Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
127 .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
141 .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
155 .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
185 },
186 .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
200 .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
214 },
215 .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
229 },
230 .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 10, .p2_fast = 10 },
244 .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
250 /* Pineview's Ncounter is a ring counter */
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
253 /* Pineview only has one combined m divider, which we treat as m2. */
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
260 .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
274 .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
293 .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
307 .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
321 .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
333 .p1 = { .min = 2, .max = 8 },
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
336 .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
347 .p1 = { .min = 2, .max = 6 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
363 .p2_slow = 10, .p2_fast = 10 },
364 .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 162000, .max = 270000 },
397 .vco = { .min = 5994000, .max = 4000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 60, .max = 300 }, /* guess */
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436 {
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487 {
488 unsigned int val;
489
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
515 {
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 const intel_limit_t *limit;
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522 /* LVDS dual channel */
523 if (refclk == 100000)
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
528 if (refclk == 100000)
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
536 else
537 limit = &intel_limits_ironlake_dac;
538
539 return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549 if (is_dual_link_lvds(dev_priv, LVDS))
550 /* LVDS with dual channel */
551 limit = &intel_limits_g4x_dual_channel_lvds;
552 else
553 /* LVDS with dual channel */
554 limit = &intel_limits_g4x_single_channel_lvds;
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557 limit = &intel_limits_g4x_hdmi;
558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559 limit = &intel_limits_g4x_sdvo;
560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561 limit = &intel_limits_g4x_display_port;
562 } else /* The option is for other outputs */
563 limit = &intel_limits_i9xx_sdvo;
564
565 return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
573 if (HAS_PCH_SPLIT(dev))
574 limit = intel_ironlake_limit(crtc, refclk);
575 else if (IS_G4X(dev)) {
576 limit = intel_g4x_limit(crtc);
577 } else if (IS_PINEVIEW(dev)) {
578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_pineview_lvds;
580 else
581 limit = &intel_limits_pineview_sdvo;
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596 limit = &intel_limits_i8xx_lvds;
597 else
598 limit = &intel_limits_i8xx_dvo;
599 }
600 return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
616 return;
617 }
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629 struct drm_device *dev = crtc->dev;
630 struct intel_encoder *encoder;
631
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
634 return true;
635
636 return false;
637 }
638
639 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
648 {
649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
650 INTELPllInvalid("p1 out of range\n");
651 if (clock->p < limit->p.min || limit->p.max < clock->p)
652 INTELPllInvalid("p out of range\n");
653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
654 INTELPllInvalid("m2 out of range\n");
655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
656 INTELPllInvalid("m1 out of range\n");
657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658 INTELPllInvalid("m1 <= m2\n");
659 if (clock->m < limit->m.min || limit->m.max < clock->m)
660 INTELPllInvalid("m out of range\n");
661 if (clock->n < limit->n.min || limit->n.max < clock->n)
662 INTELPllInvalid("n out of range\n");
663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664 INTELPllInvalid("vco out of range\n");
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669 INTELPllInvalid("dot out of range\n");
670
671 return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
678
679 {
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
683 int err = target;
684
685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686 (I915_READ(LVDS)) != 0) {
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
693 if (is_dual_link_lvds(dev_priv, LVDS))
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
704 memset(best_clock, 0, sizeof(*best_clock));
705
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
717 int this_err;
718
719 intel_clock(dev, refclk, &clock);
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
722 continue;
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
744 {
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755 int lvds_reg;
756
757 if (HAS_PCH_SPLIT(dev))
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 /* based on hardware requirement, prefere larger m1,m2 */
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
786 intel_clock(dev, refclk, &clock);
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
789 continue;
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
793
794 this_err = abs(clock.dot - target);
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
805 return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812 {
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839 {
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865 {
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
872 flag = 0;
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 int pipestat_reg = PIPESTAT(pipe);
953
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975 /* Wait for vblank interrupt bit to set */
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
997 *
998 */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001 struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
1004 int reg = PIPECONF(pipe);
1005
1006 /* Wait for the Pipe State to go off */
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
1009 WARN(1, "pipe_off wait timed out\n");
1010 } else {
1011 u32 last_line, line_mask;
1012 int reg = PIPEDSL(pipe);
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 /* Wait for the display line to settle */
1021 do {
1022 last_line = I915_READ(reg) & line_mask;
1023 mdelay(5);
1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
1027 WARN(1, "pipe_off wait timed out\n");
1028 }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033 return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039 {
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
1059 {
1060 u32 val;
1061 bool cur_state;
1062
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070 return;
1071
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
1095 }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102 {
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126 {
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148 {
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167 {
1168 int reg;
1169 u32 val;
1170
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182 {
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
1186 bool locked = true;
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
1206 pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
1211 {
1212 int reg;
1213 u32 val;
1214 bool cur_state;
1215
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
1225 pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
1230 {
1231 int reg;
1232 u32 val;
1233 bool cur_state;
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248 {
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
1253 /* Planes are fixed to pipes on ILK+ */
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
1260 return;
1261 }
1262
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
1272 }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277 u32 val;
1278 bool enabled;
1279
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326 {
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342 {
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358 {
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, int reg, u32 port_sel)
1373 {
1374 u32 val = I915_READ(reg);
1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377 reg, pipe_name(pipe));
1378
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380 && (val & DP_PIPEB_SELECT),
1381 "IBX PCH dp port still using transcoder B\n");
1382 }
1383
1384 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, int reg)
1386 {
1387 u32 val = I915_READ(reg);
1388 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1389 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1390 reg, pipe_name(pipe));
1391
1392 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393 && (val & SDVO_PIPE_B_SELECT),
1394 "IBX PCH hdmi port still using transcoder B\n");
1395 }
1396
1397 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399 {
1400 int reg;
1401 u32 val;
1402
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1406
1407 reg = PCH_ADPA;
1408 val = I915_READ(reg);
1409 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1410 "PCH VGA enabled on transcoder %c, should be disabled\n",
1411 pipe_name(pipe));
1412
1413 reg = PCH_LVDS;
1414 val = I915_READ(reg);
1415 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1416 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1417 pipe_name(pipe));
1418
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422 }
1423
1424 /**
1425 * intel_enable_pll - enable a PLL
1426 * @dev_priv: i915 private structure
1427 * @pipe: pipe PLL to enable
1428 *
1429 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1430 * make sure the PLL reg is writable first though, since the panel write
1431 * protect mechanism may be enabled.
1432 *
1433 * Note! This is for pre-ILK only.
1434 *
1435 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1436 */
1437 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1438 {
1439 int reg;
1440 u32 val;
1441
1442 /* No really, not for ILK+ */
1443 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1444
1445 /* PLL is protected by panel, make sure we can write it */
1446 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447 assert_panel_unlocked(dev_priv, pipe);
1448
1449 reg = DPLL(pipe);
1450 val = I915_READ(reg);
1451 val |= DPLL_VCO_ENABLE;
1452
1453 /* We do this three times for luck */
1454 I915_WRITE(reg, val);
1455 POSTING_READ(reg);
1456 udelay(150); /* wait for warmup */
1457 I915_WRITE(reg, val);
1458 POSTING_READ(reg);
1459 udelay(150); /* wait for warmup */
1460 I915_WRITE(reg, val);
1461 POSTING_READ(reg);
1462 udelay(150); /* wait for warmup */
1463 }
1464
1465 /**
1466 * intel_disable_pll - disable a PLL
1467 * @dev_priv: i915 private structure
1468 * @pipe: pipe PLL to disable
1469 *
1470 * Disable the PLL for @pipe, making sure the pipe is off first.
1471 *
1472 * Note! This is for pre-ILK only.
1473 */
1474 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475 {
1476 int reg;
1477 u32 val;
1478
1479 /* Don't disable pipe A or pipe A PLLs if needed */
1480 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481 return;
1482
1483 /* Make sure the pipe isn't still relying on us */
1484 assert_pipe_disabled(dev_priv, pipe);
1485
1486 reg = DPLL(pipe);
1487 val = I915_READ(reg);
1488 val &= ~DPLL_VCO_ENABLE;
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491 }
1492
1493 /* SBI access */
1494 static void
1495 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496 {
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1500 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1501 100)) {
1502 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503 goto out_unlock;
1504 }
1505
1506 I915_WRITE(SBI_ADDR,
1507 (reg << 16));
1508 I915_WRITE(SBI_DATA,
1509 value);
1510 I915_WRITE(SBI_CTL_STAT,
1511 SBI_BUSY |
1512 SBI_CTL_OP_CRWR);
1513
1514 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517 goto out_unlock;
1518 }
1519
1520 out_unlock:
1521 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522 }
1523
1524 static u32
1525 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526 {
1527 unsigned long flags;
1528 u32 value = 0;
1529
1530 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1531 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1532 100)) {
1533 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534 goto out_unlock;
1535 }
1536
1537 I915_WRITE(SBI_ADDR,
1538 (reg << 16));
1539 I915_WRITE(SBI_CTL_STAT,
1540 SBI_BUSY |
1541 SBI_CTL_OP_CRRD);
1542
1543 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1544 100)) {
1545 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546 goto out_unlock;
1547 }
1548
1549 value = I915_READ(SBI_DATA);
1550
1551 out_unlock:
1552 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553 return value;
1554 }
1555
1556 /**
1557 * intel_enable_pch_pll - enable PCH PLL
1558 * @dev_priv: i915 private structure
1559 * @pipe: pipe PLL to enable
1560 *
1561 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562 * drives the transcoder clock.
1563 */
1564 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1565 {
1566 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1567 struct intel_pch_pll *pll;
1568 int reg;
1569 u32 val;
1570
1571 /* PCH PLLs only available on ILK, SNB and IVB */
1572 BUG_ON(dev_priv->info->gen < 5);
1573 pll = intel_crtc->pch_pll;
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
1579
1580 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
1583
1584 /* PCH refclock must be enabled first */
1585 assert_pch_refclk_enabled(dev_priv);
1586
1587 if (pll->active++ && pll->on) {
1588 assert_pch_pll_enabled(dev_priv, pll, NULL);
1589 return;
1590 }
1591
1592 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594 reg = pll->pll_reg;
1595 val = I915_READ(reg);
1596 val |= DPLL_VCO_ENABLE;
1597 I915_WRITE(reg, val);
1598 POSTING_READ(reg);
1599 udelay(200);
1600
1601 pll->on = true;
1602 }
1603
1604 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1605 {
1606 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1608 int reg;
1609 u32 val;
1610
1611 /* PCH only available on ILK+ */
1612 BUG_ON(dev_priv->info->gen < 5);
1613 if (pll == NULL)
1614 return;
1615
1616 if (WARN_ON(pll->refcount == 0))
1617 return;
1618
1619 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620 pll->pll_reg, pll->active, pll->on,
1621 intel_crtc->base.base.id);
1622
1623 if (WARN_ON(pll->active == 0)) {
1624 assert_pch_pll_disabled(dev_priv, pll, NULL);
1625 return;
1626 }
1627
1628 if (--pll->active) {
1629 assert_pch_pll_enabled(dev_priv, pll, NULL);
1630 return;
1631 }
1632
1633 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635 /* Make sure transcoder isn't still depending on us */
1636 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1637
1638 reg = pll->pll_reg;
1639 val = I915_READ(reg);
1640 val &= ~DPLL_VCO_ENABLE;
1641 I915_WRITE(reg, val);
1642 POSTING_READ(reg);
1643 udelay(200);
1644
1645 pll->on = false;
1646 }
1647
1648 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649 enum pipe pipe)
1650 {
1651 int reg;
1652 u32 val, pipeconf_val;
1653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1654
1655 /* PCH only available on ILK+ */
1656 BUG_ON(dev_priv->info->gen < 5);
1657
1658 /* Make sure PCH DPLL is enabled */
1659 assert_pch_pll_enabled(dev_priv,
1660 to_intel_crtc(crtc)->pch_pll,
1661 to_intel_crtc(crtc));
1662
1663 /* FDI must be feeding us bits for PCH ports */
1664 assert_fdi_tx_enabled(dev_priv, pipe);
1665 assert_fdi_rx_enabled(dev_priv, pipe);
1666
1667 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669 return;
1670 }
1671 reg = TRANSCONF(pipe);
1672 val = I915_READ(reg);
1673 pipeconf_val = I915_READ(PIPECONF(pipe));
1674
1675 if (HAS_PCH_IBX(dev_priv->dev)) {
1676 /*
1677 * make the BPC in transcoder be consistent with
1678 * that in pipeconf reg.
1679 */
1680 val &= ~PIPE_BPC_MASK;
1681 val |= pipeconf_val & PIPE_BPC_MASK;
1682 }
1683
1684 val &= ~TRANS_INTERLACE_MASK;
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1686 if (HAS_PCH_IBX(dev_priv->dev) &&
1687 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688 val |= TRANS_LEGACY_INTERLACED_ILK;
1689 else
1690 val |= TRANS_INTERLACED;
1691 else
1692 val |= TRANS_PROGRESSIVE;
1693
1694 I915_WRITE(reg, val | TRANS_ENABLE);
1695 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697 }
1698
1699 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700 enum pipe pipe)
1701 {
1702 int reg;
1703 u32 val;
1704
1705 /* FDI relies on the transcoder */
1706 assert_fdi_tx_disabled(dev_priv, pipe);
1707 assert_fdi_rx_disabled(dev_priv, pipe);
1708
1709 /* Ports must be off as well */
1710 assert_pch_ports_disabled(dev_priv, pipe);
1711
1712 reg = TRANSCONF(pipe);
1713 val = I915_READ(reg);
1714 val &= ~TRANS_ENABLE;
1715 I915_WRITE(reg, val);
1716 /* wait for PCH transcoder off, transcoder state */
1717 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1718 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1719 }
1720
1721 /**
1722 * intel_enable_pipe - enable a pipe, asserting requirements
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe to enable
1725 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1726 *
1727 * Enable @pipe, making sure that various hardware specific requirements
1728 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729 *
1730 * @pipe should be %PIPE_A or %PIPE_B.
1731 *
1732 * Will wait until the pipe is actually running (i.e. first vblank) before
1733 * returning.
1734 */
1735 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736 bool pch_port)
1737 {
1738 int reg;
1739 u32 val;
1740
1741 /*
1742 * A pipe without a PLL won't actually be able to drive bits from
1743 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1744 * need the check.
1745 */
1746 if (!HAS_PCH_SPLIT(dev_priv->dev))
1747 assert_pll_enabled(dev_priv, pipe);
1748 else {
1749 if (pch_port) {
1750 /* if driving the PCH, we need FDI enabled */
1751 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753 }
1754 /* FIXME: assert CPU port conditions for SNB+ */
1755 }
1756
1757 reg = PIPECONF(pipe);
1758 val = I915_READ(reg);
1759 if (val & PIPECONF_ENABLE)
1760 return;
1761
1762 I915_WRITE(reg, val | PIPECONF_ENABLE);
1763 intel_wait_for_vblank(dev_priv->dev, pipe);
1764 }
1765
1766 /**
1767 * intel_disable_pipe - disable a pipe, asserting requirements
1768 * @dev_priv: i915 private structure
1769 * @pipe: pipe to disable
1770 *
1771 * Disable @pipe, making sure that various hardware specific requirements
1772 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773 *
1774 * @pipe should be %PIPE_A or %PIPE_B.
1775 *
1776 * Will wait until the pipe has shut down before returning.
1777 */
1778 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779 enum pipe pipe)
1780 {
1781 int reg;
1782 u32 val;
1783
1784 /*
1785 * Make sure planes won't keep trying to pump pixels to us,
1786 * or we might hang the display.
1787 */
1788 assert_planes_disabled(dev_priv, pipe);
1789
1790 /* Don't disable pipe A or pipe A PLLs if needed */
1791 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792 return;
1793
1794 reg = PIPECONF(pipe);
1795 val = I915_READ(reg);
1796 if ((val & PIPECONF_ENABLE) == 0)
1797 return;
1798
1799 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1800 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801 }
1802
1803 /*
1804 * Plane regs are double buffered, going from enabled->disabled needs a
1805 * trigger in order to latch. The display address reg provides this.
1806 */
1807 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1808 enum plane plane)
1809 {
1810 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812 }
1813
1814 /**
1815 * intel_enable_plane - enable a display plane on a given pipe
1816 * @dev_priv: i915 private structure
1817 * @plane: plane to enable
1818 * @pipe: pipe being fed
1819 *
1820 * Enable @plane on @pipe, making sure that @pipe is running first.
1821 */
1822 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823 enum plane plane, enum pipe pipe)
1824 {
1825 int reg;
1826 u32 val;
1827
1828 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829 assert_pipe_enabled(dev_priv, pipe);
1830
1831 reg = DSPCNTR(plane);
1832 val = I915_READ(reg);
1833 if (val & DISPLAY_PLANE_ENABLE)
1834 return;
1835
1836 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1837 intel_flush_display_plane(dev_priv, plane);
1838 intel_wait_for_vblank(dev_priv->dev, pipe);
1839 }
1840
1841 /**
1842 * intel_disable_plane - disable a display plane
1843 * @dev_priv: i915 private structure
1844 * @plane: plane to disable
1845 * @pipe: pipe consuming the data
1846 *
1847 * Disable @plane; should be an independent operation.
1848 */
1849 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850 enum plane plane, enum pipe pipe)
1851 {
1852 int reg;
1853 u32 val;
1854
1855 reg = DSPCNTR(plane);
1856 val = I915_READ(reg);
1857 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858 return;
1859
1860 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1861 intel_flush_display_plane(dev_priv, plane);
1862 intel_wait_for_vblank(dev_priv->dev, pipe);
1863 }
1864
1865 int
1866 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1867 struct drm_i915_gem_object *obj,
1868 struct intel_ring_buffer *pipelined)
1869 {
1870 struct drm_i915_private *dev_priv = dev->dev_private;
1871 u32 alignment;
1872 int ret;
1873
1874 switch (obj->tiling_mode) {
1875 case I915_TILING_NONE:
1876 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877 alignment = 128 * 1024;
1878 else if (INTEL_INFO(dev)->gen >= 4)
1879 alignment = 4 * 1024;
1880 else
1881 alignment = 64 * 1024;
1882 break;
1883 case I915_TILING_X:
1884 /* pin() will align the object as required by fence */
1885 alignment = 0;
1886 break;
1887 case I915_TILING_Y:
1888 /* FIXME: Is this true? */
1889 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890 return -EINVAL;
1891 default:
1892 BUG();
1893 }
1894
1895 dev_priv->mm.interruptible = false;
1896 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1897 if (ret)
1898 goto err_interruptible;
1899
1900 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901 * fence, whereas 965+ only requires a fence if using
1902 * framebuffer compression. For simplicity, we always install
1903 * a fence as the cost is not that onerous.
1904 */
1905 ret = i915_gem_object_get_fence(obj);
1906 if (ret)
1907 goto err_unpin;
1908
1909 i915_gem_object_pin_fence(obj);
1910
1911 dev_priv->mm.interruptible = true;
1912 return 0;
1913
1914 err_unpin:
1915 i915_gem_object_unpin(obj);
1916 err_interruptible:
1917 dev_priv->mm.interruptible = true;
1918 return ret;
1919 }
1920
1921 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922 {
1923 i915_gem_object_unpin_fence(obj);
1924 i915_gem_object_unpin(obj);
1925 }
1926
1927 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928 * is assumed to be a power-of-two. */
1929 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930 unsigned int bpp,
1931 unsigned int pitch)
1932 {
1933 int tile_rows, tiles;
1934
1935 tile_rows = *y / 8;
1936 *y %= 8;
1937 tiles = *x / (512/bpp);
1938 *x %= 512/bpp;
1939
1940 return tile_rows * pitch * 8 + tiles * 4096;
1941 }
1942
1943 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
1945 {
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
1950 struct drm_i915_gem_object *obj;
1951 int plane = intel_crtc->plane;
1952 unsigned long linear_offset;
1953 u32 dspcntr;
1954 u32 reg;
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
1967
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1988 return -EINVAL;
1989 }
1990 if (INTEL_INFO(dev)->gen >= 4) {
1991 if (obj->tiling_mode != I915_TILING_NONE)
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
1997 I915_WRITE(reg, dspcntr);
1998
1999 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2000
2001 if (INTEL_INFO(dev)->gen >= 4) {
2002 intel_crtc->dspaddr_offset =
2003 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004 fb->bits_per_pixel / 8,
2005 fb->pitches[0]);
2006 linear_offset -= intel_crtc->dspaddr_offset;
2007 } else {
2008 intel_crtc->dspaddr_offset = linear_offset;
2009 }
2010
2011 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2013 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2014 if (INTEL_INFO(dev)->gen >= 4) {
2015 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016 obj->gtt_offset + intel_crtc->dspaddr_offset);
2017 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2018 I915_WRITE(DSPLINOFF(plane), linear_offset);
2019 } else
2020 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2021 POSTING_READ(reg);
2022
2023 return 0;
2024 }
2025
2026 static int ironlake_update_plane(struct drm_crtc *crtc,
2027 struct drm_framebuffer *fb, int x, int y)
2028 {
2029 struct drm_device *dev = crtc->dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032 struct intel_framebuffer *intel_fb;
2033 struct drm_i915_gem_object *obj;
2034 int plane = intel_crtc->plane;
2035 unsigned long linear_offset;
2036 u32 dspcntr;
2037 u32 reg;
2038
2039 switch (plane) {
2040 case 0:
2041 case 1:
2042 case 2:
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2047 }
2048
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
2051
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth != 16)
2062 return -EINVAL;
2063
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 if (fb->depth == 24)
2069 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070 else if (fb->depth == 30)
2071 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072 else
2073 return -EINVAL;
2074 break;
2075 default:
2076 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077 return -EINVAL;
2078 }
2079
2080 if (obj->tiling_mode != I915_TILING_NONE)
2081 dspcntr |= DISPPLANE_TILED;
2082 else
2083 dspcntr &= ~DISPPLANE_TILED;
2084
2085 /* must disable */
2086 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088 I915_WRITE(reg, dspcntr);
2089
2090 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2091 intel_crtc->dspaddr_offset =
2092 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093 fb->bits_per_pixel / 8,
2094 fb->pitches[0]);
2095 linear_offset -= intel_crtc->dspaddr_offset;
2096
2097 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2099 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2100 I915_MODIFY_DISPBASE(DSPSURF(plane),
2101 obj->gtt_offset + intel_crtc->dspaddr_offset);
2102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2103 I915_WRITE(DSPLINOFF(plane), linear_offset);
2104 POSTING_READ(reg);
2105
2106 return 0;
2107 }
2108
2109 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2110 static int
2111 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112 int x, int y, enum mode_set_atomic state)
2113 {
2114 struct drm_device *dev = crtc->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116
2117 if (dev_priv->display.disable_fbc)
2118 dev_priv->display.disable_fbc(dev);
2119 intel_increase_pllclock(crtc);
2120
2121 return dev_priv->display.update_plane(crtc, fb, x, y);
2122 }
2123
2124 static int
2125 intel_finish_fb(struct drm_framebuffer *old_fb)
2126 {
2127 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129 bool was_interruptible = dev_priv->mm.interruptible;
2130 int ret;
2131
2132 wait_event(dev_priv->pending_flip_queue,
2133 atomic_read(&dev_priv->mm.wedged) ||
2134 atomic_read(&obj->pending_flip) == 0);
2135
2136 /* Big Hammer, we also need to ensure that any pending
2137 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138 * current scanout is retired before unpinning the old
2139 * framebuffer.
2140 *
2141 * This should only fail upon a hung GPU, in which case we
2142 * can safely continue.
2143 */
2144 dev_priv->mm.interruptible = false;
2145 ret = i915_gem_object_finish_gpu(obj);
2146 dev_priv->mm.interruptible = was_interruptible;
2147
2148 return ret;
2149 }
2150
2151 static int
2152 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2153 struct drm_framebuffer *fb)
2154 {
2155 struct drm_device *dev = crtc->dev;
2156 struct drm_i915_private *dev_priv = dev->dev_private;
2157 struct drm_i915_master_private *master_priv;
2158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2159 struct drm_framebuffer *old_fb;
2160 int ret;
2161
2162 /* no fb bound */
2163 if (!fb) {
2164 DRM_ERROR("No FB bound\n");
2165 return 0;
2166 }
2167
2168 if(intel_crtc->plane > dev_priv->num_pipe) {
2169 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170 intel_crtc->plane,
2171 dev_priv->num_pipe);
2172 return -EINVAL;
2173 }
2174
2175 mutex_lock(&dev->struct_mutex);
2176 ret = intel_pin_and_fence_fb_obj(dev,
2177 to_intel_framebuffer(fb)->obj,
2178 NULL);
2179 if (ret != 0) {
2180 mutex_unlock(&dev->struct_mutex);
2181 DRM_ERROR("pin & fence failed\n");
2182 return ret;
2183 }
2184
2185 if (crtc->fb)
2186 intel_finish_fb(crtc->fb);
2187
2188 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2189 if (ret) {
2190 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2191 mutex_unlock(&dev->struct_mutex);
2192 DRM_ERROR("failed to update base address\n");
2193 return ret;
2194 }
2195
2196 old_fb = crtc->fb;
2197 crtc->fb = fb;
2198 crtc->x = x;
2199 crtc->y = y;
2200
2201 if (old_fb) {
2202 intel_wait_for_vblank(dev, intel_crtc->pipe);
2203 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2204 }
2205
2206 intel_update_fbc(dev);
2207 mutex_unlock(&dev->struct_mutex);
2208
2209 if (!dev->primary->master)
2210 return 0;
2211
2212 master_priv = dev->primary->master->driver_priv;
2213 if (!master_priv->sarea_priv)
2214 return 0;
2215
2216 if (intel_crtc->pipe) {
2217 master_priv->sarea_priv->pipeB_x = x;
2218 master_priv->sarea_priv->pipeB_y = y;
2219 } else {
2220 master_priv->sarea_priv->pipeA_x = x;
2221 master_priv->sarea_priv->pipeA_y = y;
2222 }
2223
2224 return 0;
2225 }
2226
2227 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2228 {
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 dpa_ctl;
2232
2233 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2234 dpa_ctl = I915_READ(DP_A);
2235 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237 if (clock < 200000) {
2238 u32 temp;
2239 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240 /* workaround for 160Mhz:
2241 1) program 0x4600c bits 15:0 = 0x8124
2242 2) program 0x46010 bit 0 = 1
2243 3) program 0x46034 bit 24 = 1
2244 4) program 0x64000 bit 14 = 1
2245 */
2246 temp = I915_READ(0x4600c);
2247 temp &= 0xffff0000;
2248 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250 temp = I915_READ(0x46010);
2251 I915_WRITE(0x46010, temp | 1);
2252
2253 temp = I915_READ(0x46034);
2254 I915_WRITE(0x46034, temp | (1 << 24));
2255 } else {
2256 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257 }
2258 I915_WRITE(DP_A, dpa_ctl);
2259
2260 POSTING_READ(DP_A);
2261 udelay(500);
2262 }
2263
2264 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265 {
2266 struct drm_device *dev = crtc->dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269 int pipe = intel_crtc->pipe;
2270 u32 reg, temp;
2271
2272 /* enable normal train */
2273 reg = FDI_TX_CTL(pipe);
2274 temp = I915_READ(reg);
2275 if (IS_IVYBRIDGE(dev)) {
2276 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2278 } else {
2279 temp &= ~FDI_LINK_TRAIN_NONE;
2280 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2281 }
2282 I915_WRITE(reg, temp);
2283
2284 reg = FDI_RX_CTL(pipe);
2285 temp = I915_READ(reg);
2286 if (HAS_PCH_CPT(dev)) {
2287 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289 } else {
2290 temp &= ~FDI_LINK_TRAIN_NONE;
2291 temp |= FDI_LINK_TRAIN_NONE;
2292 }
2293 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295 /* wait one idle pattern time */
2296 POSTING_READ(reg);
2297 udelay(1000);
2298
2299 /* IVB wants error correction enabled */
2300 if (IS_IVYBRIDGE(dev))
2301 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302 FDI_FE_ERRC_ENABLE);
2303 }
2304
2305 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306 {
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308 u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310 flags |= FDI_PHASE_SYNC_OVR(pipe);
2311 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312 flags |= FDI_PHASE_SYNC_EN(pipe);
2313 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314 POSTING_READ(SOUTH_CHICKEN1);
2315 }
2316
2317 /* The FDI link training functions for ILK/Ibexpeak. */
2318 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319 {
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
2324 int plane = intel_crtc->plane;
2325 u32 reg, temp, tries;
2326
2327 /* FDI needs bits from pipe & plane first */
2328 assert_pipe_enabled(dev_priv, pipe);
2329 assert_plane_enabled(dev_priv, plane);
2330
2331 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332 for train result */
2333 reg = FDI_RX_IMR(pipe);
2334 temp = I915_READ(reg);
2335 temp &= ~FDI_RX_SYMBOL_LOCK;
2336 temp &= ~FDI_RX_BIT_LOCK;
2337 I915_WRITE(reg, temp);
2338 I915_READ(reg);
2339 udelay(150);
2340
2341 /* enable CPU FDI TX and PCH FDI RX */
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
2344 temp &= ~(7 << 19);
2345 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_PATTERN_1;
2348 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2349
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_PATTERN_1;
2354 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356 POSTING_READ(reg);
2357 udelay(150);
2358
2359 /* Ironlake workaround, enable clock pointer after FDI enable*/
2360 if (HAS_PCH_IBX(dev)) {
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364 }
2365
2366 reg = FDI_RX_IIR(pipe);
2367 for (tries = 0; tries < 5; tries++) {
2368 temp = I915_READ(reg);
2369 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371 if ((temp & FDI_RX_BIT_LOCK)) {
2372 DRM_DEBUG_KMS("FDI train 1 done.\n");
2373 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2374 break;
2375 }
2376 }
2377 if (tries == 5)
2378 DRM_ERROR("FDI train 1 fail!\n");
2379
2380 /* Train 2 */
2381 reg = FDI_TX_CTL(pipe);
2382 temp = I915_READ(reg);
2383 temp &= ~FDI_LINK_TRAIN_NONE;
2384 temp |= FDI_LINK_TRAIN_PATTERN_2;
2385 I915_WRITE(reg, temp);
2386
2387 reg = FDI_RX_CTL(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_PATTERN_2;
2391 I915_WRITE(reg, temp);
2392
2393 POSTING_READ(reg);
2394 udelay(150);
2395
2396 reg = FDI_RX_IIR(pipe);
2397 for (tries = 0; tries < 5; tries++) {
2398 temp = I915_READ(reg);
2399 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401 if (temp & FDI_RX_SYMBOL_LOCK) {
2402 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2403 DRM_DEBUG_KMS("FDI train 2 done.\n");
2404 break;
2405 }
2406 }
2407 if (tries == 5)
2408 DRM_ERROR("FDI train 2 fail!\n");
2409
2410 DRM_DEBUG_KMS("FDI train done\n");
2411
2412 }
2413
2414 static const int snb_b_fdi_train_param[] = {
2415 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419 };
2420
2421 /* The FDI link training functions for SNB/Cougarpoint. */
2422 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423 {
2424 struct drm_device *dev = crtc->dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427 int pipe = intel_crtc->pipe;
2428 u32 reg, temp, i, retry;
2429
2430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431 for train result */
2432 reg = FDI_RX_IMR(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_RX_SYMBOL_LOCK;
2435 temp &= ~FDI_RX_BIT_LOCK;
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
2439 udelay(150);
2440
2441 /* enable CPU FDI TX and PCH FDI RX */
2442 reg = FDI_TX_CTL(pipe);
2443 temp = I915_READ(reg);
2444 temp &= ~(7 << 19);
2445 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2446 temp &= ~FDI_LINK_TRAIN_NONE;
2447 temp |= FDI_LINK_TRAIN_PATTERN_1;
2448 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449 /* SNB-B */
2450 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2451 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2452
2453 reg = FDI_RX_CTL(pipe);
2454 temp = I915_READ(reg);
2455 if (HAS_PCH_CPT(dev)) {
2456 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458 } else {
2459 temp &= ~FDI_LINK_TRAIN_NONE;
2460 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461 }
2462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464 POSTING_READ(reg);
2465 udelay(150);
2466
2467 if (HAS_PCH_CPT(dev))
2468 cpt_phase_pointer_enable(dev, pipe);
2469
2470 for (i = 0; i < 4; i++) {
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474 temp |= snb_b_fdi_train_param[i];
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
2478 udelay(500);
2479
2480 for (retry = 0; retry < 5; retry++) {
2481 reg = FDI_RX_IIR(pipe);
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484 if (temp & FDI_RX_BIT_LOCK) {
2485 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487 break;
2488 }
2489 udelay(50);
2490 }
2491 if (retry < 5)
2492 break;
2493 }
2494 if (i == 4)
2495 DRM_ERROR("FDI train 1 fail!\n");
2496
2497 /* Train 2 */
2498 reg = FDI_TX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_2;
2502 if (IS_GEN6(dev)) {
2503 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504 /* SNB-B */
2505 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506 }
2507 I915_WRITE(reg, temp);
2508
2509 reg = FDI_RX_CTL(pipe);
2510 temp = I915_READ(reg);
2511 if (HAS_PCH_CPT(dev)) {
2512 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514 } else {
2515 temp &= ~FDI_LINK_TRAIN_NONE;
2516 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517 }
2518 I915_WRITE(reg, temp);
2519
2520 POSTING_READ(reg);
2521 udelay(150);
2522
2523 for (i = 0; i < 4; i++) {
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
2526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527 temp |= snb_b_fdi_train_param[i];
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
2531 udelay(500);
2532
2533 for (retry = 0; retry < 5; retry++) {
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537 if (temp & FDI_RX_SYMBOL_LOCK) {
2538 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540 break;
2541 }
2542 udelay(50);
2543 }
2544 if (retry < 5)
2545 break;
2546 }
2547 if (i == 4)
2548 DRM_ERROR("FDI train 2 fail!\n");
2549
2550 DRM_DEBUG_KMS("FDI train done.\n");
2551 }
2552
2553 /* Manual link training for Ivy Bridge A0 parts */
2554 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555 {
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559 int pipe = intel_crtc->pipe;
2560 u32 reg, temp, i;
2561
2562 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563 for train result */
2564 reg = FDI_RX_IMR(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_RX_SYMBOL_LOCK;
2567 temp &= ~FDI_RX_BIT_LOCK;
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
2571 udelay(150);
2572
2573 /* enable CPU FDI TX and PCH FDI RX */
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~(7 << 19);
2577 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2582 temp |= FDI_COMPOSITE_SYNC;
2583 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585 reg = FDI_RX_CTL(pipe);
2586 temp = I915_READ(reg);
2587 temp &= ~FDI_LINK_TRAIN_AUTO;
2588 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2590 temp |= FDI_COMPOSITE_SYNC;
2591 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593 POSTING_READ(reg);
2594 udelay(150);
2595
2596 if (HAS_PCH_CPT(dev))
2597 cpt_phase_pointer_enable(dev, pipe);
2598
2599 for (i = 0; i < 4; i++) {
2600 reg = FDI_TX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603 temp |= snb_b_fdi_train_param[i];
2604 I915_WRITE(reg, temp);
2605
2606 POSTING_READ(reg);
2607 udelay(500);
2608
2609 reg = FDI_RX_IIR(pipe);
2610 temp = I915_READ(reg);
2611 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613 if (temp & FDI_RX_BIT_LOCK ||
2614 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616 DRM_DEBUG_KMS("FDI train 1 done.\n");
2617 break;
2618 }
2619 }
2620 if (i == 4)
2621 DRM_ERROR("FDI train 1 fail!\n");
2622
2623 /* Train 2 */
2624 reg = FDI_TX_CTL(pipe);
2625 temp = I915_READ(reg);
2626 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630 I915_WRITE(reg, temp);
2631
2632 reg = FDI_RX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
2641 for (i = 0; i < 4; i++) {
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_SYMBOL_LOCK) {
2656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657 DRM_DEBUG_KMS("FDI train 2 done.\n");
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 2 fail!\n");
2663
2664 DRM_DEBUG_KMS("FDI train done.\n");
2665 }
2666
2667 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2668 {
2669 struct drm_device *dev = intel_crtc->base.dev;
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 int pipe = intel_crtc->pipe;
2672 u32 reg, temp;
2673
2674 /* Write the TU size bits so error detection works */
2675 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2677
2678 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2679 reg = FDI_RX_CTL(pipe);
2680 temp = I915_READ(reg);
2681 temp &= ~((0x7 << 19) | (0x7 << 16));
2682 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2683 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686 POSTING_READ(reg);
2687 udelay(200);
2688
2689 /* Switch from Rawclk to PCDclk */
2690 temp = I915_READ(reg);
2691 I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693 POSTING_READ(reg);
2694 udelay(200);
2695
2696 /* On Haswell, the PLL configuration for ports and pipes is handled
2697 * separately, as part of DDI setup */
2698 if (!IS_HASWELL(dev)) {
2699 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700 reg = FDI_TX_CTL(pipe);
2701 temp = I915_READ(reg);
2702 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2704
2705 POSTING_READ(reg);
2706 udelay(100);
2707 }
2708 }
2709 }
2710
2711 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712 {
2713 struct drm_device *dev = intel_crtc->base.dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 int pipe = intel_crtc->pipe;
2716 u32 reg, temp;
2717
2718 /* Switch from PCDclk to Rawclk */
2719 reg = FDI_RX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723 /* Disable CPU FDI TX PLL */
2724 reg = FDI_TX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728 POSTING_READ(reg);
2729 udelay(100);
2730
2731 reg = FDI_RX_CTL(pipe);
2732 temp = I915_READ(reg);
2733 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735 /* Wait for the clocks to turn off. */
2736 POSTING_READ(reg);
2737 udelay(100);
2738 }
2739
2740 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741 {
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749 POSTING_READ(SOUTH_CHICKEN1);
2750 }
2751 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752 {
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* disable CPU FDI tx and PCH FDI rx */
2760 reg = FDI_TX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763 POSTING_READ(reg);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(0x7 << 16);
2768 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771 POSTING_READ(reg);
2772 udelay(100);
2773
2774 /* Ironlake workaround, disable clock pointer after downing FDI */
2775 if (HAS_PCH_IBX(dev)) {
2776 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2777 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778 I915_READ(FDI_RX_CHICKEN(pipe) &
2779 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2780 } else if (HAS_PCH_CPT(dev)) {
2781 cpt_phase_pointer_disable(dev, pipe);
2782 }
2783
2784 /* still set train pattern 1 */
2785 reg = FDI_TX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_PATTERN_1;
2789 I915_WRITE(reg, temp);
2790
2791 reg = FDI_RX_CTL(pipe);
2792 temp = I915_READ(reg);
2793 if (HAS_PCH_CPT(dev)) {
2794 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796 } else {
2797 temp &= ~FDI_LINK_TRAIN_NONE;
2798 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799 }
2800 /* BPC in FDI rx is consistent with that in PIPECONF */
2801 temp &= ~(0x07 << 16);
2802 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803 I915_WRITE(reg, temp);
2804
2805 POSTING_READ(reg);
2806 udelay(100);
2807 }
2808
2809 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2810 {
2811 struct drm_device *dev = crtc->dev;
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 unsigned long flags;
2814 bool pending;
2815
2816 if (atomic_read(&dev_priv->mm.wedged))
2817 return false;
2818
2819 spin_lock_irqsave(&dev->event_lock, flags);
2820 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2821 spin_unlock_irqrestore(&dev->event_lock, flags);
2822
2823 return pending;
2824 }
2825
2826 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2827 {
2828 struct drm_device *dev = crtc->dev;
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830
2831 if (crtc->fb == NULL)
2832 return;
2833
2834 wait_event(dev_priv->pending_flip_queue,
2835 !intel_crtc_has_pending_flip(crtc));
2836
2837 mutex_lock(&dev->struct_mutex);
2838 intel_finish_fb(crtc->fb);
2839 mutex_unlock(&dev->struct_mutex);
2840 }
2841
2842 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2843 {
2844 struct drm_device *dev = crtc->dev;
2845 struct intel_encoder *intel_encoder;
2846
2847 /*
2848 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2849 * must be driven by its own crtc; no sharing is possible.
2850 */
2851 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2852
2853 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2854 * CPU handles all others */
2855 if (IS_HASWELL(dev)) {
2856 /* It is still unclear how this will work on PPT, so throw up a warning */
2857 WARN_ON(!HAS_PCH_LPT(dev));
2858
2859 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2860 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2861 return true;
2862 } else {
2863 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2864 intel_encoder->type);
2865 return false;
2866 }
2867 }
2868
2869 switch (intel_encoder->type) {
2870 case INTEL_OUTPUT_EDP:
2871 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2872 return false;
2873 continue;
2874 }
2875 }
2876
2877 return true;
2878 }
2879
2880 /* Program iCLKIP clock to the desired frequency */
2881 static void lpt_program_iclkip(struct drm_crtc *crtc)
2882 {
2883 struct drm_device *dev = crtc->dev;
2884 struct drm_i915_private *dev_priv = dev->dev_private;
2885 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2886 u32 temp;
2887
2888 /* It is necessary to ungate the pixclk gate prior to programming
2889 * the divisors, and gate it back when it is done.
2890 */
2891 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2892
2893 /* Disable SSCCTL */
2894 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2895 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2896 SBI_SSCCTL_DISABLE);
2897
2898 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2899 if (crtc->mode.clock == 20000) {
2900 auxdiv = 1;
2901 divsel = 0x41;
2902 phaseinc = 0x20;
2903 } else {
2904 /* The iCLK virtual clock root frequency is in MHz,
2905 * but the crtc->mode.clock in in KHz. To get the divisors,
2906 * it is necessary to divide one by another, so we
2907 * convert the virtual clock precision to KHz here for higher
2908 * precision.
2909 */
2910 u32 iclk_virtual_root_freq = 172800 * 1000;
2911 u32 iclk_pi_range = 64;
2912 u32 desired_divisor, msb_divisor_value, pi_value;
2913
2914 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2915 msb_divisor_value = desired_divisor / iclk_pi_range;
2916 pi_value = desired_divisor % iclk_pi_range;
2917
2918 auxdiv = 0;
2919 divsel = msb_divisor_value - 2;
2920 phaseinc = pi_value;
2921 }
2922
2923 /* This should not happen with any sane values */
2924 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2925 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2926 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2927 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2928
2929 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2930 crtc->mode.clock,
2931 auxdiv,
2932 divsel,
2933 phasedir,
2934 phaseinc);
2935
2936 /* Program SSCDIVINTPHASE6 */
2937 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2938 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2939 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2940 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2941 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2942 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2943 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2944
2945 intel_sbi_write(dev_priv,
2946 SBI_SSCDIVINTPHASE6,
2947 temp);
2948
2949 /* Program SSCAUXDIV */
2950 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2951 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2952 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2953 intel_sbi_write(dev_priv,
2954 SBI_SSCAUXDIV6,
2955 temp);
2956
2957
2958 /* Enable modulator and associated divider */
2959 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2960 temp &= ~SBI_SSCCTL_DISABLE;
2961 intel_sbi_write(dev_priv,
2962 SBI_SSCCTL6,
2963 temp);
2964
2965 /* Wait for initialization time */
2966 udelay(24);
2967
2968 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2969 }
2970
2971 /*
2972 * Enable PCH resources required for PCH ports:
2973 * - PCH PLLs
2974 * - FDI training & RX/TX
2975 * - update transcoder timings
2976 * - DP transcoding bits
2977 * - transcoder
2978 */
2979 static void ironlake_pch_enable(struct drm_crtc *crtc)
2980 {
2981 struct drm_device *dev = crtc->dev;
2982 struct drm_i915_private *dev_priv = dev->dev_private;
2983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2984 int pipe = intel_crtc->pipe;
2985 u32 reg, temp;
2986
2987 assert_transcoder_disabled(dev_priv, pipe);
2988
2989 /* For PCH output, training FDI link */
2990 dev_priv->display.fdi_link_train(crtc);
2991
2992 intel_enable_pch_pll(intel_crtc);
2993
2994 if (HAS_PCH_LPT(dev)) {
2995 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2996 lpt_program_iclkip(crtc);
2997 } else if (HAS_PCH_CPT(dev)) {
2998 u32 sel;
2999
3000 temp = I915_READ(PCH_DPLL_SEL);
3001 switch (pipe) {
3002 default:
3003 case 0:
3004 temp |= TRANSA_DPLL_ENABLE;
3005 sel = TRANSA_DPLLB_SEL;
3006 break;
3007 case 1:
3008 temp |= TRANSB_DPLL_ENABLE;
3009 sel = TRANSB_DPLLB_SEL;
3010 break;
3011 case 2:
3012 temp |= TRANSC_DPLL_ENABLE;
3013 sel = TRANSC_DPLLB_SEL;
3014 break;
3015 }
3016 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3017 temp |= sel;
3018 else
3019 temp &= ~sel;
3020 I915_WRITE(PCH_DPLL_SEL, temp);
3021 }
3022
3023 /* set transcoder timing, panel must allow it */
3024 assert_panel_unlocked(dev_priv, pipe);
3025 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3026 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3027 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3028
3029 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3030 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3031 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3032 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3033
3034 if (!IS_HASWELL(dev))
3035 intel_fdi_normal_train(crtc);
3036
3037 /* For PCH DP, enable TRANS_DP_CTL */
3038 if (HAS_PCH_CPT(dev) &&
3039 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3040 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3041 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3042 reg = TRANS_DP_CTL(pipe);
3043 temp = I915_READ(reg);
3044 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3045 TRANS_DP_SYNC_MASK |
3046 TRANS_DP_BPC_MASK);
3047 temp |= (TRANS_DP_OUTPUT_ENABLE |
3048 TRANS_DP_ENH_FRAMING);
3049 temp |= bpc << 9; /* same format but at 11:9 */
3050
3051 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3052 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3053 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3054 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3055
3056 switch (intel_trans_dp_port_sel(crtc)) {
3057 case PCH_DP_B:
3058 temp |= TRANS_DP_PORT_SEL_B;
3059 break;
3060 case PCH_DP_C:
3061 temp |= TRANS_DP_PORT_SEL_C;
3062 break;
3063 case PCH_DP_D:
3064 temp |= TRANS_DP_PORT_SEL_D;
3065 break;
3066 default:
3067 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3068 temp |= TRANS_DP_PORT_SEL_B;
3069 break;
3070 }
3071
3072 I915_WRITE(reg, temp);
3073 }
3074
3075 intel_enable_transcoder(dev_priv, pipe);
3076 }
3077
3078 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3079 {
3080 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3081
3082 if (pll == NULL)
3083 return;
3084
3085 if (pll->refcount == 0) {
3086 WARN(1, "bad PCH PLL refcount\n");
3087 return;
3088 }
3089
3090 --pll->refcount;
3091 intel_crtc->pch_pll = NULL;
3092 }
3093
3094 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3095 {
3096 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3097 struct intel_pch_pll *pll;
3098 int i;
3099
3100 pll = intel_crtc->pch_pll;
3101 if (pll) {
3102 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3103 intel_crtc->base.base.id, pll->pll_reg);
3104 goto prepare;
3105 }
3106
3107 if (HAS_PCH_IBX(dev_priv->dev)) {
3108 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3109 i = intel_crtc->pipe;
3110 pll = &dev_priv->pch_plls[i];
3111
3112 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3113 intel_crtc->base.base.id, pll->pll_reg);
3114
3115 goto found;
3116 }
3117
3118 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3119 pll = &dev_priv->pch_plls[i];
3120
3121 /* Only want to check enabled timings first */
3122 if (pll->refcount == 0)
3123 continue;
3124
3125 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3126 fp == I915_READ(pll->fp0_reg)) {
3127 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3128 intel_crtc->base.base.id,
3129 pll->pll_reg, pll->refcount, pll->active);
3130
3131 goto found;
3132 }
3133 }
3134
3135 /* Ok no matching timings, maybe there's a free one? */
3136 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3137 pll = &dev_priv->pch_plls[i];
3138 if (pll->refcount == 0) {
3139 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3140 intel_crtc->base.base.id, pll->pll_reg);
3141 goto found;
3142 }
3143 }
3144
3145 return NULL;
3146
3147 found:
3148 intel_crtc->pch_pll = pll;
3149 pll->refcount++;
3150 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3151 prepare: /* separate function? */
3152 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3153
3154 /* Wait for the clocks to stabilize before rewriting the regs */
3155 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3156 POSTING_READ(pll->pll_reg);
3157 udelay(150);
3158
3159 I915_WRITE(pll->fp0_reg, fp);
3160 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3161 pll->on = false;
3162 return pll;
3163 }
3164
3165 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3166 {
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3169 u32 temp;
3170
3171 temp = I915_READ(dslreg);
3172 udelay(500);
3173 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3174 /* Without this, mode sets may fail silently on FDI */
3175 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3176 udelay(250);
3177 I915_WRITE(tc2reg, 0);
3178 if (wait_for(I915_READ(dslreg) != temp, 5))
3179 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3180 }
3181 }
3182
3183 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3184 {
3185 struct drm_device *dev = crtc->dev;
3186 struct drm_i915_private *dev_priv = dev->dev_private;
3187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188 struct intel_encoder *encoder;
3189 int pipe = intel_crtc->pipe;
3190 int plane = intel_crtc->plane;
3191 u32 temp;
3192 bool is_pch_port;
3193
3194 WARN_ON(!crtc->enabled);
3195
3196 if (intel_crtc->active)
3197 return;
3198
3199 intel_crtc->active = true;
3200 intel_update_watermarks(dev);
3201
3202 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3203 temp = I915_READ(PCH_LVDS);
3204 if ((temp & LVDS_PORT_EN) == 0)
3205 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3206 }
3207
3208 is_pch_port = intel_crtc_driving_pch(crtc);
3209
3210 if (is_pch_port) {
3211 ironlake_fdi_pll_enable(intel_crtc);
3212 } else {
3213 assert_fdi_tx_disabled(dev_priv, pipe);
3214 assert_fdi_rx_disabled(dev_priv, pipe);
3215 }
3216
3217 for_each_encoder_on_crtc(dev, crtc, encoder)
3218 if (encoder->pre_enable)
3219 encoder->pre_enable(encoder);
3220
3221 /* Enable panel fitting for LVDS */
3222 if (dev_priv->pch_pf_size &&
3223 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3224 /* Force use of hard-coded filter coefficients
3225 * as some pre-programmed values are broken,
3226 * e.g. x201.
3227 */
3228 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3229 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3230 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3231 }
3232
3233 /*
3234 * On ILK+ LUT must be loaded before the pipe is running but with
3235 * clocks enabled
3236 */
3237 intel_crtc_load_lut(crtc);
3238
3239 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3240 intel_enable_plane(dev_priv, plane, pipe);
3241
3242 if (is_pch_port)
3243 ironlake_pch_enable(crtc);
3244
3245 mutex_lock(&dev->struct_mutex);
3246 intel_update_fbc(dev);
3247 mutex_unlock(&dev->struct_mutex);
3248
3249 intel_crtc_update_cursor(crtc, true);
3250
3251 for_each_encoder_on_crtc(dev, crtc, encoder)
3252 encoder->enable(encoder);
3253
3254 if (HAS_PCH_CPT(dev))
3255 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3256
3257 /*
3258 * There seems to be a race in PCH platform hw (at least on some
3259 * outputs) where an enabled pipe still completes any pageflip right
3260 * away (as if the pipe is off) instead of waiting for vblank. As soon
3261 * as the first vblank happend, everything works as expected. Hence just
3262 * wait for one vblank before returning to avoid strange things
3263 * happening.
3264 */
3265 intel_wait_for_vblank(dev, intel_crtc->pipe);
3266 }
3267
3268 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3269 {
3270 struct drm_device *dev = crtc->dev;
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3273 struct intel_encoder *encoder;
3274 int pipe = intel_crtc->pipe;
3275 int plane = intel_crtc->plane;
3276 u32 reg, temp;
3277
3278
3279 if (!intel_crtc->active)
3280 return;
3281
3282 for_each_encoder_on_crtc(dev, crtc, encoder)
3283 encoder->disable(encoder);
3284
3285 intel_crtc_wait_for_pending_flips(crtc);
3286 drm_vblank_off(dev, pipe);
3287 intel_crtc_update_cursor(crtc, false);
3288
3289 intel_disable_plane(dev_priv, plane, pipe);
3290
3291 if (dev_priv->cfb_plane == plane)
3292 intel_disable_fbc(dev);
3293
3294 intel_disable_pipe(dev_priv, pipe);
3295
3296 /* Disable PF */
3297 I915_WRITE(PF_CTL(pipe), 0);
3298 I915_WRITE(PF_WIN_SZ(pipe), 0);
3299
3300 for_each_encoder_on_crtc(dev, crtc, encoder)
3301 if (encoder->post_disable)
3302 encoder->post_disable(encoder);
3303
3304 ironlake_fdi_disable(crtc);
3305
3306 intel_disable_transcoder(dev_priv, pipe);
3307
3308 if (HAS_PCH_CPT(dev)) {
3309 /* disable TRANS_DP_CTL */
3310 reg = TRANS_DP_CTL(pipe);
3311 temp = I915_READ(reg);
3312 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3313 temp |= TRANS_DP_PORT_SEL_NONE;
3314 I915_WRITE(reg, temp);
3315
3316 /* disable DPLL_SEL */
3317 temp = I915_READ(PCH_DPLL_SEL);
3318 switch (pipe) {
3319 case 0:
3320 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3321 break;
3322 case 1:
3323 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3324 break;
3325 case 2:
3326 /* C shares PLL A or B */
3327 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3328 break;
3329 default:
3330 BUG(); /* wtf */
3331 }
3332 I915_WRITE(PCH_DPLL_SEL, temp);
3333 }
3334
3335 /* disable PCH DPLL */
3336 intel_disable_pch_pll(intel_crtc);
3337
3338 ironlake_fdi_pll_disable(intel_crtc);
3339
3340 intel_crtc->active = false;
3341 intel_update_watermarks(dev);
3342
3343 mutex_lock(&dev->struct_mutex);
3344 intel_update_fbc(dev);
3345 mutex_unlock(&dev->struct_mutex);
3346 }
3347
3348 static void ironlake_crtc_off(struct drm_crtc *crtc)
3349 {
3350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351 intel_put_pch_pll(intel_crtc);
3352 }
3353
3354 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3355 {
3356 if (!enable && intel_crtc->overlay) {
3357 struct drm_device *dev = intel_crtc->base.dev;
3358 struct drm_i915_private *dev_priv = dev->dev_private;
3359
3360 mutex_lock(&dev->struct_mutex);
3361 dev_priv->mm.interruptible = false;
3362 (void) intel_overlay_switch_off(intel_crtc->overlay);
3363 dev_priv->mm.interruptible = true;
3364 mutex_unlock(&dev->struct_mutex);
3365 }
3366
3367 /* Let userspace switch the overlay on again. In most cases userspace
3368 * has to recompute where to put it anyway.
3369 */
3370 }
3371
3372 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3373 {
3374 struct drm_device *dev = crtc->dev;
3375 struct drm_i915_private *dev_priv = dev->dev_private;
3376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3377 struct intel_encoder *encoder;
3378 int pipe = intel_crtc->pipe;
3379 int plane = intel_crtc->plane;
3380
3381 WARN_ON(!crtc->enabled);
3382
3383 if (intel_crtc->active)
3384 return;
3385
3386 intel_crtc->active = true;
3387 intel_update_watermarks(dev);
3388
3389 intel_enable_pll(dev_priv, pipe);
3390 intel_enable_pipe(dev_priv, pipe, false);
3391 intel_enable_plane(dev_priv, plane, pipe);
3392
3393 intel_crtc_load_lut(crtc);
3394 intel_update_fbc(dev);
3395
3396 /* Give the overlay scaler a chance to enable if it's on this pipe */
3397 intel_crtc_dpms_overlay(intel_crtc, true);
3398 intel_crtc_update_cursor(crtc, true);
3399
3400 for_each_encoder_on_crtc(dev, crtc, encoder)
3401 encoder->enable(encoder);
3402 }
3403
3404 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3405 {
3406 struct drm_device *dev = crtc->dev;
3407 struct drm_i915_private *dev_priv = dev->dev_private;
3408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3409 struct intel_encoder *encoder;
3410 int pipe = intel_crtc->pipe;
3411 int plane = intel_crtc->plane;
3412
3413
3414 if (!intel_crtc->active)
3415 return;
3416
3417 for_each_encoder_on_crtc(dev, crtc, encoder)
3418 encoder->disable(encoder);
3419
3420 /* Give the overlay scaler a chance to disable if it's on this pipe */
3421 intel_crtc_wait_for_pending_flips(crtc);
3422 drm_vblank_off(dev, pipe);
3423 intel_crtc_dpms_overlay(intel_crtc, false);
3424 intel_crtc_update_cursor(crtc, false);
3425
3426 if (dev_priv->cfb_plane == plane)
3427 intel_disable_fbc(dev);
3428
3429 intel_disable_plane(dev_priv, plane, pipe);
3430 intel_disable_pipe(dev_priv, pipe);
3431 intel_disable_pll(dev_priv, pipe);
3432
3433 intel_crtc->active = false;
3434 intel_update_fbc(dev);
3435 intel_update_watermarks(dev);
3436 }
3437
3438 static void i9xx_crtc_off(struct drm_crtc *crtc)
3439 {
3440 }
3441
3442 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3443 bool enabled)
3444 {
3445 struct drm_device *dev = crtc->dev;
3446 struct drm_i915_master_private *master_priv;
3447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3448 int pipe = intel_crtc->pipe;
3449
3450 if (!dev->primary->master)
3451 return;
3452
3453 master_priv = dev->primary->master->driver_priv;
3454 if (!master_priv->sarea_priv)
3455 return;
3456
3457 switch (pipe) {
3458 case 0:
3459 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3460 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3461 break;
3462 case 1:
3463 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3464 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3465 break;
3466 default:
3467 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3468 break;
3469 }
3470 }
3471
3472 /**
3473 * Sets the power management mode of the pipe and plane.
3474 */
3475 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3476 {
3477 struct drm_device *dev = crtc->dev;
3478 struct drm_i915_private *dev_priv = dev->dev_private;
3479 struct intel_encoder *intel_encoder;
3480 bool enable = false;
3481
3482 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3483 enable |= intel_encoder->connectors_active;
3484
3485 if (enable)
3486 dev_priv->display.crtc_enable(crtc);
3487 else
3488 dev_priv->display.crtc_disable(crtc);
3489
3490 intel_crtc_update_sarea(crtc, enable);
3491 }
3492
3493 static void intel_crtc_noop(struct drm_crtc *crtc)
3494 {
3495 }
3496
3497 static void intel_crtc_disable(struct drm_crtc *crtc)
3498 {
3499 struct drm_device *dev = crtc->dev;
3500 struct drm_connector *connector;
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502
3503 /* crtc should still be enabled when we disable it. */
3504 WARN_ON(!crtc->enabled);
3505
3506 dev_priv->display.crtc_disable(crtc);
3507 intel_crtc_update_sarea(crtc, false);
3508 dev_priv->display.off(crtc);
3509
3510 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3511 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3512
3513 if (crtc->fb) {
3514 mutex_lock(&dev->struct_mutex);
3515 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3516 mutex_unlock(&dev->struct_mutex);
3517 crtc->fb = NULL;
3518 }
3519
3520 /* Update computed state. */
3521 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3522 if (!connector->encoder || !connector->encoder->crtc)
3523 continue;
3524
3525 if (connector->encoder->crtc != crtc)
3526 continue;
3527
3528 connector->dpms = DRM_MODE_DPMS_OFF;
3529 to_intel_encoder(connector->encoder)->connectors_active = false;
3530 }
3531 }
3532
3533 void intel_modeset_disable(struct drm_device *dev)
3534 {
3535 struct drm_crtc *crtc;
3536
3537 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3538 if (crtc->enabled)
3539 intel_crtc_disable(crtc);
3540 }
3541 }
3542
3543 void intel_encoder_noop(struct drm_encoder *encoder)
3544 {
3545 }
3546
3547 void intel_encoder_destroy(struct drm_encoder *encoder)
3548 {
3549 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3550
3551 drm_encoder_cleanup(encoder);
3552 kfree(intel_encoder);
3553 }
3554
3555 /* Simple dpms helper for encodres with just one connector, no cloning and only
3556 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3557 * state of the entire output pipe. */
3558 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3559 {
3560 if (mode == DRM_MODE_DPMS_ON) {
3561 encoder->connectors_active = true;
3562
3563 intel_crtc_update_dpms(encoder->base.crtc);
3564 } else {
3565 encoder->connectors_active = false;
3566
3567 intel_crtc_update_dpms(encoder->base.crtc);
3568 }
3569 }
3570
3571 /* Cross check the actual hw state with our own modeset state tracking (and it's
3572 * internal consistency). */
3573 static void intel_connector_check_state(struct intel_connector *connector)
3574 {
3575 if (connector->get_hw_state(connector)) {
3576 struct intel_encoder *encoder = connector->encoder;
3577 struct drm_crtc *crtc;
3578 bool encoder_enabled;
3579 enum pipe pipe;
3580
3581 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3582 connector->base.base.id,
3583 drm_get_connector_name(&connector->base));
3584
3585 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3586 "wrong connector dpms state\n");
3587 WARN(connector->base.encoder != &encoder->base,
3588 "active connector not linked to encoder\n");
3589 WARN(!encoder->connectors_active,
3590 "encoder->connectors_active not set\n");
3591
3592 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3593 WARN(!encoder_enabled, "encoder not enabled\n");
3594 if (WARN_ON(!encoder->base.crtc))
3595 return;
3596
3597 crtc = encoder->base.crtc;
3598
3599 WARN(!crtc->enabled, "crtc not enabled\n");
3600 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3601 WARN(pipe != to_intel_crtc(crtc)->pipe,
3602 "encoder active on the wrong pipe\n");
3603 }
3604 }
3605
3606 /* Even simpler default implementation, if there's really no special case to
3607 * consider. */
3608 void intel_connector_dpms(struct drm_connector *connector, int mode)
3609 {
3610 struct intel_encoder *encoder = intel_attached_encoder(connector);
3611
3612 /* All the simple cases only support two dpms states. */
3613 if (mode != DRM_MODE_DPMS_ON)
3614 mode = DRM_MODE_DPMS_OFF;
3615
3616 if (mode == connector->dpms)
3617 return;
3618
3619 connector->dpms = mode;
3620
3621 /* Only need to change hw state when actually enabled */
3622 if (encoder->base.crtc)
3623 intel_encoder_dpms(encoder, mode);
3624 else
3625 WARN_ON(encoder->connectors_active != false);
3626
3627 intel_modeset_check_state(connector->dev);
3628 }
3629
3630 /* Simple connector->get_hw_state implementation for encoders that support only
3631 * one connector and no cloning and hence the encoder state determines the state
3632 * of the connector. */
3633 bool intel_connector_get_hw_state(struct intel_connector *connector)
3634 {
3635 enum pipe pipe = 0;
3636 struct intel_encoder *encoder = connector->encoder;
3637
3638 return encoder->get_hw_state(encoder, &pipe);
3639 }
3640
3641 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3642 const struct drm_display_mode *mode,
3643 struct drm_display_mode *adjusted_mode)
3644 {
3645 struct drm_device *dev = crtc->dev;
3646
3647 if (HAS_PCH_SPLIT(dev)) {
3648 /* FDI link clock is fixed at 2.7G */
3649 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3650 return false;
3651 }
3652
3653 /* All interlaced capable intel hw wants timings in frames. Note though
3654 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3655 * timings, so we need to be careful not to clobber these.*/
3656 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3657 drm_mode_set_crtcinfo(adjusted_mode, 0);
3658
3659 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3660 * with a hsync front porch of 0.
3661 */
3662 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3663 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3664 return false;
3665
3666 return true;
3667 }
3668
3669 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3670 {
3671 return 400000; /* FIXME */
3672 }
3673
3674 static int i945_get_display_clock_speed(struct drm_device *dev)
3675 {
3676 return 400000;
3677 }
3678
3679 static int i915_get_display_clock_speed(struct drm_device *dev)
3680 {
3681 return 333000;
3682 }
3683
3684 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3685 {
3686 return 200000;
3687 }
3688
3689 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3690 {
3691 u16 gcfgc = 0;
3692
3693 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3694
3695 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3696 return 133000;
3697 else {
3698 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3699 case GC_DISPLAY_CLOCK_333_MHZ:
3700 return 333000;
3701 default:
3702 case GC_DISPLAY_CLOCK_190_200_MHZ:
3703 return 190000;
3704 }
3705 }
3706 }
3707
3708 static int i865_get_display_clock_speed(struct drm_device *dev)
3709 {
3710 return 266000;
3711 }
3712
3713 static int i855_get_display_clock_speed(struct drm_device *dev)
3714 {
3715 u16 hpllcc = 0;
3716 /* Assume that the hardware is in the high speed state. This
3717 * should be the default.
3718 */
3719 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3720 case GC_CLOCK_133_200:
3721 case GC_CLOCK_100_200:
3722 return 200000;
3723 case GC_CLOCK_166_250:
3724 return 250000;
3725 case GC_CLOCK_100_133:
3726 return 133000;
3727 }
3728
3729 /* Shouldn't happen */
3730 return 0;
3731 }
3732
3733 static int i830_get_display_clock_speed(struct drm_device *dev)
3734 {
3735 return 133000;
3736 }
3737
3738 struct fdi_m_n {
3739 u32 tu;
3740 u32 gmch_m;
3741 u32 gmch_n;
3742 u32 link_m;
3743 u32 link_n;
3744 };
3745
3746 static void
3747 fdi_reduce_ratio(u32 *num, u32 *den)
3748 {
3749 while (*num > 0xffffff || *den > 0xffffff) {
3750 *num >>= 1;
3751 *den >>= 1;
3752 }
3753 }
3754
3755 static void
3756 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3757 int link_clock, struct fdi_m_n *m_n)
3758 {
3759 m_n->tu = 64; /* default size */
3760
3761 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3762 m_n->gmch_m = bits_per_pixel * pixel_clock;
3763 m_n->gmch_n = link_clock * nlanes * 8;
3764 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3765
3766 m_n->link_m = pixel_clock;
3767 m_n->link_n = link_clock;
3768 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3769 }
3770
3771 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3772 {
3773 if (i915_panel_use_ssc >= 0)
3774 return i915_panel_use_ssc != 0;
3775 return dev_priv->lvds_use_ssc
3776 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3777 }
3778
3779 /**
3780 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3781 * @crtc: CRTC structure
3782 * @mode: requested mode
3783 *
3784 * A pipe may be connected to one or more outputs. Based on the depth of the
3785 * attached framebuffer, choose a good color depth to use on the pipe.
3786 *
3787 * If possible, match the pipe depth to the fb depth. In some cases, this
3788 * isn't ideal, because the connected output supports a lesser or restricted
3789 * set of depths. Resolve that here:
3790 * LVDS typically supports only 6bpc, so clamp down in that case
3791 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3792 * Displays may support a restricted set as well, check EDID and clamp as
3793 * appropriate.
3794 * DP may want to dither down to 6bpc to fit larger modes
3795 *
3796 * RETURNS:
3797 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3798 * true if they don't match).
3799 */
3800 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3801 struct drm_framebuffer *fb,
3802 unsigned int *pipe_bpp,
3803 struct drm_display_mode *mode)
3804 {
3805 struct drm_device *dev = crtc->dev;
3806 struct drm_i915_private *dev_priv = dev->dev_private;
3807 struct drm_connector *connector;
3808 struct intel_encoder *intel_encoder;
3809 unsigned int display_bpc = UINT_MAX, bpc;
3810
3811 /* Walk the encoders & connectors on this crtc, get min bpc */
3812 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3813
3814 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3815 unsigned int lvds_bpc;
3816
3817 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3818 LVDS_A3_POWER_UP)
3819 lvds_bpc = 8;
3820 else
3821 lvds_bpc = 6;
3822
3823 if (lvds_bpc < display_bpc) {
3824 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3825 display_bpc = lvds_bpc;
3826 }
3827 continue;
3828 }
3829
3830 /* Not one of the known troublemakers, check the EDID */
3831 list_for_each_entry(connector, &dev->mode_config.connector_list,
3832 head) {
3833 if (connector->encoder != &intel_encoder->base)
3834 continue;
3835
3836 /* Don't use an invalid EDID bpc value */
3837 if (connector->display_info.bpc &&
3838 connector->display_info.bpc < display_bpc) {
3839 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3840 display_bpc = connector->display_info.bpc;
3841 }
3842 }
3843
3844 /*
3845 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3846 * through, clamp it down. (Note: >12bpc will be caught below.)
3847 */
3848 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3849 if (display_bpc > 8 && display_bpc < 12) {
3850 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3851 display_bpc = 12;
3852 } else {
3853 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3854 display_bpc = 8;
3855 }
3856 }
3857 }
3858
3859 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3860 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3861 display_bpc = 6;
3862 }
3863
3864 /*
3865 * We could just drive the pipe at the highest bpc all the time and
3866 * enable dithering as needed, but that costs bandwidth. So choose
3867 * the minimum value that expresses the full color range of the fb but
3868 * also stays within the max display bpc discovered above.
3869 */
3870
3871 switch (fb->depth) {
3872 case 8:
3873 bpc = 8; /* since we go through a colormap */
3874 break;
3875 case 15:
3876 case 16:
3877 bpc = 6; /* min is 18bpp */
3878 break;
3879 case 24:
3880 bpc = 8;
3881 break;
3882 case 30:
3883 bpc = 10;
3884 break;
3885 case 48:
3886 bpc = 12;
3887 break;
3888 default:
3889 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3890 bpc = min((unsigned int)8, display_bpc);
3891 break;
3892 }
3893
3894 display_bpc = min(display_bpc, bpc);
3895
3896 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3897 bpc, display_bpc);
3898
3899 *pipe_bpp = display_bpc * 3;
3900
3901 return display_bpc != bpc;
3902 }
3903
3904 static int vlv_get_refclk(struct drm_crtc *crtc)
3905 {
3906 struct drm_device *dev = crtc->dev;
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908 int refclk = 27000; /* for DP & HDMI */
3909
3910 return 100000; /* only one validated so far */
3911
3912 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3913 refclk = 96000;
3914 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3915 if (intel_panel_use_ssc(dev_priv))
3916 refclk = 100000;
3917 else
3918 refclk = 96000;
3919 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3920 refclk = 100000;
3921 }
3922
3923 return refclk;
3924 }
3925
3926 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3927 {
3928 struct drm_device *dev = crtc->dev;
3929 struct drm_i915_private *dev_priv = dev->dev_private;
3930 int refclk;
3931
3932 if (IS_VALLEYVIEW(dev)) {
3933 refclk = vlv_get_refclk(crtc);
3934 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3935 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3936 refclk = dev_priv->lvds_ssc_freq * 1000;
3937 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3938 refclk / 1000);
3939 } else if (!IS_GEN2(dev)) {
3940 refclk = 96000;
3941 } else {
3942 refclk = 48000;
3943 }
3944
3945 return refclk;
3946 }
3947
3948 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3949 intel_clock_t *clock)
3950 {
3951 /* SDVO TV has fixed PLL values depend on its clock range,
3952 this mirrors vbios setting. */
3953 if (adjusted_mode->clock >= 100000
3954 && adjusted_mode->clock < 140500) {
3955 clock->p1 = 2;
3956 clock->p2 = 10;
3957 clock->n = 3;
3958 clock->m1 = 16;
3959 clock->m2 = 8;
3960 } else if (adjusted_mode->clock >= 140500
3961 && adjusted_mode->clock <= 200000) {
3962 clock->p1 = 1;
3963 clock->p2 = 10;
3964 clock->n = 6;
3965 clock->m1 = 12;
3966 clock->m2 = 8;
3967 }
3968 }
3969
3970 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3971 intel_clock_t *clock,
3972 intel_clock_t *reduced_clock)
3973 {
3974 struct drm_device *dev = crtc->dev;
3975 struct drm_i915_private *dev_priv = dev->dev_private;
3976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3977 int pipe = intel_crtc->pipe;
3978 u32 fp, fp2 = 0;
3979
3980 if (IS_PINEVIEW(dev)) {
3981 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3982 if (reduced_clock)
3983 fp2 = (1 << reduced_clock->n) << 16 |
3984 reduced_clock->m1 << 8 | reduced_clock->m2;
3985 } else {
3986 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3987 if (reduced_clock)
3988 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3989 reduced_clock->m2;
3990 }
3991
3992 I915_WRITE(FP0(pipe), fp);
3993
3994 intel_crtc->lowfreq_avail = false;
3995 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3996 reduced_clock && i915_powersave) {
3997 I915_WRITE(FP1(pipe), fp2);
3998 intel_crtc->lowfreq_avail = true;
3999 } else {
4000 I915_WRITE(FP1(pipe), fp);
4001 }
4002 }
4003
4004 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4005 struct drm_display_mode *adjusted_mode)
4006 {
4007 struct drm_device *dev = crtc->dev;
4008 struct drm_i915_private *dev_priv = dev->dev_private;
4009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4010 int pipe = intel_crtc->pipe;
4011 u32 temp;
4012
4013 temp = I915_READ(LVDS);
4014 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4015 if (pipe == 1) {
4016 temp |= LVDS_PIPEB_SELECT;
4017 } else {
4018 temp &= ~LVDS_PIPEB_SELECT;
4019 }
4020 /* set the corresponsding LVDS_BORDER bit */
4021 temp |= dev_priv->lvds_border_bits;
4022 /* Set the B0-B3 data pairs corresponding to whether we're going to
4023 * set the DPLLs for dual-channel mode or not.
4024 */
4025 if (clock->p2 == 7)
4026 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4027 else
4028 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4029
4030 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4031 * appropriately here, but we need to look more thoroughly into how
4032 * panels behave in the two modes.
4033 */
4034 /* set the dithering flag on LVDS as needed */
4035 if (INTEL_INFO(dev)->gen >= 4) {
4036 if (dev_priv->lvds_dither)
4037 temp |= LVDS_ENABLE_DITHER;
4038 else
4039 temp &= ~LVDS_ENABLE_DITHER;
4040 }
4041 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4042 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4043 temp |= LVDS_HSYNC_POLARITY;
4044 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4045 temp |= LVDS_VSYNC_POLARITY;
4046 I915_WRITE(LVDS, temp);
4047 }
4048
4049 static void vlv_update_pll(struct drm_crtc *crtc,
4050 struct drm_display_mode *mode,
4051 struct drm_display_mode *adjusted_mode,
4052 intel_clock_t *clock, intel_clock_t *reduced_clock,
4053 int refclk, int num_connectors)
4054 {
4055 struct drm_device *dev = crtc->dev;
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4058 int pipe = intel_crtc->pipe;
4059 u32 dpll, mdiv, pdiv;
4060 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4061 bool is_hdmi;
4062
4063 is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4064
4065 bestn = clock->n;
4066 bestm1 = clock->m1;
4067 bestm2 = clock->m2;
4068 bestp1 = clock->p1;
4069 bestp2 = clock->p2;
4070
4071 /* Enable DPIO clock input */
4072 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4073 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4074 I915_WRITE(DPLL(pipe), dpll);
4075 POSTING_READ(DPLL(pipe));
4076
4077 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4078 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4079 mdiv |= ((bestn << DPIO_N_SHIFT));
4080 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4081 mdiv |= (1 << DPIO_K_SHIFT);
4082 mdiv |= DPIO_ENABLE_CALIBRATION;
4083 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4084
4085 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4086
4087 pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4088 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4089 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4090 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4091
4092 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4093
4094 dpll |= DPLL_VCO_ENABLE;
4095 I915_WRITE(DPLL(pipe), dpll);
4096 POSTING_READ(DPLL(pipe));
4097 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4098 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4099
4100 if (is_hdmi) {
4101 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4102
4103 if (temp > 1)
4104 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4105 else
4106 temp = 0;
4107
4108 I915_WRITE(DPLL_MD(pipe), temp);
4109 POSTING_READ(DPLL_MD(pipe));
4110 }
4111
4112 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4113 }
4114
4115 static void i9xx_update_pll(struct drm_crtc *crtc,
4116 struct drm_display_mode *mode,
4117 struct drm_display_mode *adjusted_mode,
4118 intel_clock_t *clock, intel_clock_t *reduced_clock,
4119 int num_connectors)
4120 {
4121 struct drm_device *dev = crtc->dev;
4122 struct drm_i915_private *dev_priv = dev->dev_private;
4123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4124 int pipe = intel_crtc->pipe;
4125 u32 dpll;
4126 bool is_sdvo;
4127
4128 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4129 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4130
4131 dpll = DPLL_VGA_MODE_DIS;
4132
4133 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4134 dpll |= DPLLB_MODE_LVDS;
4135 else
4136 dpll |= DPLLB_MODE_DAC_SERIAL;
4137 if (is_sdvo) {
4138 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4139 if (pixel_multiplier > 1) {
4140 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4141 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4142 }
4143 dpll |= DPLL_DVO_HIGH_SPEED;
4144 }
4145 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4146 dpll |= DPLL_DVO_HIGH_SPEED;
4147
4148 /* compute bitmask from p1 value */
4149 if (IS_PINEVIEW(dev))
4150 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4151 else {
4152 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4153 if (IS_G4X(dev) && reduced_clock)
4154 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4155 }
4156 switch (clock->p2) {
4157 case 5:
4158 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4159 break;
4160 case 7:
4161 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4162 break;
4163 case 10:
4164 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4165 break;
4166 case 14:
4167 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4168 break;
4169 }
4170 if (INTEL_INFO(dev)->gen >= 4)
4171 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4172
4173 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4174 dpll |= PLL_REF_INPUT_TVCLKINBC;
4175 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4176 /* XXX: just matching BIOS for now */
4177 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4178 dpll |= 3;
4179 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4180 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4181 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4182 else
4183 dpll |= PLL_REF_INPUT_DREFCLK;
4184
4185 dpll |= DPLL_VCO_ENABLE;
4186 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4187 POSTING_READ(DPLL(pipe));
4188 udelay(150);
4189
4190 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4191 * This is an exception to the general rule that mode_set doesn't turn
4192 * things on.
4193 */
4194 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4195 intel_update_lvds(crtc, clock, adjusted_mode);
4196
4197 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4198 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4199
4200 I915_WRITE(DPLL(pipe), dpll);
4201
4202 /* Wait for the clocks to stabilize. */
4203 POSTING_READ(DPLL(pipe));
4204 udelay(150);
4205
4206 if (INTEL_INFO(dev)->gen >= 4) {
4207 u32 temp = 0;
4208 if (is_sdvo) {
4209 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4210 if (temp > 1)
4211 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4212 else
4213 temp = 0;
4214 }
4215 I915_WRITE(DPLL_MD(pipe), temp);
4216 } else {
4217 /* The pixel multiplier can only be updated once the
4218 * DPLL is enabled and the clocks are stable.
4219 *
4220 * So write it again.
4221 */
4222 I915_WRITE(DPLL(pipe), dpll);
4223 }
4224 }
4225
4226 static void i8xx_update_pll(struct drm_crtc *crtc,
4227 struct drm_display_mode *adjusted_mode,
4228 intel_clock_t *clock,
4229 int num_connectors)
4230 {
4231 struct drm_device *dev = crtc->dev;
4232 struct drm_i915_private *dev_priv = dev->dev_private;
4233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4234 int pipe = intel_crtc->pipe;
4235 u32 dpll;
4236
4237 dpll = DPLL_VGA_MODE_DIS;
4238
4239 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4240 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4241 } else {
4242 if (clock->p1 == 2)
4243 dpll |= PLL_P1_DIVIDE_BY_TWO;
4244 else
4245 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4246 if (clock->p2 == 4)
4247 dpll |= PLL_P2_DIVIDE_BY_4;
4248 }
4249
4250 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4251 /* XXX: just matching BIOS for now */
4252 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4253 dpll |= 3;
4254 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4255 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4256 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4257 else
4258 dpll |= PLL_REF_INPUT_DREFCLK;
4259
4260 dpll |= DPLL_VCO_ENABLE;
4261 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4262 POSTING_READ(DPLL(pipe));
4263 udelay(150);
4264
4265 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4266 * This is an exception to the general rule that mode_set doesn't turn
4267 * things on.
4268 */
4269 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4270 intel_update_lvds(crtc, clock, adjusted_mode);
4271
4272 I915_WRITE(DPLL(pipe), dpll);
4273
4274 /* Wait for the clocks to stabilize. */
4275 POSTING_READ(DPLL(pipe));
4276 udelay(150);
4277
4278 /* The pixel multiplier can only be updated once the
4279 * DPLL is enabled and the clocks are stable.
4280 *
4281 * So write it again.
4282 */
4283 I915_WRITE(DPLL(pipe), dpll);
4284 }
4285
4286 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4287 struct drm_display_mode *mode,
4288 struct drm_display_mode *adjusted_mode,
4289 int x, int y,
4290 struct drm_framebuffer *fb)
4291 {
4292 struct drm_device *dev = crtc->dev;
4293 struct drm_i915_private *dev_priv = dev->dev_private;
4294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4295 int pipe = intel_crtc->pipe;
4296 int plane = intel_crtc->plane;
4297 int refclk, num_connectors = 0;
4298 intel_clock_t clock, reduced_clock;
4299 u32 dspcntr, pipeconf, vsyncshift;
4300 bool ok, has_reduced_clock = false, is_sdvo = false;
4301 bool is_lvds = false, is_tv = false, is_dp = false;
4302 struct intel_encoder *encoder;
4303 const intel_limit_t *limit;
4304 int ret;
4305
4306 for_each_encoder_on_crtc(dev, crtc, encoder) {
4307 switch (encoder->type) {
4308 case INTEL_OUTPUT_LVDS:
4309 is_lvds = true;
4310 break;
4311 case INTEL_OUTPUT_SDVO:
4312 case INTEL_OUTPUT_HDMI:
4313 is_sdvo = true;
4314 if (encoder->needs_tv_clock)
4315 is_tv = true;
4316 break;
4317 case INTEL_OUTPUT_TVOUT:
4318 is_tv = true;
4319 break;
4320 case INTEL_OUTPUT_DISPLAYPORT:
4321 is_dp = true;
4322 break;
4323 }
4324
4325 num_connectors++;
4326 }
4327
4328 refclk = i9xx_get_refclk(crtc, num_connectors);
4329
4330 /*
4331 * Returns a set of divisors for the desired target clock with the given
4332 * refclk, or FALSE. The returned values represent the clock equation:
4333 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4334 */
4335 limit = intel_limit(crtc, refclk);
4336 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4337 &clock);
4338 if (!ok) {
4339 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4340 return -EINVAL;
4341 }
4342
4343 /* Ensure that the cursor is valid for the new mode before changing... */
4344 intel_crtc_update_cursor(crtc, true);
4345
4346 if (is_lvds && dev_priv->lvds_downclock_avail) {
4347 /*
4348 * Ensure we match the reduced clock's P to the target clock.
4349 * If the clocks don't match, we can't switch the display clock
4350 * by using the FP0/FP1. In such case we will disable the LVDS
4351 * downclock feature.
4352 */
4353 has_reduced_clock = limit->find_pll(limit, crtc,
4354 dev_priv->lvds_downclock,
4355 refclk,
4356 &clock,
4357 &reduced_clock);
4358 }
4359
4360 if (is_sdvo && is_tv)
4361 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4362
4363 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4364 &reduced_clock : NULL);
4365
4366 if (IS_GEN2(dev))
4367 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4368 else if (IS_VALLEYVIEW(dev))
4369 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4370 refclk, num_connectors);
4371 else
4372 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4373 has_reduced_clock ? &reduced_clock : NULL,
4374 num_connectors);
4375
4376 /* setup pipeconf */
4377 pipeconf = I915_READ(PIPECONF(pipe));
4378
4379 /* Set up the display plane register */
4380 dspcntr = DISPPLANE_GAMMA_ENABLE;
4381
4382 if (pipe == 0)
4383 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4384 else
4385 dspcntr |= DISPPLANE_SEL_PIPE_B;
4386
4387 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4388 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4389 * core speed.
4390 *
4391 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4392 * pipe == 0 check?
4393 */
4394 if (mode->clock >
4395 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4396 pipeconf |= PIPECONF_DOUBLE_WIDE;
4397 else
4398 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4399 }
4400
4401 /* default to 8bpc */
4402 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4403 if (is_dp) {
4404 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4405 pipeconf |= PIPECONF_BPP_6 |
4406 PIPECONF_DITHER_EN |
4407 PIPECONF_DITHER_TYPE_SP;
4408 }
4409 }
4410
4411 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4412 drm_mode_debug_printmodeline(mode);
4413
4414 if (HAS_PIPE_CXSR(dev)) {
4415 if (intel_crtc->lowfreq_avail) {
4416 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4417 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4418 } else {
4419 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4420 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4421 }
4422 }
4423
4424 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4425 if (!IS_GEN2(dev) &&
4426 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4427 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4428 /* the chip adds 2 halflines automatically */
4429 adjusted_mode->crtc_vtotal -= 1;
4430 adjusted_mode->crtc_vblank_end -= 1;
4431 vsyncshift = adjusted_mode->crtc_hsync_start
4432 - adjusted_mode->crtc_htotal/2;
4433 } else {
4434 pipeconf |= PIPECONF_PROGRESSIVE;
4435 vsyncshift = 0;
4436 }
4437
4438 if (!IS_GEN3(dev))
4439 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4440
4441 I915_WRITE(HTOTAL(pipe),
4442 (adjusted_mode->crtc_hdisplay - 1) |
4443 ((adjusted_mode->crtc_htotal - 1) << 16));
4444 I915_WRITE(HBLANK(pipe),
4445 (adjusted_mode->crtc_hblank_start - 1) |
4446 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4447 I915_WRITE(HSYNC(pipe),
4448 (adjusted_mode->crtc_hsync_start - 1) |
4449 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4450
4451 I915_WRITE(VTOTAL(pipe),
4452 (adjusted_mode->crtc_vdisplay - 1) |
4453 ((adjusted_mode->crtc_vtotal - 1) << 16));
4454 I915_WRITE(VBLANK(pipe),
4455 (adjusted_mode->crtc_vblank_start - 1) |
4456 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4457 I915_WRITE(VSYNC(pipe),
4458 (adjusted_mode->crtc_vsync_start - 1) |
4459 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4460
4461 /* pipesrc and dspsize control the size that is scaled from,
4462 * which should always be the user's requested size.
4463 */
4464 I915_WRITE(DSPSIZE(plane),
4465 ((mode->vdisplay - 1) << 16) |
4466 (mode->hdisplay - 1));
4467 I915_WRITE(DSPPOS(plane), 0);
4468 I915_WRITE(PIPESRC(pipe),
4469 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4470
4471 I915_WRITE(PIPECONF(pipe), pipeconf);
4472 POSTING_READ(PIPECONF(pipe));
4473 intel_enable_pipe(dev_priv, pipe, false);
4474
4475 intel_wait_for_vblank(dev, pipe);
4476
4477 I915_WRITE(DSPCNTR(plane), dspcntr);
4478 POSTING_READ(DSPCNTR(plane));
4479
4480 ret = intel_pipe_set_base(crtc, x, y, fb);
4481
4482 intel_update_watermarks(dev);
4483
4484 return ret;
4485 }
4486
4487 /*
4488 * Initialize reference clocks when the driver loads
4489 */
4490 void ironlake_init_pch_refclk(struct drm_device *dev)
4491 {
4492 struct drm_i915_private *dev_priv = dev->dev_private;
4493 struct drm_mode_config *mode_config = &dev->mode_config;
4494 struct intel_encoder *encoder;
4495 u32 temp;
4496 bool has_lvds = false;
4497 bool has_cpu_edp = false;
4498 bool has_pch_edp = false;
4499 bool has_panel = false;
4500 bool has_ck505 = false;
4501 bool can_ssc = false;
4502
4503 /* We need to take the global config into account */
4504 list_for_each_entry(encoder, &mode_config->encoder_list,
4505 base.head) {
4506 switch (encoder->type) {
4507 case INTEL_OUTPUT_LVDS:
4508 has_panel = true;
4509 has_lvds = true;
4510 break;
4511 case INTEL_OUTPUT_EDP:
4512 has_panel = true;
4513 if (intel_encoder_is_pch_edp(&encoder->base))
4514 has_pch_edp = true;
4515 else
4516 has_cpu_edp = true;
4517 break;
4518 }
4519 }
4520
4521 if (HAS_PCH_IBX(dev)) {
4522 has_ck505 = dev_priv->display_clock_mode;
4523 can_ssc = has_ck505;
4524 } else {
4525 has_ck505 = false;
4526 can_ssc = true;
4527 }
4528
4529 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4530 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4531 has_ck505);
4532
4533 /* Ironlake: try to setup display ref clock before DPLL
4534 * enabling. This is only under driver's control after
4535 * PCH B stepping, previous chipset stepping should be
4536 * ignoring this setting.
4537 */
4538 temp = I915_READ(PCH_DREF_CONTROL);
4539 /* Always enable nonspread source */
4540 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4541
4542 if (has_ck505)
4543 temp |= DREF_NONSPREAD_CK505_ENABLE;
4544 else
4545 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4546
4547 if (has_panel) {
4548 temp &= ~DREF_SSC_SOURCE_MASK;
4549 temp |= DREF_SSC_SOURCE_ENABLE;
4550
4551 /* SSC must be turned on before enabling the CPU output */
4552 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4553 DRM_DEBUG_KMS("Using SSC on panel\n");
4554 temp |= DREF_SSC1_ENABLE;
4555 } else
4556 temp &= ~DREF_SSC1_ENABLE;
4557
4558 /* Get SSC going before enabling the outputs */
4559 I915_WRITE(PCH_DREF_CONTROL, temp);
4560 POSTING_READ(PCH_DREF_CONTROL);
4561 udelay(200);
4562
4563 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4564
4565 /* Enable CPU source on CPU attached eDP */
4566 if (has_cpu_edp) {
4567 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4568 DRM_DEBUG_KMS("Using SSC on eDP\n");
4569 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4570 }
4571 else
4572 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4573 } else
4574 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4575
4576 I915_WRITE(PCH_DREF_CONTROL, temp);
4577 POSTING_READ(PCH_DREF_CONTROL);
4578 udelay(200);
4579 } else {
4580 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4581
4582 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4583
4584 /* Turn off CPU output */
4585 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4586
4587 I915_WRITE(PCH_DREF_CONTROL, temp);
4588 POSTING_READ(PCH_DREF_CONTROL);
4589 udelay(200);
4590
4591 /* Turn off the SSC source */
4592 temp &= ~DREF_SSC_SOURCE_MASK;
4593 temp |= DREF_SSC_SOURCE_DISABLE;
4594
4595 /* Turn off SSC1 */
4596 temp &= ~ DREF_SSC1_ENABLE;
4597
4598 I915_WRITE(PCH_DREF_CONTROL, temp);
4599 POSTING_READ(PCH_DREF_CONTROL);
4600 udelay(200);
4601 }
4602 }
4603
4604 static int ironlake_get_refclk(struct drm_crtc *crtc)
4605 {
4606 struct drm_device *dev = crtc->dev;
4607 struct drm_i915_private *dev_priv = dev->dev_private;
4608 struct intel_encoder *encoder;
4609 struct intel_encoder *edp_encoder = NULL;
4610 int num_connectors = 0;
4611 bool is_lvds = false;
4612
4613 for_each_encoder_on_crtc(dev, crtc, encoder) {
4614 switch (encoder->type) {
4615 case INTEL_OUTPUT_LVDS:
4616 is_lvds = true;
4617 break;
4618 case INTEL_OUTPUT_EDP:
4619 edp_encoder = encoder;
4620 break;
4621 }
4622 num_connectors++;
4623 }
4624
4625 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4626 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4627 dev_priv->lvds_ssc_freq);
4628 return dev_priv->lvds_ssc_freq * 1000;
4629 }
4630
4631 return 120000;
4632 }
4633
4634 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4635 struct drm_display_mode *adjusted_mode,
4636 bool dither)
4637 {
4638 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4640 int pipe = intel_crtc->pipe;
4641 uint32_t val;
4642
4643 val = I915_READ(PIPECONF(pipe));
4644
4645 val &= ~PIPE_BPC_MASK;
4646 switch (intel_crtc->bpp) {
4647 case 18:
4648 val |= PIPE_6BPC;
4649 break;
4650 case 24:
4651 val |= PIPE_8BPC;
4652 break;
4653 case 30:
4654 val |= PIPE_10BPC;
4655 break;
4656 case 36:
4657 val |= PIPE_12BPC;
4658 break;
4659 default:
4660 val |= PIPE_8BPC;
4661 break;
4662 }
4663
4664 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4665 if (dither)
4666 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4667
4668 val &= ~PIPECONF_INTERLACE_MASK;
4669 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4670 val |= PIPECONF_INTERLACED_ILK;
4671 else
4672 val |= PIPECONF_PROGRESSIVE;
4673
4674 I915_WRITE(PIPECONF(pipe), val);
4675 POSTING_READ(PIPECONF(pipe));
4676 }
4677
4678 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4679 struct drm_display_mode *adjusted_mode,
4680 intel_clock_t *clock,
4681 bool *has_reduced_clock,
4682 intel_clock_t *reduced_clock)
4683 {
4684 struct drm_device *dev = crtc->dev;
4685 struct drm_i915_private *dev_priv = dev->dev_private;
4686 struct intel_encoder *intel_encoder;
4687 int refclk;
4688 const intel_limit_t *limit;
4689 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4690
4691 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4692 switch (intel_encoder->type) {
4693 case INTEL_OUTPUT_LVDS:
4694 is_lvds = true;
4695 break;
4696 case INTEL_OUTPUT_SDVO:
4697 case INTEL_OUTPUT_HDMI:
4698 is_sdvo = true;
4699 if (intel_encoder->needs_tv_clock)
4700 is_tv = true;
4701 break;
4702 case INTEL_OUTPUT_TVOUT:
4703 is_tv = true;
4704 break;
4705 }
4706 }
4707
4708 refclk = ironlake_get_refclk(crtc);
4709
4710 /*
4711 * Returns a set of divisors for the desired target clock with the given
4712 * refclk, or FALSE. The returned values represent the clock equation:
4713 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4714 */
4715 limit = intel_limit(crtc, refclk);
4716 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4717 clock);
4718 if (!ret)
4719 return false;
4720
4721 if (is_lvds && dev_priv->lvds_downclock_avail) {
4722 /*
4723 * Ensure we match the reduced clock's P to the target clock.
4724 * If the clocks don't match, we can't switch the display clock
4725 * by using the FP0/FP1. In such case we will disable the LVDS
4726 * downclock feature.
4727 */
4728 *has_reduced_clock = limit->find_pll(limit, crtc,
4729 dev_priv->lvds_downclock,
4730 refclk,
4731 clock,
4732 reduced_clock);
4733 }
4734
4735 if (is_sdvo && is_tv)
4736 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4737
4738 return true;
4739 }
4740
4741 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4742 struct drm_display_mode *mode,
4743 struct drm_display_mode *adjusted_mode,
4744 int x, int y,
4745 struct drm_framebuffer *fb)
4746 {
4747 struct drm_device *dev = crtc->dev;
4748 struct drm_i915_private *dev_priv = dev->dev_private;
4749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4750 int pipe = intel_crtc->pipe;
4751 int plane = intel_crtc->plane;
4752 int num_connectors = 0;
4753 intel_clock_t clock, reduced_clock;
4754 u32 dpll, fp = 0, fp2 = 0;
4755 bool ok, has_reduced_clock = false, is_sdvo = false;
4756 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4757 struct intel_encoder *encoder, *edp_encoder = NULL;
4758 int ret;
4759 struct fdi_m_n m_n = {0};
4760 u32 temp;
4761 int target_clock, pixel_multiplier, lane, link_bw, factor;
4762 unsigned int pipe_bpp;
4763 bool dither;
4764 bool is_cpu_edp = false, is_pch_edp = false;
4765
4766 for_each_encoder_on_crtc(dev, crtc, encoder) {
4767 switch (encoder->type) {
4768 case INTEL_OUTPUT_LVDS:
4769 is_lvds = true;
4770 break;
4771 case INTEL_OUTPUT_SDVO:
4772 case INTEL_OUTPUT_HDMI:
4773 is_sdvo = true;
4774 if (encoder->needs_tv_clock)
4775 is_tv = true;
4776 break;
4777 case INTEL_OUTPUT_TVOUT:
4778 is_tv = true;
4779 break;
4780 case INTEL_OUTPUT_ANALOG:
4781 is_crt = true;
4782 break;
4783 case INTEL_OUTPUT_DISPLAYPORT:
4784 is_dp = true;
4785 break;
4786 case INTEL_OUTPUT_EDP:
4787 is_dp = true;
4788 if (intel_encoder_is_pch_edp(&encoder->base))
4789 is_pch_edp = true;
4790 else
4791 is_cpu_edp = true;
4792 edp_encoder = encoder;
4793 break;
4794 }
4795
4796 num_connectors++;
4797 }
4798
4799 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4800 &has_reduced_clock, &reduced_clock);
4801 if (!ok) {
4802 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4803 return -EINVAL;
4804 }
4805
4806 /* Ensure that the cursor is valid for the new mode before changing... */
4807 intel_crtc_update_cursor(crtc, true);
4808
4809 /* FDI link */
4810 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4811 lane = 0;
4812 /* CPU eDP doesn't require FDI link, so just set DP M/N
4813 according to current link config */
4814 if (is_cpu_edp) {
4815 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4816 } else {
4817 /* FDI is a binary signal running at ~2.7GHz, encoding
4818 * each output octet as 10 bits. The actual frequency
4819 * is stored as a divider into a 100MHz clock, and the
4820 * mode pixel clock is stored in units of 1KHz.
4821 * Hence the bw of each lane in terms of the mode signal
4822 * is:
4823 */
4824 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4825 }
4826
4827 /* [e]DP over FDI requires target mode clock instead of link clock. */
4828 if (edp_encoder)
4829 target_clock = intel_edp_target_clock(edp_encoder, mode);
4830 else if (is_dp)
4831 target_clock = mode->clock;
4832 else
4833 target_clock = adjusted_mode->clock;
4834
4835 /* determine panel color depth */
4836 dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp,
4837 adjusted_mode);
4838 if (is_lvds && dev_priv->lvds_dither)
4839 dither = true;
4840
4841 if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
4842 pipe_bpp != 36) {
4843 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4844 pipe_bpp);
4845 pipe_bpp = 24;
4846 }
4847 intel_crtc->bpp = pipe_bpp;
4848
4849 if (!lane) {
4850 /*
4851 * Account for spread spectrum to avoid
4852 * oversubscribing the link. Max center spread
4853 * is 2.5%; use 5% for safety's sake.
4854 */
4855 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4856 lane = bps / (link_bw * 8) + 1;
4857 }
4858
4859 intel_crtc->fdi_lanes = lane;
4860
4861 if (pixel_multiplier > 1)
4862 link_bw *= pixel_multiplier;
4863 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4864 &m_n);
4865
4866 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4867 if (has_reduced_clock)
4868 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4869 reduced_clock.m2;
4870
4871 /* Enable autotuning of the PLL clock (if permissible) */
4872 factor = 21;
4873 if (is_lvds) {
4874 if ((intel_panel_use_ssc(dev_priv) &&
4875 dev_priv->lvds_ssc_freq == 100) ||
4876 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4877 factor = 25;
4878 } else if (is_sdvo && is_tv)
4879 factor = 20;
4880
4881 if (clock.m < factor * clock.n)
4882 fp |= FP_CB_TUNE;
4883
4884 dpll = 0;
4885
4886 if (is_lvds)
4887 dpll |= DPLLB_MODE_LVDS;
4888 else
4889 dpll |= DPLLB_MODE_DAC_SERIAL;
4890 if (is_sdvo) {
4891 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4892 if (pixel_multiplier > 1) {
4893 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4894 }
4895 dpll |= DPLL_DVO_HIGH_SPEED;
4896 }
4897 if (is_dp && !is_cpu_edp)
4898 dpll |= DPLL_DVO_HIGH_SPEED;
4899
4900 /* compute bitmask from p1 value */
4901 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4902 /* also FPA1 */
4903 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4904
4905 switch (clock.p2) {
4906 case 5:
4907 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4908 break;
4909 case 7:
4910 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4911 break;
4912 case 10:
4913 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4914 break;
4915 case 14:
4916 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4917 break;
4918 }
4919
4920 if (is_sdvo && is_tv)
4921 dpll |= PLL_REF_INPUT_TVCLKINBC;
4922 else if (is_tv)
4923 /* XXX: just matching BIOS for now */
4924 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4925 dpll |= 3;
4926 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4927 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4928 else
4929 dpll |= PLL_REF_INPUT_DREFCLK;
4930
4931 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4932 drm_mode_debug_printmodeline(mode);
4933
4934 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4935 * pre-Haswell/LPT generation */
4936 if (HAS_PCH_LPT(dev)) {
4937 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4938 pipe);
4939 } else if (!is_cpu_edp) {
4940 struct intel_pch_pll *pll;
4941
4942 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4943 if (pll == NULL) {
4944 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4945 pipe);
4946 return -EINVAL;
4947 }
4948 } else
4949 intel_put_pch_pll(intel_crtc);
4950
4951 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4952 * This is an exception to the general rule that mode_set doesn't turn
4953 * things on.
4954 */
4955 if (is_lvds) {
4956 temp = I915_READ(PCH_LVDS);
4957 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4958 if (HAS_PCH_CPT(dev)) {
4959 temp &= ~PORT_TRANS_SEL_MASK;
4960 temp |= PORT_TRANS_SEL_CPT(pipe);
4961 } else {
4962 if (pipe == 1)
4963 temp |= LVDS_PIPEB_SELECT;
4964 else
4965 temp &= ~LVDS_PIPEB_SELECT;
4966 }
4967
4968 /* set the corresponsding LVDS_BORDER bit */
4969 temp |= dev_priv->lvds_border_bits;
4970 /* Set the B0-B3 data pairs corresponding to whether we're going to
4971 * set the DPLLs for dual-channel mode or not.
4972 */
4973 if (clock.p2 == 7)
4974 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4975 else
4976 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4977
4978 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4979 * appropriately here, but we need to look more thoroughly into how
4980 * panels behave in the two modes.
4981 */
4982 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4983 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4984 temp |= LVDS_HSYNC_POLARITY;
4985 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4986 temp |= LVDS_VSYNC_POLARITY;
4987 I915_WRITE(PCH_LVDS, temp);
4988 }
4989
4990 if (is_dp && !is_cpu_edp) {
4991 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4992 } else {
4993 /* For non-DP output, clear any trans DP clock recovery setting.*/
4994 I915_WRITE(TRANSDATA_M1(pipe), 0);
4995 I915_WRITE(TRANSDATA_N1(pipe), 0);
4996 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4997 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4998 }
4999
5000 if (intel_crtc->pch_pll) {
5001 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5002
5003 /* Wait for the clocks to stabilize. */
5004 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5005 udelay(150);
5006
5007 /* The pixel multiplier can only be updated once the
5008 * DPLL is enabled and the clocks are stable.
5009 *
5010 * So write it again.
5011 */
5012 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5013 }
5014
5015 intel_crtc->lowfreq_avail = false;
5016 if (intel_crtc->pch_pll) {
5017 if (is_lvds && has_reduced_clock && i915_powersave) {
5018 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5019 intel_crtc->lowfreq_avail = true;
5020 } else {
5021 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5022 }
5023 }
5024
5025 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5026 /* the chip adds 2 halflines automatically */
5027 adjusted_mode->crtc_vtotal -= 1;
5028 adjusted_mode->crtc_vblank_end -= 1;
5029 I915_WRITE(VSYNCSHIFT(pipe),
5030 adjusted_mode->crtc_hsync_start
5031 - adjusted_mode->crtc_htotal/2);
5032 } else {
5033 I915_WRITE(VSYNCSHIFT(pipe), 0);
5034 }
5035
5036 I915_WRITE(HTOTAL(pipe),
5037 (adjusted_mode->crtc_hdisplay - 1) |
5038 ((adjusted_mode->crtc_htotal - 1) << 16));
5039 I915_WRITE(HBLANK(pipe),
5040 (adjusted_mode->crtc_hblank_start - 1) |
5041 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5042 I915_WRITE(HSYNC(pipe),
5043 (adjusted_mode->crtc_hsync_start - 1) |
5044 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5045
5046 I915_WRITE(VTOTAL(pipe),
5047 (adjusted_mode->crtc_vdisplay - 1) |
5048 ((adjusted_mode->crtc_vtotal - 1) << 16));
5049 I915_WRITE(VBLANK(pipe),
5050 (adjusted_mode->crtc_vblank_start - 1) |
5051 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5052 I915_WRITE(VSYNC(pipe),
5053 (adjusted_mode->crtc_vsync_start - 1) |
5054 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5055
5056 /* pipesrc controls the size that is scaled from, which should
5057 * always be the user's requested size.
5058 */
5059 I915_WRITE(PIPESRC(pipe),
5060 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5061
5062 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5063 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5064 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5065 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5066
5067 if (is_cpu_edp)
5068 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5069
5070 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5071
5072 intel_wait_for_vblank(dev, pipe);
5073
5074 /* Set up the display plane register */
5075 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5076 POSTING_READ(DSPCNTR(plane));
5077
5078 ret = intel_pipe_set_base(crtc, x, y, fb);
5079
5080 intel_update_watermarks(dev);
5081
5082 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5083
5084 return ret;
5085 }
5086
5087 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5088 struct drm_display_mode *mode,
5089 struct drm_display_mode *adjusted_mode,
5090 int x, int y,
5091 struct drm_framebuffer *fb)
5092 {
5093 struct drm_device *dev = crtc->dev;
5094 struct drm_i915_private *dev_priv = dev->dev_private;
5095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5096 int pipe = intel_crtc->pipe;
5097 int ret;
5098
5099 drm_vblank_pre_modeset(dev, pipe);
5100
5101 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5102 x, y, fb);
5103 drm_vblank_post_modeset(dev, pipe);
5104
5105 return ret;
5106 }
5107
5108 static bool intel_eld_uptodate(struct drm_connector *connector,
5109 int reg_eldv, uint32_t bits_eldv,
5110 int reg_elda, uint32_t bits_elda,
5111 int reg_edid)
5112 {
5113 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5114 uint8_t *eld = connector->eld;
5115 uint32_t i;
5116
5117 i = I915_READ(reg_eldv);
5118 i &= bits_eldv;
5119
5120 if (!eld[0])
5121 return !i;
5122
5123 if (!i)
5124 return false;
5125
5126 i = I915_READ(reg_elda);
5127 i &= ~bits_elda;
5128 I915_WRITE(reg_elda, i);
5129
5130 for (i = 0; i < eld[2]; i++)
5131 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5132 return false;
5133
5134 return true;
5135 }
5136
5137 static void g4x_write_eld(struct drm_connector *connector,
5138 struct drm_crtc *crtc)
5139 {
5140 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5141 uint8_t *eld = connector->eld;
5142 uint32_t eldv;
5143 uint32_t len;
5144 uint32_t i;
5145
5146 i = I915_READ(G4X_AUD_VID_DID);
5147
5148 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5149 eldv = G4X_ELDV_DEVCL_DEVBLC;
5150 else
5151 eldv = G4X_ELDV_DEVCTG;
5152
5153 if (intel_eld_uptodate(connector,
5154 G4X_AUD_CNTL_ST, eldv,
5155 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5156 G4X_HDMIW_HDMIEDID))
5157 return;
5158
5159 i = I915_READ(G4X_AUD_CNTL_ST);
5160 i &= ~(eldv | G4X_ELD_ADDR);
5161 len = (i >> 9) & 0x1f; /* ELD buffer size */
5162 I915_WRITE(G4X_AUD_CNTL_ST, i);
5163
5164 if (!eld[0])
5165 return;
5166
5167 len = min_t(uint8_t, eld[2], len);
5168 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5169 for (i = 0; i < len; i++)
5170 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5171
5172 i = I915_READ(G4X_AUD_CNTL_ST);
5173 i |= eldv;
5174 I915_WRITE(G4X_AUD_CNTL_ST, i);
5175 }
5176
5177 static void haswell_write_eld(struct drm_connector *connector,
5178 struct drm_crtc *crtc)
5179 {
5180 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5181 uint8_t *eld = connector->eld;
5182 struct drm_device *dev = crtc->dev;
5183 uint32_t eldv;
5184 uint32_t i;
5185 int len;
5186 int pipe = to_intel_crtc(crtc)->pipe;
5187 int tmp;
5188
5189 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5190 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5191 int aud_config = HSW_AUD_CFG(pipe);
5192 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5193
5194
5195 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5196
5197 /* Audio output enable */
5198 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5199 tmp = I915_READ(aud_cntrl_st2);
5200 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5201 I915_WRITE(aud_cntrl_st2, tmp);
5202
5203 /* Wait for 1 vertical blank */
5204 intel_wait_for_vblank(dev, pipe);
5205
5206 /* Set ELD valid state */
5207 tmp = I915_READ(aud_cntrl_st2);
5208 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5209 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5210 I915_WRITE(aud_cntrl_st2, tmp);
5211 tmp = I915_READ(aud_cntrl_st2);
5212 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5213
5214 /* Enable HDMI mode */
5215 tmp = I915_READ(aud_config);
5216 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5217 /* clear N_programing_enable and N_value_index */
5218 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5219 I915_WRITE(aud_config, tmp);
5220
5221 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5222
5223 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5224
5225 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5226 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5227 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5228 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5229 } else
5230 I915_WRITE(aud_config, 0);
5231
5232 if (intel_eld_uptodate(connector,
5233 aud_cntrl_st2, eldv,
5234 aud_cntl_st, IBX_ELD_ADDRESS,
5235 hdmiw_hdmiedid))
5236 return;
5237
5238 i = I915_READ(aud_cntrl_st2);
5239 i &= ~eldv;
5240 I915_WRITE(aud_cntrl_st2, i);
5241
5242 if (!eld[0])
5243 return;
5244
5245 i = I915_READ(aud_cntl_st);
5246 i &= ~IBX_ELD_ADDRESS;
5247 I915_WRITE(aud_cntl_st, i);
5248 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5249 DRM_DEBUG_DRIVER("port num:%d\n", i);
5250
5251 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5252 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5253 for (i = 0; i < len; i++)
5254 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5255
5256 i = I915_READ(aud_cntrl_st2);
5257 i |= eldv;
5258 I915_WRITE(aud_cntrl_st2, i);
5259
5260 }
5261
5262 static void ironlake_write_eld(struct drm_connector *connector,
5263 struct drm_crtc *crtc)
5264 {
5265 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5266 uint8_t *eld = connector->eld;
5267 uint32_t eldv;
5268 uint32_t i;
5269 int len;
5270 int hdmiw_hdmiedid;
5271 int aud_config;
5272 int aud_cntl_st;
5273 int aud_cntrl_st2;
5274 int pipe = to_intel_crtc(crtc)->pipe;
5275
5276 if (HAS_PCH_IBX(connector->dev)) {
5277 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5278 aud_config = IBX_AUD_CFG(pipe);
5279 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5280 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5281 } else {
5282 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5283 aud_config = CPT_AUD_CFG(pipe);
5284 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5285 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5286 }
5287
5288 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5289
5290 i = I915_READ(aud_cntl_st);
5291 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5292 if (!i) {
5293 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5294 /* operate blindly on all ports */
5295 eldv = IBX_ELD_VALIDB;
5296 eldv |= IBX_ELD_VALIDB << 4;
5297 eldv |= IBX_ELD_VALIDB << 8;
5298 } else {
5299 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5300 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5301 }
5302
5303 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5304 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5305 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5306 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5307 } else
5308 I915_WRITE(aud_config, 0);
5309
5310 if (intel_eld_uptodate(connector,
5311 aud_cntrl_st2, eldv,
5312 aud_cntl_st, IBX_ELD_ADDRESS,
5313 hdmiw_hdmiedid))
5314 return;
5315
5316 i = I915_READ(aud_cntrl_st2);
5317 i &= ~eldv;
5318 I915_WRITE(aud_cntrl_st2, i);
5319
5320 if (!eld[0])
5321 return;
5322
5323 i = I915_READ(aud_cntl_st);
5324 i &= ~IBX_ELD_ADDRESS;
5325 I915_WRITE(aud_cntl_st, i);
5326
5327 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5328 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5329 for (i = 0; i < len; i++)
5330 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5331
5332 i = I915_READ(aud_cntrl_st2);
5333 i |= eldv;
5334 I915_WRITE(aud_cntrl_st2, i);
5335 }
5336
5337 void intel_write_eld(struct drm_encoder *encoder,
5338 struct drm_display_mode *mode)
5339 {
5340 struct drm_crtc *crtc = encoder->crtc;
5341 struct drm_connector *connector;
5342 struct drm_device *dev = encoder->dev;
5343 struct drm_i915_private *dev_priv = dev->dev_private;
5344
5345 connector = drm_select_eld(encoder, mode);
5346 if (!connector)
5347 return;
5348
5349 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5350 connector->base.id,
5351 drm_get_connector_name(connector),
5352 connector->encoder->base.id,
5353 drm_get_encoder_name(connector->encoder));
5354
5355 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5356
5357 if (dev_priv->display.write_eld)
5358 dev_priv->display.write_eld(connector, crtc);
5359 }
5360
5361 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5362 void intel_crtc_load_lut(struct drm_crtc *crtc)
5363 {
5364 struct drm_device *dev = crtc->dev;
5365 struct drm_i915_private *dev_priv = dev->dev_private;
5366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5367 int palreg = PALETTE(intel_crtc->pipe);
5368 int i;
5369
5370 /* The clocks have to be on to load the palette. */
5371 if (!crtc->enabled || !intel_crtc->active)
5372 return;
5373
5374 /* use legacy palette for Ironlake */
5375 if (HAS_PCH_SPLIT(dev))
5376 palreg = LGC_PALETTE(intel_crtc->pipe);
5377
5378 for (i = 0; i < 256; i++) {
5379 I915_WRITE(palreg + 4 * i,
5380 (intel_crtc->lut_r[i] << 16) |
5381 (intel_crtc->lut_g[i] << 8) |
5382 intel_crtc->lut_b[i]);
5383 }
5384 }
5385
5386 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5387 {
5388 struct drm_device *dev = crtc->dev;
5389 struct drm_i915_private *dev_priv = dev->dev_private;
5390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5391 bool visible = base != 0;
5392 u32 cntl;
5393
5394 if (intel_crtc->cursor_visible == visible)
5395 return;
5396
5397 cntl = I915_READ(_CURACNTR);
5398 if (visible) {
5399 /* On these chipsets we can only modify the base whilst
5400 * the cursor is disabled.
5401 */
5402 I915_WRITE(_CURABASE, base);
5403
5404 cntl &= ~(CURSOR_FORMAT_MASK);
5405 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5406 cntl |= CURSOR_ENABLE |
5407 CURSOR_GAMMA_ENABLE |
5408 CURSOR_FORMAT_ARGB;
5409 } else
5410 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5411 I915_WRITE(_CURACNTR, cntl);
5412
5413 intel_crtc->cursor_visible = visible;
5414 }
5415
5416 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5417 {
5418 struct drm_device *dev = crtc->dev;
5419 struct drm_i915_private *dev_priv = dev->dev_private;
5420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5421 int pipe = intel_crtc->pipe;
5422 bool visible = base != 0;
5423
5424 if (intel_crtc->cursor_visible != visible) {
5425 uint32_t cntl = I915_READ(CURCNTR(pipe));
5426 if (base) {
5427 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5428 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5429 cntl |= pipe << 28; /* Connect to correct pipe */
5430 } else {
5431 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5432 cntl |= CURSOR_MODE_DISABLE;
5433 }
5434 I915_WRITE(CURCNTR(pipe), cntl);
5435
5436 intel_crtc->cursor_visible = visible;
5437 }
5438 /* and commit changes on next vblank */
5439 I915_WRITE(CURBASE(pipe), base);
5440 }
5441
5442 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5443 {
5444 struct drm_device *dev = crtc->dev;
5445 struct drm_i915_private *dev_priv = dev->dev_private;
5446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5447 int pipe = intel_crtc->pipe;
5448 bool visible = base != 0;
5449
5450 if (intel_crtc->cursor_visible != visible) {
5451 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5452 if (base) {
5453 cntl &= ~CURSOR_MODE;
5454 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5455 } else {
5456 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5457 cntl |= CURSOR_MODE_DISABLE;
5458 }
5459 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5460
5461 intel_crtc->cursor_visible = visible;
5462 }
5463 /* and commit changes on next vblank */
5464 I915_WRITE(CURBASE_IVB(pipe), base);
5465 }
5466
5467 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5468 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5469 bool on)
5470 {
5471 struct drm_device *dev = crtc->dev;
5472 struct drm_i915_private *dev_priv = dev->dev_private;
5473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5474 int pipe = intel_crtc->pipe;
5475 int x = intel_crtc->cursor_x;
5476 int y = intel_crtc->cursor_y;
5477 u32 base, pos;
5478 bool visible;
5479
5480 pos = 0;
5481
5482 if (on && crtc->enabled && crtc->fb) {
5483 base = intel_crtc->cursor_addr;
5484 if (x > (int) crtc->fb->width)
5485 base = 0;
5486
5487 if (y > (int) crtc->fb->height)
5488 base = 0;
5489 } else
5490 base = 0;
5491
5492 if (x < 0) {
5493 if (x + intel_crtc->cursor_width < 0)
5494 base = 0;
5495
5496 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5497 x = -x;
5498 }
5499 pos |= x << CURSOR_X_SHIFT;
5500
5501 if (y < 0) {
5502 if (y + intel_crtc->cursor_height < 0)
5503 base = 0;
5504
5505 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5506 y = -y;
5507 }
5508 pos |= y << CURSOR_Y_SHIFT;
5509
5510 visible = base != 0;
5511 if (!visible && !intel_crtc->cursor_visible)
5512 return;
5513
5514 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5515 I915_WRITE(CURPOS_IVB(pipe), pos);
5516 ivb_update_cursor(crtc, base);
5517 } else {
5518 I915_WRITE(CURPOS(pipe), pos);
5519 if (IS_845G(dev) || IS_I865G(dev))
5520 i845_update_cursor(crtc, base);
5521 else
5522 i9xx_update_cursor(crtc, base);
5523 }
5524 }
5525
5526 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5527 struct drm_file *file,
5528 uint32_t handle,
5529 uint32_t width, uint32_t height)
5530 {
5531 struct drm_device *dev = crtc->dev;
5532 struct drm_i915_private *dev_priv = dev->dev_private;
5533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5534 struct drm_i915_gem_object *obj;
5535 uint32_t addr;
5536 int ret;
5537
5538 /* if we want to turn off the cursor ignore width and height */
5539 if (!handle) {
5540 DRM_DEBUG_KMS("cursor off\n");
5541 addr = 0;
5542 obj = NULL;
5543 mutex_lock(&dev->struct_mutex);
5544 goto finish;
5545 }
5546
5547 /* Currently we only support 64x64 cursors */
5548 if (width != 64 || height != 64) {
5549 DRM_ERROR("we currently only support 64x64 cursors\n");
5550 return -EINVAL;
5551 }
5552
5553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5554 if (&obj->base == NULL)
5555 return -ENOENT;
5556
5557 if (obj->base.size < width * height * 4) {
5558 DRM_ERROR("buffer is to small\n");
5559 ret = -ENOMEM;
5560 goto fail;
5561 }
5562
5563 /* we only need to pin inside GTT if cursor is non-phy */
5564 mutex_lock(&dev->struct_mutex);
5565 if (!dev_priv->info->cursor_needs_physical) {
5566 if (obj->tiling_mode) {
5567 DRM_ERROR("cursor cannot be tiled\n");
5568 ret = -EINVAL;
5569 goto fail_locked;
5570 }
5571
5572 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5573 if (ret) {
5574 DRM_ERROR("failed to move cursor bo into the GTT\n");
5575 goto fail_locked;
5576 }
5577
5578 ret = i915_gem_object_put_fence(obj);
5579 if (ret) {
5580 DRM_ERROR("failed to release fence for cursor");
5581 goto fail_unpin;
5582 }
5583
5584 addr = obj->gtt_offset;
5585 } else {
5586 int align = IS_I830(dev) ? 16 * 1024 : 256;
5587 ret = i915_gem_attach_phys_object(dev, obj,
5588 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5589 align);
5590 if (ret) {
5591 DRM_ERROR("failed to attach phys object\n");
5592 goto fail_locked;
5593 }
5594 addr = obj->phys_obj->handle->busaddr;
5595 }
5596
5597 if (IS_GEN2(dev))
5598 I915_WRITE(CURSIZE, (height << 12) | width);
5599
5600 finish:
5601 if (intel_crtc->cursor_bo) {
5602 if (dev_priv->info->cursor_needs_physical) {
5603 if (intel_crtc->cursor_bo != obj)
5604 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5605 } else
5606 i915_gem_object_unpin(intel_crtc->cursor_bo);
5607 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5608 }
5609
5610 mutex_unlock(&dev->struct_mutex);
5611
5612 intel_crtc->cursor_addr = addr;
5613 intel_crtc->cursor_bo = obj;
5614 intel_crtc->cursor_width = width;
5615 intel_crtc->cursor_height = height;
5616
5617 intel_crtc_update_cursor(crtc, true);
5618
5619 return 0;
5620 fail_unpin:
5621 i915_gem_object_unpin(obj);
5622 fail_locked:
5623 mutex_unlock(&dev->struct_mutex);
5624 fail:
5625 drm_gem_object_unreference_unlocked(&obj->base);
5626 return ret;
5627 }
5628
5629 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5630 {
5631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5632
5633 intel_crtc->cursor_x = x;
5634 intel_crtc->cursor_y = y;
5635
5636 intel_crtc_update_cursor(crtc, true);
5637
5638 return 0;
5639 }
5640
5641 /** Sets the color ramps on behalf of RandR */
5642 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5643 u16 blue, int regno)
5644 {
5645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5646
5647 intel_crtc->lut_r[regno] = red >> 8;
5648 intel_crtc->lut_g[regno] = green >> 8;
5649 intel_crtc->lut_b[regno] = blue >> 8;
5650 }
5651
5652 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5653 u16 *blue, int regno)
5654 {
5655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5656
5657 *red = intel_crtc->lut_r[regno] << 8;
5658 *green = intel_crtc->lut_g[regno] << 8;
5659 *blue = intel_crtc->lut_b[regno] << 8;
5660 }
5661
5662 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5663 u16 *blue, uint32_t start, uint32_t size)
5664 {
5665 int end = (start + size > 256) ? 256 : start + size, i;
5666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5667
5668 for (i = start; i < end; i++) {
5669 intel_crtc->lut_r[i] = red[i] >> 8;
5670 intel_crtc->lut_g[i] = green[i] >> 8;
5671 intel_crtc->lut_b[i] = blue[i] >> 8;
5672 }
5673
5674 intel_crtc_load_lut(crtc);
5675 }
5676
5677 /**
5678 * Get a pipe with a simple mode set on it for doing load-based monitor
5679 * detection.
5680 *
5681 * It will be up to the load-detect code to adjust the pipe as appropriate for
5682 * its requirements. The pipe will be connected to no other encoders.
5683 *
5684 * Currently this code will only succeed if there is a pipe with no encoders
5685 * configured for it. In the future, it could choose to temporarily disable
5686 * some outputs to free up a pipe for its use.
5687 *
5688 * \return crtc, or NULL if no pipes are available.
5689 */
5690
5691 /* VESA 640x480x72Hz mode to set on the pipe */
5692 static struct drm_display_mode load_detect_mode = {
5693 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5694 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5695 };
5696
5697 static struct drm_framebuffer *
5698 intel_framebuffer_create(struct drm_device *dev,
5699 struct drm_mode_fb_cmd2 *mode_cmd,
5700 struct drm_i915_gem_object *obj)
5701 {
5702 struct intel_framebuffer *intel_fb;
5703 int ret;
5704
5705 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5706 if (!intel_fb) {
5707 drm_gem_object_unreference_unlocked(&obj->base);
5708 return ERR_PTR(-ENOMEM);
5709 }
5710
5711 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5712 if (ret) {
5713 drm_gem_object_unreference_unlocked(&obj->base);
5714 kfree(intel_fb);
5715 return ERR_PTR(ret);
5716 }
5717
5718 return &intel_fb->base;
5719 }
5720
5721 static u32
5722 intel_framebuffer_pitch_for_width(int width, int bpp)
5723 {
5724 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5725 return ALIGN(pitch, 64);
5726 }
5727
5728 static u32
5729 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5730 {
5731 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5732 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5733 }
5734
5735 static struct drm_framebuffer *
5736 intel_framebuffer_create_for_mode(struct drm_device *dev,
5737 struct drm_display_mode *mode,
5738 int depth, int bpp)
5739 {
5740 struct drm_i915_gem_object *obj;
5741 struct drm_mode_fb_cmd2 mode_cmd;
5742
5743 obj = i915_gem_alloc_object(dev,
5744 intel_framebuffer_size_for_mode(mode, bpp));
5745 if (obj == NULL)
5746 return ERR_PTR(-ENOMEM);
5747
5748 mode_cmd.width = mode->hdisplay;
5749 mode_cmd.height = mode->vdisplay;
5750 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5751 bpp);
5752 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5753
5754 return intel_framebuffer_create(dev, &mode_cmd, obj);
5755 }
5756
5757 static struct drm_framebuffer *
5758 mode_fits_in_fbdev(struct drm_device *dev,
5759 struct drm_display_mode *mode)
5760 {
5761 struct drm_i915_private *dev_priv = dev->dev_private;
5762 struct drm_i915_gem_object *obj;
5763 struct drm_framebuffer *fb;
5764
5765 if (dev_priv->fbdev == NULL)
5766 return NULL;
5767
5768 obj = dev_priv->fbdev->ifb.obj;
5769 if (obj == NULL)
5770 return NULL;
5771
5772 fb = &dev_priv->fbdev->ifb.base;
5773 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5774 fb->bits_per_pixel))
5775 return NULL;
5776
5777 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5778 return NULL;
5779
5780 return fb;
5781 }
5782
5783 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5784 struct drm_display_mode *mode,
5785 struct intel_load_detect_pipe *old)
5786 {
5787 struct intel_crtc *intel_crtc;
5788 struct intel_encoder *intel_encoder =
5789 intel_attached_encoder(connector);
5790 struct drm_crtc *possible_crtc;
5791 struct drm_encoder *encoder = &intel_encoder->base;
5792 struct drm_crtc *crtc = NULL;
5793 struct drm_device *dev = encoder->dev;
5794 struct drm_framebuffer *fb;
5795 int i = -1;
5796
5797 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5798 connector->base.id, drm_get_connector_name(connector),
5799 encoder->base.id, drm_get_encoder_name(encoder));
5800
5801 /*
5802 * Algorithm gets a little messy:
5803 *
5804 * - if the connector already has an assigned crtc, use it (but make
5805 * sure it's on first)
5806 *
5807 * - try to find the first unused crtc that can drive this connector,
5808 * and use that if we find one
5809 */
5810
5811 /* See if we already have a CRTC for this connector */
5812 if (encoder->crtc) {
5813 crtc = encoder->crtc;
5814
5815 old->dpms_mode = connector->dpms;
5816 old->load_detect_temp = false;
5817
5818 /* Make sure the crtc and connector are running */
5819 if (connector->dpms != DRM_MODE_DPMS_ON)
5820 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5821
5822 return true;
5823 }
5824
5825 /* Find an unused one (if possible) */
5826 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5827 i++;
5828 if (!(encoder->possible_crtcs & (1 << i)))
5829 continue;
5830 if (!possible_crtc->enabled) {
5831 crtc = possible_crtc;
5832 break;
5833 }
5834 }
5835
5836 /*
5837 * If we didn't find an unused CRTC, don't use any.
5838 */
5839 if (!crtc) {
5840 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5841 return false;
5842 }
5843
5844 intel_encoder->new_crtc = to_intel_crtc(crtc);
5845 to_intel_connector(connector)->new_encoder = intel_encoder;
5846
5847 intel_crtc = to_intel_crtc(crtc);
5848 old->dpms_mode = connector->dpms;
5849 old->load_detect_temp = true;
5850 old->release_fb = NULL;
5851
5852 if (!mode)
5853 mode = &load_detect_mode;
5854
5855 /* We need a framebuffer large enough to accommodate all accesses
5856 * that the plane may generate whilst we perform load detection.
5857 * We can not rely on the fbcon either being present (we get called
5858 * during its initialisation to detect all boot displays, or it may
5859 * not even exist) or that it is large enough to satisfy the
5860 * requested mode.
5861 */
5862 fb = mode_fits_in_fbdev(dev, mode);
5863 if (fb == NULL) {
5864 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5865 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5866 old->release_fb = fb;
5867 } else
5868 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5869 if (IS_ERR(fb)) {
5870 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5871 goto fail;
5872 }
5873
5874 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
5875 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5876 if (old->release_fb)
5877 old->release_fb->funcs->destroy(old->release_fb);
5878 goto fail;
5879 }
5880
5881 /* let the connector get through one full cycle before testing */
5882 intel_wait_for_vblank(dev, intel_crtc->pipe);
5883
5884 return true;
5885 fail:
5886 connector->encoder = NULL;
5887 encoder->crtc = NULL;
5888 return false;
5889 }
5890
5891 void intel_release_load_detect_pipe(struct drm_connector *connector,
5892 struct intel_load_detect_pipe *old)
5893 {
5894 struct intel_encoder *intel_encoder =
5895 intel_attached_encoder(connector);
5896 struct drm_encoder *encoder = &intel_encoder->base;
5897
5898 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5899 connector->base.id, drm_get_connector_name(connector),
5900 encoder->base.id, drm_get_encoder_name(encoder));
5901
5902 if (old->load_detect_temp) {
5903 struct drm_crtc *crtc = encoder->crtc;
5904
5905 to_intel_connector(connector)->new_encoder = NULL;
5906 intel_encoder->new_crtc = NULL;
5907 intel_set_mode(crtc, NULL, 0, 0, NULL);
5908
5909 if (old->release_fb)
5910 old->release_fb->funcs->destroy(old->release_fb);
5911
5912 return;
5913 }
5914
5915 /* Switch crtc and encoder back off if necessary */
5916 if (old->dpms_mode != DRM_MODE_DPMS_ON)
5917 connector->funcs->dpms(connector, old->dpms_mode);
5918 }
5919
5920 /* Returns the clock of the currently programmed mode of the given pipe. */
5921 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5922 {
5923 struct drm_i915_private *dev_priv = dev->dev_private;
5924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5925 int pipe = intel_crtc->pipe;
5926 u32 dpll = I915_READ(DPLL(pipe));
5927 u32 fp;
5928 intel_clock_t clock;
5929
5930 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5931 fp = I915_READ(FP0(pipe));
5932 else
5933 fp = I915_READ(FP1(pipe));
5934
5935 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5936 if (IS_PINEVIEW(dev)) {
5937 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5938 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5939 } else {
5940 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5941 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5942 }
5943
5944 if (!IS_GEN2(dev)) {
5945 if (IS_PINEVIEW(dev))
5946 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5947 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5948 else
5949 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5950 DPLL_FPA01_P1_POST_DIV_SHIFT);
5951
5952 switch (dpll & DPLL_MODE_MASK) {
5953 case DPLLB_MODE_DAC_SERIAL:
5954 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5955 5 : 10;
5956 break;
5957 case DPLLB_MODE_LVDS:
5958 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5959 7 : 14;
5960 break;
5961 default:
5962 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5963 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5964 return 0;
5965 }
5966
5967 /* XXX: Handle the 100Mhz refclk */
5968 intel_clock(dev, 96000, &clock);
5969 } else {
5970 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5971
5972 if (is_lvds) {
5973 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5974 DPLL_FPA01_P1_POST_DIV_SHIFT);
5975 clock.p2 = 14;
5976
5977 if ((dpll & PLL_REF_INPUT_MASK) ==
5978 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5979 /* XXX: might not be 66MHz */
5980 intel_clock(dev, 66000, &clock);
5981 } else
5982 intel_clock(dev, 48000, &clock);
5983 } else {
5984 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5985 clock.p1 = 2;
5986 else {
5987 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5988 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5989 }
5990 if (dpll & PLL_P2_DIVIDE_BY_4)
5991 clock.p2 = 4;
5992 else
5993 clock.p2 = 2;
5994
5995 intel_clock(dev, 48000, &clock);
5996 }
5997 }
5998
5999 /* XXX: It would be nice to validate the clocks, but we can't reuse
6000 * i830PllIsValid() because it relies on the xf86_config connector
6001 * configuration being accurate, which it isn't necessarily.
6002 */
6003
6004 return clock.dot;
6005 }
6006
6007 /** Returns the currently programmed mode of the given pipe. */
6008 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6009 struct drm_crtc *crtc)
6010 {
6011 struct drm_i915_private *dev_priv = dev->dev_private;
6012 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6013 int pipe = intel_crtc->pipe;
6014 struct drm_display_mode *mode;
6015 int htot = I915_READ(HTOTAL(pipe));
6016 int hsync = I915_READ(HSYNC(pipe));
6017 int vtot = I915_READ(VTOTAL(pipe));
6018 int vsync = I915_READ(VSYNC(pipe));
6019
6020 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6021 if (!mode)
6022 return NULL;
6023
6024 mode->clock = intel_crtc_clock_get(dev, crtc);
6025 mode->hdisplay = (htot & 0xffff) + 1;
6026 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6027 mode->hsync_start = (hsync & 0xffff) + 1;
6028 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6029 mode->vdisplay = (vtot & 0xffff) + 1;
6030 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6031 mode->vsync_start = (vsync & 0xffff) + 1;
6032 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6033
6034 drm_mode_set_name(mode);
6035
6036 return mode;
6037 }
6038
6039 static void intel_increase_pllclock(struct drm_crtc *crtc)
6040 {
6041 struct drm_device *dev = crtc->dev;
6042 drm_i915_private_t *dev_priv = dev->dev_private;
6043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6044 int pipe = intel_crtc->pipe;
6045 int dpll_reg = DPLL(pipe);
6046 int dpll;
6047
6048 if (HAS_PCH_SPLIT(dev))
6049 return;
6050
6051 if (!dev_priv->lvds_downclock_avail)
6052 return;
6053
6054 dpll = I915_READ(dpll_reg);
6055 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6056 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6057
6058 assert_panel_unlocked(dev_priv, pipe);
6059
6060 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6061 I915_WRITE(dpll_reg, dpll);
6062 intel_wait_for_vblank(dev, pipe);
6063
6064 dpll = I915_READ(dpll_reg);
6065 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6066 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6067 }
6068 }
6069
6070 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6071 {
6072 struct drm_device *dev = crtc->dev;
6073 drm_i915_private_t *dev_priv = dev->dev_private;
6074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6075
6076 if (HAS_PCH_SPLIT(dev))
6077 return;
6078
6079 if (!dev_priv->lvds_downclock_avail)
6080 return;
6081
6082 /*
6083 * Since this is called by a timer, we should never get here in
6084 * the manual case.
6085 */
6086 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6087 int pipe = intel_crtc->pipe;
6088 int dpll_reg = DPLL(pipe);
6089 int dpll;
6090
6091 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6092
6093 assert_panel_unlocked(dev_priv, pipe);
6094
6095 dpll = I915_READ(dpll_reg);
6096 dpll |= DISPLAY_RATE_SELECT_FPA1;
6097 I915_WRITE(dpll_reg, dpll);
6098 intel_wait_for_vblank(dev, pipe);
6099 dpll = I915_READ(dpll_reg);
6100 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6101 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6102 }
6103
6104 }
6105
6106 void intel_mark_busy(struct drm_device *dev)
6107 {
6108 i915_update_gfx_val(dev->dev_private);
6109 }
6110
6111 void intel_mark_idle(struct drm_device *dev)
6112 {
6113 }
6114
6115 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6116 {
6117 struct drm_device *dev = obj->base.dev;
6118 struct drm_crtc *crtc;
6119
6120 if (!i915_powersave)
6121 return;
6122
6123 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6124 if (!crtc->fb)
6125 continue;
6126
6127 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6128 intel_increase_pllclock(crtc);
6129 }
6130 }
6131
6132 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6133 {
6134 struct drm_device *dev = obj->base.dev;
6135 struct drm_crtc *crtc;
6136
6137 if (!i915_powersave)
6138 return;
6139
6140 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6141 if (!crtc->fb)
6142 continue;
6143
6144 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6145 intel_decrease_pllclock(crtc);
6146 }
6147 }
6148
6149 static void intel_crtc_destroy(struct drm_crtc *crtc)
6150 {
6151 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6152 struct drm_device *dev = crtc->dev;
6153 struct intel_unpin_work *work;
6154 unsigned long flags;
6155
6156 spin_lock_irqsave(&dev->event_lock, flags);
6157 work = intel_crtc->unpin_work;
6158 intel_crtc->unpin_work = NULL;
6159 spin_unlock_irqrestore(&dev->event_lock, flags);
6160
6161 if (work) {
6162 cancel_work_sync(&work->work);
6163 kfree(work);
6164 }
6165
6166 drm_crtc_cleanup(crtc);
6167
6168 kfree(intel_crtc);
6169 }
6170
6171 static void intel_unpin_work_fn(struct work_struct *__work)
6172 {
6173 struct intel_unpin_work *work =
6174 container_of(__work, struct intel_unpin_work, work);
6175
6176 mutex_lock(&work->dev->struct_mutex);
6177 intel_unpin_fb_obj(work->old_fb_obj);
6178 drm_gem_object_unreference(&work->pending_flip_obj->base);
6179 drm_gem_object_unreference(&work->old_fb_obj->base);
6180
6181 intel_update_fbc(work->dev);
6182 mutex_unlock(&work->dev->struct_mutex);
6183 kfree(work);
6184 }
6185
6186 static void do_intel_finish_page_flip(struct drm_device *dev,
6187 struct drm_crtc *crtc)
6188 {
6189 drm_i915_private_t *dev_priv = dev->dev_private;
6190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6191 struct intel_unpin_work *work;
6192 struct drm_i915_gem_object *obj;
6193 struct drm_pending_vblank_event *e;
6194 struct timeval tvbl;
6195 unsigned long flags;
6196
6197 /* Ignore early vblank irqs */
6198 if (intel_crtc == NULL)
6199 return;
6200
6201 spin_lock_irqsave(&dev->event_lock, flags);
6202 work = intel_crtc->unpin_work;
6203 if (work == NULL || !work->pending) {
6204 spin_unlock_irqrestore(&dev->event_lock, flags);
6205 return;
6206 }
6207
6208 intel_crtc->unpin_work = NULL;
6209
6210 if (work->event) {
6211 e = work->event;
6212 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6213
6214 e->event.tv_sec = tvbl.tv_sec;
6215 e->event.tv_usec = tvbl.tv_usec;
6216
6217 list_add_tail(&e->base.link,
6218 &e->base.file_priv->event_list);
6219 wake_up_interruptible(&e->base.file_priv->event_wait);
6220 }
6221
6222 drm_vblank_put(dev, intel_crtc->pipe);
6223
6224 spin_unlock_irqrestore(&dev->event_lock, flags);
6225
6226 obj = work->old_fb_obj;
6227
6228 atomic_clear_mask(1 << intel_crtc->plane,
6229 &obj->pending_flip.counter);
6230
6231 wake_up(&dev_priv->pending_flip_queue);
6232 schedule_work(&work->work);
6233
6234 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6235 }
6236
6237 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6238 {
6239 drm_i915_private_t *dev_priv = dev->dev_private;
6240 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6241
6242 do_intel_finish_page_flip(dev, crtc);
6243 }
6244
6245 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6246 {
6247 drm_i915_private_t *dev_priv = dev->dev_private;
6248 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6249
6250 do_intel_finish_page_flip(dev, crtc);
6251 }
6252
6253 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6254 {
6255 drm_i915_private_t *dev_priv = dev->dev_private;
6256 struct intel_crtc *intel_crtc =
6257 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6258 unsigned long flags;
6259
6260 spin_lock_irqsave(&dev->event_lock, flags);
6261 if (intel_crtc->unpin_work) {
6262 if ((++intel_crtc->unpin_work->pending) > 1)
6263 DRM_ERROR("Prepared flip multiple times\n");
6264 } else {
6265 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6266 }
6267 spin_unlock_irqrestore(&dev->event_lock, flags);
6268 }
6269
6270 static int intel_gen2_queue_flip(struct drm_device *dev,
6271 struct drm_crtc *crtc,
6272 struct drm_framebuffer *fb,
6273 struct drm_i915_gem_object *obj)
6274 {
6275 struct drm_i915_private *dev_priv = dev->dev_private;
6276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6277 u32 flip_mask;
6278 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6279 int ret;
6280
6281 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6282 if (ret)
6283 goto err;
6284
6285 ret = intel_ring_begin(ring, 6);
6286 if (ret)
6287 goto err_unpin;
6288
6289 /* Can't queue multiple flips, so wait for the previous
6290 * one to finish before executing the next.
6291 */
6292 if (intel_crtc->plane)
6293 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6294 else
6295 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6296 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6297 intel_ring_emit(ring, MI_NOOP);
6298 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6299 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6300 intel_ring_emit(ring, fb->pitches[0]);
6301 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6302 intel_ring_emit(ring, 0); /* aux display base address, unused */
6303 intel_ring_advance(ring);
6304 return 0;
6305
6306 err_unpin:
6307 intel_unpin_fb_obj(obj);
6308 err:
6309 return ret;
6310 }
6311
6312 static int intel_gen3_queue_flip(struct drm_device *dev,
6313 struct drm_crtc *crtc,
6314 struct drm_framebuffer *fb,
6315 struct drm_i915_gem_object *obj)
6316 {
6317 struct drm_i915_private *dev_priv = dev->dev_private;
6318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6319 u32 flip_mask;
6320 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6321 int ret;
6322
6323 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6324 if (ret)
6325 goto err;
6326
6327 ret = intel_ring_begin(ring, 6);
6328 if (ret)
6329 goto err_unpin;
6330
6331 if (intel_crtc->plane)
6332 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6333 else
6334 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6335 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6336 intel_ring_emit(ring, MI_NOOP);
6337 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6338 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6339 intel_ring_emit(ring, fb->pitches[0]);
6340 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6341 intel_ring_emit(ring, MI_NOOP);
6342
6343 intel_ring_advance(ring);
6344 return 0;
6345
6346 err_unpin:
6347 intel_unpin_fb_obj(obj);
6348 err:
6349 return ret;
6350 }
6351
6352 static int intel_gen4_queue_flip(struct drm_device *dev,
6353 struct drm_crtc *crtc,
6354 struct drm_framebuffer *fb,
6355 struct drm_i915_gem_object *obj)
6356 {
6357 struct drm_i915_private *dev_priv = dev->dev_private;
6358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6359 uint32_t pf, pipesrc;
6360 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6361 int ret;
6362
6363 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6364 if (ret)
6365 goto err;
6366
6367 ret = intel_ring_begin(ring, 4);
6368 if (ret)
6369 goto err_unpin;
6370
6371 /* i965+ uses the linear or tiled offsets from the
6372 * Display Registers (which do not change across a page-flip)
6373 * so we need only reprogram the base address.
6374 */
6375 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6376 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6377 intel_ring_emit(ring, fb->pitches[0]);
6378 intel_ring_emit(ring,
6379 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6380 obj->tiling_mode);
6381
6382 /* XXX Enabling the panel-fitter across page-flip is so far
6383 * untested on non-native modes, so ignore it for now.
6384 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6385 */
6386 pf = 0;
6387 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6388 intel_ring_emit(ring, pf | pipesrc);
6389 intel_ring_advance(ring);
6390 return 0;
6391
6392 err_unpin:
6393 intel_unpin_fb_obj(obj);
6394 err:
6395 return ret;
6396 }
6397
6398 static int intel_gen6_queue_flip(struct drm_device *dev,
6399 struct drm_crtc *crtc,
6400 struct drm_framebuffer *fb,
6401 struct drm_i915_gem_object *obj)
6402 {
6403 struct drm_i915_private *dev_priv = dev->dev_private;
6404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6405 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6406 uint32_t pf, pipesrc;
6407 int ret;
6408
6409 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6410 if (ret)
6411 goto err;
6412
6413 ret = intel_ring_begin(ring, 4);
6414 if (ret)
6415 goto err_unpin;
6416
6417 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6418 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6419 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6420 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6421
6422 /* Contrary to the suggestions in the documentation,
6423 * "Enable Panel Fitter" does not seem to be required when page
6424 * flipping with a non-native mode, and worse causes a normal
6425 * modeset to fail.
6426 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6427 */
6428 pf = 0;
6429 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6430 intel_ring_emit(ring, pf | pipesrc);
6431 intel_ring_advance(ring);
6432 return 0;
6433
6434 err_unpin:
6435 intel_unpin_fb_obj(obj);
6436 err:
6437 return ret;
6438 }
6439
6440 /*
6441 * On gen7 we currently use the blit ring because (in early silicon at least)
6442 * the render ring doesn't give us interrpts for page flip completion, which
6443 * means clients will hang after the first flip is queued. Fortunately the
6444 * blit ring generates interrupts properly, so use it instead.
6445 */
6446 static int intel_gen7_queue_flip(struct drm_device *dev,
6447 struct drm_crtc *crtc,
6448 struct drm_framebuffer *fb,
6449 struct drm_i915_gem_object *obj)
6450 {
6451 struct drm_i915_private *dev_priv = dev->dev_private;
6452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6453 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6454 uint32_t plane_bit = 0;
6455 int ret;
6456
6457 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6458 if (ret)
6459 goto err;
6460
6461 switch(intel_crtc->plane) {
6462 case PLANE_A:
6463 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6464 break;
6465 case PLANE_B:
6466 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6467 break;
6468 case PLANE_C:
6469 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6470 break;
6471 default:
6472 WARN_ONCE(1, "unknown plane in flip command\n");
6473 ret = -ENODEV;
6474 goto err_unpin;
6475 }
6476
6477 ret = intel_ring_begin(ring, 4);
6478 if (ret)
6479 goto err_unpin;
6480
6481 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6482 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6483 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6484 intel_ring_emit(ring, (MI_NOOP));
6485 intel_ring_advance(ring);
6486 return 0;
6487
6488 err_unpin:
6489 intel_unpin_fb_obj(obj);
6490 err:
6491 return ret;
6492 }
6493
6494 static int intel_default_queue_flip(struct drm_device *dev,
6495 struct drm_crtc *crtc,
6496 struct drm_framebuffer *fb,
6497 struct drm_i915_gem_object *obj)
6498 {
6499 return -ENODEV;
6500 }
6501
6502 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6503 struct drm_framebuffer *fb,
6504 struct drm_pending_vblank_event *event)
6505 {
6506 struct drm_device *dev = crtc->dev;
6507 struct drm_i915_private *dev_priv = dev->dev_private;
6508 struct intel_framebuffer *intel_fb;
6509 struct drm_i915_gem_object *obj;
6510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6511 struct intel_unpin_work *work;
6512 unsigned long flags;
6513 int ret;
6514
6515 /* Can't change pixel format via MI display flips. */
6516 if (fb->pixel_format != crtc->fb->pixel_format)
6517 return -EINVAL;
6518
6519 /*
6520 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6521 * Note that pitch changes could also affect these register.
6522 */
6523 if (INTEL_INFO(dev)->gen > 3 &&
6524 (fb->offsets[0] != crtc->fb->offsets[0] ||
6525 fb->pitches[0] != crtc->fb->pitches[0]))
6526 return -EINVAL;
6527
6528 work = kzalloc(sizeof *work, GFP_KERNEL);
6529 if (work == NULL)
6530 return -ENOMEM;
6531
6532 work->event = event;
6533 work->dev = crtc->dev;
6534 intel_fb = to_intel_framebuffer(crtc->fb);
6535 work->old_fb_obj = intel_fb->obj;
6536 INIT_WORK(&work->work, intel_unpin_work_fn);
6537
6538 ret = drm_vblank_get(dev, intel_crtc->pipe);
6539 if (ret)
6540 goto free_work;
6541
6542 /* We borrow the event spin lock for protecting unpin_work */
6543 spin_lock_irqsave(&dev->event_lock, flags);
6544 if (intel_crtc->unpin_work) {
6545 spin_unlock_irqrestore(&dev->event_lock, flags);
6546 kfree(work);
6547 drm_vblank_put(dev, intel_crtc->pipe);
6548
6549 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6550 return -EBUSY;
6551 }
6552 intel_crtc->unpin_work = work;
6553 spin_unlock_irqrestore(&dev->event_lock, flags);
6554
6555 intel_fb = to_intel_framebuffer(fb);
6556 obj = intel_fb->obj;
6557
6558 ret = i915_mutex_lock_interruptible(dev);
6559 if (ret)
6560 goto cleanup;
6561
6562 /* Reference the objects for the scheduled work. */
6563 drm_gem_object_reference(&work->old_fb_obj->base);
6564 drm_gem_object_reference(&obj->base);
6565
6566 crtc->fb = fb;
6567
6568 work->pending_flip_obj = obj;
6569
6570 work->enable_stall_check = true;
6571
6572 /* Block clients from rendering to the new back buffer until
6573 * the flip occurs and the object is no longer visible.
6574 */
6575 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6576
6577 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6578 if (ret)
6579 goto cleanup_pending;
6580
6581 intel_disable_fbc(dev);
6582 intel_mark_fb_busy(obj);
6583 mutex_unlock(&dev->struct_mutex);
6584
6585 trace_i915_flip_request(intel_crtc->plane, obj);
6586
6587 return 0;
6588
6589 cleanup_pending:
6590 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6591 drm_gem_object_unreference(&work->old_fb_obj->base);
6592 drm_gem_object_unreference(&obj->base);
6593 mutex_unlock(&dev->struct_mutex);
6594
6595 cleanup:
6596 spin_lock_irqsave(&dev->event_lock, flags);
6597 intel_crtc->unpin_work = NULL;
6598 spin_unlock_irqrestore(&dev->event_lock, flags);
6599
6600 drm_vblank_put(dev, intel_crtc->pipe);
6601 free_work:
6602 kfree(work);
6603
6604 return ret;
6605 }
6606
6607 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6608 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6609 .load_lut = intel_crtc_load_lut,
6610 .disable = intel_crtc_noop,
6611 };
6612
6613 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
6614 {
6615 struct intel_encoder *other_encoder;
6616 struct drm_crtc *crtc = &encoder->new_crtc->base;
6617
6618 if (WARN_ON(!crtc))
6619 return false;
6620
6621 list_for_each_entry(other_encoder,
6622 &crtc->dev->mode_config.encoder_list,
6623 base.head) {
6624
6625 if (&other_encoder->new_crtc->base != crtc ||
6626 encoder == other_encoder)
6627 continue;
6628 else
6629 return true;
6630 }
6631
6632 return false;
6633 }
6634
6635 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6636 struct drm_crtc *crtc)
6637 {
6638 struct drm_device *dev;
6639 struct drm_crtc *tmp;
6640 int crtc_mask = 1;
6641
6642 WARN(!crtc, "checking null crtc?\n");
6643
6644 dev = crtc->dev;
6645
6646 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6647 if (tmp == crtc)
6648 break;
6649 crtc_mask <<= 1;
6650 }
6651
6652 if (encoder->possible_crtcs & crtc_mask)
6653 return true;
6654 return false;
6655 }
6656
6657 /**
6658 * intel_modeset_update_staged_output_state
6659 *
6660 * Updates the staged output configuration state, e.g. after we've read out the
6661 * current hw state.
6662 */
6663 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
6664 {
6665 struct intel_encoder *encoder;
6666 struct intel_connector *connector;
6667
6668 list_for_each_entry(connector, &dev->mode_config.connector_list,
6669 base.head) {
6670 connector->new_encoder =
6671 to_intel_encoder(connector->base.encoder);
6672 }
6673
6674 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6675 base.head) {
6676 encoder->new_crtc =
6677 to_intel_crtc(encoder->base.crtc);
6678 }
6679 }
6680
6681 /**
6682 * intel_modeset_commit_output_state
6683 *
6684 * This function copies the stage display pipe configuration to the real one.
6685 */
6686 static void intel_modeset_commit_output_state(struct drm_device *dev)
6687 {
6688 struct intel_encoder *encoder;
6689 struct intel_connector *connector;
6690
6691 list_for_each_entry(connector, &dev->mode_config.connector_list,
6692 base.head) {
6693 connector->base.encoder = &connector->new_encoder->base;
6694 }
6695
6696 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6697 base.head) {
6698 encoder->base.crtc = &encoder->new_crtc->base;
6699 }
6700 }
6701
6702 static struct drm_display_mode *
6703 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6704 struct drm_display_mode *mode)
6705 {
6706 struct drm_device *dev = crtc->dev;
6707 struct drm_display_mode *adjusted_mode;
6708 struct drm_encoder_helper_funcs *encoder_funcs;
6709 struct intel_encoder *encoder;
6710
6711 adjusted_mode = drm_mode_duplicate(dev, mode);
6712 if (!adjusted_mode)
6713 return ERR_PTR(-ENOMEM);
6714
6715 /* Pass our mode to the connectors and the CRTC to give them a chance to
6716 * adjust it according to limitations or connector properties, and also
6717 * a chance to reject the mode entirely.
6718 */
6719 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6720 base.head) {
6721
6722 if (&encoder->new_crtc->base != crtc)
6723 continue;
6724 encoder_funcs = encoder->base.helper_private;
6725 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6726 adjusted_mode))) {
6727 DRM_DEBUG_KMS("Encoder fixup failed\n");
6728 goto fail;
6729 }
6730 }
6731
6732 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6733 DRM_DEBUG_KMS("CRTC fixup failed\n");
6734 goto fail;
6735 }
6736 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6737
6738 return adjusted_mode;
6739 fail:
6740 drm_mode_destroy(dev, adjusted_mode);
6741 return ERR_PTR(-EINVAL);
6742 }
6743
6744 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
6745 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6746 static void
6747 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6748 unsigned *prepare_pipes, unsigned *disable_pipes)
6749 {
6750 struct intel_crtc *intel_crtc;
6751 struct drm_device *dev = crtc->dev;
6752 struct intel_encoder *encoder;
6753 struct intel_connector *connector;
6754 struct drm_crtc *tmp_crtc;
6755
6756 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
6757
6758 /* Check which crtcs have changed outputs connected to them, these need
6759 * to be part of the prepare_pipes mask. We don't (yet) support global
6760 * modeset across multiple crtcs, so modeset_pipes will only have one
6761 * bit set at most. */
6762 list_for_each_entry(connector, &dev->mode_config.connector_list,
6763 base.head) {
6764 if (connector->base.encoder == &connector->new_encoder->base)
6765 continue;
6766
6767 if (connector->base.encoder) {
6768 tmp_crtc = connector->base.encoder->crtc;
6769
6770 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6771 }
6772
6773 if (connector->new_encoder)
6774 *prepare_pipes |=
6775 1 << connector->new_encoder->new_crtc->pipe;
6776 }
6777
6778 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6779 base.head) {
6780 if (encoder->base.crtc == &encoder->new_crtc->base)
6781 continue;
6782
6783 if (encoder->base.crtc) {
6784 tmp_crtc = encoder->base.crtc;
6785
6786 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6787 }
6788
6789 if (encoder->new_crtc)
6790 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
6791 }
6792
6793 /* Check for any pipes that will be fully disabled ... */
6794 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6795 base.head) {
6796 bool used = false;
6797
6798 /* Don't try to disable disabled crtcs. */
6799 if (!intel_crtc->base.enabled)
6800 continue;
6801
6802 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6803 base.head) {
6804 if (encoder->new_crtc == intel_crtc)
6805 used = true;
6806 }
6807
6808 if (!used)
6809 *disable_pipes |= 1 << intel_crtc->pipe;
6810 }
6811
6812
6813 /* set_mode is also used to update properties on life display pipes. */
6814 intel_crtc = to_intel_crtc(crtc);
6815 if (crtc->enabled)
6816 *prepare_pipes |= 1 << intel_crtc->pipe;
6817
6818 /* We only support modeset on one single crtc, hence we need to do that
6819 * only for the passed in crtc iff we change anything else than just
6820 * disable crtcs.
6821 *
6822 * This is actually not true, to be fully compatible with the old crtc
6823 * helper we automatically disable _any_ output (i.e. doesn't need to be
6824 * connected to the crtc we're modesetting on) if it's disconnected.
6825 * Which is a rather nutty api (since changed the output configuration
6826 * without userspace's explicit request can lead to confusion), but
6827 * alas. Hence we currently need to modeset on all pipes we prepare. */
6828 if (*prepare_pipes)
6829 *modeset_pipes = *prepare_pipes;
6830
6831 /* ... and mask these out. */
6832 *modeset_pipes &= ~(*disable_pipes);
6833 *prepare_pipes &= ~(*disable_pipes);
6834 }
6835
6836 static bool intel_crtc_in_use(struct drm_crtc *crtc)
6837 {
6838 struct drm_encoder *encoder;
6839 struct drm_device *dev = crtc->dev;
6840
6841 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6842 if (encoder->crtc == crtc)
6843 return true;
6844
6845 return false;
6846 }
6847
6848 static void
6849 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6850 {
6851 struct intel_encoder *intel_encoder;
6852 struct intel_crtc *intel_crtc;
6853 struct drm_connector *connector;
6854
6855 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6856 base.head) {
6857 if (!intel_encoder->base.crtc)
6858 continue;
6859
6860 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6861
6862 if (prepare_pipes & (1 << intel_crtc->pipe))
6863 intel_encoder->connectors_active = false;
6864 }
6865
6866 intel_modeset_commit_output_state(dev);
6867
6868 /* Update computed state. */
6869 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6870 base.head) {
6871 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6872 }
6873
6874 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6875 if (!connector->encoder || !connector->encoder->crtc)
6876 continue;
6877
6878 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6879
6880 if (prepare_pipes & (1 << intel_crtc->pipe)) {
6881 struct drm_property *dpms_property =
6882 dev->mode_config.dpms_property;
6883
6884 connector->dpms = DRM_MODE_DPMS_ON;
6885 drm_connector_property_set_value(connector,
6886 dpms_property,
6887 DRM_MODE_DPMS_ON);
6888
6889 intel_encoder = to_intel_encoder(connector->encoder);
6890 intel_encoder->connectors_active = true;
6891 }
6892 }
6893
6894 }
6895
6896 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6897 list_for_each_entry((intel_crtc), \
6898 &(dev)->mode_config.crtc_list, \
6899 base.head) \
6900 if (mask & (1 <<(intel_crtc)->pipe)) \
6901
6902 void
6903 intel_modeset_check_state(struct drm_device *dev)
6904 {
6905 struct intel_crtc *crtc;
6906 struct intel_encoder *encoder;
6907 struct intel_connector *connector;
6908
6909 list_for_each_entry(connector, &dev->mode_config.connector_list,
6910 base.head) {
6911 /* This also checks the encoder/connector hw state with the
6912 * ->get_hw_state callbacks. */
6913 intel_connector_check_state(connector);
6914
6915 WARN(&connector->new_encoder->base != connector->base.encoder,
6916 "connector's staged encoder doesn't match current encoder\n");
6917 }
6918
6919 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6920 base.head) {
6921 bool enabled = false;
6922 bool active = false;
6923 enum pipe pipe, tracked_pipe;
6924
6925 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
6926 encoder->base.base.id,
6927 drm_get_encoder_name(&encoder->base));
6928
6929 WARN(&encoder->new_crtc->base != encoder->base.crtc,
6930 "encoder's stage crtc doesn't match current crtc\n");
6931 WARN(encoder->connectors_active && !encoder->base.crtc,
6932 "encoder's active_connectors set, but no crtc\n");
6933
6934 list_for_each_entry(connector, &dev->mode_config.connector_list,
6935 base.head) {
6936 if (connector->base.encoder != &encoder->base)
6937 continue;
6938 enabled = true;
6939 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
6940 active = true;
6941 }
6942 WARN(!!encoder->base.crtc != enabled,
6943 "encoder's enabled state mismatch "
6944 "(expected %i, found %i)\n",
6945 !!encoder->base.crtc, enabled);
6946 WARN(active && !encoder->base.crtc,
6947 "active encoder with no crtc\n");
6948
6949 WARN(encoder->connectors_active != active,
6950 "encoder's computed active state doesn't match tracked active state "
6951 "(expected %i, found %i)\n", active, encoder->connectors_active);
6952
6953 active = encoder->get_hw_state(encoder, &pipe);
6954 WARN(active != encoder->connectors_active,
6955 "encoder's hw state doesn't match sw tracking "
6956 "(expected %i, found %i)\n",
6957 encoder->connectors_active, active);
6958
6959 if (!encoder->base.crtc)
6960 continue;
6961
6962 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
6963 WARN(active && pipe != tracked_pipe,
6964 "active encoder's pipe doesn't match"
6965 "(expected %i, found %i)\n",
6966 tracked_pipe, pipe);
6967
6968 }
6969
6970 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
6971 base.head) {
6972 bool enabled = false;
6973 bool active = false;
6974
6975 DRM_DEBUG_KMS("[CRTC:%d]\n",
6976 crtc->base.base.id);
6977
6978 WARN(crtc->active && !crtc->base.enabled,
6979 "active crtc, but not enabled in sw tracking\n");
6980
6981 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6982 base.head) {
6983 if (encoder->base.crtc != &crtc->base)
6984 continue;
6985 enabled = true;
6986 if (encoder->connectors_active)
6987 active = true;
6988 }
6989 WARN(active != crtc->active,
6990 "crtc's computed active state doesn't match tracked active state "
6991 "(expected %i, found %i)\n", active, crtc->active);
6992 WARN(enabled != crtc->base.enabled,
6993 "crtc's computed enabled state doesn't match tracked enabled state "
6994 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
6995
6996 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
6997 }
6998 }
6999
7000 bool intel_set_mode(struct drm_crtc *crtc,
7001 struct drm_display_mode *mode,
7002 int x, int y, struct drm_framebuffer *fb)
7003 {
7004 struct drm_device *dev = crtc->dev;
7005 drm_i915_private_t *dev_priv = dev->dev_private;
7006 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7007 struct drm_encoder_helper_funcs *encoder_funcs;
7008 struct drm_encoder *encoder;
7009 struct intel_crtc *intel_crtc;
7010 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7011 bool ret = true;
7012
7013 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7014 &prepare_pipes, &disable_pipes);
7015
7016 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7017 modeset_pipes, prepare_pipes, disable_pipes);
7018
7019 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7020 intel_crtc_disable(&intel_crtc->base);
7021
7022 saved_hwmode = crtc->hwmode;
7023 saved_mode = crtc->mode;
7024
7025 /* Hack: Because we don't (yet) support global modeset on multiple
7026 * crtcs, we don't keep track of the new mode for more than one crtc.
7027 * Hence simply check whether any bit is set in modeset_pipes in all the
7028 * pieces of code that are not yet converted to deal with mutliple crtcs
7029 * changing their mode at the same time. */
7030 adjusted_mode = NULL;
7031 if (modeset_pipes) {
7032 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7033 if (IS_ERR(adjusted_mode)) {
7034 return false;
7035 }
7036 }
7037
7038 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7039 if (intel_crtc->base.enabled)
7040 dev_priv->display.crtc_disable(&intel_crtc->base);
7041 }
7042
7043 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7044 * to set it here already despite that we pass it down the callchain.
7045 */
7046 if (modeset_pipes)
7047 crtc->mode = *mode;
7048
7049 /* Only after disabling all output pipelines that will be changed can we
7050 * update the the output configuration. */
7051 intel_modeset_update_state(dev, prepare_pipes);
7052
7053 /* Set up the DPLL and any encoders state that needs to adjust or depend
7054 * on the DPLL.
7055 */
7056 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7057 ret = !intel_crtc_mode_set(&intel_crtc->base,
7058 mode, adjusted_mode,
7059 x, y, fb);
7060 if (!ret)
7061 goto done;
7062
7063 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7064
7065 if (encoder->crtc != &intel_crtc->base)
7066 continue;
7067
7068 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7069 encoder->base.id, drm_get_encoder_name(encoder),
7070 mode->base.id, mode->name);
7071 encoder_funcs = encoder->helper_private;
7072 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7073 }
7074 }
7075
7076 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7077 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7078 dev_priv->display.crtc_enable(&intel_crtc->base);
7079
7080 if (modeset_pipes) {
7081 /* Store real post-adjustment hardware mode. */
7082 crtc->hwmode = *adjusted_mode;
7083
7084 /* Calculate and store various constants which
7085 * are later needed by vblank and swap-completion
7086 * timestamping. They are derived from true hwmode.
7087 */
7088 drm_calc_timestamping_constants(crtc);
7089 }
7090
7091 /* FIXME: add subpixel order */
7092 done:
7093 drm_mode_destroy(dev, adjusted_mode);
7094 if (!ret && crtc->enabled) {
7095 crtc->hwmode = saved_hwmode;
7096 crtc->mode = saved_mode;
7097 } else {
7098 intel_modeset_check_state(dev);
7099 }
7100
7101 return ret;
7102 }
7103
7104 #undef for_each_intel_crtc_masked
7105
7106 static void intel_set_config_free(struct intel_set_config *config)
7107 {
7108 if (!config)
7109 return;
7110
7111 kfree(config->save_connector_encoders);
7112 kfree(config->save_encoder_crtcs);
7113 kfree(config);
7114 }
7115
7116 static int intel_set_config_save_state(struct drm_device *dev,
7117 struct intel_set_config *config)
7118 {
7119 struct drm_encoder *encoder;
7120 struct drm_connector *connector;
7121 int count;
7122
7123 config->save_encoder_crtcs =
7124 kcalloc(dev->mode_config.num_encoder,
7125 sizeof(struct drm_crtc *), GFP_KERNEL);
7126 if (!config->save_encoder_crtcs)
7127 return -ENOMEM;
7128
7129 config->save_connector_encoders =
7130 kcalloc(dev->mode_config.num_connector,
7131 sizeof(struct drm_encoder *), GFP_KERNEL);
7132 if (!config->save_connector_encoders)
7133 return -ENOMEM;
7134
7135 /* Copy data. Note that driver private data is not affected.
7136 * Should anything bad happen only the expected state is
7137 * restored, not the drivers personal bookkeeping.
7138 */
7139 count = 0;
7140 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7141 config->save_encoder_crtcs[count++] = encoder->crtc;
7142 }
7143
7144 count = 0;
7145 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7146 config->save_connector_encoders[count++] = connector->encoder;
7147 }
7148
7149 return 0;
7150 }
7151
7152 static void intel_set_config_restore_state(struct drm_device *dev,
7153 struct intel_set_config *config)
7154 {
7155 struct intel_encoder *encoder;
7156 struct intel_connector *connector;
7157 int count;
7158
7159 count = 0;
7160 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7161 encoder->new_crtc =
7162 to_intel_crtc(config->save_encoder_crtcs[count++]);
7163 }
7164
7165 count = 0;
7166 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7167 connector->new_encoder =
7168 to_intel_encoder(config->save_connector_encoders[count++]);
7169 }
7170 }
7171
7172 static void
7173 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7174 struct intel_set_config *config)
7175 {
7176
7177 /* We should be able to check here if the fb has the same properties
7178 * and then just flip_or_move it */
7179 if (set->crtc->fb != set->fb) {
7180 /* If we have no fb then treat it as a full mode set */
7181 if (set->crtc->fb == NULL) {
7182 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7183 config->mode_changed = true;
7184 } else if (set->fb == NULL) {
7185 config->mode_changed = true;
7186 } else if (set->fb->depth != set->crtc->fb->depth) {
7187 config->mode_changed = true;
7188 } else if (set->fb->bits_per_pixel !=
7189 set->crtc->fb->bits_per_pixel) {
7190 config->mode_changed = true;
7191 } else
7192 config->fb_changed = true;
7193 }
7194
7195 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7196 config->fb_changed = true;
7197
7198 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7199 DRM_DEBUG_KMS("modes are different, full mode set\n");
7200 drm_mode_debug_printmodeline(&set->crtc->mode);
7201 drm_mode_debug_printmodeline(set->mode);
7202 config->mode_changed = true;
7203 }
7204 }
7205
7206 static int
7207 intel_modeset_stage_output_state(struct drm_device *dev,
7208 struct drm_mode_set *set,
7209 struct intel_set_config *config)
7210 {
7211 struct drm_crtc *new_crtc;
7212 struct intel_connector *connector;
7213 struct intel_encoder *encoder;
7214 int count, ro;
7215
7216 /* The upper layers ensure that we either disabl a crtc or have a list
7217 * of connectors. For paranoia, double-check this. */
7218 WARN_ON(!set->fb && (set->num_connectors != 0));
7219 WARN_ON(set->fb && (set->num_connectors == 0));
7220
7221 count = 0;
7222 list_for_each_entry(connector, &dev->mode_config.connector_list,
7223 base.head) {
7224 /* Otherwise traverse passed in connector list and get encoders
7225 * for them. */
7226 for (ro = 0; ro < set->num_connectors; ro++) {
7227 if (set->connectors[ro] == &connector->base) {
7228 connector->new_encoder = connector->encoder;
7229 break;
7230 }
7231 }
7232
7233 /* If we disable the crtc, disable all its connectors. Also, if
7234 * the connector is on the changing crtc but not on the new
7235 * connector list, disable it. */
7236 if ((!set->fb || ro == set->num_connectors) &&
7237 connector->base.encoder &&
7238 connector->base.encoder->crtc == set->crtc) {
7239 connector->new_encoder = NULL;
7240
7241 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7242 connector->base.base.id,
7243 drm_get_connector_name(&connector->base));
7244 }
7245
7246
7247 if (&connector->new_encoder->base != connector->base.encoder) {
7248 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7249 config->mode_changed = true;
7250 }
7251
7252 /* Disable all disconnected encoders. */
7253 if (connector->base.status == connector_status_disconnected)
7254 connector->new_encoder = NULL;
7255 }
7256 /* connector->new_encoder is now updated for all connectors. */
7257
7258 /* Update crtc of enabled connectors. */
7259 count = 0;
7260 list_for_each_entry(connector, &dev->mode_config.connector_list,
7261 base.head) {
7262 if (!connector->new_encoder)
7263 continue;
7264
7265 new_crtc = connector->new_encoder->base.crtc;
7266
7267 for (ro = 0; ro < set->num_connectors; ro++) {
7268 if (set->connectors[ro] == &connector->base)
7269 new_crtc = set->crtc;
7270 }
7271
7272 /* Make sure the new CRTC will work with the encoder */
7273 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7274 new_crtc)) {
7275 return -EINVAL;
7276 }
7277 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7278
7279 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7280 connector->base.base.id,
7281 drm_get_connector_name(&connector->base),
7282 new_crtc->base.id);
7283 }
7284
7285 /* Check for any encoders that needs to be disabled. */
7286 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7287 base.head) {
7288 list_for_each_entry(connector,
7289 &dev->mode_config.connector_list,
7290 base.head) {
7291 if (connector->new_encoder == encoder) {
7292 WARN_ON(!connector->new_encoder->new_crtc);
7293
7294 goto next_encoder;
7295 }
7296 }
7297 encoder->new_crtc = NULL;
7298 next_encoder:
7299 /* Only now check for crtc changes so we don't miss encoders
7300 * that will be disabled. */
7301 if (&encoder->new_crtc->base != encoder->base.crtc) {
7302 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7303 config->mode_changed = true;
7304 }
7305 }
7306 /* Now we've also updated encoder->new_crtc for all encoders. */
7307
7308 return 0;
7309 }
7310
7311 static int intel_crtc_set_config(struct drm_mode_set *set)
7312 {
7313 struct drm_device *dev;
7314 struct drm_mode_set save_set;
7315 struct intel_set_config *config;
7316 int ret;
7317
7318 BUG_ON(!set);
7319 BUG_ON(!set->crtc);
7320 BUG_ON(!set->crtc->helper_private);
7321
7322 if (!set->mode)
7323 set->fb = NULL;
7324
7325 /* The fb helper likes to play gross jokes with ->mode_set_config.
7326 * Unfortunately the crtc helper doesn't do much at all for this case,
7327 * so we have to cope with this madness until the fb helper is fixed up. */
7328 if (set->fb && set->num_connectors == 0)
7329 return 0;
7330
7331 if (set->fb) {
7332 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7333 set->crtc->base.id, set->fb->base.id,
7334 (int)set->num_connectors, set->x, set->y);
7335 } else {
7336 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7337 }
7338
7339 dev = set->crtc->dev;
7340
7341 ret = -ENOMEM;
7342 config = kzalloc(sizeof(*config), GFP_KERNEL);
7343 if (!config)
7344 goto out_config;
7345
7346 ret = intel_set_config_save_state(dev, config);
7347 if (ret)
7348 goto out_config;
7349
7350 save_set.crtc = set->crtc;
7351 save_set.mode = &set->crtc->mode;
7352 save_set.x = set->crtc->x;
7353 save_set.y = set->crtc->y;
7354 save_set.fb = set->crtc->fb;
7355
7356 /* Compute whether we need a full modeset, only an fb base update or no
7357 * change at all. In the future we might also check whether only the
7358 * mode changed, e.g. for LVDS where we only change the panel fitter in
7359 * such cases. */
7360 intel_set_config_compute_mode_changes(set, config);
7361
7362 ret = intel_modeset_stage_output_state(dev, set, config);
7363 if (ret)
7364 goto fail;
7365
7366 if (config->mode_changed) {
7367 if (set->mode) {
7368 DRM_DEBUG_KMS("attempting to set mode from"
7369 " userspace\n");
7370 drm_mode_debug_printmodeline(set->mode);
7371 }
7372
7373 if (!intel_set_mode(set->crtc, set->mode,
7374 set->x, set->y, set->fb)) {
7375 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7376 set->crtc->base.id);
7377 ret = -EINVAL;
7378 goto fail;
7379 }
7380 } else if (config->fb_changed) {
7381 ret = intel_pipe_set_base(set->crtc,
7382 set->x, set->y, set->fb);
7383 }
7384
7385 intel_set_config_free(config);
7386
7387 return 0;
7388
7389 fail:
7390 intel_set_config_restore_state(dev, config);
7391
7392 /* Try to restore the config */
7393 if (config->mode_changed &&
7394 !intel_set_mode(save_set.crtc, save_set.mode,
7395 save_set.x, save_set.y, save_set.fb))
7396 DRM_ERROR("failed to restore config after modeset failure\n");
7397
7398 out_config:
7399 intel_set_config_free(config);
7400 return ret;
7401 }
7402
7403 static const struct drm_crtc_funcs intel_crtc_funcs = {
7404 .cursor_set = intel_crtc_cursor_set,
7405 .cursor_move = intel_crtc_cursor_move,
7406 .gamma_set = intel_crtc_gamma_set,
7407 .set_config = intel_crtc_set_config,
7408 .destroy = intel_crtc_destroy,
7409 .page_flip = intel_crtc_page_flip,
7410 };
7411
7412 static void intel_pch_pll_init(struct drm_device *dev)
7413 {
7414 drm_i915_private_t *dev_priv = dev->dev_private;
7415 int i;
7416
7417 if (dev_priv->num_pch_pll == 0) {
7418 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7419 return;
7420 }
7421
7422 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7423 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7424 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7425 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7426 }
7427 }
7428
7429 static void intel_crtc_init(struct drm_device *dev, int pipe)
7430 {
7431 drm_i915_private_t *dev_priv = dev->dev_private;
7432 struct intel_crtc *intel_crtc;
7433 int i;
7434
7435 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7436 if (intel_crtc == NULL)
7437 return;
7438
7439 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7440
7441 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7442 for (i = 0; i < 256; i++) {
7443 intel_crtc->lut_r[i] = i;
7444 intel_crtc->lut_g[i] = i;
7445 intel_crtc->lut_b[i] = i;
7446 }
7447
7448 /* Swap pipes & planes for FBC on pre-965 */
7449 intel_crtc->pipe = pipe;
7450 intel_crtc->plane = pipe;
7451 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7452 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7453 intel_crtc->plane = !pipe;
7454 }
7455
7456 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7457 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7458 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7459 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7460
7461 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7462
7463 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7464 }
7465
7466 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7467 struct drm_file *file)
7468 {
7469 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7470 struct drm_mode_object *drmmode_obj;
7471 struct intel_crtc *crtc;
7472
7473 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7474 return -ENODEV;
7475
7476 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7477 DRM_MODE_OBJECT_CRTC);
7478
7479 if (!drmmode_obj) {
7480 DRM_ERROR("no such CRTC id\n");
7481 return -EINVAL;
7482 }
7483
7484 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7485 pipe_from_crtc_id->pipe = crtc->pipe;
7486
7487 return 0;
7488 }
7489
7490 static int intel_encoder_clones(struct intel_encoder *encoder)
7491 {
7492 struct drm_device *dev = encoder->base.dev;
7493 struct intel_encoder *source_encoder;
7494 int index_mask = 0;
7495 int entry = 0;
7496
7497 list_for_each_entry(source_encoder,
7498 &dev->mode_config.encoder_list, base.head) {
7499
7500 if (encoder == source_encoder)
7501 index_mask |= (1 << entry);
7502
7503 /* Intel hw has only one MUX where enocoders could be cloned. */
7504 if (encoder->cloneable && source_encoder->cloneable)
7505 index_mask |= (1 << entry);
7506
7507 entry++;
7508 }
7509
7510 return index_mask;
7511 }
7512
7513 static bool has_edp_a(struct drm_device *dev)
7514 {
7515 struct drm_i915_private *dev_priv = dev->dev_private;
7516
7517 if (!IS_MOBILE(dev))
7518 return false;
7519
7520 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7521 return false;
7522
7523 if (IS_GEN5(dev) &&
7524 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7525 return false;
7526
7527 return true;
7528 }
7529
7530 static void intel_setup_outputs(struct drm_device *dev)
7531 {
7532 struct drm_i915_private *dev_priv = dev->dev_private;
7533 struct intel_encoder *encoder;
7534 bool dpd_is_edp = false;
7535 bool has_lvds;
7536
7537 has_lvds = intel_lvds_init(dev);
7538 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7539 /* disable the panel fitter on everything but LVDS */
7540 I915_WRITE(PFIT_CONTROL, 0);
7541 }
7542
7543 if (HAS_PCH_SPLIT(dev)) {
7544 dpd_is_edp = intel_dpd_is_edp(dev);
7545
7546 if (has_edp_a(dev))
7547 intel_dp_init(dev, DP_A, PORT_A);
7548
7549 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7550 intel_dp_init(dev, PCH_DP_D, PORT_D);
7551 }
7552
7553 intel_crt_init(dev);
7554
7555 if (IS_HASWELL(dev)) {
7556 int found;
7557
7558 /* Haswell uses DDI functions to detect digital outputs */
7559 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7560 /* DDI A only supports eDP */
7561 if (found)
7562 intel_ddi_init(dev, PORT_A);
7563
7564 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7565 * register */
7566 found = I915_READ(SFUSE_STRAP);
7567
7568 if (found & SFUSE_STRAP_DDIB_DETECTED)
7569 intel_ddi_init(dev, PORT_B);
7570 if (found & SFUSE_STRAP_DDIC_DETECTED)
7571 intel_ddi_init(dev, PORT_C);
7572 if (found & SFUSE_STRAP_DDID_DETECTED)
7573 intel_ddi_init(dev, PORT_D);
7574 } else if (HAS_PCH_SPLIT(dev)) {
7575 int found;
7576
7577 if (I915_READ(HDMIB) & PORT_DETECTED) {
7578 /* PCH SDVOB multiplex with HDMIB */
7579 found = intel_sdvo_init(dev, PCH_SDVOB, true);
7580 if (!found)
7581 intel_hdmi_init(dev, HDMIB, PORT_B);
7582 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7583 intel_dp_init(dev, PCH_DP_B, PORT_B);
7584 }
7585
7586 if (I915_READ(HDMIC) & PORT_DETECTED)
7587 intel_hdmi_init(dev, HDMIC, PORT_C);
7588
7589 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7590 intel_hdmi_init(dev, HDMID, PORT_D);
7591
7592 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7593 intel_dp_init(dev, PCH_DP_C, PORT_C);
7594
7595 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7596 intel_dp_init(dev, PCH_DP_D, PORT_D);
7597 } else if (IS_VALLEYVIEW(dev)) {
7598 int found;
7599
7600 if (I915_READ(SDVOB) & PORT_DETECTED) {
7601 /* SDVOB multiplex with HDMIB */
7602 found = intel_sdvo_init(dev, SDVOB, true);
7603 if (!found)
7604 intel_hdmi_init(dev, SDVOB, PORT_B);
7605 if (!found && (I915_READ(DP_B) & DP_DETECTED))
7606 intel_dp_init(dev, DP_B, PORT_B);
7607 }
7608
7609 if (I915_READ(SDVOC) & PORT_DETECTED)
7610 intel_hdmi_init(dev, SDVOC, PORT_C);
7611
7612 /* Shares lanes with HDMI on SDVOC */
7613 if (I915_READ(DP_C) & DP_DETECTED)
7614 intel_dp_init(dev, DP_C, PORT_C);
7615 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7616 bool found = false;
7617
7618 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7619 DRM_DEBUG_KMS("probing SDVOB\n");
7620 found = intel_sdvo_init(dev, SDVOB, true);
7621 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7622 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7623 intel_hdmi_init(dev, SDVOB, PORT_B);
7624 }
7625
7626 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7627 DRM_DEBUG_KMS("probing DP_B\n");
7628 intel_dp_init(dev, DP_B, PORT_B);
7629 }
7630 }
7631
7632 /* Before G4X SDVOC doesn't have its own detect register */
7633
7634 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7635 DRM_DEBUG_KMS("probing SDVOC\n");
7636 found = intel_sdvo_init(dev, SDVOC, false);
7637 }
7638
7639 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7640
7641 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7642 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7643 intel_hdmi_init(dev, SDVOC, PORT_C);
7644 }
7645 if (SUPPORTS_INTEGRATED_DP(dev)) {
7646 DRM_DEBUG_KMS("probing DP_C\n");
7647 intel_dp_init(dev, DP_C, PORT_C);
7648 }
7649 }
7650
7651 if (SUPPORTS_INTEGRATED_DP(dev) &&
7652 (I915_READ(DP_D) & DP_DETECTED)) {
7653 DRM_DEBUG_KMS("probing DP_D\n");
7654 intel_dp_init(dev, DP_D, PORT_D);
7655 }
7656 } else if (IS_GEN2(dev))
7657 intel_dvo_init(dev);
7658
7659 if (SUPPORTS_TV(dev))
7660 intel_tv_init(dev);
7661
7662 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7663 encoder->base.possible_crtcs = encoder->crtc_mask;
7664 encoder->base.possible_clones =
7665 intel_encoder_clones(encoder);
7666 }
7667
7668 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7669 ironlake_init_pch_refclk(dev);
7670 }
7671
7672 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7673 {
7674 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7675
7676 drm_framebuffer_cleanup(fb);
7677 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7678
7679 kfree(intel_fb);
7680 }
7681
7682 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7683 struct drm_file *file,
7684 unsigned int *handle)
7685 {
7686 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7687 struct drm_i915_gem_object *obj = intel_fb->obj;
7688
7689 return drm_gem_handle_create(file, &obj->base, handle);
7690 }
7691
7692 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7693 .destroy = intel_user_framebuffer_destroy,
7694 .create_handle = intel_user_framebuffer_create_handle,
7695 };
7696
7697 int intel_framebuffer_init(struct drm_device *dev,
7698 struct intel_framebuffer *intel_fb,
7699 struct drm_mode_fb_cmd2 *mode_cmd,
7700 struct drm_i915_gem_object *obj)
7701 {
7702 int ret;
7703
7704 if (obj->tiling_mode == I915_TILING_Y)
7705 return -EINVAL;
7706
7707 if (mode_cmd->pitches[0] & 63)
7708 return -EINVAL;
7709
7710 switch (mode_cmd->pixel_format) {
7711 case DRM_FORMAT_RGB332:
7712 case DRM_FORMAT_RGB565:
7713 case DRM_FORMAT_XRGB8888:
7714 case DRM_FORMAT_XBGR8888:
7715 case DRM_FORMAT_ARGB8888:
7716 case DRM_FORMAT_XRGB2101010:
7717 case DRM_FORMAT_ARGB2101010:
7718 /* RGB formats are common across chipsets */
7719 break;
7720 case DRM_FORMAT_YUYV:
7721 case DRM_FORMAT_UYVY:
7722 case DRM_FORMAT_YVYU:
7723 case DRM_FORMAT_VYUY:
7724 break;
7725 default:
7726 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7727 mode_cmd->pixel_format);
7728 return -EINVAL;
7729 }
7730
7731 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7732 if (ret) {
7733 DRM_ERROR("framebuffer init failed %d\n", ret);
7734 return ret;
7735 }
7736
7737 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7738 intel_fb->obj = obj;
7739 return 0;
7740 }
7741
7742 static struct drm_framebuffer *
7743 intel_user_framebuffer_create(struct drm_device *dev,
7744 struct drm_file *filp,
7745 struct drm_mode_fb_cmd2 *mode_cmd)
7746 {
7747 struct drm_i915_gem_object *obj;
7748
7749 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7750 mode_cmd->handles[0]));
7751 if (&obj->base == NULL)
7752 return ERR_PTR(-ENOENT);
7753
7754 return intel_framebuffer_create(dev, mode_cmd, obj);
7755 }
7756
7757 static const struct drm_mode_config_funcs intel_mode_funcs = {
7758 .fb_create = intel_user_framebuffer_create,
7759 .output_poll_changed = intel_fb_output_poll_changed,
7760 };
7761
7762 /* Set up chip specific display functions */
7763 static void intel_init_display(struct drm_device *dev)
7764 {
7765 struct drm_i915_private *dev_priv = dev->dev_private;
7766
7767 /* We always want a DPMS function */
7768 if (HAS_PCH_SPLIT(dev)) {
7769 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7770 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7771 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7772 dev_priv->display.off = ironlake_crtc_off;
7773 dev_priv->display.update_plane = ironlake_update_plane;
7774 } else {
7775 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7776 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7777 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7778 dev_priv->display.off = i9xx_crtc_off;
7779 dev_priv->display.update_plane = i9xx_update_plane;
7780 }
7781
7782 /* Returns the core display clock speed */
7783 if (IS_VALLEYVIEW(dev))
7784 dev_priv->display.get_display_clock_speed =
7785 valleyview_get_display_clock_speed;
7786 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7787 dev_priv->display.get_display_clock_speed =
7788 i945_get_display_clock_speed;
7789 else if (IS_I915G(dev))
7790 dev_priv->display.get_display_clock_speed =
7791 i915_get_display_clock_speed;
7792 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7793 dev_priv->display.get_display_clock_speed =
7794 i9xx_misc_get_display_clock_speed;
7795 else if (IS_I915GM(dev))
7796 dev_priv->display.get_display_clock_speed =
7797 i915gm_get_display_clock_speed;
7798 else if (IS_I865G(dev))
7799 dev_priv->display.get_display_clock_speed =
7800 i865_get_display_clock_speed;
7801 else if (IS_I85X(dev))
7802 dev_priv->display.get_display_clock_speed =
7803 i855_get_display_clock_speed;
7804 else /* 852, 830 */
7805 dev_priv->display.get_display_clock_speed =
7806 i830_get_display_clock_speed;
7807
7808 if (HAS_PCH_SPLIT(dev)) {
7809 if (IS_GEN5(dev)) {
7810 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7811 dev_priv->display.write_eld = ironlake_write_eld;
7812 } else if (IS_GEN6(dev)) {
7813 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7814 dev_priv->display.write_eld = ironlake_write_eld;
7815 } else if (IS_IVYBRIDGE(dev)) {
7816 /* FIXME: detect B0+ stepping and use auto training */
7817 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7818 dev_priv->display.write_eld = ironlake_write_eld;
7819 } else if (IS_HASWELL(dev)) {
7820 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7821 dev_priv->display.write_eld = haswell_write_eld;
7822 } else
7823 dev_priv->display.update_wm = NULL;
7824 } else if (IS_G4X(dev)) {
7825 dev_priv->display.write_eld = g4x_write_eld;
7826 }
7827
7828 /* Default just returns -ENODEV to indicate unsupported */
7829 dev_priv->display.queue_flip = intel_default_queue_flip;
7830
7831 switch (INTEL_INFO(dev)->gen) {
7832 case 2:
7833 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7834 break;
7835
7836 case 3:
7837 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7838 break;
7839
7840 case 4:
7841 case 5:
7842 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7843 break;
7844
7845 case 6:
7846 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7847 break;
7848 case 7:
7849 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7850 break;
7851 }
7852 }
7853
7854 /*
7855 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7856 * resume, or other times. This quirk makes sure that's the case for
7857 * affected systems.
7858 */
7859 static void quirk_pipea_force(struct drm_device *dev)
7860 {
7861 struct drm_i915_private *dev_priv = dev->dev_private;
7862
7863 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7864 DRM_INFO("applying pipe a force quirk\n");
7865 }
7866
7867 /*
7868 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7869 */
7870 static void quirk_ssc_force_disable(struct drm_device *dev)
7871 {
7872 struct drm_i915_private *dev_priv = dev->dev_private;
7873 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7874 DRM_INFO("applying lvds SSC disable quirk\n");
7875 }
7876
7877 /*
7878 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7879 * brightness value
7880 */
7881 static void quirk_invert_brightness(struct drm_device *dev)
7882 {
7883 struct drm_i915_private *dev_priv = dev->dev_private;
7884 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7885 DRM_INFO("applying inverted panel brightness quirk\n");
7886 }
7887
7888 struct intel_quirk {
7889 int device;
7890 int subsystem_vendor;
7891 int subsystem_device;
7892 void (*hook)(struct drm_device *dev);
7893 };
7894
7895 static struct intel_quirk intel_quirks[] = {
7896 /* HP Mini needs pipe A force quirk (LP: #322104) */
7897 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7898
7899 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7900 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7901
7902 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7903 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7904
7905 /* 830/845 need to leave pipe A & dpll A up */
7906 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7907 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7908
7909 /* Lenovo U160 cannot use SSC on LVDS */
7910 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7911
7912 /* Sony Vaio Y cannot use SSC on LVDS */
7913 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7914
7915 /* Acer Aspire 5734Z must invert backlight brightness */
7916 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7917 };
7918
7919 static void intel_init_quirks(struct drm_device *dev)
7920 {
7921 struct pci_dev *d = dev->pdev;
7922 int i;
7923
7924 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7925 struct intel_quirk *q = &intel_quirks[i];
7926
7927 if (d->device == q->device &&
7928 (d->subsystem_vendor == q->subsystem_vendor ||
7929 q->subsystem_vendor == PCI_ANY_ID) &&
7930 (d->subsystem_device == q->subsystem_device ||
7931 q->subsystem_device == PCI_ANY_ID))
7932 q->hook(dev);
7933 }
7934 }
7935
7936 /* Disable the VGA plane that we never use */
7937 static void i915_disable_vga(struct drm_device *dev)
7938 {
7939 struct drm_i915_private *dev_priv = dev->dev_private;
7940 u8 sr1;
7941 u32 vga_reg;
7942
7943 if (HAS_PCH_SPLIT(dev))
7944 vga_reg = CPU_VGACNTRL;
7945 else
7946 vga_reg = VGACNTRL;
7947
7948 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7949 outb(SR01, VGA_SR_INDEX);
7950 sr1 = inb(VGA_SR_DATA);
7951 outb(sr1 | 1<<5, VGA_SR_DATA);
7952 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7953 udelay(300);
7954
7955 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7956 POSTING_READ(vga_reg);
7957 }
7958
7959 void intel_modeset_init_hw(struct drm_device *dev)
7960 {
7961 /* We attempt to init the necessary power wells early in the initialization
7962 * time, so the subsystems that expect power to be enabled can work.
7963 */
7964 intel_init_power_wells(dev);
7965
7966 intel_prepare_ddi(dev);
7967
7968 intel_init_clock_gating(dev);
7969
7970 mutex_lock(&dev->struct_mutex);
7971 intel_enable_gt_powersave(dev);
7972 mutex_unlock(&dev->struct_mutex);
7973 }
7974
7975 void intel_modeset_init(struct drm_device *dev)
7976 {
7977 struct drm_i915_private *dev_priv = dev->dev_private;
7978 int i, ret;
7979
7980 drm_mode_config_init(dev);
7981
7982 dev->mode_config.min_width = 0;
7983 dev->mode_config.min_height = 0;
7984
7985 dev->mode_config.preferred_depth = 24;
7986 dev->mode_config.prefer_shadow = 1;
7987
7988 dev->mode_config.funcs = &intel_mode_funcs;
7989
7990 intel_init_quirks(dev);
7991
7992 intel_init_pm(dev);
7993
7994 intel_init_display(dev);
7995
7996 if (IS_GEN2(dev)) {
7997 dev->mode_config.max_width = 2048;
7998 dev->mode_config.max_height = 2048;
7999 } else if (IS_GEN3(dev)) {
8000 dev->mode_config.max_width = 4096;
8001 dev->mode_config.max_height = 4096;
8002 } else {
8003 dev->mode_config.max_width = 8192;
8004 dev->mode_config.max_height = 8192;
8005 }
8006 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8007
8008 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8009 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8010
8011 for (i = 0; i < dev_priv->num_pipe; i++) {
8012 intel_crtc_init(dev, i);
8013 ret = intel_plane_init(dev, i);
8014 if (ret)
8015 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8016 }
8017
8018 intel_pch_pll_init(dev);
8019
8020 /* Just disable it once at startup */
8021 i915_disable_vga(dev);
8022 intel_setup_outputs(dev);
8023 }
8024
8025 static void
8026 intel_connector_break_all_links(struct intel_connector *connector)
8027 {
8028 connector->base.dpms = DRM_MODE_DPMS_OFF;
8029 connector->base.encoder = NULL;
8030 connector->encoder->connectors_active = false;
8031 connector->encoder->base.crtc = NULL;
8032 }
8033
8034 static void intel_enable_pipe_a(struct drm_device *dev)
8035 {
8036 struct intel_connector *connector;
8037 struct drm_connector *crt = NULL;
8038 struct intel_load_detect_pipe load_detect_temp;
8039
8040 /* We can't just switch on the pipe A, we need to set things up with a
8041 * proper mode and output configuration. As a gross hack, enable pipe A
8042 * by enabling the load detect pipe once. */
8043 list_for_each_entry(connector,
8044 &dev->mode_config.connector_list,
8045 base.head) {
8046 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8047 crt = &connector->base;
8048 break;
8049 }
8050 }
8051
8052 if (!crt)
8053 return;
8054
8055 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8056 intel_release_load_detect_pipe(crt, &load_detect_temp);
8057
8058
8059 }
8060
8061 static bool
8062 intel_check_plane_mapping(struct intel_crtc *crtc)
8063 {
8064 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8065 u32 reg, val;
8066
8067 if (dev_priv->num_pipe == 1)
8068 return true;
8069
8070 reg = DSPCNTR(!crtc->plane);
8071 val = I915_READ(reg);
8072
8073 if ((val & DISPLAY_PLANE_ENABLE) &&
8074 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8075 return false;
8076
8077 return true;
8078 }
8079
8080 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8081 {
8082 struct drm_device *dev = crtc->base.dev;
8083 struct drm_i915_private *dev_priv = dev->dev_private;
8084 u32 reg;
8085
8086 /* Clear any frame start delays used for debugging left by the BIOS */
8087 reg = PIPECONF(crtc->pipe);
8088 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8089
8090 /* We need to sanitize the plane -> pipe mapping first because this will
8091 * disable the crtc (and hence change the state) if it is wrong. Note
8092 * that gen4+ has a fixed plane -> pipe mapping. */
8093 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8094 struct intel_connector *connector;
8095 bool plane;
8096
8097 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8098 crtc->base.base.id);
8099
8100 /* Pipe has the wrong plane attached and the plane is active.
8101 * Temporarily change the plane mapping and disable everything
8102 * ... */
8103 plane = crtc->plane;
8104 crtc->plane = !plane;
8105 dev_priv->display.crtc_disable(&crtc->base);
8106 crtc->plane = plane;
8107
8108 /* ... and break all links. */
8109 list_for_each_entry(connector, &dev->mode_config.connector_list,
8110 base.head) {
8111 if (connector->encoder->base.crtc != &crtc->base)
8112 continue;
8113
8114 intel_connector_break_all_links(connector);
8115 }
8116
8117 WARN_ON(crtc->active);
8118 crtc->base.enabled = false;
8119 }
8120
8121 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8122 crtc->pipe == PIPE_A && !crtc->active) {
8123 /* BIOS forgot to enable pipe A, this mostly happens after
8124 * resume. Force-enable the pipe to fix this, the update_dpms
8125 * call below we restore the pipe to the right state, but leave
8126 * the required bits on. */
8127 intel_enable_pipe_a(dev);
8128 }
8129
8130 /* Adjust the state of the output pipe according to whether we
8131 * have active connectors/encoders. */
8132 intel_crtc_update_dpms(&crtc->base);
8133
8134 if (crtc->active != crtc->base.enabled) {
8135 struct intel_encoder *encoder;
8136
8137 /* This can happen either due to bugs in the get_hw_state
8138 * functions or because the pipe is force-enabled due to the
8139 * pipe A quirk. */
8140 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8141 crtc->base.base.id,
8142 crtc->base.enabled ? "enabled" : "disabled",
8143 crtc->active ? "enabled" : "disabled");
8144
8145 crtc->base.enabled = crtc->active;
8146
8147 /* Because we only establish the connector -> encoder ->
8148 * crtc links if something is active, this means the
8149 * crtc is now deactivated. Break the links. connector
8150 * -> encoder links are only establish when things are
8151 * actually up, hence no need to break them. */
8152 WARN_ON(crtc->active);
8153
8154 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8155 WARN_ON(encoder->connectors_active);
8156 encoder->base.crtc = NULL;
8157 }
8158 }
8159 }
8160
8161 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8162 {
8163 struct intel_connector *connector;
8164 struct drm_device *dev = encoder->base.dev;
8165
8166 /* We need to check both for a crtc link (meaning that the
8167 * encoder is active and trying to read from a pipe) and the
8168 * pipe itself being active. */
8169 bool has_active_crtc = encoder->base.crtc &&
8170 to_intel_crtc(encoder->base.crtc)->active;
8171
8172 if (encoder->connectors_active && !has_active_crtc) {
8173 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8174 encoder->base.base.id,
8175 drm_get_encoder_name(&encoder->base));
8176
8177 /* Connector is active, but has no active pipe. This is
8178 * fallout from our resume register restoring. Disable
8179 * the encoder manually again. */
8180 if (encoder->base.crtc) {
8181 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8182 encoder->base.base.id,
8183 drm_get_encoder_name(&encoder->base));
8184 encoder->disable(encoder);
8185 }
8186
8187 /* Inconsistent output/port/pipe state happens presumably due to
8188 * a bug in one of the get_hw_state functions. Or someplace else
8189 * in our code, like the register restore mess on resume. Clamp
8190 * things to off as a safer default. */
8191 list_for_each_entry(connector,
8192 &dev->mode_config.connector_list,
8193 base.head) {
8194 if (connector->encoder != encoder)
8195 continue;
8196
8197 intel_connector_break_all_links(connector);
8198 }
8199 }
8200 /* Enabled encoders without active connectors will be fixed in
8201 * the crtc fixup. */
8202 }
8203
8204 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8205 * and i915 state tracking structures. */
8206 void intel_modeset_setup_hw_state(struct drm_device *dev)
8207 {
8208 struct drm_i915_private *dev_priv = dev->dev_private;
8209 enum pipe pipe;
8210 u32 tmp;
8211 struct intel_crtc *crtc;
8212 struct intel_encoder *encoder;
8213 struct intel_connector *connector;
8214
8215 for_each_pipe(pipe) {
8216 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8217
8218 tmp = I915_READ(PIPECONF(pipe));
8219 if (tmp & PIPECONF_ENABLE)
8220 crtc->active = true;
8221 else
8222 crtc->active = false;
8223
8224 crtc->base.enabled = crtc->active;
8225
8226 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8227 crtc->base.base.id,
8228 crtc->active ? "enabled" : "disabled");
8229 }
8230
8231 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8232 base.head) {
8233 pipe = 0;
8234
8235 if (encoder->get_hw_state(encoder, &pipe)) {
8236 encoder->base.crtc =
8237 dev_priv->pipe_to_crtc_mapping[pipe];
8238 } else {
8239 encoder->base.crtc = NULL;
8240 }
8241
8242 encoder->connectors_active = false;
8243 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8244 encoder->base.base.id,
8245 drm_get_encoder_name(&encoder->base),
8246 encoder->base.crtc ? "enabled" : "disabled",
8247 pipe);
8248 }
8249
8250 list_for_each_entry(connector, &dev->mode_config.connector_list,
8251 base.head) {
8252 if (connector->get_hw_state(connector)) {
8253 connector->base.dpms = DRM_MODE_DPMS_ON;
8254 connector->encoder->connectors_active = true;
8255 connector->base.encoder = &connector->encoder->base;
8256 } else {
8257 connector->base.dpms = DRM_MODE_DPMS_OFF;
8258 connector->base.encoder = NULL;
8259 }
8260 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8261 connector->base.base.id,
8262 drm_get_connector_name(&connector->base),
8263 connector->base.encoder ? "enabled" : "disabled");
8264 }
8265
8266 /* HW state is read out, now we need to sanitize this mess. */
8267 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8268 base.head) {
8269 intel_sanitize_encoder(encoder);
8270 }
8271
8272 for_each_pipe(pipe) {
8273 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8274 intel_sanitize_crtc(crtc);
8275 }
8276
8277 intel_modeset_update_staged_output_state(dev);
8278
8279 intel_modeset_check_state(dev);
8280 }
8281
8282 void intel_modeset_gem_init(struct drm_device *dev)
8283 {
8284 intel_modeset_init_hw(dev);
8285
8286 intel_setup_overlay(dev);
8287
8288 intel_modeset_setup_hw_state(dev);
8289 }
8290
8291 void intel_modeset_cleanup(struct drm_device *dev)
8292 {
8293 struct drm_i915_private *dev_priv = dev->dev_private;
8294 struct drm_crtc *crtc;
8295 struct intel_crtc *intel_crtc;
8296
8297 drm_kms_helper_poll_fini(dev);
8298 mutex_lock(&dev->struct_mutex);
8299
8300 intel_unregister_dsm_handler();
8301
8302
8303 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8304 /* Skip inactive CRTCs */
8305 if (!crtc->fb)
8306 continue;
8307
8308 intel_crtc = to_intel_crtc(crtc);
8309 intel_increase_pllclock(crtc);
8310 }
8311
8312 intel_disable_fbc(dev);
8313
8314 intel_disable_gt_powersave(dev);
8315
8316 ironlake_teardown_rc6(dev);
8317
8318 if (IS_VALLEYVIEW(dev))
8319 vlv_init_dpio(dev);
8320
8321 mutex_unlock(&dev->struct_mutex);
8322
8323 /* Disable the irq before mode object teardown, for the irq might
8324 * enqueue unpin/hotplug work. */
8325 drm_irq_uninstall(dev);
8326 cancel_work_sync(&dev_priv->hotplug_work);
8327 cancel_work_sync(&dev_priv->rps.work);
8328
8329 /* flush any delayed tasks or pending work */
8330 flush_scheduled_work();
8331
8332 drm_mode_config_cleanup(dev);
8333 }
8334
8335 /*
8336 * Return which encoder is currently attached for connector.
8337 */
8338 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8339 {
8340 return &intel_attached_encoder(connector)->base;
8341 }
8342
8343 void intel_connector_attach_encoder(struct intel_connector *connector,
8344 struct intel_encoder *encoder)
8345 {
8346 connector->encoder = encoder;
8347 drm_mode_connector_attach_encoder(&connector->base,
8348 &encoder->base);
8349 }
8350
8351 /*
8352 * set vga decode state - true == enable VGA decode
8353 */
8354 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8355 {
8356 struct drm_i915_private *dev_priv = dev->dev_private;
8357 u16 gmch_ctrl;
8358
8359 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8360 if (state)
8361 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8362 else
8363 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8364 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8365 return 0;
8366 }
8367
8368 #ifdef CONFIG_DEBUG_FS
8369 #include <linux/seq_file.h>
8370
8371 struct intel_display_error_state {
8372 struct intel_cursor_error_state {
8373 u32 control;
8374 u32 position;
8375 u32 base;
8376 u32 size;
8377 } cursor[I915_MAX_PIPES];
8378
8379 struct intel_pipe_error_state {
8380 u32 conf;
8381 u32 source;
8382
8383 u32 htotal;
8384 u32 hblank;
8385 u32 hsync;
8386 u32 vtotal;
8387 u32 vblank;
8388 u32 vsync;
8389 } pipe[I915_MAX_PIPES];
8390
8391 struct intel_plane_error_state {
8392 u32 control;
8393 u32 stride;
8394 u32 size;
8395 u32 pos;
8396 u32 addr;
8397 u32 surface;
8398 u32 tile_offset;
8399 } plane[I915_MAX_PIPES];
8400 };
8401
8402 struct intel_display_error_state *
8403 intel_display_capture_error_state(struct drm_device *dev)
8404 {
8405 drm_i915_private_t *dev_priv = dev->dev_private;
8406 struct intel_display_error_state *error;
8407 int i;
8408
8409 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8410 if (error == NULL)
8411 return NULL;
8412
8413 for_each_pipe(i) {
8414 error->cursor[i].control = I915_READ(CURCNTR(i));
8415 error->cursor[i].position = I915_READ(CURPOS(i));
8416 error->cursor[i].base = I915_READ(CURBASE(i));
8417
8418 error->plane[i].control = I915_READ(DSPCNTR(i));
8419 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8420 error->plane[i].size = I915_READ(DSPSIZE(i));
8421 error->plane[i].pos = I915_READ(DSPPOS(i));
8422 error->plane[i].addr = I915_READ(DSPADDR(i));
8423 if (INTEL_INFO(dev)->gen >= 4) {
8424 error->plane[i].surface = I915_READ(DSPSURF(i));
8425 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8426 }
8427
8428 error->pipe[i].conf = I915_READ(PIPECONF(i));
8429 error->pipe[i].source = I915_READ(PIPESRC(i));
8430 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8431 error->pipe[i].hblank = I915_READ(HBLANK(i));
8432 error->pipe[i].hsync = I915_READ(HSYNC(i));
8433 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8434 error->pipe[i].vblank = I915_READ(VBLANK(i));
8435 error->pipe[i].vsync = I915_READ(VSYNC(i));
8436 }
8437
8438 return error;
8439 }
8440
8441 void
8442 intel_display_print_error_state(struct seq_file *m,
8443 struct drm_device *dev,
8444 struct intel_display_error_state *error)
8445 {
8446 drm_i915_private_t *dev_priv = dev->dev_private;
8447 int i;
8448
8449 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8450 for_each_pipe(i) {
8451 seq_printf(m, "Pipe [%d]:\n", i);
8452 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8453 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8454 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8455 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8456 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8457 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8458 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8459 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8460
8461 seq_printf(m, "Plane [%d]:\n", i);
8462 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8463 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8464 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8465 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8466 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8467 if (INTEL_INFO(dev)->gen >= 4) {
8468 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8469 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8470 }
8471
8472 seq_printf(m, "Cursor [%d]:\n", i);
8473 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8474 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8475 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8476 }
8477 }
8478 #endif
This page took 0.222073 seconds and 6 git commands to generate.