Merge branch 'pm-cpufreq'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void intel_dp_set_m_n(struct intel_crtc *crtc);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103
104 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105 {
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110 }
111
112 typedef struct {
113 int min, max;
114 } intel_range_t;
115
116 typedef struct {
117 int dot_limit;
118 int p2_slow, p2_fast;
119 } intel_p2_t;
120
121 typedef struct intel_limit intel_limit_t;
122 struct intel_limit {
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
125 };
126
127 int
128 intel_pch_rawclk(struct drm_device *dev)
129 {
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135 }
136
137 static inline u32 /* units of 100MHz */
138 intel_fdi_link_freq(struct drm_device *dev)
139 {
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
145 }
146
147 static const intel_limit_t intel_limits_i8xx_dac = {
148 .dot = { .min = 25000, .max = 350000 },
149 .vco = { .min = 908000, .max = 1512000 },
150 .n = { .min = 2, .max = 16 },
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
158 };
159
160 static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
162 .vco = { .min = 908000, .max = 1512000 },
163 .n = { .min = 2, .max = 16 },
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_lvds = {
174 .dot = { .min = 25000, .max = 350000 },
175 .vco = { .min = 908000, .max = 1512000 },
176 .n = { .min = 2, .max = 16 },
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
184 };
185
186 static const intel_limit_t intel_limits_i9xx_sdvo = {
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_lvds = {
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
210 };
211
212
213 static const intel_limit_t intel_limits_g4x_sdvo = {
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
225 },
226 };
227
228 static const intel_limit_t intel_limits_g4x_hdmi = {
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
239 };
240
241 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
252 },
253 };
254
255 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
266 },
267 };
268
269 static const intel_limit_t intel_limits_pineview_sdvo = {
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
272 /* Pineview's Ncounter is a ring counter */
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
275 /* Pineview only has one combined m divider, which we treat as m2. */
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
282 };
283
284 static const intel_limit_t intel_limits_pineview_lvds = {
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
295 };
296
297 /* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
302 static const intel_limit_t intel_limits_ironlake_dac = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const intel_limit_t intel_limits_ironlake_single_lvds = {
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
339 };
340
341 /* LVDS 100mhz refclk limits. */
342 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
350 .p1 = { .min = 2, .max = 8 },
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
353 };
354
355 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
363 .p1 = { .min = 2, .max = 6 },
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
366 };
367
368 static const intel_limit_t intel_limits_vlv = {
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
376 .vco = { .min = 4000000, .max = 6000000 },
377 .n = { .min = 1, .max = 7 },
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
380 .p1 = { .min = 2, .max = 3 },
381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
382 };
383
384 static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398 };
399
400 static void vlv_clock(int refclk, intel_clock_t *clock)
401 {
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
408 }
409
410 /**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
413 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414 {
415 struct drm_device *dev = crtc->dev;
416 struct intel_encoder *encoder;
417
418 for_each_encoder_on_crtc(dev, crtc, encoder)
419 if (encoder->type == type)
420 return true;
421
422 return false;
423 }
424
425 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426 int refclk)
427 {
428 struct drm_device *dev = crtc->dev;
429 const intel_limit_t *limit;
430
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
432 if (intel_is_dual_link_lvds(dev)) {
433 if (refclk == 100000)
434 limit = &intel_limits_ironlake_dual_lvds_100m;
435 else
436 limit = &intel_limits_ironlake_dual_lvds;
437 } else {
438 if (refclk == 100000)
439 limit = &intel_limits_ironlake_single_lvds_100m;
440 else
441 limit = &intel_limits_ironlake_single_lvds;
442 }
443 } else
444 limit = &intel_limits_ironlake_dac;
445
446 return limit;
447 }
448
449 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450 {
451 struct drm_device *dev = crtc->dev;
452 const intel_limit_t *limit;
453
454 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
455 if (intel_is_dual_link_lvds(dev))
456 limit = &intel_limits_g4x_dual_channel_lvds;
457 else
458 limit = &intel_limits_g4x_single_channel_lvds;
459 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
461 limit = &intel_limits_g4x_hdmi;
462 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
463 limit = &intel_limits_g4x_sdvo;
464 } else /* The option is for other outputs */
465 limit = &intel_limits_i9xx_sdvo;
466
467 return limit;
468 }
469
470 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
471 {
472 struct drm_device *dev = crtc->dev;
473 const intel_limit_t *limit;
474
475 if (HAS_PCH_SPLIT(dev))
476 limit = intel_ironlake_limit(crtc, refclk);
477 else if (IS_G4X(dev)) {
478 limit = intel_g4x_limit(crtc);
479 } else if (IS_PINEVIEW(dev)) {
480 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
481 limit = &intel_limits_pineview_lvds;
482 else
483 limit = &intel_limits_pineview_sdvo;
484 } else if (IS_CHERRYVIEW(dev)) {
485 limit = &intel_limits_chv;
486 } else if (IS_VALLEYVIEW(dev)) {
487 limit = &intel_limits_vlv;
488 } else if (!IS_GEN2(dev)) {
489 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490 limit = &intel_limits_i9xx_lvds;
491 else
492 limit = &intel_limits_i9xx_sdvo;
493 } else {
494 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
495 limit = &intel_limits_i8xx_lvds;
496 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
497 limit = &intel_limits_i8xx_dvo;
498 else
499 limit = &intel_limits_i8xx_dac;
500 }
501 return limit;
502 }
503
504 /* m1 is reserved as 0 in Pineview, n is a ring counter */
505 static void pineview_clock(int refclk, intel_clock_t *clock)
506 {
507 clock->m = clock->m2 + 2;
508 clock->p = clock->p1 * clock->p2;
509 if (WARN_ON(clock->n == 0 || clock->p == 0))
510 return;
511 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
513 }
514
515 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516 {
517 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518 }
519
520 static void i9xx_clock(int refclk, intel_clock_t *clock)
521 {
522 clock->m = i9xx_dpll_compute_m(clock);
523 clock->p = clock->p1 * clock->p2;
524 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525 return;
526 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
528 }
529
530 static void chv_clock(int refclk, intel_clock_t *clock)
531 {
532 clock->m = clock->m1 * clock->m2;
533 clock->p = clock->p1 * clock->p2;
534 if (WARN_ON(clock->n == 0 || clock->p == 0))
535 return;
536 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537 clock->n << 22);
538 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539 }
540
541 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
542 /**
543 * Returns whether the given set of divisors are valid for a given refclk with
544 * the given connectors.
545 */
546
547 static bool intel_PLL_is_valid(struct drm_device *dev,
548 const intel_limit_t *limit,
549 const intel_clock_t *clock)
550 {
551 if (clock->n < limit->n.min || limit->n.max < clock->n)
552 INTELPllInvalid("n out of range\n");
553 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
554 INTELPllInvalid("p1 out of range\n");
555 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
556 INTELPllInvalid("m2 out of range\n");
557 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
558 INTELPllInvalid("m1 out of range\n");
559
560 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561 if (clock->m1 <= clock->m2)
562 INTELPllInvalid("m1 <= m2\n");
563
564 if (!IS_VALLEYVIEW(dev)) {
565 if (clock->p < limit->p.min || limit->p.max < clock->p)
566 INTELPllInvalid("p out of range\n");
567 if (clock->m < limit->m.min || limit->m.max < clock->m)
568 INTELPllInvalid("m out of range\n");
569 }
570
571 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
572 INTELPllInvalid("vco out of range\n");
573 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574 * connector, etc., rather than just a single range.
575 */
576 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
577 INTELPllInvalid("dot out of range\n");
578
579 return true;
580 }
581
582 static bool
583 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
584 int target, int refclk, intel_clock_t *match_clock,
585 intel_clock_t *best_clock)
586 {
587 struct drm_device *dev = crtc->dev;
588 intel_clock_t clock;
589 int err = target;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592 /*
593 * For LVDS just rely on its current settings for dual-channel.
594 * We haven't figured out how to reliably set up different
595 * single/dual channel state, if we even can.
596 */
597 if (intel_is_dual_link_lvds(dev))
598 clock.p2 = limit->p2.p2_fast;
599 else
600 clock.p2 = limit->p2.p2_slow;
601 } else {
602 if (target < limit->p2.dot_limit)
603 clock.p2 = limit->p2.p2_slow;
604 else
605 clock.p2 = limit->p2.p2_fast;
606 }
607
608 memset(best_clock, 0, sizeof(*best_clock));
609
610 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611 clock.m1++) {
612 for (clock.m2 = limit->m2.min;
613 clock.m2 <= limit->m2.max; clock.m2++) {
614 if (clock.m2 >= clock.m1)
615 break;
616 for (clock.n = limit->n.min;
617 clock.n <= limit->n.max; clock.n++) {
618 for (clock.p1 = limit->p1.min;
619 clock.p1 <= limit->p1.max; clock.p1++) {
620 int this_err;
621
622 i9xx_clock(refclk, &clock);
623 if (!intel_PLL_is_valid(dev, limit,
624 &clock))
625 continue;
626 if (match_clock &&
627 clock.p != match_clock->p)
628 continue;
629
630 this_err = abs(clock.dot - target);
631 if (this_err < err) {
632 *best_clock = clock;
633 err = this_err;
634 }
635 }
636 }
637 }
638 }
639
640 return (err != target);
641 }
642
643 static bool
644 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *match_clock,
646 intel_clock_t *best_clock)
647 {
648 struct drm_device *dev = crtc->dev;
649 intel_clock_t clock;
650 int err = target;
651
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 /*
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
657 */
658 if (intel_is_dual_link_lvds(dev))
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
669 memset(best_clock, 0, sizeof(*best_clock));
670
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
675 for (clock.n = limit->n.min;
676 clock.n <= limit->n.max; clock.n++) {
677 for (clock.p1 = limit->p1.min;
678 clock.p1 <= limit->p1.max; clock.p1++) {
679 int this_err;
680
681 pineview_clock(refclk, &clock);
682 if (!intel_PLL_is_valid(dev, limit,
683 &clock))
684 continue;
685 if (match_clock &&
686 clock.p != match_clock->p)
687 continue;
688
689 this_err = abs(clock.dot - target);
690 if (this_err < err) {
691 *best_clock = clock;
692 err = this_err;
693 }
694 }
695 }
696 }
697 }
698
699 return (err != target);
700 }
701
702 static bool
703 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704 int target, int refclk, intel_clock_t *match_clock,
705 intel_clock_t *best_clock)
706 {
707 struct drm_device *dev = crtc->dev;
708 intel_clock_t clock;
709 int max_n;
710 bool found;
711 /* approximately equals target * 0.00585 */
712 int err_most = (target >> 8) + (target >> 9);
713 found = false;
714
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
716 if (intel_is_dual_link_lvds(dev))
717 clock.p2 = limit->p2.p2_fast;
718 else
719 clock.p2 = limit->p2.p2_slow;
720 } else {
721 if (target < limit->p2.dot_limit)
722 clock.p2 = limit->p2.p2_slow;
723 else
724 clock.p2 = limit->p2.p2_fast;
725 }
726
727 memset(best_clock, 0, sizeof(*best_clock));
728 max_n = limit->n.max;
729 /* based on hardware requirement, prefer smaller n to precision */
730 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
731 /* based on hardware requirement, prefere larger m1,m2 */
732 for (clock.m1 = limit->m1.max;
733 clock.m1 >= limit->m1.min; clock.m1--) {
734 for (clock.m2 = limit->m2.max;
735 clock.m2 >= limit->m2.min; clock.m2--) {
736 for (clock.p1 = limit->p1.max;
737 clock.p1 >= limit->p1.min; clock.p1--) {
738 int this_err;
739
740 i9xx_clock(refclk, &clock);
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
743 continue;
744
745 this_err = abs(clock.dot - target);
746 if (this_err < err_most) {
747 *best_clock = clock;
748 err_most = this_err;
749 max_n = clock.n;
750 found = true;
751 }
752 }
753 }
754 }
755 }
756 return found;
757 }
758
759 static bool
760 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761 int target, int refclk, intel_clock_t *match_clock,
762 intel_clock_t *best_clock)
763 {
764 struct drm_device *dev = crtc->dev;
765 intel_clock_t clock;
766 unsigned int bestppm = 1000000;
767 /* min update 19.2 MHz */
768 int max_n = min(limit->n.max, refclk / 19200);
769 bool found = false;
770
771 target *= 5; /* fast clock */
772
773 memset(best_clock, 0, sizeof(*best_clock));
774
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
778 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
779 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
780 clock.p = clock.p1 * clock.p2;
781 /* based on hardware requirement, prefer bigger m1,m2 values */
782 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
783 unsigned int ppm, diff;
784
785 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786 refclk * clock.m1);
787
788 vlv_clock(refclk, &clock);
789
790 if (!intel_PLL_is_valid(dev, limit,
791 &clock))
792 continue;
793
794 diff = abs(clock.dot - target);
795 ppm = div_u64(1000000ULL * diff, target);
796
797 if (ppm < 100 && clock.p > best_clock->p) {
798 bestppm = 0;
799 *best_clock = clock;
800 found = true;
801 }
802
803 if (bestppm >= 10 && ppm < bestppm - 10) {
804 bestppm = ppm;
805 *best_clock = clock;
806 found = true;
807 }
808 }
809 }
810 }
811 }
812
813 return found;
814 }
815
816 static bool
817 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820 {
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
823 uint64_t m2;
824 int found = false;
825
826 memset(best_clock, 0, sizeof(*best_clock));
827
828 /*
829 * Based on hardware doc, the n always set to 1, and m1 always
830 * set to 2. If requires to support 200Mhz refclk, we need to
831 * revisit this because n may not 1 anymore.
832 */
833 clock.n = 1, clock.m1 = 2;
834 target *= 5; /* fast clock */
835
836 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837 for (clock.p2 = limit->p2.p2_fast;
838 clock.p2 >= limit->p2.p2_slow;
839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841 clock.p = clock.p1 * clock.p2;
842
843 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844 clock.n) << 22, refclk * clock.m1);
845
846 if (m2 > INT_MAX/clock.m1)
847 continue;
848
849 clock.m2 = m2;
850
851 chv_clock(refclk, &clock);
852
853 if (!intel_PLL_is_valid(dev, limit, &clock))
854 continue;
855
856 /* based on hardware requirement, prefer bigger p
857 */
858 if (clock.p > best_clock->p) {
859 *best_clock = clock;
860 found = true;
861 }
862 }
863 }
864
865 return found;
866 }
867
868 bool intel_crtc_active(struct drm_crtc *crtc)
869 {
870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872 /* Be paranoid as we can arrive here with only partial
873 * state retrieved from the hardware during setup.
874 *
875 * We can ditch the adjusted_mode.crtc_clock check as soon
876 * as Haswell has gained clock readout/fastboot support.
877 *
878 * We can ditch the crtc->primary->fb check as soon as we can
879 * properly reconstruct framebuffers.
880 */
881 return intel_crtc->active && crtc->primary->fb &&
882 intel_crtc->config.adjusted_mode.crtc_clock;
883 }
884
885 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887 {
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 return intel_crtc->config.cpu_transcoder;
892 }
893
894 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
895 {
896 struct drm_i915_private *dev_priv = dev->dev_private;
897 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902 WARN(1, "vblank wait timed out\n");
903 }
904
905 /**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914 {
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 int pipestat_reg = PIPESTAT(pipe);
917
918 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919 g4x_wait_for_vblank(dev, pipe);
920 return;
921 }
922
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939 /* Wait for vblank interrupt bit to set */
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944 }
945
946 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947 {
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 u32 reg = PIPEDSL(pipe);
950 u32 line1, line2;
951 u32 line_mask;
952
953 if (IS_GEN2(dev))
954 line_mask = DSL_LINEMASK_GEN2;
955 else
956 line_mask = DSL_LINEMASK_GEN3;
957
958 line1 = I915_READ(reg) & line_mask;
959 mdelay(5);
960 line2 = I915_READ(reg) & line_mask;
961
962 return line1 == line2;
963 }
964
965 /*
966 * intel_wait_for_pipe_off - wait for pipe to turn off
967 * @dev: drm device
968 * @pipe: pipe to wait for
969 *
970 * After disabling a pipe, we can't wait for vblank in the usual way,
971 * spinning on the vblank interrupt status bit, since we won't actually
972 * see an interrupt when the pipe is disabled.
973 *
974 * On Gen4 and above:
975 * wait for the pipe register state bit to turn off
976 *
977 * Otherwise:
978 * wait for the display line value to settle (it usually
979 * ends up stopping at the start of the next frame).
980 *
981 */
982 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
983 {
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986 pipe);
987
988 if (INTEL_INFO(dev)->gen >= 4) {
989 int reg = PIPECONF(cpu_transcoder);
990
991 /* Wait for the Pipe State to go off */
992 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993 100))
994 WARN(1, "pipe_off wait timed out\n");
995 } else {
996 /* Wait for the display line to settle */
997 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
998 WARN(1, "pipe_off wait timed out\n");
999 }
1000 }
1001
1002 /*
1003 * ibx_digital_port_connected - is the specified port connected?
1004 * @dev_priv: i915 private structure
1005 * @port: the port to test
1006 *
1007 * Returns true if @port is connected, false otherwise.
1008 */
1009 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010 struct intel_digital_port *port)
1011 {
1012 u32 bit;
1013
1014 if (HAS_PCH_IBX(dev_priv->dev)) {
1015 switch (port->port) {
1016 case PORT_B:
1017 bit = SDE_PORTB_HOTPLUG;
1018 break;
1019 case PORT_C:
1020 bit = SDE_PORTC_HOTPLUG;
1021 break;
1022 case PORT_D:
1023 bit = SDE_PORTD_HOTPLUG;
1024 break;
1025 default:
1026 return true;
1027 }
1028 } else {
1029 switch (port->port) {
1030 case PORT_B:
1031 bit = SDE_PORTB_HOTPLUG_CPT;
1032 break;
1033 case PORT_C:
1034 bit = SDE_PORTC_HOTPLUG_CPT;
1035 break;
1036 case PORT_D:
1037 bit = SDE_PORTD_HOTPLUG_CPT;
1038 break;
1039 default:
1040 return true;
1041 }
1042 }
1043
1044 return I915_READ(SDEISR) & bit;
1045 }
1046
1047 static const char *state_string(bool enabled)
1048 {
1049 return enabled ? "on" : "off";
1050 }
1051
1052 /* Only for pre-ILK configs */
1053 void assert_pll(struct drm_i915_private *dev_priv,
1054 enum pipe pipe, bool state)
1055 {
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DPLL(pipe);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DPLL_VCO_ENABLE);
1063 WARN(cur_state != state,
1064 "PLL state assertion failure (expected %s, current %s)\n",
1065 state_string(state), state_string(cur_state));
1066 }
1067
1068 /* XXX: the dsi pll is shared between MIPI DSI ports */
1069 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070 {
1071 u32 val;
1072 bool cur_state;
1073
1074 mutex_lock(&dev_priv->dpio_lock);
1075 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076 mutex_unlock(&dev_priv->dpio_lock);
1077
1078 cur_state = val & DSI_PLL_VCO_EN;
1079 WARN(cur_state != state,
1080 "DSI PLL state assertion failure (expected %s, current %s)\n",
1081 state_string(state), state_string(cur_state));
1082 }
1083 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
1086 struct intel_shared_dpll *
1087 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088 {
1089 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
1091 if (crtc->config.shared_dpll < 0)
1092 return NULL;
1093
1094 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1095 }
1096
1097 /* For ILK+ */
1098 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099 struct intel_shared_dpll *pll,
1100 bool state)
1101 {
1102 bool cur_state;
1103 struct intel_dpll_hw_state hw_state;
1104
1105 if (WARN (!pll,
1106 "asserting DPLL %s with no DPLL\n", state_string(state)))
1107 return;
1108
1109 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1110 WARN(cur_state != state,
1111 "%s assertion failure (expected %s, current %s)\n",
1112 pll->name, state_string(state), state_string(cur_state));
1113 }
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117 {
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
1123
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160 {
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
1165 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1166 return;
1167
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv->dev))
1170 return;
1171
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 int reg;
1181 u32 val;
1182 bool cur_state;
1183
1184 reg = FDI_RX_CTL(pipe);
1185 val = I915_READ(reg);
1186 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187 WARN(cur_state != state,
1188 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189 state_string(state), state_string(cur_state));
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194 {
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
1198 bool locked = true;
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
1218 pipe_name(pipe));
1219 }
1220
1221 static void assert_cursor(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
1223 {
1224 struct drm_device *dev = dev_priv->dev;
1225 bool cur_state;
1226
1227 if (IS_845G(dev) || IS_I865G(dev))
1228 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1229 else
1230 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1231
1232 WARN(cur_state != state,
1233 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234 pipe_name(pipe), state_string(state), state_string(cur_state));
1235 }
1236 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
1239 void assert_pipe(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 int reg;
1243 u32 val;
1244 bool cur_state;
1245 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246 pipe);
1247
1248 /* if we need the pipe A quirk it must be always on */
1249 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250 state = true;
1251
1252 if (!intel_display_power_enabled(dev_priv,
1253 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1254 cur_state = false;
1255 } else {
1256 reg = PIPECONF(cpu_transcoder);
1257 val = I915_READ(reg);
1258 cur_state = !!(val & PIPECONF_ENABLE);
1259 }
1260
1261 WARN(cur_state != state,
1262 "pipe %c assertion failure (expected %s, current %s)\n",
1263 pipe_name(pipe), state_string(state), state_string(cur_state));
1264 }
1265
1266 static void assert_plane(struct drm_i915_private *dev_priv,
1267 enum plane plane, bool state)
1268 {
1269 int reg;
1270 u32 val;
1271 bool cur_state;
1272
1273 reg = DSPCNTR(plane);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276 WARN(cur_state != state,
1277 "plane %c assertion failure (expected %s, current %s)\n",
1278 plane_name(plane), state_string(state), state_string(cur_state));
1279 }
1280
1281 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
1284 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286 {
1287 struct drm_device *dev = dev_priv->dev;
1288 int reg, i;
1289 u32 val;
1290 int cur_pipe;
1291
1292 /* Primary planes are fixed to pipes on gen4+ */
1293 if (INTEL_INFO(dev)->gen >= 4) {
1294 reg = DSPCNTR(pipe);
1295 val = I915_READ(reg);
1296 WARN(val & DISPLAY_PLANE_ENABLE,
1297 "plane %c assertion failure, should be disabled but not\n",
1298 plane_name(pipe));
1299 return;
1300 }
1301
1302 /* Need to check both planes against the pipe */
1303 for_each_pipe(i) {
1304 reg = DSPCNTR(i);
1305 val = I915_READ(reg);
1306 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307 DISPPLANE_SEL_PIPE_SHIFT;
1308 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1309 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310 plane_name(i), pipe_name(pipe));
1311 }
1312 }
1313
1314 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315 enum pipe pipe)
1316 {
1317 struct drm_device *dev = dev_priv->dev;
1318 int reg, sprite;
1319 u32 val;
1320
1321 if (IS_VALLEYVIEW(dev)) {
1322 for_each_sprite(pipe, sprite) {
1323 reg = SPCNTR(pipe, sprite);
1324 val = I915_READ(reg);
1325 WARN(val & SP_ENABLE,
1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1327 sprite_name(pipe, sprite), pipe_name(pipe));
1328 }
1329 } else if (INTEL_INFO(dev)->gen >= 7) {
1330 reg = SPRCTL(pipe);
1331 val = I915_READ(reg);
1332 WARN(val & SPRITE_ENABLE,
1333 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1334 plane_name(pipe), pipe_name(pipe));
1335 } else if (INTEL_INFO(dev)->gen >= 5) {
1336 reg = DVSCNTR(pipe);
1337 val = I915_READ(reg);
1338 WARN(val & DVS_ENABLE,
1339 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1340 plane_name(pipe), pipe_name(pipe));
1341 }
1342 }
1343
1344 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1345 {
1346 u32 val;
1347 bool enabled;
1348
1349 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1350
1351 val = I915_READ(PCH_DREF_CONTROL);
1352 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353 DREF_SUPERSPREAD_SOURCE_MASK));
1354 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355 }
1356
1357 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
1359 {
1360 int reg;
1361 u32 val;
1362 bool enabled;
1363
1364 reg = PCH_TRANSCONF(pipe);
1365 val = I915_READ(reg);
1366 enabled = !!(val & TRANS_ENABLE);
1367 WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv->dev)) {
1379 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382 return false;
1383 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385 return false;
1386 } else {
1387 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388 return false;
1389 }
1390 return true;
1391 }
1392
1393 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe, u32 val)
1395 {
1396 if ((val & SDVO_ENABLE) == 0)
1397 return false;
1398
1399 if (HAS_PCH_CPT(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1401 return false;
1402 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404 return false;
1405 } else {
1406 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1407 return false;
1408 }
1409 return true;
1410 }
1411
1412 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe, u32 val)
1414 {
1415 if ((val & LVDS_PORT_EN) == 0)
1416 return false;
1417
1418 if (HAS_PCH_CPT(dev_priv->dev)) {
1419 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420 return false;
1421 } else {
1422 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423 return false;
1424 }
1425 return true;
1426 }
1427
1428 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429 enum pipe pipe, u32 val)
1430 {
1431 if ((val & ADPA_DAC_ENABLE) == 0)
1432 return false;
1433 if (HAS_PCH_CPT(dev_priv->dev)) {
1434 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435 return false;
1436 } else {
1437 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438 return false;
1439 }
1440 return true;
1441 }
1442
1443 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1444 enum pipe pipe, int reg, u32 port_sel)
1445 {
1446 u32 val = I915_READ(reg);
1447 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449 reg, pipe_name(pipe));
1450
1451 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
1453 "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, int reg)
1458 {
1459 u32 val = I915_READ(reg);
1460 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462 reg, pipe_name(pipe));
1463
1464 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1465 && (val & SDVO_PIPE_B_SELECT),
1466 "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471 {
1472 int reg;
1473 u32 val;
1474
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1478
1479 reg = PCH_ADPA;
1480 val = I915_READ(reg);
1481 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1482 "PCH VGA enabled on transcoder %c, should be disabled\n",
1483 pipe_name(pipe));
1484
1485 reg = PCH_LVDS;
1486 val = I915_READ(reg);
1487 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1488 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1489 pipe_name(pipe));
1490
1491 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1494 }
1495
1496 static void intel_init_dpio(struct drm_device *dev)
1497 {
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500 if (!IS_VALLEYVIEW(dev))
1501 return;
1502
1503 /*
1504 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505 * CHV x1 PHY (DP/HDMI D)
1506 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507 */
1508 if (IS_CHERRYVIEW(dev)) {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511 } else {
1512 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513 }
1514 }
1515
1516 static void intel_reset_dpio(struct drm_device *dev)
1517 {
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520 if (IS_CHERRYVIEW(dev)) {
1521 enum dpio_phy phy;
1522 u32 val;
1523
1524 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525 /* Poll for phypwrgood signal */
1526 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527 PHY_POWERGOOD(phy), 1))
1528 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530 /*
1531 * Deassert common lane reset for PHY.
1532 *
1533 * This should only be done on init and resume from S3
1534 * with both PLLs disabled, or we risk losing DPIO and
1535 * PLL synchronization.
1536 */
1537 val = I915_READ(DISPLAY_PHY_CONTROL);
1538 I915_WRITE(DISPLAY_PHY_CONTROL,
1539 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540 }
1541 }
1542 }
1543
1544 static void vlv_enable_pll(struct intel_crtc *crtc)
1545 {
1546 struct drm_device *dev = crtc->base.dev;
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 int reg = DPLL(crtc->pipe);
1549 u32 dpll = crtc->config.dpll_hw_state.dpll;
1550
1551 assert_pipe_disabled(dev_priv, crtc->pipe);
1552
1553 /* No really, not for ILK+ */
1554 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1555
1556 /* PLL is protected by panel, make sure we can write it */
1557 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1558 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560 I915_WRITE(reg, dpll);
1561 POSTING_READ(reg);
1562 udelay(150);
1563
1564 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1565 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1566
1567 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1568 POSTING_READ(DPLL_MD(crtc->pipe));
1569
1570 /* We do this three times for luck */
1571 I915_WRITE(reg, dpll);
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
1574 I915_WRITE(reg, dpll);
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577 I915_WRITE(reg, dpll);
1578 POSTING_READ(reg);
1579 udelay(150); /* wait for warmup */
1580 }
1581
1582 static void chv_enable_pll(struct intel_crtc *crtc)
1583 {
1584 struct drm_device *dev = crtc->base.dev;
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 int pipe = crtc->pipe;
1587 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1588 u32 tmp;
1589
1590 assert_pipe_disabled(dev_priv, crtc->pipe);
1591
1592 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1593
1594 mutex_lock(&dev_priv->dpio_lock);
1595
1596 /* Enable back the 10bit clock to display controller */
1597 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1598 tmp |= DPIO_DCLKP_EN;
1599 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1600
1601 /*
1602 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1603 */
1604 udelay(1);
1605
1606 /* Enable PLL */
1607 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1608
1609 /* Check PLL is locked */
1610 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1611 DRM_ERROR("PLL %d failed to lock\n", pipe);
1612
1613 /* not sure when this should be written */
1614 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1615 POSTING_READ(DPLL_MD(pipe));
1616
1617 mutex_unlock(&dev_priv->dpio_lock);
1618 }
1619
1620 static void i9xx_enable_pll(struct intel_crtc *crtc)
1621 {
1622 struct drm_device *dev = crtc->base.dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 int reg = DPLL(crtc->pipe);
1625 u32 dpll = crtc->config.dpll_hw_state.dpll;
1626
1627 assert_pipe_disabled(dev_priv, crtc->pipe);
1628
1629 /* No really, not for ILK+ */
1630 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1631
1632 /* PLL is protected by panel, make sure we can write it */
1633 if (IS_MOBILE(dev) && !IS_I830(dev))
1634 assert_panel_unlocked(dev_priv, crtc->pipe);
1635
1636 I915_WRITE(reg, dpll);
1637
1638 /* Wait for the clocks to stabilize. */
1639 POSTING_READ(reg);
1640 udelay(150);
1641
1642 if (INTEL_INFO(dev)->gen >= 4) {
1643 I915_WRITE(DPLL_MD(crtc->pipe),
1644 crtc->config.dpll_hw_state.dpll_md);
1645 } else {
1646 /* The pixel multiplier can only be updated once the
1647 * DPLL is enabled and the clocks are stable.
1648 *
1649 * So write it again.
1650 */
1651 I915_WRITE(reg, dpll);
1652 }
1653
1654 /* We do this three times for luck */
1655 I915_WRITE(reg, dpll);
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 }
1665
1666 /**
1667 * i9xx_disable_pll - disable a PLL
1668 * @dev_priv: i915 private structure
1669 * @pipe: pipe PLL to disable
1670 *
1671 * Disable the PLL for @pipe, making sure the pipe is off first.
1672 *
1673 * Note! This is for pre-ILK only.
1674 */
1675 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677 /* Don't disable pipe A or pipe A PLLs if needed */
1678 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1679 return;
1680
1681 /* Make sure the pipe isn't still relying on us */
1682 assert_pipe_disabled(dev_priv, pipe);
1683
1684 I915_WRITE(DPLL(pipe), 0);
1685 POSTING_READ(DPLL(pipe));
1686 }
1687
1688 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1689 {
1690 u32 val = 0;
1691
1692 /* Make sure the pipe isn't still relying on us */
1693 assert_pipe_disabled(dev_priv, pipe);
1694
1695 /*
1696 * Leave integrated clock source and reference clock enabled for pipe B.
1697 * The latter is needed for VGA hotplug / manual detection.
1698 */
1699 if (pipe == PIPE_B)
1700 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1701 I915_WRITE(DPLL(pipe), val);
1702 POSTING_READ(DPLL(pipe));
1703
1704 }
1705
1706 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1707 {
1708 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1709 u32 val;
1710
1711 /* Make sure the pipe isn't still relying on us */
1712 assert_pipe_disabled(dev_priv, pipe);
1713
1714 /* Set PLL en = 0 */
1715 val = DPLL_SSC_REF_CLOCK_CHV;
1716 if (pipe != PIPE_A)
1717 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1718 I915_WRITE(DPLL(pipe), val);
1719 POSTING_READ(DPLL(pipe));
1720
1721 mutex_lock(&dev_priv->dpio_lock);
1722
1723 /* Disable 10bit clock to display controller */
1724 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1725 val &= ~DPIO_DCLKP_EN;
1726 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1727
1728 /* disable left/right clock distribution */
1729 if (pipe != PIPE_B) {
1730 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1731 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1732 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1733 } else {
1734 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1735 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1736 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1737 }
1738
1739 mutex_unlock(&dev_priv->dpio_lock);
1740 }
1741
1742 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1743 struct intel_digital_port *dport)
1744 {
1745 u32 port_mask;
1746 int dpll_reg;
1747
1748 switch (dport->port) {
1749 case PORT_B:
1750 port_mask = DPLL_PORTB_READY_MASK;
1751 dpll_reg = DPLL(0);
1752 break;
1753 case PORT_C:
1754 port_mask = DPLL_PORTC_READY_MASK;
1755 dpll_reg = DPLL(0);
1756 break;
1757 case PORT_D:
1758 port_mask = DPLL_PORTD_READY_MASK;
1759 dpll_reg = DPIO_PHY_STATUS;
1760 break;
1761 default:
1762 BUG();
1763 }
1764
1765 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1766 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1767 port_name(dport->port), I915_READ(dpll_reg));
1768 }
1769
1770 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1771 {
1772 struct drm_device *dev = crtc->base.dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776 if (WARN_ON(pll == NULL))
1777 return;
1778
1779 WARN_ON(!pll->refcount);
1780 if (pll->active == 0) {
1781 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1782 WARN_ON(pll->on);
1783 assert_shared_dpll_disabled(dev_priv, pll);
1784
1785 pll->mode_set(dev_priv, pll);
1786 }
1787 }
1788
1789 /**
1790 * intel_enable_shared_dpll - enable PCH PLL
1791 * @dev_priv: i915 private structure
1792 * @pipe: pipe PLL to enable
1793 *
1794 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1795 * drives the transcoder clock.
1796 */
1797 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1798 {
1799 struct drm_device *dev = crtc->base.dev;
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1802
1803 if (WARN_ON(pll == NULL))
1804 return;
1805
1806 if (WARN_ON(pll->refcount == 0))
1807 return;
1808
1809 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1810 pll->name, pll->active, pll->on,
1811 crtc->base.base.id);
1812
1813 if (pll->active++) {
1814 WARN_ON(!pll->on);
1815 assert_shared_dpll_enabled(dev_priv, pll);
1816 return;
1817 }
1818 WARN_ON(pll->on);
1819
1820 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1821
1822 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1823 pll->enable(dev_priv, pll);
1824 pll->on = true;
1825 }
1826
1827 void intel_disable_shared_dpll(struct intel_crtc *crtc)
1828 {
1829 struct drm_device *dev = crtc->base.dev;
1830 struct drm_i915_private *dev_priv = dev->dev_private;
1831 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1832
1833 /* PCH only available on ILK+ */
1834 BUG_ON(INTEL_INFO(dev)->gen < 5);
1835 if (WARN_ON(pll == NULL))
1836 return;
1837
1838 if (WARN_ON(pll->refcount == 0))
1839 return;
1840
1841 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1842 pll->name, pll->active, pll->on,
1843 crtc->base.base.id);
1844
1845 if (WARN_ON(pll->active == 0)) {
1846 assert_shared_dpll_disabled(dev_priv, pll);
1847 return;
1848 }
1849
1850 assert_shared_dpll_enabled(dev_priv, pll);
1851 WARN_ON(!pll->on);
1852 if (--pll->active)
1853 return;
1854
1855 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1856 pll->disable(dev_priv, pll);
1857 pll->on = false;
1858
1859 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1860 }
1861
1862 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1863 enum pipe pipe)
1864 {
1865 struct drm_device *dev = dev_priv->dev;
1866 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1868 uint32_t reg, val, pipeconf_val;
1869
1870 /* PCH only available on ILK+ */
1871 BUG_ON(INTEL_INFO(dev)->gen < 5);
1872
1873 /* Make sure PCH DPLL is enabled */
1874 assert_shared_dpll_enabled(dev_priv,
1875 intel_crtc_to_shared_dpll(intel_crtc));
1876
1877 /* FDI must be feeding us bits for PCH ports */
1878 assert_fdi_tx_enabled(dev_priv, pipe);
1879 assert_fdi_rx_enabled(dev_priv, pipe);
1880
1881 if (HAS_PCH_CPT(dev)) {
1882 /* Workaround: Set the timing override bit before enabling the
1883 * pch transcoder. */
1884 reg = TRANS_CHICKEN2(pipe);
1885 val = I915_READ(reg);
1886 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1887 I915_WRITE(reg, val);
1888 }
1889
1890 reg = PCH_TRANSCONF(pipe);
1891 val = I915_READ(reg);
1892 pipeconf_val = I915_READ(PIPECONF(pipe));
1893
1894 if (HAS_PCH_IBX(dev_priv->dev)) {
1895 /*
1896 * make the BPC in transcoder be consistent with
1897 * that in pipeconf reg.
1898 */
1899 val &= ~PIPECONF_BPC_MASK;
1900 val |= pipeconf_val & PIPECONF_BPC_MASK;
1901 }
1902
1903 val &= ~TRANS_INTERLACE_MASK;
1904 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1905 if (HAS_PCH_IBX(dev_priv->dev) &&
1906 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1907 val |= TRANS_LEGACY_INTERLACED_ILK;
1908 else
1909 val |= TRANS_INTERLACED;
1910 else
1911 val |= TRANS_PROGRESSIVE;
1912
1913 I915_WRITE(reg, val | TRANS_ENABLE);
1914 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1915 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1916 }
1917
1918 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1919 enum transcoder cpu_transcoder)
1920 {
1921 u32 val, pipeconf_val;
1922
1923 /* PCH only available on ILK+ */
1924 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1925
1926 /* FDI must be feeding us bits for PCH ports */
1927 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1928 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1929
1930 /* Workaround: set timing override bit. */
1931 val = I915_READ(_TRANSA_CHICKEN2);
1932 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1933 I915_WRITE(_TRANSA_CHICKEN2, val);
1934
1935 val = TRANS_ENABLE;
1936 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1937
1938 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1939 PIPECONF_INTERLACED_ILK)
1940 val |= TRANS_INTERLACED;
1941 else
1942 val |= TRANS_PROGRESSIVE;
1943
1944 I915_WRITE(LPT_TRANSCONF, val);
1945 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1946 DRM_ERROR("Failed to enable PCH transcoder\n");
1947 }
1948
1949 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1950 enum pipe pipe)
1951 {
1952 struct drm_device *dev = dev_priv->dev;
1953 uint32_t reg, val;
1954
1955 /* FDI relies on the transcoder */
1956 assert_fdi_tx_disabled(dev_priv, pipe);
1957 assert_fdi_rx_disabled(dev_priv, pipe);
1958
1959 /* Ports must be off as well */
1960 assert_pch_ports_disabled(dev_priv, pipe);
1961
1962 reg = PCH_TRANSCONF(pipe);
1963 val = I915_READ(reg);
1964 val &= ~TRANS_ENABLE;
1965 I915_WRITE(reg, val);
1966 /* wait for PCH transcoder off, transcoder state */
1967 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1968 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1969
1970 if (!HAS_PCH_IBX(dev)) {
1971 /* Workaround: Clear the timing override chicken bit again. */
1972 reg = TRANS_CHICKEN2(pipe);
1973 val = I915_READ(reg);
1974 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1975 I915_WRITE(reg, val);
1976 }
1977 }
1978
1979 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1980 {
1981 u32 val;
1982
1983 val = I915_READ(LPT_TRANSCONF);
1984 val &= ~TRANS_ENABLE;
1985 I915_WRITE(LPT_TRANSCONF, val);
1986 /* wait for PCH transcoder off, transcoder state */
1987 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1988 DRM_ERROR("Failed to disable PCH transcoder\n");
1989
1990 /* Workaround: clear timing override bit. */
1991 val = I915_READ(_TRANSA_CHICKEN2);
1992 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1993 I915_WRITE(_TRANSA_CHICKEN2, val);
1994 }
1995
1996 /**
1997 * intel_enable_pipe - enable a pipe, asserting requirements
1998 * @crtc: crtc responsible for the pipe
1999 *
2000 * Enable @crtc's pipe, making sure that various hardware specific requirements
2001 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2002 */
2003 static void intel_enable_pipe(struct intel_crtc *crtc)
2004 {
2005 struct drm_device *dev = crtc->base.dev;
2006 struct drm_i915_private *dev_priv = dev->dev_private;
2007 enum pipe pipe = crtc->pipe;
2008 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2009 pipe);
2010 enum pipe pch_transcoder;
2011 int reg;
2012 u32 val;
2013
2014 assert_planes_disabled(dev_priv, pipe);
2015 assert_cursor_disabled(dev_priv, pipe);
2016 assert_sprites_disabled(dev_priv, pipe);
2017
2018 if (HAS_PCH_LPT(dev_priv->dev))
2019 pch_transcoder = TRANSCODER_A;
2020 else
2021 pch_transcoder = pipe;
2022
2023 /*
2024 * A pipe without a PLL won't actually be able to drive bits from
2025 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2026 * need the check.
2027 */
2028 if (!HAS_PCH_SPLIT(dev_priv->dev))
2029 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2030 assert_dsi_pll_enabled(dev_priv);
2031 else
2032 assert_pll_enabled(dev_priv, pipe);
2033 else {
2034 if (crtc->config.has_pch_encoder) {
2035 /* if driving the PCH, we need FDI enabled */
2036 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2037 assert_fdi_tx_pll_enabled(dev_priv,
2038 (enum pipe) cpu_transcoder);
2039 }
2040 /* FIXME: assert CPU port conditions for SNB+ */
2041 }
2042
2043 reg = PIPECONF(cpu_transcoder);
2044 val = I915_READ(reg);
2045 if (val & PIPECONF_ENABLE) {
2046 WARN_ON(!(pipe == PIPE_A &&
2047 dev_priv->quirks & QUIRK_PIPEA_FORCE));
2048 return;
2049 }
2050
2051 I915_WRITE(reg, val | PIPECONF_ENABLE);
2052 POSTING_READ(reg);
2053 }
2054
2055 /**
2056 * intel_disable_pipe - disable a pipe, asserting requirements
2057 * @dev_priv: i915 private structure
2058 * @pipe: pipe to disable
2059 *
2060 * Disable @pipe, making sure that various hardware specific requirements
2061 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2062 *
2063 * @pipe should be %PIPE_A or %PIPE_B.
2064 *
2065 * Will wait until the pipe has shut down before returning.
2066 */
2067 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2068 enum pipe pipe)
2069 {
2070 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2071 pipe);
2072 int reg;
2073 u32 val;
2074
2075 /*
2076 * Make sure planes won't keep trying to pump pixels to us,
2077 * or we might hang the display.
2078 */
2079 assert_planes_disabled(dev_priv, pipe);
2080 assert_cursor_disabled(dev_priv, pipe);
2081 assert_sprites_disabled(dev_priv, pipe);
2082
2083 /* Don't disable pipe A or pipe A PLLs if needed */
2084 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2085 return;
2086
2087 reg = PIPECONF(cpu_transcoder);
2088 val = I915_READ(reg);
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
2092 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2093 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2094 }
2095
2096 /*
2097 * Plane regs are double buffered, going from enabled->disabled needs a
2098 * trigger in order to latch. The display address reg provides this.
2099 */
2100 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2101 enum plane plane)
2102 {
2103 struct drm_device *dev = dev_priv->dev;
2104 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2105
2106 I915_WRITE(reg, I915_READ(reg));
2107 POSTING_READ(reg);
2108 }
2109
2110 /**
2111 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2112 * @dev_priv: i915 private structure
2113 * @plane: plane to enable
2114 * @pipe: pipe being fed
2115 *
2116 * Enable @plane on @pipe, making sure that @pipe is running first.
2117 */
2118 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2119 enum plane plane, enum pipe pipe)
2120 {
2121 struct drm_device *dev = dev_priv->dev;
2122 struct intel_crtc *intel_crtc =
2123 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2124 int reg;
2125 u32 val;
2126
2127 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2128 assert_pipe_enabled(dev_priv, pipe);
2129
2130 if (intel_crtc->primary_enabled)
2131 return;
2132
2133 intel_crtc->primary_enabled = true;
2134
2135 reg = DSPCNTR(plane);
2136 val = I915_READ(reg);
2137 WARN_ON(val & DISPLAY_PLANE_ENABLE);
2138
2139 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2140 intel_flush_primary_plane(dev_priv, plane);
2141
2142 /*
2143 * BDW signals flip done immediately if the plane
2144 * is disabled, even if the plane enable is already
2145 * armed to occur at the next vblank :(
2146 */
2147 if (IS_BROADWELL(dev))
2148 intel_wait_for_vblank(dev, intel_crtc->pipe);
2149 }
2150
2151 /**
2152 * intel_disable_primary_hw_plane - disable the primary hardware plane
2153 * @dev_priv: i915 private structure
2154 * @plane: plane to disable
2155 * @pipe: pipe consuming the data
2156 *
2157 * Disable @plane; should be an independent operation.
2158 */
2159 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2160 enum plane plane, enum pipe pipe)
2161 {
2162 struct intel_crtc *intel_crtc =
2163 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2164 int reg;
2165 u32 val;
2166
2167 if (!intel_crtc->primary_enabled)
2168 return;
2169
2170 intel_crtc->primary_enabled = false;
2171
2172 reg = DSPCNTR(plane);
2173 val = I915_READ(reg);
2174 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2175
2176 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2177 intel_flush_primary_plane(dev_priv, plane);
2178 }
2179
2180 static bool need_vtd_wa(struct drm_device *dev)
2181 {
2182 #ifdef CONFIG_INTEL_IOMMU
2183 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2184 return true;
2185 #endif
2186 return false;
2187 }
2188
2189 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2190 {
2191 int tile_height;
2192
2193 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2194 return ALIGN(height, tile_height);
2195 }
2196
2197 int
2198 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2199 struct drm_i915_gem_object *obj,
2200 struct intel_engine_cs *pipelined)
2201 {
2202 struct drm_i915_private *dev_priv = dev->dev_private;
2203 u32 alignment;
2204 int ret;
2205
2206 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2207
2208 switch (obj->tiling_mode) {
2209 case I915_TILING_NONE:
2210 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2211 alignment = 128 * 1024;
2212 else if (INTEL_INFO(dev)->gen >= 4)
2213 alignment = 4 * 1024;
2214 else
2215 alignment = 64 * 1024;
2216 break;
2217 case I915_TILING_X:
2218 /* pin() will align the object as required by fence */
2219 alignment = 0;
2220 break;
2221 case I915_TILING_Y:
2222 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2223 return -EINVAL;
2224 default:
2225 BUG();
2226 }
2227
2228 /* Note that the w/a also requires 64 PTE of padding following the
2229 * bo. We currently fill all unused PTE with the shadow page and so
2230 * we should always have valid PTE following the scanout preventing
2231 * the VT-d warning.
2232 */
2233 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2234 alignment = 256 * 1024;
2235
2236 /*
2237 * Global gtt pte registers are special registers which actually forward
2238 * writes to a chunk of system memory. Which means that there is no risk
2239 * that the register values disappear as soon as we call
2240 * intel_runtime_pm_put(), so it is correct to wrap only the
2241 * pin/unpin/fence and not more.
2242 */
2243 intel_runtime_pm_get(dev_priv);
2244
2245 dev_priv->mm.interruptible = false;
2246 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2247 if (ret)
2248 goto err_interruptible;
2249
2250 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2251 * fence, whereas 965+ only requires a fence if using
2252 * framebuffer compression. For simplicity, we always install
2253 * a fence as the cost is not that onerous.
2254 */
2255 ret = i915_gem_object_get_fence(obj);
2256 if (ret)
2257 goto err_unpin;
2258
2259 i915_gem_object_pin_fence(obj);
2260
2261 dev_priv->mm.interruptible = true;
2262 intel_runtime_pm_put(dev_priv);
2263 return 0;
2264
2265 err_unpin:
2266 i915_gem_object_unpin_from_display_plane(obj);
2267 err_interruptible:
2268 dev_priv->mm.interruptible = true;
2269 intel_runtime_pm_put(dev_priv);
2270 return ret;
2271 }
2272
2273 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2274 {
2275 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2276
2277 i915_gem_object_unpin_fence(obj);
2278 i915_gem_object_unpin_from_display_plane(obj);
2279 }
2280
2281 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2282 * is assumed to be a power-of-two. */
2283 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2284 unsigned int tiling_mode,
2285 unsigned int cpp,
2286 unsigned int pitch)
2287 {
2288 if (tiling_mode != I915_TILING_NONE) {
2289 unsigned int tile_rows, tiles;
2290
2291 tile_rows = *y / 8;
2292 *y %= 8;
2293
2294 tiles = *x / (512/cpp);
2295 *x %= 512/cpp;
2296
2297 return tile_rows * pitch * 8 + tiles * 4096;
2298 } else {
2299 unsigned int offset;
2300
2301 offset = *y * pitch + *x * cpp;
2302 *y = 0;
2303 *x = (offset & 4095) / cpp;
2304 return offset & -4096;
2305 }
2306 }
2307
2308 int intel_format_to_fourcc(int format)
2309 {
2310 switch (format) {
2311 case DISPPLANE_8BPP:
2312 return DRM_FORMAT_C8;
2313 case DISPPLANE_BGRX555:
2314 return DRM_FORMAT_XRGB1555;
2315 case DISPPLANE_BGRX565:
2316 return DRM_FORMAT_RGB565;
2317 default:
2318 case DISPPLANE_BGRX888:
2319 return DRM_FORMAT_XRGB8888;
2320 case DISPPLANE_RGBX888:
2321 return DRM_FORMAT_XBGR8888;
2322 case DISPPLANE_BGRX101010:
2323 return DRM_FORMAT_XRGB2101010;
2324 case DISPPLANE_RGBX101010:
2325 return DRM_FORMAT_XBGR2101010;
2326 }
2327 }
2328
2329 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2330 struct intel_plane_config *plane_config)
2331 {
2332 struct drm_device *dev = crtc->base.dev;
2333 struct drm_i915_gem_object *obj = NULL;
2334 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2335 u32 base = plane_config->base;
2336
2337 if (plane_config->size == 0)
2338 return false;
2339
2340 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2341 plane_config->size);
2342 if (!obj)
2343 return false;
2344
2345 if (plane_config->tiled) {
2346 obj->tiling_mode = I915_TILING_X;
2347 obj->stride = crtc->base.primary->fb->pitches[0];
2348 }
2349
2350 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2351 mode_cmd.width = crtc->base.primary->fb->width;
2352 mode_cmd.height = crtc->base.primary->fb->height;
2353 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2354
2355 mutex_lock(&dev->struct_mutex);
2356
2357 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2358 &mode_cmd, obj)) {
2359 DRM_DEBUG_KMS("intel fb init failed\n");
2360 goto out_unref_obj;
2361 }
2362
2363 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2364 mutex_unlock(&dev->struct_mutex);
2365
2366 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2367 return true;
2368
2369 out_unref_obj:
2370 drm_gem_object_unreference(&obj->base);
2371 mutex_unlock(&dev->struct_mutex);
2372 return false;
2373 }
2374
2375 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2376 struct intel_plane_config *plane_config)
2377 {
2378 struct drm_device *dev = intel_crtc->base.dev;
2379 struct drm_crtc *c;
2380 struct intel_crtc *i;
2381 struct drm_i915_gem_object *obj;
2382
2383 if (!intel_crtc->base.primary->fb)
2384 return;
2385
2386 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2387 return;
2388
2389 kfree(intel_crtc->base.primary->fb);
2390 intel_crtc->base.primary->fb = NULL;
2391
2392 /*
2393 * Failed to alloc the obj, check to see if we should share
2394 * an fb with another CRTC instead
2395 */
2396 for_each_crtc(dev, c) {
2397 i = to_intel_crtc(c);
2398
2399 if (c == &intel_crtc->base)
2400 continue;
2401
2402 if (!i->active)
2403 continue;
2404
2405 obj = intel_fb_obj(c->primary->fb);
2406 if (obj == NULL)
2407 continue;
2408
2409 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2410 drm_framebuffer_reference(c->primary->fb);
2411 intel_crtc->base.primary->fb = c->primary->fb;
2412 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2413 break;
2414 }
2415 }
2416 }
2417
2418 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2419 struct drm_framebuffer *fb,
2420 int x, int y)
2421 {
2422 struct drm_device *dev = crtc->dev;
2423 struct drm_i915_private *dev_priv = dev->dev_private;
2424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2425 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2426 int plane = intel_crtc->plane;
2427 unsigned long linear_offset;
2428 u32 dspcntr;
2429 u32 reg;
2430
2431 reg = DSPCNTR(plane);
2432 dspcntr = I915_READ(reg);
2433 /* Mask out pixel format bits in case we change it */
2434 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2435 switch (fb->pixel_format) {
2436 case DRM_FORMAT_C8:
2437 dspcntr |= DISPPLANE_8BPP;
2438 break;
2439 case DRM_FORMAT_XRGB1555:
2440 case DRM_FORMAT_ARGB1555:
2441 dspcntr |= DISPPLANE_BGRX555;
2442 break;
2443 case DRM_FORMAT_RGB565:
2444 dspcntr |= DISPPLANE_BGRX565;
2445 break;
2446 case DRM_FORMAT_XRGB8888:
2447 case DRM_FORMAT_ARGB8888:
2448 dspcntr |= DISPPLANE_BGRX888;
2449 break;
2450 case DRM_FORMAT_XBGR8888:
2451 case DRM_FORMAT_ABGR8888:
2452 dspcntr |= DISPPLANE_RGBX888;
2453 break;
2454 case DRM_FORMAT_XRGB2101010:
2455 case DRM_FORMAT_ARGB2101010:
2456 dspcntr |= DISPPLANE_BGRX101010;
2457 break;
2458 case DRM_FORMAT_XBGR2101010:
2459 case DRM_FORMAT_ABGR2101010:
2460 dspcntr |= DISPPLANE_RGBX101010;
2461 break;
2462 default:
2463 BUG();
2464 }
2465
2466 if (INTEL_INFO(dev)->gen >= 4) {
2467 if (obj->tiling_mode != I915_TILING_NONE)
2468 dspcntr |= DISPPLANE_TILED;
2469 else
2470 dspcntr &= ~DISPPLANE_TILED;
2471 }
2472
2473 if (IS_G4X(dev))
2474 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2475
2476 I915_WRITE(reg, dspcntr);
2477
2478 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2479
2480 if (INTEL_INFO(dev)->gen >= 4) {
2481 intel_crtc->dspaddr_offset =
2482 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2483 fb->bits_per_pixel / 8,
2484 fb->pitches[0]);
2485 linear_offset -= intel_crtc->dspaddr_offset;
2486 } else {
2487 intel_crtc->dspaddr_offset = linear_offset;
2488 }
2489
2490 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2491 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2492 fb->pitches[0]);
2493 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2494 if (INTEL_INFO(dev)->gen >= 4) {
2495 I915_WRITE(DSPSURF(plane),
2496 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2497 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2498 I915_WRITE(DSPLINOFF(plane), linear_offset);
2499 } else
2500 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2501 POSTING_READ(reg);
2502 }
2503
2504 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2505 struct drm_framebuffer *fb,
2506 int x, int y)
2507 {
2508 struct drm_device *dev = crtc->dev;
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2512 int plane = intel_crtc->plane;
2513 unsigned long linear_offset;
2514 u32 dspcntr;
2515 u32 reg;
2516
2517 reg = DSPCNTR(plane);
2518 dspcntr = I915_READ(reg);
2519 /* Mask out pixel format bits in case we change it */
2520 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2521 switch (fb->pixel_format) {
2522 case DRM_FORMAT_C8:
2523 dspcntr |= DISPPLANE_8BPP;
2524 break;
2525 case DRM_FORMAT_RGB565:
2526 dspcntr |= DISPPLANE_BGRX565;
2527 break;
2528 case DRM_FORMAT_XRGB8888:
2529 case DRM_FORMAT_ARGB8888:
2530 dspcntr |= DISPPLANE_BGRX888;
2531 break;
2532 case DRM_FORMAT_XBGR8888:
2533 case DRM_FORMAT_ABGR8888:
2534 dspcntr |= DISPPLANE_RGBX888;
2535 break;
2536 case DRM_FORMAT_XRGB2101010:
2537 case DRM_FORMAT_ARGB2101010:
2538 dspcntr |= DISPPLANE_BGRX101010;
2539 break;
2540 case DRM_FORMAT_XBGR2101010:
2541 case DRM_FORMAT_ABGR2101010:
2542 dspcntr |= DISPPLANE_RGBX101010;
2543 break;
2544 default:
2545 BUG();
2546 }
2547
2548 if (obj->tiling_mode != I915_TILING_NONE)
2549 dspcntr |= DISPPLANE_TILED;
2550 else
2551 dspcntr &= ~DISPPLANE_TILED;
2552
2553 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2554 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2555 else
2556 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2557
2558 I915_WRITE(reg, dspcntr);
2559
2560 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2561 intel_crtc->dspaddr_offset =
2562 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2563 fb->bits_per_pixel / 8,
2564 fb->pitches[0]);
2565 linear_offset -= intel_crtc->dspaddr_offset;
2566
2567 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2568 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2569 fb->pitches[0]);
2570 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2571 I915_WRITE(DSPSURF(plane),
2572 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2573 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2574 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2575 } else {
2576 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2577 I915_WRITE(DSPLINOFF(plane), linear_offset);
2578 }
2579 POSTING_READ(reg);
2580 }
2581
2582 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2583 static int
2584 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2585 int x, int y, enum mode_set_atomic state)
2586 {
2587 struct drm_device *dev = crtc->dev;
2588 struct drm_i915_private *dev_priv = dev->dev_private;
2589
2590 if (dev_priv->display.disable_fbc)
2591 dev_priv->display.disable_fbc(dev);
2592 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2593
2594 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2595
2596 return 0;
2597 }
2598
2599 void intel_display_handle_reset(struct drm_device *dev)
2600 {
2601 struct drm_i915_private *dev_priv = dev->dev_private;
2602 struct drm_crtc *crtc;
2603
2604 /*
2605 * Flips in the rings have been nuked by the reset,
2606 * so complete all pending flips so that user space
2607 * will get its events and not get stuck.
2608 *
2609 * Also update the base address of all primary
2610 * planes to the the last fb to make sure we're
2611 * showing the correct fb after a reset.
2612 *
2613 * Need to make two loops over the crtcs so that we
2614 * don't try to grab a crtc mutex before the
2615 * pending_flip_queue really got woken up.
2616 */
2617
2618 for_each_crtc(dev, crtc) {
2619 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2620 enum plane plane = intel_crtc->plane;
2621
2622 intel_prepare_page_flip(dev, plane);
2623 intel_finish_page_flip_plane(dev, plane);
2624 }
2625
2626 for_each_crtc(dev, crtc) {
2627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2628
2629 drm_modeset_lock(&crtc->mutex, NULL);
2630 /*
2631 * FIXME: Once we have proper support for primary planes (and
2632 * disabling them without disabling the entire crtc) allow again
2633 * a NULL crtc->primary->fb.
2634 */
2635 if (intel_crtc->active && crtc->primary->fb)
2636 dev_priv->display.update_primary_plane(crtc,
2637 crtc->primary->fb,
2638 crtc->x,
2639 crtc->y);
2640 drm_modeset_unlock(&crtc->mutex);
2641 }
2642 }
2643
2644 static int
2645 intel_finish_fb(struct drm_framebuffer *old_fb)
2646 {
2647 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2648 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649 bool was_interruptible = dev_priv->mm.interruptible;
2650 int ret;
2651
2652 /* Big Hammer, we also need to ensure that any pending
2653 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2654 * current scanout is retired before unpinning the old
2655 * framebuffer.
2656 *
2657 * This should only fail upon a hung GPU, in which case we
2658 * can safely continue.
2659 */
2660 dev_priv->mm.interruptible = false;
2661 ret = i915_gem_object_finish_gpu(obj);
2662 dev_priv->mm.interruptible = was_interruptible;
2663
2664 return ret;
2665 }
2666
2667 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2668 {
2669 struct drm_device *dev = crtc->dev;
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2672 unsigned long flags;
2673 bool pending;
2674
2675 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2676 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2677 return false;
2678
2679 spin_lock_irqsave(&dev->event_lock, flags);
2680 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2681 spin_unlock_irqrestore(&dev->event_lock, flags);
2682
2683 return pending;
2684 }
2685
2686 static int
2687 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2688 struct drm_framebuffer *fb)
2689 {
2690 struct drm_device *dev = crtc->dev;
2691 struct drm_i915_private *dev_priv = dev->dev_private;
2692 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2693 enum pipe pipe = intel_crtc->pipe;
2694 struct drm_framebuffer *old_fb = crtc->primary->fb;
2695 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2696 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2697 int ret;
2698
2699 if (intel_crtc_has_pending_flip(crtc)) {
2700 DRM_ERROR("pipe is still busy with an old pageflip\n");
2701 return -EBUSY;
2702 }
2703
2704 /* no fb bound */
2705 if (!fb) {
2706 DRM_ERROR("No FB bound\n");
2707 return 0;
2708 }
2709
2710 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2711 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2712 plane_name(intel_crtc->plane),
2713 INTEL_INFO(dev)->num_pipes);
2714 return -EINVAL;
2715 }
2716
2717 mutex_lock(&dev->struct_mutex);
2718 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2719 if (ret == 0)
2720 i915_gem_track_fb(old_obj, obj,
2721 INTEL_FRONTBUFFER_PRIMARY(pipe));
2722 mutex_unlock(&dev->struct_mutex);
2723 if (ret != 0) {
2724 DRM_ERROR("pin & fence failed\n");
2725 return ret;
2726 }
2727
2728 /*
2729 * Update pipe size and adjust fitter if needed: the reason for this is
2730 * that in compute_mode_changes we check the native mode (not the pfit
2731 * mode) to see if we can flip rather than do a full mode set. In the
2732 * fastboot case, we'll flip, but if we don't update the pipesrc and
2733 * pfit state, we'll end up with a big fb scanned out into the wrong
2734 * sized surface.
2735 *
2736 * To fix this properly, we need to hoist the checks up into
2737 * compute_mode_changes (or above), check the actual pfit state and
2738 * whether the platform allows pfit disable with pipe active, and only
2739 * then update the pipesrc and pfit state, even on the flip path.
2740 */
2741 if (i915.fastboot) {
2742 const struct drm_display_mode *adjusted_mode =
2743 &intel_crtc->config.adjusted_mode;
2744
2745 I915_WRITE(PIPESRC(intel_crtc->pipe),
2746 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2747 (adjusted_mode->crtc_vdisplay - 1));
2748 if (!intel_crtc->config.pch_pfit.enabled &&
2749 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2750 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2751 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2752 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2753 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2754 }
2755 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2756 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2757 }
2758
2759 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2760
2761 if (intel_crtc->active)
2762 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2763
2764 crtc->primary->fb = fb;
2765 crtc->x = x;
2766 crtc->y = y;
2767
2768 if (old_fb) {
2769 if (intel_crtc->active && old_fb != fb)
2770 intel_wait_for_vblank(dev, intel_crtc->pipe);
2771 mutex_lock(&dev->struct_mutex);
2772 intel_unpin_fb_obj(old_obj);
2773 mutex_unlock(&dev->struct_mutex);
2774 }
2775
2776 mutex_lock(&dev->struct_mutex);
2777 intel_update_fbc(dev);
2778 mutex_unlock(&dev->struct_mutex);
2779
2780 return 0;
2781 }
2782
2783 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2784 {
2785 struct drm_device *dev = crtc->dev;
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788 int pipe = intel_crtc->pipe;
2789 u32 reg, temp;
2790
2791 /* enable normal train */
2792 reg = FDI_TX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 if (IS_IVYBRIDGE(dev)) {
2795 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2796 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2797 } else {
2798 temp &= ~FDI_LINK_TRAIN_NONE;
2799 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2800 }
2801 I915_WRITE(reg, temp);
2802
2803 reg = FDI_RX_CTL(pipe);
2804 temp = I915_READ(reg);
2805 if (HAS_PCH_CPT(dev)) {
2806 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2807 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2808 } else {
2809 temp &= ~FDI_LINK_TRAIN_NONE;
2810 temp |= FDI_LINK_TRAIN_NONE;
2811 }
2812 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2813
2814 /* wait one idle pattern time */
2815 POSTING_READ(reg);
2816 udelay(1000);
2817
2818 /* IVB wants error correction enabled */
2819 if (IS_IVYBRIDGE(dev))
2820 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2821 FDI_FE_ERRC_ENABLE);
2822 }
2823
2824 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2825 {
2826 return crtc->base.enabled && crtc->active &&
2827 crtc->config.has_pch_encoder;
2828 }
2829
2830 static void ivb_modeset_global_resources(struct drm_device *dev)
2831 {
2832 struct drm_i915_private *dev_priv = dev->dev_private;
2833 struct intel_crtc *pipe_B_crtc =
2834 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2835 struct intel_crtc *pipe_C_crtc =
2836 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2837 uint32_t temp;
2838
2839 /*
2840 * When everything is off disable fdi C so that we could enable fdi B
2841 * with all lanes. Note that we don't care about enabled pipes without
2842 * an enabled pch encoder.
2843 */
2844 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2845 !pipe_has_enabled_pch(pipe_C_crtc)) {
2846 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2847 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2848
2849 temp = I915_READ(SOUTH_CHICKEN1);
2850 temp &= ~FDI_BC_BIFURCATION_SELECT;
2851 DRM_DEBUG_KMS("disabling fdi C rx\n");
2852 I915_WRITE(SOUTH_CHICKEN1, temp);
2853 }
2854 }
2855
2856 /* The FDI link training functions for ILK/Ibexpeak. */
2857 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2858 {
2859 struct drm_device *dev = crtc->dev;
2860 struct drm_i915_private *dev_priv = dev->dev_private;
2861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2862 int pipe = intel_crtc->pipe;
2863 u32 reg, temp, tries;
2864
2865 /* FDI needs bits from pipe first */
2866 assert_pipe_enabled(dev_priv, pipe);
2867
2868 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2869 for train result */
2870 reg = FDI_RX_IMR(pipe);
2871 temp = I915_READ(reg);
2872 temp &= ~FDI_RX_SYMBOL_LOCK;
2873 temp &= ~FDI_RX_BIT_LOCK;
2874 I915_WRITE(reg, temp);
2875 I915_READ(reg);
2876 udelay(150);
2877
2878 /* enable CPU FDI TX and PCH FDI RX */
2879 reg = FDI_TX_CTL(pipe);
2880 temp = I915_READ(reg);
2881 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2882 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2883 temp &= ~FDI_LINK_TRAIN_NONE;
2884 temp |= FDI_LINK_TRAIN_PATTERN_1;
2885 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2886
2887 reg = FDI_RX_CTL(pipe);
2888 temp = I915_READ(reg);
2889 temp &= ~FDI_LINK_TRAIN_NONE;
2890 temp |= FDI_LINK_TRAIN_PATTERN_1;
2891 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2892
2893 POSTING_READ(reg);
2894 udelay(150);
2895
2896 /* Ironlake workaround, enable clock pointer after FDI enable*/
2897 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2898 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2899 FDI_RX_PHASE_SYNC_POINTER_EN);
2900
2901 reg = FDI_RX_IIR(pipe);
2902 for (tries = 0; tries < 5; tries++) {
2903 temp = I915_READ(reg);
2904 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2905
2906 if ((temp & FDI_RX_BIT_LOCK)) {
2907 DRM_DEBUG_KMS("FDI train 1 done.\n");
2908 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2909 break;
2910 }
2911 }
2912 if (tries == 5)
2913 DRM_ERROR("FDI train 1 fail!\n");
2914
2915 /* Train 2 */
2916 reg = FDI_TX_CTL(pipe);
2917 temp = I915_READ(reg);
2918 temp &= ~FDI_LINK_TRAIN_NONE;
2919 temp |= FDI_LINK_TRAIN_PATTERN_2;
2920 I915_WRITE(reg, temp);
2921
2922 reg = FDI_RX_CTL(pipe);
2923 temp = I915_READ(reg);
2924 temp &= ~FDI_LINK_TRAIN_NONE;
2925 temp |= FDI_LINK_TRAIN_PATTERN_2;
2926 I915_WRITE(reg, temp);
2927
2928 POSTING_READ(reg);
2929 udelay(150);
2930
2931 reg = FDI_RX_IIR(pipe);
2932 for (tries = 0; tries < 5; tries++) {
2933 temp = I915_READ(reg);
2934 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2935
2936 if (temp & FDI_RX_SYMBOL_LOCK) {
2937 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2938 DRM_DEBUG_KMS("FDI train 2 done.\n");
2939 break;
2940 }
2941 }
2942 if (tries == 5)
2943 DRM_ERROR("FDI train 2 fail!\n");
2944
2945 DRM_DEBUG_KMS("FDI train done\n");
2946
2947 }
2948
2949 static const int snb_b_fdi_train_param[] = {
2950 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2951 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2952 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2953 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2954 };
2955
2956 /* The FDI link training functions for SNB/Cougarpoint. */
2957 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2958 {
2959 struct drm_device *dev = crtc->dev;
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962 int pipe = intel_crtc->pipe;
2963 u32 reg, temp, i, retry;
2964
2965 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2966 for train result */
2967 reg = FDI_RX_IMR(pipe);
2968 temp = I915_READ(reg);
2969 temp &= ~FDI_RX_SYMBOL_LOCK;
2970 temp &= ~FDI_RX_BIT_LOCK;
2971 I915_WRITE(reg, temp);
2972
2973 POSTING_READ(reg);
2974 udelay(150);
2975
2976 /* enable CPU FDI TX and PCH FDI RX */
2977 reg = FDI_TX_CTL(pipe);
2978 temp = I915_READ(reg);
2979 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2980 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2981 temp &= ~FDI_LINK_TRAIN_NONE;
2982 temp |= FDI_LINK_TRAIN_PATTERN_1;
2983 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2984 /* SNB-B */
2985 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2986 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2987
2988 I915_WRITE(FDI_RX_MISC(pipe),
2989 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2990
2991 reg = FDI_RX_CTL(pipe);
2992 temp = I915_READ(reg);
2993 if (HAS_PCH_CPT(dev)) {
2994 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2995 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2996 } else {
2997 temp &= ~FDI_LINK_TRAIN_NONE;
2998 temp |= FDI_LINK_TRAIN_PATTERN_1;
2999 }
3000 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3001
3002 POSTING_READ(reg);
3003 udelay(150);
3004
3005 for (i = 0; i < 4; i++) {
3006 reg = FDI_TX_CTL(pipe);
3007 temp = I915_READ(reg);
3008 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3009 temp |= snb_b_fdi_train_param[i];
3010 I915_WRITE(reg, temp);
3011
3012 POSTING_READ(reg);
3013 udelay(500);
3014
3015 for (retry = 0; retry < 5; retry++) {
3016 reg = FDI_RX_IIR(pipe);
3017 temp = I915_READ(reg);
3018 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3019 if (temp & FDI_RX_BIT_LOCK) {
3020 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3021 DRM_DEBUG_KMS("FDI train 1 done.\n");
3022 break;
3023 }
3024 udelay(50);
3025 }
3026 if (retry < 5)
3027 break;
3028 }
3029 if (i == 4)
3030 DRM_ERROR("FDI train 1 fail!\n");
3031
3032 /* Train 2 */
3033 reg = FDI_TX_CTL(pipe);
3034 temp = I915_READ(reg);
3035 temp &= ~FDI_LINK_TRAIN_NONE;
3036 temp |= FDI_LINK_TRAIN_PATTERN_2;
3037 if (IS_GEN6(dev)) {
3038 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3039 /* SNB-B */
3040 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3041 }
3042 I915_WRITE(reg, temp);
3043
3044 reg = FDI_RX_CTL(pipe);
3045 temp = I915_READ(reg);
3046 if (HAS_PCH_CPT(dev)) {
3047 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3048 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3049 } else {
3050 temp &= ~FDI_LINK_TRAIN_NONE;
3051 temp |= FDI_LINK_TRAIN_PATTERN_2;
3052 }
3053 I915_WRITE(reg, temp);
3054
3055 POSTING_READ(reg);
3056 udelay(150);
3057
3058 for (i = 0; i < 4; i++) {
3059 reg = FDI_TX_CTL(pipe);
3060 temp = I915_READ(reg);
3061 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3062 temp |= snb_b_fdi_train_param[i];
3063 I915_WRITE(reg, temp);
3064
3065 POSTING_READ(reg);
3066 udelay(500);
3067
3068 for (retry = 0; retry < 5; retry++) {
3069 reg = FDI_RX_IIR(pipe);
3070 temp = I915_READ(reg);
3071 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3072 if (temp & FDI_RX_SYMBOL_LOCK) {
3073 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3074 DRM_DEBUG_KMS("FDI train 2 done.\n");
3075 break;
3076 }
3077 udelay(50);
3078 }
3079 if (retry < 5)
3080 break;
3081 }
3082 if (i == 4)
3083 DRM_ERROR("FDI train 2 fail!\n");
3084
3085 DRM_DEBUG_KMS("FDI train done.\n");
3086 }
3087
3088 /* Manual link training for Ivy Bridge A0 parts */
3089 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3090 {
3091 struct drm_device *dev = crtc->dev;
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094 int pipe = intel_crtc->pipe;
3095 u32 reg, temp, i, j;
3096
3097 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3098 for train result */
3099 reg = FDI_RX_IMR(pipe);
3100 temp = I915_READ(reg);
3101 temp &= ~FDI_RX_SYMBOL_LOCK;
3102 temp &= ~FDI_RX_BIT_LOCK;
3103 I915_WRITE(reg, temp);
3104
3105 POSTING_READ(reg);
3106 udelay(150);
3107
3108 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3109 I915_READ(FDI_RX_IIR(pipe)));
3110
3111 /* Try each vswing and preemphasis setting twice before moving on */
3112 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3113 /* disable first in case we need to retry */
3114 reg = FDI_TX_CTL(pipe);
3115 temp = I915_READ(reg);
3116 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3117 temp &= ~FDI_TX_ENABLE;
3118 I915_WRITE(reg, temp);
3119
3120 reg = FDI_RX_CTL(pipe);
3121 temp = I915_READ(reg);
3122 temp &= ~FDI_LINK_TRAIN_AUTO;
3123 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3124 temp &= ~FDI_RX_ENABLE;
3125 I915_WRITE(reg, temp);
3126
3127 /* enable CPU FDI TX and PCH FDI RX */
3128 reg = FDI_TX_CTL(pipe);
3129 temp = I915_READ(reg);
3130 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3131 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3132 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3133 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3134 temp |= snb_b_fdi_train_param[j/2];
3135 temp |= FDI_COMPOSITE_SYNC;
3136 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3137
3138 I915_WRITE(FDI_RX_MISC(pipe),
3139 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3140
3141 reg = FDI_RX_CTL(pipe);
3142 temp = I915_READ(reg);
3143 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3144 temp |= FDI_COMPOSITE_SYNC;
3145 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3146
3147 POSTING_READ(reg);
3148 udelay(1); /* should be 0.5us */
3149
3150 for (i = 0; i < 4; i++) {
3151 reg = FDI_RX_IIR(pipe);
3152 temp = I915_READ(reg);
3153 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3154
3155 if (temp & FDI_RX_BIT_LOCK ||
3156 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3157 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3158 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3159 i);
3160 break;
3161 }
3162 udelay(1); /* should be 0.5us */
3163 }
3164 if (i == 4) {
3165 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3166 continue;
3167 }
3168
3169 /* Train 2 */
3170 reg = FDI_TX_CTL(pipe);
3171 temp = I915_READ(reg);
3172 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3173 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3174 I915_WRITE(reg, temp);
3175
3176 reg = FDI_RX_CTL(pipe);
3177 temp = I915_READ(reg);
3178 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3179 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3180 I915_WRITE(reg, temp);
3181
3182 POSTING_READ(reg);
3183 udelay(2); /* should be 1.5us */
3184
3185 for (i = 0; i < 4; i++) {
3186 reg = FDI_RX_IIR(pipe);
3187 temp = I915_READ(reg);
3188 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3189
3190 if (temp & FDI_RX_SYMBOL_LOCK ||
3191 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3192 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3193 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3194 i);
3195 goto train_done;
3196 }
3197 udelay(2); /* should be 1.5us */
3198 }
3199 if (i == 4)
3200 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3201 }
3202
3203 train_done:
3204 DRM_DEBUG_KMS("FDI train done.\n");
3205 }
3206
3207 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3208 {
3209 struct drm_device *dev = intel_crtc->base.dev;
3210 struct drm_i915_private *dev_priv = dev->dev_private;
3211 int pipe = intel_crtc->pipe;
3212 u32 reg, temp;
3213
3214
3215 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3216 reg = FDI_RX_CTL(pipe);
3217 temp = I915_READ(reg);
3218 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3219 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3220 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3221 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3222
3223 POSTING_READ(reg);
3224 udelay(200);
3225
3226 /* Switch from Rawclk to PCDclk */
3227 temp = I915_READ(reg);
3228 I915_WRITE(reg, temp | FDI_PCDCLK);
3229
3230 POSTING_READ(reg);
3231 udelay(200);
3232
3233 /* Enable CPU FDI TX PLL, always on for Ironlake */
3234 reg = FDI_TX_CTL(pipe);
3235 temp = I915_READ(reg);
3236 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3237 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3238
3239 POSTING_READ(reg);
3240 udelay(100);
3241 }
3242 }
3243
3244 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3245 {
3246 struct drm_device *dev = intel_crtc->base.dev;
3247 struct drm_i915_private *dev_priv = dev->dev_private;
3248 int pipe = intel_crtc->pipe;
3249 u32 reg, temp;
3250
3251 /* Switch from PCDclk to Rawclk */
3252 reg = FDI_RX_CTL(pipe);
3253 temp = I915_READ(reg);
3254 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3255
3256 /* Disable CPU FDI TX PLL */
3257 reg = FDI_TX_CTL(pipe);
3258 temp = I915_READ(reg);
3259 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3260
3261 POSTING_READ(reg);
3262 udelay(100);
3263
3264 reg = FDI_RX_CTL(pipe);
3265 temp = I915_READ(reg);
3266 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3267
3268 /* Wait for the clocks to turn off. */
3269 POSTING_READ(reg);
3270 udelay(100);
3271 }
3272
3273 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3274 {
3275 struct drm_device *dev = crtc->dev;
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3278 int pipe = intel_crtc->pipe;
3279 u32 reg, temp;
3280
3281 /* disable CPU FDI tx and PCH FDI rx */
3282 reg = FDI_TX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3285 POSTING_READ(reg);
3286
3287 reg = FDI_RX_CTL(pipe);
3288 temp = I915_READ(reg);
3289 temp &= ~(0x7 << 16);
3290 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3291 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3292
3293 POSTING_READ(reg);
3294 udelay(100);
3295
3296 /* Ironlake workaround, disable clock pointer after downing FDI */
3297 if (HAS_PCH_IBX(dev))
3298 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3299
3300 /* still set train pattern 1 */
3301 reg = FDI_TX_CTL(pipe);
3302 temp = I915_READ(reg);
3303 temp &= ~FDI_LINK_TRAIN_NONE;
3304 temp |= FDI_LINK_TRAIN_PATTERN_1;
3305 I915_WRITE(reg, temp);
3306
3307 reg = FDI_RX_CTL(pipe);
3308 temp = I915_READ(reg);
3309 if (HAS_PCH_CPT(dev)) {
3310 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3311 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3312 } else {
3313 temp &= ~FDI_LINK_TRAIN_NONE;
3314 temp |= FDI_LINK_TRAIN_PATTERN_1;
3315 }
3316 /* BPC in FDI rx is consistent with that in PIPECONF */
3317 temp &= ~(0x07 << 16);
3318 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3319 I915_WRITE(reg, temp);
3320
3321 POSTING_READ(reg);
3322 udelay(100);
3323 }
3324
3325 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3326 {
3327 struct intel_crtc *crtc;
3328
3329 /* Note that we don't need to be called with mode_config.lock here
3330 * as our list of CRTC objects is static for the lifetime of the
3331 * device and so cannot disappear as we iterate. Similarly, we can
3332 * happily treat the predicates as racy, atomic checks as userspace
3333 * cannot claim and pin a new fb without at least acquring the
3334 * struct_mutex and so serialising with us.
3335 */
3336 for_each_intel_crtc(dev, crtc) {
3337 if (atomic_read(&crtc->unpin_work_count) == 0)
3338 continue;
3339
3340 if (crtc->unpin_work)
3341 intel_wait_for_vblank(dev, crtc->pipe);
3342
3343 return true;
3344 }
3345
3346 return false;
3347 }
3348
3349 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3350 {
3351 struct drm_device *dev = crtc->dev;
3352 struct drm_i915_private *dev_priv = dev->dev_private;
3353
3354 if (crtc->primary->fb == NULL)
3355 return;
3356
3357 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3358
3359 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3360 !intel_crtc_has_pending_flip(crtc),
3361 60*HZ) == 0);
3362
3363 mutex_lock(&dev->struct_mutex);
3364 intel_finish_fb(crtc->primary->fb);
3365 mutex_unlock(&dev->struct_mutex);
3366 }
3367
3368 /* Program iCLKIP clock to the desired frequency */
3369 static void lpt_program_iclkip(struct drm_crtc *crtc)
3370 {
3371 struct drm_device *dev = crtc->dev;
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3374 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3375 u32 temp;
3376
3377 mutex_lock(&dev_priv->dpio_lock);
3378
3379 /* It is necessary to ungate the pixclk gate prior to programming
3380 * the divisors, and gate it back when it is done.
3381 */
3382 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3383
3384 /* Disable SSCCTL */
3385 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3386 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3387 SBI_SSCCTL_DISABLE,
3388 SBI_ICLK);
3389
3390 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3391 if (clock == 20000) {
3392 auxdiv = 1;
3393 divsel = 0x41;
3394 phaseinc = 0x20;
3395 } else {
3396 /* The iCLK virtual clock root frequency is in MHz,
3397 * but the adjusted_mode->crtc_clock in in KHz. To get the
3398 * divisors, it is necessary to divide one by another, so we
3399 * convert the virtual clock precision to KHz here for higher
3400 * precision.
3401 */
3402 u32 iclk_virtual_root_freq = 172800 * 1000;
3403 u32 iclk_pi_range = 64;
3404 u32 desired_divisor, msb_divisor_value, pi_value;
3405
3406 desired_divisor = (iclk_virtual_root_freq / clock);
3407 msb_divisor_value = desired_divisor / iclk_pi_range;
3408 pi_value = desired_divisor % iclk_pi_range;
3409
3410 auxdiv = 0;
3411 divsel = msb_divisor_value - 2;
3412 phaseinc = pi_value;
3413 }
3414
3415 /* This should not happen with any sane values */
3416 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3417 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3418 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3419 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3420
3421 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3422 clock,
3423 auxdiv,
3424 divsel,
3425 phasedir,
3426 phaseinc);
3427
3428 /* Program SSCDIVINTPHASE6 */
3429 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3430 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3431 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3432 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3433 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3434 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3435 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3436 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3437
3438 /* Program SSCAUXDIV */
3439 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3440 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3441 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3442 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3443
3444 /* Enable modulator and associated divider */
3445 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3446 temp &= ~SBI_SSCCTL_DISABLE;
3447 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3448
3449 /* Wait for initialization time */
3450 udelay(24);
3451
3452 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3453
3454 mutex_unlock(&dev_priv->dpio_lock);
3455 }
3456
3457 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3458 enum pipe pch_transcoder)
3459 {
3460 struct drm_device *dev = crtc->base.dev;
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3463
3464 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3465 I915_READ(HTOTAL(cpu_transcoder)));
3466 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3467 I915_READ(HBLANK(cpu_transcoder)));
3468 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3469 I915_READ(HSYNC(cpu_transcoder)));
3470
3471 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3472 I915_READ(VTOTAL(cpu_transcoder)));
3473 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3474 I915_READ(VBLANK(cpu_transcoder)));
3475 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3476 I915_READ(VSYNC(cpu_transcoder)));
3477 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3478 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3479 }
3480
3481 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3482 {
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484 uint32_t temp;
3485
3486 temp = I915_READ(SOUTH_CHICKEN1);
3487 if (temp & FDI_BC_BIFURCATION_SELECT)
3488 return;
3489
3490 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3491 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3492
3493 temp |= FDI_BC_BIFURCATION_SELECT;
3494 DRM_DEBUG_KMS("enabling fdi C rx\n");
3495 I915_WRITE(SOUTH_CHICKEN1, temp);
3496 POSTING_READ(SOUTH_CHICKEN1);
3497 }
3498
3499 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3500 {
3501 struct drm_device *dev = intel_crtc->base.dev;
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503
3504 switch (intel_crtc->pipe) {
3505 case PIPE_A:
3506 break;
3507 case PIPE_B:
3508 if (intel_crtc->config.fdi_lanes > 2)
3509 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3510 else
3511 cpt_enable_fdi_bc_bifurcation(dev);
3512
3513 break;
3514 case PIPE_C:
3515 cpt_enable_fdi_bc_bifurcation(dev);
3516
3517 break;
3518 default:
3519 BUG();
3520 }
3521 }
3522
3523 /*
3524 * Enable PCH resources required for PCH ports:
3525 * - PCH PLLs
3526 * - FDI training & RX/TX
3527 * - update transcoder timings
3528 * - DP transcoding bits
3529 * - transcoder
3530 */
3531 static void ironlake_pch_enable(struct drm_crtc *crtc)
3532 {
3533 struct drm_device *dev = crtc->dev;
3534 struct drm_i915_private *dev_priv = dev->dev_private;
3535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3536 int pipe = intel_crtc->pipe;
3537 u32 reg, temp;
3538
3539 assert_pch_transcoder_disabled(dev_priv, pipe);
3540
3541 if (IS_IVYBRIDGE(dev))
3542 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3543
3544 /* Write the TU size bits before fdi link training, so that error
3545 * detection works. */
3546 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3547 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3548
3549 /* For PCH output, training FDI link */
3550 dev_priv->display.fdi_link_train(crtc);
3551
3552 /* We need to program the right clock selection before writing the pixel
3553 * mutliplier into the DPLL. */
3554 if (HAS_PCH_CPT(dev)) {
3555 u32 sel;
3556
3557 temp = I915_READ(PCH_DPLL_SEL);
3558 temp |= TRANS_DPLL_ENABLE(pipe);
3559 sel = TRANS_DPLLB_SEL(pipe);
3560 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3561 temp |= sel;
3562 else
3563 temp &= ~sel;
3564 I915_WRITE(PCH_DPLL_SEL, temp);
3565 }
3566
3567 /* XXX: pch pll's can be enabled any time before we enable the PCH
3568 * transcoder, and we actually should do this to not upset any PCH
3569 * transcoder that already use the clock when we share it.
3570 *
3571 * Note that enable_shared_dpll tries to do the right thing, but
3572 * get_shared_dpll unconditionally resets the pll - we need that to have
3573 * the right LVDS enable sequence. */
3574 intel_enable_shared_dpll(intel_crtc);
3575
3576 /* set transcoder timing, panel must allow it */
3577 assert_panel_unlocked(dev_priv, pipe);
3578 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3579
3580 intel_fdi_normal_train(crtc);
3581
3582 /* For PCH DP, enable TRANS_DP_CTL */
3583 if (HAS_PCH_CPT(dev) &&
3584 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3585 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3586 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3587 reg = TRANS_DP_CTL(pipe);
3588 temp = I915_READ(reg);
3589 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3590 TRANS_DP_SYNC_MASK |
3591 TRANS_DP_BPC_MASK);
3592 temp |= (TRANS_DP_OUTPUT_ENABLE |
3593 TRANS_DP_ENH_FRAMING);
3594 temp |= bpc << 9; /* same format but at 11:9 */
3595
3596 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3597 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3598 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3599 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3600
3601 switch (intel_trans_dp_port_sel(crtc)) {
3602 case PCH_DP_B:
3603 temp |= TRANS_DP_PORT_SEL_B;
3604 break;
3605 case PCH_DP_C:
3606 temp |= TRANS_DP_PORT_SEL_C;
3607 break;
3608 case PCH_DP_D:
3609 temp |= TRANS_DP_PORT_SEL_D;
3610 break;
3611 default:
3612 BUG();
3613 }
3614
3615 I915_WRITE(reg, temp);
3616 }
3617
3618 ironlake_enable_pch_transcoder(dev_priv, pipe);
3619 }
3620
3621 static void lpt_pch_enable(struct drm_crtc *crtc)
3622 {
3623 struct drm_device *dev = crtc->dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3626 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3627
3628 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3629
3630 lpt_program_iclkip(crtc);
3631
3632 /* Set transcoder timing. */
3633 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3634
3635 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3636 }
3637
3638 void intel_put_shared_dpll(struct intel_crtc *crtc)
3639 {
3640 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3641
3642 if (pll == NULL)
3643 return;
3644
3645 if (pll->refcount == 0) {
3646 WARN(1, "bad %s refcount\n", pll->name);
3647 return;
3648 }
3649
3650 if (--pll->refcount == 0) {
3651 WARN_ON(pll->on);
3652 WARN_ON(pll->active);
3653 }
3654
3655 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3656 }
3657
3658 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3659 {
3660 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3661 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3662 enum intel_dpll_id i;
3663
3664 if (pll) {
3665 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3666 crtc->base.base.id, pll->name);
3667 intel_put_shared_dpll(crtc);
3668 }
3669
3670 if (HAS_PCH_IBX(dev_priv->dev)) {
3671 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3672 i = (enum intel_dpll_id) crtc->pipe;
3673 pll = &dev_priv->shared_dplls[i];
3674
3675 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3676 crtc->base.base.id, pll->name);
3677
3678 WARN_ON(pll->refcount);
3679
3680 goto found;
3681 }
3682
3683 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3684 pll = &dev_priv->shared_dplls[i];
3685
3686 /* Only want to check enabled timings first */
3687 if (pll->refcount == 0)
3688 continue;
3689
3690 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3691 sizeof(pll->hw_state)) == 0) {
3692 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3693 crtc->base.base.id,
3694 pll->name, pll->refcount, pll->active);
3695
3696 goto found;
3697 }
3698 }
3699
3700 /* Ok no matching timings, maybe there's a free one? */
3701 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3702 pll = &dev_priv->shared_dplls[i];
3703 if (pll->refcount == 0) {
3704 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3705 crtc->base.base.id, pll->name);
3706 goto found;
3707 }
3708 }
3709
3710 return NULL;
3711
3712 found:
3713 if (pll->refcount == 0)
3714 pll->hw_state = crtc->config.dpll_hw_state;
3715
3716 crtc->config.shared_dpll = i;
3717 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3718 pipe_name(crtc->pipe));
3719
3720 pll->refcount++;
3721
3722 return pll;
3723 }
3724
3725 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3726 {
3727 struct drm_i915_private *dev_priv = dev->dev_private;
3728 int dslreg = PIPEDSL(pipe);
3729 u32 temp;
3730
3731 temp = I915_READ(dslreg);
3732 udelay(500);
3733 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3734 if (wait_for(I915_READ(dslreg) != temp, 5))
3735 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3736 }
3737 }
3738
3739 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3740 {
3741 struct drm_device *dev = crtc->base.dev;
3742 struct drm_i915_private *dev_priv = dev->dev_private;
3743 int pipe = crtc->pipe;
3744
3745 if (crtc->config.pch_pfit.enabled) {
3746 /* Force use of hard-coded filter coefficients
3747 * as some pre-programmed values are broken,
3748 * e.g. x201.
3749 */
3750 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3751 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3752 PF_PIPE_SEL_IVB(pipe));
3753 else
3754 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3755 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3756 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3757 }
3758 }
3759
3760 static void intel_enable_planes(struct drm_crtc *crtc)
3761 {
3762 struct drm_device *dev = crtc->dev;
3763 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3764 struct drm_plane *plane;
3765 struct intel_plane *intel_plane;
3766
3767 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3768 intel_plane = to_intel_plane(plane);
3769 if (intel_plane->pipe == pipe)
3770 intel_plane_restore(&intel_plane->base);
3771 }
3772 }
3773
3774 static void intel_disable_planes(struct drm_crtc *crtc)
3775 {
3776 struct drm_device *dev = crtc->dev;
3777 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3778 struct drm_plane *plane;
3779 struct intel_plane *intel_plane;
3780
3781 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3782 intel_plane = to_intel_plane(plane);
3783 if (intel_plane->pipe == pipe)
3784 intel_plane_disable(&intel_plane->base);
3785 }
3786 }
3787
3788 void hsw_enable_ips(struct intel_crtc *crtc)
3789 {
3790 struct drm_device *dev = crtc->base.dev;
3791 struct drm_i915_private *dev_priv = dev->dev_private;
3792
3793 if (!crtc->config.ips_enabled)
3794 return;
3795
3796 /* We can only enable IPS after we enable a plane and wait for a vblank */
3797 intel_wait_for_vblank(dev, crtc->pipe);
3798
3799 assert_plane_enabled(dev_priv, crtc->plane);
3800 if (IS_BROADWELL(dev)) {
3801 mutex_lock(&dev_priv->rps.hw_lock);
3802 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3803 mutex_unlock(&dev_priv->rps.hw_lock);
3804 /* Quoting Art Runyan: "its not safe to expect any particular
3805 * value in IPS_CTL bit 31 after enabling IPS through the
3806 * mailbox." Moreover, the mailbox may return a bogus state,
3807 * so we need to just enable it and continue on.
3808 */
3809 } else {
3810 I915_WRITE(IPS_CTL, IPS_ENABLE);
3811 /* The bit only becomes 1 in the next vblank, so this wait here
3812 * is essentially intel_wait_for_vblank. If we don't have this
3813 * and don't wait for vblanks until the end of crtc_enable, then
3814 * the HW state readout code will complain that the expected
3815 * IPS_CTL value is not the one we read. */
3816 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3817 DRM_ERROR("Timed out waiting for IPS enable\n");
3818 }
3819 }
3820
3821 void hsw_disable_ips(struct intel_crtc *crtc)
3822 {
3823 struct drm_device *dev = crtc->base.dev;
3824 struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826 if (!crtc->config.ips_enabled)
3827 return;
3828
3829 assert_plane_enabled(dev_priv, crtc->plane);
3830 if (IS_BROADWELL(dev)) {
3831 mutex_lock(&dev_priv->rps.hw_lock);
3832 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3833 mutex_unlock(&dev_priv->rps.hw_lock);
3834 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3835 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3836 DRM_ERROR("Timed out waiting for IPS disable\n");
3837 } else {
3838 I915_WRITE(IPS_CTL, 0);
3839 POSTING_READ(IPS_CTL);
3840 }
3841
3842 /* We need to wait for a vblank before we can disable the plane. */
3843 intel_wait_for_vblank(dev, crtc->pipe);
3844 }
3845
3846 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3847 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3848 {
3849 struct drm_device *dev = crtc->dev;
3850 struct drm_i915_private *dev_priv = dev->dev_private;
3851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852 enum pipe pipe = intel_crtc->pipe;
3853 int palreg = PALETTE(pipe);
3854 int i;
3855 bool reenable_ips = false;
3856
3857 /* The clocks have to be on to load the palette. */
3858 if (!crtc->enabled || !intel_crtc->active)
3859 return;
3860
3861 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3862 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3863 assert_dsi_pll_enabled(dev_priv);
3864 else
3865 assert_pll_enabled(dev_priv, pipe);
3866 }
3867
3868 /* use legacy palette for Ironlake */
3869 if (!HAS_GMCH_DISPLAY(dev))
3870 palreg = LGC_PALETTE(pipe);
3871
3872 /* Workaround : Do not read or write the pipe palette/gamma data while
3873 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3874 */
3875 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3876 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3877 GAMMA_MODE_MODE_SPLIT)) {
3878 hsw_disable_ips(intel_crtc);
3879 reenable_ips = true;
3880 }
3881
3882 for (i = 0; i < 256; i++) {
3883 I915_WRITE(palreg + 4 * i,
3884 (intel_crtc->lut_r[i] << 16) |
3885 (intel_crtc->lut_g[i] << 8) |
3886 intel_crtc->lut_b[i]);
3887 }
3888
3889 if (reenable_ips)
3890 hsw_enable_ips(intel_crtc);
3891 }
3892
3893 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3894 {
3895 if (!enable && intel_crtc->overlay) {
3896 struct drm_device *dev = intel_crtc->base.dev;
3897 struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899 mutex_lock(&dev->struct_mutex);
3900 dev_priv->mm.interruptible = false;
3901 (void) intel_overlay_switch_off(intel_crtc->overlay);
3902 dev_priv->mm.interruptible = true;
3903 mutex_unlock(&dev->struct_mutex);
3904 }
3905
3906 /* Let userspace switch the overlay on again. In most cases userspace
3907 * has to recompute where to put it anyway.
3908 */
3909 }
3910
3911 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3912 {
3913 struct drm_device *dev = crtc->dev;
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3916 int pipe = intel_crtc->pipe;
3917 int plane = intel_crtc->plane;
3918
3919 drm_vblank_on(dev, pipe);
3920
3921 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3922 intel_enable_planes(crtc);
3923 intel_crtc_update_cursor(crtc, true);
3924 intel_crtc_dpms_overlay(intel_crtc, true);
3925
3926 hsw_enable_ips(intel_crtc);
3927
3928 mutex_lock(&dev->struct_mutex);
3929 intel_update_fbc(dev);
3930 mutex_unlock(&dev->struct_mutex);
3931
3932 /*
3933 * FIXME: Once we grow proper nuclear flip support out of this we need
3934 * to compute the mask of flip planes precisely. For the time being
3935 * consider this a flip from a NULL plane.
3936 */
3937 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3938 }
3939
3940 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3941 {
3942 struct drm_device *dev = crtc->dev;
3943 struct drm_i915_private *dev_priv = dev->dev_private;
3944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3945 int pipe = intel_crtc->pipe;
3946 int plane = intel_crtc->plane;
3947
3948 intel_crtc_wait_for_pending_flips(crtc);
3949
3950 if (dev_priv->fbc.plane == plane)
3951 intel_disable_fbc(dev);
3952
3953 hsw_disable_ips(intel_crtc);
3954
3955 intel_crtc_dpms_overlay(intel_crtc, false);
3956 intel_crtc_update_cursor(crtc, false);
3957 intel_disable_planes(crtc);
3958 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3959
3960 /*
3961 * FIXME: Once we grow proper nuclear flip support out of this we need
3962 * to compute the mask of flip planes precisely. For the time being
3963 * consider this a flip to a NULL plane.
3964 */
3965 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3966
3967 drm_vblank_off(dev, pipe);
3968 }
3969
3970 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3971 {
3972 struct drm_device *dev = crtc->dev;
3973 struct drm_i915_private *dev_priv = dev->dev_private;
3974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3975 struct intel_encoder *encoder;
3976 int pipe = intel_crtc->pipe;
3977 enum plane plane = intel_crtc->plane;
3978
3979 WARN_ON(!crtc->enabled);
3980
3981 if (intel_crtc->active)
3982 return;
3983
3984 if (intel_crtc->config.has_pch_encoder)
3985 intel_prepare_shared_dpll(intel_crtc);
3986
3987 if (intel_crtc->config.has_dp_encoder)
3988 intel_dp_set_m_n(intel_crtc);
3989
3990 intel_set_pipe_timings(intel_crtc);
3991
3992 if (intel_crtc->config.has_pch_encoder) {
3993 intel_cpu_transcoder_set_m_n(intel_crtc,
3994 &intel_crtc->config.fdi_m_n);
3995 }
3996
3997 ironlake_set_pipeconf(crtc);
3998
3999 /* Set up the display plane register */
4000 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
4001 POSTING_READ(DSPCNTR(plane));
4002
4003 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4004 crtc->x, crtc->y);
4005
4006 intel_crtc->active = true;
4007
4008 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4009 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4010
4011 for_each_encoder_on_crtc(dev, crtc, encoder)
4012 if (encoder->pre_enable)
4013 encoder->pre_enable(encoder);
4014
4015 if (intel_crtc->config.has_pch_encoder) {
4016 /* Note: FDI PLL enabling _must_ be done before we enable the
4017 * cpu pipes, hence this is separate from all the other fdi/pch
4018 * enabling. */
4019 ironlake_fdi_pll_enable(intel_crtc);
4020 } else {
4021 assert_fdi_tx_disabled(dev_priv, pipe);
4022 assert_fdi_rx_disabled(dev_priv, pipe);
4023 }
4024
4025 ironlake_pfit_enable(intel_crtc);
4026
4027 /*
4028 * On ILK+ LUT must be loaded before the pipe is running but with
4029 * clocks enabled
4030 */
4031 intel_crtc_load_lut(crtc);
4032
4033 intel_update_watermarks(crtc);
4034 intel_enable_pipe(intel_crtc);
4035
4036 if (intel_crtc->config.has_pch_encoder)
4037 ironlake_pch_enable(crtc);
4038
4039 for_each_encoder_on_crtc(dev, crtc, encoder)
4040 encoder->enable(encoder);
4041
4042 if (HAS_PCH_CPT(dev))
4043 cpt_verify_modeset(dev, intel_crtc->pipe);
4044
4045 intel_crtc_enable_planes(crtc);
4046 }
4047
4048 /* IPS only exists on ULT machines and is tied to pipe A. */
4049 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4050 {
4051 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4052 }
4053
4054 /*
4055 * This implements the workaround described in the "notes" section of the mode
4056 * set sequence documentation. When going from no pipes or single pipe to
4057 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4058 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4059 */
4060 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4061 {
4062 struct drm_device *dev = crtc->base.dev;
4063 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4064
4065 /* We want to get the other_active_crtc only if there's only 1 other
4066 * active crtc. */
4067 for_each_intel_crtc(dev, crtc_it) {
4068 if (!crtc_it->active || crtc_it == crtc)
4069 continue;
4070
4071 if (other_active_crtc)
4072 return;
4073
4074 other_active_crtc = crtc_it;
4075 }
4076 if (!other_active_crtc)
4077 return;
4078
4079 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4080 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4081 }
4082
4083 static void haswell_crtc_enable(struct drm_crtc *crtc)
4084 {
4085 struct drm_device *dev = crtc->dev;
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4088 struct intel_encoder *encoder;
4089 int pipe = intel_crtc->pipe;
4090 enum plane plane = intel_crtc->plane;
4091
4092 WARN_ON(!crtc->enabled);
4093
4094 if (intel_crtc->active)
4095 return;
4096
4097 if (intel_crtc_to_shared_dpll(intel_crtc))
4098 intel_enable_shared_dpll(intel_crtc);
4099
4100 if (intel_crtc->config.has_dp_encoder)
4101 intel_dp_set_m_n(intel_crtc);
4102
4103 intel_set_pipe_timings(intel_crtc);
4104
4105 if (intel_crtc->config.has_pch_encoder) {
4106 intel_cpu_transcoder_set_m_n(intel_crtc,
4107 &intel_crtc->config.fdi_m_n);
4108 }
4109
4110 haswell_set_pipeconf(crtc);
4111
4112 intel_set_pipe_csc(crtc);
4113
4114 /* Set up the display plane register */
4115 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4116 POSTING_READ(DSPCNTR(plane));
4117
4118 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4119 crtc->x, crtc->y);
4120
4121 intel_crtc->active = true;
4122
4123 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4124 for_each_encoder_on_crtc(dev, crtc, encoder)
4125 if (encoder->pre_enable)
4126 encoder->pre_enable(encoder);
4127
4128 if (intel_crtc->config.has_pch_encoder) {
4129 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4130 dev_priv->display.fdi_link_train(crtc);
4131 }
4132
4133 intel_ddi_enable_pipe_clock(intel_crtc);
4134
4135 ironlake_pfit_enable(intel_crtc);
4136
4137 /*
4138 * On ILK+ LUT must be loaded before the pipe is running but with
4139 * clocks enabled
4140 */
4141 intel_crtc_load_lut(crtc);
4142
4143 intel_ddi_set_pipe_settings(crtc);
4144 intel_ddi_enable_transcoder_func(crtc);
4145
4146 intel_update_watermarks(crtc);
4147 intel_enable_pipe(intel_crtc);
4148
4149 if (intel_crtc->config.has_pch_encoder)
4150 lpt_pch_enable(crtc);
4151
4152 if (intel_crtc->config.dp_encoder_is_mst)
4153 intel_ddi_set_vc_payload_alloc(crtc, true);
4154
4155 for_each_encoder_on_crtc(dev, crtc, encoder) {
4156 encoder->enable(encoder);
4157 intel_opregion_notify_encoder(encoder, true);
4158 }
4159
4160 /* If we change the relative order between pipe/planes enabling, we need
4161 * to change the workaround. */
4162 haswell_mode_set_planes_workaround(intel_crtc);
4163 intel_crtc_enable_planes(crtc);
4164 }
4165
4166 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4167 {
4168 struct drm_device *dev = crtc->base.dev;
4169 struct drm_i915_private *dev_priv = dev->dev_private;
4170 int pipe = crtc->pipe;
4171
4172 /* To avoid upsetting the power well on haswell only disable the pfit if
4173 * it's in use. The hw state code will make sure we get this right. */
4174 if (crtc->config.pch_pfit.enabled) {
4175 I915_WRITE(PF_CTL(pipe), 0);
4176 I915_WRITE(PF_WIN_POS(pipe), 0);
4177 I915_WRITE(PF_WIN_SZ(pipe), 0);
4178 }
4179 }
4180
4181 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4182 {
4183 struct drm_device *dev = crtc->dev;
4184 struct drm_i915_private *dev_priv = dev->dev_private;
4185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4186 struct intel_encoder *encoder;
4187 int pipe = intel_crtc->pipe;
4188 u32 reg, temp;
4189
4190 if (!intel_crtc->active)
4191 return;
4192
4193 intel_crtc_disable_planes(crtc);
4194
4195 for_each_encoder_on_crtc(dev, crtc, encoder)
4196 encoder->disable(encoder);
4197
4198 if (intel_crtc->config.has_pch_encoder)
4199 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4200
4201 intel_disable_pipe(dev_priv, pipe);
4202 ironlake_pfit_disable(intel_crtc);
4203
4204 for_each_encoder_on_crtc(dev, crtc, encoder)
4205 if (encoder->post_disable)
4206 encoder->post_disable(encoder);
4207
4208 if (intel_crtc->config.has_pch_encoder) {
4209 ironlake_fdi_disable(crtc);
4210
4211 ironlake_disable_pch_transcoder(dev_priv, pipe);
4212 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4213
4214 if (HAS_PCH_CPT(dev)) {
4215 /* disable TRANS_DP_CTL */
4216 reg = TRANS_DP_CTL(pipe);
4217 temp = I915_READ(reg);
4218 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4219 TRANS_DP_PORT_SEL_MASK);
4220 temp |= TRANS_DP_PORT_SEL_NONE;
4221 I915_WRITE(reg, temp);
4222
4223 /* disable DPLL_SEL */
4224 temp = I915_READ(PCH_DPLL_SEL);
4225 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4226 I915_WRITE(PCH_DPLL_SEL, temp);
4227 }
4228
4229 /* disable PCH DPLL */
4230 intel_disable_shared_dpll(intel_crtc);
4231
4232 ironlake_fdi_pll_disable(intel_crtc);
4233 }
4234
4235 intel_crtc->active = false;
4236 intel_update_watermarks(crtc);
4237
4238 mutex_lock(&dev->struct_mutex);
4239 intel_update_fbc(dev);
4240 mutex_unlock(&dev->struct_mutex);
4241 }
4242
4243 static void haswell_crtc_disable(struct drm_crtc *crtc)
4244 {
4245 struct drm_device *dev = crtc->dev;
4246 struct drm_i915_private *dev_priv = dev->dev_private;
4247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4248 struct intel_encoder *encoder;
4249 int pipe = intel_crtc->pipe;
4250 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4251
4252 if (!intel_crtc->active)
4253 return;
4254
4255 intel_crtc_disable_planes(crtc);
4256
4257 for_each_encoder_on_crtc(dev, crtc, encoder) {
4258 intel_opregion_notify_encoder(encoder, false);
4259 encoder->disable(encoder);
4260 }
4261
4262 if (intel_crtc->config.has_pch_encoder)
4263 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4264 intel_disable_pipe(dev_priv, pipe);
4265
4266 if (intel_crtc->config.dp_encoder_is_mst)
4267 intel_ddi_set_vc_payload_alloc(crtc, false);
4268
4269 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4270
4271 ironlake_pfit_disable(intel_crtc);
4272
4273 intel_ddi_disable_pipe_clock(intel_crtc);
4274
4275 if (intel_crtc->config.has_pch_encoder) {
4276 lpt_disable_pch_transcoder(dev_priv);
4277 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4278 intel_ddi_fdi_disable(crtc);
4279 }
4280
4281 for_each_encoder_on_crtc(dev, crtc, encoder)
4282 if (encoder->post_disable)
4283 encoder->post_disable(encoder);
4284
4285 intel_crtc->active = false;
4286 intel_update_watermarks(crtc);
4287
4288 mutex_lock(&dev->struct_mutex);
4289 intel_update_fbc(dev);
4290 mutex_unlock(&dev->struct_mutex);
4291
4292 if (intel_crtc_to_shared_dpll(intel_crtc))
4293 intel_disable_shared_dpll(intel_crtc);
4294 }
4295
4296 static void ironlake_crtc_off(struct drm_crtc *crtc)
4297 {
4298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4299 intel_put_shared_dpll(intel_crtc);
4300 }
4301
4302
4303 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4304 {
4305 struct drm_device *dev = crtc->base.dev;
4306 struct drm_i915_private *dev_priv = dev->dev_private;
4307 struct intel_crtc_config *pipe_config = &crtc->config;
4308
4309 if (!crtc->config.gmch_pfit.control)
4310 return;
4311
4312 /*
4313 * The panel fitter should only be adjusted whilst the pipe is disabled,
4314 * according to register description and PRM.
4315 */
4316 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4317 assert_pipe_disabled(dev_priv, crtc->pipe);
4318
4319 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4320 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4321
4322 /* Border color in case we don't scale up to the full screen. Black by
4323 * default, change to something else for debugging. */
4324 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4325 }
4326
4327 static enum intel_display_power_domain port_to_power_domain(enum port port)
4328 {
4329 switch (port) {
4330 case PORT_A:
4331 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4332 case PORT_B:
4333 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4334 case PORT_C:
4335 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4336 case PORT_D:
4337 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4338 default:
4339 WARN_ON_ONCE(1);
4340 return POWER_DOMAIN_PORT_OTHER;
4341 }
4342 }
4343
4344 #define for_each_power_domain(domain, mask) \
4345 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4346 if ((1 << (domain)) & (mask))
4347
4348 enum intel_display_power_domain
4349 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4350 {
4351 struct drm_device *dev = intel_encoder->base.dev;
4352 struct intel_digital_port *intel_dig_port;
4353
4354 switch (intel_encoder->type) {
4355 case INTEL_OUTPUT_UNKNOWN:
4356 /* Only DDI platforms should ever use this output type */
4357 WARN_ON_ONCE(!HAS_DDI(dev));
4358 case INTEL_OUTPUT_DISPLAYPORT:
4359 case INTEL_OUTPUT_HDMI:
4360 case INTEL_OUTPUT_EDP:
4361 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4362 return port_to_power_domain(intel_dig_port->port);
4363 case INTEL_OUTPUT_DP_MST:
4364 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4365 return port_to_power_domain(intel_dig_port->port);
4366 case INTEL_OUTPUT_ANALOG:
4367 return POWER_DOMAIN_PORT_CRT;
4368 case INTEL_OUTPUT_DSI:
4369 return POWER_DOMAIN_PORT_DSI;
4370 default:
4371 return POWER_DOMAIN_PORT_OTHER;
4372 }
4373 }
4374
4375 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4376 {
4377 struct drm_device *dev = crtc->dev;
4378 struct intel_encoder *intel_encoder;
4379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4380 enum pipe pipe = intel_crtc->pipe;
4381 unsigned long mask;
4382 enum transcoder transcoder;
4383
4384 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4385
4386 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4387 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4388 if (intel_crtc->config.pch_pfit.enabled ||
4389 intel_crtc->config.pch_pfit.force_thru)
4390 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4391
4392 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4393 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4394
4395 return mask;
4396 }
4397
4398 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4399 bool enable)
4400 {
4401 if (dev_priv->power_domains.init_power_on == enable)
4402 return;
4403
4404 if (enable)
4405 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4406 else
4407 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4408
4409 dev_priv->power_domains.init_power_on = enable;
4410 }
4411
4412 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4413 {
4414 struct drm_i915_private *dev_priv = dev->dev_private;
4415 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4416 struct intel_crtc *crtc;
4417
4418 /*
4419 * First get all needed power domains, then put all unneeded, to avoid
4420 * any unnecessary toggling of the power wells.
4421 */
4422 for_each_intel_crtc(dev, crtc) {
4423 enum intel_display_power_domain domain;
4424
4425 if (!crtc->base.enabled)
4426 continue;
4427
4428 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4429
4430 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4431 intel_display_power_get(dev_priv, domain);
4432 }
4433
4434 for_each_intel_crtc(dev, crtc) {
4435 enum intel_display_power_domain domain;
4436
4437 for_each_power_domain(domain, crtc->enabled_power_domains)
4438 intel_display_power_put(dev_priv, domain);
4439
4440 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4441 }
4442
4443 intel_display_set_init_power(dev_priv, false);
4444 }
4445
4446 /* returns HPLL frequency in kHz */
4447 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4448 {
4449 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4450
4451 /* Obtain SKU information */
4452 mutex_lock(&dev_priv->dpio_lock);
4453 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4454 CCK_FUSE_HPLL_FREQ_MASK;
4455 mutex_unlock(&dev_priv->dpio_lock);
4456
4457 return vco_freq[hpll_freq] * 1000;
4458 }
4459
4460 static void vlv_update_cdclk(struct drm_device *dev)
4461 {
4462 struct drm_i915_private *dev_priv = dev->dev_private;
4463
4464 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4465 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4466 dev_priv->vlv_cdclk_freq);
4467
4468 /*
4469 * Program the gmbus_freq based on the cdclk frequency.
4470 * BSpec erroneously claims we should aim for 4MHz, but
4471 * in fact 1MHz is the correct frequency.
4472 */
4473 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4474 }
4475
4476 /* Adjust CDclk dividers to allow high res or save power if possible */
4477 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4478 {
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4480 u32 val, cmd;
4481
4482 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4483
4484 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4485 cmd = 2;
4486 else if (cdclk == 266667)
4487 cmd = 1;
4488 else
4489 cmd = 0;
4490
4491 mutex_lock(&dev_priv->rps.hw_lock);
4492 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4493 val &= ~DSPFREQGUAR_MASK;
4494 val |= (cmd << DSPFREQGUAR_SHIFT);
4495 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4496 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4497 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4498 50)) {
4499 DRM_ERROR("timed out waiting for CDclk change\n");
4500 }
4501 mutex_unlock(&dev_priv->rps.hw_lock);
4502
4503 if (cdclk == 400000) {
4504 u32 divider, vco;
4505
4506 vco = valleyview_get_vco(dev_priv);
4507 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4508
4509 mutex_lock(&dev_priv->dpio_lock);
4510 /* adjust cdclk divider */
4511 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4512 val &= ~DISPLAY_FREQUENCY_VALUES;
4513 val |= divider;
4514 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4515
4516 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4517 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4518 50))
4519 DRM_ERROR("timed out waiting for CDclk change\n");
4520 mutex_unlock(&dev_priv->dpio_lock);
4521 }
4522
4523 mutex_lock(&dev_priv->dpio_lock);
4524 /* adjust self-refresh exit latency value */
4525 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4526 val &= ~0x7f;
4527
4528 /*
4529 * For high bandwidth configs, we set a higher latency in the bunit
4530 * so that the core display fetch happens in time to avoid underruns.
4531 */
4532 if (cdclk == 400000)
4533 val |= 4500 / 250; /* 4.5 usec */
4534 else
4535 val |= 3000 / 250; /* 3.0 usec */
4536 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4537 mutex_unlock(&dev_priv->dpio_lock);
4538
4539 vlv_update_cdclk(dev);
4540 }
4541
4542 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4543 int max_pixclk)
4544 {
4545 int vco = valleyview_get_vco(dev_priv);
4546 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4547
4548 /*
4549 * Really only a few cases to deal with, as only 4 CDclks are supported:
4550 * 200MHz
4551 * 267MHz
4552 * 320/333MHz (depends on HPLL freq)
4553 * 400MHz
4554 * So we check to see whether we're above 90% of the lower bin and
4555 * adjust if needed.
4556 *
4557 * We seem to get an unstable or solid color picture at 200MHz.
4558 * Not sure what's wrong. For now use 200MHz only when all pipes
4559 * are off.
4560 */
4561 if (max_pixclk > freq_320*9/10)
4562 return 400000;
4563 else if (max_pixclk > 266667*9/10)
4564 return freq_320;
4565 else if (max_pixclk > 0)
4566 return 266667;
4567 else
4568 return 200000;
4569 }
4570
4571 /* compute the max pixel clock for new configuration */
4572 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4573 {
4574 struct drm_device *dev = dev_priv->dev;
4575 struct intel_crtc *intel_crtc;
4576 int max_pixclk = 0;
4577
4578 for_each_intel_crtc(dev, intel_crtc) {
4579 if (intel_crtc->new_enabled)
4580 max_pixclk = max(max_pixclk,
4581 intel_crtc->new_config->adjusted_mode.crtc_clock);
4582 }
4583
4584 return max_pixclk;
4585 }
4586
4587 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4588 unsigned *prepare_pipes)
4589 {
4590 struct drm_i915_private *dev_priv = dev->dev_private;
4591 struct intel_crtc *intel_crtc;
4592 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4593
4594 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4595 dev_priv->vlv_cdclk_freq)
4596 return;
4597
4598 /* disable/enable all currently active pipes while we change cdclk */
4599 for_each_intel_crtc(dev, intel_crtc)
4600 if (intel_crtc->base.enabled)
4601 *prepare_pipes |= (1 << intel_crtc->pipe);
4602 }
4603
4604 static void valleyview_modeset_global_resources(struct drm_device *dev)
4605 {
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4608 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4609
4610 if (req_cdclk != dev_priv->vlv_cdclk_freq)
4611 valleyview_set_cdclk(dev, req_cdclk);
4612 modeset_update_crtc_power_domains(dev);
4613 }
4614
4615 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4616 {
4617 struct drm_device *dev = crtc->dev;
4618 struct drm_i915_private *dev_priv = dev->dev_private;
4619 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4620 struct intel_encoder *encoder;
4621 int pipe = intel_crtc->pipe;
4622 int plane = intel_crtc->plane;
4623 bool is_dsi;
4624 u32 dspcntr;
4625
4626 WARN_ON(!crtc->enabled);
4627
4628 if (intel_crtc->active)
4629 return;
4630
4631 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4632
4633 if (!is_dsi && !IS_CHERRYVIEW(dev))
4634 vlv_prepare_pll(intel_crtc);
4635
4636 /* Set up the display plane register */
4637 dspcntr = DISPPLANE_GAMMA_ENABLE;
4638
4639 if (intel_crtc->config.has_dp_encoder)
4640 intel_dp_set_m_n(intel_crtc);
4641
4642 intel_set_pipe_timings(intel_crtc);
4643
4644 /* pipesrc and dspsize control the size that is scaled from,
4645 * which should always be the user's requested size.
4646 */
4647 I915_WRITE(DSPSIZE(plane),
4648 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4649 (intel_crtc->config.pipe_src_w - 1));
4650 I915_WRITE(DSPPOS(plane), 0);
4651
4652 i9xx_set_pipeconf(intel_crtc);
4653
4654 I915_WRITE(DSPCNTR(plane), dspcntr);
4655 POSTING_READ(DSPCNTR(plane));
4656
4657 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4658 crtc->x, crtc->y);
4659
4660 intel_crtc->active = true;
4661
4662 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4663
4664 for_each_encoder_on_crtc(dev, crtc, encoder)
4665 if (encoder->pre_pll_enable)
4666 encoder->pre_pll_enable(encoder);
4667
4668 if (!is_dsi) {
4669 if (IS_CHERRYVIEW(dev))
4670 chv_enable_pll(intel_crtc);
4671 else
4672 vlv_enable_pll(intel_crtc);
4673 }
4674
4675 for_each_encoder_on_crtc(dev, crtc, encoder)
4676 if (encoder->pre_enable)
4677 encoder->pre_enable(encoder);
4678
4679 i9xx_pfit_enable(intel_crtc);
4680
4681 intel_crtc_load_lut(crtc);
4682
4683 intel_update_watermarks(crtc);
4684 intel_enable_pipe(intel_crtc);
4685
4686 for_each_encoder_on_crtc(dev, crtc, encoder)
4687 encoder->enable(encoder);
4688
4689 intel_crtc_enable_planes(crtc);
4690
4691 /* Underruns don't raise interrupts, so check manually. */
4692 i9xx_check_fifo_underruns(dev);
4693 }
4694
4695 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4696 {
4697 struct drm_device *dev = crtc->base.dev;
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699
4700 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4701 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4702 }
4703
4704 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4705 {
4706 struct drm_device *dev = crtc->dev;
4707 struct drm_i915_private *dev_priv = dev->dev_private;
4708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709 struct intel_encoder *encoder;
4710 int pipe = intel_crtc->pipe;
4711 int plane = intel_crtc->plane;
4712 u32 dspcntr;
4713
4714 WARN_ON(!crtc->enabled);
4715
4716 if (intel_crtc->active)
4717 return;
4718
4719 i9xx_set_pll_dividers(intel_crtc);
4720
4721 /* Set up the display plane register */
4722 dspcntr = DISPPLANE_GAMMA_ENABLE;
4723
4724 if (pipe == 0)
4725 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4726 else
4727 dspcntr |= DISPPLANE_SEL_PIPE_B;
4728
4729 if (intel_crtc->config.has_dp_encoder)
4730 intel_dp_set_m_n(intel_crtc);
4731
4732 intel_set_pipe_timings(intel_crtc);
4733
4734 /* pipesrc and dspsize control the size that is scaled from,
4735 * which should always be the user's requested size.
4736 */
4737 I915_WRITE(DSPSIZE(plane),
4738 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4739 (intel_crtc->config.pipe_src_w - 1));
4740 I915_WRITE(DSPPOS(plane), 0);
4741
4742 i9xx_set_pipeconf(intel_crtc);
4743
4744 I915_WRITE(DSPCNTR(plane), dspcntr);
4745 POSTING_READ(DSPCNTR(plane));
4746
4747 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4748 crtc->x, crtc->y);
4749
4750 intel_crtc->active = true;
4751
4752 if (!IS_GEN2(dev))
4753 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4754
4755 for_each_encoder_on_crtc(dev, crtc, encoder)
4756 if (encoder->pre_enable)
4757 encoder->pre_enable(encoder);
4758
4759 i9xx_enable_pll(intel_crtc);
4760
4761 i9xx_pfit_enable(intel_crtc);
4762
4763 intel_crtc_load_lut(crtc);
4764
4765 intel_update_watermarks(crtc);
4766 intel_enable_pipe(intel_crtc);
4767
4768 for_each_encoder_on_crtc(dev, crtc, encoder)
4769 encoder->enable(encoder);
4770
4771 intel_crtc_enable_planes(crtc);
4772
4773 /*
4774 * Gen2 reports pipe underruns whenever all planes are disabled.
4775 * So don't enable underrun reporting before at least some planes
4776 * are enabled.
4777 * FIXME: Need to fix the logic to work when we turn off all planes
4778 * but leave the pipe running.
4779 */
4780 if (IS_GEN2(dev))
4781 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4782
4783 /* Underruns don't raise interrupts, so check manually. */
4784 i9xx_check_fifo_underruns(dev);
4785 }
4786
4787 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4788 {
4789 struct drm_device *dev = crtc->base.dev;
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791
4792 if (!crtc->config.gmch_pfit.control)
4793 return;
4794
4795 assert_pipe_disabled(dev_priv, crtc->pipe);
4796
4797 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4798 I915_READ(PFIT_CONTROL));
4799 I915_WRITE(PFIT_CONTROL, 0);
4800 }
4801
4802 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4803 {
4804 struct drm_device *dev = crtc->dev;
4805 struct drm_i915_private *dev_priv = dev->dev_private;
4806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4807 struct intel_encoder *encoder;
4808 int pipe = intel_crtc->pipe;
4809
4810 if (!intel_crtc->active)
4811 return;
4812
4813 /*
4814 * Gen2 reports pipe underruns whenever all planes are disabled.
4815 * So diasble underrun reporting before all the planes get disabled.
4816 * FIXME: Need to fix the logic to work when we turn off all planes
4817 * but leave the pipe running.
4818 */
4819 if (IS_GEN2(dev))
4820 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4821
4822 /*
4823 * Vblank time updates from the shadow to live plane control register
4824 * are blocked if the memory self-refresh mode is active at that
4825 * moment. So to make sure the plane gets truly disabled, disable
4826 * first the self-refresh mode. The self-refresh enable bit in turn
4827 * will be checked/applied by the HW only at the next frame start
4828 * event which is after the vblank start event, so we need to have a
4829 * wait-for-vblank between disabling the plane and the pipe.
4830 */
4831 intel_set_memory_cxsr(dev_priv, false);
4832 intel_crtc_disable_planes(crtc);
4833
4834 for_each_encoder_on_crtc(dev, crtc, encoder)
4835 encoder->disable(encoder);
4836
4837 /*
4838 * On gen2 planes are double buffered but the pipe isn't, so we must
4839 * wait for planes to fully turn off before disabling the pipe.
4840 * We also need to wait on all gmch platforms because of the
4841 * self-refresh mode constraint explained above.
4842 */
4843 intel_wait_for_vblank(dev, pipe);
4844
4845 intel_disable_pipe(dev_priv, pipe);
4846
4847 i9xx_pfit_disable(intel_crtc);
4848
4849 for_each_encoder_on_crtc(dev, crtc, encoder)
4850 if (encoder->post_disable)
4851 encoder->post_disable(encoder);
4852
4853 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4854 if (IS_CHERRYVIEW(dev))
4855 chv_disable_pll(dev_priv, pipe);
4856 else if (IS_VALLEYVIEW(dev))
4857 vlv_disable_pll(dev_priv, pipe);
4858 else
4859 i9xx_disable_pll(dev_priv, pipe);
4860 }
4861
4862 if (!IS_GEN2(dev))
4863 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4864
4865 intel_crtc->active = false;
4866 intel_update_watermarks(crtc);
4867
4868 mutex_lock(&dev->struct_mutex);
4869 intel_update_fbc(dev);
4870 mutex_unlock(&dev->struct_mutex);
4871 }
4872
4873 static void i9xx_crtc_off(struct drm_crtc *crtc)
4874 {
4875 }
4876
4877 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4878 bool enabled)
4879 {
4880 struct drm_device *dev = crtc->dev;
4881 struct drm_i915_master_private *master_priv;
4882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883 int pipe = intel_crtc->pipe;
4884
4885 if (!dev->primary->master)
4886 return;
4887
4888 master_priv = dev->primary->master->driver_priv;
4889 if (!master_priv->sarea_priv)
4890 return;
4891
4892 switch (pipe) {
4893 case 0:
4894 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4895 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4896 break;
4897 case 1:
4898 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4899 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4900 break;
4901 default:
4902 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4903 break;
4904 }
4905 }
4906
4907 /* Master function to enable/disable CRTC and corresponding power wells */
4908 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4909 {
4910 struct drm_device *dev = crtc->dev;
4911 struct drm_i915_private *dev_priv = dev->dev_private;
4912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4913 enum intel_display_power_domain domain;
4914 unsigned long domains;
4915
4916 if (enable) {
4917 if (!intel_crtc->active) {
4918 domains = get_crtc_power_domains(crtc);
4919 for_each_power_domain(domain, domains)
4920 intel_display_power_get(dev_priv, domain);
4921 intel_crtc->enabled_power_domains = domains;
4922
4923 dev_priv->display.crtc_enable(crtc);
4924 }
4925 } else {
4926 if (intel_crtc->active) {
4927 dev_priv->display.crtc_disable(crtc);
4928
4929 domains = intel_crtc->enabled_power_domains;
4930 for_each_power_domain(domain, domains)
4931 intel_display_power_put(dev_priv, domain);
4932 intel_crtc->enabled_power_domains = 0;
4933 }
4934 }
4935 }
4936
4937 /**
4938 * Sets the power management mode of the pipe and plane.
4939 */
4940 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4941 {
4942 struct drm_device *dev = crtc->dev;
4943 struct intel_encoder *intel_encoder;
4944 bool enable = false;
4945
4946 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4947 enable |= intel_encoder->connectors_active;
4948
4949 intel_crtc_control(crtc, enable);
4950
4951 intel_crtc_update_sarea(crtc, enable);
4952 }
4953
4954 static void intel_crtc_disable(struct drm_crtc *crtc)
4955 {
4956 struct drm_device *dev = crtc->dev;
4957 struct drm_connector *connector;
4958 struct drm_i915_private *dev_priv = dev->dev_private;
4959 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4960 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4961
4962 /* crtc should still be enabled when we disable it. */
4963 WARN_ON(!crtc->enabled);
4964
4965 dev_priv->display.crtc_disable(crtc);
4966 intel_crtc_update_sarea(crtc, false);
4967 dev_priv->display.off(crtc);
4968
4969 if (crtc->primary->fb) {
4970 mutex_lock(&dev->struct_mutex);
4971 intel_unpin_fb_obj(old_obj);
4972 i915_gem_track_fb(old_obj, NULL,
4973 INTEL_FRONTBUFFER_PRIMARY(pipe));
4974 mutex_unlock(&dev->struct_mutex);
4975 crtc->primary->fb = NULL;
4976 }
4977
4978 /* Update computed state. */
4979 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4980 if (!connector->encoder || !connector->encoder->crtc)
4981 continue;
4982
4983 if (connector->encoder->crtc != crtc)
4984 continue;
4985
4986 connector->dpms = DRM_MODE_DPMS_OFF;
4987 to_intel_encoder(connector->encoder)->connectors_active = false;
4988 }
4989 }
4990
4991 void intel_encoder_destroy(struct drm_encoder *encoder)
4992 {
4993 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4994
4995 drm_encoder_cleanup(encoder);
4996 kfree(intel_encoder);
4997 }
4998
4999 /* Simple dpms helper for encoders with just one connector, no cloning and only
5000 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5001 * state of the entire output pipe. */
5002 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5003 {
5004 if (mode == DRM_MODE_DPMS_ON) {
5005 encoder->connectors_active = true;
5006
5007 intel_crtc_update_dpms(encoder->base.crtc);
5008 } else {
5009 encoder->connectors_active = false;
5010
5011 intel_crtc_update_dpms(encoder->base.crtc);
5012 }
5013 }
5014
5015 /* Cross check the actual hw state with our own modeset state tracking (and it's
5016 * internal consistency). */
5017 static void intel_connector_check_state(struct intel_connector *connector)
5018 {
5019 if (connector->get_hw_state(connector)) {
5020 struct intel_encoder *encoder = connector->encoder;
5021 struct drm_crtc *crtc;
5022 bool encoder_enabled;
5023 enum pipe pipe;
5024
5025 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5026 connector->base.base.id,
5027 connector->base.name);
5028
5029 /* there is no real hw state for MST connectors */
5030 if (connector->mst_port)
5031 return;
5032
5033 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5034 "wrong connector dpms state\n");
5035 WARN(connector->base.encoder != &encoder->base,
5036 "active connector not linked to encoder\n");
5037
5038 if (encoder) {
5039 WARN(!encoder->connectors_active,
5040 "encoder->connectors_active not set\n");
5041
5042 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5043 WARN(!encoder_enabled, "encoder not enabled\n");
5044 if (WARN_ON(!encoder->base.crtc))
5045 return;
5046
5047 crtc = encoder->base.crtc;
5048
5049 WARN(!crtc->enabled, "crtc not enabled\n");
5050 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5051 WARN(pipe != to_intel_crtc(crtc)->pipe,
5052 "encoder active on the wrong pipe\n");
5053 }
5054 }
5055 }
5056
5057 /* Even simpler default implementation, if there's really no special case to
5058 * consider. */
5059 void intel_connector_dpms(struct drm_connector *connector, int mode)
5060 {
5061 /* All the simple cases only support two dpms states. */
5062 if (mode != DRM_MODE_DPMS_ON)
5063 mode = DRM_MODE_DPMS_OFF;
5064
5065 if (mode == connector->dpms)
5066 return;
5067
5068 connector->dpms = mode;
5069
5070 /* Only need to change hw state when actually enabled */
5071 if (connector->encoder)
5072 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5073
5074 intel_modeset_check_state(connector->dev);
5075 }
5076
5077 /* Simple connector->get_hw_state implementation for encoders that support only
5078 * one connector and no cloning and hence the encoder state determines the state
5079 * of the connector. */
5080 bool intel_connector_get_hw_state(struct intel_connector *connector)
5081 {
5082 enum pipe pipe = 0;
5083 struct intel_encoder *encoder = connector->encoder;
5084
5085 return encoder->get_hw_state(encoder, &pipe);
5086 }
5087
5088 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5089 struct intel_crtc_config *pipe_config)
5090 {
5091 struct drm_i915_private *dev_priv = dev->dev_private;
5092 struct intel_crtc *pipe_B_crtc =
5093 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5094
5095 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5096 pipe_name(pipe), pipe_config->fdi_lanes);
5097 if (pipe_config->fdi_lanes > 4) {
5098 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5099 pipe_name(pipe), pipe_config->fdi_lanes);
5100 return false;
5101 }
5102
5103 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5104 if (pipe_config->fdi_lanes > 2) {
5105 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5106 pipe_config->fdi_lanes);
5107 return false;
5108 } else {
5109 return true;
5110 }
5111 }
5112
5113 if (INTEL_INFO(dev)->num_pipes == 2)
5114 return true;
5115
5116 /* Ivybridge 3 pipe is really complicated */
5117 switch (pipe) {
5118 case PIPE_A:
5119 return true;
5120 case PIPE_B:
5121 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5122 pipe_config->fdi_lanes > 2) {
5123 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5124 pipe_name(pipe), pipe_config->fdi_lanes);
5125 return false;
5126 }
5127 return true;
5128 case PIPE_C:
5129 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5130 pipe_B_crtc->config.fdi_lanes <= 2) {
5131 if (pipe_config->fdi_lanes > 2) {
5132 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5133 pipe_name(pipe), pipe_config->fdi_lanes);
5134 return false;
5135 }
5136 } else {
5137 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5138 return false;
5139 }
5140 return true;
5141 default:
5142 BUG();
5143 }
5144 }
5145
5146 #define RETRY 1
5147 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5148 struct intel_crtc_config *pipe_config)
5149 {
5150 struct drm_device *dev = intel_crtc->base.dev;
5151 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5152 int lane, link_bw, fdi_dotclock;
5153 bool setup_ok, needs_recompute = false;
5154
5155 retry:
5156 /* FDI is a binary signal running at ~2.7GHz, encoding
5157 * each output octet as 10 bits. The actual frequency
5158 * is stored as a divider into a 100MHz clock, and the
5159 * mode pixel clock is stored in units of 1KHz.
5160 * Hence the bw of each lane in terms of the mode signal
5161 * is:
5162 */
5163 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5164
5165 fdi_dotclock = adjusted_mode->crtc_clock;
5166
5167 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5168 pipe_config->pipe_bpp);
5169
5170 pipe_config->fdi_lanes = lane;
5171
5172 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5173 link_bw, &pipe_config->fdi_m_n);
5174
5175 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5176 intel_crtc->pipe, pipe_config);
5177 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5178 pipe_config->pipe_bpp -= 2*3;
5179 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5180 pipe_config->pipe_bpp);
5181 needs_recompute = true;
5182 pipe_config->bw_constrained = true;
5183
5184 goto retry;
5185 }
5186
5187 if (needs_recompute)
5188 return RETRY;
5189
5190 return setup_ok ? 0 : -EINVAL;
5191 }
5192
5193 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5194 struct intel_crtc_config *pipe_config)
5195 {
5196 pipe_config->ips_enabled = i915.enable_ips &&
5197 hsw_crtc_supports_ips(crtc) &&
5198 pipe_config->pipe_bpp <= 24;
5199 }
5200
5201 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5202 struct intel_crtc_config *pipe_config)
5203 {
5204 struct drm_device *dev = crtc->base.dev;
5205 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5206
5207 /* FIXME should check pixel clock limits on all platforms */
5208 if (INTEL_INFO(dev)->gen < 4) {
5209 struct drm_i915_private *dev_priv = dev->dev_private;
5210 int clock_limit =
5211 dev_priv->display.get_display_clock_speed(dev);
5212
5213 /*
5214 * Enable pixel doubling when the dot clock
5215 * is > 90% of the (display) core speed.
5216 *
5217 * GDG double wide on either pipe,
5218 * otherwise pipe A only.
5219 */
5220 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5221 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5222 clock_limit *= 2;
5223 pipe_config->double_wide = true;
5224 }
5225
5226 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5227 return -EINVAL;
5228 }
5229
5230 /*
5231 * Pipe horizontal size must be even in:
5232 * - DVO ganged mode
5233 * - LVDS dual channel mode
5234 * - Double wide pipe
5235 */
5236 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5237 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5238 pipe_config->pipe_src_w &= ~1;
5239
5240 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5241 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5242 */
5243 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5244 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5245 return -EINVAL;
5246
5247 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5248 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5249 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5250 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5251 * for lvds. */
5252 pipe_config->pipe_bpp = 8*3;
5253 }
5254
5255 if (HAS_IPS(dev))
5256 hsw_compute_ips_config(crtc, pipe_config);
5257
5258 /*
5259 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5260 * old clock survives for now.
5261 */
5262 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5263 pipe_config->shared_dpll = crtc->config.shared_dpll;
5264
5265 if (pipe_config->has_pch_encoder)
5266 return ironlake_fdi_compute_config(crtc, pipe_config);
5267
5268 return 0;
5269 }
5270
5271 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5272 {
5273 struct drm_i915_private *dev_priv = dev->dev_private;
5274 int vco = valleyview_get_vco(dev_priv);
5275 u32 val;
5276 int divider;
5277
5278 mutex_lock(&dev_priv->dpio_lock);
5279 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5280 mutex_unlock(&dev_priv->dpio_lock);
5281
5282 divider = val & DISPLAY_FREQUENCY_VALUES;
5283
5284 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5285 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5286 "cdclk change in progress\n");
5287
5288 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5289 }
5290
5291 static int i945_get_display_clock_speed(struct drm_device *dev)
5292 {
5293 return 400000;
5294 }
5295
5296 static int i915_get_display_clock_speed(struct drm_device *dev)
5297 {
5298 return 333000;
5299 }
5300
5301 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5302 {
5303 return 200000;
5304 }
5305
5306 static int pnv_get_display_clock_speed(struct drm_device *dev)
5307 {
5308 u16 gcfgc = 0;
5309
5310 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5311
5312 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5313 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5314 return 267000;
5315 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5316 return 333000;
5317 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5318 return 444000;
5319 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5320 return 200000;
5321 default:
5322 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5323 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5324 return 133000;
5325 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5326 return 167000;
5327 }
5328 }
5329
5330 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5331 {
5332 u16 gcfgc = 0;
5333
5334 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5335
5336 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5337 return 133000;
5338 else {
5339 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5340 case GC_DISPLAY_CLOCK_333_MHZ:
5341 return 333000;
5342 default:
5343 case GC_DISPLAY_CLOCK_190_200_MHZ:
5344 return 190000;
5345 }
5346 }
5347 }
5348
5349 static int i865_get_display_clock_speed(struct drm_device *dev)
5350 {
5351 return 266000;
5352 }
5353
5354 static int i855_get_display_clock_speed(struct drm_device *dev)
5355 {
5356 u16 hpllcc = 0;
5357 /* Assume that the hardware is in the high speed state. This
5358 * should be the default.
5359 */
5360 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5361 case GC_CLOCK_133_200:
5362 case GC_CLOCK_100_200:
5363 return 200000;
5364 case GC_CLOCK_166_250:
5365 return 250000;
5366 case GC_CLOCK_100_133:
5367 return 133000;
5368 }
5369
5370 /* Shouldn't happen */
5371 return 0;
5372 }
5373
5374 static int i830_get_display_clock_speed(struct drm_device *dev)
5375 {
5376 return 133000;
5377 }
5378
5379 static void
5380 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5381 {
5382 while (*num > DATA_LINK_M_N_MASK ||
5383 *den > DATA_LINK_M_N_MASK) {
5384 *num >>= 1;
5385 *den >>= 1;
5386 }
5387 }
5388
5389 static void compute_m_n(unsigned int m, unsigned int n,
5390 uint32_t *ret_m, uint32_t *ret_n)
5391 {
5392 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5393 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5394 intel_reduce_m_n_ratio(ret_m, ret_n);
5395 }
5396
5397 void
5398 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5399 int pixel_clock, int link_clock,
5400 struct intel_link_m_n *m_n)
5401 {
5402 m_n->tu = 64;
5403
5404 compute_m_n(bits_per_pixel * pixel_clock,
5405 link_clock * nlanes * 8,
5406 &m_n->gmch_m, &m_n->gmch_n);
5407
5408 compute_m_n(pixel_clock, link_clock,
5409 &m_n->link_m, &m_n->link_n);
5410 }
5411
5412 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5413 {
5414 if (i915.panel_use_ssc >= 0)
5415 return i915.panel_use_ssc != 0;
5416 return dev_priv->vbt.lvds_use_ssc
5417 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5418 }
5419
5420 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5421 {
5422 struct drm_device *dev = crtc->dev;
5423 struct drm_i915_private *dev_priv = dev->dev_private;
5424 int refclk;
5425
5426 if (IS_VALLEYVIEW(dev)) {
5427 refclk = 100000;
5428 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5429 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5430 refclk = dev_priv->vbt.lvds_ssc_freq;
5431 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5432 } else if (!IS_GEN2(dev)) {
5433 refclk = 96000;
5434 } else {
5435 refclk = 48000;
5436 }
5437
5438 return refclk;
5439 }
5440
5441 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5442 {
5443 return (1 << dpll->n) << 16 | dpll->m2;
5444 }
5445
5446 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5447 {
5448 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5449 }
5450
5451 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5452 intel_clock_t *reduced_clock)
5453 {
5454 struct drm_device *dev = crtc->base.dev;
5455 u32 fp, fp2 = 0;
5456
5457 if (IS_PINEVIEW(dev)) {
5458 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5459 if (reduced_clock)
5460 fp2 = pnv_dpll_compute_fp(reduced_clock);
5461 } else {
5462 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5463 if (reduced_clock)
5464 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5465 }
5466
5467 crtc->config.dpll_hw_state.fp0 = fp;
5468
5469 crtc->lowfreq_avail = false;
5470 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5471 reduced_clock && i915.powersave) {
5472 crtc->config.dpll_hw_state.fp1 = fp2;
5473 crtc->lowfreq_avail = true;
5474 } else {
5475 crtc->config.dpll_hw_state.fp1 = fp;
5476 }
5477 }
5478
5479 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5480 pipe)
5481 {
5482 u32 reg_val;
5483
5484 /*
5485 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5486 * and set it to a reasonable value instead.
5487 */
5488 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5489 reg_val &= 0xffffff00;
5490 reg_val |= 0x00000030;
5491 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5492
5493 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5494 reg_val &= 0x8cffffff;
5495 reg_val = 0x8c000000;
5496 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5497
5498 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5499 reg_val &= 0xffffff00;
5500 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5501
5502 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5503 reg_val &= 0x00ffffff;
5504 reg_val |= 0xb0000000;
5505 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5506 }
5507
5508 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5509 struct intel_link_m_n *m_n)
5510 {
5511 struct drm_device *dev = crtc->base.dev;
5512 struct drm_i915_private *dev_priv = dev->dev_private;
5513 int pipe = crtc->pipe;
5514
5515 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5516 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5517 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5518 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5519 }
5520
5521 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5522 struct intel_link_m_n *m_n)
5523 {
5524 struct drm_device *dev = crtc->base.dev;
5525 struct drm_i915_private *dev_priv = dev->dev_private;
5526 int pipe = crtc->pipe;
5527 enum transcoder transcoder = crtc->config.cpu_transcoder;
5528
5529 if (INTEL_INFO(dev)->gen >= 5) {
5530 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5531 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5532 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5533 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5534 } else {
5535 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5536 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5537 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5538 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5539 }
5540 }
5541
5542 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5543 {
5544 if (crtc->config.has_pch_encoder)
5545 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5546 else
5547 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5548 }
5549
5550 static void vlv_update_pll(struct intel_crtc *crtc)
5551 {
5552 u32 dpll, dpll_md;
5553
5554 /*
5555 * Enable DPIO clock input. We should never disable the reference
5556 * clock for pipe B, since VGA hotplug / manual detection depends
5557 * on it.
5558 */
5559 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5560 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5561 /* We should never disable this, set it here for state tracking */
5562 if (crtc->pipe == PIPE_B)
5563 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5564 dpll |= DPLL_VCO_ENABLE;
5565 crtc->config.dpll_hw_state.dpll = dpll;
5566
5567 dpll_md = (crtc->config.pixel_multiplier - 1)
5568 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5569 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5570 }
5571
5572 static void vlv_prepare_pll(struct intel_crtc *crtc)
5573 {
5574 struct drm_device *dev = crtc->base.dev;
5575 struct drm_i915_private *dev_priv = dev->dev_private;
5576 int pipe = crtc->pipe;
5577 u32 mdiv;
5578 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5579 u32 coreclk, reg_val;
5580
5581 mutex_lock(&dev_priv->dpio_lock);
5582
5583 bestn = crtc->config.dpll.n;
5584 bestm1 = crtc->config.dpll.m1;
5585 bestm2 = crtc->config.dpll.m2;
5586 bestp1 = crtc->config.dpll.p1;
5587 bestp2 = crtc->config.dpll.p2;
5588
5589 /* See eDP HDMI DPIO driver vbios notes doc */
5590
5591 /* PLL B needs special handling */
5592 if (pipe == PIPE_B)
5593 vlv_pllb_recal_opamp(dev_priv, pipe);
5594
5595 /* Set up Tx target for periodic Rcomp update */
5596 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5597
5598 /* Disable target IRef on PLL */
5599 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5600 reg_val &= 0x00ffffff;
5601 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5602
5603 /* Disable fast lock */
5604 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5605
5606 /* Set idtafcrecal before PLL is enabled */
5607 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5608 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5609 mdiv |= ((bestn << DPIO_N_SHIFT));
5610 mdiv |= (1 << DPIO_K_SHIFT);
5611
5612 /*
5613 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5614 * but we don't support that).
5615 * Note: don't use the DAC post divider as it seems unstable.
5616 */
5617 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5618 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5619
5620 mdiv |= DPIO_ENABLE_CALIBRATION;
5621 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5622
5623 /* Set HBR and RBR LPF coefficients */
5624 if (crtc->config.port_clock == 162000 ||
5625 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5626 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5627 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5628 0x009f0003);
5629 else
5630 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5631 0x00d0000f);
5632
5633 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5634 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5635 /* Use SSC source */
5636 if (pipe == PIPE_A)
5637 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5638 0x0df40000);
5639 else
5640 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5641 0x0df70000);
5642 } else { /* HDMI or VGA */
5643 /* Use bend source */
5644 if (pipe == PIPE_A)
5645 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5646 0x0df70000);
5647 else
5648 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5649 0x0df40000);
5650 }
5651
5652 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5653 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5654 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5655 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5656 coreclk |= 0x01000000;
5657 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5658
5659 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5660 mutex_unlock(&dev_priv->dpio_lock);
5661 }
5662
5663 static void chv_update_pll(struct intel_crtc *crtc)
5664 {
5665 struct drm_device *dev = crtc->base.dev;
5666 struct drm_i915_private *dev_priv = dev->dev_private;
5667 int pipe = crtc->pipe;
5668 int dpll_reg = DPLL(crtc->pipe);
5669 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5670 u32 loopfilter, intcoeff;
5671 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5672 int refclk;
5673
5674 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5675 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5676 DPLL_VCO_ENABLE;
5677 if (pipe != PIPE_A)
5678 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5679
5680 crtc->config.dpll_hw_state.dpll_md =
5681 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5682
5683 bestn = crtc->config.dpll.n;
5684 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5685 bestm1 = crtc->config.dpll.m1;
5686 bestm2 = crtc->config.dpll.m2 >> 22;
5687 bestp1 = crtc->config.dpll.p1;
5688 bestp2 = crtc->config.dpll.p2;
5689
5690 /*
5691 * Enable Refclk and SSC
5692 */
5693 I915_WRITE(dpll_reg,
5694 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5695
5696 mutex_lock(&dev_priv->dpio_lock);
5697
5698 /* p1 and p2 divider */
5699 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5700 5 << DPIO_CHV_S1_DIV_SHIFT |
5701 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5702 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5703 1 << DPIO_CHV_K_DIV_SHIFT);
5704
5705 /* Feedback post-divider - m2 */
5706 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5707
5708 /* Feedback refclk divider - n and m1 */
5709 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5710 DPIO_CHV_M1_DIV_BY_2 |
5711 1 << DPIO_CHV_N_DIV_SHIFT);
5712
5713 /* M2 fraction division */
5714 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5715
5716 /* M2 fraction division enable */
5717 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5718 DPIO_CHV_FRAC_DIV_EN |
5719 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5720
5721 /* Loop filter */
5722 refclk = i9xx_get_refclk(&crtc->base, 0);
5723 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5724 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5725 if (refclk == 100000)
5726 intcoeff = 11;
5727 else if (refclk == 38400)
5728 intcoeff = 10;
5729 else
5730 intcoeff = 9;
5731 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5732 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5733
5734 /* AFC Recal */
5735 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5736 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5737 DPIO_AFC_RECAL);
5738
5739 mutex_unlock(&dev_priv->dpio_lock);
5740 }
5741
5742 static void i9xx_update_pll(struct intel_crtc *crtc,
5743 intel_clock_t *reduced_clock,
5744 int num_connectors)
5745 {
5746 struct drm_device *dev = crtc->base.dev;
5747 struct drm_i915_private *dev_priv = dev->dev_private;
5748 u32 dpll;
5749 bool is_sdvo;
5750 struct dpll *clock = &crtc->config.dpll;
5751
5752 i9xx_update_pll_dividers(crtc, reduced_clock);
5753
5754 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5755 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5756
5757 dpll = DPLL_VGA_MODE_DIS;
5758
5759 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5760 dpll |= DPLLB_MODE_LVDS;
5761 else
5762 dpll |= DPLLB_MODE_DAC_SERIAL;
5763
5764 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5765 dpll |= (crtc->config.pixel_multiplier - 1)
5766 << SDVO_MULTIPLIER_SHIFT_HIRES;
5767 }
5768
5769 if (is_sdvo)
5770 dpll |= DPLL_SDVO_HIGH_SPEED;
5771
5772 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5773 dpll |= DPLL_SDVO_HIGH_SPEED;
5774
5775 /* compute bitmask from p1 value */
5776 if (IS_PINEVIEW(dev))
5777 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5778 else {
5779 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5780 if (IS_G4X(dev) && reduced_clock)
5781 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5782 }
5783 switch (clock->p2) {
5784 case 5:
5785 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5786 break;
5787 case 7:
5788 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5789 break;
5790 case 10:
5791 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5792 break;
5793 case 14:
5794 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5795 break;
5796 }
5797 if (INTEL_INFO(dev)->gen >= 4)
5798 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5799
5800 if (crtc->config.sdvo_tv_clock)
5801 dpll |= PLL_REF_INPUT_TVCLKINBC;
5802 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5803 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5804 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5805 else
5806 dpll |= PLL_REF_INPUT_DREFCLK;
5807
5808 dpll |= DPLL_VCO_ENABLE;
5809 crtc->config.dpll_hw_state.dpll = dpll;
5810
5811 if (INTEL_INFO(dev)->gen >= 4) {
5812 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5813 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5814 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5815 }
5816 }
5817
5818 static void i8xx_update_pll(struct intel_crtc *crtc,
5819 intel_clock_t *reduced_clock,
5820 int num_connectors)
5821 {
5822 struct drm_device *dev = crtc->base.dev;
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824 u32 dpll;
5825 struct dpll *clock = &crtc->config.dpll;
5826
5827 i9xx_update_pll_dividers(crtc, reduced_clock);
5828
5829 dpll = DPLL_VGA_MODE_DIS;
5830
5831 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5832 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5833 } else {
5834 if (clock->p1 == 2)
5835 dpll |= PLL_P1_DIVIDE_BY_TWO;
5836 else
5837 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5838 if (clock->p2 == 4)
5839 dpll |= PLL_P2_DIVIDE_BY_4;
5840 }
5841
5842 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5843 dpll |= DPLL_DVO_2X_MODE;
5844
5845 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5846 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5847 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5848 else
5849 dpll |= PLL_REF_INPUT_DREFCLK;
5850
5851 dpll |= DPLL_VCO_ENABLE;
5852 crtc->config.dpll_hw_state.dpll = dpll;
5853 }
5854
5855 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5856 {
5857 struct drm_device *dev = intel_crtc->base.dev;
5858 struct drm_i915_private *dev_priv = dev->dev_private;
5859 enum pipe pipe = intel_crtc->pipe;
5860 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5861 struct drm_display_mode *adjusted_mode =
5862 &intel_crtc->config.adjusted_mode;
5863 uint32_t crtc_vtotal, crtc_vblank_end;
5864 int vsyncshift = 0;
5865
5866 /* We need to be careful not to changed the adjusted mode, for otherwise
5867 * the hw state checker will get angry at the mismatch. */
5868 crtc_vtotal = adjusted_mode->crtc_vtotal;
5869 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5870
5871 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5872 /* the chip adds 2 halflines automatically */
5873 crtc_vtotal -= 1;
5874 crtc_vblank_end -= 1;
5875
5876 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5877 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5878 else
5879 vsyncshift = adjusted_mode->crtc_hsync_start -
5880 adjusted_mode->crtc_htotal / 2;
5881 if (vsyncshift < 0)
5882 vsyncshift += adjusted_mode->crtc_htotal;
5883 }
5884
5885 if (INTEL_INFO(dev)->gen > 3)
5886 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5887
5888 I915_WRITE(HTOTAL(cpu_transcoder),
5889 (adjusted_mode->crtc_hdisplay - 1) |
5890 ((adjusted_mode->crtc_htotal - 1) << 16));
5891 I915_WRITE(HBLANK(cpu_transcoder),
5892 (adjusted_mode->crtc_hblank_start - 1) |
5893 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5894 I915_WRITE(HSYNC(cpu_transcoder),
5895 (adjusted_mode->crtc_hsync_start - 1) |
5896 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5897
5898 I915_WRITE(VTOTAL(cpu_transcoder),
5899 (adjusted_mode->crtc_vdisplay - 1) |
5900 ((crtc_vtotal - 1) << 16));
5901 I915_WRITE(VBLANK(cpu_transcoder),
5902 (adjusted_mode->crtc_vblank_start - 1) |
5903 ((crtc_vblank_end - 1) << 16));
5904 I915_WRITE(VSYNC(cpu_transcoder),
5905 (adjusted_mode->crtc_vsync_start - 1) |
5906 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5907
5908 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5909 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5910 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5911 * bits. */
5912 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5913 (pipe == PIPE_B || pipe == PIPE_C))
5914 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5915
5916 /* pipesrc controls the size that is scaled from, which should
5917 * always be the user's requested size.
5918 */
5919 I915_WRITE(PIPESRC(pipe),
5920 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5921 (intel_crtc->config.pipe_src_h - 1));
5922 }
5923
5924 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5925 struct intel_crtc_config *pipe_config)
5926 {
5927 struct drm_device *dev = crtc->base.dev;
5928 struct drm_i915_private *dev_priv = dev->dev_private;
5929 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5930 uint32_t tmp;
5931
5932 tmp = I915_READ(HTOTAL(cpu_transcoder));
5933 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5934 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5935 tmp = I915_READ(HBLANK(cpu_transcoder));
5936 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5937 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5938 tmp = I915_READ(HSYNC(cpu_transcoder));
5939 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5940 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5941
5942 tmp = I915_READ(VTOTAL(cpu_transcoder));
5943 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5944 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5945 tmp = I915_READ(VBLANK(cpu_transcoder));
5946 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5947 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5948 tmp = I915_READ(VSYNC(cpu_transcoder));
5949 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5950 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5951
5952 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5953 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5954 pipe_config->adjusted_mode.crtc_vtotal += 1;
5955 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5956 }
5957
5958 tmp = I915_READ(PIPESRC(crtc->pipe));
5959 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5960 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5961
5962 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5963 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5964 }
5965
5966 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5967 struct intel_crtc_config *pipe_config)
5968 {
5969 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5970 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5971 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5972 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5973
5974 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5975 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5976 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5977 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5978
5979 mode->flags = pipe_config->adjusted_mode.flags;
5980
5981 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5982 mode->flags |= pipe_config->adjusted_mode.flags;
5983 }
5984
5985 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5986 {
5987 struct drm_device *dev = intel_crtc->base.dev;
5988 struct drm_i915_private *dev_priv = dev->dev_private;
5989 uint32_t pipeconf;
5990
5991 pipeconf = 0;
5992
5993 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5994 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5995 pipeconf |= PIPECONF_ENABLE;
5996
5997 if (intel_crtc->config.double_wide)
5998 pipeconf |= PIPECONF_DOUBLE_WIDE;
5999
6000 /* only g4x and later have fancy bpc/dither controls */
6001 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6002 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6003 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6004 pipeconf |= PIPECONF_DITHER_EN |
6005 PIPECONF_DITHER_TYPE_SP;
6006
6007 switch (intel_crtc->config.pipe_bpp) {
6008 case 18:
6009 pipeconf |= PIPECONF_6BPC;
6010 break;
6011 case 24:
6012 pipeconf |= PIPECONF_8BPC;
6013 break;
6014 case 30:
6015 pipeconf |= PIPECONF_10BPC;
6016 break;
6017 default:
6018 /* Case prevented by intel_choose_pipe_bpp_dither. */
6019 BUG();
6020 }
6021 }
6022
6023 if (HAS_PIPE_CXSR(dev)) {
6024 if (intel_crtc->lowfreq_avail) {
6025 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6026 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6027 } else {
6028 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6029 }
6030 }
6031
6032 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6033 if (INTEL_INFO(dev)->gen < 4 ||
6034 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6035 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6036 else
6037 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6038 } else
6039 pipeconf |= PIPECONF_PROGRESSIVE;
6040
6041 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6042 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6043
6044 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6045 POSTING_READ(PIPECONF(intel_crtc->pipe));
6046 }
6047
6048 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6049 int x, int y,
6050 struct drm_framebuffer *fb)
6051 {
6052 struct drm_device *dev = crtc->dev;
6053 struct drm_i915_private *dev_priv = dev->dev_private;
6054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6055 int refclk, num_connectors = 0;
6056 intel_clock_t clock, reduced_clock;
6057 bool ok, has_reduced_clock = false;
6058 bool is_lvds = false, is_dsi = false;
6059 struct intel_encoder *encoder;
6060 const intel_limit_t *limit;
6061
6062 for_each_encoder_on_crtc(dev, crtc, encoder) {
6063 switch (encoder->type) {
6064 case INTEL_OUTPUT_LVDS:
6065 is_lvds = true;
6066 break;
6067 case INTEL_OUTPUT_DSI:
6068 is_dsi = true;
6069 break;
6070 }
6071
6072 num_connectors++;
6073 }
6074
6075 if (is_dsi)
6076 return 0;
6077
6078 if (!intel_crtc->config.clock_set) {
6079 refclk = i9xx_get_refclk(crtc, num_connectors);
6080
6081 /*
6082 * Returns a set of divisors for the desired target clock with
6083 * the given refclk, or FALSE. The returned values represent
6084 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6085 * 2) / p1 / p2.
6086 */
6087 limit = intel_limit(crtc, refclk);
6088 ok = dev_priv->display.find_dpll(limit, crtc,
6089 intel_crtc->config.port_clock,
6090 refclk, NULL, &clock);
6091 if (!ok) {
6092 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6093 return -EINVAL;
6094 }
6095
6096 if (is_lvds && dev_priv->lvds_downclock_avail) {
6097 /*
6098 * Ensure we match the reduced clock's P to the target
6099 * clock. If the clocks don't match, we can't switch
6100 * the display clock by using the FP0/FP1. In such case
6101 * we will disable the LVDS downclock feature.
6102 */
6103 has_reduced_clock =
6104 dev_priv->display.find_dpll(limit, crtc,
6105 dev_priv->lvds_downclock,
6106 refclk, &clock,
6107 &reduced_clock);
6108 }
6109 /* Compat-code for transition, will disappear. */
6110 intel_crtc->config.dpll.n = clock.n;
6111 intel_crtc->config.dpll.m1 = clock.m1;
6112 intel_crtc->config.dpll.m2 = clock.m2;
6113 intel_crtc->config.dpll.p1 = clock.p1;
6114 intel_crtc->config.dpll.p2 = clock.p2;
6115 }
6116
6117 if (IS_GEN2(dev)) {
6118 i8xx_update_pll(intel_crtc,
6119 has_reduced_clock ? &reduced_clock : NULL,
6120 num_connectors);
6121 } else if (IS_CHERRYVIEW(dev)) {
6122 chv_update_pll(intel_crtc);
6123 } else if (IS_VALLEYVIEW(dev)) {
6124 vlv_update_pll(intel_crtc);
6125 } else {
6126 i9xx_update_pll(intel_crtc,
6127 has_reduced_clock ? &reduced_clock : NULL,
6128 num_connectors);
6129 }
6130
6131 return 0;
6132 }
6133
6134 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6135 struct intel_crtc_config *pipe_config)
6136 {
6137 struct drm_device *dev = crtc->base.dev;
6138 struct drm_i915_private *dev_priv = dev->dev_private;
6139 uint32_t tmp;
6140
6141 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6142 return;
6143
6144 tmp = I915_READ(PFIT_CONTROL);
6145 if (!(tmp & PFIT_ENABLE))
6146 return;
6147
6148 /* Check whether the pfit is attached to our pipe. */
6149 if (INTEL_INFO(dev)->gen < 4) {
6150 if (crtc->pipe != PIPE_B)
6151 return;
6152 } else {
6153 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6154 return;
6155 }
6156
6157 pipe_config->gmch_pfit.control = tmp;
6158 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6159 if (INTEL_INFO(dev)->gen < 5)
6160 pipe_config->gmch_pfit.lvds_border_bits =
6161 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6162 }
6163
6164 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6165 struct intel_crtc_config *pipe_config)
6166 {
6167 struct drm_device *dev = crtc->base.dev;
6168 struct drm_i915_private *dev_priv = dev->dev_private;
6169 int pipe = pipe_config->cpu_transcoder;
6170 intel_clock_t clock;
6171 u32 mdiv;
6172 int refclk = 100000;
6173
6174 /* In case of MIPI DPLL will not even be used */
6175 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6176 return;
6177
6178 mutex_lock(&dev_priv->dpio_lock);
6179 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6180 mutex_unlock(&dev_priv->dpio_lock);
6181
6182 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6183 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6184 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6185 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6186 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6187
6188 vlv_clock(refclk, &clock);
6189
6190 /* clock.dot is the fast clock */
6191 pipe_config->port_clock = clock.dot / 5;
6192 }
6193
6194 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6195 struct intel_plane_config *plane_config)
6196 {
6197 struct drm_device *dev = crtc->base.dev;
6198 struct drm_i915_private *dev_priv = dev->dev_private;
6199 u32 val, base, offset;
6200 int pipe = crtc->pipe, plane = crtc->plane;
6201 int fourcc, pixel_format;
6202 int aligned_height;
6203
6204 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6205 if (!crtc->base.primary->fb) {
6206 DRM_DEBUG_KMS("failed to alloc fb\n");
6207 return;
6208 }
6209
6210 val = I915_READ(DSPCNTR(plane));
6211
6212 if (INTEL_INFO(dev)->gen >= 4)
6213 if (val & DISPPLANE_TILED)
6214 plane_config->tiled = true;
6215
6216 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6217 fourcc = intel_format_to_fourcc(pixel_format);
6218 crtc->base.primary->fb->pixel_format = fourcc;
6219 crtc->base.primary->fb->bits_per_pixel =
6220 drm_format_plane_cpp(fourcc, 0) * 8;
6221
6222 if (INTEL_INFO(dev)->gen >= 4) {
6223 if (plane_config->tiled)
6224 offset = I915_READ(DSPTILEOFF(plane));
6225 else
6226 offset = I915_READ(DSPLINOFF(plane));
6227 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6228 } else {
6229 base = I915_READ(DSPADDR(plane));
6230 }
6231 plane_config->base = base;
6232
6233 val = I915_READ(PIPESRC(pipe));
6234 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6235 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6236
6237 val = I915_READ(DSPSTRIDE(pipe));
6238 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6239
6240 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6241 plane_config->tiled);
6242
6243 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6244 aligned_height);
6245
6246 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6247 pipe, plane, crtc->base.primary->fb->width,
6248 crtc->base.primary->fb->height,
6249 crtc->base.primary->fb->bits_per_pixel, base,
6250 crtc->base.primary->fb->pitches[0],
6251 plane_config->size);
6252
6253 }
6254
6255 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6256 struct intel_crtc_config *pipe_config)
6257 {
6258 struct drm_device *dev = crtc->base.dev;
6259 struct drm_i915_private *dev_priv = dev->dev_private;
6260 int pipe = pipe_config->cpu_transcoder;
6261 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6262 intel_clock_t clock;
6263 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6264 int refclk = 100000;
6265
6266 mutex_lock(&dev_priv->dpio_lock);
6267 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6268 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6269 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6270 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6271 mutex_unlock(&dev_priv->dpio_lock);
6272
6273 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6274 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6275 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6276 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6277 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6278
6279 chv_clock(refclk, &clock);
6280
6281 /* clock.dot is the fast clock */
6282 pipe_config->port_clock = clock.dot / 5;
6283 }
6284
6285 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6286 struct intel_crtc_config *pipe_config)
6287 {
6288 struct drm_device *dev = crtc->base.dev;
6289 struct drm_i915_private *dev_priv = dev->dev_private;
6290 uint32_t tmp;
6291
6292 if (!intel_display_power_enabled(dev_priv,
6293 POWER_DOMAIN_PIPE(crtc->pipe)))
6294 return false;
6295
6296 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6297 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6298
6299 tmp = I915_READ(PIPECONF(crtc->pipe));
6300 if (!(tmp & PIPECONF_ENABLE))
6301 return false;
6302
6303 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6304 switch (tmp & PIPECONF_BPC_MASK) {
6305 case PIPECONF_6BPC:
6306 pipe_config->pipe_bpp = 18;
6307 break;
6308 case PIPECONF_8BPC:
6309 pipe_config->pipe_bpp = 24;
6310 break;
6311 case PIPECONF_10BPC:
6312 pipe_config->pipe_bpp = 30;
6313 break;
6314 default:
6315 break;
6316 }
6317 }
6318
6319 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6320 pipe_config->limited_color_range = true;
6321
6322 if (INTEL_INFO(dev)->gen < 4)
6323 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6324
6325 intel_get_pipe_timings(crtc, pipe_config);
6326
6327 i9xx_get_pfit_config(crtc, pipe_config);
6328
6329 if (INTEL_INFO(dev)->gen >= 4) {
6330 tmp = I915_READ(DPLL_MD(crtc->pipe));
6331 pipe_config->pixel_multiplier =
6332 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6333 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6334 pipe_config->dpll_hw_state.dpll_md = tmp;
6335 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6336 tmp = I915_READ(DPLL(crtc->pipe));
6337 pipe_config->pixel_multiplier =
6338 ((tmp & SDVO_MULTIPLIER_MASK)
6339 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6340 } else {
6341 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6342 * port and will be fixed up in the encoder->get_config
6343 * function. */
6344 pipe_config->pixel_multiplier = 1;
6345 }
6346 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6347 if (!IS_VALLEYVIEW(dev)) {
6348 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6349 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6350 } else {
6351 /* Mask out read-only status bits. */
6352 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6353 DPLL_PORTC_READY_MASK |
6354 DPLL_PORTB_READY_MASK);
6355 }
6356
6357 if (IS_CHERRYVIEW(dev))
6358 chv_crtc_clock_get(crtc, pipe_config);
6359 else if (IS_VALLEYVIEW(dev))
6360 vlv_crtc_clock_get(crtc, pipe_config);
6361 else
6362 i9xx_crtc_clock_get(crtc, pipe_config);
6363
6364 return true;
6365 }
6366
6367 static void ironlake_init_pch_refclk(struct drm_device *dev)
6368 {
6369 struct drm_i915_private *dev_priv = dev->dev_private;
6370 struct drm_mode_config *mode_config = &dev->mode_config;
6371 struct intel_encoder *encoder;
6372 u32 val, final;
6373 bool has_lvds = false;
6374 bool has_cpu_edp = false;
6375 bool has_panel = false;
6376 bool has_ck505 = false;
6377 bool can_ssc = false;
6378
6379 /* We need to take the global config into account */
6380 list_for_each_entry(encoder, &mode_config->encoder_list,
6381 base.head) {
6382 switch (encoder->type) {
6383 case INTEL_OUTPUT_LVDS:
6384 has_panel = true;
6385 has_lvds = true;
6386 break;
6387 case INTEL_OUTPUT_EDP:
6388 has_panel = true;
6389 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6390 has_cpu_edp = true;
6391 break;
6392 }
6393 }
6394
6395 if (HAS_PCH_IBX(dev)) {
6396 has_ck505 = dev_priv->vbt.display_clock_mode;
6397 can_ssc = has_ck505;
6398 } else {
6399 has_ck505 = false;
6400 can_ssc = true;
6401 }
6402
6403 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6404 has_panel, has_lvds, has_ck505);
6405
6406 /* Ironlake: try to setup display ref clock before DPLL
6407 * enabling. This is only under driver's control after
6408 * PCH B stepping, previous chipset stepping should be
6409 * ignoring this setting.
6410 */
6411 val = I915_READ(PCH_DREF_CONTROL);
6412
6413 /* As we must carefully and slowly disable/enable each source in turn,
6414 * compute the final state we want first and check if we need to
6415 * make any changes at all.
6416 */
6417 final = val;
6418 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6419 if (has_ck505)
6420 final |= DREF_NONSPREAD_CK505_ENABLE;
6421 else
6422 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6423
6424 final &= ~DREF_SSC_SOURCE_MASK;
6425 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6426 final &= ~DREF_SSC1_ENABLE;
6427
6428 if (has_panel) {
6429 final |= DREF_SSC_SOURCE_ENABLE;
6430
6431 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6432 final |= DREF_SSC1_ENABLE;
6433
6434 if (has_cpu_edp) {
6435 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6436 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6437 else
6438 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6439 } else
6440 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6441 } else {
6442 final |= DREF_SSC_SOURCE_DISABLE;
6443 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6444 }
6445
6446 if (final == val)
6447 return;
6448
6449 /* Always enable nonspread source */
6450 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6451
6452 if (has_ck505)
6453 val |= DREF_NONSPREAD_CK505_ENABLE;
6454 else
6455 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6456
6457 if (has_panel) {
6458 val &= ~DREF_SSC_SOURCE_MASK;
6459 val |= DREF_SSC_SOURCE_ENABLE;
6460
6461 /* SSC must be turned on before enabling the CPU output */
6462 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6463 DRM_DEBUG_KMS("Using SSC on panel\n");
6464 val |= DREF_SSC1_ENABLE;
6465 } else
6466 val &= ~DREF_SSC1_ENABLE;
6467
6468 /* Get SSC going before enabling the outputs */
6469 I915_WRITE(PCH_DREF_CONTROL, val);
6470 POSTING_READ(PCH_DREF_CONTROL);
6471 udelay(200);
6472
6473 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6474
6475 /* Enable CPU source on CPU attached eDP */
6476 if (has_cpu_edp) {
6477 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6478 DRM_DEBUG_KMS("Using SSC on eDP\n");
6479 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6480 } else
6481 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6482 } else
6483 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6484
6485 I915_WRITE(PCH_DREF_CONTROL, val);
6486 POSTING_READ(PCH_DREF_CONTROL);
6487 udelay(200);
6488 } else {
6489 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6490
6491 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6492
6493 /* Turn off CPU output */
6494 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6495
6496 I915_WRITE(PCH_DREF_CONTROL, val);
6497 POSTING_READ(PCH_DREF_CONTROL);
6498 udelay(200);
6499
6500 /* Turn off the SSC source */
6501 val &= ~DREF_SSC_SOURCE_MASK;
6502 val |= DREF_SSC_SOURCE_DISABLE;
6503
6504 /* Turn off SSC1 */
6505 val &= ~DREF_SSC1_ENABLE;
6506
6507 I915_WRITE(PCH_DREF_CONTROL, val);
6508 POSTING_READ(PCH_DREF_CONTROL);
6509 udelay(200);
6510 }
6511
6512 BUG_ON(val != final);
6513 }
6514
6515 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6516 {
6517 uint32_t tmp;
6518
6519 tmp = I915_READ(SOUTH_CHICKEN2);
6520 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6521 I915_WRITE(SOUTH_CHICKEN2, tmp);
6522
6523 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6524 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6525 DRM_ERROR("FDI mPHY reset assert timeout\n");
6526
6527 tmp = I915_READ(SOUTH_CHICKEN2);
6528 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6529 I915_WRITE(SOUTH_CHICKEN2, tmp);
6530
6531 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6532 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6533 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6534 }
6535
6536 /* WaMPhyProgramming:hsw */
6537 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6538 {
6539 uint32_t tmp;
6540
6541 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6542 tmp &= ~(0xFF << 24);
6543 tmp |= (0x12 << 24);
6544 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6545
6546 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6547 tmp |= (1 << 11);
6548 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6549
6550 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6551 tmp |= (1 << 11);
6552 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6553
6554 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6555 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6556 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6557
6558 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6559 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6560 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6561
6562 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6563 tmp &= ~(7 << 13);
6564 tmp |= (5 << 13);
6565 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6566
6567 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6568 tmp &= ~(7 << 13);
6569 tmp |= (5 << 13);
6570 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6571
6572 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6573 tmp &= ~0xFF;
6574 tmp |= 0x1C;
6575 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6576
6577 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6578 tmp &= ~0xFF;
6579 tmp |= 0x1C;
6580 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6581
6582 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6583 tmp &= ~(0xFF << 16);
6584 tmp |= (0x1C << 16);
6585 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6586
6587 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6588 tmp &= ~(0xFF << 16);
6589 tmp |= (0x1C << 16);
6590 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6591
6592 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6593 tmp |= (1 << 27);
6594 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6595
6596 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6597 tmp |= (1 << 27);
6598 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6599
6600 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6601 tmp &= ~(0xF << 28);
6602 tmp |= (4 << 28);
6603 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6604
6605 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6606 tmp &= ~(0xF << 28);
6607 tmp |= (4 << 28);
6608 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6609 }
6610
6611 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6612 * Programming" based on the parameters passed:
6613 * - Sequence to enable CLKOUT_DP
6614 * - Sequence to enable CLKOUT_DP without spread
6615 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6616 */
6617 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6618 bool with_fdi)
6619 {
6620 struct drm_i915_private *dev_priv = dev->dev_private;
6621 uint32_t reg, tmp;
6622
6623 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6624 with_spread = true;
6625 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6626 with_fdi, "LP PCH doesn't have FDI\n"))
6627 with_fdi = false;
6628
6629 mutex_lock(&dev_priv->dpio_lock);
6630
6631 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6632 tmp &= ~SBI_SSCCTL_DISABLE;
6633 tmp |= SBI_SSCCTL_PATHALT;
6634 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6635
6636 udelay(24);
6637
6638 if (with_spread) {
6639 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6640 tmp &= ~SBI_SSCCTL_PATHALT;
6641 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6642
6643 if (with_fdi) {
6644 lpt_reset_fdi_mphy(dev_priv);
6645 lpt_program_fdi_mphy(dev_priv);
6646 }
6647 }
6648
6649 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6650 SBI_GEN0 : SBI_DBUFF0;
6651 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6652 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6653 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6654
6655 mutex_unlock(&dev_priv->dpio_lock);
6656 }
6657
6658 /* Sequence to disable CLKOUT_DP */
6659 static void lpt_disable_clkout_dp(struct drm_device *dev)
6660 {
6661 struct drm_i915_private *dev_priv = dev->dev_private;
6662 uint32_t reg, tmp;
6663
6664 mutex_lock(&dev_priv->dpio_lock);
6665
6666 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6667 SBI_GEN0 : SBI_DBUFF0;
6668 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6669 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6670 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6671
6672 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6673 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6674 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6675 tmp |= SBI_SSCCTL_PATHALT;
6676 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6677 udelay(32);
6678 }
6679 tmp |= SBI_SSCCTL_DISABLE;
6680 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6681 }
6682
6683 mutex_unlock(&dev_priv->dpio_lock);
6684 }
6685
6686 static void lpt_init_pch_refclk(struct drm_device *dev)
6687 {
6688 struct drm_mode_config *mode_config = &dev->mode_config;
6689 struct intel_encoder *encoder;
6690 bool has_vga = false;
6691
6692 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6693 switch (encoder->type) {
6694 case INTEL_OUTPUT_ANALOG:
6695 has_vga = true;
6696 break;
6697 }
6698 }
6699
6700 if (has_vga)
6701 lpt_enable_clkout_dp(dev, true, true);
6702 else
6703 lpt_disable_clkout_dp(dev);
6704 }
6705
6706 /*
6707 * Initialize reference clocks when the driver loads
6708 */
6709 void intel_init_pch_refclk(struct drm_device *dev)
6710 {
6711 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6712 ironlake_init_pch_refclk(dev);
6713 else if (HAS_PCH_LPT(dev))
6714 lpt_init_pch_refclk(dev);
6715 }
6716
6717 static int ironlake_get_refclk(struct drm_crtc *crtc)
6718 {
6719 struct drm_device *dev = crtc->dev;
6720 struct drm_i915_private *dev_priv = dev->dev_private;
6721 struct intel_encoder *encoder;
6722 int num_connectors = 0;
6723 bool is_lvds = false;
6724
6725 for_each_encoder_on_crtc(dev, crtc, encoder) {
6726 switch (encoder->type) {
6727 case INTEL_OUTPUT_LVDS:
6728 is_lvds = true;
6729 break;
6730 }
6731 num_connectors++;
6732 }
6733
6734 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6735 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6736 dev_priv->vbt.lvds_ssc_freq);
6737 return dev_priv->vbt.lvds_ssc_freq;
6738 }
6739
6740 return 120000;
6741 }
6742
6743 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6744 {
6745 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6747 int pipe = intel_crtc->pipe;
6748 uint32_t val;
6749
6750 val = 0;
6751
6752 switch (intel_crtc->config.pipe_bpp) {
6753 case 18:
6754 val |= PIPECONF_6BPC;
6755 break;
6756 case 24:
6757 val |= PIPECONF_8BPC;
6758 break;
6759 case 30:
6760 val |= PIPECONF_10BPC;
6761 break;
6762 case 36:
6763 val |= PIPECONF_12BPC;
6764 break;
6765 default:
6766 /* Case prevented by intel_choose_pipe_bpp_dither. */
6767 BUG();
6768 }
6769
6770 if (intel_crtc->config.dither)
6771 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6772
6773 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6774 val |= PIPECONF_INTERLACED_ILK;
6775 else
6776 val |= PIPECONF_PROGRESSIVE;
6777
6778 if (intel_crtc->config.limited_color_range)
6779 val |= PIPECONF_COLOR_RANGE_SELECT;
6780
6781 I915_WRITE(PIPECONF(pipe), val);
6782 POSTING_READ(PIPECONF(pipe));
6783 }
6784
6785 /*
6786 * Set up the pipe CSC unit.
6787 *
6788 * Currently only full range RGB to limited range RGB conversion
6789 * is supported, but eventually this should handle various
6790 * RGB<->YCbCr scenarios as well.
6791 */
6792 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6793 {
6794 struct drm_device *dev = crtc->dev;
6795 struct drm_i915_private *dev_priv = dev->dev_private;
6796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6797 int pipe = intel_crtc->pipe;
6798 uint16_t coeff = 0x7800; /* 1.0 */
6799
6800 /*
6801 * TODO: Check what kind of values actually come out of the pipe
6802 * with these coeff/postoff values and adjust to get the best
6803 * accuracy. Perhaps we even need to take the bpc value into
6804 * consideration.
6805 */
6806
6807 if (intel_crtc->config.limited_color_range)
6808 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6809
6810 /*
6811 * GY/GU and RY/RU should be the other way around according
6812 * to BSpec, but reality doesn't agree. Just set them up in
6813 * a way that results in the correct picture.
6814 */
6815 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6816 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6817
6818 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6819 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6820
6821 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6822 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6823
6824 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6825 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6826 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6827
6828 if (INTEL_INFO(dev)->gen > 6) {
6829 uint16_t postoff = 0;
6830
6831 if (intel_crtc->config.limited_color_range)
6832 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6833
6834 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6835 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6836 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6837
6838 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6839 } else {
6840 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6841
6842 if (intel_crtc->config.limited_color_range)
6843 mode |= CSC_BLACK_SCREEN_OFFSET;
6844
6845 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6846 }
6847 }
6848
6849 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6850 {
6851 struct drm_device *dev = crtc->dev;
6852 struct drm_i915_private *dev_priv = dev->dev_private;
6853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6854 enum pipe pipe = intel_crtc->pipe;
6855 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6856 uint32_t val;
6857
6858 val = 0;
6859
6860 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6861 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6862
6863 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6864 val |= PIPECONF_INTERLACED_ILK;
6865 else
6866 val |= PIPECONF_PROGRESSIVE;
6867
6868 I915_WRITE(PIPECONF(cpu_transcoder), val);
6869 POSTING_READ(PIPECONF(cpu_transcoder));
6870
6871 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6872 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6873
6874 if (IS_BROADWELL(dev)) {
6875 val = 0;
6876
6877 switch (intel_crtc->config.pipe_bpp) {
6878 case 18:
6879 val |= PIPEMISC_DITHER_6_BPC;
6880 break;
6881 case 24:
6882 val |= PIPEMISC_DITHER_8_BPC;
6883 break;
6884 case 30:
6885 val |= PIPEMISC_DITHER_10_BPC;
6886 break;
6887 case 36:
6888 val |= PIPEMISC_DITHER_12_BPC;
6889 break;
6890 default:
6891 /* Case prevented by pipe_config_set_bpp. */
6892 BUG();
6893 }
6894
6895 if (intel_crtc->config.dither)
6896 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6897
6898 I915_WRITE(PIPEMISC(pipe), val);
6899 }
6900 }
6901
6902 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6903 intel_clock_t *clock,
6904 bool *has_reduced_clock,
6905 intel_clock_t *reduced_clock)
6906 {
6907 struct drm_device *dev = crtc->dev;
6908 struct drm_i915_private *dev_priv = dev->dev_private;
6909 struct intel_encoder *intel_encoder;
6910 int refclk;
6911 const intel_limit_t *limit;
6912 bool ret, is_lvds = false;
6913
6914 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6915 switch (intel_encoder->type) {
6916 case INTEL_OUTPUT_LVDS:
6917 is_lvds = true;
6918 break;
6919 }
6920 }
6921
6922 refclk = ironlake_get_refclk(crtc);
6923
6924 /*
6925 * Returns a set of divisors for the desired target clock with the given
6926 * refclk, or FALSE. The returned values represent the clock equation:
6927 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6928 */
6929 limit = intel_limit(crtc, refclk);
6930 ret = dev_priv->display.find_dpll(limit, crtc,
6931 to_intel_crtc(crtc)->config.port_clock,
6932 refclk, NULL, clock);
6933 if (!ret)
6934 return false;
6935
6936 if (is_lvds && dev_priv->lvds_downclock_avail) {
6937 /*
6938 * Ensure we match the reduced clock's P to the target clock.
6939 * If the clocks don't match, we can't switch the display clock
6940 * by using the FP0/FP1. In such case we will disable the LVDS
6941 * downclock feature.
6942 */
6943 *has_reduced_clock =
6944 dev_priv->display.find_dpll(limit, crtc,
6945 dev_priv->lvds_downclock,
6946 refclk, clock,
6947 reduced_clock);
6948 }
6949
6950 return true;
6951 }
6952
6953 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6954 {
6955 /*
6956 * Account for spread spectrum to avoid
6957 * oversubscribing the link. Max center spread
6958 * is 2.5%; use 5% for safety's sake.
6959 */
6960 u32 bps = target_clock * bpp * 21 / 20;
6961 return DIV_ROUND_UP(bps, link_bw * 8);
6962 }
6963
6964 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6965 {
6966 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6967 }
6968
6969 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6970 u32 *fp,
6971 intel_clock_t *reduced_clock, u32 *fp2)
6972 {
6973 struct drm_crtc *crtc = &intel_crtc->base;
6974 struct drm_device *dev = crtc->dev;
6975 struct drm_i915_private *dev_priv = dev->dev_private;
6976 struct intel_encoder *intel_encoder;
6977 uint32_t dpll;
6978 int factor, num_connectors = 0;
6979 bool is_lvds = false, is_sdvo = false;
6980
6981 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6982 switch (intel_encoder->type) {
6983 case INTEL_OUTPUT_LVDS:
6984 is_lvds = true;
6985 break;
6986 case INTEL_OUTPUT_SDVO:
6987 case INTEL_OUTPUT_HDMI:
6988 is_sdvo = true;
6989 break;
6990 }
6991
6992 num_connectors++;
6993 }
6994
6995 /* Enable autotuning of the PLL clock (if permissible) */
6996 factor = 21;
6997 if (is_lvds) {
6998 if ((intel_panel_use_ssc(dev_priv) &&
6999 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7000 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7001 factor = 25;
7002 } else if (intel_crtc->config.sdvo_tv_clock)
7003 factor = 20;
7004
7005 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7006 *fp |= FP_CB_TUNE;
7007
7008 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7009 *fp2 |= FP_CB_TUNE;
7010
7011 dpll = 0;
7012
7013 if (is_lvds)
7014 dpll |= DPLLB_MODE_LVDS;
7015 else
7016 dpll |= DPLLB_MODE_DAC_SERIAL;
7017
7018 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7019 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7020
7021 if (is_sdvo)
7022 dpll |= DPLL_SDVO_HIGH_SPEED;
7023 if (intel_crtc->config.has_dp_encoder)
7024 dpll |= DPLL_SDVO_HIGH_SPEED;
7025
7026 /* compute bitmask from p1 value */
7027 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7028 /* also FPA1 */
7029 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7030
7031 switch (intel_crtc->config.dpll.p2) {
7032 case 5:
7033 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7034 break;
7035 case 7:
7036 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7037 break;
7038 case 10:
7039 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7040 break;
7041 case 14:
7042 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7043 break;
7044 }
7045
7046 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7047 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7048 else
7049 dpll |= PLL_REF_INPUT_DREFCLK;
7050
7051 return dpll | DPLL_VCO_ENABLE;
7052 }
7053
7054 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7055 int x, int y,
7056 struct drm_framebuffer *fb)
7057 {
7058 struct drm_device *dev = crtc->dev;
7059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7060 int num_connectors = 0;
7061 intel_clock_t clock, reduced_clock;
7062 u32 dpll = 0, fp = 0, fp2 = 0;
7063 bool ok, has_reduced_clock = false;
7064 bool is_lvds = false;
7065 struct intel_encoder *encoder;
7066 struct intel_shared_dpll *pll;
7067
7068 for_each_encoder_on_crtc(dev, crtc, encoder) {
7069 switch (encoder->type) {
7070 case INTEL_OUTPUT_LVDS:
7071 is_lvds = true;
7072 break;
7073 }
7074
7075 num_connectors++;
7076 }
7077
7078 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7079 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7080
7081 ok = ironlake_compute_clocks(crtc, &clock,
7082 &has_reduced_clock, &reduced_clock);
7083 if (!ok && !intel_crtc->config.clock_set) {
7084 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7085 return -EINVAL;
7086 }
7087 /* Compat-code for transition, will disappear. */
7088 if (!intel_crtc->config.clock_set) {
7089 intel_crtc->config.dpll.n = clock.n;
7090 intel_crtc->config.dpll.m1 = clock.m1;
7091 intel_crtc->config.dpll.m2 = clock.m2;
7092 intel_crtc->config.dpll.p1 = clock.p1;
7093 intel_crtc->config.dpll.p2 = clock.p2;
7094 }
7095
7096 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7097 if (intel_crtc->config.has_pch_encoder) {
7098 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7099 if (has_reduced_clock)
7100 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7101
7102 dpll = ironlake_compute_dpll(intel_crtc,
7103 &fp, &reduced_clock,
7104 has_reduced_clock ? &fp2 : NULL);
7105
7106 intel_crtc->config.dpll_hw_state.dpll = dpll;
7107 intel_crtc->config.dpll_hw_state.fp0 = fp;
7108 if (has_reduced_clock)
7109 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7110 else
7111 intel_crtc->config.dpll_hw_state.fp1 = fp;
7112
7113 pll = intel_get_shared_dpll(intel_crtc);
7114 if (pll == NULL) {
7115 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7116 pipe_name(intel_crtc->pipe));
7117 return -EINVAL;
7118 }
7119 } else
7120 intel_put_shared_dpll(intel_crtc);
7121
7122 if (is_lvds && has_reduced_clock && i915.powersave)
7123 intel_crtc->lowfreq_avail = true;
7124 else
7125 intel_crtc->lowfreq_avail = false;
7126
7127 return 0;
7128 }
7129
7130 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7131 struct intel_link_m_n *m_n)
7132 {
7133 struct drm_device *dev = crtc->base.dev;
7134 struct drm_i915_private *dev_priv = dev->dev_private;
7135 enum pipe pipe = crtc->pipe;
7136
7137 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7138 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7139 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7140 & ~TU_SIZE_MASK;
7141 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7142 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7143 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7144 }
7145
7146 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7147 enum transcoder transcoder,
7148 struct intel_link_m_n *m_n)
7149 {
7150 struct drm_device *dev = crtc->base.dev;
7151 struct drm_i915_private *dev_priv = dev->dev_private;
7152 enum pipe pipe = crtc->pipe;
7153
7154 if (INTEL_INFO(dev)->gen >= 5) {
7155 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7156 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7157 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7158 & ~TU_SIZE_MASK;
7159 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7160 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7161 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7162 } else {
7163 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7164 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7165 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7166 & ~TU_SIZE_MASK;
7167 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7168 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7169 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7170 }
7171 }
7172
7173 void intel_dp_get_m_n(struct intel_crtc *crtc,
7174 struct intel_crtc_config *pipe_config)
7175 {
7176 if (crtc->config.has_pch_encoder)
7177 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7178 else
7179 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7180 &pipe_config->dp_m_n);
7181 }
7182
7183 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7184 struct intel_crtc_config *pipe_config)
7185 {
7186 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7187 &pipe_config->fdi_m_n);
7188 }
7189
7190 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7191 struct intel_crtc_config *pipe_config)
7192 {
7193 struct drm_device *dev = crtc->base.dev;
7194 struct drm_i915_private *dev_priv = dev->dev_private;
7195 uint32_t tmp;
7196
7197 tmp = I915_READ(PF_CTL(crtc->pipe));
7198
7199 if (tmp & PF_ENABLE) {
7200 pipe_config->pch_pfit.enabled = true;
7201 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7202 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7203
7204 /* We currently do not free assignements of panel fitters on
7205 * ivb/hsw (since we don't use the higher upscaling modes which
7206 * differentiates them) so just WARN about this case for now. */
7207 if (IS_GEN7(dev)) {
7208 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7209 PF_PIPE_SEL_IVB(crtc->pipe));
7210 }
7211 }
7212 }
7213
7214 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7215 struct intel_plane_config *plane_config)
7216 {
7217 struct drm_device *dev = crtc->base.dev;
7218 struct drm_i915_private *dev_priv = dev->dev_private;
7219 u32 val, base, offset;
7220 int pipe = crtc->pipe, plane = crtc->plane;
7221 int fourcc, pixel_format;
7222 int aligned_height;
7223
7224 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7225 if (!crtc->base.primary->fb) {
7226 DRM_DEBUG_KMS("failed to alloc fb\n");
7227 return;
7228 }
7229
7230 val = I915_READ(DSPCNTR(plane));
7231
7232 if (INTEL_INFO(dev)->gen >= 4)
7233 if (val & DISPPLANE_TILED)
7234 plane_config->tiled = true;
7235
7236 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7237 fourcc = intel_format_to_fourcc(pixel_format);
7238 crtc->base.primary->fb->pixel_format = fourcc;
7239 crtc->base.primary->fb->bits_per_pixel =
7240 drm_format_plane_cpp(fourcc, 0) * 8;
7241
7242 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7243 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7244 offset = I915_READ(DSPOFFSET(plane));
7245 } else {
7246 if (plane_config->tiled)
7247 offset = I915_READ(DSPTILEOFF(plane));
7248 else
7249 offset = I915_READ(DSPLINOFF(plane));
7250 }
7251 plane_config->base = base;
7252
7253 val = I915_READ(PIPESRC(pipe));
7254 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7255 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7256
7257 val = I915_READ(DSPSTRIDE(pipe));
7258 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7259
7260 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7261 plane_config->tiled);
7262
7263 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7264 aligned_height);
7265
7266 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7267 pipe, plane, crtc->base.primary->fb->width,
7268 crtc->base.primary->fb->height,
7269 crtc->base.primary->fb->bits_per_pixel, base,
7270 crtc->base.primary->fb->pitches[0],
7271 plane_config->size);
7272 }
7273
7274 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7275 struct intel_crtc_config *pipe_config)
7276 {
7277 struct drm_device *dev = crtc->base.dev;
7278 struct drm_i915_private *dev_priv = dev->dev_private;
7279 uint32_t tmp;
7280
7281 if (!intel_display_power_enabled(dev_priv,
7282 POWER_DOMAIN_PIPE(crtc->pipe)))
7283 return false;
7284
7285 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7286 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7287
7288 tmp = I915_READ(PIPECONF(crtc->pipe));
7289 if (!(tmp & PIPECONF_ENABLE))
7290 return false;
7291
7292 switch (tmp & PIPECONF_BPC_MASK) {
7293 case PIPECONF_6BPC:
7294 pipe_config->pipe_bpp = 18;
7295 break;
7296 case PIPECONF_8BPC:
7297 pipe_config->pipe_bpp = 24;
7298 break;
7299 case PIPECONF_10BPC:
7300 pipe_config->pipe_bpp = 30;
7301 break;
7302 case PIPECONF_12BPC:
7303 pipe_config->pipe_bpp = 36;
7304 break;
7305 default:
7306 break;
7307 }
7308
7309 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7310 pipe_config->limited_color_range = true;
7311
7312 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7313 struct intel_shared_dpll *pll;
7314
7315 pipe_config->has_pch_encoder = true;
7316
7317 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7318 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7319 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7320
7321 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7322
7323 if (HAS_PCH_IBX(dev_priv->dev)) {
7324 pipe_config->shared_dpll =
7325 (enum intel_dpll_id) crtc->pipe;
7326 } else {
7327 tmp = I915_READ(PCH_DPLL_SEL);
7328 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7329 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7330 else
7331 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7332 }
7333
7334 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7335
7336 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7337 &pipe_config->dpll_hw_state));
7338
7339 tmp = pipe_config->dpll_hw_state.dpll;
7340 pipe_config->pixel_multiplier =
7341 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7342 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7343
7344 ironlake_pch_clock_get(crtc, pipe_config);
7345 } else {
7346 pipe_config->pixel_multiplier = 1;
7347 }
7348
7349 intel_get_pipe_timings(crtc, pipe_config);
7350
7351 ironlake_get_pfit_config(crtc, pipe_config);
7352
7353 return true;
7354 }
7355
7356 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7357 {
7358 struct drm_device *dev = dev_priv->dev;
7359 struct intel_crtc *crtc;
7360
7361 for_each_intel_crtc(dev, crtc)
7362 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7363 pipe_name(crtc->pipe));
7364
7365 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7366 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7367 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7368 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7369 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7370 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7371 "CPU PWM1 enabled\n");
7372 if (IS_HASWELL(dev))
7373 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7374 "CPU PWM2 enabled\n");
7375 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7376 "PCH PWM1 enabled\n");
7377 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7378 "Utility pin enabled\n");
7379 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7380
7381 /*
7382 * In theory we can still leave IRQs enabled, as long as only the HPD
7383 * interrupts remain enabled. We used to check for that, but since it's
7384 * gen-specific and since we only disable LCPLL after we fully disable
7385 * the interrupts, the check below should be enough.
7386 */
7387 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7388 }
7389
7390 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7391 {
7392 struct drm_device *dev = dev_priv->dev;
7393
7394 if (IS_HASWELL(dev))
7395 return I915_READ(D_COMP_HSW);
7396 else
7397 return I915_READ(D_COMP_BDW);
7398 }
7399
7400 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7401 {
7402 struct drm_device *dev = dev_priv->dev;
7403
7404 if (IS_HASWELL(dev)) {
7405 mutex_lock(&dev_priv->rps.hw_lock);
7406 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7407 val))
7408 DRM_ERROR("Failed to write to D_COMP\n");
7409 mutex_unlock(&dev_priv->rps.hw_lock);
7410 } else {
7411 I915_WRITE(D_COMP_BDW, val);
7412 POSTING_READ(D_COMP_BDW);
7413 }
7414 }
7415
7416 /*
7417 * This function implements pieces of two sequences from BSpec:
7418 * - Sequence for display software to disable LCPLL
7419 * - Sequence for display software to allow package C8+
7420 * The steps implemented here are just the steps that actually touch the LCPLL
7421 * register. Callers should take care of disabling all the display engine
7422 * functions, doing the mode unset, fixing interrupts, etc.
7423 */
7424 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7425 bool switch_to_fclk, bool allow_power_down)
7426 {
7427 uint32_t val;
7428
7429 assert_can_disable_lcpll(dev_priv);
7430
7431 val = I915_READ(LCPLL_CTL);
7432
7433 if (switch_to_fclk) {
7434 val |= LCPLL_CD_SOURCE_FCLK;
7435 I915_WRITE(LCPLL_CTL, val);
7436
7437 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7438 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7439 DRM_ERROR("Switching to FCLK failed\n");
7440
7441 val = I915_READ(LCPLL_CTL);
7442 }
7443
7444 val |= LCPLL_PLL_DISABLE;
7445 I915_WRITE(LCPLL_CTL, val);
7446 POSTING_READ(LCPLL_CTL);
7447
7448 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7449 DRM_ERROR("LCPLL still locked\n");
7450
7451 val = hsw_read_dcomp(dev_priv);
7452 val |= D_COMP_COMP_DISABLE;
7453 hsw_write_dcomp(dev_priv, val);
7454 ndelay(100);
7455
7456 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7457 1))
7458 DRM_ERROR("D_COMP RCOMP still in progress\n");
7459
7460 if (allow_power_down) {
7461 val = I915_READ(LCPLL_CTL);
7462 val |= LCPLL_POWER_DOWN_ALLOW;
7463 I915_WRITE(LCPLL_CTL, val);
7464 POSTING_READ(LCPLL_CTL);
7465 }
7466 }
7467
7468 /*
7469 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7470 * source.
7471 */
7472 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7473 {
7474 uint32_t val;
7475 unsigned long irqflags;
7476
7477 val = I915_READ(LCPLL_CTL);
7478
7479 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7480 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7481 return;
7482
7483 /*
7484 * Make sure we're not on PC8 state before disabling PC8, otherwise
7485 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7486 *
7487 * The other problem is that hsw_restore_lcpll() is called as part of
7488 * the runtime PM resume sequence, so we can't just call
7489 * gen6_gt_force_wake_get() because that function calls
7490 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7491 * while we are on the resume sequence. So to solve this problem we have
7492 * to call special forcewake code that doesn't touch runtime PM and
7493 * doesn't enable the forcewake delayed work.
7494 */
7495 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7496 if (dev_priv->uncore.forcewake_count++ == 0)
7497 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7498 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7499
7500 if (val & LCPLL_POWER_DOWN_ALLOW) {
7501 val &= ~LCPLL_POWER_DOWN_ALLOW;
7502 I915_WRITE(LCPLL_CTL, val);
7503 POSTING_READ(LCPLL_CTL);
7504 }
7505
7506 val = hsw_read_dcomp(dev_priv);
7507 val |= D_COMP_COMP_FORCE;
7508 val &= ~D_COMP_COMP_DISABLE;
7509 hsw_write_dcomp(dev_priv, val);
7510
7511 val = I915_READ(LCPLL_CTL);
7512 val &= ~LCPLL_PLL_DISABLE;
7513 I915_WRITE(LCPLL_CTL, val);
7514
7515 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7516 DRM_ERROR("LCPLL not locked yet\n");
7517
7518 if (val & LCPLL_CD_SOURCE_FCLK) {
7519 val = I915_READ(LCPLL_CTL);
7520 val &= ~LCPLL_CD_SOURCE_FCLK;
7521 I915_WRITE(LCPLL_CTL, val);
7522
7523 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7524 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7525 DRM_ERROR("Switching back to LCPLL failed\n");
7526 }
7527
7528 /* See the big comment above. */
7529 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7530 if (--dev_priv->uncore.forcewake_count == 0)
7531 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7532 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7533 }
7534
7535 /*
7536 * Package states C8 and deeper are really deep PC states that can only be
7537 * reached when all the devices on the system allow it, so even if the graphics
7538 * device allows PC8+, it doesn't mean the system will actually get to these
7539 * states. Our driver only allows PC8+ when going into runtime PM.
7540 *
7541 * The requirements for PC8+ are that all the outputs are disabled, the power
7542 * well is disabled and most interrupts are disabled, and these are also
7543 * requirements for runtime PM. When these conditions are met, we manually do
7544 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7545 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7546 * hang the machine.
7547 *
7548 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7549 * the state of some registers, so when we come back from PC8+ we need to
7550 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7551 * need to take care of the registers kept by RC6. Notice that this happens even
7552 * if we don't put the device in PCI D3 state (which is what currently happens
7553 * because of the runtime PM support).
7554 *
7555 * For more, read "Display Sequences for Package C8" on the hardware
7556 * documentation.
7557 */
7558 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7559 {
7560 struct drm_device *dev = dev_priv->dev;
7561 uint32_t val;
7562
7563 DRM_DEBUG_KMS("Enabling package C8+\n");
7564
7565 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7566 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7567 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7568 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7569 }
7570
7571 lpt_disable_clkout_dp(dev);
7572 hsw_disable_lcpll(dev_priv, true, true);
7573 }
7574
7575 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7576 {
7577 struct drm_device *dev = dev_priv->dev;
7578 uint32_t val;
7579
7580 DRM_DEBUG_KMS("Disabling package C8+\n");
7581
7582 hsw_restore_lcpll(dev_priv);
7583 lpt_init_pch_refclk(dev);
7584
7585 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7586 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7587 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7588 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7589 }
7590
7591 intel_prepare_ddi(dev);
7592 }
7593
7594 static void snb_modeset_global_resources(struct drm_device *dev)
7595 {
7596 modeset_update_crtc_power_domains(dev);
7597 }
7598
7599 static void haswell_modeset_global_resources(struct drm_device *dev)
7600 {
7601 modeset_update_crtc_power_domains(dev);
7602 }
7603
7604 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7605 int x, int y,
7606 struct drm_framebuffer *fb)
7607 {
7608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7609
7610 if (!intel_ddi_pll_select(intel_crtc))
7611 return -EINVAL;
7612
7613 intel_crtc->lowfreq_avail = false;
7614
7615 return 0;
7616 }
7617
7618 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7619 struct intel_crtc_config *pipe_config)
7620 {
7621 struct drm_device *dev = crtc->base.dev;
7622 struct drm_i915_private *dev_priv = dev->dev_private;
7623 struct intel_shared_dpll *pll;
7624 enum port port;
7625 uint32_t tmp;
7626
7627 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7628
7629 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7630
7631 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7632
7633 switch (pipe_config->ddi_pll_sel) {
7634 case PORT_CLK_SEL_WRPLL1:
7635 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7636 break;
7637 case PORT_CLK_SEL_WRPLL2:
7638 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7639 break;
7640 }
7641
7642 if (pipe_config->shared_dpll >= 0) {
7643 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7644
7645 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7646 &pipe_config->dpll_hw_state));
7647 }
7648
7649 /*
7650 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7651 * DDI E. So just check whether this pipe is wired to DDI E and whether
7652 * the PCH transcoder is on.
7653 */
7654 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7655 pipe_config->has_pch_encoder = true;
7656
7657 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7658 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7659 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7660
7661 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7662 }
7663 }
7664
7665 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7666 struct intel_crtc_config *pipe_config)
7667 {
7668 struct drm_device *dev = crtc->base.dev;
7669 struct drm_i915_private *dev_priv = dev->dev_private;
7670 enum intel_display_power_domain pfit_domain;
7671 uint32_t tmp;
7672
7673 if (!intel_display_power_enabled(dev_priv,
7674 POWER_DOMAIN_PIPE(crtc->pipe)))
7675 return false;
7676
7677 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7678 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7679
7680 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7681 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7682 enum pipe trans_edp_pipe;
7683 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7684 default:
7685 WARN(1, "unknown pipe linked to edp transcoder\n");
7686 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7687 case TRANS_DDI_EDP_INPUT_A_ON:
7688 trans_edp_pipe = PIPE_A;
7689 break;
7690 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7691 trans_edp_pipe = PIPE_B;
7692 break;
7693 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7694 trans_edp_pipe = PIPE_C;
7695 break;
7696 }
7697
7698 if (trans_edp_pipe == crtc->pipe)
7699 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7700 }
7701
7702 if (!intel_display_power_enabled(dev_priv,
7703 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7704 return false;
7705
7706 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7707 if (!(tmp & PIPECONF_ENABLE))
7708 return false;
7709
7710 haswell_get_ddi_port_state(crtc, pipe_config);
7711
7712 intel_get_pipe_timings(crtc, pipe_config);
7713
7714 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7715 if (intel_display_power_enabled(dev_priv, pfit_domain))
7716 ironlake_get_pfit_config(crtc, pipe_config);
7717
7718 if (IS_HASWELL(dev))
7719 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7720 (I915_READ(IPS_CTL) & IPS_ENABLE);
7721
7722 pipe_config->pixel_multiplier = 1;
7723
7724 return true;
7725 }
7726
7727 static struct {
7728 int clock;
7729 u32 config;
7730 } hdmi_audio_clock[] = {
7731 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7732 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7733 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7734 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7735 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7736 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7737 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7738 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7739 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7740 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7741 };
7742
7743 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7744 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7745 {
7746 int i;
7747
7748 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7749 if (mode->clock == hdmi_audio_clock[i].clock)
7750 break;
7751 }
7752
7753 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7754 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7755 i = 1;
7756 }
7757
7758 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7759 hdmi_audio_clock[i].clock,
7760 hdmi_audio_clock[i].config);
7761
7762 return hdmi_audio_clock[i].config;
7763 }
7764
7765 static bool intel_eld_uptodate(struct drm_connector *connector,
7766 int reg_eldv, uint32_t bits_eldv,
7767 int reg_elda, uint32_t bits_elda,
7768 int reg_edid)
7769 {
7770 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7771 uint8_t *eld = connector->eld;
7772 uint32_t i;
7773
7774 i = I915_READ(reg_eldv);
7775 i &= bits_eldv;
7776
7777 if (!eld[0])
7778 return !i;
7779
7780 if (!i)
7781 return false;
7782
7783 i = I915_READ(reg_elda);
7784 i &= ~bits_elda;
7785 I915_WRITE(reg_elda, i);
7786
7787 for (i = 0; i < eld[2]; i++)
7788 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7789 return false;
7790
7791 return true;
7792 }
7793
7794 static void g4x_write_eld(struct drm_connector *connector,
7795 struct drm_crtc *crtc,
7796 struct drm_display_mode *mode)
7797 {
7798 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7799 uint8_t *eld = connector->eld;
7800 uint32_t eldv;
7801 uint32_t len;
7802 uint32_t i;
7803
7804 i = I915_READ(G4X_AUD_VID_DID);
7805
7806 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7807 eldv = G4X_ELDV_DEVCL_DEVBLC;
7808 else
7809 eldv = G4X_ELDV_DEVCTG;
7810
7811 if (intel_eld_uptodate(connector,
7812 G4X_AUD_CNTL_ST, eldv,
7813 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7814 G4X_HDMIW_HDMIEDID))
7815 return;
7816
7817 i = I915_READ(G4X_AUD_CNTL_ST);
7818 i &= ~(eldv | G4X_ELD_ADDR);
7819 len = (i >> 9) & 0x1f; /* ELD buffer size */
7820 I915_WRITE(G4X_AUD_CNTL_ST, i);
7821
7822 if (!eld[0])
7823 return;
7824
7825 len = min_t(uint8_t, eld[2], len);
7826 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7827 for (i = 0; i < len; i++)
7828 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7829
7830 i = I915_READ(G4X_AUD_CNTL_ST);
7831 i |= eldv;
7832 I915_WRITE(G4X_AUD_CNTL_ST, i);
7833 }
7834
7835 static void haswell_write_eld(struct drm_connector *connector,
7836 struct drm_crtc *crtc,
7837 struct drm_display_mode *mode)
7838 {
7839 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7840 uint8_t *eld = connector->eld;
7841 uint32_t eldv;
7842 uint32_t i;
7843 int len;
7844 int pipe = to_intel_crtc(crtc)->pipe;
7845 int tmp;
7846
7847 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7848 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7849 int aud_config = HSW_AUD_CFG(pipe);
7850 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7851
7852 /* Audio output enable */
7853 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7854 tmp = I915_READ(aud_cntrl_st2);
7855 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7856 I915_WRITE(aud_cntrl_st2, tmp);
7857 POSTING_READ(aud_cntrl_st2);
7858
7859 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7860
7861 /* Set ELD valid state */
7862 tmp = I915_READ(aud_cntrl_st2);
7863 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7864 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7865 I915_WRITE(aud_cntrl_st2, tmp);
7866 tmp = I915_READ(aud_cntrl_st2);
7867 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7868
7869 /* Enable HDMI mode */
7870 tmp = I915_READ(aud_config);
7871 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7872 /* clear N_programing_enable and N_value_index */
7873 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7874 I915_WRITE(aud_config, tmp);
7875
7876 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7877
7878 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7879
7880 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7881 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7882 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7883 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7884 } else {
7885 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7886 }
7887
7888 if (intel_eld_uptodate(connector,
7889 aud_cntrl_st2, eldv,
7890 aud_cntl_st, IBX_ELD_ADDRESS,
7891 hdmiw_hdmiedid))
7892 return;
7893
7894 i = I915_READ(aud_cntrl_st2);
7895 i &= ~eldv;
7896 I915_WRITE(aud_cntrl_st2, i);
7897
7898 if (!eld[0])
7899 return;
7900
7901 i = I915_READ(aud_cntl_st);
7902 i &= ~IBX_ELD_ADDRESS;
7903 I915_WRITE(aud_cntl_st, i);
7904 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7905 DRM_DEBUG_DRIVER("port num:%d\n", i);
7906
7907 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7908 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7909 for (i = 0; i < len; i++)
7910 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7911
7912 i = I915_READ(aud_cntrl_st2);
7913 i |= eldv;
7914 I915_WRITE(aud_cntrl_st2, i);
7915
7916 }
7917
7918 static void ironlake_write_eld(struct drm_connector *connector,
7919 struct drm_crtc *crtc,
7920 struct drm_display_mode *mode)
7921 {
7922 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7923 uint8_t *eld = connector->eld;
7924 uint32_t eldv;
7925 uint32_t i;
7926 int len;
7927 int hdmiw_hdmiedid;
7928 int aud_config;
7929 int aud_cntl_st;
7930 int aud_cntrl_st2;
7931 int pipe = to_intel_crtc(crtc)->pipe;
7932
7933 if (HAS_PCH_IBX(connector->dev)) {
7934 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7935 aud_config = IBX_AUD_CFG(pipe);
7936 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7937 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7938 } else if (IS_VALLEYVIEW(connector->dev)) {
7939 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7940 aud_config = VLV_AUD_CFG(pipe);
7941 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7942 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7943 } else {
7944 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7945 aud_config = CPT_AUD_CFG(pipe);
7946 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7947 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7948 }
7949
7950 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7951
7952 if (IS_VALLEYVIEW(connector->dev)) {
7953 struct intel_encoder *intel_encoder;
7954 struct intel_digital_port *intel_dig_port;
7955
7956 intel_encoder = intel_attached_encoder(connector);
7957 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7958 i = intel_dig_port->port;
7959 } else {
7960 i = I915_READ(aud_cntl_st);
7961 i = (i >> 29) & DIP_PORT_SEL_MASK;
7962 /* DIP_Port_Select, 0x1 = PortB */
7963 }
7964
7965 if (!i) {
7966 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7967 /* operate blindly on all ports */
7968 eldv = IBX_ELD_VALIDB;
7969 eldv |= IBX_ELD_VALIDB << 4;
7970 eldv |= IBX_ELD_VALIDB << 8;
7971 } else {
7972 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7973 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7974 }
7975
7976 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7977 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7978 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7979 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7980 } else {
7981 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7982 }
7983
7984 if (intel_eld_uptodate(connector,
7985 aud_cntrl_st2, eldv,
7986 aud_cntl_st, IBX_ELD_ADDRESS,
7987 hdmiw_hdmiedid))
7988 return;
7989
7990 i = I915_READ(aud_cntrl_st2);
7991 i &= ~eldv;
7992 I915_WRITE(aud_cntrl_st2, i);
7993
7994 if (!eld[0])
7995 return;
7996
7997 i = I915_READ(aud_cntl_st);
7998 i &= ~IBX_ELD_ADDRESS;
7999 I915_WRITE(aud_cntl_st, i);
8000
8001 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8002 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8003 for (i = 0; i < len; i++)
8004 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8005
8006 i = I915_READ(aud_cntrl_st2);
8007 i |= eldv;
8008 I915_WRITE(aud_cntrl_st2, i);
8009 }
8010
8011 void intel_write_eld(struct drm_encoder *encoder,
8012 struct drm_display_mode *mode)
8013 {
8014 struct drm_crtc *crtc = encoder->crtc;
8015 struct drm_connector *connector;
8016 struct drm_device *dev = encoder->dev;
8017 struct drm_i915_private *dev_priv = dev->dev_private;
8018
8019 connector = drm_select_eld(encoder, mode);
8020 if (!connector)
8021 return;
8022
8023 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8024 connector->base.id,
8025 connector->name,
8026 connector->encoder->base.id,
8027 connector->encoder->name);
8028
8029 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8030
8031 if (dev_priv->display.write_eld)
8032 dev_priv->display.write_eld(connector, crtc, mode);
8033 }
8034
8035 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8036 {
8037 struct drm_device *dev = crtc->dev;
8038 struct drm_i915_private *dev_priv = dev->dev_private;
8039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8040 uint32_t cntl;
8041
8042 if (base != intel_crtc->cursor_base) {
8043 /* On these chipsets we can only modify the base whilst
8044 * the cursor is disabled.
8045 */
8046 if (intel_crtc->cursor_cntl) {
8047 I915_WRITE(_CURACNTR, 0);
8048 POSTING_READ(_CURACNTR);
8049 intel_crtc->cursor_cntl = 0;
8050 }
8051
8052 I915_WRITE(_CURABASE, base);
8053 POSTING_READ(_CURABASE);
8054 }
8055
8056 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8057 cntl = 0;
8058 if (base)
8059 cntl = (CURSOR_ENABLE |
8060 CURSOR_GAMMA_ENABLE |
8061 CURSOR_FORMAT_ARGB);
8062 if (intel_crtc->cursor_cntl != cntl) {
8063 I915_WRITE(_CURACNTR, cntl);
8064 POSTING_READ(_CURACNTR);
8065 intel_crtc->cursor_cntl = cntl;
8066 }
8067 }
8068
8069 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8070 {
8071 struct drm_device *dev = crtc->dev;
8072 struct drm_i915_private *dev_priv = dev->dev_private;
8073 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8074 int pipe = intel_crtc->pipe;
8075 uint32_t cntl;
8076
8077 cntl = 0;
8078 if (base) {
8079 cntl = MCURSOR_GAMMA_ENABLE;
8080 switch (intel_crtc->cursor_width) {
8081 case 64:
8082 cntl |= CURSOR_MODE_64_ARGB_AX;
8083 break;
8084 case 128:
8085 cntl |= CURSOR_MODE_128_ARGB_AX;
8086 break;
8087 case 256:
8088 cntl |= CURSOR_MODE_256_ARGB_AX;
8089 break;
8090 default:
8091 WARN_ON(1);
8092 return;
8093 }
8094 cntl |= pipe << 28; /* Connect to correct pipe */
8095 }
8096 if (intel_crtc->cursor_cntl != cntl) {
8097 I915_WRITE(CURCNTR(pipe), cntl);
8098 POSTING_READ(CURCNTR(pipe));
8099 intel_crtc->cursor_cntl = cntl;
8100 }
8101
8102 /* and commit changes on next vblank */
8103 I915_WRITE(CURBASE(pipe), base);
8104 POSTING_READ(CURBASE(pipe));
8105 }
8106
8107 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8108 {
8109 struct drm_device *dev = crtc->dev;
8110 struct drm_i915_private *dev_priv = dev->dev_private;
8111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8112 int pipe = intel_crtc->pipe;
8113 uint32_t cntl;
8114
8115 cntl = 0;
8116 if (base) {
8117 cntl = MCURSOR_GAMMA_ENABLE;
8118 switch (intel_crtc->cursor_width) {
8119 case 64:
8120 cntl |= CURSOR_MODE_64_ARGB_AX;
8121 break;
8122 case 128:
8123 cntl |= CURSOR_MODE_128_ARGB_AX;
8124 break;
8125 case 256:
8126 cntl |= CURSOR_MODE_256_ARGB_AX;
8127 break;
8128 default:
8129 WARN_ON(1);
8130 return;
8131 }
8132 }
8133 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8134 cntl |= CURSOR_PIPE_CSC_ENABLE;
8135
8136 if (intel_crtc->cursor_cntl != cntl) {
8137 I915_WRITE(CURCNTR(pipe), cntl);
8138 POSTING_READ(CURCNTR(pipe));
8139 intel_crtc->cursor_cntl = cntl;
8140 }
8141
8142 /* and commit changes on next vblank */
8143 I915_WRITE(CURBASE(pipe), base);
8144 POSTING_READ(CURBASE(pipe));
8145 }
8146
8147 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8148 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8149 bool on)
8150 {
8151 struct drm_device *dev = crtc->dev;
8152 struct drm_i915_private *dev_priv = dev->dev_private;
8153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8154 int pipe = intel_crtc->pipe;
8155 int x = crtc->cursor_x;
8156 int y = crtc->cursor_y;
8157 u32 base = 0, pos = 0;
8158
8159 if (on)
8160 base = intel_crtc->cursor_addr;
8161
8162 if (x >= intel_crtc->config.pipe_src_w)
8163 base = 0;
8164
8165 if (y >= intel_crtc->config.pipe_src_h)
8166 base = 0;
8167
8168 if (x < 0) {
8169 if (x + intel_crtc->cursor_width <= 0)
8170 base = 0;
8171
8172 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8173 x = -x;
8174 }
8175 pos |= x << CURSOR_X_SHIFT;
8176
8177 if (y < 0) {
8178 if (y + intel_crtc->cursor_height <= 0)
8179 base = 0;
8180
8181 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8182 y = -y;
8183 }
8184 pos |= y << CURSOR_Y_SHIFT;
8185
8186 if (base == 0 && intel_crtc->cursor_base == 0)
8187 return;
8188
8189 I915_WRITE(CURPOS(pipe), pos);
8190
8191 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8192 ivb_update_cursor(crtc, base);
8193 else if (IS_845G(dev) || IS_I865G(dev))
8194 i845_update_cursor(crtc, base);
8195 else
8196 i9xx_update_cursor(crtc, base);
8197 intel_crtc->cursor_base = base;
8198 }
8199
8200 /*
8201 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8202 *
8203 * Note that the object's reference will be consumed if the update fails. If
8204 * the update succeeds, the reference of the old object (if any) will be
8205 * consumed.
8206 */
8207 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8208 struct drm_i915_gem_object *obj,
8209 uint32_t width, uint32_t height)
8210 {
8211 struct drm_device *dev = crtc->dev;
8212 struct drm_i915_private *dev_priv = dev->dev_private;
8213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8214 enum pipe pipe = intel_crtc->pipe;
8215 unsigned old_width;
8216 uint32_t addr;
8217 int ret;
8218
8219 /* if we want to turn off the cursor ignore width and height */
8220 if (!obj) {
8221 DRM_DEBUG_KMS("cursor off\n");
8222 addr = 0;
8223 obj = NULL;
8224 mutex_lock(&dev->struct_mutex);
8225 goto finish;
8226 }
8227
8228 /* Check for which cursor types we support */
8229 if (!((width == 64 && height == 64) ||
8230 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8231 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8232 DRM_DEBUG("Cursor dimension not supported\n");
8233 return -EINVAL;
8234 }
8235
8236 if (obj->base.size < width * height * 4) {
8237 DRM_DEBUG_KMS("buffer is too small\n");
8238 ret = -ENOMEM;
8239 goto fail;
8240 }
8241
8242 /* we only need to pin inside GTT if cursor is non-phy */
8243 mutex_lock(&dev->struct_mutex);
8244 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8245 unsigned alignment;
8246
8247 if (obj->tiling_mode) {
8248 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8249 ret = -EINVAL;
8250 goto fail_locked;
8251 }
8252
8253 /*
8254 * Global gtt pte registers are special registers which actually
8255 * forward writes to a chunk of system memory. Which means that
8256 * there is no risk that the register values disappear as soon
8257 * as we call intel_runtime_pm_put(), so it is correct to wrap
8258 * only the pin/unpin/fence and not more.
8259 */
8260 intel_runtime_pm_get(dev_priv);
8261
8262 /* Note that the w/a also requires 2 PTE of padding following
8263 * the bo. We currently fill all unused PTE with the shadow
8264 * page and so we should always have valid PTE following the
8265 * cursor preventing the VT-d warning.
8266 */
8267 alignment = 0;
8268 if (need_vtd_wa(dev))
8269 alignment = 64*1024;
8270
8271 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8272 if (ret) {
8273 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8274 intel_runtime_pm_put(dev_priv);
8275 goto fail_locked;
8276 }
8277
8278 ret = i915_gem_object_put_fence(obj);
8279 if (ret) {
8280 DRM_DEBUG_KMS("failed to release fence for cursor");
8281 intel_runtime_pm_put(dev_priv);
8282 goto fail_unpin;
8283 }
8284
8285 addr = i915_gem_obj_ggtt_offset(obj);
8286
8287 intel_runtime_pm_put(dev_priv);
8288 } else {
8289 int align = IS_I830(dev) ? 16 * 1024 : 256;
8290 ret = i915_gem_object_attach_phys(obj, align);
8291 if (ret) {
8292 DRM_DEBUG_KMS("failed to attach phys object\n");
8293 goto fail_locked;
8294 }
8295 addr = obj->phys_handle->busaddr;
8296 }
8297
8298 if (IS_GEN2(dev))
8299 I915_WRITE(CURSIZE, (height << 12) | width);
8300
8301 finish:
8302 if (intel_crtc->cursor_bo) {
8303 if (!INTEL_INFO(dev)->cursor_needs_physical)
8304 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8305 }
8306
8307 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8308 INTEL_FRONTBUFFER_CURSOR(pipe));
8309 mutex_unlock(&dev->struct_mutex);
8310
8311 old_width = intel_crtc->cursor_width;
8312
8313 intel_crtc->cursor_addr = addr;
8314 intel_crtc->cursor_bo = obj;
8315 intel_crtc->cursor_width = width;
8316 intel_crtc->cursor_height = height;
8317
8318 if (intel_crtc->active) {
8319 if (old_width != width)
8320 intel_update_watermarks(crtc);
8321 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8322 }
8323
8324 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8325
8326 return 0;
8327 fail_unpin:
8328 i915_gem_object_unpin_from_display_plane(obj);
8329 fail_locked:
8330 mutex_unlock(&dev->struct_mutex);
8331 fail:
8332 drm_gem_object_unreference_unlocked(&obj->base);
8333 return ret;
8334 }
8335
8336 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8337 u16 *blue, uint32_t start, uint32_t size)
8338 {
8339 int end = (start + size > 256) ? 256 : start + size, i;
8340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8341
8342 for (i = start; i < end; i++) {
8343 intel_crtc->lut_r[i] = red[i] >> 8;
8344 intel_crtc->lut_g[i] = green[i] >> 8;
8345 intel_crtc->lut_b[i] = blue[i] >> 8;
8346 }
8347
8348 intel_crtc_load_lut(crtc);
8349 }
8350
8351 /* VESA 640x480x72Hz mode to set on the pipe */
8352 static struct drm_display_mode load_detect_mode = {
8353 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8354 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8355 };
8356
8357 struct drm_framebuffer *
8358 __intel_framebuffer_create(struct drm_device *dev,
8359 struct drm_mode_fb_cmd2 *mode_cmd,
8360 struct drm_i915_gem_object *obj)
8361 {
8362 struct intel_framebuffer *intel_fb;
8363 int ret;
8364
8365 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8366 if (!intel_fb) {
8367 drm_gem_object_unreference_unlocked(&obj->base);
8368 return ERR_PTR(-ENOMEM);
8369 }
8370
8371 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8372 if (ret)
8373 goto err;
8374
8375 return &intel_fb->base;
8376 err:
8377 drm_gem_object_unreference_unlocked(&obj->base);
8378 kfree(intel_fb);
8379
8380 return ERR_PTR(ret);
8381 }
8382
8383 static struct drm_framebuffer *
8384 intel_framebuffer_create(struct drm_device *dev,
8385 struct drm_mode_fb_cmd2 *mode_cmd,
8386 struct drm_i915_gem_object *obj)
8387 {
8388 struct drm_framebuffer *fb;
8389 int ret;
8390
8391 ret = i915_mutex_lock_interruptible(dev);
8392 if (ret)
8393 return ERR_PTR(ret);
8394 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8395 mutex_unlock(&dev->struct_mutex);
8396
8397 return fb;
8398 }
8399
8400 static u32
8401 intel_framebuffer_pitch_for_width(int width, int bpp)
8402 {
8403 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8404 return ALIGN(pitch, 64);
8405 }
8406
8407 static u32
8408 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8409 {
8410 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8411 return PAGE_ALIGN(pitch * mode->vdisplay);
8412 }
8413
8414 static struct drm_framebuffer *
8415 intel_framebuffer_create_for_mode(struct drm_device *dev,
8416 struct drm_display_mode *mode,
8417 int depth, int bpp)
8418 {
8419 struct drm_i915_gem_object *obj;
8420 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8421
8422 obj = i915_gem_alloc_object(dev,
8423 intel_framebuffer_size_for_mode(mode, bpp));
8424 if (obj == NULL)
8425 return ERR_PTR(-ENOMEM);
8426
8427 mode_cmd.width = mode->hdisplay;
8428 mode_cmd.height = mode->vdisplay;
8429 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8430 bpp);
8431 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8432
8433 return intel_framebuffer_create(dev, &mode_cmd, obj);
8434 }
8435
8436 static struct drm_framebuffer *
8437 mode_fits_in_fbdev(struct drm_device *dev,
8438 struct drm_display_mode *mode)
8439 {
8440 #ifdef CONFIG_DRM_I915_FBDEV
8441 struct drm_i915_private *dev_priv = dev->dev_private;
8442 struct drm_i915_gem_object *obj;
8443 struct drm_framebuffer *fb;
8444
8445 if (!dev_priv->fbdev)
8446 return NULL;
8447
8448 if (!dev_priv->fbdev->fb)
8449 return NULL;
8450
8451 obj = dev_priv->fbdev->fb->obj;
8452 BUG_ON(!obj);
8453
8454 fb = &dev_priv->fbdev->fb->base;
8455 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8456 fb->bits_per_pixel))
8457 return NULL;
8458
8459 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8460 return NULL;
8461
8462 return fb;
8463 #else
8464 return NULL;
8465 #endif
8466 }
8467
8468 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8469 struct drm_display_mode *mode,
8470 struct intel_load_detect_pipe *old,
8471 struct drm_modeset_acquire_ctx *ctx)
8472 {
8473 struct intel_crtc *intel_crtc;
8474 struct intel_encoder *intel_encoder =
8475 intel_attached_encoder(connector);
8476 struct drm_crtc *possible_crtc;
8477 struct drm_encoder *encoder = &intel_encoder->base;
8478 struct drm_crtc *crtc = NULL;
8479 struct drm_device *dev = encoder->dev;
8480 struct drm_framebuffer *fb;
8481 struct drm_mode_config *config = &dev->mode_config;
8482 int ret, i = -1;
8483
8484 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8485 connector->base.id, connector->name,
8486 encoder->base.id, encoder->name);
8487
8488 retry:
8489 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8490 if (ret)
8491 goto fail_unlock;
8492
8493 /*
8494 * Algorithm gets a little messy:
8495 *
8496 * - if the connector already has an assigned crtc, use it (but make
8497 * sure it's on first)
8498 *
8499 * - try to find the first unused crtc that can drive this connector,
8500 * and use that if we find one
8501 */
8502
8503 /* See if we already have a CRTC for this connector */
8504 if (encoder->crtc) {
8505 crtc = encoder->crtc;
8506
8507 ret = drm_modeset_lock(&crtc->mutex, ctx);
8508 if (ret)
8509 goto fail_unlock;
8510
8511 old->dpms_mode = connector->dpms;
8512 old->load_detect_temp = false;
8513
8514 /* Make sure the crtc and connector are running */
8515 if (connector->dpms != DRM_MODE_DPMS_ON)
8516 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8517
8518 return true;
8519 }
8520
8521 /* Find an unused one (if possible) */
8522 for_each_crtc(dev, possible_crtc) {
8523 i++;
8524 if (!(encoder->possible_crtcs & (1 << i)))
8525 continue;
8526 if (possible_crtc->enabled)
8527 continue;
8528 /* This can occur when applying the pipe A quirk on resume. */
8529 if (to_intel_crtc(possible_crtc)->new_enabled)
8530 continue;
8531
8532 crtc = possible_crtc;
8533 break;
8534 }
8535
8536 /*
8537 * If we didn't find an unused CRTC, don't use any.
8538 */
8539 if (!crtc) {
8540 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8541 goto fail_unlock;
8542 }
8543
8544 ret = drm_modeset_lock(&crtc->mutex, ctx);
8545 if (ret)
8546 goto fail_unlock;
8547 intel_encoder->new_crtc = to_intel_crtc(crtc);
8548 to_intel_connector(connector)->new_encoder = intel_encoder;
8549
8550 intel_crtc = to_intel_crtc(crtc);
8551 intel_crtc->new_enabled = true;
8552 intel_crtc->new_config = &intel_crtc->config;
8553 old->dpms_mode = connector->dpms;
8554 old->load_detect_temp = true;
8555 old->release_fb = NULL;
8556
8557 if (!mode)
8558 mode = &load_detect_mode;
8559
8560 /* We need a framebuffer large enough to accommodate all accesses
8561 * that the plane may generate whilst we perform load detection.
8562 * We can not rely on the fbcon either being present (we get called
8563 * during its initialisation to detect all boot displays, or it may
8564 * not even exist) or that it is large enough to satisfy the
8565 * requested mode.
8566 */
8567 fb = mode_fits_in_fbdev(dev, mode);
8568 if (fb == NULL) {
8569 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8570 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8571 old->release_fb = fb;
8572 } else
8573 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8574 if (IS_ERR(fb)) {
8575 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8576 goto fail;
8577 }
8578
8579 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8580 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8581 if (old->release_fb)
8582 old->release_fb->funcs->destroy(old->release_fb);
8583 goto fail;
8584 }
8585
8586 /* let the connector get through one full cycle before testing */
8587 intel_wait_for_vblank(dev, intel_crtc->pipe);
8588 return true;
8589
8590 fail:
8591 intel_crtc->new_enabled = crtc->enabled;
8592 if (intel_crtc->new_enabled)
8593 intel_crtc->new_config = &intel_crtc->config;
8594 else
8595 intel_crtc->new_config = NULL;
8596 fail_unlock:
8597 if (ret == -EDEADLK) {
8598 drm_modeset_backoff(ctx);
8599 goto retry;
8600 }
8601
8602 return false;
8603 }
8604
8605 void intel_release_load_detect_pipe(struct drm_connector *connector,
8606 struct intel_load_detect_pipe *old)
8607 {
8608 struct intel_encoder *intel_encoder =
8609 intel_attached_encoder(connector);
8610 struct drm_encoder *encoder = &intel_encoder->base;
8611 struct drm_crtc *crtc = encoder->crtc;
8612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8613
8614 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8615 connector->base.id, connector->name,
8616 encoder->base.id, encoder->name);
8617
8618 if (old->load_detect_temp) {
8619 to_intel_connector(connector)->new_encoder = NULL;
8620 intel_encoder->new_crtc = NULL;
8621 intel_crtc->new_enabled = false;
8622 intel_crtc->new_config = NULL;
8623 intel_set_mode(crtc, NULL, 0, 0, NULL);
8624
8625 if (old->release_fb) {
8626 drm_framebuffer_unregister_private(old->release_fb);
8627 drm_framebuffer_unreference(old->release_fb);
8628 }
8629
8630 return;
8631 }
8632
8633 /* Switch crtc and encoder back off if necessary */
8634 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8635 connector->funcs->dpms(connector, old->dpms_mode);
8636 }
8637
8638 static int i9xx_pll_refclk(struct drm_device *dev,
8639 const struct intel_crtc_config *pipe_config)
8640 {
8641 struct drm_i915_private *dev_priv = dev->dev_private;
8642 u32 dpll = pipe_config->dpll_hw_state.dpll;
8643
8644 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8645 return dev_priv->vbt.lvds_ssc_freq;
8646 else if (HAS_PCH_SPLIT(dev))
8647 return 120000;
8648 else if (!IS_GEN2(dev))
8649 return 96000;
8650 else
8651 return 48000;
8652 }
8653
8654 /* Returns the clock of the currently programmed mode of the given pipe. */
8655 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8656 struct intel_crtc_config *pipe_config)
8657 {
8658 struct drm_device *dev = crtc->base.dev;
8659 struct drm_i915_private *dev_priv = dev->dev_private;
8660 int pipe = pipe_config->cpu_transcoder;
8661 u32 dpll = pipe_config->dpll_hw_state.dpll;
8662 u32 fp;
8663 intel_clock_t clock;
8664 int refclk = i9xx_pll_refclk(dev, pipe_config);
8665
8666 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8667 fp = pipe_config->dpll_hw_state.fp0;
8668 else
8669 fp = pipe_config->dpll_hw_state.fp1;
8670
8671 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8672 if (IS_PINEVIEW(dev)) {
8673 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8674 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8675 } else {
8676 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8677 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8678 }
8679
8680 if (!IS_GEN2(dev)) {
8681 if (IS_PINEVIEW(dev))
8682 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8683 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8684 else
8685 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8686 DPLL_FPA01_P1_POST_DIV_SHIFT);
8687
8688 switch (dpll & DPLL_MODE_MASK) {
8689 case DPLLB_MODE_DAC_SERIAL:
8690 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8691 5 : 10;
8692 break;
8693 case DPLLB_MODE_LVDS:
8694 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8695 7 : 14;
8696 break;
8697 default:
8698 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8699 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8700 return;
8701 }
8702
8703 if (IS_PINEVIEW(dev))
8704 pineview_clock(refclk, &clock);
8705 else
8706 i9xx_clock(refclk, &clock);
8707 } else {
8708 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8709 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8710
8711 if (is_lvds) {
8712 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8713 DPLL_FPA01_P1_POST_DIV_SHIFT);
8714
8715 if (lvds & LVDS_CLKB_POWER_UP)
8716 clock.p2 = 7;
8717 else
8718 clock.p2 = 14;
8719 } else {
8720 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8721 clock.p1 = 2;
8722 else {
8723 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8724 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8725 }
8726 if (dpll & PLL_P2_DIVIDE_BY_4)
8727 clock.p2 = 4;
8728 else
8729 clock.p2 = 2;
8730 }
8731
8732 i9xx_clock(refclk, &clock);
8733 }
8734
8735 /*
8736 * This value includes pixel_multiplier. We will use
8737 * port_clock to compute adjusted_mode.crtc_clock in the
8738 * encoder's get_config() function.
8739 */
8740 pipe_config->port_clock = clock.dot;
8741 }
8742
8743 int intel_dotclock_calculate(int link_freq,
8744 const struct intel_link_m_n *m_n)
8745 {
8746 /*
8747 * The calculation for the data clock is:
8748 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8749 * But we want to avoid losing precison if possible, so:
8750 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8751 *
8752 * and the link clock is simpler:
8753 * link_clock = (m * link_clock) / n
8754 */
8755
8756 if (!m_n->link_n)
8757 return 0;
8758
8759 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8760 }
8761
8762 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8763 struct intel_crtc_config *pipe_config)
8764 {
8765 struct drm_device *dev = crtc->base.dev;
8766
8767 /* read out port_clock from the DPLL */
8768 i9xx_crtc_clock_get(crtc, pipe_config);
8769
8770 /*
8771 * This value does not include pixel_multiplier.
8772 * We will check that port_clock and adjusted_mode.crtc_clock
8773 * agree once we know their relationship in the encoder's
8774 * get_config() function.
8775 */
8776 pipe_config->adjusted_mode.crtc_clock =
8777 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8778 &pipe_config->fdi_m_n);
8779 }
8780
8781 /** Returns the currently programmed mode of the given pipe. */
8782 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8783 struct drm_crtc *crtc)
8784 {
8785 struct drm_i915_private *dev_priv = dev->dev_private;
8786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8787 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8788 struct drm_display_mode *mode;
8789 struct intel_crtc_config pipe_config;
8790 int htot = I915_READ(HTOTAL(cpu_transcoder));
8791 int hsync = I915_READ(HSYNC(cpu_transcoder));
8792 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8793 int vsync = I915_READ(VSYNC(cpu_transcoder));
8794 enum pipe pipe = intel_crtc->pipe;
8795
8796 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8797 if (!mode)
8798 return NULL;
8799
8800 /*
8801 * Construct a pipe_config sufficient for getting the clock info
8802 * back out of crtc_clock_get.
8803 *
8804 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8805 * to use a real value here instead.
8806 */
8807 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8808 pipe_config.pixel_multiplier = 1;
8809 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8810 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8811 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8812 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8813
8814 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8815 mode->hdisplay = (htot & 0xffff) + 1;
8816 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8817 mode->hsync_start = (hsync & 0xffff) + 1;
8818 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8819 mode->vdisplay = (vtot & 0xffff) + 1;
8820 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8821 mode->vsync_start = (vsync & 0xffff) + 1;
8822 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8823
8824 drm_mode_set_name(mode);
8825
8826 return mode;
8827 }
8828
8829 static void intel_increase_pllclock(struct drm_device *dev,
8830 enum pipe pipe)
8831 {
8832 struct drm_i915_private *dev_priv = dev->dev_private;
8833 int dpll_reg = DPLL(pipe);
8834 int dpll;
8835
8836 if (!HAS_GMCH_DISPLAY(dev))
8837 return;
8838
8839 if (!dev_priv->lvds_downclock_avail)
8840 return;
8841
8842 dpll = I915_READ(dpll_reg);
8843 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8844 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8845
8846 assert_panel_unlocked(dev_priv, pipe);
8847
8848 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8849 I915_WRITE(dpll_reg, dpll);
8850 intel_wait_for_vblank(dev, pipe);
8851
8852 dpll = I915_READ(dpll_reg);
8853 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8854 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8855 }
8856 }
8857
8858 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8859 {
8860 struct drm_device *dev = crtc->dev;
8861 struct drm_i915_private *dev_priv = dev->dev_private;
8862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8863
8864 if (!HAS_GMCH_DISPLAY(dev))
8865 return;
8866
8867 if (!dev_priv->lvds_downclock_avail)
8868 return;
8869
8870 /*
8871 * Since this is called by a timer, we should never get here in
8872 * the manual case.
8873 */
8874 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8875 int pipe = intel_crtc->pipe;
8876 int dpll_reg = DPLL(pipe);
8877 int dpll;
8878
8879 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8880
8881 assert_panel_unlocked(dev_priv, pipe);
8882
8883 dpll = I915_READ(dpll_reg);
8884 dpll |= DISPLAY_RATE_SELECT_FPA1;
8885 I915_WRITE(dpll_reg, dpll);
8886 intel_wait_for_vblank(dev, pipe);
8887 dpll = I915_READ(dpll_reg);
8888 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8889 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8890 }
8891
8892 }
8893
8894 void intel_mark_busy(struct drm_device *dev)
8895 {
8896 struct drm_i915_private *dev_priv = dev->dev_private;
8897
8898 if (dev_priv->mm.busy)
8899 return;
8900
8901 intel_runtime_pm_get(dev_priv);
8902 i915_update_gfx_val(dev_priv);
8903 dev_priv->mm.busy = true;
8904 }
8905
8906 void intel_mark_idle(struct drm_device *dev)
8907 {
8908 struct drm_i915_private *dev_priv = dev->dev_private;
8909 struct drm_crtc *crtc;
8910
8911 if (!dev_priv->mm.busy)
8912 return;
8913
8914 dev_priv->mm.busy = false;
8915
8916 if (!i915.powersave)
8917 goto out;
8918
8919 for_each_crtc(dev, crtc) {
8920 if (!crtc->primary->fb)
8921 continue;
8922
8923 intel_decrease_pllclock(crtc);
8924 }
8925
8926 if (INTEL_INFO(dev)->gen >= 6)
8927 gen6_rps_idle(dev->dev_private);
8928
8929 out:
8930 intel_runtime_pm_put(dev_priv);
8931 }
8932
8933
8934 /**
8935 * intel_mark_fb_busy - mark given planes as busy
8936 * @dev: DRM device
8937 * @frontbuffer_bits: bits for the affected planes
8938 * @ring: optional ring for asynchronous commands
8939 *
8940 * This function gets called every time the screen contents change. It can be
8941 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8942 */
8943 static void intel_mark_fb_busy(struct drm_device *dev,
8944 unsigned frontbuffer_bits,
8945 struct intel_engine_cs *ring)
8946 {
8947 enum pipe pipe;
8948
8949 if (!i915.powersave)
8950 return;
8951
8952 for_each_pipe(pipe) {
8953 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
8954 continue;
8955
8956 intel_increase_pllclock(dev, pipe);
8957 if (ring && intel_fbc_enabled(dev))
8958 ring->fbc_dirty = true;
8959 }
8960 }
8961
8962 /**
8963 * intel_fb_obj_invalidate - invalidate frontbuffer object
8964 * @obj: GEM object to invalidate
8965 * @ring: set for asynchronous rendering
8966 *
8967 * This function gets called every time rendering on the given object starts and
8968 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8969 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8970 * until the rendering completes or a flip on this frontbuffer plane is
8971 * scheduled.
8972 */
8973 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8974 struct intel_engine_cs *ring)
8975 {
8976 struct drm_device *dev = obj->base.dev;
8977 struct drm_i915_private *dev_priv = dev->dev_private;
8978
8979 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8980
8981 if (!obj->frontbuffer_bits)
8982 return;
8983
8984 if (ring) {
8985 mutex_lock(&dev_priv->fb_tracking.lock);
8986 dev_priv->fb_tracking.busy_bits
8987 |= obj->frontbuffer_bits;
8988 dev_priv->fb_tracking.flip_bits
8989 &= ~obj->frontbuffer_bits;
8990 mutex_unlock(&dev_priv->fb_tracking.lock);
8991 }
8992
8993 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8994
8995 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
8996 }
8997
8998 /**
8999 * intel_frontbuffer_flush - flush frontbuffer
9000 * @dev: DRM device
9001 * @frontbuffer_bits: frontbuffer plane tracking bits
9002 *
9003 * This function gets called every time rendering on the given planes has
9004 * completed and frontbuffer caching can be started again. Flushes will get
9005 * delayed if they're blocked by some oustanding asynchronous rendering.
9006 *
9007 * Can be called without any locks held.
9008 */
9009 void intel_frontbuffer_flush(struct drm_device *dev,
9010 unsigned frontbuffer_bits)
9011 {
9012 struct drm_i915_private *dev_priv = dev->dev_private;
9013
9014 /* Delay flushing when rings are still busy.*/
9015 mutex_lock(&dev_priv->fb_tracking.lock);
9016 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9017 mutex_unlock(&dev_priv->fb_tracking.lock);
9018
9019 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9020
9021 intel_edp_psr_flush(dev, frontbuffer_bits);
9022 }
9023
9024 /**
9025 * intel_fb_obj_flush - flush frontbuffer object
9026 * @obj: GEM object to flush
9027 * @retire: set when retiring asynchronous rendering
9028 *
9029 * This function gets called every time rendering on the given object has
9030 * completed and frontbuffer caching can be started again. If @retire is true
9031 * then any delayed flushes will be unblocked.
9032 */
9033 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9034 bool retire)
9035 {
9036 struct drm_device *dev = obj->base.dev;
9037 struct drm_i915_private *dev_priv = dev->dev_private;
9038 unsigned frontbuffer_bits;
9039
9040 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9041
9042 if (!obj->frontbuffer_bits)
9043 return;
9044
9045 frontbuffer_bits = obj->frontbuffer_bits;
9046
9047 if (retire) {
9048 mutex_lock(&dev_priv->fb_tracking.lock);
9049 /* Filter out new bits since rendering started. */
9050 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9051
9052 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9053 mutex_unlock(&dev_priv->fb_tracking.lock);
9054 }
9055
9056 intel_frontbuffer_flush(dev, frontbuffer_bits);
9057 }
9058
9059 /**
9060 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9061 * @dev: DRM device
9062 * @frontbuffer_bits: frontbuffer plane tracking bits
9063 *
9064 * This function gets called after scheduling a flip on @obj. The actual
9065 * frontbuffer flushing will be delayed until completion is signalled with
9066 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9067 * flush will be cancelled.
9068 *
9069 * Can be called without any locks held.
9070 */
9071 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9072 unsigned frontbuffer_bits)
9073 {
9074 struct drm_i915_private *dev_priv = dev->dev_private;
9075
9076 mutex_lock(&dev_priv->fb_tracking.lock);
9077 dev_priv->fb_tracking.flip_bits
9078 |= frontbuffer_bits;
9079 mutex_unlock(&dev_priv->fb_tracking.lock);
9080 }
9081
9082 /**
9083 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9084 * @dev: DRM device
9085 * @frontbuffer_bits: frontbuffer plane tracking bits
9086 *
9087 * This function gets called after the flip has been latched and will complete
9088 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9089 *
9090 * Can be called without any locks held.
9091 */
9092 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9093 unsigned frontbuffer_bits)
9094 {
9095 struct drm_i915_private *dev_priv = dev->dev_private;
9096
9097 mutex_lock(&dev_priv->fb_tracking.lock);
9098 /* Mask any cancelled flips. */
9099 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9100 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9101 mutex_unlock(&dev_priv->fb_tracking.lock);
9102
9103 intel_frontbuffer_flush(dev, frontbuffer_bits);
9104 }
9105
9106 static void intel_crtc_destroy(struct drm_crtc *crtc)
9107 {
9108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9109 struct drm_device *dev = crtc->dev;
9110 struct intel_unpin_work *work;
9111 unsigned long flags;
9112
9113 spin_lock_irqsave(&dev->event_lock, flags);
9114 work = intel_crtc->unpin_work;
9115 intel_crtc->unpin_work = NULL;
9116 spin_unlock_irqrestore(&dev->event_lock, flags);
9117
9118 if (work) {
9119 cancel_work_sync(&work->work);
9120 kfree(work);
9121 }
9122
9123 drm_crtc_cleanup(crtc);
9124
9125 kfree(intel_crtc);
9126 }
9127
9128 static void intel_unpin_work_fn(struct work_struct *__work)
9129 {
9130 struct intel_unpin_work *work =
9131 container_of(__work, struct intel_unpin_work, work);
9132 struct drm_device *dev = work->crtc->dev;
9133 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9134
9135 mutex_lock(&dev->struct_mutex);
9136 intel_unpin_fb_obj(work->old_fb_obj);
9137 drm_gem_object_unreference(&work->pending_flip_obj->base);
9138 drm_gem_object_unreference(&work->old_fb_obj->base);
9139
9140 intel_update_fbc(dev);
9141 mutex_unlock(&dev->struct_mutex);
9142
9143 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9144
9145 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9146 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9147
9148 kfree(work);
9149 }
9150
9151 static void do_intel_finish_page_flip(struct drm_device *dev,
9152 struct drm_crtc *crtc)
9153 {
9154 struct drm_i915_private *dev_priv = dev->dev_private;
9155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9156 struct intel_unpin_work *work;
9157 unsigned long flags;
9158
9159 /* Ignore early vblank irqs */
9160 if (intel_crtc == NULL)
9161 return;
9162
9163 spin_lock_irqsave(&dev->event_lock, flags);
9164 work = intel_crtc->unpin_work;
9165
9166 /* Ensure we don't miss a work->pending update ... */
9167 smp_rmb();
9168
9169 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9170 spin_unlock_irqrestore(&dev->event_lock, flags);
9171 return;
9172 }
9173
9174 /* and that the unpin work is consistent wrt ->pending. */
9175 smp_rmb();
9176
9177 intel_crtc->unpin_work = NULL;
9178
9179 if (work->event)
9180 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9181
9182 drm_crtc_vblank_put(crtc);
9183
9184 spin_unlock_irqrestore(&dev->event_lock, flags);
9185
9186 wake_up_all(&dev_priv->pending_flip_queue);
9187
9188 queue_work(dev_priv->wq, &work->work);
9189
9190 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9191 }
9192
9193 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9194 {
9195 struct drm_i915_private *dev_priv = dev->dev_private;
9196 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9197
9198 do_intel_finish_page_flip(dev, crtc);
9199 }
9200
9201 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9202 {
9203 struct drm_i915_private *dev_priv = dev->dev_private;
9204 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9205
9206 do_intel_finish_page_flip(dev, crtc);
9207 }
9208
9209 /* Is 'a' after or equal to 'b'? */
9210 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9211 {
9212 return !((a - b) & 0x80000000);
9213 }
9214
9215 static bool page_flip_finished(struct intel_crtc *crtc)
9216 {
9217 struct drm_device *dev = crtc->base.dev;
9218 struct drm_i915_private *dev_priv = dev->dev_private;
9219
9220 /*
9221 * The relevant registers doen't exist on pre-ctg.
9222 * As the flip done interrupt doesn't trigger for mmio
9223 * flips on gmch platforms, a flip count check isn't
9224 * really needed there. But since ctg has the registers,
9225 * include it in the check anyway.
9226 */
9227 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9228 return true;
9229
9230 /*
9231 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9232 * used the same base address. In that case the mmio flip might
9233 * have completed, but the CS hasn't even executed the flip yet.
9234 *
9235 * A flip count check isn't enough as the CS might have updated
9236 * the base address just after start of vblank, but before we
9237 * managed to process the interrupt. This means we'd complete the
9238 * CS flip too soon.
9239 *
9240 * Combining both checks should get us a good enough result. It may
9241 * still happen that the CS flip has been executed, but has not
9242 * yet actually completed. But in case the base address is the same
9243 * anyway, we don't really care.
9244 */
9245 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9246 crtc->unpin_work->gtt_offset &&
9247 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9248 crtc->unpin_work->flip_count);
9249 }
9250
9251 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9252 {
9253 struct drm_i915_private *dev_priv = dev->dev_private;
9254 struct intel_crtc *intel_crtc =
9255 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9256 unsigned long flags;
9257
9258 /* NB: An MMIO update of the plane base pointer will also
9259 * generate a page-flip completion irq, i.e. every modeset
9260 * is also accompanied by a spurious intel_prepare_page_flip().
9261 */
9262 spin_lock_irqsave(&dev->event_lock, flags);
9263 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9264 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9265 spin_unlock_irqrestore(&dev->event_lock, flags);
9266 }
9267
9268 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9269 {
9270 /* Ensure that the work item is consistent when activating it ... */
9271 smp_wmb();
9272 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9273 /* and that it is marked active as soon as the irq could fire. */
9274 smp_wmb();
9275 }
9276
9277 static int intel_gen2_queue_flip(struct drm_device *dev,
9278 struct drm_crtc *crtc,
9279 struct drm_framebuffer *fb,
9280 struct drm_i915_gem_object *obj,
9281 struct intel_engine_cs *ring,
9282 uint32_t flags)
9283 {
9284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9285 u32 flip_mask;
9286 int ret;
9287
9288 ret = intel_ring_begin(ring, 6);
9289 if (ret)
9290 return ret;
9291
9292 /* Can't queue multiple flips, so wait for the previous
9293 * one to finish before executing the next.
9294 */
9295 if (intel_crtc->plane)
9296 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9297 else
9298 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9299 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9300 intel_ring_emit(ring, MI_NOOP);
9301 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9302 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9303 intel_ring_emit(ring, fb->pitches[0]);
9304 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9305 intel_ring_emit(ring, 0); /* aux display base address, unused */
9306
9307 intel_mark_page_flip_active(intel_crtc);
9308 __intel_ring_advance(ring);
9309 return 0;
9310 }
9311
9312 static int intel_gen3_queue_flip(struct drm_device *dev,
9313 struct drm_crtc *crtc,
9314 struct drm_framebuffer *fb,
9315 struct drm_i915_gem_object *obj,
9316 struct intel_engine_cs *ring,
9317 uint32_t flags)
9318 {
9319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9320 u32 flip_mask;
9321 int ret;
9322
9323 ret = intel_ring_begin(ring, 6);
9324 if (ret)
9325 return ret;
9326
9327 if (intel_crtc->plane)
9328 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9329 else
9330 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9331 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9332 intel_ring_emit(ring, MI_NOOP);
9333 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9334 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9335 intel_ring_emit(ring, fb->pitches[0]);
9336 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9337 intel_ring_emit(ring, MI_NOOP);
9338
9339 intel_mark_page_flip_active(intel_crtc);
9340 __intel_ring_advance(ring);
9341 return 0;
9342 }
9343
9344 static int intel_gen4_queue_flip(struct drm_device *dev,
9345 struct drm_crtc *crtc,
9346 struct drm_framebuffer *fb,
9347 struct drm_i915_gem_object *obj,
9348 struct intel_engine_cs *ring,
9349 uint32_t flags)
9350 {
9351 struct drm_i915_private *dev_priv = dev->dev_private;
9352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9353 uint32_t pf, pipesrc;
9354 int ret;
9355
9356 ret = intel_ring_begin(ring, 4);
9357 if (ret)
9358 return ret;
9359
9360 /* i965+ uses the linear or tiled offsets from the
9361 * Display Registers (which do not change across a page-flip)
9362 * so we need only reprogram the base address.
9363 */
9364 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9365 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9366 intel_ring_emit(ring, fb->pitches[0]);
9367 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9368 obj->tiling_mode);
9369
9370 /* XXX Enabling the panel-fitter across page-flip is so far
9371 * untested on non-native modes, so ignore it for now.
9372 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9373 */
9374 pf = 0;
9375 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9376 intel_ring_emit(ring, pf | pipesrc);
9377
9378 intel_mark_page_flip_active(intel_crtc);
9379 __intel_ring_advance(ring);
9380 return 0;
9381 }
9382
9383 static int intel_gen6_queue_flip(struct drm_device *dev,
9384 struct drm_crtc *crtc,
9385 struct drm_framebuffer *fb,
9386 struct drm_i915_gem_object *obj,
9387 struct intel_engine_cs *ring,
9388 uint32_t flags)
9389 {
9390 struct drm_i915_private *dev_priv = dev->dev_private;
9391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9392 uint32_t pf, pipesrc;
9393 int ret;
9394
9395 ret = intel_ring_begin(ring, 4);
9396 if (ret)
9397 return ret;
9398
9399 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9400 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9401 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9402 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9403
9404 /* Contrary to the suggestions in the documentation,
9405 * "Enable Panel Fitter" does not seem to be required when page
9406 * flipping with a non-native mode, and worse causes a normal
9407 * modeset to fail.
9408 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9409 */
9410 pf = 0;
9411 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9412 intel_ring_emit(ring, pf | pipesrc);
9413
9414 intel_mark_page_flip_active(intel_crtc);
9415 __intel_ring_advance(ring);
9416 return 0;
9417 }
9418
9419 static int intel_gen7_queue_flip(struct drm_device *dev,
9420 struct drm_crtc *crtc,
9421 struct drm_framebuffer *fb,
9422 struct drm_i915_gem_object *obj,
9423 struct intel_engine_cs *ring,
9424 uint32_t flags)
9425 {
9426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9427 uint32_t plane_bit = 0;
9428 int len, ret;
9429
9430 switch (intel_crtc->plane) {
9431 case PLANE_A:
9432 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9433 break;
9434 case PLANE_B:
9435 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9436 break;
9437 case PLANE_C:
9438 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9439 break;
9440 default:
9441 WARN_ONCE(1, "unknown plane in flip command\n");
9442 return -ENODEV;
9443 }
9444
9445 len = 4;
9446 if (ring->id == RCS) {
9447 len += 6;
9448 /*
9449 * On Gen 8, SRM is now taking an extra dword to accommodate
9450 * 48bits addresses, and we need a NOOP for the batch size to
9451 * stay even.
9452 */
9453 if (IS_GEN8(dev))
9454 len += 2;
9455 }
9456
9457 /*
9458 * BSpec MI_DISPLAY_FLIP for IVB:
9459 * "The full packet must be contained within the same cache line."
9460 *
9461 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9462 * cacheline, if we ever start emitting more commands before
9463 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9464 * then do the cacheline alignment, and finally emit the
9465 * MI_DISPLAY_FLIP.
9466 */
9467 ret = intel_ring_cacheline_align(ring);
9468 if (ret)
9469 return ret;
9470
9471 ret = intel_ring_begin(ring, len);
9472 if (ret)
9473 return ret;
9474
9475 /* Unmask the flip-done completion message. Note that the bspec says that
9476 * we should do this for both the BCS and RCS, and that we must not unmask
9477 * more than one flip event at any time (or ensure that one flip message
9478 * can be sent by waiting for flip-done prior to queueing new flips).
9479 * Experimentation says that BCS works despite DERRMR masking all
9480 * flip-done completion events and that unmasking all planes at once
9481 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9482 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9483 */
9484 if (ring->id == RCS) {
9485 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9486 intel_ring_emit(ring, DERRMR);
9487 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9488 DERRMR_PIPEB_PRI_FLIP_DONE |
9489 DERRMR_PIPEC_PRI_FLIP_DONE));
9490 if (IS_GEN8(dev))
9491 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9492 MI_SRM_LRM_GLOBAL_GTT);
9493 else
9494 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9495 MI_SRM_LRM_GLOBAL_GTT);
9496 intel_ring_emit(ring, DERRMR);
9497 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9498 if (IS_GEN8(dev)) {
9499 intel_ring_emit(ring, 0);
9500 intel_ring_emit(ring, MI_NOOP);
9501 }
9502 }
9503
9504 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9505 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9506 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9507 intel_ring_emit(ring, (MI_NOOP));
9508
9509 intel_mark_page_flip_active(intel_crtc);
9510 __intel_ring_advance(ring);
9511 return 0;
9512 }
9513
9514 static bool use_mmio_flip(struct intel_engine_cs *ring,
9515 struct drm_i915_gem_object *obj)
9516 {
9517 /*
9518 * This is not being used for older platforms, because
9519 * non-availability of flip done interrupt forces us to use
9520 * CS flips. Older platforms derive flip done using some clever
9521 * tricks involving the flip_pending status bits and vblank irqs.
9522 * So using MMIO flips there would disrupt this mechanism.
9523 */
9524
9525 if (ring == NULL)
9526 return true;
9527
9528 if (INTEL_INFO(ring->dev)->gen < 5)
9529 return false;
9530
9531 if (i915.use_mmio_flip < 0)
9532 return false;
9533 else if (i915.use_mmio_flip > 0)
9534 return true;
9535 else
9536 return ring != obj->ring;
9537 }
9538
9539 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9540 {
9541 struct drm_device *dev = intel_crtc->base.dev;
9542 struct drm_i915_private *dev_priv = dev->dev_private;
9543 struct intel_framebuffer *intel_fb =
9544 to_intel_framebuffer(intel_crtc->base.primary->fb);
9545 struct drm_i915_gem_object *obj = intel_fb->obj;
9546 u32 dspcntr;
9547 u32 reg;
9548
9549 intel_mark_page_flip_active(intel_crtc);
9550
9551 reg = DSPCNTR(intel_crtc->plane);
9552 dspcntr = I915_READ(reg);
9553
9554 if (INTEL_INFO(dev)->gen >= 4) {
9555 if (obj->tiling_mode != I915_TILING_NONE)
9556 dspcntr |= DISPPLANE_TILED;
9557 else
9558 dspcntr &= ~DISPPLANE_TILED;
9559 }
9560 I915_WRITE(reg, dspcntr);
9561
9562 I915_WRITE(DSPSURF(intel_crtc->plane),
9563 intel_crtc->unpin_work->gtt_offset);
9564 POSTING_READ(DSPSURF(intel_crtc->plane));
9565 }
9566
9567 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9568 {
9569 struct intel_engine_cs *ring;
9570 int ret;
9571
9572 lockdep_assert_held(&obj->base.dev->struct_mutex);
9573
9574 if (!obj->last_write_seqno)
9575 return 0;
9576
9577 ring = obj->ring;
9578
9579 if (i915_seqno_passed(ring->get_seqno(ring, true),
9580 obj->last_write_seqno))
9581 return 0;
9582
9583 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9584 if (ret)
9585 return ret;
9586
9587 if (WARN_ON(!ring->irq_get(ring)))
9588 return 0;
9589
9590 return 1;
9591 }
9592
9593 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9594 {
9595 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9596 struct intel_crtc *intel_crtc;
9597 unsigned long irq_flags;
9598 u32 seqno;
9599
9600 seqno = ring->get_seqno(ring, false);
9601
9602 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9603 for_each_intel_crtc(ring->dev, intel_crtc) {
9604 struct intel_mmio_flip *mmio_flip;
9605
9606 mmio_flip = &intel_crtc->mmio_flip;
9607 if (mmio_flip->seqno == 0)
9608 continue;
9609
9610 if (ring->id != mmio_flip->ring_id)
9611 continue;
9612
9613 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9614 intel_do_mmio_flip(intel_crtc);
9615 mmio_flip->seqno = 0;
9616 ring->irq_put(ring);
9617 }
9618 }
9619 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9620 }
9621
9622 static int intel_queue_mmio_flip(struct drm_device *dev,
9623 struct drm_crtc *crtc,
9624 struct drm_framebuffer *fb,
9625 struct drm_i915_gem_object *obj,
9626 struct intel_engine_cs *ring,
9627 uint32_t flags)
9628 {
9629 struct drm_i915_private *dev_priv = dev->dev_private;
9630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9631 unsigned long irq_flags;
9632 int ret;
9633
9634 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9635 return -EBUSY;
9636
9637 ret = intel_postpone_flip(obj);
9638 if (ret < 0)
9639 return ret;
9640 if (ret == 0) {
9641 intel_do_mmio_flip(intel_crtc);
9642 return 0;
9643 }
9644
9645 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9646 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9647 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9648 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9649
9650 /*
9651 * Double check to catch cases where irq fired before
9652 * mmio flip data was ready
9653 */
9654 intel_notify_mmio_flip(obj->ring);
9655 return 0;
9656 }
9657
9658 static int intel_default_queue_flip(struct drm_device *dev,
9659 struct drm_crtc *crtc,
9660 struct drm_framebuffer *fb,
9661 struct drm_i915_gem_object *obj,
9662 struct intel_engine_cs *ring,
9663 uint32_t flags)
9664 {
9665 return -ENODEV;
9666 }
9667
9668 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9669 struct drm_framebuffer *fb,
9670 struct drm_pending_vblank_event *event,
9671 uint32_t page_flip_flags)
9672 {
9673 struct drm_device *dev = crtc->dev;
9674 struct drm_i915_private *dev_priv = dev->dev_private;
9675 struct drm_framebuffer *old_fb = crtc->primary->fb;
9676 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9678 enum pipe pipe = intel_crtc->pipe;
9679 struct intel_unpin_work *work;
9680 struct intel_engine_cs *ring;
9681 unsigned long flags;
9682 int ret;
9683
9684 /*
9685 * drm_mode_page_flip_ioctl() should already catch this, but double
9686 * check to be safe. In the future we may enable pageflipping from
9687 * a disabled primary plane.
9688 */
9689 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9690 return -EBUSY;
9691
9692 /* Can't change pixel format via MI display flips. */
9693 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9694 return -EINVAL;
9695
9696 /*
9697 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9698 * Note that pitch changes could also affect these register.
9699 */
9700 if (INTEL_INFO(dev)->gen > 3 &&
9701 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9702 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9703 return -EINVAL;
9704
9705 if (i915_terminally_wedged(&dev_priv->gpu_error))
9706 goto out_hang;
9707
9708 work = kzalloc(sizeof(*work), GFP_KERNEL);
9709 if (work == NULL)
9710 return -ENOMEM;
9711
9712 work->event = event;
9713 work->crtc = crtc;
9714 work->old_fb_obj = intel_fb_obj(old_fb);
9715 INIT_WORK(&work->work, intel_unpin_work_fn);
9716
9717 ret = drm_crtc_vblank_get(crtc);
9718 if (ret)
9719 goto free_work;
9720
9721 /* We borrow the event spin lock for protecting unpin_work */
9722 spin_lock_irqsave(&dev->event_lock, flags);
9723 if (intel_crtc->unpin_work) {
9724 spin_unlock_irqrestore(&dev->event_lock, flags);
9725 kfree(work);
9726 drm_crtc_vblank_put(crtc);
9727
9728 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9729 return -EBUSY;
9730 }
9731 intel_crtc->unpin_work = work;
9732 spin_unlock_irqrestore(&dev->event_lock, flags);
9733
9734 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9735 flush_workqueue(dev_priv->wq);
9736
9737 ret = i915_mutex_lock_interruptible(dev);
9738 if (ret)
9739 goto cleanup;
9740
9741 /* Reference the objects for the scheduled work. */
9742 drm_gem_object_reference(&work->old_fb_obj->base);
9743 drm_gem_object_reference(&obj->base);
9744
9745 crtc->primary->fb = fb;
9746
9747 work->pending_flip_obj = obj;
9748
9749 work->enable_stall_check = true;
9750
9751 atomic_inc(&intel_crtc->unpin_work_count);
9752 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9753
9754 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9755 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9756
9757 if (IS_VALLEYVIEW(dev)) {
9758 ring = &dev_priv->ring[BCS];
9759 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9760 /* vlv: DISPLAY_FLIP fails to change tiling */
9761 ring = NULL;
9762 } else if (IS_IVYBRIDGE(dev)) {
9763 ring = &dev_priv->ring[BCS];
9764 } else if (INTEL_INFO(dev)->gen >= 7) {
9765 ring = obj->ring;
9766 if (ring == NULL || ring->id != RCS)
9767 ring = &dev_priv->ring[BCS];
9768 } else {
9769 ring = &dev_priv->ring[RCS];
9770 }
9771
9772 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9773 if (ret)
9774 goto cleanup_pending;
9775
9776 work->gtt_offset =
9777 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9778
9779 if (use_mmio_flip(ring, obj))
9780 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9781 page_flip_flags);
9782 else
9783 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9784 page_flip_flags);
9785 if (ret)
9786 goto cleanup_unpin;
9787
9788 i915_gem_track_fb(work->old_fb_obj, obj,
9789 INTEL_FRONTBUFFER_PRIMARY(pipe));
9790
9791 intel_disable_fbc(dev);
9792 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9793 mutex_unlock(&dev->struct_mutex);
9794
9795 trace_i915_flip_request(intel_crtc->plane, obj);
9796
9797 return 0;
9798
9799 cleanup_unpin:
9800 intel_unpin_fb_obj(obj);
9801 cleanup_pending:
9802 atomic_dec(&intel_crtc->unpin_work_count);
9803 crtc->primary->fb = old_fb;
9804 drm_gem_object_unreference(&work->old_fb_obj->base);
9805 drm_gem_object_unreference(&obj->base);
9806 mutex_unlock(&dev->struct_mutex);
9807
9808 cleanup:
9809 spin_lock_irqsave(&dev->event_lock, flags);
9810 intel_crtc->unpin_work = NULL;
9811 spin_unlock_irqrestore(&dev->event_lock, flags);
9812
9813 drm_crtc_vblank_put(crtc);
9814 free_work:
9815 kfree(work);
9816
9817 if (ret == -EIO) {
9818 out_hang:
9819 intel_crtc_wait_for_pending_flips(crtc);
9820 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9821 if (ret == 0 && event)
9822 drm_send_vblank_event(dev, pipe, event);
9823 }
9824 return ret;
9825 }
9826
9827 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9828 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9829 .load_lut = intel_crtc_load_lut,
9830 };
9831
9832 /**
9833 * intel_modeset_update_staged_output_state
9834 *
9835 * Updates the staged output configuration state, e.g. after we've read out the
9836 * current hw state.
9837 */
9838 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9839 {
9840 struct intel_crtc *crtc;
9841 struct intel_encoder *encoder;
9842 struct intel_connector *connector;
9843
9844 list_for_each_entry(connector, &dev->mode_config.connector_list,
9845 base.head) {
9846 connector->new_encoder =
9847 to_intel_encoder(connector->base.encoder);
9848 }
9849
9850 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9851 base.head) {
9852 encoder->new_crtc =
9853 to_intel_crtc(encoder->base.crtc);
9854 }
9855
9856 for_each_intel_crtc(dev, crtc) {
9857 crtc->new_enabled = crtc->base.enabled;
9858
9859 if (crtc->new_enabled)
9860 crtc->new_config = &crtc->config;
9861 else
9862 crtc->new_config = NULL;
9863 }
9864 }
9865
9866 /**
9867 * intel_modeset_commit_output_state
9868 *
9869 * This function copies the stage display pipe configuration to the real one.
9870 */
9871 static void intel_modeset_commit_output_state(struct drm_device *dev)
9872 {
9873 struct intel_crtc *crtc;
9874 struct intel_encoder *encoder;
9875 struct intel_connector *connector;
9876
9877 list_for_each_entry(connector, &dev->mode_config.connector_list,
9878 base.head) {
9879 connector->base.encoder = &connector->new_encoder->base;
9880 }
9881
9882 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9883 base.head) {
9884 encoder->base.crtc = &encoder->new_crtc->base;
9885 }
9886
9887 for_each_intel_crtc(dev, crtc) {
9888 crtc->base.enabled = crtc->new_enabled;
9889 }
9890 }
9891
9892 static void
9893 connected_sink_compute_bpp(struct intel_connector *connector,
9894 struct intel_crtc_config *pipe_config)
9895 {
9896 int bpp = pipe_config->pipe_bpp;
9897
9898 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9899 connector->base.base.id,
9900 connector->base.name);
9901
9902 /* Don't use an invalid EDID bpc value */
9903 if (connector->base.display_info.bpc &&
9904 connector->base.display_info.bpc * 3 < bpp) {
9905 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9906 bpp, connector->base.display_info.bpc*3);
9907 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9908 }
9909
9910 /* Clamp bpp to 8 on screens without EDID 1.4 */
9911 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9912 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9913 bpp);
9914 pipe_config->pipe_bpp = 24;
9915 }
9916 }
9917
9918 static int
9919 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9920 struct drm_framebuffer *fb,
9921 struct intel_crtc_config *pipe_config)
9922 {
9923 struct drm_device *dev = crtc->base.dev;
9924 struct intel_connector *connector;
9925 int bpp;
9926
9927 switch (fb->pixel_format) {
9928 case DRM_FORMAT_C8:
9929 bpp = 8*3; /* since we go through a colormap */
9930 break;
9931 case DRM_FORMAT_XRGB1555:
9932 case DRM_FORMAT_ARGB1555:
9933 /* checked in intel_framebuffer_init already */
9934 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9935 return -EINVAL;
9936 case DRM_FORMAT_RGB565:
9937 bpp = 6*3; /* min is 18bpp */
9938 break;
9939 case DRM_FORMAT_XBGR8888:
9940 case DRM_FORMAT_ABGR8888:
9941 /* checked in intel_framebuffer_init already */
9942 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9943 return -EINVAL;
9944 case DRM_FORMAT_XRGB8888:
9945 case DRM_FORMAT_ARGB8888:
9946 bpp = 8*3;
9947 break;
9948 case DRM_FORMAT_XRGB2101010:
9949 case DRM_FORMAT_ARGB2101010:
9950 case DRM_FORMAT_XBGR2101010:
9951 case DRM_FORMAT_ABGR2101010:
9952 /* checked in intel_framebuffer_init already */
9953 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9954 return -EINVAL;
9955 bpp = 10*3;
9956 break;
9957 /* TODO: gen4+ supports 16 bpc floating point, too. */
9958 default:
9959 DRM_DEBUG_KMS("unsupported depth\n");
9960 return -EINVAL;
9961 }
9962
9963 pipe_config->pipe_bpp = bpp;
9964
9965 /* Clamp display bpp to EDID value */
9966 list_for_each_entry(connector, &dev->mode_config.connector_list,
9967 base.head) {
9968 if (!connector->new_encoder ||
9969 connector->new_encoder->new_crtc != crtc)
9970 continue;
9971
9972 connected_sink_compute_bpp(connector, pipe_config);
9973 }
9974
9975 return bpp;
9976 }
9977
9978 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9979 {
9980 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9981 "type: 0x%x flags: 0x%x\n",
9982 mode->crtc_clock,
9983 mode->crtc_hdisplay, mode->crtc_hsync_start,
9984 mode->crtc_hsync_end, mode->crtc_htotal,
9985 mode->crtc_vdisplay, mode->crtc_vsync_start,
9986 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9987 }
9988
9989 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9990 struct intel_crtc_config *pipe_config,
9991 const char *context)
9992 {
9993 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9994 context, pipe_name(crtc->pipe));
9995
9996 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9997 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9998 pipe_config->pipe_bpp, pipe_config->dither);
9999 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10000 pipe_config->has_pch_encoder,
10001 pipe_config->fdi_lanes,
10002 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10003 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10004 pipe_config->fdi_m_n.tu);
10005 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10006 pipe_config->has_dp_encoder,
10007 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10008 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10009 pipe_config->dp_m_n.tu);
10010 DRM_DEBUG_KMS("requested mode:\n");
10011 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10012 DRM_DEBUG_KMS("adjusted mode:\n");
10013 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10014 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10015 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10016 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10017 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10018 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10019 pipe_config->gmch_pfit.control,
10020 pipe_config->gmch_pfit.pgm_ratios,
10021 pipe_config->gmch_pfit.lvds_border_bits);
10022 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10023 pipe_config->pch_pfit.pos,
10024 pipe_config->pch_pfit.size,
10025 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10026 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10027 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10028 }
10029
10030 static bool encoders_cloneable(const struct intel_encoder *a,
10031 const struct intel_encoder *b)
10032 {
10033 /* masks could be asymmetric, so check both ways */
10034 return a == b || (a->cloneable & (1 << b->type) &&
10035 b->cloneable & (1 << a->type));
10036 }
10037
10038 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10039 struct intel_encoder *encoder)
10040 {
10041 struct drm_device *dev = crtc->base.dev;
10042 struct intel_encoder *source_encoder;
10043
10044 list_for_each_entry(source_encoder,
10045 &dev->mode_config.encoder_list, base.head) {
10046 if (source_encoder->new_crtc != crtc)
10047 continue;
10048
10049 if (!encoders_cloneable(encoder, source_encoder))
10050 return false;
10051 }
10052
10053 return true;
10054 }
10055
10056 static bool check_encoder_cloning(struct intel_crtc *crtc)
10057 {
10058 struct drm_device *dev = crtc->base.dev;
10059 struct intel_encoder *encoder;
10060
10061 list_for_each_entry(encoder,
10062 &dev->mode_config.encoder_list, base.head) {
10063 if (encoder->new_crtc != crtc)
10064 continue;
10065
10066 if (!check_single_encoder_cloning(crtc, encoder))
10067 return false;
10068 }
10069
10070 return true;
10071 }
10072
10073 static struct intel_crtc_config *
10074 intel_modeset_pipe_config(struct drm_crtc *crtc,
10075 struct drm_framebuffer *fb,
10076 struct drm_display_mode *mode)
10077 {
10078 struct drm_device *dev = crtc->dev;
10079 struct intel_encoder *encoder;
10080 struct intel_crtc_config *pipe_config;
10081 int plane_bpp, ret = -EINVAL;
10082 bool retry = true;
10083
10084 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10085 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10086 return ERR_PTR(-EINVAL);
10087 }
10088
10089 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10090 if (!pipe_config)
10091 return ERR_PTR(-ENOMEM);
10092
10093 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10094 drm_mode_copy(&pipe_config->requested_mode, mode);
10095
10096 pipe_config->cpu_transcoder =
10097 (enum transcoder) to_intel_crtc(crtc)->pipe;
10098 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10099
10100 /*
10101 * Sanitize sync polarity flags based on requested ones. If neither
10102 * positive or negative polarity is requested, treat this as meaning
10103 * negative polarity.
10104 */
10105 if (!(pipe_config->adjusted_mode.flags &
10106 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10107 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10108
10109 if (!(pipe_config->adjusted_mode.flags &
10110 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10111 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10112
10113 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10114 * plane pixel format and any sink constraints into account. Returns the
10115 * source plane bpp so that dithering can be selected on mismatches
10116 * after encoders and crtc also have had their say. */
10117 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10118 fb, pipe_config);
10119 if (plane_bpp < 0)
10120 goto fail;
10121
10122 /*
10123 * Determine the real pipe dimensions. Note that stereo modes can
10124 * increase the actual pipe size due to the frame doubling and
10125 * insertion of additional space for blanks between the frame. This
10126 * is stored in the crtc timings. We use the requested mode to do this
10127 * computation to clearly distinguish it from the adjusted mode, which
10128 * can be changed by the connectors in the below retry loop.
10129 */
10130 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10131 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10132 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10133
10134 encoder_retry:
10135 /* Ensure the port clock defaults are reset when retrying. */
10136 pipe_config->port_clock = 0;
10137 pipe_config->pixel_multiplier = 1;
10138
10139 /* Fill in default crtc timings, allow encoders to overwrite them. */
10140 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10141
10142 /* Pass our mode to the connectors and the CRTC to give them a chance to
10143 * adjust it according to limitations or connector properties, and also
10144 * a chance to reject the mode entirely.
10145 */
10146 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10147 base.head) {
10148
10149 if (&encoder->new_crtc->base != crtc)
10150 continue;
10151
10152 if (!(encoder->compute_config(encoder, pipe_config))) {
10153 DRM_DEBUG_KMS("Encoder config failure\n");
10154 goto fail;
10155 }
10156 }
10157
10158 /* Set default port clock if not overwritten by the encoder. Needs to be
10159 * done afterwards in case the encoder adjusts the mode. */
10160 if (!pipe_config->port_clock)
10161 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10162 * pipe_config->pixel_multiplier;
10163
10164 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10165 if (ret < 0) {
10166 DRM_DEBUG_KMS("CRTC fixup failed\n");
10167 goto fail;
10168 }
10169
10170 if (ret == RETRY) {
10171 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10172 ret = -EINVAL;
10173 goto fail;
10174 }
10175
10176 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10177 retry = false;
10178 goto encoder_retry;
10179 }
10180
10181 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10182 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10183 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10184
10185 return pipe_config;
10186 fail:
10187 kfree(pipe_config);
10188 return ERR_PTR(ret);
10189 }
10190
10191 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10192 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10193 static void
10194 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10195 unsigned *prepare_pipes, unsigned *disable_pipes)
10196 {
10197 struct intel_crtc *intel_crtc;
10198 struct drm_device *dev = crtc->dev;
10199 struct intel_encoder *encoder;
10200 struct intel_connector *connector;
10201 struct drm_crtc *tmp_crtc;
10202
10203 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10204
10205 /* Check which crtcs have changed outputs connected to them, these need
10206 * to be part of the prepare_pipes mask. We don't (yet) support global
10207 * modeset across multiple crtcs, so modeset_pipes will only have one
10208 * bit set at most. */
10209 list_for_each_entry(connector, &dev->mode_config.connector_list,
10210 base.head) {
10211 if (connector->base.encoder == &connector->new_encoder->base)
10212 continue;
10213
10214 if (connector->base.encoder) {
10215 tmp_crtc = connector->base.encoder->crtc;
10216
10217 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10218 }
10219
10220 if (connector->new_encoder)
10221 *prepare_pipes |=
10222 1 << connector->new_encoder->new_crtc->pipe;
10223 }
10224
10225 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10226 base.head) {
10227 if (encoder->base.crtc == &encoder->new_crtc->base)
10228 continue;
10229
10230 if (encoder->base.crtc) {
10231 tmp_crtc = encoder->base.crtc;
10232
10233 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10234 }
10235
10236 if (encoder->new_crtc)
10237 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10238 }
10239
10240 /* Check for pipes that will be enabled/disabled ... */
10241 for_each_intel_crtc(dev, intel_crtc) {
10242 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10243 continue;
10244
10245 if (!intel_crtc->new_enabled)
10246 *disable_pipes |= 1 << intel_crtc->pipe;
10247 else
10248 *prepare_pipes |= 1 << intel_crtc->pipe;
10249 }
10250
10251
10252 /* set_mode is also used to update properties on life display pipes. */
10253 intel_crtc = to_intel_crtc(crtc);
10254 if (intel_crtc->new_enabled)
10255 *prepare_pipes |= 1 << intel_crtc->pipe;
10256
10257 /*
10258 * For simplicity do a full modeset on any pipe where the output routing
10259 * changed. We could be more clever, but that would require us to be
10260 * more careful with calling the relevant encoder->mode_set functions.
10261 */
10262 if (*prepare_pipes)
10263 *modeset_pipes = *prepare_pipes;
10264
10265 /* ... and mask these out. */
10266 *modeset_pipes &= ~(*disable_pipes);
10267 *prepare_pipes &= ~(*disable_pipes);
10268
10269 /*
10270 * HACK: We don't (yet) fully support global modesets. intel_set_config
10271 * obies this rule, but the modeset restore mode of
10272 * intel_modeset_setup_hw_state does not.
10273 */
10274 *modeset_pipes &= 1 << intel_crtc->pipe;
10275 *prepare_pipes &= 1 << intel_crtc->pipe;
10276
10277 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10278 *modeset_pipes, *prepare_pipes, *disable_pipes);
10279 }
10280
10281 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10282 {
10283 struct drm_encoder *encoder;
10284 struct drm_device *dev = crtc->dev;
10285
10286 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10287 if (encoder->crtc == crtc)
10288 return true;
10289
10290 return false;
10291 }
10292
10293 static void
10294 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10295 {
10296 struct intel_encoder *intel_encoder;
10297 struct intel_crtc *intel_crtc;
10298 struct drm_connector *connector;
10299
10300 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10301 base.head) {
10302 if (!intel_encoder->base.crtc)
10303 continue;
10304
10305 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10306
10307 if (prepare_pipes & (1 << intel_crtc->pipe))
10308 intel_encoder->connectors_active = false;
10309 }
10310
10311 intel_modeset_commit_output_state(dev);
10312
10313 /* Double check state. */
10314 for_each_intel_crtc(dev, intel_crtc) {
10315 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10316 WARN_ON(intel_crtc->new_config &&
10317 intel_crtc->new_config != &intel_crtc->config);
10318 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10319 }
10320
10321 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10322 if (!connector->encoder || !connector->encoder->crtc)
10323 continue;
10324
10325 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10326
10327 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10328 struct drm_property *dpms_property =
10329 dev->mode_config.dpms_property;
10330
10331 connector->dpms = DRM_MODE_DPMS_ON;
10332 drm_object_property_set_value(&connector->base,
10333 dpms_property,
10334 DRM_MODE_DPMS_ON);
10335
10336 intel_encoder = to_intel_encoder(connector->encoder);
10337 intel_encoder->connectors_active = true;
10338 }
10339 }
10340
10341 }
10342
10343 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10344 {
10345 int diff;
10346
10347 if (clock1 == clock2)
10348 return true;
10349
10350 if (!clock1 || !clock2)
10351 return false;
10352
10353 diff = abs(clock1 - clock2);
10354
10355 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10356 return true;
10357
10358 return false;
10359 }
10360
10361 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10362 list_for_each_entry((intel_crtc), \
10363 &(dev)->mode_config.crtc_list, \
10364 base.head) \
10365 if (mask & (1 <<(intel_crtc)->pipe))
10366
10367 static bool
10368 intel_pipe_config_compare(struct drm_device *dev,
10369 struct intel_crtc_config *current_config,
10370 struct intel_crtc_config *pipe_config)
10371 {
10372 #define PIPE_CONF_CHECK_X(name) \
10373 if (current_config->name != pipe_config->name) { \
10374 DRM_ERROR("mismatch in " #name " " \
10375 "(expected 0x%08x, found 0x%08x)\n", \
10376 current_config->name, \
10377 pipe_config->name); \
10378 return false; \
10379 }
10380
10381 #define PIPE_CONF_CHECK_I(name) \
10382 if (current_config->name != pipe_config->name) { \
10383 DRM_ERROR("mismatch in " #name " " \
10384 "(expected %i, found %i)\n", \
10385 current_config->name, \
10386 pipe_config->name); \
10387 return false; \
10388 }
10389
10390 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10391 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10392 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10393 "(expected %i, found %i)\n", \
10394 current_config->name & (mask), \
10395 pipe_config->name & (mask)); \
10396 return false; \
10397 }
10398
10399 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10400 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10401 DRM_ERROR("mismatch in " #name " " \
10402 "(expected %i, found %i)\n", \
10403 current_config->name, \
10404 pipe_config->name); \
10405 return false; \
10406 }
10407
10408 #define PIPE_CONF_QUIRK(quirk) \
10409 ((current_config->quirks | pipe_config->quirks) & (quirk))
10410
10411 PIPE_CONF_CHECK_I(cpu_transcoder);
10412
10413 PIPE_CONF_CHECK_I(has_pch_encoder);
10414 PIPE_CONF_CHECK_I(fdi_lanes);
10415 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10416 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10417 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10418 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10419 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10420
10421 PIPE_CONF_CHECK_I(has_dp_encoder);
10422 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10423 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10424 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10425 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10426 PIPE_CONF_CHECK_I(dp_m_n.tu);
10427
10428 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10429 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10430 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10431 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10432 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10433 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10434
10435 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10436 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10437 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10438 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10439 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10440 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10441
10442 PIPE_CONF_CHECK_I(pixel_multiplier);
10443 PIPE_CONF_CHECK_I(has_hdmi_sink);
10444 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10445 IS_VALLEYVIEW(dev))
10446 PIPE_CONF_CHECK_I(limited_color_range);
10447
10448 PIPE_CONF_CHECK_I(has_audio);
10449
10450 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10451 DRM_MODE_FLAG_INTERLACE);
10452
10453 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10454 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10455 DRM_MODE_FLAG_PHSYNC);
10456 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10457 DRM_MODE_FLAG_NHSYNC);
10458 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10459 DRM_MODE_FLAG_PVSYNC);
10460 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10461 DRM_MODE_FLAG_NVSYNC);
10462 }
10463
10464 PIPE_CONF_CHECK_I(pipe_src_w);
10465 PIPE_CONF_CHECK_I(pipe_src_h);
10466
10467 /*
10468 * FIXME: BIOS likes to set up a cloned config with lvds+external
10469 * screen. Since we don't yet re-compute the pipe config when moving
10470 * just the lvds port away to another pipe the sw tracking won't match.
10471 *
10472 * Proper atomic modesets with recomputed global state will fix this.
10473 * Until then just don't check gmch state for inherited modes.
10474 */
10475 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10476 PIPE_CONF_CHECK_I(gmch_pfit.control);
10477 /* pfit ratios are autocomputed by the hw on gen4+ */
10478 if (INTEL_INFO(dev)->gen < 4)
10479 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10480 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10481 }
10482
10483 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10484 if (current_config->pch_pfit.enabled) {
10485 PIPE_CONF_CHECK_I(pch_pfit.pos);
10486 PIPE_CONF_CHECK_I(pch_pfit.size);
10487 }
10488
10489 /* BDW+ don't expose a synchronous way to read the state */
10490 if (IS_HASWELL(dev))
10491 PIPE_CONF_CHECK_I(ips_enabled);
10492
10493 PIPE_CONF_CHECK_I(double_wide);
10494
10495 PIPE_CONF_CHECK_X(ddi_pll_sel);
10496
10497 PIPE_CONF_CHECK_I(shared_dpll);
10498 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10499 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10500 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10501 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10502 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10503
10504 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10505 PIPE_CONF_CHECK_I(pipe_bpp);
10506
10507 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10508 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10509
10510 #undef PIPE_CONF_CHECK_X
10511 #undef PIPE_CONF_CHECK_I
10512 #undef PIPE_CONF_CHECK_FLAGS
10513 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10514 #undef PIPE_CONF_QUIRK
10515
10516 return true;
10517 }
10518
10519 static void
10520 check_connector_state(struct drm_device *dev)
10521 {
10522 struct intel_connector *connector;
10523
10524 list_for_each_entry(connector, &dev->mode_config.connector_list,
10525 base.head) {
10526 /* This also checks the encoder/connector hw state with the
10527 * ->get_hw_state callbacks. */
10528 intel_connector_check_state(connector);
10529
10530 WARN(&connector->new_encoder->base != connector->base.encoder,
10531 "connector's staged encoder doesn't match current encoder\n");
10532 }
10533 }
10534
10535 static void
10536 check_encoder_state(struct drm_device *dev)
10537 {
10538 struct intel_encoder *encoder;
10539 struct intel_connector *connector;
10540
10541 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10542 base.head) {
10543 bool enabled = false;
10544 bool active = false;
10545 enum pipe pipe, tracked_pipe;
10546
10547 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10548 encoder->base.base.id,
10549 encoder->base.name);
10550
10551 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10552 "encoder's stage crtc doesn't match current crtc\n");
10553 WARN(encoder->connectors_active && !encoder->base.crtc,
10554 "encoder's active_connectors set, but no crtc\n");
10555
10556 list_for_each_entry(connector, &dev->mode_config.connector_list,
10557 base.head) {
10558 if (connector->base.encoder != &encoder->base)
10559 continue;
10560 enabled = true;
10561 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10562 active = true;
10563 }
10564 /*
10565 * for MST connectors if we unplug the connector is gone
10566 * away but the encoder is still connected to a crtc
10567 * until a modeset happens in response to the hotplug.
10568 */
10569 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10570 continue;
10571
10572 WARN(!!encoder->base.crtc != enabled,
10573 "encoder's enabled state mismatch "
10574 "(expected %i, found %i)\n",
10575 !!encoder->base.crtc, enabled);
10576 WARN(active && !encoder->base.crtc,
10577 "active encoder with no crtc\n");
10578
10579 WARN(encoder->connectors_active != active,
10580 "encoder's computed active state doesn't match tracked active state "
10581 "(expected %i, found %i)\n", active, encoder->connectors_active);
10582
10583 active = encoder->get_hw_state(encoder, &pipe);
10584 WARN(active != encoder->connectors_active,
10585 "encoder's hw state doesn't match sw tracking "
10586 "(expected %i, found %i)\n",
10587 encoder->connectors_active, active);
10588
10589 if (!encoder->base.crtc)
10590 continue;
10591
10592 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10593 WARN(active && pipe != tracked_pipe,
10594 "active encoder's pipe doesn't match"
10595 "(expected %i, found %i)\n",
10596 tracked_pipe, pipe);
10597
10598 }
10599 }
10600
10601 static void
10602 check_crtc_state(struct drm_device *dev)
10603 {
10604 struct drm_i915_private *dev_priv = dev->dev_private;
10605 struct intel_crtc *crtc;
10606 struct intel_encoder *encoder;
10607 struct intel_crtc_config pipe_config;
10608
10609 for_each_intel_crtc(dev, crtc) {
10610 bool enabled = false;
10611 bool active = false;
10612
10613 memset(&pipe_config, 0, sizeof(pipe_config));
10614
10615 DRM_DEBUG_KMS("[CRTC:%d]\n",
10616 crtc->base.base.id);
10617
10618 WARN(crtc->active && !crtc->base.enabled,
10619 "active crtc, but not enabled in sw tracking\n");
10620
10621 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10622 base.head) {
10623 if (encoder->base.crtc != &crtc->base)
10624 continue;
10625 enabled = true;
10626 if (encoder->connectors_active)
10627 active = true;
10628 }
10629
10630 WARN(active != crtc->active,
10631 "crtc's computed active state doesn't match tracked active state "
10632 "(expected %i, found %i)\n", active, crtc->active);
10633 WARN(enabled != crtc->base.enabled,
10634 "crtc's computed enabled state doesn't match tracked enabled state "
10635 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10636
10637 active = dev_priv->display.get_pipe_config(crtc,
10638 &pipe_config);
10639
10640 /* hw state is inconsistent with the pipe A quirk */
10641 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10642 active = crtc->active;
10643
10644 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10645 base.head) {
10646 enum pipe pipe;
10647 if (encoder->base.crtc != &crtc->base)
10648 continue;
10649 if (encoder->get_hw_state(encoder, &pipe))
10650 encoder->get_config(encoder, &pipe_config);
10651 }
10652
10653 WARN(crtc->active != active,
10654 "crtc active state doesn't match with hw state "
10655 "(expected %i, found %i)\n", crtc->active, active);
10656
10657 if (active &&
10658 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10659 WARN(1, "pipe state doesn't match!\n");
10660 intel_dump_pipe_config(crtc, &pipe_config,
10661 "[hw state]");
10662 intel_dump_pipe_config(crtc, &crtc->config,
10663 "[sw state]");
10664 }
10665 }
10666 }
10667
10668 static void
10669 check_shared_dpll_state(struct drm_device *dev)
10670 {
10671 struct drm_i915_private *dev_priv = dev->dev_private;
10672 struct intel_crtc *crtc;
10673 struct intel_dpll_hw_state dpll_hw_state;
10674 int i;
10675
10676 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10677 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10678 int enabled_crtcs = 0, active_crtcs = 0;
10679 bool active;
10680
10681 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10682
10683 DRM_DEBUG_KMS("%s\n", pll->name);
10684
10685 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10686
10687 WARN(pll->active > pll->refcount,
10688 "more active pll users than references: %i vs %i\n",
10689 pll->active, pll->refcount);
10690 WARN(pll->active && !pll->on,
10691 "pll in active use but not on in sw tracking\n");
10692 WARN(pll->on && !pll->active,
10693 "pll in on but not on in use in sw tracking\n");
10694 WARN(pll->on != active,
10695 "pll on state mismatch (expected %i, found %i)\n",
10696 pll->on, active);
10697
10698 for_each_intel_crtc(dev, crtc) {
10699 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10700 enabled_crtcs++;
10701 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10702 active_crtcs++;
10703 }
10704 WARN(pll->active != active_crtcs,
10705 "pll active crtcs mismatch (expected %i, found %i)\n",
10706 pll->active, active_crtcs);
10707 WARN(pll->refcount != enabled_crtcs,
10708 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10709 pll->refcount, enabled_crtcs);
10710
10711 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10712 sizeof(dpll_hw_state)),
10713 "pll hw state mismatch\n");
10714 }
10715 }
10716
10717 void
10718 intel_modeset_check_state(struct drm_device *dev)
10719 {
10720 check_connector_state(dev);
10721 check_encoder_state(dev);
10722 check_crtc_state(dev);
10723 check_shared_dpll_state(dev);
10724 }
10725
10726 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10727 int dotclock)
10728 {
10729 /*
10730 * FDI already provided one idea for the dotclock.
10731 * Yell if the encoder disagrees.
10732 */
10733 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10734 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10735 pipe_config->adjusted_mode.crtc_clock, dotclock);
10736 }
10737
10738 static void update_scanline_offset(struct intel_crtc *crtc)
10739 {
10740 struct drm_device *dev = crtc->base.dev;
10741
10742 /*
10743 * The scanline counter increments at the leading edge of hsync.
10744 *
10745 * On most platforms it starts counting from vtotal-1 on the
10746 * first active line. That means the scanline counter value is
10747 * always one less than what we would expect. Ie. just after
10748 * start of vblank, which also occurs at start of hsync (on the
10749 * last active line), the scanline counter will read vblank_start-1.
10750 *
10751 * On gen2 the scanline counter starts counting from 1 instead
10752 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10753 * to keep the value positive), instead of adding one.
10754 *
10755 * On HSW+ the behaviour of the scanline counter depends on the output
10756 * type. For DP ports it behaves like most other platforms, but on HDMI
10757 * there's an extra 1 line difference. So we need to add two instead of
10758 * one to the value.
10759 */
10760 if (IS_GEN2(dev)) {
10761 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10762 int vtotal;
10763
10764 vtotal = mode->crtc_vtotal;
10765 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10766 vtotal /= 2;
10767
10768 crtc->scanline_offset = vtotal - 1;
10769 } else if (HAS_DDI(dev) &&
10770 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10771 crtc->scanline_offset = 2;
10772 } else
10773 crtc->scanline_offset = 1;
10774 }
10775
10776 static int __intel_set_mode(struct drm_crtc *crtc,
10777 struct drm_display_mode *mode,
10778 int x, int y, struct drm_framebuffer *fb)
10779 {
10780 struct drm_device *dev = crtc->dev;
10781 struct drm_i915_private *dev_priv = dev->dev_private;
10782 struct drm_display_mode *saved_mode;
10783 struct intel_crtc_config *pipe_config = NULL;
10784 struct intel_crtc *intel_crtc;
10785 unsigned disable_pipes, prepare_pipes, modeset_pipes;
10786 int ret = 0;
10787
10788 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10789 if (!saved_mode)
10790 return -ENOMEM;
10791
10792 intel_modeset_affected_pipes(crtc, &modeset_pipes,
10793 &prepare_pipes, &disable_pipes);
10794
10795 *saved_mode = crtc->mode;
10796
10797 /* Hack: Because we don't (yet) support global modeset on multiple
10798 * crtcs, we don't keep track of the new mode for more than one crtc.
10799 * Hence simply check whether any bit is set in modeset_pipes in all the
10800 * pieces of code that are not yet converted to deal with mutliple crtcs
10801 * changing their mode at the same time. */
10802 if (modeset_pipes) {
10803 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10804 if (IS_ERR(pipe_config)) {
10805 ret = PTR_ERR(pipe_config);
10806 pipe_config = NULL;
10807
10808 goto out;
10809 }
10810 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10811 "[modeset]");
10812 to_intel_crtc(crtc)->new_config = pipe_config;
10813 }
10814
10815 /*
10816 * See if the config requires any additional preparation, e.g.
10817 * to adjust global state with pipes off. We need to do this
10818 * here so we can get the modeset_pipe updated config for the new
10819 * mode set on this crtc. For other crtcs we need to use the
10820 * adjusted_mode bits in the crtc directly.
10821 */
10822 if (IS_VALLEYVIEW(dev)) {
10823 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10824
10825 /* may have added more to prepare_pipes than we should */
10826 prepare_pipes &= ~disable_pipes;
10827 }
10828
10829 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10830 intel_crtc_disable(&intel_crtc->base);
10831
10832 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10833 if (intel_crtc->base.enabled)
10834 dev_priv->display.crtc_disable(&intel_crtc->base);
10835 }
10836
10837 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10838 * to set it here already despite that we pass it down the callchain.
10839 */
10840 if (modeset_pipes) {
10841 crtc->mode = *mode;
10842 /* mode_set/enable/disable functions rely on a correct pipe
10843 * config. */
10844 to_intel_crtc(crtc)->config = *pipe_config;
10845 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10846
10847 /*
10848 * Calculate and store various constants which
10849 * are later needed by vblank and swap-completion
10850 * timestamping. They are derived from true hwmode.
10851 */
10852 drm_calc_timestamping_constants(crtc,
10853 &pipe_config->adjusted_mode);
10854 }
10855
10856 /* Only after disabling all output pipelines that will be changed can we
10857 * update the the output configuration. */
10858 intel_modeset_update_state(dev, prepare_pipes);
10859
10860 if (dev_priv->display.modeset_global_resources)
10861 dev_priv->display.modeset_global_resources(dev);
10862
10863 /* Set up the DPLL and any encoders state that needs to adjust or depend
10864 * on the DPLL.
10865 */
10866 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10867 struct drm_framebuffer *old_fb = crtc->primary->fb;
10868 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10869 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10870
10871 mutex_lock(&dev->struct_mutex);
10872 ret = intel_pin_and_fence_fb_obj(dev,
10873 obj,
10874 NULL);
10875 if (ret != 0) {
10876 DRM_ERROR("pin & fence failed\n");
10877 mutex_unlock(&dev->struct_mutex);
10878 goto done;
10879 }
10880 if (old_fb)
10881 intel_unpin_fb_obj(old_obj);
10882 i915_gem_track_fb(old_obj, obj,
10883 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10884 mutex_unlock(&dev->struct_mutex);
10885
10886 crtc->primary->fb = fb;
10887 crtc->x = x;
10888 crtc->y = y;
10889
10890 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10891 x, y, fb);
10892 if (ret)
10893 goto done;
10894 }
10895
10896 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10897 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10898 update_scanline_offset(intel_crtc);
10899
10900 dev_priv->display.crtc_enable(&intel_crtc->base);
10901 }
10902
10903 /* FIXME: add subpixel order */
10904 done:
10905 if (ret && crtc->enabled)
10906 crtc->mode = *saved_mode;
10907
10908 out:
10909 kfree(pipe_config);
10910 kfree(saved_mode);
10911 return ret;
10912 }
10913
10914 static int intel_set_mode(struct drm_crtc *crtc,
10915 struct drm_display_mode *mode,
10916 int x, int y, struct drm_framebuffer *fb)
10917 {
10918 int ret;
10919
10920 ret = __intel_set_mode(crtc, mode, x, y, fb);
10921
10922 if (ret == 0)
10923 intel_modeset_check_state(crtc->dev);
10924
10925 return ret;
10926 }
10927
10928 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10929 {
10930 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10931 }
10932
10933 #undef for_each_intel_crtc_masked
10934
10935 static void intel_set_config_free(struct intel_set_config *config)
10936 {
10937 if (!config)
10938 return;
10939
10940 kfree(config->save_connector_encoders);
10941 kfree(config->save_encoder_crtcs);
10942 kfree(config->save_crtc_enabled);
10943 kfree(config);
10944 }
10945
10946 static int intel_set_config_save_state(struct drm_device *dev,
10947 struct intel_set_config *config)
10948 {
10949 struct drm_crtc *crtc;
10950 struct drm_encoder *encoder;
10951 struct drm_connector *connector;
10952 int count;
10953
10954 config->save_crtc_enabled =
10955 kcalloc(dev->mode_config.num_crtc,
10956 sizeof(bool), GFP_KERNEL);
10957 if (!config->save_crtc_enabled)
10958 return -ENOMEM;
10959
10960 config->save_encoder_crtcs =
10961 kcalloc(dev->mode_config.num_encoder,
10962 sizeof(struct drm_crtc *), GFP_KERNEL);
10963 if (!config->save_encoder_crtcs)
10964 return -ENOMEM;
10965
10966 config->save_connector_encoders =
10967 kcalloc(dev->mode_config.num_connector,
10968 sizeof(struct drm_encoder *), GFP_KERNEL);
10969 if (!config->save_connector_encoders)
10970 return -ENOMEM;
10971
10972 /* Copy data. Note that driver private data is not affected.
10973 * Should anything bad happen only the expected state is
10974 * restored, not the drivers personal bookkeeping.
10975 */
10976 count = 0;
10977 for_each_crtc(dev, crtc) {
10978 config->save_crtc_enabled[count++] = crtc->enabled;
10979 }
10980
10981 count = 0;
10982 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10983 config->save_encoder_crtcs[count++] = encoder->crtc;
10984 }
10985
10986 count = 0;
10987 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10988 config->save_connector_encoders[count++] = connector->encoder;
10989 }
10990
10991 return 0;
10992 }
10993
10994 static void intel_set_config_restore_state(struct drm_device *dev,
10995 struct intel_set_config *config)
10996 {
10997 struct intel_crtc *crtc;
10998 struct intel_encoder *encoder;
10999 struct intel_connector *connector;
11000 int count;
11001
11002 count = 0;
11003 for_each_intel_crtc(dev, crtc) {
11004 crtc->new_enabled = config->save_crtc_enabled[count++];
11005
11006 if (crtc->new_enabled)
11007 crtc->new_config = &crtc->config;
11008 else
11009 crtc->new_config = NULL;
11010 }
11011
11012 count = 0;
11013 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11014 encoder->new_crtc =
11015 to_intel_crtc(config->save_encoder_crtcs[count++]);
11016 }
11017
11018 count = 0;
11019 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11020 connector->new_encoder =
11021 to_intel_encoder(config->save_connector_encoders[count++]);
11022 }
11023 }
11024
11025 static bool
11026 is_crtc_connector_off(struct drm_mode_set *set)
11027 {
11028 int i;
11029
11030 if (set->num_connectors == 0)
11031 return false;
11032
11033 if (WARN_ON(set->connectors == NULL))
11034 return false;
11035
11036 for (i = 0; i < set->num_connectors; i++)
11037 if (set->connectors[i]->encoder &&
11038 set->connectors[i]->encoder->crtc == set->crtc &&
11039 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11040 return true;
11041
11042 return false;
11043 }
11044
11045 static void
11046 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11047 struct intel_set_config *config)
11048 {
11049
11050 /* We should be able to check here if the fb has the same properties
11051 * and then just flip_or_move it */
11052 if (is_crtc_connector_off(set)) {
11053 config->mode_changed = true;
11054 } else if (set->crtc->primary->fb != set->fb) {
11055 /*
11056 * If we have no fb, we can only flip as long as the crtc is
11057 * active, otherwise we need a full mode set. The crtc may
11058 * be active if we've only disabled the primary plane, or
11059 * in fastboot situations.
11060 */
11061 if (set->crtc->primary->fb == NULL) {
11062 struct intel_crtc *intel_crtc =
11063 to_intel_crtc(set->crtc);
11064
11065 if (intel_crtc->active) {
11066 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11067 config->fb_changed = true;
11068 } else {
11069 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11070 config->mode_changed = true;
11071 }
11072 } else if (set->fb == NULL) {
11073 config->mode_changed = true;
11074 } else if (set->fb->pixel_format !=
11075 set->crtc->primary->fb->pixel_format) {
11076 config->mode_changed = true;
11077 } else {
11078 config->fb_changed = true;
11079 }
11080 }
11081
11082 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11083 config->fb_changed = true;
11084
11085 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11086 DRM_DEBUG_KMS("modes are different, full mode set\n");
11087 drm_mode_debug_printmodeline(&set->crtc->mode);
11088 drm_mode_debug_printmodeline(set->mode);
11089 config->mode_changed = true;
11090 }
11091
11092 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11093 set->crtc->base.id, config->mode_changed, config->fb_changed);
11094 }
11095
11096 static int
11097 intel_modeset_stage_output_state(struct drm_device *dev,
11098 struct drm_mode_set *set,
11099 struct intel_set_config *config)
11100 {
11101 struct intel_connector *connector;
11102 struct intel_encoder *encoder;
11103 struct intel_crtc *crtc;
11104 int ro;
11105
11106 /* The upper layers ensure that we either disable a crtc or have a list
11107 * of connectors. For paranoia, double-check this. */
11108 WARN_ON(!set->fb && (set->num_connectors != 0));
11109 WARN_ON(set->fb && (set->num_connectors == 0));
11110
11111 list_for_each_entry(connector, &dev->mode_config.connector_list,
11112 base.head) {
11113 /* Otherwise traverse passed in connector list and get encoders
11114 * for them. */
11115 for (ro = 0; ro < set->num_connectors; ro++) {
11116 if (set->connectors[ro] == &connector->base) {
11117 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11118 break;
11119 }
11120 }
11121
11122 /* If we disable the crtc, disable all its connectors. Also, if
11123 * the connector is on the changing crtc but not on the new
11124 * connector list, disable it. */
11125 if ((!set->fb || ro == set->num_connectors) &&
11126 connector->base.encoder &&
11127 connector->base.encoder->crtc == set->crtc) {
11128 connector->new_encoder = NULL;
11129
11130 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11131 connector->base.base.id,
11132 connector->base.name);
11133 }
11134
11135
11136 if (&connector->new_encoder->base != connector->base.encoder) {
11137 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11138 config->mode_changed = true;
11139 }
11140 }
11141 /* connector->new_encoder is now updated for all connectors. */
11142
11143 /* Update crtc of enabled connectors. */
11144 list_for_each_entry(connector, &dev->mode_config.connector_list,
11145 base.head) {
11146 struct drm_crtc *new_crtc;
11147
11148 if (!connector->new_encoder)
11149 continue;
11150
11151 new_crtc = connector->new_encoder->base.crtc;
11152
11153 for (ro = 0; ro < set->num_connectors; ro++) {
11154 if (set->connectors[ro] == &connector->base)
11155 new_crtc = set->crtc;
11156 }
11157
11158 /* Make sure the new CRTC will work with the encoder */
11159 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11160 new_crtc)) {
11161 return -EINVAL;
11162 }
11163 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11164
11165 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11166 connector->base.base.id,
11167 connector->base.name,
11168 new_crtc->base.id);
11169 }
11170
11171 /* Check for any encoders that needs to be disabled. */
11172 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11173 base.head) {
11174 int num_connectors = 0;
11175 list_for_each_entry(connector,
11176 &dev->mode_config.connector_list,
11177 base.head) {
11178 if (connector->new_encoder == encoder) {
11179 WARN_ON(!connector->new_encoder->new_crtc);
11180 num_connectors++;
11181 }
11182 }
11183
11184 if (num_connectors == 0)
11185 encoder->new_crtc = NULL;
11186 else if (num_connectors > 1)
11187 return -EINVAL;
11188
11189 /* Only now check for crtc changes so we don't miss encoders
11190 * that will be disabled. */
11191 if (&encoder->new_crtc->base != encoder->base.crtc) {
11192 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11193 config->mode_changed = true;
11194 }
11195 }
11196 /* Now we've also updated encoder->new_crtc for all encoders. */
11197 list_for_each_entry(connector, &dev->mode_config.connector_list,
11198 base.head) {
11199 if (connector->new_encoder)
11200 if (connector->new_encoder != connector->encoder)
11201 connector->encoder = connector->new_encoder;
11202 }
11203 for_each_intel_crtc(dev, crtc) {
11204 crtc->new_enabled = false;
11205
11206 list_for_each_entry(encoder,
11207 &dev->mode_config.encoder_list,
11208 base.head) {
11209 if (encoder->new_crtc == crtc) {
11210 crtc->new_enabled = true;
11211 break;
11212 }
11213 }
11214
11215 if (crtc->new_enabled != crtc->base.enabled) {
11216 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11217 crtc->new_enabled ? "en" : "dis");
11218 config->mode_changed = true;
11219 }
11220
11221 if (crtc->new_enabled)
11222 crtc->new_config = &crtc->config;
11223 else
11224 crtc->new_config = NULL;
11225 }
11226
11227 return 0;
11228 }
11229
11230 static void disable_crtc_nofb(struct intel_crtc *crtc)
11231 {
11232 struct drm_device *dev = crtc->base.dev;
11233 struct intel_encoder *encoder;
11234 struct intel_connector *connector;
11235
11236 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11237 pipe_name(crtc->pipe));
11238
11239 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11240 if (connector->new_encoder &&
11241 connector->new_encoder->new_crtc == crtc)
11242 connector->new_encoder = NULL;
11243 }
11244
11245 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11246 if (encoder->new_crtc == crtc)
11247 encoder->new_crtc = NULL;
11248 }
11249
11250 crtc->new_enabled = false;
11251 crtc->new_config = NULL;
11252 }
11253
11254 static int intel_crtc_set_config(struct drm_mode_set *set)
11255 {
11256 struct drm_device *dev;
11257 struct drm_mode_set save_set;
11258 struct intel_set_config *config;
11259 int ret;
11260
11261 BUG_ON(!set);
11262 BUG_ON(!set->crtc);
11263 BUG_ON(!set->crtc->helper_private);
11264
11265 /* Enforce sane interface api - has been abused by the fb helper. */
11266 BUG_ON(!set->mode && set->fb);
11267 BUG_ON(set->fb && set->num_connectors == 0);
11268
11269 if (set->fb) {
11270 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11271 set->crtc->base.id, set->fb->base.id,
11272 (int)set->num_connectors, set->x, set->y);
11273 } else {
11274 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11275 }
11276
11277 dev = set->crtc->dev;
11278
11279 ret = -ENOMEM;
11280 config = kzalloc(sizeof(*config), GFP_KERNEL);
11281 if (!config)
11282 goto out_config;
11283
11284 ret = intel_set_config_save_state(dev, config);
11285 if (ret)
11286 goto out_config;
11287
11288 save_set.crtc = set->crtc;
11289 save_set.mode = &set->crtc->mode;
11290 save_set.x = set->crtc->x;
11291 save_set.y = set->crtc->y;
11292 save_set.fb = set->crtc->primary->fb;
11293
11294 /* Compute whether we need a full modeset, only an fb base update or no
11295 * change at all. In the future we might also check whether only the
11296 * mode changed, e.g. for LVDS where we only change the panel fitter in
11297 * such cases. */
11298 intel_set_config_compute_mode_changes(set, config);
11299
11300 ret = intel_modeset_stage_output_state(dev, set, config);
11301 if (ret)
11302 goto fail;
11303
11304 if (config->mode_changed) {
11305 ret = intel_set_mode(set->crtc, set->mode,
11306 set->x, set->y, set->fb);
11307 } else if (config->fb_changed) {
11308 struct drm_i915_private *dev_priv = dev->dev_private;
11309 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11310
11311 intel_crtc_wait_for_pending_flips(set->crtc);
11312
11313 ret = intel_pipe_set_base(set->crtc,
11314 set->x, set->y, set->fb);
11315
11316 /*
11317 * We need to make sure the primary plane is re-enabled if it
11318 * has previously been turned off.
11319 */
11320 if (!intel_crtc->primary_enabled && ret == 0) {
11321 WARN_ON(!intel_crtc->active);
11322 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11323 intel_crtc->pipe);
11324 }
11325
11326 /*
11327 * In the fastboot case this may be our only check of the
11328 * state after boot. It would be better to only do it on
11329 * the first update, but we don't have a nice way of doing that
11330 * (and really, set_config isn't used much for high freq page
11331 * flipping, so increasing its cost here shouldn't be a big
11332 * deal).
11333 */
11334 if (i915.fastboot && ret == 0)
11335 intel_modeset_check_state(set->crtc->dev);
11336 }
11337
11338 if (ret) {
11339 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11340 set->crtc->base.id, ret);
11341 fail:
11342 intel_set_config_restore_state(dev, config);
11343
11344 /*
11345 * HACK: if the pipe was on, but we didn't have a framebuffer,
11346 * force the pipe off to avoid oopsing in the modeset code
11347 * due to fb==NULL. This should only happen during boot since
11348 * we don't yet reconstruct the FB from the hardware state.
11349 */
11350 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11351 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11352
11353 /* Try to restore the config */
11354 if (config->mode_changed &&
11355 intel_set_mode(save_set.crtc, save_set.mode,
11356 save_set.x, save_set.y, save_set.fb))
11357 DRM_ERROR("failed to restore config after modeset failure\n");
11358 }
11359
11360 out_config:
11361 intel_set_config_free(config);
11362 return ret;
11363 }
11364
11365 static const struct drm_crtc_funcs intel_crtc_funcs = {
11366 .gamma_set = intel_crtc_gamma_set,
11367 .set_config = intel_crtc_set_config,
11368 .destroy = intel_crtc_destroy,
11369 .page_flip = intel_crtc_page_flip,
11370 };
11371
11372 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11373 struct intel_shared_dpll *pll,
11374 struct intel_dpll_hw_state *hw_state)
11375 {
11376 uint32_t val;
11377
11378 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11379 return false;
11380
11381 val = I915_READ(PCH_DPLL(pll->id));
11382 hw_state->dpll = val;
11383 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11384 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11385
11386 return val & DPLL_VCO_ENABLE;
11387 }
11388
11389 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11390 struct intel_shared_dpll *pll)
11391 {
11392 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11393 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11394 }
11395
11396 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11397 struct intel_shared_dpll *pll)
11398 {
11399 /* PCH refclock must be enabled first */
11400 ibx_assert_pch_refclk_enabled(dev_priv);
11401
11402 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11403
11404 /* Wait for the clocks to stabilize. */
11405 POSTING_READ(PCH_DPLL(pll->id));
11406 udelay(150);
11407
11408 /* The pixel multiplier can only be updated once the
11409 * DPLL is enabled and the clocks are stable.
11410 *
11411 * So write it again.
11412 */
11413 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11414 POSTING_READ(PCH_DPLL(pll->id));
11415 udelay(200);
11416 }
11417
11418 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11419 struct intel_shared_dpll *pll)
11420 {
11421 struct drm_device *dev = dev_priv->dev;
11422 struct intel_crtc *crtc;
11423
11424 /* Make sure no transcoder isn't still depending on us. */
11425 for_each_intel_crtc(dev, crtc) {
11426 if (intel_crtc_to_shared_dpll(crtc) == pll)
11427 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11428 }
11429
11430 I915_WRITE(PCH_DPLL(pll->id), 0);
11431 POSTING_READ(PCH_DPLL(pll->id));
11432 udelay(200);
11433 }
11434
11435 static char *ibx_pch_dpll_names[] = {
11436 "PCH DPLL A",
11437 "PCH DPLL B",
11438 };
11439
11440 static void ibx_pch_dpll_init(struct drm_device *dev)
11441 {
11442 struct drm_i915_private *dev_priv = dev->dev_private;
11443 int i;
11444
11445 dev_priv->num_shared_dpll = 2;
11446
11447 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11448 dev_priv->shared_dplls[i].id = i;
11449 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11450 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11451 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11452 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11453 dev_priv->shared_dplls[i].get_hw_state =
11454 ibx_pch_dpll_get_hw_state;
11455 }
11456 }
11457
11458 static void intel_shared_dpll_init(struct drm_device *dev)
11459 {
11460 struct drm_i915_private *dev_priv = dev->dev_private;
11461
11462 if (HAS_DDI(dev))
11463 intel_ddi_pll_init(dev);
11464 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11465 ibx_pch_dpll_init(dev);
11466 else
11467 dev_priv->num_shared_dpll = 0;
11468
11469 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11470 }
11471
11472 static int
11473 intel_primary_plane_disable(struct drm_plane *plane)
11474 {
11475 struct drm_device *dev = plane->dev;
11476 struct drm_i915_private *dev_priv = dev->dev_private;
11477 struct intel_plane *intel_plane = to_intel_plane(plane);
11478 struct intel_crtc *intel_crtc;
11479
11480 if (!plane->fb)
11481 return 0;
11482
11483 BUG_ON(!plane->crtc);
11484
11485 intel_crtc = to_intel_crtc(plane->crtc);
11486
11487 /*
11488 * Even though we checked plane->fb above, it's still possible that
11489 * the primary plane has been implicitly disabled because the crtc
11490 * coordinates given weren't visible, or because we detected
11491 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11492 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11493 * In either case, we need to unpin the FB and let the fb pointer get
11494 * updated, but otherwise we don't need to touch the hardware.
11495 */
11496 if (!intel_crtc->primary_enabled)
11497 goto disable_unpin;
11498
11499 intel_crtc_wait_for_pending_flips(plane->crtc);
11500 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11501 intel_plane->pipe);
11502 disable_unpin:
11503 mutex_lock(&dev->struct_mutex);
11504 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11505 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11506 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11507 mutex_unlock(&dev->struct_mutex);
11508 plane->fb = NULL;
11509
11510 return 0;
11511 }
11512
11513 static int
11514 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11515 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11516 unsigned int crtc_w, unsigned int crtc_h,
11517 uint32_t src_x, uint32_t src_y,
11518 uint32_t src_w, uint32_t src_h)
11519 {
11520 struct drm_device *dev = crtc->dev;
11521 struct drm_i915_private *dev_priv = dev->dev_private;
11522 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11523 struct intel_plane *intel_plane = to_intel_plane(plane);
11524 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11525 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11526 struct drm_rect dest = {
11527 /* integer pixels */
11528 .x1 = crtc_x,
11529 .y1 = crtc_y,
11530 .x2 = crtc_x + crtc_w,
11531 .y2 = crtc_y + crtc_h,
11532 };
11533 struct drm_rect src = {
11534 /* 16.16 fixed point */
11535 .x1 = src_x,
11536 .y1 = src_y,
11537 .x2 = src_x + src_w,
11538 .y2 = src_y + src_h,
11539 };
11540 const struct drm_rect clip = {
11541 /* integer pixels */
11542 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11543 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11544 };
11545 bool visible;
11546 int ret;
11547
11548 ret = drm_plane_helper_check_update(plane, crtc, fb,
11549 &src, &dest, &clip,
11550 DRM_PLANE_HELPER_NO_SCALING,
11551 DRM_PLANE_HELPER_NO_SCALING,
11552 false, true, &visible);
11553
11554 if (ret)
11555 return ret;
11556
11557 /*
11558 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11559 * updating the fb pointer, and returning without touching the
11560 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11561 * turn on the display with all planes setup as desired.
11562 */
11563 if (!crtc->enabled) {
11564 mutex_lock(&dev->struct_mutex);
11565
11566 /*
11567 * If we already called setplane while the crtc was disabled,
11568 * we may have an fb pinned; unpin it.
11569 */
11570 if (plane->fb)
11571 intel_unpin_fb_obj(old_obj);
11572
11573 i915_gem_track_fb(old_obj, obj,
11574 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11575
11576 /* Pin and return without programming hardware */
11577 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11578 mutex_unlock(&dev->struct_mutex);
11579
11580 return ret;
11581 }
11582
11583 intel_crtc_wait_for_pending_flips(crtc);
11584
11585 /*
11586 * If clipping results in a non-visible primary plane, we'll disable
11587 * the primary plane. Note that this is a bit different than what
11588 * happens if userspace explicitly disables the plane by passing fb=0
11589 * because plane->fb still gets set and pinned.
11590 */
11591 if (!visible) {
11592 mutex_lock(&dev->struct_mutex);
11593
11594 /*
11595 * Try to pin the new fb first so that we can bail out if we
11596 * fail.
11597 */
11598 if (plane->fb != fb) {
11599 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11600 if (ret) {
11601 mutex_unlock(&dev->struct_mutex);
11602 return ret;
11603 }
11604 }
11605
11606 i915_gem_track_fb(old_obj, obj,
11607 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11608
11609 if (intel_crtc->primary_enabled)
11610 intel_disable_primary_hw_plane(dev_priv,
11611 intel_plane->plane,
11612 intel_plane->pipe);
11613
11614
11615 if (plane->fb != fb)
11616 if (plane->fb)
11617 intel_unpin_fb_obj(old_obj);
11618
11619 mutex_unlock(&dev->struct_mutex);
11620
11621 return 0;
11622 }
11623
11624 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11625 if (ret)
11626 return ret;
11627
11628 if (!intel_crtc->primary_enabled)
11629 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11630 intel_crtc->pipe);
11631
11632 return 0;
11633 }
11634
11635 /* Common destruction function for both primary and cursor planes */
11636 static void intel_plane_destroy(struct drm_plane *plane)
11637 {
11638 struct intel_plane *intel_plane = to_intel_plane(plane);
11639 drm_plane_cleanup(plane);
11640 kfree(intel_plane);
11641 }
11642
11643 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11644 .update_plane = intel_primary_plane_setplane,
11645 .disable_plane = intel_primary_plane_disable,
11646 .destroy = intel_plane_destroy,
11647 };
11648
11649 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11650 int pipe)
11651 {
11652 struct intel_plane *primary;
11653 const uint32_t *intel_primary_formats;
11654 int num_formats;
11655
11656 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11657 if (primary == NULL)
11658 return NULL;
11659
11660 primary->can_scale = false;
11661 primary->max_downscale = 1;
11662 primary->pipe = pipe;
11663 primary->plane = pipe;
11664 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11665 primary->plane = !pipe;
11666
11667 if (INTEL_INFO(dev)->gen <= 3) {
11668 intel_primary_formats = intel_primary_formats_gen2;
11669 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11670 } else {
11671 intel_primary_formats = intel_primary_formats_gen4;
11672 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11673 }
11674
11675 drm_universal_plane_init(dev, &primary->base, 0,
11676 &intel_primary_plane_funcs,
11677 intel_primary_formats, num_formats,
11678 DRM_PLANE_TYPE_PRIMARY);
11679 return &primary->base;
11680 }
11681
11682 static int
11683 intel_cursor_plane_disable(struct drm_plane *plane)
11684 {
11685 if (!plane->fb)
11686 return 0;
11687
11688 BUG_ON(!plane->crtc);
11689
11690 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11691 }
11692
11693 static int
11694 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11695 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11696 unsigned int crtc_w, unsigned int crtc_h,
11697 uint32_t src_x, uint32_t src_y,
11698 uint32_t src_w, uint32_t src_h)
11699 {
11700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11701 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11702 struct drm_i915_gem_object *obj = intel_fb->obj;
11703 struct drm_rect dest = {
11704 /* integer pixels */
11705 .x1 = crtc_x,
11706 .y1 = crtc_y,
11707 .x2 = crtc_x + crtc_w,
11708 .y2 = crtc_y + crtc_h,
11709 };
11710 struct drm_rect src = {
11711 /* 16.16 fixed point */
11712 .x1 = src_x,
11713 .y1 = src_y,
11714 .x2 = src_x + src_w,
11715 .y2 = src_y + src_h,
11716 };
11717 const struct drm_rect clip = {
11718 /* integer pixels */
11719 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11720 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11721 };
11722 bool visible;
11723 int ret;
11724
11725 ret = drm_plane_helper_check_update(plane, crtc, fb,
11726 &src, &dest, &clip,
11727 DRM_PLANE_HELPER_NO_SCALING,
11728 DRM_PLANE_HELPER_NO_SCALING,
11729 true, true, &visible);
11730 if (ret)
11731 return ret;
11732
11733 crtc->cursor_x = crtc_x;
11734 crtc->cursor_y = crtc_y;
11735 if (fb != crtc->cursor->fb) {
11736 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11737 } else {
11738 intel_crtc_update_cursor(crtc, visible);
11739 return 0;
11740 }
11741 }
11742 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11743 .update_plane = intel_cursor_plane_update,
11744 .disable_plane = intel_cursor_plane_disable,
11745 .destroy = intel_plane_destroy,
11746 };
11747
11748 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11749 int pipe)
11750 {
11751 struct intel_plane *cursor;
11752
11753 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11754 if (cursor == NULL)
11755 return NULL;
11756
11757 cursor->can_scale = false;
11758 cursor->max_downscale = 1;
11759 cursor->pipe = pipe;
11760 cursor->plane = pipe;
11761
11762 drm_universal_plane_init(dev, &cursor->base, 0,
11763 &intel_cursor_plane_funcs,
11764 intel_cursor_formats,
11765 ARRAY_SIZE(intel_cursor_formats),
11766 DRM_PLANE_TYPE_CURSOR);
11767 return &cursor->base;
11768 }
11769
11770 static void intel_crtc_init(struct drm_device *dev, int pipe)
11771 {
11772 struct drm_i915_private *dev_priv = dev->dev_private;
11773 struct intel_crtc *intel_crtc;
11774 struct drm_plane *primary = NULL;
11775 struct drm_plane *cursor = NULL;
11776 int i, ret;
11777
11778 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11779 if (intel_crtc == NULL)
11780 return;
11781
11782 primary = intel_primary_plane_create(dev, pipe);
11783 if (!primary)
11784 goto fail;
11785
11786 cursor = intel_cursor_plane_create(dev, pipe);
11787 if (!cursor)
11788 goto fail;
11789
11790 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11791 cursor, &intel_crtc_funcs);
11792 if (ret)
11793 goto fail;
11794
11795 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11796 for (i = 0; i < 256; i++) {
11797 intel_crtc->lut_r[i] = i;
11798 intel_crtc->lut_g[i] = i;
11799 intel_crtc->lut_b[i] = i;
11800 }
11801
11802 /*
11803 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11804 * is hooked to pipe B. Hence we want plane A feeding pipe B.
11805 */
11806 intel_crtc->pipe = pipe;
11807 intel_crtc->plane = pipe;
11808 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11809 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11810 intel_crtc->plane = !pipe;
11811 }
11812
11813 intel_crtc->cursor_base = ~0;
11814 intel_crtc->cursor_cntl = ~0;
11815
11816 init_waitqueue_head(&intel_crtc->vbl_wait);
11817
11818 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11819 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11820 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11821 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11822
11823 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11824
11825 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11826 return;
11827
11828 fail:
11829 if (primary)
11830 drm_plane_cleanup(primary);
11831 if (cursor)
11832 drm_plane_cleanup(cursor);
11833 kfree(intel_crtc);
11834 }
11835
11836 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11837 {
11838 struct drm_encoder *encoder = connector->base.encoder;
11839 struct drm_device *dev = connector->base.dev;
11840
11841 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11842
11843 if (!encoder)
11844 return INVALID_PIPE;
11845
11846 return to_intel_crtc(encoder->crtc)->pipe;
11847 }
11848
11849 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11850 struct drm_file *file)
11851 {
11852 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11853 struct drm_crtc *drmmode_crtc;
11854 struct intel_crtc *crtc;
11855
11856 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11857 return -ENODEV;
11858
11859 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
11860
11861 if (!drmmode_crtc) {
11862 DRM_ERROR("no such CRTC id\n");
11863 return -ENOENT;
11864 }
11865
11866 crtc = to_intel_crtc(drmmode_crtc);
11867 pipe_from_crtc_id->pipe = crtc->pipe;
11868
11869 return 0;
11870 }
11871
11872 static int intel_encoder_clones(struct intel_encoder *encoder)
11873 {
11874 struct drm_device *dev = encoder->base.dev;
11875 struct intel_encoder *source_encoder;
11876 int index_mask = 0;
11877 int entry = 0;
11878
11879 list_for_each_entry(source_encoder,
11880 &dev->mode_config.encoder_list, base.head) {
11881 if (encoders_cloneable(encoder, source_encoder))
11882 index_mask |= (1 << entry);
11883
11884 entry++;
11885 }
11886
11887 return index_mask;
11888 }
11889
11890 static bool has_edp_a(struct drm_device *dev)
11891 {
11892 struct drm_i915_private *dev_priv = dev->dev_private;
11893
11894 if (!IS_MOBILE(dev))
11895 return false;
11896
11897 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11898 return false;
11899
11900 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11901 return false;
11902
11903 return true;
11904 }
11905
11906 const char *intel_output_name(int output)
11907 {
11908 static const char *names[] = {
11909 [INTEL_OUTPUT_UNUSED] = "Unused",
11910 [INTEL_OUTPUT_ANALOG] = "Analog",
11911 [INTEL_OUTPUT_DVO] = "DVO",
11912 [INTEL_OUTPUT_SDVO] = "SDVO",
11913 [INTEL_OUTPUT_LVDS] = "LVDS",
11914 [INTEL_OUTPUT_TVOUT] = "TV",
11915 [INTEL_OUTPUT_HDMI] = "HDMI",
11916 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11917 [INTEL_OUTPUT_EDP] = "eDP",
11918 [INTEL_OUTPUT_DSI] = "DSI",
11919 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11920 };
11921
11922 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11923 return "Invalid";
11924
11925 return names[output];
11926 }
11927
11928 static bool intel_crt_present(struct drm_device *dev)
11929 {
11930 struct drm_i915_private *dev_priv = dev->dev_private;
11931
11932 if (IS_ULT(dev))
11933 return false;
11934
11935 if (IS_CHERRYVIEW(dev))
11936 return false;
11937
11938 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11939 return false;
11940
11941 return true;
11942 }
11943
11944 static void intel_setup_outputs(struct drm_device *dev)
11945 {
11946 struct drm_i915_private *dev_priv = dev->dev_private;
11947 struct intel_encoder *encoder;
11948 bool dpd_is_edp = false;
11949
11950 intel_lvds_init(dev);
11951
11952 if (intel_crt_present(dev))
11953 intel_crt_init(dev);
11954
11955 if (HAS_DDI(dev)) {
11956 int found;
11957
11958 /* Haswell uses DDI functions to detect digital outputs */
11959 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11960 /* DDI A only supports eDP */
11961 if (found)
11962 intel_ddi_init(dev, PORT_A);
11963
11964 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11965 * register */
11966 found = I915_READ(SFUSE_STRAP);
11967
11968 if (found & SFUSE_STRAP_DDIB_DETECTED)
11969 intel_ddi_init(dev, PORT_B);
11970 if (found & SFUSE_STRAP_DDIC_DETECTED)
11971 intel_ddi_init(dev, PORT_C);
11972 if (found & SFUSE_STRAP_DDID_DETECTED)
11973 intel_ddi_init(dev, PORT_D);
11974 } else if (HAS_PCH_SPLIT(dev)) {
11975 int found;
11976 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11977
11978 if (has_edp_a(dev))
11979 intel_dp_init(dev, DP_A, PORT_A);
11980
11981 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11982 /* PCH SDVOB multiplex with HDMIB */
11983 found = intel_sdvo_init(dev, PCH_SDVOB, true);
11984 if (!found)
11985 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11986 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11987 intel_dp_init(dev, PCH_DP_B, PORT_B);
11988 }
11989
11990 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11991 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11992
11993 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11994 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11995
11996 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11997 intel_dp_init(dev, PCH_DP_C, PORT_C);
11998
11999 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12000 intel_dp_init(dev, PCH_DP_D, PORT_D);
12001 } else if (IS_VALLEYVIEW(dev)) {
12002 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12003 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12004 PORT_B);
12005 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12006 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12007 }
12008
12009 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12010 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12011 PORT_C);
12012 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12013 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12014 }
12015
12016 if (IS_CHERRYVIEW(dev)) {
12017 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12018 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12019 PORT_D);
12020 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12021 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12022 }
12023 }
12024
12025 intel_dsi_init(dev);
12026 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12027 bool found = false;
12028
12029 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12030 DRM_DEBUG_KMS("probing SDVOB\n");
12031 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12032 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12033 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12034 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12035 }
12036
12037 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12038 intel_dp_init(dev, DP_B, PORT_B);
12039 }
12040
12041 /* Before G4X SDVOC doesn't have its own detect register */
12042
12043 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12044 DRM_DEBUG_KMS("probing SDVOC\n");
12045 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12046 }
12047
12048 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12049
12050 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12051 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12052 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12053 }
12054 if (SUPPORTS_INTEGRATED_DP(dev))
12055 intel_dp_init(dev, DP_C, PORT_C);
12056 }
12057
12058 if (SUPPORTS_INTEGRATED_DP(dev) &&
12059 (I915_READ(DP_D) & DP_DETECTED))
12060 intel_dp_init(dev, DP_D, PORT_D);
12061 } else if (IS_GEN2(dev))
12062 intel_dvo_init(dev);
12063
12064 if (SUPPORTS_TV(dev))
12065 intel_tv_init(dev);
12066
12067 intel_edp_psr_init(dev);
12068
12069 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12070 encoder->base.possible_crtcs = encoder->crtc_mask;
12071 encoder->base.possible_clones =
12072 intel_encoder_clones(encoder);
12073 }
12074
12075 intel_init_pch_refclk(dev);
12076
12077 drm_helper_move_panel_connectors_to_head(dev);
12078 }
12079
12080 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12081 {
12082 struct drm_device *dev = fb->dev;
12083 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12084
12085 drm_framebuffer_cleanup(fb);
12086 mutex_lock(&dev->struct_mutex);
12087 WARN_ON(!intel_fb->obj->framebuffer_references--);
12088 drm_gem_object_unreference(&intel_fb->obj->base);
12089 mutex_unlock(&dev->struct_mutex);
12090 kfree(intel_fb);
12091 }
12092
12093 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12094 struct drm_file *file,
12095 unsigned int *handle)
12096 {
12097 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12098 struct drm_i915_gem_object *obj = intel_fb->obj;
12099
12100 return drm_gem_handle_create(file, &obj->base, handle);
12101 }
12102
12103 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12104 .destroy = intel_user_framebuffer_destroy,
12105 .create_handle = intel_user_framebuffer_create_handle,
12106 };
12107
12108 static int intel_framebuffer_init(struct drm_device *dev,
12109 struct intel_framebuffer *intel_fb,
12110 struct drm_mode_fb_cmd2 *mode_cmd,
12111 struct drm_i915_gem_object *obj)
12112 {
12113 int aligned_height;
12114 int pitch_limit;
12115 int ret;
12116
12117 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12118
12119 if (obj->tiling_mode == I915_TILING_Y) {
12120 DRM_DEBUG("hardware does not support tiling Y\n");
12121 return -EINVAL;
12122 }
12123
12124 if (mode_cmd->pitches[0] & 63) {
12125 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12126 mode_cmd->pitches[0]);
12127 return -EINVAL;
12128 }
12129
12130 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12131 pitch_limit = 32*1024;
12132 } else if (INTEL_INFO(dev)->gen >= 4) {
12133 if (obj->tiling_mode)
12134 pitch_limit = 16*1024;
12135 else
12136 pitch_limit = 32*1024;
12137 } else if (INTEL_INFO(dev)->gen >= 3) {
12138 if (obj->tiling_mode)
12139 pitch_limit = 8*1024;
12140 else
12141 pitch_limit = 16*1024;
12142 } else
12143 /* XXX DSPC is limited to 4k tiled */
12144 pitch_limit = 8*1024;
12145
12146 if (mode_cmd->pitches[0] > pitch_limit) {
12147 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12148 obj->tiling_mode ? "tiled" : "linear",
12149 mode_cmd->pitches[0], pitch_limit);
12150 return -EINVAL;
12151 }
12152
12153 if (obj->tiling_mode != I915_TILING_NONE &&
12154 mode_cmd->pitches[0] != obj->stride) {
12155 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12156 mode_cmd->pitches[0], obj->stride);
12157 return -EINVAL;
12158 }
12159
12160 /* Reject formats not supported by any plane early. */
12161 switch (mode_cmd->pixel_format) {
12162 case DRM_FORMAT_C8:
12163 case DRM_FORMAT_RGB565:
12164 case DRM_FORMAT_XRGB8888:
12165 case DRM_FORMAT_ARGB8888:
12166 break;
12167 case DRM_FORMAT_XRGB1555:
12168 case DRM_FORMAT_ARGB1555:
12169 if (INTEL_INFO(dev)->gen > 3) {
12170 DRM_DEBUG("unsupported pixel format: %s\n",
12171 drm_get_format_name(mode_cmd->pixel_format));
12172 return -EINVAL;
12173 }
12174 break;
12175 case DRM_FORMAT_XBGR8888:
12176 case DRM_FORMAT_ABGR8888:
12177 case DRM_FORMAT_XRGB2101010:
12178 case DRM_FORMAT_ARGB2101010:
12179 case DRM_FORMAT_XBGR2101010:
12180 case DRM_FORMAT_ABGR2101010:
12181 if (INTEL_INFO(dev)->gen < 4) {
12182 DRM_DEBUG("unsupported pixel format: %s\n",
12183 drm_get_format_name(mode_cmd->pixel_format));
12184 return -EINVAL;
12185 }
12186 break;
12187 case DRM_FORMAT_YUYV:
12188 case DRM_FORMAT_UYVY:
12189 case DRM_FORMAT_YVYU:
12190 case DRM_FORMAT_VYUY:
12191 if (INTEL_INFO(dev)->gen < 5) {
12192 DRM_DEBUG("unsupported pixel format: %s\n",
12193 drm_get_format_name(mode_cmd->pixel_format));
12194 return -EINVAL;
12195 }
12196 break;
12197 default:
12198 DRM_DEBUG("unsupported pixel format: %s\n",
12199 drm_get_format_name(mode_cmd->pixel_format));
12200 return -EINVAL;
12201 }
12202
12203 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12204 if (mode_cmd->offsets[0] != 0)
12205 return -EINVAL;
12206
12207 aligned_height = intel_align_height(dev, mode_cmd->height,
12208 obj->tiling_mode);
12209 /* FIXME drm helper for size checks (especially planar formats)? */
12210 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12211 return -EINVAL;
12212
12213 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12214 intel_fb->obj = obj;
12215 intel_fb->obj->framebuffer_references++;
12216
12217 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12218 if (ret) {
12219 DRM_ERROR("framebuffer init failed %d\n", ret);
12220 return ret;
12221 }
12222
12223 return 0;
12224 }
12225
12226 static struct drm_framebuffer *
12227 intel_user_framebuffer_create(struct drm_device *dev,
12228 struct drm_file *filp,
12229 struct drm_mode_fb_cmd2 *mode_cmd)
12230 {
12231 struct drm_i915_gem_object *obj;
12232
12233 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12234 mode_cmd->handles[0]));
12235 if (&obj->base == NULL)
12236 return ERR_PTR(-ENOENT);
12237
12238 return intel_framebuffer_create(dev, mode_cmd, obj);
12239 }
12240
12241 #ifndef CONFIG_DRM_I915_FBDEV
12242 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12243 {
12244 }
12245 #endif
12246
12247 static const struct drm_mode_config_funcs intel_mode_funcs = {
12248 .fb_create = intel_user_framebuffer_create,
12249 .output_poll_changed = intel_fbdev_output_poll_changed,
12250 };
12251
12252 /* Set up chip specific display functions */
12253 static void intel_init_display(struct drm_device *dev)
12254 {
12255 struct drm_i915_private *dev_priv = dev->dev_private;
12256
12257 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12258 dev_priv->display.find_dpll = g4x_find_best_dpll;
12259 else if (IS_CHERRYVIEW(dev))
12260 dev_priv->display.find_dpll = chv_find_best_dpll;
12261 else if (IS_VALLEYVIEW(dev))
12262 dev_priv->display.find_dpll = vlv_find_best_dpll;
12263 else if (IS_PINEVIEW(dev))
12264 dev_priv->display.find_dpll = pnv_find_best_dpll;
12265 else
12266 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12267
12268 if (HAS_DDI(dev)) {
12269 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12270 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12271 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12272 dev_priv->display.crtc_enable = haswell_crtc_enable;
12273 dev_priv->display.crtc_disable = haswell_crtc_disable;
12274 dev_priv->display.off = ironlake_crtc_off;
12275 dev_priv->display.update_primary_plane =
12276 ironlake_update_primary_plane;
12277 } else if (HAS_PCH_SPLIT(dev)) {
12278 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12279 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12280 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12281 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12282 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12283 dev_priv->display.off = ironlake_crtc_off;
12284 dev_priv->display.update_primary_plane =
12285 ironlake_update_primary_plane;
12286 } else if (IS_VALLEYVIEW(dev)) {
12287 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12288 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12289 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12290 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12291 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12292 dev_priv->display.off = i9xx_crtc_off;
12293 dev_priv->display.update_primary_plane =
12294 i9xx_update_primary_plane;
12295 } else {
12296 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12297 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12298 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12299 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12300 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12301 dev_priv->display.off = i9xx_crtc_off;
12302 dev_priv->display.update_primary_plane =
12303 i9xx_update_primary_plane;
12304 }
12305
12306 /* Returns the core display clock speed */
12307 if (IS_VALLEYVIEW(dev))
12308 dev_priv->display.get_display_clock_speed =
12309 valleyview_get_display_clock_speed;
12310 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12311 dev_priv->display.get_display_clock_speed =
12312 i945_get_display_clock_speed;
12313 else if (IS_I915G(dev))
12314 dev_priv->display.get_display_clock_speed =
12315 i915_get_display_clock_speed;
12316 else if (IS_I945GM(dev) || IS_845G(dev))
12317 dev_priv->display.get_display_clock_speed =
12318 i9xx_misc_get_display_clock_speed;
12319 else if (IS_PINEVIEW(dev))
12320 dev_priv->display.get_display_clock_speed =
12321 pnv_get_display_clock_speed;
12322 else if (IS_I915GM(dev))
12323 dev_priv->display.get_display_clock_speed =
12324 i915gm_get_display_clock_speed;
12325 else if (IS_I865G(dev))
12326 dev_priv->display.get_display_clock_speed =
12327 i865_get_display_clock_speed;
12328 else if (IS_I85X(dev))
12329 dev_priv->display.get_display_clock_speed =
12330 i855_get_display_clock_speed;
12331 else /* 852, 830 */
12332 dev_priv->display.get_display_clock_speed =
12333 i830_get_display_clock_speed;
12334
12335 if (HAS_PCH_SPLIT(dev)) {
12336 if (IS_GEN5(dev)) {
12337 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12338 dev_priv->display.write_eld = ironlake_write_eld;
12339 } else if (IS_GEN6(dev)) {
12340 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12341 dev_priv->display.write_eld = ironlake_write_eld;
12342 dev_priv->display.modeset_global_resources =
12343 snb_modeset_global_resources;
12344 } else if (IS_IVYBRIDGE(dev)) {
12345 /* FIXME: detect B0+ stepping and use auto training */
12346 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12347 dev_priv->display.write_eld = ironlake_write_eld;
12348 dev_priv->display.modeset_global_resources =
12349 ivb_modeset_global_resources;
12350 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12351 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12352 dev_priv->display.write_eld = haswell_write_eld;
12353 dev_priv->display.modeset_global_resources =
12354 haswell_modeset_global_resources;
12355 }
12356 } else if (IS_G4X(dev)) {
12357 dev_priv->display.write_eld = g4x_write_eld;
12358 } else if (IS_VALLEYVIEW(dev)) {
12359 dev_priv->display.modeset_global_resources =
12360 valleyview_modeset_global_resources;
12361 dev_priv->display.write_eld = ironlake_write_eld;
12362 }
12363
12364 /* Default just returns -ENODEV to indicate unsupported */
12365 dev_priv->display.queue_flip = intel_default_queue_flip;
12366
12367 switch (INTEL_INFO(dev)->gen) {
12368 case 2:
12369 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12370 break;
12371
12372 case 3:
12373 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12374 break;
12375
12376 case 4:
12377 case 5:
12378 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12379 break;
12380
12381 case 6:
12382 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12383 break;
12384 case 7:
12385 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12386 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12387 break;
12388 }
12389
12390 intel_panel_init_backlight_funcs(dev);
12391 }
12392
12393 /*
12394 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12395 * resume, or other times. This quirk makes sure that's the case for
12396 * affected systems.
12397 */
12398 static void quirk_pipea_force(struct drm_device *dev)
12399 {
12400 struct drm_i915_private *dev_priv = dev->dev_private;
12401
12402 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12403 DRM_INFO("applying pipe a force quirk\n");
12404 }
12405
12406 /*
12407 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12408 */
12409 static void quirk_ssc_force_disable(struct drm_device *dev)
12410 {
12411 struct drm_i915_private *dev_priv = dev->dev_private;
12412 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12413 DRM_INFO("applying lvds SSC disable quirk\n");
12414 }
12415
12416 /*
12417 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12418 * brightness value
12419 */
12420 static void quirk_invert_brightness(struct drm_device *dev)
12421 {
12422 struct drm_i915_private *dev_priv = dev->dev_private;
12423 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12424 DRM_INFO("applying inverted panel brightness quirk\n");
12425 }
12426
12427 /* Some VBT's incorrectly indicate no backlight is present */
12428 static void quirk_backlight_present(struct drm_device *dev)
12429 {
12430 struct drm_i915_private *dev_priv = dev->dev_private;
12431 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12432 DRM_INFO("applying backlight present quirk\n");
12433 }
12434
12435 struct intel_quirk {
12436 int device;
12437 int subsystem_vendor;
12438 int subsystem_device;
12439 void (*hook)(struct drm_device *dev);
12440 };
12441
12442 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12443 struct intel_dmi_quirk {
12444 void (*hook)(struct drm_device *dev);
12445 const struct dmi_system_id (*dmi_id_list)[];
12446 };
12447
12448 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12449 {
12450 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12451 return 1;
12452 }
12453
12454 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12455 {
12456 .dmi_id_list = &(const struct dmi_system_id[]) {
12457 {
12458 .callback = intel_dmi_reverse_brightness,
12459 .ident = "NCR Corporation",
12460 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12461 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12462 },
12463 },
12464 { } /* terminating entry */
12465 },
12466 .hook = quirk_invert_brightness,
12467 },
12468 };
12469
12470 static struct intel_quirk intel_quirks[] = {
12471 /* HP Mini needs pipe A force quirk (LP: #322104) */
12472 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12473
12474 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12475 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12476
12477 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12478 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12479
12480 /* Lenovo U160 cannot use SSC on LVDS */
12481 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12482
12483 /* Sony Vaio Y cannot use SSC on LVDS */
12484 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12485
12486 /* Acer Aspire 5734Z must invert backlight brightness */
12487 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12488
12489 /* Acer/eMachines G725 */
12490 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12491
12492 /* Acer/eMachines e725 */
12493 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12494
12495 /* Acer/Packard Bell NCL20 */
12496 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12497
12498 /* Acer Aspire 4736Z */
12499 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12500
12501 /* Acer Aspire 5336 */
12502 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12503
12504 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12505 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12506
12507 /* Acer C720 Chromebook (Core i3 4005U) */
12508 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12509
12510 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12511 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12512
12513 /* HP Chromebook 14 (Celeron 2955U) */
12514 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12515 };
12516
12517 static void intel_init_quirks(struct drm_device *dev)
12518 {
12519 struct pci_dev *d = dev->pdev;
12520 int i;
12521
12522 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12523 struct intel_quirk *q = &intel_quirks[i];
12524
12525 if (d->device == q->device &&
12526 (d->subsystem_vendor == q->subsystem_vendor ||
12527 q->subsystem_vendor == PCI_ANY_ID) &&
12528 (d->subsystem_device == q->subsystem_device ||
12529 q->subsystem_device == PCI_ANY_ID))
12530 q->hook(dev);
12531 }
12532 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12533 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12534 intel_dmi_quirks[i].hook(dev);
12535 }
12536 }
12537
12538 /* Disable the VGA plane that we never use */
12539 static void i915_disable_vga(struct drm_device *dev)
12540 {
12541 struct drm_i915_private *dev_priv = dev->dev_private;
12542 u8 sr1;
12543 u32 vga_reg = i915_vgacntrl_reg(dev);
12544
12545 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12546 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12547 outb(SR01, VGA_SR_INDEX);
12548 sr1 = inb(VGA_SR_DATA);
12549 outb(sr1 | 1<<5, VGA_SR_DATA);
12550 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12551 udelay(300);
12552
12553 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12554 POSTING_READ(vga_reg);
12555 }
12556
12557 void intel_modeset_init_hw(struct drm_device *dev)
12558 {
12559 intel_prepare_ddi(dev);
12560
12561 if (IS_VALLEYVIEW(dev))
12562 vlv_update_cdclk(dev);
12563
12564 intel_init_clock_gating(dev);
12565
12566 intel_reset_dpio(dev);
12567
12568 intel_enable_gt_powersave(dev);
12569 }
12570
12571 void intel_modeset_suspend_hw(struct drm_device *dev)
12572 {
12573 intel_suspend_hw(dev);
12574 }
12575
12576 void intel_modeset_init(struct drm_device *dev)
12577 {
12578 struct drm_i915_private *dev_priv = dev->dev_private;
12579 int sprite, ret;
12580 enum pipe pipe;
12581 struct intel_crtc *crtc;
12582
12583 drm_mode_config_init(dev);
12584
12585 dev->mode_config.min_width = 0;
12586 dev->mode_config.min_height = 0;
12587
12588 dev->mode_config.preferred_depth = 24;
12589 dev->mode_config.prefer_shadow = 1;
12590
12591 dev->mode_config.funcs = &intel_mode_funcs;
12592
12593 intel_init_quirks(dev);
12594
12595 intel_init_pm(dev);
12596
12597 if (INTEL_INFO(dev)->num_pipes == 0)
12598 return;
12599
12600 intel_init_display(dev);
12601
12602 if (IS_GEN2(dev)) {
12603 dev->mode_config.max_width = 2048;
12604 dev->mode_config.max_height = 2048;
12605 } else if (IS_GEN3(dev)) {
12606 dev->mode_config.max_width = 4096;
12607 dev->mode_config.max_height = 4096;
12608 } else {
12609 dev->mode_config.max_width = 8192;
12610 dev->mode_config.max_height = 8192;
12611 }
12612
12613 if (IS_GEN2(dev)) {
12614 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12615 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12616 } else {
12617 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12618 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12619 }
12620
12621 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12622
12623 DRM_DEBUG_KMS("%d display pipe%s available.\n",
12624 INTEL_INFO(dev)->num_pipes,
12625 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12626
12627 for_each_pipe(pipe) {
12628 intel_crtc_init(dev, pipe);
12629 for_each_sprite(pipe, sprite) {
12630 ret = intel_plane_init(dev, pipe, sprite);
12631 if (ret)
12632 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12633 pipe_name(pipe), sprite_name(pipe, sprite), ret);
12634 }
12635 }
12636
12637 intel_init_dpio(dev);
12638 intel_reset_dpio(dev);
12639
12640 intel_shared_dpll_init(dev);
12641
12642 /* Just disable it once at startup */
12643 i915_disable_vga(dev);
12644 intel_setup_outputs(dev);
12645
12646 /* Just in case the BIOS is doing something questionable. */
12647 intel_disable_fbc(dev);
12648
12649 drm_modeset_lock_all(dev);
12650 intel_modeset_setup_hw_state(dev, false);
12651 drm_modeset_unlock_all(dev);
12652
12653 for_each_intel_crtc(dev, crtc) {
12654 if (!crtc->active)
12655 continue;
12656
12657 /*
12658 * Note that reserving the BIOS fb up front prevents us
12659 * from stuffing other stolen allocations like the ring
12660 * on top. This prevents some ugliness at boot time, and
12661 * can even allow for smooth boot transitions if the BIOS
12662 * fb is large enough for the active pipe configuration.
12663 */
12664 if (dev_priv->display.get_plane_config) {
12665 dev_priv->display.get_plane_config(crtc,
12666 &crtc->plane_config);
12667 /*
12668 * If the fb is shared between multiple heads, we'll
12669 * just get the first one.
12670 */
12671 intel_find_plane_obj(crtc, &crtc->plane_config);
12672 }
12673 }
12674 }
12675
12676 static void intel_enable_pipe_a(struct drm_device *dev)
12677 {
12678 struct intel_connector *connector;
12679 struct drm_connector *crt = NULL;
12680 struct intel_load_detect_pipe load_detect_temp;
12681 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12682
12683 /* We can't just switch on the pipe A, we need to set things up with a
12684 * proper mode and output configuration. As a gross hack, enable pipe A
12685 * by enabling the load detect pipe once. */
12686 list_for_each_entry(connector,
12687 &dev->mode_config.connector_list,
12688 base.head) {
12689 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12690 crt = &connector->base;
12691 break;
12692 }
12693 }
12694
12695 if (!crt)
12696 return;
12697
12698 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12699 intel_release_load_detect_pipe(crt, &load_detect_temp);
12700 }
12701
12702 static bool
12703 intel_check_plane_mapping(struct intel_crtc *crtc)
12704 {
12705 struct drm_device *dev = crtc->base.dev;
12706 struct drm_i915_private *dev_priv = dev->dev_private;
12707 u32 reg, val;
12708
12709 if (INTEL_INFO(dev)->num_pipes == 1)
12710 return true;
12711
12712 reg = DSPCNTR(!crtc->plane);
12713 val = I915_READ(reg);
12714
12715 if ((val & DISPLAY_PLANE_ENABLE) &&
12716 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12717 return false;
12718
12719 return true;
12720 }
12721
12722 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12723 {
12724 struct drm_device *dev = crtc->base.dev;
12725 struct drm_i915_private *dev_priv = dev->dev_private;
12726 u32 reg;
12727
12728 /* Clear any frame start delays used for debugging left by the BIOS */
12729 reg = PIPECONF(crtc->config.cpu_transcoder);
12730 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12731
12732 /* restore vblank interrupts to correct state */
12733 if (crtc->active)
12734 drm_vblank_on(dev, crtc->pipe);
12735 else
12736 drm_vblank_off(dev, crtc->pipe);
12737
12738 /* We need to sanitize the plane -> pipe mapping first because this will
12739 * disable the crtc (and hence change the state) if it is wrong. Note
12740 * that gen4+ has a fixed plane -> pipe mapping. */
12741 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12742 struct intel_connector *connector;
12743 bool plane;
12744
12745 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12746 crtc->base.base.id);
12747
12748 /* Pipe has the wrong plane attached and the plane is active.
12749 * Temporarily change the plane mapping and disable everything
12750 * ... */
12751 plane = crtc->plane;
12752 crtc->plane = !plane;
12753 crtc->primary_enabled = true;
12754 dev_priv->display.crtc_disable(&crtc->base);
12755 crtc->plane = plane;
12756
12757 /* ... and break all links. */
12758 list_for_each_entry(connector, &dev->mode_config.connector_list,
12759 base.head) {
12760 if (connector->encoder->base.crtc != &crtc->base)
12761 continue;
12762
12763 connector->base.dpms = DRM_MODE_DPMS_OFF;
12764 connector->base.encoder = NULL;
12765 }
12766 /* multiple connectors may have the same encoder:
12767 * handle them and break crtc link separately */
12768 list_for_each_entry(connector, &dev->mode_config.connector_list,
12769 base.head)
12770 if (connector->encoder->base.crtc == &crtc->base) {
12771 connector->encoder->base.crtc = NULL;
12772 connector->encoder->connectors_active = false;
12773 }
12774
12775 WARN_ON(crtc->active);
12776 crtc->base.enabled = false;
12777 }
12778
12779 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12780 crtc->pipe == PIPE_A && !crtc->active) {
12781 /* BIOS forgot to enable pipe A, this mostly happens after
12782 * resume. Force-enable the pipe to fix this, the update_dpms
12783 * call below we restore the pipe to the right state, but leave
12784 * the required bits on. */
12785 intel_enable_pipe_a(dev);
12786 }
12787
12788 /* Adjust the state of the output pipe according to whether we
12789 * have active connectors/encoders. */
12790 intel_crtc_update_dpms(&crtc->base);
12791
12792 if (crtc->active != crtc->base.enabled) {
12793 struct intel_encoder *encoder;
12794
12795 /* This can happen either due to bugs in the get_hw_state
12796 * functions or because the pipe is force-enabled due to the
12797 * pipe A quirk. */
12798 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12799 crtc->base.base.id,
12800 crtc->base.enabled ? "enabled" : "disabled",
12801 crtc->active ? "enabled" : "disabled");
12802
12803 crtc->base.enabled = crtc->active;
12804
12805 /* Because we only establish the connector -> encoder ->
12806 * crtc links if something is active, this means the
12807 * crtc is now deactivated. Break the links. connector
12808 * -> encoder links are only establish when things are
12809 * actually up, hence no need to break them. */
12810 WARN_ON(crtc->active);
12811
12812 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12813 WARN_ON(encoder->connectors_active);
12814 encoder->base.crtc = NULL;
12815 }
12816 }
12817
12818 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12819 /*
12820 * We start out with underrun reporting disabled to avoid races.
12821 * For correct bookkeeping mark this on active crtcs.
12822 *
12823 * Also on gmch platforms we dont have any hardware bits to
12824 * disable the underrun reporting. Which means we need to start
12825 * out with underrun reporting disabled also on inactive pipes,
12826 * since otherwise we'll complain about the garbage we read when
12827 * e.g. coming up after runtime pm.
12828 *
12829 * No protection against concurrent access is required - at
12830 * worst a fifo underrun happens which also sets this to false.
12831 */
12832 crtc->cpu_fifo_underrun_disabled = true;
12833 crtc->pch_fifo_underrun_disabled = true;
12834
12835 update_scanline_offset(crtc);
12836 }
12837 }
12838
12839 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12840 {
12841 struct intel_connector *connector;
12842 struct drm_device *dev = encoder->base.dev;
12843
12844 /* We need to check both for a crtc link (meaning that the
12845 * encoder is active and trying to read from a pipe) and the
12846 * pipe itself being active. */
12847 bool has_active_crtc = encoder->base.crtc &&
12848 to_intel_crtc(encoder->base.crtc)->active;
12849
12850 if (encoder->connectors_active && !has_active_crtc) {
12851 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12852 encoder->base.base.id,
12853 encoder->base.name);
12854
12855 /* Connector is active, but has no active pipe. This is
12856 * fallout from our resume register restoring. Disable
12857 * the encoder manually again. */
12858 if (encoder->base.crtc) {
12859 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12860 encoder->base.base.id,
12861 encoder->base.name);
12862 encoder->disable(encoder);
12863 if (encoder->post_disable)
12864 encoder->post_disable(encoder);
12865 }
12866 encoder->base.crtc = NULL;
12867 encoder->connectors_active = false;
12868
12869 /* Inconsistent output/port/pipe state happens presumably due to
12870 * a bug in one of the get_hw_state functions. Or someplace else
12871 * in our code, like the register restore mess on resume. Clamp
12872 * things to off as a safer default. */
12873 list_for_each_entry(connector,
12874 &dev->mode_config.connector_list,
12875 base.head) {
12876 if (connector->encoder != encoder)
12877 continue;
12878 connector->base.dpms = DRM_MODE_DPMS_OFF;
12879 connector->base.encoder = NULL;
12880 }
12881 }
12882 /* Enabled encoders without active connectors will be fixed in
12883 * the crtc fixup. */
12884 }
12885
12886 void i915_redisable_vga_power_on(struct drm_device *dev)
12887 {
12888 struct drm_i915_private *dev_priv = dev->dev_private;
12889 u32 vga_reg = i915_vgacntrl_reg(dev);
12890
12891 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12892 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12893 i915_disable_vga(dev);
12894 }
12895 }
12896
12897 void i915_redisable_vga(struct drm_device *dev)
12898 {
12899 struct drm_i915_private *dev_priv = dev->dev_private;
12900
12901 /* This function can be called both from intel_modeset_setup_hw_state or
12902 * at a very early point in our resume sequence, where the power well
12903 * structures are not yet restored. Since this function is at a very
12904 * paranoid "someone might have enabled VGA while we were not looking"
12905 * level, just check if the power well is enabled instead of trying to
12906 * follow the "don't touch the power well if we don't need it" policy
12907 * the rest of the driver uses. */
12908 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12909 return;
12910
12911 i915_redisable_vga_power_on(dev);
12912 }
12913
12914 static bool primary_get_hw_state(struct intel_crtc *crtc)
12915 {
12916 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12917
12918 if (!crtc->active)
12919 return false;
12920
12921 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12922 }
12923
12924 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12925 {
12926 struct drm_i915_private *dev_priv = dev->dev_private;
12927 enum pipe pipe;
12928 struct intel_crtc *crtc;
12929 struct intel_encoder *encoder;
12930 struct intel_connector *connector;
12931 int i;
12932
12933 for_each_intel_crtc(dev, crtc) {
12934 memset(&crtc->config, 0, sizeof(crtc->config));
12935
12936 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12937
12938 crtc->active = dev_priv->display.get_pipe_config(crtc,
12939 &crtc->config);
12940
12941 crtc->base.enabled = crtc->active;
12942 crtc->primary_enabled = primary_get_hw_state(crtc);
12943
12944 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12945 crtc->base.base.id,
12946 crtc->active ? "enabled" : "disabled");
12947 }
12948
12949 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12950 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12951
12952 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12953 pll->active = 0;
12954 for_each_intel_crtc(dev, crtc) {
12955 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12956 pll->active++;
12957 }
12958 pll->refcount = pll->active;
12959
12960 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12961 pll->name, pll->refcount, pll->on);
12962
12963 if (pll->refcount)
12964 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
12965 }
12966
12967 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12968 base.head) {
12969 pipe = 0;
12970
12971 if (encoder->get_hw_state(encoder, &pipe)) {
12972 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12973 encoder->base.crtc = &crtc->base;
12974 encoder->get_config(encoder, &crtc->config);
12975 } else {
12976 encoder->base.crtc = NULL;
12977 }
12978
12979 encoder->connectors_active = false;
12980 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12981 encoder->base.base.id,
12982 encoder->base.name,
12983 encoder->base.crtc ? "enabled" : "disabled",
12984 pipe_name(pipe));
12985 }
12986
12987 list_for_each_entry(connector, &dev->mode_config.connector_list,
12988 base.head) {
12989 if (connector->get_hw_state(connector)) {
12990 connector->base.dpms = DRM_MODE_DPMS_ON;
12991 connector->encoder->connectors_active = true;
12992 connector->base.encoder = &connector->encoder->base;
12993 } else {
12994 connector->base.dpms = DRM_MODE_DPMS_OFF;
12995 connector->base.encoder = NULL;
12996 }
12997 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12998 connector->base.base.id,
12999 connector->base.name,
13000 connector->base.encoder ? "enabled" : "disabled");
13001 }
13002 }
13003
13004 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13005 * and i915 state tracking structures. */
13006 void intel_modeset_setup_hw_state(struct drm_device *dev,
13007 bool force_restore)
13008 {
13009 struct drm_i915_private *dev_priv = dev->dev_private;
13010 enum pipe pipe;
13011 struct intel_crtc *crtc;
13012 struct intel_encoder *encoder;
13013 int i;
13014
13015 intel_modeset_readout_hw_state(dev);
13016
13017 /*
13018 * Now that we have the config, copy it to each CRTC struct
13019 * Note that this could go away if we move to using crtc_config
13020 * checking everywhere.
13021 */
13022 for_each_intel_crtc(dev, crtc) {
13023 if (crtc->active && i915.fastboot) {
13024 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13025 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13026 crtc->base.base.id);
13027 drm_mode_debug_printmodeline(&crtc->base.mode);
13028 }
13029 }
13030
13031 /* HW state is read out, now we need to sanitize this mess. */
13032 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13033 base.head) {
13034 intel_sanitize_encoder(encoder);
13035 }
13036
13037 for_each_pipe(pipe) {
13038 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13039 intel_sanitize_crtc(crtc);
13040 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13041 }
13042
13043 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13044 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13045
13046 if (!pll->on || pll->active)
13047 continue;
13048
13049 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13050
13051 pll->disable(dev_priv, pll);
13052 pll->on = false;
13053 }
13054
13055 if (HAS_PCH_SPLIT(dev))
13056 ilk_wm_get_hw_state(dev);
13057
13058 if (force_restore) {
13059 i915_redisable_vga(dev);
13060
13061 /*
13062 * We need to use raw interfaces for restoring state to avoid
13063 * checking (bogus) intermediate states.
13064 */
13065 for_each_pipe(pipe) {
13066 struct drm_crtc *crtc =
13067 dev_priv->pipe_to_crtc_mapping[pipe];
13068
13069 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13070 crtc->primary->fb);
13071 }
13072 } else {
13073 intel_modeset_update_staged_output_state(dev);
13074 }
13075
13076 intel_modeset_check_state(dev);
13077 }
13078
13079 void intel_modeset_gem_init(struct drm_device *dev)
13080 {
13081 struct drm_crtc *c;
13082 struct drm_i915_gem_object *obj;
13083
13084 mutex_lock(&dev->struct_mutex);
13085 intel_init_gt_powersave(dev);
13086 mutex_unlock(&dev->struct_mutex);
13087
13088 intel_modeset_init_hw(dev);
13089
13090 intel_setup_overlay(dev);
13091
13092 /*
13093 * Make sure any fbs we allocated at startup are properly
13094 * pinned & fenced. When we do the allocation it's too early
13095 * for this.
13096 */
13097 mutex_lock(&dev->struct_mutex);
13098 for_each_crtc(dev, c) {
13099 obj = intel_fb_obj(c->primary->fb);
13100 if (obj == NULL)
13101 continue;
13102
13103 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13104 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13105 to_intel_crtc(c)->pipe);
13106 drm_framebuffer_unreference(c->primary->fb);
13107 c->primary->fb = NULL;
13108 }
13109 }
13110 mutex_unlock(&dev->struct_mutex);
13111 }
13112
13113 void intel_connector_unregister(struct intel_connector *intel_connector)
13114 {
13115 struct drm_connector *connector = &intel_connector->base;
13116
13117 intel_panel_destroy_backlight(connector);
13118 drm_connector_unregister(connector);
13119 }
13120
13121 void intel_modeset_cleanup(struct drm_device *dev)
13122 {
13123 struct drm_i915_private *dev_priv = dev->dev_private;
13124 struct drm_connector *connector;
13125
13126 /*
13127 * Interrupts and polling as the first thing to avoid creating havoc.
13128 * Too much stuff here (turning of rps, connectors, ...) would
13129 * experience fancy races otherwise.
13130 */
13131 drm_irq_uninstall(dev);
13132 intel_hpd_cancel_work(dev_priv);
13133 dev_priv->pm._irqs_disabled = true;
13134
13135 /*
13136 * Due to the hpd irq storm handling the hotplug work can re-arm the
13137 * poll handlers. Hence disable polling after hpd handling is shut down.
13138 */
13139 drm_kms_helper_poll_fini(dev);
13140
13141 mutex_lock(&dev->struct_mutex);
13142
13143 intel_unregister_dsm_handler();
13144
13145 intel_disable_fbc(dev);
13146
13147 intel_disable_gt_powersave(dev);
13148
13149 ironlake_teardown_rc6(dev);
13150
13151 mutex_unlock(&dev->struct_mutex);
13152
13153 /* flush any delayed tasks or pending work */
13154 flush_scheduled_work();
13155
13156 /* destroy the backlight and sysfs files before encoders/connectors */
13157 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13158 struct intel_connector *intel_connector;
13159
13160 intel_connector = to_intel_connector(connector);
13161 intel_connector->unregister(intel_connector);
13162 }
13163
13164 drm_mode_config_cleanup(dev);
13165
13166 intel_cleanup_overlay(dev);
13167
13168 mutex_lock(&dev->struct_mutex);
13169 intel_cleanup_gt_powersave(dev);
13170 mutex_unlock(&dev->struct_mutex);
13171 }
13172
13173 /*
13174 * Return which encoder is currently attached for connector.
13175 */
13176 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13177 {
13178 return &intel_attached_encoder(connector)->base;
13179 }
13180
13181 void intel_connector_attach_encoder(struct intel_connector *connector,
13182 struct intel_encoder *encoder)
13183 {
13184 connector->encoder = encoder;
13185 drm_mode_connector_attach_encoder(&connector->base,
13186 &encoder->base);
13187 }
13188
13189 /*
13190 * set vga decode state - true == enable VGA decode
13191 */
13192 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13193 {
13194 struct drm_i915_private *dev_priv = dev->dev_private;
13195 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13196 u16 gmch_ctrl;
13197
13198 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13199 DRM_ERROR("failed to read control word\n");
13200 return -EIO;
13201 }
13202
13203 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13204 return 0;
13205
13206 if (state)
13207 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13208 else
13209 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13210
13211 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13212 DRM_ERROR("failed to write control word\n");
13213 return -EIO;
13214 }
13215
13216 return 0;
13217 }
13218
13219 struct intel_display_error_state {
13220
13221 u32 power_well_driver;
13222
13223 int num_transcoders;
13224
13225 struct intel_cursor_error_state {
13226 u32 control;
13227 u32 position;
13228 u32 base;
13229 u32 size;
13230 } cursor[I915_MAX_PIPES];
13231
13232 struct intel_pipe_error_state {
13233 bool power_domain_on;
13234 u32 source;
13235 u32 stat;
13236 } pipe[I915_MAX_PIPES];
13237
13238 struct intel_plane_error_state {
13239 u32 control;
13240 u32 stride;
13241 u32 size;
13242 u32 pos;
13243 u32 addr;
13244 u32 surface;
13245 u32 tile_offset;
13246 } plane[I915_MAX_PIPES];
13247
13248 struct intel_transcoder_error_state {
13249 bool power_domain_on;
13250 enum transcoder cpu_transcoder;
13251
13252 u32 conf;
13253
13254 u32 htotal;
13255 u32 hblank;
13256 u32 hsync;
13257 u32 vtotal;
13258 u32 vblank;
13259 u32 vsync;
13260 } transcoder[4];
13261 };
13262
13263 struct intel_display_error_state *
13264 intel_display_capture_error_state(struct drm_device *dev)
13265 {
13266 struct drm_i915_private *dev_priv = dev->dev_private;
13267 struct intel_display_error_state *error;
13268 int transcoders[] = {
13269 TRANSCODER_A,
13270 TRANSCODER_B,
13271 TRANSCODER_C,
13272 TRANSCODER_EDP,
13273 };
13274 int i;
13275
13276 if (INTEL_INFO(dev)->num_pipes == 0)
13277 return NULL;
13278
13279 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13280 if (error == NULL)
13281 return NULL;
13282
13283 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13284 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13285
13286 for_each_pipe(i) {
13287 error->pipe[i].power_domain_on =
13288 intel_display_power_enabled_unlocked(dev_priv,
13289 POWER_DOMAIN_PIPE(i));
13290 if (!error->pipe[i].power_domain_on)
13291 continue;
13292
13293 error->cursor[i].control = I915_READ(CURCNTR(i));
13294 error->cursor[i].position = I915_READ(CURPOS(i));
13295 error->cursor[i].base = I915_READ(CURBASE(i));
13296
13297 error->plane[i].control = I915_READ(DSPCNTR(i));
13298 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13299 if (INTEL_INFO(dev)->gen <= 3) {
13300 error->plane[i].size = I915_READ(DSPSIZE(i));
13301 error->plane[i].pos = I915_READ(DSPPOS(i));
13302 }
13303 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13304 error->plane[i].addr = I915_READ(DSPADDR(i));
13305 if (INTEL_INFO(dev)->gen >= 4) {
13306 error->plane[i].surface = I915_READ(DSPSURF(i));
13307 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13308 }
13309
13310 error->pipe[i].source = I915_READ(PIPESRC(i));
13311
13312 if (HAS_GMCH_DISPLAY(dev))
13313 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13314 }
13315
13316 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13317 if (HAS_DDI(dev_priv->dev))
13318 error->num_transcoders++; /* Account for eDP. */
13319
13320 for (i = 0; i < error->num_transcoders; i++) {
13321 enum transcoder cpu_transcoder = transcoders[i];
13322
13323 error->transcoder[i].power_domain_on =
13324 intel_display_power_enabled_unlocked(dev_priv,
13325 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13326 if (!error->transcoder[i].power_domain_on)
13327 continue;
13328
13329 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13330
13331 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13332 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13333 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13334 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13335 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13336 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13337 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13338 }
13339
13340 return error;
13341 }
13342
13343 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13344
13345 void
13346 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13347 struct drm_device *dev,
13348 struct intel_display_error_state *error)
13349 {
13350 int i;
13351
13352 if (!error)
13353 return;
13354
13355 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13356 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13357 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13358 error->power_well_driver);
13359 for_each_pipe(i) {
13360 err_printf(m, "Pipe [%d]:\n", i);
13361 err_printf(m, " Power: %s\n",
13362 error->pipe[i].power_domain_on ? "on" : "off");
13363 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13364 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13365
13366 err_printf(m, "Plane [%d]:\n", i);
13367 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13368 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13369 if (INTEL_INFO(dev)->gen <= 3) {
13370 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13371 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13372 }
13373 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13374 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13375 if (INTEL_INFO(dev)->gen >= 4) {
13376 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13377 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13378 }
13379
13380 err_printf(m, "Cursor [%d]:\n", i);
13381 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13382 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13383 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13384 }
13385
13386 for (i = 0; i < error->num_transcoders; i++) {
13387 err_printf(m, "CPU transcoder: %c\n",
13388 transcoder_name(error->transcoder[i].cpu_transcoder));
13389 err_printf(m, " Power: %s\n",
13390 error->transcoder[i].power_domain_on ? "on" : "off");
13391 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13392 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13393 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13394 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13395 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13396 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13397 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13398 }
13399 }
This page took 0.536046 seconds and 6 git commands to generate.