct drm_device *dev = crtc_state->base.crtc->dev;
7132 struct drm_i915_private *dev_priv = dev->dev_private;
7133 int refclk;
7134
7135 WARN_ON(!crtc_state->base.state);
7136
7137 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7138 refclk = 100000;
7139 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7140 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7141 refclk = dev_priv->vbt.lvds_ssc_freq;
7142 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7143 } else if (!IS_GEN2(dev)) {
7144 refclk = 96000;
7145 } else {
7146 refclk = 48000;
7147 }
7148
7149 return refclk;
7150 }
7151
7152 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7153 {
7154 return (1 << dpll->n) << 16 | dpll->m2;
7155 }
7156
7157 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7158 {
7159 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7160 }
7161
7162 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7163 struct intel_crtc_state *crtc_state,
7164 intel_clock_t *reduced_clock)
7165 {
7166 struct drm_device *dev = crtc->base.dev;
7167 u32 fp, fp2 = 0;
7168
7169 if (IS_PINEVIEW(dev)) {
7170 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7171 if (reduced_clock)
7172 fp2 = pnv_dpll_compute_fp(reduced_clock);
7173 } else {
7174 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7175 if (reduced_clock)
7176 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7177 }
7178
7179 crtc_state->dpll_hw_state.fp0 = fp;
7180
7181 crtc->lowfreq_avail = false;
7182 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7183 reduced_clock) {
7184 crtc_state->dpll_hw_state.fp1 = fp2;
7185 crtc->lowfreq_avail = true;
7186 } else {
7187 crtc_state->dpll_hw_state.fp1 = fp;
7188 }
7189 }
7190
7191 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7192 pipe)
7193 {
7194 u32 reg_val;
7195
7196 /*
7197 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7198 * and set it to a reasonable value instead.
7199 */
7200 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7201 reg_val &= 0xffffff00;
7202 reg_val |= 0x00000030;
7203 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7204
7205 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7206 reg_val &= 0x8cffffff;
7207 reg_val = 0x8c000000;
7208 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7209
7210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7211 reg_val &= 0xffffff00;
7212 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7213
7214 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7215 reg_val &= 0x00ffffff;
7216 reg_val |= 0xb0000000;
7217 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7218 }
7219
7220 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7221 struct intel_link_m_n *m_n)
7222 {
7223 struct drm_device *dev = crtc->base.dev;
7224 struct drm_i915_private *dev_priv = dev->dev_private;
7225 int pipe = crtc->pipe;
7226
7227 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7228 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7229 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7230 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7231 }
7232
7233 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7234 struct intel_link_m_n *m_n,
7235 struct intel_link_m_n *m2_n2)
7236 {
7237 struct drm_device *dev = crtc->base.dev;
7238 struct drm_i915_private *dev_priv = dev->dev_private;
7239 int pipe = crtc->pipe;
7240 enum transcoder transcoder = crtc->config->cpu_transcoder;
7241
7242 if (INTEL_INFO(dev)->gen >= 5) {
7243 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7244 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7245 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7246 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7247 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7248 * for gen < 8) and if DRRS is supported (to make sure the
7249 * registers are not unnecessarily accessed).
7250 */
7251 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7252 crtc->config->has_drrs) {
7253 I915_WRITE(PIPE_DATA_M2(transcoder),
7254 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7255 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7256 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7257 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7258 }
7259 } else {
7260 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7261 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7262 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7263 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7264 }
7265 }
7266
7267 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7268 {
7269 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7270
7271 if (m_n == M1_N1) {
7272 dp_m_n = &crtc->config->dp_m_n;
7273 dp_m2_n2 = &crtc->config->dp_m2_n2;
7274 } else if (m_n == M2_N2) {
7275
7276 /*
7277 * M2_N2 registers are not supported. Hence m2_n2 divider value
7278 * needs to be programmed into M1_N1.
7279 */
7280 dp_m_n = &crtc->config->dp_m2_n2;
7281 } else {
7282 DRM_ERROR("Unsupported divider value\n");
7283 return;
7284 }
7285
7286 if (crtc->config->has_pch_encoder)
7287 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7288 else
7289 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7290 }
7291
7292 static void vlv_compute_dpll(struct intel_crtc *crtc,
7293 struct intel_crtc_state *pipe_config)
7294 {
7295 u32 dpll, dpll_md;
7296
7297 /*
7298 * Enable DPIO clock input. We should never disable the reference
7299 * clock for pipe B, since VGA hotplug / manual detection depends
7300 * on it.
7301 */
7302 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7303 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7304 /* We should never disable this, set it here for state tracking */
7305 if (crtc->pipe == PIPE_B)
7306 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7307 dpll |= DPLL_VCO_ENABLE;
7308 pipe_config->dpll_hw_state.dpll = dpll;
7309
7310 dpll_md = (pipe_config->pixel_multiplier - 1)
7311 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7312 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7313 }
7314
7315 static void vlv_prepare_pll(struct intel_crtc *crtc,
7316 const struct intel_crtc_state *pipe_config)
7317 {
7318 struct drm_device *dev = crtc->base.dev;
7319 struct drm_i915_private *dev_priv = dev->dev_private;
7320 int pipe = crtc->pipe;
7321 u32 mdiv;
7322 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7323 u32 coreclk, reg_val;
7324
7325 mutex_lock(&dev_priv->sb_lock);
7326
7327 bestn = pipe_config->dpll.n;
7328 bestm1 = pipe_config->dpll.m1;
7329 bestm2 = pipe_config->dpll.m2;
7330 bestp1 = pipe_config->dpll.p1;
7331 bestp2 = pipe_config->dpll.p2;
7332
7333 /* See eDP HDMI DPIO driver vbios notes doc */
7334
7335 /* PLL B needs special handling */
7336 if (pipe == PIPE_B)
7337 vlv_pllb_recal_opamp(dev_priv, pipe);
7338
7339 /* Set up Tx target for periodic Rcomp update */
7340 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7341
7342 /* Disable target IRef on PLL */
7343 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7344 reg_val &= 0x00ffffff;
7345 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7346
7347 /* Disable fast lock */
7348 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7349
7350 /* Set idtafcrecal before PLL is enabled */
7351 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7352 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7353 mdiv |= ((bestn << DPIO_N_SHIFT));
7354 mdiv |= (1 << DPIO_K_SHIFT);
7355
7356 /*
7357 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7358 * but we don't support that).
7359 * Note: don't use the DAC post divider as it seems unstable.
7360 */
7361 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7362 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7363
7364 mdiv |= DPIO_ENABLE_CALIBRATION;
7365 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7366
7367 /* Set HBR and RBR LPF coefficients */
7368 if (pipe_config->port_clock == 162000 ||
7369 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7370 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7371 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7372 0x009f0003);
7373 else
7374 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7375 0x00d0000f);
7376
7377 if (pipe_config->has_dp_encoder) {
7378 /* Use SSC source */
7379 if (pipe == PIPE_A)
7380 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7381 0x0df40000);
7382 else
7383 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7384 0x0df70000);
7385 } else { /* HDMI or VGA */
7386 /* Use bend source */
7387 if (pipe == PIPE_A)
7388 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7389 0x0df70000);
7390 else
7391 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7392 0x0df40000);
7393 }
7394
7395 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7396 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7397 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7398 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7399 coreclk |= 0x01000000;
7400 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7401
7402 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7403 mutex_unlock(&dev_priv->sb_lock);
7404 }
7405
7406 static void chv_compute_dpll(struct intel_crtc *crtc,
7407 struct intel_crtc_state *pipe_config)
7408 {
7409 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7410 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7411 DPLL_VCO_ENABLE;
7412 if (crtc->pipe != PIPE_A)
7413 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7414
7415 pipe_config->dpll_hw_state.dpll_md =
7416 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7417 }
7418
7419 static void chv_prepare_pll(struct intel_crtc *crtc,
7420 const struct intel_crtc_state *pipe_config)
7421 {
7422 struct drm_device *dev = crtc->base.dev;
7423 struct drm_i915_private *dev_priv = dev->dev_private;
7424 int pipe = crtc->pipe;
7425 int dpll_reg = DPLL(crtc->pipe);
7426 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7427 u32 loopfilter, tribuf_calcntr;
7428 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7429 u32 dpio_val;
7430 int vco;
7431
7432 bestn = pipe_config->dpll.n;
7433 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7434 bestm1 = pipe_config->dpll.m1;
7435 bestm2 = pipe_config->dpll.m2 >> 22;
7436 bestp1 = pipe_config->dpll.p1;
7437 bestp2 = pipe_config->dpll.p2;
7438 vco = pipe_config->dpll.vco;
7439 dpio_val = 0;
7440 loopfilter = 0;
7441
7442 /*
7443 * Enable Refclk and SSC
7444 */
7445 I915_WRITE(dpll_reg,
7446 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7447
7448 mutex_lock(&dev_priv->sb_lock);
7449
7450 /* p1 and p2 divider */
7451 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7452 5 << DPIO_CHV_S1_DIV_SHIFT |
7453 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7454 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7455 1 << DPIO_CHV_K_DIV_SHIFT);
7456
7457 /* Feedback post-divider - m2 */
7458 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7459
7460 /* Feedback refclk divider - n and m1 */
7461 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7462 DPIO_CHV_M1_DIV_BY_2 |
7463 1 << DPIO_CHV_N_DIV_SHIFT);
7464
7465 /* M2 fraction division */
7466 if (bestm2_frac)
7467 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7468
7469 /* M2 fraction division enable */
7470 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7471 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7472 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7473 if (bestm2_frac)
7474 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7475 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7476
7477 /* Program digital lock detect threshold */
7478 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7479 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7480 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7481 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7482 if (!bestm2_frac)
7483 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7484 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7485
7486 /* Loop filter */
7487 if (vco == 5400000) {
7488 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7489 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7490 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7491 tribuf_calcntr = 0x9;
7492 } else if (vco <= 6200000) {
7493 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7494 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7495 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7496 tribuf_calcntr = 0x9;
7497 } else if (vco <= 6480000) {
7498 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7499 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7500 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7501 tribuf_calcntr = 0x8;
7502 } else {
7503 /* Not supported. Apply the same limits as in the max case */
7504 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7505 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7506 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7507 tribuf_calcntr = 0;
7508 }
7509 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7510
7511 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7512 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7513 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7514 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7515
7516 /* AFC Recal */
7517 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7518 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7519 DPIO_AFC_RECAL);
7520
7521 mutex_unlock(&dev_priv->sb_lock);
7522 }
7523
7524 /**
7525 * vlv_force_pll_on - forcibly enable just the PLL
7526 * @dev_priv: i915 private structure
7527 * @pipe: pipe PLL to enable
7528 * @dpll: PLL configuration
7529 *
7530 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7531 * in cases where we need the PLL enabled even when @pipe is not going to
7532 * be enabled.
7533 */
7534 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7535 const struct dpll *dpll)
7536 {
7537 struct intel_crtc *crtc =
7538 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7539 struct intel_crtc_state pipe_config = {
7540 .base.crtc = &crtc->base,
7541 .pixel_multiplier = 1,
7542 .dpll = *dpll,
7543 };
7544
7545 if (IS_CHERRYVIEW(dev)) {
7546 chv_compute_dpll(crtc, &pipe_config);
7547 chv_prepare_pll(crtc, &pipe_config);
7548 chv_enable_pll(crtc, &pipe_config);
7549 } else {
7550 vlv_compute_dpll(crtc, &pipe_config);
7551 vlv_prepare_pll(crtc, &pipe_config);
7552 vlv_enable_pll(crtc, &pipe_config);
7553 }
7554 }
7555
7556 /**
7557 * vlv_force_pll_off - forcibly disable just the PLL
7558 * @dev_priv: i915 private structure
7559 * @pipe: pipe PLL to disable
7560 *
7561 * Disable the PLL for @pipe. To be used in cases where we need
7562 * the PLL enabled even when @pipe is not going to be enabled.
7563 */
7564 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7565 {
7566 if (IS_CHERRYVIEW(dev))
7567 chv_disable_pll(to_i915(dev), pipe);
7568 else
7569 vlv_disable_pll(to_i915(dev), pipe);
7570 }
7571
7572 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7573 struct intel_crtc_state *crtc_state,
7574 intel_clock_t *reduced_clock,
7575 int num_connectors)
7576 {
7577 struct drm_device *dev = crtc->base.dev;
7578 struct drm_i915_private *dev_priv = dev->dev_private;
7579 u32 dpll;
7580 bool is_sdvo;
7581 struct dpll *clock = &crtc_state->dpll;
7582
7583 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7584
7585 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7586 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7587
7588 dpll = DPLL_VGA_MODE_DIS;
7589
7590 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7591 dpll |= DPLLB_MODE_LVDS;
7592 else
7593 dpll |= DPLLB_MODE_DAC_SERIAL;
7594
7595 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7596 dpll |= (crtc_state->pixel_multiplier - 1)
7597 << SDVO_MULTIPLIER_SHIFT_HIRES;
7598 }
7599
7600 if (is_sdvo)
7601 dpll |= DPLL_SDVO_HIGH_SPEED;
7602
7603 if (crtc_state->has_dp_encoder)
7604 dpll |= DPLL_SDVO_HIGH_SPEED;
7605
7606 /* compute bitmask from p1 value */
7607 if (IS_PINEVIEW(dev))
7608 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7609 else {
7610 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7611 if (IS_G4X(dev) && reduced_clock)
7612 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7613 }
7614 switch (clock->p2) {
7615 case 5:
7616 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7617 break;
7618 case 7:
7619 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7620 break;
7621 case 10:
7622 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7623 break;
7624 case 14:
7625 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7626 break;
7627 }
7628 if (INTEL_INFO(dev)->gen >= 4)
7629 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7630
7631 if (crtc_state->sdvo_tv_clock)
7632 dpll |= PLL_REF_INPUT_TVCLKINBC;
7633 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7634 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7635 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7636 else
7637 dpll |= PLL_REF_INPUT_DREFCLK;
7638
7639 dpll |= DPLL_VCO_ENABLE;
7640 crtc_state->dpll_hw_state.dpll = dpll;
7641
7642 if (INTEL_INFO(dev)->gen >= 4) {
7643 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7644 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7645 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7646 }
7647 }
7648
7649 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7650 struct intel_crtc_state *crtc_state,
7651 intel_clock_t *reduced_clock,
7652 int num_connectors)
7653 {
7654 struct drm_device *dev = crtc->base.dev;
7655 struct drm_i915_private *dev_priv = dev->dev_private;
7656 u32 dpll;
7657 struct dpll *clock = &crtc_state->dpll;
7658
7659 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7660
7661 dpll = DPLL_VGA_MODE_DIS;
7662
7663 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7664 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7665 } else {
7666 if (clock->p1 == 2)
7667 dpll |= PLL_P1_DIVIDE_BY_TWO;
7668 else
7669 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7670 if (clock->p2 == 4)
7671 dpll |= PLL_P2_DIVIDE_BY_4;
7672 }
7673
7674 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7675 dpll |= DPLL_DVO_2X_MODE;
7676
7677 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7678 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7679 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7680 else
7681 dpll |= PLL_REF_INPUT_DREFCLK;
7682
7683 dpll |= DPLL_VCO_ENABLE;
7684 crtc_state->dpll_hw_state.dpll = dpll;
7685 }
7686
7687 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7688 {
7689 struct drm_device *dev = intel_crtc->base.dev;
7690 struct drm_i915_private *dev_priv = dev->dev_private;
7691 enum pipe pipe = intel_crtc->pipe;
7692 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7693 struct drm_display_mode *adjusted_mode =
7694 &intel_crtc->config->base.adjusted_mode;
7695 uint32_t crtc_vtotal, crtc_vblank_end;
7696 int vsyncshift = 0;
7697
7698 /* We need to be careful not to changed the adjusted mode, for otherwise
7699 * the hw state checker will get angry at the mismatch. */
7700 crtc_vtotal = adjusted_mode->crtc_vtotal;
7701 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7702
7703 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7704 /* the chip adds 2 halflines automatically */
7705 crtc_vtotal -= 1;
7706 crtc_vblank_end -= 1;
7707
7708 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7709 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7710 else
7711 vsyncshift = adjusted_mode->crtc_hsync_start -
7712 adjusted_mode->crtc_htotal / 2;
7713 if (vsyncshift < 0)
7714 vsyncshift += adjusted_mode->crtc_htotal;
7715 }
7716
7717 if (INTEL_INFO(dev)->gen > 3)
7718 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7719
7720 I915_WRITE(HTOTAL(cpu_transcoder),
7721 (adjusted_mode->crtc_hdisplay - 1) |
7722 ((adjusted_mode->crtc_htotal - 1) << 16));
7723 I915_WRITE(HBLANK(cpu_transcoder),
7724 (adjusted_mode->crtc_hblank_start - 1) |
7725 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7726 I915_WRITE(HSYNC(cpu_transcoder),
7727 (adjusted_mode->crtc_hsync_start - 1) |
7728 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7729
7730 I915_WRITE(VTOTAL(cpu_transcoder),
7731 (adjusted_mode->crtc_vdisplay - 1) |
7732 ((crtc_vtotal - 1) << 16));
7733 I915_WRITE(VBLANK(cpu_transcoder),
7734 (adjusted_mode->crtc_vblank_start - 1) |
7735 ((crtc_vblank_end - 1) << 16));
7736 I915_WRITE(VSYNC(cpu_transcoder),
7737 (adjusted_mode->crtc_vsync_start - 1) |
7738 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7739
7740 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7741 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7742 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7743 * bits. */
7744 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7745 (pipe == PIPE_B || pipe == PIPE_C))
7746 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7747
7748 /* pipesrc controls the size that is scaled from, which should
7749 * always be the user's requested size.
7750 */
7751 I915_WRITE(PIPESRC(pipe),
7752 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7753 (intel_crtc->config->pipe_src_h - 1));
7754 }
7755
7756 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7757 struct intel_crtc_state *pipe_config)
7758 {
7759 struct drm_device *dev = crtc->base.dev;
7760 struct drm_i915_private *dev_priv = dev->dev_private;
7761 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7762 uint32_t tmp;
7763
7764 tmp = I915_READ(HTOTAL(cpu_transcoder));
7765 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7766 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7767 tmp = I915_READ(HBLANK(cpu_transcoder));
7768 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7769 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7770 tmp = I915_READ(HSYNC(cpu_transcoder));
7771 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7772 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7773
7774 tmp = I915_READ(VTOTAL(cpu_transcoder));
7775 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7776 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7777 tmp = I915_READ(VBLANK(cpu_transcoder));
7778 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7779 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7780 tmp = I915_READ(VSYNC(cpu_transcoder));
7781 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7782 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7783
7784 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7785 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7786 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7787 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7788 }
7789
7790 tmp = I915_READ(PIPESRC(crtc->pipe));
7791 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7792 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7793
7794 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7795 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7796 }
7797
7798 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7799 struct intel_crtc_state *pipe_config)
7800 {
7801 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7802 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7803 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7804 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7805
7806 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7807 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7808 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7809 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7810
7811 mode->flags = pipe_config->base.adjusted_mode.flags;
7812 mode->type = DRM_MODE_TYPE_DRIVER;
7813
7814 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7815 mode->flags |= pipe_config->base.adjusted_mode.flags;
7816
7817 mode->hsync = drm_mode_hsync(mode);
7818 mode->vrefresh = drm_mode_vrefresh(mode);
7819 drm_mode_set_name(mode);
7820 }
7821
7822 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7823 {
7824 struct drm_device *dev = intel_crtc->base.dev;
7825 struct drm_i915_private *dev_priv = dev->dev_private;
7826 uint32_t pipeconf;
7827
7828 pipeconf = 0;
7829
7830 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7831 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7832 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7833
7834 if (intel_crtc->config->double_wide)
7835 pipeconf |= PIPECONF_DOUBLE_WIDE;
7836
7837 /* only g4x and later have fancy bpc/dither controls */
7838 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7839 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7840 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7841 pipeconf |= PIPECONF_DITHER_EN |
7842 PIPECONF_DITHER_TYPE_SP;
7843
7844 switch (intel_crtc->config->pipe_bpp) {
7845 case 18:
7846 pipeconf |= PIPECONF_6BPC;
7847 break;
7848 case 24:
7849 pipeconf |= PIPECONF_8BPC;
7850 break;
7851 case 30:
7852 pipeconf |= PIPECONF_10BPC;
7853 break;
7854 default:
7855 /* Case prevented by intel_choose_pipe_bpp_dither. */
7856 BUG();
7857 }
7858 }
7859
7860 if (HAS_PIPE_CXSR(dev)) {
7861 if (intel_crtc->lowfreq_avail) {
7862 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7863 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7864 } else {
7865 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7866 }
7867 }
7868
7869 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7870 if (INTEL_INFO(dev)->gen < 4 ||
7871 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7872 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7873 else
7874 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7875 } else
7876 pipeconf |= PIPECONF_PROGRESSIVE;
7877
7878 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7879 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7880
7881 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7882 POSTING_READ(PIPECONF(intel_crtc->pipe));
7883 }
7884
7885 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7886 struct intel_crtc_state *crtc_state)
7887 {
7888 struct drm_device *dev = crtc->base.dev;
7889 struct drm_i915_private *dev_priv = dev->dev_private;
7890 int refclk, num_connectors = 0;
7891 intel_clock_t clock;
7892 bool ok;
7893 bool is_dsi = false;
7894 struct intel_encoder *encoder;
7895 const intel_limit_t *limit;
7896 struct drm_atomic_state *state = crtc_state->base.state;
7897 struct drm_connector *connector;
7898 struct drm_connector_state *connector_state;
7899 int i;
7900
7901 memset(&crtc_state->dpll_hw_state, 0,
7902 sizeof(crtc_state->dpll_hw_state));
7903
7904 for_each_connector_in_state(state, connector, connector_state, i) {
7905 if (connector_state->crtc != &crtc->base)
7906 continue;
7907
7908 encoder = to_intel_encoder(connector_state->best_encoder);
7909
7910 switch (encoder->type) {
7911 case INTEL_OUTPUT_DSI:
7912 is_dsi = true;
7913 break;
7914 default:
7915 break;
7916 }
7917
7918 num_connectors++;
7919 }
7920
7921 if (is_dsi)
7922 return 0;
7923
7924 if (!crtc_state->clock_set) {
7925 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7926
7927 /*
7928 * Returns a set of divisors for the desired target clock with
7929 * the given refclk, or FALSE. The returned values represent
7930 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7931 * 2) / p1 / p2.
7932 */
7933 limit = intel_limit(crtc_state, refclk);
7934 ok = dev_priv->display.find_dpll(limit, crtc_state,
7935 crtc_state->port_clock,
7936 refclk, NULL, &clock);
7937 if (!ok) {
7938 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7939 return -EINVAL;
7940 }
7941
7942 /* Compat-code for transition, will disappear. */
7943 crtc_state->dpll.n = clock.n;
7944 crtc_state->dpll.m1 = clock.m1;
7945 crtc_state->dpll.m2 = clock.m2;
7946 crtc_state->dpll.p1 = clock.p1;
7947 crtc_state->dpll.p2 = clock.p2;
7948 }
7949
7950 if (IS_GEN2(dev)) {
7951 i8xx_compute_dpll(crtc, crtc_state, NULL,
7952 num_connectors);
7953 } else if (IS_CHERRYVIEW(dev)) {
7954 chv_compute_dpll(crtc, crtc_state);
7955 } else if (IS_VALLEYVIEW(dev)) {
7956 vlv_compute_dpll(crtc, crtc_state);
7957 } else {
7958 i9xx_compute_dpll(crtc, crtc_state, NULL,
7959 num_connectors);
7960 }
7961
7962 return 0;
7963 }
7964
7965 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7966 struct intel_crtc_state *pipe_config)
7967 {
7968 struct drm_device *dev = crtc->base.dev;
7969 struct drm_i915_private *dev_priv = dev->dev_private;
7970 uint32_t tmp;
7971
7972 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7973 return;
7974
7975 tmp = I915_READ(PFIT_CONTROL);
7976 if (!(tmp & PFIT_ENABLE))
7977 return;
7978
7979 /* Check whether the pfit is attached to our pipe. */
7980 if (INTEL_INFO(dev)->gen < 4) {
7981 if (crtc->pipe != PIPE_B)
7982 return;
7983 } else {
7984 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7985 return;
7986 }
7987
7988 pipe_config->gmch_pfit.control = tmp;
7989 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7990 if (INTEL_INFO(dev)->gen < 5)
7991 pipe_config->gmch_pfit.lvds_border_bits =
7992 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7993 }
7994
7995 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7996 struct intel_crtc_state *pipe_config)
7997 {
7998 struct drm_device *dev = crtc->base.dev;
7999 struct drm_i915_private *dev_priv = dev->dev_private;
8000 int pipe = pipe_config->cpu_transcoder;
8001 intel_clock_t clock;
8002 u32 mdiv;
8003 int refclk = 100000;
8004
8005 /* In case of MIPI DPLL will not even be used */
8006 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8007 return;
8008
8009 mutex_lock(&dev_priv->sb_lock);
8010 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8011 mutex_unlock(&dev_priv->sb_lock);
8012
8013 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8014 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8015 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8016 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8017 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8018
8019 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8020 }
8021
8022 static void
8023 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8024 struct intel_initial_plane_config *plane_config)
8025 {
8026 struct drm_device *dev = crtc->base.dev;
8027 struct drm_i915_private *dev_priv = dev->dev_private;
8028 u32 val, base, offset;
8029 int pipe = crtc->pipe, plane = crtc->plane;
8030 int fourcc, pixel_format;
8031 unsigned int aligned_height;
8032 struct drm_framebuffer *fb;
8033 struct intel_framebuffer *intel_fb;
8034
8035 val = I915_READ(DSPCNTR(plane));
8036 if (!(val & DISPLAY_PLANE_ENABLE))
8037 return;
8038
8039 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8040 if (!intel_fb) {
8041 DRM_DEBUG_KMS("failed to alloc fb\n");
8042 return;
8043 }
8044
8045 fb = &intel_fb->base;
8046
8047 if (INTEL_INFO(dev)->gen >= 4) {
8048 if (val & DISPPLANE_TILED) {
8049 plane_config->tiling = I915_TILING_X;
8050 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8051 }
8052 }
8053
8054 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8055 fourcc = i9xx_format_to_fourcc(pixel_format);
8056 fb->pixel_format = fourcc;
8057 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8058
8059 if (INTEL_INFO(dev)->gen >= 4) {
8060 if (plane_config->tiling)
8061 offset = I915_READ(DSPTILEOFF(plane));
8062 else
8063 offset = I915_READ(DSPLINOFF(plane));
8064 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8065 } else {
8066 base = I915_READ(DSPADDR(plane));
8067 }
8068 plane_config->base = base;
8069
8070 val = I915_READ(PIPESRC(pipe));
8071 fb->width = ((val >> 16) & 0xfff) + 1;
8072 fb->height = ((val >> 0) & 0xfff) + 1;
8073
8074 val = I915_READ(DSPSTRIDE(pipe));
8075 fb->pitches[0] = val & 0xffffffc0;
8076
8077 aligned_height = intel_fb_align_height(dev, fb->height,
8078 fb->pixel_format,
8079 fb->modifier[0]);
8080
8081 plane_config->size = fb->pitches[0] * aligned_height;
8082
8083 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8084 pipe_name(pipe), plane, fb->width, fb->height,
8085 fb->bits_per_pixel, base, fb->pitches[0],
8086 plane_config->size);
8087
8088 plane_config->fb = intel_fb;
8089 }
8090
8091 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8092 struct intel_crtc_state *pipe_config)
8093 {
8094 struct drm_device *dev = crtc->base.dev;
8095 struct drm_i915_private *dev_priv = dev->dev_private;
8096 int pipe = pipe_config->cpu_transcoder;
8097 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8098 intel_clock_t clock;
8099 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8100 int refclk = 100000;
8101
8102 mutex_lock(&dev_priv->sb_lock);
8103 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8104 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8105 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8106 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8107 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8108 mutex_unlock(&dev_priv->sb_lock);
8109
8110 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8111 clock.m2 = (pll_dw0 & 0xff) << 22;
8112 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8113 clock.m2 |= pll_dw2 & 0x3fffff;
8114 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8115 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8116 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8117
8118 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8119 }
8120
8121 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8122 struct intel_crtc_state *pipe_config)
8123 {
8124 struct drm_device *dev = crtc->base.dev;
8125 struct drm_i915_private *dev_priv = dev->dev_private;
8126 uint32_t tmp;
8127
8128 if (!intel_display_power_is_enabled(dev_priv,
8129 POWER_DOMAIN_PIPE(crtc->pipe)))
8130 return false;
8131
8132 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8133 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8134
8135 tmp = I915_READ(PIPECONF(crtc->pipe));
8136 if (!(tmp & PIPECONF_ENABLE))
8137 return false;
8138
8139 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8140 switch (tmp & PIPECONF_BPC_MASK) {
8141 case PIPECONF_6BPC:
8142 pipe_config->pipe_bpp = 18;
8143 break;
8144 case PIPECONF_8BPC:
8145 pipe_config->pipe_bpp = 24;
8146 break;
8147 case PIPECONF_10BPC:
8148 pipe_config->pipe_bpp = 30;
8149 break;
8150 default:
8151 break;
8152 }
8153 }
8154
8155 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8156 pipe_config->limited_color_range = true;
8157
8158 if (INTEL_INFO(dev)->gen < 4)
8159 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8160
8161 intel_get_pipe_timings(crtc, pipe_config);
8162
8163 i9xx_get_pfit_config(crtc, pipe_config);
8164
8165 if (INTEL_INFO(dev)->gen >= 4) {
8166 tmp = I915_READ(DPLL_MD(crtc->pipe));
8167 pipe_config->pixel_multiplier =
8168 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8169 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8170 pipe_config->dpll_hw_state.dpll_md = tmp;
8171 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8172 tmp = I915_READ(DPLL(crtc->pipe));
8173 pipe_config->pixel_multiplier =
8174 ((tmp & SDVO_MULTIPLIER_MASK)
8175 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8176 } else {
8177 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8178 * port and will be fixed up in the encoder->get_config
8179 * function. */
8180 pipe_config->pixel_multiplier = 1;
8181 }
8182 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8183 if (!IS_VALLEYVIEW(dev)) {
8184 /*
8185 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8186 * on 830. Filter it out here so that we don't
8187 * report errors due to that.
8188 */
8189 if (IS_I830(dev))
8190 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8191
8192 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8193 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8194 } else {
8195 /* Mask out read-only status bits. */
8196 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8197 DPLL_PORTC_READY_MASK |
8198 DPLL_PORTB_READY_MASK);
8199 }
8200
8201 if (IS_CHERRYVIEW(dev))
8202 chv_crtc_clock_get(crtc, pipe_config);
8203 else if (IS_VALLEYVIEW(dev))
8204 vlv_crtc_clock_get(crtc, pipe_config);
8205 else
8206 i9xx_crtc_clock_get(crtc, pipe_config);
8207
8208 return true;
8209 }
8210
8211 static void ironlake_init_pch_refclk(struct drm_device *dev)
8212 {
8213 struct drm_i915_private *dev_priv = dev->dev_private;
8214 struct intel_encoder *encoder;
8215 u32 val, final;
8216 bool has_lvds = false;
8217 bool has_cpu_edp = false;
8218 bool has_panel = false;
8219 bool has_ck505 = false;
8220 bool can_ssc = false;
8221
8222 /* We need to take the global config into account */
8223 for_each_intel_encoder(dev, encoder) {
8224 switch (encoder->type) {
8225 case INTEL_OUTPUT_LVDS:
8226 has_panel = true;
8227 has_lvds = true;
8228 break;
8229 case INTEL_OUTPUT_EDP:
8230 has_panel = true;
8231 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8232 has_cpu_edp = true;
8233 break;
8234 default:
8235 break;
8236 }
8237 }
8238
8239 if (HAS_PCH_IBX(dev)) {
8240 has_ck505 = dev_priv->vbt.display_clock_mode;
8241 can_ssc = has_ck505;
8242 } else {
8243 has_ck505 = false;
8244 can_ssc = true;
8245 }
8246
8247 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8248 has_panel, has_lvds, has_ck505);
8249
8250 /* Ironlake: try to setup display ref clock before DPLL
8251 * enabling. This is only under driver's control after
8252 * PCH B stepping, previous chipset stepping should be
8253 * ignoring this setting.
8254 */
8255 val = I915_READ(PCH_DREF_CONTROL);
8256
8257 /* As we must carefully and slowly disable/enable each source in turn,
8258 * compute the final state we want first and check if we need to
8259 * make any changes at all.
8260 */
8261 final = val;
8262 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8263 if (has_ck505)
8264 final |= DREF_NONSPREAD_CK505_ENABLE;
8265 else
8266 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8267
8268 final &= ~DREF_SSC_SOURCE_MASK;
8269 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8270 final &= ~DREF_SSC1_ENABLE;
8271
8272 if (has_panel) {
8273 final |= DREF_SSC_SOURCE_ENABLE;
8274
8275 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8276 final |= DREF_SSC1_ENABLE;
8277
8278 if (has_cpu_edp) {
8279 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8280 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8281 else
8282 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8283 } else
8284 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8285 } else {
8286 final |= DREF_SSC_SOURCE_DISABLE;
8287 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8288 }
8289
8290 if (final == val)
8291 return;
8292
8293 /* Always enable nonspread source */
8294 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8295
8296 if (has_ck505)
8297 val |= DREF_NONSPREAD_CK505_ENABLE;
8298 else
8299 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8300
8301 if (has_panel) {
8302 val &= ~DREF_SSC_SOURCE_MASK;
8303 val |= DREF_SSC_SOURCE_ENABLE;
8304
8305 /* SSC must be turned on before enabling the CPU output */
8306 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8307 DRM_DEBUG_KMS("Using SSC on panel\n");
8308 val |= DREF_SSC1_ENABLE;
8309 } else
8310 val &= ~DREF_SSC1_ENABLE;
8311
8312 /* Get SSC going before enabling the outputs */
8313 I915_WRITE(PCH_DREF_CONTROL, val);
8314 POSTING_READ(PCH_DREF_CONTROL);
8315 udelay(200);
8316
8317 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8318
8319 /* Enable CPU source on CPU attached eDP */
8320 if (has_cpu_edp) {
8321 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8322 DRM_DEBUG_KMS("Using SSC on eDP\n");
8323 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8324 } else
8325 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8326 } else
8327 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8328
8329 I915_WRITE(PCH_DREF_CONTROL, val);
8330 POSTING_READ(PCH_DREF_CONTROL);
8331 udelay(200);
8332 } else {
8333 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8334
8335 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8336
8337 /* Turn off CPU output */
8338 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8339
8340 I915_WRITE(PCH_DREF_CONTROL, val);
8341 POSTING_READ(PCH_DREF_CONTROL);
8342 udelay(200);
8343
8344 /* Turn off the SSC source */
8345 val &= ~DREF_SSC_SOURCE_MASK;
8346 val |= DREF_SSC_SOURCE_DISABLE;
8347
8348 /* Turn off SSC1 */
8349 val &= ~DREF_SSC1_ENABLE;
8350
8351 I915_WRITE(PCH_DREF_CONTROL, val);
8352 POSTING_READ(PCH_DREF_CONTROL);
8353 udelay(200);
8354 }
8355
8356 BUG_ON(val != final);
8357 }
8358
8359 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8360 {
8361 uint32_t tmp;
8362
8363 tmp = I915_READ(SOUTH_CHICKEN2);
8364 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8365 I915_WRITE(SOUTH_CHICKEN2, tmp);
8366
8367 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8368 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8369 DRM_ERROR("FDI mPHY reset assert timeout\n");
8370
8371 tmp = I915_READ(SOUTH_CHICKEN2);
8372 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8373 I915_WRITE(SOUTH_CHICKEN2, tmp);
8374
8375 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8376 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8377 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8378 }
8379
8380 /* WaMPhyProgramming:hsw */
8381 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8382 {
8383 uint32_t tmp;
8384
8385 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8386 tmp &= ~(0xFF << 24);
8387 tmp |= (0x12 << 24);
8388 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8389
8390 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8391 tmp |= (1 << 11);
8392 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8393
8394 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8395 tmp |= (1 << 11);
8396 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8397
8398 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8399 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8400 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8401
8402 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8403 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8404 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8405
8406 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8407 tmp &= ~(7 << 13);
8408 tmp |= (5 << 13);
8409 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8410
8411 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8412 tmp &= ~(7 << 13);
8413 tmp |= (5 << 13);
8414 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8415
8416 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8417 tmp &= ~0xFF;
8418 tmp |= 0x1C;
8419 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8420
8421 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8422 tmp &= ~0xFF;
8423 tmp |= 0x1C;
8424 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8425
8426 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8427 tmp &= ~(0xFF << 16);
8428 tmp |= (0x1C << 16);
8429 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8430
8431 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8432 tmp &= ~(0xFF << 16);
8433 tmp |= (0x1C << 16);
8434 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8435
8436 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8437 tmp |= (1 << 27);
8438 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8439
8440 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8441 tmp |= (1 << 27);
8442 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8443
8444 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8445 tmp &= ~(0xF << 28);
8446 tmp |= (4 << 28);
8447 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8448
8449 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8450 tmp &= ~(0xF << 28);
8451 tmp |= (4 << 28);
8452 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8453 }
8454
8455 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8456 * Programming" based on the parameters passed:
8457 * - Sequence to enable CLKOUT_DP
8458 * - Sequence to enable CLKOUT_DP without spread
8459 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8460 */
8461 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8462 bool with_fdi)
8463 {
8464 struct drm_i915_private *dev_priv = dev->dev_private;
8465 uint32_t reg, tmp;
8466
8467 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8468 with_spread = true;
8469 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8470 with_fdi, "LP PCH doesn't have FDI\n"))
8471 with_fdi = false;
8472
8473 mutex_lock(&dev_priv->sb_lock);
8474
8475 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8476 tmp &= ~SBI_SSCCTL_DISABLE;
8477 tmp |= SBI_SSCCTL_PATHALT;
8478 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8479
8480 udelay(24);
8481
8482 if (with_spread) {
8483 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8484 tmp &= ~SBI_SSCCTL_PATHALT;
8485 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8486
8487 if (with_fdi) {
8488 lpt_reset_fdi_mphy(dev_priv);
8489 lpt_program_fdi_mphy(dev_priv);
8490 }
8491 }
8492
8493 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8494 SBI_GEN0 : SBI_DBUFF0;
8495 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8496 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8497 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8498
8499 mutex_unlock(&dev_priv->sb_lock);
8500 }
8501
8502 /* Sequence to disable CLKOUT_DP */
8503 static void lpt_disable_clkout_dp(struct drm_device *dev)
8504 {
8505 struct drm_i915_private *dev_priv = dev->dev_private;
8506 uint32_t reg, tmp;
8507
8508 mutex_lock(&dev_priv->sb_lock);
8509
8510 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8511 SBI_GEN0 : SBI_DBUFF0;
8512 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8513 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8514 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8515
8516 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8517 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8518 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8519 tmp |= SBI_SSCCTL_PATHALT;
8520 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8521 udelay(32);
8522 }
8523 tmp |= SBI_SSCCTL_DISABLE;
8524 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8525 }
8526
8527 mutex_unlock(&dev_priv->sb_lock);
8528 }
8529
8530 static void lpt_init_pch_refclk(struct drm_device *dev)
8531 {
8532 struct intel_encoder *encoder;
8533 bool has_vga = false;
8534
8535 for_each_intel_encoder(dev, encoder) {
8536 switch (encoder->type) {
8537 case INTEL_OUTPUT_ANALOG:
8538 has_vga = true;
8539 break;
8540 default:
8541 break;
8542 }
8543 }
8544
8545 if (has_vga)
8546 lpt_enable_clkout_dp(dev, true, true);
8547 else
8548 lpt_disable_clkout_dp(dev);
8549 }
8550
8551 /*
8552 * Initialize reference clocks when the driver loads
8553 */
8554 void intel_init_pch_refclk(struct drm_device *dev)
8555 {
8556 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8557 ironlake_init_pch_refclk(dev);
8558 else if (HAS_PCH_LPT(dev))
8559 lpt_init_pch_refclk(dev);
8560 }
8561
8562 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8563 {
8564 struct drm_device *dev = crtc_state->base.crtc->dev;
8565 struct drm_i915_private *dev_priv = dev->dev_private;
8566 struct drm_atomic_state *state = crtc_state->base.state;
8567 struct drm_connector *connector;
8568 struct drm_connector_state *connector_state;
8569 struct intel_encoder *encoder;
8570 int num_connectors = 0, i;
8571 bool is_lvds = false;
8572
8573 for_each_connector_in_state(state, connector, connector_state, i) {
8574 if (connector_state->crtc != crtc_state->base.crtc)
8575 continue;
8576
8577 encoder = to_intel_encoder(connector_state->best_encoder);
8578
8579 switch (encoder->type) {
8580 case INTEL_OUTPUT_LVDS:
8581 is_lvds = true;
8582 break;
8583 default:
8584 break;
8585 }
8586 num_connectors++;
8587 }
8588
8589 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8590 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8591 dev_priv->vbt.lvds_ssc_freq);
8592 return dev_priv->vbt.lvds_ssc_freq;
8593 }
8594
8595 return 120000;
8596 }
8597
8598 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8599 {
8600 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8602 int pipe = intel_crtc->pipe;
8603 uint32_t val;
8604
8605 val = 0;
8606
8607 switch (intel_crtc->config->pipe_bpp) {
8608 case 18:
8609 val |= PIPECONF_6BPC;
8610 break;
8611 case 24:
8612 val |= PIPECONF_8BPC;
8613 break;
8614 case 30:
8615 val |= PIPECONF_10BPC;
8616 break;
8617 case 36:
8618 val |= PIPECONF_12BPC;
8619 break;
8620 default:
8621 /* Case prevented by intel_choose_pipe_bpp_dither. */
8622 BUG();
8623 }
8624
8625 if (intel_crtc->config->dither)
8626 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8627
8628 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8629 val |= PIPECONF_INTERLACED_ILK;
8630 else
8631 val |= PIPECONF_PROGRESSIVE;
8632
8633 if (intel_crtc->config->limited_color_range)
8634 val |= PIPECONF_COLOR_RANGE_SELECT;
8635
8636 I915_WRITE(PIPECONF(pipe), val);
8637 POSTING_READ(PIPECONF(pipe));
8638 }
8639
8640 /*
8641 * Set up the pipe CSC unit.
8642 *
8643 * Currently only full range RGB to limited range RGB conversion
8644 * is supported, but eventually this should handle various
8645 * RGB<->YCbCr scenarios as well.
8646 */
8647 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8648 {
8649 struct drm_device *dev = crtc->dev;
8650 struct drm_i915_private *dev_priv = dev->dev_private;
8651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8652 int pipe = intel_crtc->pipe;
8653 uint16_t coeff = 0x7800; /* 1.0 */
8654
8655 /*
8656 * TODO: Check what kind of values actually come out of the pipe
8657 * with these coeff/postoff values and adjust to get the best
8658 * accuracy. Perhaps we even need to take the bpc value into
8659 * consideration.
8660 */
8661
8662 if (intel_crtc->config->limited_color_range)
8663 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8664
8665 /*
8666 * GY/GU and RY/RU should be the other way around according
8667 * to BSpec, but reality doesn't agree. Just set them up in
8668 * a way that results in the correct picture.
8669 */
8670 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8671 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8672
8673 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8674 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8675
8676 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8677 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8678
8679 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8680 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8681 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8682
8683 if (INTEL_INFO(dev)->gen > 6) {
8684 uint16_t postoff = 0;
8685
8686 if (intel_crtc->config->limited_color_range)
8687 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8688
8689 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8690 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8691 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8692
8693 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8694 } else {
8695 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8696
8697 if (intel_crtc->config->limited_color_range)
8698 mode |= CSC_BLACK_SCREEN_OFFSET;
8699
8700 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8701 }
8702 }
8703
8704 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8705 {
8706 struct drm_device *dev = crtc->dev;
8707 struct drm_i915_private *dev_priv = dev->dev_private;
8708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8709 enum pipe pipe = intel_crtc->pipe;
8710 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8711 uint32_t val;
8712
8713 val = 0;
8714
8715 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8716 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8717
8718 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8719 val |= PIPECONF_INTERLACED_ILK;
8720 else
8721 val |= PIPECONF_PROGRESSIVE;
8722
8723 I915_WRITE(PIPECONF(cpu_transcoder), val);
8724 POSTING_READ(PIPECONF(cpu_transcoder));
8725
8726 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8727 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8728
8729 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8730 val = 0;
8731
8732 switch (intel_crtc->config->pipe_bpp) {
8733 case 18:
8734 val |= PIPEMISC_DITHER_6_BPC;
8735 break;
8736 case 24:
8737 val |= PIPEMISC_DITHER_8_BPC;
8738 break;
8739 case 30:
8740 val |= PIPEMISC_DITHER_10_BPC;
8741 break;
8742 case 36:
8743 val |= PIPEMISC_DITHER_12_BPC;
8744 break;
8745 default:
8746 /* Case prevented by pipe_config_set_bpp. */
8747 BUG();
8748 }
8749
8750 if (intel_crtc->config->dither)
8751 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8752
8753 I915_WRITE(PIPEMISC(pipe), val);
8754 }
8755 }
8756
8757 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8758 struct intel_crtc_state *crtc_state,
8759 intel_clock_t *clock,
8760 bool *has_reduced_clock,
8761 intel_clock_t *reduced_clock)
8762 {
8763 struct drm_device *dev = crtc->dev;
8764 struct drm_i915_private *dev_priv = dev->dev_private;
8765 int refclk;
8766 const intel_limit_t *limit;
8767 bool ret;
8768
8769 refclk = ironlake_get_refclk(crtc_state);
8770
8771 /*
8772 * Returns a set of divisors for the desired target clock with the given
8773 * refclk, or FALSE. The returned values represent the clock equation:
8774 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8775 */
8776 limit = intel_limit(crtc_state, refclk);
8777 ret = dev_priv->display.find_dpll(limit, crtc_state,
8778 crtc_state->port_clock,
8779 refclk, NULL, clock);
8780 if (!ret)
8781 return false;
8782
8783 return true;
8784 }
8785
8786 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8787 {
8788 /*
8789 * Account for spread spectrum to avoid
8790 * oversubscribing the link. Max center spread
8791 * is 2.5%; use 5% for safety's sake.
8792 */
8793 u32 bps = target_clock * bpp * 21 / 20;
8794 return DIV_ROUND_UP(bps, link_bw * 8);
8795 }
8796
8797 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8798 {
8799 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8800 }
8801
8802 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8803 struct intel_crtc_state *crtc_state,
8804 u32 *fp,
8805 intel_clock_t *reduced_clock, u32 *fp2)
8806 {
8807 struct drm_crtc *crtc = &intel_crtc->base;
8808 struct drm_device *dev = crtc->dev;
8809 struct drm_i915_private *dev_priv = dev->dev_private;
8810 struct drm_atomic_state *state = crtc_state->base.state;
8811 struct drm_connector *connector;
8812 struct drm_connector_state *connector_state;
8813 struct intel_encoder *encoder;
8814 uint32_t dpll;
8815 int factor, num_connectors = 0, i;
8816 bool is_lvds = false, is_sdvo = false;
8817
8818 for_each_connector_in_state(state, connector, connector_state, i) {
8819 if (connector_state->crtc != crtc_state->base.crtc)
8820 continue;
8821
8822 encoder = to_intel_encoder(connector_state->best_encoder);
8823
8824 switch (encoder->type) {
8825 case INTEL_OUTPUT_LVDS:
8826 is_lvds = true;
8827 break;
8828 case INTEL_OUTPUT_SDVO:
8829 case INTEL_OUTPUT_HDMI:
8830 is_sdvo = true;
8831 break;
8832 default:
8833 break;
8834 }
8835
8836 num_connectors++;
8837 }
8838
8839 /* Enable autotuning of the PLL clock (if permissible) */
8840 factor = 21;
8841 if (is_lvds) {
8842 if ((intel_panel_use_ssc(dev_priv) &&
8843 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8844 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8845 factor = 25;
8846 } else if (crtc_state->sdvo_tv_clock)
8847 factor = 20;
8848
8849 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8850 *fp |= FP_CB_TUNE;
8851
8852 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8853 *fp2 |= FP_CB_TUNE;
8854
8855 dpll = 0;
8856
8857 if (is_lvds)
8858 dpll |= DPLLB_MODE_LVDS;
8859 else
8860 dpll |= DPLLB_MODE_DAC_SERIAL;
8861
8862 dpll |= (crtc_state->pixel_multiplier - 1)
8863 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8864
8865 if (is_sdvo)
8866 dpll |= DPLL_SDVO_HIGH_SPEED;
8867 if (crtc_state->has_dp_encoder)
8868 dpll |= DPLL_SDVO_HIGH_SPEED;
8869
8870 /* compute bitmask from p1 value */
8871 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8872 /* also FPA1 */
8873 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8874
8875 switch (crtc_state->dpll.p2) {
8876 case 5:
8877 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8878 break;
8879 case 7:
8880 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8881 break;
8882 case 10:
8883 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8884 break;
8885 case 14:
8886 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8887 break;
8888 }
8889
8890 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8891 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8892 else
8893 dpll |= PLL_REF_INPUT_DREFCLK;
8894
8895 return dpll | DPLL_VCO_ENABLE;
8896 }
8897
8898 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8899 struct intel_crtc_state *crtc_state)
8900 {
8901 struct drm_device *dev = crtc->base.dev;
8902 intel_clock_t clock, reduced_clock;
8903 u32 dpll = 0, fp = 0, fp2 = 0;
8904 bool ok, has_reduced_clock = false;
8905 bool is_lvds = false;
8906 struct intel_shared_dpll *pll;
8907
8908 memset(&crtc_state->dpll_hw_state, 0,
8909 sizeof(crtc_state->dpll_hw_state));
8910
8911 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8912
8913 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8914 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8915
8916 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8917 &has_reduced_clock, &reduced_clock);
8918 if (!ok && !crtc_state->clock_set) {
8919 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8920 return -EINVAL;
8921 }
8922 /* Compat-code for transition, will disappear. */
8923 if (!crtc_state->clock_set) {
8924 crtc_state->dpll.n = clock.n;
8925 crtc_state->dpll.m1 = clock.m1;
8926 crtc_state->dpll.m2 = clock.m2;
8927 crtc_state->dpll.p1 = clock.p1;
8928 crtc_state->dpll.p2 = clock.p2;
8929 }
8930
8931 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8932 if (crtc_state->has_pch_encoder) {
8933 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8934 if (has_reduced_clock)
8935 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8936
8937 dpll = ironlake_compute_dpll(crtc, crtc_state,
8938 &fp, &reduced_clock,
8939 has_reduced_clock ? &fp2 : NULL);
8940
8941 crtc_state->dpll_hw_state.dpll = dpll;
8942 crtc_state->dpll_hw_state.fp0 = fp;
8943 if (has_reduced_clock)
8944 crtc_state->dpll_hw_state.fp1 = fp2;
8945 else
8946 crtc_state->dpll_hw_state.fp1 = fp;
8947
8948 pll = intel_get_shared_dpll(crtc, crtc_state);
8949 if (pll == NULL) {
8950 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8951 pipe_name(crtc->pipe));
8952 return -EINVAL;
8953 }
8954 }
8955
8956 if (is_lvds && has_reduced_clock)
8957 crtc->lowfreq_avail = true;
8958 else
8959 crtc->lowfreq_avail = false;
8960
8961 return 0;
8962 }
8963
8964 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8965 struct intel_link_m_n *m_n)
8966 {
8967 struct drm_device *dev = crtc->base.dev;
8968 struct drm_i915_private *dev_priv = dev->dev_private;
8969 enum pipe pipe = crtc->pipe;
8970
8971 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8972 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8973 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8974 & ~TU_SIZE_MASK;
8975 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8976 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8977 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8978 }
8979
8980 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8981 enum transcoder transcoder,
8982 struct intel_link_m_n *m_n,
8983 struct intel_link_m_n *m2_n2)
8984 {
8985 struct drm_device *dev = crtc->base.dev;
8986 struct drm_i915_private *dev_priv = dev->dev_private;
8987 enum pipe pipe = crtc->pipe;
8988
8989 if (INTEL_INFO(dev)->gen >= 5) {
8990 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8991 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8992 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8993 & ~TU_SIZE_MASK;
8994 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8995 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8996 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8997 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8998 * gen < 8) and if DRRS is supported (to make sure the
8999 * registers are not unnecessarily read).
9000 */
9001 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9002 crtc->config->has_drrs) {
9003 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9004 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9005 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9006 & ~TU_SIZE_MASK;
9007 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9008 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9009 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9010 }
9011 } else {
9012 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9013 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9014 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9015 & ~TU_SIZE_MASK;
9016 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9017 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9018 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9019 }
9020 }
9021
9022 void intel_dp_get_m_n(struct intel_crtc *crtc,
9023 struct intel_crtc_state *pipe_config)
9024 {
9025 if (pipe_config->has_pch_encoder)
9026 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9027 else
9028 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9029 &pipe_config->dp_m_n,
9030 &pipe_config->dp_m2_n2);
9031 }
9032
9033 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9034 struct intel_crtc_state *pipe_config)
9035 {
9036 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9037 &pipe_config->fdi_m_n, NULL);
9038 }
9039
9040 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9041 struct intel_crtc_state *pipe_config)
9042 {
9043 struct drm_device *dev = crtc->base.dev;
9044 struct drm_i915_private *dev_priv = dev->dev_private;
9045 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9046 uint32_t ps_ctrl = 0;
9047 int id = -1;
9048 int i;
9049
9050 /* find scaler attached to this pipe */
9051 for (i = 0; i < crtc->num_scalers; i++) {
9052 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9053 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9054 id = i;
9055 pipe_config->pch_pfit.enabled = true;
9056 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9057 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9058 break;
9059 }
9060 }
9061
9062 scaler_state->scaler_id = id;
9063 if (id >= 0) {
9064 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9065 } else {
9066 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9067 }
9068 }
9069
9070 static void
9071 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9072 struct intel_initial_plane_config *plane_config)
9073 {
9074 struct drm_device *dev = crtc->base.dev;
9075 struct drm_i915_private *dev_priv = dev->dev_private;
9076 u32 val, base, offset, stride_mult, tiling;
9077 int pipe = crtc->pipe;
9078 int fourcc, pixel_format;
9079 unsigned int aligned_height;
9080 struct drm_framebuffer *fb;
9081 struct intel_framebuffer *intel_fb;
9082
9083 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9084 if (!intel_fb) {
9085 DRM_DEBUG_KMS("failed to alloc fb\n");
9086 return;
9087 }
9088
9089 fb = &intel_fb->base;
9090
9091 val = I915_READ(PLANE_CTL(pipe, 0));
9092 if (!(val & PLANE_CTL_ENABLE))
9093 goto error;
9094
9095 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9096 fourcc = skl_format_to_fourcc(pixel_format,
9097 val & PLANE_CTL_ORDER_RGBX,
9098 val & PLANE_CTL_ALPHA_MASK);
9099 fb->pixel_format = fourcc;
9100 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9101
9102 tiling = val & PLANE_CTL_TILED_MASK;
9103 switch (tiling) {
9104 case PLANE_CTL_TILED_LINEAR:
9105 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9106 break;
9107 case PLANE_CTL_TILED_X:
9108 plane_config->tiling = I915_TILING_X;
9109 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9110 break;
9111 case PLANE_CTL_TILED_Y:
9112 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9113 break;
9114 case PLANE_CTL_TILED_YF:
9115 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9116 break;
9117 default:
9118 MISSING_CASE(tiling);
9119 goto error;
9120 }
9121
9122 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9123 plane_config->base = base;
9124
9125 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9126
9127 val = I915_READ(PLANE_SIZE(pipe, 0));
9128 fb->height = ((val >> 16) & 0xfff) + 1;
9129 fb->width = ((val >> 0) & 0x1fff) + 1;
9130
9131 val = I915_READ(PLANE_STRIDE(pipe, 0));
9132 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9133 fb->pixel_format);
9134 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9135
9136 aligned_height = intel_fb_align_height(dev, fb->height,
9137 fb->pixel_format,
9138 fb->modifier[0]);
9139
9140 plane_config->size = fb->pitches[0] * aligned_height;
9141
9142 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9143 pipe_name(pipe), fb->width, fb->height,
9144 fb->bits_per_pixel, base, fb->pitches[0],
9145 plane_config->size);
9146
9147 plane_config->fb = intel_fb;
9148 return;
9149
9150 error:
9151 kfree(fb);
9152 }
9153
9154 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9155 struct intel_crtc_state *pipe_config)
9156 {
9157 struct drm_device *dev = crtc->base.dev;
9158 struct drm_i915_private *dev_priv = dev->dev_private;
9159 uint32_t tmp;
9160
9161 tmp = I915_READ(PF_CTL(crtc->pipe));
9162
9163 if (tmp & PF_ENABLE) {
9164 pipe_config->pch_pfit.enabled = true;
9165 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9166 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9167
9168 /* We currently do not free assignements of panel fitters on
9169 * ivb/hsw (since we don't use the higher upscaling modes which
9170 * differentiates them) so just WARN about this case for now. */
9171 if (IS_GEN7(dev)) {
9172 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9173 PF_PIPE_SEL_IVB(crtc->pipe));
9174 }
9175 }
9176 }
9177
9178 static void
9179 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9180 struct intel_initial_plane_config *plane_config)
9181 {
9182 struct drm_device *dev = crtc->base.dev;
9183 struct drm_i915_private *dev_priv = dev->dev_private;
9184 u32 val, base, offset;
9185 int pipe = crtc->pipe;
9186 int fourcc, pixel_format;
9187 unsigned int aligned_height;
9188 struct drm_framebuffer *fb;
9189 struct intel_framebuffer *intel_fb;
9190
9191 val = I915_READ(DSPCNTR(pipe));
9192 if (!(val & DISPLAY_PLANE_ENABLE))
9193 return;
9194
9195 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9196 if (!intel_fb) {
9197 DRM_DEBUG_KMS("failed to alloc fb\n");
9198 return;
9199 }
9200
9201 fb = &intel_fb->base;
9202
9203 if (INTEL_INFO(dev)->gen >= 4) {
9204 if (val & DISPPLANE_TILED) {
9205 plane_config->tiling = I915_TILING_X;
9206 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9207 }
9208 }
9209
9210 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9211 fourcc = i9xx_format_to_fourcc(pixel_format);
9212 fb->pixel_format = fourcc;
9213 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9214
9215 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9216 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9217 offset = I915_READ(DSPOFFSET(pipe));
9218 } else {
9219 if (plane_config->tiling)
9220 offset = I915_READ(DSPTILEOFF(pipe));
9221 else
9222 offset = I915_READ(DSPLINOFF(pipe));
9223 }
9224 plane_config->base = base;
9225
9226 val = I915_READ(PIPESRC(pipe));
9227 fb->width = ((val >> 16) & 0xfff) + 1;
9228 fb->height = ((val >> 0) & 0xfff) + 1;
9229
9230 val = I915_READ(DSPSTRIDE(pipe));
9231 fb->pitches[0] = val & 0xffffffc0;
9232
9233 aligned_height = intel_fb_align_height(dev, fb->height,
9234 fb->pixel_format,
9235 fb->modifier[0]);
9236
9237 plane_config->size = fb->pitches[0] * aligned_height;
9238
9239 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9240 pipe_name(pipe), fb->width, fb->height,
9241 fb->bits_per_pixel, base, fb->pitches[0],
9242 plane_config->size);
9243
9244 plane_config->fb = intel_fb;
9245 }
9246
9247 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9248 struct intel_crtc_state *pipe_config)
9249 {
9250 struct drm_device *dev = crtc->base.dev;
9251 struct drm_i915_private *dev_priv = dev->dev_private;
9252 uint32_t tmp;
9253
9254 if (!intel_display_power_is_enabled(dev_priv,
9255 POWER_DOMAIN_PIPE(crtc->pipe)))
9256 return false;
9257
9258 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9259 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9260
9261 tmp = I915_READ(PIPECONF(crtc->pipe));
9262 if (!(tmp & PIPECONF_ENABLE))
9263 return false;
9264
9265 switch (tmp & PIPECONF_BPC_MASK) {
9266 case PIPECONF_6BPC:
9267 pipe_config->pipe_bpp = 18;
9268 break;
9269 case PIPECONF_8BPC:
9270 pipe_config->pipe_bpp = 24;
9271 break;
9272 case PIPECONF_10BPC:
9273 pipe_config->pipe_bpp = 30;
9274 break;
9275 case PIPECONF_12BPC:
9276 pipe_config->pipe_bpp = 36;
9277 break;
9278 default:
9279 break;
9280 }
9281
9282 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9283 pipe_config->limited_color_range = true;
9284
9285 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9286 struct intel_shared_dpll *pll;
9287
9288 pipe_config->has_pch_encoder = true;
9289
9290 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9291 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9292 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9293
9294 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9295
9296 if (HAS_PCH_IBX(dev_priv->dev)) {
9297 pipe_config->shared_dpll =
9298 (enum intel_dpll_id) crtc->pipe;
9299 } else {
9300 tmp = I915_READ(PCH_DPLL_SEL);
9301 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9302 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9303 else
9304 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9305 }
9306
9307 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9308
9309 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9310 &pipe_config->dpll_hw_state));
9311
9312 tmp = pipe_config->dpll_hw_state.dpll;
9313 pipe_config->pixel_multiplier =
9314 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9315 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9316
9317 ironlake_pch_clock_get(crtc, pipe_config);
9318 } else {
9319 pipe_config->pixel_multiplier = 1;
9320 }
9321
9322 intel_get_pipe_timings(crtc, pipe_config);
9323
9324 ironlake_get_pfit_config(crtc, pipe_config);
9325
9326 return true;
9327 }
9328
9329 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9330 {
9331 struct drm_device *dev = dev_priv->dev;
9332 struct intel_crtc *crtc;
9333
9334 for_each_intel_crtc(dev, crtc)
9335 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9336 pipe_name(crtc->pipe));
9337
9338 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9339 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9340 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9341 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9342 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9343 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9344 "CPU PWM1 enabled\n");
9345 if (IS_HASWELL(dev))
9346 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9347 "CPU PWM2 enabled\n");
9348 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9349 "PCH PWM1 enabled\n");
9350 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9351 "Utility pin enabled\n");
9352 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9353
9354 /*
9355 * In theory we can still leave IRQs enabled, as long as only the HPD
9356 * interrupts remain enabled. We used to check for that, but since it's
9357 * gen-specific and since we only disable LCPLL after we fully disable
9358 * the interrupts, the check below should be enough.
9359 */
9360 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9361 }
9362
9363 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9364 {
9365 struct drm_device *dev = dev_priv->dev;
9366
9367 if (IS_HASWELL(dev))
9368 return I915_READ(D_COMP_HSW);
9369 else
9370 return I915_READ(D_COMP_BDW);
9371 }
9372
9373 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9374 {
9375 struct drm_device *dev = dev_priv->dev;
9376
9377 if (IS_HASWELL(dev)) {
9378 mutex_lock(&dev_priv->rps.hw_lock);
9379 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9380 val))
9381 DRM_ERROR("Failed to write to D_COMP\n");
9382 mutex_unlock(&dev_priv->rps.hw_lock);
9383 } else {
9384 I915_WRITE(D_COMP_BDW, val);
9385 POSTING_READ(D_COMP_BDW);
9386 }
9387 }
9388
9389 /*
9390 * This function implements pieces of two sequences from BSpec:
9391 * - Sequence for display software to disable LCPLL
9392 * - Sequence for display software to allow package C8+
9393 * The steps implemented here are just the steps that actually touch the LCPLL
9394 * register. Callers should take care of disabling all the display engine
9395 * functions, doing the mode unset, fixing interrupts, etc.
9396 */
9397 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9398 bool switch_to_fclk, bool allow_power_down)
9399 {
9400 uint32_t val;
9401
9402 assert_can_disable_lcpll(dev_priv);
9403
9404 val = I915_READ(LCPLL_CTL);
9405
9406 if (switch_to_fclk) {
9407 val |= LCPLL_CD_SOURCE_FCLK;
9408 I915_WRITE(LCPLL_CTL, val);
9409
9410 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9411 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9412 DRM_ERROR("Switching to FCLK failed\n");
9413
9414 val = I915_READ(LCPLL_CTL);
9415 }
9416
9417 val |= LCPLL_PLL_DISABLE;
9418 I915_WRITE(LCPLL_CTL, val);
9419 POSTING_READ(LCPLL_CTL);
9420
9421 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9422 DRM_ERROR("LCPLL still locked\n");
9423
9424 val = hsw_read_dcomp(dev_priv);
9425 val |= D_COMP_COMP_DISABLE;
9426 hsw_write_dcomp(dev_priv, val);
9427 ndelay(100);
9428
9429 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9430 1))
9431 DRM_ERROR("D_COMP RCOMP still in progress\n");
9432
9433 if (allow_power_down) {
9434 val = I915_READ(LCPLL_CTL);
9435 val |= LCPLL_POWER_DOWN_ALLOW;
9436 I915_WRITE(LCPLL_CTL, val);
9437 POSTING_READ(LCPLL_CTL);
9438 }
9439 }
9440
9441 /*
9442 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9443 * source.
9444 */
9445 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9446 {
9447 uint32_t val;
9448
9449 val = I915_READ(LCPLL_CTL);
9450
9451 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9452 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9453 return;
9454
9455 /*
9456 * Make sure we're not on PC8 state before disabling PC8, otherwise
9457 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9458 */
9459 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9460
9461 if (val & LCPLL_POWER_DOWN_ALLOW) {
9462 val &= ~LCPLL_POWER_DOWN_ALLOW;
9463 I915_WRITE(LCPLL_CTL, val);
9464 POSTING_READ(LCPLL_CTL);
9465 }
9466
9467 val = hsw_read_dcomp(dev_priv);
9468 val |= D_COMP_COMP_FORCE;
9469 val &= ~D_COMP_COMP_DISABLE;
9470 hsw_write_dcomp(dev_priv, val);
9471
9472 val = I915_READ(LCPLL_CTL);
9473 val &= ~LCPLL_PLL_DISABLE;
9474 I915_WRITE(LCPLL_CTL, val);
9475
9476 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9477 DRM_ERROR("LCPLL not locked yet\n");
9478
9479 if (val & LCPLL_CD_SOURCE_FCLK) {
9480 val = I915_READ(LCPLL_CTL);
9481 val &= ~LCPLL_CD_SOURCE_FCLK;
9482 I915_WRITE(LCPLL_CTL, val);
9483
9484 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9485 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9486 DRM_ERROR("Switching back to LCPLL failed\n");
9487 }
9488
9489 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9490 intel_update_cdclk(dev_priv->dev);
9491 }
9492
9493 /*
9494 * Package states C8 and deeper are really deep PC states that can only be
9495 * reached when all the devices on the system allow it, so even if the graphics
9496 * device allows PC8+, it doesn't mean the system will actually get to these
9497 * states. Our driver only allows PC8+ when going into runtime PM.
9498 *
9499 * The requirements for PC8+ are that all the outputs are disabled, the power
9500 * well is disabled and most interrupts are disabled, and these are also
9501 * requirements for runtime PM. When these conditions are met, we manually do
9502 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9503 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9504 * hang the machine.
9505 *
9506 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9507 * the state of some registers, so when we come back from PC8+ we need to
9508 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9509 * need to take care of the registers kept by RC6. Notice that this happens even
9510 * if we don't put the device in PCI D3 state (which is what currently happens
9511 * because of the runtime PM support).
9512 *
9513 * For more, read "Display Sequences for Package C8" on the hardware
9514 * documentation.
9515 */
9516 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9517 {
9518 struct drm_device *dev = dev_priv->dev;
9519 uint32_t val;
9520
9521 DRM_DEBUG_KMS("Enabling package C8+\n");
9522
9523 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9524 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9525 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9526 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9527 }
9528
9529 lpt_disable_clkout_dp(dev);
9530 hsw_disable_lcpll(dev_priv, true, true);
9531 }
9532
9533 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9534 {
9535 struct drm_device *dev = dev_priv->dev;
9536 uint32_t val;
9537
9538 DRM_DEBUG_KMS("Disabling package C8+\n");
9539
9540 hsw_restore_lcpll(dev_priv);
9541 lpt_init_pch_refclk(dev);
9542
9543 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9544 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9545 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9546 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9547 }
9548
9549 intel_prepare_ddi(dev);
9550 }
9551
9552 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9553 {
9554 struct drm_device *dev = old_state->dev;
9555 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9556
9557 broxton_set_cdclk(dev, req_cdclk);
9558 }
9559
9560 /* compute the max rate for new configuration */
9561 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9562 {
9563 struct intel_crtc *intel_crtc;
9564 struct intel_crtc_state *crtc_state;
9565 int max_pixel_rate = 0;
9566
9567 for_each_intel_crtc(state->dev, intel_crtc) {
9568 int pixel_rate;
9569
9570 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9571 if (IS_ERR(crtc_state))
9572 return PTR_ERR(crtc_state);
9573
9574 if (!crtc_state->base.enable)
9575 continue;
9576
9577 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9578
9579 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9580 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9581 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9582
9583 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9584 }
9585
9586 return max_pixel_rate;
9587 }
9588
9589 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9590 {
9591 struct drm_i915_private *dev_priv = dev->dev_private;
9592 uint32_t val, data;
9593 int ret;
9594
9595 if (WARN((I915_READ(LCPLL_CTL) &
9596 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9597 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9598 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9599 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9600 "trying to change cdclk frequency with cdclk not enabled\n"))
9601 return;
9602
9603 mutex_lock(&dev_priv->rps.hw_lock);
9604 ret = sandybridge_pcode_write(dev_priv,
9605 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9606 mutex_unlock(&dev_priv->rps.hw_lock);
9607 if (ret) {
9608 DRM_ERROR("failed to inform pcode about cdclk change\n");
9609 return;
9610 }
9611
9612 val = I915_READ(LCPLL_CTL);
9613 val |= LCPLL_CD_SOURCE_FCLK;
9614 I915_WRITE(LCPLL_CTL, val);
9615
9616 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9617 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9618 DRM_ERROR("Switching to FCLK failed\n");
9619
9620 val = I915_READ(LCPLL_CTL);
9621 val &= ~LCPLL_CLK_FREQ_MASK;
9622
9623 switch (cdclk) {
9624 case 450000:
9625 val |= LCPLL_CLK_FREQ_450;
9626 data = 0;
9627 break;
9628 case 540000:
9629 val |= LCPLL_CLK_FREQ_54O_BDW;
9630 data = 1;
9631 break;
9632 case 337500:
9633 val |= LCPLL_CLK_FREQ_337_5_BDW;
9634 data = 2;
9635 break;
9636 case 675000:
9637 val |= LCPLL_CLK_FREQ_675_BDW;
9638 data = 3;
9639 break;
9640 default:
9641 WARN(1, "invalid cdclk frequency\n");
9642 return;
9643 }
9644
9645 I915_WRITE(LCPLL_CTL, val);
9646
9647 val = I915_READ(LCPLL_CTL);
9648 val &= ~LCPLL_CD_SOURCE_FCLK;
9649 I915_WRITE(LCPLL_CTL, val);
9650
9651 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9652 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9653 DRM_ERROR("Switching back to LCPLL failed\n");
9654
9655 mutex_lock(&dev_priv->rps.hw_lock);
9656 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9657 mutex_unlock(&dev_priv->rps.hw_lock);
9658
9659 intel_update_cdclk(dev);
9660
9661 WARN(cdclk != dev_priv->cdclk_freq,
9662 "cdclk requested %d kHz but got %d kHz\n",
9663 cdclk, dev_priv->cdclk_freq);
9664 }
9665
9666 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9667 {
9668 struct drm_i915_private *dev_priv = to_i915(state->dev);
9669 int max_pixclk = ilk_max_pixel_rate(state);
9670 int cdclk;
9671
9672 /*
9673 * FIXME should also account for plane ratio
9674 * once 64bpp pixel formats are supported.
9675 */
9676 if (max_pixclk > 540000)
9677 cdclk = 675000;
9678 else if (max_pixclk > 450000)
9679 cdclk = 540000;
9680 else if (max_pixclk > 337500)
9681 cdclk = 450000;
9682 else
9683 cdclk = 337500;
9684
9685 /*
9686 * FIXME move the cdclk caclulation to
9687 * compute_config() so we can fail gracegully.
9688 */
9689 if (cdclk > dev_priv->max_cdclk_freq) {
9690 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9691 cdclk, dev_priv->max_cdclk_freq);
9692 cdclk = dev_priv->max_cdclk_freq;
9693 }
9694
9695 to_intel_atomic_state(state)->cdclk = cdclk;
9696
9697 return 0;
9698 }
9699
9700 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9701 {
9702 struct drm_device *dev = old_state->dev;
9703 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9704
9705 broadwell_set_cdclk(dev, req_cdclk);
9706 }
9707
9708 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9709 struct intel_crtc_state *crtc_state)
9710 {
9711 if (!intel_ddi_pll_select(crtc, crtc_state))
9712 return -EINVAL;
9713
9714 crtc->lowfreq_avail = false;
9715
9716 return 0;
9717 }
9718
9719 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9720 enum port port,
9721 struct intel_crtc_state *pipe_config)
9722 {
9723 switch (port) {
9724 case PORT_A:
9725 pipe_config->ddi_pll_sel = SKL_DPLL0;
9726 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9727 break;
9728 case PORT_B:
9729 pipe_config->ddi_pll_sel = SKL_DPLL1;
9730 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9731 break;
9732 case PORT_C:
9733 pipe_config->ddi_pll_sel = SKL_DPLL2;
9734 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9735 break;
9736 default:
9737 DRM_ERROR("Incorrect port type\n");
9738 }
9739 }
9740
9741 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9742 enum port port,
9743 struct intel_crtc_state *pipe_config)
9744 {
9745 u32 temp, dpll_ctl1;
9746
9747 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9748 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9749
9750 switch (pipe_config->ddi_pll_sel) {
9751 case SKL_DPLL0:
9752 /*
9753 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9754 * of the shared DPLL framework and thus needs to be read out
9755 * separately
9756 */
9757 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9758 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9759 break;
9760 case SKL_DPLL1:
9761 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9762 break;
9763 case SKL_DPLL2:
9764 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9765 break;
9766 case SKL_DPLL3:
9767 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9768 break;
9769 }
9770 }
9771
9772 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9773 enum port port,
9774 struct intel_crtc_state *pipe_config)
9775 {
9776 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9777
9778 switch (pipe_config->ddi_pll_sel) {
9779 case PORT_CLK_SEL_WRPLL1:
9780 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9781 break;
9782 case PORT_CLK_SEL_WRPLL2:
9783 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9784 break;
9785 }
9786 }
9787
9788 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9789 struct intel_crtc_state *pipe_config)
9790 {
9791 struct drm_device *dev = crtc->base.dev;
9792 struct drm_i915_private *dev_priv = dev->dev_private;
9793 struct intel_shared_dpll *pll;
9794 enum port port;
9795 uint32_t tmp;
9796
9797 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9798
9799 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9800
9801 if (IS_SKYLAKE(dev))
9802 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9803 else if (IS_BROXTON(dev))
9804 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9805 else
9806 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9807
9808 if (pipe_config->shared_dpll >= 0) {
9809 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9810
9811 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9812 &pipe_config->dpll_hw_state));
9813 }
9814
9815 /*
9816 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9817 * DDI E. So just check whether this pipe is wired to DDI E and whether
9818 * the PCH transcoder is on.
9819 */
9820 if (INTEL_INFO(dev)->gen < 9 &&
9821 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9822 pipe_config->has_pch_encoder = true;
9823
9824 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9825 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9826 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9827
9828 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9829 }
9830 }
9831
9832 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9833 struct intel_crtc_state *pipe_config)
9834 {
9835 struct drm_device *dev = crtc->base.dev;
9836 struct drm_i915_private *dev_priv = dev->dev_private;
9837 enum intel_display_power_domain pfit_domain;
9838 uint32_t tmp;
9839
9840 if (!intel_display_power_is_enabled(dev_priv,
9841 POWER_DOMAIN_PIPE(crtc->pipe)))
9842 return false;
9843
9844 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9845 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9846
9847 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9848 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9849 enum pipe trans_edp_pipe;
9850 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9851 default:
9852 WARN(1, "unknown pipe linked to edp transcoder\n");
9853 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9854 case TRANS_DDI_EDP_INPUT_A_ON:
9855 trans_edp_pipe = PIPE_A;
9856 break;
9857 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9858 trans_edp_pipe = PIPE_B;
9859 break;
9860 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9861 trans_edp_pipe = PIPE_C;
9862 break;
9863 }
9864
9865 if (trans_edp_pipe == crtc->pipe)
9866 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9867 }
9868
9869 if (!intel_display_power_is_enabled(dev_priv,
9870 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9871 return false;
9872
9873 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9874 if (!(tmp & PIPECONF_ENABLE))
9875 return false;
9876
9877 haswell_get_ddi_port_state(crtc, pipe_config);
9878
9879 intel_get_pipe_timings(crtc, pipe_config);
9880
9881 if (INTEL_INFO(dev)->gen >= 9) {
9882 skl_init_scalers(dev, crtc, pipe_config);
9883 }
9884
9885 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9886
9887 if (INTEL_INFO(dev)->gen >= 9) {
9888 pipe_config->scaler_state.scaler_id = -1;
9889 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9890 }
9891
9892 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9893 if (INTEL_INFO(dev)->gen == 9)
9894 skylake_get_pfit_config(crtc, pipe_config);
9895 else if (INTEL_INFO(dev)->gen < 9)
9896 ironlake_get_pfit_config(crtc, pipe_config);
9897 else
9898 MISSING_CASE(INTEL_INFO(dev)->gen);
9899 }
9900
9901 if (IS_HASWELL(dev))
9902 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9903 (I915_READ(IPS_CTL) & IPS_ENABLE);
9904
9905 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9906 pipe_config->pixel_multiplier =
9907 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9908 } else {
9909 pipe_config->pixel_multiplier = 1;
9910 }
9911
9912 return true;
9913 }
9914
9915 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9916 {
9917 struct drm_device *dev = crtc->dev;
9918 struct drm_i915_private *dev_priv = dev->dev_private;
9919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9920 uint32_t cntl = 0, size = 0;
9921
9922 if (base) {
9923 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9924 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9925 unsigned int stride = roundup_pow_of_two(width) * 4;
9926
9927 switch (stride) {
9928 default:
9929 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9930 width, stride);
9931 stride = 256;
9932 /* fallthrough */
9933 case 256:
9934 case 512:
9935 case 1024:
9936 case 2048:
9937 break;
9938 }
9939
9940 cntl |= CURSOR_ENABLE |
9941 CURSOR_GAMMA_ENABLE |
9942 CURSOR_FORMAT_ARGB |
9943 CURSOR_STRIDE(stride);
9944
9945 size = (height << 12) | width;
9946 }
9947
9948 if (intel_crtc->cursor_cntl != 0 &&
9949 (intel_crtc->cursor_base != base ||
9950 intel_crtc->cursor_size != size ||
9951 intel_crtc->cursor_cntl != cntl)) {
9952 /* On these chipsets we can only modify the base/size/stride
9953 * whilst the cursor is disabled.
9954 */
9955 I915_WRITE(_CURACNTR, 0);
9956 POSTING_READ(_CURACNTR);
9957 intel_crtc->cursor_cntl = 0;
9958 }
9959
9960 if (intel_crtc->cursor_base != base) {
9961 I915_WRITE(_CURABASE, base);
9962 intel_crtc->cursor_base = base;
9963 }
9964
9965 if (intel_crtc->cursor_size != size) {
9966 I915_WRITE(CURSIZE, size);
9967 intel_crtc->cursor_size = size;
9968 }
9969
9970 if (intel_crtc->cursor_cntl != cntl) {
9971 I915_WRITE(_CURACNTR, cntl);
9972 POSTING_READ(_CURACNTR);
9973 intel_crtc->cursor_cntl = cntl;
9974 }
9975 }
9976
9977 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9978 {
9979 struct drm_device *dev = crtc->dev;
9980 struct drm_i915_private *dev_priv = dev->dev_private;
9981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9982 int pipe = intel_crtc->pipe;
9983 uint32_t cntl;
9984
9985 cntl = 0;
9986 if (base) {
9987 cntl = MCURSOR_GAMMA_ENABLE;
9988 switch (intel_crtc->base.cursor->state->crtc_w) {
9989 case 64:
9990 cntl |= CURSOR_MODE_64_ARGB_AX;
9991 break;
9992 case 128:
9993 cntl |= CURSOR_MODE_128_ARGB_AX;
9994 break;
9995 case 256:
9996 cntl |= CURSOR_MODE_256_ARGB_AX;
9997 break;
9998 default:
9999 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10000 return;
10001 }
10002 cntl |= pipe << 28; /* Connect to correct pipe */
10003
10004 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10005 cntl |= CURSOR_PIPE_CSC_ENABLE;
10006 }
10007
10008 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10009 cntl |= CURSOR_ROTATE_180;
10010
10011 if (intel_crtc->cursor_cntl != cntl) {
10012 I915_WRITE(CURCNTR(pipe), cntl);
10013 POSTING_READ(CURCNTR(pipe));
10014 intel_crtc->cursor_cntl = cntl;
10015 }
10016
10017 /* and commit changes on next vblank */
10018 I915_WRITE(CURBASE(pipe), base);
10019 POSTING_READ(CURBASE(pipe));
10020
10021 intel_crtc->cursor_base = base;
10022 }
10023
10024 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10025 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10026 bool on)
10027 {
10028 struct drm_device *dev = crtc->dev;
10029 struct drm_i915_private *dev_priv = dev->dev_private;
10030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10031 int pipe = intel_crtc->pipe;
10032 int x = crtc->cursor_x;
10033 int y = crtc->cursor_y;
10034 u32 base = 0, pos = 0;
10035
10036 if (on)
10037 base = intel_crtc->cursor_addr;
10038
10039 if (x >= intel_crtc->config->pipe_src_w)
10040 base = 0;
10041
10042 if (y >= intel_crtc->config->pipe_src_h)
10043 base = 0;
10044
10045 if (x < 0) {
10046 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10047 base = 0;
10048
10049 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10050 x = -x;
10051 }
10052 pos |= x << CURSOR_X_SHIFT;
10053
10054 if (y < 0) {
10055 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10056 base = 0;
10057
10058 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10059 y = -y;
10060 }
10061 pos |= y << CURSOR_Y_SHIFT;
10062
10063 if (base == 0 && intel_crtc->cursor_base == 0)
10064 return;
10065
10066 I915_WRITE(CURPOS(pipe), pos);
10067
10068 /* ILK+ do this automagically */
10069 if (HAS_GMCH_DISPLAY(dev) &&
10070 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10071 base += (intel_crtc->base.cursor->state->crtc_h *
10072 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10073 }
10074
10075 if (IS_845G(dev) || IS_I865G(dev))
10076 i845_update_cursor(crtc, base);
10077 else
10078 i9xx_update_cursor(crtc, base);
10079 }
10080
10081 static bool cursor_size_ok(struct drm_device *dev,
10082 uint32_t width, uint32_t height)
10083 {
10084 if (width == 0 || height == 0)
10085 return false;
10086
10087 /*
10088 * 845g/865g are special in that they are only limited by
10089 * the width of their cursors, the height is arbitrary up to
10090 * the precision of the register. Everything else requires
10091 * square cursors, limited to a few power-of-two sizes.
10092 */
10093 if (IS_845G(dev) || IS_I865G(dev)) {
10094 if ((width & 63) != 0)
10095 return false;
10096
10097 if (width > (IS_845G(dev) ? 64 : 512))
10098 return false;
10099
10100 if (height > 1023)
10101 return false;
10102 } else {
10103 switch (width | height) {
10104 case 256:
10105 case 128:
10106 if (IS_GEN2(dev))
10107 return false;
10108 case 64:
10109 break;
10110 default:
10111 return false;
10112 }
10113 }
10114
10115 return true;
10116 }
10117
10118 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10119 u16 *blue, uint32_t start, uint32_t size)
10120 {
10121 int end = (start + size > 256) ? 256 : start + size, i;
10122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10123
10124 for (i = start; i < end; i++) {
10125 intel_crtc->lut_r[i] = red[i] >> 8;
10126 intel_crtc->lut_g[i] = green[i] >> 8;
10127 intel_crtc->lut_b[i] = blue[i] >> 8;
10128 }
10129
10130 intel_crtc_load_lut(crtc);
10131 }
10132
10133 /* VESA 640x480x72Hz mode to set on the pipe */
10134 static struct drm_display_mode load_detect_mode = {
10135 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10136 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10137 };
10138
10139 struct drm_framebuffer *
10140 __intel_framebuffer_create(struct drm_device *dev,
10141 struct drm_mode_fb_cmd2 *mode_cmd,
10142 struct drm_i915_gem_object *obj)
10143 {
10144 struct intel_framebuffer *intel_fb;
10145 int ret;
10146
10147 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10148 if (!intel_fb) {
10149 drm_gem_object_unreference(&obj->base);
10150 return ERR_PTR(-ENOMEM);
10151 }
10152
10153 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10154 if (ret)
10155 goto err;
10156
10157 return &intel_fb->base;
10158 err:
10159 drm_gem_object_unreference(&obj->base);
10160 kfree(intel_fb);
10161
10162 return ERR_PTR(ret);
10163 }
10164
10165 static struct drm_framebuffer *
10166 intel_framebuffer_create(struct drm_device *dev,
10167 struct drm_mode_fb_cmd2 *mode_cmd,
10168 struct drm_i915_gem_object *obj)
10169 {
10170 struct drm_framebuffer *fb;
10171 int ret;
10172
10173 ret = i915_mutex_lock_interruptible(dev);
10174 if (ret)
10175 return ERR_PTR(ret);
10176 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10177 mutex_unlock(&dev->struct_mutex);
10178
10179 return fb;
10180 }
10181
10182 static u32
10183 intel_framebuffer_pitch_for_width(int width, int bpp)
10184 {
10185 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10186 return ALIGN(pitch, 64);
10187 }
10188
10189 static u32
10190 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10191 {
10192 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10193 return PAGE_ALIGN(pitch * mode->vdisplay);
10194 }
10195
10196 static struct drm_framebuffer *
10197 intel_framebuffer_create_for_mode(struct drm_device *dev,
10198 struct drm_display_mode *mode,
10199 int depth, int bpp)
10200 {
10201 struct drm_i915_gem_object *obj;
10202 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10203
10204 obj = i915_gem_alloc_object(dev,
10205 intel_framebuffer_size_for_mode(mode, bpp));
10206 if (obj == NULL)
10207 return ERR_PTR(-ENOMEM);
10208
10209 mode_cmd.width = mode->hdisplay;
10210 mode_cmd.height = mode->vdisplay;
10211 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10212 bpp);
10213 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10214
10215 return intel_framebuffer_create(dev, &mode_cmd, obj);
10216 }
10217
10218 static struct drm_framebuffer *
10219 mode_fits_in_fbdev(struct drm_device *dev,
10220 struct drm_display_mode *mode)
10221 {
10222 #ifdef CONFIG_DRM_I915_FBDEV
10223 struct drm_i915_private *dev_priv = dev->dev_private;
10224 struct drm_i915_gem_object *obj;
10225 struct drm_framebuffer *fb;
10226
10227 if (!dev_priv->fbdev)
10228 return NULL;
10229
10230 if (!dev_priv->fbdev->fb)
10231 return NULL;
10232
10233 obj = dev_priv->fbdev->fb->obj;
10234 BUG_ON(!obj);
10235
10236 fb = &dev_priv->fbdev->fb->base;
10237 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10238 fb->bits_per_pixel))
10239 return NULL;
10240
10241 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10242 return NULL;
10243
10244 return fb;
10245 #else
10246 return NULL;
10247 #endif
10248 }
10249
10250 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10251 struct drm_crtc *crtc,
10252 struct drm_display_mode *mode,
10253 struct drm_framebuffer *fb,
10254 int x, int y)
10255 {
10256 struct drm_plane_state *plane_state;
10257 int hdisplay, vdisplay;
10258 int ret;
10259
10260 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10261 if (IS_ERR(plane_state))
10262 return PTR_ERR(plane_state);
10263
10264 if (mode)
10265 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10266 else
10267 hdisplay = vdisplay = 0;
10268
10269 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10270 if (ret)
10271 return ret;
10272 drm_atomic_set_fb_for_plane(plane_state, fb);
10273 plane_state->crtc_x = 0;
10274 plane_state->crtc_y = 0;
10275 plane_state->crtc_w = hdisplay;
10276 plane_state->crtc_h = vdisplay;
10277 plane_state->src_x = x << 16;
10278 plane_state->src_y = y << 16;
10279 plane_state->src_w = hdisplay << 16;
10280 plane_state->src_h = vdisplay << 16;
10281
10282 return 0;
10283 }
10284
10285 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10286 struct drm_display_mode *mode,
10287 struct intel_load_detect_pipe *old,
10288 struct drm_modeset_acquire_ctx *ctx)
10289 {
10290 struct intel_crtc *intel_crtc;
10291 struct intel_encoder *intel_encoder =
10292 intel_attached_encoder(connector);
10293 struct drm_crtc *possible_crtc;
10294 struct drm_encoder *encoder = &intel_encoder->base;
10295 struct drm_crtc *crtc = NULL;
10296 struct drm_device *dev = encoder->dev;
10297 struct drm_framebuffer *fb;
10298 struct drm_mode_config *config = &dev->mode_config;
10299 struct drm_atomic_state *state = NULL;
10300 struct drm_connector_state *connector_state;
10301 struct intel_crtc_state *crtc_state;
10302 int ret, i = -1;
10303
10304 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10305 connector->base.id, connector->name,
10306 encoder->base.id, encoder->name);
10307
10308 retry:
10309 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10310 if (ret)
10311 goto fail;
10312
10313 /*
10314 * Algorithm gets a little messy:
10315 *
10316 * - if the connector already has an assigned crtc, use it (but make
10317 * sure it's on first)
10318 *
10319 * - try to find the first unused crtc that can drive this connector,
10320 * and use that if we find one
10321 */
10322
10323 /* See if we already have a CRTC for this connector */
10324 if (encoder->crtc) {
10325 crtc = encoder->crtc;
10326
10327 ret = drm_modeset_lock(&crtc->mutex, ctx);
10328 if (ret)
10329 goto fail;
10330 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10331 if (ret)
10332 goto fail;
10333
10334 old->dpms_mode = connector->dpms;
10335 old->load_detect_temp = false;
10336
10337 /* Make sure the crtc and connector are running */
10338 if (connector->dpms != DRM_MODE_DPMS_ON)
10339 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10340
10341 return true;
10342 }
10343
10344 /* Find an unused one (if possible) */
10345 for_each_crtc(dev, possible_crtc) {
10346 i++;
10347 if (!(encoder->possible_crtcs & (1 << i)))
10348 continue;
10349 if (possible_crtc->state->enable)
10350 continue;
10351
10352 crtc = possible_crtc;
10353 break;
10354 }
10355
10356 /*
10357 * If we didn't find an unused CRTC, don't use any.
10358 */
10359 if (!crtc) {
10360 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10361 goto fail;
10362 }
10363
10364 ret = drm_modeset_lock(&crtc->mutex, ctx);
10365 if (ret)
10366 goto fail;
10367 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10368 if (ret)
10369 goto fail;
10370
10371 intel_crtc = to_intel_crtc(crtc);
10372 old->dpms_mode = connector->dpms;
10373 old->load_detect_temp = true;
10374 old->release_fb = NULL;
10375
10376 state = drm_atomic_state_alloc(dev);
10377 if (!state)
10378 return false;
10379
10380 state->acquire_ctx = ctx;
10381
10382 connector_state = drm_atomic_get_connector_state(state, connector);
10383 if (IS_ERR(connector_state)) {
10384 ret = PTR_ERR(connector_state);
10385 goto fail;
10386 }
10387
10388 connector_state->crtc = crtc;
10389 connector_state->best_encoder = &intel_encoder->base;
10390
10391 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10392 if (IS_ERR(crtc_state)) {
10393 ret = PTR_ERR(crtc_state);
10394 goto fail;
10395 }
10396
10397 crtc_state->base.active = crtc_state->base.enable = true;
10398
10399 if (!mode)
10400 mode = &load_detect_mode;
10401
10402 /* We need a framebuffer large enough to accommodate all accesses
10403 * that the plane may generate whilst we perform load detection.
10404 * We can not rely on the fbcon either being present (we get called
10405 * during its initialisation to detect all boot displays, or it may
10406 * not even exist) or that it is large enough to satisfy the
10407 * requested mode.
10408 */
10409 fb = mode_fits_in_fbdev(dev, mode);
10410 if (fb == NULL) {
10411 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10412 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10413 old->release_fb = fb;
10414 } else
10415 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10416 if (IS_ERR(fb)) {
10417 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10418 goto fail;
10419 }
10420
10421 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10422 if (ret)
10423 goto fail;
10424
10425 drm_mode_copy(&crtc_state->base.mode, mode);
10426
10427 if (drm_atomic_commit(state)) {
10428 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10429 if (old->release_fb)
10430 old->release_fb->funcs->destroy(old->release_fb);
10431 goto fail;
10432 }
10433 crtc->primary->crtc = crtc;
10434
10435 /* let the connector get through one full cycle before testing */
10436 intel_wait_for_vblank(dev, intel_crtc->pipe);
10437 return true;
10438
10439 fail:
10440 drm_atomic_state_free(state);
10441 state = NULL;
10442
10443 if (ret == -EDEADLK) {
10444 drm_modeset_backoff(ctx);
10445 goto retry;
10446 }
10447
10448 return false;
10449 }
10450
10451 void intel_release_load_detect_pipe(struct drm_connector *connector,
10452 struct intel_load_detect_pipe *old,
10453 struct drm_modeset_acquire_ctx *ctx)
10454 {
10455 struct drm_device *dev = connector->dev;
10456 struct intel_encoder *intel_encoder =
10457 intel_attached_encoder(connector);
10458 struct drm_encoder *encoder = &intel_encoder->base;
10459 struct drm_crtc *crtc = encoder->crtc;
10460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10461 struct drm_atomic_state *state;
10462 struct drm_connector_state *connector_state;
10463 struct intel_crtc_state *crtc_state;
10464 int ret;
10465
10466 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10467 connector->base.id, connector->name,
10468 encoder->base.id, encoder->name);
10469
10470 if (old->load_detect_temp) {
10471 state = drm_atomic_state_alloc(dev);
10472 if (!state)
10473 goto fail;
10474
10475 state->acquire_ctx = ctx;
10476
10477 connector_state = drm_atomic_get_connector_state(state, connector);
10478 if (IS_ERR(connector_state))
10479 goto fail;
10480
10481 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10482 if (IS_ERR(crtc_state))
10483 goto fail;
10484
10485 connector_state->best_encoder = NULL;
10486 connector_state->crtc = NULL;
10487
10488 crtc_state->base.enable = crtc_state->base.active = false;
10489
10490 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10491 0, 0);
10492 if (ret)
10493 goto fail;
10494
10495 ret = drm_atomic_commit(state);
10496 if (ret)
10497 goto fail;
10498
10499 if (old->release_fb) {
10500 drm_framebuffer_unregister_private(old->release_fb);
10501 drm_framebuffer_unreference(old->release_fb);
10502 }
10503
10504 return;
10505 }
10506
10507 /* Switch crtc and encoder back off if necessary */
10508 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10509 connector->funcs->dpms(connector, old->dpms_mode);
10510
10511 return;
10512 fail:
10513 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10514 drm_atomic_state_free(state);
10515 }
10516
10517 static int i9xx_pll_refclk(struct drm_device *dev,
10518 const struct intel_crtc_state *pipe_config)
10519 {
10520 struct drm_i915_private *dev_priv = dev->dev_private;
10521 u32 dpll = pipe_config->dpll_hw_state.dpll;
10522
10523 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10524 return dev_priv->vbt.lvds_ssc_freq;
10525 else if (HAS_PCH_SPLIT(dev))
10526 return 120000;
10527 else if (!IS_GEN2(dev))
10528 return 96000;
10529 else
10530 return 48000;
10531 }
10532
10533 /* Returns the clock of the currently programmed mode of the given pipe. */
10534 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10535 struct intel_crtc_state *pipe_config)
10536 {
10537 struct drm_device *dev = crtc->base.dev;
10538 struct drm_i915_private *dev_priv = dev->dev_private;
10539 int pipe = pipe_config->cpu_transcoder;
10540 u32 dpll = pipe_config->dpll_hw_state.dpll;
10541 u32 fp;
10542 intel_clock_t clock;
10543 int port_clock;
10544 int refclk = i9xx_pll_refclk(dev, pipe_config);
10545
10546 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10547 fp = pipe_config->dpll_hw_state.fp0;
10548 else
10549 fp = pipe_config->dpll_hw_state.fp1;
10550
10551 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10552 if (IS_PINEVIEW(dev)) {
10553 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10554 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10555 } else {
10556 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10557 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10558 }
10559
10560 if (!IS_GEN2(dev)) {
10561 if (IS_PINEVIEW(dev))
10562 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10563 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10564 else
10565 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10566 DPLL_FPA01_P1_POST_DIV_SHIFT);
10567
10568 switch (dpll & DPLL_MODE_MASK) {
10569 case DPLLB_MODE_DAC_SERIAL:
10570 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10571 5 : 10;
10572 break;
10573 case DPLLB_MODE_LVDS:
10574 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10575 7 : 14;
10576 break;
10577 default:
10578 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10579 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10580 return;
10581 }
10582
10583 if (IS_PINEVIEW(dev))
10584 port_clock = pnv_calc_dpll_params(refclk, &clock);
10585 else
10586 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10587 } else {
10588 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10589 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10590
10591 if (is_lvds) {
10592 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10593 DPLL_FPA01_P1_POST_DIV_SHIFT);
10594
10595 if (lvds & LVDS_CLKB_POWER_UP)
10596 clock.p2 = 7;
10597 else
10598 clock.p2 = 14;
10599 } else {
10600 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10601 clock.p1 = 2;
10602 else {
10603 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10604 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10605 }
10606 if (dpll & PLL_P2_DIVIDE_BY_4)
10607 clock.p2 = 4;
10608 else
10609 clock.p2 = 2;
10610 }
10611
10612 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10613 }
10614
10615 /*
10616 * This value includes pixel_multiplier. We will use
10617 * port_clock to compute adjusted_mode.crtc_clock in the
10618 * encoder's get_config() function.
10619 */
10620 pipe_config->port_clock = port_clock;
10621 }
10622
10623 int intel_dotclock_calculate(int link_freq,
10624 const struct intel_link_m_n *m_n)
10625 {
10626 /*
10627 * The calculation for the data clock is:
10628 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10629 * But we want to avoid losing precison if possible, so:
10630 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10631 *
10632 * and the link clock is simpler:
10633 * link_clock = (m * link_clock) / n
10634 */
10635
10636 if (!m_n->link_n)
10637 return 0;
10638
10639 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10640 }
10641
10642 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10643 struct intel_crtc_state *pipe_config)
10644 {
10645 struct drm_device *dev = crtc->base.dev;
10646
10647 /* read out port_clock from the DPLL */
10648 i9xx_crtc_clock_get(crtc, pipe_config);
10649
10650 /*
10651 * This value does not include pixel_multiplier.
10652 * We will check that port_clock and adjusted_mode.crtc_clock
10653 * agree once we know their relationship in the encoder's
10654 * get_config() function.
10655 */
10656 pipe_config->base.adjusted_mode.crtc_clock =
10657 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10658 &pipe_config->fdi_m_n);
10659 }
10660
10661 /** Returns the currently programmed mode of the given pipe. */
10662 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10663 struct drm_crtc *crtc)
10664 {
10665 struct drm_i915_private *dev_priv = dev->dev_private;
10666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10667 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10668 struct drm_display_mode *mode;
10669 struct intel_crtc_state pipe_config;
10670 int htot = I915_READ(HTOTAL(cpu_transcoder));
10671 int hsync = I915_READ(HSYNC(cpu_transcoder));
10672 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10673 int vsync = I915_READ(VSYNC(cpu_transcoder));
10674 enum pipe pipe = intel_crtc->pipe;
10675
10676 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10677 if (!mode)
10678 return NULL;
10679
10680 /*
10681 * Construct a pipe_config sufficient for getting the clock info
10682 * back out of crtc_clock_get.
10683 *
10684 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10685 * to use a real value here instead.
10686 */
10687 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10688 pipe_config.pixel_multiplier = 1;
10689 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10690 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10691 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10692 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10693
10694 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10695 mode->hdisplay = (htot & 0xffff) + 1;
10696 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10697 mode->hsync_start = (hsync & 0xffff) + 1;
10698 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10699 mode->vdisplay = (vtot & 0xffff) + 1;
10700 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10701 mode->vsync_start = (vsync & 0xffff) + 1;
10702 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10703
10704 drm_mode_set_name(mode);
10705
10706 return mode;
10707 }
10708
10709 void intel_mark_busy(struct drm_device *dev)
10710 {
10711 struct drm_i915_private *dev_priv = dev->dev_private;
10712
10713 if (dev_priv->mm.busy)
10714 return;
10715
10716 intel_runtime_pm_get(dev_priv);
10717 i915_update_gfx_val(dev_priv);
10718 if (INTEL_INFO(dev)->gen >= 6)
10719 gen6_rps_busy(dev_priv);
10720 dev_priv->mm.busy = true;
10721 }
10722
10723 void intel_mark_idle(struct drm_device *dev)
10724 {
10725 struct drm_i915_private *dev_priv = dev->dev_private;
10726
10727 if (!dev_priv->mm.busy)
10728 return;
10729
10730 dev_priv->mm.busy = false;
10731
10732 if (INTEL_INFO(dev)->gen >= 6)
10733 gen6_rps_idle(dev->dev_private);
10734
10735 intel_runtime_pm_put(dev_priv);
10736 }
10737
10738 static void intel_crtc_destroy(struct drm_crtc *crtc)
10739 {
10740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10741 struct drm_device *dev = crtc->dev;
10742 struct intel_unpin_work *work;
10743
10744 spin_lock_irq(&dev->event_lock);
10745 work = intel_crtc->unpin_work;
10746 intel_crtc->unpin_work = NULL;
10747 spin_unlock_irq(&dev->event_lock);
10748
10749 if (work) {
10750 cancel_work_sync(&work->work);
10751 kfree(work);
10752 }
10753
10754 drm_crtc_cleanup(crtc);
10755
10756 kfree(intel_crtc);
10757 }
10758
10759 static void intel_unpin_work_fn(struct work_struct *__work)
10760 {
10761 struct intel_unpin_work *work =
10762 container_of(__work, struct intel_unpin_work, work);
10763 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10764 struct drm_device *dev = crtc->base.dev;
10765 struct drm_plane *primary = crtc->base.primary;
10766
10767 mutex_lock(&dev->struct_mutex);
10768 intel_unpin_fb_obj(work->old_fb, primary->state);
10769 drm_gem_object_unreference(&work->pending_flip_obj->base);
10770
10771 if (work->flip_queued_req)
10772 i915_gem_request_assign(&work->flip_queued_req, NULL);
10773 mutex_unlock(&dev->struct_mutex);
10774
10775 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10776 drm_framebuffer_unreference(work->old_fb);
10777
10778 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10779 atomic_dec(&crtc->unpin_work_count);
10780
10781 kfree(work);
10782 }
10783
10784 static void do_intel_finish_page_flip(struct drm_device *dev,
10785 struct drm_crtc *crtc)
10786 {
10787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10788 struct intel_unpin_work *work;
10789 unsigned long flags;
10790
10791 /* Ignore early vblank irqs */
10792 if (intel_crtc == NULL)
10793 return;
10794
10795 /*
10796 * This is called both by irq handlers and the reset code (to complete
10797 * lost pageflips) so needs the full irqsave spinlocks.
10798 */
10799 spin_lock_irqsave(&dev->event_lock, flags);
10800 work = intel_crtc->unpin_work;
10801
10802 /* Ensure we don't miss a work->pending update ... */
10803 smp_rmb();
10804
10805 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10806 spin_unlock_irqrestore(&dev->event_lock, flags);
10807 return;
10808 }
10809
10810 page_flip_completed(intel_crtc);
10811
10812 spin_unlock_irqrestore(&dev->event_lock, flags);
10813 }
10814
10815 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10816 {
10817 struct drm_i915_private *dev_priv = dev->dev_private;
10818 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10819
10820 do_intel_finish_page_flip(dev, crtc);
10821 }
10822
10823 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10824 {
10825 struct drm_i915_private *dev_priv = dev->dev_private;
10826 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10827
10828 do_intel_finish_page_flip(dev, crtc);
10829 }
10830
10831 /* Is 'a' after or equal to 'b'? */
10832 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10833 {
10834 return !((a - b) & 0x80000000);
10835 }
10836
10837 static bool page_flip_finished(struct intel_crtc *crtc)
10838 {
10839 struct drm_device *dev = crtc->base.dev;
10840 struct drm_i915_private *dev_priv = dev->dev_private;
10841
10842 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10843 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10844 return true;
10845
10846 /*
10847 * The relevant registers doen't exist on pre-ctg.
10848 * As the flip done interrupt doesn't trigger for mmio
10849 * flips on gmch platforms, a flip count check isn't
10850 * really needed there. But since ctg has the registers,
10851 * include it in the check anyway.
10852 */
10853 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10854 return true;
10855
10856 /*
10857 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10858 * used the same base address. In that case the mmio flip might
10859 * have completed, but the CS hasn't even executed the flip yet.
10860 *
10861 * A flip count check isn't enough as the CS might have updated
10862 * the base address just after start of vblank, but before we
10863 * managed to process the interrupt. This means we'd complete the
10864 * CS flip too soon.
10865 *
10866 * Combining both checks should get us a good enough result. It may
10867 * still happen that the CS flip has been executed, but has not
10868 * yet actually completed. But in case the base address is the same
10869 * anyway, we don't really care.
10870 */
10871 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10872 crtc->unpin_work->gtt_offset &&
10873 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10874 crtc->unpin_work->flip_count);
10875 }
10876
10877 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10878 {
10879 struct drm_i915_private *dev_priv = dev->dev_private;
10880 struct intel_crtc *intel_crtc =
10881 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10882 unsigned long flags;
10883
10884
10885 /*
10886 * This is called both by irq handlers and the reset code (to complete
10887 * lost pageflips) so needs the full irqsave spinlocks.
10888 *
10889 * NB: An MMIO update of the plane base pointer will also
10890 * generate a page-flip completion irq, i.e. every modeset
10891 * is also accompanied by a spurious intel_prepare_page_flip().
10892 */
10893 spin_lock_irqsave(&dev->event_lock, flags);
10894 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10895 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10896 spin_unlock_irqrestore(&dev->event_lock, flags);
10897 }
10898
10899 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10900 {
10901 /* Ensure that the work item is consistent when activating it ... */
10902 smp_wmb();
10903 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10904 /* and that it is marked active as soon as the irq could fire. */
10905 smp_wmb();
10906 }
10907
10908 static int intel_gen2_queue_flip(struct drm_device *dev,
10909 struct drm_crtc *crtc,
10910 struct drm_framebuffer *fb,
10911 struct drm_i915_gem_object *obj,
10912 struct drm_i915_gem_request *req,
10913 uint32_t flags)
10914 {
10915 struct intel_engine_cs *ring = req->ring;
10916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10917 u32 flip_mask;
10918 int ret;
10919
10920 ret = intel_ring_begin(req, 6);
10921 if (ret)
10922 return ret;
10923
10924 /* Can't queue multiple flips, so wait for the previous
10925 * one to finish before executing the next.
10926 */
10927 if (intel_crtc->plane)
10928 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10929 else
10930 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10931 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10932 intel_ring_emit(ring, MI_NOOP);
10933 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10934 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10935 intel_ring_emit(ring, fb->pitches[0]);
10936 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10937 intel_ring_emit(ring, 0); /* aux display base address, unused */
10938
10939 intel_mark_page_flip_active(intel_crtc);
10940 return 0;
10941 }
10942
10943 static int intel_gen3_queue_flip(struct drm_device *dev,
10944 struct drm_crtc *crtc,
10945 struct drm_framebuffer *fb,
10946 struct drm_i915_gem_object *obj,
10947 struct drm_i915_gem_request *req,
10948 uint32_t flags)
10949 {
10950 struct intel_engine_cs *ring = req->ring;
10951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10952 u32 flip_mask;
10953 int ret;
10954
10955 ret = intel_ring_begin(req, 6);
10956 if (ret)
10957 return ret;
10958
10959 if (intel_crtc->plane)
10960 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10961 else
10962 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10963 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10964 intel_ring_emit(ring, MI_NOOP);
10965 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10966 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10967 intel_ring_emit(ring, fb->pitches[0]);
10968 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10969 intel_ring_emit(ring, MI_NOOP);
10970
10971 intel_mark_page_flip_active(intel_crtc);
10972 return 0;
10973 }
10974
10975 static int intel_gen4_queue_flip(struct drm_device *dev,
10976 struct drm_crtc *crtc,
10977 struct drm_framebuffer *fb,
10978 struct drm_i915_gem_object *obj,
10979 struct drm_i915_gem_request *req,
10980 uint32_t flags)
10981 {
10982 struct intel_engine_cs *ring = req->ring;
10983 struct drm_i915_private *dev_priv = dev->dev_private;
10984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10985 uint32_t pf, pipesrc;
10986 int ret;
10987
10988 ret = intel_ring_begin(req, 4);
10989 if (ret)
10990 return ret;
10991
10992 /* i965+ uses the linear or tiled offsets from the
10993 * Display Registers (which do not change across a page-flip)
10994 * so we need only reprogram the base address.
10995 */
10996 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10997 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10998 intel_ring_emit(ring, fb->pitches[0]);
10999 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11000 obj->tiling_mode);
11001
11002 /* XXX Enabling the panel-fitter across page-flip is so far
11003 * untested on non-native modes, so ignore it for now.
11004 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11005 */
11006 pf = 0;
11007 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11008 intel_ring_emit(ring, pf | pipesrc);
11009
11010 intel_mark_page_flip_active(intel_crtc);
11011 return 0;
11012 }
11013
11014 static int intel_gen6_queue_flip(struct drm_device *dev,
11015 struct drm_crtc *crtc,
11016 struct drm_framebuffer *fb,
11017 struct drm_i915_gem_object *obj,
11018 struct drm_i915_gem_request *req,
11019 uint32_t flags)
11020 {
11021 struct intel_engine_cs *ring = req->ring;
11022 struct drm_i915_private *dev_priv = dev->dev_private;
11023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11024 uint32_t pf, pipesrc;
11025 int ret;
11026
11027 ret = intel_ring_begin(req, 4);
11028 if (ret)
11029 return ret;
11030
11031 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11032 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11033 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11034 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11035
11036 /* Contrary to the suggestions in the documentation,
11037 * "Enable Panel Fitter" does not seem to be required when page
11038 * flipping with a non-native mode, and worse causes a normal
11039 * modeset to fail.
11040 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11041 */
11042 pf = 0;
11043 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11044 intel_ring_emit(ring, pf | pipesrc);
11045
11046 intel_mark_page_flip_active(intel_crtc);
11047 return 0;
11048 }
11049
11050 static int intel_gen7_queue_flip(struct drm_device *dev,
11051 struct drm_crtc *crtc,
11052 struct drm_framebuffer *fb,
11053 struct drm_i915_gem_object *obj,
11054 struct drm_i915_gem_request *req,
11055 uint32_t flags)
11056 {
11057 struct intel_engine_cs *ring = req->ring;
11058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11059 uint32_t plane_bit = 0;
11060 int len, ret;
11061
11062 switch (intel_crtc->plane) {
11063 case PLANE_A:
11064 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11065 break;
11066 case PLANE_B:
11067 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11068 break;
11069 case PLANE_C:
11070 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11071 break;
11072 default:
11073 WARN_ONCE(1, "unknown plane in flip command\n");
11074 return -ENODEV;
11075 }
11076
11077 len = 4;
11078 if (ring->id == RCS) {
11079 len += 6;
11080 /*
11081 * On Gen 8, SRM is now taking an extra dword to accommodate
11082 * 48bits addresses, and we need a NOOP for the batch size to
11083 * stay even.
11084 */
11085 if (IS_GEN8(dev))
11086 len += 2;
11087 }
11088
11089 /*
11090 * BSpec MI_DISPLAY_FLIP for IVB:
11091 * "The full packet must be contained within the same cache line."
11092 *
11093 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11094 * cacheline, if we ever start emitting more commands before
11095 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11096 * then do the cacheline alignment, and finally emit the
11097 * MI_DISPLAY_FLIP.
11098 */
11099 ret = intel_ring_cacheline_align(req);
11100 if (ret)
11101 return ret;
11102
11103 ret = intel_ring_begin(req, len);
11104 if (ret)
11105 return ret;
11106
11107 /* Unmask the flip-done completion message. Note that the bspec says that
11108 * we should do this for both the BCS and RCS, and that we must not unmask
11109 * more than one flip event at any time (or ensure that one flip message
11110 * can be sent by waiting for flip-done prior to queueing new flips).
11111 * Experimentation says that BCS works despite DERRMR masking all
11112 * flip-done completion events and that unmasking all planes at once
11113 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11114 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11115 */
11116 if (ring->id == RCS) {
11117 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11118 intel_ring_emit(ring, DERRMR);
11119 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11120 DERRMR_PIPEB_PRI_FLIP_DONE |
11121 DERRMR_PIPEC_PRI_FLIP_DONE));
11122 if (IS_GEN8(dev))
11123 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11124 MI_SRM_LRM_GLOBAL_GTT);
11125 else
11126 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11127 MI_SRM_LRM_GLOBAL_GTT);
11128 intel_ring_emit(ring, DERRMR);
11129 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11130 if (IS_GEN8(dev)) {
11131 intel_ring_emit(ring, 0);
11132 intel_ring_emit(ring, MI_NOOP);
11133 }
11134 }
11135
11136 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11137 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11138 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11139 intel_ring_emit(ring, (MI_NOOP));
11140
11141 intel_mark_page_flip_active(intel_crtc);
11142 return 0;
11143 }
11144
11145 static bool use_mmio_flip(struct intel_engine_cs *ring,
11146 struct drm_i915_gem_object *obj)
11147 {
11148 /*
11149 * This is not being used for older platforms, because
11150 * non-availability of flip done interrupt forces us to use
11151 * CS flips. Older platforms derive flip done using some clever
11152 * tricks involving the flip_pending status bits and vblank irqs.
11153 * So using MMIO flips there would disrupt this mechanism.
11154 */
11155
11156 if (ring == NULL)
11157 return true;
11158
11159 if (INTEL_INFO(ring->dev)->gen < 5)
11160 return false;
11161
11162 if (i915.use_mmio_flip < 0)
11163 return false;
11164 else if (i915.use_mmio_flip > 0)
11165 return true;
11166 else if (i915.enable_execlists)
11167 return true;
11168 else
11169 return ring != i915_gem_request_get_ring(obj->last_write_req);
11170 }
11171
11172 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11173 {
11174 struct drm_device *dev = intel_crtc->base.dev;
11175 struct drm_i915_private *dev_priv = dev->dev_private;
11176 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11177 const enum pipe pipe = intel_crtc->pipe;
11178 u32 ctl, stride;
11179
11180 ctl = I915_READ(PLANE_CTL(pipe, 0));
11181 ctl &= ~PLANE_CTL_TILED_MASK;
11182 switch (fb->modifier[0]) {
11183 case DRM_FORMAT_MOD_NONE:
11184 break;
11185 case I915_FORMAT_MOD_X_TILED:
11186 ctl |= PLANE_CTL_TILED_X;
11187 break;
11188 case I915_FORMAT_MOD_Y_TILED:
11189 ctl |= PLANE_CTL_TILED_Y;
11190 break;
11191 case I915_FORMAT_MOD_Yf_TILED:
11192 ctl |= PLANE_CTL_TILED_YF;
11193 break;
11194 default:
11195 MISSING_CASE(fb->modifier[0]);
11196 }
11197
11198 /*
11199 * The stride is either expressed as a multiple of 64 bytes chunks for
11200 * linear buffers or in number of tiles for tiled buffers.
11201 */
11202 stride = fb->pitches[0] /
11203 intel_fb_stride_alignment(dev, fb->modifier[0],
11204 fb->pixel_format);
11205
11206 /*
11207 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11208 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11209 */
11210 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11211 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11212
11213 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11214 POSTING_READ(PLANE_SURF(pipe, 0));
11215 }
11216
11217 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11218 {
11219 struct drm_device *dev = intel_crtc->base.dev;
11220 struct drm_i915_private *dev_priv = dev->dev_private;
11221 struct intel_framebuffer *intel_fb =
11222 to_intel_framebuffer(intel_crtc->base.primary->fb);
11223 struct drm_i915_gem_object *obj = intel_fb->obj;
11224 u32 dspcntr;
11225 u32 reg;
11226
11227 reg = DSPCNTR(intel_crtc->plane);
11228 dspcntr = I915_READ(reg);
11229
11230 if (obj->tiling_mode != I915_TILING_NONE)
11231 dspcntr |= DISPPLANE_TILED;
11232 else
11233 dspcntr &= ~DISPPLANE_TILED;
11234
11235 I915_WRITE(reg, dspcntr);
11236
11237 I915_WRITE(DSPSURF(intel_crtc->plane),
11238 intel_crtc->unpin_work->gtt_offset);
11239 POSTING_READ(DSPSURF(intel_crtc->plane));
11240
11241 }
11242
11243 /*
11244 * XXX: This is the temporary way to update the plane registers until we get
11245 * around to using the usual plane update functions for MMIO flips
11246 */
11247 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11248 {
11249 struct drm_device *dev = intel_crtc->base.dev;
11250 u32 start_vbl_count;
11251
11252 intel_mark_page_flip_active(intel_crtc);
11253
11254 intel_pipe_update_start(intel_crtc, &start_vbl_count);
11255
11256 if (INTEL_INFO(dev)->gen >= 9)
11257 skl_do_mmio_flip(intel_crtc);
11258 else
11259 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11260 ilk_do_mmio_flip(intel_crtc);
11261
11262 intel_pipe_update_end(intel_crtc, start_vbl_count);
11263 }
11264
11265 static void intel_mmio_flip_work_func(struct work_struct *work)
11266 {
11267 struct intel_mmio_flip *mmio_flip =
11268 container_of(work, struct intel_mmio_flip, work);
11269
11270 if (mmio_flip->req)
11271 WARN_ON(__i915_wait_request(mmio_flip->req,
11272 mmio_flip->crtc->reset_counter,
11273 false, NULL,
11274 &mmio_flip->i915->rps.mmioflips));
11275
11276 intel_do_mmio_flip(mmio_flip->crtc);
11277
11278 i915_gem_request_unreference__unlocked(mmio_flip->req);
11279 kfree(mmio_flip);
11280 }
11281
11282 static int intel_queue_mmio_flip(struct drm_device *dev,
11283 struct drm_crtc *crtc,
11284 struct drm_framebuffer *fb,
11285 struct drm_i915_gem_object *obj,
11286 struct intel_engine_cs *ring,
11287 uint32_t flags)
11288 {
11289 struct intel_mmio_flip *mmio_flip;
11290
11291 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11292 if (mmio_flip == NULL)
11293 return -ENOMEM;
11294
11295 mmio_flip->i915 = to_i915(dev);
11296 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11297 mmio_flip->crtc = to_intel_crtc(crtc);
11298
11299 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11300 schedule_work(&mmio_flip->work);
11301
11302 return 0;
11303 }
11304
11305 static int intel_default_queue_flip(struct drm_device *dev,
11306 struct drm_crtc *crtc,
11307 struct drm_framebuffer *fb,
11308 struct drm_i915_gem_object *obj,
11309 struct drm_i915_gem_request *req,
11310 uint32_t flags)
11311 {
11312 return -ENODEV;
11313 }
11314
11315 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11316 struct drm_crtc *crtc)
11317 {
11318 struct drm_i915_private *dev_priv = dev->dev_private;
11319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11320 struct intel_unpin_work *work = intel_crtc->unpin_work;
11321 u32 addr;
11322
11323 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11324 return true;
11325
11326 if (!work->enable_stall_check)
11327 return false;
11328
11329 if (work->flip_ready_vblank == 0) {
11330 if (work->flip_queued_req &&
11331 !i915_gem_request_completed(work->flip_queued_req, true))
11332 return false;
11333
11334 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11335 }
11336
11337 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11338 return false;
11339
11340 /* Potential stall - if we see that the flip has happened,
11341 * assume a missed interrupt. */
11342 if (INTEL_INFO(dev)->gen >= 4)
11343 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11344 else
11345 addr = I915_READ(DSPADDR(intel_crtc->plane));
11346
11347 /* There is a potential issue here with a false positive after a flip
11348 * to the same address. We could address this by checking for a
11349 * non-incrementing frame counter.
11350 */
11351 return addr == work->gtt_offset;
11352 }
11353
11354 void intel_check_page_flip(struct drm_device *dev, int pipe)
11355 {
11356 struct drm_i915_private *dev_priv = dev->dev_private;
11357 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11359 struct intel_unpin_work *work;
11360
11361 WARN_ON(!in_interrupt());
11362
11363 if (crtc == NULL)
11364 return;
11365
11366 spin_lock(&dev->event_lock);
11367 work = intel_crtc->unpin_work;
11368 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11369 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11370 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11371 page_flip_completed(intel_crtc);
11372 work = NULL;
11373 }
11374 if (work != NULL &&
11375 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11376 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11377 spin_unlock(&dev->event_lock);
11378 }
11379
11380 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11381 struct drm_framebuffer *fb,
11382 struct drm_pending_vblank_event *event,
11383 uint32_t page_flip_flags)
11384 {
11385 struct drm_device *dev = crtc->dev;
11386 struct drm_i915_private *dev_priv = dev->dev_private;
11387 struct drm_framebuffer *old_fb = crtc->primary->fb;
11388 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11389 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11390 struct drm_plane *primary = crtc->primary;
11391 enum pipe pipe = intel_crtc->pipe;
11392 struct intel_unpin_work *work;
11393 struct intel_engine_cs *ring;
11394 bool mmio_flip;
11395 struct drm_i915_gem_request *request = NULL;
11396 int ret;
11397
11398 /*
11399 * drm_mode_page_flip_ioctl() should already catch this, but double
11400 * check to be safe. In the future we may enable pageflipping from
11401 * a disabled primary plane.
11402 */
11403 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11404 return -EBUSY;
11405
11406 /* Can't change pixel format via MI display flips. */
11407 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11408 return -EINVAL;
11409
11410 /*
11411 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11412 * Note that pitch changes could also affect these register.
11413 */
11414 if (INTEL_INFO(dev)->gen > 3 &&
11415 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11416 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11417 return -EINVAL;
11418
11419 if (i915_terminally_wedged(&dev_priv->gpu_error))
11420 goto out_hang;
11421
11422 work = kzalloc(sizeof(*work), GFP_KERNEL);
11423 if (work == NULL)
11424 return -ENOMEM;
11425
11426 work->event = event;
11427 work->crtc = crtc;
11428 work->old_fb = old_fb;
11429 INIT_WORK(&work->work, intel_unpin_work_fn);
11430
11431 ret = drm_crtc_vblank_get(crtc);
11432 if (ret)
11433 goto free_work;
11434
11435 /* We borrow the event spin lock for protecting unpin_work */
11436 spin_lock_irq(&dev->event_lock);
11437 if (intel_crtc->unpin_work) {
11438 /* Before declaring the flip queue wedged, check if
11439 * the hardware completed the operation behind our backs.
11440 */
11441 if (__intel_pageflip_stall_check(dev, crtc)) {
11442 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11443 page_flip_completed(intel_crtc);
11444 } else {
11445 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11446 spin_unlock_irq(&dev->event_lock);
11447
11448 drm_crtc_vblank_put(crtc);
11449 kfree(work);
11450 return -EBUSY;
11451 }
11452 }
11453 intel_crtc->unpin_work = work;
11454 spin_unlock_irq(&dev->event_lock);
11455
11456 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11457 flush_workqueue(dev_priv->wq);
11458
11459 /* Reference the objects for the scheduled work. */
11460 drm_framebuffer_reference(work->old_fb);
11461 drm_gem_object_reference(&obj->base);
11462
11463 crtc->primary->fb = fb;
11464 update_state_fb(crtc->primary);
11465
11466 work->pending_flip_obj = obj;
11467
11468 ret = i915_mutex_lock_interruptible(dev);
11469 if (ret)
11470 goto cleanup;
11471
11472 atomic_inc(&intel_crtc->unpin_work_count);
11473 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11474
11475 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11476 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11477
11478 if (IS_VALLEYVIEW(dev)) {
11479 ring = &dev_priv->ring[BCS];
11480 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11481 /* vlv: DISPLAY_FLIP fails to change tiling */
11482 ring = NULL;
11483 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11484 ring = &dev_priv->ring[BCS];
11485 } else if (INTEL_INFO(dev)->gen >= 7) {
11486 ring = i915_gem_request_get_ring(obj->last_write_req);
11487 if (ring == NULL || ring->id != RCS)
11488 ring = &dev_priv->ring[BCS];
11489 } else {
11490 ring = &dev_priv->ring[RCS];
11491 }
11492
11493 mmio_flip = use_mmio_flip(ring, obj);
11494
11495 /* When using CS flips, we want to emit semaphores between rings.
11496 * However, when using mmio flips we will create a task to do the
11497 * synchronisation, so all we want here is to pin the framebuffer
11498 * into the display plane and skip any waits.
11499 */
11500 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11501 crtc->primary->state,
11502 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11503 if (ret)
11504 goto cleanup_pending;
11505
11506 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11507 + intel_crtc->dspaddr_offset;
11508
11509 if (mmio_flip) {
11510 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11511 page_flip_flags);
11512 if (ret)
11513 goto cleanup_unpin;
11514
11515 i915_gem_request_assign(&work->flip_queued_req,
11516 obj->last_write_req);
11517 } else {
11518 if (!request) {
11519 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11520 if (ret)
11521 goto cleanup_unpin;
11522 }
11523
11524 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11525 page_flip_flags);
11526 if (ret)
11527 goto cleanup_unpin;
11528
11529 i915_gem_request_assign(&work->flip_queued_req, request);
11530 }
11531
11532 if (request)
11533 i915_add_request_no_flush(request);
11534
11535 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11536 work->enable_stall_check = true;
11537
11538 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11539 to_intel_plane(primary)->frontbuffer_bit);
11540 mutex_unlock(&dev->struct_mutex);
11541
11542 intel_fbc_disable_crtc(intel_crtc);
11543 intel_frontbuffer_flip_prepare(dev,
11544 to_intel_plane(primary)->frontbuffer_bit);
11545
11546 trace_i915_flip_request(intel_crtc->plane, obj);
11547
11548 return 0;
11549
11550 cleanup_unpin:
11551 intel_unpin_fb_obj(fb, crtc->primary->state);
11552 cleanup_pending:
11553 if (request)
11554 i915_gem_request_cancel(request);
11555 atomic_dec(&intel_crtc->unpin_work_count);
11556 mutex_unlock(&dev->struct_mutex);
11557 cleanup:
11558 crtc->primary->fb = old_fb;
11559 update_state_fb(crtc->primary);
11560
11561 drm_gem_object_unreference_unlocked(&obj->base);
11562 drm_framebuffer_unreference(work->old_fb);
11563
11564 spin_lock_irq(&dev->event_lock);
11565 intel_crtc->unpin_work = NULL;
11566 spin_unlock_irq(&dev->event_lock);
11567
11568 drm_crtc_vblank_put(crtc);
11569 free_work:
11570 kfree(work);
11571
11572 if (ret == -EIO) {
11573 struct drm_atomic_state *state;
11574 struct drm_plane_state *plane_state;
11575
11576 out_hang:
11577 state = drm_atomic_state_alloc(dev);
11578 if (!state)
11579 return -ENOMEM;
11580 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11581
11582 retry:
11583 plane_state = drm_atomic_get_plane_state(state, primary);
11584 ret = PTR_ERR_OR_ZERO(plane_state);
11585 if (!ret) {
11586 drm_atomic_set_fb_for_plane(plane_state, fb);
11587
11588 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11589 if (!ret)
11590 ret = drm_atomic_commit(state);
11591 }
11592
11593 if (ret == -EDEADLK) {
11594 drm_modeset_backoff(state->acquire_ctx);
11595 drm_atomic_state_clear(state);
11596 goto retry;
11597 }
11598
11599 if (ret)
11600 drm_atomic_state_free(state);
11601
11602 if (ret == 0 && event) {
11603 spin_lock_irq(&dev->event_lock);
11604 drm_send_vblank_event(dev, pipe, event);
11605 spin_unlock_irq(&dev->event_lock);
11606 }
11607 }
11608 return ret;
11609 }
11610
11611
11612 /**
11613 * intel_wm_need_update - Check whether watermarks need updating
11614 * @plane: drm plane
11615 * @state: new plane state
11616 *
11617 * Check current plane state versus the new one to determine whether
11618 * watermarks need to be recalculated.
11619 *
11620 * Returns true or false.
11621 */
11622 static bool intel_wm_need_update(struct drm_plane *plane,
11623 struct drm_plane_state *state)
11624 {
11625 /* Update watermarks on tiling changes. */
11626 if (!plane->state->fb || !state->fb ||
11627 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11628 plane->state->rotation != state->rotation)
11629 return true;
11630
11631 if (plane->state->crtc_w != state->crtc_w)
11632 return true;
11633
11634 return false;
11635 }
11636
11637 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11638 struct drm_plane_state *plane_state)
11639 {
11640 struct drm_crtc *crtc = crtc_state->crtc;
11641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11642 struct drm_plane *plane = plane_state->plane;
11643 struct drm_device *dev = crtc->dev;
11644 struct drm_i915_private *dev_priv = dev->dev_private;
11645 struct intel_plane_state *old_plane_state =
11646 to_intel_plane_state(plane->state);
11647 int idx = intel_crtc->base.base.id, ret;
11648 int i = drm_plane_index(plane);
11649 bool mode_changed = needs_modeset(crtc_state);
11650 bool was_crtc_enabled = crtc->state->active;
11651 bool is_crtc_enabled = crtc_state->active;
11652
11653 bool turn_off, turn_on, visible, was_visible;
11654 struct drm_framebuffer *fb = plane_state->fb;
11655
11656 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11657 plane->type != DRM_PLANE_TYPE_CURSOR) {
11658 ret = skl_update_scaler_plane(
11659 to_intel_crtc_state(crtc_state),
11660 to_intel_plane_state(plane_state));
11661 if (ret)
11662 return ret;
11663 }
11664
11665 /*
11666 * Disabling a plane is always okay; we just need to update
11667 * fb tracking in a special way since cleanup_fb() won't
11668 * get called by the plane helpers.
11669 */
11670 if (old_plane_state->base.fb && !fb)
11671 intel_crtc->atomic.disabled_planes |= 1 << i;
11672
11673 was_visible = old_plane_state->visible;
11674 visible = to_intel_plane_state(plane_state)->visible;
11675
11676 if (!was_crtc_enabled && WARN_ON(was_visible))
11677 was_visible = false;
11678
11679 if (!is_crtc_enabled && WARN_ON(visible))
11680 visible = false;
11681
11682 if (!was_visible && !visible)
11683 return 0;
11684
11685 turn_off = was_visible && (!visible || mode_changed);
11686 turn_on = visible && (!was_visible || mode_changed);
11687
11688 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11689 plane->base.id, fb ? fb->base.id : -1);
11690
11691 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11692 plane->base.id, was_visible, visible,
11693 turn_off, turn_on, mode_changed);
11694
11695 if (turn_on) {
11696 intel_crtc->atomic.update_wm_pre = true;
11697 /* must disable cxsr around plane enable/disable */
11698 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11699 intel_crtc->atomic.disable_cxsr = true;
11700 /* to potentially re-enable cxsr */
11701 intel_crtc->atomic.wait_vblank = true;
11702 intel_crtc->atomic.update_wm_post = true;
11703 }
11704 } else if (turn_off) {
11705 intel_crtc->atomic.update_wm_post = true;
11706 /* must disable cxsr around plane enable/disable */
11707 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11708 if (is_crtc_enabled)
11709 intel_crtc->atomic.wait_vblank = true;
11710 intel_crtc->atomic.disable_cxsr = true;
11711 }
11712 } else if (intel_wm_need_update(plane, plane_state)) {
11713 intel_crtc->atomic.update_wm_pre = true;
11714 }
11715
11716 if (visible)
11717 intel_crtc->atomic.fb_bits |=
11718 to_intel_plane(plane)->frontbuffer_bit;
11719
11720 switch (plane->type) {
11721 case DRM_PLANE_TYPE_PRIMARY:
11722 intel_crtc->atomic.wait_for_flips = true;
11723 intel_crtc->atomic.pre_disable_primary = turn_off;
11724 intel_crtc->atomic.post_enable_primary = turn_on;
11725
11726 if (turn_off) {
11727 /*
11728 * FIXME: Actually if we will still have any other
11729 * plane enabled on the pipe we could let IPS enabled
11730 * still, but for now lets consider that when we make
11731 * primary invisible by setting DSPCNTR to 0 on
11732 * update_primary_plane function IPS needs to be
11733 * disable.
11734 */
11735 intel_crtc->atomic.disable_ips = true;
11736
11737 intel_crtc->atomic.disable_fbc = true;
11738 }
11739
11740 /*
11741 * FBC does not work on some platforms for rotated
11742 * planes, so disable it when rotation is not 0 and
11743 * update it when rotation is set back to 0.
11744 *
11745 * FIXME: This is redundant with the fbc update done in
11746 * the primary plane enable function except that that
11747 * one is done too late. We eventually need to unify
11748 * this.
11749 */
11750
11751 if (visible &&
11752 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11753 dev_priv->fbc.crtc == intel_crtc &&
11754 plane_state->rotation != BIT(DRM_ROTATE_0))
11755 intel_crtc->atomic.disable_fbc = true;
11756
11757 /*
11758 * BDW signals flip done immediately if the plane
11759 * is disabled, even if the plane enable is already
11760 * armed to occur at the next vblank :(
11761 */
11762 if (turn_on && IS_BROADWELL(dev))
11763 intel_crtc->atomic.wait_vblank = true;
11764
11765 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11766 break;
11767 case DRM_PLANE_TYPE_CURSOR:
11768 break;
11769 case DRM_PLANE_TYPE_OVERLAY:
11770 if (turn_off && !mode_changed) {
11771 intel_crtc->atomic.wait_vblank = true;
11772 intel_crtc->atomic.update_sprite_watermarks |=
11773 1 << i;
11774 }
11775 }
11776 return 0;
11777 }
11778
11779 static bool encoders_cloneable(const struct intel_encoder *a,
11780 const struct intel_encoder *b)
11781 {
11782 /* masks could be asymmetric, so check both ways */
11783 return a == b || (a->cloneable & (1 << b->type) &&
11784 b->cloneable & (1 << a->type));
11785 }
11786
11787 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11788 struct intel_crtc *crtc,
11789 struct intel_encoder *encoder)
11790 {
11791 struct intel_encoder *source_encoder;
11792 struct drm_connector *connector;
11793 struct drm_connector_state *connector_state;
11794 int i;
11795
11796 for_each_connector_in_state(state, connector, connector_state, i) {
11797 if (connector_state->crtc != &crtc->base)
11798 continue;
11799
11800 source_encoder =
11801 to_intel_encoder(connector_state->best_encoder);
11802 if (!encoders_cloneable(encoder, source_encoder))
11803 return false;
11804 }
11805
11806 return true;
11807 }
11808
11809 static bool check_encoder_cloning(struct drm_atomic_state *state,
11810 struct intel_crtc *crtc)
11811 {
11812 struct intel_encoder *encoder;
11813 struct drm_connector *connector;
11814 struct drm_connector_state *connector_state;
11815 int i;
11816
11817 for_each_connector_in_state(state, connector, connector_state, i) {
11818 if (connector_state->crtc != &crtc->base)
11819 continue;
11820
11821 encoder = to_intel_encoder(connector_state->best_encoder);
11822 if (!check_single_encoder_cloning(state, crtc, encoder))
11823 return false;
11824 }
11825
11826 return true;
11827 }
11828
11829 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11830 struct drm_crtc_state *crtc_state)
11831 {
11832 struct drm_device *dev = crtc->dev;
11833 struct drm_i915_private *dev_priv = dev->dev_private;
11834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11835 struct intel_crtc_state *pipe_config =
11836 to_intel_crtc_state(crtc_state);
11837 struct drm_atomic_state *state = crtc_state->state;
11838 int ret, idx = crtc->base.id;
11839 bool mode_changed = needs_modeset(crtc_state);
11840
11841 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11842 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11843 return -EINVAL;
11844 }
11845
11846 I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11847 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11848 idx, crtc->state->active, intel_crtc->active);
11849
11850 if (mode_changed && !crtc_state->active)
11851 intel_crtc->atomic.update_wm_post = true;
11852
11853 if (mode_changed && crtc_state->enable &&
11854 dev_priv->display.crtc_compute_clock &&
11855 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11856 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11857 pipe_config);
11858 if (ret)
11859 return ret;
11860 }
11861
11862 ret = 0;
11863 if (INTEL_INFO(dev)->gen >= 9) {
11864 if (mode_changed)
11865 ret = skl_update_scaler_crtc(pipe_config);
11866
11867 if (!ret)
11868 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11869 pipe_config);
11870 }
11871
11872 return ret;
11873 }
11874
11875 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11876 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11877 .load_lut = intel_crtc_load_lut,
11878 .atomic_begin = intel_begin_crtc_commit,
11879 .atomic_flush = intel_finish_crtc_commit,
11880 .atomic_check = intel_crtc_atomic_check,
11881 };
11882
11883 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11884 {
11885 struct intel_connector *connector;
11886
11887 for_each_intel_connector(dev, connector) {
11888 if (connector->base.encoder) {
11889 connector->base.state->best_encoder =
11890 connector->base.encoder;
11891 connector->base.state->crtc =
11892 connector->base.encoder->crtc;
11893 } else {
11894 connector->base.state->best_encoder = NULL;
11895 connector->base.state->crtc = NULL;
11896 }
11897 }
11898 }
11899
11900 static void
11901 connected_sink_compute_bpp(struct intel_connector *connector,
11902 struct intel_crtc_state *pipe_config)
11903 {
11904 int bpp = pipe_config->pipe_bpp;
11905
11906 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11907 connector->base.base.id,
11908 connector->base.name);
11909
11910 /* Don't use an invalid EDID bpc value */
11911 if (connector->base.display_info.bpc &&
11912 connector->base.display_info.bpc * 3 < bpp) {
11913 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11914 bpp, connector->base.display_info.bpc*3);
11915 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11916 }
11917
11918 /* Clamp bpp to 8 on screens without EDID 1.4 */
11919 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11920 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11921 bpp);
11922 pipe_config->pipe_bpp = 24;
11923 }
11924 }
11925
11926 static int
11927 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11928 struct intel_crtc_state *pipe_config)
11929 {
11930 struct drm_device *dev = crtc->base.dev;
11931 struct drm_atomic_state *state;
11932 struct drm_connector *connector;
11933 struct drm_connector_state *connector_state;
11934 int bpp, i;
11935
11936 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11937 bpp = 10*3;
11938 else if (INTEL_INFO(dev)->gen >= 5)
11939 bpp = 12*3;
11940 else
11941 bpp = 8*3;
11942
11943
11944 pipe_config->pipe_bpp = bpp;
11945
11946 state = pipe_config->base.state;
11947
11948 /* Clamp display bpp to EDID value */
11949 for_each_connector_in_state(state, connector, connector_state, i) {
11950 if (connector_state->crtc != &crtc->base)
11951 continue;
11952
11953 connected_sink_compute_bpp(to_intel_connector(connector),
11954 pipe_config);
11955 }
11956
11957 return bpp;
11958 }
11959
11960 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11961 {
11962 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11963 "type: 0x%x flags: 0x%x\n",
11964 mode->crtc_clock,
11965 mode->crtc_hdisplay, mode->crtc_hsync_start,
11966 mode->crtc_hsync_end, mode->crtc_htotal,
11967 mode->crtc_vdisplay, mode->crtc_vsync_start,
11968 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11969 }
11970
11971 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11972 struct intel_crtc_state *pipe_config,
11973 const char *context)
11974 {
11975 struct drm_device *dev = crtc->base.dev;
11976 struct drm_plane *plane;
11977 struct intel_plane *intel_plane;
11978 struct intel_plane_state *state;
11979 struct drm_framebuffer *fb;
11980
11981 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11982 context, pipe_config, pipe_name(crtc->pipe));
11983
11984 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11985 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11986 pipe_config->pipe_bpp, pipe_config->dither);
11987 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11988 pipe_config->has_pch_encoder,
11989 pipe_config->fdi_lanes,
11990 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11991 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11992 pipe_config->fdi_m_n.tu);
11993 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11994 pipe_config->has_dp_encoder,
11995 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11996 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11997 pipe_config->dp_m_n.tu);
11998
11999 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12000 pipe_config->has_dp_encoder,
12001 pipe_config->dp_m2_n2.gmch_m,
12002 pipe_config->dp_m2_n2.gmch_n,
12003 pipe_config->dp_m2_n2.link_m,
12004 pipe_config->dp_m2_n2.link_n,
12005 pipe_config->dp_m2_n2.tu);
12006
12007 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12008 pipe_config->has_audio,
12009 pipe_config->has_infoframe);
12010
12011 DRM_DEBUG_KMS("requested mode:\n");
12012 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12013 DRM_DEBUG_KMS("adjusted mode:\n");
12014 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12015 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12016 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12017 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12018 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12019 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12020 crtc->num_scalers,
12021 pipe_config->scaler_state.scaler_users,
12022 pipe_config->scaler_state.scaler_id);
12023 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12024 pipe_config->gmch_pfit.control,
12025 pipe_config->gmch_pfit.pgm_ratios,
12026 pipe_config->gmch_pfit.lvds_border_bits);
12027 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12028 pipe_config->pch_pfit.pos,
12029 pipe_config->pch_pfit.size,
12030 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12031 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12032 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12033
12034 if (IS_BROXTON(dev)) {
12035 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12036 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12037 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12038 pipe_config->ddi_pll_sel,
12039 pipe_config->dpll_hw_state.ebb0,
12040 pipe_config->dpll_hw_state.ebb4,
12041 pipe_config->dpll_hw_state.pll0,
12042 pipe_config->dpll_hw_state.pll1,
12043 pipe_config->dpll_hw_state.pll2,
12044 pipe_config->dpll_hw_state.pll3,
12045 pipe_config->dpll_hw_state.pll6,
12046 pipe_config->dpll_hw_state.pll8,
12047 pipe_config->dpll_hw_state.pll9,
12048 pipe_config->dpll_hw_state.pll10,
12049 pipe_config->dpll_hw_state.pcsdw12);
12050 } else if (IS_SKYLAKE(dev)) {
12051 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12052 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12053 pipe_config->ddi_pll_sel,
12054 pipe_config->dpll_hw_state.ctrl1,
12055 pipe_config->dpll_hw_state.cfgcr1,
12056 pipe_config->dpll_hw_state.cfgcr2);
12057 } else if (HAS_DDI(dev)) {
12058 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12059 pipe_config->ddi_pll_sel,
12060 pipe_config->dpll_hw_state.wrpll);
12061 } else {
12062 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12063 "fp0: 0x%x, fp1: 0x%x\n",
12064 pipe_config->dpll_hw_state.dpll,
12065 pipe_config->dpll_hw_state.dpll_md,
12066 pipe_config->dpll_hw_state.fp0,
12067 pipe_config->dpll_hw_state.fp1);
12068 }
12069
12070 DRM_DEBUG_KMS("planes on this crtc\n");
12071 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12072 intel_plane = to_intel_plane(plane);
12073 if (intel_plane->pipe != crtc->pipe)
12074 continue;
12075
12076 state = to_intel_plane_state(plane->state);
12077 fb = state->base.fb;
12078 if (!fb) {
12079 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12080 "disabled, scaler_id = %d\n",
12081 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12082 plane->base.id, intel_plane->pipe,
12083 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12084 drm_plane_index(plane), state->scaler_id);
12085 continue;
12086 }
12087
12088 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12089 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12090 plane->base.id, intel_plane->pipe,
12091 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12092 drm_plane_index(plane));
12093 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12094 fb->base.id, fb->width, fb->height, fb->pixel_format);
12095 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12096 state->scaler_id,
12097 state->src.x1 >> 16, state->src.y1 >> 16,
12098 drm_rect_width(&state->src) >> 16,
12099 drm_rect_height(&state->src) >> 16,
12100 state->dst.x1, state->dst.y1,
12101 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12102 }
12103 }
12104
12105 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12106 {
12107 struct drm_device *dev = state->dev;
12108 struct intel_encoder *encoder;
12109 struct drm_connector *connector;
12110 struct drm_connector_state *connector_state;
12111 unsigned int used_ports = 0;
12112 int i;
12113
12114 /*
12115 * Walk the connector list instead of the encoder
12116 * list to detect the problem on ddi platforms
12117 * where there's just one encoder per digital port.
12118 */
12119 for_each_connector_in_state(state, connector, connector_state, i) {
12120 if (!connector_state->best_encoder)
12121 continue;
12122
12123 encoder = to_intel_encoder(connector_state->best_encoder);
12124
12125 WARN_ON(!connector_state->crtc);
12126
12127 switch (encoder->type) {
12128 unsigned int port_mask;
12129 case INTEL_OUTPUT_UNKNOWN:
12130 if (WARN_ON(!HAS_DDI(dev)))
12131 break;
12132 case INTEL_OUTPUT_DISPLAYPORT:
12133 case INTEL_OUTPUT_HDMI:
12134 case INTEL_OUTPUT_EDP:
12135 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12136
12137 /* the same port mustn't appear more than once */
12138 if (used_ports & port_mask)
12139 return false;
12140
12141 used_ports |= port_mask;
12142 default:
12143 break;
12144 }
12145 }
12146
12147 return true;
12148 }
12149
12150 static void
12151 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12152 {
12153 struct drm_crtc_state tmp_state;
12154 struct intel_crtc_scaler_state scaler_state;
12155 struct intel_dpll_hw_state dpll_hw_state;
12156 enum intel_dpll_id shared_dpll;
12157 uint32_t ddi_pll_sel;
12158
12159 /* FIXME: before the switch to atomic started, a new pipe_config was
12160 * kzalloc'd. Code that depends on any field being zero should be
12161 * fixed, so that the crtc_state can be safely duplicated. For now,
12162 * only fields that are know to not cause problems are preserved. */
12163
12164 tmp_state = crtc_state->base;
12165 scaler_state = crtc_state->scaler_state;
12166 shared_dpll = crtc_state->shared_dpll;
12167 dpll_hw_state = crtc_state->dpll_hw_state;
12168 ddi_pll_sel = crtc_state->ddi_pll_sel;
12169
12170 memset(crtc_state, 0, sizeof *crtc_state);
12171
12172 crtc_state->base = tmp_state;
12173 crtc_state->scaler_state = scaler_state;
12174 crtc_state->shared_dpll = shared_dpll;
12175 crtc_state->dpll_hw_state = dpll_hw_state;
12176 crtc_state->ddi_pll_sel = ddi_pll_sel;
12177 }
12178
12179 static int
12180 intel_modeset_pipe_config(struct drm_crtc *crtc,
12181 struct intel_crtc_state *pipe_config)
12182 {
12183 struct drm_atomic_state *state = pipe_config->base.state;
12184 struct intel_encoder *encoder;
12185 struct drm_connector *connector;
12186 struct drm_connector_state *connector_state;
12187 int base_bpp, ret = -EINVAL;
12188 int i;
12189 bool retry = true;
12190
12191 clear_intel_crtc_state(pipe_config);
12192
12193 pipe_config->cpu_transcoder =
12194 (enum transcoder) to_intel_crtc(crtc)->pipe;
12195
12196 /*
12197 * Sanitize sync polarity flags based on requested ones. If neither
12198 * positive or negative polarity is requested, treat this as meaning
12199 * negative polarity.
12200 */
12201 if (!(pipe_config->base.adjusted_mode.flags &
12202 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12203 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12204
12205 if (!(pipe_config->base.adjusted_mode.flags &
12206 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12207 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12208
12209 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12210 * plane pixel format and any sink constraints into account. Returns the
12211 * source plane bpp so that dithering can be selected on mismatches
12212 * after encoders and crtc also have had their say. */
12213 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12214 pipe_config);
12215 if (base_bpp < 0)
12216 goto fail;
12217
12218 /*
12219 * Determine the real pipe dimensions. Note that stereo modes can
12220 * increase the actual pipe size due to the frame doubling and
12221 * insertion of additional space for blanks between the frame. This
12222 * is stored in the crtc timings. We use the requested mode to do this
12223 * computation to clearly distinguish it from the adjusted mode, which
12224 * can be changed by the connectors in the below retry loop.
12225 */
12226 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12227 &pipe_config->pipe_src_w,
12228 &pipe_config->pipe_src_h);
12229
12230 encoder_retry:
12231 /* Ensure the port clock defaults are reset when retrying. */
12232 pipe_config->port_clock = 0;
12233 pipe_config->pixel_multiplier = 1;
12234
12235 /* Fill in default crtc timings, allow encoders to overwrite them. */
12236 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12237 CRTC_STEREO_DOUBLE);
12238
12239 /* Pass our mode to the connectors and the CRTC to give them a chance to
12240 * adjust it according to limitations or connector properties, and also
12241 * a chance to reject the mode entirely.
12242 */
12243 for_each_connector_in_state(state, connector, connector_state, i) {
12244 if (connector_state->crtc != crtc)
12245 continue;
12246
12247 encoder = to_intel_encoder(connector_state->best_encoder);
12248
12249 if (!(encoder->compute_config(encoder, pipe_config))) {
12250 DRM_DEBUG_KMS("Encoder config failure\n");
12251 goto fail;
12252 }
12253 }
12254
12255 /* Set default port clock if not overwritten by the encoder. Needs to be
12256 * done afterwards in case the encoder adjusts the mode. */
12257 if (!pipe_config->port_clock)
12258 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12259 * pipe_config->pixel_multiplier;
12260
12261 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12262 if (ret < 0) {
12263 DRM_DEBUG_KMS("CRTC fixup failed\n");
12264 goto fail;
12265 }
12266
12267 if (ret == RETRY) {
12268 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12269 ret = -EINVAL;
12270 goto fail;
12271 }
12272
12273 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12274 retry = false;
12275 goto encoder_retry;
12276 }
12277
12278 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12279 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12280 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12281
12282 fail:
12283 return ret;
12284 }
12285
12286 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12287 {
12288 struct drm_encoder *encoder;
12289 struct drm_device *dev = crtc->dev;
12290
12291 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12292 if (encoder->crtc == crtc)
12293 return true;
12294
12295 return false;
12296 }
12297
12298 static void
12299 intel_modeset_update_state(struct drm_atomic_state *state)
12300 {
12301 struct drm_device *dev = state->dev;
12302 struct intel_encoder *intel_encoder;
12303 struct drm_crtc *crtc;
12304 struct drm_crtc_state *crtc_state;
12305 struct drm_connector *connector;
12306 int i;
12307
12308 intel_shared_dpll_commit(state);
12309
12310 for_each_intel_encoder(dev, intel_encoder) {
12311 if (!intel_encoder->base.crtc)
12312 continue;
12313
12314 crtc = intel_encoder->base.crtc;
12315 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12316 if (!crtc_state || !needs_modeset(crtc->state))
12317 continue;
12318
12319 intel_encoder->connectors_active = false;
12320 }
12321
12322 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12323
12324 /* Double check state. */
12325 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12326 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12327
12328 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12329
12330 /* Update hwmode for vblank functions */
12331 if (crtc->state->active)
12332 crtc->hwmode = crtc->state->adjusted_mode;
12333 else
12334 crtc->hwmode.crtc_clock = 0;
12335 }
12336
12337 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12338 if (!connector->encoder || !connector->encoder->crtc)
12339 continue;
12340
12341 crtc = connector->encoder->crtc;
12342 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12343 if (!crtc_state || !needs_modeset(crtc->state))
12344 continue;
12345
12346 if (crtc->state->active) {
12347 struct drm_property *dpms_property =
12348 dev->mode_config.dpms_property;
12349
12350 connector->dpms = DRM_MODE_DPMS_ON;
12351 drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
12352
12353 intel_encoder = to_intel_encoder(connector->encoder);
12354 intel_encoder->connectors_active = true;
12355 } else
12356 connector->dpms = DRM_MODE_DPMS_OFF;
12357 }
12358 }
12359
12360 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12361 {
12362 int diff;
12363
12364 if (clock1 == clock2)
12365 return true;
12366
12367 if (!clock1 || !clock2)
12368 return false;
12369
12370 diff = abs(clock1 - clock2);
12371
12372 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12373 return true;
12374
12375 return false;
12376 }
12377
12378 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12379 list_for_each_entry((intel_crtc), \
12380 &(dev)->mode_config.crtc_list, \
12381 base.head) \
12382 if (mask & (1 <<(intel_crtc)->pipe))
12383
12384
12385 static bool
12386 intel_compare_m_n(unsigned int m, unsigned int n,
12387 unsigned int m2, unsigned int n2,
12388 bool exact)
12389 {
12390 if (m == m2 && n == n2)
12391 return true;
12392
12393 if (exact || !m || !n || !m2 || !n2)
12394 return false;
12395
12396 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12397
12398 if (m > m2) {
12399 while (m > m2) {
12400 m2 <<= 1;
12401 n2 <<= 1;
12402 }
12403 } else if (m < m2) {
12404 while (m < m2) {
12405 m <<= 1;
12406 n <<= 1;
12407 }
12408 }
12409
12410 return m == m2 && n == n2;
12411 }
12412
12413 static bool
12414 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12415 struct intel_link_m_n *m2_n2,
12416 bool adjust)
12417 {
12418 if (m_n->tu == m2_n2->tu &&
12419 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12420 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12421 intel_compare_m_n(m_n->link_m, m_n->link_n,
12422 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12423 if (adjust)
12424 *m2_n2 = *m_n;
12425
12426 return true;
12427 }
12428
12429 return false;
12430 }
12431
12432 static bool
12433 intel_pipe_config_compare(struct drm_device *dev,
12434 struct intel_crtc_state *current_config,
12435 struct intel_crtc_state *pipe_config,
12436 bool adjust)
12437 {
12438 bool ret = true;
12439
12440 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12441 do { \
12442 if (!adjust) \
12443 DRM_ERROR(fmt, ##__VA_ARGS__); \
12444 else \
12445 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12446 } while (0)
12447
12448 #define PIPE_CONF_CHECK_X(name) \
12449 if (current_config->name != pipe_config->name) { \
12450 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12451 "(expected 0x%08x, found 0x%08x)\n", \
12452 current_config->name, \
12453 pipe_config->name); \
12454 ret = false; \
12455 }
12456
12457 #define PIPE_CONF_CHECK_I(name) \
12458 if (current_config->name != pipe_config->name) { \
12459 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12460 "(expected %i, found %i)\n", \
12461 current_config->name, \
12462 pipe_config->name); \
12463 ret = false; \
12464 }
12465
12466 #define PIPE_CONF_CHECK_M_N(name) \
12467 if (!intel_compare_link_m_n(&current_config->name, \
12468 &pipe_config->name,\
12469 adjust)) { \
12470 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12471 "(expected tu %i gmch %i/%i link %i/%i, " \
12472 "found tu %i, gmch %i/%i link %i/%i)\n", \
12473 current_config->name.tu, \
12474 current_config->name.gmch_m, \
12475 current_config->name.gmch_n, \
12476 current_config->name.link_m, \
12477 current_config->name.link_n, \
12478 pipe_config->name.tu, \
12479 pipe_config->name.gmch_m, \
12480 pipe_config->name.gmch_n, \
12481 pipe_config->name.link_m, \
12482 pipe_config->name.link_n); \
12483 ret = false; \
12484 }
12485
12486 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12487 if (!intel_compare_link_m_n(&current_config->name, \
12488 &pipe_config->name, adjust) && \
12489 !intel_compare_link_m_n(&current_config->alt_name, \
12490 &pipe_config->name, adjust)) { \
12491 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12492 "(expected tu %i gmch %i/%i link %i/%i, " \
12493 "or tu %i gmch %i/%i link %i/%i, " \
12494 "found tu %i, gmch %i/%i link %i/%i)\n", \
12495 current_config->name.tu, \
12496 current_config->name.gmch_m, \
12497 current_config->name.gmch_n, \
12498 current_config->name.link_m, \
12499 current_config->name.link_n, \
12500 current_config->alt_name.tu, \
12501 current_config->alt_name.gmch_m, \
12502 current_config->alt_name.gmch_n, \
12503 current_config->alt_name.link_m, \
12504 current_config->alt_name.link_n, \
12505 pipe_config->name.tu, \
12506 pipe_config->name.gmch_m, \
12507 pipe_config->name.gmch_n, \
12508 pipe_config->name.link_m, \
12509 pipe_config->name.link_n); \
12510 ret = false; \
12511 }
12512
12513 /* This is required for BDW+ where there is only one set of registers for
12514 * switching between high and low RR.
12515 * This macro can be used whenever a comparison has to be made between one
12516 * hw state and multiple sw state variables.
12517 */
12518 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12519 if ((current_config->name != pipe_config->name) && \
12520 (current_config->alt_name != pipe_config->name)) { \
12521 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12522 "(expected %i or %i, found %i)\n", \
12523 current_config->name, \
12524 current_config->alt_name, \
12525 pipe_config->name); \
12526 ret = false; \
12527 }
12528
12529 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12530 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12531 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12532 "(expected %i, found %i)\n", \
12533 current_config->name & (mask), \
12534 pipe_config->name & (mask)); \
12535 ret = false; \
12536 }
12537
12538 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12539 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12540 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12541 "(expected %i, found %i)\n", \
12542 current_config->name, \
12543 pipe_config->name); \
12544 ret = false; \
12545 }
12546
12547 #define PIPE_CONF_QUIRK(quirk) \
12548 ((current_config->quirks | pipe_config->quirks) & (quirk))
12549
12550 PIPE_CONF_CHECK_I(cpu_transcoder);
12551
12552 PIPE_CONF_CHECK_I(has_pch_encoder);
12553 PIPE_CONF_CHECK_I(fdi_lanes);
12554 PIPE_CONF_CHECK_M_N(fdi_m_n);
12555
12556 PIPE_CONF_CHECK_I(has_dp_encoder);
12557
12558 if (INTEL_INFO(dev)->gen < 8) {
12559 PIPE_CONF_CHECK_M_N(dp_m_n);
12560
12561 PIPE_CONF_CHECK_I(has_drrs);
12562 if (current_config->has_drrs)
12563 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12564 } else
12565 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12566
12567 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12568 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12569 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12570 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12571 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12572 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12573
12574 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12575 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12576 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12577 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12578 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12579 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12580
12581 PIPE_CONF_CHECK_I(pixel_multiplier);
12582 PIPE_CONF_CHECK_I(has_hdmi_sink);
12583 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12584 IS_VALLEYVIEW(dev))
12585 PIPE_CONF_CHECK_I(limited_color_range);
12586 PIPE_CONF_CHECK_I(has_infoframe);
12587
12588 PIPE_CONF_CHECK_I(has_audio);
12589
12590 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12591 DRM_MODE_FLAG_INTERLACE);
12592
12593 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12594 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12595 DRM_MODE_FLAG_PHSYNC);
12596 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12597 DRM_MODE_FLAG_NHSYNC);
12598 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12599 DRM_MODE_FLAG_PVSYNC);
12600 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12601 DRM_MODE_FLAG_NVSYNC);
12602 }
12603
12604 PIPE_CONF_CHECK_I(pipe_src_w);
12605 PIPE_CONF_CHECK_I(pipe_src_h);
12606
12607 PIPE_CONF_CHECK_I(gmch_pfit.control);
12608 /* pfit ratios are autocomputed by the hw on gen4+ */
12609 if (INTEL_INFO(dev)->gen < 4)
12610 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12611 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12612
12613 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12614 if (current_config->pch_pfit.enabled) {
12615 PIPE_CONF_CHECK_I(pch_pfit.pos);
12616 PIPE_CONF_CHECK_I(pch_pfit.size);
12617 }
12618
12619 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12620
12621 /* BDW+ don't expose a synchronous way to read the state */
12622 if (IS_HASWELL(dev))
12623 PIPE_CONF_CHECK_I(ips_enabled);
12624
12625 PIPE_CONF_CHECK_I(double_wide);
12626
12627 PIPE_CONF_CHECK_X(ddi_pll_sel);
12628
12629 PIPE_CONF_CHECK_I(shared_dpll);
12630 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12631 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12632 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12633 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12634 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12635 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12636 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12637 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12638
12639 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12640 PIPE_CONF_CHECK_I(pipe_bpp);
12641
12642 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12643 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12644
12645 #undef PIPE_CONF_CHECK_X
12646 #undef PIPE_CONF_CHECK_I
12647 #undef PIPE_CONF_CHECK_I_ALT
12648 #undef PIPE_CONF_CHECK_FLAGS
12649 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12650 #undef PIPE_CONF_QUIRK
12651 #undef INTEL_ERR_OR_DBG_KMS
12652
12653 return ret;
12654 }
12655
12656 static void check_wm_state(struct drm_device *dev)
12657 {
12658 struct drm_i915_private *dev_priv = dev->dev_private;
12659 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12660 struct intel_crtc *intel_crtc;
12661 int plane;
12662
12663 if (INTEL_INFO(dev)->gen < 9)
12664 return;
12665
12666 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12667 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12668
12669 for_each_intel_crtc(dev, intel_crtc) {
12670 struct skl_ddb_entry *hw_entry, *sw_entry;
12671 const enum pipe pipe = intel_crtc->pipe;
12672
12673 if (!intel_crtc->active)
12674 continue;
12675
12676 /* planes */
12677 for_each_plane(dev_priv, pipe, plane) {
12678 hw_entry = &hw_ddb.plane[pipe][plane];
12679 sw_entry = &sw_ddb->plane[pipe][plane];
12680
12681 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12682 continue;
12683
12684 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12685 "(expected (%u,%u), found (%u,%u))\n",
12686 pipe_name(pipe), plane + 1,
12687 sw_entry->start, sw_entry->end,
12688 hw_entry->start, hw_entry->end);
12689 }
12690
12691 /* cursor */
12692 hw_entry = &hw_ddb.cursor[pipe];
12693 sw_entry = &sw_ddb->cursor[pipe];
12694
12695 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12696 continue;
12697
12698 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12699 "(expected (%u,%u), found (%u,%u))\n",
12700 pipe_name(pipe),
12701 sw_entry->start, sw_entry->end,
12702 hw_entry->start, hw_entry->end);
12703 }
12704 }
12705
12706 static void
12707 check_connector_state(struct drm_device *dev)
12708 {
12709 struct intel_connector *connector;
12710
12711 for_each_intel_connector(dev, connector) {
12712 struct drm_encoder *encoder = connector->base.encoder;
12713 struct drm_connector_state *state = connector->base.state;
12714
12715 /* This also checks the encoder/connector hw state with the
12716 * ->get_hw_state callbacks. */
12717 intel_connector_check_state(connector);
12718
12719 I915_STATE_WARN(state->best_encoder != encoder,
12720 "connector's staged encoder doesn't match current encoder\n");
12721 }
12722 }
12723
12724 static void
12725 check_encoder_state(struct drm_device *dev)
12726 {
12727 struct intel_encoder *encoder;
12728 struct intel_connector *connector;
12729
12730 for_each_intel_encoder(dev, encoder) {
12731 bool enabled = false;
12732 bool active = false;
12733 enum pipe pipe, tracked_pipe;
12734
12735 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12736 encoder->base.base.id,
12737 encoder->base.name);
12738
12739 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12740 "encoder's active_connectors set, but no crtc\n");
12741
12742 for_each_intel_connector(dev, connector) {
12743 if (connector->base.encoder != &encoder->base)
12744 continue;
12745 enabled = true;
12746 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12747 active = true;
12748
12749 I915_STATE_WARN(connector->base.state->crtc !=
12750 encoder->base.crtc,
12751 "connector's crtc doesn't match encoder crtc\n");
12752 }
12753 /*
12754 * for MST connectors if we unplug the connector is gone
12755 * away but the encoder is still connected to a crtc
12756 * until a modeset happens in response to the hotplug.
12757 */
12758 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12759 continue;
12760
12761 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12762 "encoder's enabled state mismatch "
12763 "(expected %i, found %i)\n",
12764 !!encoder->base.crtc, enabled);
12765 I915_STATE_WARN(active && !encoder->base.crtc,
12766 "active encoder with no crtc\n");
12767
12768 I915_STATE_WARN(encoder->connectors_active != active,
12769 "encoder's computed active state doesn't match tracked active state "
12770 "(expected %i, found %i)\n", active, encoder->connectors_active);
12771
12772 active = encoder->get_hw_state(encoder, &pipe);
12773 I915_STATE_WARN(active != encoder->connectors_active,
12774 "encoder's hw state doesn't match sw tracking "
12775 "(expected %i, found %i)\n",
12776 encoder->connectors_active, active);
12777
12778 if (!encoder->base.crtc)
12779 continue;
12780
12781 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12782 I915_STATE_WARN(active && pipe != tracked_pipe,
12783 "active encoder's pipe doesn't match"
12784 "(expected %i, found %i)\n",
12785 tracked_pipe, pipe);
12786
12787 }
12788 }
12789
12790 static void
12791 check_crtc_state(struct drm_device *dev)
12792 {
12793 struct drm_i915_private *dev_priv = dev->dev_private;
12794 struct intel_crtc *crtc;
12795 struct intel_encoder *encoder;
12796 struct intel_crtc_state pipe_config;
12797
12798 for_each_intel_crtc(dev, crtc) {
12799 bool enabled = false;
12800 bool active = false;
12801
12802 memset(&pipe_config, 0, sizeof(pipe_config));
12803
12804 DRM_DEBUG_KMS("[CRTC:%d]\n",
12805 crtc->base.base.id);
12806
12807 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12808 "active crtc, but not enabled in sw tracking\n");
12809
12810 for_each_intel_encoder(dev, encoder) {
12811 if (encoder->base.crtc != &crtc->base)
12812 continue;
12813 enabled = true;
12814 if (encoder->connectors_active)
12815 active = true;
12816 }
12817
12818 I915_STATE_WARN(active != crtc->active,
12819 "crtc's computed active state doesn't match tracked active state "
12820 "(expected %i, found %i)\n", active, crtc->active);
12821 I915_STATE_WARN(enabled != crtc->base.state->enable,
12822 "crtc's computed enabled state doesn't match tracked enabled state "
12823 "(expected %i, found %i)\n", enabled,
12824 crtc->base.state->enable);
12825
12826 active = dev_priv->display.get_pipe_config(crtc,
12827 &pipe_config);
12828
12829 /* hw state is inconsistent with the pipe quirk */
12830 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12831 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12832 active = crtc->active;
12833
12834 for_each_intel_encoder(dev, encoder) {
12835 enum pipe pipe;
12836 if (encoder->base.crtc != &crtc->base)
12837 continue;
12838 if (encoder->get_hw_state(encoder, &pipe))
12839 encoder->get_config(encoder, &pipe_config);
12840 }
12841
12842 I915_STATE_WARN(crtc->active != active,
12843 "crtc active state doesn't match with hw state "
12844 "(expected %i, found %i)\n", crtc->active, active);
12845
12846 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12847 "transitional active state does not match atomic hw state "
12848 "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12849
12850 if (!active)
12851 continue;
12852
12853 if (!intel_pipe_config_compare(dev, crtc->config,
12854 &pipe_config, false)) {
12855 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12856 intel_dump_pipe_config(crtc, &pipe_config,
12857 "[hw state]");
12858 intel_dump_pipe_config(crtc, crtc->config,
12859 "[sw state]");
12860 }
12861 }
12862 }
12863
12864 static void
12865 check_shared_dpll_state(struct drm_device *dev)
12866 {
12867 struct drm_i915_private *dev_priv = dev->dev_private;
12868 struct intel_crtc *crtc;
12869 struct intel_dpll_hw_state dpll_hw_state;
12870 int i;
12871
12872 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12873 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12874 int enabled_crtcs = 0, active_crtcs = 0;
12875 bool active;
12876
12877 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12878
12879 DRM_DEBUG_KMS("%s\n", pll->name);
12880
12881 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12882
12883 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12884 "more active pll users than references: %i vs %i\n",
12885 pll->active, hweight32(pll->config.crtc_mask));
12886 I915_STATE_WARN(pll->active && !pll->on,
12887 "pll in active use but not on in sw tracking\n");
12888 I915_STATE_WARN(pll->on && !pll->active,
12889 "pll in on but not on in use in sw tracking\n");
12890 I915_STATE_WARN(pll->on != active,
12891 "pll on state mismatch (expected %i, found %i)\n",
12892 pll->on, active);
12893
12894 for_each_intel_crtc(dev, crtc) {
12895 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12896 enabled_crtcs++;
12897 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12898 active_crtcs++;
12899 }
12900 I915_STATE_WARN(pll->active != active_crtcs,
12901 "pll active crtcs mismatch (expected %i, found %i)\n",
12902 pll->active, active_crtcs);
12903 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12904 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12905 hweight32(pll->config.crtc_mask), enabled_crtcs);
12906
12907 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12908 sizeof(dpll_hw_state)),
12909 "pll hw state mismatch\n");
12910 }
12911 }
12912
12913 void
12914 intel_modeset_check_state(struct drm_device *dev)
12915 {
12916 check_wm_state(dev);
12917 check_connector_state(dev);
12918 check_encoder_state(dev);
12919 check_crtc_state(dev);
12920 check_shared_dpll_state(dev);
12921 }
12922
12923 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12924 int dotclock)
12925 {
12926 /*
12927 * FDI already provided one idea for the dotclock.
12928 * Yell if the encoder disagrees.
12929 */
12930 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12931 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12932 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12933 }
12934
12935 static void update_scanline_offset(struct intel_crtc *crtc)
12936 {
12937 struct drm_device *dev = crtc->base.dev;
12938
12939 /*
12940 * The scanline counter increments at the leading edge of hsync.
12941 *
12942 * On most platforms it starts counting from vtotal-1 on the
12943 * first active line. That means the scanline counter value is
12944 * always one less than what we would expect. Ie. just after
12945 * start of vblank, which also occurs at start of hsync (on the
12946 * last active line), the scanline counter will read vblank_start-1.
12947 *
12948 * On gen2 the scanline counter starts counting from 1 instead
12949 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12950 * to keep the value positive), instead of adding one.
12951 *
12952 * On HSW+ the behaviour of the scanline counter depends on the output
12953 * type. For DP ports it behaves like most other platforms, but on HDMI
12954 * there's an extra 1 line difference. So we need to add two instead of
12955 * one to the value.
12956 */
12957 if (IS_GEN2(dev)) {
12958 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12959 int vtotal;
12960
12961 vtotal = mode->crtc_vtotal;
12962 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12963 vtotal /= 2;
12964
12965 crtc->scanline_offset = vtotal - 1;
12966 } else if (HAS_DDI(dev) &&
12967 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12968 crtc->scanline_offset = 2;
12969 } else
12970 crtc->scanline_offset = 1;
12971 }
12972
12973 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12974 {
12975 struct drm_device *dev = state->dev;
12976 struct drm_i915_private *dev_priv = to_i915(dev);
12977 struct intel_shared_dpll_config *shared_dpll = NULL;
12978 struct intel_crtc *intel_crtc;
12979 struct intel_crtc_state *intel_crtc_state;
12980 struct drm_crtc *crtc;
12981 struct drm_crtc_state *crtc_state;
12982 int i;
12983
12984 if (!dev_priv->display.crtc_compute_clock)
12985 return;
12986
12987 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12988 int dpll;
12989
12990 intel_crtc = to_intel_crtc(crtc);
12991 intel_crtc_state = to_intel_crtc_state(crtc_state);
12992 dpll = intel_crtc_state->shared_dpll;
12993
12994 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12995 continue;
12996
12997 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12998
12999 if (!shared_dpll)
13000 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13001
13002 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13003 }
13004 }
13005
13006 /*
13007 * This implements the workaround described in the "notes" section of the mode
13008 * set sequence documentation. When going from no pipes or single pipe to
13009 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13010 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13011 */
13012 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13013 {
13014 struct drm_crtc_state *crtc_state;
13015 struct intel_crtc *intel_crtc;
13016 struct drm_crtc *crtc;
13017 struct intel_crtc_state *first_crtc_state = NULL;
13018 struct intel_crtc_state *other_crtc_state = NULL;
13019 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13020 int i;
13021
13022 /* look at all crtc's that are going to be enabled in during modeset */
13023 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13024 intel_crtc = to_intel_crtc(crtc);
13025
13026 if (!crtc_state->active || !needs_modeset(crtc_state))
13027 continue;
13028
13029 if (first_crtc_state) {
13030 other_crtc_state = to_intel_crtc_state(crtc_state);
13031 break;
13032 } else {
13033 first_crtc_state = to_intel_crtc_state(crtc_state);
13034 first_pipe = intel_crtc->pipe;
13035 }
13036 }
13037
13038 /* No workaround needed? */
13039 if (!first_crtc_state)
13040 return 0;
13041
13042 /* w/a possibly needed, check how many crtc's are already enabled. */
13043 for_each_intel_crtc(state->dev, intel_crtc) {
13044 struct intel_crtc_state *pipe_config;
13045
13046 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13047 if (IS_ERR(pipe_config))
13048 return PTR_ERR(pipe_config);
13049
13050 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13051
13052 if (!pipe_config->base.active ||
13053 needs_modeset(&pipe_config->base))
13054 continue;
13055
13056 /* 2 or more enabled crtcs means no need for w/a */
13057 if (enabled_pipe != INVALID_PIPE)
13058 return 0;
13059
13060 enabled_pipe = intel_crtc->pipe;
13061 }
13062
13063 if (enabled_pipe != INVALID_PIPE)
13064 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13065 else if (other_crtc_state)
13066 other_crtc_state->hsw_workaround_pipe = first_pipe;
13067
13068 return 0;
13069 }
13070
13071 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13072 {
13073 struct drm_crtc *crtc;
13074 struct drm_crtc_state *crtc_state;
13075 int ret = 0;
13076
13077 /* add all active pipes to the state */
13078 for_each_crtc(state->dev, crtc) {
13079 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13080 if (IS_ERR(crtc_state))
13081 return PTR_ERR(crtc_state);
13082
13083 if (!crtc_state->active || needs_modeset(crtc_state))
13084 continue;
13085
13086 crtc_state->mode_changed = true;
13087
13088 ret = drm_atomic_add_affected_connectors(state, crtc);
13089 if (ret)
13090 break;
13091
13092 ret = drm_atomic_add_affected_planes(state, crtc);
13093 if (ret)
13094 break;
13095 }
13096
13097 return ret;
13098 }
13099
13100
13101 static int intel_modeset_checks(struct drm_atomic_state *state)
13102 {
13103 struct drm_device *dev = state->dev;
13104 struct drm_i915_private *dev_priv = dev->dev_private;
13105 int ret;
13106
13107 if (!check_digital_port_conflicts(state)) {
13108 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13109 return -EINVAL;
13110 }
13111
13112 /*
13113 * See if the config requires any additional preparation, e.g.
13114 * to adjust global state with pipes off. We need to do this
13115 * here so we can get the modeset_pipe updated config for the new
13116 * mode set on this crtc. For other crtcs we need to use the
13117 * adjusted_mode bits in the crtc directly.
13118 */
13119 if (dev_priv->display.modeset_calc_cdclk) {
13120 unsigned int cdclk;
13121
13122 ret = dev_priv->display.modeset_calc_cdclk(state);
13123
13124 cdclk = to_intel_atomic_state(state)->cdclk;
13125 if (!ret && cdclk != dev_priv->cdclk_freq)
13126 ret = intel_modeset_all_pipes(state);
13127
13128 if (ret < 0)
13129 return ret;
13130 } else
13131 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13132
13133 intel_modeset_clear_plls(state);
13134
13135 if (IS_HASWELL(dev))
13136 return haswell_mode_set_planes_workaround(state);
13137
13138 return 0;
13139 }
13140
13141 /**
13142 * intel_atomic_check - validate state object
13143 * @dev: drm device
13144 * @state: state to validate
13145 */
13146 static int intel_atomic_check(struct drm_device *dev,
13147 struct drm_atomic_state *state)
13148 {
13149 struct drm_crtc *crtc;
13150 struct drm_crtc_state *crtc_state;
13151 int ret, i;
13152 bool any_ms = false;
13153
13154 ret = drm_atomic_helper_check_modeset(dev, state);
13155 if (ret)
13156 return ret;
13157
13158 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13159 struct intel_crtc_state *pipe_config =
13160 to_intel_crtc_state(crtc_state);
13161
13162 /* Catch I915_MODE_FLAG_INHERITED */
13163 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13164 crtc_state->mode_changed = true;
13165
13166 if (!crtc_state->enable) {
13167 if (needs_modeset(crtc_state))
13168 any_ms = true;
13169 continue;
13170 }
13171
13172 if (!needs_modeset(crtc_state))
13173 continue;
13174
13175 /* FIXME: For only active_changed we shouldn't need to do any
13176 * state recomputation at all. */
13177
13178 ret = drm_atomic_add_affected_connectors(state, crtc);
13179 if (ret)
13180 return ret;
13181
13182 ret = intel_modeset_pipe_config(crtc, pipe_config);
13183 if (ret)
13184 return ret;
13185
13186 if (i915.fastboot &&
13187 intel_pipe_config_compare(state->dev,
13188 to_intel_crtc_state(crtc->state),
13189 pipe_config, true)) {
13190 crtc_state->mode_changed = false;
13191 }
13192
13193 if (needs_modeset(crtc_state)) {
13194 any_ms = true;
13195
13196 ret = drm_atomic_add_affected_planes(state, crtc);
13197 if (ret)
13198 return ret;
13199 }
13200
13201 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13202 needs_modeset(crtc_state) ?
13203 "[modeset]" : "[fastset]");
13204 }
13205
13206 if (any_ms) {
13207 ret = intel_modeset_checks(state);
13208
13209 if (ret)
13210 return ret;
13211 } else
13212 to_intel_atomic_state(state)->cdclk =
13213 to_i915(state->dev)->cdclk_freq;
13214
13215 return drm_atomic_helper_check_planes(state->dev, state);
13216 }
13217
13218 /**
13219 * intel_atomic_commit - commit validated state object
13220 * @dev: DRM device
13221 * @state: the top-level driver state object
13222 * @async: asynchronous commit
13223 *
13224 * This function commits a top-level state object that has been validated
13225 * with drm_atomic_helper_check().
13226 *
13227 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13228 * we can only handle plane-related operations and do not yet support
13229 * asynchronous commit.
13230 *
13231 * RETURNS
13232 * Zero for success or -errno.
13233 */
13234 static int intel_atomic_commit(struct drm_device *dev,
13235 struct drm_atomic_state *state,
13236 bool async)
13237 {
13238 struct drm_i915_private *dev_priv = dev->dev_private;
13239 struct drm_crtc *crtc;
13240 struct drm_crtc_state *crtc_state;
13241 int ret = 0;
13242 int i;
13243 bool any_ms = false;
13244
13245 if (async) {
13246 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13247 return -EINVAL;
13248 }
13249
13250 ret = drm_atomic_helper_prepare_planes(dev, state);
13251 if (ret)
13252 return ret;
13253
13254 drm_atomic_helper_swap_state(dev, state);
13255
13256 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13258
13259 if (!needs_modeset(crtc->state))
13260 continue;
13261
13262 any_ms = true;
13263 intel_pre_plane_update(intel_crtc);
13264
13265 if (crtc_state->active) {
13266 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13267 dev_priv->display.crtc_disable(crtc);
13268 intel_crtc->active = false;
13269 intel_disable_shared_dpll(intel_crtc);
13270 }
13271 }
13272
13273 /* Only after disabling all output pipelines that will be changed can we
13274 * update the the output configuration. */
13275 intel_modeset_update_state(state);
13276
13277 /* The state has been swaped above, so state actually contains the
13278 * old state now. */
13279 if (any_ms)
13280 modeset_update_crtc_power_domains(state);
13281
13282 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13283 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13285 bool modeset = needs_modeset(crtc->state);
13286
13287 if (modeset && crtc->state->active) {
13288 update_scanline_offset(to_intel_crtc(crtc));
13289 dev_priv->display.crtc_enable(crtc);
13290 }
13291
13292 if (!modeset)
13293 intel_pre_plane_update(intel_crtc);
13294
13295 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13296 intel_post_plane_update(intel_crtc);
13297 }
13298
13299 /* FIXME: add subpixel order */
13300
13301 drm_atomic_helper_wait_for_vblanks(dev, state);
13302 drm_atomic_helper_cleanup_planes(dev, state);
13303 drm_atomic_state_free(state);
13304
13305 if (any_ms)
13306 intel_modeset_check_state(dev);
13307
13308 return 0;
13309 }
13310
13311 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13312 {
13313 struct drm_device *dev = crtc->dev;
13314 struct drm_atomic_state *state;
13315 struct drm_crtc_state *crtc_state;
13316 int ret;
13317
13318 state = drm_atomic_state_alloc(dev);
13319 if (!state) {
13320 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13321 crtc->base.id);
13322 return;
13323 }
13324
13325 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13326
13327 retry:
13328 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13329 ret = PTR_ERR_OR_ZERO(crtc_state);
13330 if (!ret) {
13331 if (!crtc_state->active)
13332 goto out;
13333
13334 crtc_state->mode_changed = true;
13335 ret = drm_atomic_commit(state);
13336 }
13337
13338 if (ret == -EDEADLK) {
13339 drm_atomic_state_clear(state);
13340 drm_modeset_backoff(state->acquire_ctx);
13341 goto retry;
13342 }
13343
13344 if (ret)
13345 out:
13346 drm_atomic_state_free(state);
13347 }
13348
13349 #undef for_each_intel_crtc_masked
13350
13351 static const struct drm_crtc_funcs intel_crtc_funcs = {
13352 .gamma_set = intel_crtc_gamma_set,
13353 .set_config = drm_atomic_helper_set_config,
13354 .destroy = intel_crtc_destroy,
13355 .page_flip = intel_crtc_page_flip,
13356 .atomic_duplicate_state = intel_crtc_duplicate_state,
13357 .atomic_destroy_state = intel_crtc_destroy_state,
13358 };
13359
13360 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13361 struct intel_shared_dpll *pll,
13362 struct intel_dpll_hw_state *hw_state)
13363 {
13364 uint32_t val;
13365
13366 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13367 return false;
13368
13369 val = I915_READ(PCH_DPLL(pll->id));
13370 hw_state->dpll = val;
13371 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13372 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13373
13374 return val & DPLL_VCO_ENABLE;
13375 }
13376
13377 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13378 struct intel_shared_dpll *pll)
13379 {
13380 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13381 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13382 }
13383
13384 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13385 struct intel_shared_dpll *pll)
13386 {
13387 /* PCH refclock must be enabled first */
13388 ibx_assert_pch_refclk_enabled(dev_priv);
13389
13390 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13391
13392 /* Wait for the clocks to stabilize. */
13393 POSTING_READ(PCH_DPLL(pll->id));
13394 udelay(150);
13395
13396 /* The pixel multiplier can only be updated once the
13397 * DPLL is enabled and the clocks are stable.
13398 *
13399 * So write it again.
13400 */
13401 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13402 POSTING_READ(PCH_DPLL(pll->id));
13403 udelay(200);
13404 }
13405
13406 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13407 struct intel_shared_dpll *pll)
13408 {
13409 struct drm_device *dev = dev_priv->dev;
13410 struct intel_crtc *crtc;
13411
13412 /* Make sure no transcoder isn't still depending on us. */
13413 for_each_intel_crtc(dev, crtc) {
13414 if (intel_crtc_to_shared_dpll(crtc) == pll)
13415 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13416 }
13417
13418 I915_WRITE(PCH_DPLL(pll->id), 0);
13419 POSTING_READ(PCH_DPLL(pll->id));
13420 udelay(200);
13421 }
13422
13423 static char *ibx_pch_dpll_names[] = {
13424 "PCH DPLL A",
13425 "PCH DPLL B",
13426 };
13427
13428 static void ibx_pch_dpll_init(struct drm_device *dev)
13429 {
13430 struct drm_i915_private *dev_priv = dev->dev_private;
13431 int i;
13432
13433 dev_priv->num_shared_dpll = 2;
13434
13435 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13436 dev_priv->shared_dplls[i].id = i;
13437 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13438 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13439 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13440 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13441 dev_priv->shared_dplls[i].get_hw_state =
13442 ibx_pch_dpll_get_hw_state;
13443 }
13444 }
13445
13446 static void intel_shared_dpll_init(struct drm_device *dev)
13447 {
13448 struct drm_i915_private *dev_priv = dev->dev_private;
13449
13450 intel_update_cdclk(dev);
13451
13452 if (HAS_DDI(dev))
13453 intel_ddi_pll_init(dev);
13454 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13455 ibx_pch_dpll_init(dev);
13456 else
13457 dev_priv->num_shared_dpll = 0;
13458
13459 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13460 }
13461
13462 /**
13463 * intel_prepare_plane_fb - Prepare fb for usage on plane
13464 * @plane: drm plane to prepare for
13465 * @fb: framebuffer to prepare for presentation
13466 *
13467 * Prepares a framebuffer for usage on a display plane. Generally this
13468 * involves pinning the underlying object and updating the frontbuffer tracking
13469 * bits. Some older platforms need special physical address handling for
13470 * cursor planes.
13471 *
13472 * Returns 0 on success, negative error code on failure.
13473 */
13474 int
13475 intel_prepare_plane_fb(struct drm_plane *plane,
13476 struct drm_framebuffer *fb,
13477 const struct drm_plane_state *new_state)
13478 {
13479 struct drm_device *dev = plane->dev;
13480 struct intel_plane *intel_plane = to_intel_plane(plane);
13481 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13482 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13483 int ret = 0;
13484
13485 if (!obj)
13486 return 0;
13487
13488 mutex_lock(&dev->struct_mutex);
13489
13490 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13491 INTEL_INFO(dev)->cursor_needs_physical) {
13492 int align = IS_I830(dev) ? 16 * 1024 : 256;
13493 ret = i915_gem_object_attach_phys(obj, align);
13494 if (ret)
13495 DRM_DEBUG_KMS("failed to attach phys object\n");
13496 } else {
13497 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13498 }
13499
13500 if (ret == 0)
13501 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13502
13503 mutex_unlock(&dev->struct_mutex);
13504
13505 return ret;
13506 }
13507
13508 /**
13509 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13510 * @plane: drm plane to clean up for
13511 * @fb: old framebuffer that was on plane
13512 *
13513 * Cleans up a framebuffer that has just been removed from a plane.
13514 */
13515 void
13516 intel_cleanup_plane_fb(struct drm_plane *plane,
13517 struct drm_framebuffer *fb,
13518 const struct drm_plane_state *old_state)
13519 {
13520 struct drm_device *dev = plane->dev;
13521 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13522
13523 if (WARN_ON(!obj))
13524 return;
13525
13526 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13527 !INTEL_INFO(dev)->cursor_needs_physical) {
13528 mutex_lock(&dev->struct_mutex);
13529 intel_unpin_fb_obj(fb, old_state);
13530 mutex_unlock(&dev->struct_mutex);
13531 }
13532 }
13533
13534 int
13535 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13536 {
13537 int max_scale;
13538 struct drm_device *dev;
13539 struct drm_i915_private *dev_priv;
13540 int crtc_clock, cdclk;
13541
13542 if (!intel_crtc || !crtc_state)
13543 return DRM_PLANE_HELPER_NO_SCALING;
13544
13545 dev = intel_crtc->base.dev;
13546 dev_priv = dev->dev_private;
13547 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13548 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13549
13550 if (!crtc_clock || !cdclk)
13551 return DRM_PLANE_HELPER_NO_SCALING;
13552
13553 /*
13554 * skl max scale is lower of:
13555 * close to 3 but not 3, -1 is for that purpose
13556 * or
13557 * cdclk/crtc_clock
13558 */
13559 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13560
13561 return max_scale;
13562 }
13563
13564 static int
13565 intel_check_primary_plane(struct drm_plane *plane,
13566 struct intel_crtc_state *crtc_state,
13567 struct intel_plane_state *state)
13568 {
13569 struct drm_crtc *crtc = state->base.crtc;
13570 struct drm_framebuffer *fb = state->base.fb;
13571 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13572 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13573 bool can_position = false;
13574
13575 /* use scaler when colorkey is not required */
13576 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13577 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13578 min_scale = 1;
13579 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13580 can_position = true;
13581 }
13582
13583 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13584 &state->dst, &state->clip,
13585 min_scale, max_scale,
13586 can_position, true,
13587 &state->visible);
13588 }
13589
13590 static void
13591 intel_commit_primary_plane(struct drm_plane *plane,
13592 struct intel_plane_state *state)
13593 {
13594 struct drm_crtc *crtc = state->base.crtc;
13595 struct drm_framebuffer *fb = state->base.fb;
13596 struct drm_device *dev = plane->dev;
13597 struct drm_i915_private *dev_priv = dev->dev_private;
13598 struct intel_crtc *intel_crtc;
13599 struct drm_rect *src = &state->src;
13600
13601 crtc = crtc ? crtc : plane->crtc;
13602 intel_crtc = to_intel_crtc(crtc);
13603
13604 plane->fb = fb;
13605 crtc->x = src->x1 >> 16;
13606 crtc->y = src->y1 >> 16;
13607
13608 if (!crtc->state->active)
13609 return;
13610
13611 if (state->visible)
13612 /* FIXME: kill this fastboot hack */
13613 intel_update_pipe_size(intel_crtc);
13614
13615 dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13616 }
13617
13618 static void
13619 intel_disable_primary_plane(struct drm_plane *plane,
13620 struct drm_crtc *crtc)
13621 {
13622 struct drm_device *dev = plane->dev;
13623 struct drm_i915_private *dev_priv = dev->dev_private;
13624
13625 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13626 }
13627
13628 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13629 {
13630 struct drm_device *dev = crtc->dev;
13631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13632
13633 if (intel_crtc->atomic.update_wm_pre)
13634 intel_update_watermarks(crtc);
13635
13636 /* Perform vblank evasion around commit operation */
13637 if (crtc->state->active)
13638 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13639
13640 if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13641 skl_detach_scalers(intel_crtc);
13642 }
13643
13644 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13645 {
13646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13647
13648 if (crtc->state->active)
13649 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13650 }
13651
13652 /**
13653 * intel_plane_destroy - destroy a plane
13654 * @plane: plane to destroy
13655 *
13656 * Common destruction function for all types of planes (primary, cursor,
13657 * sprite).
13658 */
13659 void intel_plane_destroy(struct drm_plane *plane)
13660 {
13661 struct intel_plane *intel_plane = to_intel_plane(plane);
13662 drm_plane_cleanup(plane);
13663 kfree(intel_plane);
13664 }
13665
13666 const struct drm_plane_funcs intel_plane_funcs = {
13667 .update_plane = drm_atomic_helper_update_plane,
13668 .disable_plane = drm_atomic_helper_disable_plane,
13669 .destroy = intel_plane_destroy,
13670 .set_property = drm_atomic_helper_plane_set_property,
13671 .atomic_get_property = intel_plane_atomic_get_property,
13672 .atomic_set_property = intel_plane_atomic_set_property,
13673 .atomic_duplicate_state = intel_plane_duplicate_state,
13674 .atomic_destroy_state = intel_plane_destroy_state,
13675
13676 };
13677
13678 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13679 int pipe)
13680 {
13681 struct intel_plane *primary;
13682 struct intel_plane_state *state;
13683 const uint32_t *intel_primary_formats;
13684 int num_formats;
13685
13686 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13687 if (primary == NULL)
13688 return NULL;
13689
13690 state = intel_create_plane_state(&primary->base);
13691 if (!state) {
13692 kfree(primary);
13693 return NULL;
13694 }
13695 primary->base.state = &state->base;
13696
13697 primary->can_scale = false;
13698 primary->max_downscale = 1;
13699 if (INTEL_INFO(dev)->gen >= 9) {
13700 primary->can_scale = true;
13701 state->scaler_id = -1;
13702 }
13703 primary->pipe = pipe;
13704 primary->plane = pipe;
13705 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13706 primary->check_plane = intel_check_primary_plane;
13707 primary->commit_plane = intel_commit_primary_plane;
13708 primary->disable_plane = intel_disable_primary_plane;
13709 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13710 primary->plane = !pipe;
13711
13712 if (INTEL_INFO(dev)->gen >= 9) {
13713 intel_primary_formats = skl_primary_formats;
13714 num_formats = ARRAY_SIZE(skl_primary_formats);
13715 } else if (INTEL_INFO(dev)->gen >= 4) {
13716 intel_primary_formats = i965_primary_formats;
13717 num_formats = ARRAY_SIZE(i965_primary_formats);
13718 } else {
13719 intel_primary_formats = i8xx_primary_formats;
13720 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13721 }
13722
13723 drm_universal_plane_init(dev, &primary->base, 0,
13724 &intel_plane_funcs,
13725 intel_primary_formats, num_formats,
13726 DRM_PLANE_TYPE_PRIMARY);
13727
13728 if (INTEL_INFO(dev)->gen >= 4)
13729 intel_create_rotation_property(dev, primary);
13730
13731 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13732
13733 return &primary->base;
13734 }
13735
13736 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13737 {
13738 if (!dev->mode_config.rotation_property) {
13739 unsigned long flags = BIT(DRM_ROTATE_0) |
13740 BIT(DRM_ROTATE_180);
13741
13742 if (INTEL_INFO(dev)->gen >= 9)
13743 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13744
13745 dev->mode_config.rotation_property =
13746 drm_mode_create_rotation_property(dev, flags);
13747 }
13748 if (dev->mode_config.rotation_property)
13749 drm_object_attach_property(&plane->base.base,
13750 dev->mode_config.rotation_property,
13751 plane->base.state->rotation);
13752 }
13753
13754 static int
13755 intel_check_cursor_plane(struct drm_plane *plane,
13756 struct intel_crtc_state *crtc_state,
13757 struct intel_plane_state *state)
13758 {
13759 struct drm_crtc *crtc = crtc_state->base.crtc;
13760 struct drm_framebuffer *fb = state->base.fb;
13761 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13762 unsigned stride;
13763 int ret;
13764
13765 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13766 &state->dst, &state->clip,
13767 DRM_PLANE_HELPER_NO_SCALING,
13768 DRM_PLANE_HELPER_NO_SCALING,
13769 true, true, &state->visible);
13770 if (ret)
13771 return ret;
13772
13773 /* if we want to turn off the cursor ignore width and height */
13774 if (!obj)
13775 return 0;
13776
13777 /* Check for which cursor types we support */
13778 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13779 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13780 state->base.crtc_w, state->base.crtc_h);
13781 return -EINVAL;
13782 }
13783
13784 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13785 if (obj->base.size < stride * state->base.crtc_h) {
13786 DRM_DEBUG_KMS("buffer is too small\n");
13787 return -ENOMEM;
13788 }
13789
13790 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13791 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13792 return -EINVAL;
13793 }
13794
13795 return 0;
13796 }
13797
13798 static void
13799 intel_disable_cursor_plane(struct drm_plane *plane,
13800 struct drm_crtc *crtc)
13801 {
13802 intel_crtc_update_cursor(crtc, false);
13803 }
13804
13805 static void
13806 intel_commit_cursor_plane(struct drm_plane *plane,
13807 struct intel_plane_state *state)
13808 {
13809 struct drm_crtc *crtc = state->base.crtc;
13810 struct drm_device *dev = plane->dev;
13811 struct intel_crtc *intel_crtc;
13812 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13813 uint32_t addr;
13814
13815 crtc = crtc ? crtc : plane->crtc;
13816 intel_crtc = to_intel_crtc(crtc);
13817
13818 plane->fb = state->base.fb;
13819 crtc->cursor_x = state->base.crtc_x;
13820 crtc->cursor_y = state->base.crtc_y;
13821
13822 if (intel_crtc->cursor_bo == obj)
13823 goto update;
13824
13825 if (!obj)
13826 addr = 0;
13827 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13828 addr = i915_gem_obj_ggtt_offset(obj);
13829 else
13830 addr = obj->phys_handle->busaddr;
13831
13832 intel_crtc->cursor_addr = addr;
13833 intel_crtc->cursor_bo = obj;
13834
13835 update:
13836 if (crtc->state->active)
13837 intel_crtc_update_cursor(crtc, state->visible);
13838 }
13839
13840 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13841 int pipe)
13842 {
13843 struct intel_plane *cursor;
13844 struct intel_plane_state *state;
13845
13846 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13847 if (cursor == NULL)
13848 return NULL;
13849
13850 state = intel_create_plane_state(&cursor->base);
13851 if (!state) {
13852 kfree(cursor);
13853 return NULL;
13854 }
13855 cursor->base.state = &state->base;
13856
13857 cursor->can_scale = false;
13858 cursor->max_downscale = 1;
13859 cursor->pipe = pipe;
13860 cursor->plane = pipe;
13861 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13862 cursor->check_plane = intel_check_cursor_plane;
13863 cursor->commit_plane = intel_commit_cursor_plane;
13864 cursor->disable_plane = intel_disable_cursor_plane;
13865
13866 drm_universal_plane_init(dev, &cursor->base, 0,
13867 &intel_plane_funcs,
13868 intel_cursor_formats,
13869 ARRAY_SIZE(intel_cursor_formats),
13870 DRM_PLANE_TYPE_CURSOR);
13871
13872 if (INTEL_INFO(dev)->gen >= 4) {
13873 if (!dev->mode_config.rotation_property)
13874 dev->mode_config.rotation_property =
13875 drm_mode_create_rotation_property(dev,
13876 BIT(DRM_ROTATE_0) |
13877 BIT(DRM_ROTATE_180));
13878 if (dev->mode_config.rotation_property)
13879 drm_object_attach_property(&cursor->base.base,
13880 dev->mode_config.rotation_property,
13881 state->base.rotation);
13882 }
13883
13884 if (INTEL_INFO(dev)->gen >=9)
13885 state->scaler_id = -1;
13886
13887 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13888
13889 return &cursor->base;
13890 }
13891
13892 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13893 struct intel_crtc_state *crtc_state)
13894 {
13895 int i;
13896 struct intel_scaler *intel_scaler;
13897 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13898
13899 for (i = 0; i < intel_crtc->num_scalers; i++) {
13900 intel_scaler = &scaler_state->scalers[i];
13901 intel_scaler->in_use = 0;
13902 intel_scaler->mode = PS_SCALER_MODE_DYN;
13903 }
13904
13905 scaler_state->scaler_id = -1;
13906 }
13907
13908 static void intel_crtc_init(struct drm_device *dev, int pipe)
13909 {
13910 struct drm_i915_private *dev_priv = dev->dev_private;
13911 struct intel_crtc *intel_crtc;
13912 struct intel_crtc_state *crtc_state = NULL;
13913 struct drm_plane *primary = NULL;
13914 struct drm_plane *cursor = NULL;
13915 int i, ret;
13916
13917 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13918 if (intel_crtc == NULL)
13919 return;
13920
13921 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13922 if (!crtc_state)
13923 goto fail;
13924 intel_crtc->config = crtc_state;
13925 intel_crtc->base.state = &crtc_state->base;
13926 crtc_state->base.crtc = &intel_crtc->base;
13927
13928 /* initialize shared scalers */
13929 if (INTEL_INFO(dev)->gen >= 9) {
13930 if (pipe == PIPE_C)
13931 intel_crtc->num_scalers = 1;
13932 else
13933 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13934
13935 skl_init_scalers(dev, intel_crtc, crtc_state);
13936 }
13937
13938 primary = intel_primary_plane_create(dev, pipe);
13939 if (!primary)
13940 goto fail;
13941
13942 cursor = intel_cursor_plane_create(dev, pipe);
13943 if (!cursor)
13944 goto fail;
13945
13946 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13947 cursor, &intel_crtc_funcs);
13948 if (ret)
13949 goto fail;
13950
13951 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13952 for (i = 0; i < 256; i++) {
13953 intel_crtc->lut_r[i] = i;
13954 intel_crtc->lut_g[i] = i;
13955 intel_crtc->lut_b[i] = i;
13956 }
13957
13958 /*
13959 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13960 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13961 */
13962 intel_crtc->pipe = pipe;
13963 intel_crtc->plane = pipe;
13964 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13965 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13966 intel_crtc->plane = !pipe;
13967 }
13968
13969 intel_crtc->cursor_base = ~0;
13970 intel_crtc->cursor_cntl = ~0;
13971 intel_crtc->cursor_size = ~0;
13972
13973 intel_crtc->wm.cxsr_allowed = true;
13974
13975 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13976 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13977 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13978 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13979
13980 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13981
13982 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13983 return;
13984
13985 fail:
13986 if (primary)
13987 drm_plane_cleanup(primary);
13988 if (cursor)
13989 drm_plane_cleanup(cursor);
13990 kfree(crtc_state);
13991 kfree(intel_crtc);
13992 }
13993
13994 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13995 {
13996 struct drm_encoder *encoder = connector->base.encoder;
13997 struct drm_device *dev = connector->base.dev;
13998
13999 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14000
14001 if (!encoder || WARN_ON(!encoder->crtc))
14002 return INVALID_PIPE;
14003
14004 return to_intel_crtc(encoder->crtc)->pipe;
14005 }
14006
14007 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14008 struct drm_file *file)
14009 {
14010 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14011 struct drm_crtc *drmmode_crtc;
14012 struct intel_crtc *crtc;
14013
14014 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14015
14016 if (!drmmode_crtc) {
14017 DRM_ERROR("no such CRTC id\n");
14018 return -ENOENT;
14019 }
14020
14021 crtc = to_intel_crtc(drmmode_crtc);
14022 pipe_from_crtc_id->pipe = crtc->pipe;
14023
14024 return 0;
14025 }
14026
14027 static int intel_encoder_clones(struct intel_encoder *encoder)
14028 {
14029 struct drm_device *dev = encoder->base.dev;
14030 struct intel_encoder *source_encoder;
14031 int index_mask = 0;
14032 int entry = 0;
14033
14034 for_each_intel_encoder(dev, source_encoder) {
14035 if (encoders_cloneable(encoder, source_encoder))
14036 index_mask |= (1 << entry);
14037
14038 entry++;
14039 }
14040
14041 return index_mask;
14042 }
14043
14044 static bool has_edp_a(struct drm_device *dev)
14045 {
14046 struct drm_i915_private *dev_priv = dev->dev_private;
14047
14048 if (!IS_MOBILE(dev))
14049 return false;
14050
14051 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14052 return false;
14053
14054 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14055 return false;
14056
14057 return true;
14058 }
14059
14060 static bool intel_crt_present(struct drm_device *dev)
14061 {
14062 struct drm_i915_private *dev_priv = dev->dev_private;
14063
14064 if (INTEL_INFO(dev)->gen >= 9)
14065 return false;
14066
14067 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14068 return false;
14069
14070 if (IS_CHERRYVIEW(dev))
14071 return false;
14072
14073 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14074 return false;
14075
14076 return true;
14077 }
14078
14079 static void intel_setup_outputs(struct drm_device *dev)
14080 {
14081 struct drm_i915_private *dev_priv = dev->dev_private;
14082 struct intel_encoder *encoder;
14083 bool dpd_is_edp = false;
14084
14085 intel_lvds_init(dev);
14086
14087 if (intel_crt_present(dev))
14088 intel_crt_init(dev);
14089
14090 if (IS_BROXTON(dev)) {
14091 /*
14092 * FIXME: Broxton doesn't support port detection via the
14093 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14094 * detect the ports.
14095 */
14096 intel_ddi_init(dev, PORT_A);
14097 intel_ddi_init(dev, PORT_B);
14098 intel_ddi_init(dev, PORT_C);
14099 } else if (HAS_DDI(dev)) {
14100 int found;
14101
14102 /*
14103 * Haswell uses DDI functions to detect digital outputs.
14104 * On SKL pre-D0 the strap isn't connected, so we assume
14105 * it's there.
14106 */
14107 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14108 /* WaIgnoreDDIAStrap: skl */
14109 if (found ||
14110 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14111 intel_ddi_init(dev, PORT_A);
14112
14113 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14114 * register */
14115 found = I915_READ(SFUSE_STRAP);
14116
14117 if (found & SFUSE_STRAP_DDIB_DETECTED)
14118 intel_ddi_init(dev, PORT_B);
14119 if (found & SFUSE_STRAP_DDIC_DETECTED)
14120 intel_ddi_init(dev, PORT_C);
14121 if (found & SFUSE_STRAP_DDID_DETECTED)
14122 intel_ddi_init(dev, PORT_D);
14123 } else if (HAS_PCH_SPLIT(dev)) {
14124 int found;
14125 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14126
14127 if (has_edp_a(dev))
14128 intel_dp_init(dev, DP_A, PORT_A);
14129
14130 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14131 /* PCH SDVOB multiplex with HDMIB */
14132 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14133 if (!found)
14134 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14135 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14136 intel_dp_init(dev, PCH_DP_B, PORT_B);
14137 }
14138
14139 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14140 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14141
14142 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14143 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14144
14145 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14146 intel_dp_init(dev, PCH_DP_C, PORT_C);
14147
14148 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14149 intel_dp_init(dev, PCH_DP_D, PORT_D);
14150 } else if (IS_VALLEYVIEW(dev)) {
14151 /*
14152 * The DP_DETECTED bit is the latched state of the DDC
14153 * SDA pin at boot. However since eDP doesn't require DDC
14154 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14155 * eDP ports may have been muxed to an alternate function.
14156 * Thus we can't rely on the DP_DETECTED bit alone to detect
14157 * eDP ports. Consult the VBT as well as DP_DETECTED to
14158 * detect eDP ports.
14159 */
14160 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14161 !intel_dp_is_edp(dev, PORT_B))
14162 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14163 PORT_B);
14164 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14165 intel_dp_is_edp(dev, PORT_B))
14166 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14167
14168 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14169 !intel_dp_is_edp(dev, PORT_C))
14170 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14171 PORT_C);
14172 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14173 intel_dp_is_edp(dev, PORT_C))
14174 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14175
14176 if (IS_CHERRYVIEW(dev)) {
14177 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14178 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14179 PORT_D);
14180 /* eDP not supported on port D, so don't check VBT */
14181 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14182 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14183 }
14184
14185 intel_dsi_init(dev);
14186 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14187 bool found = false;
14188
14189 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14190 DRM_DEBUG_KMS("probing SDVOB\n");
14191 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14192 if (!found && IS_G4X(dev)) {
14193 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14194 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14195 }
14196
14197 if (!found && IS_G4X(dev))
14198 intel_dp_init(dev, DP_B, PORT_B);
14199 }
14200
14201 /* Before G4X SDVOC doesn't have its own detect register */
14202
14203 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14204 DRM_DEBUG_KMS("probing SDVOC\n");
14205 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14206 }
14207
14208 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14209
14210 if (IS_G4X(dev)) {
14211 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14212 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14213 }
14214 if (IS_G4X(dev))
14215 intel_dp_init(dev, DP_C, PORT_C);
14216 }
14217
14218 if (IS_G4X(dev) &&
14219 (I915_READ(DP_D) & DP_DETECTED))
14220 intel_dp_init(dev, DP_D, PORT_D);
14221 } else if (IS_GEN2(dev))
14222 intel_dvo_init(dev);
14223
14224 if (SUPPORTS_TV(dev))
14225 intel_tv_init(dev);
14226
14227 intel_psr_init(dev);
14228
14229 for_each_intel_encoder(dev, encoder) {
14230 encoder->base.possible_crtcs = encoder->crtc_mask;
14231 encoder->base.possible_clones =
14232 intel_encoder_clones(encoder);
14233 }
14234
14235 intel_init_pch_refclk(dev);
14236
14237 drm_helper_move_panel_connectors_to_head(dev);
14238 }
14239
14240 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14241 {
14242 struct drm_device *dev = fb->dev;
14243 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14244
14245 drm_framebuffer_cleanup(fb);
14246 mutex_lock(&dev->struct_mutex);
14247 WARN_ON(!intel_fb->obj->framebuffer_references--);
14248 drm_gem_object_unreference(&intel_fb->obj->base);
14249 mutex_unlock(&dev->struct_mutex);
14250 kfree(intel_fb);
14251 }
14252
14253 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14254 struct drm_file *file,
14255 unsigned int *handle)
14256 {
14257 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14258 struct drm_i915_gem_object *obj = intel_fb->obj;
14259
14260 return drm_gem_handle_create(file, &obj->base, handle);
14261 }
14262
14263 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14264 struct drm_file *file,
14265 unsigned flags, unsigned color,
14266 struct drm_clip_rect *clips,
14267 unsigned num_clips)
14268 {
14269 struct drm_device *dev = fb->dev;
14270 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14271 struct drm_i915_gem_object *obj = intel_fb->obj;
14272
14273 mutex_lock(&dev->struct_mutex);
14274 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14275 mutex_unlock(&dev->struct_mutex);
14276
14277 return 0;
14278 }
14279
14280 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14281 .destroy = intel_user_framebuffer_destroy,
14282 .create_handle = intel_user_framebuffer_create_handle,
14283 .dirty = intel_user_framebuffer_dirty,
14284 };
14285
14286 static
14287 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14288 uint32_t pixel_format)
14289 {
14290 u32 gen = INTEL_INFO(dev)->gen;
14291
14292 if (gen >= 9) {
14293 /* "The stride in bytes must not exceed the of the size of 8K
14294 * pixels and 32K bytes."
14295 */
14296 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14297 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14298 return 32*1024;
14299 } else if (gen >= 4) {
14300 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14301 return 16*1024;
14302 else
14303 return 32*1024;
14304 } else if (gen >= 3) {
14305 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14306 return 8*1024;
14307 else
14308 return 16*1024;
14309 } else {
14310 /* XXX DSPC is limited to 4k tiled */
14311 return 8*1024;
14312 }
14313 }
14314
14315 static int intel_framebuffer_init(struct drm_device *dev,
14316 struct intel_framebuffer *intel_fb,
14317 struct drm_mode_fb_cmd2 *mode_cmd,
14318 struct drm_i915_gem_object *obj)
14319 {
14320 unsigned int aligned_height;
14321 int ret;
14322 u32 pitch_limit, stride_alignment;
14323
14324 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14325
14326 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14327 /* Enforce that fb modifier and tiling mode match, but only for
14328 * X-tiled. This is needed for FBC. */
14329 if (!!(obj->tiling_mode == I915_TILING_X) !=
14330 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14331 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14332 return -EINVAL;
14333 }
14334 } else {
14335 if (obj->tiling_mode == I915_TILING_X)
14336 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14337 else if (obj->tiling_mode == I915_TILING_Y) {
14338 DRM_DEBUG("No Y tiling for legacy addfb\n");
14339 return -EINVAL;
14340 }
14341 }
14342
14343 /* Passed in modifier sanity checking. */
14344 switch (mode_cmd->modifier[0]) {
14345 case I915_FORMAT_MOD_Y_TILED:
14346 case I915_FORMAT_MOD_Yf_TILED:
14347 if (INTEL_INFO(dev)->gen < 9) {
14348 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14349 mode_cmd->modifier[0]);
14350 return -EINVAL;
14351 }
14352 case DRM_FORMAT_MOD_NONE:
14353 case I915_FORMAT_MOD_X_TILED:
14354 break;
14355 default:
14356 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14357 mode_cmd->modifier[0]);
14358 return -EINVAL;
14359 }
14360
14361 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14362 mode_cmd->pixel_format);
14363 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14364 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14365 mode_cmd->pitches[0], stride_alignment);
14366 return -EINVAL;
14367 }
14368
14369 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14370 mode_cmd->pixel_format);
14371 if (mode_cmd->pitches[0] > pitch_limit) {
14372 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14373 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14374 "tiled" : "linear",
14375 mode_cmd->pitches[0], pitch_limit);
14376 return -EINVAL;
14377 }
14378
14379 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14380 mode_cmd->pitches[0] != obj->stride) {
14381 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14382 mode_cmd->pitches[0], obj->stride);
14383 return -EINVAL;
14384 }
14385
14386 /* Reject formats not supported by any plane early. */
14387 switch (mode_cmd->pixel_format) {
14388 case DRM_FORMAT_C8:
14389 case DRM_FORMAT_RGB565:
14390 case DRM_FORMAT_XRGB8888:
14391 case DRM_FORMAT_ARGB8888:
14392 break;
14393 case DRM_FORMAT_XRGB1555:
14394 if (INTEL_INFO(dev)->gen > 3) {
14395 DRM_DEBUG("unsupported pixel format: %s\n",
14396 drm_get_format_name(mode_cmd->pixel_format));
14397 return -EINVAL;
14398 }
14399 break;
14400 case DRM_FORMAT_ABGR8888:
14401 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14402 DRM_DEBUG("unsupported pixel format: %s\n",
14403 drm_get_format_name(mode_cmd->pixel_format));
14404 return -EINVAL;
14405 }
14406 break;
14407 case DRM_FORMAT_XBGR8888:
14408 case DRM_FORMAT_XRGB2101010:
14409 case DRM_FORMAT_XBGR2101010:
14410 if (INTEL_INFO(dev)->gen < 4) {
14411 DRM_DEBUG("unsupported pixel format: %s\n",
14412 drm_get_format_name(mode_cmd->pixel_format));
14413 return -EINVAL;
14414 }
14415 break;
14416 case DRM_FORMAT_ABGR2101010:
14417 if (!IS_VALLEYVIEW(dev)) {
14418 DRM_DEBUG("unsupported pixel format: %s\n",
14419 drm_get_format_name(mode_cmd->pixel_format));
14420 return -EINVAL;
14421 }
14422 break;
14423 case DRM_FORMAT_YUYV:
14424 case DRM_FORMAT_UYVY:
14425 case DRM_FORMAT_YVYU:
14426 case DRM_FORMAT_VYUY:
14427 if (INTEL_INFO(dev)->gen < 5) {
14428 DRM_DEBUG("unsupported pixel format: %s\n",
14429 drm_get_format_name(mode_cmd->pixel_format));
14430 return -EINVAL;
14431 }
14432 break;
14433 default:
14434 DRM_DEBUG("unsupported pixel format: %s\n",
14435 drm_get_format_name(mode_cmd->pixel_format));
14436 return -EINVAL;
14437 }
14438
14439 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14440 if (mode_cmd->offsets[0] != 0)
14441 return -EINVAL;
14442
14443 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14444 mode_cmd->pixel_format,
14445 mode_cmd->modifier[0]);
14446 /* FIXME drm helper for size checks (especially planar formats)? */
14447 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14448 return -EINVAL;
14449
14450 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14451 intel_fb->obj = obj;
14452 intel_fb->obj->framebuffer_references++;
14453
14454 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14455 if (ret) {
14456 DRM_ERROR("framebuffer init failed %d\n", ret);
14457 return ret;
14458 }
14459
14460 return 0;
14461 }
14462
14463 static struct drm_framebuffer *
14464 intel_user_framebuffer_create(struct drm_device *dev,
14465 struct drm_file *filp,
14466 struct drm_mode_fb_cmd2 *mode_cmd)
14467 {
14468 struct drm_i915_gem_object *obj;
14469
14470 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14471 mode_cmd->handles[0]));
14472 if (&obj->base == NULL)
14473 return ERR_PTR(-ENOENT);
14474
14475 return intel_framebuffer_create(dev, mode_cmd, obj);
14476 }
14477
14478 #ifndef CONFIG_DRM_I915_FBDEV
14479 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14480 {
14481 }
14482 #endif
14483
14484 static const struct drm_mode_config_funcs intel_mode_funcs = {
14485 .fb_create = intel_user_framebuffer_create,
14486 .output_poll_changed = intel_fbdev_output_poll_changed,
14487 .atomic_check = intel_atomic_check,
14488 .atomic_commit = intel_atomic_commit,
14489 .atomic_state_alloc = intel_atomic_state_alloc,
14490 .atomic_state_clear = intel_atomic_state_clear,
14491 };
14492
14493 /* Set up chip specific display functions */
14494 static void intel_init_display(struct drm_device *dev)
14495 {
14496 struct drm_i915_private *dev_priv = dev->dev_private;
14497
14498 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14499 dev_priv->display.find_dpll = g4x_find_best_dpll;
14500 else if (IS_CHERRYVIEW(dev))
14501 dev_priv->display.find_dpll = chv_find_best_dpll;
14502 else if (IS_VALLEYVIEW(dev))
14503 dev_priv->display.find_dpll = vlv_find_best_dpll;
14504 else if (IS_PINEVIEW(dev))
14505 dev_priv->display.find_dpll = pnv_find_best_dpll;
14506 else
14507 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14508
14509 if (INTEL_INFO(dev)->gen >= 9) {
14510 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14511 dev_priv->display.get_initial_plane_config =
14512 skylake_get_initial_plane_config;
14513 dev_priv->display.crtc_compute_clock =
14514 haswell_crtc_compute_clock;
14515 dev_priv->display.crtc_enable = haswell_crtc_enable;
14516 dev_priv->display.crtc_disable = haswell_crtc_disable;
14517 dev_priv->display.update_primary_plane =
14518 skylake_update_primary_plane;
14519 } else if (HAS_DDI(dev)) {
14520 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14521 dev_priv->display.get_initial_plane_config =
14522 ironlake_get_initial_plane_config;
14523 dev_priv->display.crtc_compute_clock =
14524 haswell_crtc_compute_clock;
14525 dev_priv->display.crtc_enable = haswell_crtc_enable;
14526 dev_priv->display.crtc_disable = haswell_crtc_disable;
14527 dev_priv->display.update_primary_plane =
14528 ironlake_update_primary_plane;
14529 } else if (HAS_PCH_SPLIT(dev)) {
14530 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14531 dev_priv->display.get_initial_plane_config =
14532 ironlake_get_initial_plane_config;
14533 dev_priv->display.crtc_compute_clock =
14534 ironlake_crtc_compute_clock;
14535 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14536 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14537 dev_priv->display.update_primary_plane =
14538 ironlake_update_primary_plane;
14539 } else if (IS_VALLEYVIEW(dev)) {
14540 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14541 dev_priv->display.get_initial_plane_config =
14542 i9xx_get_initial_plane_config;
14543 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14544 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14545 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14546 dev_priv->display.update_primary_plane =
14547 i9xx_update_primary_plane;
14548 } else {
14549 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14550 dev_priv->display.get_initial_plane_config =
14551 i9xx_get_initial_plane_config;
14552 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14553 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14554 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14555 dev_priv->display.update_primary_plane =
14556 i9xx_update_primary_plane;
14557 }
14558
14559 /* Returns the core display clock speed */
14560 if (IS_SKYLAKE(dev))
14561 dev_priv->display.get_display_clock_speed =
14562 skylake_get_display_clock_speed;
14563 else if (IS_BROXTON(dev))
14564 dev_priv->display.get_display_clock_speed =
14565 broxton_get_display_clock_speed;
14566 else if (IS_BROADWELL(dev))
14567 dev_priv->display.get_display_clock_speed =
14568 broadwell_get_display_clock_speed;
14569 else if (IS_HASWELL(dev))
14570 dev_priv->display.get_display_clock_speed =
14571 haswell_get_display_clock_speed;
14572 else if (IS_VALLEYVIEW(dev))
14573 dev_priv->display.get_display_clock_speed =
14574 valleyview_get_display_clock_speed;
14575 else if (IS_GEN5(dev))
14576 dev_priv->display.get_display_clock_speed =
14577 ilk_get_display_clock_speed;
14578 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14579 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14580 dev_priv->display.get_display_clock_speed =
14581 i945_get_display_clock_speed;
14582 else if (IS_GM45(dev))
14583 dev_priv->display.get_display_clock_speed =
14584 gm45_get_display_clock_speed;
14585 else if (IS_CRESTLINE(dev))
14586 dev_priv->display.get_display_clock_speed =
14587 i965gm_get_display_clock_speed;
14588 else if (IS_PINEVIEW(dev))
14589 dev_priv->display.get_display_clock_speed =
14590 pnv_get_display_clock_speed;
14591 else if (IS_G33(dev) || IS_G4X(dev))
14592 dev_priv->display.get_display_clock_speed =
14593 g33_get_display_clock_speed;
14594 else if (IS_I915G(dev))
14595 dev_priv->display.get_display_clock_speed =
14596 i915_get_display_clock_speed;
14597 else if (IS_I945GM(dev) || IS_845G(dev))
14598 dev_priv->display.get_display_clock_speed =
14599 i9xx_misc_get_display_clock_speed;
14600 else if (IS_PINEVIEW(dev))
14601 dev_priv->display.get_display_clock_speed =
14602 pnv_get_display_clock_speed;
14603 else if (IS_I915GM(dev))
14604 dev_priv->display.get_display_clock_speed =
14605 i915gm_get_display_clock_speed;
14606 else if (IS_I865G(dev))
14607 dev_priv->display.get_display_clock_speed =
14608 i865_get_display_clock_speed;
14609 else if (IS_I85X(dev))
14610 dev_priv->display.get_display_clock_speed =
14611 i85x_get_display_clock_speed;
14612 else { /* 830 */
14613 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14614 dev_priv->display.get_display_clock_speed =
14615 i830_get_display_clock_speed;
14616 }
14617
14618 if (IS_GEN5(dev)) {
14619 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14620 } else if (IS_GEN6(dev)) {
14621 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14622 } else if (IS_IVYBRIDGE(dev)) {
14623 /* FIXME: detect B0+ stepping and use auto training */
14624 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14625 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14626 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14627 if (IS_BROADWELL(dev)) {
14628 dev_priv->display.modeset_commit_cdclk =
14629 broadwell_modeset_commit_cdclk;
14630 dev_priv->display.modeset_calc_cdclk =
14631 broadwell_modeset_calc_cdclk;
14632 }
14633 } else if (IS_VALLEYVIEW(dev)) {
14634 dev_priv->display.modeset_commit_cdclk =
14635 valleyview_modeset_commit_cdclk;
14636 dev_priv->display.modeset_calc_cdclk =
14637 valleyview_modeset_calc_cdclk;
14638 } else if (IS_BROXTON(dev)) {
14639 dev_priv->display.modeset_commit_cdclk =
14640 broxton_modeset_commit_cdclk;
14641 dev_priv->display.modeset_calc_cdclk =
14642 broxton_modeset_calc_cdclk;
14643 }
14644
14645 switch (INTEL_INFO(dev)->gen) {
14646 case 2:
14647 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14648 break;
14649
14650 case 3:
14651 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14652 break;
14653
14654 case 4:
14655 case 5:
14656 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14657 break;
14658
14659 case 6:
14660 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14661 break;
14662 case 7:
14663 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14664 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14665 break;
14666 case 9:
14667 /* Drop through - unsupported since execlist only. */
14668 default:
14669 /* Default just returns -ENODEV to indicate unsupported */
14670 dev_priv->display.queue_flip = intel_default_queue_flip;
14671 }
14672
14673 intel_panel_init_backlight_funcs(dev);
14674
14675 mutex_init(&dev_priv->pps_mutex);
14676 }
14677
14678 /*
14679 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14680 * resume, or other times. This quirk makes sure that's the case for
14681 * affected systems.
14682 */
14683 static void quirk_pipea_force(struct drm_device *dev)
14684 {
14685 struct drm_i915_private *dev_priv = dev->dev_private;
14686
14687 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14688 DRM_INFO("applying pipe a force quirk\n");
14689 }
14690
14691 static void quirk_pipeb_force(struct drm_device *dev)
14692 {
14693 struct drm_i915_private *dev_priv = dev->dev_private;
14694
14695 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14696 DRM_INFO("applying pipe b force quirk\n");
14697 }
14698
14699 /*
14700 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14701 */
14702 static void quirk_ssc_force_disable(struct drm_device *dev)
14703 {
14704 struct drm_i915_private *dev_priv = dev->dev_private;
14705 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14706 DRM_INFO("applying lvds SSC disable quirk\n");
14707 }
14708
14709 /*
14710 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14711 * brightness value
14712 */
14713 static void quirk_invert_brightness(struct drm_device *dev)
14714 {
14715 struct drm_i915_private *dev_priv = dev->dev_private;
14716 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14717 DRM_INFO("applying inverted panel brightness quirk\n");
14718 }
14719
14720 /* Some VBT's incorrectly indicate no backlight is present */
14721 static void quirk_backlight_present(struct drm_device *dev)
14722 {
14723 struct drm_i915_private *dev_priv = dev->dev_private;
14724 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14725 DRM_INFO("applying backlight present quirk\n");
14726 }
14727
14728 struct intel_quirk {
14729 int device;
14730 int subsystem_vendor;
14731 int subsystem_device;
14732 void (*hook)(struct drm_device *dev);
14733 };
14734
14735 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14736 struct intel_dmi_quirk {
14737 void (*hook)(struct drm_device *dev);
14738 const struct dmi_system_id (*dmi_id_list)[];
14739 };
14740
14741 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14742 {
14743 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14744 return 1;
14745 }
14746
14747 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14748 {
14749 .dmi_id_list = &(const struct dmi_system_id[]) {
14750 {
14751 .callback = intel_dmi_reverse_brightness,
14752 .ident = "NCR Corporation",
14753 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14754 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14755 },
14756 },
14757 { } /* terminating entry */
14758 },
14759 .hook = quirk_invert_brightness,
14760 },
14761 };
14762
14763 static struct intel_quirk intel_quirks[] = {
14764 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14765 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14766
14767 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14768 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14769
14770 /* 830 needs to leave pipe A & dpll A up */
14771 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14772
14773 /* 830 needs to leave pipe B & dpll B up */
14774 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14775
14776 /* Lenovo U160 cannot use SSC on LVDS */
14777 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14778
14779 /* Sony Vaio Y cannot use SSC on LVDS */
14780 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14781
14782 /* Acer Aspire 5734Z must invert backlight brightness */
14783 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14784
14785 /* Acer/eMachines G725 */
14786 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14787
14788 /* Acer/eMachines e725 */
14789 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14790
14791 /* Acer/Packard Bell NCL20 */
14792 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14793
14794 /* Acer Aspire 4736Z */
14795 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14796
14797 /* Acer Aspire 5336 */
14798 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14799
14800 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14801 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14802
14803 /* Acer C720 Chromebook (Core i3 4005U) */
14804 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14805
14806 /* Apple Macbook 2,1 (Core 2 T7400) */
14807 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14808
14809 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14810 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14811
14812 /* HP Chromebook 14 (Celeron 2955U) */
14813 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14814
14815 /* Dell Chromebook 11 */
14816 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14817 };
14818
14819 static void intel_init_quirks(struct drm_device *dev)
14820 {
14821 struct pci_dev *d = dev->pdev;
14822 int i;
14823
14824 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14825 struct intel_quirk *q = &intel_quirks[i];
14826
14827 if (d->device == q->device &&
14828 (d->subsystem_vendor == q->subsystem_vendor ||
14829 q->subsystem_vendor == PCI_ANY_ID) &&
14830 (d->subsystem_device == q->subsystem_device ||
14831 q->subsystem_device == PCI_ANY_ID))
14832 q->hook(dev);
14833 }
14834 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14835 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14836 intel_dmi_quirks[i].hook(dev);
14837 }
14838 }
14839
14840 /* Disable the VGA plane that we never use */
14841 static void i915_disable_vga(struct drm_device *dev)
14842 {
14843 struct drm_i915_private *dev_priv = dev->dev_private;
14844 u8 sr1;
14845 u32 vga_reg = i915_vgacntrl_reg(dev);
14846
14847 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14848 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14849 outb(SR01, VGA_SR_INDEX);
14850 sr1 = inb(VGA_SR_DATA);
14851 outb(sr1 | 1<<5, VGA_SR_DATA);
14852 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14853 udelay(300);
14854
14855 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14856 POSTING_READ(vga_reg);
14857 }
14858
14859 void intel_modeset_init_hw(struct drm_device *dev)
14860 {
14861 intel_update_cdclk(dev);
14862 intel_prepare_ddi(dev);
14863 intel_init_clock_gating(dev);
14864 intel_enable_gt_powersave(dev);
14865 }
14866
14867 void intel_modeset_init(struct drm_device *dev)
14868 {
14869 struct drm_i915_private *dev_priv = dev->dev_private;
14870 int sprite, ret;
14871 enum pipe pipe;
14872 struct intel_crtc *crtc;
14873
14874 drm_mode_config_init(dev);
14875
14876 dev->mode_config.min_width = 0;
14877 dev->mode_config.min_height = 0;
14878
14879 dev->mode_config.preferred_depth = 24;
14880 dev->mode_config.prefer_shadow = 1;
14881
14882 dev->mode_config.allow_fb_modifiers = true;
14883
14884 dev->mode_config.funcs = &intel_mode_funcs;
14885
14886 intel_init_quirks(dev);
14887
14888 intel_init_pm(dev);
14889
14890 if (INTEL_INFO(dev)->num_pipes == 0)
14891 return;
14892
14893 intel_init_display(dev);
14894 intel_init_audio(dev);
14895
14896 if (IS_GEN2(dev)) {
14897 dev->mode_config.max_width = 2048;
14898 dev->mode_config.max_height = 2048;
14899 } else if (IS_GEN3(dev)) {
14900 dev->mode_config.max_width = 4096;
14901 dev->mode_config.max_height = 4096;
14902 } else {
14903 dev->mode_config.max_width = 8192;
14904 dev->mode_config.max_height = 8192;
14905 }
14906
14907 if (IS_845G(dev) || IS_I865G(dev)) {
14908 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14909 dev->mode_config.cursor_height = 1023;
14910 } else if (IS_GEN2(dev)) {
14911 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14912 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14913 } else {
14914 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14915 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14916 }
14917
14918 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14919
14920 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14921 INTEL_INFO(dev)->num_pipes,
14922 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14923
14924 for_each_pipe(dev_priv, pipe) {
14925 intel_crtc_init(dev, pipe);
14926 for_each_sprite(dev_priv, pipe, sprite) {
14927 ret = intel_plane_init(dev, pipe, sprite);
14928 if (ret)
14929 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14930 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14931 }
14932 }
14933
14934 intel_init_dpio(dev);
14935
14936 intel_shared_dpll_init(dev);
14937
14938 /* Just disable it once at startup */
14939 i915_disable_vga(dev);
14940 intel_setup_outputs(dev);
14941
14942 /* Just in case the BIOS is doing something questionable. */
14943 intel_fbc_disable(dev_priv);
14944
14945 drm_modeset_lock_all(dev);
14946 intel_modeset_setup_hw_state(dev);
14947 drm_modeset_unlock_all(dev);
14948
14949 for_each_intel_crtc(dev, crtc) {
14950 struct intel_initial_plane_config plane_config = {};
14951
14952 if (!crtc->active)
14953 continue;
14954
14955 /*
14956 * Note that reserving the BIOS fb up front prevents us
14957 * from stuffing other stolen allocations like the ring
14958 * on top. This prevents some ugliness at boot time, and
14959 * can even allow for smooth boot transitions if the BIOS
14960 * fb is large enough for the active pipe configuration.
14961 */
14962 dev_priv->display.get_initial_plane_config(crtc,
14963 &plane_config);
14964
14965 /*
14966 * If the fb is shared between multiple heads, we'll
14967 * just get the first one.
14968 */
14969 intel_find_initial_plane_obj(crtc, &plane_config);
14970 }
14971 }
14972
14973 static void intel_enable_pipe_a(struct drm_device *dev)
14974 {
14975 struct intel_connector *connector;
14976 struct drm_connector *crt = NULL;
14977 struct intel_load_detect_pipe load_detect_temp;
14978 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14979
14980 /* We can't just switch on the pipe A, we need to set things up with a
14981 * proper mode and output configuration. As a gross hack, enable pipe A
14982 * by enabling the load detect pipe once. */
14983 for_each_intel_connector(dev, connector) {
14984 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14985 crt = &connector->base;
14986 break;
14987 }
14988 }
14989
14990 if (!crt)
14991 return;
14992
14993 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14994 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14995 }
14996
14997 static bool
14998 intel_check_plane_mapping(struct intel_crtc *crtc)
14999 {
15000 struct drm_device *dev = crtc->base.dev;
15001 struct drm_i915_private *dev_priv = dev->dev_private;
15002 u32 reg, val;
15003
15004 if (INTEL_INFO(dev)->num_pipes == 1)
15005 return true;
15006
15007 reg = DSPCNTR(!crtc->plane);
15008 val = I915_READ(reg);
15009
15010 if ((val & DISPLAY_PLANE_ENABLE) &&
15011 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15012 return false;
15013
15014 return true;
15015 }
15016
15017 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15018 {
15019 struct drm_device *dev = crtc->base.dev;
15020 struct drm_i915_private *dev_priv = dev->dev_private;
15021 struct intel_encoder *encoder;
15022 u32 reg;
15023 bool enable;
15024
15025 /* Clear any frame start delays used for debugging left by the BIOS */
15026 reg = PIPECONF(crtc->config->cpu_transcoder);
15027 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15028
15029 /* restore vblank interrupts to correct state */
15030 drm_crtc_vblank_reset(&crtc->base);
15031 if (crtc->active) {
15032 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15033 update_scanline_offset(crtc);
15034 drm_crtc_vblank_on(&crtc->base);
15035 }
15036
15037 /* We need to sanitize the plane -> pipe mapping first because this will
15038 * disable the crtc (and hence change the state) if it is wrong. Note
15039 * that gen4+ has a fixed plane -> pipe mapping. */
15040 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15041 bool plane;
15042
15043 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15044 crtc->base.base.id);
15045
15046 /* Pipe has the wrong plane attached and the plane is active.
15047 * Temporarily change the plane mapping and disable everything
15048 * ... */
15049 plane = crtc->plane;
15050 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15051 crtc->plane = !plane;
15052 intel_crtc_disable_noatomic(&crtc->base);
15053 crtc->plane = plane;
15054 }
15055
15056 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15057 crtc->pipe == PIPE_A && !crtc->active) {
15058 /* BIOS forgot to enable pipe A, this mostly happens after
15059 * resume. Force-enable the pipe to fix this, the update_dpms
15060 * call below we restore the pipe to the right state, but leave
15061 * the required bits on. */
15062 intel_enable_pipe_a(dev);
15063 }
15064
15065 /* Adjust the state of the output pipe according to whether we
15066 * have active connectors/encoders. */
15067 enable = false;
15068 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15069 enable |= encoder->connectors_active;
15070
15071 if (!enable)
15072 intel_crtc_disable_noatomic(&crtc->base);
15073
15074 if (crtc->active != crtc->base.state->active) {
15075
15076 /* This can happen either due to bugs in the get_hw_state
15077 * functions or because of calls to intel_crtc_disable_noatomic,
15078 * or because the pipe is force-enabled due to the
15079 * pipe A quirk. */
15080 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15081 crtc->base.base.id,
15082 crtc->base.state->enable ? "enabled" : "disabled",
15083 crtc->active ? "enabled" : "disabled");
15084
15085 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15086 crtc->base.state->active = crtc->active;
15087 crtc->base.enabled = crtc->active;
15088
15089 /* Because we only establish the connector -> encoder ->
15090 * crtc links if something is active, this means the
15091 * crtc is now deactivated. Break the links. connector
15092 * -> encoder links are only establish when things are
15093 * actually up, hence no need to break them. */
15094 WARN_ON(crtc->active);
15095
15096 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15097 WARN_ON(encoder->connectors_active);
15098 encoder->base.crtc = NULL;
15099 }
15100 }
15101
15102 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15103 /*
15104 * We start out with underrun reporting disabled to avoid races.
15105 * For correct bookkeeping mark this on active crtcs.
15106 *
15107 * Also on gmch platforms we dont have any hardware bits to
15108 * disable the underrun reporting. Which means we need to start
15109 * out with underrun reporting disabled also on inactive pipes,
15110 * since otherwise we'll complain about the garbage we read when
15111 * e.g. coming up after runtime pm.
15112 *
15113 * No protection against concurrent access is required - at
15114 * worst a fifo underrun happens which also sets this to false.
15115 */
15116 crtc->cpu_fifo_underrun_disabled = true;
15117 crtc->pch_fifo_underrun_disabled = true;
15118 }
15119 }
15120
15121 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15122 {
15123 struct intel_connector *connector;
15124 struct drm_device *dev = encoder->base.dev;
15125
15126 /* We need to check both for a crtc link (meaning that the
15127 * encoder is active and trying to read from a pipe) and the
15128 * pipe itself being active. */
15129 bool has_active_crtc = encoder->base.crtc &&
15130 to_intel_crtc(encoder->base.crtc)->active;
15131
15132 if (encoder->connectors_active && !has_active_crtc) {
15133 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15134 encoder->base.base.id,
15135 encoder->base.name);
15136
15137 /* Connector is active, but has no active pipe. This is
15138 * fallout from our resume register restoring. Disable
15139 * the encoder manually again. */
15140 if (encoder->base.crtc) {
15141 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15142 encoder->base.base.id,
15143 encoder->base.name);
15144 encoder->disable(encoder);
15145 if (encoder->post_disable)
15146 encoder->post_disable(encoder);
15147 }
15148 encoder->base.crtc = NULL;
15149 encoder->connectors_active = false;
15150
15151 /* Inconsistent output/port/pipe state happens presumably due to
15152 * a bug in one of the get_hw_state functions. Or someplace else
15153 * in our code, like the register restore mess on resume. Clamp
15154 * things to off as a safer default. */
15155 for_each_intel_connector(dev, connector) {
15156 if (connector->encoder != encoder)
15157 continue;
15158 connector->base.dpms = DRM_MODE_DPMS_OFF;
15159 connector->base.encoder = NULL;
15160 }
15161 }
15162 /* Enabled encoders without active connectors will be fixed in
15163 * the crtc fixup. */
15164 }
15165
15166 void i915_redisable_vga_power_on(struct drm_device *dev)
15167 {
15168 struct drm_i915_private *dev_priv = dev->dev_private;
15169 u32 vga_reg = i915_vgacntrl_reg(dev);
15170
15171 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15172 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15173 i915_disable_vga(dev);
15174 }
15175 }
15176
15177 void i915_redisable_vga(struct drm_device *dev)
15178 {
15179 struct drm_i915_private *dev_priv = dev->dev_private;
15180
15181 /* This function can be called both from intel_modeset_setup_hw_state or
15182 * at a very early point in our resume sequence, where the power well
15183 * structures are not yet restored. Since this function is at a very
15184 * paranoid "someone might have enabled VGA while we were not looking"
15185 * level, just check if the power well is enabled instead of trying to
15186 * follow the "don't touch the power well if we don't need it" policy
15187 * the rest of the driver uses. */
15188 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15189 return;
15190
15191 i915_redisable_vga_power_on(dev);
15192 }
15193
15194 static bool primary_get_hw_state(struct intel_crtc *crtc)
15195 {
15196 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15197
15198 return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15199 }
15200
15201 static void readout_plane_state(struct intel_crtc *crtc,
15202 struct intel_crtc_state *crtc_state)
15203 {
15204 struct intel_plane *p;
15205 struct intel_plane_state *plane_state;
15206 bool active = crtc_state->base.active;
15207
15208 for_each_intel_plane(crtc->base.dev, p) {
15209 if (crtc->pipe != p->pipe)
15210 continue;
15211
15212 plane_state = to_intel_plane_state(p->base.state);
15213
15214 if (p->base.type == DRM_PLANE_TYPE_PRIMARY)
15215 plane_state->visible = primary_get_hw_state(crtc);
15216 else {
15217 if (active)
15218 p->disable_plane(&p->base, &crtc->base);
15219
15220 plane_state->visible = false;
15221 }
15222 }
15223 }
15224
15225 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15226 {
15227 struct drm_i915_private *dev_priv = dev->dev_private;
15228 enum pipe pipe;
15229 struct intel_crtc *crtc;
15230 struct intel_encoder *encoder;
15231 struct intel_connector *connector;
15232 int i;
15233
15234 for_each_intel_crtc(dev, crtc) {
15235 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15236 memset(crtc->config, 0, sizeof(*crtc->config));
15237 crtc->config->base.crtc = &crtc->base;
15238
15239 crtc->active = dev_priv->display.get_pipe_config(crtc,
15240 crtc->config);
15241
15242 crtc->base.state->active = crtc->active;
15243 crtc->base.enabled = crtc->active;
15244
15245 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15246 if (crtc->base.state->active) {
15247 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15248 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15249 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15250
15251 /*
15252 * The initial mode needs to be set in order to keep
15253 * the atomic core happy. It wants a valid mode if the
15254 * crtc's enabled, so we do the above call.
15255 *
15256 * At this point some state updated by the connectors
15257 * in their ->detect() callback has not run yet, so
15258 * no recalculation can be done yet.
15259 *
15260 * Even if we could do a recalculation and modeset
15261 * right now it would cause a double modeset if
15262 * fbdev or userspace chooses a different initial mode.
15263 *
15264 * If that happens, someone indicated they wanted a
15265 * mode change, which means it's safe to do a full
15266 * recalculation.
15267 */
15268 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15269 }
15270
15271 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15272 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15273
15274 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15275 crtc->base.base.id,
15276 crtc->active ? "enabled" : "disabled");
15277 }
15278
15279 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15280 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15281
15282 pll->on = pll->get_hw_state(dev_priv, pll,
15283 &pll->config.hw_state);
15284 pll->active = 0;
15285 pll->config.crtc_mask = 0;
15286 for_each_intel_crtc(dev, crtc) {
15287 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15288 pll->active++;
15289 pll->config.crtc_mask |= 1 << crtc->pipe;
15290 }
15291 }
15292
15293 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15294 pll->name, pll->config.crtc_mask, pll->on);
15295
15296 if (pll->config.crtc_mask)
15297 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15298 }
15299
15300 for_each_intel_encoder(dev, encoder) {
15301 pipe = 0;
15302
15303 if (encoder->get_hw_state(encoder, &pipe)) {
15304 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15305 encoder->base.crtc = &crtc->base;
15306 encoder->get_config(encoder, crtc->config);
15307 } else {
15308 encoder->base.crtc = NULL;
15309 }
15310
15311 encoder->connectors_active = false;
15312 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15313 encoder->base.base.id,
15314 encoder->base.name,
15315 encoder->base.crtc ? "enabled" : "disabled",
15316 pipe_name(pipe));
15317 }
15318
15319 for_each_intel_connector(dev, connector) {
15320 if (connector->get_hw_state(connector)) {
15321 connector->base.dpms = DRM_MODE_DPMS_ON;
15322 connector->encoder->connectors_active = true;
15323 connector->base.encoder = &connector->encoder->base;
15324 } else {
15325 connector->base.dpms = DRM_MODE_DPMS_OFF;
15326 connector->base.encoder = NULL;
15327 }
15328 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15329 connector->base.base.id,
15330 connector->base.name,
15331 connector->base.encoder ? "enabled" : "disabled");
15332 }
15333 }
15334
15335 /* Scan out the current hw modeset state,
15336 * and sanitizes it to the current state
15337 */
15338 static void
15339 intel_modeset_setup_hw_state(struct drm_device *dev)
15340 {
15341 struct drm_i915_private *dev_priv = dev->dev_private;
15342 enum pipe pipe;
15343 struct intel_crtc *crtc;
15344 struct intel_encoder *encoder;
15345 int i;
15346
15347 intel_modeset_readout_hw_state(dev);
15348
15349 /* HW state is read out, now we need to sanitize this mess. */
15350 for_each_intel_encoder(dev, encoder) {
15351 intel_sanitize_encoder(encoder);
15352 }
15353
15354 for_each_pipe(dev_priv, pipe) {
15355 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15356 intel_sanitize_crtc(crtc);
15357 intel_dump_pipe_config(crtc, crtc->config,
15358 "[setup_hw_state]");
15359 }
15360
15361 intel_modeset_update_connector_atomic_state(dev);
15362
15363 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15364 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15365
15366 if (!pll->on || pll->active)
15367 continue;
15368
15369 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15370
15371 pll->disable(dev_priv, pll);
15372 pll->on = false;
15373 }
15374
15375 if (IS_VALLEYVIEW(dev))
15376 vlv_wm_get_hw_state(dev);
15377 else if (IS_GEN9(dev))
15378 skl_wm_get_hw_state(dev);
15379 else if (HAS_PCH_SPLIT(dev))
15380 ilk_wm_get_hw_state(dev);
15381
15382 for_each_intel_crtc(dev, crtc) {
15383 unsigned long put_domains;
15384
15385 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15386 if (WARN_ON(put_domains))
15387 modeset_put_power_domains(dev_priv, put_domains);
15388 }
15389 intel_display_set_init_power(dev_priv, false);
15390 }
15391
15392 void intel_display_resume(struct drm_device *dev)
15393 {
15394 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15395 struct intel_connector *conn;
15396 struct intel_plane *plane;
15397 struct drm_crtc *crtc;
15398 int ret;
15399
15400 if (!state)
15401 return;
15402
15403 state->acquire_ctx = dev->mode_config.acquire_ctx;
15404
15405 /* preserve complete old state, including dpll */
15406 intel_atomic_get_shared_dpll_state(state);
15407
15408 for_each_crtc(dev, crtc) {
15409 struct drm_crtc_state *crtc_state =
15410 drm_atomic_get_crtc_state(state, crtc);
15411
15412 ret = PTR_ERR_OR_ZERO(crtc_state);
15413 if (ret)
15414 goto err;
15415
15416 /* force a restore */
15417 crtc_state->mode_changed = true;
15418 }
15419
15420 for_each_intel_plane(dev, plane) {
15421 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15422 if (ret)
15423 goto err;
15424 }
15425
15426 for_each_intel_connector(dev, conn) {
15427 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15428 if (ret)
15429 goto err;
15430 }
15431
15432 intel_modeset_setup_hw_state(dev);
15433
15434 i915_redisable_vga(dev);
15435 ret = drm_atomic_commit(state);
15436 if (!ret)
15437 return;
15438
15439 err:
15440 DRM_ERROR("Restoring old state failed with %i\n", ret);
15441 drm_atomic_state_free(state);
15442 }
15443
15444 void intel_modeset_gem_init(struct drm_device *dev)
15445 {
15446 struct drm_i915_private *dev_priv = dev->dev_private;
15447 struct drm_crtc *c;
15448 struct drm_i915_gem_object *obj;
15449 int ret;
15450
15451 mutex_lock(&dev->struct_mutex);
15452 intel_init_gt_powersave(dev);
15453 mutex_unlock(&dev->struct_mutex);
15454
15455 /*
15456 * There may be no VBT; and if the BIOS enabled SSC we can
15457 * just keep using it to avoid unnecessary flicker. Whereas if the
15458 * BIOS isn't using it, don't assume it will work even if the VBT
15459 * indicates as much.
15460 */
15461 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15462 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15463 DREF_SSC1_ENABLE);
15464
15465 intel_modeset_init_hw(dev);
15466
15467 intel_setup_overlay(dev);
15468
15469 /*
15470 * Make sure any fbs we allocated at startup are properly
15471 * pinned & fenced. When we do the allocation it's too early
15472 * for this.
15473 */
15474 for_each_crtc(dev, c) {
15475 obj = intel_fb_obj(c->primary->fb);
15476 if (obj == NULL)
15477 continue;
15478
15479 mutex_lock(&dev->struct_mutex);
15480 ret = intel_pin_and_fence_fb_obj(c->primary,
15481 c->primary->fb,
15482 c->primary->state,
15483 NULL, NULL);
15484 mutex_unlock(&dev->struct_mutex);
15485 if (ret) {
15486 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15487 to_intel_crtc(c)->pipe);
15488 drm_framebuffer_unreference(c->primary->fb);
15489 c->primary->fb = NULL;
15490 c->primary->crtc = c->primary->state->crtc = NULL;
15491 update_state_fb(c->primary);
15492 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15493 }
15494 }
15495
15496 intel_backlight_register(dev);
15497 }
15498
15499 void intel_connector_unregister(struct intel_connector *intel_connector)
15500 {
15501 struct drm_connector *connector = &intel_connector->base;
15502
15503 intel_panel_destroy_backlight(connector);
15504 drm_connector_unregister(connector);
15505 }
15506
15507 void intel_modeset_cleanup(struct drm_device *dev)
15508 {
15509 struct drm_i915_private *dev_priv = dev->dev_private;
15510 struct drm_connector *connector;
15511
15512 intel_disable_gt_powersave(dev);
15513
15514 intel_backlight_unregister(dev);
15515
15516 /*
15517 * Interrupts and polling as the first thing to avoid creating havoc.
15518 * Too much stuff here (turning of connectors, ...) would
15519 * experience fancy races otherwise.
15520 */
15521 intel_irq_uninstall(dev_priv);
15522
15523 /*
15524 * Due to the hpd irq storm handling the hotplug work can re-arm the
15525 * poll handlers. Hence disable polling after hpd handling is shut down.
15526 */
15527 drm_kms_helper_poll_fini(dev);
15528
15529 intel_unregister_dsm_handler();
15530
15531 intel_fbc_disable(dev_priv);
15532
15533 /* flush any delayed tasks or pending work */
15534 flush_scheduled_work();
15535
15536 /* destroy the backlight and sysfs files before encoders/connectors */
15537 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15538 struct intel_connector *intel_connector;
15539
15540 intel_connector = to_intel_connector(connector);
15541 intel_connector->unregister(intel_connector);
15542 }
15543
15544 drm_mode_config_cleanup(dev);
15545
15546 intel_cleanup_overlay(dev);
15547
15548 mutex_lock(&dev->struct_mutex);
15549 intel_cleanup_gt_powersave(dev);
15550 mutex_unlock(&dev->struct_mutex);
15551 }
15552
15553 /*
15554 * Return which encoder is currently attached for connector.
15555 */
15556 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15557 {
15558 return &intel_attached_encoder(connector)->base;
15559 }
15560
15561 void intel_connector_attach_encoder(struct intel_connector *connector,
15562 struct intel_encoder *encoder)
15563 {
15564 connector->encoder = encoder;
15565 drm_mode_connector_attach_encoder(&connector->base,
15566 &encoder->base);
15567 }
15568
15569 /*
15570 * set vga decode state - true == enable VGA decode
15571 */
15572 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15573 {
15574 struct drm_i915_private *dev_priv = dev->dev_private;
15575 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15576 u16 gmch_ctrl;
15577
15578 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15579 DRM_ERROR("failed to read control word\n");
15580 return -EIO;
15581 }
15582
15583 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15584 return 0;
15585
15586 if (state)
15587 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15588 else
15589 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15590
15591 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15592 DRM_ERROR("failed to write control word\n");
15593 return -EIO;
15594 }
15595
15596 return 0;
15597 }
15598
15599 struct intel_display_error_state {
15600
15601 u32 power_well_driver;
15602
15603 int num_transcoders;
15604
15605 struct intel_cursor_error_state {
15606 u32 control;
15607 u32 position;
15608 u32 base;
15609 u32 size;
15610 } cursor[I915_MAX_PIPES];
15611
15612 struct intel_pipe_error_state {
15613 bool power_domain_on;
15614 u32 source;
15615 u32 stat;
15616 } pipe[I915_MAX_PIPES];
15617
15618 struct intel_plane_error_state {
15619 u32 control;
15620 u32 stride;
15621 u32 size;
15622 u32 pos;
15623 u32 addr;
15624 u32 surface;
15625 u32 tile_offset;
15626 } plane[I915_MAX_PIPES];
15627
15628 struct intel_transcoder_error_state {
15629 bool power_domain_on;
15630 enum transcoder cpu_transcoder;
15631
15632 u32 conf;
15633
15634 u32 htotal;
15635 u32 hblank;
15636 u32 hsync;
15637 u32 vtotal;
15638 u32 vblank;
15639 u32 vsync;
15640 } transcoder[4];
15641 };
15642
15643 struct intel_display_error_state *
15644 intel_display_capture_error_state(struct drm_device *dev)
15645 {
15646 struct drm_i915_private *dev_priv = dev->dev_private;
15647 struct intel_display_error_state *error;
15648 int transcoders[] = {
15649 TRANSCODER_A,
15650 TRANSCODER_B,
15651 TRANSCODER_C,
15652 TRANSCODER_EDP,
15653 };
15654 int i;
15655
15656 if (INTEL_INFO(dev)->num_pipes == 0)
15657 return NULL;
15658
15659 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15660 if (error == NULL)
15661 return NULL;
15662
15663 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15664 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15665
15666 for_each_pipe(dev_priv, i) {
15667 error->pipe[i].power_domain_on =
15668 __intel_display_power_is_enabled(dev_priv,
15669 POWER_DOMAIN_PIPE(i));
15670 if (!error->pipe[i].power_domain_on)
15671 continue;
15672
15673 error->cursor[i].control = I915_READ(CURCNTR(i));
15674 error->cursor[i].position = I915_READ(CURPOS(i));
15675 error->cursor[i].base = I915_READ(CURBASE(i));
15676
15677 error->plane[i].control = I915_READ(DSPCNTR(i));
15678 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15679 if (INTEL_INFO(dev)->gen <= 3) {
15680 error->plane[i].size = I915_READ(DSPSIZE(i));
15681 error->plane[i].pos = I915_READ(DSPPOS(i));
15682 }
15683 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15684 error->plane[i].addr = I915_READ(DSPADDR(i));
15685 if (INTEL_INFO(dev)->gen >= 4) {
15686 error->plane[i].surface = I915_READ(DSPSURF(i));
15687 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15688 }
15689
15690 error->pipe[i].source = I915_READ(PIPESRC(i));
15691
15692 if (HAS_GMCH_DISPLAY(dev))
15693 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15694 }
15695
15696 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15697 if (HAS_DDI(dev_priv->dev))
15698 error->num_transcoders++; /* Account for eDP. */
15699
15700 for (i = 0; i < error->num_transcoders; i++) {
15701 enum transcoder cpu_transcoder = transcoders[i];
15702
15703 error->transcoder[i].power_domain_on =
15704 __intel_display_power_is_enabled(dev_priv,
15705 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15706 if (!error->transcoder[i].power_domain_on)
15707 continue;
15708
15709 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15710
15711 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15712 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15713 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15714 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15715 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15716 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15717 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15718 }
15719
15720 return error;
15721 }
15722
15723 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15724
15725 void
15726 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15727 struct drm_device *dev,
15728 struct intel_display_error_state *error)
15729 {
15730 struct drm_i915_private *dev_priv = dev->dev_private;
15731 int i;
15732
15733 if (!error)
15734 return;
15735
15736 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15737 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15738 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15739 error->power_well_driver);
15740 for_each_pipe(dev_priv, i) {
15741 err_printf(m, "Pipe [%d]:\n", i);
15742 err_printf(m, " Power: %s\n",
15743 error->pipe[i].power_domain_on ? "on" : "off");
15744 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15745 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15746
15747 err_printf(m, "Plane [%d]:\n", i);
15748 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15749 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15750 if (INTEL_INFO(dev)->gen <= 3) {
15751 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15752 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15753 }
15754 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15755 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15756 if (INTEL_INFO(dev)->gen >= 4) {
15757 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15758 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15759 }
15760
15761 err_printf(m, "Cursor [%d]:\n", i);
15762 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15763 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15764 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15765 }
15766
15767 for (i = 0; i < error->num_transcoders; i++) {
15768 err_printf(m, "CPU transcoder: %c\n",
15769 transcoder_name(error->transcoder[i].cpu_transcoder));
15770 err_printf(m, " Power: %s\n",
15771 error->transcoder[i].power_domain_on ? "on" : "off");
15772 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15773 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15774 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15775 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15776 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15777 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15778 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15779 }
15780 }
15781
15782 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15783 {
15784 struct intel_crtc *crtc;
15785
15786 for_each_intel_crtc(dev, crtc) {
15787 struct intel_unpin_work *work;
15788
15789 spin_lock_irq(&dev->event_lock);
15790
15791 work = crtc->unpin_work;
15792
15793 if (work && work->event &&
15794 work->event->base.file_priv == file) {
15795 kfree(work->event);
15796 work->event = NULL;
15797 }
15798
15799 spin_unlock_irq(&dev->event_lock);
15800 }
15801 }
This page took 0.387711 seconds and 5 git commands to generate.