Merge tag 'v3.19-rockchip-dtsfixes1' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111 int min, max;
112 } intel_range_t;
113
114 typedef struct {
115 int dot_limit;
116 int p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146 .dot = { .min = 25000, .max = 350000 },
147 .vco = { .min = 908000, .max = 1512000 },
148 .n = { .min = 2, .max = 16 },
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
160 .vco = { .min = 908000, .max = 1512000 },
161 .n = { .min = 2, .max = 16 },
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172 .dot = { .min = 25000, .max = 350000 },
173 .vco = { .min = 908000, .max = 1512000 },
174 .n = { .min = 2, .max = 16 },
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
223 },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
250 },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
264 },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
270 /* Pineview's Ncounter is a ring counter */
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273 /* Pineview only has one combined m divider, which we treat as m2. */
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
348 .p1 = { .min = 2, .max = 8 },
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
361 .p1 = { .min = 2, .max = 6 },
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374 .vco = { .min = 4000000, .max = 6000000 },
375 .n = { .min = 1, .max = 7 },
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
378 .p1 = { .min = 2, .max = 3 },
379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413 struct drm_device *dev = crtc->base.dev;
414 struct intel_encoder *encoder;
415
416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417 if (encoder->type == type)
418 return true;
419
420 return false;
421 }
422
423 /**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442 int refclk)
443 {
444 struct drm_device *dev = crtc->base.dev;
445 const intel_limit_t *limit;
446
447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448 if (intel_is_dual_link_lvds(dev)) {
449 if (refclk == 100000)
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
454 if (refclk == 100000)
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
459 } else
460 limit = &intel_limits_ironlake_dac;
461
462 return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467 struct drm_device *dev = crtc->base.dev;
468 const intel_limit_t *limit;
469
470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471 if (intel_is_dual_link_lvds(dev))
472 limit = &intel_limits_g4x_dual_channel_lvds;
473 else
474 limit = &intel_limits_g4x_single_channel_lvds;
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477 limit = &intel_limits_g4x_hdmi;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479 limit = &intel_limits_g4x_sdvo;
480 } else /* The option is for other outputs */
481 limit = &intel_limits_i9xx_sdvo;
482
483 return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488 struct drm_device *dev = crtc->base.dev;
489 const intel_limit_t *limit;
490
491 if (HAS_PCH_SPLIT(dev))
492 limit = intel_ironlake_limit(crtc, refclk);
493 else if (IS_G4X(dev)) {
494 limit = intel_g4x_limit(crtc);
495 } else if (IS_PINEVIEW(dev)) {
496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497 limit = &intel_limits_pineview_lvds;
498 else
499 limit = &intel_limits_pineview_sdvo;
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
502 } else if (IS_VALLEYVIEW(dev)) {
503 limit = &intel_limits_vlv;
504 } else if (!IS_GEN2(dev)) {
505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
509 } else {
510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511 limit = &intel_limits_i8xx_lvds;
512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513 limit = &intel_limits_i8xx_dvo;
514 else
515 limit = &intel_limits_i8xx_dac;
516 }
517 return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538 clock->m = i9xx_dpll_compute_m(clock);
539 clock->p = clock->p1 * clock->p2;
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
566 {
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
570 INTELPllInvalid("p1 out of range\n");
571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
572 INTELPllInvalid("m2 out of range\n");
573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
574 INTELPllInvalid("m1 out of range\n");
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588 INTELPllInvalid("vco out of range\n");
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593 INTELPllInvalid("dot out of range\n");
594
595 return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
602 {
603 struct drm_device *dev = crtc->base.dev;
604 intel_clock_t clock;
605 int err = target;
606
607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608 /*
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
612 */
613 if (intel_is_dual_link_lvds(dev))
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
624 memset(best_clock, 0, sizeof(*best_clock));
625
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
630 if (clock.m2 >= clock.m1)
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
636 int this_err;
637
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
663 {
664 struct drm_device *dev = crtc->base.dev;
665 intel_clock_t clock;
666 int err = target;
667
668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669 /*
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
673 */
674 if (intel_is_dual_link_lvds(dev))
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
695 int this_err;
696
697 pineview_clock(refclk, &clock);
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
700 continue;
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
722 {
723 struct drm_device *dev = crtc->base.dev;
724 intel_clock_t clock;
725 int max_n;
726 bool found;
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
729 found = false;
730
731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732 if (intel_is_dual_link_lvds(dev))
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
745 /* based on hardware requirement, prefer smaller n to precision */
746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747 /* based on hardware requirement, prefere larger m1,m2 */
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
756 i9xx_clock(refclk, &clock);
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
759 continue;
760
761 this_err = abs(clock.dot - target);
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
772 return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 intel_clock_t clock;
782 unsigned int bestppm = 1000000;
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
785 bool found = false;
786
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
790
791 /* based on hardware requirement, prefer smaller n to precision */
792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796 clock.p = clock.p1 * clock.p2;
797 /* based on hardware requirement, prefer bigger m1,m2 values */
798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799 unsigned int ppm, diff;
800
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
805
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
808 continue;
809
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
814 bestppm = 0;
815 *best_clock = clock;
816 found = true;
817 }
818
819 if (bestppm >= 10 && ppm < bestppm - 10) {
820 bestppm = ppm;
821 *best_clock = clock;
822 found = true;
823 }
824 }
825 }
826 }
827 }
828
829 return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836 {
837 struct drm_device *dev = crtc->base.dev;
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
891 * We can ditch the adjusted_mode.crtc_clock check as soon
892 * as Haswell has gained clock readout/fastboot support.
893 *
894 * We can ditch the crtc->primary->fb check as soon as we can
895 * properly reconstruct framebuffers.
896 */
897 return intel_crtc->active && crtc->primary->fb &&
898 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903 {
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907 return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927 }
928
929 /*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
931 * @crtc: crtc whose pipe to wait for
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
943 *
944 */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947 struct drm_device *dev = crtc->base.dev;
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
951
952 if (INTEL_INFO(dev)->gen >= 4) {
953 int reg = PIPECONF(cpu_transcoder);
954
955 /* Wait for the Pipe State to go off */
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
958 WARN(1, "pipe_off wait timed out\n");
959 } else {
960 /* Wait for the display line to settle */
961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962 WARN(1, "pipe_off wait timed out\n");
963 }
964 }
965
966 /*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975 {
976 u32 bit;
977
978 if (HAS_PCH_IBX(dev_priv->dev)) {
979 switch (port->port) {
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
993 switch (port->port) {
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013 return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
1019 {
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055 if (crtc->config.shared_dpll < 0)
1056 return NULL;
1057
1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
1065 {
1066 bool cur_state;
1067 struct intel_dpll_hw_state hw_state;
1068
1069 if (WARN (!pll,
1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
1071 return;
1072
1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074 WARN(cur_state != state,
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081 {
1082 int reg;
1083 u32 val;
1084 bool cur_state;
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
1087
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091 val = I915_READ(reg);
1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
1098 WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107 {
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
1115 WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124 {
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130 return;
1131
1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133 if (HAS_DDI(dev_priv->dev))
1134 return;
1135
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
1158 {
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
1163 bool locked = true;
1164
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
1171 pp_reg = PCH_PP_CONTROL;
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
1182 } else {
1183 pp_reg = PP_CONTROL;
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191 locked = false;
1192
1193 WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
1195 pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200 {
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
1204 if (IS_845G(dev) || IS_I865G(dev))
1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206 else
1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209 WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
1218 {
1219 int reg;
1220 u32 val;
1221 bool cur_state;
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
1224
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228 state = true;
1229
1230 if (!intel_display_power_is_enabled(dev_priv,
1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
1241 pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
1246 {
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264 {
1265 struct drm_device *dev = dev_priv->dev;
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
1274 WARN(val & DISPLAY_PLANE_ENABLE,
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
1277 return;
1278 }
1279
1280 /* Need to check both planes against the pipe */
1281 for_each_pipe(dev_priv, i) {
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
1289 }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294 {
1295 struct drm_device *dev = dev_priv->dev;
1296 int reg, sprite;
1297 u32 val;
1298
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
1309 val = I915_READ(reg);
1310 WARN(val & SP_ENABLE,
1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312 sprite_name(pipe, sprite), pipe_name(pipe));
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
1316 val = I915_READ(reg);
1317 WARN(val & SPRITE_ENABLE,
1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
1322 val = I915_READ(reg);
1323 WARN(val & DVS_ENABLE,
1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325 plane_name(pipe), pipe_name(pipe));
1326 }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337 u32 val;
1338 bool enabled;
1339
1340 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
1350 {
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
1355 reg = PCH_TRANSCONF(pipe);
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
1358 WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386 {
1387 if ((val & SDVO_ENABLE) == 0)
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392 return false;
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1396 } else {
1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398 return false;
1399 }
1400 return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405 {
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421 {
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435 enum pipe pipe, int reg, u32 port_sel)
1436 {
1437 u32 val = I915_READ(reg);
1438 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440 reg, pipe_name(pipe));
1441
1442 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
1444 "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449 {
1450 u32 val = I915_READ(reg);
1451 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453 reg, pipe_name(pipe));
1454
1455 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456 && (val & SDVO_PIPE_B_SELECT),
1457 "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462 {
1463 int reg;
1464 u32 val;
1465
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
1472 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
1474 pipe_name(pipe));
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
1478 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
1509 {
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515 assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
1521 if (IS_MOBILE(dev_priv->dev))
1522 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532 POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534 /* We do this three times for luck */
1535 I915_WRITE(reg, dpll);
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
1538 I915_WRITE(reg, dpll);
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
1541 I915_WRITE(reg, dpll);
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
1548 {
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574 /* Check PLL is locked */
1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578 /* not sure when this should be written */
1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580 POSTING_READ(DPLL_MD(pipe));
1581
1582 mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594 return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604 assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606 /* No really, not for ILK+ */
1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609 /* PLL is protected by panel, make sure we can write it */
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
1641
1642 /* We do this three times for luck */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655 * i9xx_disable_pll - disable a PLL
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
1702 if (pipe == PIPE_B)
1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712 u32 val;
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
1717 /* Set PLL en = 0 */
1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
1742 mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
1747 {
1748 u32 port_mask;
1749 int dpll_reg;
1750
1751 switch (dport->port) {
1752 case PORT_B:
1753 port_mask = DPLL_PORTB_READY_MASK;
1754 dpll_reg = DPLL(0);
1755 break;
1756 case PORT_C:
1757 port_mask = DPLL_PORTC_READY_MASK;
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
1763 break;
1764 default:
1765 BUG();
1766 }
1767
1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770 port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
1782 WARN_ON(!pll->config.crtc_mask);
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790 }
1791
1792 /**
1793 * intel_enable_shared_dpll - enable PCH PLL
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806 if (WARN_ON(pll == NULL))
1807 return;
1808
1809 if (WARN_ON(pll->config.crtc_mask == 0))
1810 return;
1811
1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813 pll->name, pll->active, pll->on,
1814 crtc->base.base.id);
1815
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
1818 assert_shared_dpll_enabled(dev_priv, pll);
1819 return;
1820 }
1821 WARN_ON(pll->on);
1822
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826 pll->enable(dev_priv, pll);
1827 pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836 /* PCH only available on ILK+ */
1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
1838 if (WARN_ON(pll == NULL))
1839 return;
1840
1841 if (WARN_ON(pll->config.crtc_mask == 0))
1842 return;
1843
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
1846 crtc->base.base.id);
1847
1848 if (WARN_ON(pll->active == 0)) {
1849 assert_shared_dpll_disabled(dev_priv, pll);
1850 return;
1851 }
1852
1853 assert_shared_dpll_enabled(dev_priv, pll);
1854 WARN_ON(!pll->on);
1855 if (--pll->active)
1856 return;
1857
1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859 pll->disable(dev_priv, pll);
1860 pll->on = false;
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
1867 {
1868 struct drm_device *dev = dev_priv->dev;
1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871 uint32_t reg, val, pipeconf_val;
1872
1873 /* PCH only available on ILK+ */
1874 BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876 /* Make sure PCH DPLL is enabled */
1877 assert_shared_dpll_enabled(dev_priv,
1878 intel_crtc_to_shared_dpll(intel_crtc));
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
1891 }
1892
1893 reg = PCH_TRANSCONF(pipe);
1894 val = I915_READ(reg);
1895 pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904 }
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908 if (HAS_PCH_IBX(dev_priv->dev) &&
1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum transcoder cpu_transcoder)
1923 {
1924 u32 val, pipeconf_val;
1925
1926 /* PCH only available on ILK+ */
1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929 /* FDI must be feeding us bits for PCH ports */
1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938 val = TRANS_ENABLE;
1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
1943 val |= TRANS_INTERLACED;
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
1954 {
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
1965 reg = PCH_TRANSCONF(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984 u32 val;
1985
1986 val = I915_READ(LPT_TRANSCONF);
1987 val &= ~TRANS_ENABLE;
1988 I915_WRITE(LPT_TRANSCONF, val);
1989 /* wait for PCH transcoder off, transcoder state */
1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996 I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000 * intel_enable_pipe - enable a pipe, asserting requirements
2001 * @crtc: crtc responsible for the pipe
2002 *
2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005 */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
2013 enum pipe pch_transcoder;
2014 int reg;
2015 u32 val;
2016
2017 assert_planes_disabled(dev_priv, pipe);
2018 assert_cursor_disabled(dev_priv, pipe);
2019 assert_sprites_disabled(dev_priv, pipe);
2020
2021 if (HAS_PCH_LPT(dev_priv->dev))
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
2036 else {
2037 if (crtc->config.has_pch_encoder) {
2038 /* if driving the PCH, we need FDI enabled */
2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
2045
2046 reg = PIPECONF(cpu_transcoder);
2047 val = I915_READ(reg);
2048 if (val & PIPECONF_ENABLE) {
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051 return;
2052 }
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
2055 POSTING_READ(reg);
2056 }
2057
2058 /**
2059 * intel_disable_pipe - disable a pipe, asserting requirements
2060 * @crtc: crtc whose pipes is to be disabled
2061 *
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
2081 assert_cursor_disabled(dev_priv, pipe);
2082 assert_sprites_disabled(dev_priv, pipe);
2083
2084 reg = PIPECONF(cpu_transcoder);
2085 val = I915_READ(reg);
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
2112 {
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
2118 }
2119
2120 /**
2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
2124 *
2125 * Enable @plane on @crtc, making sure that the pipe is running first.
2126 */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
2129 {
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137 if (intel_crtc->primary_enabled)
2138 return;
2139
2140 intel_crtc->primary_enabled = true;
2141
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
2158 *
2159 * Disable @plane on @crtc, making sure that the pipe is running first.
2160 */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
2163 {
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170 if (!intel_crtc->primary_enabled)
2171 return;
2172
2173 intel_crtc->primary_enabled = false;
2174
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184 #endif
2185 return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198 struct drm_framebuffer *fb,
2199 struct intel_engine_cs *pipelined)
2200 {
2201 struct drm_device *dev = fb->dev;
2202 struct drm_i915_private *dev_priv = dev->dev_private;
2203 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204 u32 alignment;
2205 int ret;
2206
2207 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209 switch (obj->tiling_mode) {
2210 case I915_TILING_NONE:
2211 if (INTEL_INFO(dev)->gen >= 9)
2212 alignment = 256 * 1024;
2213 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214 alignment = 128 * 1024;
2215 else if (INTEL_INFO(dev)->gen >= 4)
2216 alignment = 4 * 1024;
2217 else
2218 alignment = 64 * 1024;
2219 break;
2220 case I915_TILING_X:
2221 if (INTEL_INFO(dev)->gen >= 9)
2222 alignment = 256 * 1024;
2223 else {
2224 /* pin() will align the object as required by fence */
2225 alignment = 0;
2226 }
2227 break;
2228 case I915_TILING_Y:
2229 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230 return -EINVAL;
2231 default:
2232 BUG();
2233 }
2234
2235 /* Note that the w/a also requires 64 PTE of padding following the
2236 * bo. We currently fill all unused PTE with the shadow page and so
2237 * we should always have valid PTE following the scanout preventing
2238 * the VT-d warning.
2239 */
2240 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241 alignment = 256 * 1024;
2242
2243 /*
2244 * Global gtt pte registers are special registers which actually forward
2245 * writes to a chunk of system memory. Which means that there is no risk
2246 * that the register values disappear as soon as we call
2247 * intel_runtime_pm_put(), so it is correct to wrap only the
2248 * pin/unpin/fence and not more.
2249 */
2250 intel_runtime_pm_get(dev_priv);
2251
2252 dev_priv->mm.interruptible = false;
2253 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254 if (ret)
2255 goto err_interruptible;
2256
2257 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258 * fence, whereas 965+ only requires a fence if using
2259 * framebuffer compression. For simplicity, we always install
2260 * a fence as the cost is not that onerous.
2261 */
2262 ret = i915_gem_object_get_fence(obj);
2263 if (ret)
2264 goto err_unpin;
2265
2266 i915_gem_object_pin_fence(obj);
2267
2268 dev_priv->mm.interruptible = true;
2269 intel_runtime_pm_put(dev_priv);
2270 return 0;
2271
2272 err_unpin:
2273 i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275 dev_priv->mm.interruptible = true;
2276 intel_runtime_pm_put(dev_priv);
2277 return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284 i915_gem_object_unpin_fence(obj);
2285 i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289 * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291 unsigned int tiling_mode,
2292 unsigned int cpp,
2293 unsigned int pitch)
2294 {
2295 if (tiling_mode != I915_TILING_NONE) {
2296 unsigned int tile_rows, tiles;
2297
2298 tile_rows = *y / 8;
2299 *y %= 8;
2300
2301 tiles = *x / (512/cpp);
2302 *x %= 512/cpp;
2303
2304 return tile_rows * pitch * 8 + tiles * 4096;
2305 } else {
2306 unsigned int offset;
2307
2308 offset = *y * pitch + *x * cpp;
2309 *y = 0;
2310 *x = (offset & 4095) / cpp;
2311 return offset & -4096;
2312 }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317 switch (format) {
2318 case DISPPLANE_8BPP:
2319 return DRM_FORMAT_C8;
2320 case DISPPLANE_BGRX555:
2321 return DRM_FORMAT_XRGB1555;
2322 case DISPPLANE_BGRX565:
2323 return DRM_FORMAT_RGB565;
2324 default:
2325 case DISPPLANE_BGRX888:
2326 return DRM_FORMAT_XRGB8888;
2327 case DISPPLANE_RGBX888:
2328 return DRM_FORMAT_XBGR8888;
2329 case DISPPLANE_BGRX101010:
2330 return DRM_FORMAT_XRGB2101010;
2331 case DISPPLANE_RGBX101010:
2332 return DRM_FORMAT_XBGR2101010;
2333 }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337 struct intel_plane_config *plane_config)
2338 {
2339 struct drm_device *dev = crtc->base.dev;
2340 struct drm_i915_gem_object *obj = NULL;
2341 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342 u32 base = plane_config->base;
2343
2344 if (plane_config->size == 0)
2345 return false;
2346
2347 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348 plane_config->size);
2349 if (!obj)
2350 return false;
2351
2352 if (plane_config->tiled) {
2353 obj->tiling_mode = I915_TILING_X;
2354 obj->stride = crtc->base.primary->fb->pitches[0];
2355 }
2356
2357 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358 mode_cmd.width = crtc->base.primary->fb->width;
2359 mode_cmd.height = crtc->base.primary->fb->height;
2360 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362 mutex_lock(&dev->struct_mutex);
2363
2364 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365 &mode_cmd, obj)) {
2366 DRM_DEBUG_KMS("intel fb init failed\n");
2367 goto out_unref_obj;
2368 }
2369
2370 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371 mutex_unlock(&dev->struct_mutex);
2372
2373 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374 return true;
2375
2376 out_unref_obj:
2377 drm_gem_object_unreference(&obj->base);
2378 mutex_unlock(&dev->struct_mutex);
2379 return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383 struct intel_plane_config *plane_config)
2384 {
2385 struct drm_device *dev = intel_crtc->base.dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct drm_crtc *c;
2388 struct intel_crtc *i;
2389 struct drm_i915_gem_object *obj;
2390
2391 if (!intel_crtc->base.primary->fb)
2392 return;
2393
2394 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395 return;
2396
2397 kfree(intel_crtc->base.primary->fb);
2398 intel_crtc->base.primary->fb = NULL;
2399
2400 /*
2401 * Failed to alloc the obj, check to see if we should share
2402 * an fb with another CRTC instead
2403 */
2404 for_each_crtc(dev, c) {
2405 i = to_intel_crtc(c);
2406
2407 if (c == &intel_crtc->base)
2408 continue;
2409
2410 if (!i->active)
2411 continue;
2412
2413 obj = intel_fb_obj(c->primary->fb);
2414 if (obj == NULL)
2415 continue;
2416
2417 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418 if (obj->tiling_mode != I915_TILING_NONE)
2419 dev_priv->preserve_bios_swizzle = true;
2420
2421 drm_framebuffer_reference(c->primary->fb);
2422 intel_crtc->base.primary->fb = c->primary->fb;
2423 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424 break;
2425 }
2426 }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430 struct drm_framebuffer *fb,
2431 int x, int y)
2432 {
2433 struct drm_device *dev = crtc->dev;
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436 struct drm_i915_gem_object *obj;
2437 int plane = intel_crtc->plane;
2438 unsigned long linear_offset;
2439 u32 dspcntr;
2440 u32 reg = DSPCNTR(plane);
2441 int pixel_size;
2442
2443 if (!intel_crtc->primary_enabled) {
2444 I915_WRITE(reg, 0);
2445 if (INTEL_INFO(dev)->gen >= 4)
2446 I915_WRITE(DSPSURF(plane), 0);
2447 else
2448 I915_WRITE(DSPADDR(plane), 0);
2449 POSTING_READ(reg);
2450 return;
2451 }
2452
2453 obj = intel_fb_obj(fb);
2454 if (WARN_ON(obj == NULL))
2455 return;
2456
2457 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459 dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461 dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463 if (INTEL_INFO(dev)->gen < 4) {
2464 if (intel_crtc->pipe == PIPE_B)
2465 dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467 /* pipesrc and dspsize control the size that is scaled from,
2468 * which should always be the user's requested size.
2469 */
2470 I915_WRITE(DSPSIZE(plane),
2471 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472 (intel_crtc->config.pipe_src_w - 1));
2473 I915_WRITE(DSPPOS(plane), 0);
2474 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475 I915_WRITE(PRIMSIZE(plane),
2476 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477 (intel_crtc->config.pipe_src_w - 1));
2478 I915_WRITE(PRIMPOS(plane), 0);
2479 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480 }
2481
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
2486 case DRM_FORMAT_XRGB1555:
2487 case DRM_FORMAT_ARGB1555:
2488 dspcntr |= DISPPLANE_BGRX555;
2489 break;
2490 case DRM_FORMAT_RGB565:
2491 dspcntr |= DISPPLANE_BGRX565;
2492 break;
2493 case DRM_FORMAT_XRGB8888:
2494 case DRM_FORMAT_ARGB8888:
2495 dspcntr |= DISPPLANE_BGRX888;
2496 break;
2497 case DRM_FORMAT_XBGR8888:
2498 case DRM_FORMAT_ABGR8888:
2499 dspcntr |= DISPPLANE_RGBX888;
2500 break;
2501 case DRM_FORMAT_XRGB2101010:
2502 case DRM_FORMAT_ARGB2101010:
2503 dspcntr |= DISPPLANE_BGRX101010;
2504 break;
2505 case DRM_FORMAT_XBGR2101010:
2506 case DRM_FORMAT_ABGR2101010:
2507 dspcntr |= DISPPLANE_RGBX101010;
2508 break;
2509 default:
2510 BUG();
2511 }
2512
2513 if (INTEL_INFO(dev)->gen >= 4 &&
2514 obj->tiling_mode != I915_TILING_NONE)
2515 dspcntr |= DISPPLANE_TILED;
2516
2517 if (IS_G4X(dev))
2518 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520 linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522 if (INTEL_INFO(dev)->gen >= 4) {
2523 intel_crtc->dspaddr_offset =
2524 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525 pixel_size,
2526 fb->pitches[0]);
2527 linear_offset -= intel_crtc->dspaddr_offset;
2528 } else {
2529 intel_crtc->dspaddr_offset = linear_offset;
2530 }
2531
2532 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535 x += (intel_crtc->config.pipe_src_w - 1);
2536 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538 /* Finding the last pixel of the last line of the display
2539 data and adding to linear_offset*/
2540 linear_offset +=
2541 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543 }
2544
2545 I915_WRITE(reg, dspcntr);
2546
2547 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549 fb->pitches[0]);
2550 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551 if (INTEL_INFO(dev)->gen >= 4) {
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556 } else
2557 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558 POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562 struct drm_framebuffer *fb,
2563 int x, int y)
2564 {
2565 struct drm_device *dev = crtc->dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568 struct drm_i915_gem_object *obj;
2569 int plane = intel_crtc->plane;
2570 unsigned long linear_offset;
2571 u32 dspcntr;
2572 u32 reg = DSPCNTR(plane);
2573 int pixel_size;
2574
2575 if (!intel_crtc->primary_enabled) {
2576 I915_WRITE(reg, 0);
2577 I915_WRITE(DSPSURF(plane), 0);
2578 POSTING_READ(reg);
2579 return;
2580 }
2581
2582 obj = intel_fb_obj(fb);
2583 if (WARN_ON(obj == NULL))
2584 return;
2585
2586 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588 dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590 dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595 switch (fb->pixel_format) {
2596 case DRM_FORMAT_C8:
2597 dspcntr |= DISPPLANE_8BPP;
2598 break;
2599 case DRM_FORMAT_RGB565:
2600 dspcntr |= DISPPLANE_BGRX565;
2601 break;
2602 case DRM_FORMAT_XRGB8888:
2603 case DRM_FORMAT_ARGB8888:
2604 dspcntr |= DISPPLANE_BGRX888;
2605 break;
2606 case DRM_FORMAT_XBGR8888:
2607 case DRM_FORMAT_ABGR8888:
2608 dspcntr |= DISPPLANE_RGBX888;
2609 break;
2610 case DRM_FORMAT_XRGB2101010:
2611 case DRM_FORMAT_ARGB2101010:
2612 dspcntr |= DISPPLANE_BGRX101010;
2613 break;
2614 case DRM_FORMAT_XBGR2101010:
2615 case DRM_FORMAT_ABGR2101010:
2616 dspcntr |= DISPPLANE_RGBX101010;
2617 break;
2618 default:
2619 BUG();
2620 }
2621
2622 if (obj->tiling_mode != I915_TILING_NONE)
2623 dspcntr |= DISPPLANE_TILED;
2624
2625 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628 linear_offset = y * fb->pitches[0] + x * pixel_size;
2629 intel_crtc->dspaddr_offset =
2630 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631 pixel_size,
2632 fb->pitches[0]);
2633 linear_offset -= intel_crtc->dspaddr_offset;
2634 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638 x += (intel_crtc->config.pipe_src_w - 1);
2639 y += (intel_crtc->config.pipe_src_h - 1);
2640
2641 /* Finding the last pixel of the last line of the display
2642 data and adding to linear_offset*/
2643 linear_offset +=
2644 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646 }
2647 }
2648
2649 I915_WRITE(reg, dspcntr);
2650
2651 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653 fb->pitches[0]);
2654 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655 I915_WRITE(DSPSURF(plane),
2656 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659 } else {
2660 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662 }
2663 POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667 struct drm_framebuffer *fb,
2668 int x, int y)
2669 {
2670 struct drm_device *dev = crtc->dev;
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673 struct intel_framebuffer *intel_fb;
2674 struct drm_i915_gem_object *obj;
2675 int pipe = intel_crtc->pipe;
2676 u32 plane_ctl, stride;
2677
2678 if (!intel_crtc->primary_enabled) {
2679 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681 POSTING_READ(PLANE_CTL(pipe, 0));
2682 return;
2683 }
2684
2685 plane_ctl = PLANE_CTL_ENABLE |
2686 PLANE_CTL_PIPE_GAMMA_ENABLE |
2687 PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689 switch (fb->pixel_format) {
2690 case DRM_FORMAT_RGB565:
2691 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692 break;
2693 case DRM_FORMAT_XRGB8888:
2694 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695 break;
2696 case DRM_FORMAT_XBGR8888:
2697 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699 break;
2700 case DRM_FORMAT_XRGB2101010:
2701 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702 break;
2703 case DRM_FORMAT_XBGR2101010:
2704 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706 break;
2707 default:
2708 BUG();
2709 }
2710
2711 intel_fb = to_intel_framebuffer(fb);
2712 obj = intel_fb->obj;
2713
2714 /*
2715 * The stride is either expressed as a multiple of 64 bytes chunks for
2716 * linear buffers or in number of tiles for tiled buffers.
2717 */
2718 switch (obj->tiling_mode) {
2719 case I915_TILING_NONE:
2720 stride = fb->pitches[0] >> 6;
2721 break;
2722 case I915_TILING_X:
2723 plane_ctl |= PLANE_CTL_TILED_X;
2724 stride = fb->pitches[0] >> 9;
2725 break;
2726 default:
2727 BUG();
2728 }
2729
2730 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737 i915_gem_obj_ggtt_offset(obj),
2738 x, y, fb->width, fb->height,
2739 fb->pitches[0]);
2740
2741 I915_WRITE(PLANE_POS(pipe, 0), 0);
2742 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743 I915_WRITE(PLANE_SIZE(pipe, 0),
2744 (intel_crtc->config.pipe_src_h - 1) << 16 |
2745 (intel_crtc->config.pipe_src_w - 1));
2746 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749 POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755 int x, int y, enum mode_set_atomic state)
2756 {
2757 struct drm_device *dev = crtc->dev;
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760 if (dev_priv->display.disable_fbc)
2761 dev_priv->display.disable_fbc(dev);
2762
2763 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765 return 0;
2766 }
2767
2768 static void intel_complete_page_flips(struct drm_device *dev)
2769 {
2770 struct drm_crtc *crtc;
2771
2772 for_each_crtc(dev, crtc) {
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 enum plane plane = intel_crtc->plane;
2775
2776 intel_prepare_page_flip(dev, plane);
2777 intel_finish_page_flip_plane(dev, plane);
2778 }
2779 }
2780
2781 static void intel_update_primary_planes(struct drm_device *dev)
2782 {
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct drm_crtc *crtc;
2785
2786 for_each_crtc(dev, crtc) {
2787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
2789 drm_modeset_lock(&crtc->mutex, NULL);
2790 /*
2791 * FIXME: Once we have proper support for primary planes (and
2792 * disabling them without disabling the entire crtc) allow again
2793 * a NULL crtc->primary->fb.
2794 */
2795 if (intel_crtc->active && crtc->primary->fb)
2796 dev_priv->display.update_primary_plane(crtc,
2797 crtc->primary->fb,
2798 crtc->x,
2799 crtc->y);
2800 drm_modeset_unlock(&crtc->mutex);
2801 }
2802 }
2803
2804 void intel_prepare_reset(struct drm_device *dev)
2805 {
2806 struct drm_i915_private *dev_priv = to_i915(dev);
2807 struct intel_crtc *crtc;
2808
2809 /* no reset support for gen2 */
2810 if (IS_GEN2(dev))
2811 return;
2812
2813 /* reset doesn't touch the display */
2814 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815 return;
2816
2817 drm_modeset_lock_all(dev);
2818
2819 /*
2820 * Disabling the crtcs gracefully seems nicer. Also the
2821 * g33 docs say we should at least disable all the planes.
2822 */
2823 for_each_intel_crtc(dev, crtc) {
2824 if (crtc->active)
2825 dev_priv->display.crtc_disable(&crtc->base);
2826 }
2827 }
2828
2829 void intel_finish_reset(struct drm_device *dev)
2830 {
2831 struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833 /*
2834 * Flips in the rings will be nuked by the reset,
2835 * so complete all pending flips so that user space
2836 * will get its events and not get stuck.
2837 */
2838 intel_complete_page_flips(dev);
2839
2840 /* no reset support for gen2 */
2841 if (IS_GEN2(dev))
2842 return;
2843
2844 /* reset doesn't touch the display */
2845 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846 /*
2847 * Flips in the rings have been nuked by the reset,
2848 * so update the base address of all primary
2849 * planes to the the last fb to make sure we're
2850 * showing the correct fb after a reset.
2851 */
2852 intel_update_primary_planes(dev);
2853 return;
2854 }
2855
2856 /*
2857 * The display has been reset as well,
2858 * so need a full re-initialization.
2859 */
2860 intel_runtime_pm_disable_interrupts(dev_priv);
2861 intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863 intel_modeset_init_hw(dev);
2864
2865 spin_lock_irq(&dev_priv->irq_lock);
2866 if (dev_priv->display.hpd_irq_setup)
2867 dev_priv->display.hpd_irq_setup(dev);
2868 spin_unlock_irq(&dev_priv->irq_lock);
2869
2870 intel_modeset_setup_hw_state(dev, true);
2871
2872 intel_hpd_init(dev_priv);
2873
2874 drm_modeset_unlock_all(dev);
2875 }
2876
2877 static int
2878 intel_finish_fb(struct drm_framebuffer *old_fb)
2879 {
2880 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882 bool was_interruptible = dev_priv->mm.interruptible;
2883 int ret;
2884
2885 /* Big Hammer, we also need to ensure that any pending
2886 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887 * current scanout is retired before unpinning the old
2888 * framebuffer.
2889 *
2890 * This should only fail upon a hung GPU, in which case we
2891 * can safely continue.
2892 */
2893 dev_priv->mm.interruptible = false;
2894 ret = i915_gem_object_finish_gpu(obj);
2895 dev_priv->mm.interruptible = was_interruptible;
2896
2897 return ret;
2898 }
2899
2900 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901 {
2902 struct drm_device *dev = crtc->dev;
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905 bool pending;
2906
2907 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909 return false;
2910
2911 spin_lock_irq(&dev->event_lock);
2912 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2913 spin_unlock_irq(&dev->event_lock);
2914
2915 return pending;
2916 }
2917
2918 static void intel_update_pipe_size(struct intel_crtc *crtc)
2919 {
2920 struct drm_device *dev = crtc->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 const struct drm_display_mode *adjusted_mode;
2923
2924 if (!i915.fastboot)
2925 return;
2926
2927 /*
2928 * Update pipe size and adjust fitter if needed: the reason for this is
2929 * that in compute_mode_changes we check the native mode (not the pfit
2930 * mode) to see if we can flip rather than do a full mode set. In the
2931 * fastboot case, we'll flip, but if we don't update the pipesrc and
2932 * pfit state, we'll end up with a big fb scanned out into the wrong
2933 * sized surface.
2934 *
2935 * To fix this properly, we need to hoist the checks up into
2936 * compute_mode_changes (or above), check the actual pfit state and
2937 * whether the platform allows pfit disable with pipe active, and only
2938 * then update the pipesrc and pfit state, even on the flip path.
2939 */
2940
2941 adjusted_mode = &crtc->config.adjusted_mode;
2942
2943 I915_WRITE(PIPESRC(crtc->pipe),
2944 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945 (adjusted_mode->crtc_vdisplay - 1));
2946 if (!crtc->config.pch_pfit.enabled &&
2947 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2949 I915_WRITE(PF_CTL(crtc->pipe), 0);
2950 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952 }
2953 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955 }
2956
2957 static int
2958 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2959 struct drm_framebuffer *fb)
2960 {
2961 struct drm_device *dev = crtc->dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964 enum pipe pipe = intel_crtc->pipe;
2965 struct drm_framebuffer *old_fb = crtc->primary->fb;
2966 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2967 int ret;
2968
2969 if (intel_crtc_has_pending_flip(crtc)) {
2970 DRM_ERROR("pipe is still busy with an old pageflip\n");
2971 return -EBUSY;
2972 }
2973
2974 /* no fb bound */
2975 if (!fb) {
2976 DRM_ERROR("No FB bound\n");
2977 return 0;
2978 }
2979
2980 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2981 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2982 plane_name(intel_crtc->plane),
2983 INTEL_INFO(dev)->num_pipes);
2984 return -EINVAL;
2985 }
2986
2987 mutex_lock(&dev->struct_mutex);
2988 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
2989 if (ret == 0)
2990 i915_gem_track_fb(old_obj, intel_fb_obj(fb),
2991 INTEL_FRONTBUFFER_PRIMARY(pipe));
2992 mutex_unlock(&dev->struct_mutex);
2993 if (ret != 0) {
2994 DRM_ERROR("pin & fence failed\n");
2995 return ret;
2996 }
2997
2998 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2999
3000 if (intel_crtc->active)
3001 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
3002
3003 crtc->primary->fb = fb;
3004 crtc->x = x;
3005 crtc->y = y;
3006
3007 if (old_fb) {
3008 if (intel_crtc->active && old_fb != fb)
3009 intel_wait_for_vblank(dev, intel_crtc->pipe);
3010 mutex_lock(&dev->struct_mutex);
3011 intel_unpin_fb_obj(old_obj);
3012 mutex_unlock(&dev->struct_mutex);
3013 }
3014
3015 mutex_lock(&dev->struct_mutex);
3016 intel_update_fbc(dev);
3017 mutex_unlock(&dev->struct_mutex);
3018
3019 return 0;
3020 }
3021
3022 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3023 {
3024 struct drm_device *dev = crtc->dev;
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027 int pipe = intel_crtc->pipe;
3028 u32 reg, temp;
3029
3030 /* enable normal train */
3031 reg = FDI_TX_CTL(pipe);
3032 temp = I915_READ(reg);
3033 if (IS_IVYBRIDGE(dev)) {
3034 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3035 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3036 } else {
3037 temp &= ~FDI_LINK_TRAIN_NONE;
3038 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3039 }
3040 I915_WRITE(reg, temp);
3041
3042 reg = FDI_RX_CTL(pipe);
3043 temp = I915_READ(reg);
3044 if (HAS_PCH_CPT(dev)) {
3045 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3047 } else {
3048 temp &= ~FDI_LINK_TRAIN_NONE;
3049 temp |= FDI_LINK_TRAIN_NONE;
3050 }
3051 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3052
3053 /* wait one idle pattern time */
3054 POSTING_READ(reg);
3055 udelay(1000);
3056
3057 /* IVB wants error correction enabled */
3058 if (IS_IVYBRIDGE(dev))
3059 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3060 FDI_FE_ERRC_ENABLE);
3061 }
3062
3063 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3064 {
3065 return crtc->base.enabled && crtc->active &&
3066 crtc->config.has_pch_encoder;
3067 }
3068
3069 static void ivb_modeset_global_resources(struct drm_device *dev)
3070 {
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_crtc *pipe_B_crtc =
3073 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3074 struct intel_crtc *pipe_C_crtc =
3075 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3076 uint32_t temp;
3077
3078 /*
3079 * When everything is off disable fdi C so that we could enable fdi B
3080 * with all lanes. Note that we don't care about enabled pipes without
3081 * an enabled pch encoder.
3082 */
3083 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3084 !pipe_has_enabled_pch(pipe_C_crtc)) {
3085 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3086 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3087
3088 temp = I915_READ(SOUTH_CHICKEN1);
3089 temp &= ~FDI_BC_BIFURCATION_SELECT;
3090 DRM_DEBUG_KMS("disabling fdi C rx\n");
3091 I915_WRITE(SOUTH_CHICKEN1, temp);
3092 }
3093 }
3094
3095 /* The FDI link training functions for ILK/Ibexpeak. */
3096 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3097 {
3098 struct drm_device *dev = crtc->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
3102 u32 reg, temp, tries;
3103
3104 /* FDI needs bits from pipe first */
3105 assert_pipe_enabled(dev_priv, pipe);
3106
3107 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108 for train result */
3109 reg = FDI_RX_IMR(pipe);
3110 temp = I915_READ(reg);
3111 temp &= ~FDI_RX_SYMBOL_LOCK;
3112 temp &= ~FDI_RX_BIT_LOCK;
3113 I915_WRITE(reg, temp);
3114 I915_READ(reg);
3115 udelay(150);
3116
3117 /* enable CPU FDI TX and PCH FDI RX */
3118 reg = FDI_TX_CTL(pipe);
3119 temp = I915_READ(reg);
3120 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3121 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3122 temp &= ~FDI_LINK_TRAIN_NONE;
3123 temp |= FDI_LINK_TRAIN_PATTERN_1;
3124 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3125
3126 reg = FDI_RX_CTL(pipe);
3127 temp = I915_READ(reg);
3128 temp &= ~FDI_LINK_TRAIN_NONE;
3129 temp |= FDI_LINK_TRAIN_PATTERN_1;
3130 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3131
3132 POSTING_READ(reg);
3133 udelay(150);
3134
3135 /* Ironlake workaround, enable clock pointer after FDI enable*/
3136 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3137 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3138 FDI_RX_PHASE_SYNC_POINTER_EN);
3139
3140 reg = FDI_RX_IIR(pipe);
3141 for (tries = 0; tries < 5; tries++) {
3142 temp = I915_READ(reg);
3143 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3144
3145 if ((temp & FDI_RX_BIT_LOCK)) {
3146 DRM_DEBUG_KMS("FDI train 1 done.\n");
3147 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3148 break;
3149 }
3150 }
3151 if (tries == 5)
3152 DRM_ERROR("FDI train 1 fail!\n");
3153
3154 /* Train 2 */
3155 reg = FDI_TX_CTL(pipe);
3156 temp = I915_READ(reg);
3157 temp &= ~FDI_LINK_TRAIN_NONE;
3158 temp |= FDI_LINK_TRAIN_PATTERN_2;
3159 I915_WRITE(reg, temp);
3160
3161 reg = FDI_RX_CTL(pipe);
3162 temp = I915_READ(reg);
3163 temp &= ~FDI_LINK_TRAIN_NONE;
3164 temp |= FDI_LINK_TRAIN_PATTERN_2;
3165 I915_WRITE(reg, temp);
3166
3167 POSTING_READ(reg);
3168 udelay(150);
3169
3170 reg = FDI_RX_IIR(pipe);
3171 for (tries = 0; tries < 5; tries++) {
3172 temp = I915_READ(reg);
3173 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3174
3175 if (temp & FDI_RX_SYMBOL_LOCK) {
3176 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3177 DRM_DEBUG_KMS("FDI train 2 done.\n");
3178 break;
3179 }
3180 }
3181 if (tries == 5)
3182 DRM_ERROR("FDI train 2 fail!\n");
3183
3184 DRM_DEBUG_KMS("FDI train done\n");
3185
3186 }
3187
3188 static const int snb_b_fdi_train_param[] = {
3189 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3190 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3191 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3192 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3193 };
3194
3195 /* The FDI link training functions for SNB/Cougarpoint. */
3196 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3197 {
3198 struct drm_device *dev = crtc->dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201 int pipe = intel_crtc->pipe;
3202 u32 reg, temp, i, retry;
3203
3204 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3205 for train result */
3206 reg = FDI_RX_IMR(pipe);
3207 temp = I915_READ(reg);
3208 temp &= ~FDI_RX_SYMBOL_LOCK;
3209 temp &= ~FDI_RX_BIT_LOCK;
3210 I915_WRITE(reg, temp);
3211
3212 POSTING_READ(reg);
3213 udelay(150);
3214
3215 /* enable CPU FDI TX and PCH FDI RX */
3216 reg = FDI_TX_CTL(pipe);
3217 temp = I915_READ(reg);
3218 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3219 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3220 temp &= ~FDI_LINK_TRAIN_NONE;
3221 temp |= FDI_LINK_TRAIN_PATTERN_1;
3222 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3223 /* SNB-B */
3224 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3225 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3226
3227 I915_WRITE(FDI_RX_MISC(pipe),
3228 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3229
3230 reg = FDI_RX_CTL(pipe);
3231 temp = I915_READ(reg);
3232 if (HAS_PCH_CPT(dev)) {
3233 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3234 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3235 } else {
3236 temp &= ~FDI_LINK_TRAIN_NONE;
3237 temp |= FDI_LINK_TRAIN_PATTERN_1;
3238 }
3239 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3240
3241 POSTING_READ(reg);
3242 udelay(150);
3243
3244 for (i = 0; i < 4; i++) {
3245 reg = FDI_TX_CTL(pipe);
3246 temp = I915_READ(reg);
3247 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3248 temp |= snb_b_fdi_train_param[i];
3249 I915_WRITE(reg, temp);
3250
3251 POSTING_READ(reg);
3252 udelay(500);
3253
3254 for (retry = 0; retry < 5; retry++) {
3255 reg = FDI_RX_IIR(pipe);
3256 temp = I915_READ(reg);
3257 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3258 if (temp & FDI_RX_BIT_LOCK) {
3259 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3260 DRM_DEBUG_KMS("FDI train 1 done.\n");
3261 break;
3262 }
3263 udelay(50);
3264 }
3265 if (retry < 5)
3266 break;
3267 }
3268 if (i == 4)
3269 DRM_ERROR("FDI train 1 fail!\n");
3270
3271 /* Train 2 */
3272 reg = FDI_TX_CTL(pipe);
3273 temp = I915_READ(reg);
3274 temp &= ~FDI_LINK_TRAIN_NONE;
3275 temp |= FDI_LINK_TRAIN_PATTERN_2;
3276 if (IS_GEN6(dev)) {
3277 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3278 /* SNB-B */
3279 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3280 }
3281 I915_WRITE(reg, temp);
3282
3283 reg = FDI_RX_CTL(pipe);
3284 temp = I915_READ(reg);
3285 if (HAS_PCH_CPT(dev)) {
3286 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3287 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3288 } else {
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_2;
3291 }
3292 I915_WRITE(reg, temp);
3293
3294 POSTING_READ(reg);
3295 udelay(150);
3296
3297 for (i = 0; i < 4; i++) {
3298 reg = FDI_TX_CTL(pipe);
3299 temp = I915_READ(reg);
3300 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3301 temp |= snb_b_fdi_train_param[i];
3302 I915_WRITE(reg, temp);
3303
3304 POSTING_READ(reg);
3305 udelay(500);
3306
3307 for (retry = 0; retry < 5; retry++) {
3308 reg = FDI_RX_IIR(pipe);
3309 temp = I915_READ(reg);
3310 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3311 if (temp & FDI_RX_SYMBOL_LOCK) {
3312 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3313 DRM_DEBUG_KMS("FDI train 2 done.\n");
3314 break;
3315 }
3316 udelay(50);
3317 }
3318 if (retry < 5)
3319 break;
3320 }
3321 if (i == 4)
3322 DRM_ERROR("FDI train 2 fail!\n");
3323
3324 DRM_DEBUG_KMS("FDI train done.\n");
3325 }
3326
3327 /* Manual link training for Ivy Bridge A0 parts */
3328 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3329 {
3330 struct drm_device *dev = crtc->dev;
3331 struct drm_i915_private *dev_priv = dev->dev_private;
3332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333 int pipe = intel_crtc->pipe;
3334 u32 reg, temp, i, j;
3335
3336 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3337 for train result */
3338 reg = FDI_RX_IMR(pipe);
3339 temp = I915_READ(reg);
3340 temp &= ~FDI_RX_SYMBOL_LOCK;
3341 temp &= ~FDI_RX_BIT_LOCK;
3342 I915_WRITE(reg, temp);
3343
3344 POSTING_READ(reg);
3345 udelay(150);
3346
3347 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3348 I915_READ(FDI_RX_IIR(pipe)));
3349
3350 /* Try each vswing and preemphasis setting twice before moving on */
3351 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3352 /* disable first in case we need to retry */
3353 reg = FDI_TX_CTL(pipe);
3354 temp = I915_READ(reg);
3355 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3356 temp &= ~FDI_TX_ENABLE;
3357 I915_WRITE(reg, temp);
3358
3359 reg = FDI_RX_CTL(pipe);
3360 temp = I915_READ(reg);
3361 temp &= ~FDI_LINK_TRAIN_AUTO;
3362 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3363 temp &= ~FDI_RX_ENABLE;
3364 I915_WRITE(reg, temp);
3365
3366 /* enable CPU FDI TX and PCH FDI RX */
3367 reg = FDI_TX_CTL(pipe);
3368 temp = I915_READ(reg);
3369 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3370 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3371 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3372 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3373 temp |= snb_b_fdi_train_param[j/2];
3374 temp |= FDI_COMPOSITE_SYNC;
3375 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3376
3377 I915_WRITE(FDI_RX_MISC(pipe),
3378 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3379
3380 reg = FDI_RX_CTL(pipe);
3381 temp = I915_READ(reg);
3382 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3383 temp |= FDI_COMPOSITE_SYNC;
3384 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3385
3386 POSTING_READ(reg);
3387 udelay(1); /* should be 0.5us */
3388
3389 for (i = 0; i < 4; i++) {
3390 reg = FDI_RX_IIR(pipe);
3391 temp = I915_READ(reg);
3392 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3393
3394 if (temp & FDI_RX_BIT_LOCK ||
3395 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3396 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3397 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3398 i);
3399 break;
3400 }
3401 udelay(1); /* should be 0.5us */
3402 }
3403 if (i == 4) {
3404 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3405 continue;
3406 }
3407
3408 /* Train 2 */
3409 reg = FDI_TX_CTL(pipe);
3410 temp = I915_READ(reg);
3411 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3412 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3413 I915_WRITE(reg, temp);
3414
3415 reg = FDI_RX_CTL(pipe);
3416 temp = I915_READ(reg);
3417 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3418 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3419 I915_WRITE(reg, temp);
3420
3421 POSTING_READ(reg);
3422 udelay(2); /* should be 1.5us */
3423
3424 for (i = 0; i < 4; i++) {
3425 reg = FDI_RX_IIR(pipe);
3426 temp = I915_READ(reg);
3427 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429 if (temp & FDI_RX_SYMBOL_LOCK ||
3430 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3431 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3432 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3433 i);
3434 goto train_done;
3435 }
3436 udelay(2); /* should be 1.5us */
3437 }
3438 if (i == 4)
3439 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3440 }
3441
3442 train_done:
3443 DRM_DEBUG_KMS("FDI train done.\n");
3444 }
3445
3446 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3447 {
3448 struct drm_device *dev = intel_crtc->base.dev;
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 int pipe = intel_crtc->pipe;
3451 u32 reg, temp;
3452
3453
3454 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3455 reg = FDI_RX_CTL(pipe);
3456 temp = I915_READ(reg);
3457 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3458 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3459 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3460 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3461
3462 POSTING_READ(reg);
3463 udelay(200);
3464
3465 /* Switch from Rawclk to PCDclk */
3466 temp = I915_READ(reg);
3467 I915_WRITE(reg, temp | FDI_PCDCLK);
3468
3469 POSTING_READ(reg);
3470 udelay(200);
3471
3472 /* Enable CPU FDI TX PLL, always on for Ironlake */
3473 reg = FDI_TX_CTL(pipe);
3474 temp = I915_READ(reg);
3475 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3476 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3477
3478 POSTING_READ(reg);
3479 udelay(100);
3480 }
3481 }
3482
3483 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3484 {
3485 struct drm_device *dev = intel_crtc->base.dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 int pipe = intel_crtc->pipe;
3488 u32 reg, temp;
3489
3490 /* Switch from PCDclk to Rawclk */
3491 reg = FDI_RX_CTL(pipe);
3492 temp = I915_READ(reg);
3493 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3494
3495 /* Disable CPU FDI TX PLL */
3496 reg = FDI_TX_CTL(pipe);
3497 temp = I915_READ(reg);
3498 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3499
3500 POSTING_READ(reg);
3501 udelay(100);
3502
3503 reg = FDI_RX_CTL(pipe);
3504 temp = I915_READ(reg);
3505 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3506
3507 /* Wait for the clocks to turn off. */
3508 POSTING_READ(reg);
3509 udelay(100);
3510 }
3511
3512 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3513 {
3514 struct drm_device *dev = crtc->dev;
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517 int pipe = intel_crtc->pipe;
3518 u32 reg, temp;
3519
3520 /* disable CPU FDI tx and PCH FDI rx */
3521 reg = FDI_TX_CTL(pipe);
3522 temp = I915_READ(reg);
3523 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3524 POSTING_READ(reg);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 temp &= ~(0x7 << 16);
3529 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3530 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3531
3532 POSTING_READ(reg);
3533 udelay(100);
3534
3535 /* Ironlake workaround, disable clock pointer after downing FDI */
3536 if (HAS_PCH_IBX(dev))
3537 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3538
3539 /* still set train pattern 1 */
3540 reg = FDI_TX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_NONE;
3543 temp |= FDI_LINK_TRAIN_PATTERN_1;
3544 I915_WRITE(reg, temp);
3545
3546 reg = FDI_RX_CTL(pipe);
3547 temp = I915_READ(reg);
3548 if (HAS_PCH_CPT(dev)) {
3549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3551 } else {
3552 temp &= ~FDI_LINK_TRAIN_NONE;
3553 temp |= FDI_LINK_TRAIN_PATTERN_1;
3554 }
3555 /* BPC in FDI rx is consistent with that in PIPECONF */
3556 temp &= ~(0x07 << 16);
3557 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3558 I915_WRITE(reg, temp);
3559
3560 POSTING_READ(reg);
3561 udelay(100);
3562 }
3563
3564 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3565 {
3566 struct intel_crtc *crtc;
3567
3568 /* Note that we don't need to be called with mode_config.lock here
3569 * as our list of CRTC objects is static for the lifetime of the
3570 * device and so cannot disappear as we iterate. Similarly, we can
3571 * happily treat the predicates as racy, atomic checks as userspace
3572 * cannot claim and pin a new fb without at least acquring the
3573 * struct_mutex and so serialising with us.
3574 */
3575 for_each_intel_crtc(dev, crtc) {
3576 if (atomic_read(&crtc->unpin_work_count) == 0)
3577 continue;
3578
3579 if (crtc->unpin_work)
3580 intel_wait_for_vblank(dev, crtc->pipe);
3581
3582 return true;
3583 }
3584
3585 return false;
3586 }
3587
3588 static void page_flip_completed(struct intel_crtc *intel_crtc)
3589 {
3590 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3591 struct intel_unpin_work *work = intel_crtc->unpin_work;
3592
3593 /* ensure that the unpin work is consistent wrt ->pending. */
3594 smp_rmb();
3595 intel_crtc->unpin_work = NULL;
3596
3597 if (work->event)
3598 drm_send_vblank_event(intel_crtc->base.dev,
3599 intel_crtc->pipe,
3600 work->event);
3601
3602 drm_crtc_vblank_put(&intel_crtc->base);
3603
3604 wake_up_all(&dev_priv->pending_flip_queue);
3605 queue_work(dev_priv->wq, &work->work);
3606
3607 trace_i915_flip_complete(intel_crtc->plane,
3608 work->pending_flip_obj);
3609 }
3610
3611 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3612 {
3613 struct drm_device *dev = crtc->dev;
3614 struct drm_i915_private *dev_priv = dev->dev_private;
3615
3616 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3617 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3618 !intel_crtc_has_pending_flip(crtc),
3619 60*HZ) == 0)) {
3620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3621
3622 spin_lock_irq(&dev->event_lock);
3623 if (intel_crtc->unpin_work) {
3624 WARN_ONCE(1, "Removing stuck page flip\n");
3625 page_flip_completed(intel_crtc);
3626 }
3627 spin_unlock_irq(&dev->event_lock);
3628 }
3629
3630 if (crtc->primary->fb) {
3631 mutex_lock(&dev->struct_mutex);
3632 intel_finish_fb(crtc->primary->fb);
3633 mutex_unlock(&dev->struct_mutex);
3634 }
3635 }
3636
3637 /* Program iCLKIP clock to the desired frequency */
3638 static void lpt_program_iclkip(struct drm_crtc *crtc)
3639 {
3640 struct drm_device *dev = crtc->dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3643 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3644 u32 temp;
3645
3646 mutex_lock(&dev_priv->dpio_lock);
3647
3648 /* It is necessary to ungate the pixclk gate prior to programming
3649 * the divisors, and gate it back when it is done.
3650 */
3651 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3652
3653 /* Disable SSCCTL */
3654 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3655 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3656 SBI_SSCCTL_DISABLE,
3657 SBI_ICLK);
3658
3659 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3660 if (clock == 20000) {
3661 auxdiv = 1;
3662 divsel = 0x41;
3663 phaseinc = 0x20;
3664 } else {
3665 /* The iCLK virtual clock root frequency is in MHz,
3666 * but the adjusted_mode->crtc_clock in in KHz. To get the
3667 * divisors, it is necessary to divide one by another, so we
3668 * convert the virtual clock precision to KHz here for higher
3669 * precision.
3670 */
3671 u32 iclk_virtual_root_freq = 172800 * 1000;
3672 u32 iclk_pi_range = 64;
3673 u32 desired_divisor, msb_divisor_value, pi_value;
3674
3675 desired_divisor = (iclk_virtual_root_freq / clock);
3676 msb_divisor_value = desired_divisor / iclk_pi_range;
3677 pi_value = desired_divisor % iclk_pi_range;
3678
3679 auxdiv = 0;
3680 divsel = msb_divisor_value - 2;
3681 phaseinc = pi_value;
3682 }
3683
3684 /* This should not happen with any sane values */
3685 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3686 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3687 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3688 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3689
3690 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3691 clock,
3692 auxdiv,
3693 divsel,
3694 phasedir,
3695 phaseinc);
3696
3697 /* Program SSCDIVINTPHASE6 */
3698 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3699 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3700 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3701 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3702 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3703 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3704 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3705 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3706
3707 /* Program SSCAUXDIV */
3708 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3709 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3710 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3711 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3712
3713 /* Enable modulator and associated divider */
3714 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3715 temp &= ~SBI_SSCCTL_DISABLE;
3716 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3717
3718 /* Wait for initialization time */
3719 udelay(24);
3720
3721 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3722
3723 mutex_unlock(&dev_priv->dpio_lock);
3724 }
3725
3726 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3727 enum pipe pch_transcoder)
3728 {
3729 struct drm_device *dev = crtc->base.dev;
3730 struct drm_i915_private *dev_priv = dev->dev_private;
3731 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3732
3733 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3734 I915_READ(HTOTAL(cpu_transcoder)));
3735 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3736 I915_READ(HBLANK(cpu_transcoder)));
3737 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3738 I915_READ(HSYNC(cpu_transcoder)));
3739
3740 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3741 I915_READ(VTOTAL(cpu_transcoder)));
3742 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3743 I915_READ(VBLANK(cpu_transcoder)));
3744 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3745 I915_READ(VSYNC(cpu_transcoder)));
3746 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3747 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3748 }
3749
3750 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3751 {
3752 struct drm_i915_private *dev_priv = dev->dev_private;
3753 uint32_t temp;
3754
3755 temp = I915_READ(SOUTH_CHICKEN1);
3756 if (temp & FDI_BC_BIFURCATION_SELECT)
3757 return;
3758
3759 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3760 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3761
3762 temp |= FDI_BC_BIFURCATION_SELECT;
3763 DRM_DEBUG_KMS("enabling fdi C rx\n");
3764 I915_WRITE(SOUTH_CHICKEN1, temp);
3765 POSTING_READ(SOUTH_CHICKEN1);
3766 }
3767
3768 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3769 {
3770 struct drm_device *dev = intel_crtc->base.dev;
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773 switch (intel_crtc->pipe) {
3774 case PIPE_A:
3775 break;
3776 case PIPE_B:
3777 if (intel_crtc->config.fdi_lanes > 2)
3778 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3779 else
3780 cpt_enable_fdi_bc_bifurcation(dev);
3781
3782 break;
3783 case PIPE_C:
3784 cpt_enable_fdi_bc_bifurcation(dev);
3785
3786 break;
3787 default:
3788 BUG();
3789 }
3790 }
3791
3792 /*
3793 * Enable PCH resources required for PCH ports:
3794 * - PCH PLLs
3795 * - FDI training & RX/TX
3796 * - update transcoder timings
3797 * - DP transcoding bits
3798 * - transcoder
3799 */
3800 static void ironlake_pch_enable(struct drm_crtc *crtc)
3801 {
3802 struct drm_device *dev = crtc->dev;
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3805 int pipe = intel_crtc->pipe;
3806 u32 reg, temp;
3807
3808 assert_pch_transcoder_disabled(dev_priv, pipe);
3809
3810 if (IS_IVYBRIDGE(dev))
3811 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3812
3813 /* Write the TU size bits before fdi link training, so that error
3814 * detection works. */
3815 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3816 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3817
3818 /* For PCH output, training FDI link */
3819 dev_priv->display.fdi_link_train(crtc);
3820
3821 /* We need to program the right clock selection before writing the pixel
3822 * mutliplier into the DPLL. */
3823 if (HAS_PCH_CPT(dev)) {
3824 u32 sel;
3825
3826 temp = I915_READ(PCH_DPLL_SEL);
3827 temp |= TRANS_DPLL_ENABLE(pipe);
3828 sel = TRANS_DPLLB_SEL(pipe);
3829 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3830 temp |= sel;
3831 else
3832 temp &= ~sel;
3833 I915_WRITE(PCH_DPLL_SEL, temp);
3834 }
3835
3836 /* XXX: pch pll's can be enabled any time before we enable the PCH
3837 * transcoder, and we actually should do this to not upset any PCH
3838 * transcoder that already use the clock when we share it.
3839 *
3840 * Note that enable_shared_dpll tries to do the right thing, but
3841 * get_shared_dpll unconditionally resets the pll - we need that to have
3842 * the right LVDS enable sequence. */
3843 intel_enable_shared_dpll(intel_crtc);
3844
3845 /* set transcoder timing, panel must allow it */
3846 assert_panel_unlocked(dev_priv, pipe);
3847 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3848
3849 intel_fdi_normal_train(crtc);
3850
3851 /* For PCH DP, enable TRANS_DP_CTL */
3852 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3853 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3854 reg = TRANS_DP_CTL(pipe);
3855 temp = I915_READ(reg);
3856 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3857 TRANS_DP_SYNC_MASK |
3858 TRANS_DP_BPC_MASK);
3859 temp |= (TRANS_DP_OUTPUT_ENABLE |
3860 TRANS_DP_ENH_FRAMING);
3861 temp |= bpc << 9; /* same format but at 11:9 */
3862
3863 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3864 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3865 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3866 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3867
3868 switch (intel_trans_dp_port_sel(crtc)) {
3869 case PCH_DP_B:
3870 temp |= TRANS_DP_PORT_SEL_B;
3871 break;
3872 case PCH_DP_C:
3873 temp |= TRANS_DP_PORT_SEL_C;
3874 break;
3875 case PCH_DP_D:
3876 temp |= TRANS_DP_PORT_SEL_D;
3877 break;
3878 default:
3879 BUG();
3880 }
3881
3882 I915_WRITE(reg, temp);
3883 }
3884
3885 ironlake_enable_pch_transcoder(dev_priv, pipe);
3886 }
3887
3888 static void lpt_pch_enable(struct drm_crtc *crtc)
3889 {
3890 struct drm_device *dev = crtc->dev;
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3893 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3894
3895 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3896
3897 lpt_program_iclkip(crtc);
3898
3899 /* Set transcoder timing. */
3900 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3901
3902 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3903 }
3904
3905 void intel_put_shared_dpll(struct intel_crtc *crtc)
3906 {
3907 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3908
3909 if (pll == NULL)
3910 return;
3911
3912 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3913 WARN(1, "bad %s crtc mask\n", pll->name);
3914 return;
3915 }
3916
3917 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3918 if (pll->config.crtc_mask == 0) {
3919 WARN_ON(pll->on);
3920 WARN_ON(pll->active);
3921 }
3922
3923 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3924 }
3925
3926 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3927 {
3928 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3929 struct intel_shared_dpll *pll;
3930 enum intel_dpll_id i;
3931
3932 if (HAS_PCH_IBX(dev_priv->dev)) {
3933 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3934 i = (enum intel_dpll_id) crtc->pipe;
3935 pll = &dev_priv->shared_dplls[i];
3936
3937 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3938 crtc->base.base.id, pll->name);
3939
3940 WARN_ON(pll->new_config->crtc_mask);
3941
3942 goto found;
3943 }
3944
3945 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3946 pll = &dev_priv->shared_dplls[i];
3947
3948 /* Only want to check enabled timings first */
3949 if (pll->new_config->crtc_mask == 0)
3950 continue;
3951
3952 if (memcmp(&crtc->new_config->dpll_hw_state,
3953 &pll->new_config->hw_state,
3954 sizeof(pll->new_config->hw_state)) == 0) {
3955 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3956 crtc->base.base.id, pll->name,
3957 pll->new_config->crtc_mask,
3958 pll->active);
3959 goto found;
3960 }
3961 }
3962
3963 /* Ok no matching timings, maybe there's a free one? */
3964 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3965 pll = &dev_priv->shared_dplls[i];
3966 if (pll->new_config->crtc_mask == 0) {
3967 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3968 crtc->base.base.id, pll->name);
3969 goto found;
3970 }
3971 }
3972
3973 return NULL;
3974
3975 found:
3976 if (pll->new_config->crtc_mask == 0)
3977 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3978
3979 crtc->new_config->shared_dpll = i;
3980 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3981 pipe_name(crtc->pipe));
3982
3983 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3984
3985 return pll;
3986 }
3987
3988 /**
3989 * intel_shared_dpll_start_config - start a new PLL staged config
3990 * @dev_priv: DRM device
3991 * @clear_pipes: mask of pipes that will have their PLLs freed
3992 *
3993 * Starts a new PLL staged config, copying the current config but
3994 * releasing the references of pipes specified in clear_pipes.
3995 */
3996 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3997 unsigned clear_pipes)
3998 {
3999 struct intel_shared_dpll *pll;
4000 enum intel_dpll_id i;
4001
4002 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4003 pll = &dev_priv->shared_dplls[i];
4004
4005 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4006 GFP_KERNEL);
4007 if (!pll->new_config)
4008 goto cleanup;
4009
4010 pll->new_config->crtc_mask &= ~clear_pipes;
4011 }
4012
4013 return 0;
4014
4015 cleanup:
4016 while (--i >= 0) {
4017 pll = &dev_priv->shared_dplls[i];
4018 kfree(pll->new_config);
4019 pll->new_config = NULL;
4020 }
4021
4022 return -ENOMEM;
4023 }
4024
4025 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4026 {
4027 struct intel_shared_dpll *pll;
4028 enum intel_dpll_id i;
4029
4030 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4031 pll = &dev_priv->shared_dplls[i];
4032
4033 WARN_ON(pll->new_config == &pll->config);
4034
4035 pll->config = *pll->new_config;
4036 kfree(pll->new_config);
4037 pll->new_config = NULL;
4038 }
4039 }
4040
4041 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4042 {
4043 struct intel_shared_dpll *pll;
4044 enum intel_dpll_id i;
4045
4046 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4047 pll = &dev_priv->shared_dplls[i];
4048
4049 WARN_ON(pll->new_config == &pll->config);
4050
4051 kfree(pll->new_config);
4052 pll->new_config = NULL;
4053 }
4054 }
4055
4056 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4057 {
4058 struct drm_i915_private *dev_priv = dev->dev_private;
4059 int dslreg = PIPEDSL(pipe);
4060 u32 temp;
4061
4062 temp = I915_READ(dslreg);
4063 udelay(500);
4064 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4065 if (wait_for(I915_READ(dslreg) != temp, 5))
4066 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4067 }
4068 }
4069
4070 static void skylake_pfit_enable(struct intel_crtc *crtc)
4071 {
4072 struct drm_device *dev = crtc->base.dev;
4073 struct drm_i915_private *dev_priv = dev->dev_private;
4074 int pipe = crtc->pipe;
4075
4076 if (crtc->config.pch_pfit.enabled) {
4077 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4078 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4079 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4080 }
4081 }
4082
4083 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4084 {
4085 struct drm_device *dev = crtc->base.dev;
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 int pipe = crtc->pipe;
4088
4089 if (crtc->config.pch_pfit.enabled) {
4090 /* Force use of hard-coded filter coefficients
4091 * as some pre-programmed values are broken,
4092 * e.g. x201.
4093 */
4094 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4095 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4096 PF_PIPE_SEL_IVB(pipe));
4097 else
4098 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4099 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4100 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4101 }
4102 }
4103
4104 static void intel_enable_planes(struct drm_crtc *crtc)
4105 {
4106 struct drm_device *dev = crtc->dev;
4107 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4108 struct drm_plane *plane;
4109 struct intel_plane *intel_plane;
4110
4111 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4112 intel_plane = to_intel_plane(plane);
4113 if (intel_plane->pipe == pipe)
4114 intel_plane_restore(&intel_plane->base);
4115 }
4116 }
4117
4118 static void intel_disable_planes(struct drm_crtc *crtc)
4119 {
4120 struct drm_device *dev = crtc->dev;
4121 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4122 struct drm_plane *plane;
4123 struct intel_plane *intel_plane;
4124
4125 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4126 intel_plane = to_intel_plane(plane);
4127 if (intel_plane->pipe == pipe)
4128 intel_plane_disable(&intel_plane->base);
4129 }
4130 }
4131
4132 void hsw_enable_ips(struct intel_crtc *crtc)
4133 {
4134 struct drm_device *dev = crtc->base.dev;
4135 struct drm_i915_private *dev_priv = dev->dev_private;
4136
4137 if (!crtc->config.ips_enabled)
4138 return;
4139
4140 /* We can only enable IPS after we enable a plane and wait for a vblank */
4141 intel_wait_for_vblank(dev, crtc->pipe);
4142
4143 assert_plane_enabled(dev_priv, crtc->plane);
4144 if (IS_BROADWELL(dev)) {
4145 mutex_lock(&dev_priv->rps.hw_lock);
4146 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4147 mutex_unlock(&dev_priv->rps.hw_lock);
4148 /* Quoting Art Runyan: "its not safe to expect any particular
4149 * value in IPS_CTL bit 31 after enabling IPS through the
4150 * mailbox." Moreover, the mailbox may return a bogus state,
4151 * so we need to just enable it and continue on.
4152 */
4153 } else {
4154 I915_WRITE(IPS_CTL, IPS_ENABLE);
4155 /* The bit only becomes 1 in the next vblank, so this wait here
4156 * is essentially intel_wait_for_vblank. If we don't have this
4157 * and don't wait for vblanks until the end of crtc_enable, then
4158 * the HW state readout code will complain that the expected
4159 * IPS_CTL value is not the one we read. */
4160 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4161 DRM_ERROR("Timed out waiting for IPS enable\n");
4162 }
4163 }
4164
4165 void hsw_disable_ips(struct intel_crtc *crtc)
4166 {
4167 struct drm_device *dev = crtc->base.dev;
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170 if (!crtc->config.ips_enabled)
4171 return;
4172
4173 assert_plane_enabled(dev_priv, crtc->plane);
4174 if (IS_BROADWELL(dev)) {
4175 mutex_lock(&dev_priv->rps.hw_lock);
4176 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4177 mutex_unlock(&dev_priv->rps.hw_lock);
4178 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4179 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4180 DRM_ERROR("Timed out waiting for IPS disable\n");
4181 } else {
4182 I915_WRITE(IPS_CTL, 0);
4183 POSTING_READ(IPS_CTL);
4184 }
4185
4186 /* We need to wait for a vblank before we can disable the plane. */
4187 intel_wait_for_vblank(dev, crtc->pipe);
4188 }
4189
4190 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4191 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4192 {
4193 struct drm_device *dev = crtc->dev;
4194 struct drm_i915_private *dev_priv = dev->dev_private;
4195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4196 enum pipe pipe = intel_crtc->pipe;
4197 int palreg = PALETTE(pipe);
4198 int i;
4199 bool reenable_ips = false;
4200
4201 /* The clocks have to be on to load the palette. */
4202 if (!crtc->enabled || !intel_crtc->active)
4203 return;
4204
4205 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4206 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4207 assert_dsi_pll_enabled(dev_priv);
4208 else
4209 assert_pll_enabled(dev_priv, pipe);
4210 }
4211
4212 /* use legacy palette for Ironlake */
4213 if (!HAS_GMCH_DISPLAY(dev))
4214 palreg = LGC_PALETTE(pipe);
4215
4216 /* Workaround : Do not read or write the pipe palette/gamma data while
4217 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4218 */
4219 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4220 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4221 GAMMA_MODE_MODE_SPLIT)) {
4222 hsw_disable_ips(intel_crtc);
4223 reenable_ips = true;
4224 }
4225
4226 for (i = 0; i < 256; i++) {
4227 I915_WRITE(palreg + 4 * i,
4228 (intel_crtc->lut_r[i] << 16) |
4229 (intel_crtc->lut_g[i] << 8) |
4230 intel_crtc->lut_b[i]);
4231 }
4232
4233 if (reenable_ips)
4234 hsw_enable_ips(intel_crtc);
4235 }
4236
4237 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4238 {
4239 if (!enable && intel_crtc->overlay) {
4240 struct drm_device *dev = intel_crtc->base.dev;
4241 struct drm_i915_private *dev_priv = dev->dev_private;
4242
4243 mutex_lock(&dev->struct_mutex);
4244 dev_priv->mm.interruptible = false;
4245 (void) intel_overlay_switch_off(intel_crtc->overlay);
4246 dev_priv->mm.interruptible = true;
4247 mutex_unlock(&dev->struct_mutex);
4248 }
4249
4250 /* Let userspace switch the overlay on again. In most cases userspace
4251 * has to recompute where to put it anyway.
4252 */
4253 }
4254
4255 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4256 {
4257 struct drm_device *dev = crtc->dev;
4258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259 int pipe = intel_crtc->pipe;
4260
4261 intel_enable_primary_hw_plane(crtc->primary, crtc);
4262 intel_enable_planes(crtc);
4263 intel_crtc_update_cursor(crtc, true);
4264 intel_crtc_dpms_overlay(intel_crtc, true);
4265
4266 hsw_enable_ips(intel_crtc);
4267
4268 mutex_lock(&dev->struct_mutex);
4269 intel_update_fbc(dev);
4270 mutex_unlock(&dev->struct_mutex);
4271
4272 /*
4273 * FIXME: Once we grow proper nuclear flip support out of this we need
4274 * to compute the mask of flip planes precisely. For the time being
4275 * consider this a flip from a NULL plane.
4276 */
4277 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4278 }
4279
4280 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4281 {
4282 struct drm_device *dev = crtc->dev;
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285 int pipe = intel_crtc->pipe;
4286 int plane = intel_crtc->plane;
4287
4288 intel_crtc_wait_for_pending_flips(crtc);
4289
4290 if (dev_priv->fbc.plane == plane)
4291 intel_disable_fbc(dev);
4292
4293 hsw_disable_ips(intel_crtc);
4294
4295 intel_crtc_dpms_overlay(intel_crtc, false);
4296 intel_crtc_update_cursor(crtc, false);
4297 intel_disable_planes(crtc);
4298 intel_disable_primary_hw_plane(crtc->primary, crtc);
4299
4300 /*
4301 * FIXME: Once we grow proper nuclear flip support out of this we need
4302 * to compute the mask of flip planes precisely. For the time being
4303 * consider this a flip to a NULL plane.
4304 */
4305 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4306 }
4307
4308 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4309 {
4310 struct drm_device *dev = crtc->dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4313 struct intel_encoder *encoder;
4314 int pipe = intel_crtc->pipe;
4315
4316 WARN_ON(!crtc->enabled);
4317
4318 if (intel_crtc->active)
4319 return;
4320
4321 if (intel_crtc->config.has_pch_encoder)
4322 intel_prepare_shared_dpll(intel_crtc);
4323
4324 if (intel_crtc->config.has_dp_encoder)
4325 intel_dp_set_m_n(intel_crtc);
4326
4327 intel_set_pipe_timings(intel_crtc);
4328
4329 if (intel_crtc->config.has_pch_encoder) {
4330 intel_cpu_transcoder_set_m_n(intel_crtc,
4331 &intel_crtc->config.fdi_m_n, NULL);
4332 }
4333
4334 ironlake_set_pipeconf(crtc);
4335
4336 intel_crtc->active = true;
4337
4338 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4339 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4340
4341 for_each_encoder_on_crtc(dev, crtc, encoder)
4342 if (encoder->pre_enable)
4343 encoder->pre_enable(encoder);
4344
4345 if (intel_crtc->config.has_pch_encoder) {
4346 /* Note: FDI PLL enabling _must_ be done before we enable the
4347 * cpu pipes, hence this is separate from all the other fdi/pch
4348 * enabling. */
4349 ironlake_fdi_pll_enable(intel_crtc);
4350 } else {
4351 assert_fdi_tx_disabled(dev_priv, pipe);
4352 assert_fdi_rx_disabled(dev_priv, pipe);
4353 }
4354
4355 ironlake_pfit_enable(intel_crtc);
4356
4357 /*
4358 * On ILK+ LUT must be loaded before the pipe is running but with
4359 * clocks enabled
4360 */
4361 intel_crtc_load_lut(crtc);
4362
4363 intel_update_watermarks(crtc);
4364 intel_enable_pipe(intel_crtc);
4365
4366 if (intel_crtc->config.has_pch_encoder)
4367 ironlake_pch_enable(crtc);
4368
4369 for_each_encoder_on_crtc(dev, crtc, encoder)
4370 encoder->enable(encoder);
4371
4372 if (HAS_PCH_CPT(dev))
4373 cpt_verify_modeset(dev, intel_crtc->pipe);
4374
4375 assert_vblank_disabled(crtc);
4376 drm_crtc_vblank_on(crtc);
4377
4378 intel_crtc_enable_planes(crtc);
4379 }
4380
4381 /* IPS only exists on ULT machines and is tied to pipe A. */
4382 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4383 {
4384 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4385 }
4386
4387 /*
4388 * This implements the workaround described in the "notes" section of the mode
4389 * set sequence documentation. When going from no pipes or single pipe to
4390 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4391 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4392 */
4393 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4394 {
4395 struct drm_device *dev = crtc->base.dev;
4396 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4397
4398 /* We want to get the other_active_crtc only if there's only 1 other
4399 * active crtc. */
4400 for_each_intel_crtc(dev, crtc_it) {
4401 if (!crtc_it->active || crtc_it == crtc)
4402 continue;
4403
4404 if (other_active_crtc)
4405 return;
4406
4407 other_active_crtc = crtc_it;
4408 }
4409 if (!other_active_crtc)
4410 return;
4411
4412 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4414 }
4415
4416 static void haswell_crtc_enable(struct drm_crtc *crtc)
4417 {
4418 struct drm_device *dev = crtc->dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421 struct intel_encoder *encoder;
4422 int pipe = intel_crtc->pipe;
4423
4424 WARN_ON(!crtc->enabled);
4425
4426 if (intel_crtc->active)
4427 return;
4428
4429 if (intel_crtc_to_shared_dpll(intel_crtc))
4430 intel_enable_shared_dpll(intel_crtc);
4431
4432 if (intel_crtc->config.has_dp_encoder)
4433 intel_dp_set_m_n(intel_crtc);
4434
4435 intel_set_pipe_timings(intel_crtc);
4436
4437 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4438 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4439 intel_crtc->config.pixel_multiplier - 1);
4440 }
4441
4442 if (intel_crtc->config.has_pch_encoder) {
4443 intel_cpu_transcoder_set_m_n(intel_crtc,
4444 &intel_crtc->config.fdi_m_n, NULL);
4445 }
4446
4447 haswell_set_pipeconf(crtc);
4448
4449 intel_set_pipe_csc(crtc);
4450
4451 intel_crtc->active = true;
4452
4453 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4454 for_each_encoder_on_crtc(dev, crtc, encoder)
4455 if (encoder->pre_enable)
4456 encoder->pre_enable(encoder);
4457
4458 if (intel_crtc->config.has_pch_encoder) {
4459 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4460 true);
4461 dev_priv->display.fdi_link_train(crtc);
4462 }
4463
4464 intel_ddi_enable_pipe_clock(intel_crtc);
4465
4466 if (IS_SKYLAKE(dev))
4467 skylake_pfit_enable(intel_crtc);
4468 else
4469 ironlake_pfit_enable(intel_crtc);
4470
4471 /*
4472 * On ILK+ LUT must be loaded before the pipe is running but with
4473 * clocks enabled
4474 */
4475 intel_crtc_load_lut(crtc);
4476
4477 intel_ddi_set_pipe_settings(crtc);
4478 intel_ddi_enable_transcoder_func(crtc);
4479
4480 intel_update_watermarks(crtc);
4481 intel_enable_pipe(intel_crtc);
4482
4483 if (intel_crtc->config.has_pch_encoder)
4484 lpt_pch_enable(crtc);
4485
4486 if (intel_crtc->config.dp_encoder_is_mst)
4487 intel_ddi_set_vc_payload_alloc(crtc, true);
4488
4489 for_each_encoder_on_crtc(dev, crtc, encoder) {
4490 encoder->enable(encoder);
4491 intel_opregion_notify_encoder(encoder, true);
4492 }
4493
4494 assert_vblank_disabled(crtc);
4495 drm_crtc_vblank_on(crtc);
4496
4497 /* If we change the relative order between pipe/planes enabling, we need
4498 * to change the workaround. */
4499 haswell_mode_set_planes_workaround(intel_crtc);
4500 intel_crtc_enable_planes(crtc);
4501 }
4502
4503 static void skylake_pfit_disable(struct intel_crtc *crtc)
4504 {
4505 struct drm_device *dev = crtc->base.dev;
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 int pipe = crtc->pipe;
4508
4509 /* To avoid upsetting the power well on haswell only disable the pfit if
4510 * it's in use. The hw state code will make sure we get this right. */
4511 if (crtc->config.pch_pfit.enabled) {
4512 I915_WRITE(PS_CTL(pipe), 0);
4513 I915_WRITE(PS_WIN_POS(pipe), 0);
4514 I915_WRITE(PS_WIN_SZ(pipe), 0);
4515 }
4516 }
4517
4518 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4519 {
4520 struct drm_device *dev = crtc->base.dev;
4521 struct drm_i915_private *dev_priv = dev->dev_private;
4522 int pipe = crtc->pipe;
4523
4524 /* To avoid upsetting the power well on haswell only disable the pfit if
4525 * it's in use. The hw state code will make sure we get this right. */
4526 if (crtc->config.pch_pfit.enabled) {
4527 I915_WRITE(PF_CTL(pipe), 0);
4528 I915_WRITE(PF_WIN_POS(pipe), 0);
4529 I915_WRITE(PF_WIN_SZ(pipe), 0);
4530 }
4531 }
4532
4533 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4534 {
4535 struct drm_device *dev = crtc->dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538 struct intel_encoder *encoder;
4539 int pipe = intel_crtc->pipe;
4540 u32 reg, temp;
4541
4542 if (!intel_crtc->active)
4543 return;
4544
4545 intel_crtc_disable_planes(crtc);
4546
4547 drm_crtc_vblank_off(crtc);
4548 assert_vblank_disabled(crtc);
4549
4550 for_each_encoder_on_crtc(dev, crtc, encoder)
4551 encoder->disable(encoder);
4552
4553 if (intel_crtc->config.has_pch_encoder)
4554 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556 intel_disable_pipe(intel_crtc);
4557
4558 ironlake_pfit_disable(intel_crtc);
4559
4560 for_each_encoder_on_crtc(dev, crtc, encoder)
4561 if (encoder->post_disable)
4562 encoder->post_disable(encoder);
4563
4564 if (intel_crtc->config.has_pch_encoder) {
4565 ironlake_fdi_disable(crtc);
4566
4567 ironlake_disable_pch_transcoder(dev_priv, pipe);
4568
4569 if (HAS_PCH_CPT(dev)) {
4570 /* disable TRANS_DP_CTL */
4571 reg = TRANS_DP_CTL(pipe);
4572 temp = I915_READ(reg);
4573 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4574 TRANS_DP_PORT_SEL_MASK);
4575 temp |= TRANS_DP_PORT_SEL_NONE;
4576 I915_WRITE(reg, temp);
4577
4578 /* disable DPLL_SEL */
4579 temp = I915_READ(PCH_DPLL_SEL);
4580 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4581 I915_WRITE(PCH_DPLL_SEL, temp);
4582 }
4583
4584 /* disable PCH DPLL */
4585 intel_disable_shared_dpll(intel_crtc);
4586
4587 ironlake_fdi_pll_disable(intel_crtc);
4588 }
4589
4590 intel_crtc->active = false;
4591 intel_update_watermarks(crtc);
4592
4593 mutex_lock(&dev->struct_mutex);
4594 intel_update_fbc(dev);
4595 mutex_unlock(&dev->struct_mutex);
4596 }
4597
4598 static void haswell_crtc_disable(struct drm_crtc *crtc)
4599 {
4600 struct drm_device *dev = crtc->dev;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4603 struct intel_encoder *encoder;
4604 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4605
4606 if (!intel_crtc->active)
4607 return;
4608
4609 intel_crtc_disable_planes(crtc);
4610
4611 drm_crtc_vblank_off(crtc);
4612 assert_vblank_disabled(crtc);
4613
4614 for_each_encoder_on_crtc(dev, crtc, encoder) {
4615 intel_opregion_notify_encoder(encoder, false);
4616 encoder->disable(encoder);
4617 }
4618
4619 if (intel_crtc->config.has_pch_encoder)
4620 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4621 false);
4622 intel_disable_pipe(intel_crtc);
4623
4624 if (intel_crtc->config.dp_encoder_is_mst)
4625 intel_ddi_set_vc_payload_alloc(crtc, false);
4626
4627 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4628
4629 if (IS_SKYLAKE(dev))
4630 skylake_pfit_disable(intel_crtc);
4631 else
4632 ironlake_pfit_disable(intel_crtc);
4633
4634 intel_ddi_disable_pipe_clock(intel_crtc);
4635
4636 if (intel_crtc->config.has_pch_encoder) {
4637 lpt_disable_pch_transcoder(dev_priv);
4638 intel_ddi_fdi_disable(crtc);
4639 }
4640
4641 for_each_encoder_on_crtc(dev, crtc, encoder)
4642 if (encoder->post_disable)
4643 encoder->post_disable(encoder);
4644
4645 intel_crtc->active = false;
4646 intel_update_watermarks(crtc);
4647
4648 mutex_lock(&dev->struct_mutex);
4649 intel_update_fbc(dev);
4650 mutex_unlock(&dev->struct_mutex);
4651
4652 if (intel_crtc_to_shared_dpll(intel_crtc))
4653 intel_disable_shared_dpll(intel_crtc);
4654 }
4655
4656 static void ironlake_crtc_off(struct drm_crtc *crtc)
4657 {
4658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4659 intel_put_shared_dpll(intel_crtc);
4660 }
4661
4662
4663 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4664 {
4665 struct drm_device *dev = crtc->base.dev;
4666 struct drm_i915_private *dev_priv = dev->dev_private;
4667 struct intel_crtc_config *pipe_config = &crtc->config;
4668
4669 if (!crtc->config.gmch_pfit.control)
4670 return;
4671
4672 /*
4673 * The panel fitter should only be adjusted whilst the pipe is disabled,
4674 * according to register description and PRM.
4675 */
4676 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4677 assert_pipe_disabled(dev_priv, crtc->pipe);
4678
4679 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4680 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4681
4682 /* Border color in case we don't scale up to the full screen. Black by
4683 * default, change to something else for debugging. */
4684 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4685 }
4686
4687 static enum intel_display_power_domain port_to_power_domain(enum port port)
4688 {
4689 switch (port) {
4690 case PORT_A:
4691 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4692 case PORT_B:
4693 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4694 case PORT_C:
4695 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4696 case PORT_D:
4697 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4698 default:
4699 WARN_ON_ONCE(1);
4700 return POWER_DOMAIN_PORT_OTHER;
4701 }
4702 }
4703
4704 #define for_each_power_domain(domain, mask) \
4705 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4706 if ((1 << (domain)) & (mask))
4707
4708 enum intel_display_power_domain
4709 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4710 {
4711 struct drm_device *dev = intel_encoder->base.dev;
4712 struct intel_digital_port *intel_dig_port;
4713
4714 switch (intel_encoder->type) {
4715 case INTEL_OUTPUT_UNKNOWN:
4716 /* Only DDI platforms should ever use this output type */
4717 WARN_ON_ONCE(!HAS_DDI(dev));
4718 case INTEL_OUTPUT_DISPLAYPORT:
4719 case INTEL_OUTPUT_HDMI:
4720 case INTEL_OUTPUT_EDP:
4721 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4722 return port_to_power_domain(intel_dig_port->port);
4723 case INTEL_OUTPUT_DP_MST:
4724 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4725 return port_to_power_domain(intel_dig_port->port);
4726 case INTEL_OUTPUT_ANALOG:
4727 return POWER_DOMAIN_PORT_CRT;
4728 case INTEL_OUTPUT_DSI:
4729 return POWER_DOMAIN_PORT_DSI;
4730 default:
4731 return POWER_DOMAIN_PORT_OTHER;
4732 }
4733 }
4734
4735 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4736 {
4737 struct drm_device *dev = crtc->dev;
4738 struct intel_encoder *intel_encoder;
4739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740 enum pipe pipe = intel_crtc->pipe;
4741 unsigned long mask;
4742 enum transcoder transcoder;
4743
4744 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4745
4746 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4747 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4748 if (intel_crtc->config.pch_pfit.enabled ||
4749 intel_crtc->config.pch_pfit.force_thru)
4750 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4751
4752 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4753 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4754
4755 return mask;
4756 }
4757
4758 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4759 {
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4762 struct intel_crtc *crtc;
4763
4764 /*
4765 * First get all needed power domains, then put all unneeded, to avoid
4766 * any unnecessary toggling of the power wells.
4767 */
4768 for_each_intel_crtc(dev, crtc) {
4769 enum intel_display_power_domain domain;
4770
4771 if (!crtc->base.enabled)
4772 continue;
4773
4774 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4775
4776 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4777 intel_display_power_get(dev_priv, domain);
4778 }
4779
4780 if (dev_priv->display.modeset_global_resources)
4781 dev_priv->display.modeset_global_resources(dev);
4782
4783 for_each_intel_crtc(dev, crtc) {
4784 enum intel_display_power_domain domain;
4785
4786 for_each_power_domain(domain, crtc->enabled_power_domains)
4787 intel_display_power_put(dev_priv, domain);
4788
4789 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4790 }
4791
4792 intel_display_set_init_power(dev_priv, false);
4793 }
4794
4795 /* returns HPLL frequency in kHz */
4796 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4797 {
4798 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4799
4800 /* Obtain SKU information */
4801 mutex_lock(&dev_priv->dpio_lock);
4802 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4803 CCK_FUSE_HPLL_FREQ_MASK;
4804 mutex_unlock(&dev_priv->dpio_lock);
4805
4806 return vco_freq[hpll_freq] * 1000;
4807 }
4808
4809 static void vlv_update_cdclk(struct drm_device *dev)
4810 {
4811 struct drm_i915_private *dev_priv = dev->dev_private;
4812
4813 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4814 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4815 dev_priv->vlv_cdclk_freq);
4816
4817 /*
4818 * Program the gmbus_freq based on the cdclk frequency.
4819 * BSpec erroneously claims we should aim for 4MHz, but
4820 * in fact 1MHz is the correct frequency.
4821 */
4822 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4823 }
4824
4825 /* Adjust CDclk dividers to allow high res or save power if possible */
4826 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4827 {
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 u32 val, cmd;
4830
4831 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4832
4833 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4834 cmd = 2;
4835 else if (cdclk == 266667)
4836 cmd = 1;
4837 else
4838 cmd = 0;
4839
4840 mutex_lock(&dev_priv->rps.hw_lock);
4841 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4842 val &= ~DSPFREQGUAR_MASK;
4843 val |= (cmd << DSPFREQGUAR_SHIFT);
4844 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4845 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4846 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4847 50)) {
4848 DRM_ERROR("timed out waiting for CDclk change\n");
4849 }
4850 mutex_unlock(&dev_priv->rps.hw_lock);
4851
4852 if (cdclk == 400000) {
4853 u32 divider;
4854
4855 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4856
4857 mutex_lock(&dev_priv->dpio_lock);
4858 /* adjust cdclk divider */
4859 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4860 val &= ~DISPLAY_FREQUENCY_VALUES;
4861 val |= divider;
4862 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4863
4864 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4865 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4866 50))
4867 DRM_ERROR("timed out waiting for CDclk change\n");
4868 mutex_unlock(&dev_priv->dpio_lock);
4869 }
4870
4871 mutex_lock(&dev_priv->dpio_lock);
4872 /* adjust self-refresh exit latency value */
4873 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4874 val &= ~0x7f;
4875
4876 /*
4877 * For high bandwidth configs, we set a higher latency in the bunit
4878 * so that the core display fetch happens in time to avoid underruns.
4879 */
4880 if (cdclk == 400000)
4881 val |= 4500 / 250; /* 4.5 usec */
4882 else
4883 val |= 3000 / 250; /* 3.0 usec */
4884 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4885 mutex_unlock(&dev_priv->dpio_lock);
4886
4887 vlv_update_cdclk(dev);
4888 }
4889
4890 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4891 {
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 u32 val, cmd;
4894
4895 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4896
4897 switch (cdclk) {
4898 case 400000:
4899 cmd = 3;
4900 break;
4901 case 333333:
4902 case 320000:
4903 cmd = 2;
4904 break;
4905 case 266667:
4906 cmd = 1;
4907 break;
4908 case 200000:
4909 cmd = 0;
4910 break;
4911 default:
4912 WARN_ON(1);
4913 return;
4914 }
4915
4916 mutex_lock(&dev_priv->rps.hw_lock);
4917 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4918 val &= ~DSPFREQGUAR_MASK_CHV;
4919 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4920 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4921 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4922 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4923 50)) {
4924 DRM_ERROR("timed out waiting for CDclk change\n");
4925 }
4926 mutex_unlock(&dev_priv->rps.hw_lock);
4927
4928 vlv_update_cdclk(dev);
4929 }
4930
4931 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4932 int max_pixclk)
4933 {
4934 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4935
4936 /* FIXME: Punit isn't quite ready yet */
4937 if (IS_CHERRYVIEW(dev_priv->dev))
4938 return 400000;
4939
4940 /*
4941 * Really only a few cases to deal with, as only 4 CDclks are supported:
4942 * 200MHz
4943 * 267MHz
4944 * 320/333MHz (depends on HPLL freq)
4945 * 400MHz
4946 * So we check to see whether we're above 90% of the lower bin and
4947 * adjust if needed.
4948 *
4949 * We seem to get an unstable or solid color picture at 200MHz.
4950 * Not sure what's wrong. For now use 200MHz only when all pipes
4951 * are off.
4952 */
4953 if (max_pixclk > freq_320*9/10)
4954 return 400000;
4955 else if (max_pixclk > 266667*9/10)
4956 return freq_320;
4957 else if (max_pixclk > 0)
4958 return 266667;
4959 else
4960 return 200000;
4961 }
4962
4963 /* compute the max pixel clock for new configuration */
4964 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4965 {
4966 struct drm_device *dev = dev_priv->dev;
4967 struct intel_crtc *intel_crtc;
4968 int max_pixclk = 0;
4969
4970 for_each_intel_crtc(dev, intel_crtc) {
4971 if (intel_crtc->new_enabled)
4972 max_pixclk = max(max_pixclk,
4973 intel_crtc->new_config->adjusted_mode.crtc_clock);
4974 }
4975
4976 return max_pixclk;
4977 }
4978
4979 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4980 unsigned *prepare_pipes)
4981 {
4982 struct drm_i915_private *dev_priv = dev->dev_private;
4983 struct intel_crtc *intel_crtc;
4984 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4985
4986 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4987 dev_priv->vlv_cdclk_freq)
4988 return;
4989
4990 /* disable/enable all currently active pipes while we change cdclk */
4991 for_each_intel_crtc(dev, intel_crtc)
4992 if (intel_crtc->base.enabled)
4993 *prepare_pipes |= (1 << intel_crtc->pipe);
4994 }
4995
4996 static void valleyview_modeset_global_resources(struct drm_device *dev)
4997 {
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5000 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5001
5002 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5003 /*
5004 * FIXME: We can end up here with all power domains off, yet
5005 * with a CDCLK frequency other than the minimum. To account
5006 * for this take the PIPE-A power domain, which covers the HW
5007 * blocks needed for the following programming. This can be
5008 * removed once it's guaranteed that we get here either with
5009 * the minimum CDCLK set, or the required power domains
5010 * enabled.
5011 */
5012 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5013
5014 if (IS_CHERRYVIEW(dev))
5015 cherryview_set_cdclk(dev, req_cdclk);
5016 else
5017 valleyview_set_cdclk(dev, req_cdclk);
5018
5019 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5020 }
5021 }
5022
5023 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5024 {
5025 struct drm_device *dev = crtc->dev;
5026 struct drm_i915_private *dev_priv = to_i915(dev);
5027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5028 struct intel_encoder *encoder;
5029 int pipe = intel_crtc->pipe;
5030 bool is_dsi;
5031
5032 WARN_ON(!crtc->enabled);
5033
5034 if (intel_crtc->active)
5035 return;
5036
5037 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5038
5039 if (!is_dsi) {
5040 if (IS_CHERRYVIEW(dev))
5041 chv_prepare_pll(intel_crtc, &intel_crtc->config);
5042 else
5043 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
5044 }
5045
5046 if (intel_crtc->config.has_dp_encoder)
5047 intel_dp_set_m_n(intel_crtc);
5048
5049 intel_set_pipe_timings(intel_crtc);
5050
5051 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5052 struct drm_i915_private *dev_priv = dev->dev_private;
5053
5054 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5055 I915_WRITE(CHV_CANVAS(pipe), 0);
5056 }
5057
5058 i9xx_set_pipeconf(intel_crtc);
5059
5060 intel_crtc->active = true;
5061
5062 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5063
5064 for_each_encoder_on_crtc(dev, crtc, encoder)
5065 if (encoder->pre_pll_enable)
5066 encoder->pre_pll_enable(encoder);
5067
5068 if (!is_dsi) {
5069 if (IS_CHERRYVIEW(dev))
5070 chv_enable_pll(intel_crtc, &intel_crtc->config);
5071 else
5072 vlv_enable_pll(intel_crtc, &intel_crtc->config);
5073 }
5074
5075 for_each_encoder_on_crtc(dev, crtc, encoder)
5076 if (encoder->pre_enable)
5077 encoder->pre_enable(encoder);
5078
5079 i9xx_pfit_enable(intel_crtc);
5080
5081 intel_crtc_load_lut(crtc);
5082
5083 intel_update_watermarks(crtc);
5084 intel_enable_pipe(intel_crtc);
5085
5086 for_each_encoder_on_crtc(dev, crtc, encoder)
5087 encoder->enable(encoder);
5088
5089 assert_vblank_disabled(crtc);
5090 drm_crtc_vblank_on(crtc);
5091
5092 intel_crtc_enable_planes(crtc);
5093
5094 /* Underruns don't raise interrupts, so check manually. */
5095 i9xx_check_fifo_underruns(dev_priv);
5096 }
5097
5098 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5099 {
5100 struct drm_device *dev = crtc->base.dev;
5101 struct drm_i915_private *dev_priv = dev->dev_private;
5102
5103 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5104 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5105 }
5106
5107 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5108 {
5109 struct drm_device *dev = crtc->dev;
5110 struct drm_i915_private *dev_priv = to_i915(dev);
5111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5112 struct intel_encoder *encoder;
5113 int pipe = intel_crtc->pipe;
5114
5115 WARN_ON(!crtc->enabled);
5116
5117 if (intel_crtc->active)
5118 return;
5119
5120 i9xx_set_pll_dividers(intel_crtc);
5121
5122 if (intel_crtc->config.has_dp_encoder)
5123 intel_dp_set_m_n(intel_crtc);
5124
5125 intel_set_pipe_timings(intel_crtc);
5126
5127 i9xx_set_pipeconf(intel_crtc);
5128
5129 intel_crtc->active = true;
5130
5131 if (!IS_GEN2(dev))
5132 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5133
5134 for_each_encoder_on_crtc(dev, crtc, encoder)
5135 if (encoder->pre_enable)
5136 encoder->pre_enable(encoder);
5137
5138 i9xx_enable_pll(intel_crtc);
5139
5140 i9xx_pfit_enable(intel_crtc);
5141
5142 intel_crtc_load_lut(crtc);
5143
5144 intel_update_watermarks(crtc);
5145 intel_enable_pipe(intel_crtc);
5146
5147 for_each_encoder_on_crtc(dev, crtc, encoder)
5148 encoder->enable(encoder);
5149
5150 assert_vblank_disabled(crtc);
5151 drm_crtc_vblank_on(crtc);
5152
5153 intel_crtc_enable_planes(crtc);
5154
5155 /*
5156 * Gen2 reports pipe underruns whenever all planes are disabled.
5157 * So don't enable underrun reporting before at least some planes
5158 * are enabled.
5159 * FIXME: Need to fix the logic to work when we turn off all planes
5160 * but leave the pipe running.
5161 */
5162 if (IS_GEN2(dev))
5163 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5164
5165 /* Underruns don't raise interrupts, so check manually. */
5166 i9xx_check_fifo_underruns(dev_priv);
5167 }
5168
5169 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5170 {
5171 struct drm_device *dev = crtc->base.dev;
5172 struct drm_i915_private *dev_priv = dev->dev_private;
5173
5174 if (!crtc->config.gmch_pfit.control)
5175 return;
5176
5177 assert_pipe_disabled(dev_priv, crtc->pipe);
5178
5179 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5180 I915_READ(PFIT_CONTROL));
5181 I915_WRITE(PFIT_CONTROL, 0);
5182 }
5183
5184 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5185 {
5186 struct drm_device *dev = crtc->dev;
5187 struct drm_i915_private *dev_priv = dev->dev_private;
5188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5189 struct intel_encoder *encoder;
5190 int pipe = intel_crtc->pipe;
5191
5192 if (!intel_crtc->active)
5193 return;
5194
5195 /*
5196 * Gen2 reports pipe underruns whenever all planes are disabled.
5197 * So diasble underrun reporting before all the planes get disabled.
5198 * FIXME: Need to fix the logic to work when we turn off all planes
5199 * but leave the pipe running.
5200 */
5201 if (IS_GEN2(dev))
5202 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5203
5204 /*
5205 * Vblank time updates from the shadow to live plane control register
5206 * are blocked if the memory self-refresh mode is active at that
5207 * moment. So to make sure the plane gets truly disabled, disable
5208 * first the self-refresh mode. The self-refresh enable bit in turn
5209 * will be checked/applied by the HW only at the next frame start
5210 * event which is after the vblank start event, so we need to have a
5211 * wait-for-vblank between disabling the plane and the pipe.
5212 */
5213 intel_set_memory_cxsr(dev_priv, false);
5214 intel_crtc_disable_planes(crtc);
5215
5216 /*
5217 * On gen2 planes are double buffered but the pipe isn't, so we must
5218 * wait for planes to fully turn off before disabling the pipe.
5219 * We also need to wait on all gmch platforms because of the
5220 * self-refresh mode constraint explained above.
5221 */
5222 intel_wait_for_vblank(dev, pipe);
5223
5224 drm_crtc_vblank_off(crtc);
5225 assert_vblank_disabled(crtc);
5226
5227 for_each_encoder_on_crtc(dev, crtc, encoder)
5228 encoder->disable(encoder);
5229
5230 intel_disable_pipe(intel_crtc);
5231
5232 i9xx_pfit_disable(intel_crtc);
5233
5234 for_each_encoder_on_crtc(dev, crtc, encoder)
5235 if (encoder->post_disable)
5236 encoder->post_disable(encoder);
5237
5238 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5239 if (IS_CHERRYVIEW(dev))
5240 chv_disable_pll(dev_priv, pipe);
5241 else if (IS_VALLEYVIEW(dev))
5242 vlv_disable_pll(dev_priv, pipe);
5243 else
5244 i9xx_disable_pll(intel_crtc);
5245 }
5246
5247 if (!IS_GEN2(dev))
5248 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5249
5250 intel_crtc->active = false;
5251 intel_update_watermarks(crtc);
5252
5253 mutex_lock(&dev->struct_mutex);
5254 intel_update_fbc(dev);
5255 mutex_unlock(&dev->struct_mutex);
5256 }
5257
5258 static void i9xx_crtc_off(struct drm_crtc *crtc)
5259 {
5260 }
5261
5262 /* Master function to enable/disable CRTC and corresponding power wells */
5263 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5264 {
5265 struct drm_device *dev = crtc->dev;
5266 struct drm_i915_private *dev_priv = dev->dev_private;
5267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5268 enum intel_display_power_domain domain;
5269 unsigned long domains;
5270
5271 if (enable) {
5272 if (!intel_crtc->active) {
5273 domains = get_crtc_power_domains(crtc);
5274 for_each_power_domain(domain, domains)
5275 intel_display_power_get(dev_priv, domain);
5276 intel_crtc->enabled_power_domains = domains;
5277
5278 dev_priv->display.crtc_enable(crtc);
5279 }
5280 } else {
5281 if (intel_crtc->active) {
5282 dev_priv->display.crtc_disable(crtc);
5283
5284 domains = intel_crtc->enabled_power_domains;
5285 for_each_power_domain(domain, domains)
5286 intel_display_power_put(dev_priv, domain);
5287 intel_crtc->enabled_power_domains = 0;
5288 }
5289 }
5290 }
5291
5292 /**
5293 * Sets the power management mode of the pipe and plane.
5294 */
5295 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5296 {
5297 struct drm_device *dev = crtc->dev;
5298 struct intel_encoder *intel_encoder;
5299 bool enable = false;
5300
5301 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5302 enable |= intel_encoder->connectors_active;
5303
5304 intel_crtc_control(crtc, enable);
5305 }
5306
5307 static void intel_crtc_disable(struct drm_crtc *crtc)
5308 {
5309 struct drm_device *dev = crtc->dev;
5310 struct drm_connector *connector;
5311 struct drm_i915_private *dev_priv = dev->dev_private;
5312 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5313 enum pipe pipe = to_intel_crtc(crtc)->pipe;
5314
5315 /* crtc should still be enabled when we disable it. */
5316 WARN_ON(!crtc->enabled);
5317
5318 dev_priv->display.crtc_disable(crtc);
5319 dev_priv->display.off(crtc);
5320
5321 if (crtc->primary->fb) {
5322 mutex_lock(&dev->struct_mutex);
5323 intel_unpin_fb_obj(old_obj);
5324 i915_gem_track_fb(old_obj, NULL,
5325 INTEL_FRONTBUFFER_PRIMARY(pipe));
5326 mutex_unlock(&dev->struct_mutex);
5327 crtc->primary->fb = NULL;
5328 }
5329
5330 /* Update computed state. */
5331 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5332 if (!connector->encoder || !connector->encoder->crtc)
5333 continue;
5334
5335 if (connector->encoder->crtc != crtc)
5336 continue;
5337
5338 connector->dpms = DRM_MODE_DPMS_OFF;
5339 to_intel_encoder(connector->encoder)->connectors_active = false;
5340 }
5341 }
5342
5343 void intel_encoder_destroy(struct drm_encoder *encoder)
5344 {
5345 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5346
5347 drm_encoder_cleanup(encoder);
5348 kfree(intel_encoder);
5349 }
5350
5351 /* Simple dpms helper for encoders with just one connector, no cloning and only
5352 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5353 * state of the entire output pipe. */
5354 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5355 {
5356 if (mode == DRM_MODE_DPMS_ON) {
5357 encoder->connectors_active = true;
5358
5359 intel_crtc_update_dpms(encoder->base.crtc);
5360 } else {
5361 encoder->connectors_active = false;
5362
5363 intel_crtc_update_dpms(encoder->base.crtc);
5364 }
5365 }
5366
5367 /* Cross check the actual hw state with our own modeset state tracking (and it's
5368 * internal consistency). */
5369 static void intel_connector_check_state(struct intel_connector *connector)
5370 {
5371 if (connector->get_hw_state(connector)) {
5372 struct intel_encoder *encoder = connector->encoder;
5373 struct drm_crtc *crtc;
5374 bool encoder_enabled;
5375 enum pipe pipe;
5376
5377 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5378 connector->base.base.id,
5379 connector->base.name);
5380
5381 /* there is no real hw state for MST connectors */
5382 if (connector->mst_port)
5383 return;
5384
5385 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5386 "wrong connector dpms state\n");
5387 WARN(connector->base.encoder != &encoder->base,
5388 "active connector not linked to encoder\n");
5389
5390 if (encoder) {
5391 WARN(!encoder->connectors_active,
5392 "encoder->connectors_active not set\n");
5393
5394 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5395 WARN(!encoder_enabled, "encoder not enabled\n");
5396 if (WARN_ON(!encoder->base.crtc))
5397 return;
5398
5399 crtc = encoder->base.crtc;
5400
5401 WARN(!crtc->enabled, "crtc not enabled\n");
5402 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5403 WARN(pipe != to_intel_crtc(crtc)->pipe,
5404 "encoder active on the wrong pipe\n");
5405 }
5406 }
5407 }
5408
5409 /* Even simpler default implementation, if there's really no special case to
5410 * consider. */
5411 void intel_connector_dpms(struct drm_connector *connector, int mode)
5412 {
5413 /* All the simple cases only support two dpms states. */
5414 if (mode != DRM_MODE_DPMS_ON)
5415 mode = DRM_MODE_DPMS_OFF;
5416
5417 if (mode == connector->dpms)
5418 return;
5419
5420 connector->dpms = mode;
5421
5422 /* Only need to change hw state when actually enabled */
5423 if (connector->encoder)
5424 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5425
5426 intel_modeset_check_state(connector->dev);
5427 }
5428
5429 /* Simple connector->get_hw_state implementation for encoders that support only
5430 * one connector and no cloning and hence the encoder state determines the state
5431 * of the connector. */
5432 bool intel_connector_get_hw_state(struct intel_connector *connector)
5433 {
5434 enum pipe pipe = 0;
5435 struct intel_encoder *encoder = connector->encoder;
5436
5437 return encoder->get_hw_state(encoder, &pipe);
5438 }
5439
5440 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5441 struct intel_crtc_config *pipe_config)
5442 {
5443 struct drm_i915_private *dev_priv = dev->dev_private;
5444 struct intel_crtc *pipe_B_crtc =
5445 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5446
5447 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5448 pipe_name(pipe), pipe_config->fdi_lanes);
5449 if (pipe_config->fdi_lanes > 4) {
5450 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5451 pipe_name(pipe), pipe_config->fdi_lanes);
5452 return false;
5453 }
5454
5455 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5456 if (pipe_config->fdi_lanes > 2) {
5457 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5458 pipe_config->fdi_lanes);
5459 return false;
5460 } else {
5461 return true;
5462 }
5463 }
5464
5465 if (INTEL_INFO(dev)->num_pipes == 2)
5466 return true;
5467
5468 /* Ivybridge 3 pipe is really complicated */
5469 switch (pipe) {
5470 case PIPE_A:
5471 return true;
5472 case PIPE_B:
5473 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5474 pipe_config->fdi_lanes > 2) {
5475 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5476 pipe_name(pipe), pipe_config->fdi_lanes);
5477 return false;
5478 }
5479 return true;
5480 case PIPE_C:
5481 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5482 pipe_B_crtc->config.fdi_lanes <= 2) {
5483 if (pipe_config->fdi_lanes > 2) {
5484 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5485 pipe_name(pipe), pipe_config->fdi_lanes);
5486 return false;
5487 }
5488 } else {
5489 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5490 return false;
5491 }
5492 return true;
5493 default:
5494 BUG();
5495 }
5496 }
5497
5498 #define RETRY 1
5499 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5500 struct intel_crtc_config *pipe_config)
5501 {
5502 struct drm_device *dev = intel_crtc->base.dev;
5503 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5504 int lane, link_bw, fdi_dotclock;
5505 bool setup_ok, needs_recompute = false;
5506
5507 retry:
5508 /* FDI is a binary signal running at ~2.7GHz, encoding
5509 * each output octet as 10 bits. The actual frequency
5510 * is stored as a divider into a 100MHz clock, and the
5511 * mode pixel clock is stored in units of 1KHz.
5512 * Hence the bw of each lane in terms of the mode signal
5513 * is:
5514 */
5515 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5516
5517 fdi_dotclock = adjusted_mode->crtc_clock;
5518
5519 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5520 pipe_config->pipe_bpp);
5521
5522 pipe_config->fdi_lanes = lane;
5523
5524 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5525 link_bw, &pipe_config->fdi_m_n);
5526
5527 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5528 intel_crtc->pipe, pipe_config);
5529 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5530 pipe_config->pipe_bpp -= 2*3;
5531 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5532 pipe_config->pipe_bpp);
5533 needs_recompute = true;
5534 pipe_config->bw_constrained = true;
5535
5536 goto retry;
5537 }
5538
5539 if (needs_recompute)
5540 return RETRY;
5541
5542 return setup_ok ? 0 : -EINVAL;
5543 }
5544
5545 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5546 struct intel_crtc_config *pipe_config)
5547 {
5548 pipe_config->ips_enabled = i915.enable_ips &&
5549 hsw_crtc_supports_ips(crtc) &&
5550 pipe_config->pipe_bpp <= 24;
5551 }
5552
5553 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5554 struct intel_crtc_config *pipe_config)
5555 {
5556 struct drm_device *dev = crtc->base.dev;
5557 struct drm_i915_private *dev_priv = dev->dev_private;
5558 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5559
5560 /* FIXME should check pixel clock limits on all platforms */
5561 if (INTEL_INFO(dev)->gen < 4) {
5562 int clock_limit =
5563 dev_priv->display.get_display_clock_speed(dev);
5564
5565 /*
5566 * Enable pixel doubling when the dot clock
5567 * is > 90% of the (display) core speed.
5568 *
5569 * GDG double wide on either pipe,
5570 * otherwise pipe A only.
5571 */
5572 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5573 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5574 clock_limit *= 2;
5575 pipe_config->double_wide = true;
5576 }
5577
5578 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5579 return -EINVAL;
5580 }
5581
5582 /*
5583 * Pipe horizontal size must be even in:
5584 * - DVO ganged mode
5585 * - LVDS dual channel mode
5586 * - Double wide pipe
5587 */
5588 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5589 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5590 pipe_config->pipe_src_w &= ~1;
5591
5592 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5593 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5594 */
5595 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5596 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5597 return -EINVAL;
5598
5599 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5600 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5601 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5602 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5603 * for lvds. */
5604 pipe_config->pipe_bpp = 8*3;
5605 }
5606
5607 if (HAS_IPS(dev))
5608 hsw_compute_ips_config(crtc, pipe_config);
5609
5610 if (pipe_config->has_pch_encoder)
5611 return ironlake_fdi_compute_config(crtc, pipe_config);
5612
5613 return 0;
5614 }
5615
5616 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5617 {
5618 struct drm_i915_private *dev_priv = dev->dev_private;
5619 u32 val;
5620 int divider;
5621
5622 /* FIXME: Punit isn't quite ready yet */
5623 if (IS_CHERRYVIEW(dev))
5624 return 400000;
5625
5626 if (dev_priv->hpll_freq == 0)
5627 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5628
5629 mutex_lock(&dev_priv->dpio_lock);
5630 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5631 mutex_unlock(&dev_priv->dpio_lock);
5632
5633 divider = val & DISPLAY_FREQUENCY_VALUES;
5634
5635 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5636 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5637 "cdclk change in progress\n");
5638
5639 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5640 }
5641
5642 static int i945_get_display_clock_speed(struct drm_device *dev)
5643 {
5644 return 400000;
5645 }
5646
5647 static int i915_get_display_clock_speed(struct drm_device *dev)
5648 {
5649 return 333000;
5650 }
5651
5652 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5653 {
5654 return 200000;
5655 }
5656
5657 static int pnv_get_display_clock_speed(struct drm_device *dev)
5658 {
5659 u16 gcfgc = 0;
5660
5661 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5662
5663 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5664 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5665 return 267000;
5666 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5667 return 333000;
5668 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5669 return 444000;
5670 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5671 return 200000;
5672 default:
5673 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5674 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5675 return 133000;
5676 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5677 return 167000;
5678 }
5679 }
5680
5681 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5682 {
5683 u16 gcfgc = 0;
5684
5685 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5686
5687 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5688 return 133000;
5689 else {
5690 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5691 case GC_DISPLAY_CLOCK_333_MHZ:
5692 return 333000;
5693 default:
5694 case GC_DISPLAY_CLOCK_190_200_MHZ:
5695 return 190000;
5696 }
5697 }
5698 }
5699
5700 static int i865_get_display_clock_speed(struct drm_device *dev)
5701 {
5702 return 266000;
5703 }
5704
5705 static int i855_get_display_clock_speed(struct drm_device *dev)
5706 {
5707 u16 hpllcc = 0;
5708 /* Assume that the hardware is in the high speed state. This
5709 * should be the default.
5710 */
5711 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5712 case GC_CLOCK_133_200:
5713 case GC_CLOCK_100_200:
5714 return 200000;
5715 case GC_CLOCK_166_250:
5716 return 250000;
5717 case GC_CLOCK_100_133:
5718 return 133000;
5719 }
5720
5721 /* Shouldn't happen */
5722 return 0;
5723 }
5724
5725 static int i830_get_display_clock_speed(struct drm_device *dev)
5726 {
5727 return 133000;
5728 }
5729
5730 static void
5731 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5732 {
5733 while (*num > DATA_LINK_M_N_MASK ||
5734 *den > DATA_LINK_M_N_MASK) {
5735 *num >>= 1;
5736 *den >>= 1;
5737 }
5738 }
5739
5740 static void compute_m_n(unsigned int m, unsigned int n,
5741 uint32_t *ret_m, uint32_t *ret_n)
5742 {
5743 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5744 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5745 intel_reduce_m_n_ratio(ret_m, ret_n);
5746 }
5747
5748 void
5749 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5750 int pixel_clock, int link_clock,
5751 struct intel_link_m_n *m_n)
5752 {
5753 m_n->tu = 64;
5754
5755 compute_m_n(bits_per_pixel * pixel_clock,
5756 link_clock * nlanes * 8,
5757 &m_n->gmch_m, &m_n->gmch_n);
5758
5759 compute_m_n(pixel_clock, link_clock,
5760 &m_n->link_m, &m_n->link_n);
5761 }
5762
5763 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5764 {
5765 if (i915.panel_use_ssc >= 0)
5766 return i915.panel_use_ssc != 0;
5767 return dev_priv->vbt.lvds_use_ssc
5768 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5769 }
5770
5771 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5772 {
5773 struct drm_device *dev = crtc->base.dev;
5774 struct drm_i915_private *dev_priv = dev->dev_private;
5775 int refclk;
5776
5777 if (IS_VALLEYVIEW(dev)) {
5778 refclk = 100000;
5779 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5780 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5781 refclk = dev_priv->vbt.lvds_ssc_freq;
5782 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5783 } else if (!IS_GEN2(dev)) {
5784 refclk = 96000;
5785 } else {
5786 refclk = 48000;
5787 }
5788
5789 return refclk;
5790 }
5791
5792 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5793 {
5794 return (1 << dpll->n) << 16 | dpll->m2;
5795 }
5796
5797 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5798 {
5799 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5800 }
5801
5802 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5803 intel_clock_t *reduced_clock)
5804 {
5805 struct drm_device *dev = crtc->base.dev;
5806 u32 fp, fp2 = 0;
5807
5808 if (IS_PINEVIEW(dev)) {
5809 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5810 if (reduced_clock)
5811 fp2 = pnv_dpll_compute_fp(reduced_clock);
5812 } else {
5813 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5814 if (reduced_clock)
5815 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5816 }
5817
5818 crtc->new_config->dpll_hw_state.fp0 = fp;
5819
5820 crtc->lowfreq_avail = false;
5821 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5822 reduced_clock && i915.powersave) {
5823 crtc->new_config->dpll_hw_state.fp1 = fp2;
5824 crtc->lowfreq_avail = true;
5825 } else {
5826 crtc->new_config->dpll_hw_state.fp1 = fp;
5827 }
5828 }
5829
5830 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5831 pipe)
5832 {
5833 u32 reg_val;
5834
5835 /*
5836 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5837 * and set it to a reasonable value instead.
5838 */
5839 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5840 reg_val &= 0xffffff00;
5841 reg_val |= 0x00000030;
5842 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5843
5844 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5845 reg_val &= 0x8cffffff;
5846 reg_val = 0x8c000000;
5847 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5848
5849 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5850 reg_val &= 0xffffff00;
5851 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5852
5853 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5854 reg_val &= 0x00ffffff;
5855 reg_val |= 0xb0000000;
5856 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5857 }
5858
5859 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5860 struct intel_link_m_n *m_n)
5861 {
5862 struct drm_device *dev = crtc->base.dev;
5863 struct drm_i915_private *dev_priv = dev->dev_private;
5864 int pipe = crtc->pipe;
5865
5866 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5867 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5868 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5869 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5870 }
5871
5872 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5873 struct intel_link_m_n *m_n,
5874 struct intel_link_m_n *m2_n2)
5875 {
5876 struct drm_device *dev = crtc->base.dev;
5877 struct drm_i915_private *dev_priv = dev->dev_private;
5878 int pipe = crtc->pipe;
5879 enum transcoder transcoder = crtc->config.cpu_transcoder;
5880
5881 if (INTEL_INFO(dev)->gen >= 5) {
5882 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5883 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5884 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5885 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5886 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5887 * for gen < 8) and if DRRS is supported (to make sure the
5888 * registers are not unnecessarily accessed).
5889 */
5890 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5891 crtc->config.has_drrs) {
5892 I915_WRITE(PIPE_DATA_M2(transcoder),
5893 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5894 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5895 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5896 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5897 }
5898 } else {
5899 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5900 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5901 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5902 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5903 }
5904 }
5905
5906 void intel_dp_set_m_n(struct intel_crtc *crtc)
5907 {
5908 if (crtc->config.has_pch_encoder)
5909 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5910 else
5911 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5912 &crtc->config.dp_m2_n2);
5913 }
5914
5915 static void vlv_update_pll(struct intel_crtc *crtc,
5916 struct intel_crtc_config *pipe_config)
5917 {
5918 u32 dpll, dpll_md;
5919
5920 /*
5921 * Enable DPIO clock input. We should never disable the reference
5922 * clock for pipe B, since VGA hotplug / manual detection depends
5923 * on it.
5924 */
5925 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5926 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5927 /* We should never disable this, set it here for state tracking */
5928 if (crtc->pipe == PIPE_B)
5929 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5930 dpll |= DPLL_VCO_ENABLE;
5931 pipe_config->dpll_hw_state.dpll = dpll;
5932
5933 dpll_md = (pipe_config->pixel_multiplier - 1)
5934 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5935 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5936 }
5937
5938 static void vlv_prepare_pll(struct intel_crtc *crtc,
5939 const struct intel_crtc_config *pipe_config)
5940 {
5941 struct drm_device *dev = crtc->base.dev;
5942 struct drm_i915_private *dev_priv = dev->dev_private;
5943 int pipe = crtc->pipe;
5944 u32 mdiv;
5945 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5946 u32 coreclk, reg_val;
5947
5948 mutex_lock(&dev_priv->dpio_lock);
5949
5950 bestn = pipe_config->dpll.n;
5951 bestm1 = pipe_config->dpll.m1;
5952 bestm2 = pipe_config->dpll.m2;
5953 bestp1 = pipe_config->dpll.p1;
5954 bestp2 = pipe_config->dpll.p2;
5955
5956 /* See eDP HDMI DPIO driver vbios notes doc */
5957
5958 /* PLL B needs special handling */
5959 if (pipe == PIPE_B)
5960 vlv_pllb_recal_opamp(dev_priv, pipe);
5961
5962 /* Set up Tx target for periodic Rcomp update */
5963 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5964
5965 /* Disable target IRef on PLL */
5966 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5967 reg_val &= 0x00ffffff;
5968 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5969
5970 /* Disable fast lock */
5971 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5972
5973 /* Set idtafcrecal before PLL is enabled */
5974 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5975 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5976 mdiv |= ((bestn << DPIO_N_SHIFT));
5977 mdiv |= (1 << DPIO_K_SHIFT);
5978
5979 /*
5980 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5981 * but we don't support that).
5982 * Note: don't use the DAC post divider as it seems unstable.
5983 */
5984 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5985 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5986
5987 mdiv |= DPIO_ENABLE_CALIBRATION;
5988 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5989
5990 /* Set HBR and RBR LPF coefficients */
5991 if (pipe_config->port_clock == 162000 ||
5992 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5993 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5994 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5995 0x009f0003);
5996 else
5997 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5998 0x00d0000f);
5999
6000 if (crtc->config.has_dp_encoder) {
6001 /* Use SSC source */
6002 if (pipe == PIPE_A)
6003 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6004 0x0df40000);
6005 else
6006 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6007 0x0df70000);
6008 } else { /* HDMI or VGA */
6009 /* Use bend source */
6010 if (pipe == PIPE_A)
6011 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6012 0x0df70000);
6013 else
6014 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6015 0x0df40000);
6016 }
6017
6018 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6019 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6020 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6021 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6022 coreclk |= 0x01000000;
6023 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6024
6025 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6026 mutex_unlock(&dev_priv->dpio_lock);
6027 }
6028
6029 static void chv_update_pll(struct intel_crtc *crtc,
6030 struct intel_crtc_config *pipe_config)
6031 {
6032 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6033 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6034 DPLL_VCO_ENABLE;
6035 if (crtc->pipe != PIPE_A)
6036 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6037
6038 pipe_config->dpll_hw_state.dpll_md =
6039 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6040 }
6041
6042 static void chv_prepare_pll(struct intel_crtc *crtc,
6043 const struct intel_crtc_config *pipe_config)
6044 {
6045 struct drm_device *dev = crtc->base.dev;
6046 struct drm_i915_private *dev_priv = dev->dev_private;
6047 int pipe = crtc->pipe;
6048 int dpll_reg = DPLL(crtc->pipe);
6049 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6050 u32 loopfilter, intcoeff;
6051 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6052 int refclk;
6053
6054 bestn = pipe_config->dpll.n;
6055 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6056 bestm1 = pipe_config->dpll.m1;
6057 bestm2 = pipe_config->dpll.m2 >> 22;
6058 bestp1 = pipe_config->dpll.p1;
6059 bestp2 = pipe_config->dpll.p2;
6060
6061 /*
6062 * Enable Refclk and SSC
6063 */
6064 I915_WRITE(dpll_reg,
6065 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6066
6067 mutex_lock(&dev_priv->dpio_lock);
6068
6069 /* p1 and p2 divider */
6070 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6071 5 << DPIO_CHV_S1_DIV_SHIFT |
6072 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6073 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6074 1 << DPIO_CHV_K_DIV_SHIFT);
6075
6076 /* Feedback post-divider - m2 */
6077 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6078
6079 /* Feedback refclk divider - n and m1 */
6080 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6081 DPIO_CHV_M1_DIV_BY_2 |
6082 1 << DPIO_CHV_N_DIV_SHIFT);
6083
6084 /* M2 fraction division */
6085 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6086
6087 /* M2 fraction division enable */
6088 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6089 DPIO_CHV_FRAC_DIV_EN |
6090 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6091
6092 /* Loop filter */
6093 refclk = i9xx_get_refclk(crtc, 0);
6094 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6095 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6096 if (refclk == 100000)
6097 intcoeff = 11;
6098 else if (refclk == 38400)
6099 intcoeff = 10;
6100 else
6101 intcoeff = 9;
6102 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6103 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6104
6105 /* AFC Recal */
6106 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6107 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6108 DPIO_AFC_RECAL);
6109
6110 mutex_unlock(&dev_priv->dpio_lock);
6111 }
6112
6113 /**
6114 * vlv_force_pll_on - forcibly enable just the PLL
6115 * @dev_priv: i915 private structure
6116 * @pipe: pipe PLL to enable
6117 * @dpll: PLL configuration
6118 *
6119 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6120 * in cases where we need the PLL enabled even when @pipe is not going to
6121 * be enabled.
6122 */
6123 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6124 const struct dpll *dpll)
6125 {
6126 struct intel_crtc *crtc =
6127 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6128 struct intel_crtc_config pipe_config = {
6129 .pixel_multiplier = 1,
6130 .dpll = *dpll,
6131 };
6132
6133 if (IS_CHERRYVIEW(dev)) {
6134 chv_update_pll(crtc, &pipe_config);
6135 chv_prepare_pll(crtc, &pipe_config);
6136 chv_enable_pll(crtc, &pipe_config);
6137 } else {
6138 vlv_update_pll(crtc, &pipe_config);
6139 vlv_prepare_pll(crtc, &pipe_config);
6140 vlv_enable_pll(crtc, &pipe_config);
6141 }
6142 }
6143
6144 /**
6145 * vlv_force_pll_off - forcibly disable just the PLL
6146 * @dev_priv: i915 private structure
6147 * @pipe: pipe PLL to disable
6148 *
6149 * Disable the PLL for @pipe. To be used in cases where we need
6150 * the PLL enabled even when @pipe is not going to be enabled.
6151 */
6152 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6153 {
6154 if (IS_CHERRYVIEW(dev))
6155 chv_disable_pll(to_i915(dev), pipe);
6156 else
6157 vlv_disable_pll(to_i915(dev), pipe);
6158 }
6159
6160 static void i9xx_update_pll(struct intel_crtc *crtc,
6161 intel_clock_t *reduced_clock,
6162 int num_connectors)
6163 {
6164 struct drm_device *dev = crtc->base.dev;
6165 struct drm_i915_private *dev_priv = dev->dev_private;
6166 u32 dpll;
6167 bool is_sdvo;
6168 struct dpll *clock = &crtc->new_config->dpll;
6169
6170 i9xx_update_pll_dividers(crtc, reduced_clock);
6171
6172 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6173 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6174
6175 dpll = DPLL_VGA_MODE_DIS;
6176
6177 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6178 dpll |= DPLLB_MODE_LVDS;
6179 else
6180 dpll |= DPLLB_MODE_DAC_SERIAL;
6181
6182 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6183 dpll |= (crtc->new_config->pixel_multiplier - 1)
6184 << SDVO_MULTIPLIER_SHIFT_HIRES;
6185 }
6186
6187 if (is_sdvo)
6188 dpll |= DPLL_SDVO_HIGH_SPEED;
6189
6190 if (crtc->new_config->has_dp_encoder)
6191 dpll |= DPLL_SDVO_HIGH_SPEED;
6192
6193 /* compute bitmask from p1 value */
6194 if (IS_PINEVIEW(dev))
6195 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6196 else {
6197 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6198 if (IS_G4X(dev) && reduced_clock)
6199 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6200 }
6201 switch (clock->p2) {
6202 case 5:
6203 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6204 break;
6205 case 7:
6206 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6207 break;
6208 case 10:
6209 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6210 break;
6211 case 14:
6212 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6213 break;
6214 }
6215 if (INTEL_INFO(dev)->gen >= 4)
6216 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6217
6218 if (crtc->new_config->sdvo_tv_clock)
6219 dpll |= PLL_REF_INPUT_TVCLKINBC;
6220 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6221 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6222 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6223 else
6224 dpll |= PLL_REF_INPUT_DREFCLK;
6225
6226 dpll |= DPLL_VCO_ENABLE;
6227 crtc->new_config->dpll_hw_state.dpll = dpll;
6228
6229 if (INTEL_INFO(dev)->gen >= 4) {
6230 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6231 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6232 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6233 }
6234 }
6235
6236 static void i8xx_update_pll(struct intel_crtc *crtc,
6237 intel_clock_t *reduced_clock,
6238 int num_connectors)
6239 {
6240 struct drm_device *dev = crtc->base.dev;
6241 struct drm_i915_private *dev_priv = dev->dev_private;
6242 u32 dpll;
6243 struct dpll *clock = &crtc->new_config->dpll;
6244
6245 i9xx_update_pll_dividers(crtc, reduced_clock);
6246
6247 dpll = DPLL_VGA_MODE_DIS;
6248
6249 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6250 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6251 } else {
6252 if (clock->p1 == 2)
6253 dpll |= PLL_P1_DIVIDE_BY_TWO;
6254 else
6255 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6256 if (clock->p2 == 4)
6257 dpll |= PLL_P2_DIVIDE_BY_4;
6258 }
6259
6260 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6261 dpll |= DPLL_DVO_2X_MODE;
6262
6263 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6264 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6265 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6266 else
6267 dpll |= PLL_REF_INPUT_DREFCLK;
6268
6269 dpll |= DPLL_VCO_ENABLE;
6270 crtc->new_config->dpll_hw_state.dpll = dpll;
6271 }
6272
6273 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6274 {
6275 struct drm_device *dev = intel_crtc->base.dev;
6276 struct drm_i915_private *dev_priv = dev->dev_private;
6277 enum pipe pipe = intel_crtc->pipe;
6278 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6279 struct drm_display_mode *adjusted_mode =
6280 &intel_crtc->config.adjusted_mode;
6281 uint32_t crtc_vtotal, crtc_vblank_end;
6282 int vsyncshift = 0;
6283
6284 /* We need to be careful not to changed the adjusted mode, for otherwise
6285 * the hw state checker will get angry at the mismatch. */
6286 crtc_vtotal = adjusted_mode->crtc_vtotal;
6287 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6288
6289 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6290 /* the chip adds 2 halflines automatically */
6291 crtc_vtotal -= 1;
6292 crtc_vblank_end -= 1;
6293
6294 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6295 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6296 else
6297 vsyncshift = adjusted_mode->crtc_hsync_start -
6298 adjusted_mode->crtc_htotal / 2;
6299 if (vsyncshift < 0)
6300 vsyncshift += adjusted_mode->crtc_htotal;
6301 }
6302
6303 if (INTEL_INFO(dev)->gen > 3)
6304 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6305
6306 I915_WRITE(HTOTAL(cpu_transcoder),
6307 (adjusted_mode->crtc_hdisplay - 1) |
6308 ((adjusted_mode->crtc_htotal - 1) << 16));
6309 I915_WRITE(HBLANK(cpu_transcoder),
6310 (adjusted_mode->crtc_hblank_start - 1) |
6311 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6312 I915_WRITE(HSYNC(cpu_transcoder),
6313 (adjusted_mode->crtc_hsync_start - 1) |
6314 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6315
6316 I915_WRITE(VTOTAL(cpu_transcoder),
6317 (adjusted_mode->crtc_vdisplay - 1) |
6318 ((crtc_vtotal - 1) << 16));
6319 I915_WRITE(VBLANK(cpu_transcoder),
6320 (adjusted_mode->crtc_vblank_start - 1) |
6321 ((crtc_vblank_end - 1) << 16));
6322 I915_WRITE(VSYNC(cpu_transcoder),
6323 (adjusted_mode->crtc_vsync_start - 1) |
6324 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6325
6326 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6327 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6328 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6329 * bits. */
6330 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6331 (pipe == PIPE_B || pipe == PIPE_C))
6332 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6333
6334 /* pipesrc controls the size that is scaled from, which should
6335 * always be the user's requested size.
6336 */
6337 I915_WRITE(PIPESRC(pipe),
6338 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6339 (intel_crtc->config.pipe_src_h - 1));
6340 }
6341
6342 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6343 struct intel_crtc_config *pipe_config)
6344 {
6345 struct drm_device *dev = crtc->base.dev;
6346 struct drm_i915_private *dev_priv = dev->dev_private;
6347 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6348 uint32_t tmp;
6349
6350 tmp = I915_READ(HTOTAL(cpu_transcoder));
6351 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6352 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6353 tmp = I915_READ(HBLANK(cpu_transcoder));
6354 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6355 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6356 tmp = I915_READ(HSYNC(cpu_transcoder));
6357 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6358 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6359
6360 tmp = I915_READ(VTOTAL(cpu_transcoder));
6361 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6362 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6363 tmp = I915_READ(VBLANK(cpu_transcoder));
6364 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6365 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6366 tmp = I915_READ(VSYNC(cpu_transcoder));
6367 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6368 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6369
6370 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6371 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6372 pipe_config->adjusted_mode.crtc_vtotal += 1;
6373 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6374 }
6375
6376 tmp = I915_READ(PIPESRC(crtc->pipe));
6377 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6378 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6379
6380 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6381 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6382 }
6383
6384 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6385 struct intel_crtc_config *pipe_config)
6386 {
6387 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6388 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6389 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6390 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6391
6392 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6393 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6394 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6395 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6396
6397 mode->flags = pipe_config->adjusted_mode.flags;
6398
6399 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6400 mode->flags |= pipe_config->adjusted_mode.flags;
6401 }
6402
6403 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6404 {
6405 struct drm_device *dev = intel_crtc->base.dev;
6406 struct drm_i915_private *dev_priv = dev->dev_private;
6407 uint32_t pipeconf;
6408
6409 pipeconf = 0;
6410
6411 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6412 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6413 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6414
6415 if (intel_crtc->config.double_wide)
6416 pipeconf |= PIPECONF_DOUBLE_WIDE;
6417
6418 /* only g4x and later have fancy bpc/dither controls */
6419 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6420 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6421 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6422 pipeconf |= PIPECONF_DITHER_EN |
6423 PIPECONF_DITHER_TYPE_SP;
6424
6425 switch (intel_crtc->config.pipe_bpp) {
6426 case 18:
6427 pipeconf |= PIPECONF_6BPC;
6428 break;
6429 case 24:
6430 pipeconf |= PIPECONF_8BPC;
6431 break;
6432 case 30:
6433 pipeconf |= PIPECONF_10BPC;
6434 break;
6435 default:
6436 /* Case prevented by intel_choose_pipe_bpp_dither. */
6437 BUG();
6438 }
6439 }
6440
6441 if (HAS_PIPE_CXSR(dev)) {
6442 if (intel_crtc->lowfreq_avail) {
6443 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6444 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6445 } else {
6446 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6447 }
6448 }
6449
6450 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6451 if (INTEL_INFO(dev)->gen < 4 ||
6452 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6453 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6454 else
6455 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6456 } else
6457 pipeconf |= PIPECONF_PROGRESSIVE;
6458
6459 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6460 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6461
6462 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6463 POSTING_READ(PIPECONF(intel_crtc->pipe));
6464 }
6465
6466 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6467 {
6468 struct drm_device *dev = crtc->base.dev;
6469 struct drm_i915_private *dev_priv = dev->dev_private;
6470 int refclk, num_connectors = 0;
6471 intel_clock_t clock, reduced_clock;
6472 bool ok, has_reduced_clock = false;
6473 bool is_lvds = false, is_dsi = false;
6474 struct intel_encoder *encoder;
6475 const intel_limit_t *limit;
6476
6477 for_each_intel_encoder(dev, encoder) {
6478 if (encoder->new_crtc != crtc)
6479 continue;
6480
6481 switch (encoder->type) {
6482 case INTEL_OUTPUT_LVDS:
6483 is_lvds = true;
6484 break;
6485 case INTEL_OUTPUT_DSI:
6486 is_dsi = true;
6487 break;
6488 default:
6489 break;
6490 }
6491
6492 num_connectors++;
6493 }
6494
6495 if (is_dsi)
6496 return 0;
6497
6498 if (!crtc->new_config->clock_set) {
6499 refclk = i9xx_get_refclk(crtc, num_connectors);
6500
6501 /*
6502 * Returns a set of divisors for the desired target clock with
6503 * the given refclk, or FALSE. The returned values represent
6504 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6505 * 2) / p1 / p2.
6506 */
6507 limit = intel_limit(crtc, refclk);
6508 ok = dev_priv->display.find_dpll(limit, crtc,
6509 crtc->new_config->port_clock,
6510 refclk, NULL, &clock);
6511 if (!ok) {
6512 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6513 return -EINVAL;
6514 }
6515
6516 if (is_lvds && dev_priv->lvds_downclock_avail) {
6517 /*
6518 * Ensure we match the reduced clock's P to the target
6519 * clock. If the clocks don't match, we can't switch
6520 * the display clock by using the FP0/FP1. In such case
6521 * we will disable the LVDS downclock feature.
6522 */
6523 has_reduced_clock =
6524 dev_priv->display.find_dpll(limit, crtc,
6525 dev_priv->lvds_downclock,
6526 refclk, &clock,
6527 &reduced_clock);
6528 }
6529 /* Compat-code for transition, will disappear. */
6530 crtc->new_config->dpll.n = clock.n;
6531 crtc->new_config->dpll.m1 = clock.m1;
6532 crtc->new_config->dpll.m2 = clock.m2;
6533 crtc->new_config->dpll.p1 = clock.p1;
6534 crtc->new_config->dpll.p2 = clock.p2;
6535 }
6536
6537 if (IS_GEN2(dev)) {
6538 i8xx_update_pll(crtc,
6539 has_reduced_clock ? &reduced_clock : NULL,
6540 num_connectors);
6541 } else if (IS_CHERRYVIEW(dev)) {
6542 chv_update_pll(crtc, crtc->new_config);
6543 } else if (IS_VALLEYVIEW(dev)) {
6544 vlv_update_pll(crtc, crtc->new_config);
6545 } else {
6546 i9xx_update_pll(crtc,
6547 has_reduced_clock ? &reduced_clock : NULL,
6548 num_connectors);
6549 }
6550
6551 return 0;
6552 }
6553
6554 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6555 struct intel_crtc_config *pipe_config)
6556 {
6557 struct drm_device *dev = crtc->base.dev;
6558 struct drm_i915_private *dev_priv = dev->dev_private;
6559 uint32_t tmp;
6560
6561 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6562 return;
6563
6564 tmp = I915_READ(PFIT_CONTROL);
6565 if (!(tmp & PFIT_ENABLE))
6566 return;
6567
6568 /* Check whether the pfit is attached to our pipe. */
6569 if (INTEL_INFO(dev)->gen < 4) {
6570 if (crtc->pipe != PIPE_B)
6571 return;
6572 } else {
6573 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6574 return;
6575 }
6576
6577 pipe_config->gmch_pfit.control = tmp;
6578 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6579 if (INTEL_INFO(dev)->gen < 5)
6580 pipe_config->gmch_pfit.lvds_border_bits =
6581 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6582 }
6583
6584 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6585 struct intel_crtc_config *pipe_config)
6586 {
6587 struct drm_device *dev = crtc->base.dev;
6588 struct drm_i915_private *dev_priv = dev->dev_private;
6589 int pipe = pipe_config->cpu_transcoder;
6590 intel_clock_t clock;
6591 u32 mdiv;
6592 int refclk = 100000;
6593
6594 /* In case of MIPI DPLL will not even be used */
6595 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6596 return;
6597
6598 mutex_lock(&dev_priv->dpio_lock);
6599 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6600 mutex_unlock(&dev_priv->dpio_lock);
6601
6602 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6603 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6604 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6605 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6606 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6607
6608 vlv_clock(refclk, &clock);
6609
6610 /* clock.dot is the fast clock */
6611 pipe_config->port_clock = clock.dot / 5;
6612 }
6613
6614 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6615 struct intel_plane_config *plane_config)
6616 {
6617 struct drm_device *dev = crtc->base.dev;
6618 struct drm_i915_private *dev_priv = dev->dev_private;
6619 u32 val, base, offset;
6620 int pipe = crtc->pipe, plane = crtc->plane;
6621 int fourcc, pixel_format;
6622 int aligned_height;
6623
6624 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6625 if (!crtc->base.primary->fb) {
6626 DRM_DEBUG_KMS("failed to alloc fb\n");
6627 return;
6628 }
6629
6630 val = I915_READ(DSPCNTR(plane));
6631
6632 if (INTEL_INFO(dev)->gen >= 4)
6633 if (val & DISPPLANE_TILED)
6634 plane_config->tiled = true;
6635
6636 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6637 fourcc = intel_format_to_fourcc(pixel_format);
6638 crtc->base.primary->fb->pixel_format = fourcc;
6639 crtc->base.primary->fb->bits_per_pixel =
6640 drm_format_plane_cpp(fourcc, 0) * 8;
6641
6642 if (INTEL_INFO(dev)->gen >= 4) {
6643 if (plane_config->tiled)
6644 offset = I915_READ(DSPTILEOFF(plane));
6645 else
6646 offset = I915_READ(DSPLINOFF(plane));
6647 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6648 } else {
6649 base = I915_READ(DSPADDR(plane));
6650 }
6651 plane_config->base = base;
6652
6653 val = I915_READ(PIPESRC(pipe));
6654 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6655 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6656
6657 val = I915_READ(DSPSTRIDE(pipe));
6658 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6659
6660 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6661 plane_config->tiled);
6662
6663 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6664 aligned_height);
6665
6666 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6667 pipe, plane, crtc->base.primary->fb->width,
6668 crtc->base.primary->fb->height,
6669 crtc->base.primary->fb->bits_per_pixel, base,
6670 crtc->base.primary->fb->pitches[0],
6671 plane_config->size);
6672
6673 }
6674
6675 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6676 struct intel_crtc_config *pipe_config)
6677 {
6678 struct drm_device *dev = crtc->base.dev;
6679 struct drm_i915_private *dev_priv = dev->dev_private;
6680 int pipe = pipe_config->cpu_transcoder;
6681 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6682 intel_clock_t clock;
6683 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6684 int refclk = 100000;
6685
6686 mutex_lock(&dev_priv->dpio_lock);
6687 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6688 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6689 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6690 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6691 mutex_unlock(&dev_priv->dpio_lock);
6692
6693 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6694 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6695 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6696 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6697 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6698
6699 chv_clock(refclk, &clock);
6700
6701 /* clock.dot is the fast clock */
6702 pipe_config->port_clock = clock.dot / 5;
6703 }
6704
6705 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6706 struct intel_crtc_config *pipe_config)
6707 {
6708 struct drm_device *dev = crtc->base.dev;
6709 struct drm_i915_private *dev_priv = dev->dev_private;
6710 uint32_t tmp;
6711
6712 if (!intel_display_power_is_enabled(dev_priv,
6713 POWER_DOMAIN_PIPE(crtc->pipe)))
6714 return false;
6715
6716 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6717 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6718
6719 tmp = I915_READ(PIPECONF(crtc->pipe));
6720 if (!(tmp & PIPECONF_ENABLE))
6721 return false;
6722
6723 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6724 switch (tmp & PIPECONF_BPC_MASK) {
6725 case PIPECONF_6BPC:
6726 pipe_config->pipe_bpp = 18;
6727 break;
6728 case PIPECONF_8BPC:
6729 pipe_config->pipe_bpp = 24;
6730 break;
6731 case PIPECONF_10BPC:
6732 pipe_config->pipe_bpp = 30;
6733 break;
6734 default:
6735 break;
6736 }
6737 }
6738
6739 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6740 pipe_config->limited_color_range = true;
6741
6742 if (INTEL_INFO(dev)->gen < 4)
6743 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6744
6745 intel_get_pipe_timings(crtc, pipe_config);
6746
6747 i9xx_get_pfit_config(crtc, pipe_config);
6748
6749 if (INTEL_INFO(dev)->gen >= 4) {
6750 tmp = I915_READ(DPLL_MD(crtc->pipe));
6751 pipe_config->pixel_multiplier =
6752 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6753 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6754 pipe_config->dpll_hw_state.dpll_md = tmp;
6755 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6756 tmp = I915_READ(DPLL(crtc->pipe));
6757 pipe_config->pixel_multiplier =
6758 ((tmp & SDVO_MULTIPLIER_MASK)
6759 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6760 } else {
6761 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6762 * port and will be fixed up in the encoder->get_config
6763 * function. */
6764 pipe_config->pixel_multiplier = 1;
6765 }
6766 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6767 if (!IS_VALLEYVIEW(dev)) {
6768 /*
6769 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6770 * on 830. Filter it out here so that we don't
6771 * report errors due to that.
6772 */
6773 if (IS_I830(dev))
6774 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6775
6776 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6777 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6778 } else {
6779 /* Mask out read-only status bits. */
6780 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6781 DPLL_PORTC_READY_MASK |
6782 DPLL_PORTB_READY_MASK);
6783 }
6784
6785 if (IS_CHERRYVIEW(dev))
6786 chv_crtc_clock_get(crtc, pipe_config);
6787 else if (IS_VALLEYVIEW(dev))
6788 vlv_crtc_clock_get(crtc, pipe_config);
6789 else
6790 i9xx_crtc_clock_get(crtc, pipe_config);
6791
6792 return true;
6793 }
6794
6795 static void ironlake_init_pch_refclk(struct drm_device *dev)
6796 {
6797 struct drm_i915_private *dev_priv = dev->dev_private;
6798 struct intel_encoder *encoder;
6799 u32 val, final;
6800 bool has_lvds = false;
6801 bool has_cpu_edp = false;
6802 bool has_panel = false;
6803 bool has_ck505 = false;
6804 bool can_ssc = false;
6805
6806 /* We need to take the global config into account */
6807 for_each_intel_encoder(dev, encoder) {
6808 switch (encoder->type) {
6809 case INTEL_OUTPUT_LVDS:
6810 has_panel = true;
6811 has_lvds = true;
6812 break;
6813 case INTEL_OUTPUT_EDP:
6814 has_panel = true;
6815 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6816 has_cpu_edp = true;
6817 break;
6818 default:
6819 break;
6820 }
6821 }
6822
6823 if (HAS_PCH_IBX(dev)) {
6824 has_ck505 = dev_priv->vbt.display_clock_mode;
6825 can_ssc = has_ck505;
6826 } else {
6827 has_ck505 = false;
6828 can_ssc = true;
6829 }
6830
6831 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6832 has_panel, has_lvds, has_ck505);
6833
6834 /* Ironlake: try to setup display ref clock before DPLL
6835 * enabling. This is only under driver's control after
6836 * PCH B stepping, previous chipset stepping should be
6837 * ignoring this setting.
6838 */
6839 val = I915_READ(PCH_DREF_CONTROL);
6840
6841 /* As we must carefully and slowly disable/enable each source in turn,
6842 * compute the final state we want first and check if we need to
6843 * make any changes at all.
6844 */
6845 final = val;
6846 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6847 if (has_ck505)
6848 final |= DREF_NONSPREAD_CK505_ENABLE;
6849 else
6850 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6851
6852 final &= ~DREF_SSC_SOURCE_MASK;
6853 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6854 final &= ~DREF_SSC1_ENABLE;
6855
6856 if (has_panel) {
6857 final |= DREF_SSC_SOURCE_ENABLE;
6858
6859 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6860 final |= DREF_SSC1_ENABLE;
6861
6862 if (has_cpu_edp) {
6863 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6864 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6865 else
6866 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6867 } else
6868 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6869 } else {
6870 final |= DREF_SSC_SOURCE_DISABLE;
6871 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6872 }
6873
6874 if (final == val)
6875 return;
6876
6877 /* Always enable nonspread source */
6878 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6879
6880 if (has_ck505)
6881 val |= DREF_NONSPREAD_CK505_ENABLE;
6882 else
6883 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6884
6885 if (has_panel) {
6886 val &= ~DREF_SSC_SOURCE_MASK;
6887 val |= DREF_SSC_SOURCE_ENABLE;
6888
6889 /* SSC must be turned on before enabling the CPU output */
6890 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6891 DRM_DEBUG_KMS("Using SSC on panel\n");
6892 val |= DREF_SSC1_ENABLE;
6893 } else
6894 val &= ~DREF_SSC1_ENABLE;
6895
6896 /* Get SSC going before enabling the outputs */
6897 I915_WRITE(PCH_DREF_CONTROL, val);
6898 POSTING_READ(PCH_DREF_CONTROL);
6899 udelay(200);
6900
6901 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6902
6903 /* Enable CPU source on CPU attached eDP */
6904 if (has_cpu_edp) {
6905 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6906 DRM_DEBUG_KMS("Using SSC on eDP\n");
6907 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6908 } else
6909 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6910 } else
6911 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6912
6913 I915_WRITE(PCH_DREF_CONTROL, val);
6914 POSTING_READ(PCH_DREF_CONTROL);
6915 udelay(200);
6916 } else {
6917 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6918
6919 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6920
6921 /* Turn off CPU output */
6922 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6923
6924 I915_WRITE(PCH_DREF_CONTROL, val);
6925 POSTING_READ(PCH_DREF_CONTROL);
6926 udelay(200);
6927
6928 /* Turn off the SSC source */
6929 val &= ~DREF_SSC_SOURCE_MASK;
6930 val |= DREF_SSC_SOURCE_DISABLE;
6931
6932 /* Turn off SSC1 */
6933 val &= ~DREF_SSC1_ENABLE;
6934
6935 I915_WRITE(PCH_DREF_CONTROL, val);
6936 POSTING_READ(PCH_DREF_CONTROL);
6937 udelay(200);
6938 }
6939
6940 BUG_ON(val != final);
6941 }
6942
6943 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6944 {
6945 uint32_t tmp;
6946
6947 tmp = I915_READ(SOUTH_CHICKEN2);
6948 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6949 I915_WRITE(SOUTH_CHICKEN2, tmp);
6950
6951 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6952 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6953 DRM_ERROR("FDI mPHY reset assert timeout\n");
6954
6955 tmp = I915_READ(SOUTH_CHICKEN2);
6956 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6957 I915_WRITE(SOUTH_CHICKEN2, tmp);
6958
6959 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6960 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6961 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6962 }
6963
6964 /* WaMPhyProgramming:hsw */
6965 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6966 {
6967 uint32_t tmp;
6968
6969 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6970 tmp &= ~(0xFF << 24);
6971 tmp |= (0x12 << 24);
6972 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6973
6974 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6975 tmp |= (1 << 11);
6976 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6977
6978 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6979 tmp |= (1 << 11);
6980 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6981
6982 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6983 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6984 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6985
6986 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6987 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6988 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6989
6990 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6991 tmp &= ~(7 << 13);
6992 tmp |= (5 << 13);
6993 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6994
6995 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6996 tmp &= ~(7 << 13);
6997 tmp |= (5 << 13);
6998 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6999
7000 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7001 tmp &= ~0xFF;
7002 tmp |= 0x1C;
7003 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7004
7005 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7006 tmp &= ~0xFF;
7007 tmp |= 0x1C;
7008 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7009
7010 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7011 tmp &= ~(0xFF << 16);
7012 tmp |= (0x1C << 16);
7013 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7014
7015 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7016 tmp &= ~(0xFF << 16);
7017 tmp |= (0x1C << 16);
7018 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7019
7020 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7021 tmp |= (1 << 27);
7022 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7023
7024 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7025 tmp |= (1 << 27);
7026 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7027
7028 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7029 tmp &= ~(0xF << 28);
7030 tmp |= (4 << 28);
7031 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7032
7033 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7034 tmp &= ~(0xF << 28);
7035 tmp |= (4 << 28);
7036 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7037 }
7038
7039 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7040 * Programming" based on the parameters passed:
7041 * - Sequence to enable CLKOUT_DP
7042 * - Sequence to enable CLKOUT_DP without spread
7043 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7044 */
7045 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7046 bool with_fdi)
7047 {
7048 struct drm_i915_private *dev_priv = dev->dev_private;
7049 uint32_t reg, tmp;
7050
7051 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7052 with_spread = true;
7053 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7054 with_fdi, "LP PCH doesn't have FDI\n"))
7055 with_fdi = false;
7056
7057 mutex_lock(&dev_priv->dpio_lock);
7058
7059 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7060 tmp &= ~SBI_SSCCTL_DISABLE;
7061 tmp |= SBI_SSCCTL_PATHALT;
7062 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7063
7064 udelay(24);
7065
7066 if (with_spread) {
7067 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7068 tmp &= ~SBI_SSCCTL_PATHALT;
7069 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7070
7071 if (with_fdi) {
7072 lpt_reset_fdi_mphy(dev_priv);
7073 lpt_program_fdi_mphy(dev_priv);
7074 }
7075 }
7076
7077 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7078 SBI_GEN0 : SBI_DBUFF0;
7079 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7080 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7081 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7082
7083 mutex_unlock(&dev_priv->dpio_lock);
7084 }
7085
7086 /* Sequence to disable CLKOUT_DP */
7087 static void lpt_disable_clkout_dp(struct drm_device *dev)
7088 {
7089 struct drm_i915_private *dev_priv = dev->dev_private;
7090 uint32_t reg, tmp;
7091
7092 mutex_lock(&dev_priv->dpio_lock);
7093
7094 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7095 SBI_GEN0 : SBI_DBUFF0;
7096 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7097 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7098 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7099
7100 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7101 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7102 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7103 tmp |= SBI_SSCCTL_PATHALT;
7104 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7105 udelay(32);
7106 }
7107 tmp |= SBI_SSCCTL_DISABLE;
7108 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7109 }
7110
7111 mutex_unlock(&dev_priv->dpio_lock);
7112 }
7113
7114 static void lpt_init_pch_refclk(struct drm_device *dev)
7115 {
7116 struct intel_encoder *encoder;
7117 bool has_vga = false;
7118
7119 for_each_intel_encoder(dev, encoder) {
7120 switch (encoder->type) {
7121 case INTEL_OUTPUT_ANALOG:
7122 has_vga = true;
7123 break;
7124 default:
7125 break;
7126 }
7127 }
7128
7129 if (has_vga)
7130 lpt_enable_clkout_dp(dev, true, true);
7131 else
7132 lpt_disable_clkout_dp(dev);
7133 }
7134
7135 /*
7136 * Initialize reference clocks when the driver loads
7137 */
7138 void intel_init_pch_refclk(struct drm_device *dev)
7139 {
7140 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7141 ironlake_init_pch_refclk(dev);
7142 else if (HAS_PCH_LPT(dev))
7143 lpt_init_pch_refclk(dev);
7144 }
7145
7146 static int ironlake_get_refclk(struct drm_crtc *crtc)
7147 {
7148 struct drm_device *dev = crtc->dev;
7149 struct drm_i915_private *dev_priv = dev->dev_private;
7150 struct intel_encoder *encoder;
7151 int num_connectors = 0;
7152 bool is_lvds = false;
7153
7154 for_each_intel_encoder(dev, encoder) {
7155 if (encoder->new_crtc != to_intel_crtc(crtc))
7156 continue;
7157
7158 switch (encoder->type) {
7159 case INTEL_OUTPUT_LVDS:
7160 is_lvds = true;
7161 break;
7162 default:
7163 break;
7164 }
7165 num_connectors++;
7166 }
7167
7168 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7169 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7170 dev_priv->vbt.lvds_ssc_freq);
7171 return dev_priv->vbt.lvds_ssc_freq;
7172 }
7173
7174 return 120000;
7175 }
7176
7177 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7178 {
7179 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7181 int pipe = intel_crtc->pipe;
7182 uint32_t val;
7183
7184 val = 0;
7185
7186 switch (intel_crtc->config.pipe_bpp) {
7187 case 18:
7188 val |= PIPECONF_6BPC;
7189 break;
7190 case 24:
7191 val |= PIPECONF_8BPC;
7192 break;
7193 case 30:
7194 val |= PIPECONF_10BPC;
7195 break;
7196 case 36:
7197 val |= PIPECONF_12BPC;
7198 break;
7199 default:
7200 /* Case prevented by intel_choose_pipe_bpp_dither. */
7201 BUG();
7202 }
7203
7204 if (intel_crtc->config.dither)
7205 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7206
7207 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7208 val |= PIPECONF_INTERLACED_ILK;
7209 else
7210 val |= PIPECONF_PROGRESSIVE;
7211
7212 if (intel_crtc->config.limited_color_range)
7213 val |= PIPECONF_COLOR_RANGE_SELECT;
7214
7215 I915_WRITE(PIPECONF(pipe), val);
7216 POSTING_READ(PIPECONF(pipe));
7217 }
7218
7219 /*
7220 * Set up the pipe CSC unit.
7221 *
7222 * Currently only full range RGB to limited range RGB conversion
7223 * is supported, but eventually this should handle various
7224 * RGB<->YCbCr scenarios as well.
7225 */
7226 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7227 {
7228 struct drm_device *dev = crtc->dev;
7229 struct drm_i915_private *dev_priv = dev->dev_private;
7230 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7231 int pipe = intel_crtc->pipe;
7232 uint16_t coeff = 0x7800; /* 1.0 */
7233
7234 /*
7235 * TODO: Check what kind of values actually come out of the pipe
7236 * with these coeff/postoff values and adjust to get the best
7237 * accuracy. Perhaps we even need to take the bpc value into
7238 * consideration.
7239 */
7240
7241 if (intel_crtc->config.limited_color_range)
7242 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7243
7244 /*
7245 * GY/GU and RY/RU should be the other way around according
7246 * to BSpec, but reality doesn't agree. Just set them up in
7247 * a way that results in the correct picture.
7248 */
7249 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7250 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7251
7252 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7253 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7254
7255 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7256 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7257
7258 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7259 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7260 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7261
7262 if (INTEL_INFO(dev)->gen > 6) {
7263 uint16_t postoff = 0;
7264
7265 if (intel_crtc->config.limited_color_range)
7266 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7267
7268 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7269 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7270 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7271
7272 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7273 } else {
7274 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7275
7276 if (intel_crtc->config.limited_color_range)
7277 mode |= CSC_BLACK_SCREEN_OFFSET;
7278
7279 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7280 }
7281 }
7282
7283 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7284 {
7285 struct drm_device *dev = crtc->dev;
7286 struct drm_i915_private *dev_priv = dev->dev_private;
7287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7288 enum pipe pipe = intel_crtc->pipe;
7289 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7290 uint32_t val;
7291
7292 val = 0;
7293
7294 if (IS_HASWELL(dev) && intel_crtc->config.dither)
7295 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7296
7297 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7298 val |= PIPECONF_INTERLACED_ILK;
7299 else
7300 val |= PIPECONF_PROGRESSIVE;
7301
7302 I915_WRITE(PIPECONF(cpu_transcoder), val);
7303 POSTING_READ(PIPECONF(cpu_transcoder));
7304
7305 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7306 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7307
7308 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7309 val = 0;
7310
7311 switch (intel_crtc->config.pipe_bpp) {
7312 case 18:
7313 val |= PIPEMISC_DITHER_6_BPC;
7314 break;
7315 case 24:
7316 val |= PIPEMISC_DITHER_8_BPC;
7317 break;
7318 case 30:
7319 val |= PIPEMISC_DITHER_10_BPC;
7320 break;
7321 case 36:
7322 val |= PIPEMISC_DITHER_12_BPC;
7323 break;
7324 default:
7325 /* Case prevented by pipe_config_set_bpp. */
7326 BUG();
7327 }
7328
7329 if (intel_crtc->config.dither)
7330 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7331
7332 I915_WRITE(PIPEMISC(pipe), val);
7333 }
7334 }
7335
7336 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7337 intel_clock_t *clock,
7338 bool *has_reduced_clock,
7339 intel_clock_t *reduced_clock)
7340 {
7341 struct drm_device *dev = crtc->dev;
7342 struct drm_i915_private *dev_priv = dev->dev_private;
7343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7344 int refclk;
7345 const intel_limit_t *limit;
7346 bool ret, is_lvds = false;
7347
7348 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7349
7350 refclk = ironlake_get_refclk(crtc);
7351
7352 /*
7353 * Returns a set of divisors for the desired target clock with the given
7354 * refclk, or FALSE. The returned values represent the clock equation:
7355 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7356 */
7357 limit = intel_limit(intel_crtc, refclk);
7358 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7359 intel_crtc->new_config->port_clock,
7360 refclk, NULL, clock);
7361 if (!ret)
7362 return false;
7363
7364 if (is_lvds && dev_priv->lvds_downclock_avail) {
7365 /*
7366 * Ensure we match the reduced clock's P to the target clock.
7367 * If the clocks don't match, we can't switch the display clock
7368 * by using the FP0/FP1. In such case we will disable the LVDS
7369 * downclock feature.
7370 */
7371 *has_reduced_clock =
7372 dev_priv->display.find_dpll(limit, intel_crtc,
7373 dev_priv->lvds_downclock,
7374 refclk, clock,
7375 reduced_clock);
7376 }
7377
7378 return true;
7379 }
7380
7381 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7382 {
7383 /*
7384 * Account for spread spectrum to avoid
7385 * oversubscribing the link. Max center spread
7386 * is 2.5%; use 5% for safety's sake.
7387 */
7388 u32 bps = target_clock * bpp * 21 / 20;
7389 return DIV_ROUND_UP(bps, link_bw * 8);
7390 }
7391
7392 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7393 {
7394 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7395 }
7396
7397 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7398 u32 *fp,
7399 intel_clock_t *reduced_clock, u32 *fp2)
7400 {
7401 struct drm_crtc *crtc = &intel_crtc->base;
7402 struct drm_device *dev = crtc->dev;
7403 struct drm_i915_private *dev_priv = dev->dev_private;
7404 struct intel_encoder *intel_encoder;
7405 uint32_t dpll;
7406 int factor, num_connectors = 0;
7407 bool is_lvds = false, is_sdvo = false;
7408
7409 for_each_intel_encoder(dev, intel_encoder) {
7410 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7411 continue;
7412
7413 switch (intel_encoder->type) {
7414 case INTEL_OUTPUT_LVDS:
7415 is_lvds = true;
7416 break;
7417 case INTEL_OUTPUT_SDVO:
7418 case INTEL_OUTPUT_HDMI:
7419 is_sdvo = true;
7420 break;
7421 default:
7422 break;
7423 }
7424
7425 num_connectors++;
7426 }
7427
7428 /* Enable autotuning of the PLL clock (if permissible) */
7429 factor = 21;
7430 if (is_lvds) {
7431 if ((intel_panel_use_ssc(dev_priv) &&
7432 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7433 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7434 factor = 25;
7435 } else if (intel_crtc->new_config->sdvo_tv_clock)
7436 factor = 20;
7437
7438 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7439 *fp |= FP_CB_TUNE;
7440
7441 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7442 *fp2 |= FP_CB_TUNE;
7443
7444 dpll = 0;
7445
7446 if (is_lvds)
7447 dpll |= DPLLB_MODE_LVDS;
7448 else
7449 dpll |= DPLLB_MODE_DAC_SERIAL;
7450
7451 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7452 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7453
7454 if (is_sdvo)
7455 dpll |= DPLL_SDVO_HIGH_SPEED;
7456 if (intel_crtc->new_config->has_dp_encoder)
7457 dpll |= DPLL_SDVO_HIGH_SPEED;
7458
7459 /* compute bitmask from p1 value */
7460 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7461 /* also FPA1 */
7462 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7463
7464 switch (intel_crtc->new_config->dpll.p2) {
7465 case 5:
7466 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7467 break;
7468 case 7:
7469 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7470 break;
7471 case 10:
7472 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7473 break;
7474 case 14:
7475 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7476 break;
7477 }
7478
7479 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7480 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7481 else
7482 dpll |= PLL_REF_INPUT_DREFCLK;
7483
7484 return dpll | DPLL_VCO_ENABLE;
7485 }
7486
7487 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7488 {
7489 struct drm_device *dev = crtc->base.dev;
7490 intel_clock_t clock, reduced_clock;
7491 u32 dpll = 0, fp = 0, fp2 = 0;
7492 bool ok, has_reduced_clock = false;
7493 bool is_lvds = false;
7494 struct intel_shared_dpll *pll;
7495
7496 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7497
7498 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7499 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7500
7501 ok = ironlake_compute_clocks(&crtc->base, &clock,
7502 &has_reduced_clock, &reduced_clock);
7503 if (!ok && !crtc->new_config->clock_set) {
7504 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7505 return -EINVAL;
7506 }
7507 /* Compat-code for transition, will disappear. */
7508 if (!crtc->new_config->clock_set) {
7509 crtc->new_config->dpll.n = clock.n;
7510 crtc->new_config->dpll.m1 = clock.m1;
7511 crtc->new_config->dpll.m2 = clock.m2;
7512 crtc->new_config->dpll.p1 = clock.p1;
7513 crtc->new_config->dpll.p2 = clock.p2;
7514 }
7515
7516 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7517 if (crtc->new_config->has_pch_encoder) {
7518 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7519 if (has_reduced_clock)
7520 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7521
7522 dpll = ironlake_compute_dpll(crtc,
7523 &fp, &reduced_clock,
7524 has_reduced_clock ? &fp2 : NULL);
7525
7526 crtc->new_config->dpll_hw_state.dpll = dpll;
7527 crtc->new_config->dpll_hw_state.fp0 = fp;
7528 if (has_reduced_clock)
7529 crtc->new_config->dpll_hw_state.fp1 = fp2;
7530 else
7531 crtc->new_config->dpll_hw_state.fp1 = fp;
7532
7533 pll = intel_get_shared_dpll(crtc);
7534 if (pll == NULL) {
7535 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7536 pipe_name(crtc->pipe));
7537 return -EINVAL;
7538 }
7539 }
7540
7541 if (is_lvds && has_reduced_clock && i915.powersave)
7542 crtc->lowfreq_avail = true;
7543 else
7544 crtc->lowfreq_avail = false;
7545
7546 return 0;
7547 }
7548
7549 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7550 struct intel_link_m_n *m_n)
7551 {
7552 struct drm_device *dev = crtc->base.dev;
7553 struct drm_i915_private *dev_priv = dev->dev_private;
7554 enum pipe pipe = crtc->pipe;
7555
7556 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7557 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7558 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7559 & ~TU_SIZE_MASK;
7560 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7561 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7562 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7563 }
7564
7565 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7566 enum transcoder transcoder,
7567 struct intel_link_m_n *m_n,
7568 struct intel_link_m_n *m2_n2)
7569 {
7570 struct drm_device *dev = crtc->base.dev;
7571 struct drm_i915_private *dev_priv = dev->dev_private;
7572 enum pipe pipe = crtc->pipe;
7573
7574 if (INTEL_INFO(dev)->gen >= 5) {
7575 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7576 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7577 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7578 & ~TU_SIZE_MASK;
7579 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7580 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7581 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7582 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7583 * gen < 8) and if DRRS is supported (to make sure the
7584 * registers are not unnecessarily read).
7585 */
7586 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7587 crtc->config.has_drrs) {
7588 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7589 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7590 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7591 & ~TU_SIZE_MASK;
7592 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7593 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7594 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7595 }
7596 } else {
7597 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7598 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7599 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7600 & ~TU_SIZE_MASK;
7601 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7602 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7603 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7604 }
7605 }
7606
7607 void intel_dp_get_m_n(struct intel_crtc *crtc,
7608 struct intel_crtc_config *pipe_config)
7609 {
7610 if (crtc->config.has_pch_encoder)
7611 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7612 else
7613 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7614 &pipe_config->dp_m_n,
7615 &pipe_config->dp_m2_n2);
7616 }
7617
7618 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7619 struct intel_crtc_config *pipe_config)
7620 {
7621 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7622 &pipe_config->fdi_m_n, NULL);
7623 }
7624
7625 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7626 struct intel_crtc_config *pipe_config)
7627 {
7628 struct drm_device *dev = crtc->base.dev;
7629 struct drm_i915_private *dev_priv = dev->dev_private;
7630 uint32_t tmp;
7631
7632 tmp = I915_READ(PS_CTL(crtc->pipe));
7633
7634 if (tmp & PS_ENABLE) {
7635 pipe_config->pch_pfit.enabled = true;
7636 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7637 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7638 }
7639 }
7640
7641 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7642 struct intel_crtc_config *pipe_config)
7643 {
7644 struct drm_device *dev = crtc->base.dev;
7645 struct drm_i915_private *dev_priv = dev->dev_private;
7646 uint32_t tmp;
7647
7648 tmp = I915_READ(PF_CTL(crtc->pipe));
7649
7650 if (tmp & PF_ENABLE) {
7651 pipe_config->pch_pfit.enabled = true;
7652 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7653 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7654
7655 /* We currently do not free assignements of panel fitters on
7656 * ivb/hsw (since we don't use the higher upscaling modes which
7657 * differentiates them) so just WARN about this case for now. */
7658 if (IS_GEN7(dev)) {
7659 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7660 PF_PIPE_SEL_IVB(crtc->pipe));
7661 }
7662 }
7663 }
7664
7665 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7666 struct intel_plane_config *plane_config)
7667 {
7668 struct drm_device *dev = crtc->base.dev;
7669 struct drm_i915_private *dev_priv = dev->dev_private;
7670 u32 val, base, offset;
7671 int pipe = crtc->pipe, plane = crtc->plane;
7672 int fourcc, pixel_format;
7673 int aligned_height;
7674
7675 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7676 if (!crtc->base.primary->fb) {
7677 DRM_DEBUG_KMS("failed to alloc fb\n");
7678 return;
7679 }
7680
7681 val = I915_READ(DSPCNTR(plane));
7682
7683 if (INTEL_INFO(dev)->gen >= 4)
7684 if (val & DISPPLANE_TILED)
7685 plane_config->tiled = true;
7686
7687 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7688 fourcc = intel_format_to_fourcc(pixel_format);
7689 crtc->base.primary->fb->pixel_format = fourcc;
7690 crtc->base.primary->fb->bits_per_pixel =
7691 drm_format_plane_cpp(fourcc, 0) * 8;
7692
7693 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7694 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7695 offset = I915_READ(DSPOFFSET(plane));
7696 } else {
7697 if (plane_config->tiled)
7698 offset = I915_READ(DSPTILEOFF(plane));
7699 else
7700 offset = I915_READ(DSPLINOFF(plane));
7701 }
7702 plane_config->base = base;
7703
7704 val = I915_READ(PIPESRC(pipe));
7705 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7706 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7707
7708 val = I915_READ(DSPSTRIDE(pipe));
7709 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7710
7711 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7712 plane_config->tiled);
7713
7714 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7715 aligned_height);
7716
7717 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7718 pipe, plane, crtc->base.primary->fb->width,
7719 crtc->base.primary->fb->height,
7720 crtc->base.primary->fb->bits_per_pixel, base,
7721 crtc->base.primary->fb->pitches[0],
7722 plane_config->size);
7723 }
7724
7725 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7726 struct intel_crtc_config *pipe_config)
7727 {
7728 struct drm_device *dev = crtc->base.dev;
7729 struct drm_i915_private *dev_priv = dev->dev_private;
7730 uint32_t tmp;
7731
7732 if (!intel_display_power_is_enabled(dev_priv,
7733 POWER_DOMAIN_PIPE(crtc->pipe)))
7734 return false;
7735
7736 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7737 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7738
7739 tmp = I915_READ(PIPECONF(crtc->pipe));
7740 if (!(tmp & PIPECONF_ENABLE))
7741 return false;
7742
7743 switch (tmp & PIPECONF_BPC_MASK) {
7744 case PIPECONF_6BPC:
7745 pipe_config->pipe_bpp = 18;
7746 break;
7747 case PIPECONF_8BPC:
7748 pipe_config->pipe_bpp = 24;
7749 break;
7750 case PIPECONF_10BPC:
7751 pipe_config->pipe_bpp = 30;
7752 break;
7753 case PIPECONF_12BPC:
7754 pipe_config->pipe_bpp = 36;
7755 break;
7756 default:
7757 break;
7758 }
7759
7760 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7761 pipe_config->limited_color_range = true;
7762
7763 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7764 struct intel_shared_dpll *pll;
7765
7766 pipe_config->has_pch_encoder = true;
7767
7768 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7769 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7770 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7771
7772 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7773
7774 if (HAS_PCH_IBX(dev_priv->dev)) {
7775 pipe_config->shared_dpll =
7776 (enum intel_dpll_id) crtc->pipe;
7777 } else {
7778 tmp = I915_READ(PCH_DPLL_SEL);
7779 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7780 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7781 else
7782 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7783 }
7784
7785 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7786
7787 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7788 &pipe_config->dpll_hw_state));
7789
7790 tmp = pipe_config->dpll_hw_state.dpll;
7791 pipe_config->pixel_multiplier =
7792 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7793 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7794
7795 ironlake_pch_clock_get(crtc, pipe_config);
7796 } else {
7797 pipe_config->pixel_multiplier = 1;
7798 }
7799
7800 intel_get_pipe_timings(crtc, pipe_config);
7801
7802 ironlake_get_pfit_config(crtc, pipe_config);
7803
7804 return true;
7805 }
7806
7807 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7808 {
7809 struct drm_device *dev = dev_priv->dev;
7810 struct intel_crtc *crtc;
7811
7812 for_each_intel_crtc(dev, crtc)
7813 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7814 pipe_name(crtc->pipe));
7815
7816 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7817 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7818 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7819 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7820 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7821 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7822 "CPU PWM1 enabled\n");
7823 if (IS_HASWELL(dev))
7824 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7825 "CPU PWM2 enabled\n");
7826 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7827 "PCH PWM1 enabled\n");
7828 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7829 "Utility pin enabled\n");
7830 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7831
7832 /*
7833 * In theory we can still leave IRQs enabled, as long as only the HPD
7834 * interrupts remain enabled. We used to check for that, but since it's
7835 * gen-specific and since we only disable LCPLL after we fully disable
7836 * the interrupts, the check below should be enough.
7837 */
7838 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7839 }
7840
7841 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7842 {
7843 struct drm_device *dev = dev_priv->dev;
7844
7845 if (IS_HASWELL(dev))
7846 return I915_READ(D_COMP_HSW);
7847 else
7848 return I915_READ(D_COMP_BDW);
7849 }
7850
7851 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7852 {
7853 struct drm_device *dev = dev_priv->dev;
7854
7855 if (IS_HASWELL(dev)) {
7856 mutex_lock(&dev_priv->rps.hw_lock);
7857 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7858 val))
7859 DRM_ERROR("Failed to write to D_COMP\n");
7860 mutex_unlock(&dev_priv->rps.hw_lock);
7861 } else {
7862 I915_WRITE(D_COMP_BDW, val);
7863 POSTING_READ(D_COMP_BDW);
7864 }
7865 }
7866
7867 /*
7868 * This function implements pieces of two sequences from BSpec:
7869 * - Sequence for display software to disable LCPLL
7870 * - Sequence for display software to allow package C8+
7871 * The steps implemented here are just the steps that actually touch the LCPLL
7872 * register. Callers should take care of disabling all the display engine
7873 * functions, doing the mode unset, fixing interrupts, etc.
7874 */
7875 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7876 bool switch_to_fclk, bool allow_power_down)
7877 {
7878 uint32_t val;
7879
7880 assert_can_disable_lcpll(dev_priv);
7881
7882 val = I915_READ(LCPLL_CTL);
7883
7884 if (switch_to_fclk) {
7885 val |= LCPLL_CD_SOURCE_FCLK;
7886 I915_WRITE(LCPLL_CTL, val);
7887
7888 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7889 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7890 DRM_ERROR("Switching to FCLK failed\n");
7891
7892 val = I915_READ(LCPLL_CTL);
7893 }
7894
7895 val |= LCPLL_PLL_DISABLE;
7896 I915_WRITE(LCPLL_CTL, val);
7897 POSTING_READ(LCPLL_CTL);
7898
7899 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7900 DRM_ERROR("LCPLL still locked\n");
7901
7902 val = hsw_read_dcomp(dev_priv);
7903 val |= D_COMP_COMP_DISABLE;
7904 hsw_write_dcomp(dev_priv, val);
7905 ndelay(100);
7906
7907 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7908 1))
7909 DRM_ERROR("D_COMP RCOMP still in progress\n");
7910
7911 if (allow_power_down) {
7912 val = I915_READ(LCPLL_CTL);
7913 val |= LCPLL_POWER_DOWN_ALLOW;
7914 I915_WRITE(LCPLL_CTL, val);
7915 POSTING_READ(LCPLL_CTL);
7916 }
7917 }
7918
7919 /*
7920 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7921 * source.
7922 */
7923 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7924 {
7925 uint32_t val;
7926
7927 val = I915_READ(LCPLL_CTL);
7928
7929 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7930 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7931 return;
7932
7933 /*
7934 * Make sure we're not on PC8 state before disabling PC8, otherwise
7935 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7936 *
7937 * The other problem is that hsw_restore_lcpll() is called as part of
7938 * the runtime PM resume sequence, so we can't just call
7939 * gen6_gt_force_wake_get() because that function calls
7940 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7941 * while we are on the resume sequence. So to solve this problem we have
7942 * to call special forcewake code that doesn't touch runtime PM and
7943 * doesn't enable the forcewake delayed work.
7944 */
7945 spin_lock_irq(&dev_priv->uncore.lock);
7946 if (dev_priv->uncore.forcewake_count++ == 0)
7947 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7948 spin_unlock_irq(&dev_priv->uncore.lock);
7949
7950 if (val & LCPLL_POWER_DOWN_ALLOW) {
7951 val &= ~LCPLL_POWER_DOWN_ALLOW;
7952 I915_WRITE(LCPLL_CTL, val);
7953 POSTING_READ(LCPLL_CTL);
7954 }
7955
7956 val = hsw_read_dcomp(dev_priv);
7957 val |= D_COMP_COMP_FORCE;
7958 val &= ~D_COMP_COMP_DISABLE;
7959 hsw_write_dcomp(dev_priv, val);
7960
7961 val = I915_READ(LCPLL_CTL);
7962 val &= ~LCPLL_PLL_DISABLE;
7963 I915_WRITE(LCPLL_CTL, val);
7964
7965 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7966 DRM_ERROR("LCPLL not locked yet\n");
7967
7968 if (val & LCPLL_CD_SOURCE_FCLK) {
7969 val = I915_READ(LCPLL_CTL);
7970 val &= ~LCPLL_CD_SOURCE_FCLK;
7971 I915_WRITE(LCPLL_CTL, val);
7972
7973 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7974 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7975 DRM_ERROR("Switching back to LCPLL failed\n");
7976 }
7977
7978 /* See the big comment above. */
7979 spin_lock_irq(&dev_priv->uncore.lock);
7980 if (--dev_priv->uncore.forcewake_count == 0)
7981 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7982 spin_unlock_irq(&dev_priv->uncore.lock);
7983 }
7984
7985 /*
7986 * Package states C8 and deeper are really deep PC states that can only be
7987 * reached when all the devices on the system allow it, so even if the graphics
7988 * device allows PC8+, it doesn't mean the system will actually get to these
7989 * states. Our driver only allows PC8+ when going into runtime PM.
7990 *
7991 * The requirements for PC8+ are that all the outputs are disabled, the power
7992 * well is disabled and most interrupts are disabled, and these are also
7993 * requirements for runtime PM. When these conditions are met, we manually do
7994 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7995 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7996 * hang the machine.
7997 *
7998 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7999 * the state of some registers, so when we come back from PC8+ we need to
8000 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8001 * need to take care of the registers kept by RC6. Notice that this happens even
8002 * if we don't put the device in PCI D3 state (which is what currently happens
8003 * because of the runtime PM support).
8004 *
8005 * For more, read "Display Sequences for Package C8" on the hardware
8006 * documentation.
8007 */
8008 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8009 {
8010 struct drm_device *dev = dev_priv->dev;
8011 uint32_t val;
8012
8013 DRM_DEBUG_KMS("Enabling package C8+\n");
8014
8015 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8016 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8017 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8018 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8019 }
8020
8021 lpt_disable_clkout_dp(dev);
8022 hsw_disable_lcpll(dev_priv, true, true);
8023 }
8024
8025 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8026 {
8027 struct drm_device *dev = dev_priv->dev;
8028 uint32_t val;
8029
8030 DRM_DEBUG_KMS("Disabling package C8+\n");
8031
8032 hsw_restore_lcpll(dev_priv);
8033 lpt_init_pch_refclk(dev);
8034
8035 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8036 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8037 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8038 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8039 }
8040
8041 intel_prepare_ddi(dev);
8042 }
8043
8044 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
8045 {
8046 if (!intel_ddi_pll_select(crtc))
8047 return -EINVAL;
8048
8049 crtc->lowfreq_avail = false;
8050
8051 return 0;
8052 }
8053
8054 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8055 enum port port,
8056 struct intel_crtc_config *pipe_config)
8057 {
8058 u32 temp;
8059
8060 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8061 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8062
8063 switch (pipe_config->ddi_pll_sel) {
8064 case SKL_DPLL1:
8065 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8066 break;
8067 case SKL_DPLL2:
8068 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8069 break;
8070 case SKL_DPLL3:
8071 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8072 break;
8073 }
8074 }
8075
8076 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8077 enum port port,
8078 struct intel_crtc_config *pipe_config)
8079 {
8080 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8081
8082 switch (pipe_config->ddi_pll_sel) {
8083 case PORT_CLK_SEL_WRPLL1:
8084 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8085 break;
8086 case PORT_CLK_SEL_WRPLL2:
8087 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8088 break;
8089 }
8090 }
8091
8092 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8093 struct intel_crtc_config *pipe_config)
8094 {
8095 struct drm_device *dev = crtc->base.dev;
8096 struct drm_i915_private *dev_priv = dev->dev_private;
8097 struct intel_shared_dpll *pll;
8098 enum port port;
8099 uint32_t tmp;
8100
8101 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8102
8103 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8104
8105 if (IS_SKYLAKE(dev))
8106 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8107 else
8108 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8109
8110 if (pipe_config->shared_dpll >= 0) {
8111 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8112
8113 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8114 &pipe_config->dpll_hw_state));
8115 }
8116
8117 /*
8118 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8119 * DDI E. So just check whether this pipe is wired to DDI E and whether
8120 * the PCH transcoder is on.
8121 */
8122 if (INTEL_INFO(dev)->gen < 9 &&
8123 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8124 pipe_config->has_pch_encoder = true;
8125
8126 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8127 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8128 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8129
8130 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8131 }
8132 }
8133
8134 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8135 struct intel_crtc_config *pipe_config)
8136 {
8137 struct drm_device *dev = crtc->base.dev;
8138 struct drm_i915_private *dev_priv = dev->dev_private;
8139 enum intel_display_power_domain pfit_domain;
8140 uint32_t tmp;
8141
8142 if (!intel_display_power_is_enabled(dev_priv,
8143 POWER_DOMAIN_PIPE(crtc->pipe)))
8144 return false;
8145
8146 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8147 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8148
8149 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8150 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8151 enum pipe trans_edp_pipe;
8152 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8153 default:
8154 WARN(1, "unknown pipe linked to edp transcoder\n");
8155 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8156 case TRANS_DDI_EDP_INPUT_A_ON:
8157 trans_edp_pipe = PIPE_A;
8158 break;
8159 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8160 trans_edp_pipe = PIPE_B;
8161 break;
8162 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8163 trans_edp_pipe = PIPE_C;
8164 break;
8165 }
8166
8167 if (trans_edp_pipe == crtc->pipe)
8168 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8169 }
8170
8171 if (!intel_display_power_is_enabled(dev_priv,
8172 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8173 return false;
8174
8175 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8176 if (!(tmp & PIPECONF_ENABLE))
8177 return false;
8178
8179 haswell_get_ddi_port_state(crtc, pipe_config);
8180
8181 intel_get_pipe_timings(crtc, pipe_config);
8182
8183 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8184 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8185 if (IS_SKYLAKE(dev))
8186 skylake_get_pfit_config(crtc, pipe_config);
8187 else
8188 ironlake_get_pfit_config(crtc, pipe_config);
8189 }
8190
8191 if (IS_HASWELL(dev))
8192 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8193 (I915_READ(IPS_CTL) & IPS_ENABLE);
8194
8195 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8196 pipe_config->pixel_multiplier =
8197 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8198 } else {
8199 pipe_config->pixel_multiplier = 1;
8200 }
8201
8202 return true;
8203 }
8204
8205 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8206 {
8207 struct drm_device *dev = crtc->dev;
8208 struct drm_i915_private *dev_priv = dev->dev_private;
8209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8210 uint32_t cntl = 0, size = 0;
8211
8212 if (base) {
8213 unsigned int width = intel_crtc->cursor_width;
8214 unsigned int height = intel_crtc->cursor_height;
8215 unsigned int stride = roundup_pow_of_two(width) * 4;
8216
8217 switch (stride) {
8218 default:
8219 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8220 width, stride);
8221 stride = 256;
8222 /* fallthrough */
8223 case 256:
8224 case 512:
8225 case 1024:
8226 case 2048:
8227 break;
8228 }
8229
8230 cntl |= CURSOR_ENABLE |
8231 CURSOR_GAMMA_ENABLE |
8232 CURSOR_FORMAT_ARGB |
8233 CURSOR_STRIDE(stride);
8234
8235 size = (height << 12) | width;
8236 }
8237
8238 if (intel_crtc->cursor_cntl != 0 &&
8239 (intel_crtc->cursor_base != base ||
8240 intel_crtc->cursor_size != size ||
8241 intel_crtc->cursor_cntl != cntl)) {
8242 /* On these chipsets we can only modify the base/size/stride
8243 * whilst the cursor is disabled.
8244 */
8245 I915_WRITE(_CURACNTR, 0);
8246 POSTING_READ(_CURACNTR);
8247 intel_crtc->cursor_cntl = 0;
8248 }
8249
8250 if (intel_crtc->cursor_base != base) {
8251 I915_WRITE(_CURABASE, base);
8252 intel_crtc->cursor_base = base;
8253 }
8254
8255 if (intel_crtc->cursor_size != size) {
8256 I915_WRITE(CURSIZE, size);
8257 intel_crtc->cursor_size = size;
8258 }
8259
8260 if (intel_crtc->cursor_cntl != cntl) {
8261 I915_WRITE(_CURACNTR, cntl);
8262 POSTING_READ(_CURACNTR);
8263 intel_crtc->cursor_cntl = cntl;
8264 }
8265 }
8266
8267 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8268 {
8269 struct drm_device *dev = crtc->dev;
8270 struct drm_i915_private *dev_priv = dev->dev_private;
8271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8272 int pipe = intel_crtc->pipe;
8273 uint32_t cntl;
8274
8275 cntl = 0;
8276 if (base) {
8277 cntl = MCURSOR_GAMMA_ENABLE;
8278 switch (intel_crtc->cursor_width) {
8279 case 64:
8280 cntl |= CURSOR_MODE_64_ARGB_AX;
8281 break;
8282 case 128:
8283 cntl |= CURSOR_MODE_128_ARGB_AX;
8284 break;
8285 case 256:
8286 cntl |= CURSOR_MODE_256_ARGB_AX;
8287 break;
8288 default:
8289 WARN_ON(1);
8290 return;
8291 }
8292 cntl |= pipe << 28; /* Connect to correct pipe */
8293
8294 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8295 cntl |= CURSOR_PIPE_CSC_ENABLE;
8296 }
8297
8298 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8299 cntl |= CURSOR_ROTATE_180;
8300
8301 if (intel_crtc->cursor_cntl != cntl) {
8302 I915_WRITE(CURCNTR(pipe), cntl);
8303 POSTING_READ(CURCNTR(pipe));
8304 intel_crtc->cursor_cntl = cntl;
8305 }
8306
8307 /* and commit changes on next vblank */
8308 I915_WRITE(CURBASE(pipe), base);
8309 POSTING_READ(CURBASE(pipe));
8310
8311 intel_crtc->cursor_base = base;
8312 }
8313
8314 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8315 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8316 bool on)
8317 {
8318 struct drm_device *dev = crtc->dev;
8319 struct drm_i915_private *dev_priv = dev->dev_private;
8320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8321 int pipe = intel_crtc->pipe;
8322 int x = crtc->cursor_x;
8323 int y = crtc->cursor_y;
8324 u32 base = 0, pos = 0;
8325
8326 if (on)
8327 base = intel_crtc->cursor_addr;
8328
8329 if (x >= intel_crtc->config.pipe_src_w)
8330 base = 0;
8331
8332 if (y >= intel_crtc->config.pipe_src_h)
8333 base = 0;
8334
8335 if (x < 0) {
8336 if (x + intel_crtc->cursor_width <= 0)
8337 base = 0;
8338
8339 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8340 x = -x;
8341 }
8342 pos |= x << CURSOR_X_SHIFT;
8343
8344 if (y < 0) {
8345 if (y + intel_crtc->cursor_height <= 0)
8346 base = 0;
8347
8348 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8349 y = -y;
8350 }
8351 pos |= y << CURSOR_Y_SHIFT;
8352
8353 if (base == 0 && intel_crtc->cursor_base == 0)
8354 return;
8355
8356 I915_WRITE(CURPOS(pipe), pos);
8357
8358 /* ILK+ do this automagically */
8359 if (HAS_GMCH_DISPLAY(dev) &&
8360 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8361 base += (intel_crtc->cursor_height *
8362 intel_crtc->cursor_width - 1) * 4;
8363 }
8364
8365 if (IS_845G(dev) || IS_I865G(dev))
8366 i845_update_cursor(crtc, base);
8367 else
8368 i9xx_update_cursor(crtc, base);
8369 }
8370
8371 static bool cursor_size_ok(struct drm_device *dev,
8372 uint32_t width, uint32_t height)
8373 {
8374 if (width == 0 || height == 0)
8375 return false;
8376
8377 /*
8378 * 845g/865g are special in that they are only limited by
8379 * the width of their cursors, the height is arbitrary up to
8380 * the precision of the register. Everything else requires
8381 * square cursors, limited to a few power-of-two sizes.
8382 */
8383 if (IS_845G(dev) || IS_I865G(dev)) {
8384 if ((width & 63) != 0)
8385 return false;
8386
8387 if (width > (IS_845G(dev) ? 64 : 512))
8388 return false;
8389
8390 if (height > 1023)
8391 return false;
8392 } else {
8393 switch (width | height) {
8394 case 256:
8395 case 128:
8396 if (IS_GEN2(dev))
8397 return false;
8398 case 64:
8399 break;
8400 default:
8401 return false;
8402 }
8403 }
8404
8405 return true;
8406 }
8407
8408 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8409 struct drm_i915_gem_object *obj,
8410 uint32_t width, uint32_t height)
8411 {
8412 struct drm_device *dev = crtc->dev;
8413 struct drm_i915_private *dev_priv = to_i915(dev);
8414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8415 enum pipe pipe = intel_crtc->pipe;
8416 unsigned old_width;
8417 uint32_t addr;
8418 int ret;
8419
8420 /* if we want to turn off the cursor ignore width and height */
8421 if (!obj) {
8422 DRM_DEBUG_KMS("cursor off\n");
8423 addr = 0;
8424 mutex_lock(&dev->struct_mutex);
8425 goto finish;
8426 }
8427
8428 /* we only need to pin inside GTT if cursor is non-phy */
8429 mutex_lock(&dev->struct_mutex);
8430 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8431 unsigned alignment;
8432
8433 /*
8434 * Global gtt pte registers are special registers which actually
8435 * forward writes to a chunk of system memory. Which means that
8436 * there is no risk that the register values disappear as soon
8437 * as we call intel_runtime_pm_put(), so it is correct to wrap
8438 * only the pin/unpin/fence and not more.
8439 */
8440 intel_runtime_pm_get(dev_priv);
8441
8442 /* Note that the w/a also requires 2 PTE of padding following
8443 * the bo. We currently fill all unused PTE with the shadow
8444 * page and so we should always have valid PTE following the
8445 * cursor preventing the VT-d warning.
8446 */
8447 alignment = 0;
8448 if (need_vtd_wa(dev))
8449 alignment = 64*1024;
8450
8451 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8452 if (ret) {
8453 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8454 intel_runtime_pm_put(dev_priv);
8455 goto fail_locked;
8456 }
8457
8458 ret = i915_gem_object_put_fence(obj);
8459 if (ret) {
8460 DRM_DEBUG_KMS("failed to release fence for cursor");
8461 intel_runtime_pm_put(dev_priv);
8462 goto fail_unpin;
8463 }
8464
8465 addr = i915_gem_obj_ggtt_offset(obj);
8466
8467 intel_runtime_pm_put(dev_priv);
8468 } else {
8469 int align = IS_I830(dev) ? 16 * 1024 : 256;
8470 ret = i915_gem_object_attach_phys(obj, align);
8471 if (ret) {
8472 DRM_DEBUG_KMS("failed to attach phys object\n");
8473 goto fail_locked;
8474 }
8475 addr = obj->phys_handle->busaddr;
8476 }
8477
8478 finish:
8479 if (intel_crtc->cursor_bo) {
8480 if (!INTEL_INFO(dev)->cursor_needs_physical)
8481 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8482 }
8483
8484 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8485 INTEL_FRONTBUFFER_CURSOR(pipe));
8486 mutex_unlock(&dev->struct_mutex);
8487
8488 old_width = intel_crtc->cursor_width;
8489
8490 intel_crtc->cursor_addr = addr;
8491 intel_crtc->cursor_bo = obj;
8492 intel_crtc->cursor_width = width;
8493 intel_crtc->cursor_height = height;
8494
8495 if (intel_crtc->active) {
8496 if (old_width != width)
8497 intel_update_watermarks(crtc);
8498 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8499
8500 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8501 }
8502
8503 return 0;
8504 fail_unpin:
8505 i915_gem_object_unpin_from_display_plane(obj);
8506 fail_locked:
8507 mutex_unlock(&dev->struct_mutex);
8508 return ret;
8509 }
8510
8511 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8512 u16 *blue, uint32_t start, uint32_t size)
8513 {
8514 int end = (start + size > 256) ? 256 : start + size, i;
8515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8516
8517 for (i = start; i < end; i++) {
8518 intel_crtc->lut_r[i] = red[i] >> 8;
8519 intel_crtc->lut_g[i] = green[i] >> 8;
8520 intel_crtc->lut_b[i] = blue[i] >> 8;
8521 }
8522
8523 intel_crtc_load_lut(crtc);
8524 }
8525
8526 /* VESA 640x480x72Hz mode to set on the pipe */
8527 static struct drm_display_mode load_detect_mode = {
8528 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8529 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8530 };
8531
8532 struct drm_framebuffer *
8533 __intel_framebuffer_create(struct drm_device *dev,
8534 struct drm_mode_fb_cmd2 *mode_cmd,
8535 struct drm_i915_gem_object *obj)
8536 {
8537 struct intel_framebuffer *intel_fb;
8538 int ret;
8539
8540 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8541 if (!intel_fb) {
8542 drm_gem_object_unreference(&obj->base);
8543 return ERR_PTR(-ENOMEM);
8544 }
8545
8546 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8547 if (ret)
8548 goto err;
8549
8550 return &intel_fb->base;
8551 err:
8552 drm_gem_object_unreference(&obj->base);
8553 kfree(intel_fb);
8554
8555 return ERR_PTR(ret);
8556 }
8557
8558 static struct drm_framebuffer *
8559 intel_framebuffer_create(struct drm_device *dev,
8560 struct drm_mode_fb_cmd2 *mode_cmd,
8561 struct drm_i915_gem_object *obj)
8562 {
8563 struct drm_framebuffer *fb;
8564 int ret;
8565
8566 ret = i915_mutex_lock_interruptible(dev);
8567 if (ret)
8568 return ERR_PTR(ret);
8569 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8570 mutex_unlock(&dev->struct_mutex);
8571
8572 return fb;
8573 }
8574
8575 static u32
8576 intel_framebuffer_pitch_for_width(int width, int bpp)
8577 {
8578 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8579 return ALIGN(pitch, 64);
8580 }
8581
8582 static u32
8583 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8584 {
8585 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8586 return PAGE_ALIGN(pitch * mode->vdisplay);
8587 }
8588
8589 static struct drm_framebuffer *
8590 intel_framebuffer_create_for_mode(struct drm_device *dev,
8591 struct drm_display_mode *mode,
8592 int depth, int bpp)
8593 {
8594 struct drm_i915_gem_object *obj;
8595 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8596
8597 obj = i915_gem_alloc_object(dev,
8598 intel_framebuffer_size_for_mode(mode, bpp));
8599 if (obj == NULL)
8600 return ERR_PTR(-ENOMEM);
8601
8602 mode_cmd.width = mode->hdisplay;
8603 mode_cmd.height = mode->vdisplay;
8604 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8605 bpp);
8606 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8607
8608 return intel_framebuffer_create(dev, &mode_cmd, obj);
8609 }
8610
8611 static struct drm_framebuffer *
8612 mode_fits_in_fbdev(struct drm_device *dev,
8613 struct drm_display_mode *mode)
8614 {
8615 #ifdef CONFIG_DRM_I915_FBDEV
8616 struct drm_i915_private *dev_priv = dev->dev_private;
8617 struct drm_i915_gem_object *obj;
8618 struct drm_framebuffer *fb;
8619
8620 if (!dev_priv->fbdev)
8621 return NULL;
8622
8623 if (!dev_priv->fbdev->fb)
8624 return NULL;
8625
8626 obj = dev_priv->fbdev->fb->obj;
8627 BUG_ON(!obj);
8628
8629 fb = &dev_priv->fbdev->fb->base;
8630 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8631 fb->bits_per_pixel))
8632 return NULL;
8633
8634 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8635 return NULL;
8636
8637 return fb;
8638 #else
8639 return NULL;
8640 #endif
8641 }
8642
8643 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8644 struct drm_display_mode *mode,
8645 struct intel_load_detect_pipe *old,
8646 struct drm_modeset_acquire_ctx *ctx)
8647 {
8648 struct intel_crtc *intel_crtc;
8649 struct intel_encoder *intel_encoder =
8650 intel_attached_encoder(connector);
8651 struct drm_crtc *possible_crtc;
8652 struct drm_encoder *encoder = &intel_encoder->base;
8653 struct drm_crtc *crtc = NULL;
8654 struct drm_device *dev = encoder->dev;
8655 struct drm_framebuffer *fb;
8656 struct drm_mode_config *config = &dev->mode_config;
8657 int ret, i = -1;
8658
8659 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8660 connector->base.id, connector->name,
8661 encoder->base.id, encoder->name);
8662
8663 retry:
8664 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8665 if (ret)
8666 goto fail_unlock;
8667
8668 /*
8669 * Algorithm gets a little messy:
8670 *
8671 * - if the connector already has an assigned crtc, use it (but make
8672 * sure it's on first)
8673 *
8674 * - try to find the first unused crtc that can drive this connector,
8675 * and use that if we find one
8676 */
8677
8678 /* See if we already have a CRTC for this connector */
8679 if (encoder->crtc) {
8680 crtc = encoder->crtc;
8681
8682 ret = drm_modeset_lock(&crtc->mutex, ctx);
8683 if (ret)
8684 goto fail_unlock;
8685 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8686 if (ret)
8687 goto fail_unlock;
8688
8689 old->dpms_mode = connector->dpms;
8690 old->load_detect_temp = false;
8691
8692 /* Make sure the crtc and connector are running */
8693 if (connector->dpms != DRM_MODE_DPMS_ON)
8694 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8695
8696 return true;
8697 }
8698
8699 /* Find an unused one (if possible) */
8700 for_each_crtc(dev, possible_crtc) {
8701 i++;
8702 if (!(encoder->possible_crtcs & (1 << i)))
8703 continue;
8704 if (possible_crtc->enabled)
8705 continue;
8706 /* This can occur when applying the pipe A quirk on resume. */
8707 if (to_intel_crtc(possible_crtc)->new_enabled)
8708 continue;
8709
8710 crtc = possible_crtc;
8711 break;
8712 }
8713
8714 /*
8715 * If we didn't find an unused CRTC, don't use any.
8716 */
8717 if (!crtc) {
8718 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8719 goto fail_unlock;
8720 }
8721
8722 ret = drm_modeset_lock(&crtc->mutex, ctx);
8723 if (ret)
8724 goto fail_unlock;
8725 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8726 if (ret)
8727 goto fail_unlock;
8728 intel_encoder->new_crtc = to_intel_crtc(crtc);
8729 to_intel_connector(connector)->new_encoder = intel_encoder;
8730
8731 intel_crtc = to_intel_crtc(crtc);
8732 intel_crtc->new_enabled = true;
8733 intel_crtc->new_config = &intel_crtc->config;
8734 old->dpms_mode = connector->dpms;
8735 old->load_detect_temp = true;
8736 old->release_fb = NULL;
8737
8738 if (!mode)
8739 mode = &load_detect_mode;
8740
8741 /* We need a framebuffer large enough to accommodate all accesses
8742 * that the plane may generate whilst we perform load detection.
8743 * We can not rely on the fbcon either being present (we get called
8744 * during its initialisation to detect all boot displays, or it may
8745 * not even exist) or that it is large enough to satisfy the
8746 * requested mode.
8747 */
8748 fb = mode_fits_in_fbdev(dev, mode);
8749 if (fb == NULL) {
8750 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8751 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8752 old->release_fb = fb;
8753 } else
8754 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8755 if (IS_ERR(fb)) {
8756 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8757 goto fail;
8758 }
8759
8760 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8761 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8762 if (old->release_fb)
8763 old->release_fb->funcs->destroy(old->release_fb);
8764 goto fail;
8765 }
8766
8767 /* let the connector get through one full cycle before testing */
8768 intel_wait_for_vblank(dev, intel_crtc->pipe);
8769 return true;
8770
8771 fail:
8772 intel_crtc->new_enabled = crtc->enabled;
8773 if (intel_crtc->new_enabled)
8774 intel_crtc->new_config = &intel_crtc->config;
8775 else
8776 intel_crtc->new_config = NULL;
8777 fail_unlock:
8778 if (ret == -EDEADLK) {
8779 drm_modeset_backoff(ctx);
8780 goto retry;
8781 }
8782
8783 return false;
8784 }
8785
8786 void intel_release_load_detect_pipe(struct drm_connector *connector,
8787 struct intel_load_detect_pipe *old)
8788 {
8789 struct intel_encoder *intel_encoder =
8790 intel_attached_encoder(connector);
8791 struct drm_encoder *encoder = &intel_encoder->base;
8792 struct drm_crtc *crtc = encoder->crtc;
8793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8794
8795 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8796 connector->base.id, connector->name,
8797 encoder->base.id, encoder->name);
8798
8799 if (old->load_detect_temp) {
8800 to_intel_connector(connector)->new_encoder = NULL;
8801 intel_encoder->new_crtc = NULL;
8802 intel_crtc->new_enabled = false;
8803 intel_crtc->new_config = NULL;
8804 intel_set_mode(crtc, NULL, 0, 0, NULL);
8805
8806 if (old->release_fb) {
8807 drm_framebuffer_unregister_private(old->release_fb);
8808 drm_framebuffer_unreference(old->release_fb);
8809 }
8810
8811 return;
8812 }
8813
8814 /* Switch crtc and encoder back off if necessary */
8815 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8816 connector->funcs->dpms(connector, old->dpms_mode);
8817 }
8818
8819 static int i9xx_pll_refclk(struct drm_device *dev,
8820 const struct intel_crtc_config *pipe_config)
8821 {
8822 struct drm_i915_private *dev_priv = dev->dev_private;
8823 u32 dpll = pipe_config->dpll_hw_state.dpll;
8824
8825 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8826 return dev_priv->vbt.lvds_ssc_freq;
8827 else if (HAS_PCH_SPLIT(dev))
8828 return 120000;
8829 else if (!IS_GEN2(dev))
8830 return 96000;
8831 else
8832 return 48000;
8833 }
8834
8835 /* Returns the clock of the currently programmed mode of the given pipe. */
8836 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8837 struct intel_crtc_config *pipe_config)
8838 {
8839 struct drm_device *dev = crtc->base.dev;
8840 struct drm_i915_private *dev_priv = dev->dev_private;
8841 int pipe = pipe_config->cpu_transcoder;
8842 u32 dpll = pipe_config->dpll_hw_state.dpll;
8843 u32 fp;
8844 intel_clock_t clock;
8845 int refclk = i9xx_pll_refclk(dev, pipe_config);
8846
8847 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8848 fp = pipe_config->dpll_hw_state.fp0;
8849 else
8850 fp = pipe_config->dpll_hw_state.fp1;
8851
8852 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8853 if (IS_PINEVIEW(dev)) {
8854 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8855 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8856 } else {
8857 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8858 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8859 }
8860
8861 if (!IS_GEN2(dev)) {
8862 if (IS_PINEVIEW(dev))
8863 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8864 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8865 else
8866 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8867 DPLL_FPA01_P1_POST_DIV_SHIFT);
8868
8869 switch (dpll & DPLL_MODE_MASK) {
8870 case DPLLB_MODE_DAC_SERIAL:
8871 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8872 5 : 10;
8873 break;
8874 case DPLLB_MODE_LVDS:
8875 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8876 7 : 14;
8877 break;
8878 default:
8879 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8880 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8881 return;
8882 }
8883
8884 if (IS_PINEVIEW(dev))
8885 pineview_clock(refclk, &clock);
8886 else
8887 i9xx_clock(refclk, &clock);
8888 } else {
8889 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8890 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8891
8892 if (is_lvds) {
8893 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8894 DPLL_FPA01_P1_POST_DIV_SHIFT);
8895
8896 if (lvds & LVDS_CLKB_POWER_UP)
8897 clock.p2 = 7;
8898 else
8899 clock.p2 = 14;
8900 } else {
8901 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8902 clock.p1 = 2;
8903 else {
8904 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8905 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8906 }
8907 if (dpll & PLL_P2_DIVIDE_BY_4)
8908 clock.p2 = 4;
8909 else
8910 clock.p2 = 2;
8911 }
8912
8913 i9xx_clock(refclk, &clock);
8914 }
8915
8916 /*
8917 * This value includes pixel_multiplier. We will use
8918 * port_clock to compute adjusted_mode.crtc_clock in the
8919 * encoder's get_config() function.
8920 */
8921 pipe_config->port_clock = clock.dot;
8922 }
8923
8924 int intel_dotclock_calculate(int link_freq,
8925 const struct intel_link_m_n *m_n)
8926 {
8927 /*
8928 * The calculation for the data clock is:
8929 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8930 * But we want to avoid losing precison if possible, so:
8931 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8932 *
8933 * and the link clock is simpler:
8934 * link_clock = (m * link_clock) / n
8935 */
8936
8937 if (!m_n->link_n)
8938 return 0;
8939
8940 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8941 }
8942
8943 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8944 struct intel_crtc_config *pipe_config)
8945 {
8946 struct drm_device *dev = crtc->base.dev;
8947
8948 /* read out port_clock from the DPLL */
8949 i9xx_crtc_clock_get(crtc, pipe_config);
8950
8951 /*
8952 * This value does not include pixel_multiplier.
8953 * We will check that port_clock and adjusted_mode.crtc_clock
8954 * agree once we know their relationship in the encoder's
8955 * get_config() function.
8956 */
8957 pipe_config->adjusted_mode.crtc_clock =
8958 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8959 &pipe_config->fdi_m_n);
8960 }
8961
8962 /** Returns the currently programmed mode of the given pipe. */
8963 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8964 struct drm_crtc *crtc)
8965 {
8966 struct drm_i915_private *dev_priv = dev->dev_private;
8967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8968 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8969 struct drm_display_mode *mode;
8970 struct intel_crtc_config pipe_config;
8971 int htot = I915_READ(HTOTAL(cpu_transcoder));
8972 int hsync = I915_READ(HSYNC(cpu_transcoder));
8973 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8974 int vsync = I915_READ(VSYNC(cpu_transcoder));
8975 enum pipe pipe = intel_crtc->pipe;
8976
8977 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8978 if (!mode)
8979 return NULL;
8980
8981 /*
8982 * Construct a pipe_config sufficient for getting the clock info
8983 * back out of crtc_clock_get.
8984 *
8985 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8986 * to use a real value here instead.
8987 */
8988 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8989 pipe_config.pixel_multiplier = 1;
8990 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8991 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8992 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8993 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8994
8995 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8996 mode->hdisplay = (htot & 0xffff) + 1;
8997 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8998 mode->hsync_start = (hsync & 0xffff) + 1;
8999 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9000 mode->vdisplay = (vtot & 0xffff) + 1;
9001 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9002 mode->vsync_start = (vsync & 0xffff) + 1;
9003 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9004
9005 drm_mode_set_name(mode);
9006
9007 return mode;
9008 }
9009
9010 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9011 {
9012 struct drm_device *dev = crtc->dev;
9013 struct drm_i915_private *dev_priv = dev->dev_private;
9014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9015
9016 if (!HAS_GMCH_DISPLAY(dev))
9017 return;
9018
9019 if (!dev_priv->lvds_downclock_avail)
9020 return;
9021
9022 /*
9023 * Since this is called by a timer, we should never get here in
9024 * the manual case.
9025 */
9026 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9027 int pipe = intel_crtc->pipe;
9028 int dpll_reg = DPLL(pipe);
9029 int dpll;
9030
9031 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9032
9033 assert_panel_unlocked(dev_priv, pipe);
9034
9035 dpll = I915_READ(dpll_reg);
9036 dpll |= DISPLAY_RATE_SELECT_FPA1;
9037 I915_WRITE(dpll_reg, dpll);
9038 intel_wait_for_vblank(dev, pipe);
9039 dpll = I915_READ(dpll_reg);
9040 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9041 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9042 }
9043
9044 }
9045
9046 void intel_mark_busy(struct drm_device *dev)
9047 {
9048 struct drm_i915_private *dev_priv = dev->dev_private;
9049
9050 if (dev_priv->mm.busy)
9051 return;
9052
9053 intel_runtime_pm_get(dev_priv);
9054 i915_update_gfx_val(dev_priv);
9055 dev_priv->mm.busy = true;
9056 }
9057
9058 void intel_mark_idle(struct drm_device *dev)
9059 {
9060 struct drm_i915_private *dev_priv = dev->dev_private;
9061 struct drm_crtc *crtc;
9062
9063 if (!dev_priv->mm.busy)
9064 return;
9065
9066 dev_priv->mm.busy = false;
9067
9068 if (!i915.powersave)
9069 goto out;
9070
9071 for_each_crtc(dev, crtc) {
9072 if (!crtc->primary->fb)
9073 continue;
9074
9075 intel_decrease_pllclock(crtc);
9076 }
9077
9078 if (INTEL_INFO(dev)->gen >= 6)
9079 gen6_rps_idle(dev->dev_private);
9080
9081 out:
9082 intel_runtime_pm_put(dev_priv);
9083 }
9084
9085 static void intel_crtc_destroy(struct drm_crtc *crtc)
9086 {
9087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9088 struct drm_device *dev = crtc->dev;
9089 struct intel_unpin_work *work;
9090
9091 spin_lock_irq(&dev->event_lock);
9092 work = intel_crtc->unpin_work;
9093 intel_crtc->unpin_work = NULL;
9094 spin_unlock_irq(&dev->event_lock);
9095
9096 if (work) {
9097 cancel_work_sync(&work->work);
9098 kfree(work);
9099 }
9100
9101 drm_crtc_cleanup(crtc);
9102
9103 kfree(intel_crtc);
9104 }
9105
9106 static void intel_unpin_work_fn(struct work_struct *__work)
9107 {
9108 struct intel_unpin_work *work =
9109 container_of(__work, struct intel_unpin_work, work);
9110 struct drm_device *dev = work->crtc->dev;
9111 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9112
9113 mutex_lock(&dev->struct_mutex);
9114 intel_unpin_fb_obj(work->old_fb_obj);
9115 drm_gem_object_unreference(&work->pending_flip_obj->base);
9116 drm_gem_object_unreference(&work->old_fb_obj->base);
9117
9118 intel_update_fbc(dev);
9119 mutex_unlock(&dev->struct_mutex);
9120
9121 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9122
9123 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9124 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9125
9126 kfree(work);
9127 }
9128
9129 static void do_intel_finish_page_flip(struct drm_device *dev,
9130 struct drm_crtc *crtc)
9131 {
9132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9133 struct intel_unpin_work *work;
9134 unsigned long flags;
9135
9136 /* Ignore early vblank irqs */
9137 if (intel_crtc == NULL)
9138 return;
9139
9140 /*
9141 * This is called both by irq handlers and the reset code (to complete
9142 * lost pageflips) so needs the full irqsave spinlocks.
9143 */
9144 spin_lock_irqsave(&dev->event_lock, flags);
9145 work = intel_crtc->unpin_work;
9146
9147 /* Ensure we don't miss a work->pending update ... */
9148 smp_rmb();
9149
9150 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9151 spin_unlock_irqrestore(&dev->event_lock, flags);
9152 return;
9153 }
9154
9155 page_flip_completed(intel_crtc);
9156
9157 spin_unlock_irqrestore(&dev->event_lock, flags);
9158 }
9159
9160 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9161 {
9162 struct drm_i915_private *dev_priv = dev->dev_private;
9163 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9164
9165 do_intel_finish_page_flip(dev, crtc);
9166 }
9167
9168 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9169 {
9170 struct drm_i915_private *dev_priv = dev->dev_private;
9171 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9172
9173 do_intel_finish_page_flip(dev, crtc);
9174 }
9175
9176 /* Is 'a' after or equal to 'b'? */
9177 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9178 {
9179 return !((a - b) & 0x80000000);
9180 }
9181
9182 static bool page_flip_finished(struct intel_crtc *crtc)
9183 {
9184 struct drm_device *dev = crtc->base.dev;
9185 struct drm_i915_private *dev_priv = dev->dev_private;
9186
9187 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9188 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9189 return true;
9190
9191 /*
9192 * The relevant registers doen't exist on pre-ctg.
9193 * As the flip done interrupt doesn't trigger for mmio
9194 * flips on gmch platforms, a flip count check isn't
9195 * really needed there. But since ctg has the registers,
9196 * include it in the check anyway.
9197 */
9198 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9199 return true;
9200
9201 /*
9202 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9203 * used the same base address. In that case the mmio flip might
9204 * have completed, but the CS hasn't even executed the flip yet.
9205 *
9206 * A flip count check isn't enough as the CS might have updated
9207 * the base address just after start of vblank, but before we
9208 * managed to process the interrupt. This means we'd complete the
9209 * CS flip too soon.
9210 *
9211 * Combining both checks should get us a good enough result. It may
9212 * still happen that the CS flip has been executed, but has not
9213 * yet actually completed. But in case the base address is the same
9214 * anyway, we don't really care.
9215 */
9216 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9217 crtc->unpin_work->gtt_offset &&
9218 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9219 crtc->unpin_work->flip_count);
9220 }
9221
9222 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9223 {
9224 struct drm_i915_private *dev_priv = dev->dev_private;
9225 struct intel_crtc *intel_crtc =
9226 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9227 unsigned long flags;
9228
9229
9230 /*
9231 * This is called both by irq handlers and the reset code (to complete
9232 * lost pageflips) so needs the full irqsave spinlocks.
9233 *
9234 * NB: An MMIO update of the plane base pointer will also
9235 * generate a page-flip completion irq, i.e. every modeset
9236 * is also accompanied by a spurious intel_prepare_page_flip().
9237 */
9238 spin_lock_irqsave(&dev->event_lock, flags);
9239 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9240 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9241 spin_unlock_irqrestore(&dev->event_lock, flags);
9242 }
9243
9244 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9245 {
9246 /* Ensure that the work item is consistent when activating it ... */
9247 smp_wmb();
9248 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9249 /* and that it is marked active as soon as the irq could fire. */
9250 smp_wmb();
9251 }
9252
9253 static int intel_gen2_queue_flip(struct drm_device *dev,
9254 struct drm_crtc *crtc,
9255 struct drm_framebuffer *fb,
9256 struct drm_i915_gem_object *obj,
9257 struct intel_engine_cs *ring,
9258 uint32_t flags)
9259 {
9260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9261 u32 flip_mask;
9262 int ret;
9263
9264 ret = intel_ring_begin(ring, 6);
9265 if (ret)
9266 return ret;
9267
9268 /* Can't queue multiple flips, so wait for the previous
9269 * one to finish before executing the next.
9270 */
9271 if (intel_crtc->plane)
9272 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9273 else
9274 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9275 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9276 intel_ring_emit(ring, MI_NOOP);
9277 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9278 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9279 intel_ring_emit(ring, fb->pitches[0]);
9280 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9281 intel_ring_emit(ring, 0); /* aux display base address, unused */
9282
9283 intel_mark_page_flip_active(intel_crtc);
9284 __intel_ring_advance(ring);
9285 return 0;
9286 }
9287
9288 static int intel_gen3_queue_flip(struct drm_device *dev,
9289 struct drm_crtc *crtc,
9290 struct drm_framebuffer *fb,
9291 struct drm_i915_gem_object *obj,
9292 struct intel_engine_cs *ring,
9293 uint32_t flags)
9294 {
9295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9296 u32 flip_mask;
9297 int ret;
9298
9299 ret = intel_ring_begin(ring, 6);
9300 if (ret)
9301 return ret;
9302
9303 if (intel_crtc->plane)
9304 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9305 else
9306 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9307 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9308 intel_ring_emit(ring, MI_NOOP);
9309 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9310 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9311 intel_ring_emit(ring, fb->pitches[0]);
9312 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9313 intel_ring_emit(ring, MI_NOOP);
9314
9315 intel_mark_page_flip_active(intel_crtc);
9316 __intel_ring_advance(ring);
9317 return 0;
9318 }
9319
9320 static int intel_gen4_queue_flip(struct drm_device *dev,
9321 struct drm_crtc *crtc,
9322 struct drm_framebuffer *fb,
9323 struct drm_i915_gem_object *obj,
9324 struct intel_engine_cs *ring,
9325 uint32_t flags)
9326 {
9327 struct drm_i915_private *dev_priv = dev->dev_private;
9328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9329 uint32_t pf, pipesrc;
9330 int ret;
9331
9332 ret = intel_ring_begin(ring, 4);
9333 if (ret)
9334 return ret;
9335
9336 /* i965+ uses the linear or tiled offsets from the
9337 * Display Registers (which do not change across a page-flip)
9338 * so we need only reprogram the base address.
9339 */
9340 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9341 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9342 intel_ring_emit(ring, fb->pitches[0]);
9343 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9344 obj->tiling_mode);
9345
9346 /* XXX Enabling the panel-fitter across page-flip is so far
9347 * untested on non-native modes, so ignore it for now.
9348 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9349 */
9350 pf = 0;
9351 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9352 intel_ring_emit(ring, pf | pipesrc);
9353
9354 intel_mark_page_flip_active(intel_crtc);
9355 __intel_ring_advance(ring);
9356 return 0;
9357 }
9358
9359 static int intel_gen6_queue_flip(struct drm_device *dev,
9360 struct drm_crtc *crtc,
9361 struct drm_framebuffer *fb,
9362 struct drm_i915_gem_object *obj,
9363 struct intel_engine_cs *ring,
9364 uint32_t flags)
9365 {
9366 struct drm_i915_private *dev_priv = dev->dev_private;
9367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9368 uint32_t pf, pipesrc;
9369 int ret;
9370
9371 ret = intel_ring_begin(ring, 4);
9372 if (ret)
9373 return ret;
9374
9375 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9376 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9377 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9378 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9379
9380 /* Contrary to the suggestions in the documentation,
9381 * "Enable Panel Fitter" does not seem to be required when page
9382 * flipping with a non-native mode, and worse causes a normal
9383 * modeset to fail.
9384 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9385 */
9386 pf = 0;
9387 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9388 intel_ring_emit(ring, pf | pipesrc);
9389
9390 intel_mark_page_flip_active(intel_crtc);
9391 __intel_ring_advance(ring);
9392 return 0;
9393 }
9394
9395 static int intel_gen7_queue_flip(struct drm_device *dev,
9396 struct drm_crtc *crtc,
9397 struct drm_framebuffer *fb,
9398 struct drm_i915_gem_object *obj,
9399 struct intel_engine_cs *ring,
9400 uint32_t flags)
9401 {
9402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9403 uint32_t plane_bit = 0;
9404 int len, ret;
9405
9406 switch (intel_crtc->plane) {
9407 case PLANE_A:
9408 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9409 break;
9410 case PLANE_B:
9411 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9412 break;
9413 case PLANE_C:
9414 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9415 break;
9416 default:
9417 WARN_ONCE(1, "unknown plane in flip command\n");
9418 return -ENODEV;
9419 }
9420
9421 len = 4;
9422 if (ring->id == RCS) {
9423 len += 6;
9424 /*
9425 * On Gen 8, SRM is now taking an extra dword to accommodate
9426 * 48bits addresses, and we need a NOOP for the batch size to
9427 * stay even.
9428 */
9429 if (IS_GEN8(dev))
9430 len += 2;
9431 }
9432
9433 /*
9434 * BSpec MI_DISPLAY_FLIP for IVB:
9435 * "The full packet must be contained within the same cache line."
9436 *
9437 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9438 * cacheline, if we ever start emitting more commands before
9439 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9440 * then do the cacheline alignment, and finally emit the
9441 * MI_DISPLAY_FLIP.
9442 */
9443 ret = intel_ring_cacheline_align(ring);
9444 if (ret)
9445 return ret;
9446
9447 ret = intel_ring_begin(ring, len);
9448 if (ret)
9449 return ret;
9450
9451 /* Unmask the flip-done completion message. Note that the bspec says that
9452 * we should do this for both the BCS and RCS, and that we must not unmask
9453 * more than one flip event at any time (or ensure that one flip message
9454 * can be sent by waiting for flip-done prior to queueing new flips).
9455 * Experimentation says that BCS works despite DERRMR masking all
9456 * flip-done completion events and that unmasking all planes at once
9457 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9458 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9459 */
9460 if (ring->id == RCS) {
9461 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9462 intel_ring_emit(ring, DERRMR);
9463 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9464 DERRMR_PIPEB_PRI_FLIP_DONE |
9465 DERRMR_PIPEC_PRI_FLIP_DONE));
9466 if (IS_GEN8(dev))
9467 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9468 MI_SRM_LRM_GLOBAL_GTT);
9469 else
9470 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9471 MI_SRM_LRM_GLOBAL_GTT);
9472 intel_ring_emit(ring, DERRMR);
9473 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9474 if (IS_GEN8(dev)) {
9475 intel_ring_emit(ring, 0);
9476 intel_ring_emit(ring, MI_NOOP);
9477 }
9478 }
9479
9480 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9481 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9482 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9483 intel_ring_emit(ring, (MI_NOOP));
9484
9485 intel_mark_page_flip_active(intel_crtc);
9486 __intel_ring_advance(ring);
9487 return 0;
9488 }
9489
9490 static bool use_mmio_flip(struct intel_engine_cs *ring,
9491 struct drm_i915_gem_object *obj)
9492 {
9493 /*
9494 * This is not being used for older platforms, because
9495 * non-availability of flip done interrupt forces us to use
9496 * CS flips. Older platforms derive flip done using some clever
9497 * tricks involving the flip_pending status bits and vblank irqs.
9498 * So using MMIO flips there would disrupt this mechanism.
9499 */
9500
9501 if (ring == NULL)
9502 return true;
9503
9504 if (INTEL_INFO(ring->dev)->gen < 5)
9505 return false;
9506
9507 if (i915.use_mmio_flip < 0)
9508 return false;
9509 else if (i915.use_mmio_flip > 0)
9510 return true;
9511 else if (i915.enable_execlists)
9512 return true;
9513 else
9514 return ring != obj->ring;
9515 }
9516
9517 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9518 {
9519 struct drm_device *dev = intel_crtc->base.dev;
9520 struct drm_i915_private *dev_priv = dev->dev_private;
9521 struct intel_framebuffer *intel_fb =
9522 to_intel_framebuffer(intel_crtc->base.primary->fb);
9523 struct drm_i915_gem_object *obj = intel_fb->obj;
9524 bool atomic_update;
9525 u32 start_vbl_count;
9526 u32 dspcntr;
9527 u32 reg;
9528
9529 intel_mark_page_flip_active(intel_crtc);
9530
9531 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9532
9533 reg = DSPCNTR(intel_crtc->plane);
9534 dspcntr = I915_READ(reg);
9535
9536 if (obj->tiling_mode != I915_TILING_NONE)
9537 dspcntr |= DISPPLANE_TILED;
9538 else
9539 dspcntr &= ~DISPPLANE_TILED;
9540
9541 I915_WRITE(reg, dspcntr);
9542
9543 I915_WRITE(DSPSURF(intel_crtc->plane),
9544 intel_crtc->unpin_work->gtt_offset);
9545 POSTING_READ(DSPSURF(intel_crtc->plane));
9546
9547 if (atomic_update)
9548 intel_pipe_update_end(intel_crtc, start_vbl_count);
9549 }
9550
9551 static void intel_mmio_flip_work_func(struct work_struct *work)
9552 {
9553 struct intel_crtc *intel_crtc =
9554 container_of(work, struct intel_crtc, mmio_flip.work);
9555 struct intel_engine_cs *ring;
9556 uint32_t seqno;
9557
9558 seqno = intel_crtc->mmio_flip.seqno;
9559 ring = intel_crtc->mmio_flip.ring;
9560
9561 if (seqno)
9562 WARN_ON(__i915_wait_seqno(ring, seqno,
9563 intel_crtc->reset_counter,
9564 false, NULL, NULL) != 0);
9565
9566 intel_do_mmio_flip(intel_crtc);
9567 }
9568
9569 static int intel_queue_mmio_flip(struct drm_device *dev,
9570 struct drm_crtc *crtc,
9571 struct drm_framebuffer *fb,
9572 struct drm_i915_gem_object *obj,
9573 struct intel_engine_cs *ring,
9574 uint32_t flags)
9575 {
9576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9577
9578 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9579 intel_crtc->mmio_flip.ring = obj->ring;
9580
9581 schedule_work(&intel_crtc->mmio_flip.work);
9582
9583 return 0;
9584 }
9585
9586 static int intel_gen9_queue_flip(struct drm_device *dev,
9587 struct drm_crtc *crtc,
9588 struct drm_framebuffer *fb,
9589 struct drm_i915_gem_object *obj,
9590 struct intel_engine_cs *ring,
9591 uint32_t flags)
9592 {
9593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9594 uint32_t plane = 0, stride;
9595 int ret;
9596
9597 switch(intel_crtc->pipe) {
9598 case PIPE_A:
9599 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9600 break;
9601 case PIPE_B:
9602 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9603 break;
9604 case PIPE_C:
9605 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9606 break;
9607 default:
9608 WARN_ONCE(1, "unknown plane in flip command\n");
9609 return -ENODEV;
9610 }
9611
9612 switch (obj->tiling_mode) {
9613 case I915_TILING_NONE:
9614 stride = fb->pitches[0] >> 6;
9615 break;
9616 case I915_TILING_X:
9617 stride = fb->pitches[0] >> 9;
9618 break;
9619 default:
9620 WARN_ONCE(1, "unknown tiling in flip command\n");
9621 return -ENODEV;
9622 }
9623
9624 ret = intel_ring_begin(ring, 10);
9625 if (ret)
9626 return ret;
9627
9628 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9629 intel_ring_emit(ring, DERRMR);
9630 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9631 DERRMR_PIPEB_PRI_FLIP_DONE |
9632 DERRMR_PIPEC_PRI_FLIP_DONE));
9633 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9634 MI_SRM_LRM_GLOBAL_GTT);
9635 intel_ring_emit(ring, DERRMR);
9636 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9637 intel_ring_emit(ring, 0);
9638
9639 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9640 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9641 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9642
9643 intel_mark_page_flip_active(intel_crtc);
9644 __intel_ring_advance(ring);
9645
9646 return 0;
9647 }
9648
9649 static int intel_default_queue_flip(struct drm_device *dev,
9650 struct drm_crtc *crtc,
9651 struct drm_framebuffer *fb,
9652 struct drm_i915_gem_object *obj,
9653 struct intel_engine_cs *ring,
9654 uint32_t flags)
9655 {
9656 return -ENODEV;
9657 }
9658
9659 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9660 struct drm_crtc *crtc)
9661 {
9662 struct drm_i915_private *dev_priv = dev->dev_private;
9663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9664 struct intel_unpin_work *work = intel_crtc->unpin_work;
9665 u32 addr;
9666
9667 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9668 return true;
9669
9670 if (!work->enable_stall_check)
9671 return false;
9672
9673 if (work->flip_ready_vblank == 0) {
9674 if (work->flip_queued_ring &&
9675 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9676 work->flip_queued_seqno))
9677 return false;
9678
9679 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9680 }
9681
9682 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9683 return false;
9684
9685 /* Potential stall - if we see that the flip has happened,
9686 * assume a missed interrupt. */
9687 if (INTEL_INFO(dev)->gen >= 4)
9688 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9689 else
9690 addr = I915_READ(DSPADDR(intel_crtc->plane));
9691
9692 /* There is a potential issue here with a false positive after a flip
9693 * to the same address. We could address this by checking for a
9694 * non-incrementing frame counter.
9695 */
9696 return addr == work->gtt_offset;
9697 }
9698
9699 void intel_check_page_flip(struct drm_device *dev, int pipe)
9700 {
9701 struct drm_i915_private *dev_priv = dev->dev_private;
9702 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9704
9705 WARN_ON(!in_irq());
9706
9707 if (crtc == NULL)
9708 return;
9709
9710 spin_lock(&dev->event_lock);
9711 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9712 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9713 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9714 page_flip_completed(intel_crtc);
9715 }
9716 spin_unlock(&dev->event_lock);
9717 }
9718
9719 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9720 struct drm_framebuffer *fb,
9721 struct drm_pending_vblank_event *event,
9722 uint32_t page_flip_flags)
9723 {
9724 struct drm_device *dev = crtc->dev;
9725 struct drm_i915_private *dev_priv = dev->dev_private;
9726 struct drm_framebuffer *old_fb = crtc->primary->fb;
9727 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9729 enum pipe pipe = intel_crtc->pipe;
9730 struct intel_unpin_work *work;
9731 struct intel_engine_cs *ring;
9732 int ret;
9733
9734 /*
9735 * drm_mode_page_flip_ioctl() should already catch this, but double
9736 * check to be safe. In the future we may enable pageflipping from
9737 * a disabled primary plane.
9738 */
9739 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9740 return -EBUSY;
9741
9742 /* Can't change pixel format via MI display flips. */
9743 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9744 return -EINVAL;
9745
9746 /*
9747 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9748 * Note that pitch changes could also affect these register.
9749 */
9750 if (INTEL_INFO(dev)->gen > 3 &&
9751 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9752 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9753 return -EINVAL;
9754
9755 if (i915_terminally_wedged(&dev_priv->gpu_error))
9756 goto out_hang;
9757
9758 work = kzalloc(sizeof(*work), GFP_KERNEL);
9759 if (work == NULL)
9760 return -ENOMEM;
9761
9762 work->event = event;
9763 work->crtc = crtc;
9764 work->old_fb_obj = intel_fb_obj(old_fb);
9765 INIT_WORK(&work->work, intel_unpin_work_fn);
9766
9767 ret = drm_crtc_vblank_get(crtc);
9768 if (ret)
9769 goto free_work;
9770
9771 /* We borrow the event spin lock for protecting unpin_work */
9772 spin_lock_irq(&dev->event_lock);
9773 if (intel_crtc->unpin_work) {
9774 /* Before declaring the flip queue wedged, check if
9775 * the hardware completed the operation behind our backs.
9776 */
9777 if (__intel_pageflip_stall_check(dev, crtc)) {
9778 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9779 page_flip_completed(intel_crtc);
9780 } else {
9781 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9782 spin_unlock_irq(&dev->event_lock);
9783
9784 drm_crtc_vblank_put(crtc);
9785 kfree(work);
9786 return -EBUSY;
9787 }
9788 }
9789 intel_crtc->unpin_work = work;
9790 spin_unlock_irq(&dev->event_lock);
9791
9792 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9793 flush_workqueue(dev_priv->wq);
9794
9795 ret = i915_mutex_lock_interruptible(dev);
9796 if (ret)
9797 goto cleanup;
9798
9799 /* Reference the objects for the scheduled work. */
9800 drm_gem_object_reference(&work->old_fb_obj->base);
9801 drm_gem_object_reference(&obj->base);
9802
9803 crtc->primary->fb = fb;
9804
9805 work->pending_flip_obj = obj;
9806
9807 atomic_inc(&intel_crtc->unpin_work_count);
9808 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9809
9810 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9811 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9812
9813 if (IS_VALLEYVIEW(dev)) {
9814 ring = &dev_priv->ring[BCS];
9815 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9816 /* vlv: DISPLAY_FLIP fails to change tiling */
9817 ring = NULL;
9818 } else if (IS_IVYBRIDGE(dev)) {
9819 ring = &dev_priv->ring[BCS];
9820 } else if (INTEL_INFO(dev)->gen >= 7) {
9821 ring = obj->ring;
9822 if (ring == NULL || ring->id != RCS)
9823 ring = &dev_priv->ring[BCS];
9824 } else {
9825 ring = &dev_priv->ring[RCS];
9826 }
9827
9828 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9829 if (ret)
9830 goto cleanup_pending;
9831
9832 work->gtt_offset =
9833 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9834
9835 if (use_mmio_flip(ring, obj)) {
9836 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9837 page_flip_flags);
9838 if (ret)
9839 goto cleanup_unpin;
9840
9841 work->flip_queued_seqno = obj->last_write_seqno;
9842 work->flip_queued_ring = obj->ring;
9843 } else {
9844 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9845 page_flip_flags);
9846 if (ret)
9847 goto cleanup_unpin;
9848
9849 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9850 work->flip_queued_ring = ring;
9851 }
9852
9853 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9854 work->enable_stall_check = true;
9855
9856 i915_gem_track_fb(work->old_fb_obj, obj,
9857 INTEL_FRONTBUFFER_PRIMARY(pipe));
9858
9859 intel_disable_fbc(dev);
9860 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9861 mutex_unlock(&dev->struct_mutex);
9862
9863 trace_i915_flip_request(intel_crtc->plane, obj);
9864
9865 return 0;
9866
9867 cleanup_unpin:
9868 intel_unpin_fb_obj(obj);
9869 cleanup_pending:
9870 atomic_dec(&intel_crtc->unpin_work_count);
9871 crtc->primary->fb = old_fb;
9872 drm_gem_object_unreference(&work->old_fb_obj->base);
9873 drm_gem_object_unreference(&obj->base);
9874 mutex_unlock(&dev->struct_mutex);
9875
9876 cleanup:
9877 spin_lock_irq(&dev->event_lock);
9878 intel_crtc->unpin_work = NULL;
9879 spin_unlock_irq(&dev->event_lock);
9880
9881 drm_crtc_vblank_put(crtc);
9882 free_work:
9883 kfree(work);
9884
9885 if (ret == -EIO) {
9886 out_hang:
9887 intel_crtc_wait_for_pending_flips(crtc);
9888 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9889 if (ret == 0 && event) {
9890 spin_lock_irq(&dev->event_lock);
9891 drm_send_vblank_event(dev, pipe, event);
9892 spin_unlock_irq(&dev->event_lock);
9893 }
9894 }
9895 return ret;
9896 }
9897
9898 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9899 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9900 .load_lut = intel_crtc_load_lut,
9901 };
9902
9903 /**
9904 * intel_modeset_update_staged_output_state
9905 *
9906 * Updates the staged output configuration state, e.g. after we've read out the
9907 * current hw state.
9908 */
9909 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9910 {
9911 struct intel_crtc *crtc;
9912 struct intel_encoder *encoder;
9913 struct intel_connector *connector;
9914
9915 list_for_each_entry(connector, &dev->mode_config.connector_list,
9916 base.head) {
9917 connector->new_encoder =
9918 to_intel_encoder(connector->base.encoder);
9919 }
9920
9921 for_each_intel_encoder(dev, encoder) {
9922 encoder->new_crtc =
9923 to_intel_crtc(encoder->base.crtc);
9924 }
9925
9926 for_each_intel_crtc(dev, crtc) {
9927 crtc->new_enabled = crtc->base.enabled;
9928
9929 if (crtc->new_enabled)
9930 crtc->new_config = &crtc->config;
9931 else
9932 crtc->new_config = NULL;
9933 }
9934 }
9935
9936 /**
9937 * intel_modeset_commit_output_state
9938 *
9939 * This function copies the stage display pipe configuration to the real one.
9940 */
9941 static void intel_modeset_commit_output_state(struct drm_device *dev)
9942 {
9943 struct intel_crtc *crtc;
9944 struct intel_encoder *encoder;
9945 struct intel_connector *connector;
9946
9947 list_for_each_entry(connector, &dev->mode_config.connector_list,
9948 base.head) {
9949 connector->base.encoder = &connector->new_encoder->base;
9950 }
9951
9952 for_each_intel_encoder(dev, encoder) {
9953 encoder->base.crtc = &encoder->new_crtc->base;
9954 }
9955
9956 for_each_intel_crtc(dev, crtc) {
9957 crtc->base.enabled = crtc->new_enabled;
9958 }
9959 }
9960
9961 static void
9962 connected_sink_compute_bpp(struct intel_connector *connector,
9963 struct intel_crtc_config *pipe_config)
9964 {
9965 int bpp = pipe_config->pipe_bpp;
9966
9967 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9968 connector->base.base.id,
9969 connector->base.name);
9970
9971 /* Don't use an invalid EDID bpc value */
9972 if (connector->base.display_info.bpc &&
9973 connector->base.display_info.bpc * 3 < bpp) {
9974 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9975 bpp, connector->base.display_info.bpc*3);
9976 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9977 }
9978
9979 /* Clamp bpp to 8 on screens without EDID 1.4 */
9980 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9981 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9982 bpp);
9983 pipe_config->pipe_bpp = 24;
9984 }
9985 }
9986
9987 static int
9988 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9989 struct drm_framebuffer *fb,
9990 struct intel_crtc_config *pipe_config)
9991 {
9992 struct drm_device *dev = crtc->base.dev;
9993 struct intel_connector *connector;
9994 int bpp;
9995
9996 switch (fb->pixel_format) {
9997 case DRM_FORMAT_C8:
9998 bpp = 8*3; /* since we go through a colormap */
9999 break;
10000 case DRM_FORMAT_XRGB1555:
10001 case DRM_FORMAT_ARGB1555:
10002 /* checked in intel_framebuffer_init already */
10003 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10004 return -EINVAL;
10005 case DRM_FORMAT_RGB565:
10006 bpp = 6*3; /* min is 18bpp */
10007 break;
10008 case DRM_FORMAT_XBGR8888:
10009 case DRM_FORMAT_ABGR8888:
10010 /* checked in intel_framebuffer_init already */
10011 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10012 return -EINVAL;
10013 case DRM_FORMAT_XRGB8888:
10014 case DRM_FORMAT_ARGB8888:
10015 bpp = 8*3;
10016 break;
10017 case DRM_FORMAT_XRGB2101010:
10018 case DRM_FORMAT_ARGB2101010:
10019 case DRM_FORMAT_XBGR2101010:
10020 case DRM_FORMAT_ABGR2101010:
10021 /* checked in intel_framebuffer_init already */
10022 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10023 return -EINVAL;
10024 bpp = 10*3;
10025 break;
10026 /* TODO: gen4+ supports 16 bpc floating point, too. */
10027 default:
10028 DRM_DEBUG_KMS("unsupported depth\n");
10029 return -EINVAL;
10030 }
10031
10032 pipe_config->pipe_bpp = bpp;
10033
10034 /* Clamp display bpp to EDID value */
10035 list_for_each_entry(connector, &dev->mode_config.connector_list,
10036 base.head) {
10037 if (!connector->new_encoder ||
10038 connector->new_encoder->new_crtc != crtc)
10039 continue;
10040
10041 connected_sink_compute_bpp(connector, pipe_config);
10042 }
10043
10044 return bpp;
10045 }
10046
10047 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10048 {
10049 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10050 "type: 0x%x flags: 0x%x\n",
10051 mode->crtc_clock,
10052 mode->crtc_hdisplay, mode->crtc_hsync_start,
10053 mode->crtc_hsync_end, mode->crtc_htotal,
10054 mode->crtc_vdisplay, mode->crtc_vsync_start,
10055 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10056 }
10057
10058 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10059 struct intel_crtc_config *pipe_config,
10060 const char *context)
10061 {
10062 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10063 context, pipe_name(crtc->pipe));
10064
10065 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10066 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10067 pipe_config->pipe_bpp, pipe_config->dither);
10068 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10069 pipe_config->has_pch_encoder,
10070 pipe_config->fdi_lanes,
10071 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10072 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10073 pipe_config->fdi_m_n.tu);
10074 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10075 pipe_config->has_dp_encoder,
10076 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10077 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10078 pipe_config->dp_m_n.tu);
10079
10080 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10081 pipe_config->has_dp_encoder,
10082 pipe_config->dp_m2_n2.gmch_m,
10083 pipe_config->dp_m2_n2.gmch_n,
10084 pipe_config->dp_m2_n2.link_m,
10085 pipe_config->dp_m2_n2.link_n,
10086 pipe_config->dp_m2_n2.tu);
10087
10088 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10089 pipe_config->has_audio,
10090 pipe_config->has_infoframe);
10091
10092 DRM_DEBUG_KMS("requested mode:\n");
10093 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10094 DRM_DEBUG_KMS("adjusted mode:\n");
10095 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10096 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10097 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10098 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10099 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10100 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10101 pipe_config->gmch_pfit.control,
10102 pipe_config->gmch_pfit.pgm_ratios,
10103 pipe_config->gmch_pfit.lvds_border_bits);
10104 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10105 pipe_config->pch_pfit.pos,
10106 pipe_config->pch_pfit.size,
10107 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10108 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10109 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10110 }
10111
10112 static bool encoders_cloneable(const struct intel_encoder *a,
10113 const struct intel_encoder *b)
10114 {
10115 /* masks could be asymmetric, so check both ways */
10116 return a == b || (a->cloneable & (1 << b->type) &&
10117 b->cloneable & (1 << a->type));
10118 }
10119
10120 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10121 struct intel_encoder *encoder)
10122 {
10123 struct drm_device *dev = crtc->base.dev;
10124 struct intel_encoder *source_encoder;
10125
10126 for_each_intel_encoder(dev, source_encoder) {
10127 if (source_encoder->new_crtc != crtc)
10128 continue;
10129
10130 if (!encoders_cloneable(encoder, source_encoder))
10131 return false;
10132 }
10133
10134 return true;
10135 }
10136
10137 static bool check_encoder_cloning(struct intel_crtc *crtc)
10138 {
10139 struct drm_device *dev = crtc->base.dev;
10140 struct intel_encoder *encoder;
10141
10142 for_each_intel_encoder(dev, encoder) {
10143 if (encoder->new_crtc != crtc)
10144 continue;
10145
10146 if (!check_single_encoder_cloning(crtc, encoder))
10147 return false;
10148 }
10149
10150 return true;
10151 }
10152
10153 static bool check_digital_port_conflicts(struct drm_device *dev)
10154 {
10155 struct intel_connector *connector;
10156 unsigned int used_ports = 0;
10157
10158 /*
10159 * Walk the connector list instead of the encoder
10160 * list to detect the problem on ddi platforms
10161 * where there's just one encoder per digital port.
10162 */
10163 list_for_each_entry(connector,
10164 &dev->mode_config.connector_list, base.head) {
10165 struct intel_encoder *encoder = connector->new_encoder;
10166
10167 if (!encoder)
10168 continue;
10169
10170 WARN_ON(!encoder->new_crtc);
10171
10172 switch (encoder->type) {
10173 unsigned int port_mask;
10174 case INTEL_OUTPUT_UNKNOWN:
10175 if (WARN_ON(!HAS_DDI(dev)))
10176 break;
10177 case INTEL_OUTPUT_DISPLAYPORT:
10178 case INTEL_OUTPUT_HDMI:
10179 case INTEL_OUTPUT_EDP:
10180 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10181
10182 /* the same port mustn't appear more than once */
10183 if (used_ports & port_mask)
10184 return false;
10185
10186 used_ports |= port_mask;
10187 default:
10188 break;
10189 }
10190 }
10191
10192 return true;
10193 }
10194
10195 static struct intel_crtc_config *
10196 intel_modeset_pipe_config(struct drm_crtc *crtc,
10197 struct drm_framebuffer *fb,
10198 struct drm_display_mode *mode)
10199 {
10200 struct drm_device *dev = crtc->dev;
10201 struct intel_encoder *encoder;
10202 struct intel_crtc_config *pipe_config;
10203 int plane_bpp, ret = -EINVAL;
10204 bool retry = true;
10205
10206 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10207 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10208 return ERR_PTR(-EINVAL);
10209 }
10210
10211 if (!check_digital_port_conflicts(dev)) {
10212 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10213 return ERR_PTR(-EINVAL);
10214 }
10215
10216 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10217 if (!pipe_config)
10218 return ERR_PTR(-ENOMEM);
10219
10220 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10221 drm_mode_copy(&pipe_config->requested_mode, mode);
10222
10223 pipe_config->cpu_transcoder =
10224 (enum transcoder) to_intel_crtc(crtc)->pipe;
10225 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10226
10227 /*
10228 * Sanitize sync polarity flags based on requested ones. If neither
10229 * positive or negative polarity is requested, treat this as meaning
10230 * negative polarity.
10231 */
10232 if (!(pipe_config->adjusted_mode.flags &
10233 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10234 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10235
10236 if (!(pipe_config->adjusted_mode.flags &
10237 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10238 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10239
10240 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10241 * plane pixel format and any sink constraints into account. Returns the
10242 * source plane bpp so that dithering can be selected on mismatches
10243 * after encoders and crtc also have had their say. */
10244 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10245 fb, pipe_config);
10246 if (plane_bpp < 0)
10247 goto fail;
10248
10249 /*
10250 * Determine the real pipe dimensions. Note that stereo modes can
10251 * increase the actual pipe size due to the frame doubling and
10252 * insertion of additional space for blanks between the frame. This
10253 * is stored in the crtc timings. We use the requested mode to do this
10254 * computation to clearly distinguish it from the adjusted mode, which
10255 * can be changed by the connectors in the below retry loop.
10256 */
10257 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10258 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10259 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10260
10261 encoder_retry:
10262 /* Ensure the port clock defaults are reset when retrying. */
10263 pipe_config->port_clock = 0;
10264 pipe_config->pixel_multiplier = 1;
10265
10266 /* Fill in default crtc timings, allow encoders to overwrite them. */
10267 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10268
10269 /* Pass our mode to the connectors and the CRTC to give them a chance to
10270 * adjust it according to limitations or connector properties, and also
10271 * a chance to reject the mode entirely.
10272 */
10273 for_each_intel_encoder(dev, encoder) {
10274
10275 if (&encoder->new_crtc->base != crtc)
10276 continue;
10277
10278 if (!(encoder->compute_config(encoder, pipe_config))) {
10279 DRM_DEBUG_KMS("Encoder config failure\n");
10280 goto fail;
10281 }
10282 }
10283
10284 /* Set default port clock if not overwritten by the encoder. Needs to be
10285 * done afterwards in case the encoder adjusts the mode. */
10286 if (!pipe_config->port_clock)
10287 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10288 * pipe_config->pixel_multiplier;
10289
10290 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10291 if (ret < 0) {
10292 DRM_DEBUG_KMS("CRTC fixup failed\n");
10293 goto fail;
10294 }
10295
10296 if (ret == RETRY) {
10297 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10298 ret = -EINVAL;
10299 goto fail;
10300 }
10301
10302 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10303 retry = false;
10304 goto encoder_retry;
10305 }
10306
10307 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10308 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10309 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10310
10311 return pipe_config;
10312 fail:
10313 kfree(pipe_config);
10314 return ERR_PTR(ret);
10315 }
10316
10317 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10318 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10319 static void
10320 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10321 unsigned *prepare_pipes, unsigned *disable_pipes)
10322 {
10323 struct intel_crtc *intel_crtc;
10324 struct drm_device *dev = crtc->dev;
10325 struct intel_encoder *encoder;
10326 struct intel_connector *connector;
10327 struct drm_crtc *tmp_crtc;
10328
10329 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10330
10331 /* Check which crtcs have changed outputs connected to them, these need
10332 * to be part of the prepare_pipes mask. We don't (yet) support global
10333 * modeset across multiple crtcs, so modeset_pipes will only have one
10334 * bit set at most. */
10335 list_for_each_entry(connector, &dev->mode_config.connector_list,
10336 base.head) {
10337 if (connector->base.encoder == &connector->new_encoder->base)
10338 continue;
10339
10340 if (connector->base.encoder) {
10341 tmp_crtc = connector->base.encoder->crtc;
10342
10343 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10344 }
10345
10346 if (connector->new_encoder)
10347 *prepare_pipes |=
10348 1 << connector->new_encoder->new_crtc->pipe;
10349 }
10350
10351 for_each_intel_encoder(dev, encoder) {
10352 if (encoder->base.crtc == &encoder->new_crtc->base)
10353 continue;
10354
10355 if (encoder->base.crtc) {
10356 tmp_crtc = encoder->base.crtc;
10357
10358 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10359 }
10360
10361 if (encoder->new_crtc)
10362 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10363 }
10364
10365 /* Check for pipes that will be enabled/disabled ... */
10366 for_each_intel_crtc(dev, intel_crtc) {
10367 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10368 continue;
10369
10370 if (!intel_crtc->new_enabled)
10371 *disable_pipes |= 1 << intel_crtc->pipe;
10372 else
10373 *prepare_pipes |= 1 << intel_crtc->pipe;
10374 }
10375
10376
10377 /* set_mode is also used to update properties on life display pipes. */
10378 intel_crtc = to_intel_crtc(crtc);
10379 if (intel_crtc->new_enabled)
10380 *prepare_pipes |= 1 << intel_crtc->pipe;
10381
10382 /*
10383 * For simplicity do a full modeset on any pipe where the output routing
10384 * changed. We could be more clever, but that would require us to be
10385 * more careful with calling the relevant encoder->mode_set functions.
10386 */
10387 if (*prepare_pipes)
10388 *modeset_pipes = *prepare_pipes;
10389
10390 /* ... and mask these out. */
10391 *modeset_pipes &= ~(*disable_pipes);
10392 *prepare_pipes &= ~(*disable_pipes);
10393
10394 /*
10395 * HACK: We don't (yet) fully support global modesets. intel_set_config
10396 * obies this rule, but the modeset restore mode of
10397 * intel_modeset_setup_hw_state does not.
10398 */
10399 *modeset_pipes &= 1 << intel_crtc->pipe;
10400 *prepare_pipes &= 1 << intel_crtc->pipe;
10401
10402 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10403 *modeset_pipes, *prepare_pipes, *disable_pipes);
10404 }
10405
10406 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10407 {
10408 struct drm_encoder *encoder;
10409 struct drm_device *dev = crtc->dev;
10410
10411 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10412 if (encoder->crtc == crtc)
10413 return true;
10414
10415 return false;
10416 }
10417
10418 static void
10419 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10420 {
10421 struct drm_i915_private *dev_priv = dev->dev_private;
10422 struct intel_encoder *intel_encoder;
10423 struct intel_crtc *intel_crtc;
10424 struct drm_connector *connector;
10425
10426 intel_shared_dpll_commit(dev_priv);
10427
10428 for_each_intel_encoder(dev, intel_encoder) {
10429 if (!intel_encoder->base.crtc)
10430 continue;
10431
10432 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10433
10434 if (prepare_pipes & (1 << intel_crtc->pipe))
10435 intel_encoder->connectors_active = false;
10436 }
10437
10438 intel_modeset_commit_output_state(dev);
10439
10440 /* Double check state. */
10441 for_each_intel_crtc(dev, intel_crtc) {
10442 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10443 WARN_ON(intel_crtc->new_config &&
10444 intel_crtc->new_config != &intel_crtc->config);
10445 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10446 }
10447
10448 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10449 if (!connector->encoder || !connector->encoder->crtc)
10450 continue;
10451
10452 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10453
10454 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10455 struct drm_property *dpms_property =
10456 dev->mode_config.dpms_property;
10457
10458 connector->dpms = DRM_MODE_DPMS_ON;
10459 drm_object_property_set_value(&connector->base,
10460 dpms_property,
10461 DRM_MODE_DPMS_ON);
10462
10463 intel_encoder = to_intel_encoder(connector->encoder);
10464 intel_encoder->connectors_active = true;
10465 }
10466 }
10467
10468 }
10469
10470 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10471 {
10472 int diff;
10473
10474 if (clock1 == clock2)
10475 return true;
10476
10477 if (!clock1 || !clock2)
10478 return false;
10479
10480 diff = abs(clock1 - clock2);
10481
10482 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10483 return true;
10484
10485 return false;
10486 }
10487
10488 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10489 list_for_each_entry((intel_crtc), \
10490 &(dev)->mode_config.crtc_list, \
10491 base.head) \
10492 if (mask & (1 <<(intel_crtc)->pipe))
10493
10494 static bool
10495 intel_pipe_config_compare(struct drm_device *dev,
10496 struct intel_crtc_config *current_config,
10497 struct intel_crtc_config *pipe_config)
10498 {
10499 #define PIPE_CONF_CHECK_X(name) \
10500 if (current_config->name != pipe_config->name) { \
10501 DRM_ERROR("mismatch in " #name " " \
10502 "(expected 0x%08x, found 0x%08x)\n", \
10503 current_config->name, \
10504 pipe_config->name); \
10505 return false; \
10506 }
10507
10508 #define PIPE_CONF_CHECK_I(name) \
10509 if (current_config->name != pipe_config->name) { \
10510 DRM_ERROR("mismatch in " #name " " \
10511 "(expected %i, found %i)\n", \
10512 current_config->name, \
10513 pipe_config->name); \
10514 return false; \
10515 }
10516
10517 /* This is required for BDW+ where there is only one set of registers for
10518 * switching between high and low RR.
10519 * This macro can be used whenever a comparison has to be made between one
10520 * hw state and multiple sw state variables.
10521 */
10522 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10523 if ((current_config->name != pipe_config->name) && \
10524 (current_config->alt_name != pipe_config->name)) { \
10525 DRM_ERROR("mismatch in " #name " " \
10526 "(expected %i or %i, found %i)\n", \
10527 current_config->name, \
10528 current_config->alt_name, \
10529 pipe_config->name); \
10530 return false; \
10531 }
10532
10533 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10534 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10535 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10536 "(expected %i, found %i)\n", \
10537 current_config->name & (mask), \
10538 pipe_config->name & (mask)); \
10539 return false; \
10540 }
10541
10542 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10543 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10544 DRM_ERROR("mismatch in " #name " " \
10545 "(expected %i, found %i)\n", \
10546 current_config->name, \
10547 pipe_config->name); \
10548 return false; \
10549 }
10550
10551 #define PIPE_CONF_QUIRK(quirk) \
10552 ((current_config->quirks | pipe_config->quirks) & (quirk))
10553
10554 PIPE_CONF_CHECK_I(cpu_transcoder);
10555
10556 PIPE_CONF_CHECK_I(has_pch_encoder);
10557 PIPE_CONF_CHECK_I(fdi_lanes);
10558 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10559 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10560 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10561 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10562 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10563
10564 PIPE_CONF_CHECK_I(has_dp_encoder);
10565
10566 if (INTEL_INFO(dev)->gen < 8) {
10567 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10568 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10569 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10570 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10571 PIPE_CONF_CHECK_I(dp_m_n.tu);
10572
10573 if (current_config->has_drrs) {
10574 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10575 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10576 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10577 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10578 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10579 }
10580 } else {
10581 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10582 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10583 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10584 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10585 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10586 }
10587
10588 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10589 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10590 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10591 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10592 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10593 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10594
10595 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10596 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10597 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10598 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10599 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10600 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10601
10602 PIPE_CONF_CHECK_I(pixel_multiplier);
10603 PIPE_CONF_CHECK_I(has_hdmi_sink);
10604 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10605 IS_VALLEYVIEW(dev))
10606 PIPE_CONF_CHECK_I(limited_color_range);
10607 PIPE_CONF_CHECK_I(has_infoframe);
10608
10609 PIPE_CONF_CHECK_I(has_audio);
10610
10611 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10612 DRM_MODE_FLAG_INTERLACE);
10613
10614 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10615 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10616 DRM_MODE_FLAG_PHSYNC);
10617 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10618 DRM_MODE_FLAG_NHSYNC);
10619 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10620 DRM_MODE_FLAG_PVSYNC);
10621 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10622 DRM_MODE_FLAG_NVSYNC);
10623 }
10624
10625 PIPE_CONF_CHECK_I(pipe_src_w);
10626 PIPE_CONF_CHECK_I(pipe_src_h);
10627
10628 /*
10629 * FIXME: BIOS likes to set up a cloned config with lvds+external
10630 * screen. Since we don't yet re-compute the pipe config when moving
10631 * just the lvds port away to another pipe the sw tracking won't match.
10632 *
10633 * Proper atomic modesets with recomputed global state will fix this.
10634 * Until then just don't check gmch state for inherited modes.
10635 */
10636 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10637 PIPE_CONF_CHECK_I(gmch_pfit.control);
10638 /* pfit ratios are autocomputed by the hw on gen4+ */
10639 if (INTEL_INFO(dev)->gen < 4)
10640 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10641 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10642 }
10643
10644 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10645 if (current_config->pch_pfit.enabled) {
10646 PIPE_CONF_CHECK_I(pch_pfit.pos);
10647 PIPE_CONF_CHECK_I(pch_pfit.size);
10648 }
10649
10650 /* BDW+ don't expose a synchronous way to read the state */
10651 if (IS_HASWELL(dev))
10652 PIPE_CONF_CHECK_I(ips_enabled);
10653
10654 PIPE_CONF_CHECK_I(double_wide);
10655
10656 PIPE_CONF_CHECK_X(ddi_pll_sel);
10657
10658 PIPE_CONF_CHECK_I(shared_dpll);
10659 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10660 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10661 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10662 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10663 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10664 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10665 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10666 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10667
10668 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10669 PIPE_CONF_CHECK_I(pipe_bpp);
10670
10671 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10672 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10673
10674 #undef PIPE_CONF_CHECK_X
10675 #undef PIPE_CONF_CHECK_I
10676 #undef PIPE_CONF_CHECK_I_ALT
10677 #undef PIPE_CONF_CHECK_FLAGS
10678 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10679 #undef PIPE_CONF_QUIRK
10680
10681 return true;
10682 }
10683
10684 static void check_wm_state(struct drm_device *dev)
10685 {
10686 struct drm_i915_private *dev_priv = dev->dev_private;
10687 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10688 struct intel_crtc *intel_crtc;
10689 int plane;
10690
10691 if (INTEL_INFO(dev)->gen < 9)
10692 return;
10693
10694 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10695 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10696
10697 for_each_intel_crtc(dev, intel_crtc) {
10698 struct skl_ddb_entry *hw_entry, *sw_entry;
10699 const enum pipe pipe = intel_crtc->pipe;
10700
10701 if (!intel_crtc->active)
10702 continue;
10703
10704 /* planes */
10705 for_each_plane(pipe, plane) {
10706 hw_entry = &hw_ddb.plane[pipe][plane];
10707 sw_entry = &sw_ddb->plane[pipe][plane];
10708
10709 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10710 continue;
10711
10712 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10713 "(expected (%u,%u), found (%u,%u))\n",
10714 pipe_name(pipe), plane + 1,
10715 sw_entry->start, sw_entry->end,
10716 hw_entry->start, hw_entry->end);
10717 }
10718
10719 /* cursor */
10720 hw_entry = &hw_ddb.cursor[pipe];
10721 sw_entry = &sw_ddb->cursor[pipe];
10722
10723 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10724 continue;
10725
10726 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10727 "(expected (%u,%u), found (%u,%u))\n",
10728 pipe_name(pipe),
10729 sw_entry->start, sw_entry->end,
10730 hw_entry->start, hw_entry->end);
10731 }
10732 }
10733
10734 static void
10735 check_connector_state(struct drm_device *dev)
10736 {
10737 struct intel_connector *connector;
10738
10739 list_for_each_entry(connector, &dev->mode_config.connector_list,
10740 base.head) {
10741 /* This also checks the encoder/connector hw state with the
10742 * ->get_hw_state callbacks. */
10743 intel_connector_check_state(connector);
10744
10745 WARN(&connector->new_encoder->base != connector->base.encoder,
10746 "connector's staged encoder doesn't match current encoder\n");
10747 }
10748 }
10749
10750 static void
10751 check_encoder_state(struct drm_device *dev)
10752 {
10753 struct intel_encoder *encoder;
10754 struct intel_connector *connector;
10755
10756 for_each_intel_encoder(dev, encoder) {
10757 bool enabled = false;
10758 bool active = false;
10759 enum pipe pipe, tracked_pipe;
10760
10761 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10762 encoder->base.base.id,
10763 encoder->base.name);
10764
10765 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10766 "encoder's stage crtc doesn't match current crtc\n");
10767 WARN(encoder->connectors_active && !encoder->base.crtc,
10768 "encoder's active_connectors set, but no crtc\n");
10769
10770 list_for_each_entry(connector, &dev->mode_config.connector_list,
10771 base.head) {
10772 if (connector->base.encoder != &encoder->base)
10773 continue;
10774 enabled = true;
10775 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10776 active = true;
10777 }
10778 /*
10779 * for MST connectors if we unplug the connector is gone
10780 * away but the encoder is still connected to a crtc
10781 * until a modeset happens in response to the hotplug.
10782 */
10783 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10784 continue;
10785
10786 WARN(!!encoder->base.crtc != enabled,
10787 "encoder's enabled state mismatch "
10788 "(expected %i, found %i)\n",
10789 !!encoder->base.crtc, enabled);
10790 WARN(active && !encoder->base.crtc,
10791 "active encoder with no crtc\n");
10792
10793 WARN(encoder->connectors_active != active,
10794 "encoder's computed active state doesn't match tracked active state "
10795 "(expected %i, found %i)\n", active, encoder->connectors_active);
10796
10797 active = encoder->get_hw_state(encoder, &pipe);
10798 WARN(active != encoder->connectors_active,
10799 "encoder's hw state doesn't match sw tracking "
10800 "(expected %i, found %i)\n",
10801 encoder->connectors_active, active);
10802
10803 if (!encoder->base.crtc)
10804 continue;
10805
10806 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10807 WARN(active && pipe != tracked_pipe,
10808 "active encoder's pipe doesn't match"
10809 "(expected %i, found %i)\n",
10810 tracked_pipe, pipe);
10811
10812 }
10813 }
10814
10815 static void
10816 check_crtc_state(struct drm_device *dev)
10817 {
10818 struct drm_i915_private *dev_priv = dev->dev_private;
10819 struct intel_crtc *crtc;
10820 struct intel_encoder *encoder;
10821 struct intel_crtc_config pipe_config;
10822
10823 for_each_intel_crtc(dev, crtc) {
10824 bool enabled = false;
10825 bool active = false;
10826
10827 memset(&pipe_config, 0, sizeof(pipe_config));
10828
10829 DRM_DEBUG_KMS("[CRTC:%d]\n",
10830 crtc->base.base.id);
10831
10832 WARN(crtc->active && !crtc->base.enabled,
10833 "active crtc, but not enabled in sw tracking\n");
10834
10835 for_each_intel_encoder(dev, encoder) {
10836 if (encoder->base.crtc != &crtc->base)
10837 continue;
10838 enabled = true;
10839 if (encoder->connectors_active)
10840 active = true;
10841 }
10842
10843 WARN(active != crtc->active,
10844 "crtc's computed active state doesn't match tracked active state "
10845 "(expected %i, found %i)\n", active, crtc->active);
10846 WARN(enabled != crtc->base.enabled,
10847 "crtc's computed enabled state doesn't match tracked enabled state "
10848 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10849
10850 active = dev_priv->display.get_pipe_config(crtc,
10851 &pipe_config);
10852
10853 /* hw state is inconsistent with the pipe quirk */
10854 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10855 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10856 active = crtc->active;
10857
10858 for_each_intel_encoder(dev, encoder) {
10859 enum pipe pipe;
10860 if (encoder->base.crtc != &crtc->base)
10861 continue;
10862 if (encoder->get_hw_state(encoder, &pipe))
10863 encoder->get_config(encoder, &pipe_config);
10864 }
10865
10866 WARN(crtc->active != active,
10867 "crtc active state doesn't match with hw state "
10868 "(expected %i, found %i)\n", crtc->active, active);
10869
10870 if (active &&
10871 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10872 WARN(1, "pipe state doesn't match!\n");
10873 intel_dump_pipe_config(crtc, &pipe_config,
10874 "[hw state]");
10875 intel_dump_pipe_config(crtc, &crtc->config,
10876 "[sw state]");
10877 }
10878 }
10879 }
10880
10881 static void
10882 check_shared_dpll_state(struct drm_device *dev)
10883 {
10884 struct drm_i915_private *dev_priv = dev->dev_private;
10885 struct intel_crtc *crtc;
10886 struct intel_dpll_hw_state dpll_hw_state;
10887 int i;
10888
10889 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10890 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10891 int enabled_crtcs = 0, active_crtcs = 0;
10892 bool active;
10893
10894 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10895
10896 DRM_DEBUG_KMS("%s\n", pll->name);
10897
10898 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10899
10900 WARN(pll->active > hweight32(pll->config.crtc_mask),
10901 "more active pll users than references: %i vs %i\n",
10902 pll->active, hweight32(pll->config.crtc_mask));
10903 WARN(pll->active && !pll->on,
10904 "pll in active use but not on in sw tracking\n");
10905 WARN(pll->on && !pll->active,
10906 "pll in on but not on in use in sw tracking\n");
10907 WARN(pll->on != active,
10908 "pll on state mismatch (expected %i, found %i)\n",
10909 pll->on, active);
10910
10911 for_each_intel_crtc(dev, crtc) {
10912 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10913 enabled_crtcs++;
10914 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10915 active_crtcs++;
10916 }
10917 WARN(pll->active != active_crtcs,
10918 "pll active crtcs mismatch (expected %i, found %i)\n",
10919 pll->active, active_crtcs);
10920 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10921 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10922 hweight32(pll->config.crtc_mask), enabled_crtcs);
10923
10924 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10925 sizeof(dpll_hw_state)),
10926 "pll hw state mismatch\n");
10927 }
10928 }
10929
10930 void
10931 intel_modeset_check_state(struct drm_device *dev)
10932 {
10933 check_wm_state(dev);
10934 check_connector_state(dev);
10935 check_encoder_state(dev);
10936 check_crtc_state(dev);
10937 check_shared_dpll_state(dev);
10938 }
10939
10940 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10941 int dotclock)
10942 {
10943 /*
10944 * FDI already provided one idea for the dotclock.
10945 * Yell if the encoder disagrees.
10946 */
10947 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10948 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10949 pipe_config->adjusted_mode.crtc_clock, dotclock);
10950 }
10951
10952 static void update_scanline_offset(struct intel_crtc *crtc)
10953 {
10954 struct drm_device *dev = crtc->base.dev;
10955
10956 /*
10957 * The scanline counter increments at the leading edge of hsync.
10958 *
10959 * On most platforms it starts counting from vtotal-1 on the
10960 * first active line. That means the scanline counter value is
10961 * always one less than what we would expect. Ie. just after
10962 * start of vblank, which also occurs at start of hsync (on the
10963 * last active line), the scanline counter will read vblank_start-1.
10964 *
10965 * On gen2 the scanline counter starts counting from 1 instead
10966 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10967 * to keep the value positive), instead of adding one.
10968 *
10969 * On HSW+ the behaviour of the scanline counter depends on the output
10970 * type. For DP ports it behaves like most other platforms, but on HDMI
10971 * there's an extra 1 line difference. So we need to add two instead of
10972 * one to the value.
10973 */
10974 if (IS_GEN2(dev)) {
10975 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10976 int vtotal;
10977
10978 vtotal = mode->crtc_vtotal;
10979 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10980 vtotal /= 2;
10981
10982 crtc->scanline_offset = vtotal - 1;
10983 } else if (HAS_DDI(dev) &&
10984 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10985 crtc->scanline_offset = 2;
10986 } else
10987 crtc->scanline_offset = 1;
10988 }
10989
10990 static struct intel_crtc_config *
10991 intel_modeset_compute_config(struct drm_crtc *crtc,
10992 struct drm_display_mode *mode,
10993 struct drm_framebuffer *fb,
10994 unsigned *modeset_pipes,
10995 unsigned *prepare_pipes,
10996 unsigned *disable_pipes)
10997 {
10998 struct intel_crtc_config *pipe_config = NULL;
10999
11000 intel_modeset_affected_pipes(crtc, modeset_pipes,
11001 prepare_pipes, disable_pipes);
11002
11003 if ((*modeset_pipes) == 0)
11004 goto out;
11005
11006 /*
11007 * Note this needs changes when we start tracking multiple modes
11008 * and crtcs. At that point we'll need to compute the whole config
11009 * (i.e. one pipe_config for each crtc) rather than just the one
11010 * for this crtc.
11011 */
11012 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11013 if (IS_ERR(pipe_config)) {
11014 goto out;
11015 }
11016 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11017 "[modeset]");
11018
11019 out:
11020 return pipe_config;
11021 }
11022
11023 static int __intel_set_mode(struct drm_crtc *crtc,
11024 struct drm_display_mode *mode,
11025 int x, int y, struct drm_framebuffer *fb,
11026 struct intel_crtc_config *pipe_config,
11027 unsigned modeset_pipes,
11028 unsigned prepare_pipes,
11029 unsigned disable_pipes)
11030 {
11031 struct drm_device *dev = crtc->dev;
11032 struct drm_i915_private *dev_priv = dev->dev_private;
11033 struct drm_display_mode *saved_mode;
11034 struct intel_crtc *intel_crtc;
11035 int ret = 0;
11036
11037 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11038 if (!saved_mode)
11039 return -ENOMEM;
11040
11041 *saved_mode = crtc->mode;
11042
11043 if (modeset_pipes)
11044 to_intel_crtc(crtc)->new_config = pipe_config;
11045
11046 /*
11047 * See if the config requires any additional preparation, e.g.
11048 * to adjust global state with pipes off. We need to do this
11049 * here so we can get the modeset_pipe updated config for the new
11050 * mode set on this crtc. For other crtcs we need to use the
11051 * adjusted_mode bits in the crtc directly.
11052 */
11053 if (IS_VALLEYVIEW(dev)) {
11054 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11055
11056 /* may have added more to prepare_pipes than we should */
11057 prepare_pipes &= ~disable_pipes;
11058 }
11059
11060 if (dev_priv->display.crtc_compute_clock) {
11061 unsigned clear_pipes = modeset_pipes | disable_pipes;
11062
11063 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11064 if (ret)
11065 goto done;
11066
11067 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11068 ret = dev_priv->display.crtc_compute_clock(intel_crtc);
11069 if (ret) {
11070 intel_shared_dpll_abort_config(dev_priv);
11071 goto done;
11072 }
11073 }
11074 }
11075
11076 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11077 intel_crtc_disable(&intel_crtc->base);
11078
11079 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11080 if (intel_crtc->base.enabled)
11081 dev_priv->display.crtc_disable(&intel_crtc->base);
11082 }
11083
11084 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11085 * to set it here already despite that we pass it down the callchain.
11086 *
11087 * Note we'll need to fix this up when we start tracking multiple
11088 * pipes; here we assume a single modeset_pipe and only track the
11089 * single crtc and mode.
11090 */
11091 if (modeset_pipes) {
11092 crtc->mode = *mode;
11093 /* mode_set/enable/disable functions rely on a correct pipe
11094 * config. */
11095 to_intel_crtc(crtc)->config = *pipe_config;
11096 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11097
11098 /*
11099 * Calculate and store various constants which
11100 * are later needed by vblank and swap-completion
11101 * timestamping. They are derived from true hwmode.
11102 */
11103 drm_calc_timestamping_constants(crtc,
11104 &pipe_config->adjusted_mode);
11105 }
11106
11107 /* Only after disabling all output pipelines that will be changed can we
11108 * update the the output configuration. */
11109 intel_modeset_update_state(dev, prepare_pipes);
11110
11111 modeset_update_crtc_power_domains(dev);
11112
11113 /* Set up the DPLL and any encoders state that needs to adjust or depend
11114 * on the DPLL.
11115 */
11116 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11117 struct drm_framebuffer *old_fb = crtc->primary->fb;
11118 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11119 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11120
11121 mutex_lock(&dev->struct_mutex);
11122 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
11123 if (ret != 0) {
11124 DRM_ERROR("pin & fence failed\n");
11125 mutex_unlock(&dev->struct_mutex);
11126 goto done;
11127 }
11128 if (old_fb)
11129 intel_unpin_fb_obj(old_obj);
11130 i915_gem_track_fb(old_obj, obj,
11131 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11132 mutex_unlock(&dev->struct_mutex);
11133
11134 crtc->primary->fb = fb;
11135 crtc->x = x;
11136 crtc->y = y;
11137 }
11138
11139 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11140 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11141 update_scanline_offset(intel_crtc);
11142
11143 dev_priv->display.crtc_enable(&intel_crtc->base);
11144 }
11145
11146 /* FIXME: add subpixel order */
11147 done:
11148 if (ret && crtc->enabled)
11149 crtc->mode = *saved_mode;
11150
11151 kfree(pipe_config);
11152 kfree(saved_mode);
11153 return ret;
11154 }
11155
11156 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11157 struct drm_display_mode *mode,
11158 int x, int y, struct drm_framebuffer *fb,
11159 struct intel_crtc_config *pipe_config,
11160 unsigned modeset_pipes,
11161 unsigned prepare_pipes,
11162 unsigned disable_pipes)
11163 {
11164 int ret;
11165
11166 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11167 prepare_pipes, disable_pipes);
11168
11169 if (ret == 0)
11170 intel_modeset_check_state(crtc->dev);
11171
11172 return ret;
11173 }
11174
11175 static int intel_set_mode(struct drm_crtc *crtc,
11176 struct drm_display_mode *mode,
11177 int x, int y, struct drm_framebuffer *fb)
11178 {
11179 struct intel_crtc_config *pipe_config;
11180 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11181
11182 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11183 &modeset_pipes,
11184 &prepare_pipes,
11185 &disable_pipes);
11186
11187 if (IS_ERR(pipe_config))
11188 return PTR_ERR(pipe_config);
11189
11190 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11191 modeset_pipes, prepare_pipes,
11192 disable_pipes);
11193 }
11194
11195 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11196 {
11197 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11198 }
11199
11200 #undef for_each_intel_crtc_masked
11201
11202 static void intel_set_config_free(struct intel_set_config *config)
11203 {
11204 if (!config)
11205 return;
11206
11207 kfree(config->save_connector_encoders);
11208 kfree(config->save_encoder_crtcs);
11209 kfree(config->save_crtc_enabled);
11210 kfree(config);
11211 }
11212
11213 static int intel_set_config_save_state(struct drm_device *dev,
11214 struct intel_set_config *config)
11215 {
11216 struct drm_crtc *crtc;
11217 struct drm_encoder *encoder;
11218 struct drm_connector *connector;
11219 int count;
11220
11221 config->save_crtc_enabled =
11222 kcalloc(dev->mode_config.num_crtc,
11223 sizeof(bool), GFP_KERNEL);
11224 if (!config->save_crtc_enabled)
11225 return -ENOMEM;
11226
11227 config->save_encoder_crtcs =
11228 kcalloc(dev->mode_config.num_encoder,
11229 sizeof(struct drm_crtc *), GFP_KERNEL);
11230 if (!config->save_encoder_crtcs)
11231 return -ENOMEM;
11232
11233 config->save_connector_encoders =
11234 kcalloc(dev->mode_config.num_connector,
11235 sizeof(struct drm_encoder *), GFP_KERNEL);
11236 if (!config->save_connector_encoders)
11237 return -ENOMEM;
11238
11239 /* Copy data. Note that driver private data is not affected.
11240 * Should anything bad happen only the expected state is
11241 * restored, not the drivers personal bookkeeping.
11242 */
11243 count = 0;
11244 for_each_crtc(dev, crtc) {
11245 config->save_crtc_enabled[count++] = crtc->enabled;
11246 }
11247
11248 count = 0;
11249 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11250 config->save_encoder_crtcs[count++] = encoder->crtc;
11251 }
11252
11253 count = 0;
11254 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11255 config->save_connector_encoders[count++] = connector->encoder;
11256 }
11257
11258 return 0;
11259 }
11260
11261 static void intel_set_config_restore_state(struct drm_device *dev,
11262 struct intel_set_config *config)
11263 {
11264 struct intel_crtc *crtc;
11265 struct intel_encoder *encoder;
11266 struct intel_connector *connector;
11267 int count;
11268
11269 count = 0;
11270 for_each_intel_crtc(dev, crtc) {
11271 crtc->new_enabled = config->save_crtc_enabled[count++];
11272
11273 if (crtc->new_enabled)
11274 crtc->new_config = &crtc->config;
11275 else
11276 crtc->new_config = NULL;
11277 }
11278
11279 count = 0;
11280 for_each_intel_encoder(dev, encoder) {
11281 encoder->new_crtc =
11282 to_intel_crtc(config->save_encoder_crtcs[count++]);
11283 }
11284
11285 count = 0;
11286 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11287 connector->new_encoder =
11288 to_intel_encoder(config->save_connector_encoders[count++]);
11289 }
11290 }
11291
11292 static bool
11293 is_crtc_connector_off(struct drm_mode_set *set)
11294 {
11295 int i;
11296
11297 if (set->num_connectors == 0)
11298 return false;
11299
11300 if (WARN_ON(set->connectors == NULL))
11301 return false;
11302
11303 for (i = 0; i < set->num_connectors; i++)
11304 if (set->connectors[i]->encoder &&
11305 set->connectors[i]->encoder->crtc == set->crtc &&
11306 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11307 return true;
11308
11309 return false;
11310 }
11311
11312 static void
11313 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11314 struct intel_set_config *config)
11315 {
11316
11317 /* We should be able to check here if the fb has the same properties
11318 * and then just flip_or_move it */
11319 if (is_crtc_connector_off(set)) {
11320 config->mode_changed = true;
11321 } else if (set->crtc->primary->fb != set->fb) {
11322 /*
11323 * If we have no fb, we can only flip as long as the crtc is
11324 * active, otherwise we need a full mode set. The crtc may
11325 * be active if we've only disabled the primary plane, or
11326 * in fastboot situations.
11327 */
11328 if (set->crtc->primary->fb == NULL) {
11329 struct intel_crtc *intel_crtc =
11330 to_intel_crtc(set->crtc);
11331
11332 if (intel_crtc->active) {
11333 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11334 config->fb_changed = true;
11335 } else {
11336 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11337 config->mode_changed = true;
11338 }
11339 } else if (set->fb == NULL) {
11340 config->mode_changed = true;
11341 } else if (set->fb->pixel_format !=
11342 set->crtc->primary->fb->pixel_format) {
11343 config->mode_changed = true;
11344 } else {
11345 config->fb_changed = true;
11346 }
11347 }
11348
11349 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11350 config->fb_changed = true;
11351
11352 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11353 DRM_DEBUG_KMS("modes are different, full mode set\n");
11354 drm_mode_debug_printmodeline(&set->crtc->mode);
11355 drm_mode_debug_printmodeline(set->mode);
11356 config->mode_changed = true;
11357 }
11358
11359 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11360 set->crtc->base.id, config->mode_changed, config->fb_changed);
11361 }
11362
11363 static int
11364 intel_modeset_stage_output_state(struct drm_device *dev,
11365 struct drm_mode_set *set,
11366 struct intel_set_config *config)
11367 {
11368 struct intel_connector *connector;
11369 struct intel_encoder *encoder;
11370 struct intel_crtc *crtc;
11371 int ro;
11372
11373 /* The upper layers ensure that we either disable a crtc or have a list
11374 * of connectors. For paranoia, double-check this. */
11375 WARN_ON(!set->fb && (set->num_connectors != 0));
11376 WARN_ON(set->fb && (set->num_connectors == 0));
11377
11378 list_for_each_entry(connector, &dev->mode_config.connector_list,
11379 base.head) {
11380 /* Otherwise traverse passed in connector list and get encoders
11381 * for them. */
11382 for (ro = 0; ro < set->num_connectors; ro++) {
11383 if (set->connectors[ro] == &connector->base) {
11384 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11385 break;
11386 }
11387 }
11388
11389 /* If we disable the crtc, disable all its connectors. Also, if
11390 * the connector is on the changing crtc but not on the new
11391 * connector list, disable it. */
11392 if ((!set->fb || ro == set->num_connectors) &&
11393 connector->base.encoder &&
11394 connector->base.encoder->crtc == set->crtc) {
11395 connector->new_encoder = NULL;
11396
11397 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11398 connector->base.base.id,
11399 connector->base.name);
11400 }
11401
11402
11403 if (&connector->new_encoder->base != connector->base.encoder) {
11404 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11405 config->mode_changed = true;
11406 }
11407 }
11408 /* connector->new_encoder is now updated for all connectors. */
11409
11410 /* Update crtc of enabled connectors. */
11411 list_for_each_entry(connector, &dev->mode_config.connector_list,
11412 base.head) {
11413 struct drm_crtc *new_crtc;
11414
11415 if (!connector->new_encoder)
11416 continue;
11417
11418 new_crtc = connector->new_encoder->base.crtc;
11419
11420 for (ro = 0; ro < set->num_connectors; ro++) {
11421 if (set->connectors[ro] == &connector->base)
11422 new_crtc = set->crtc;
11423 }
11424
11425 /* Make sure the new CRTC will work with the encoder */
11426 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11427 new_crtc)) {
11428 return -EINVAL;
11429 }
11430 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11431
11432 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11433 connector->base.base.id,
11434 connector->base.name,
11435 new_crtc->base.id);
11436 }
11437
11438 /* Check for any encoders that needs to be disabled. */
11439 for_each_intel_encoder(dev, encoder) {
11440 int num_connectors = 0;
11441 list_for_each_entry(connector,
11442 &dev->mode_config.connector_list,
11443 base.head) {
11444 if (connector->new_encoder == encoder) {
11445 WARN_ON(!connector->new_encoder->new_crtc);
11446 num_connectors++;
11447 }
11448 }
11449
11450 if (num_connectors == 0)
11451 encoder->new_crtc = NULL;
11452 else if (num_connectors > 1)
11453 return -EINVAL;
11454
11455 /* Only now check for crtc changes so we don't miss encoders
11456 * that will be disabled. */
11457 if (&encoder->new_crtc->base != encoder->base.crtc) {
11458 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11459 config->mode_changed = true;
11460 }
11461 }
11462 /* Now we've also updated encoder->new_crtc for all encoders. */
11463 list_for_each_entry(connector, &dev->mode_config.connector_list,
11464 base.head) {
11465 if (connector->new_encoder)
11466 if (connector->new_encoder != connector->encoder)
11467 connector->encoder = connector->new_encoder;
11468 }
11469 for_each_intel_crtc(dev, crtc) {
11470 crtc->new_enabled = false;
11471
11472 for_each_intel_encoder(dev, encoder) {
11473 if (encoder->new_crtc == crtc) {
11474 crtc->new_enabled = true;
11475 break;
11476 }
11477 }
11478
11479 if (crtc->new_enabled != crtc->base.enabled) {
11480 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11481 crtc->new_enabled ? "en" : "dis");
11482 config->mode_changed = true;
11483 }
11484
11485 if (crtc->new_enabled)
11486 crtc->new_config = &crtc->config;
11487 else
11488 crtc->new_config = NULL;
11489 }
11490
11491 return 0;
11492 }
11493
11494 static void disable_crtc_nofb(struct intel_crtc *crtc)
11495 {
11496 struct drm_device *dev = crtc->base.dev;
11497 struct intel_encoder *encoder;
11498 struct intel_connector *connector;
11499
11500 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11501 pipe_name(crtc->pipe));
11502
11503 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11504 if (connector->new_encoder &&
11505 connector->new_encoder->new_crtc == crtc)
11506 connector->new_encoder = NULL;
11507 }
11508
11509 for_each_intel_encoder(dev, encoder) {
11510 if (encoder->new_crtc == crtc)
11511 encoder->new_crtc = NULL;
11512 }
11513
11514 crtc->new_enabled = false;
11515 crtc->new_config = NULL;
11516 }
11517
11518 static int intel_crtc_set_config(struct drm_mode_set *set)
11519 {
11520 struct drm_device *dev;
11521 struct drm_mode_set save_set;
11522 struct intel_set_config *config;
11523 struct intel_crtc_config *pipe_config;
11524 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11525 int ret;
11526
11527 BUG_ON(!set);
11528 BUG_ON(!set->crtc);
11529 BUG_ON(!set->crtc->helper_private);
11530
11531 /* Enforce sane interface api - has been abused by the fb helper. */
11532 BUG_ON(!set->mode && set->fb);
11533 BUG_ON(set->fb && set->num_connectors == 0);
11534
11535 if (set->fb) {
11536 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11537 set->crtc->base.id, set->fb->base.id,
11538 (int)set->num_connectors, set->x, set->y);
11539 } else {
11540 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11541 }
11542
11543 dev = set->crtc->dev;
11544
11545 ret = -ENOMEM;
11546 config = kzalloc(sizeof(*config), GFP_KERNEL);
11547 if (!config)
11548 goto out_config;
11549
11550 ret = intel_set_config_save_state(dev, config);
11551 if (ret)
11552 goto out_config;
11553
11554 save_set.crtc = set->crtc;
11555 save_set.mode = &set->crtc->mode;
11556 save_set.x = set->crtc->x;
11557 save_set.y = set->crtc->y;
11558 save_set.fb = set->crtc->primary->fb;
11559
11560 /* Compute whether we need a full modeset, only an fb base update or no
11561 * change at all. In the future we might also check whether only the
11562 * mode changed, e.g. for LVDS where we only change the panel fitter in
11563 * such cases. */
11564 intel_set_config_compute_mode_changes(set, config);
11565
11566 ret = intel_modeset_stage_output_state(dev, set, config);
11567 if (ret)
11568 goto fail;
11569
11570 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11571 set->fb,
11572 &modeset_pipes,
11573 &prepare_pipes,
11574 &disable_pipes);
11575 if (IS_ERR(pipe_config)) {
11576 ret = PTR_ERR(pipe_config);
11577 goto fail;
11578 } else if (pipe_config) {
11579 if (pipe_config->has_audio !=
11580 to_intel_crtc(set->crtc)->config.has_audio)
11581 config->mode_changed = true;
11582
11583 /*
11584 * Note we have an issue here with infoframes: current code
11585 * only updates them on the full mode set path per hw
11586 * requirements. So here we should be checking for any
11587 * required changes and forcing a mode set.
11588 */
11589 }
11590
11591 /* set_mode will free it in the mode_changed case */
11592 if (!config->mode_changed)
11593 kfree(pipe_config);
11594
11595 intel_update_pipe_size(to_intel_crtc(set->crtc));
11596
11597 if (config->mode_changed) {
11598 ret = intel_set_mode_pipes(set->crtc, set->mode,
11599 set->x, set->y, set->fb, pipe_config,
11600 modeset_pipes, prepare_pipes,
11601 disable_pipes);
11602 } else if (config->fb_changed) {
11603 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11604
11605 intel_crtc_wait_for_pending_flips(set->crtc);
11606
11607 ret = intel_pipe_set_base(set->crtc,
11608 set->x, set->y, set->fb);
11609
11610 /*
11611 * We need to make sure the primary plane is re-enabled if it
11612 * has previously been turned off.
11613 */
11614 if (!intel_crtc->primary_enabled && ret == 0) {
11615 WARN_ON(!intel_crtc->active);
11616 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11617 }
11618
11619 /*
11620 * In the fastboot case this may be our only check of the
11621 * state after boot. It would be better to only do it on
11622 * the first update, but we don't have a nice way of doing that
11623 * (and really, set_config isn't used much for high freq page
11624 * flipping, so increasing its cost here shouldn't be a big
11625 * deal).
11626 */
11627 if (i915.fastboot && ret == 0)
11628 intel_modeset_check_state(set->crtc->dev);
11629 }
11630
11631 if (ret) {
11632 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11633 set->crtc->base.id, ret);
11634 fail:
11635 intel_set_config_restore_state(dev, config);
11636
11637 /*
11638 * HACK: if the pipe was on, but we didn't have a framebuffer,
11639 * force the pipe off to avoid oopsing in the modeset code
11640 * due to fb==NULL. This should only happen during boot since
11641 * we don't yet reconstruct the FB from the hardware state.
11642 */
11643 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11644 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11645
11646 /* Try to restore the config */
11647 if (config->mode_changed &&
11648 intel_set_mode(save_set.crtc, save_set.mode,
11649 save_set.x, save_set.y, save_set.fb))
11650 DRM_ERROR("failed to restore config after modeset failure\n");
11651 }
11652
11653 out_config:
11654 intel_set_config_free(config);
11655 return ret;
11656 }
11657
11658 static const struct drm_crtc_funcs intel_crtc_funcs = {
11659 .gamma_set = intel_crtc_gamma_set,
11660 .set_config = intel_crtc_set_config,
11661 .destroy = intel_crtc_destroy,
11662 .page_flip = intel_crtc_page_flip,
11663 };
11664
11665 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11666 struct intel_shared_dpll *pll,
11667 struct intel_dpll_hw_state *hw_state)
11668 {
11669 uint32_t val;
11670
11671 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11672 return false;
11673
11674 val = I915_READ(PCH_DPLL(pll->id));
11675 hw_state->dpll = val;
11676 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11677 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11678
11679 return val & DPLL_VCO_ENABLE;
11680 }
11681
11682 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11683 struct intel_shared_dpll *pll)
11684 {
11685 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11686 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11687 }
11688
11689 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11690 struct intel_shared_dpll *pll)
11691 {
11692 /* PCH refclock must be enabled first */
11693 ibx_assert_pch_refclk_enabled(dev_priv);
11694
11695 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11696
11697 /* Wait for the clocks to stabilize. */
11698 POSTING_READ(PCH_DPLL(pll->id));
11699 udelay(150);
11700
11701 /* The pixel multiplier can only be updated once the
11702 * DPLL is enabled and the clocks are stable.
11703 *
11704 * So write it again.
11705 */
11706 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11707 POSTING_READ(PCH_DPLL(pll->id));
11708 udelay(200);
11709 }
11710
11711 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11712 struct intel_shared_dpll *pll)
11713 {
11714 struct drm_device *dev = dev_priv->dev;
11715 struct intel_crtc *crtc;
11716
11717 /* Make sure no transcoder isn't still depending on us. */
11718 for_each_intel_crtc(dev, crtc) {
11719 if (intel_crtc_to_shared_dpll(crtc) == pll)
11720 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11721 }
11722
11723 I915_WRITE(PCH_DPLL(pll->id), 0);
11724 POSTING_READ(PCH_DPLL(pll->id));
11725 udelay(200);
11726 }
11727
11728 static char *ibx_pch_dpll_names[] = {
11729 "PCH DPLL A",
11730 "PCH DPLL B",
11731 };
11732
11733 static void ibx_pch_dpll_init(struct drm_device *dev)
11734 {
11735 struct drm_i915_private *dev_priv = dev->dev_private;
11736 int i;
11737
11738 dev_priv->num_shared_dpll = 2;
11739
11740 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11741 dev_priv->shared_dplls[i].id = i;
11742 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11743 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11744 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11745 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11746 dev_priv->shared_dplls[i].get_hw_state =
11747 ibx_pch_dpll_get_hw_state;
11748 }
11749 }
11750
11751 static void intel_shared_dpll_init(struct drm_device *dev)
11752 {
11753 struct drm_i915_private *dev_priv = dev->dev_private;
11754
11755 if (HAS_DDI(dev))
11756 intel_ddi_pll_init(dev);
11757 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11758 ibx_pch_dpll_init(dev);
11759 else
11760 dev_priv->num_shared_dpll = 0;
11761
11762 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11763 }
11764
11765 static int
11766 intel_primary_plane_disable(struct drm_plane *plane)
11767 {
11768 struct drm_device *dev = plane->dev;
11769 struct intel_crtc *intel_crtc;
11770
11771 if (!plane->fb)
11772 return 0;
11773
11774 BUG_ON(!plane->crtc);
11775
11776 intel_crtc = to_intel_crtc(plane->crtc);
11777
11778 /*
11779 * Even though we checked plane->fb above, it's still possible that
11780 * the primary plane has been implicitly disabled because the crtc
11781 * coordinates given weren't visible, or because we detected
11782 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11783 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11784 * In either case, we need to unpin the FB and let the fb pointer get
11785 * updated, but otherwise we don't need to touch the hardware.
11786 */
11787 if (!intel_crtc->primary_enabled)
11788 goto disable_unpin;
11789
11790 intel_crtc_wait_for_pending_flips(plane->crtc);
11791 intel_disable_primary_hw_plane(plane, plane->crtc);
11792
11793 disable_unpin:
11794 mutex_lock(&dev->struct_mutex);
11795 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11796 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11797 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11798 mutex_unlock(&dev->struct_mutex);
11799 plane->fb = NULL;
11800
11801 return 0;
11802 }
11803
11804 static int
11805 intel_check_primary_plane(struct drm_plane *plane,
11806 struct intel_plane_state *state)
11807 {
11808 struct drm_crtc *crtc = state->crtc;
11809 struct drm_framebuffer *fb = state->fb;
11810 struct drm_rect *dest = &state->dst;
11811 struct drm_rect *src = &state->src;
11812 const struct drm_rect *clip = &state->clip;
11813
11814 return drm_plane_helper_check_update(plane, crtc, fb,
11815 src, dest, clip,
11816 DRM_PLANE_HELPER_NO_SCALING,
11817 DRM_PLANE_HELPER_NO_SCALING,
11818 false, true, &state->visible);
11819 }
11820
11821 static int
11822 intel_prepare_primary_plane(struct drm_plane *plane,
11823 struct intel_plane_state *state)
11824 {
11825 struct drm_crtc *crtc = state->crtc;
11826 struct drm_framebuffer *fb = state->fb;
11827 struct drm_device *dev = crtc->dev;
11828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11829 enum pipe pipe = intel_crtc->pipe;
11830 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11831 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11832 int ret;
11833
11834 intel_crtc_wait_for_pending_flips(crtc);
11835
11836 if (intel_crtc_has_pending_flip(crtc)) {
11837 DRM_ERROR("pipe is still busy with an old pageflip\n");
11838 return -EBUSY;
11839 }
11840
11841 if (old_obj != obj) {
11842 mutex_lock(&dev->struct_mutex);
11843 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11844 if (ret == 0)
11845 i915_gem_track_fb(old_obj, obj,
11846 INTEL_FRONTBUFFER_PRIMARY(pipe));
11847 mutex_unlock(&dev->struct_mutex);
11848 if (ret != 0) {
11849 DRM_DEBUG_KMS("pin & fence failed\n");
11850 return ret;
11851 }
11852 }
11853
11854 return 0;
11855 }
11856
11857 static void
11858 intel_commit_primary_plane(struct drm_plane *plane,
11859 struct intel_plane_state *state)
11860 {
11861 struct drm_crtc *crtc = state->crtc;
11862 struct drm_framebuffer *fb = state->fb;
11863 struct drm_device *dev = crtc->dev;
11864 struct drm_i915_private *dev_priv = dev->dev_private;
11865 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11866 enum pipe pipe = intel_crtc->pipe;
11867 struct drm_framebuffer *old_fb = plane->fb;
11868 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11869 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11870 struct intel_plane *intel_plane = to_intel_plane(plane);
11871 struct drm_rect *src = &state->src;
11872
11873 crtc->primary->fb = fb;
11874 crtc->x = src->x1 >> 16;
11875 crtc->y = src->y1 >> 16;
11876
11877 intel_plane->crtc_x = state->orig_dst.x1;
11878 intel_plane->crtc_y = state->orig_dst.y1;
11879 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11880 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11881 intel_plane->src_x = state->orig_src.x1;
11882 intel_plane->src_y = state->orig_src.y1;
11883 intel_plane->src_w = drm_rect_width(&state->orig_src);
11884 intel_plane->src_h = drm_rect_height(&state->orig_src);
11885 intel_plane->obj = obj;
11886
11887 if (intel_crtc->active) {
11888 /*
11889 * FBC does not work on some platforms for rotated
11890 * planes, so disable it when rotation is not 0 and
11891 * update it when rotation is set back to 0.
11892 *
11893 * FIXME: This is redundant with the fbc update done in
11894 * the primary plane enable function except that that
11895 * one is done too late. We eventually need to unify
11896 * this.
11897 */
11898 if (intel_crtc->primary_enabled &&
11899 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11900 dev_priv->fbc.plane == intel_crtc->plane &&
11901 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11902 intel_disable_fbc(dev);
11903 }
11904
11905 if (state->visible) {
11906 bool was_enabled = intel_crtc->primary_enabled;
11907
11908 /* FIXME: kill this fastboot hack */
11909 intel_update_pipe_size(intel_crtc);
11910
11911 intel_crtc->primary_enabled = true;
11912
11913 dev_priv->display.update_primary_plane(crtc, plane->fb,
11914 crtc->x, crtc->y);
11915
11916 /*
11917 * BDW signals flip done immediately if the plane
11918 * is disabled, even if the plane enable is already
11919 * armed to occur at the next vblank :(
11920 */
11921 if (IS_BROADWELL(dev) && !was_enabled)
11922 intel_wait_for_vblank(dev, intel_crtc->pipe);
11923 } else {
11924 /*
11925 * If clipping results in a non-visible primary plane,
11926 * we'll disable the primary plane. Note that this is
11927 * a bit different than what happens if userspace
11928 * explicitly disables the plane by passing fb=0
11929 * because plane->fb still gets set and pinned.
11930 */
11931 intel_disable_primary_hw_plane(plane, crtc);
11932 }
11933
11934 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11935
11936 mutex_lock(&dev->struct_mutex);
11937 intel_update_fbc(dev);
11938 mutex_unlock(&dev->struct_mutex);
11939 }
11940
11941 if (old_fb && old_fb != fb) {
11942 if (intel_crtc->active)
11943 intel_wait_for_vblank(dev, intel_crtc->pipe);
11944
11945 mutex_lock(&dev->struct_mutex);
11946 intel_unpin_fb_obj(old_obj);
11947 mutex_unlock(&dev->struct_mutex);
11948 }
11949 }
11950
11951 static int
11952 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11953 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11954 unsigned int crtc_w, unsigned int crtc_h,
11955 uint32_t src_x, uint32_t src_y,
11956 uint32_t src_w, uint32_t src_h)
11957 {
11958 struct intel_plane_state state;
11959 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11960 int ret;
11961
11962 state.crtc = crtc;
11963 state.fb = fb;
11964
11965 /* sample coordinates in 16.16 fixed point */
11966 state.src.x1 = src_x;
11967 state.src.x2 = src_x + src_w;
11968 state.src.y1 = src_y;
11969 state.src.y2 = src_y + src_h;
11970
11971 /* integer pixels */
11972 state.dst.x1 = crtc_x;
11973 state.dst.x2 = crtc_x + crtc_w;
11974 state.dst.y1 = crtc_y;
11975 state.dst.y2 = crtc_y + crtc_h;
11976
11977 state.clip.x1 = 0;
11978 state.clip.y1 = 0;
11979 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11980 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11981
11982 state.orig_src = state.src;
11983 state.orig_dst = state.dst;
11984
11985 ret = intel_check_primary_plane(plane, &state);
11986 if (ret)
11987 return ret;
11988
11989 ret = intel_prepare_primary_plane(plane, &state);
11990 if (ret)
11991 return ret;
11992
11993 intel_commit_primary_plane(plane, &state);
11994
11995 return 0;
11996 }
11997
11998 /* Common destruction function for both primary and cursor planes */
11999 static void intel_plane_destroy(struct drm_plane *plane)
12000 {
12001 struct intel_plane *intel_plane = to_intel_plane(plane);
12002 drm_plane_cleanup(plane);
12003 kfree(intel_plane);
12004 }
12005
12006 static const struct drm_plane_funcs intel_primary_plane_funcs = {
12007 .update_plane = intel_primary_plane_setplane,
12008 .disable_plane = intel_primary_plane_disable,
12009 .destroy = intel_plane_destroy,
12010 .set_property = intel_plane_set_property
12011 };
12012
12013 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12014 int pipe)
12015 {
12016 struct intel_plane *primary;
12017 const uint32_t *intel_primary_formats;
12018 int num_formats;
12019
12020 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12021 if (primary == NULL)
12022 return NULL;
12023
12024 primary->can_scale = false;
12025 primary->max_downscale = 1;
12026 primary->pipe = pipe;
12027 primary->plane = pipe;
12028 primary->rotation = BIT(DRM_ROTATE_0);
12029 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12030 primary->plane = !pipe;
12031
12032 if (INTEL_INFO(dev)->gen <= 3) {
12033 intel_primary_formats = intel_primary_formats_gen2;
12034 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12035 } else {
12036 intel_primary_formats = intel_primary_formats_gen4;
12037 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12038 }
12039
12040 drm_universal_plane_init(dev, &primary->base, 0,
12041 &intel_primary_plane_funcs,
12042 intel_primary_formats, num_formats,
12043 DRM_PLANE_TYPE_PRIMARY);
12044
12045 if (INTEL_INFO(dev)->gen >= 4) {
12046 if (!dev->mode_config.rotation_property)
12047 dev->mode_config.rotation_property =
12048 drm_mode_create_rotation_property(dev,
12049 BIT(DRM_ROTATE_0) |
12050 BIT(DRM_ROTATE_180));
12051 if (dev->mode_config.rotation_property)
12052 drm_object_attach_property(&primary->base.base,
12053 dev->mode_config.rotation_property,
12054 primary->rotation);
12055 }
12056
12057 return &primary->base;
12058 }
12059
12060 static int
12061 intel_cursor_plane_disable(struct drm_plane *plane)
12062 {
12063 if (!plane->fb)
12064 return 0;
12065
12066 BUG_ON(!plane->crtc);
12067
12068 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12069 }
12070
12071 static int
12072 intel_check_cursor_plane(struct drm_plane *plane,
12073 struct intel_plane_state *state)
12074 {
12075 struct drm_crtc *crtc = state->crtc;
12076 struct drm_device *dev = crtc->dev;
12077 struct drm_framebuffer *fb = state->fb;
12078 struct drm_rect *dest = &state->dst;
12079 struct drm_rect *src = &state->src;
12080 const struct drm_rect *clip = &state->clip;
12081 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12082 int crtc_w, crtc_h;
12083 unsigned stride;
12084 int ret;
12085
12086 ret = drm_plane_helper_check_update(plane, crtc, fb,
12087 src, dest, clip,
12088 DRM_PLANE_HELPER_NO_SCALING,
12089 DRM_PLANE_HELPER_NO_SCALING,
12090 true, true, &state->visible);
12091 if (ret)
12092 return ret;
12093
12094
12095 /* if we want to turn off the cursor ignore width and height */
12096 if (!obj)
12097 return 0;
12098
12099 /* Check for which cursor types we support */
12100 crtc_w = drm_rect_width(&state->orig_dst);
12101 crtc_h = drm_rect_height(&state->orig_dst);
12102 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12103 DRM_DEBUG("Cursor dimension not supported\n");
12104 return -EINVAL;
12105 }
12106
12107 stride = roundup_pow_of_two(crtc_w) * 4;
12108 if (obj->base.size < stride * crtc_h) {
12109 DRM_DEBUG_KMS("buffer is too small\n");
12110 return -ENOMEM;
12111 }
12112
12113 if (fb == crtc->cursor->fb)
12114 return 0;
12115
12116 /* we only need to pin inside GTT if cursor is non-phy */
12117 mutex_lock(&dev->struct_mutex);
12118 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12119 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12120 ret = -EINVAL;
12121 }
12122 mutex_unlock(&dev->struct_mutex);
12123
12124 return ret;
12125 }
12126
12127 static int
12128 intel_commit_cursor_plane(struct drm_plane *plane,
12129 struct intel_plane_state *state)
12130 {
12131 struct drm_crtc *crtc = state->crtc;
12132 struct drm_framebuffer *fb = state->fb;
12133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12134 struct intel_plane *intel_plane = to_intel_plane(plane);
12135 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12136 struct drm_i915_gem_object *obj = intel_fb->obj;
12137 int crtc_w, crtc_h;
12138
12139 crtc->cursor_x = state->orig_dst.x1;
12140 crtc->cursor_y = state->orig_dst.y1;
12141
12142 intel_plane->crtc_x = state->orig_dst.x1;
12143 intel_plane->crtc_y = state->orig_dst.y1;
12144 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12145 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12146 intel_plane->src_x = state->orig_src.x1;
12147 intel_plane->src_y = state->orig_src.y1;
12148 intel_plane->src_w = drm_rect_width(&state->orig_src);
12149 intel_plane->src_h = drm_rect_height(&state->orig_src);
12150 intel_plane->obj = obj;
12151
12152 if (fb != crtc->cursor->fb) {
12153 crtc_w = drm_rect_width(&state->orig_dst);
12154 crtc_h = drm_rect_height(&state->orig_dst);
12155 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12156 } else {
12157 intel_crtc_update_cursor(crtc, state->visible);
12158
12159 intel_frontbuffer_flip(crtc->dev,
12160 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12161
12162 return 0;
12163 }
12164 }
12165
12166 static int
12167 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12168 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12169 unsigned int crtc_w, unsigned int crtc_h,
12170 uint32_t src_x, uint32_t src_y,
12171 uint32_t src_w, uint32_t src_h)
12172 {
12173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12174 struct intel_plane_state state;
12175 int ret;
12176
12177 state.crtc = crtc;
12178 state.fb = fb;
12179
12180 /* sample coordinates in 16.16 fixed point */
12181 state.src.x1 = src_x;
12182 state.src.x2 = src_x + src_w;
12183 state.src.y1 = src_y;
12184 state.src.y2 = src_y + src_h;
12185
12186 /* integer pixels */
12187 state.dst.x1 = crtc_x;
12188 state.dst.x2 = crtc_x + crtc_w;
12189 state.dst.y1 = crtc_y;
12190 state.dst.y2 = crtc_y + crtc_h;
12191
12192 state.clip.x1 = 0;
12193 state.clip.y1 = 0;
12194 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12195 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12196
12197 state.orig_src = state.src;
12198 state.orig_dst = state.dst;
12199
12200 ret = intel_check_cursor_plane(plane, &state);
12201 if (ret)
12202 return ret;
12203
12204 return intel_commit_cursor_plane(plane, &state);
12205 }
12206
12207 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12208 .update_plane = intel_cursor_plane_update,
12209 .disable_plane = intel_cursor_plane_disable,
12210 .destroy = intel_plane_destroy,
12211 .set_property = intel_plane_set_property,
12212 };
12213
12214 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12215 int pipe)
12216 {
12217 struct intel_plane *cursor;
12218
12219 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12220 if (cursor == NULL)
12221 return NULL;
12222
12223 cursor->can_scale = false;
12224 cursor->max_downscale = 1;
12225 cursor->pipe = pipe;
12226 cursor->plane = pipe;
12227 cursor->rotation = BIT(DRM_ROTATE_0);
12228
12229 drm_universal_plane_init(dev, &cursor->base, 0,
12230 &intel_cursor_plane_funcs,
12231 intel_cursor_formats,
12232 ARRAY_SIZE(intel_cursor_formats),
12233 DRM_PLANE_TYPE_CURSOR);
12234
12235 if (INTEL_INFO(dev)->gen >= 4) {
12236 if (!dev->mode_config.rotation_property)
12237 dev->mode_config.rotation_property =
12238 drm_mode_create_rotation_property(dev,
12239 BIT(DRM_ROTATE_0) |
12240 BIT(DRM_ROTATE_180));
12241 if (dev->mode_config.rotation_property)
12242 drm_object_attach_property(&cursor->base.base,
12243 dev->mode_config.rotation_property,
12244 cursor->rotation);
12245 }
12246
12247 return &cursor->base;
12248 }
12249
12250 static void intel_crtc_init(struct drm_device *dev, int pipe)
12251 {
12252 struct drm_i915_private *dev_priv = dev->dev_private;
12253 struct intel_crtc *intel_crtc;
12254 struct drm_plane *primary = NULL;
12255 struct drm_plane *cursor = NULL;
12256 int i, ret;
12257
12258 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12259 if (intel_crtc == NULL)
12260 return;
12261
12262 primary = intel_primary_plane_create(dev, pipe);
12263 if (!primary)
12264 goto fail;
12265
12266 cursor = intel_cursor_plane_create(dev, pipe);
12267 if (!cursor)
12268 goto fail;
12269
12270 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12271 cursor, &intel_crtc_funcs);
12272 if (ret)
12273 goto fail;
12274
12275 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12276 for (i = 0; i < 256; i++) {
12277 intel_crtc->lut_r[i] = i;
12278 intel_crtc->lut_g[i] = i;
12279 intel_crtc->lut_b[i] = i;
12280 }
12281
12282 /*
12283 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12284 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12285 */
12286 intel_crtc->pipe = pipe;
12287 intel_crtc->plane = pipe;
12288 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12289 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12290 intel_crtc->plane = !pipe;
12291 }
12292
12293 intel_crtc->cursor_base = ~0;
12294 intel_crtc->cursor_cntl = ~0;
12295 intel_crtc->cursor_size = ~0;
12296
12297 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12298 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12299 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12300 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12301
12302 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12303
12304 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12305
12306 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12307 return;
12308
12309 fail:
12310 if (primary)
12311 drm_plane_cleanup(primary);
12312 if (cursor)
12313 drm_plane_cleanup(cursor);
12314 kfree(intel_crtc);
12315 }
12316
12317 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12318 {
12319 struct drm_encoder *encoder = connector->base.encoder;
12320 struct drm_device *dev = connector->base.dev;
12321
12322 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12323
12324 if (!encoder || WARN_ON(!encoder->crtc))
12325 return INVALID_PIPE;
12326
12327 return to_intel_crtc(encoder->crtc)->pipe;
12328 }
12329
12330 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12331 struct drm_file *file)
12332 {
12333 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12334 struct drm_crtc *drmmode_crtc;
12335 struct intel_crtc *crtc;
12336
12337 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12338 return -ENODEV;
12339
12340 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12341
12342 if (!drmmode_crtc) {
12343 DRM_ERROR("no such CRTC id\n");
12344 return -ENOENT;
12345 }
12346
12347 crtc = to_intel_crtc(drmmode_crtc);
12348 pipe_from_crtc_id->pipe = crtc->pipe;
12349
12350 return 0;
12351 }
12352
12353 static int intel_encoder_clones(struct intel_encoder *encoder)
12354 {
12355 struct drm_device *dev = encoder->base.dev;
12356 struct intel_encoder *source_encoder;
12357 int index_mask = 0;
12358 int entry = 0;
12359
12360 for_each_intel_encoder(dev, source_encoder) {
12361 if (encoders_cloneable(encoder, source_encoder))
12362 index_mask |= (1 << entry);
12363
12364 entry++;
12365 }
12366
12367 return index_mask;
12368 }
12369
12370 static bool has_edp_a(struct drm_device *dev)
12371 {
12372 struct drm_i915_private *dev_priv = dev->dev_private;
12373
12374 if (!IS_MOBILE(dev))
12375 return false;
12376
12377 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12378 return false;
12379
12380 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12381 return false;
12382
12383 return true;
12384 }
12385
12386 const char *intel_output_name(int output)
12387 {
12388 static const char *names[] = {
12389 [INTEL_OUTPUT_UNUSED] = "Unused",
12390 [INTEL_OUTPUT_ANALOG] = "Analog",
12391 [INTEL_OUTPUT_DVO] = "DVO",
12392 [INTEL_OUTPUT_SDVO] = "SDVO",
12393 [INTEL_OUTPUT_LVDS] = "LVDS",
12394 [INTEL_OUTPUT_TVOUT] = "TV",
12395 [INTEL_OUTPUT_HDMI] = "HDMI",
12396 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12397 [INTEL_OUTPUT_EDP] = "eDP",
12398 [INTEL_OUTPUT_DSI] = "DSI",
12399 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12400 };
12401
12402 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12403 return "Invalid";
12404
12405 return names[output];
12406 }
12407
12408 static bool intel_crt_present(struct drm_device *dev)
12409 {
12410 struct drm_i915_private *dev_priv = dev->dev_private;
12411
12412 if (INTEL_INFO(dev)->gen >= 9)
12413 return false;
12414
12415 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12416 return false;
12417
12418 if (IS_CHERRYVIEW(dev))
12419 return false;
12420
12421 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12422 return false;
12423
12424 return true;
12425 }
12426
12427 static void intel_setup_outputs(struct drm_device *dev)
12428 {
12429 struct drm_i915_private *dev_priv = dev->dev_private;
12430 struct intel_encoder *encoder;
12431 bool dpd_is_edp = false;
12432
12433 intel_lvds_init(dev);
12434
12435 if (intel_crt_present(dev))
12436 intel_crt_init(dev);
12437
12438 if (HAS_DDI(dev)) {
12439 int found;
12440
12441 /* Haswell uses DDI functions to detect digital outputs */
12442 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12443 /* DDI A only supports eDP */
12444 if (found)
12445 intel_ddi_init(dev, PORT_A);
12446
12447 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12448 * register */
12449 found = I915_READ(SFUSE_STRAP);
12450
12451 if (found & SFUSE_STRAP_DDIB_DETECTED)
12452 intel_ddi_init(dev, PORT_B);
12453 if (found & SFUSE_STRAP_DDIC_DETECTED)
12454 intel_ddi_init(dev, PORT_C);
12455 if (found & SFUSE_STRAP_DDID_DETECTED)
12456 intel_ddi_init(dev, PORT_D);
12457 } else if (HAS_PCH_SPLIT(dev)) {
12458 int found;
12459 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12460
12461 if (has_edp_a(dev))
12462 intel_dp_init(dev, DP_A, PORT_A);
12463
12464 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12465 /* PCH SDVOB multiplex with HDMIB */
12466 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12467 if (!found)
12468 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12469 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12470 intel_dp_init(dev, PCH_DP_B, PORT_B);
12471 }
12472
12473 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12474 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12475
12476 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12477 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12478
12479 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12480 intel_dp_init(dev, PCH_DP_C, PORT_C);
12481
12482 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12483 intel_dp_init(dev, PCH_DP_D, PORT_D);
12484 } else if (IS_VALLEYVIEW(dev)) {
12485 /*
12486 * The DP_DETECTED bit is the latched state of the DDC
12487 * SDA pin at boot. However since eDP doesn't require DDC
12488 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12489 * eDP ports may have been muxed to an alternate function.
12490 * Thus we can't rely on the DP_DETECTED bit alone to detect
12491 * eDP ports. Consult the VBT as well as DP_DETECTED to
12492 * detect eDP ports.
12493 */
12494 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12495 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12496 PORT_B);
12497 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12498 intel_dp_is_edp(dev, PORT_B))
12499 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12500
12501 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12502 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12503 PORT_C);
12504 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12505 intel_dp_is_edp(dev, PORT_C))
12506 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12507
12508 if (IS_CHERRYVIEW(dev)) {
12509 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12510 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12511 PORT_D);
12512 /* eDP not supported on port D, so don't check VBT */
12513 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12514 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12515 }
12516
12517 intel_dsi_init(dev);
12518 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12519 bool found = false;
12520
12521 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12522 DRM_DEBUG_KMS("probing SDVOB\n");
12523 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12524 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12525 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12526 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12527 }
12528
12529 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12530 intel_dp_init(dev, DP_B, PORT_B);
12531 }
12532
12533 /* Before G4X SDVOC doesn't have its own detect register */
12534
12535 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12536 DRM_DEBUG_KMS("probing SDVOC\n");
12537 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12538 }
12539
12540 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12541
12542 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12543 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12544 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12545 }
12546 if (SUPPORTS_INTEGRATED_DP(dev))
12547 intel_dp_init(dev, DP_C, PORT_C);
12548 }
12549
12550 if (SUPPORTS_INTEGRATED_DP(dev) &&
12551 (I915_READ(DP_D) & DP_DETECTED))
12552 intel_dp_init(dev, DP_D, PORT_D);
12553 } else if (IS_GEN2(dev))
12554 intel_dvo_init(dev);
12555
12556 if (SUPPORTS_TV(dev))
12557 intel_tv_init(dev);
12558
12559 intel_psr_init(dev);
12560
12561 for_each_intel_encoder(dev, encoder) {
12562 encoder->base.possible_crtcs = encoder->crtc_mask;
12563 encoder->base.possible_clones =
12564 intel_encoder_clones(encoder);
12565 }
12566
12567 intel_init_pch_refclk(dev);
12568
12569 drm_helper_move_panel_connectors_to_head(dev);
12570 }
12571
12572 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12573 {
12574 struct drm_device *dev = fb->dev;
12575 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12576
12577 drm_framebuffer_cleanup(fb);
12578 mutex_lock(&dev->struct_mutex);
12579 WARN_ON(!intel_fb->obj->framebuffer_references--);
12580 drm_gem_object_unreference(&intel_fb->obj->base);
12581 mutex_unlock(&dev->struct_mutex);
12582 kfree(intel_fb);
12583 }
12584
12585 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12586 struct drm_file *file,
12587 unsigned int *handle)
12588 {
12589 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12590 struct drm_i915_gem_object *obj = intel_fb->obj;
12591
12592 return drm_gem_handle_create(file, &obj->base, handle);
12593 }
12594
12595 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12596 .destroy = intel_user_framebuffer_destroy,
12597 .create_handle = intel_user_framebuffer_create_handle,
12598 };
12599
12600 static int intel_framebuffer_init(struct drm_device *dev,
12601 struct intel_framebuffer *intel_fb,
12602 struct drm_mode_fb_cmd2 *mode_cmd,
12603 struct drm_i915_gem_object *obj)
12604 {
12605 int aligned_height;
12606 int pitch_limit;
12607 int ret;
12608
12609 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12610
12611 if (obj->tiling_mode == I915_TILING_Y) {
12612 DRM_DEBUG("hardware does not support tiling Y\n");
12613 return -EINVAL;
12614 }
12615
12616 if (mode_cmd->pitches[0] & 63) {
12617 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12618 mode_cmd->pitches[0]);
12619 return -EINVAL;
12620 }
12621
12622 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12623 pitch_limit = 32*1024;
12624 } else if (INTEL_INFO(dev)->gen >= 4) {
12625 if (obj->tiling_mode)
12626 pitch_limit = 16*1024;
12627 else
12628 pitch_limit = 32*1024;
12629 } else if (INTEL_INFO(dev)->gen >= 3) {
12630 if (obj->tiling_mode)
12631 pitch_limit = 8*1024;
12632 else
12633 pitch_limit = 16*1024;
12634 } else
12635 /* XXX DSPC is limited to 4k tiled */
12636 pitch_limit = 8*1024;
12637
12638 if (mode_cmd->pitches[0] > pitch_limit) {
12639 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12640 obj->tiling_mode ? "tiled" : "linear",
12641 mode_cmd->pitches[0], pitch_limit);
12642 return -EINVAL;
12643 }
12644
12645 if (obj->tiling_mode != I915_TILING_NONE &&
12646 mode_cmd->pitches[0] != obj->stride) {
12647 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12648 mode_cmd->pitches[0], obj->stride);
12649 return -EINVAL;
12650 }
12651
12652 /* Reject formats not supported by any plane early. */
12653 switch (mode_cmd->pixel_format) {
12654 case DRM_FORMAT_C8:
12655 case DRM_FORMAT_RGB565:
12656 case DRM_FORMAT_XRGB8888:
12657 case DRM_FORMAT_ARGB8888:
12658 break;
12659 case DRM_FORMAT_XRGB1555:
12660 case DRM_FORMAT_ARGB1555:
12661 if (INTEL_INFO(dev)->gen > 3) {
12662 DRM_DEBUG("unsupported pixel format: %s\n",
12663 drm_get_format_name(mode_cmd->pixel_format));
12664 return -EINVAL;
12665 }
12666 break;
12667 case DRM_FORMAT_XBGR8888:
12668 case DRM_FORMAT_ABGR8888:
12669 case DRM_FORMAT_XRGB2101010:
12670 case DRM_FORMAT_ARGB2101010:
12671 case DRM_FORMAT_XBGR2101010:
12672 case DRM_FORMAT_ABGR2101010:
12673 if (INTEL_INFO(dev)->gen < 4) {
12674 DRM_DEBUG("unsupported pixel format: %s\n",
12675 drm_get_format_name(mode_cmd->pixel_format));
12676 return -EINVAL;
12677 }
12678 break;
12679 case DRM_FORMAT_YUYV:
12680 case DRM_FORMAT_UYVY:
12681 case DRM_FORMAT_YVYU:
12682 case DRM_FORMAT_VYUY:
12683 if (INTEL_INFO(dev)->gen < 5) {
12684 DRM_DEBUG("unsupported pixel format: %s\n",
12685 drm_get_format_name(mode_cmd->pixel_format));
12686 return -EINVAL;
12687 }
12688 break;
12689 default:
12690 DRM_DEBUG("unsupported pixel format: %s\n",
12691 drm_get_format_name(mode_cmd->pixel_format));
12692 return -EINVAL;
12693 }
12694
12695 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12696 if (mode_cmd->offsets[0] != 0)
12697 return -EINVAL;
12698
12699 aligned_height = intel_align_height(dev, mode_cmd->height,
12700 obj->tiling_mode);
12701 /* FIXME drm helper for size checks (especially planar formats)? */
12702 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12703 return -EINVAL;
12704
12705 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12706 intel_fb->obj = obj;
12707 intel_fb->obj->framebuffer_references++;
12708
12709 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12710 if (ret) {
12711 DRM_ERROR("framebuffer init failed %d\n", ret);
12712 return ret;
12713 }
12714
12715 return 0;
12716 }
12717
12718 static struct drm_framebuffer *
12719 intel_user_framebuffer_create(struct drm_device *dev,
12720 struct drm_file *filp,
12721 struct drm_mode_fb_cmd2 *mode_cmd)
12722 {
12723 struct drm_i915_gem_object *obj;
12724
12725 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12726 mode_cmd->handles[0]));
12727 if (&obj->base == NULL)
12728 return ERR_PTR(-ENOENT);
12729
12730 return intel_framebuffer_create(dev, mode_cmd, obj);
12731 }
12732
12733 #ifndef CONFIG_DRM_I915_FBDEV
12734 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12735 {
12736 }
12737 #endif
12738
12739 static const struct drm_mode_config_funcs intel_mode_funcs = {
12740 .fb_create = intel_user_framebuffer_create,
12741 .output_poll_changed = intel_fbdev_output_poll_changed,
12742 };
12743
12744 /* Set up chip specific display functions */
12745 static void intel_init_display(struct drm_device *dev)
12746 {
12747 struct drm_i915_private *dev_priv = dev->dev_private;
12748
12749 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12750 dev_priv->display.find_dpll = g4x_find_best_dpll;
12751 else if (IS_CHERRYVIEW(dev))
12752 dev_priv->display.find_dpll = chv_find_best_dpll;
12753 else if (IS_VALLEYVIEW(dev))
12754 dev_priv->display.find_dpll = vlv_find_best_dpll;
12755 else if (IS_PINEVIEW(dev))
12756 dev_priv->display.find_dpll = pnv_find_best_dpll;
12757 else
12758 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12759
12760 if (HAS_DDI(dev)) {
12761 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12762 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12763 dev_priv->display.crtc_compute_clock =
12764 haswell_crtc_compute_clock;
12765 dev_priv->display.crtc_enable = haswell_crtc_enable;
12766 dev_priv->display.crtc_disable = haswell_crtc_disable;
12767 dev_priv->display.off = ironlake_crtc_off;
12768 if (INTEL_INFO(dev)->gen >= 9)
12769 dev_priv->display.update_primary_plane =
12770 skylake_update_primary_plane;
12771 else
12772 dev_priv->display.update_primary_plane =
12773 ironlake_update_primary_plane;
12774 } else if (HAS_PCH_SPLIT(dev)) {
12775 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12776 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12777 dev_priv->display.crtc_compute_clock =
12778 ironlake_crtc_compute_clock;
12779 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12780 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12781 dev_priv->display.off = ironlake_crtc_off;
12782 dev_priv->display.update_primary_plane =
12783 ironlake_update_primary_plane;
12784 } else if (IS_VALLEYVIEW(dev)) {
12785 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12786 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12787 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12788 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12789 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12790 dev_priv->display.off = i9xx_crtc_off;
12791 dev_priv->display.update_primary_plane =
12792 i9xx_update_primary_plane;
12793 } else {
12794 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12795 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12796 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12797 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12798 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12799 dev_priv->display.off = i9xx_crtc_off;
12800 dev_priv->display.update_primary_plane =
12801 i9xx_update_primary_plane;
12802 }
12803
12804 /* Returns the core display clock speed */
12805 if (IS_VALLEYVIEW(dev))
12806 dev_priv->display.get_display_clock_speed =
12807 valleyview_get_display_clock_speed;
12808 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12809 dev_priv->display.get_display_clock_speed =
12810 i945_get_display_clock_speed;
12811 else if (IS_I915G(dev))
12812 dev_priv->display.get_display_clock_speed =
12813 i915_get_display_clock_speed;
12814 else if (IS_I945GM(dev) || IS_845G(dev))
12815 dev_priv->display.get_display_clock_speed =
12816 i9xx_misc_get_display_clock_speed;
12817 else if (IS_PINEVIEW(dev))
12818 dev_priv->display.get_display_clock_speed =
12819 pnv_get_display_clock_speed;
12820 else if (IS_I915GM(dev))
12821 dev_priv->display.get_display_clock_speed =
12822 i915gm_get_display_clock_speed;
12823 else if (IS_I865G(dev))
12824 dev_priv->display.get_display_clock_speed =
12825 i865_get_display_clock_speed;
12826 else if (IS_I85X(dev))
12827 dev_priv->display.get_display_clock_speed =
12828 i855_get_display_clock_speed;
12829 else /* 852, 830 */
12830 dev_priv->display.get_display_clock_speed =
12831 i830_get_display_clock_speed;
12832
12833 if (IS_GEN5(dev)) {
12834 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12835 } else if (IS_GEN6(dev)) {
12836 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12837 } else if (IS_IVYBRIDGE(dev)) {
12838 /* FIXME: detect B0+ stepping and use auto training */
12839 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12840 dev_priv->display.modeset_global_resources =
12841 ivb_modeset_global_resources;
12842 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12843 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12844 } else if (IS_VALLEYVIEW(dev)) {
12845 dev_priv->display.modeset_global_resources =
12846 valleyview_modeset_global_resources;
12847 }
12848
12849 /* Default just returns -ENODEV to indicate unsupported */
12850 dev_priv->display.queue_flip = intel_default_queue_flip;
12851
12852 switch (INTEL_INFO(dev)->gen) {
12853 case 2:
12854 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12855 break;
12856
12857 case 3:
12858 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12859 break;
12860
12861 case 4:
12862 case 5:
12863 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12864 break;
12865
12866 case 6:
12867 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12868 break;
12869 case 7:
12870 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12871 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12872 break;
12873 case 9:
12874 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12875 break;
12876 }
12877
12878 intel_panel_init_backlight_funcs(dev);
12879
12880 mutex_init(&dev_priv->pps_mutex);
12881 }
12882
12883 /*
12884 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12885 * resume, or other times. This quirk makes sure that's the case for
12886 * affected systems.
12887 */
12888 static void quirk_pipea_force(struct drm_device *dev)
12889 {
12890 struct drm_i915_private *dev_priv = dev->dev_private;
12891
12892 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12893 DRM_INFO("applying pipe a force quirk\n");
12894 }
12895
12896 static void quirk_pipeb_force(struct drm_device *dev)
12897 {
12898 struct drm_i915_private *dev_priv = dev->dev_private;
12899
12900 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12901 DRM_INFO("applying pipe b force quirk\n");
12902 }
12903
12904 /*
12905 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12906 */
12907 static void quirk_ssc_force_disable(struct drm_device *dev)
12908 {
12909 struct drm_i915_private *dev_priv = dev->dev_private;
12910 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12911 DRM_INFO("applying lvds SSC disable quirk\n");
12912 }
12913
12914 /*
12915 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12916 * brightness value
12917 */
12918 static void quirk_invert_brightness(struct drm_device *dev)
12919 {
12920 struct drm_i915_private *dev_priv = dev->dev_private;
12921 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12922 DRM_INFO("applying inverted panel brightness quirk\n");
12923 }
12924
12925 /* Some VBT's incorrectly indicate no backlight is present */
12926 static void quirk_backlight_present(struct drm_device *dev)
12927 {
12928 struct drm_i915_private *dev_priv = dev->dev_private;
12929 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12930 DRM_INFO("applying backlight present quirk\n");
12931 }
12932
12933 struct intel_quirk {
12934 int device;
12935 int subsystem_vendor;
12936 int subsystem_device;
12937 void (*hook)(struct drm_device *dev);
12938 };
12939
12940 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12941 struct intel_dmi_quirk {
12942 void (*hook)(struct drm_device *dev);
12943 const struct dmi_system_id (*dmi_id_list)[];
12944 };
12945
12946 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12947 {
12948 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12949 return 1;
12950 }
12951
12952 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12953 {
12954 .dmi_id_list = &(const struct dmi_system_id[]) {
12955 {
12956 .callback = intel_dmi_reverse_brightness,
12957 .ident = "NCR Corporation",
12958 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12959 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12960 },
12961 },
12962 { } /* terminating entry */
12963 },
12964 .hook = quirk_invert_brightness,
12965 },
12966 };
12967
12968 static struct intel_quirk intel_quirks[] = {
12969 /* HP Mini needs pipe A force quirk (LP: #322104) */
12970 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12971
12972 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12973 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12974
12975 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12976 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12977
12978 /* 830 needs to leave pipe A & dpll A up */
12979 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12980
12981 /* 830 needs to leave pipe B & dpll B up */
12982 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12983
12984 /* Lenovo U160 cannot use SSC on LVDS */
12985 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12986
12987 /* Sony Vaio Y cannot use SSC on LVDS */
12988 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12989
12990 /* Acer Aspire 5734Z must invert backlight brightness */
12991 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12992
12993 /* Acer/eMachines G725 */
12994 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12995
12996 /* Acer/eMachines e725 */
12997 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12998
12999 /* Acer/Packard Bell NCL20 */
13000 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13001
13002 /* Acer Aspire 4736Z */
13003 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13004
13005 /* Acer Aspire 5336 */
13006 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13007
13008 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13009 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13010
13011 /* Acer C720 Chromebook (Core i3 4005U) */
13012 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13013
13014 /* Apple Macbook 2,1 (Core 2 T7400) */
13015 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13016
13017 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13018 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13019
13020 /* HP Chromebook 14 (Celeron 2955U) */
13021 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13022 };
13023
13024 static void intel_init_quirks(struct drm_device *dev)
13025 {
13026 struct pci_dev *d = dev->pdev;
13027 int i;
13028
13029 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13030 struct intel_quirk *q = &intel_quirks[i];
13031
13032 if (d->device == q->device &&
13033 (d->subsystem_vendor == q->subsystem_vendor ||
13034 q->subsystem_vendor == PCI_ANY_ID) &&
13035 (d->subsystem_device == q->subsystem_device ||
13036 q->subsystem_device == PCI_ANY_ID))
13037 q->hook(dev);
13038 }
13039 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13040 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13041 intel_dmi_quirks[i].hook(dev);
13042 }
13043 }
13044
13045 /* Disable the VGA plane that we never use */
13046 static void i915_disable_vga(struct drm_device *dev)
13047 {
13048 struct drm_i915_private *dev_priv = dev->dev_private;
13049 u8 sr1;
13050 u32 vga_reg = i915_vgacntrl_reg(dev);
13051
13052 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13053 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13054 outb(SR01, VGA_SR_INDEX);
13055 sr1 = inb(VGA_SR_DATA);
13056 outb(sr1 | 1<<5, VGA_SR_DATA);
13057 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13058 udelay(300);
13059
13060 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13061 POSTING_READ(vga_reg);
13062 }
13063
13064 void intel_modeset_init_hw(struct drm_device *dev)
13065 {
13066 intel_prepare_ddi(dev);
13067
13068 if (IS_VALLEYVIEW(dev))
13069 vlv_update_cdclk(dev);
13070
13071 intel_init_clock_gating(dev);
13072
13073 intel_enable_gt_powersave(dev);
13074 }
13075
13076 void intel_modeset_init(struct drm_device *dev)
13077 {
13078 struct drm_i915_private *dev_priv = dev->dev_private;
13079 int sprite, ret;
13080 enum pipe pipe;
13081 struct intel_crtc *crtc;
13082
13083 drm_mode_config_init(dev);
13084
13085 dev->mode_config.min_width = 0;
13086 dev->mode_config.min_height = 0;
13087
13088 dev->mode_config.preferred_depth = 24;
13089 dev->mode_config.prefer_shadow = 1;
13090
13091 dev->mode_config.funcs = &intel_mode_funcs;
13092
13093 intel_init_quirks(dev);
13094
13095 intel_init_pm(dev);
13096
13097 if (INTEL_INFO(dev)->num_pipes == 0)
13098 return;
13099
13100 intel_init_display(dev);
13101 intel_init_audio(dev);
13102
13103 if (IS_GEN2(dev)) {
13104 dev->mode_config.max_width = 2048;
13105 dev->mode_config.max_height = 2048;
13106 } else if (IS_GEN3(dev)) {
13107 dev->mode_config.max_width = 4096;
13108 dev->mode_config.max_height = 4096;
13109 } else {
13110 dev->mode_config.max_width = 8192;
13111 dev->mode_config.max_height = 8192;
13112 }
13113
13114 if (IS_845G(dev) || IS_I865G(dev)) {
13115 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13116 dev->mode_config.cursor_height = 1023;
13117 } else if (IS_GEN2(dev)) {
13118 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13119 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13120 } else {
13121 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13122 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13123 }
13124
13125 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13126
13127 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13128 INTEL_INFO(dev)->num_pipes,
13129 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13130
13131 for_each_pipe(dev_priv, pipe) {
13132 intel_crtc_init(dev, pipe);
13133 for_each_sprite(pipe, sprite) {
13134 ret = intel_plane_init(dev, pipe, sprite);
13135 if (ret)
13136 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13137 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13138 }
13139 }
13140
13141 intel_init_dpio(dev);
13142
13143 intel_shared_dpll_init(dev);
13144
13145 /* Just disable it once at startup */
13146 i915_disable_vga(dev);
13147 intel_setup_outputs(dev);
13148
13149 /* Just in case the BIOS is doing something questionable. */
13150 intel_disable_fbc(dev);
13151
13152 drm_modeset_lock_all(dev);
13153 intel_modeset_setup_hw_state(dev, false);
13154 drm_modeset_unlock_all(dev);
13155
13156 for_each_intel_crtc(dev, crtc) {
13157 if (!crtc->active)
13158 continue;
13159
13160 /*
13161 * Note that reserving the BIOS fb up front prevents us
13162 * from stuffing other stolen allocations like the ring
13163 * on top. This prevents some ugliness at boot time, and
13164 * can even allow for smooth boot transitions if the BIOS
13165 * fb is large enough for the active pipe configuration.
13166 */
13167 if (dev_priv->display.get_plane_config) {
13168 dev_priv->display.get_plane_config(crtc,
13169 &crtc->plane_config);
13170 /*
13171 * If the fb is shared between multiple heads, we'll
13172 * just get the first one.
13173 */
13174 intel_find_plane_obj(crtc, &crtc->plane_config);
13175 }
13176 }
13177 }
13178
13179 static void intel_enable_pipe_a(struct drm_device *dev)
13180 {
13181 struct intel_connector *connector;
13182 struct drm_connector *crt = NULL;
13183 struct intel_load_detect_pipe load_detect_temp;
13184 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13185
13186 /* We can't just switch on the pipe A, we need to set things up with a
13187 * proper mode and output configuration. As a gross hack, enable pipe A
13188 * by enabling the load detect pipe once. */
13189 list_for_each_entry(connector,
13190 &dev->mode_config.connector_list,
13191 base.head) {
13192 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13193 crt = &connector->base;
13194 break;
13195 }
13196 }
13197
13198 if (!crt)
13199 return;
13200
13201 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13202 intel_release_load_detect_pipe(crt, &load_detect_temp);
13203 }
13204
13205 static bool
13206 intel_check_plane_mapping(struct intel_crtc *crtc)
13207 {
13208 struct drm_device *dev = crtc->base.dev;
13209 struct drm_i915_private *dev_priv = dev->dev_private;
13210 u32 reg, val;
13211
13212 if (INTEL_INFO(dev)->num_pipes == 1)
13213 return true;
13214
13215 reg = DSPCNTR(!crtc->plane);
13216 val = I915_READ(reg);
13217
13218 if ((val & DISPLAY_PLANE_ENABLE) &&
13219 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13220 return false;
13221
13222 return true;
13223 }
13224
13225 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13226 {
13227 struct drm_device *dev = crtc->base.dev;
13228 struct drm_i915_private *dev_priv = dev->dev_private;
13229 u32 reg;
13230
13231 /* Clear any frame start delays used for debugging left by the BIOS */
13232 reg = PIPECONF(crtc->config.cpu_transcoder);
13233 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13234
13235 /* restore vblank interrupts to correct state */
13236 if (crtc->active) {
13237 update_scanline_offset(crtc);
13238 drm_vblank_on(dev, crtc->pipe);
13239 } else
13240 drm_vblank_off(dev, crtc->pipe);
13241
13242 /* We need to sanitize the plane -> pipe mapping first because this will
13243 * disable the crtc (and hence change the state) if it is wrong. Note
13244 * that gen4+ has a fixed plane -> pipe mapping. */
13245 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13246 struct intel_connector *connector;
13247 bool plane;
13248
13249 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13250 crtc->base.base.id);
13251
13252 /* Pipe has the wrong plane attached and the plane is active.
13253 * Temporarily change the plane mapping and disable everything
13254 * ... */
13255 plane = crtc->plane;
13256 crtc->plane = !plane;
13257 crtc->primary_enabled = true;
13258 dev_priv->display.crtc_disable(&crtc->base);
13259 crtc->plane = plane;
13260
13261 /* ... and break all links. */
13262 list_for_each_entry(connector, &dev->mode_config.connector_list,
13263 base.head) {
13264 if (connector->encoder->base.crtc != &crtc->base)
13265 continue;
13266
13267 connector->base.dpms = DRM_MODE_DPMS_OFF;
13268 connector->base.encoder = NULL;
13269 }
13270 /* multiple connectors may have the same encoder:
13271 * handle them and break crtc link separately */
13272 list_for_each_entry(connector, &dev->mode_config.connector_list,
13273 base.head)
13274 if (connector->encoder->base.crtc == &crtc->base) {
13275 connector->encoder->base.crtc = NULL;
13276 connector->encoder->connectors_active = false;
13277 }
13278
13279 WARN_ON(crtc->active);
13280 crtc->base.enabled = false;
13281 }
13282
13283 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13284 crtc->pipe == PIPE_A && !crtc->active) {
13285 /* BIOS forgot to enable pipe A, this mostly happens after
13286 * resume. Force-enable the pipe to fix this, the update_dpms
13287 * call below we restore the pipe to the right state, but leave
13288 * the required bits on. */
13289 intel_enable_pipe_a(dev);
13290 }
13291
13292 /* Adjust the state of the output pipe according to whether we
13293 * have active connectors/encoders. */
13294 intel_crtc_update_dpms(&crtc->base);
13295
13296 if (crtc->active != crtc->base.enabled) {
13297 struct intel_encoder *encoder;
13298
13299 /* This can happen either due to bugs in the get_hw_state
13300 * functions or because the pipe is force-enabled due to the
13301 * pipe A quirk. */
13302 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13303 crtc->base.base.id,
13304 crtc->base.enabled ? "enabled" : "disabled",
13305 crtc->active ? "enabled" : "disabled");
13306
13307 crtc->base.enabled = crtc->active;
13308
13309 /* Because we only establish the connector -> encoder ->
13310 * crtc links if something is active, this means the
13311 * crtc is now deactivated. Break the links. connector
13312 * -> encoder links are only establish when things are
13313 * actually up, hence no need to break them. */
13314 WARN_ON(crtc->active);
13315
13316 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13317 WARN_ON(encoder->connectors_active);
13318 encoder->base.crtc = NULL;
13319 }
13320 }
13321
13322 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13323 /*
13324 * We start out with underrun reporting disabled to avoid races.
13325 * For correct bookkeeping mark this on active crtcs.
13326 *
13327 * Also on gmch platforms we dont have any hardware bits to
13328 * disable the underrun reporting. Which means we need to start
13329 * out with underrun reporting disabled also on inactive pipes,
13330 * since otherwise we'll complain about the garbage we read when
13331 * e.g. coming up after runtime pm.
13332 *
13333 * No protection against concurrent access is required - at
13334 * worst a fifo underrun happens which also sets this to false.
13335 */
13336 crtc->cpu_fifo_underrun_disabled = true;
13337 crtc->pch_fifo_underrun_disabled = true;
13338 }
13339 }
13340
13341 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13342 {
13343 struct intel_connector *connector;
13344 struct drm_device *dev = encoder->base.dev;
13345
13346 /* We need to check both for a crtc link (meaning that the
13347 * encoder is active and trying to read from a pipe) and the
13348 * pipe itself being active. */
13349 bool has_active_crtc = encoder->base.crtc &&
13350 to_intel_crtc(encoder->base.crtc)->active;
13351
13352 if (encoder->connectors_active && !has_active_crtc) {
13353 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13354 encoder->base.base.id,
13355 encoder->base.name);
13356
13357 /* Connector is active, but has no active pipe. This is
13358 * fallout from our resume register restoring. Disable
13359 * the encoder manually again. */
13360 if (encoder->base.crtc) {
13361 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13362 encoder->base.base.id,
13363 encoder->base.name);
13364 encoder->disable(encoder);
13365 if (encoder->post_disable)
13366 encoder->post_disable(encoder);
13367 }
13368 encoder->base.crtc = NULL;
13369 encoder->connectors_active = false;
13370
13371 /* Inconsistent output/port/pipe state happens presumably due to
13372 * a bug in one of the get_hw_state functions. Or someplace else
13373 * in our code, like the register restore mess on resume. Clamp
13374 * things to off as a safer default. */
13375 list_for_each_entry(connector,
13376 &dev->mode_config.connector_list,
13377 base.head) {
13378 if (connector->encoder != encoder)
13379 continue;
13380 connector->base.dpms = DRM_MODE_DPMS_OFF;
13381 connector->base.encoder = NULL;
13382 }
13383 }
13384 /* Enabled encoders without active connectors will be fixed in
13385 * the crtc fixup. */
13386 }
13387
13388 void i915_redisable_vga_power_on(struct drm_device *dev)
13389 {
13390 struct drm_i915_private *dev_priv = dev->dev_private;
13391 u32 vga_reg = i915_vgacntrl_reg(dev);
13392
13393 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13394 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13395 i915_disable_vga(dev);
13396 }
13397 }
13398
13399 void i915_redisable_vga(struct drm_device *dev)
13400 {
13401 struct drm_i915_private *dev_priv = dev->dev_private;
13402
13403 /* This function can be called both from intel_modeset_setup_hw_state or
13404 * at a very early point in our resume sequence, where the power well
13405 * structures are not yet restored. Since this function is at a very
13406 * paranoid "someone might have enabled VGA while we were not looking"
13407 * level, just check if the power well is enabled instead of trying to
13408 * follow the "don't touch the power well if we don't need it" policy
13409 * the rest of the driver uses. */
13410 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13411 return;
13412
13413 i915_redisable_vga_power_on(dev);
13414 }
13415
13416 static bool primary_get_hw_state(struct intel_crtc *crtc)
13417 {
13418 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13419
13420 if (!crtc->active)
13421 return false;
13422
13423 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13424 }
13425
13426 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13427 {
13428 struct drm_i915_private *dev_priv = dev->dev_private;
13429 enum pipe pipe;
13430 struct intel_crtc *crtc;
13431 struct intel_encoder *encoder;
13432 struct intel_connector *connector;
13433 int i;
13434
13435 for_each_intel_crtc(dev, crtc) {
13436 memset(&crtc->config, 0, sizeof(crtc->config));
13437
13438 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13439
13440 crtc->active = dev_priv->display.get_pipe_config(crtc,
13441 &crtc->config);
13442
13443 crtc->base.enabled = crtc->active;
13444 crtc->primary_enabled = primary_get_hw_state(crtc);
13445
13446 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13447 crtc->base.base.id,
13448 crtc->active ? "enabled" : "disabled");
13449 }
13450
13451 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13452 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13453
13454 pll->on = pll->get_hw_state(dev_priv, pll,
13455 &pll->config.hw_state);
13456 pll->active = 0;
13457 pll->config.crtc_mask = 0;
13458 for_each_intel_crtc(dev, crtc) {
13459 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13460 pll->active++;
13461 pll->config.crtc_mask |= 1 << crtc->pipe;
13462 }
13463 }
13464
13465 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13466 pll->name, pll->config.crtc_mask, pll->on);
13467
13468 if (pll->config.crtc_mask)
13469 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13470 }
13471
13472 for_each_intel_encoder(dev, encoder) {
13473 pipe = 0;
13474
13475 if (encoder->get_hw_state(encoder, &pipe)) {
13476 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13477 encoder->base.crtc = &crtc->base;
13478 encoder->get_config(encoder, &crtc->config);
13479 } else {
13480 encoder->base.crtc = NULL;
13481 }
13482
13483 encoder->connectors_active = false;
13484 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13485 encoder->base.base.id,
13486 encoder->base.name,
13487 encoder->base.crtc ? "enabled" : "disabled",
13488 pipe_name(pipe));
13489 }
13490
13491 list_for_each_entry(connector, &dev->mode_config.connector_list,
13492 base.head) {
13493 if (connector->get_hw_state(connector)) {
13494 connector->base.dpms = DRM_MODE_DPMS_ON;
13495 connector->encoder->connectors_active = true;
13496 connector->base.encoder = &connector->encoder->base;
13497 } else {
13498 connector->base.dpms = DRM_MODE_DPMS_OFF;
13499 connector->base.encoder = NULL;
13500 }
13501 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13502 connector->base.base.id,
13503 connector->base.name,
13504 connector->base.encoder ? "enabled" : "disabled");
13505 }
13506 }
13507
13508 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13509 * and i915 state tracking structures. */
13510 void intel_modeset_setup_hw_state(struct drm_device *dev,
13511 bool force_restore)
13512 {
13513 struct drm_i915_private *dev_priv = dev->dev_private;
13514 enum pipe pipe;
13515 struct intel_crtc *crtc;
13516 struct intel_encoder *encoder;
13517 int i;
13518
13519 intel_modeset_readout_hw_state(dev);
13520
13521 /*
13522 * Now that we have the config, copy it to each CRTC struct
13523 * Note that this could go away if we move to using crtc_config
13524 * checking everywhere.
13525 */
13526 for_each_intel_crtc(dev, crtc) {
13527 if (crtc->active && i915.fastboot) {
13528 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13529 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13530 crtc->base.base.id);
13531 drm_mode_debug_printmodeline(&crtc->base.mode);
13532 }
13533 }
13534
13535 /* HW state is read out, now we need to sanitize this mess. */
13536 for_each_intel_encoder(dev, encoder) {
13537 intel_sanitize_encoder(encoder);
13538 }
13539
13540 for_each_pipe(dev_priv, pipe) {
13541 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13542 intel_sanitize_crtc(crtc);
13543 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13544 }
13545
13546 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13547 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13548
13549 if (!pll->on || pll->active)
13550 continue;
13551
13552 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13553
13554 pll->disable(dev_priv, pll);
13555 pll->on = false;
13556 }
13557
13558 if (IS_GEN9(dev))
13559 skl_wm_get_hw_state(dev);
13560 else if (HAS_PCH_SPLIT(dev))
13561 ilk_wm_get_hw_state(dev);
13562
13563 if (force_restore) {
13564 i915_redisable_vga(dev);
13565
13566 /*
13567 * We need to use raw interfaces for restoring state to avoid
13568 * checking (bogus) intermediate states.
13569 */
13570 for_each_pipe(dev_priv, pipe) {
13571 struct drm_crtc *crtc =
13572 dev_priv->pipe_to_crtc_mapping[pipe];
13573
13574 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13575 crtc->primary->fb);
13576 }
13577 } else {
13578 intel_modeset_update_staged_output_state(dev);
13579 }
13580
13581 intel_modeset_check_state(dev);
13582 }
13583
13584 void intel_modeset_gem_init(struct drm_device *dev)
13585 {
13586 struct drm_i915_private *dev_priv = dev->dev_private;
13587 struct drm_crtc *c;
13588 struct drm_i915_gem_object *obj;
13589
13590 mutex_lock(&dev->struct_mutex);
13591 intel_init_gt_powersave(dev);
13592 mutex_unlock(&dev->struct_mutex);
13593
13594 /*
13595 * There may be no VBT; and if the BIOS enabled SSC we can
13596 * just keep using it to avoid unnecessary flicker. Whereas if the
13597 * BIOS isn't using it, don't assume it will work even if the VBT
13598 * indicates as much.
13599 */
13600 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13601 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13602 DREF_SSC1_ENABLE);
13603
13604 intel_modeset_init_hw(dev);
13605
13606 intel_setup_overlay(dev);
13607
13608 /*
13609 * Make sure any fbs we allocated at startup are properly
13610 * pinned & fenced. When we do the allocation it's too early
13611 * for this.
13612 */
13613 mutex_lock(&dev->struct_mutex);
13614 for_each_crtc(dev, c) {
13615 obj = intel_fb_obj(c->primary->fb);
13616 if (obj == NULL)
13617 continue;
13618
13619 if (intel_pin_and_fence_fb_obj(c->primary,
13620 c->primary->fb,
13621 NULL)) {
13622 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13623 to_intel_crtc(c)->pipe);
13624 drm_framebuffer_unreference(c->primary->fb);
13625 c->primary->fb = NULL;
13626 }
13627 }
13628 mutex_unlock(&dev->struct_mutex);
13629
13630 intel_backlight_register(dev);
13631 }
13632
13633 void intel_connector_unregister(struct intel_connector *intel_connector)
13634 {
13635 struct drm_connector *connector = &intel_connector->base;
13636
13637 intel_panel_destroy_backlight(connector);
13638 drm_connector_unregister(connector);
13639 }
13640
13641 void intel_modeset_cleanup(struct drm_device *dev)
13642 {
13643 struct drm_i915_private *dev_priv = dev->dev_private;
13644 struct drm_connector *connector;
13645
13646 intel_disable_gt_powersave(dev);
13647
13648 intel_backlight_unregister(dev);
13649
13650 /*
13651 * Interrupts and polling as the first thing to avoid creating havoc.
13652 * Too much stuff here (turning of connectors, ...) would
13653 * experience fancy races otherwise.
13654 */
13655 intel_irq_uninstall(dev_priv);
13656
13657 /*
13658 * Due to the hpd irq storm handling the hotplug work can re-arm the
13659 * poll handlers. Hence disable polling after hpd handling is shut down.
13660 */
13661 drm_kms_helper_poll_fini(dev);
13662
13663 mutex_lock(&dev->struct_mutex);
13664
13665 intel_unregister_dsm_handler();
13666
13667 intel_disable_fbc(dev);
13668
13669 ironlake_teardown_rc6(dev);
13670
13671 mutex_unlock(&dev->struct_mutex);
13672
13673 /* flush any delayed tasks or pending work */
13674 flush_scheduled_work();
13675
13676 /* destroy the backlight and sysfs files before encoders/connectors */
13677 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13678 struct intel_connector *intel_connector;
13679
13680 intel_connector = to_intel_connector(connector);
13681 intel_connector->unregister(intel_connector);
13682 }
13683
13684 drm_mode_config_cleanup(dev);
13685
13686 intel_cleanup_overlay(dev);
13687
13688 mutex_lock(&dev->struct_mutex);
13689 intel_cleanup_gt_powersave(dev);
13690 mutex_unlock(&dev->struct_mutex);
13691 }
13692
13693 /*
13694 * Return which encoder is currently attached for connector.
13695 */
13696 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13697 {
13698 return &intel_attached_encoder(connector)->base;
13699 }
13700
13701 void intel_connector_attach_encoder(struct intel_connector *connector,
13702 struct intel_encoder *encoder)
13703 {
13704 connector->encoder = encoder;
13705 drm_mode_connector_attach_encoder(&connector->base,
13706 &encoder->base);
13707 }
13708
13709 /*
13710 * set vga decode state - true == enable VGA decode
13711 */
13712 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13713 {
13714 struct drm_i915_private *dev_priv = dev->dev_private;
13715 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13716 u16 gmch_ctrl;
13717
13718 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13719 DRM_ERROR("failed to read control word\n");
13720 return -EIO;
13721 }
13722
13723 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13724 return 0;
13725
13726 if (state)
13727 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13728 else
13729 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13730
13731 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13732 DRM_ERROR("failed to write control word\n");
13733 return -EIO;
13734 }
13735
13736 return 0;
13737 }
13738
13739 struct intel_display_error_state {
13740
13741 u32 power_well_driver;
13742
13743 int num_transcoders;
13744
13745 struct intel_cursor_error_state {
13746 u32 control;
13747 u32 position;
13748 u32 base;
13749 u32 size;
13750 } cursor[I915_MAX_PIPES];
13751
13752 struct intel_pipe_error_state {
13753 bool power_domain_on;
13754 u32 source;
13755 u32 stat;
13756 } pipe[I915_MAX_PIPES];
13757
13758 struct intel_plane_error_state {
13759 u32 control;
13760 u32 stride;
13761 u32 size;
13762 u32 pos;
13763 u32 addr;
13764 u32 surface;
13765 u32 tile_offset;
13766 } plane[I915_MAX_PIPES];
13767
13768 struct intel_transcoder_error_state {
13769 bool power_domain_on;
13770 enum transcoder cpu_transcoder;
13771
13772 u32 conf;
13773
13774 u32 htotal;
13775 u32 hblank;
13776 u32 hsync;
13777 u32 vtotal;
13778 u32 vblank;
13779 u32 vsync;
13780 } transcoder[4];
13781 };
13782
13783 struct intel_display_error_state *
13784 intel_display_capture_error_state(struct drm_device *dev)
13785 {
13786 struct drm_i915_private *dev_priv = dev->dev_private;
13787 struct intel_display_error_state *error;
13788 int transcoders[] = {
13789 TRANSCODER_A,
13790 TRANSCODER_B,
13791 TRANSCODER_C,
13792 TRANSCODER_EDP,
13793 };
13794 int i;
13795
13796 if (INTEL_INFO(dev)->num_pipes == 0)
13797 return NULL;
13798
13799 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13800 if (error == NULL)
13801 return NULL;
13802
13803 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13804 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13805
13806 for_each_pipe(dev_priv, i) {
13807 error->pipe[i].power_domain_on =
13808 __intel_display_power_is_enabled(dev_priv,
13809 POWER_DOMAIN_PIPE(i));
13810 if (!error->pipe[i].power_domain_on)
13811 continue;
13812
13813 error->cursor[i].control = I915_READ(CURCNTR(i));
13814 error->cursor[i].position = I915_READ(CURPOS(i));
13815 error->cursor[i].base = I915_READ(CURBASE(i));
13816
13817 error->plane[i].control = I915_READ(DSPCNTR(i));
13818 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13819 if (INTEL_INFO(dev)->gen <= 3) {
13820 error->plane[i].size = I915_READ(DSPSIZE(i));
13821 error->plane[i].pos = I915_READ(DSPPOS(i));
13822 }
13823 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13824 error->plane[i].addr = I915_READ(DSPADDR(i));
13825 if (INTEL_INFO(dev)->gen >= 4) {
13826 error->plane[i].surface = I915_READ(DSPSURF(i));
13827 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13828 }
13829
13830 error->pipe[i].source = I915_READ(PIPESRC(i));
13831
13832 if (HAS_GMCH_DISPLAY(dev))
13833 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13834 }
13835
13836 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13837 if (HAS_DDI(dev_priv->dev))
13838 error->num_transcoders++; /* Account for eDP. */
13839
13840 for (i = 0; i < error->num_transcoders; i++) {
13841 enum transcoder cpu_transcoder = transcoders[i];
13842
13843 error->transcoder[i].power_domain_on =
13844 __intel_display_power_is_enabled(dev_priv,
13845 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13846 if (!error->transcoder[i].power_domain_on)
13847 continue;
13848
13849 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13850
13851 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13852 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13853 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13854 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13855 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13856 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13857 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13858 }
13859
13860 return error;
13861 }
13862
13863 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13864
13865 void
13866 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13867 struct drm_device *dev,
13868 struct intel_display_error_state *error)
13869 {
13870 struct drm_i915_private *dev_priv = dev->dev_private;
13871 int i;
13872
13873 if (!error)
13874 return;
13875
13876 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13877 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13878 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13879 error->power_well_driver);
13880 for_each_pipe(dev_priv, i) {
13881 err_printf(m, "Pipe [%d]:\n", i);
13882 err_printf(m, " Power: %s\n",
13883 error->pipe[i].power_domain_on ? "on" : "off");
13884 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13885 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13886
13887 err_printf(m, "Plane [%d]:\n", i);
13888 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13889 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13890 if (INTEL_INFO(dev)->gen <= 3) {
13891 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13892 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13893 }
13894 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13895 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13896 if (INTEL_INFO(dev)->gen >= 4) {
13897 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13898 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13899 }
13900
13901 err_printf(m, "Cursor [%d]:\n", i);
13902 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13903 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13904 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13905 }
13906
13907 for (i = 0; i < error->num_transcoders; i++) {
13908 err_printf(m, "CPU transcoder: %c\n",
13909 transcoder_name(error->transcoder[i].cpu_transcoder));
13910 err_printf(m, " Power: %s\n",
13911 error->transcoder[i].power_domain_on ? "on" : "off");
13912 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13913 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13914 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13915 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13916 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13917 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13918 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13919 }
13920 }
13921
13922 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13923 {
13924 struct intel_crtc *crtc;
13925
13926 for_each_intel_crtc(dev, crtc) {
13927 struct intel_unpin_work *work;
13928
13929 spin_lock_irq(&dev->event_lock);
13930
13931 work = crtc->unpin_work;
13932
13933 if (work && work->event &&
13934 work->event->base.file_priv == file) {
13935 kfree(work->event);
13936 work->event = NULL;
13937 }
13938
13939 spin_unlock_irq(&dev->event_lock);
13940 }
13941 }
This page took 0.579313 seconds and 6 git commands to generate.