drm/i915: Pass acquire ctx also to intel_release_load_detect_pipe()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb);
87 static int intel_framebuffer_init(struct drm_device *dev,
88 struct intel_framebuffer *ifb,
89 struct drm_mode_fb_cmd2 *mode_cmd,
90 struct drm_i915_gem_object *obj);
91 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
93 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
94 struct intel_link_m_n *m_n,
95 struct intel_link_m_n *m2_n2);
96 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
97 static void haswell_set_pipeconf(struct drm_crtc *crtc);
98 static void intel_set_pipe_csc(struct drm_crtc *crtc);
99 static void vlv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_state *pipe_config);
101 static void chv_prepare_pll(struct intel_crtc *crtc,
102 const struct intel_crtc_state *pipe_config);
103 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
104 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
105
106 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
107 {
108 if (!connector->mst_port)
109 return connector->encoder;
110 else
111 return &connector->mst_port->mst_encoders[pipe]->base;
112 }
113
114 typedef struct {
115 int min, max;
116 } intel_range_t;
117
118 typedef struct {
119 int dot_limit;
120 int p2_slow, p2_fast;
121 } intel_p2_t;
122
123 typedef struct intel_limit intel_limit_t;
124 struct intel_limit {
125 intel_range_t dot, vco, n, m, m1, m2, p, p1;
126 intel_p2_t p2;
127 };
128
129 int
130 intel_pch_rawclk(struct drm_device *dev)
131 {
132 struct drm_i915_private *dev_priv = dev->dev_private;
133
134 WARN_ON(!HAS_PCH_SPLIT(dev));
135
136 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
137 }
138
139 static inline u32 /* units of 100MHz */
140 intel_fdi_link_freq(struct drm_device *dev)
141 {
142 if (IS_GEN5(dev)) {
143 struct drm_i915_private *dev_priv = dev->dev_private;
144 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
145 } else
146 return 27;
147 }
148
149 static const intel_limit_t intel_limits_i8xx_dac = {
150 .dot = { .min = 25000, .max = 350000 },
151 .vco = { .min = 908000, .max = 1512000 },
152 .n = { .min = 2, .max = 16 },
153 .m = { .min = 96, .max = 140 },
154 .m1 = { .min = 18, .max = 26 },
155 .m2 = { .min = 6, .max = 16 },
156 .p = { .min = 4, .max = 128 },
157 .p1 = { .min = 2, .max = 33 },
158 .p2 = { .dot_limit = 165000,
159 .p2_slow = 4, .p2_fast = 2 },
160 };
161
162 static const intel_limit_t intel_limits_i8xx_dvo = {
163 .dot = { .min = 25000, .max = 350000 },
164 .vco = { .min = 908000, .max = 1512000 },
165 .n = { .min = 2, .max = 16 },
166 .m = { .min = 96, .max = 140 },
167 .m1 = { .min = 18, .max = 26 },
168 .m2 = { .min = 6, .max = 16 },
169 .p = { .min = 4, .max = 128 },
170 .p1 = { .min = 2, .max = 33 },
171 .p2 = { .dot_limit = 165000,
172 .p2_slow = 4, .p2_fast = 4 },
173 };
174
175 static const intel_limit_t intel_limits_i8xx_lvds = {
176 .dot = { .min = 25000, .max = 350000 },
177 .vco = { .min = 908000, .max = 1512000 },
178 .n = { .min = 2, .max = 16 },
179 .m = { .min = 96, .max = 140 },
180 .m1 = { .min = 18, .max = 26 },
181 .m2 = { .min = 6, .max = 16 },
182 .p = { .min = 4, .max = 128 },
183 .p1 = { .min = 1, .max = 6 },
184 .p2 = { .dot_limit = 165000,
185 .p2_slow = 14, .p2_fast = 7 },
186 };
187
188 static const intel_limit_t intel_limits_i9xx_sdvo = {
189 .dot = { .min = 20000, .max = 400000 },
190 .vco = { .min = 1400000, .max = 2800000 },
191 .n = { .min = 1, .max = 6 },
192 .m = { .min = 70, .max = 120 },
193 .m1 = { .min = 8, .max = 18 },
194 .m2 = { .min = 3, .max = 7 },
195 .p = { .min = 5, .max = 80 },
196 .p1 = { .min = 1, .max = 8 },
197 .p2 = { .dot_limit = 200000,
198 .p2_slow = 10, .p2_fast = 5 },
199 };
200
201 static const intel_limit_t intel_limits_i9xx_lvds = {
202 .dot = { .min = 20000, .max = 400000 },
203 .vco = { .min = 1400000, .max = 2800000 },
204 .n = { .min = 1, .max = 6 },
205 .m = { .min = 70, .max = 120 },
206 .m1 = { .min = 8, .max = 18 },
207 .m2 = { .min = 3, .max = 7 },
208 .p = { .min = 7, .max = 98 },
209 .p1 = { .min = 1, .max = 8 },
210 .p2 = { .dot_limit = 112000,
211 .p2_slow = 14, .p2_fast = 7 },
212 };
213
214
215 static const intel_limit_t intel_limits_g4x_sdvo = {
216 .dot = { .min = 25000, .max = 270000 },
217 .vco = { .min = 1750000, .max = 3500000},
218 .n = { .min = 1, .max = 4 },
219 .m = { .min = 104, .max = 138 },
220 .m1 = { .min = 17, .max = 23 },
221 .m2 = { .min = 5, .max = 11 },
222 .p = { .min = 10, .max = 30 },
223 .p1 = { .min = 1, .max = 3},
224 .p2 = { .dot_limit = 270000,
225 .p2_slow = 10,
226 .p2_fast = 10
227 },
228 };
229
230 static const intel_limit_t intel_limits_g4x_hdmi = {
231 .dot = { .min = 22000, .max = 400000 },
232 .vco = { .min = 1750000, .max = 3500000},
233 .n = { .min = 1, .max = 4 },
234 .m = { .min = 104, .max = 138 },
235 .m1 = { .min = 16, .max = 23 },
236 .m2 = { .min = 5, .max = 11 },
237 .p = { .min = 5, .max = 80 },
238 .p1 = { .min = 1, .max = 8},
239 .p2 = { .dot_limit = 165000,
240 .p2_slow = 10, .p2_fast = 5 },
241 };
242
243 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
244 .dot = { .min = 20000, .max = 115000 },
245 .vco = { .min = 1750000, .max = 3500000 },
246 .n = { .min = 1, .max = 3 },
247 .m = { .min = 104, .max = 138 },
248 .m1 = { .min = 17, .max = 23 },
249 .m2 = { .min = 5, .max = 11 },
250 .p = { .min = 28, .max = 112 },
251 .p1 = { .min = 2, .max = 8 },
252 .p2 = { .dot_limit = 0,
253 .p2_slow = 14, .p2_fast = 14
254 },
255 };
256
257 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
258 .dot = { .min = 80000, .max = 224000 },
259 .vco = { .min = 1750000, .max = 3500000 },
260 .n = { .min = 1, .max = 3 },
261 .m = { .min = 104, .max = 138 },
262 .m1 = { .min = 17, .max = 23 },
263 .m2 = { .min = 5, .max = 11 },
264 .p = { .min = 14, .max = 42 },
265 .p1 = { .min = 2, .max = 6 },
266 .p2 = { .dot_limit = 0,
267 .p2_slow = 7, .p2_fast = 7
268 },
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272 .dot = { .min = 20000, .max = 400000},
273 .vco = { .min = 1700000, .max = 3500000 },
274 /* Pineview's Ncounter is a ring counter */
275 .n = { .min = 3, .max = 6 },
276 .m = { .min = 2, .max = 256 },
277 /* Pineview only has one combined m divider, which we treat as m2. */
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 200000,
283 .p2_slow = 10, .p2_fast = 5 },
284 };
285
286 static const intel_limit_t intel_limits_pineview_lvds = {
287 .dot = { .min = 20000, .max = 400000 },
288 .vco = { .min = 1700000, .max = 3500000 },
289 .n = { .min = 3, .max = 6 },
290 .m = { .min = 2, .max = 256 },
291 .m1 = { .min = 0, .max = 0 },
292 .m2 = { .min = 0, .max = 254 },
293 .p = { .min = 7, .max = 112 },
294 .p1 = { .min = 1, .max = 8 },
295 .p2 = { .dot_limit = 112000,
296 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 /* Ironlake / Sandybridge
300 *
301 * We calculate clock using (register_value + 2) for N/M1/M2, so here
302 * the range value for them is (actual_value - 2).
303 */
304 static const intel_limit_t intel_limits_ironlake_dac = {
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 5 },
308 .m = { .min = 79, .max = 127 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 5, .max = 80 },
312 .p1 = { .min = 1, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 10, .p2_fast = 5 },
315 };
316
317 static const intel_limit_t intel_limits_ironlake_single_lvds = {
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 3 },
321 .m = { .min = 79, .max = 118 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
325 .p1 = { .min = 2, .max = 8 },
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 127 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 56 },
338 .p1 = { .min = 2, .max = 8 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
341 };
342
343 /* LVDS 100mhz refclk limits. */
344 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000 },
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 79, .max = 126 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 28, .max = 112 },
352 .p1 = { .min = 2, .max = 8 },
353 .p2 = { .dot_limit = 225000,
354 .p2_slow = 14, .p2_fast = 14 },
355 };
356
357 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
358 .dot = { .min = 25000, .max = 350000 },
359 .vco = { .min = 1760000, .max = 3510000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 79, .max = 126 },
362 .m1 = { .min = 12, .max = 22 },
363 .m2 = { .min = 5, .max = 9 },
364 .p = { .min = 14, .max = 42 },
365 .p1 = { .min = 2, .max = 6 },
366 .p2 = { .dot_limit = 225000,
367 .p2_slow = 7, .p2_fast = 7 },
368 };
369
370 static const intel_limit_t intel_limits_vlv = {
371 /*
372 * These are the data rate limits (measured in fast clocks)
373 * since those are the strictest limits we have. The fast
374 * clock and actual rate limits are more relaxed, so checking
375 * them would make no difference.
376 */
377 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
378 .vco = { .min = 4000000, .max = 6000000 },
379 .n = { .min = 1, .max = 7 },
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p1 = { .min = 2, .max = 3 },
383 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
384 };
385
386 static const intel_limit_t intel_limits_chv = {
387 /*
388 * These are the data rate limits (measured in fast clocks)
389 * since those are the strictest limits we have. The fast
390 * clock and actual rate limits are more relaxed, so checking
391 * them would make no difference.
392 */
393 .dot = { .min = 25000 * 5, .max = 540000 * 5},
394 .vco = { .min = 4800000, .max = 6480000 },
395 .n = { .min = 1, .max = 1 },
396 .m1 = { .min = 2, .max = 2 },
397 .m2 = { .min = 24 << 22, .max = 175 << 22 },
398 .p1 = { .min = 2, .max = 4 },
399 .p2 = { .p2_slow = 1, .p2_fast = 14 },
400 };
401
402 static void vlv_clock(int refclk, intel_clock_t *clock)
403 {
404 clock->m = clock->m1 * clock->m2;
405 clock->p = clock->p1 * clock->p2;
406 if (WARN_ON(clock->n == 0 || clock->p == 0))
407 return;
408 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
409 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
410 }
411
412 /**
413 * Returns whether any output on the specified pipe is of the specified type
414 */
415 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
416 {
417 struct drm_device *dev = crtc->base.dev;
418 struct intel_encoder *encoder;
419
420 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
421 if (encoder->type == type)
422 return true;
423
424 return false;
425 }
426
427 /**
428 * Returns whether any output on the specified pipe will have the specified
429 * type after a staged modeset is complete, i.e., the same as
430 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
431 * encoder->crtc.
432 */
433 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
434 {
435 struct drm_device *dev = crtc->base.dev;
436 struct intel_encoder *encoder;
437
438 for_each_intel_encoder(dev, encoder)
439 if (encoder->new_crtc == crtc && encoder->type == type)
440 return true;
441
442 return false;
443 }
444
445 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
446 int refclk)
447 {
448 struct drm_device *dev = crtc->base.dev;
449 const intel_limit_t *limit;
450
451 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
452 if (intel_is_dual_link_lvds(dev)) {
453 if (refclk == 100000)
454 limit = &intel_limits_ironlake_dual_lvds_100m;
455 else
456 limit = &intel_limits_ironlake_dual_lvds;
457 } else {
458 if (refclk == 100000)
459 limit = &intel_limits_ironlake_single_lvds_100m;
460 else
461 limit = &intel_limits_ironlake_single_lvds;
462 }
463 } else
464 limit = &intel_limits_ironlake_dac;
465
466 return limit;
467 }
468
469 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
470 {
471 struct drm_device *dev = crtc->base.dev;
472 const intel_limit_t *limit;
473
474 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
475 if (intel_is_dual_link_lvds(dev))
476 limit = &intel_limits_g4x_dual_channel_lvds;
477 else
478 limit = &intel_limits_g4x_single_channel_lvds;
479 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
480 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
481 limit = &intel_limits_g4x_hdmi;
482 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
483 limit = &intel_limits_g4x_sdvo;
484 } else /* The option is for other outputs */
485 limit = &intel_limits_i9xx_sdvo;
486
487 return limit;
488 }
489
490 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
491 {
492 struct drm_device *dev = crtc->base.dev;
493 const intel_limit_t *limit;
494
495 if (HAS_PCH_SPLIT(dev))
496 limit = intel_ironlake_limit(crtc, refclk);
497 else if (IS_G4X(dev)) {
498 limit = intel_g4x_limit(crtc);
499 } else if (IS_PINEVIEW(dev)) {
500 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
501 limit = &intel_limits_pineview_lvds;
502 else
503 limit = &intel_limits_pineview_sdvo;
504 } else if (IS_CHERRYVIEW(dev)) {
505 limit = &intel_limits_chv;
506 } else if (IS_VALLEYVIEW(dev)) {
507 limit = &intel_limits_vlv;
508 } else if (!IS_GEN2(dev)) {
509 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
510 limit = &intel_limits_i9xx_lvds;
511 else
512 limit = &intel_limits_i9xx_sdvo;
513 } else {
514 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
515 limit = &intel_limits_i8xx_lvds;
516 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
517 limit = &intel_limits_i8xx_dvo;
518 else
519 limit = &intel_limits_i8xx_dac;
520 }
521 return limit;
522 }
523
524 /* m1 is reserved as 0 in Pineview, n is a ring counter */
525 static void pineview_clock(int refclk, intel_clock_t *clock)
526 {
527 clock->m = clock->m2 + 2;
528 clock->p = clock->p1 * clock->p2;
529 if (WARN_ON(clock->n == 0 || clock->p == 0))
530 return;
531 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
532 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533 }
534
535 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
536 {
537 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
538 }
539
540 static void i9xx_clock(int refclk, intel_clock_t *clock)
541 {
542 clock->m = i9xx_dpll_compute_m(clock);
543 clock->p = clock->p1 * clock->p2;
544 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
545 return;
546 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
547 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
548 }
549
550 static void chv_clock(int refclk, intel_clock_t *clock)
551 {
552 clock->m = clock->m1 * clock->m2;
553 clock->p = clock->p1 * clock->p2;
554 if (WARN_ON(clock->n == 0 || clock->p == 0))
555 return;
556 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
557 clock->n << 22);
558 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
559 }
560
561 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
562 /**
563 * Returns whether the given set of divisors are valid for a given refclk with
564 * the given connectors.
565 */
566
567 static bool intel_PLL_is_valid(struct drm_device *dev,
568 const intel_limit_t *limit,
569 const intel_clock_t *clock)
570 {
571 if (clock->n < limit->n.min || limit->n.max < clock->n)
572 INTELPllInvalid("n out of range\n");
573 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
574 INTELPllInvalid("p1 out of range\n");
575 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
576 INTELPllInvalid("m2 out of range\n");
577 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
578 INTELPllInvalid("m1 out of range\n");
579
580 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
581 if (clock->m1 <= clock->m2)
582 INTELPllInvalid("m1 <= m2\n");
583
584 if (!IS_VALLEYVIEW(dev)) {
585 if (clock->p < limit->p.min || limit->p.max < clock->p)
586 INTELPllInvalid("p out of range\n");
587 if (clock->m < limit->m.min || limit->m.max < clock->m)
588 INTELPllInvalid("m out of range\n");
589 }
590
591 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
592 INTELPllInvalid("vco out of range\n");
593 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
594 * connector, etc., rather than just a single range.
595 */
596 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
597 INTELPllInvalid("dot out of range\n");
598
599 return true;
600 }
601
602 static bool
603 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
604 int target, int refclk, intel_clock_t *match_clock,
605 intel_clock_t *best_clock)
606 {
607 struct drm_device *dev = crtc->base.dev;
608 intel_clock_t clock;
609 int err = target;
610
611 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
612 /*
613 * For LVDS just rely on its current settings for dual-channel.
614 * We haven't figured out how to reliably set up different
615 * single/dual channel state, if we even can.
616 */
617 if (intel_is_dual_link_lvds(dev))
618 clock.p2 = limit->p2.p2_fast;
619 else
620 clock.p2 = limit->p2.p2_slow;
621 } else {
622 if (target < limit->p2.dot_limit)
623 clock.p2 = limit->p2.p2_slow;
624 else
625 clock.p2 = limit->p2.p2_fast;
626 }
627
628 memset(best_clock, 0, sizeof(*best_clock));
629
630 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631 clock.m1++) {
632 for (clock.m2 = limit->m2.min;
633 clock.m2 <= limit->m2.max; clock.m2++) {
634 if (clock.m2 >= clock.m1)
635 break;
636 for (clock.n = limit->n.min;
637 clock.n <= limit->n.max; clock.n++) {
638 for (clock.p1 = limit->p1.min;
639 clock.p1 <= limit->p1.max; clock.p1++) {
640 int this_err;
641
642 i9xx_clock(refclk, &clock);
643 if (!intel_PLL_is_valid(dev, limit,
644 &clock))
645 continue;
646 if (match_clock &&
647 clock.p != match_clock->p)
648 continue;
649
650 this_err = abs(clock.dot - target);
651 if (this_err < err) {
652 *best_clock = clock;
653 err = this_err;
654 }
655 }
656 }
657 }
658 }
659
660 return (err != target);
661 }
662
663 static bool
664 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
665 int target, int refclk, intel_clock_t *match_clock,
666 intel_clock_t *best_clock)
667 {
668 struct drm_device *dev = crtc->base.dev;
669 intel_clock_t clock;
670 int err = target;
671
672 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
673 /*
674 * For LVDS just rely on its current settings for dual-channel.
675 * We haven't figured out how to reliably set up different
676 * single/dual channel state, if we even can.
677 */
678 if (intel_is_dual_link_lvds(dev))
679 clock.p2 = limit->p2.p2_fast;
680 else
681 clock.p2 = limit->p2.p2_slow;
682 } else {
683 if (target < limit->p2.dot_limit)
684 clock.p2 = limit->p2.p2_slow;
685 else
686 clock.p2 = limit->p2.p2_fast;
687 }
688
689 memset(best_clock, 0, sizeof(*best_clock));
690
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692 clock.m1++) {
693 for (clock.m2 = limit->m2.min;
694 clock.m2 <= limit->m2.max; clock.m2++) {
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
700
701 pineview_clock(refclk, &clock);
702 if (!intel_PLL_is_valid(dev, limit,
703 &clock))
704 continue;
705 if (match_clock &&
706 clock.p != match_clock->p)
707 continue;
708
709 this_err = abs(clock.dot - target);
710 if (this_err < err) {
711 *best_clock = clock;
712 err = this_err;
713 }
714 }
715 }
716 }
717 }
718
719 return (err != target);
720 }
721
722 static bool
723 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
724 int target, int refclk, intel_clock_t *match_clock,
725 intel_clock_t *best_clock)
726 {
727 struct drm_device *dev = crtc->base.dev;
728 intel_clock_t clock;
729 int max_n;
730 bool found;
731 /* approximately equals target * 0.00585 */
732 int err_most = (target >> 8) + (target >> 9);
733 found = false;
734
735 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
736 if (intel_is_dual_link_lvds(dev))
737 clock.p2 = limit->p2.p2_fast;
738 else
739 clock.p2 = limit->p2.p2_slow;
740 } else {
741 if (target < limit->p2.dot_limit)
742 clock.p2 = limit->p2.p2_slow;
743 else
744 clock.p2 = limit->p2.p2_fast;
745 }
746
747 memset(best_clock, 0, sizeof(*best_clock));
748 max_n = limit->n.max;
749 /* based on hardware requirement, prefer smaller n to precision */
750 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
751 /* based on hardware requirement, prefere larger m1,m2 */
752 for (clock.m1 = limit->m1.max;
753 clock.m1 >= limit->m1.min; clock.m1--) {
754 for (clock.m2 = limit->m2.max;
755 clock.m2 >= limit->m2.min; clock.m2--) {
756 for (clock.p1 = limit->p1.max;
757 clock.p1 >= limit->p1.min; clock.p1--) {
758 int this_err;
759
760 i9xx_clock(refclk, &clock);
761 if (!intel_PLL_is_valid(dev, limit,
762 &clock))
763 continue;
764
765 this_err = abs(clock.dot - target);
766 if (this_err < err_most) {
767 *best_clock = clock;
768 err_most = this_err;
769 max_n = clock.n;
770 found = true;
771 }
772 }
773 }
774 }
775 }
776 return found;
777 }
778
779 /*
780 * Check if the calculated PLL configuration is more optimal compared to the
781 * best configuration and error found so far. Return the calculated error.
782 */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784 const intel_clock_t *calculated_clock,
785 const intel_clock_t *best_clock,
786 unsigned int best_error_ppm,
787 unsigned int *error_ppm)
788 {
789 /*
790 * For CHV ignore the error and consider only the P value.
791 * Prefer a bigger P value based on HW requirements.
792 */
793 if (IS_CHERRYVIEW(dev)) {
794 *error_ppm = 0;
795
796 return calculated_clock->p > best_clock->p;
797 }
798
799 if (WARN_ON_ONCE(!target_freq))
800 return false;
801
802 *error_ppm = div_u64(1000000ULL *
803 abs(target_freq - calculated_clock->dot),
804 target_freq);
805 /*
806 * Prefer a better P value over a better (smaller) error if the error
807 * is small. Ensure this preference for future configurations too by
808 * setting the error to 0.
809 */
810 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811 *error_ppm = 0;
812
813 return true;
814 }
815
816 return *error_ppm + 10 < best_error_ppm;
817 }
818
819 static bool
820 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
821 int target, int refclk, intel_clock_t *match_clock,
822 intel_clock_t *best_clock)
823 {
824 struct drm_device *dev = crtc->base.dev;
825 intel_clock_t clock;
826 unsigned int bestppm = 1000000;
827 /* min update 19.2 MHz */
828 int max_n = min(limit->n.max, refclk / 19200);
829 bool found = false;
830
831 target *= 5; /* fast clock */
832
833 memset(best_clock, 0, sizeof(*best_clock));
834
835 /* based on hardware requirement, prefer smaller n to precision */
836 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840 clock.p = clock.p1 * clock.p2;
841 /* based on hardware requirement, prefer bigger m1,m2 values */
842 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
843 unsigned int ppm;
844
845 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
846 refclk * clock.m1);
847
848 vlv_clock(refclk, &clock);
849
850 if (!intel_PLL_is_valid(dev, limit,
851 &clock))
852 continue;
853
854 if (!vlv_PLL_is_optimal(dev, target,
855 &clock,
856 best_clock,
857 bestppm, &ppm))
858 continue;
859
860 *best_clock = clock;
861 bestppm = ppm;
862 found = true;
863 }
864 }
865 }
866 }
867
868 return found;
869 }
870
871 static bool
872 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875 {
876 struct drm_device *dev = crtc->base.dev;
877 unsigned int best_error_ppm;
878 intel_clock_t clock;
879 uint64_t m2;
880 int found = false;
881
882 memset(best_clock, 0, sizeof(*best_clock));
883 best_error_ppm = 1000000;
884
885 /*
886 * Based on hardware doc, the n always set to 1, and m1 always
887 * set to 2. If requires to support 200Mhz refclk, we need to
888 * revisit this because n may not 1 anymore.
889 */
890 clock.n = 1, clock.m1 = 2;
891 target *= 5; /* fast clock */
892
893 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
894 for (clock.p2 = limit->p2.p2_fast;
895 clock.p2 >= limit->p2.p2_slow;
896 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
897 unsigned int error_ppm;
898
899 clock.p = clock.p1 * clock.p2;
900
901 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
902 clock.n) << 22, refclk * clock.m1);
903
904 if (m2 > INT_MAX/clock.m1)
905 continue;
906
907 clock.m2 = m2;
908
909 chv_clock(refclk, &clock);
910
911 if (!intel_PLL_is_valid(dev, limit, &clock))
912 continue;
913
914 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
915 best_error_ppm, &error_ppm))
916 continue;
917
918 *best_clock = clock;
919 best_error_ppm = error_ppm;
920 found = true;
921 }
922 }
923
924 return found;
925 }
926
927 bool intel_crtc_active(struct drm_crtc *crtc)
928 {
929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
930
931 /* Be paranoid as we can arrive here with only partial
932 * state retrieved from the hardware during setup.
933 *
934 * We can ditch the adjusted_mode.crtc_clock check as soon
935 * as Haswell has gained clock readout/fastboot support.
936 *
937 * We can ditch the crtc->primary->fb check as soon as we can
938 * properly reconstruct framebuffers.
939 *
940 * FIXME: The intel_crtc->active here should be switched to
941 * crtc->state->active once we have proper CRTC states wired up
942 * for atomic.
943 */
944 return intel_crtc->active && crtc->primary->state->fb &&
945 intel_crtc->config->base.adjusted_mode.crtc_clock;
946 }
947
948 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
949 enum pipe pipe)
950 {
951 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
953
954 return intel_crtc->config->cpu_transcoder;
955 }
956
957 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
958 {
959 struct drm_i915_private *dev_priv = dev->dev_private;
960 u32 reg = PIPEDSL(pipe);
961 u32 line1, line2;
962 u32 line_mask;
963
964 if (IS_GEN2(dev))
965 line_mask = DSL_LINEMASK_GEN2;
966 else
967 line_mask = DSL_LINEMASK_GEN3;
968
969 line1 = I915_READ(reg) & line_mask;
970 mdelay(5);
971 line2 = I915_READ(reg) & line_mask;
972
973 return line1 == line2;
974 }
975
976 /*
977 * intel_wait_for_pipe_off - wait for pipe to turn off
978 * @crtc: crtc whose pipe to wait for
979 *
980 * After disabling a pipe, we can't wait for vblank in the usual way,
981 * spinning on the vblank interrupt status bit, since we won't actually
982 * see an interrupt when the pipe is disabled.
983 *
984 * On Gen4 and above:
985 * wait for the pipe register state bit to turn off
986 *
987 * Otherwise:
988 * wait for the display line value to settle (it usually
989 * ends up stopping at the start of the next frame).
990 *
991 */
992 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
993 {
994 struct drm_device *dev = crtc->base.dev;
995 struct drm_i915_private *dev_priv = dev->dev_private;
996 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
997 enum pipe pipe = crtc->pipe;
998
999 if (INTEL_INFO(dev)->gen >= 4) {
1000 int reg = PIPECONF(cpu_transcoder);
1001
1002 /* Wait for the Pipe State to go off */
1003 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1004 100))
1005 WARN(1, "pipe_off wait timed out\n");
1006 } else {
1007 /* Wait for the display line to settle */
1008 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1009 WARN(1, "pipe_off wait timed out\n");
1010 }
1011 }
1012
1013 /*
1014 * ibx_digital_port_connected - is the specified port connected?
1015 * @dev_priv: i915 private structure
1016 * @port: the port to test
1017 *
1018 * Returns true if @port is connected, false otherwise.
1019 */
1020 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1021 struct intel_digital_port *port)
1022 {
1023 u32 bit;
1024
1025 if (HAS_PCH_IBX(dev_priv->dev)) {
1026 switch (port->port) {
1027 case PORT_B:
1028 bit = SDE_PORTB_HOTPLUG;
1029 break;
1030 case PORT_C:
1031 bit = SDE_PORTC_HOTPLUG;
1032 break;
1033 case PORT_D:
1034 bit = SDE_PORTD_HOTPLUG;
1035 break;
1036 default:
1037 return true;
1038 }
1039 } else {
1040 switch (port->port) {
1041 case PORT_B:
1042 bit = SDE_PORTB_HOTPLUG_CPT;
1043 break;
1044 case PORT_C:
1045 bit = SDE_PORTC_HOTPLUG_CPT;
1046 break;
1047 case PORT_D:
1048 bit = SDE_PORTD_HOTPLUG_CPT;
1049 break;
1050 default:
1051 return true;
1052 }
1053 }
1054
1055 return I915_READ(SDEISR) & bit;
1056 }
1057
1058 static const char *state_string(bool enabled)
1059 {
1060 return enabled ? "on" : "off";
1061 }
1062
1063 /* Only for pre-ILK configs */
1064 void assert_pll(struct drm_i915_private *dev_priv,
1065 enum pipe pipe, bool state)
1066 {
1067 int reg;
1068 u32 val;
1069 bool cur_state;
1070
1071 reg = DPLL(pipe);
1072 val = I915_READ(reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 I915_STATE_WARN(cur_state != state,
1075 "PLL state assertion failure (expected %s, current %s)\n",
1076 state_string(state), state_string(cur_state));
1077 }
1078
1079 /* XXX: the dsi pll is shared between MIPI DSI ports */
1080 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1081 {
1082 u32 val;
1083 bool cur_state;
1084
1085 mutex_lock(&dev_priv->dpio_lock);
1086 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1087 mutex_unlock(&dev_priv->dpio_lock);
1088
1089 cur_state = val & DSI_PLL_VCO_EN;
1090 I915_STATE_WARN(cur_state != state,
1091 "DSI PLL state assertion failure (expected %s, current %s)\n",
1092 state_string(state), state_string(cur_state));
1093 }
1094 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1095 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1096
1097 struct intel_shared_dpll *
1098 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1099 {
1100 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1101
1102 if (crtc->config->shared_dpll < 0)
1103 return NULL;
1104
1105 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1106 }
1107
1108 /* For ILK+ */
1109 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1110 struct intel_shared_dpll *pll,
1111 bool state)
1112 {
1113 bool cur_state;
1114 struct intel_dpll_hw_state hw_state;
1115
1116 if (WARN (!pll,
1117 "asserting DPLL %s with no DPLL\n", state_string(state)))
1118 return;
1119
1120 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1121 I915_STATE_WARN(cur_state != state,
1122 "%s assertion failure (expected %s, current %s)\n",
1123 pll->name, state_string(state), state_string(cur_state));
1124 }
1125
1126 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1127 enum pipe pipe, bool state)
1128 {
1129 int reg;
1130 u32 val;
1131 bool cur_state;
1132 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1133 pipe);
1134
1135 if (HAS_DDI(dev_priv->dev)) {
1136 /* DDI does not have a specific FDI_TX register */
1137 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1138 val = I915_READ(reg);
1139 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1140 } else {
1141 reg = FDI_TX_CTL(pipe);
1142 val = I915_READ(reg);
1143 cur_state = !!(val & FDI_TX_ENABLE);
1144 }
1145 I915_STATE_WARN(cur_state != state,
1146 "FDI TX state assertion failure (expected %s, current %s)\n",
1147 state_string(state), state_string(cur_state));
1148 }
1149 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1150 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1151
1152 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1153 enum pipe pipe, bool state)
1154 {
1155 int reg;
1156 u32 val;
1157 bool cur_state;
1158
1159 reg = FDI_RX_CTL(pipe);
1160 val = I915_READ(reg);
1161 cur_state = !!(val & FDI_RX_ENABLE);
1162 I915_STATE_WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171 {
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
1176 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1177 return;
1178
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (HAS_DDI(dev_priv->dev))
1181 return;
1182
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1189 enum pipe pipe, bool state)
1190 {
1191 int reg;
1192 u32 val;
1193 bool cur_state;
1194
1195 reg = FDI_RX_CTL(pipe);
1196 val = I915_READ(reg);
1197 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1198 I915_STATE_WARN(cur_state != state,
1199 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1200 state_string(state), state_string(cur_state));
1201 }
1202
1203 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205 {
1206 struct drm_device *dev = dev_priv->dev;
1207 int pp_reg;
1208 u32 val;
1209 enum pipe panel_pipe = PIPE_A;
1210 bool locked = true;
1211
1212 if (WARN_ON(HAS_DDI(dev)))
1213 return;
1214
1215 if (HAS_PCH_SPLIT(dev)) {
1216 u32 port_sel;
1217
1218 pp_reg = PCH_PP_CONTROL;
1219 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1220
1221 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1222 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1223 panel_pipe = PIPE_B;
1224 /* XXX: else fix for eDP */
1225 } else if (IS_VALLEYVIEW(dev)) {
1226 /* presumably write lock depends on pipe, not port select */
1227 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1228 panel_pipe = pipe;
1229 } else {
1230 pp_reg = PP_CONTROL;
1231 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1232 panel_pipe = PIPE_B;
1233 }
1234
1235 val = I915_READ(pp_reg);
1236 if (!(val & PANEL_POWER_ON) ||
1237 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1238 locked = false;
1239
1240 I915_STATE_WARN(panel_pipe == pipe && locked,
1241 "panel assertion failure, pipe %c regs locked\n",
1242 pipe_name(pipe));
1243 }
1244
1245 static void assert_cursor(struct drm_i915_private *dev_priv,
1246 enum pipe pipe, bool state)
1247 {
1248 struct drm_device *dev = dev_priv->dev;
1249 bool cur_state;
1250
1251 if (IS_845G(dev) || IS_I865G(dev))
1252 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1253 else
1254 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1255
1256 I915_STATE_WARN(cur_state != state,
1257 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1258 pipe_name(pipe), state_string(state), state_string(cur_state));
1259 }
1260 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1261 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1262
1263 void assert_pipe(struct drm_i915_private *dev_priv,
1264 enum pipe pipe, bool state)
1265 {
1266 int reg;
1267 u32 val;
1268 bool cur_state;
1269 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1270 pipe);
1271
1272 /* if we need the pipe quirk it must be always on */
1273 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1274 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1275 state = true;
1276
1277 if (!intel_display_power_is_enabled(dev_priv,
1278 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1279 cur_state = false;
1280 } else {
1281 reg = PIPECONF(cpu_transcoder);
1282 val = I915_READ(reg);
1283 cur_state = !!(val & PIPECONF_ENABLE);
1284 }
1285
1286 I915_STATE_WARN(cur_state != state,
1287 "pipe %c assertion failure (expected %s, current %s)\n",
1288 pipe_name(pipe), state_string(state), state_string(cur_state));
1289 }
1290
1291 static void assert_plane(struct drm_i915_private *dev_priv,
1292 enum plane plane, bool state)
1293 {
1294 int reg;
1295 u32 val;
1296 bool cur_state;
1297
1298 reg = DSPCNTR(plane);
1299 val = I915_READ(reg);
1300 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1301 I915_STATE_WARN(cur_state != state,
1302 "plane %c assertion failure (expected %s, current %s)\n",
1303 plane_name(plane), state_string(state), state_string(cur_state));
1304 }
1305
1306 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1307 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1308
1309 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1310 enum pipe pipe)
1311 {
1312 struct drm_device *dev = dev_priv->dev;
1313 int reg, i;
1314 u32 val;
1315 int cur_pipe;
1316
1317 /* Primary planes are fixed to pipes on gen4+ */
1318 if (INTEL_INFO(dev)->gen >= 4) {
1319 reg = DSPCNTR(pipe);
1320 val = I915_READ(reg);
1321 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1322 "plane %c assertion failure, should be disabled but not\n",
1323 plane_name(pipe));
1324 return;
1325 }
1326
1327 /* Need to check both planes against the pipe */
1328 for_each_pipe(dev_priv, i) {
1329 reg = DSPCNTR(i);
1330 val = I915_READ(reg);
1331 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1332 DISPPLANE_SEL_PIPE_SHIFT;
1333 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1334 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1335 plane_name(i), pipe_name(pipe));
1336 }
1337 }
1338
1339 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1340 enum pipe pipe)
1341 {
1342 struct drm_device *dev = dev_priv->dev;
1343 int reg, sprite;
1344 u32 val;
1345
1346 if (INTEL_INFO(dev)->gen >= 9) {
1347 for_each_sprite(dev_priv, pipe, sprite) {
1348 val = I915_READ(PLANE_CTL(pipe, sprite));
1349 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1350 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1351 sprite, pipe_name(pipe));
1352 }
1353 } else if (IS_VALLEYVIEW(dev)) {
1354 for_each_sprite(dev_priv, pipe, sprite) {
1355 reg = SPCNTR(pipe, sprite);
1356 val = I915_READ(reg);
1357 I915_STATE_WARN(val & SP_ENABLE,
1358 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1359 sprite_name(pipe, sprite), pipe_name(pipe));
1360 }
1361 } else if (INTEL_INFO(dev)->gen >= 7) {
1362 reg = SPRCTL(pipe);
1363 val = I915_READ(reg);
1364 I915_STATE_WARN(val & SPRITE_ENABLE,
1365 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1366 plane_name(pipe), pipe_name(pipe));
1367 } else if (INTEL_INFO(dev)->gen >= 5) {
1368 reg = DVSCNTR(pipe);
1369 val = I915_READ(reg);
1370 I915_STATE_WARN(val & DVS_ENABLE,
1371 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1372 plane_name(pipe), pipe_name(pipe));
1373 }
1374 }
1375
1376 static void assert_vblank_disabled(struct drm_crtc *crtc)
1377 {
1378 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1379 drm_crtc_vblank_put(crtc);
1380 }
1381
1382 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1383 {
1384 u32 val;
1385 bool enabled;
1386
1387 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1388
1389 val = I915_READ(PCH_DREF_CONTROL);
1390 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1391 DREF_SUPERSPREAD_SOURCE_MASK));
1392 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1393 }
1394
1395 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe)
1397 {
1398 int reg;
1399 u32 val;
1400 bool enabled;
1401
1402 reg = PCH_TRANSCONF(pipe);
1403 val = I915_READ(reg);
1404 enabled = !!(val & TRANS_ENABLE);
1405 I915_STATE_WARN(enabled,
1406 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1407 pipe_name(pipe));
1408 }
1409
1410 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe, u32 port_sel, u32 val)
1412 {
1413 if ((val & DP_PORT_EN) == 0)
1414 return false;
1415
1416 if (HAS_PCH_CPT(dev_priv->dev)) {
1417 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1418 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1419 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1420 return false;
1421 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1422 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1423 return false;
1424 } else {
1425 if ((val & DP_PIPE_MASK) != (pipe << 30))
1426 return false;
1427 }
1428 return true;
1429 }
1430
1431 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1432 enum pipe pipe, u32 val)
1433 {
1434 if ((val & SDVO_ENABLE) == 0)
1435 return false;
1436
1437 if (HAS_PCH_CPT(dev_priv->dev)) {
1438 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1439 return false;
1440 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1441 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1442 return false;
1443 } else {
1444 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1445 return false;
1446 }
1447 return true;
1448 }
1449
1450 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, u32 val)
1452 {
1453 if ((val & LVDS_PORT_EN) == 0)
1454 return false;
1455
1456 if (HAS_PCH_CPT(dev_priv->dev)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458 return false;
1459 } else {
1460 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1461 return false;
1462 }
1463 return true;
1464 }
1465
1466 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe, u32 val)
1468 {
1469 if ((val & ADPA_DAC_ENABLE) == 0)
1470 return false;
1471 if (HAS_PCH_CPT(dev_priv->dev)) {
1472 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1473 return false;
1474 } else {
1475 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1476 return false;
1477 }
1478 return true;
1479 }
1480
1481 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1482 enum pipe pipe, int reg, u32 port_sel)
1483 {
1484 u32 val = I915_READ(reg);
1485 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1486 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1487 reg, pipe_name(pipe));
1488
1489 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1490 && (val & DP_PIPEB_SELECT),
1491 "IBX PCH dp port still using transcoder B\n");
1492 }
1493
1494 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1495 enum pipe pipe, int reg)
1496 {
1497 u32 val = I915_READ(reg);
1498 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1499 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1500 reg, pipe_name(pipe));
1501
1502 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1503 && (val & SDVO_PIPE_B_SELECT),
1504 "IBX PCH hdmi port still using transcoder B\n");
1505 }
1506
1507 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1508 enum pipe pipe)
1509 {
1510 int reg;
1511 u32 val;
1512
1513 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1515 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1516
1517 reg = PCH_ADPA;
1518 val = I915_READ(reg);
1519 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1520 "PCH VGA enabled on transcoder %c, should be disabled\n",
1521 pipe_name(pipe));
1522
1523 reg = PCH_LVDS;
1524 val = I915_READ(reg);
1525 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1526 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1527 pipe_name(pipe));
1528
1529 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1530 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1531 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1532 }
1533
1534 static void intel_init_dpio(struct drm_device *dev)
1535 {
1536 struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538 if (!IS_VALLEYVIEW(dev))
1539 return;
1540
1541 /*
1542 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1543 * CHV x1 PHY (DP/HDMI D)
1544 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1545 */
1546 if (IS_CHERRYVIEW(dev)) {
1547 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1548 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1549 } else {
1550 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1551 }
1552 }
1553
1554 static void vlv_enable_pll(struct intel_crtc *crtc,
1555 const struct intel_crtc_state *pipe_config)
1556 {
1557 struct drm_device *dev = crtc->base.dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 int reg = DPLL(crtc->pipe);
1560 u32 dpll = pipe_config->dpll_hw_state.dpll;
1561
1562 assert_pipe_disabled(dev_priv, crtc->pipe);
1563
1564 /* No really, not for ILK+ */
1565 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1566
1567 /* PLL is protected by panel, make sure we can write it */
1568 if (IS_MOBILE(dev_priv->dev))
1569 assert_panel_unlocked(dev_priv, crtc->pipe);
1570
1571 I915_WRITE(reg, dpll);
1572 POSTING_READ(reg);
1573 udelay(150);
1574
1575 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1577
1578 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1579 POSTING_READ(DPLL_MD(crtc->pipe));
1580
1581 /* We do this three times for luck */
1582 I915_WRITE(reg, dpll);
1583 POSTING_READ(reg);
1584 udelay(150); /* wait for warmup */
1585 I915_WRITE(reg, dpll);
1586 POSTING_READ(reg);
1587 udelay(150); /* wait for warmup */
1588 I915_WRITE(reg, dpll);
1589 POSTING_READ(reg);
1590 udelay(150); /* wait for warmup */
1591 }
1592
1593 static void chv_enable_pll(struct intel_crtc *crtc,
1594 const struct intel_crtc_state *pipe_config)
1595 {
1596 struct drm_device *dev = crtc->base.dev;
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598 int pipe = crtc->pipe;
1599 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1600 u32 tmp;
1601
1602 assert_pipe_disabled(dev_priv, crtc->pipe);
1603
1604 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1605
1606 mutex_lock(&dev_priv->dpio_lock);
1607
1608 /* Enable back the 10bit clock to display controller */
1609 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 tmp |= DPIO_DCLKP_EN;
1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1612
1613 /*
1614 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1615 */
1616 udelay(1);
1617
1618 /* Enable PLL */
1619 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1620
1621 /* Check PLL is locked */
1622 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1623 DRM_ERROR("PLL %d failed to lock\n", pipe);
1624
1625 /* not sure when this should be written */
1626 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1627 POSTING_READ(DPLL_MD(pipe));
1628
1629 mutex_unlock(&dev_priv->dpio_lock);
1630 }
1631
1632 static int intel_num_dvo_pipes(struct drm_device *dev)
1633 {
1634 struct intel_crtc *crtc;
1635 int count = 0;
1636
1637 for_each_intel_crtc(dev, crtc)
1638 count += crtc->active &&
1639 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1640
1641 return count;
1642 }
1643
1644 static void i9xx_enable_pll(struct intel_crtc *crtc)
1645 {
1646 struct drm_device *dev = crtc->base.dev;
1647 struct drm_i915_private *dev_priv = dev->dev_private;
1648 int reg = DPLL(crtc->pipe);
1649 u32 dpll = crtc->config->dpll_hw_state.dpll;
1650
1651 assert_pipe_disabled(dev_priv, crtc->pipe);
1652
1653 /* No really, not for ILK+ */
1654 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1655
1656 /* PLL is protected by panel, make sure we can write it */
1657 if (IS_MOBILE(dev) && !IS_I830(dev))
1658 assert_panel_unlocked(dev_priv, crtc->pipe);
1659
1660 /* Enable DVO 2x clock on both PLLs if necessary */
1661 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1662 /*
1663 * It appears to be important that we don't enable this
1664 * for the current pipe before otherwise configuring the
1665 * PLL. No idea how this should be handled if multiple
1666 * DVO outputs are enabled simultaneosly.
1667 */
1668 dpll |= DPLL_DVO_2X_MODE;
1669 I915_WRITE(DPLL(!crtc->pipe),
1670 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1671 }
1672
1673 /* Wait for the clocks to stabilize. */
1674 POSTING_READ(reg);
1675 udelay(150);
1676
1677 if (INTEL_INFO(dev)->gen >= 4) {
1678 I915_WRITE(DPLL_MD(crtc->pipe),
1679 crtc->config->dpll_hw_state.dpll_md);
1680 } else {
1681 /* The pixel multiplier can only be updated once the
1682 * DPLL is enabled and the clocks are stable.
1683 *
1684 * So write it again.
1685 */
1686 I915_WRITE(reg, dpll);
1687 }
1688
1689 /* We do this three times for luck */
1690 I915_WRITE(reg, dpll);
1691 POSTING_READ(reg);
1692 udelay(150); /* wait for warmup */
1693 I915_WRITE(reg, dpll);
1694 POSTING_READ(reg);
1695 udelay(150); /* wait for warmup */
1696 I915_WRITE(reg, dpll);
1697 POSTING_READ(reg);
1698 udelay(150); /* wait for warmup */
1699 }
1700
1701 /**
1702 * i9xx_disable_pll - disable a PLL
1703 * @dev_priv: i915 private structure
1704 * @pipe: pipe PLL to disable
1705 *
1706 * Disable the PLL for @pipe, making sure the pipe is off first.
1707 *
1708 * Note! This is for pre-ILK only.
1709 */
1710 static void i9xx_disable_pll(struct intel_crtc *crtc)
1711 {
1712 struct drm_device *dev = crtc->base.dev;
1713 struct drm_i915_private *dev_priv = dev->dev_private;
1714 enum pipe pipe = crtc->pipe;
1715
1716 /* Disable DVO 2x clock on both PLLs if necessary */
1717 if (IS_I830(dev) &&
1718 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1719 intel_num_dvo_pipes(dev) == 1) {
1720 I915_WRITE(DPLL(PIPE_B),
1721 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1722 I915_WRITE(DPLL(PIPE_A),
1723 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1724 }
1725
1726 /* Don't disable pipe or pipe PLLs if needed */
1727 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1728 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1729 return;
1730
1731 /* Make sure the pipe isn't still relying on us */
1732 assert_pipe_disabled(dev_priv, pipe);
1733
1734 I915_WRITE(DPLL(pipe), 0);
1735 POSTING_READ(DPLL(pipe));
1736 }
1737
1738 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1739 {
1740 u32 val = 0;
1741
1742 /* Make sure the pipe isn't still relying on us */
1743 assert_pipe_disabled(dev_priv, pipe);
1744
1745 /*
1746 * Leave integrated clock source and reference clock enabled for pipe B.
1747 * The latter is needed for VGA hotplug / manual detection.
1748 */
1749 if (pipe == PIPE_B)
1750 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1751 I915_WRITE(DPLL(pipe), val);
1752 POSTING_READ(DPLL(pipe));
1753
1754 }
1755
1756 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1757 {
1758 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1759 u32 val;
1760
1761 /* Make sure the pipe isn't still relying on us */
1762 assert_pipe_disabled(dev_priv, pipe);
1763
1764 /* Set PLL en = 0 */
1765 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1766 if (pipe != PIPE_A)
1767 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1768 I915_WRITE(DPLL(pipe), val);
1769 POSTING_READ(DPLL(pipe));
1770
1771 mutex_lock(&dev_priv->dpio_lock);
1772
1773 /* Disable 10bit clock to display controller */
1774 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1775 val &= ~DPIO_DCLKP_EN;
1776 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1777
1778 /* disable left/right clock distribution */
1779 if (pipe != PIPE_B) {
1780 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1781 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1782 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1783 } else {
1784 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1785 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1786 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1787 }
1788
1789 mutex_unlock(&dev_priv->dpio_lock);
1790 }
1791
1792 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1793 struct intel_digital_port *dport)
1794 {
1795 u32 port_mask;
1796 int dpll_reg;
1797
1798 switch (dport->port) {
1799 case PORT_B:
1800 port_mask = DPLL_PORTB_READY_MASK;
1801 dpll_reg = DPLL(0);
1802 break;
1803 case PORT_C:
1804 port_mask = DPLL_PORTC_READY_MASK;
1805 dpll_reg = DPLL(0);
1806 break;
1807 case PORT_D:
1808 port_mask = DPLL_PORTD_READY_MASK;
1809 dpll_reg = DPIO_PHY_STATUS;
1810 break;
1811 default:
1812 BUG();
1813 }
1814
1815 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1816 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1817 port_name(dport->port), I915_READ(dpll_reg));
1818 }
1819
1820 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1821 {
1822 struct drm_device *dev = crtc->base.dev;
1823 struct drm_i915_private *dev_priv = dev->dev_private;
1824 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1825
1826 if (WARN_ON(pll == NULL))
1827 return;
1828
1829 WARN_ON(!pll->config.crtc_mask);
1830 if (pll->active == 0) {
1831 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1832 WARN_ON(pll->on);
1833 assert_shared_dpll_disabled(dev_priv, pll);
1834
1835 pll->mode_set(dev_priv, pll);
1836 }
1837 }
1838
1839 /**
1840 * intel_enable_shared_dpll - enable PCH PLL
1841 * @dev_priv: i915 private structure
1842 * @pipe: pipe PLL to enable
1843 *
1844 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1845 * drives the transcoder clock.
1846 */
1847 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1848 {
1849 struct drm_device *dev = crtc->base.dev;
1850 struct drm_i915_private *dev_priv = dev->dev_private;
1851 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1852
1853 if (WARN_ON(pll == NULL))
1854 return;
1855
1856 if (WARN_ON(pll->config.crtc_mask == 0))
1857 return;
1858
1859 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1860 pll->name, pll->active, pll->on,
1861 crtc->base.base.id);
1862
1863 if (pll->active++) {
1864 WARN_ON(!pll->on);
1865 assert_shared_dpll_enabled(dev_priv, pll);
1866 return;
1867 }
1868 WARN_ON(pll->on);
1869
1870 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1871
1872 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1873 pll->enable(dev_priv, pll);
1874 pll->on = true;
1875 }
1876
1877 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1878 {
1879 struct drm_device *dev = crtc->base.dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1882
1883 /* PCH only available on ILK+ */
1884 BUG_ON(INTEL_INFO(dev)->gen < 5);
1885 if (WARN_ON(pll == NULL))
1886 return;
1887
1888 if (WARN_ON(pll->config.crtc_mask == 0))
1889 return;
1890
1891 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1892 pll->name, pll->active, pll->on,
1893 crtc->base.base.id);
1894
1895 if (WARN_ON(pll->active == 0)) {
1896 assert_shared_dpll_disabled(dev_priv, pll);
1897 return;
1898 }
1899
1900 assert_shared_dpll_enabled(dev_priv, pll);
1901 WARN_ON(!pll->on);
1902 if (--pll->active)
1903 return;
1904
1905 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1906 pll->disable(dev_priv, pll);
1907 pll->on = false;
1908
1909 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1910 }
1911
1912 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1913 enum pipe pipe)
1914 {
1915 struct drm_device *dev = dev_priv->dev;
1916 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1918 uint32_t reg, val, pipeconf_val;
1919
1920 /* PCH only available on ILK+ */
1921 BUG_ON(!HAS_PCH_SPLIT(dev));
1922
1923 /* Make sure PCH DPLL is enabled */
1924 assert_shared_dpll_enabled(dev_priv,
1925 intel_crtc_to_shared_dpll(intel_crtc));
1926
1927 /* FDI must be feeding us bits for PCH ports */
1928 assert_fdi_tx_enabled(dev_priv, pipe);
1929 assert_fdi_rx_enabled(dev_priv, pipe);
1930
1931 if (HAS_PCH_CPT(dev)) {
1932 /* Workaround: Set the timing override bit before enabling the
1933 * pch transcoder. */
1934 reg = TRANS_CHICKEN2(pipe);
1935 val = I915_READ(reg);
1936 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1937 I915_WRITE(reg, val);
1938 }
1939
1940 reg = PCH_TRANSCONF(pipe);
1941 val = I915_READ(reg);
1942 pipeconf_val = I915_READ(PIPECONF(pipe));
1943
1944 if (HAS_PCH_IBX(dev_priv->dev)) {
1945 /*
1946 * make the BPC in transcoder be consistent with
1947 * that in pipeconf reg.
1948 */
1949 val &= ~PIPECONF_BPC_MASK;
1950 val |= pipeconf_val & PIPECONF_BPC_MASK;
1951 }
1952
1953 val &= ~TRANS_INTERLACE_MASK;
1954 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1955 if (HAS_PCH_IBX(dev_priv->dev) &&
1956 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1957 val |= TRANS_LEGACY_INTERLACED_ILK;
1958 else
1959 val |= TRANS_INTERLACED;
1960 else
1961 val |= TRANS_PROGRESSIVE;
1962
1963 I915_WRITE(reg, val | TRANS_ENABLE);
1964 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1965 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1966 }
1967
1968 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1969 enum transcoder cpu_transcoder)
1970 {
1971 u32 val, pipeconf_val;
1972
1973 /* PCH only available on ILK+ */
1974 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1975
1976 /* FDI must be feeding us bits for PCH ports */
1977 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1978 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1979
1980 /* Workaround: set timing override bit. */
1981 val = I915_READ(_TRANSA_CHICKEN2);
1982 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1983 I915_WRITE(_TRANSA_CHICKEN2, val);
1984
1985 val = TRANS_ENABLE;
1986 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1987
1988 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1989 PIPECONF_INTERLACED_ILK)
1990 val |= TRANS_INTERLACED;
1991 else
1992 val |= TRANS_PROGRESSIVE;
1993
1994 I915_WRITE(LPT_TRANSCONF, val);
1995 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1996 DRM_ERROR("Failed to enable PCH transcoder\n");
1997 }
1998
1999 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2000 enum pipe pipe)
2001 {
2002 struct drm_device *dev = dev_priv->dev;
2003 uint32_t reg, val;
2004
2005 /* FDI relies on the transcoder */
2006 assert_fdi_tx_disabled(dev_priv, pipe);
2007 assert_fdi_rx_disabled(dev_priv, pipe);
2008
2009 /* Ports must be off as well */
2010 assert_pch_ports_disabled(dev_priv, pipe);
2011
2012 reg = PCH_TRANSCONF(pipe);
2013 val = I915_READ(reg);
2014 val &= ~TRANS_ENABLE;
2015 I915_WRITE(reg, val);
2016 /* wait for PCH transcoder off, transcoder state */
2017 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2018 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2019
2020 if (!HAS_PCH_IBX(dev)) {
2021 /* Workaround: Clear the timing override chicken bit again. */
2022 reg = TRANS_CHICKEN2(pipe);
2023 val = I915_READ(reg);
2024 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2025 I915_WRITE(reg, val);
2026 }
2027 }
2028
2029 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2030 {
2031 u32 val;
2032
2033 val = I915_READ(LPT_TRANSCONF);
2034 val &= ~TRANS_ENABLE;
2035 I915_WRITE(LPT_TRANSCONF, val);
2036 /* wait for PCH transcoder off, transcoder state */
2037 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2038 DRM_ERROR("Failed to disable PCH transcoder\n");
2039
2040 /* Workaround: clear timing override bit. */
2041 val = I915_READ(_TRANSA_CHICKEN2);
2042 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2043 I915_WRITE(_TRANSA_CHICKEN2, val);
2044 }
2045
2046 /**
2047 * intel_enable_pipe - enable a pipe, asserting requirements
2048 * @crtc: crtc responsible for the pipe
2049 *
2050 * Enable @crtc's pipe, making sure that various hardware specific requirements
2051 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2052 */
2053 static void intel_enable_pipe(struct intel_crtc *crtc)
2054 {
2055 struct drm_device *dev = crtc->base.dev;
2056 struct drm_i915_private *dev_priv = dev->dev_private;
2057 enum pipe pipe = crtc->pipe;
2058 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2059 pipe);
2060 enum pipe pch_transcoder;
2061 int reg;
2062 u32 val;
2063
2064 assert_planes_disabled(dev_priv, pipe);
2065 assert_cursor_disabled(dev_priv, pipe);
2066 assert_sprites_disabled(dev_priv, pipe);
2067
2068 if (HAS_PCH_LPT(dev_priv->dev))
2069 pch_transcoder = TRANSCODER_A;
2070 else
2071 pch_transcoder = pipe;
2072
2073 /*
2074 * A pipe without a PLL won't actually be able to drive bits from
2075 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2076 * need the check.
2077 */
2078 if (!HAS_PCH_SPLIT(dev_priv->dev))
2079 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2080 assert_dsi_pll_enabled(dev_priv);
2081 else
2082 assert_pll_enabled(dev_priv, pipe);
2083 else {
2084 if (crtc->config->has_pch_encoder) {
2085 /* if driving the PCH, we need FDI enabled */
2086 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2087 assert_fdi_tx_pll_enabled(dev_priv,
2088 (enum pipe) cpu_transcoder);
2089 }
2090 /* FIXME: assert CPU port conditions for SNB+ */
2091 }
2092
2093 reg = PIPECONF(cpu_transcoder);
2094 val = I915_READ(reg);
2095 if (val & PIPECONF_ENABLE) {
2096 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2097 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2098 return;
2099 }
2100
2101 I915_WRITE(reg, val | PIPECONF_ENABLE);
2102 POSTING_READ(reg);
2103 }
2104
2105 /**
2106 * intel_disable_pipe - disable a pipe, asserting requirements
2107 * @crtc: crtc whose pipes is to be disabled
2108 *
2109 * Disable the pipe of @crtc, making sure that various hardware
2110 * specific requirements are met, if applicable, e.g. plane
2111 * disabled, panel fitter off, etc.
2112 *
2113 * Will wait until the pipe has shut down before returning.
2114 */
2115 static void intel_disable_pipe(struct intel_crtc *crtc)
2116 {
2117 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2118 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2119 enum pipe pipe = crtc->pipe;
2120 int reg;
2121 u32 val;
2122
2123 /*
2124 * Make sure planes won't keep trying to pump pixels to us,
2125 * or we might hang the display.
2126 */
2127 assert_planes_disabled(dev_priv, pipe);
2128 assert_cursor_disabled(dev_priv, pipe);
2129 assert_sprites_disabled(dev_priv, pipe);
2130
2131 reg = PIPECONF(cpu_transcoder);
2132 val = I915_READ(reg);
2133 if ((val & PIPECONF_ENABLE) == 0)
2134 return;
2135
2136 /*
2137 * Double wide has implications for planes
2138 * so best keep it disabled when not needed.
2139 */
2140 if (crtc->config->double_wide)
2141 val &= ~PIPECONF_DOUBLE_WIDE;
2142
2143 /* Don't disable pipe or pipe PLLs if needed */
2144 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2145 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2146 val &= ~PIPECONF_ENABLE;
2147
2148 I915_WRITE(reg, val);
2149 if ((val & PIPECONF_ENABLE) == 0)
2150 intel_wait_for_pipe_off(crtc);
2151 }
2152
2153 /*
2154 * Plane regs are double buffered, going from enabled->disabled needs a
2155 * trigger in order to latch. The display address reg provides this.
2156 */
2157 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2158 enum plane plane)
2159 {
2160 struct drm_device *dev = dev_priv->dev;
2161 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2162
2163 I915_WRITE(reg, I915_READ(reg));
2164 POSTING_READ(reg);
2165 }
2166
2167 /**
2168 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2169 * @plane: plane to be enabled
2170 * @crtc: crtc for the plane
2171 *
2172 * Enable @plane on @crtc, making sure that the pipe is running first.
2173 */
2174 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2175 struct drm_crtc *crtc)
2176 {
2177 struct drm_device *dev = plane->dev;
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2180
2181 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2182 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2183
2184 if (intel_crtc->primary_enabled)
2185 return;
2186
2187 intel_crtc->primary_enabled = true;
2188
2189 dev_priv->display.update_primary_plane(crtc, plane->fb,
2190 crtc->x, crtc->y);
2191
2192 /*
2193 * BDW signals flip done immediately if the plane
2194 * is disabled, even if the plane enable is already
2195 * armed to occur at the next vblank :(
2196 */
2197 if (IS_BROADWELL(dev))
2198 intel_wait_for_vblank(dev, intel_crtc->pipe);
2199 }
2200
2201 /**
2202 * intel_disable_primary_hw_plane - disable the primary hardware plane
2203 * @plane: plane to be disabled
2204 * @crtc: crtc for the plane
2205 *
2206 * Disable @plane on @crtc, making sure that the pipe is running first.
2207 */
2208 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2209 struct drm_crtc *crtc)
2210 {
2211 struct drm_device *dev = plane->dev;
2212 struct drm_i915_private *dev_priv = dev->dev_private;
2213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2214
2215 if (WARN_ON(!intel_crtc->active))
2216 return;
2217
2218 if (!intel_crtc->primary_enabled)
2219 return;
2220
2221 intel_crtc->primary_enabled = false;
2222
2223 dev_priv->display.update_primary_plane(crtc, plane->fb,
2224 crtc->x, crtc->y);
2225 }
2226
2227 static bool need_vtd_wa(struct drm_device *dev)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2231 return true;
2232 #endif
2233 return false;
2234 }
2235
2236 unsigned int
2237 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2238 uint64_t fb_format_modifier)
2239 {
2240 unsigned int tile_height;
2241 uint32_t pixel_bytes;
2242
2243 switch (fb_format_modifier) {
2244 case DRM_FORMAT_MOD_NONE:
2245 tile_height = 1;
2246 break;
2247 case I915_FORMAT_MOD_X_TILED:
2248 tile_height = IS_GEN2(dev) ? 16 : 8;
2249 break;
2250 case I915_FORMAT_MOD_Y_TILED:
2251 tile_height = 32;
2252 break;
2253 case I915_FORMAT_MOD_Yf_TILED:
2254 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2255 switch (pixel_bytes) {
2256 default:
2257 case 1:
2258 tile_height = 64;
2259 break;
2260 case 2:
2261 case 4:
2262 tile_height = 32;
2263 break;
2264 case 8:
2265 tile_height = 16;
2266 break;
2267 case 16:
2268 WARN_ONCE(1,
2269 "128-bit pixels are not supported for display!");
2270 tile_height = 16;
2271 break;
2272 }
2273 break;
2274 default:
2275 MISSING_CASE(fb_format_modifier);
2276 tile_height = 1;
2277 break;
2278 }
2279
2280 return tile_height;
2281 }
2282
2283 unsigned int
2284 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2285 uint32_t pixel_format, uint64_t fb_format_modifier)
2286 {
2287 return ALIGN(height, intel_tile_height(dev, pixel_format,
2288 fb_format_modifier));
2289 }
2290
2291 static int
2292 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2293 const struct drm_plane_state *plane_state)
2294 {
2295 struct intel_rotation_info *info = &view->rotation_info;
2296 static const struct i915_ggtt_view rotated_view =
2297 { .type = I915_GGTT_VIEW_ROTATED };
2298
2299 *view = i915_ggtt_view_normal;
2300
2301 if (!plane_state)
2302 return 0;
2303
2304 if (!intel_rotation_90_or_270(plane_state->rotation))
2305 return 0;
2306
2307 *view = rotated_view;
2308
2309 info->height = fb->height;
2310 info->pixel_format = fb->pixel_format;
2311 info->pitch = fb->pitches[0];
2312 info->fb_modifier = fb->modifier[0];
2313
2314 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2315 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2316 DRM_DEBUG_KMS(
2317 "Y or Yf tiling is needed for 90/270 rotation!\n");
2318 return -EINVAL;
2319 }
2320
2321 return 0;
2322 }
2323
2324 int
2325 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2326 struct drm_framebuffer *fb,
2327 const struct drm_plane_state *plane_state,
2328 struct intel_engine_cs *pipelined)
2329 {
2330 struct drm_device *dev = fb->dev;
2331 struct drm_i915_private *dev_priv = dev->dev_private;
2332 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2333 struct i915_ggtt_view view;
2334 u32 alignment;
2335 int ret;
2336
2337 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2338
2339 switch (fb->modifier[0]) {
2340 case DRM_FORMAT_MOD_NONE:
2341 if (INTEL_INFO(dev)->gen >= 9)
2342 alignment = 256 * 1024;
2343 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2344 alignment = 128 * 1024;
2345 else if (INTEL_INFO(dev)->gen >= 4)
2346 alignment = 4 * 1024;
2347 else
2348 alignment = 64 * 1024;
2349 break;
2350 case I915_FORMAT_MOD_X_TILED:
2351 if (INTEL_INFO(dev)->gen >= 9)
2352 alignment = 256 * 1024;
2353 else {
2354 /* pin() will align the object as required by fence */
2355 alignment = 0;
2356 }
2357 break;
2358 case I915_FORMAT_MOD_Y_TILED:
2359 case I915_FORMAT_MOD_Yf_TILED:
2360 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361 "Y tiling bo slipped through, driver bug!\n"))
2362 return -EINVAL;
2363 alignment = 1 * 1024 * 1024;
2364 break;
2365 default:
2366 MISSING_CASE(fb->modifier[0]);
2367 return -EINVAL;
2368 }
2369
2370 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371 if (ret)
2372 return ret;
2373
2374 /* Note that the w/a also requires 64 PTE of padding following the
2375 * bo. We currently fill all unused PTE with the shadow page and so
2376 * we should always have valid PTE following the scanout preventing
2377 * the VT-d warning.
2378 */
2379 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380 alignment = 256 * 1024;
2381
2382 /*
2383 * Global gtt pte registers are special registers which actually forward
2384 * writes to a chunk of system memory. Which means that there is no risk
2385 * that the register values disappear as soon as we call
2386 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 * pin/unpin/fence and not more.
2388 */
2389 intel_runtime_pm_get(dev_priv);
2390
2391 dev_priv->mm.interruptible = false;
2392 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393 &view);
2394 if (ret)
2395 goto err_interruptible;
2396
2397 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 * fence, whereas 965+ only requires a fence if using
2399 * framebuffer compression. For simplicity, we always install
2400 * a fence as the cost is not that onerous.
2401 */
2402 ret = i915_gem_object_get_fence(obj);
2403 if (ret)
2404 goto err_unpin;
2405
2406 i915_gem_object_pin_fence(obj);
2407
2408 dev_priv->mm.interruptible = true;
2409 intel_runtime_pm_put(dev_priv);
2410 return 0;
2411
2412 err_unpin:
2413 i915_gem_object_unpin_from_display_plane(obj, &view);
2414 err_interruptible:
2415 dev_priv->mm.interruptible = true;
2416 intel_runtime_pm_put(dev_priv);
2417 return ret;
2418 }
2419
2420 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2421 const struct drm_plane_state *plane_state)
2422 {
2423 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2424 struct i915_ggtt_view view;
2425 int ret;
2426
2427 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2428
2429 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2430 WARN_ONCE(ret, "Couldn't get view from plane state!");
2431
2432 i915_gem_object_unpin_fence(obj);
2433 i915_gem_object_unpin_from_display_plane(obj, &view);
2434 }
2435
2436 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2437 * is assumed to be a power-of-two. */
2438 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2439 unsigned int tiling_mode,
2440 unsigned int cpp,
2441 unsigned int pitch)
2442 {
2443 if (tiling_mode != I915_TILING_NONE) {
2444 unsigned int tile_rows, tiles;
2445
2446 tile_rows = *y / 8;
2447 *y %= 8;
2448
2449 tiles = *x / (512/cpp);
2450 *x %= 512/cpp;
2451
2452 return tile_rows * pitch * 8 + tiles * 4096;
2453 } else {
2454 unsigned int offset;
2455
2456 offset = *y * pitch + *x * cpp;
2457 *y = 0;
2458 *x = (offset & 4095) / cpp;
2459 return offset & -4096;
2460 }
2461 }
2462
2463 static int i9xx_format_to_fourcc(int format)
2464 {
2465 switch (format) {
2466 case DISPPLANE_8BPP:
2467 return DRM_FORMAT_C8;
2468 case DISPPLANE_BGRX555:
2469 return DRM_FORMAT_XRGB1555;
2470 case DISPPLANE_BGRX565:
2471 return DRM_FORMAT_RGB565;
2472 default:
2473 case DISPPLANE_BGRX888:
2474 return DRM_FORMAT_XRGB8888;
2475 case DISPPLANE_RGBX888:
2476 return DRM_FORMAT_XBGR8888;
2477 case DISPPLANE_BGRX101010:
2478 return DRM_FORMAT_XRGB2101010;
2479 case DISPPLANE_RGBX101010:
2480 return DRM_FORMAT_XBGR2101010;
2481 }
2482 }
2483
2484 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2485 {
2486 switch (format) {
2487 case PLANE_CTL_FORMAT_RGB_565:
2488 return DRM_FORMAT_RGB565;
2489 default:
2490 case PLANE_CTL_FORMAT_XRGB_8888:
2491 if (rgb_order) {
2492 if (alpha)
2493 return DRM_FORMAT_ABGR8888;
2494 else
2495 return DRM_FORMAT_XBGR8888;
2496 } else {
2497 if (alpha)
2498 return DRM_FORMAT_ARGB8888;
2499 else
2500 return DRM_FORMAT_XRGB8888;
2501 }
2502 case PLANE_CTL_FORMAT_XRGB_2101010:
2503 if (rgb_order)
2504 return DRM_FORMAT_XBGR2101010;
2505 else
2506 return DRM_FORMAT_XRGB2101010;
2507 }
2508 }
2509
2510 static bool
2511 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2512 struct intel_initial_plane_config *plane_config)
2513 {
2514 struct drm_device *dev = crtc->base.dev;
2515 struct drm_i915_gem_object *obj = NULL;
2516 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2517 struct drm_framebuffer *fb = &plane_config->fb->base;
2518 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2519 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2520 PAGE_SIZE);
2521
2522 size_aligned -= base_aligned;
2523
2524 if (plane_config->size == 0)
2525 return false;
2526
2527 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528 base_aligned,
2529 base_aligned,
2530 size_aligned);
2531 if (!obj)
2532 return false;
2533
2534 obj->tiling_mode = plane_config->tiling;
2535 if (obj->tiling_mode == I915_TILING_X)
2536 obj->stride = fb->pitches[0];
2537
2538 mode_cmd.pixel_format = fb->pixel_format;
2539 mode_cmd.width = fb->width;
2540 mode_cmd.height = fb->height;
2541 mode_cmd.pitches[0] = fb->pitches[0];
2542 mode_cmd.modifier[0] = fb->modifier[0];
2543 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2544
2545 mutex_lock(&dev->struct_mutex);
2546 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2547 &mode_cmd, obj)) {
2548 DRM_DEBUG_KMS("intel fb init failed\n");
2549 goto out_unref_obj;
2550 }
2551 mutex_unlock(&dev->struct_mutex);
2552
2553 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2554 return true;
2555
2556 out_unref_obj:
2557 drm_gem_object_unreference(&obj->base);
2558 mutex_unlock(&dev->struct_mutex);
2559 return false;
2560 }
2561
2562 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2563 static void
2564 update_state_fb(struct drm_plane *plane)
2565 {
2566 if (plane->fb == plane->state->fb)
2567 return;
2568
2569 if (plane->state->fb)
2570 drm_framebuffer_unreference(plane->state->fb);
2571 plane->state->fb = plane->fb;
2572 if (plane->state->fb)
2573 drm_framebuffer_reference(plane->state->fb);
2574 }
2575
2576 static void
2577 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2578 struct intel_initial_plane_config *plane_config)
2579 {
2580 struct drm_device *dev = intel_crtc->base.dev;
2581 struct drm_i915_private *dev_priv = dev->dev_private;
2582 struct drm_crtc *c;
2583 struct intel_crtc *i;
2584 struct drm_i915_gem_object *obj;
2585 struct drm_plane *primary = intel_crtc->base.primary;
2586 struct drm_framebuffer *fb;
2587
2588 if (!plane_config->fb)
2589 return;
2590
2591 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2592 fb = &plane_config->fb->base;
2593 goto valid_fb;
2594 }
2595
2596 kfree(plane_config->fb);
2597
2598 /*
2599 * Failed to alloc the obj, check to see if we should share
2600 * an fb with another CRTC instead
2601 */
2602 for_each_crtc(dev, c) {
2603 i = to_intel_crtc(c);
2604
2605 if (c == &intel_crtc->base)
2606 continue;
2607
2608 if (!i->active)
2609 continue;
2610
2611 fb = c->primary->fb;
2612 if (!fb)
2613 continue;
2614
2615 obj = intel_fb_obj(fb);
2616 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2617 drm_framebuffer_reference(fb);
2618 goto valid_fb;
2619 }
2620 }
2621
2622 return;
2623
2624 valid_fb:
2625 obj = intel_fb_obj(fb);
2626 if (obj->tiling_mode != I915_TILING_NONE)
2627 dev_priv->preserve_bios_swizzle = true;
2628
2629 primary->fb = fb;
2630 primary->state->crtc = &intel_crtc->base;
2631 primary->crtc = &intel_crtc->base;
2632 update_state_fb(primary);
2633 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2634 }
2635
2636 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2637 struct drm_framebuffer *fb,
2638 int x, int y)
2639 {
2640 struct drm_device *dev = crtc->dev;
2641 struct drm_i915_private *dev_priv = dev->dev_private;
2642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643 struct drm_i915_gem_object *obj;
2644 int plane = intel_crtc->plane;
2645 unsigned long linear_offset;
2646 u32 dspcntr;
2647 u32 reg = DSPCNTR(plane);
2648 int pixel_size;
2649
2650 if (!intel_crtc->primary_enabled) {
2651 I915_WRITE(reg, 0);
2652 if (INTEL_INFO(dev)->gen >= 4)
2653 I915_WRITE(DSPSURF(plane), 0);
2654 else
2655 I915_WRITE(DSPADDR(plane), 0);
2656 POSTING_READ(reg);
2657 return;
2658 }
2659
2660 obj = intel_fb_obj(fb);
2661 if (WARN_ON(obj == NULL))
2662 return;
2663
2664 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2665
2666 dspcntr = DISPPLANE_GAMMA_ENABLE;
2667
2668 dspcntr |= DISPLAY_PLANE_ENABLE;
2669
2670 if (INTEL_INFO(dev)->gen < 4) {
2671 if (intel_crtc->pipe == PIPE_B)
2672 dspcntr |= DISPPLANE_SEL_PIPE_B;
2673
2674 /* pipesrc and dspsize control the size that is scaled from,
2675 * which should always be the user's requested size.
2676 */
2677 I915_WRITE(DSPSIZE(plane),
2678 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2679 (intel_crtc->config->pipe_src_w - 1));
2680 I915_WRITE(DSPPOS(plane), 0);
2681 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2682 I915_WRITE(PRIMSIZE(plane),
2683 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2684 (intel_crtc->config->pipe_src_w - 1));
2685 I915_WRITE(PRIMPOS(plane), 0);
2686 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2687 }
2688
2689 switch (fb->pixel_format) {
2690 case DRM_FORMAT_C8:
2691 dspcntr |= DISPPLANE_8BPP;
2692 break;
2693 case DRM_FORMAT_XRGB1555:
2694 case DRM_FORMAT_ARGB1555:
2695 dspcntr |= DISPPLANE_BGRX555;
2696 break;
2697 case DRM_FORMAT_RGB565:
2698 dspcntr |= DISPPLANE_BGRX565;
2699 break;
2700 case DRM_FORMAT_XRGB8888:
2701 case DRM_FORMAT_ARGB8888:
2702 dspcntr |= DISPPLANE_BGRX888;
2703 break;
2704 case DRM_FORMAT_XBGR8888:
2705 case DRM_FORMAT_ABGR8888:
2706 dspcntr |= DISPPLANE_RGBX888;
2707 break;
2708 case DRM_FORMAT_XRGB2101010:
2709 case DRM_FORMAT_ARGB2101010:
2710 dspcntr |= DISPPLANE_BGRX101010;
2711 break;
2712 case DRM_FORMAT_XBGR2101010:
2713 case DRM_FORMAT_ABGR2101010:
2714 dspcntr |= DISPPLANE_RGBX101010;
2715 break;
2716 default:
2717 BUG();
2718 }
2719
2720 if (INTEL_INFO(dev)->gen >= 4 &&
2721 obj->tiling_mode != I915_TILING_NONE)
2722 dspcntr |= DISPPLANE_TILED;
2723
2724 if (IS_G4X(dev))
2725 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2726
2727 linear_offset = y * fb->pitches[0] + x * pixel_size;
2728
2729 if (INTEL_INFO(dev)->gen >= 4) {
2730 intel_crtc->dspaddr_offset =
2731 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2732 pixel_size,
2733 fb->pitches[0]);
2734 linear_offset -= intel_crtc->dspaddr_offset;
2735 } else {
2736 intel_crtc->dspaddr_offset = linear_offset;
2737 }
2738
2739 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2740 dspcntr |= DISPPLANE_ROTATE_180;
2741
2742 x += (intel_crtc->config->pipe_src_w - 1);
2743 y += (intel_crtc->config->pipe_src_h - 1);
2744
2745 /* Finding the last pixel of the last line of the display
2746 data and adding to linear_offset*/
2747 linear_offset +=
2748 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2749 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2750 }
2751
2752 I915_WRITE(reg, dspcntr);
2753
2754 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2755 if (INTEL_INFO(dev)->gen >= 4) {
2756 I915_WRITE(DSPSURF(plane),
2757 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2758 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2759 I915_WRITE(DSPLINOFF(plane), linear_offset);
2760 } else
2761 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2762 POSTING_READ(reg);
2763 }
2764
2765 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2766 struct drm_framebuffer *fb,
2767 int x, int y)
2768 {
2769 struct drm_device *dev = crtc->dev;
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2772 struct drm_i915_gem_object *obj;
2773 int plane = intel_crtc->plane;
2774 unsigned long linear_offset;
2775 u32 dspcntr;
2776 u32 reg = DSPCNTR(plane);
2777 int pixel_size;
2778
2779 if (!intel_crtc->primary_enabled) {
2780 I915_WRITE(reg, 0);
2781 I915_WRITE(DSPSURF(plane), 0);
2782 POSTING_READ(reg);
2783 return;
2784 }
2785
2786 obj = intel_fb_obj(fb);
2787 if (WARN_ON(obj == NULL))
2788 return;
2789
2790 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2791
2792 dspcntr = DISPPLANE_GAMMA_ENABLE;
2793
2794 dspcntr |= DISPLAY_PLANE_ENABLE;
2795
2796 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2797 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2798
2799 switch (fb->pixel_format) {
2800 case DRM_FORMAT_C8:
2801 dspcntr |= DISPPLANE_8BPP;
2802 break;
2803 case DRM_FORMAT_RGB565:
2804 dspcntr |= DISPPLANE_BGRX565;
2805 break;
2806 case DRM_FORMAT_XRGB8888:
2807 case DRM_FORMAT_ARGB8888:
2808 dspcntr |= DISPPLANE_BGRX888;
2809 break;
2810 case DRM_FORMAT_XBGR8888:
2811 case DRM_FORMAT_ABGR8888:
2812 dspcntr |= DISPPLANE_RGBX888;
2813 break;
2814 case DRM_FORMAT_XRGB2101010:
2815 case DRM_FORMAT_ARGB2101010:
2816 dspcntr |= DISPPLANE_BGRX101010;
2817 break;
2818 case DRM_FORMAT_XBGR2101010:
2819 case DRM_FORMAT_ABGR2101010:
2820 dspcntr |= DISPPLANE_RGBX101010;
2821 break;
2822 default:
2823 BUG();
2824 }
2825
2826 if (obj->tiling_mode != I915_TILING_NONE)
2827 dspcntr |= DISPPLANE_TILED;
2828
2829 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2830 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2831
2832 linear_offset = y * fb->pitches[0] + x * pixel_size;
2833 intel_crtc->dspaddr_offset =
2834 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2835 pixel_size,
2836 fb->pitches[0]);
2837 linear_offset -= intel_crtc->dspaddr_offset;
2838 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2839 dspcntr |= DISPPLANE_ROTATE_180;
2840
2841 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2842 x += (intel_crtc->config->pipe_src_w - 1);
2843 y += (intel_crtc->config->pipe_src_h - 1);
2844
2845 /* Finding the last pixel of the last line of the display
2846 data and adding to linear_offset*/
2847 linear_offset +=
2848 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2849 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2850 }
2851 }
2852
2853 I915_WRITE(reg, dspcntr);
2854
2855 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2856 I915_WRITE(DSPSURF(plane),
2857 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2858 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2859 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2860 } else {
2861 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2862 I915_WRITE(DSPLINOFF(plane), linear_offset);
2863 }
2864 POSTING_READ(reg);
2865 }
2866
2867 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2868 uint32_t pixel_format)
2869 {
2870 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2871
2872 /*
2873 * The stride is either expressed as a multiple of 64 bytes
2874 * chunks for linear buffers or in number of tiles for tiled
2875 * buffers.
2876 */
2877 switch (fb_modifier) {
2878 case DRM_FORMAT_MOD_NONE:
2879 return 64;
2880 case I915_FORMAT_MOD_X_TILED:
2881 if (INTEL_INFO(dev)->gen == 2)
2882 return 128;
2883 return 512;
2884 case I915_FORMAT_MOD_Y_TILED:
2885 /* No need to check for old gens and Y tiling since this is
2886 * about the display engine and those will be blocked before
2887 * we get here.
2888 */
2889 return 128;
2890 case I915_FORMAT_MOD_Yf_TILED:
2891 if (bits_per_pixel == 8)
2892 return 64;
2893 else
2894 return 128;
2895 default:
2896 MISSING_CASE(fb_modifier);
2897 return 64;
2898 }
2899 }
2900
2901 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2902 struct drm_i915_gem_object *obj)
2903 {
2904 enum i915_ggtt_view_type view = I915_GGTT_VIEW_NORMAL;
2905
2906 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2907 view = I915_GGTT_VIEW_ROTATED;
2908
2909 return i915_gem_obj_ggtt_offset_view(obj, view);
2910 }
2911
2912 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2913 struct drm_framebuffer *fb,
2914 int x, int y)
2915 {
2916 struct drm_device *dev = crtc->dev;
2917 struct drm_i915_private *dev_priv = dev->dev_private;
2918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2919 struct drm_i915_gem_object *obj;
2920 int pipe = intel_crtc->pipe;
2921 u32 plane_ctl, stride_div;
2922 unsigned long surf_addr;
2923
2924 if (!intel_crtc->primary_enabled) {
2925 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2926 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2927 POSTING_READ(PLANE_CTL(pipe, 0));
2928 return;
2929 }
2930
2931 plane_ctl = PLANE_CTL_ENABLE |
2932 PLANE_CTL_PIPE_GAMMA_ENABLE |
2933 PLANE_CTL_PIPE_CSC_ENABLE;
2934
2935 switch (fb->pixel_format) {
2936 case DRM_FORMAT_RGB565:
2937 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2938 break;
2939 case DRM_FORMAT_XRGB8888:
2940 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2941 break;
2942 case DRM_FORMAT_ARGB8888:
2943 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2944 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2945 break;
2946 case DRM_FORMAT_XBGR8888:
2947 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2948 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2949 break;
2950 case DRM_FORMAT_ABGR8888:
2951 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2952 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2953 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2954 break;
2955 case DRM_FORMAT_XRGB2101010:
2956 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2957 break;
2958 case DRM_FORMAT_XBGR2101010:
2959 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2960 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2961 break;
2962 default:
2963 BUG();
2964 }
2965
2966 switch (fb->modifier[0]) {
2967 case DRM_FORMAT_MOD_NONE:
2968 break;
2969 case I915_FORMAT_MOD_X_TILED:
2970 plane_ctl |= PLANE_CTL_TILED_X;
2971 break;
2972 case I915_FORMAT_MOD_Y_TILED:
2973 plane_ctl |= PLANE_CTL_TILED_Y;
2974 break;
2975 case I915_FORMAT_MOD_Yf_TILED:
2976 plane_ctl |= PLANE_CTL_TILED_YF;
2977 break;
2978 default:
2979 MISSING_CASE(fb->modifier[0]);
2980 }
2981
2982 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2983 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2984 plane_ctl |= PLANE_CTL_ROTATE_180;
2985
2986 obj = intel_fb_obj(fb);
2987 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2988 fb->pixel_format);
2989 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
2990
2991 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2992 I915_WRITE(PLANE_POS(pipe, 0), 0);
2993 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2994 I915_WRITE(PLANE_SIZE(pipe, 0),
2995 (intel_crtc->config->pipe_src_h - 1) << 16 |
2996 (intel_crtc->config->pipe_src_w - 1));
2997 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
2998 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
2999
3000 POSTING_READ(PLANE_SURF(pipe, 0));
3001 }
3002
3003 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3004 static int
3005 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3006 int x, int y, enum mode_set_atomic state)
3007 {
3008 struct drm_device *dev = crtc->dev;
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010
3011 if (dev_priv->display.disable_fbc)
3012 dev_priv->display.disable_fbc(dev);
3013
3014 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3015
3016 return 0;
3017 }
3018
3019 static void intel_complete_page_flips(struct drm_device *dev)
3020 {
3021 struct drm_crtc *crtc;
3022
3023 for_each_crtc(dev, crtc) {
3024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3025 enum plane plane = intel_crtc->plane;
3026
3027 intel_prepare_page_flip(dev, plane);
3028 intel_finish_page_flip_plane(dev, plane);
3029 }
3030 }
3031
3032 static void intel_update_primary_planes(struct drm_device *dev)
3033 {
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 struct drm_crtc *crtc;
3036
3037 for_each_crtc(dev, crtc) {
3038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3039
3040 drm_modeset_lock(&crtc->mutex, NULL);
3041 /*
3042 * FIXME: Once we have proper support for primary planes (and
3043 * disabling them without disabling the entire crtc) allow again
3044 * a NULL crtc->primary->fb.
3045 */
3046 if (intel_crtc->active && crtc->primary->fb)
3047 dev_priv->display.update_primary_plane(crtc,
3048 crtc->primary->fb,
3049 crtc->x,
3050 crtc->y);
3051 drm_modeset_unlock(&crtc->mutex);
3052 }
3053 }
3054
3055 void intel_prepare_reset(struct drm_device *dev)
3056 {
3057 struct drm_i915_private *dev_priv = to_i915(dev);
3058 struct intel_crtc *crtc;
3059
3060 /* no reset support for gen2 */
3061 if (IS_GEN2(dev))
3062 return;
3063
3064 /* reset doesn't touch the display */
3065 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3066 return;
3067
3068 drm_modeset_lock_all(dev);
3069
3070 /*
3071 * Disabling the crtcs gracefully seems nicer. Also the
3072 * g33 docs say we should at least disable all the planes.
3073 */
3074 for_each_intel_crtc(dev, crtc) {
3075 if (crtc->active)
3076 dev_priv->display.crtc_disable(&crtc->base);
3077 }
3078 }
3079
3080 void intel_finish_reset(struct drm_device *dev)
3081 {
3082 struct drm_i915_private *dev_priv = to_i915(dev);
3083
3084 /*
3085 * Flips in the rings will be nuked by the reset,
3086 * so complete all pending flips so that user space
3087 * will get its events and not get stuck.
3088 */
3089 intel_complete_page_flips(dev);
3090
3091 /* no reset support for gen2 */
3092 if (IS_GEN2(dev))
3093 return;
3094
3095 /* reset doesn't touch the display */
3096 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3097 /*
3098 * Flips in the rings have been nuked by the reset,
3099 * so update the base address of all primary
3100 * planes to the the last fb to make sure we're
3101 * showing the correct fb after a reset.
3102 */
3103 intel_update_primary_planes(dev);
3104 return;
3105 }
3106
3107 /*
3108 * The display has been reset as well,
3109 * so need a full re-initialization.
3110 */
3111 intel_runtime_pm_disable_interrupts(dev_priv);
3112 intel_runtime_pm_enable_interrupts(dev_priv);
3113
3114 intel_modeset_init_hw(dev);
3115
3116 spin_lock_irq(&dev_priv->irq_lock);
3117 if (dev_priv->display.hpd_irq_setup)
3118 dev_priv->display.hpd_irq_setup(dev);
3119 spin_unlock_irq(&dev_priv->irq_lock);
3120
3121 intel_modeset_setup_hw_state(dev, true);
3122
3123 intel_hpd_init(dev_priv);
3124
3125 drm_modeset_unlock_all(dev);
3126 }
3127
3128 static int
3129 intel_finish_fb(struct drm_framebuffer *old_fb)
3130 {
3131 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3132 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3133 bool was_interruptible = dev_priv->mm.interruptible;
3134 int ret;
3135
3136 /* Big Hammer, we also need to ensure that any pending
3137 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3138 * current scanout is retired before unpinning the old
3139 * framebuffer.
3140 *
3141 * This should only fail upon a hung GPU, in which case we
3142 * can safely continue.
3143 */
3144 dev_priv->mm.interruptible = false;
3145 ret = i915_gem_object_finish_gpu(obj);
3146 dev_priv->mm.interruptible = was_interruptible;
3147
3148 return ret;
3149 }
3150
3151 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3152 {
3153 struct drm_device *dev = crtc->dev;
3154 struct drm_i915_private *dev_priv = dev->dev_private;
3155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3156 bool pending;
3157
3158 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3159 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3160 return false;
3161
3162 spin_lock_irq(&dev->event_lock);
3163 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3164 spin_unlock_irq(&dev->event_lock);
3165
3166 return pending;
3167 }
3168
3169 static void intel_update_pipe_size(struct intel_crtc *crtc)
3170 {
3171 struct drm_device *dev = crtc->base.dev;
3172 struct drm_i915_private *dev_priv = dev->dev_private;
3173 const struct drm_display_mode *adjusted_mode;
3174
3175 if (!i915.fastboot)
3176 return;
3177
3178 /*
3179 * Update pipe size and adjust fitter if needed: the reason for this is
3180 * that in compute_mode_changes we check the native mode (not the pfit
3181 * mode) to see if we can flip rather than do a full mode set. In the
3182 * fastboot case, we'll flip, but if we don't update the pipesrc and
3183 * pfit state, we'll end up with a big fb scanned out into the wrong
3184 * sized surface.
3185 *
3186 * To fix this properly, we need to hoist the checks up into
3187 * compute_mode_changes (or above), check the actual pfit state and
3188 * whether the platform allows pfit disable with pipe active, and only
3189 * then update the pipesrc and pfit state, even on the flip path.
3190 */
3191
3192 adjusted_mode = &crtc->config->base.adjusted_mode;
3193
3194 I915_WRITE(PIPESRC(crtc->pipe),
3195 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3196 (adjusted_mode->crtc_vdisplay - 1));
3197 if (!crtc->config->pch_pfit.enabled &&
3198 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3199 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3200 I915_WRITE(PF_CTL(crtc->pipe), 0);
3201 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3202 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3203 }
3204 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3205 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3206 }
3207
3208 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3209 {
3210 struct drm_device *dev = crtc->dev;
3211 struct drm_i915_private *dev_priv = dev->dev_private;
3212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3213 int pipe = intel_crtc->pipe;
3214 u32 reg, temp;
3215
3216 /* enable normal train */
3217 reg = FDI_TX_CTL(pipe);
3218 temp = I915_READ(reg);
3219 if (IS_IVYBRIDGE(dev)) {
3220 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3221 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3222 } else {
3223 temp &= ~FDI_LINK_TRAIN_NONE;
3224 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3225 }
3226 I915_WRITE(reg, temp);
3227
3228 reg = FDI_RX_CTL(pipe);
3229 temp = I915_READ(reg);
3230 if (HAS_PCH_CPT(dev)) {
3231 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3232 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3233 } else {
3234 temp &= ~FDI_LINK_TRAIN_NONE;
3235 temp |= FDI_LINK_TRAIN_NONE;
3236 }
3237 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3238
3239 /* wait one idle pattern time */
3240 POSTING_READ(reg);
3241 udelay(1000);
3242
3243 /* IVB wants error correction enabled */
3244 if (IS_IVYBRIDGE(dev))
3245 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3246 FDI_FE_ERRC_ENABLE);
3247 }
3248
3249 /* The FDI link training functions for ILK/Ibexpeak. */
3250 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3251 {
3252 struct drm_device *dev = crtc->dev;
3253 struct drm_i915_private *dev_priv = dev->dev_private;
3254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3255 int pipe = intel_crtc->pipe;
3256 u32 reg, temp, tries;
3257
3258 /* FDI needs bits from pipe first */
3259 assert_pipe_enabled(dev_priv, pipe);
3260
3261 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3262 for train result */
3263 reg = FDI_RX_IMR(pipe);
3264 temp = I915_READ(reg);
3265 temp &= ~FDI_RX_SYMBOL_LOCK;
3266 temp &= ~FDI_RX_BIT_LOCK;
3267 I915_WRITE(reg, temp);
3268 I915_READ(reg);
3269 udelay(150);
3270
3271 /* enable CPU FDI TX and PCH FDI RX */
3272 reg = FDI_TX_CTL(pipe);
3273 temp = I915_READ(reg);
3274 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3275 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3276 temp &= ~FDI_LINK_TRAIN_NONE;
3277 temp |= FDI_LINK_TRAIN_PATTERN_1;
3278 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3279
3280 reg = FDI_RX_CTL(pipe);
3281 temp = I915_READ(reg);
3282 temp &= ~FDI_LINK_TRAIN_NONE;
3283 temp |= FDI_LINK_TRAIN_PATTERN_1;
3284 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3285
3286 POSTING_READ(reg);
3287 udelay(150);
3288
3289 /* Ironlake workaround, enable clock pointer after FDI enable*/
3290 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3291 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3292 FDI_RX_PHASE_SYNC_POINTER_EN);
3293
3294 reg = FDI_RX_IIR(pipe);
3295 for (tries = 0; tries < 5; tries++) {
3296 temp = I915_READ(reg);
3297 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3298
3299 if ((temp & FDI_RX_BIT_LOCK)) {
3300 DRM_DEBUG_KMS("FDI train 1 done.\n");
3301 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3302 break;
3303 }
3304 }
3305 if (tries == 5)
3306 DRM_ERROR("FDI train 1 fail!\n");
3307
3308 /* Train 2 */
3309 reg = FDI_TX_CTL(pipe);
3310 temp = I915_READ(reg);
3311 temp &= ~FDI_LINK_TRAIN_NONE;
3312 temp |= FDI_LINK_TRAIN_PATTERN_2;
3313 I915_WRITE(reg, temp);
3314
3315 reg = FDI_RX_CTL(pipe);
3316 temp = I915_READ(reg);
3317 temp &= ~FDI_LINK_TRAIN_NONE;
3318 temp |= FDI_LINK_TRAIN_PATTERN_2;
3319 I915_WRITE(reg, temp);
3320
3321 POSTING_READ(reg);
3322 udelay(150);
3323
3324 reg = FDI_RX_IIR(pipe);
3325 for (tries = 0; tries < 5; tries++) {
3326 temp = I915_READ(reg);
3327 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3328
3329 if (temp & FDI_RX_SYMBOL_LOCK) {
3330 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3331 DRM_DEBUG_KMS("FDI train 2 done.\n");
3332 break;
3333 }
3334 }
3335 if (tries == 5)
3336 DRM_ERROR("FDI train 2 fail!\n");
3337
3338 DRM_DEBUG_KMS("FDI train done\n");
3339
3340 }
3341
3342 static const int snb_b_fdi_train_param[] = {
3343 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3344 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3345 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3346 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3347 };
3348
3349 /* The FDI link training functions for SNB/Cougarpoint. */
3350 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3351 {
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355 int pipe = intel_crtc->pipe;
3356 u32 reg, temp, i, retry;
3357
3358 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3359 for train result */
3360 reg = FDI_RX_IMR(pipe);
3361 temp = I915_READ(reg);
3362 temp &= ~FDI_RX_SYMBOL_LOCK;
3363 temp &= ~FDI_RX_BIT_LOCK;
3364 I915_WRITE(reg, temp);
3365
3366 POSTING_READ(reg);
3367 udelay(150);
3368
3369 /* enable CPU FDI TX and PCH FDI RX */
3370 reg = FDI_TX_CTL(pipe);
3371 temp = I915_READ(reg);
3372 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3373 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3374 temp &= ~FDI_LINK_TRAIN_NONE;
3375 temp |= FDI_LINK_TRAIN_PATTERN_1;
3376 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3377 /* SNB-B */
3378 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3379 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3380
3381 I915_WRITE(FDI_RX_MISC(pipe),
3382 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3383
3384 reg = FDI_RX_CTL(pipe);
3385 temp = I915_READ(reg);
3386 if (HAS_PCH_CPT(dev)) {
3387 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3388 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3389 } else {
3390 temp &= ~FDI_LINK_TRAIN_NONE;
3391 temp |= FDI_LINK_TRAIN_PATTERN_1;
3392 }
3393 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3394
3395 POSTING_READ(reg);
3396 udelay(150);
3397
3398 for (i = 0; i < 4; i++) {
3399 reg = FDI_TX_CTL(pipe);
3400 temp = I915_READ(reg);
3401 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3402 temp |= snb_b_fdi_train_param[i];
3403 I915_WRITE(reg, temp);
3404
3405 POSTING_READ(reg);
3406 udelay(500);
3407
3408 for (retry = 0; retry < 5; retry++) {
3409 reg = FDI_RX_IIR(pipe);
3410 temp = I915_READ(reg);
3411 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3412 if (temp & FDI_RX_BIT_LOCK) {
3413 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3414 DRM_DEBUG_KMS("FDI train 1 done.\n");
3415 break;
3416 }
3417 udelay(50);
3418 }
3419 if (retry < 5)
3420 break;
3421 }
3422 if (i == 4)
3423 DRM_ERROR("FDI train 1 fail!\n");
3424
3425 /* Train 2 */
3426 reg = FDI_TX_CTL(pipe);
3427 temp = I915_READ(reg);
3428 temp &= ~FDI_LINK_TRAIN_NONE;
3429 temp |= FDI_LINK_TRAIN_PATTERN_2;
3430 if (IS_GEN6(dev)) {
3431 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3432 /* SNB-B */
3433 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3434 }
3435 I915_WRITE(reg, temp);
3436
3437 reg = FDI_RX_CTL(pipe);
3438 temp = I915_READ(reg);
3439 if (HAS_PCH_CPT(dev)) {
3440 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3441 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3442 } else {
3443 temp &= ~FDI_LINK_TRAIN_NONE;
3444 temp |= FDI_LINK_TRAIN_PATTERN_2;
3445 }
3446 I915_WRITE(reg, temp);
3447
3448 POSTING_READ(reg);
3449 udelay(150);
3450
3451 for (i = 0; i < 4; i++) {
3452 reg = FDI_TX_CTL(pipe);
3453 temp = I915_READ(reg);
3454 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3455 temp |= snb_b_fdi_train_param[i];
3456 I915_WRITE(reg, temp);
3457
3458 POSTING_READ(reg);
3459 udelay(500);
3460
3461 for (retry = 0; retry < 5; retry++) {
3462 reg = FDI_RX_IIR(pipe);
3463 temp = I915_READ(reg);
3464 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3465 if (temp & FDI_RX_SYMBOL_LOCK) {
3466 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3467 DRM_DEBUG_KMS("FDI train 2 done.\n");
3468 break;
3469 }
3470 udelay(50);
3471 }
3472 if (retry < 5)
3473 break;
3474 }
3475 if (i == 4)
3476 DRM_ERROR("FDI train 2 fail!\n");
3477
3478 DRM_DEBUG_KMS("FDI train done.\n");
3479 }
3480
3481 /* Manual link training for Ivy Bridge A0 parts */
3482 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3483 {
3484 struct drm_device *dev = crtc->dev;
3485 struct drm_i915_private *dev_priv = dev->dev_private;
3486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3487 int pipe = intel_crtc->pipe;
3488 u32 reg, temp, i, j;
3489
3490 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3491 for train result */
3492 reg = FDI_RX_IMR(pipe);
3493 temp = I915_READ(reg);
3494 temp &= ~FDI_RX_SYMBOL_LOCK;
3495 temp &= ~FDI_RX_BIT_LOCK;
3496 I915_WRITE(reg, temp);
3497
3498 POSTING_READ(reg);
3499 udelay(150);
3500
3501 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3502 I915_READ(FDI_RX_IIR(pipe)));
3503
3504 /* Try each vswing and preemphasis setting twice before moving on */
3505 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3506 /* disable first in case we need to retry */
3507 reg = FDI_TX_CTL(pipe);
3508 temp = I915_READ(reg);
3509 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3510 temp &= ~FDI_TX_ENABLE;
3511 I915_WRITE(reg, temp);
3512
3513 reg = FDI_RX_CTL(pipe);
3514 temp = I915_READ(reg);
3515 temp &= ~FDI_LINK_TRAIN_AUTO;
3516 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3517 temp &= ~FDI_RX_ENABLE;
3518 I915_WRITE(reg, temp);
3519
3520 /* enable CPU FDI TX and PCH FDI RX */
3521 reg = FDI_TX_CTL(pipe);
3522 temp = I915_READ(reg);
3523 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3524 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3525 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3527 temp |= snb_b_fdi_train_param[j/2];
3528 temp |= FDI_COMPOSITE_SYNC;
3529 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3530
3531 I915_WRITE(FDI_RX_MISC(pipe),
3532 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3533
3534 reg = FDI_RX_CTL(pipe);
3535 temp = I915_READ(reg);
3536 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3537 temp |= FDI_COMPOSITE_SYNC;
3538 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3539
3540 POSTING_READ(reg);
3541 udelay(1); /* should be 0.5us */
3542
3543 for (i = 0; i < 4; i++) {
3544 reg = FDI_RX_IIR(pipe);
3545 temp = I915_READ(reg);
3546 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3547
3548 if (temp & FDI_RX_BIT_LOCK ||
3549 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3550 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3551 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3552 i);
3553 break;
3554 }
3555 udelay(1); /* should be 0.5us */
3556 }
3557 if (i == 4) {
3558 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3559 continue;
3560 }
3561
3562 /* Train 2 */
3563 reg = FDI_TX_CTL(pipe);
3564 temp = I915_READ(reg);
3565 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3566 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3567 I915_WRITE(reg, temp);
3568
3569 reg = FDI_RX_CTL(pipe);
3570 temp = I915_READ(reg);
3571 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3572 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3573 I915_WRITE(reg, temp);
3574
3575 POSTING_READ(reg);
3576 udelay(2); /* should be 1.5us */
3577
3578 for (i = 0; i < 4; i++) {
3579 reg = FDI_RX_IIR(pipe);
3580 temp = I915_READ(reg);
3581 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3582
3583 if (temp & FDI_RX_SYMBOL_LOCK ||
3584 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3585 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3586 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3587 i);
3588 goto train_done;
3589 }
3590 udelay(2); /* should be 1.5us */
3591 }
3592 if (i == 4)
3593 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3594 }
3595
3596 train_done:
3597 DRM_DEBUG_KMS("FDI train done.\n");
3598 }
3599
3600 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3601 {
3602 struct drm_device *dev = intel_crtc->base.dev;
3603 struct drm_i915_private *dev_priv = dev->dev_private;
3604 int pipe = intel_crtc->pipe;
3605 u32 reg, temp;
3606
3607
3608 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3609 reg = FDI_RX_CTL(pipe);
3610 temp = I915_READ(reg);
3611 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3612 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3613 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3614 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3615
3616 POSTING_READ(reg);
3617 udelay(200);
3618
3619 /* Switch from Rawclk to PCDclk */
3620 temp = I915_READ(reg);
3621 I915_WRITE(reg, temp | FDI_PCDCLK);
3622
3623 POSTING_READ(reg);
3624 udelay(200);
3625
3626 /* Enable CPU FDI TX PLL, always on for Ironlake */
3627 reg = FDI_TX_CTL(pipe);
3628 temp = I915_READ(reg);
3629 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3630 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3631
3632 POSTING_READ(reg);
3633 udelay(100);
3634 }
3635 }
3636
3637 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3638 {
3639 struct drm_device *dev = intel_crtc->base.dev;
3640 struct drm_i915_private *dev_priv = dev->dev_private;
3641 int pipe = intel_crtc->pipe;
3642 u32 reg, temp;
3643
3644 /* Switch from PCDclk to Rawclk */
3645 reg = FDI_RX_CTL(pipe);
3646 temp = I915_READ(reg);
3647 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3648
3649 /* Disable CPU FDI TX PLL */
3650 reg = FDI_TX_CTL(pipe);
3651 temp = I915_READ(reg);
3652 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3653
3654 POSTING_READ(reg);
3655 udelay(100);
3656
3657 reg = FDI_RX_CTL(pipe);
3658 temp = I915_READ(reg);
3659 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3660
3661 /* Wait for the clocks to turn off. */
3662 POSTING_READ(reg);
3663 udelay(100);
3664 }
3665
3666 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3667 {
3668 struct drm_device *dev = crtc->dev;
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3671 int pipe = intel_crtc->pipe;
3672 u32 reg, temp;
3673
3674 /* disable CPU FDI tx and PCH FDI rx */
3675 reg = FDI_TX_CTL(pipe);
3676 temp = I915_READ(reg);
3677 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3678 POSTING_READ(reg);
3679
3680 reg = FDI_RX_CTL(pipe);
3681 temp = I915_READ(reg);
3682 temp &= ~(0x7 << 16);
3683 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3684 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3685
3686 POSTING_READ(reg);
3687 udelay(100);
3688
3689 /* Ironlake workaround, disable clock pointer after downing FDI */
3690 if (HAS_PCH_IBX(dev))
3691 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3692
3693 /* still set train pattern 1 */
3694 reg = FDI_TX_CTL(pipe);
3695 temp = I915_READ(reg);
3696 temp &= ~FDI_LINK_TRAIN_NONE;
3697 temp |= FDI_LINK_TRAIN_PATTERN_1;
3698 I915_WRITE(reg, temp);
3699
3700 reg = FDI_RX_CTL(pipe);
3701 temp = I915_READ(reg);
3702 if (HAS_PCH_CPT(dev)) {
3703 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3704 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3705 } else {
3706 temp &= ~FDI_LINK_TRAIN_NONE;
3707 temp |= FDI_LINK_TRAIN_PATTERN_1;
3708 }
3709 /* BPC in FDI rx is consistent with that in PIPECONF */
3710 temp &= ~(0x07 << 16);
3711 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3712 I915_WRITE(reg, temp);
3713
3714 POSTING_READ(reg);
3715 udelay(100);
3716 }
3717
3718 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3719 {
3720 struct intel_crtc *crtc;
3721
3722 /* Note that we don't need to be called with mode_config.lock here
3723 * as our list of CRTC objects is static for the lifetime of the
3724 * device and so cannot disappear as we iterate. Similarly, we can
3725 * happily treat the predicates as racy, atomic checks as userspace
3726 * cannot claim and pin a new fb without at least acquring the
3727 * struct_mutex and so serialising with us.
3728 */
3729 for_each_intel_crtc(dev, crtc) {
3730 if (atomic_read(&crtc->unpin_work_count) == 0)
3731 continue;
3732
3733 if (crtc->unpin_work)
3734 intel_wait_for_vblank(dev, crtc->pipe);
3735
3736 return true;
3737 }
3738
3739 return false;
3740 }
3741
3742 static void page_flip_completed(struct intel_crtc *intel_crtc)
3743 {
3744 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3745 struct intel_unpin_work *work = intel_crtc->unpin_work;
3746
3747 /* ensure that the unpin work is consistent wrt ->pending. */
3748 smp_rmb();
3749 intel_crtc->unpin_work = NULL;
3750
3751 if (work->event)
3752 drm_send_vblank_event(intel_crtc->base.dev,
3753 intel_crtc->pipe,
3754 work->event);
3755
3756 drm_crtc_vblank_put(&intel_crtc->base);
3757
3758 wake_up_all(&dev_priv->pending_flip_queue);
3759 queue_work(dev_priv->wq, &work->work);
3760
3761 trace_i915_flip_complete(intel_crtc->plane,
3762 work->pending_flip_obj);
3763 }
3764
3765 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3766 {
3767 struct drm_device *dev = crtc->dev;
3768 struct drm_i915_private *dev_priv = dev->dev_private;
3769
3770 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3771 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3772 !intel_crtc_has_pending_flip(crtc),
3773 60*HZ) == 0)) {
3774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3775
3776 spin_lock_irq(&dev->event_lock);
3777 if (intel_crtc->unpin_work) {
3778 WARN_ONCE(1, "Removing stuck page flip\n");
3779 page_flip_completed(intel_crtc);
3780 }
3781 spin_unlock_irq(&dev->event_lock);
3782 }
3783
3784 if (crtc->primary->fb) {
3785 mutex_lock(&dev->struct_mutex);
3786 intel_finish_fb(crtc->primary->fb);
3787 mutex_unlock(&dev->struct_mutex);
3788 }
3789 }
3790
3791 /* Program iCLKIP clock to the desired frequency */
3792 static void lpt_program_iclkip(struct drm_crtc *crtc)
3793 {
3794 struct drm_device *dev = crtc->dev;
3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3797 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3798 u32 temp;
3799
3800 mutex_lock(&dev_priv->dpio_lock);
3801
3802 /* It is necessary to ungate the pixclk gate prior to programming
3803 * the divisors, and gate it back when it is done.
3804 */
3805 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3806
3807 /* Disable SSCCTL */
3808 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3809 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3810 SBI_SSCCTL_DISABLE,
3811 SBI_ICLK);
3812
3813 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3814 if (clock == 20000) {
3815 auxdiv = 1;
3816 divsel = 0x41;
3817 phaseinc = 0x20;
3818 } else {
3819 /* The iCLK virtual clock root frequency is in MHz,
3820 * but the adjusted_mode->crtc_clock in in KHz. To get the
3821 * divisors, it is necessary to divide one by another, so we
3822 * convert the virtual clock precision to KHz here for higher
3823 * precision.
3824 */
3825 u32 iclk_virtual_root_freq = 172800 * 1000;
3826 u32 iclk_pi_range = 64;
3827 u32 desired_divisor, msb_divisor_value, pi_value;
3828
3829 desired_divisor = (iclk_virtual_root_freq / clock);
3830 msb_divisor_value = desired_divisor / iclk_pi_range;
3831 pi_value = desired_divisor % iclk_pi_range;
3832
3833 auxdiv = 0;
3834 divsel = msb_divisor_value - 2;
3835 phaseinc = pi_value;
3836 }
3837
3838 /* This should not happen with any sane values */
3839 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3840 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3841 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3842 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3843
3844 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3845 clock,
3846 auxdiv,
3847 divsel,
3848 phasedir,
3849 phaseinc);
3850
3851 /* Program SSCDIVINTPHASE6 */
3852 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3853 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3854 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3855 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3856 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3857 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3858 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3859 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3860
3861 /* Program SSCAUXDIV */
3862 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3863 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3864 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3865 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3866
3867 /* Enable modulator and associated divider */
3868 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3869 temp &= ~SBI_SSCCTL_DISABLE;
3870 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3871
3872 /* Wait for initialization time */
3873 udelay(24);
3874
3875 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3876
3877 mutex_unlock(&dev_priv->dpio_lock);
3878 }
3879
3880 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3881 enum pipe pch_transcoder)
3882 {
3883 struct drm_device *dev = crtc->base.dev;
3884 struct drm_i915_private *dev_priv = dev->dev_private;
3885 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3886
3887 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3888 I915_READ(HTOTAL(cpu_transcoder)));
3889 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3890 I915_READ(HBLANK(cpu_transcoder)));
3891 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3892 I915_READ(HSYNC(cpu_transcoder)));
3893
3894 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3895 I915_READ(VTOTAL(cpu_transcoder)));
3896 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3897 I915_READ(VBLANK(cpu_transcoder)));
3898 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3899 I915_READ(VSYNC(cpu_transcoder)));
3900 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3901 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3902 }
3903
3904 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3905 {
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907 uint32_t temp;
3908
3909 temp = I915_READ(SOUTH_CHICKEN1);
3910 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3911 return;
3912
3913 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3914 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3915
3916 temp &= ~FDI_BC_BIFURCATION_SELECT;
3917 if (enable)
3918 temp |= FDI_BC_BIFURCATION_SELECT;
3919
3920 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3921 I915_WRITE(SOUTH_CHICKEN1, temp);
3922 POSTING_READ(SOUTH_CHICKEN1);
3923 }
3924
3925 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3926 {
3927 struct drm_device *dev = intel_crtc->base.dev;
3928
3929 switch (intel_crtc->pipe) {
3930 case PIPE_A:
3931 break;
3932 case PIPE_B:
3933 if (intel_crtc->config->fdi_lanes > 2)
3934 cpt_set_fdi_bc_bifurcation(dev, false);
3935 else
3936 cpt_set_fdi_bc_bifurcation(dev, true);
3937
3938 break;
3939 case PIPE_C:
3940 cpt_set_fdi_bc_bifurcation(dev, true);
3941
3942 break;
3943 default:
3944 BUG();
3945 }
3946 }
3947
3948 /*
3949 * Enable PCH resources required for PCH ports:
3950 * - PCH PLLs
3951 * - FDI training & RX/TX
3952 * - update transcoder timings
3953 * - DP transcoding bits
3954 * - transcoder
3955 */
3956 static void ironlake_pch_enable(struct drm_crtc *crtc)
3957 {
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3961 int pipe = intel_crtc->pipe;
3962 u32 reg, temp;
3963
3964 assert_pch_transcoder_disabled(dev_priv, pipe);
3965
3966 if (IS_IVYBRIDGE(dev))
3967 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3968
3969 /* Write the TU size bits before fdi link training, so that error
3970 * detection works. */
3971 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3972 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3973
3974 /* For PCH output, training FDI link */
3975 dev_priv->display.fdi_link_train(crtc);
3976
3977 /* We need to program the right clock selection before writing the pixel
3978 * mutliplier into the DPLL. */
3979 if (HAS_PCH_CPT(dev)) {
3980 u32 sel;
3981
3982 temp = I915_READ(PCH_DPLL_SEL);
3983 temp |= TRANS_DPLL_ENABLE(pipe);
3984 sel = TRANS_DPLLB_SEL(pipe);
3985 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3986 temp |= sel;
3987 else
3988 temp &= ~sel;
3989 I915_WRITE(PCH_DPLL_SEL, temp);
3990 }
3991
3992 /* XXX: pch pll's can be enabled any time before we enable the PCH
3993 * transcoder, and we actually should do this to not upset any PCH
3994 * transcoder that already use the clock when we share it.
3995 *
3996 * Note that enable_shared_dpll tries to do the right thing, but
3997 * get_shared_dpll unconditionally resets the pll - we need that to have
3998 * the right LVDS enable sequence. */
3999 intel_enable_shared_dpll(intel_crtc);
4000
4001 /* set transcoder timing, panel must allow it */
4002 assert_panel_unlocked(dev_priv, pipe);
4003 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4004
4005 intel_fdi_normal_train(crtc);
4006
4007 /* For PCH DP, enable TRANS_DP_CTL */
4008 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4009 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4010 reg = TRANS_DP_CTL(pipe);
4011 temp = I915_READ(reg);
4012 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4013 TRANS_DP_SYNC_MASK |
4014 TRANS_DP_BPC_MASK);
4015 temp |= (TRANS_DP_OUTPUT_ENABLE |
4016 TRANS_DP_ENH_FRAMING);
4017 temp |= bpc << 9; /* same format but at 11:9 */
4018
4019 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4020 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4021 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4022 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4023
4024 switch (intel_trans_dp_port_sel(crtc)) {
4025 case PCH_DP_B:
4026 temp |= TRANS_DP_PORT_SEL_B;
4027 break;
4028 case PCH_DP_C:
4029 temp |= TRANS_DP_PORT_SEL_C;
4030 break;
4031 case PCH_DP_D:
4032 temp |= TRANS_DP_PORT_SEL_D;
4033 break;
4034 default:
4035 BUG();
4036 }
4037
4038 I915_WRITE(reg, temp);
4039 }
4040
4041 ironlake_enable_pch_transcoder(dev_priv, pipe);
4042 }
4043
4044 static void lpt_pch_enable(struct drm_crtc *crtc)
4045 {
4046 struct drm_device *dev = crtc->dev;
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4049 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4050
4051 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4052
4053 lpt_program_iclkip(crtc);
4054
4055 /* Set transcoder timing. */
4056 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4057
4058 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4059 }
4060
4061 void intel_put_shared_dpll(struct intel_crtc *crtc)
4062 {
4063 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4064
4065 if (pll == NULL)
4066 return;
4067
4068 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4069 WARN(1, "bad %s crtc mask\n", pll->name);
4070 return;
4071 }
4072
4073 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4074 if (pll->config.crtc_mask == 0) {
4075 WARN_ON(pll->on);
4076 WARN_ON(pll->active);
4077 }
4078
4079 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4080 }
4081
4082 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4083 struct intel_crtc_state *crtc_state)
4084 {
4085 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4086 struct intel_shared_dpll *pll;
4087 enum intel_dpll_id i;
4088
4089 if (HAS_PCH_IBX(dev_priv->dev)) {
4090 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4091 i = (enum intel_dpll_id) crtc->pipe;
4092 pll = &dev_priv->shared_dplls[i];
4093
4094 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4095 crtc->base.base.id, pll->name);
4096
4097 WARN_ON(pll->new_config->crtc_mask);
4098
4099 goto found;
4100 }
4101
4102 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4103 pll = &dev_priv->shared_dplls[i];
4104
4105 /* Only want to check enabled timings first */
4106 if (pll->new_config->crtc_mask == 0)
4107 continue;
4108
4109 if (memcmp(&crtc_state->dpll_hw_state,
4110 &pll->new_config->hw_state,
4111 sizeof(pll->new_config->hw_state)) == 0) {
4112 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4113 crtc->base.base.id, pll->name,
4114 pll->new_config->crtc_mask,
4115 pll->active);
4116 goto found;
4117 }
4118 }
4119
4120 /* Ok no matching timings, maybe there's a free one? */
4121 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4122 pll = &dev_priv->shared_dplls[i];
4123 if (pll->new_config->crtc_mask == 0) {
4124 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4125 crtc->base.base.id, pll->name);
4126 goto found;
4127 }
4128 }
4129
4130 return NULL;
4131
4132 found:
4133 if (pll->new_config->crtc_mask == 0)
4134 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4135
4136 crtc_state->shared_dpll = i;
4137 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4138 pipe_name(crtc->pipe));
4139
4140 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4141
4142 return pll;
4143 }
4144
4145 /**
4146 * intel_shared_dpll_start_config - start a new PLL staged config
4147 * @dev_priv: DRM device
4148 * @clear_pipes: mask of pipes that will have their PLLs freed
4149 *
4150 * Starts a new PLL staged config, copying the current config but
4151 * releasing the references of pipes specified in clear_pipes.
4152 */
4153 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4154 unsigned clear_pipes)
4155 {
4156 struct intel_shared_dpll *pll;
4157 enum intel_dpll_id i;
4158
4159 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4160 pll = &dev_priv->shared_dplls[i];
4161
4162 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4163 GFP_KERNEL);
4164 if (!pll->new_config)
4165 goto cleanup;
4166
4167 pll->new_config->crtc_mask &= ~clear_pipes;
4168 }
4169
4170 return 0;
4171
4172 cleanup:
4173 while (--i >= 0) {
4174 pll = &dev_priv->shared_dplls[i];
4175 kfree(pll->new_config);
4176 pll->new_config = NULL;
4177 }
4178
4179 return -ENOMEM;
4180 }
4181
4182 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4183 {
4184 struct intel_shared_dpll *pll;
4185 enum intel_dpll_id i;
4186
4187 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4188 pll = &dev_priv->shared_dplls[i];
4189
4190 WARN_ON(pll->new_config == &pll->config);
4191
4192 pll->config = *pll->new_config;
4193 kfree(pll->new_config);
4194 pll->new_config = NULL;
4195 }
4196 }
4197
4198 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4199 {
4200 struct intel_shared_dpll *pll;
4201 enum intel_dpll_id i;
4202
4203 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4204 pll = &dev_priv->shared_dplls[i];
4205
4206 WARN_ON(pll->new_config == &pll->config);
4207
4208 kfree(pll->new_config);
4209 pll->new_config = NULL;
4210 }
4211 }
4212
4213 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4214 {
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 int dslreg = PIPEDSL(pipe);
4217 u32 temp;
4218
4219 temp = I915_READ(dslreg);
4220 udelay(500);
4221 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4222 if (wait_for(I915_READ(dslreg) != temp, 5))
4223 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4224 }
4225 }
4226
4227 static void skylake_pfit_enable(struct intel_crtc *crtc)
4228 {
4229 struct drm_device *dev = crtc->base.dev;
4230 struct drm_i915_private *dev_priv = dev->dev_private;
4231 int pipe = crtc->pipe;
4232
4233 if (crtc->config->pch_pfit.enabled) {
4234 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4235 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4236 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4237 }
4238 }
4239
4240 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4241 {
4242 struct drm_device *dev = crtc->base.dev;
4243 struct drm_i915_private *dev_priv = dev->dev_private;
4244 int pipe = crtc->pipe;
4245
4246 if (crtc->config->pch_pfit.enabled) {
4247 /* Force use of hard-coded filter coefficients
4248 * as some pre-programmed values are broken,
4249 * e.g. x201.
4250 */
4251 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4252 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4253 PF_PIPE_SEL_IVB(pipe));
4254 else
4255 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4256 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4257 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4258 }
4259 }
4260
4261 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4262 {
4263 struct drm_device *dev = crtc->dev;
4264 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4265 struct drm_plane *plane;
4266 struct intel_plane *intel_plane;
4267
4268 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4269 intel_plane = to_intel_plane(plane);
4270 if (intel_plane->pipe == pipe)
4271 intel_plane_restore(&intel_plane->base);
4272 }
4273 }
4274
4275 /*
4276 * Disable a plane internally without actually modifying the plane's state.
4277 * This will allow us to easily restore the plane later by just reprogramming
4278 * its state.
4279 */
4280 static void disable_plane_internal(struct drm_plane *plane)
4281 {
4282 struct intel_plane *intel_plane = to_intel_plane(plane);
4283 struct drm_plane_state *state =
4284 plane->funcs->atomic_duplicate_state(plane);
4285 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4286
4287 intel_state->visible = false;
4288 intel_plane->commit_plane(plane, intel_state);
4289
4290 intel_plane_destroy_state(plane, state);
4291 }
4292
4293 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4294 {
4295 struct drm_device *dev = crtc->dev;
4296 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4297 struct drm_plane *plane;
4298 struct intel_plane *intel_plane;
4299
4300 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4301 intel_plane = to_intel_plane(plane);
4302 if (plane->fb && intel_plane->pipe == pipe)
4303 disable_plane_internal(plane);
4304 }
4305 }
4306
4307 void hsw_enable_ips(struct intel_crtc *crtc)
4308 {
4309 struct drm_device *dev = crtc->base.dev;
4310 struct drm_i915_private *dev_priv = dev->dev_private;
4311
4312 if (!crtc->config->ips_enabled)
4313 return;
4314
4315 /* We can only enable IPS after we enable a plane and wait for a vblank */
4316 intel_wait_for_vblank(dev, crtc->pipe);
4317
4318 assert_plane_enabled(dev_priv, crtc->plane);
4319 if (IS_BROADWELL(dev)) {
4320 mutex_lock(&dev_priv->rps.hw_lock);
4321 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4322 mutex_unlock(&dev_priv->rps.hw_lock);
4323 /* Quoting Art Runyan: "its not safe to expect any particular
4324 * value in IPS_CTL bit 31 after enabling IPS through the
4325 * mailbox." Moreover, the mailbox may return a bogus state,
4326 * so we need to just enable it and continue on.
4327 */
4328 } else {
4329 I915_WRITE(IPS_CTL, IPS_ENABLE);
4330 /* The bit only becomes 1 in the next vblank, so this wait here
4331 * is essentially intel_wait_for_vblank. If we don't have this
4332 * and don't wait for vblanks until the end of crtc_enable, then
4333 * the HW state readout code will complain that the expected
4334 * IPS_CTL value is not the one we read. */
4335 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4336 DRM_ERROR("Timed out waiting for IPS enable\n");
4337 }
4338 }
4339
4340 void hsw_disable_ips(struct intel_crtc *crtc)
4341 {
4342 struct drm_device *dev = crtc->base.dev;
4343 struct drm_i915_private *dev_priv = dev->dev_private;
4344
4345 if (!crtc->config->ips_enabled)
4346 return;
4347
4348 assert_plane_enabled(dev_priv, crtc->plane);
4349 if (IS_BROADWELL(dev)) {
4350 mutex_lock(&dev_priv->rps.hw_lock);
4351 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4352 mutex_unlock(&dev_priv->rps.hw_lock);
4353 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4354 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4355 DRM_ERROR("Timed out waiting for IPS disable\n");
4356 } else {
4357 I915_WRITE(IPS_CTL, 0);
4358 POSTING_READ(IPS_CTL);
4359 }
4360
4361 /* We need to wait for a vblank before we can disable the plane. */
4362 intel_wait_for_vblank(dev, crtc->pipe);
4363 }
4364
4365 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4366 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4367 {
4368 struct drm_device *dev = crtc->dev;
4369 struct drm_i915_private *dev_priv = dev->dev_private;
4370 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4371 enum pipe pipe = intel_crtc->pipe;
4372 int palreg = PALETTE(pipe);
4373 int i;
4374 bool reenable_ips = false;
4375
4376 /* The clocks have to be on to load the palette. */
4377 if (!crtc->state->enable || !intel_crtc->active)
4378 return;
4379
4380 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4381 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4382 assert_dsi_pll_enabled(dev_priv);
4383 else
4384 assert_pll_enabled(dev_priv, pipe);
4385 }
4386
4387 /* use legacy palette for Ironlake */
4388 if (!HAS_GMCH_DISPLAY(dev))
4389 palreg = LGC_PALETTE(pipe);
4390
4391 /* Workaround : Do not read or write the pipe palette/gamma data while
4392 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4393 */
4394 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4395 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4396 GAMMA_MODE_MODE_SPLIT)) {
4397 hsw_disable_ips(intel_crtc);
4398 reenable_ips = true;
4399 }
4400
4401 for (i = 0; i < 256; i++) {
4402 I915_WRITE(palreg + 4 * i,
4403 (intel_crtc->lut_r[i] << 16) |
4404 (intel_crtc->lut_g[i] << 8) |
4405 intel_crtc->lut_b[i]);
4406 }
4407
4408 if (reenable_ips)
4409 hsw_enable_ips(intel_crtc);
4410 }
4411
4412 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4413 {
4414 if (!enable && intel_crtc->overlay) {
4415 struct drm_device *dev = intel_crtc->base.dev;
4416 struct drm_i915_private *dev_priv = dev->dev_private;
4417
4418 mutex_lock(&dev->struct_mutex);
4419 dev_priv->mm.interruptible = false;
4420 (void) intel_overlay_switch_off(intel_crtc->overlay);
4421 dev_priv->mm.interruptible = true;
4422 mutex_unlock(&dev->struct_mutex);
4423 }
4424
4425 /* Let userspace switch the overlay on again. In most cases userspace
4426 * has to recompute where to put it anyway.
4427 */
4428 }
4429
4430 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4431 {
4432 struct drm_device *dev = crtc->dev;
4433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4434 int pipe = intel_crtc->pipe;
4435
4436 intel_enable_primary_hw_plane(crtc->primary, crtc);
4437 intel_enable_sprite_planes(crtc);
4438 intel_crtc_update_cursor(crtc, true);
4439 intel_crtc_dpms_overlay(intel_crtc, true);
4440
4441 hsw_enable_ips(intel_crtc);
4442
4443 mutex_lock(&dev->struct_mutex);
4444 intel_fbc_update(dev);
4445 mutex_unlock(&dev->struct_mutex);
4446
4447 /*
4448 * FIXME: Once we grow proper nuclear flip support out of this we need
4449 * to compute the mask of flip planes precisely. For the time being
4450 * consider this a flip from a NULL plane.
4451 */
4452 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4453 }
4454
4455 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4456 {
4457 struct drm_device *dev = crtc->dev;
4458 struct drm_i915_private *dev_priv = dev->dev_private;
4459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4460 int pipe = intel_crtc->pipe;
4461
4462 intel_crtc_wait_for_pending_flips(crtc);
4463
4464 if (dev_priv->fbc.crtc == intel_crtc)
4465 intel_fbc_disable(dev);
4466
4467 hsw_disable_ips(intel_crtc);
4468
4469 intel_crtc_dpms_overlay(intel_crtc, false);
4470 intel_crtc_update_cursor(crtc, false);
4471 intel_disable_sprite_planes(crtc);
4472 intel_disable_primary_hw_plane(crtc->primary, crtc);
4473
4474 /*
4475 * FIXME: Once we grow proper nuclear flip support out of this we need
4476 * to compute the mask of flip planes precisely. For the time being
4477 * consider this a flip to a NULL plane.
4478 */
4479 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4480 }
4481
4482 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4483 {
4484 struct drm_device *dev = crtc->dev;
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4487 struct intel_encoder *encoder;
4488 int pipe = intel_crtc->pipe;
4489
4490 WARN_ON(!crtc->state->enable);
4491
4492 if (intel_crtc->active)
4493 return;
4494
4495 if (intel_crtc->config->has_pch_encoder)
4496 intel_prepare_shared_dpll(intel_crtc);
4497
4498 if (intel_crtc->config->has_dp_encoder)
4499 intel_dp_set_m_n(intel_crtc, M1_N1);
4500
4501 intel_set_pipe_timings(intel_crtc);
4502
4503 if (intel_crtc->config->has_pch_encoder) {
4504 intel_cpu_transcoder_set_m_n(intel_crtc,
4505 &intel_crtc->config->fdi_m_n, NULL);
4506 }
4507
4508 ironlake_set_pipeconf(crtc);
4509
4510 intel_crtc->active = true;
4511
4512 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4513 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4514
4515 for_each_encoder_on_crtc(dev, crtc, encoder)
4516 if (encoder->pre_enable)
4517 encoder->pre_enable(encoder);
4518
4519 if (intel_crtc->config->has_pch_encoder) {
4520 /* Note: FDI PLL enabling _must_ be done before we enable the
4521 * cpu pipes, hence this is separate from all the other fdi/pch
4522 * enabling. */
4523 ironlake_fdi_pll_enable(intel_crtc);
4524 } else {
4525 assert_fdi_tx_disabled(dev_priv, pipe);
4526 assert_fdi_rx_disabled(dev_priv, pipe);
4527 }
4528
4529 ironlake_pfit_enable(intel_crtc);
4530
4531 /*
4532 * On ILK+ LUT must be loaded before the pipe is running but with
4533 * clocks enabled
4534 */
4535 intel_crtc_load_lut(crtc);
4536
4537 intel_update_watermarks(crtc);
4538 intel_enable_pipe(intel_crtc);
4539
4540 if (intel_crtc->config->has_pch_encoder)
4541 ironlake_pch_enable(crtc);
4542
4543 assert_vblank_disabled(crtc);
4544 drm_crtc_vblank_on(crtc);
4545
4546 for_each_encoder_on_crtc(dev, crtc, encoder)
4547 encoder->enable(encoder);
4548
4549 if (HAS_PCH_CPT(dev))
4550 cpt_verify_modeset(dev, intel_crtc->pipe);
4551
4552 intel_crtc_enable_planes(crtc);
4553 }
4554
4555 /* IPS only exists on ULT machines and is tied to pipe A. */
4556 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4557 {
4558 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4559 }
4560
4561 /*
4562 * This implements the workaround described in the "notes" section of the mode
4563 * set sequence documentation. When going from no pipes or single pipe to
4564 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4565 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4566 */
4567 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4568 {
4569 struct drm_device *dev = crtc->base.dev;
4570 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4571
4572 /* We want to get the other_active_crtc only if there's only 1 other
4573 * active crtc. */
4574 for_each_intel_crtc(dev, crtc_it) {
4575 if (!crtc_it->active || crtc_it == crtc)
4576 continue;
4577
4578 if (other_active_crtc)
4579 return;
4580
4581 other_active_crtc = crtc_it;
4582 }
4583 if (!other_active_crtc)
4584 return;
4585
4586 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4587 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4588 }
4589
4590 static void haswell_crtc_enable(struct drm_crtc *crtc)
4591 {
4592 struct drm_device *dev = crtc->dev;
4593 struct drm_i915_private *dev_priv = dev->dev_private;
4594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4595 struct intel_encoder *encoder;
4596 int pipe = intel_crtc->pipe;
4597
4598 WARN_ON(!crtc->state->enable);
4599
4600 if (intel_crtc->active)
4601 return;
4602
4603 if (intel_crtc_to_shared_dpll(intel_crtc))
4604 intel_enable_shared_dpll(intel_crtc);
4605
4606 if (intel_crtc->config->has_dp_encoder)
4607 intel_dp_set_m_n(intel_crtc, M1_N1);
4608
4609 intel_set_pipe_timings(intel_crtc);
4610
4611 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4612 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4613 intel_crtc->config->pixel_multiplier - 1);
4614 }
4615
4616 if (intel_crtc->config->has_pch_encoder) {
4617 intel_cpu_transcoder_set_m_n(intel_crtc,
4618 &intel_crtc->config->fdi_m_n, NULL);
4619 }
4620
4621 haswell_set_pipeconf(crtc);
4622
4623 intel_set_pipe_csc(crtc);
4624
4625 intel_crtc->active = true;
4626
4627 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4628 for_each_encoder_on_crtc(dev, crtc, encoder)
4629 if (encoder->pre_enable)
4630 encoder->pre_enable(encoder);
4631
4632 if (intel_crtc->config->has_pch_encoder) {
4633 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4634 true);
4635 dev_priv->display.fdi_link_train(crtc);
4636 }
4637
4638 intel_ddi_enable_pipe_clock(intel_crtc);
4639
4640 if (IS_SKYLAKE(dev))
4641 skylake_pfit_enable(intel_crtc);
4642 else
4643 ironlake_pfit_enable(intel_crtc);
4644
4645 /*
4646 * On ILK+ LUT must be loaded before the pipe is running but with
4647 * clocks enabled
4648 */
4649 intel_crtc_load_lut(crtc);
4650
4651 intel_ddi_set_pipe_settings(crtc);
4652 intel_ddi_enable_transcoder_func(crtc);
4653
4654 intel_update_watermarks(crtc);
4655 intel_enable_pipe(intel_crtc);
4656
4657 if (intel_crtc->config->has_pch_encoder)
4658 lpt_pch_enable(crtc);
4659
4660 if (intel_crtc->config->dp_encoder_is_mst)
4661 intel_ddi_set_vc_payload_alloc(crtc, true);
4662
4663 assert_vblank_disabled(crtc);
4664 drm_crtc_vblank_on(crtc);
4665
4666 for_each_encoder_on_crtc(dev, crtc, encoder) {
4667 encoder->enable(encoder);
4668 intel_opregion_notify_encoder(encoder, true);
4669 }
4670
4671 /* If we change the relative order between pipe/planes enabling, we need
4672 * to change the workaround. */
4673 haswell_mode_set_planes_workaround(intel_crtc);
4674 intel_crtc_enable_planes(crtc);
4675 }
4676
4677 static void skylake_pfit_disable(struct intel_crtc *crtc)
4678 {
4679 struct drm_device *dev = crtc->base.dev;
4680 struct drm_i915_private *dev_priv = dev->dev_private;
4681 int pipe = crtc->pipe;
4682
4683 /* To avoid upsetting the power well on haswell only disable the pfit if
4684 * it's in use. The hw state code will make sure we get this right. */
4685 if (crtc->config->pch_pfit.enabled) {
4686 I915_WRITE(PS_CTL(pipe), 0);
4687 I915_WRITE(PS_WIN_POS(pipe), 0);
4688 I915_WRITE(PS_WIN_SZ(pipe), 0);
4689 }
4690 }
4691
4692 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4693 {
4694 struct drm_device *dev = crtc->base.dev;
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 int pipe = crtc->pipe;
4697
4698 /* To avoid upsetting the power well on haswell only disable the pfit if
4699 * it's in use. The hw state code will make sure we get this right. */
4700 if (crtc->config->pch_pfit.enabled) {
4701 I915_WRITE(PF_CTL(pipe), 0);
4702 I915_WRITE(PF_WIN_POS(pipe), 0);
4703 I915_WRITE(PF_WIN_SZ(pipe), 0);
4704 }
4705 }
4706
4707 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4708 {
4709 struct drm_device *dev = crtc->dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4712 struct intel_encoder *encoder;
4713 int pipe = intel_crtc->pipe;
4714 u32 reg, temp;
4715
4716 if (!intel_crtc->active)
4717 return;
4718
4719 intel_crtc_disable_planes(crtc);
4720
4721 for_each_encoder_on_crtc(dev, crtc, encoder)
4722 encoder->disable(encoder);
4723
4724 drm_crtc_vblank_off(crtc);
4725 assert_vblank_disabled(crtc);
4726
4727 if (intel_crtc->config->has_pch_encoder)
4728 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4729
4730 intel_disable_pipe(intel_crtc);
4731
4732 ironlake_pfit_disable(intel_crtc);
4733
4734 for_each_encoder_on_crtc(dev, crtc, encoder)
4735 if (encoder->post_disable)
4736 encoder->post_disable(encoder);
4737
4738 if (intel_crtc->config->has_pch_encoder) {
4739 ironlake_fdi_disable(crtc);
4740
4741 ironlake_disable_pch_transcoder(dev_priv, pipe);
4742
4743 if (HAS_PCH_CPT(dev)) {
4744 /* disable TRANS_DP_CTL */
4745 reg = TRANS_DP_CTL(pipe);
4746 temp = I915_READ(reg);
4747 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4748 TRANS_DP_PORT_SEL_MASK);
4749 temp |= TRANS_DP_PORT_SEL_NONE;
4750 I915_WRITE(reg, temp);
4751
4752 /* disable DPLL_SEL */
4753 temp = I915_READ(PCH_DPLL_SEL);
4754 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4755 I915_WRITE(PCH_DPLL_SEL, temp);
4756 }
4757
4758 /* disable PCH DPLL */
4759 intel_disable_shared_dpll(intel_crtc);
4760
4761 ironlake_fdi_pll_disable(intel_crtc);
4762 }
4763
4764 intel_crtc->active = false;
4765 intel_update_watermarks(crtc);
4766
4767 mutex_lock(&dev->struct_mutex);
4768 intel_fbc_update(dev);
4769 mutex_unlock(&dev->struct_mutex);
4770 }
4771
4772 static void haswell_crtc_disable(struct drm_crtc *crtc)
4773 {
4774 struct drm_device *dev = crtc->dev;
4775 struct drm_i915_private *dev_priv = dev->dev_private;
4776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4777 struct intel_encoder *encoder;
4778 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4779
4780 if (!intel_crtc->active)
4781 return;
4782
4783 intel_crtc_disable_planes(crtc);
4784
4785 for_each_encoder_on_crtc(dev, crtc, encoder) {
4786 intel_opregion_notify_encoder(encoder, false);
4787 encoder->disable(encoder);
4788 }
4789
4790 drm_crtc_vblank_off(crtc);
4791 assert_vblank_disabled(crtc);
4792
4793 if (intel_crtc->config->has_pch_encoder)
4794 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4795 false);
4796 intel_disable_pipe(intel_crtc);
4797
4798 if (intel_crtc->config->dp_encoder_is_mst)
4799 intel_ddi_set_vc_payload_alloc(crtc, false);
4800
4801 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4802
4803 if (IS_SKYLAKE(dev))
4804 skylake_pfit_disable(intel_crtc);
4805 else
4806 ironlake_pfit_disable(intel_crtc);
4807
4808 intel_ddi_disable_pipe_clock(intel_crtc);
4809
4810 if (intel_crtc->config->has_pch_encoder) {
4811 lpt_disable_pch_transcoder(dev_priv);
4812 intel_ddi_fdi_disable(crtc);
4813 }
4814
4815 for_each_encoder_on_crtc(dev, crtc, encoder)
4816 if (encoder->post_disable)
4817 encoder->post_disable(encoder);
4818
4819 intel_crtc->active = false;
4820 intel_update_watermarks(crtc);
4821
4822 mutex_lock(&dev->struct_mutex);
4823 intel_fbc_update(dev);
4824 mutex_unlock(&dev->struct_mutex);
4825
4826 if (intel_crtc_to_shared_dpll(intel_crtc))
4827 intel_disable_shared_dpll(intel_crtc);
4828 }
4829
4830 static void ironlake_crtc_off(struct drm_crtc *crtc)
4831 {
4832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4833 intel_put_shared_dpll(intel_crtc);
4834 }
4835
4836
4837 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4838 {
4839 struct drm_device *dev = crtc->base.dev;
4840 struct drm_i915_private *dev_priv = dev->dev_private;
4841 struct intel_crtc_state *pipe_config = crtc->config;
4842
4843 if (!pipe_config->gmch_pfit.control)
4844 return;
4845
4846 /*
4847 * The panel fitter should only be adjusted whilst the pipe is disabled,
4848 * according to register description and PRM.
4849 */
4850 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4851 assert_pipe_disabled(dev_priv, crtc->pipe);
4852
4853 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4854 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4855
4856 /* Border color in case we don't scale up to the full screen. Black by
4857 * default, change to something else for debugging. */
4858 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4859 }
4860
4861 static enum intel_display_power_domain port_to_power_domain(enum port port)
4862 {
4863 switch (port) {
4864 case PORT_A:
4865 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4866 case PORT_B:
4867 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4868 case PORT_C:
4869 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4870 case PORT_D:
4871 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4872 default:
4873 WARN_ON_ONCE(1);
4874 return POWER_DOMAIN_PORT_OTHER;
4875 }
4876 }
4877
4878 #define for_each_power_domain(domain, mask) \
4879 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4880 if ((1 << (domain)) & (mask))
4881
4882 enum intel_display_power_domain
4883 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4884 {
4885 struct drm_device *dev = intel_encoder->base.dev;
4886 struct intel_digital_port *intel_dig_port;
4887
4888 switch (intel_encoder->type) {
4889 case INTEL_OUTPUT_UNKNOWN:
4890 /* Only DDI platforms should ever use this output type */
4891 WARN_ON_ONCE(!HAS_DDI(dev));
4892 case INTEL_OUTPUT_DISPLAYPORT:
4893 case INTEL_OUTPUT_HDMI:
4894 case INTEL_OUTPUT_EDP:
4895 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4896 return port_to_power_domain(intel_dig_port->port);
4897 case INTEL_OUTPUT_DP_MST:
4898 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4899 return port_to_power_domain(intel_dig_port->port);
4900 case INTEL_OUTPUT_ANALOG:
4901 return POWER_DOMAIN_PORT_CRT;
4902 case INTEL_OUTPUT_DSI:
4903 return POWER_DOMAIN_PORT_DSI;
4904 default:
4905 return POWER_DOMAIN_PORT_OTHER;
4906 }
4907 }
4908
4909 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4910 {
4911 struct drm_device *dev = crtc->dev;
4912 struct intel_encoder *intel_encoder;
4913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4914 enum pipe pipe = intel_crtc->pipe;
4915 unsigned long mask;
4916 enum transcoder transcoder;
4917
4918 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4919
4920 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4921 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4922 if (intel_crtc->config->pch_pfit.enabled ||
4923 intel_crtc->config->pch_pfit.force_thru)
4924 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4925
4926 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4927 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4928
4929 return mask;
4930 }
4931
4932 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4933 {
4934 struct drm_i915_private *dev_priv = dev->dev_private;
4935 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4936 struct intel_crtc *crtc;
4937
4938 /*
4939 * First get all needed power domains, then put all unneeded, to avoid
4940 * any unnecessary toggling of the power wells.
4941 */
4942 for_each_intel_crtc(dev, crtc) {
4943 enum intel_display_power_domain domain;
4944
4945 if (!crtc->base.state->enable)
4946 continue;
4947
4948 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4949
4950 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4951 intel_display_power_get(dev_priv, domain);
4952 }
4953
4954 if (dev_priv->display.modeset_global_resources)
4955 dev_priv->display.modeset_global_resources(dev);
4956
4957 for_each_intel_crtc(dev, crtc) {
4958 enum intel_display_power_domain domain;
4959
4960 for_each_power_domain(domain, crtc->enabled_power_domains)
4961 intel_display_power_put(dev_priv, domain);
4962
4963 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4964 }
4965
4966 intel_display_set_init_power(dev_priv, false);
4967 }
4968
4969 /* returns HPLL frequency in kHz */
4970 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4971 {
4972 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4973
4974 /* Obtain SKU information */
4975 mutex_lock(&dev_priv->dpio_lock);
4976 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4977 CCK_FUSE_HPLL_FREQ_MASK;
4978 mutex_unlock(&dev_priv->dpio_lock);
4979
4980 return vco_freq[hpll_freq] * 1000;
4981 }
4982
4983 static void vlv_update_cdclk(struct drm_device *dev)
4984 {
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4986
4987 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4988 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4989 dev_priv->vlv_cdclk_freq);
4990
4991 /*
4992 * Program the gmbus_freq based on the cdclk frequency.
4993 * BSpec erroneously claims we should aim for 4MHz, but
4994 * in fact 1MHz is the correct frequency.
4995 */
4996 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4997 }
4998
4999 /* Adjust CDclk dividers to allow high res or save power if possible */
5000 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5001 {
5002 struct drm_i915_private *dev_priv = dev->dev_private;
5003 u32 val, cmd;
5004
5005 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5006
5007 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5008 cmd = 2;
5009 else if (cdclk == 266667)
5010 cmd = 1;
5011 else
5012 cmd = 0;
5013
5014 mutex_lock(&dev_priv->rps.hw_lock);
5015 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5016 val &= ~DSPFREQGUAR_MASK;
5017 val |= (cmd << DSPFREQGUAR_SHIFT);
5018 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5019 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5020 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5021 50)) {
5022 DRM_ERROR("timed out waiting for CDclk change\n");
5023 }
5024 mutex_unlock(&dev_priv->rps.hw_lock);
5025
5026 if (cdclk == 400000) {
5027 u32 divider;
5028
5029 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5030
5031 mutex_lock(&dev_priv->dpio_lock);
5032 /* adjust cdclk divider */
5033 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5034 val &= ~DISPLAY_FREQUENCY_VALUES;
5035 val |= divider;
5036 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5037
5038 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5039 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5040 50))
5041 DRM_ERROR("timed out waiting for CDclk change\n");
5042 mutex_unlock(&dev_priv->dpio_lock);
5043 }
5044
5045 mutex_lock(&dev_priv->dpio_lock);
5046 /* adjust self-refresh exit latency value */
5047 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5048 val &= ~0x7f;
5049
5050 /*
5051 * For high bandwidth configs, we set a higher latency in the bunit
5052 * so that the core display fetch happens in time to avoid underruns.
5053 */
5054 if (cdclk == 400000)
5055 val |= 4500 / 250; /* 4.5 usec */
5056 else
5057 val |= 3000 / 250; /* 3.0 usec */
5058 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5059 mutex_unlock(&dev_priv->dpio_lock);
5060
5061 vlv_update_cdclk(dev);
5062 }
5063
5064 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5065 {
5066 struct drm_i915_private *dev_priv = dev->dev_private;
5067 u32 val, cmd;
5068
5069 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5070
5071 switch (cdclk) {
5072 case 333333:
5073 case 320000:
5074 case 266667:
5075 case 200000:
5076 break;
5077 default:
5078 MISSING_CASE(cdclk);
5079 return;
5080 }
5081
5082 /*
5083 * Specs are full of misinformation, but testing on actual
5084 * hardware has shown that we just need to write the desired
5085 * CCK divider into the Punit register.
5086 */
5087 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5088
5089 mutex_lock(&dev_priv->rps.hw_lock);
5090 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5091 val &= ~DSPFREQGUAR_MASK_CHV;
5092 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5093 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5094 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5095 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5096 50)) {
5097 DRM_ERROR("timed out waiting for CDclk change\n");
5098 }
5099 mutex_unlock(&dev_priv->rps.hw_lock);
5100
5101 vlv_update_cdclk(dev);
5102 }
5103
5104 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5105 int max_pixclk)
5106 {
5107 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5108 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5109
5110 /*
5111 * Really only a few cases to deal with, as only 4 CDclks are supported:
5112 * 200MHz
5113 * 267MHz
5114 * 320/333MHz (depends on HPLL freq)
5115 * 400MHz (VLV only)
5116 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5117 * of the lower bin and adjust if needed.
5118 *
5119 * We seem to get an unstable or solid color picture at 200MHz.
5120 * Not sure what's wrong. For now use 200MHz only when all pipes
5121 * are off.
5122 */
5123 if (!IS_CHERRYVIEW(dev_priv) &&
5124 max_pixclk > freq_320*limit/100)
5125 return 400000;
5126 else if (max_pixclk > 266667*limit/100)
5127 return freq_320;
5128 else if (max_pixclk > 0)
5129 return 266667;
5130 else
5131 return 200000;
5132 }
5133
5134 /* compute the max pixel clock for new configuration */
5135 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5136 {
5137 struct drm_device *dev = dev_priv->dev;
5138 struct intel_crtc *intel_crtc;
5139 int max_pixclk = 0;
5140
5141 for_each_intel_crtc(dev, intel_crtc) {
5142 if (intel_crtc->new_enabled)
5143 max_pixclk = max(max_pixclk,
5144 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5145 }
5146
5147 return max_pixclk;
5148 }
5149
5150 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5151 unsigned *prepare_pipes)
5152 {
5153 struct drm_i915_private *dev_priv = dev->dev_private;
5154 struct intel_crtc *intel_crtc;
5155 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5156
5157 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5158 dev_priv->vlv_cdclk_freq)
5159 return;
5160
5161 /* disable/enable all currently active pipes while we change cdclk */
5162 for_each_intel_crtc(dev, intel_crtc)
5163 if (intel_crtc->base.state->enable)
5164 *prepare_pipes |= (1 << intel_crtc->pipe);
5165 }
5166
5167 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5168 {
5169 unsigned int credits, default_credits;
5170
5171 if (IS_CHERRYVIEW(dev_priv))
5172 default_credits = PFI_CREDIT(12);
5173 else
5174 default_credits = PFI_CREDIT(8);
5175
5176 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5177 /* CHV suggested value is 31 or 63 */
5178 if (IS_CHERRYVIEW(dev_priv))
5179 credits = PFI_CREDIT_31;
5180 else
5181 credits = PFI_CREDIT(15);
5182 } else {
5183 credits = default_credits;
5184 }
5185
5186 /*
5187 * WA - write default credits before re-programming
5188 * FIXME: should we also set the resend bit here?
5189 */
5190 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5191 default_credits);
5192
5193 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5194 credits | PFI_CREDIT_RESEND);
5195
5196 /*
5197 * FIXME is this guaranteed to clear
5198 * immediately or should we poll for it?
5199 */
5200 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5201 }
5202
5203 static void valleyview_modeset_global_resources(struct drm_device *dev)
5204 {
5205 struct drm_i915_private *dev_priv = dev->dev_private;
5206 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5207 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5208
5209 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5210 /*
5211 * FIXME: We can end up here with all power domains off, yet
5212 * with a CDCLK frequency other than the minimum. To account
5213 * for this take the PIPE-A power domain, which covers the HW
5214 * blocks needed for the following programming. This can be
5215 * removed once it's guaranteed that we get here either with
5216 * the minimum CDCLK set, or the required power domains
5217 * enabled.
5218 */
5219 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5220
5221 if (IS_CHERRYVIEW(dev))
5222 cherryview_set_cdclk(dev, req_cdclk);
5223 else
5224 valleyview_set_cdclk(dev, req_cdclk);
5225
5226 vlv_program_pfi_credits(dev_priv);
5227
5228 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5229 }
5230 }
5231
5232 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5233 {
5234 struct drm_device *dev = crtc->dev;
5235 struct drm_i915_private *dev_priv = to_i915(dev);
5236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5237 struct intel_encoder *encoder;
5238 int pipe = intel_crtc->pipe;
5239 bool is_dsi;
5240
5241 WARN_ON(!crtc->state->enable);
5242
5243 if (intel_crtc->active)
5244 return;
5245
5246 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5247
5248 if (!is_dsi) {
5249 if (IS_CHERRYVIEW(dev))
5250 chv_prepare_pll(intel_crtc, intel_crtc->config);
5251 else
5252 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5253 }
5254
5255 if (intel_crtc->config->has_dp_encoder)
5256 intel_dp_set_m_n(intel_crtc, M1_N1);
5257
5258 intel_set_pipe_timings(intel_crtc);
5259
5260 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5261 struct drm_i915_private *dev_priv = dev->dev_private;
5262
5263 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5264 I915_WRITE(CHV_CANVAS(pipe), 0);
5265 }
5266
5267 i9xx_set_pipeconf(intel_crtc);
5268
5269 intel_crtc->active = true;
5270
5271 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5272
5273 for_each_encoder_on_crtc(dev, crtc, encoder)
5274 if (encoder->pre_pll_enable)
5275 encoder->pre_pll_enable(encoder);
5276
5277 if (!is_dsi) {
5278 if (IS_CHERRYVIEW(dev))
5279 chv_enable_pll(intel_crtc, intel_crtc->config);
5280 else
5281 vlv_enable_pll(intel_crtc, intel_crtc->config);
5282 }
5283
5284 for_each_encoder_on_crtc(dev, crtc, encoder)
5285 if (encoder->pre_enable)
5286 encoder->pre_enable(encoder);
5287
5288 i9xx_pfit_enable(intel_crtc);
5289
5290 intel_crtc_load_lut(crtc);
5291
5292 intel_update_watermarks(crtc);
5293 intel_enable_pipe(intel_crtc);
5294
5295 assert_vblank_disabled(crtc);
5296 drm_crtc_vblank_on(crtc);
5297
5298 for_each_encoder_on_crtc(dev, crtc, encoder)
5299 encoder->enable(encoder);
5300
5301 intel_crtc_enable_planes(crtc);
5302
5303 /* Underruns don't raise interrupts, so check manually. */
5304 i9xx_check_fifo_underruns(dev_priv);
5305 }
5306
5307 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5308 {
5309 struct drm_device *dev = crtc->base.dev;
5310 struct drm_i915_private *dev_priv = dev->dev_private;
5311
5312 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5313 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5314 }
5315
5316 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5317 {
5318 struct drm_device *dev = crtc->dev;
5319 struct drm_i915_private *dev_priv = to_i915(dev);
5320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5321 struct intel_encoder *encoder;
5322 int pipe = intel_crtc->pipe;
5323
5324 WARN_ON(!crtc->state->enable);
5325
5326 if (intel_crtc->active)
5327 return;
5328
5329 i9xx_set_pll_dividers(intel_crtc);
5330
5331 if (intel_crtc->config->has_dp_encoder)
5332 intel_dp_set_m_n(intel_crtc, M1_N1);
5333
5334 intel_set_pipe_timings(intel_crtc);
5335
5336 i9xx_set_pipeconf(intel_crtc);
5337
5338 intel_crtc->active = true;
5339
5340 if (!IS_GEN2(dev))
5341 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5342
5343 for_each_encoder_on_crtc(dev, crtc, encoder)
5344 if (encoder->pre_enable)
5345 encoder->pre_enable(encoder);
5346
5347 i9xx_enable_pll(intel_crtc);
5348
5349 i9xx_pfit_enable(intel_crtc);
5350
5351 intel_crtc_load_lut(crtc);
5352
5353 intel_update_watermarks(crtc);
5354 intel_enable_pipe(intel_crtc);
5355
5356 assert_vblank_disabled(crtc);
5357 drm_crtc_vblank_on(crtc);
5358
5359 for_each_encoder_on_crtc(dev, crtc, encoder)
5360 encoder->enable(encoder);
5361
5362 intel_crtc_enable_planes(crtc);
5363
5364 /*
5365 * Gen2 reports pipe underruns whenever all planes are disabled.
5366 * So don't enable underrun reporting before at least some planes
5367 * are enabled.
5368 * FIXME: Need to fix the logic to work when we turn off all planes
5369 * but leave the pipe running.
5370 */
5371 if (IS_GEN2(dev))
5372 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5373
5374 /* Underruns don't raise interrupts, so check manually. */
5375 i9xx_check_fifo_underruns(dev_priv);
5376 }
5377
5378 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5379 {
5380 struct drm_device *dev = crtc->base.dev;
5381 struct drm_i915_private *dev_priv = dev->dev_private;
5382
5383 if (!crtc->config->gmch_pfit.control)
5384 return;
5385
5386 assert_pipe_disabled(dev_priv, crtc->pipe);
5387
5388 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5389 I915_READ(PFIT_CONTROL));
5390 I915_WRITE(PFIT_CONTROL, 0);
5391 }
5392
5393 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5394 {
5395 struct drm_device *dev = crtc->dev;
5396 struct drm_i915_private *dev_priv = dev->dev_private;
5397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5398 struct intel_encoder *encoder;
5399 int pipe = intel_crtc->pipe;
5400
5401 if (!intel_crtc->active)
5402 return;
5403
5404 /*
5405 * Gen2 reports pipe underruns whenever all planes are disabled.
5406 * So diasble underrun reporting before all the planes get disabled.
5407 * FIXME: Need to fix the logic to work when we turn off all planes
5408 * but leave the pipe running.
5409 */
5410 if (IS_GEN2(dev))
5411 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5412
5413 /*
5414 * Vblank time updates from the shadow to live plane control register
5415 * are blocked if the memory self-refresh mode is active at that
5416 * moment. So to make sure the plane gets truly disabled, disable
5417 * first the self-refresh mode. The self-refresh enable bit in turn
5418 * will be checked/applied by the HW only at the next frame start
5419 * event which is after the vblank start event, so we need to have a
5420 * wait-for-vblank between disabling the plane and the pipe.
5421 */
5422 intel_set_memory_cxsr(dev_priv, false);
5423 intel_crtc_disable_planes(crtc);
5424
5425 /*
5426 * On gen2 planes are double buffered but the pipe isn't, so we must
5427 * wait for planes to fully turn off before disabling the pipe.
5428 * We also need to wait on all gmch platforms because of the
5429 * self-refresh mode constraint explained above.
5430 */
5431 intel_wait_for_vblank(dev, pipe);
5432
5433 for_each_encoder_on_crtc(dev, crtc, encoder)
5434 encoder->disable(encoder);
5435
5436 drm_crtc_vblank_off(crtc);
5437 assert_vblank_disabled(crtc);
5438
5439 intel_disable_pipe(intel_crtc);
5440
5441 i9xx_pfit_disable(intel_crtc);
5442
5443 for_each_encoder_on_crtc(dev, crtc, encoder)
5444 if (encoder->post_disable)
5445 encoder->post_disable(encoder);
5446
5447 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5448 if (IS_CHERRYVIEW(dev))
5449 chv_disable_pll(dev_priv, pipe);
5450 else if (IS_VALLEYVIEW(dev))
5451 vlv_disable_pll(dev_priv, pipe);
5452 else
5453 i9xx_disable_pll(intel_crtc);
5454 }
5455
5456 if (!IS_GEN2(dev))
5457 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5458
5459 intel_crtc->active = false;
5460 intel_update_watermarks(crtc);
5461
5462 mutex_lock(&dev->struct_mutex);
5463 intel_fbc_update(dev);
5464 mutex_unlock(&dev->struct_mutex);
5465 }
5466
5467 static void i9xx_crtc_off(struct drm_crtc *crtc)
5468 {
5469 }
5470
5471 /* Master function to enable/disable CRTC and corresponding power wells */
5472 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5473 {
5474 struct drm_device *dev = crtc->dev;
5475 struct drm_i915_private *dev_priv = dev->dev_private;
5476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5477 enum intel_display_power_domain domain;
5478 unsigned long domains;
5479
5480 if (enable) {
5481 if (!intel_crtc->active) {
5482 domains = get_crtc_power_domains(crtc);
5483 for_each_power_domain(domain, domains)
5484 intel_display_power_get(dev_priv, domain);
5485 intel_crtc->enabled_power_domains = domains;
5486
5487 dev_priv->display.crtc_enable(crtc);
5488 }
5489 } else {
5490 if (intel_crtc->active) {
5491 dev_priv->display.crtc_disable(crtc);
5492
5493 domains = intel_crtc->enabled_power_domains;
5494 for_each_power_domain(domain, domains)
5495 intel_display_power_put(dev_priv, domain);
5496 intel_crtc->enabled_power_domains = 0;
5497 }
5498 }
5499 }
5500
5501 /**
5502 * Sets the power management mode of the pipe and plane.
5503 */
5504 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5505 {
5506 struct drm_device *dev = crtc->dev;
5507 struct intel_encoder *intel_encoder;
5508 bool enable = false;
5509
5510 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5511 enable |= intel_encoder->connectors_active;
5512
5513 intel_crtc_control(crtc, enable);
5514 }
5515
5516 static void intel_crtc_disable(struct drm_crtc *crtc)
5517 {
5518 struct drm_device *dev = crtc->dev;
5519 struct drm_connector *connector;
5520 struct drm_i915_private *dev_priv = dev->dev_private;
5521
5522 /* crtc should still be enabled when we disable it. */
5523 WARN_ON(!crtc->state->enable);
5524
5525 dev_priv->display.crtc_disable(crtc);
5526 dev_priv->display.off(crtc);
5527
5528 crtc->primary->funcs->disable_plane(crtc->primary);
5529
5530 /* Update computed state. */
5531 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5532 if (!connector->encoder || !connector->encoder->crtc)
5533 continue;
5534
5535 if (connector->encoder->crtc != crtc)
5536 continue;
5537
5538 connector->dpms = DRM_MODE_DPMS_OFF;
5539 to_intel_encoder(connector->encoder)->connectors_active = false;
5540 }
5541 }
5542
5543 void intel_encoder_destroy(struct drm_encoder *encoder)
5544 {
5545 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5546
5547 drm_encoder_cleanup(encoder);
5548 kfree(intel_encoder);
5549 }
5550
5551 /* Simple dpms helper for encoders with just one connector, no cloning and only
5552 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5553 * state of the entire output pipe. */
5554 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5555 {
5556 if (mode == DRM_MODE_DPMS_ON) {
5557 encoder->connectors_active = true;
5558
5559 intel_crtc_update_dpms(encoder->base.crtc);
5560 } else {
5561 encoder->connectors_active = false;
5562
5563 intel_crtc_update_dpms(encoder->base.crtc);
5564 }
5565 }
5566
5567 /* Cross check the actual hw state with our own modeset state tracking (and it's
5568 * internal consistency). */
5569 static void intel_connector_check_state(struct intel_connector *connector)
5570 {
5571 if (connector->get_hw_state(connector)) {
5572 struct intel_encoder *encoder = connector->encoder;
5573 struct drm_crtc *crtc;
5574 bool encoder_enabled;
5575 enum pipe pipe;
5576
5577 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5578 connector->base.base.id,
5579 connector->base.name);
5580
5581 /* there is no real hw state for MST connectors */
5582 if (connector->mst_port)
5583 return;
5584
5585 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5586 "wrong connector dpms state\n");
5587 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5588 "active connector not linked to encoder\n");
5589
5590 if (encoder) {
5591 I915_STATE_WARN(!encoder->connectors_active,
5592 "encoder->connectors_active not set\n");
5593
5594 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5595 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5596 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5597 return;
5598
5599 crtc = encoder->base.crtc;
5600
5601 I915_STATE_WARN(!crtc->state->enable,
5602 "crtc not enabled\n");
5603 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5604 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5605 "encoder active on the wrong pipe\n");
5606 }
5607 }
5608 }
5609
5610 /* Even simpler default implementation, if there's really no special case to
5611 * consider. */
5612 void intel_connector_dpms(struct drm_connector *connector, int mode)
5613 {
5614 /* All the simple cases only support two dpms states. */
5615 if (mode != DRM_MODE_DPMS_ON)
5616 mode = DRM_MODE_DPMS_OFF;
5617
5618 if (mode == connector->dpms)
5619 return;
5620
5621 connector->dpms = mode;
5622
5623 /* Only need to change hw state when actually enabled */
5624 if (connector->encoder)
5625 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5626
5627 intel_modeset_check_state(connector->dev);
5628 }
5629
5630 /* Simple connector->get_hw_state implementation for encoders that support only
5631 * one connector and no cloning and hence the encoder state determines the state
5632 * of the connector. */
5633 bool intel_connector_get_hw_state(struct intel_connector *connector)
5634 {
5635 enum pipe pipe = 0;
5636 struct intel_encoder *encoder = connector->encoder;
5637
5638 return encoder->get_hw_state(encoder, &pipe);
5639 }
5640
5641 static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5642 {
5643 struct intel_crtc *crtc =
5644 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5645
5646 if (crtc->base.state->enable &&
5647 crtc->config->has_pch_encoder)
5648 return crtc->config->fdi_lanes;
5649
5650 return 0;
5651 }
5652
5653 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5654 struct intel_crtc_state *pipe_config)
5655 {
5656 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5657 pipe_name(pipe), pipe_config->fdi_lanes);
5658 if (pipe_config->fdi_lanes > 4) {
5659 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5660 pipe_name(pipe), pipe_config->fdi_lanes);
5661 return false;
5662 }
5663
5664 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5665 if (pipe_config->fdi_lanes > 2) {
5666 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5667 pipe_config->fdi_lanes);
5668 return false;
5669 } else {
5670 return true;
5671 }
5672 }
5673
5674 if (INTEL_INFO(dev)->num_pipes == 2)
5675 return true;
5676
5677 /* Ivybridge 3 pipe is really complicated */
5678 switch (pipe) {
5679 case PIPE_A:
5680 return true;
5681 case PIPE_B:
5682 if (pipe_config->fdi_lanes > 2 &&
5683 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
5684 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5685 pipe_name(pipe), pipe_config->fdi_lanes);
5686 return false;
5687 }
5688 return true;
5689 case PIPE_C:
5690 if (pipe_config->fdi_lanes > 2) {
5691 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5692 pipe_name(pipe), pipe_config->fdi_lanes);
5693 return false;
5694 }
5695 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
5696 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5697 return false;
5698 }
5699 return true;
5700 default:
5701 BUG();
5702 }
5703 }
5704
5705 #define RETRY 1
5706 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5707 struct intel_crtc_state *pipe_config)
5708 {
5709 struct drm_device *dev = intel_crtc->base.dev;
5710 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5711 int lane, link_bw, fdi_dotclock;
5712 bool setup_ok, needs_recompute = false;
5713
5714 retry:
5715 /* FDI is a binary signal running at ~2.7GHz, encoding
5716 * each output octet as 10 bits. The actual frequency
5717 * is stored as a divider into a 100MHz clock, and the
5718 * mode pixel clock is stored in units of 1KHz.
5719 * Hence the bw of each lane in terms of the mode signal
5720 * is:
5721 */
5722 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5723
5724 fdi_dotclock = adjusted_mode->crtc_clock;
5725
5726 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5727 pipe_config->pipe_bpp);
5728
5729 pipe_config->fdi_lanes = lane;
5730
5731 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5732 link_bw, &pipe_config->fdi_m_n);
5733
5734 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5735 intel_crtc->pipe, pipe_config);
5736 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5737 pipe_config->pipe_bpp -= 2*3;
5738 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5739 pipe_config->pipe_bpp);
5740 needs_recompute = true;
5741 pipe_config->bw_constrained = true;
5742
5743 goto retry;
5744 }
5745
5746 if (needs_recompute)
5747 return RETRY;
5748
5749 return setup_ok ? 0 : -EINVAL;
5750 }
5751
5752 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5753 struct intel_crtc_state *pipe_config)
5754 {
5755 pipe_config->ips_enabled = i915.enable_ips &&
5756 hsw_crtc_supports_ips(crtc) &&
5757 pipe_config->pipe_bpp <= 24;
5758 }
5759
5760 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5761 struct intel_crtc_state *pipe_config)
5762 {
5763 struct drm_device *dev = crtc->base.dev;
5764 struct drm_i915_private *dev_priv = dev->dev_private;
5765 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5766
5767 /* FIXME should check pixel clock limits on all platforms */
5768 if (INTEL_INFO(dev)->gen < 4) {
5769 int clock_limit =
5770 dev_priv->display.get_display_clock_speed(dev);
5771
5772 /*
5773 * Enable pixel doubling when the dot clock
5774 * is > 90% of the (display) core speed.
5775 *
5776 * GDG double wide on either pipe,
5777 * otherwise pipe A only.
5778 */
5779 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5780 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5781 clock_limit *= 2;
5782 pipe_config->double_wide = true;
5783 }
5784
5785 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5786 return -EINVAL;
5787 }
5788
5789 /*
5790 * Pipe horizontal size must be even in:
5791 * - DVO ganged mode
5792 * - LVDS dual channel mode
5793 * - Double wide pipe
5794 */
5795 if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5796 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5797 pipe_config->pipe_src_w &= ~1;
5798
5799 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5800 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5801 */
5802 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5803 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5804 return -EINVAL;
5805
5806 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5807 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5808 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5809 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5810 * for lvds. */
5811 pipe_config->pipe_bpp = 8*3;
5812 }
5813
5814 if (HAS_IPS(dev))
5815 hsw_compute_ips_config(crtc, pipe_config);
5816
5817 if (pipe_config->has_pch_encoder)
5818 return ironlake_fdi_compute_config(crtc, pipe_config);
5819
5820 return 0;
5821 }
5822
5823 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5824 {
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826 u32 val;
5827 int divider;
5828
5829 if (dev_priv->hpll_freq == 0)
5830 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5831
5832 mutex_lock(&dev_priv->dpio_lock);
5833 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5834 mutex_unlock(&dev_priv->dpio_lock);
5835
5836 divider = val & DISPLAY_FREQUENCY_VALUES;
5837
5838 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5839 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5840 "cdclk change in progress\n");
5841
5842 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5843 }
5844
5845 static int i945_get_display_clock_speed(struct drm_device *dev)
5846 {
5847 return 400000;
5848 }
5849
5850 static int i915_get_display_clock_speed(struct drm_device *dev)
5851 {
5852 return 333000;
5853 }
5854
5855 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5856 {
5857 return 200000;
5858 }
5859
5860 static int pnv_get_display_clock_speed(struct drm_device *dev)
5861 {
5862 u16 gcfgc = 0;
5863
5864 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5865
5866 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5867 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5868 return 267000;
5869 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5870 return 333000;
5871 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5872 return 444000;
5873 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5874 return 200000;
5875 default:
5876 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5877 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5878 return 133000;
5879 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5880 return 167000;
5881 }
5882 }
5883
5884 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5885 {
5886 u16 gcfgc = 0;
5887
5888 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5889
5890 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5891 return 133000;
5892 else {
5893 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5894 case GC_DISPLAY_CLOCK_333_MHZ:
5895 return 333000;
5896 default:
5897 case GC_DISPLAY_CLOCK_190_200_MHZ:
5898 return 190000;
5899 }
5900 }
5901 }
5902
5903 static int i865_get_display_clock_speed(struct drm_device *dev)
5904 {
5905 return 266000;
5906 }
5907
5908 static int i855_get_display_clock_speed(struct drm_device *dev)
5909 {
5910 u16 hpllcc = 0;
5911 /* Assume that the hardware is in the high speed state. This
5912 * should be the default.
5913 */
5914 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5915 case GC_CLOCK_133_200:
5916 case GC_CLOCK_100_200:
5917 return 200000;
5918 case GC_CLOCK_166_250:
5919 return 250000;
5920 case GC_CLOCK_100_133:
5921 return 133000;
5922 }
5923
5924 /* Shouldn't happen */
5925 return 0;
5926 }
5927
5928 static int i830_get_display_clock_speed(struct drm_device *dev)
5929 {
5930 return 133000;
5931 }
5932
5933 static void
5934 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5935 {
5936 while (*num > DATA_LINK_M_N_MASK ||
5937 *den > DATA_LINK_M_N_MASK) {
5938 *num >>= 1;
5939 *den >>= 1;
5940 }
5941 }
5942
5943 static void compute_m_n(unsigned int m, unsigned int n,
5944 uint32_t *ret_m, uint32_t *ret_n)
5945 {
5946 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5947 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5948 intel_reduce_m_n_ratio(ret_m, ret_n);
5949 }
5950
5951 void
5952 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5953 int pixel_clock, int link_clock,
5954 struct intel_link_m_n *m_n)
5955 {
5956 m_n->tu = 64;
5957
5958 compute_m_n(bits_per_pixel * pixel_clock,
5959 link_clock * nlanes * 8,
5960 &m_n->gmch_m, &m_n->gmch_n);
5961
5962 compute_m_n(pixel_clock, link_clock,
5963 &m_n->link_m, &m_n->link_n);
5964 }
5965
5966 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5967 {
5968 if (i915.panel_use_ssc >= 0)
5969 return i915.panel_use_ssc != 0;
5970 return dev_priv->vbt.lvds_use_ssc
5971 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5972 }
5973
5974 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5975 {
5976 struct drm_device *dev = crtc->base.dev;
5977 struct drm_i915_private *dev_priv = dev->dev_private;
5978 int refclk;
5979
5980 if (IS_VALLEYVIEW(dev)) {
5981 refclk = 100000;
5982 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5983 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5984 refclk = dev_priv->vbt.lvds_ssc_freq;
5985 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5986 } else if (!IS_GEN2(dev)) {
5987 refclk = 96000;
5988 } else {
5989 refclk = 48000;
5990 }
5991
5992 return refclk;
5993 }
5994
5995 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5996 {
5997 return (1 << dpll->n) << 16 | dpll->m2;
5998 }
5999
6000 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6001 {
6002 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6003 }
6004
6005 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6006 struct intel_crtc_state *crtc_state,
6007 intel_clock_t *reduced_clock)
6008 {
6009 struct drm_device *dev = crtc->base.dev;
6010 u32 fp, fp2 = 0;
6011
6012 if (IS_PINEVIEW(dev)) {
6013 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6014 if (reduced_clock)
6015 fp2 = pnv_dpll_compute_fp(reduced_clock);
6016 } else {
6017 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6018 if (reduced_clock)
6019 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6020 }
6021
6022 crtc_state->dpll_hw_state.fp0 = fp;
6023
6024 crtc->lowfreq_avail = false;
6025 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6026 reduced_clock) {
6027 crtc_state->dpll_hw_state.fp1 = fp2;
6028 crtc->lowfreq_avail = true;
6029 } else {
6030 crtc_state->dpll_hw_state.fp1 = fp;
6031 }
6032 }
6033
6034 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6035 pipe)
6036 {
6037 u32 reg_val;
6038
6039 /*
6040 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6041 * and set it to a reasonable value instead.
6042 */
6043 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6044 reg_val &= 0xffffff00;
6045 reg_val |= 0x00000030;
6046 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6047
6048 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6049 reg_val &= 0x8cffffff;
6050 reg_val = 0x8c000000;
6051 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6052
6053 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6054 reg_val &= 0xffffff00;
6055 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6056
6057 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6058 reg_val &= 0x00ffffff;
6059 reg_val |= 0xb0000000;
6060 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6061 }
6062
6063 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6064 struct intel_link_m_n *m_n)
6065 {
6066 struct drm_device *dev = crtc->base.dev;
6067 struct drm_i915_private *dev_priv = dev->dev_private;
6068 int pipe = crtc->pipe;
6069
6070 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6071 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6072 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6073 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6074 }
6075
6076 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6077 struct intel_link_m_n *m_n,
6078 struct intel_link_m_n *m2_n2)
6079 {
6080 struct drm_device *dev = crtc->base.dev;
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 int pipe = crtc->pipe;
6083 enum transcoder transcoder = crtc->config->cpu_transcoder;
6084
6085 if (INTEL_INFO(dev)->gen >= 5) {
6086 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6087 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6088 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6089 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6090 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6091 * for gen < 8) and if DRRS is supported (to make sure the
6092 * registers are not unnecessarily accessed).
6093 */
6094 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6095 crtc->config->has_drrs) {
6096 I915_WRITE(PIPE_DATA_M2(transcoder),
6097 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6098 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6099 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6100 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6101 }
6102 } else {
6103 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6104 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6105 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6106 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6107 }
6108 }
6109
6110 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6111 {
6112 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6113
6114 if (m_n == M1_N1) {
6115 dp_m_n = &crtc->config->dp_m_n;
6116 dp_m2_n2 = &crtc->config->dp_m2_n2;
6117 } else if (m_n == M2_N2) {
6118
6119 /*
6120 * M2_N2 registers are not supported. Hence m2_n2 divider value
6121 * needs to be programmed into M1_N1.
6122 */
6123 dp_m_n = &crtc->config->dp_m2_n2;
6124 } else {
6125 DRM_ERROR("Unsupported divider value\n");
6126 return;
6127 }
6128
6129 if (crtc->config->has_pch_encoder)
6130 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6131 else
6132 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6133 }
6134
6135 static void vlv_update_pll(struct intel_crtc *crtc,
6136 struct intel_crtc_state *pipe_config)
6137 {
6138 u32 dpll, dpll_md;
6139
6140 /*
6141 * Enable DPIO clock input. We should never disable the reference
6142 * clock for pipe B, since VGA hotplug / manual detection depends
6143 * on it.
6144 */
6145 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6146 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6147 /* We should never disable this, set it here for state tracking */
6148 if (crtc->pipe == PIPE_B)
6149 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6150 dpll |= DPLL_VCO_ENABLE;
6151 pipe_config->dpll_hw_state.dpll = dpll;
6152
6153 dpll_md = (pipe_config->pixel_multiplier - 1)
6154 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6155 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6156 }
6157
6158 static void vlv_prepare_pll(struct intel_crtc *crtc,
6159 const struct intel_crtc_state *pipe_config)
6160 {
6161 struct drm_device *dev = crtc->base.dev;
6162 struct drm_i915_private *dev_priv = dev->dev_private;
6163 int pipe = crtc->pipe;
6164 u32 mdiv;
6165 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6166 u32 coreclk, reg_val;
6167
6168 mutex_lock(&dev_priv->dpio_lock);
6169
6170 bestn = pipe_config->dpll.n;
6171 bestm1 = pipe_config->dpll.m1;
6172 bestm2 = pipe_config->dpll.m2;
6173 bestp1 = pipe_config->dpll.p1;
6174 bestp2 = pipe_config->dpll.p2;
6175
6176 /* See eDP HDMI DPIO driver vbios notes doc */
6177
6178 /* PLL B needs special handling */
6179 if (pipe == PIPE_B)
6180 vlv_pllb_recal_opamp(dev_priv, pipe);
6181
6182 /* Set up Tx target for periodic Rcomp update */
6183 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6184
6185 /* Disable target IRef on PLL */
6186 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6187 reg_val &= 0x00ffffff;
6188 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6189
6190 /* Disable fast lock */
6191 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6192
6193 /* Set idtafcrecal before PLL is enabled */
6194 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6195 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6196 mdiv |= ((bestn << DPIO_N_SHIFT));
6197 mdiv |= (1 << DPIO_K_SHIFT);
6198
6199 /*
6200 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6201 * but we don't support that).
6202 * Note: don't use the DAC post divider as it seems unstable.
6203 */
6204 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6205 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6206
6207 mdiv |= DPIO_ENABLE_CALIBRATION;
6208 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6209
6210 /* Set HBR and RBR LPF coefficients */
6211 if (pipe_config->port_clock == 162000 ||
6212 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6213 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6214 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6215 0x009f0003);
6216 else
6217 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6218 0x00d0000f);
6219
6220 if (pipe_config->has_dp_encoder) {
6221 /* Use SSC source */
6222 if (pipe == PIPE_A)
6223 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6224 0x0df40000);
6225 else
6226 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6227 0x0df70000);
6228 } else { /* HDMI or VGA */
6229 /* Use bend source */
6230 if (pipe == PIPE_A)
6231 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6232 0x0df70000);
6233 else
6234 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6235 0x0df40000);
6236 }
6237
6238 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6239 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6240 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6241 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6242 coreclk |= 0x01000000;
6243 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6244
6245 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6246 mutex_unlock(&dev_priv->dpio_lock);
6247 }
6248
6249 static void chv_update_pll(struct intel_crtc *crtc,
6250 struct intel_crtc_state *pipe_config)
6251 {
6252 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6253 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6254 DPLL_VCO_ENABLE;
6255 if (crtc->pipe != PIPE_A)
6256 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6257
6258 pipe_config->dpll_hw_state.dpll_md =
6259 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6260 }
6261
6262 static void chv_prepare_pll(struct intel_crtc *crtc,
6263 const struct intel_crtc_state *pipe_config)
6264 {
6265 struct drm_device *dev = crtc->base.dev;
6266 struct drm_i915_private *dev_priv = dev->dev_private;
6267 int pipe = crtc->pipe;
6268 int dpll_reg = DPLL(crtc->pipe);
6269 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6270 u32 loopfilter, tribuf_calcntr;
6271 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6272 u32 dpio_val;
6273 int vco;
6274
6275 bestn = pipe_config->dpll.n;
6276 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6277 bestm1 = pipe_config->dpll.m1;
6278 bestm2 = pipe_config->dpll.m2 >> 22;
6279 bestp1 = pipe_config->dpll.p1;
6280 bestp2 = pipe_config->dpll.p2;
6281 vco = pipe_config->dpll.vco;
6282 dpio_val = 0;
6283 loopfilter = 0;
6284
6285 /*
6286 * Enable Refclk and SSC
6287 */
6288 I915_WRITE(dpll_reg,
6289 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6290
6291 mutex_lock(&dev_priv->dpio_lock);
6292
6293 /* p1 and p2 divider */
6294 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6295 5 << DPIO_CHV_S1_DIV_SHIFT |
6296 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6297 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6298 1 << DPIO_CHV_K_DIV_SHIFT);
6299
6300 /* Feedback post-divider - m2 */
6301 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6302
6303 /* Feedback refclk divider - n and m1 */
6304 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6305 DPIO_CHV_M1_DIV_BY_2 |
6306 1 << DPIO_CHV_N_DIV_SHIFT);
6307
6308 /* M2 fraction division */
6309 if (bestm2_frac)
6310 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6311
6312 /* M2 fraction division enable */
6313 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6314 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6315 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6316 if (bestm2_frac)
6317 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6318 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6319
6320 /* Program digital lock detect threshold */
6321 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6322 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6323 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6324 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6325 if (!bestm2_frac)
6326 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6327 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6328
6329 /* Loop filter */
6330 if (vco == 5400000) {
6331 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6332 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6333 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6334 tribuf_calcntr = 0x9;
6335 } else if (vco <= 6200000) {
6336 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6337 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6338 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6339 tribuf_calcntr = 0x9;
6340 } else if (vco <= 6480000) {
6341 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6342 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6343 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6344 tribuf_calcntr = 0x8;
6345 } else {
6346 /* Not supported. Apply the same limits as in the max case */
6347 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6348 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6349 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6350 tribuf_calcntr = 0;
6351 }
6352 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6353
6354 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6355 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6356 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6357 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6358
6359 /* AFC Recal */
6360 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6361 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6362 DPIO_AFC_RECAL);
6363
6364 mutex_unlock(&dev_priv->dpio_lock);
6365 }
6366
6367 /**
6368 * vlv_force_pll_on - forcibly enable just the PLL
6369 * @dev_priv: i915 private structure
6370 * @pipe: pipe PLL to enable
6371 * @dpll: PLL configuration
6372 *
6373 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6374 * in cases where we need the PLL enabled even when @pipe is not going to
6375 * be enabled.
6376 */
6377 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6378 const struct dpll *dpll)
6379 {
6380 struct intel_crtc *crtc =
6381 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6382 struct intel_crtc_state pipe_config = {
6383 .pixel_multiplier = 1,
6384 .dpll = *dpll,
6385 };
6386
6387 if (IS_CHERRYVIEW(dev)) {
6388 chv_update_pll(crtc, &pipe_config);
6389 chv_prepare_pll(crtc, &pipe_config);
6390 chv_enable_pll(crtc, &pipe_config);
6391 } else {
6392 vlv_update_pll(crtc, &pipe_config);
6393 vlv_prepare_pll(crtc, &pipe_config);
6394 vlv_enable_pll(crtc, &pipe_config);
6395 }
6396 }
6397
6398 /**
6399 * vlv_force_pll_off - forcibly disable just the PLL
6400 * @dev_priv: i915 private structure
6401 * @pipe: pipe PLL to disable
6402 *
6403 * Disable the PLL for @pipe. To be used in cases where we need
6404 * the PLL enabled even when @pipe is not going to be enabled.
6405 */
6406 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6407 {
6408 if (IS_CHERRYVIEW(dev))
6409 chv_disable_pll(to_i915(dev), pipe);
6410 else
6411 vlv_disable_pll(to_i915(dev), pipe);
6412 }
6413
6414 static void i9xx_update_pll(struct intel_crtc *crtc,
6415 struct intel_crtc_state *crtc_state,
6416 intel_clock_t *reduced_clock,
6417 int num_connectors)
6418 {
6419 struct drm_device *dev = crtc->base.dev;
6420 struct drm_i915_private *dev_priv = dev->dev_private;
6421 u32 dpll;
6422 bool is_sdvo;
6423 struct dpll *clock = &crtc_state->dpll;
6424
6425 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6426
6427 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6428 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6429
6430 dpll = DPLL_VGA_MODE_DIS;
6431
6432 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6433 dpll |= DPLLB_MODE_LVDS;
6434 else
6435 dpll |= DPLLB_MODE_DAC_SERIAL;
6436
6437 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6438 dpll |= (crtc_state->pixel_multiplier - 1)
6439 << SDVO_MULTIPLIER_SHIFT_HIRES;
6440 }
6441
6442 if (is_sdvo)
6443 dpll |= DPLL_SDVO_HIGH_SPEED;
6444
6445 if (crtc_state->has_dp_encoder)
6446 dpll |= DPLL_SDVO_HIGH_SPEED;
6447
6448 /* compute bitmask from p1 value */
6449 if (IS_PINEVIEW(dev))
6450 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6451 else {
6452 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6453 if (IS_G4X(dev) && reduced_clock)
6454 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6455 }
6456 switch (clock->p2) {
6457 case 5:
6458 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6459 break;
6460 case 7:
6461 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6462 break;
6463 case 10:
6464 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6465 break;
6466 case 14:
6467 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6468 break;
6469 }
6470 if (INTEL_INFO(dev)->gen >= 4)
6471 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6472
6473 if (crtc_state->sdvo_tv_clock)
6474 dpll |= PLL_REF_INPUT_TVCLKINBC;
6475 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6476 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6477 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6478 else
6479 dpll |= PLL_REF_INPUT_DREFCLK;
6480
6481 dpll |= DPLL_VCO_ENABLE;
6482 crtc_state->dpll_hw_state.dpll = dpll;
6483
6484 if (INTEL_INFO(dev)->gen >= 4) {
6485 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6486 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6487 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6488 }
6489 }
6490
6491 static void i8xx_update_pll(struct intel_crtc *crtc,
6492 struct intel_crtc_state *crtc_state,
6493 intel_clock_t *reduced_clock,
6494 int num_connectors)
6495 {
6496 struct drm_device *dev = crtc->base.dev;
6497 struct drm_i915_private *dev_priv = dev->dev_private;
6498 u32 dpll;
6499 struct dpll *clock = &crtc_state->dpll;
6500
6501 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6502
6503 dpll = DPLL_VGA_MODE_DIS;
6504
6505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6506 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6507 } else {
6508 if (clock->p1 == 2)
6509 dpll |= PLL_P1_DIVIDE_BY_TWO;
6510 else
6511 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6512 if (clock->p2 == 4)
6513 dpll |= PLL_P2_DIVIDE_BY_4;
6514 }
6515
6516 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6517 dpll |= DPLL_DVO_2X_MODE;
6518
6519 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6520 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6521 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6522 else
6523 dpll |= PLL_REF_INPUT_DREFCLK;
6524
6525 dpll |= DPLL_VCO_ENABLE;
6526 crtc_state->dpll_hw_state.dpll = dpll;
6527 }
6528
6529 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6530 {
6531 struct drm_device *dev = intel_crtc->base.dev;
6532 struct drm_i915_private *dev_priv = dev->dev_private;
6533 enum pipe pipe = intel_crtc->pipe;
6534 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6535 struct drm_display_mode *adjusted_mode =
6536 &intel_crtc->config->base.adjusted_mode;
6537 uint32_t crtc_vtotal, crtc_vblank_end;
6538 int vsyncshift = 0;
6539
6540 /* We need to be careful not to changed the adjusted mode, for otherwise
6541 * the hw state checker will get angry at the mismatch. */
6542 crtc_vtotal = adjusted_mode->crtc_vtotal;
6543 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6544
6545 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6546 /* the chip adds 2 halflines automatically */
6547 crtc_vtotal -= 1;
6548 crtc_vblank_end -= 1;
6549
6550 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6551 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6552 else
6553 vsyncshift = adjusted_mode->crtc_hsync_start -
6554 adjusted_mode->crtc_htotal / 2;
6555 if (vsyncshift < 0)
6556 vsyncshift += adjusted_mode->crtc_htotal;
6557 }
6558
6559 if (INTEL_INFO(dev)->gen > 3)
6560 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6561
6562 I915_WRITE(HTOTAL(cpu_transcoder),
6563 (adjusted_mode->crtc_hdisplay - 1) |
6564 ((adjusted_mode->crtc_htotal - 1) << 16));
6565 I915_WRITE(HBLANK(cpu_transcoder),
6566 (adjusted_mode->crtc_hblank_start - 1) |
6567 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6568 I915_WRITE(HSYNC(cpu_transcoder),
6569 (adjusted_mode->crtc_hsync_start - 1) |
6570 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6571
6572 I915_WRITE(VTOTAL(cpu_transcoder),
6573 (adjusted_mode->crtc_vdisplay - 1) |
6574 ((crtc_vtotal - 1) << 16));
6575 I915_WRITE(VBLANK(cpu_transcoder),
6576 (adjusted_mode->crtc_vblank_start - 1) |
6577 ((crtc_vblank_end - 1) << 16));
6578 I915_WRITE(VSYNC(cpu_transcoder),
6579 (adjusted_mode->crtc_vsync_start - 1) |
6580 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6581
6582 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6583 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6584 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6585 * bits. */
6586 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6587 (pipe == PIPE_B || pipe == PIPE_C))
6588 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6589
6590 /* pipesrc controls the size that is scaled from, which should
6591 * always be the user's requested size.
6592 */
6593 I915_WRITE(PIPESRC(pipe),
6594 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6595 (intel_crtc->config->pipe_src_h - 1));
6596 }
6597
6598 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6599 struct intel_crtc_state *pipe_config)
6600 {
6601 struct drm_device *dev = crtc->base.dev;
6602 struct drm_i915_private *dev_priv = dev->dev_private;
6603 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6604 uint32_t tmp;
6605
6606 tmp = I915_READ(HTOTAL(cpu_transcoder));
6607 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6608 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6609 tmp = I915_READ(HBLANK(cpu_transcoder));
6610 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6611 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6612 tmp = I915_READ(HSYNC(cpu_transcoder));
6613 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6614 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6615
6616 tmp = I915_READ(VTOTAL(cpu_transcoder));
6617 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6618 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6619 tmp = I915_READ(VBLANK(cpu_transcoder));
6620 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6621 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6622 tmp = I915_READ(VSYNC(cpu_transcoder));
6623 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6624 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6625
6626 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6627 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6628 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6629 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6630 }
6631
6632 tmp = I915_READ(PIPESRC(crtc->pipe));
6633 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6634 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6635
6636 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6637 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6638 }
6639
6640 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6641 struct intel_crtc_state *pipe_config)
6642 {
6643 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6644 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6645 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6646 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6647
6648 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6649 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6650 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6651 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6652
6653 mode->flags = pipe_config->base.adjusted_mode.flags;
6654
6655 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6656 mode->flags |= pipe_config->base.adjusted_mode.flags;
6657 }
6658
6659 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6660 {
6661 struct drm_device *dev = intel_crtc->base.dev;
6662 struct drm_i915_private *dev_priv = dev->dev_private;
6663 uint32_t pipeconf;
6664
6665 pipeconf = 0;
6666
6667 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6668 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6669 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6670
6671 if (intel_crtc->config->double_wide)
6672 pipeconf |= PIPECONF_DOUBLE_WIDE;
6673
6674 /* only g4x and later have fancy bpc/dither controls */
6675 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6676 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6677 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6678 pipeconf |= PIPECONF_DITHER_EN |
6679 PIPECONF_DITHER_TYPE_SP;
6680
6681 switch (intel_crtc->config->pipe_bpp) {
6682 case 18:
6683 pipeconf |= PIPECONF_6BPC;
6684 break;
6685 case 24:
6686 pipeconf |= PIPECONF_8BPC;
6687 break;
6688 case 30:
6689 pipeconf |= PIPECONF_10BPC;
6690 break;
6691 default:
6692 /* Case prevented by intel_choose_pipe_bpp_dither. */
6693 BUG();
6694 }
6695 }
6696
6697 if (HAS_PIPE_CXSR(dev)) {
6698 if (intel_crtc->lowfreq_avail) {
6699 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6700 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6701 } else {
6702 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6703 }
6704 }
6705
6706 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6707 if (INTEL_INFO(dev)->gen < 4 ||
6708 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6709 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6710 else
6711 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6712 } else
6713 pipeconf |= PIPECONF_PROGRESSIVE;
6714
6715 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6716 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6717
6718 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6719 POSTING_READ(PIPECONF(intel_crtc->pipe));
6720 }
6721
6722 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6723 struct intel_crtc_state *crtc_state)
6724 {
6725 struct drm_device *dev = crtc->base.dev;
6726 struct drm_i915_private *dev_priv = dev->dev_private;
6727 int refclk, num_connectors = 0;
6728 intel_clock_t clock, reduced_clock;
6729 bool ok, has_reduced_clock = false;
6730 bool is_lvds = false, is_dsi = false;
6731 struct intel_encoder *encoder;
6732 const intel_limit_t *limit;
6733
6734 for_each_intel_encoder(dev, encoder) {
6735 if (encoder->new_crtc != crtc)
6736 continue;
6737
6738 switch (encoder->type) {
6739 case INTEL_OUTPUT_LVDS:
6740 is_lvds = true;
6741 break;
6742 case INTEL_OUTPUT_DSI:
6743 is_dsi = true;
6744 break;
6745 default:
6746 break;
6747 }
6748
6749 num_connectors++;
6750 }
6751
6752 if (is_dsi)
6753 return 0;
6754
6755 if (!crtc_state->clock_set) {
6756 refclk = i9xx_get_refclk(crtc, num_connectors);
6757
6758 /*
6759 * Returns a set of divisors for the desired target clock with
6760 * the given refclk, or FALSE. The returned values represent
6761 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6762 * 2) / p1 / p2.
6763 */
6764 limit = intel_limit(crtc, refclk);
6765 ok = dev_priv->display.find_dpll(limit, crtc,
6766 crtc_state->port_clock,
6767 refclk, NULL, &clock);
6768 if (!ok) {
6769 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6770 return -EINVAL;
6771 }
6772
6773 if (is_lvds && dev_priv->lvds_downclock_avail) {
6774 /*
6775 * Ensure we match the reduced clock's P to the target
6776 * clock. If the clocks don't match, we can't switch
6777 * the display clock by using the FP0/FP1. In such case
6778 * we will disable the LVDS downclock feature.
6779 */
6780 has_reduced_clock =
6781 dev_priv->display.find_dpll(limit, crtc,
6782 dev_priv->lvds_downclock,
6783 refclk, &clock,
6784 &reduced_clock);
6785 }
6786 /* Compat-code for transition, will disappear. */
6787 crtc_state->dpll.n = clock.n;
6788 crtc_state->dpll.m1 = clock.m1;
6789 crtc_state->dpll.m2 = clock.m2;
6790 crtc_state->dpll.p1 = clock.p1;
6791 crtc_state->dpll.p2 = clock.p2;
6792 }
6793
6794 if (IS_GEN2(dev)) {
6795 i8xx_update_pll(crtc, crtc_state,
6796 has_reduced_clock ? &reduced_clock : NULL,
6797 num_connectors);
6798 } else if (IS_CHERRYVIEW(dev)) {
6799 chv_update_pll(crtc, crtc_state);
6800 } else if (IS_VALLEYVIEW(dev)) {
6801 vlv_update_pll(crtc, crtc_state);
6802 } else {
6803 i9xx_update_pll(crtc, crtc_state,
6804 has_reduced_clock ? &reduced_clock : NULL,
6805 num_connectors);
6806 }
6807
6808 return 0;
6809 }
6810
6811 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6812 struct intel_crtc_state *pipe_config)
6813 {
6814 struct drm_device *dev = crtc->base.dev;
6815 struct drm_i915_private *dev_priv = dev->dev_private;
6816 uint32_t tmp;
6817
6818 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6819 return;
6820
6821 tmp = I915_READ(PFIT_CONTROL);
6822 if (!(tmp & PFIT_ENABLE))
6823 return;
6824
6825 /* Check whether the pfit is attached to our pipe. */
6826 if (INTEL_INFO(dev)->gen < 4) {
6827 if (crtc->pipe != PIPE_B)
6828 return;
6829 } else {
6830 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6831 return;
6832 }
6833
6834 pipe_config->gmch_pfit.control = tmp;
6835 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6836 if (INTEL_INFO(dev)->gen < 5)
6837 pipe_config->gmch_pfit.lvds_border_bits =
6838 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6839 }
6840
6841 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6842 struct intel_crtc_state *pipe_config)
6843 {
6844 struct drm_device *dev = crtc->base.dev;
6845 struct drm_i915_private *dev_priv = dev->dev_private;
6846 int pipe = pipe_config->cpu_transcoder;
6847 intel_clock_t clock;
6848 u32 mdiv;
6849 int refclk = 100000;
6850
6851 /* In case of MIPI DPLL will not even be used */
6852 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6853 return;
6854
6855 mutex_lock(&dev_priv->dpio_lock);
6856 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6857 mutex_unlock(&dev_priv->dpio_lock);
6858
6859 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6860 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6861 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6862 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6863 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6864
6865 vlv_clock(refclk, &clock);
6866
6867 /* clock.dot is the fast clock */
6868 pipe_config->port_clock = clock.dot / 5;
6869 }
6870
6871 static void
6872 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6873 struct intel_initial_plane_config *plane_config)
6874 {
6875 struct drm_device *dev = crtc->base.dev;
6876 struct drm_i915_private *dev_priv = dev->dev_private;
6877 u32 val, base, offset;
6878 int pipe = crtc->pipe, plane = crtc->plane;
6879 int fourcc, pixel_format;
6880 unsigned int aligned_height;
6881 struct drm_framebuffer *fb;
6882 struct intel_framebuffer *intel_fb;
6883
6884 val = I915_READ(DSPCNTR(plane));
6885 if (!(val & DISPLAY_PLANE_ENABLE))
6886 return;
6887
6888 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6889 if (!intel_fb) {
6890 DRM_DEBUG_KMS("failed to alloc fb\n");
6891 return;
6892 }
6893
6894 fb = &intel_fb->base;
6895
6896 if (INTEL_INFO(dev)->gen >= 4) {
6897 if (val & DISPPLANE_TILED) {
6898 plane_config->tiling = I915_TILING_X;
6899 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6900 }
6901 }
6902
6903 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6904 fourcc = i9xx_format_to_fourcc(pixel_format);
6905 fb->pixel_format = fourcc;
6906 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6907
6908 if (INTEL_INFO(dev)->gen >= 4) {
6909 if (plane_config->tiling)
6910 offset = I915_READ(DSPTILEOFF(plane));
6911 else
6912 offset = I915_READ(DSPLINOFF(plane));
6913 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6914 } else {
6915 base = I915_READ(DSPADDR(plane));
6916 }
6917 plane_config->base = base;
6918
6919 val = I915_READ(PIPESRC(pipe));
6920 fb->width = ((val >> 16) & 0xfff) + 1;
6921 fb->height = ((val >> 0) & 0xfff) + 1;
6922
6923 val = I915_READ(DSPSTRIDE(pipe));
6924 fb->pitches[0] = val & 0xffffffc0;
6925
6926 aligned_height = intel_fb_align_height(dev, fb->height,
6927 fb->pixel_format,
6928 fb->modifier[0]);
6929
6930 plane_config->size = fb->pitches[0] * aligned_height;
6931
6932 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6933 pipe_name(pipe), plane, fb->width, fb->height,
6934 fb->bits_per_pixel, base, fb->pitches[0],
6935 plane_config->size);
6936
6937 plane_config->fb = intel_fb;
6938 }
6939
6940 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6941 struct intel_crtc_state *pipe_config)
6942 {
6943 struct drm_device *dev = crtc->base.dev;
6944 struct drm_i915_private *dev_priv = dev->dev_private;
6945 int pipe = pipe_config->cpu_transcoder;
6946 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6947 intel_clock_t clock;
6948 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6949 int refclk = 100000;
6950
6951 mutex_lock(&dev_priv->dpio_lock);
6952 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6953 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6954 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6955 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6956 mutex_unlock(&dev_priv->dpio_lock);
6957
6958 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6959 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6960 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6961 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6962 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6963
6964 chv_clock(refclk, &clock);
6965
6966 /* clock.dot is the fast clock */
6967 pipe_config->port_clock = clock.dot / 5;
6968 }
6969
6970 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6971 struct intel_crtc_state *pipe_config)
6972 {
6973 struct drm_device *dev = crtc->base.dev;
6974 struct drm_i915_private *dev_priv = dev->dev_private;
6975 uint32_t tmp;
6976
6977 if (!intel_display_power_is_enabled(dev_priv,
6978 POWER_DOMAIN_PIPE(crtc->pipe)))
6979 return false;
6980
6981 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6982 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6983
6984 tmp = I915_READ(PIPECONF(crtc->pipe));
6985 if (!(tmp & PIPECONF_ENABLE))
6986 return false;
6987
6988 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6989 switch (tmp & PIPECONF_BPC_MASK) {
6990 case PIPECONF_6BPC:
6991 pipe_config->pipe_bpp = 18;
6992 break;
6993 case PIPECONF_8BPC:
6994 pipe_config->pipe_bpp = 24;
6995 break;
6996 case PIPECONF_10BPC:
6997 pipe_config->pipe_bpp = 30;
6998 break;
6999 default:
7000 break;
7001 }
7002 }
7003
7004 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7005 pipe_config->limited_color_range = true;
7006
7007 if (INTEL_INFO(dev)->gen < 4)
7008 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7009
7010 intel_get_pipe_timings(crtc, pipe_config);
7011
7012 i9xx_get_pfit_config(crtc, pipe_config);
7013
7014 if (INTEL_INFO(dev)->gen >= 4) {
7015 tmp = I915_READ(DPLL_MD(crtc->pipe));
7016 pipe_config->pixel_multiplier =
7017 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7018 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7019 pipe_config->dpll_hw_state.dpll_md = tmp;
7020 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7021 tmp = I915_READ(DPLL(crtc->pipe));
7022 pipe_config->pixel_multiplier =
7023 ((tmp & SDVO_MULTIPLIER_MASK)
7024 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7025 } else {
7026 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7027 * port and will be fixed up in the encoder->get_config
7028 * function. */
7029 pipe_config->pixel_multiplier = 1;
7030 }
7031 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7032 if (!IS_VALLEYVIEW(dev)) {
7033 /*
7034 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7035 * on 830. Filter it out here so that we don't
7036 * report errors due to that.
7037 */
7038 if (IS_I830(dev))
7039 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7040
7041 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7042 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7043 } else {
7044 /* Mask out read-only status bits. */
7045 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7046 DPLL_PORTC_READY_MASK |
7047 DPLL_PORTB_READY_MASK);
7048 }
7049
7050 if (IS_CHERRYVIEW(dev))
7051 chv_crtc_clock_get(crtc, pipe_config);
7052 else if (IS_VALLEYVIEW(dev))
7053 vlv_crtc_clock_get(crtc, pipe_config);
7054 else
7055 i9xx_crtc_clock_get(crtc, pipe_config);
7056
7057 return true;
7058 }
7059
7060 static void ironlake_init_pch_refclk(struct drm_device *dev)
7061 {
7062 struct drm_i915_private *dev_priv = dev->dev_private;
7063 struct intel_encoder *encoder;
7064 u32 val, final;
7065 bool has_lvds = false;
7066 bool has_cpu_edp = false;
7067 bool has_panel = false;
7068 bool has_ck505 = false;
7069 bool can_ssc = false;
7070
7071 /* We need to take the global config into account */
7072 for_each_intel_encoder(dev, encoder) {
7073 switch (encoder->type) {
7074 case INTEL_OUTPUT_LVDS:
7075 has_panel = true;
7076 has_lvds = true;
7077 break;
7078 case INTEL_OUTPUT_EDP:
7079 has_panel = true;
7080 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7081 has_cpu_edp = true;
7082 break;
7083 default:
7084 break;
7085 }
7086 }
7087
7088 if (HAS_PCH_IBX(dev)) {
7089 has_ck505 = dev_priv->vbt.display_clock_mode;
7090 can_ssc = has_ck505;
7091 } else {
7092 has_ck505 = false;
7093 can_ssc = true;
7094 }
7095
7096 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7097 has_panel, has_lvds, has_ck505);
7098
7099 /* Ironlake: try to setup display ref clock before DPLL
7100 * enabling. This is only under driver's control after
7101 * PCH B stepping, previous chipset stepping should be
7102 * ignoring this setting.
7103 */
7104 val = I915_READ(PCH_DREF_CONTROL);
7105
7106 /* As we must carefully and slowly disable/enable each source in turn,
7107 * compute the final state we want first and check if we need to
7108 * make any changes at all.
7109 */
7110 final = val;
7111 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7112 if (has_ck505)
7113 final |= DREF_NONSPREAD_CK505_ENABLE;
7114 else
7115 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7116
7117 final &= ~DREF_SSC_SOURCE_MASK;
7118 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7119 final &= ~DREF_SSC1_ENABLE;
7120
7121 if (has_panel) {
7122 final |= DREF_SSC_SOURCE_ENABLE;
7123
7124 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7125 final |= DREF_SSC1_ENABLE;
7126
7127 if (has_cpu_edp) {
7128 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7129 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7130 else
7131 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7132 } else
7133 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7134 } else {
7135 final |= DREF_SSC_SOURCE_DISABLE;
7136 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7137 }
7138
7139 if (final == val)
7140 return;
7141
7142 /* Always enable nonspread source */
7143 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7144
7145 if (has_ck505)
7146 val |= DREF_NONSPREAD_CK505_ENABLE;
7147 else
7148 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7149
7150 if (has_panel) {
7151 val &= ~DREF_SSC_SOURCE_MASK;
7152 val |= DREF_SSC_SOURCE_ENABLE;
7153
7154 /* SSC must be turned on before enabling the CPU output */
7155 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7156 DRM_DEBUG_KMS("Using SSC on panel\n");
7157 val |= DREF_SSC1_ENABLE;
7158 } else
7159 val &= ~DREF_SSC1_ENABLE;
7160
7161 /* Get SSC going before enabling the outputs */
7162 I915_WRITE(PCH_DREF_CONTROL, val);
7163 POSTING_READ(PCH_DREF_CONTROL);
7164 udelay(200);
7165
7166 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7167
7168 /* Enable CPU source on CPU attached eDP */
7169 if (has_cpu_edp) {
7170 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7171 DRM_DEBUG_KMS("Using SSC on eDP\n");
7172 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7173 } else
7174 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7175 } else
7176 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7177
7178 I915_WRITE(PCH_DREF_CONTROL, val);
7179 POSTING_READ(PCH_DREF_CONTROL);
7180 udelay(200);
7181 } else {
7182 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7183
7184 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7185
7186 /* Turn off CPU output */
7187 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7188
7189 I915_WRITE(PCH_DREF_CONTROL, val);
7190 POSTING_READ(PCH_DREF_CONTROL);
7191 udelay(200);
7192
7193 /* Turn off the SSC source */
7194 val &= ~DREF_SSC_SOURCE_MASK;
7195 val |= DREF_SSC_SOURCE_DISABLE;
7196
7197 /* Turn off SSC1 */
7198 val &= ~DREF_SSC1_ENABLE;
7199
7200 I915_WRITE(PCH_DREF_CONTROL, val);
7201 POSTING_READ(PCH_DREF_CONTROL);
7202 udelay(200);
7203 }
7204
7205 BUG_ON(val != final);
7206 }
7207
7208 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7209 {
7210 uint32_t tmp;
7211
7212 tmp = I915_READ(SOUTH_CHICKEN2);
7213 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7214 I915_WRITE(SOUTH_CHICKEN2, tmp);
7215
7216 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7217 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7218 DRM_ERROR("FDI mPHY reset assert timeout\n");
7219
7220 tmp = I915_READ(SOUTH_CHICKEN2);
7221 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7222 I915_WRITE(SOUTH_CHICKEN2, tmp);
7223
7224 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7225 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7226 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7227 }
7228
7229 /* WaMPhyProgramming:hsw */
7230 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7231 {
7232 uint32_t tmp;
7233
7234 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7235 tmp &= ~(0xFF << 24);
7236 tmp |= (0x12 << 24);
7237 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7238
7239 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7240 tmp |= (1 << 11);
7241 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7242
7243 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7244 tmp |= (1 << 11);
7245 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7246
7247 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7248 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7249 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7250
7251 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7252 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7253 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7254
7255 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7256 tmp &= ~(7 << 13);
7257 tmp |= (5 << 13);
7258 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7259
7260 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7261 tmp &= ~(7 << 13);
7262 tmp |= (5 << 13);
7263 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7264
7265 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7266 tmp &= ~0xFF;
7267 tmp |= 0x1C;
7268 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7269
7270 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7271 tmp &= ~0xFF;
7272 tmp |= 0x1C;
7273 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7274
7275 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7276 tmp &= ~(0xFF << 16);
7277 tmp |= (0x1C << 16);
7278 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7279
7280 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7281 tmp &= ~(0xFF << 16);
7282 tmp |= (0x1C << 16);
7283 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7284
7285 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7286 tmp |= (1 << 27);
7287 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7288
7289 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7290 tmp |= (1 << 27);
7291 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7292
7293 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7294 tmp &= ~(0xF << 28);
7295 tmp |= (4 << 28);
7296 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7297
7298 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7299 tmp &= ~(0xF << 28);
7300 tmp |= (4 << 28);
7301 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7302 }
7303
7304 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7305 * Programming" based on the parameters passed:
7306 * - Sequence to enable CLKOUT_DP
7307 * - Sequence to enable CLKOUT_DP without spread
7308 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7309 */
7310 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7311 bool with_fdi)
7312 {
7313 struct drm_i915_private *dev_priv = dev->dev_private;
7314 uint32_t reg, tmp;
7315
7316 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7317 with_spread = true;
7318 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7319 with_fdi, "LP PCH doesn't have FDI\n"))
7320 with_fdi = false;
7321
7322 mutex_lock(&dev_priv->dpio_lock);
7323
7324 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7325 tmp &= ~SBI_SSCCTL_DISABLE;
7326 tmp |= SBI_SSCCTL_PATHALT;
7327 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7328
7329 udelay(24);
7330
7331 if (with_spread) {
7332 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7333 tmp &= ~SBI_SSCCTL_PATHALT;
7334 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7335
7336 if (with_fdi) {
7337 lpt_reset_fdi_mphy(dev_priv);
7338 lpt_program_fdi_mphy(dev_priv);
7339 }
7340 }
7341
7342 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7343 SBI_GEN0 : SBI_DBUFF0;
7344 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7345 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7346 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7347
7348 mutex_unlock(&dev_priv->dpio_lock);
7349 }
7350
7351 /* Sequence to disable CLKOUT_DP */
7352 static void lpt_disable_clkout_dp(struct drm_device *dev)
7353 {
7354 struct drm_i915_private *dev_priv = dev->dev_private;
7355 uint32_t reg, tmp;
7356
7357 mutex_lock(&dev_priv->dpio_lock);
7358
7359 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7360 SBI_GEN0 : SBI_DBUFF0;
7361 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7362 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7363 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7364
7365 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7366 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7367 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7368 tmp |= SBI_SSCCTL_PATHALT;
7369 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7370 udelay(32);
7371 }
7372 tmp |= SBI_SSCCTL_DISABLE;
7373 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7374 }
7375
7376 mutex_unlock(&dev_priv->dpio_lock);
7377 }
7378
7379 static void lpt_init_pch_refclk(struct drm_device *dev)
7380 {
7381 struct intel_encoder *encoder;
7382 bool has_vga = false;
7383
7384 for_each_intel_encoder(dev, encoder) {
7385 switch (encoder->type) {
7386 case INTEL_OUTPUT_ANALOG:
7387 has_vga = true;
7388 break;
7389 default:
7390 break;
7391 }
7392 }
7393
7394 if (has_vga)
7395 lpt_enable_clkout_dp(dev, true, true);
7396 else
7397 lpt_disable_clkout_dp(dev);
7398 }
7399
7400 /*
7401 * Initialize reference clocks when the driver loads
7402 */
7403 void intel_init_pch_refclk(struct drm_device *dev)
7404 {
7405 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7406 ironlake_init_pch_refclk(dev);
7407 else if (HAS_PCH_LPT(dev))
7408 lpt_init_pch_refclk(dev);
7409 }
7410
7411 static int ironlake_get_refclk(struct drm_crtc *crtc)
7412 {
7413 struct drm_device *dev = crtc->dev;
7414 struct drm_i915_private *dev_priv = dev->dev_private;
7415 struct intel_encoder *encoder;
7416 int num_connectors = 0;
7417 bool is_lvds = false;
7418
7419 for_each_intel_encoder(dev, encoder) {
7420 if (encoder->new_crtc != to_intel_crtc(crtc))
7421 continue;
7422
7423 switch (encoder->type) {
7424 case INTEL_OUTPUT_LVDS:
7425 is_lvds = true;
7426 break;
7427 default:
7428 break;
7429 }
7430 num_connectors++;
7431 }
7432
7433 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7434 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7435 dev_priv->vbt.lvds_ssc_freq);
7436 return dev_priv->vbt.lvds_ssc_freq;
7437 }
7438
7439 return 120000;
7440 }
7441
7442 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7443 {
7444 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7446 int pipe = intel_crtc->pipe;
7447 uint32_t val;
7448
7449 val = 0;
7450
7451 switch (intel_crtc->config->pipe_bpp) {
7452 case 18:
7453 val |= PIPECONF_6BPC;
7454 break;
7455 case 24:
7456 val |= PIPECONF_8BPC;
7457 break;
7458 case 30:
7459 val |= PIPECONF_10BPC;
7460 break;
7461 case 36:
7462 val |= PIPECONF_12BPC;
7463 break;
7464 default:
7465 /* Case prevented by intel_choose_pipe_bpp_dither. */
7466 BUG();
7467 }
7468
7469 if (intel_crtc->config->dither)
7470 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7471
7472 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7473 val |= PIPECONF_INTERLACED_ILK;
7474 else
7475 val |= PIPECONF_PROGRESSIVE;
7476
7477 if (intel_crtc->config->limited_color_range)
7478 val |= PIPECONF_COLOR_RANGE_SELECT;
7479
7480 I915_WRITE(PIPECONF(pipe), val);
7481 POSTING_READ(PIPECONF(pipe));
7482 }
7483
7484 /*
7485 * Set up the pipe CSC unit.
7486 *
7487 * Currently only full range RGB to limited range RGB conversion
7488 * is supported, but eventually this should handle various
7489 * RGB<->YCbCr scenarios as well.
7490 */
7491 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7492 {
7493 struct drm_device *dev = crtc->dev;
7494 struct drm_i915_private *dev_priv = dev->dev_private;
7495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7496 int pipe = intel_crtc->pipe;
7497 uint16_t coeff = 0x7800; /* 1.0 */
7498
7499 /*
7500 * TODO: Check what kind of values actually come out of the pipe
7501 * with these coeff/postoff values and adjust to get the best
7502 * accuracy. Perhaps we even need to take the bpc value into
7503 * consideration.
7504 */
7505
7506 if (intel_crtc->config->limited_color_range)
7507 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7508
7509 /*
7510 * GY/GU and RY/RU should be the other way around according
7511 * to BSpec, but reality doesn't agree. Just set them up in
7512 * a way that results in the correct picture.
7513 */
7514 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7515 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7516
7517 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7518 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7519
7520 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7521 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7522
7523 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7524 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7525 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7526
7527 if (INTEL_INFO(dev)->gen > 6) {
7528 uint16_t postoff = 0;
7529
7530 if (intel_crtc->config->limited_color_range)
7531 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7532
7533 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7534 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7535 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7536
7537 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7538 } else {
7539 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7540
7541 if (intel_crtc->config->limited_color_range)
7542 mode |= CSC_BLACK_SCREEN_OFFSET;
7543
7544 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7545 }
7546 }
7547
7548 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7549 {
7550 struct drm_device *dev = crtc->dev;
7551 struct drm_i915_private *dev_priv = dev->dev_private;
7552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7553 enum pipe pipe = intel_crtc->pipe;
7554 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7555 uint32_t val;
7556
7557 val = 0;
7558
7559 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7560 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7561
7562 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7563 val |= PIPECONF_INTERLACED_ILK;
7564 else
7565 val |= PIPECONF_PROGRESSIVE;
7566
7567 I915_WRITE(PIPECONF(cpu_transcoder), val);
7568 POSTING_READ(PIPECONF(cpu_transcoder));
7569
7570 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7571 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7572
7573 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7574 val = 0;
7575
7576 switch (intel_crtc->config->pipe_bpp) {
7577 case 18:
7578 val |= PIPEMISC_DITHER_6_BPC;
7579 break;
7580 case 24:
7581 val |= PIPEMISC_DITHER_8_BPC;
7582 break;
7583 case 30:
7584 val |= PIPEMISC_DITHER_10_BPC;
7585 break;
7586 case 36:
7587 val |= PIPEMISC_DITHER_12_BPC;
7588 break;
7589 default:
7590 /* Case prevented by pipe_config_set_bpp. */
7591 BUG();
7592 }
7593
7594 if (intel_crtc->config->dither)
7595 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7596
7597 I915_WRITE(PIPEMISC(pipe), val);
7598 }
7599 }
7600
7601 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7602 struct intel_crtc_state *crtc_state,
7603 intel_clock_t *clock,
7604 bool *has_reduced_clock,
7605 intel_clock_t *reduced_clock)
7606 {
7607 struct drm_device *dev = crtc->dev;
7608 struct drm_i915_private *dev_priv = dev->dev_private;
7609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7610 int refclk;
7611 const intel_limit_t *limit;
7612 bool ret, is_lvds = false;
7613
7614 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7615
7616 refclk = ironlake_get_refclk(crtc);
7617
7618 /*
7619 * Returns a set of divisors for the desired target clock with the given
7620 * refclk, or FALSE. The returned values represent the clock equation:
7621 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7622 */
7623 limit = intel_limit(intel_crtc, refclk);
7624 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7625 crtc_state->port_clock,
7626 refclk, NULL, clock);
7627 if (!ret)
7628 return false;
7629
7630 if (is_lvds && dev_priv->lvds_downclock_avail) {
7631 /*
7632 * Ensure we match the reduced clock's P to the target clock.
7633 * If the clocks don't match, we can't switch the display clock
7634 * by using the FP0/FP1. In such case we will disable the LVDS
7635 * downclock feature.
7636 */
7637 *has_reduced_clock =
7638 dev_priv->display.find_dpll(limit, intel_crtc,
7639 dev_priv->lvds_downclock,
7640 refclk, clock,
7641 reduced_clock);
7642 }
7643
7644 return true;
7645 }
7646
7647 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7648 {
7649 /*
7650 * Account for spread spectrum to avoid
7651 * oversubscribing the link. Max center spread
7652 * is 2.5%; use 5% for safety's sake.
7653 */
7654 u32 bps = target_clock * bpp * 21 / 20;
7655 return DIV_ROUND_UP(bps, link_bw * 8);
7656 }
7657
7658 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7659 {
7660 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7661 }
7662
7663 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7664 struct intel_crtc_state *crtc_state,
7665 u32 *fp,
7666 intel_clock_t *reduced_clock, u32 *fp2)
7667 {
7668 struct drm_crtc *crtc = &intel_crtc->base;
7669 struct drm_device *dev = crtc->dev;
7670 struct drm_i915_private *dev_priv = dev->dev_private;
7671 struct intel_encoder *intel_encoder;
7672 uint32_t dpll;
7673 int factor, num_connectors = 0;
7674 bool is_lvds = false, is_sdvo = false;
7675
7676 for_each_intel_encoder(dev, intel_encoder) {
7677 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7678 continue;
7679
7680 switch (intel_encoder->type) {
7681 case INTEL_OUTPUT_LVDS:
7682 is_lvds = true;
7683 break;
7684 case INTEL_OUTPUT_SDVO:
7685 case INTEL_OUTPUT_HDMI:
7686 is_sdvo = true;
7687 break;
7688 default:
7689 break;
7690 }
7691
7692 num_connectors++;
7693 }
7694
7695 /* Enable autotuning of the PLL clock (if permissible) */
7696 factor = 21;
7697 if (is_lvds) {
7698 if ((intel_panel_use_ssc(dev_priv) &&
7699 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7700 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7701 factor = 25;
7702 } else if (crtc_state->sdvo_tv_clock)
7703 factor = 20;
7704
7705 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7706 *fp |= FP_CB_TUNE;
7707
7708 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7709 *fp2 |= FP_CB_TUNE;
7710
7711 dpll = 0;
7712
7713 if (is_lvds)
7714 dpll |= DPLLB_MODE_LVDS;
7715 else
7716 dpll |= DPLLB_MODE_DAC_SERIAL;
7717
7718 dpll |= (crtc_state->pixel_multiplier - 1)
7719 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7720
7721 if (is_sdvo)
7722 dpll |= DPLL_SDVO_HIGH_SPEED;
7723 if (crtc_state->has_dp_encoder)
7724 dpll |= DPLL_SDVO_HIGH_SPEED;
7725
7726 /* compute bitmask from p1 value */
7727 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7728 /* also FPA1 */
7729 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7730
7731 switch (crtc_state->dpll.p2) {
7732 case 5:
7733 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7734 break;
7735 case 7:
7736 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7737 break;
7738 case 10:
7739 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7740 break;
7741 case 14:
7742 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7743 break;
7744 }
7745
7746 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7747 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7748 else
7749 dpll |= PLL_REF_INPUT_DREFCLK;
7750
7751 return dpll | DPLL_VCO_ENABLE;
7752 }
7753
7754 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7755 struct intel_crtc_state *crtc_state)
7756 {
7757 struct drm_device *dev = crtc->base.dev;
7758 intel_clock_t clock, reduced_clock;
7759 u32 dpll = 0, fp = 0, fp2 = 0;
7760 bool ok, has_reduced_clock = false;
7761 bool is_lvds = false;
7762 struct intel_shared_dpll *pll;
7763
7764 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7765
7766 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7767 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7768
7769 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7770 &has_reduced_clock, &reduced_clock);
7771 if (!ok && !crtc_state->clock_set) {
7772 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7773 return -EINVAL;
7774 }
7775 /* Compat-code for transition, will disappear. */
7776 if (!crtc_state->clock_set) {
7777 crtc_state->dpll.n = clock.n;
7778 crtc_state->dpll.m1 = clock.m1;
7779 crtc_state->dpll.m2 = clock.m2;
7780 crtc_state->dpll.p1 = clock.p1;
7781 crtc_state->dpll.p2 = clock.p2;
7782 }
7783
7784 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7785 if (crtc_state->has_pch_encoder) {
7786 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7787 if (has_reduced_clock)
7788 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7789
7790 dpll = ironlake_compute_dpll(crtc, crtc_state,
7791 &fp, &reduced_clock,
7792 has_reduced_clock ? &fp2 : NULL);
7793
7794 crtc_state->dpll_hw_state.dpll = dpll;
7795 crtc_state->dpll_hw_state.fp0 = fp;
7796 if (has_reduced_clock)
7797 crtc_state->dpll_hw_state.fp1 = fp2;
7798 else
7799 crtc_state->dpll_hw_state.fp1 = fp;
7800
7801 pll = intel_get_shared_dpll(crtc, crtc_state);
7802 if (pll == NULL) {
7803 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7804 pipe_name(crtc->pipe));
7805 return -EINVAL;
7806 }
7807 }
7808
7809 if (is_lvds && has_reduced_clock)
7810 crtc->lowfreq_avail = true;
7811 else
7812 crtc->lowfreq_avail = false;
7813
7814 return 0;
7815 }
7816
7817 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7818 struct intel_link_m_n *m_n)
7819 {
7820 struct drm_device *dev = crtc->base.dev;
7821 struct drm_i915_private *dev_priv = dev->dev_private;
7822 enum pipe pipe = crtc->pipe;
7823
7824 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7825 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7826 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7827 & ~TU_SIZE_MASK;
7828 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7829 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7830 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7831 }
7832
7833 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7834 enum transcoder transcoder,
7835 struct intel_link_m_n *m_n,
7836 struct intel_link_m_n *m2_n2)
7837 {
7838 struct drm_device *dev = crtc->base.dev;
7839 struct drm_i915_private *dev_priv = dev->dev_private;
7840 enum pipe pipe = crtc->pipe;
7841
7842 if (INTEL_INFO(dev)->gen >= 5) {
7843 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7844 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7845 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7846 & ~TU_SIZE_MASK;
7847 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7848 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7849 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7850 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7851 * gen < 8) and if DRRS is supported (to make sure the
7852 * registers are not unnecessarily read).
7853 */
7854 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7855 crtc->config->has_drrs) {
7856 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7857 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7858 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7859 & ~TU_SIZE_MASK;
7860 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7861 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7862 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7863 }
7864 } else {
7865 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7866 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7867 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7868 & ~TU_SIZE_MASK;
7869 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7870 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7871 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7872 }
7873 }
7874
7875 void intel_dp_get_m_n(struct intel_crtc *crtc,
7876 struct intel_crtc_state *pipe_config)
7877 {
7878 if (pipe_config->has_pch_encoder)
7879 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7880 else
7881 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7882 &pipe_config->dp_m_n,
7883 &pipe_config->dp_m2_n2);
7884 }
7885
7886 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7887 struct intel_crtc_state *pipe_config)
7888 {
7889 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7890 &pipe_config->fdi_m_n, NULL);
7891 }
7892
7893 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7894 struct intel_crtc_state *pipe_config)
7895 {
7896 struct drm_device *dev = crtc->base.dev;
7897 struct drm_i915_private *dev_priv = dev->dev_private;
7898 uint32_t tmp;
7899
7900 tmp = I915_READ(PS_CTL(crtc->pipe));
7901
7902 if (tmp & PS_ENABLE) {
7903 pipe_config->pch_pfit.enabled = true;
7904 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7905 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7906 }
7907 }
7908
7909 static void
7910 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7911 struct intel_initial_plane_config *plane_config)
7912 {
7913 struct drm_device *dev = crtc->base.dev;
7914 struct drm_i915_private *dev_priv = dev->dev_private;
7915 u32 val, base, offset, stride_mult, tiling;
7916 int pipe = crtc->pipe;
7917 int fourcc, pixel_format;
7918 unsigned int aligned_height;
7919 struct drm_framebuffer *fb;
7920 struct intel_framebuffer *intel_fb;
7921
7922 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7923 if (!intel_fb) {
7924 DRM_DEBUG_KMS("failed to alloc fb\n");
7925 return;
7926 }
7927
7928 fb = &intel_fb->base;
7929
7930 val = I915_READ(PLANE_CTL(pipe, 0));
7931 if (!(val & PLANE_CTL_ENABLE))
7932 goto error;
7933
7934 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7935 fourcc = skl_format_to_fourcc(pixel_format,
7936 val & PLANE_CTL_ORDER_RGBX,
7937 val & PLANE_CTL_ALPHA_MASK);
7938 fb->pixel_format = fourcc;
7939 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7940
7941 tiling = val & PLANE_CTL_TILED_MASK;
7942 switch (tiling) {
7943 case PLANE_CTL_TILED_LINEAR:
7944 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7945 break;
7946 case PLANE_CTL_TILED_X:
7947 plane_config->tiling = I915_TILING_X;
7948 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7949 break;
7950 case PLANE_CTL_TILED_Y:
7951 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7952 break;
7953 case PLANE_CTL_TILED_YF:
7954 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7955 break;
7956 default:
7957 MISSING_CASE(tiling);
7958 goto error;
7959 }
7960
7961 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7962 plane_config->base = base;
7963
7964 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7965
7966 val = I915_READ(PLANE_SIZE(pipe, 0));
7967 fb->height = ((val >> 16) & 0xfff) + 1;
7968 fb->width = ((val >> 0) & 0x1fff) + 1;
7969
7970 val = I915_READ(PLANE_STRIDE(pipe, 0));
7971 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7972 fb->pixel_format);
7973 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7974
7975 aligned_height = intel_fb_align_height(dev, fb->height,
7976 fb->pixel_format,
7977 fb->modifier[0]);
7978
7979 plane_config->size = fb->pitches[0] * aligned_height;
7980
7981 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7982 pipe_name(pipe), fb->width, fb->height,
7983 fb->bits_per_pixel, base, fb->pitches[0],
7984 plane_config->size);
7985
7986 plane_config->fb = intel_fb;
7987 return;
7988
7989 error:
7990 kfree(fb);
7991 }
7992
7993 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7994 struct intel_crtc_state *pipe_config)
7995 {
7996 struct drm_device *dev = crtc->base.dev;
7997 struct drm_i915_private *dev_priv = dev->dev_private;
7998 uint32_t tmp;
7999
8000 tmp = I915_READ(PF_CTL(crtc->pipe));
8001
8002 if (tmp & PF_ENABLE) {
8003 pipe_config->pch_pfit.enabled = true;
8004 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8005 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8006
8007 /* We currently do not free assignements of panel fitters on
8008 * ivb/hsw (since we don't use the higher upscaling modes which
8009 * differentiates them) so just WARN about this case for now. */
8010 if (IS_GEN7(dev)) {
8011 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8012 PF_PIPE_SEL_IVB(crtc->pipe));
8013 }
8014 }
8015 }
8016
8017 static void
8018 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8019 struct intel_initial_plane_config *plane_config)
8020 {
8021 struct drm_device *dev = crtc->base.dev;
8022 struct drm_i915_private *dev_priv = dev->dev_private;
8023 u32 val, base, offset;
8024 int pipe = crtc->pipe;
8025 int fourcc, pixel_format;
8026 unsigned int aligned_height;
8027 struct drm_framebuffer *fb;
8028 struct intel_framebuffer *intel_fb;
8029
8030 val = I915_READ(DSPCNTR(pipe));
8031 if (!(val & DISPLAY_PLANE_ENABLE))
8032 return;
8033
8034 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8035 if (!intel_fb) {
8036 DRM_DEBUG_KMS("failed to alloc fb\n");
8037 return;
8038 }
8039
8040 fb = &intel_fb->base;
8041
8042 if (INTEL_INFO(dev)->gen >= 4) {
8043 if (val & DISPPLANE_TILED) {
8044 plane_config->tiling = I915_TILING_X;
8045 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8046 }
8047 }
8048
8049 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8050 fourcc = i9xx_format_to_fourcc(pixel_format);
8051 fb->pixel_format = fourcc;
8052 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8053
8054 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8055 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8056 offset = I915_READ(DSPOFFSET(pipe));
8057 } else {
8058 if (plane_config->tiling)
8059 offset = I915_READ(DSPTILEOFF(pipe));
8060 else
8061 offset = I915_READ(DSPLINOFF(pipe));
8062 }
8063 plane_config->base = base;
8064
8065 val = I915_READ(PIPESRC(pipe));
8066 fb->width = ((val >> 16) & 0xfff) + 1;
8067 fb->height = ((val >> 0) & 0xfff) + 1;
8068
8069 val = I915_READ(DSPSTRIDE(pipe));
8070 fb->pitches[0] = val & 0xffffffc0;
8071
8072 aligned_height = intel_fb_align_height(dev, fb->height,
8073 fb->pixel_format,
8074 fb->modifier[0]);
8075
8076 plane_config->size = fb->pitches[0] * aligned_height;
8077
8078 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8079 pipe_name(pipe), fb->width, fb->height,
8080 fb->bits_per_pixel, base, fb->pitches[0],
8081 plane_config->size);
8082
8083 plane_config->fb = intel_fb;
8084 }
8085
8086 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8087 struct intel_crtc_state *pipe_config)
8088 {
8089 struct drm_device *dev = crtc->base.dev;
8090 struct drm_i915_private *dev_priv = dev->dev_private;
8091 uint32_t tmp;
8092
8093 if (!intel_display_power_is_enabled(dev_priv,
8094 POWER_DOMAIN_PIPE(crtc->pipe)))
8095 return false;
8096
8097 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8098 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8099
8100 tmp = I915_READ(PIPECONF(crtc->pipe));
8101 if (!(tmp & PIPECONF_ENABLE))
8102 return false;
8103
8104 switch (tmp & PIPECONF_BPC_MASK) {
8105 case PIPECONF_6BPC:
8106 pipe_config->pipe_bpp = 18;
8107 break;
8108 case PIPECONF_8BPC:
8109 pipe_config->pipe_bpp = 24;
8110 break;
8111 case PIPECONF_10BPC:
8112 pipe_config->pipe_bpp = 30;
8113 break;
8114 case PIPECONF_12BPC:
8115 pipe_config->pipe_bpp = 36;
8116 break;
8117 default:
8118 break;
8119 }
8120
8121 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8122 pipe_config->limited_color_range = true;
8123
8124 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8125 struct intel_shared_dpll *pll;
8126
8127 pipe_config->has_pch_encoder = true;
8128
8129 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8130 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8131 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8132
8133 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8134
8135 if (HAS_PCH_IBX(dev_priv->dev)) {
8136 pipe_config->shared_dpll =
8137 (enum intel_dpll_id) crtc->pipe;
8138 } else {
8139 tmp = I915_READ(PCH_DPLL_SEL);
8140 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8141 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8142 else
8143 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8144 }
8145
8146 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8147
8148 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8149 &pipe_config->dpll_hw_state));
8150
8151 tmp = pipe_config->dpll_hw_state.dpll;
8152 pipe_config->pixel_multiplier =
8153 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8154 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8155
8156 ironlake_pch_clock_get(crtc, pipe_config);
8157 } else {
8158 pipe_config->pixel_multiplier = 1;
8159 }
8160
8161 intel_get_pipe_timings(crtc, pipe_config);
8162
8163 ironlake_get_pfit_config(crtc, pipe_config);
8164
8165 return true;
8166 }
8167
8168 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8169 {
8170 struct drm_device *dev = dev_priv->dev;
8171 struct intel_crtc *crtc;
8172
8173 for_each_intel_crtc(dev, crtc)
8174 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8175 pipe_name(crtc->pipe));
8176
8177 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8178 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8179 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8180 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8181 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8182 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8183 "CPU PWM1 enabled\n");
8184 if (IS_HASWELL(dev))
8185 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8186 "CPU PWM2 enabled\n");
8187 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8188 "PCH PWM1 enabled\n");
8189 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8190 "Utility pin enabled\n");
8191 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8192
8193 /*
8194 * In theory we can still leave IRQs enabled, as long as only the HPD
8195 * interrupts remain enabled. We used to check for that, but since it's
8196 * gen-specific and since we only disable LCPLL after we fully disable
8197 * the interrupts, the check below should be enough.
8198 */
8199 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8200 }
8201
8202 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8203 {
8204 struct drm_device *dev = dev_priv->dev;
8205
8206 if (IS_HASWELL(dev))
8207 return I915_READ(D_COMP_HSW);
8208 else
8209 return I915_READ(D_COMP_BDW);
8210 }
8211
8212 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8213 {
8214 struct drm_device *dev = dev_priv->dev;
8215
8216 if (IS_HASWELL(dev)) {
8217 mutex_lock(&dev_priv->rps.hw_lock);
8218 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8219 val))
8220 DRM_ERROR("Failed to write to D_COMP\n");
8221 mutex_unlock(&dev_priv->rps.hw_lock);
8222 } else {
8223 I915_WRITE(D_COMP_BDW, val);
8224 POSTING_READ(D_COMP_BDW);
8225 }
8226 }
8227
8228 /*
8229 * This function implements pieces of two sequences from BSpec:
8230 * - Sequence for display software to disable LCPLL
8231 * - Sequence for display software to allow package C8+
8232 * The steps implemented here are just the steps that actually touch the LCPLL
8233 * register. Callers should take care of disabling all the display engine
8234 * functions, doing the mode unset, fixing interrupts, etc.
8235 */
8236 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8237 bool switch_to_fclk, bool allow_power_down)
8238 {
8239 uint32_t val;
8240
8241 assert_can_disable_lcpll(dev_priv);
8242
8243 val = I915_READ(LCPLL_CTL);
8244
8245 if (switch_to_fclk) {
8246 val |= LCPLL_CD_SOURCE_FCLK;
8247 I915_WRITE(LCPLL_CTL, val);
8248
8249 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8250 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8251 DRM_ERROR("Switching to FCLK failed\n");
8252
8253 val = I915_READ(LCPLL_CTL);
8254 }
8255
8256 val |= LCPLL_PLL_DISABLE;
8257 I915_WRITE(LCPLL_CTL, val);
8258 POSTING_READ(LCPLL_CTL);
8259
8260 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8261 DRM_ERROR("LCPLL still locked\n");
8262
8263 val = hsw_read_dcomp(dev_priv);
8264 val |= D_COMP_COMP_DISABLE;
8265 hsw_write_dcomp(dev_priv, val);
8266 ndelay(100);
8267
8268 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8269 1))
8270 DRM_ERROR("D_COMP RCOMP still in progress\n");
8271
8272 if (allow_power_down) {
8273 val = I915_READ(LCPLL_CTL);
8274 val |= LCPLL_POWER_DOWN_ALLOW;
8275 I915_WRITE(LCPLL_CTL, val);
8276 POSTING_READ(LCPLL_CTL);
8277 }
8278 }
8279
8280 /*
8281 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8282 * source.
8283 */
8284 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8285 {
8286 uint32_t val;
8287
8288 val = I915_READ(LCPLL_CTL);
8289
8290 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8291 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8292 return;
8293
8294 /*
8295 * Make sure we're not on PC8 state before disabling PC8, otherwise
8296 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8297 */
8298 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8299
8300 if (val & LCPLL_POWER_DOWN_ALLOW) {
8301 val &= ~LCPLL_POWER_DOWN_ALLOW;
8302 I915_WRITE(LCPLL_CTL, val);
8303 POSTING_READ(LCPLL_CTL);
8304 }
8305
8306 val = hsw_read_dcomp(dev_priv);
8307 val |= D_COMP_COMP_FORCE;
8308 val &= ~D_COMP_COMP_DISABLE;
8309 hsw_write_dcomp(dev_priv, val);
8310
8311 val = I915_READ(LCPLL_CTL);
8312 val &= ~LCPLL_PLL_DISABLE;
8313 I915_WRITE(LCPLL_CTL, val);
8314
8315 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8316 DRM_ERROR("LCPLL not locked yet\n");
8317
8318 if (val & LCPLL_CD_SOURCE_FCLK) {
8319 val = I915_READ(LCPLL_CTL);
8320 val &= ~LCPLL_CD_SOURCE_FCLK;
8321 I915_WRITE(LCPLL_CTL, val);
8322
8323 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8324 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8325 DRM_ERROR("Switching back to LCPLL failed\n");
8326 }
8327
8328 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8329 }
8330
8331 /*
8332 * Package states C8 and deeper are really deep PC states that can only be
8333 * reached when all the devices on the system allow it, so even if the graphics
8334 * device allows PC8+, it doesn't mean the system will actually get to these
8335 * states. Our driver only allows PC8+ when going into runtime PM.
8336 *
8337 * The requirements for PC8+ are that all the outputs are disabled, the power
8338 * well is disabled and most interrupts are disabled, and these are also
8339 * requirements for runtime PM. When these conditions are met, we manually do
8340 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8341 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8342 * hang the machine.
8343 *
8344 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8345 * the state of some registers, so when we come back from PC8+ we need to
8346 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8347 * need to take care of the registers kept by RC6. Notice that this happens even
8348 * if we don't put the device in PCI D3 state (which is what currently happens
8349 * because of the runtime PM support).
8350 *
8351 * For more, read "Display Sequences for Package C8" on the hardware
8352 * documentation.
8353 */
8354 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8355 {
8356 struct drm_device *dev = dev_priv->dev;
8357 uint32_t val;
8358
8359 DRM_DEBUG_KMS("Enabling package C8+\n");
8360
8361 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8362 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8363 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8364 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8365 }
8366
8367 lpt_disable_clkout_dp(dev);
8368 hsw_disable_lcpll(dev_priv, true, true);
8369 }
8370
8371 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8372 {
8373 struct drm_device *dev = dev_priv->dev;
8374 uint32_t val;
8375
8376 DRM_DEBUG_KMS("Disabling package C8+\n");
8377
8378 hsw_restore_lcpll(dev_priv);
8379 lpt_init_pch_refclk(dev);
8380
8381 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8382 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8383 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8384 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8385 }
8386
8387 intel_prepare_ddi(dev);
8388 }
8389
8390 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8391 struct intel_crtc_state *crtc_state)
8392 {
8393 if (!intel_ddi_pll_select(crtc, crtc_state))
8394 return -EINVAL;
8395
8396 crtc->lowfreq_avail = false;
8397
8398 return 0;
8399 }
8400
8401 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8402 enum port port,
8403 struct intel_crtc_state *pipe_config)
8404 {
8405 u32 temp, dpll_ctl1;
8406
8407 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8408 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8409
8410 switch (pipe_config->ddi_pll_sel) {
8411 case SKL_DPLL0:
8412 /*
8413 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8414 * of the shared DPLL framework and thus needs to be read out
8415 * separately
8416 */
8417 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8418 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8419 break;
8420 case SKL_DPLL1:
8421 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8422 break;
8423 case SKL_DPLL2:
8424 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8425 break;
8426 case SKL_DPLL3:
8427 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8428 break;
8429 }
8430 }
8431
8432 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8433 enum port port,
8434 struct intel_crtc_state *pipe_config)
8435 {
8436 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8437
8438 switch (pipe_config->ddi_pll_sel) {
8439 case PORT_CLK_SEL_WRPLL1:
8440 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8441 break;
8442 case PORT_CLK_SEL_WRPLL2:
8443 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8444 break;
8445 }
8446 }
8447
8448 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8449 struct intel_crtc_state *pipe_config)
8450 {
8451 struct drm_device *dev = crtc->base.dev;
8452 struct drm_i915_private *dev_priv = dev->dev_private;
8453 struct intel_shared_dpll *pll;
8454 enum port port;
8455 uint32_t tmp;
8456
8457 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8458
8459 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8460
8461 if (IS_SKYLAKE(dev))
8462 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8463 else
8464 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8465
8466 if (pipe_config->shared_dpll >= 0) {
8467 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8468
8469 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8470 &pipe_config->dpll_hw_state));
8471 }
8472
8473 /*
8474 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8475 * DDI E. So just check whether this pipe is wired to DDI E and whether
8476 * the PCH transcoder is on.
8477 */
8478 if (INTEL_INFO(dev)->gen < 9 &&
8479 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8480 pipe_config->has_pch_encoder = true;
8481
8482 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8483 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8484 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8485
8486 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8487 }
8488 }
8489
8490 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8491 struct intel_crtc_state *pipe_config)
8492 {
8493 struct drm_device *dev = crtc->base.dev;
8494 struct drm_i915_private *dev_priv = dev->dev_private;
8495 enum intel_display_power_domain pfit_domain;
8496 uint32_t tmp;
8497
8498 if (!intel_display_power_is_enabled(dev_priv,
8499 POWER_DOMAIN_PIPE(crtc->pipe)))
8500 return false;
8501
8502 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8503 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8504
8505 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8506 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8507 enum pipe trans_edp_pipe;
8508 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8509 default:
8510 WARN(1, "unknown pipe linked to edp transcoder\n");
8511 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8512 case TRANS_DDI_EDP_INPUT_A_ON:
8513 trans_edp_pipe = PIPE_A;
8514 break;
8515 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8516 trans_edp_pipe = PIPE_B;
8517 break;
8518 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8519 trans_edp_pipe = PIPE_C;
8520 break;
8521 }
8522
8523 if (trans_edp_pipe == crtc->pipe)
8524 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8525 }
8526
8527 if (!intel_display_power_is_enabled(dev_priv,
8528 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8529 return false;
8530
8531 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8532 if (!(tmp & PIPECONF_ENABLE))
8533 return false;
8534
8535 haswell_get_ddi_port_state(crtc, pipe_config);
8536
8537 intel_get_pipe_timings(crtc, pipe_config);
8538
8539 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8540 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8541 if (IS_SKYLAKE(dev))
8542 skylake_get_pfit_config(crtc, pipe_config);
8543 else
8544 ironlake_get_pfit_config(crtc, pipe_config);
8545 }
8546
8547 if (IS_HASWELL(dev))
8548 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8549 (I915_READ(IPS_CTL) & IPS_ENABLE);
8550
8551 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8552 pipe_config->pixel_multiplier =
8553 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8554 } else {
8555 pipe_config->pixel_multiplier = 1;
8556 }
8557
8558 return true;
8559 }
8560
8561 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8562 {
8563 struct drm_device *dev = crtc->dev;
8564 struct drm_i915_private *dev_priv = dev->dev_private;
8565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8566 uint32_t cntl = 0, size = 0;
8567
8568 if (base) {
8569 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8570 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8571 unsigned int stride = roundup_pow_of_two(width) * 4;
8572
8573 switch (stride) {
8574 default:
8575 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8576 width, stride);
8577 stride = 256;
8578 /* fallthrough */
8579 case 256:
8580 case 512:
8581 case 1024:
8582 case 2048:
8583 break;
8584 }
8585
8586 cntl |= CURSOR_ENABLE |
8587 CURSOR_GAMMA_ENABLE |
8588 CURSOR_FORMAT_ARGB |
8589 CURSOR_STRIDE(stride);
8590
8591 size = (height << 12) | width;
8592 }
8593
8594 if (intel_crtc->cursor_cntl != 0 &&
8595 (intel_crtc->cursor_base != base ||
8596 intel_crtc->cursor_size != size ||
8597 intel_crtc->cursor_cntl != cntl)) {
8598 /* On these chipsets we can only modify the base/size/stride
8599 * whilst the cursor is disabled.
8600 */
8601 I915_WRITE(_CURACNTR, 0);
8602 POSTING_READ(_CURACNTR);
8603 intel_crtc->cursor_cntl = 0;
8604 }
8605
8606 if (intel_crtc->cursor_base != base) {
8607 I915_WRITE(_CURABASE, base);
8608 intel_crtc->cursor_base = base;
8609 }
8610
8611 if (intel_crtc->cursor_size != size) {
8612 I915_WRITE(CURSIZE, size);
8613 intel_crtc->cursor_size = size;
8614 }
8615
8616 if (intel_crtc->cursor_cntl != cntl) {
8617 I915_WRITE(_CURACNTR, cntl);
8618 POSTING_READ(_CURACNTR);
8619 intel_crtc->cursor_cntl = cntl;
8620 }
8621 }
8622
8623 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8624 {
8625 struct drm_device *dev = crtc->dev;
8626 struct drm_i915_private *dev_priv = dev->dev_private;
8627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8628 int pipe = intel_crtc->pipe;
8629 uint32_t cntl;
8630
8631 cntl = 0;
8632 if (base) {
8633 cntl = MCURSOR_GAMMA_ENABLE;
8634 switch (intel_crtc->base.cursor->state->crtc_w) {
8635 case 64:
8636 cntl |= CURSOR_MODE_64_ARGB_AX;
8637 break;
8638 case 128:
8639 cntl |= CURSOR_MODE_128_ARGB_AX;
8640 break;
8641 case 256:
8642 cntl |= CURSOR_MODE_256_ARGB_AX;
8643 break;
8644 default:
8645 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8646 return;
8647 }
8648 cntl |= pipe << 28; /* Connect to correct pipe */
8649
8650 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8651 cntl |= CURSOR_PIPE_CSC_ENABLE;
8652 }
8653
8654 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8655 cntl |= CURSOR_ROTATE_180;
8656
8657 if (intel_crtc->cursor_cntl != cntl) {
8658 I915_WRITE(CURCNTR(pipe), cntl);
8659 POSTING_READ(CURCNTR(pipe));
8660 intel_crtc->cursor_cntl = cntl;
8661 }
8662
8663 /* and commit changes on next vblank */
8664 I915_WRITE(CURBASE(pipe), base);
8665 POSTING_READ(CURBASE(pipe));
8666
8667 intel_crtc->cursor_base = base;
8668 }
8669
8670 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8671 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8672 bool on)
8673 {
8674 struct drm_device *dev = crtc->dev;
8675 struct drm_i915_private *dev_priv = dev->dev_private;
8676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8677 int pipe = intel_crtc->pipe;
8678 int x = crtc->cursor_x;
8679 int y = crtc->cursor_y;
8680 u32 base = 0, pos = 0;
8681
8682 if (on)
8683 base = intel_crtc->cursor_addr;
8684
8685 if (x >= intel_crtc->config->pipe_src_w)
8686 base = 0;
8687
8688 if (y >= intel_crtc->config->pipe_src_h)
8689 base = 0;
8690
8691 if (x < 0) {
8692 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8693 base = 0;
8694
8695 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8696 x = -x;
8697 }
8698 pos |= x << CURSOR_X_SHIFT;
8699
8700 if (y < 0) {
8701 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8702 base = 0;
8703
8704 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8705 y = -y;
8706 }
8707 pos |= y << CURSOR_Y_SHIFT;
8708
8709 if (base == 0 && intel_crtc->cursor_base == 0)
8710 return;
8711
8712 I915_WRITE(CURPOS(pipe), pos);
8713
8714 /* ILK+ do this automagically */
8715 if (HAS_GMCH_DISPLAY(dev) &&
8716 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8717 base += (intel_crtc->base.cursor->state->crtc_h *
8718 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8719 }
8720
8721 if (IS_845G(dev) || IS_I865G(dev))
8722 i845_update_cursor(crtc, base);
8723 else
8724 i9xx_update_cursor(crtc, base);
8725 }
8726
8727 static bool cursor_size_ok(struct drm_device *dev,
8728 uint32_t width, uint32_t height)
8729 {
8730 if (width == 0 || height == 0)
8731 return false;
8732
8733 /*
8734 * 845g/865g are special in that they are only limited by
8735 * the width of their cursors, the height is arbitrary up to
8736 * the precision of the register. Everything else requires
8737 * square cursors, limited to a few power-of-two sizes.
8738 */
8739 if (IS_845G(dev) || IS_I865G(dev)) {
8740 if ((width & 63) != 0)
8741 return false;
8742
8743 if (width > (IS_845G(dev) ? 64 : 512))
8744 return false;
8745
8746 if (height > 1023)
8747 return false;
8748 } else {
8749 switch (width | height) {
8750 case 256:
8751 case 128:
8752 if (IS_GEN2(dev))
8753 return false;
8754 case 64:
8755 break;
8756 default:
8757 return false;
8758 }
8759 }
8760
8761 return true;
8762 }
8763
8764 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8765 u16 *blue, uint32_t start, uint32_t size)
8766 {
8767 int end = (start + size > 256) ? 256 : start + size, i;
8768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8769
8770 for (i = start; i < end; i++) {
8771 intel_crtc->lut_r[i] = red[i] >> 8;
8772 intel_crtc->lut_g[i] = green[i] >> 8;
8773 intel_crtc->lut_b[i] = blue[i] >> 8;
8774 }
8775
8776 intel_crtc_load_lut(crtc);
8777 }
8778
8779 /* VESA 640x480x72Hz mode to set on the pipe */
8780 static struct drm_display_mode load_detect_mode = {
8781 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8782 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8783 };
8784
8785 struct drm_framebuffer *
8786 __intel_framebuffer_create(struct drm_device *dev,
8787 struct drm_mode_fb_cmd2 *mode_cmd,
8788 struct drm_i915_gem_object *obj)
8789 {
8790 struct intel_framebuffer *intel_fb;
8791 int ret;
8792
8793 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8794 if (!intel_fb) {
8795 drm_gem_object_unreference(&obj->base);
8796 return ERR_PTR(-ENOMEM);
8797 }
8798
8799 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8800 if (ret)
8801 goto err;
8802
8803 return &intel_fb->base;
8804 err:
8805 drm_gem_object_unreference(&obj->base);
8806 kfree(intel_fb);
8807
8808 return ERR_PTR(ret);
8809 }
8810
8811 static struct drm_framebuffer *
8812 intel_framebuffer_create(struct drm_device *dev,
8813 struct drm_mode_fb_cmd2 *mode_cmd,
8814 struct drm_i915_gem_object *obj)
8815 {
8816 struct drm_framebuffer *fb;
8817 int ret;
8818
8819 ret = i915_mutex_lock_interruptible(dev);
8820 if (ret)
8821 return ERR_PTR(ret);
8822 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8823 mutex_unlock(&dev->struct_mutex);
8824
8825 return fb;
8826 }
8827
8828 static u32
8829 intel_framebuffer_pitch_for_width(int width, int bpp)
8830 {
8831 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8832 return ALIGN(pitch, 64);
8833 }
8834
8835 static u32
8836 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8837 {
8838 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8839 return PAGE_ALIGN(pitch * mode->vdisplay);
8840 }
8841
8842 static struct drm_framebuffer *
8843 intel_framebuffer_create_for_mode(struct drm_device *dev,
8844 struct drm_display_mode *mode,
8845 int depth, int bpp)
8846 {
8847 struct drm_i915_gem_object *obj;
8848 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8849
8850 obj = i915_gem_alloc_object(dev,
8851 intel_framebuffer_size_for_mode(mode, bpp));
8852 if (obj == NULL)
8853 return ERR_PTR(-ENOMEM);
8854
8855 mode_cmd.width = mode->hdisplay;
8856 mode_cmd.height = mode->vdisplay;
8857 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8858 bpp);
8859 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8860
8861 return intel_framebuffer_create(dev, &mode_cmd, obj);
8862 }
8863
8864 static struct drm_framebuffer *
8865 mode_fits_in_fbdev(struct drm_device *dev,
8866 struct drm_display_mode *mode)
8867 {
8868 #ifdef CONFIG_DRM_I915_FBDEV
8869 struct drm_i915_private *dev_priv = dev->dev_private;
8870 struct drm_i915_gem_object *obj;
8871 struct drm_framebuffer *fb;
8872
8873 if (!dev_priv->fbdev)
8874 return NULL;
8875
8876 if (!dev_priv->fbdev->fb)
8877 return NULL;
8878
8879 obj = dev_priv->fbdev->fb->obj;
8880 BUG_ON(!obj);
8881
8882 fb = &dev_priv->fbdev->fb->base;
8883 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8884 fb->bits_per_pixel))
8885 return NULL;
8886
8887 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8888 return NULL;
8889
8890 return fb;
8891 #else
8892 return NULL;
8893 #endif
8894 }
8895
8896 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8897 struct drm_display_mode *mode,
8898 struct intel_load_detect_pipe *old,
8899 struct drm_modeset_acquire_ctx *ctx)
8900 {
8901 struct intel_crtc *intel_crtc;
8902 struct intel_encoder *intel_encoder =
8903 intel_attached_encoder(connector);
8904 struct drm_crtc *possible_crtc;
8905 struct drm_encoder *encoder = &intel_encoder->base;
8906 struct drm_crtc *crtc = NULL;
8907 struct drm_device *dev = encoder->dev;
8908 struct drm_framebuffer *fb;
8909 struct drm_mode_config *config = &dev->mode_config;
8910 int ret, i = -1;
8911
8912 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8913 connector->base.id, connector->name,
8914 encoder->base.id, encoder->name);
8915
8916 retry:
8917 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8918 if (ret)
8919 goto fail_unlock;
8920
8921 /*
8922 * Algorithm gets a little messy:
8923 *
8924 * - if the connector already has an assigned crtc, use it (but make
8925 * sure it's on first)
8926 *
8927 * - try to find the first unused crtc that can drive this connector,
8928 * and use that if we find one
8929 */
8930
8931 /* See if we already have a CRTC for this connector */
8932 if (encoder->crtc) {
8933 crtc = encoder->crtc;
8934
8935 ret = drm_modeset_lock(&crtc->mutex, ctx);
8936 if (ret)
8937 goto fail_unlock;
8938 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8939 if (ret)
8940 goto fail_unlock;
8941
8942 old->dpms_mode = connector->dpms;
8943 old->load_detect_temp = false;
8944
8945 /* Make sure the crtc and connector are running */
8946 if (connector->dpms != DRM_MODE_DPMS_ON)
8947 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8948
8949 return true;
8950 }
8951
8952 /* Find an unused one (if possible) */
8953 for_each_crtc(dev, possible_crtc) {
8954 i++;
8955 if (!(encoder->possible_crtcs & (1 << i)))
8956 continue;
8957 if (possible_crtc->state->enable)
8958 continue;
8959 /* This can occur when applying the pipe A quirk on resume. */
8960 if (to_intel_crtc(possible_crtc)->new_enabled)
8961 continue;
8962
8963 crtc = possible_crtc;
8964 break;
8965 }
8966
8967 /*
8968 * If we didn't find an unused CRTC, don't use any.
8969 */
8970 if (!crtc) {
8971 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8972 goto fail_unlock;
8973 }
8974
8975 ret = drm_modeset_lock(&crtc->mutex, ctx);
8976 if (ret)
8977 goto fail_unlock;
8978 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8979 if (ret)
8980 goto fail_unlock;
8981 intel_encoder->new_crtc = to_intel_crtc(crtc);
8982 to_intel_connector(connector)->new_encoder = intel_encoder;
8983
8984 intel_crtc = to_intel_crtc(crtc);
8985 intel_crtc->new_enabled = true;
8986 intel_crtc->new_config = intel_crtc->config;
8987 old->dpms_mode = connector->dpms;
8988 old->load_detect_temp = true;
8989 old->release_fb = NULL;
8990
8991 if (!mode)
8992 mode = &load_detect_mode;
8993
8994 /* We need a framebuffer large enough to accommodate all accesses
8995 * that the plane may generate whilst we perform load detection.
8996 * We can not rely on the fbcon either being present (we get called
8997 * during its initialisation to detect all boot displays, or it may
8998 * not even exist) or that it is large enough to satisfy the
8999 * requested mode.
9000 */
9001 fb = mode_fits_in_fbdev(dev, mode);
9002 if (fb == NULL) {
9003 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9004 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9005 old->release_fb = fb;
9006 } else
9007 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9008 if (IS_ERR(fb)) {
9009 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9010 goto fail;
9011 }
9012
9013 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
9014 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9015 if (old->release_fb)
9016 old->release_fb->funcs->destroy(old->release_fb);
9017 goto fail;
9018 }
9019 crtc->primary->crtc = crtc;
9020
9021 /* let the connector get through one full cycle before testing */
9022 intel_wait_for_vblank(dev, intel_crtc->pipe);
9023 return true;
9024
9025 fail:
9026 intel_crtc->new_enabled = crtc->state->enable;
9027 if (intel_crtc->new_enabled)
9028 intel_crtc->new_config = intel_crtc->config;
9029 else
9030 intel_crtc->new_config = NULL;
9031 fail_unlock:
9032 if (ret == -EDEADLK) {
9033 drm_modeset_backoff(ctx);
9034 goto retry;
9035 }
9036
9037 return false;
9038 }
9039
9040 void intel_release_load_detect_pipe(struct drm_connector *connector,
9041 struct intel_load_detect_pipe *old,
9042 struct drm_modeset_acquire_ctx *ctx)
9043 {
9044 struct intel_encoder *intel_encoder =
9045 intel_attached_encoder(connector);
9046 struct drm_encoder *encoder = &intel_encoder->base;
9047 struct drm_crtc *crtc = encoder->crtc;
9048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9049
9050 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9051 connector->base.id, connector->name,
9052 encoder->base.id, encoder->name);
9053
9054 if (old->load_detect_temp) {
9055 to_intel_connector(connector)->new_encoder = NULL;
9056 intel_encoder->new_crtc = NULL;
9057 intel_crtc->new_enabled = false;
9058 intel_crtc->new_config = NULL;
9059 intel_set_mode(crtc, NULL, 0, 0, NULL);
9060
9061 if (old->release_fb) {
9062 drm_framebuffer_unregister_private(old->release_fb);
9063 drm_framebuffer_unreference(old->release_fb);
9064 }
9065
9066 return;
9067 }
9068
9069 /* Switch crtc and encoder back off if necessary */
9070 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9071 connector->funcs->dpms(connector, old->dpms_mode);
9072 }
9073
9074 static int i9xx_pll_refclk(struct drm_device *dev,
9075 const struct intel_crtc_state *pipe_config)
9076 {
9077 struct drm_i915_private *dev_priv = dev->dev_private;
9078 u32 dpll = pipe_config->dpll_hw_state.dpll;
9079
9080 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9081 return dev_priv->vbt.lvds_ssc_freq;
9082 else if (HAS_PCH_SPLIT(dev))
9083 return 120000;
9084 else if (!IS_GEN2(dev))
9085 return 96000;
9086 else
9087 return 48000;
9088 }
9089
9090 /* Returns the clock of the currently programmed mode of the given pipe. */
9091 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9092 struct intel_crtc_state *pipe_config)
9093 {
9094 struct drm_device *dev = crtc->base.dev;
9095 struct drm_i915_private *dev_priv = dev->dev_private;
9096 int pipe = pipe_config->cpu_transcoder;
9097 u32 dpll = pipe_config->dpll_hw_state.dpll;
9098 u32 fp;
9099 intel_clock_t clock;
9100 int refclk = i9xx_pll_refclk(dev, pipe_config);
9101
9102 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9103 fp = pipe_config->dpll_hw_state.fp0;
9104 else
9105 fp = pipe_config->dpll_hw_state.fp1;
9106
9107 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9108 if (IS_PINEVIEW(dev)) {
9109 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9110 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9111 } else {
9112 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9113 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9114 }
9115
9116 if (!IS_GEN2(dev)) {
9117 if (IS_PINEVIEW(dev))
9118 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9119 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9120 else
9121 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9122 DPLL_FPA01_P1_POST_DIV_SHIFT);
9123
9124 switch (dpll & DPLL_MODE_MASK) {
9125 case DPLLB_MODE_DAC_SERIAL:
9126 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9127 5 : 10;
9128 break;
9129 case DPLLB_MODE_LVDS:
9130 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9131 7 : 14;
9132 break;
9133 default:
9134 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9135 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9136 return;
9137 }
9138
9139 if (IS_PINEVIEW(dev))
9140 pineview_clock(refclk, &clock);
9141 else
9142 i9xx_clock(refclk, &clock);
9143 } else {
9144 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9145 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9146
9147 if (is_lvds) {
9148 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9149 DPLL_FPA01_P1_POST_DIV_SHIFT);
9150
9151 if (lvds & LVDS_CLKB_POWER_UP)
9152 clock.p2 = 7;
9153 else
9154 clock.p2 = 14;
9155 } else {
9156 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9157 clock.p1 = 2;
9158 else {
9159 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9160 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9161 }
9162 if (dpll & PLL_P2_DIVIDE_BY_4)
9163 clock.p2 = 4;
9164 else
9165 clock.p2 = 2;
9166 }
9167
9168 i9xx_clock(refclk, &clock);
9169 }
9170
9171 /*
9172 * This value includes pixel_multiplier. We will use
9173 * port_clock to compute adjusted_mode.crtc_clock in the
9174 * encoder's get_config() function.
9175 */
9176 pipe_config->port_clock = clock.dot;
9177 }
9178
9179 int intel_dotclock_calculate(int link_freq,
9180 const struct intel_link_m_n *m_n)
9181 {
9182 /*
9183 * The calculation for the data clock is:
9184 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9185 * But we want to avoid losing precison if possible, so:
9186 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9187 *
9188 * and the link clock is simpler:
9189 * link_clock = (m * link_clock) / n
9190 */
9191
9192 if (!m_n->link_n)
9193 return 0;
9194
9195 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9196 }
9197
9198 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9199 struct intel_crtc_state *pipe_config)
9200 {
9201 struct drm_device *dev = crtc->base.dev;
9202
9203 /* read out port_clock from the DPLL */
9204 i9xx_crtc_clock_get(crtc, pipe_config);
9205
9206 /*
9207 * This value does not include pixel_multiplier.
9208 * We will check that port_clock and adjusted_mode.crtc_clock
9209 * agree once we know their relationship in the encoder's
9210 * get_config() function.
9211 */
9212 pipe_config->base.adjusted_mode.crtc_clock =
9213 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9214 &pipe_config->fdi_m_n);
9215 }
9216
9217 /** Returns the currently programmed mode of the given pipe. */
9218 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9219 struct drm_crtc *crtc)
9220 {
9221 struct drm_i915_private *dev_priv = dev->dev_private;
9222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9223 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9224 struct drm_display_mode *mode;
9225 struct intel_crtc_state pipe_config;
9226 int htot = I915_READ(HTOTAL(cpu_transcoder));
9227 int hsync = I915_READ(HSYNC(cpu_transcoder));
9228 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9229 int vsync = I915_READ(VSYNC(cpu_transcoder));
9230 enum pipe pipe = intel_crtc->pipe;
9231
9232 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9233 if (!mode)
9234 return NULL;
9235
9236 /*
9237 * Construct a pipe_config sufficient for getting the clock info
9238 * back out of crtc_clock_get.
9239 *
9240 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9241 * to use a real value here instead.
9242 */
9243 pipe_config.cpu_transcoder = (enum transcoder) pipe;
9244 pipe_config.pixel_multiplier = 1;
9245 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9246 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9247 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9248 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9249
9250 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9251 mode->hdisplay = (htot & 0xffff) + 1;
9252 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9253 mode->hsync_start = (hsync & 0xffff) + 1;
9254 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9255 mode->vdisplay = (vtot & 0xffff) + 1;
9256 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9257 mode->vsync_start = (vsync & 0xffff) + 1;
9258 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9259
9260 drm_mode_set_name(mode);
9261
9262 return mode;
9263 }
9264
9265 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9266 {
9267 struct drm_device *dev = crtc->dev;
9268 struct drm_i915_private *dev_priv = dev->dev_private;
9269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9270
9271 if (!HAS_GMCH_DISPLAY(dev))
9272 return;
9273
9274 if (!dev_priv->lvds_downclock_avail)
9275 return;
9276
9277 /*
9278 * Since this is called by a timer, we should never get here in
9279 * the manual case.
9280 */
9281 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9282 int pipe = intel_crtc->pipe;
9283 int dpll_reg = DPLL(pipe);
9284 int dpll;
9285
9286 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9287
9288 assert_panel_unlocked(dev_priv, pipe);
9289
9290 dpll = I915_READ(dpll_reg);
9291 dpll |= DISPLAY_RATE_SELECT_FPA1;
9292 I915_WRITE(dpll_reg, dpll);
9293 intel_wait_for_vblank(dev, pipe);
9294 dpll = I915_READ(dpll_reg);
9295 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9296 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9297 }
9298
9299 }
9300
9301 void intel_mark_busy(struct drm_device *dev)
9302 {
9303 struct drm_i915_private *dev_priv = dev->dev_private;
9304
9305 if (dev_priv->mm.busy)
9306 return;
9307
9308 intel_runtime_pm_get(dev_priv);
9309 i915_update_gfx_val(dev_priv);
9310 if (INTEL_INFO(dev)->gen >= 6)
9311 gen6_rps_busy(dev_priv);
9312 dev_priv->mm.busy = true;
9313 }
9314
9315 void intel_mark_idle(struct drm_device *dev)
9316 {
9317 struct drm_i915_private *dev_priv = dev->dev_private;
9318 struct drm_crtc *crtc;
9319
9320 if (!dev_priv->mm.busy)
9321 return;
9322
9323 dev_priv->mm.busy = false;
9324
9325 for_each_crtc(dev, crtc) {
9326 if (!crtc->primary->fb)
9327 continue;
9328
9329 intel_decrease_pllclock(crtc);
9330 }
9331
9332 if (INTEL_INFO(dev)->gen >= 6)
9333 gen6_rps_idle(dev->dev_private);
9334
9335 intel_runtime_pm_put(dev_priv);
9336 }
9337
9338 static void intel_crtc_set_state(struct intel_crtc *crtc,
9339 struct intel_crtc_state *crtc_state)
9340 {
9341 kfree(crtc->config);
9342 crtc->config = crtc_state;
9343 crtc->base.state = &crtc_state->base;
9344 }
9345
9346 static void intel_crtc_destroy(struct drm_crtc *crtc)
9347 {
9348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9349 struct drm_device *dev = crtc->dev;
9350 struct intel_unpin_work *work;
9351
9352 spin_lock_irq(&dev->event_lock);
9353 work = intel_crtc->unpin_work;
9354 intel_crtc->unpin_work = NULL;
9355 spin_unlock_irq(&dev->event_lock);
9356
9357 if (work) {
9358 cancel_work_sync(&work->work);
9359 kfree(work);
9360 }
9361
9362 intel_crtc_set_state(intel_crtc, NULL);
9363 drm_crtc_cleanup(crtc);
9364
9365 kfree(intel_crtc);
9366 }
9367
9368 static void intel_unpin_work_fn(struct work_struct *__work)
9369 {
9370 struct intel_unpin_work *work =
9371 container_of(__work, struct intel_unpin_work, work);
9372 struct drm_device *dev = work->crtc->dev;
9373 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9374
9375 mutex_lock(&dev->struct_mutex);
9376 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9377 drm_gem_object_unreference(&work->pending_flip_obj->base);
9378
9379 intel_fbc_update(dev);
9380
9381 if (work->flip_queued_req)
9382 i915_gem_request_assign(&work->flip_queued_req, NULL);
9383 mutex_unlock(&dev->struct_mutex);
9384
9385 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9386 drm_framebuffer_unreference(work->old_fb);
9387
9388 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9389 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9390
9391 kfree(work);
9392 }
9393
9394 static void do_intel_finish_page_flip(struct drm_device *dev,
9395 struct drm_crtc *crtc)
9396 {
9397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9398 struct intel_unpin_work *work;
9399 unsigned long flags;
9400
9401 /* Ignore early vblank irqs */
9402 if (intel_crtc == NULL)
9403 return;
9404
9405 /*
9406 * This is called both by irq handlers and the reset code (to complete
9407 * lost pageflips) so needs the full irqsave spinlocks.
9408 */
9409 spin_lock_irqsave(&dev->event_lock, flags);
9410 work = intel_crtc->unpin_work;
9411
9412 /* Ensure we don't miss a work->pending update ... */
9413 smp_rmb();
9414
9415 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9416 spin_unlock_irqrestore(&dev->event_lock, flags);
9417 return;
9418 }
9419
9420 page_flip_completed(intel_crtc);
9421
9422 spin_unlock_irqrestore(&dev->event_lock, flags);
9423 }
9424
9425 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9426 {
9427 struct drm_i915_private *dev_priv = dev->dev_private;
9428 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9429
9430 do_intel_finish_page_flip(dev, crtc);
9431 }
9432
9433 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9434 {
9435 struct drm_i915_private *dev_priv = dev->dev_private;
9436 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9437
9438 do_intel_finish_page_flip(dev, crtc);
9439 }
9440
9441 /* Is 'a' after or equal to 'b'? */
9442 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9443 {
9444 return !((a - b) & 0x80000000);
9445 }
9446
9447 static bool page_flip_finished(struct intel_crtc *crtc)
9448 {
9449 struct drm_device *dev = crtc->base.dev;
9450 struct drm_i915_private *dev_priv = dev->dev_private;
9451
9452 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9453 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9454 return true;
9455
9456 /*
9457 * The relevant registers doen't exist on pre-ctg.
9458 * As the flip done interrupt doesn't trigger for mmio
9459 * flips on gmch platforms, a flip count check isn't
9460 * really needed there. But since ctg has the registers,
9461 * include it in the check anyway.
9462 */
9463 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9464 return true;
9465
9466 /*
9467 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9468 * used the same base address. In that case the mmio flip might
9469 * have completed, but the CS hasn't even executed the flip yet.
9470 *
9471 * A flip count check isn't enough as the CS might have updated
9472 * the base address just after start of vblank, but before we
9473 * managed to process the interrupt. This means we'd complete the
9474 * CS flip too soon.
9475 *
9476 * Combining both checks should get us a good enough result. It may
9477 * still happen that the CS flip has been executed, but has not
9478 * yet actually completed. But in case the base address is the same
9479 * anyway, we don't really care.
9480 */
9481 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9482 crtc->unpin_work->gtt_offset &&
9483 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9484 crtc->unpin_work->flip_count);
9485 }
9486
9487 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9488 {
9489 struct drm_i915_private *dev_priv = dev->dev_private;
9490 struct intel_crtc *intel_crtc =
9491 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9492 unsigned long flags;
9493
9494
9495 /*
9496 * This is called both by irq handlers and the reset code (to complete
9497 * lost pageflips) so needs the full irqsave spinlocks.
9498 *
9499 * NB: An MMIO update of the plane base pointer will also
9500 * generate a page-flip completion irq, i.e. every modeset
9501 * is also accompanied by a spurious intel_prepare_page_flip().
9502 */
9503 spin_lock_irqsave(&dev->event_lock, flags);
9504 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9505 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9506 spin_unlock_irqrestore(&dev->event_lock, flags);
9507 }
9508
9509 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9510 {
9511 /* Ensure that the work item is consistent when activating it ... */
9512 smp_wmb();
9513 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9514 /* and that it is marked active as soon as the irq could fire. */
9515 smp_wmb();
9516 }
9517
9518 static int intel_gen2_queue_flip(struct drm_device *dev,
9519 struct drm_crtc *crtc,
9520 struct drm_framebuffer *fb,
9521 struct drm_i915_gem_object *obj,
9522 struct intel_engine_cs *ring,
9523 uint32_t flags)
9524 {
9525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9526 u32 flip_mask;
9527 int ret;
9528
9529 ret = intel_ring_begin(ring, 6);
9530 if (ret)
9531 return ret;
9532
9533 /* Can't queue multiple flips, so wait for the previous
9534 * one to finish before executing the next.
9535 */
9536 if (intel_crtc->plane)
9537 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9538 else
9539 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9540 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9541 intel_ring_emit(ring, MI_NOOP);
9542 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9543 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9544 intel_ring_emit(ring, fb->pitches[0]);
9545 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9546 intel_ring_emit(ring, 0); /* aux display base address, unused */
9547
9548 intel_mark_page_flip_active(intel_crtc);
9549 __intel_ring_advance(ring);
9550 return 0;
9551 }
9552
9553 static int intel_gen3_queue_flip(struct drm_device *dev,
9554 struct drm_crtc *crtc,
9555 struct drm_framebuffer *fb,
9556 struct drm_i915_gem_object *obj,
9557 struct intel_engine_cs *ring,
9558 uint32_t flags)
9559 {
9560 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9561 u32 flip_mask;
9562 int ret;
9563
9564 ret = intel_ring_begin(ring, 6);
9565 if (ret)
9566 return ret;
9567
9568 if (intel_crtc->plane)
9569 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9570 else
9571 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9572 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9573 intel_ring_emit(ring, MI_NOOP);
9574 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9575 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9576 intel_ring_emit(ring, fb->pitches[0]);
9577 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9578 intel_ring_emit(ring, MI_NOOP);
9579
9580 intel_mark_page_flip_active(intel_crtc);
9581 __intel_ring_advance(ring);
9582 return 0;
9583 }
9584
9585 static int intel_gen4_queue_flip(struct drm_device *dev,
9586 struct drm_crtc *crtc,
9587 struct drm_framebuffer *fb,
9588 struct drm_i915_gem_object *obj,
9589 struct intel_engine_cs *ring,
9590 uint32_t flags)
9591 {
9592 struct drm_i915_private *dev_priv = dev->dev_private;
9593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9594 uint32_t pf, pipesrc;
9595 int ret;
9596
9597 ret = intel_ring_begin(ring, 4);
9598 if (ret)
9599 return ret;
9600
9601 /* i965+ uses the linear or tiled offsets from the
9602 * Display Registers (which do not change across a page-flip)
9603 * so we need only reprogram the base address.
9604 */
9605 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9606 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9607 intel_ring_emit(ring, fb->pitches[0]);
9608 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9609 obj->tiling_mode);
9610
9611 /* XXX Enabling the panel-fitter across page-flip is so far
9612 * untested on non-native modes, so ignore it for now.
9613 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9614 */
9615 pf = 0;
9616 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9617 intel_ring_emit(ring, pf | pipesrc);
9618
9619 intel_mark_page_flip_active(intel_crtc);
9620 __intel_ring_advance(ring);
9621 return 0;
9622 }
9623
9624 static int intel_gen6_queue_flip(struct drm_device *dev,
9625 struct drm_crtc *crtc,
9626 struct drm_framebuffer *fb,
9627 struct drm_i915_gem_object *obj,
9628 struct intel_engine_cs *ring,
9629 uint32_t flags)
9630 {
9631 struct drm_i915_private *dev_priv = dev->dev_private;
9632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9633 uint32_t pf, pipesrc;
9634 int ret;
9635
9636 ret = intel_ring_begin(ring, 4);
9637 if (ret)
9638 return ret;
9639
9640 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9641 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9642 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9643 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9644
9645 /* Contrary to the suggestions in the documentation,
9646 * "Enable Panel Fitter" does not seem to be required when page
9647 * flipping with a non-native mode, and worse causes a normal
9648 * modeset to fail.
9649 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9650 */
9651 pf = 0;
9652 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9653 intel_ring_emit(ring, pf | pipesrc);
9654
9655 intel_mark_page_flip_active(intel_crtc);
9656 __intel_ring_advance(ring);
9657 return 0;
9658 }
9659
9660 static int intel_gen7_queue_flip(struct drm_device *dev,
9661 struct drm_crtc *crtc,
9662 struct drm_framebuffer *fb,
9663 struct drm_i915_gem_object *obj,
9664 struct intel_engine_cs *ring,
9665 uint32_t flags)
9666 {
9667 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9668 uint32_t plane_bit = 0;
9669 int len, ret;
9670
9671 switch (intel_crtc->plane) {
9672 case PLANE_A:
9673 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9674 break;
9675 case PLANE_B:
9676 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9677 break;
9678 case PLANE_C:
9679 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9680 break;
9681 default:
9682 WARN_ONCE(1, "unknown plane in flip command\n");
9683 return -ENODEV;
9684 }
9685
9686 len = 4;
9687 if (ring->id == RCS) {
9688 len += 6;
9689 /*
9690 * On Gen 8, SRM is now taking an extra dword to accommodate
9691 * 48bits addresses, and we need a NOOP for the batch size to
9692 * stay even.
9693 */
9694 if (IS_GEN8(dev))
9695 len += 2;
9696 }
9697
9698 /*
9699 * BSpec MI_DISPLAY_FLIP for IVB:
9700 * "The full packet must be contained within the same cache line."
9701 *
9702 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9703 * cacheline, if we ever start emitting more commands before
9704 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9705 * then do the cacheline alignment, and finally emit the
9706 * MI_DISPLAY_FLIP.
9707 */
9708 ret = intel_ring_cacheline_align(ring);
9709 if (ret)
9710 return ret;
9711
9712 ret = intel_ring_begin(ring, len);
9713 if (ret)
9714 return ret;
9715
9716 /* Unmask the flip-done completion message. Note that the bspec says that
9717 * we should do this for both the BCS and RCS, and that we must not unmask
9718 * more than one flip event at any time (or ensure that one flip message
9719 * can be sent by waiting for flip-done prior to queueing new flips).
9720 * Experimentation says that BCS works despite DERRMR masking all
9721 * flip-done completion events and that unmasking all planes at once
9722 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9723 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9724 */
9725 if (ring->id == RCS) {
9726 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9727 intel_ring_emit(ring, DERRMR);
9728 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9729 DERRMR_PIPEB_PRI_FLIP_DONE |
9730 DERRMR_PIPEC_PRI_FLIP_DONE));
9731 if (IS_GEN8(dev))
9732 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9733 MI_SRM_LRM_GLOBAL_GTT);
9734 else
9735 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9736 MI_SRM_LRM_GLOBAL_GTT);
9737 intel_ring_emit(ring, DERRMR);
9738 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9739 if (IS_GEN8(dev)) {
9740 intel_ring_emit(ring, 0);
9741 intel_ring_emit(ring, MI_NOOP);
9742 }
9743 }
9744
9745 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9746 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9747 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9748 intel_ring_emit(ring, (MI_NOOP));
9749
9750 intel_mark_page_flip_active(intel_crtc);
9751 __intel_ring_advance(ring);
9752 return 0;
9753 }
9754
9755 static bool use_mmio_flip(struct intel_engine_cs *ring,
9756 struct drm_i915_gem_object *obj)
9757 {
9758 /*
9759 * This is not being used for older platforms, because
9760 * non-availability of flip done interrupt forces us to use
9761 * CS flips. Older platforms derive flip done using some clever
9762 * tricks involving the flip_pending status bits and vblank irqs.
9763 * So using MMIO flips there would disrupt this mechanism.
9764 */
9765
9766 if (ring == NULL)
9767 return true;
9768
9769 if (INTEL_INFO(ring->dev)->gen < 5)
9770 return false;
9771
9772 if (i915.use_mmio_flip < 0)
9773 return false;
9774 else if (i915.use_mmio_flip > 0)
9775 return true;
9776 else if (i915.enable_execlists)
9777 return true;
9778 else
9779 return ring != i915_gem_request_get_ring(obj->last_read_req);
9780 }
9781
9782 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9783 {
9784 struct drm_device *dev = intel_crtc->base.dev;
9785 struct drm_i915_private *dev_priv = dev->dev_private;
9786 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9787 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9788 struct drm_i915_gem_object *obj = intel_fb->obj;
9789 const enum pipe pipe = intel_crtc->pipe;
9790 u32 ctl, stride;
9791
9792 ctl = I915_READ(PLANE_CTL(pipe, 0));
9793 ctl &= ~PLANE_CTL_TILED_MASK;
9794 if (obj->tiling_mode == I915_TILING_X)
9795 ctl |= PLANE_CTL_TILED_X;
9796
9797 /*
9798 * The stride is either expressed as a multiple of 64 bytes chunks for
9799 * linear buffers or in number of tiles for tiled buffers.
9800 */
9801 stride = fb->pitches[0] >> 6;
9802 if (obj->tiling_mode == I915_TILING_X)
9803 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9804
9805 /*
9806 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9807 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9808 */
9809 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9810 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9811
9812 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9813 POSTING_READ(PLANE_SURF(pipe, 0));
9814 }
9815
9816 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9817 {
9818 struct drm_device *dev = intel_crtc->base.dev;
9819 struct drm_i915_private *dev_priv = dev->dev_private;
9820 struct intel_framebuffer *intel_fb =
9821 to_intel_framebuffer(intel_crtc->base.primary->fb);
9822 struct drm_i915_gem_object *obj = intel_fb->obj;
9823 u32 dspcntr;
9824 u32 reg;
9825
9826 reg = DSPCNTR(intel_crtc->plane);
9827 dspcntr = I915_READ(reg);
9828
9829 if (obj->tiling_mode != I915_TILING_NONE)
9830 dspcntr |= DISPPLANE_TILED;
9831 else
9832 dspcntr &= ~DISPPLANE_TILED;
9833
9834 I915_WRITE(reg, dspcntr);
9835
9836 I915_WRITE(DSPSURF(intel_crtc->plane),
9837 intel_crtc->unpin_work->gtt_offset);
9838 POSTING_READ(DSPSURF(intel_crtc->plane));
9839
9840 }
9841
9842 /*
9843 * XXX: This is the temporary way to update the plane registers until we get
9844 * around to using the usual plane update functions for MMIO flips
9845 */
9846 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9847 {
9848 struct drm_device *dev = intel_crtc->base.dev;
9849 bool atomic_update;
9850 u32 start_vbl_count;
9851
9852 intel_mark_page_flip_active(intel_crtc);
9853
9854 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9855
9856 if (INTEL_INFO(dev)->gen >= 9)
9857 skl_do_mmio_flip(intel_crtc);
9858 else
9859 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9860 ilk_do_mmio_flip(intel_crtc);
9861
9862 if (atomic_update)
9863 intel_pipe_update_end(intel_crtc, start_vbl_count);
9864 }
9865
9866 static void intel_mmio_flip_work_func(struct work_struct *work)
9867 {
9868 struct intel_crtc *crtc =
9869 container_of(work, struct intel_crtc, mmio_flip.work);
9870 struct intel_mmio_flip *mmio_flip;
9871
9872 mmio_flip = &crtc->mmio_flip;
9873 if (mmio_flip->req)
9874 WARN_ON(__i915_wait_request(mmio_flip->req,
9875 crtc->reset_counter,
9876 false, NULL, NULL) != 0);
9877
9878 intel_do_mmio_flip(crtc);
9879 if (mmio_flip->req) {
9880 mutex_lock(&crtc->base.dev->struct_mutex);
9881 i915_gem_request_assign(&mmio_flip->req, NULL);
9882 mutex_unlock(&crtc->base.dev->struct_mutex);
9883 }
9884 }
9885
9886 static int intel_queue_mmio_flip(struct drm_device *dev,
9887 struct drm_crtc *crtc,
9888 struct drm_framebuffer *fb,
9889 struct drm_i915_gem_object *obj,
9890 struct intel_engine_cs *ring,
9891 uint32_t flags)
9892 {
9893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9894
9895 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9896 obj->last_write_req);
9897
9898 schedule_work(&intel_crtc->mmio_flip.work);
9899
9900 return 0;
9901 }
9902
9903 static int intel_default_queue_flip(struct drm_device *dev,
9904 struct drm_crtc *crtc,
9905 struct drm_framebuffer *fb,
9906 struct drm_i915_gem_object *obj,
9907 struct intel_engine_cs *ring,
9908 uint32_t flags)
9909 {
9910 return -ENODEV;
9911 }
9912
9913 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9914 struct drm_crtc *crtc)
9915 {
9916 struct drm_i915_private *dev_priv = dev->dev_private;
9917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9918 struct intel_unpin_work *work = intel_crtc->unpin_work;
9919 u32 addr;
9920
9921 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9922 return true;
9923
9924 if (!work->enable_stall_check)
9925 return false;
9926
9927 if (work->flip_ready_vblank == 0) {
9928 if (work->flip_queued_req &&
9929 !i915_gem_request_completed(work->flip_queued_req, true))
9930 return false;
9931
9932 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
9933 }
9934
9935 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
9936 return false;
9937
9938 /* Potential stall - if we see that the flip has happened,
9939 * assume a missed interrupt. */
9940 if (INTEL_INFO(dev)->gen >= 4)
9941 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9942 else
9943 addr = I915_READ(DSPADDR(intel_crtc->plane));
9944
9945 /* There is a potential issue here with a false positive after a flip
9946 * to the same address. We could address this by checking for a
9947 * non-incrementing frame counter.
9948 */
9949 return addr == work->gtt_offset;
9950 }
9951
9952 void intel_check_page_flip(struct drm_device *dev, int pipe)
9953 {
9954 struct drm_i915_private *dev_priv = dev->dev_private;
9955 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9957
9958 WARN_ON(!in_interrupt());
9959
9960 if (crtc == NULL)
9961 return;
9962
9963 spin_lock(&dev->event_lock);
9964 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9965 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9966 intel_crtc->unpin_work->flip_queued_vblank,
9967 drm_vblank_count(dev, pipe));
9968 page_flip_completed(intel_crtc);
9969 }
9970 spin_unlock(&dev->event_lock);
9971 }
9972
9973 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9974 struct drm_framebuffer *fb,
9975 struct drm_pending_vblank_event *event,
9976 uint32_t page_flip_flags)
9977 {
9978 struct drm_device *dev = crtc->dev;
9979 struct drm_i915_private *dev_priv = dev->dev_private;
9980 struct drm_framebuffer *old_fb = crtc->primary->fb;
9981 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9983 struct drm_plane *primary = crtc->primary;
9984 enum pipe pipe = intel_crtc->pipe;
9985 struct intel_unpin_work *work;
9986 struct intel_engine_cs *ring;
9987 int ret;
9988
9989 /*
9990 * drm_mode_page_flip_ioctl() should already catch this, but double
9991 * check to be safe. In the future we may enable pageflipping from
9992 * a disabled primary plane.
9993 */
9994 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9995 return -EBUSY;
9996
9997 /* Can't change pixel format via MI display flips. */
9998 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9999 return -EINVAL;
10000
10001 /*
10002 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10003 * Note that pitch changes could also affect these register.
10004 */
10005 if (INTEL_INFO(dev)->gen > 3 &&
10006 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10007 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10008 return -EINVAL;
10009
10010 if (i915_terminally_wedged(&dev_priv->gpu_error))
10011 goto out_hang;
10012
10013 work = kzalloc(sizeof(*work), GFP_KERNEL);
10014 if (work == NULL)
10015 return -ENOMEM;
10016
10017 work->event = event;
10018 work->crtc = crtc;
10019 work->old_fb = old_fb;
10020 INIT_WORK(&work->work, intel_unpin_work_fn);
10021
10022 ret = drm_crtc_vblank_get(crtc);
10023 if (ret)
10024 goto free_work;
10025
10026 /* We borrow the event spin lock for protecting unpin_work */
10027 spin_lock_irq(&dev->event_lock);
10028 if (intel_crtc->unpin_work) {
10029 /* Before declaring the flip queue wedged, check if
10030 * the hardware completed the operation behind our backs.
10031 */
10032 if (__intel_pageflip_stall_check(dev, crtc)) {
10033 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10034 page_flip_completed(intel_crtc);
10035 } else {
10036 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10037 spin_unlock_irq(&dev->event_lock);
10038
10039 drm_crtc_vblank_put(crtc);
10040 kfree(work);
10041 return -EBUSY;
10042 }
10043 }
10044 intel_crtc->unpin_work = work;
10045 spin_unlock_irq(&dev->event_lock);
10046
10047 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10048 flush_workqueue(dev_priv->wq);
10049
10050 /* Reference the objects for the scheduled work. */
10051 drm_framebuffer_reference(work->old_fb);
10052 drm_gem_object_reference(&obj->base);
10053
10054 crtc->primary->fb = fb;
10055 update_state_fb(crtc->primary);
10056
10057 work->pending_flip_obj = obj;
10058
10059 ret = i915_mutex_lock_interruptible(dev);
10060 if (ret)
10061 goto cleanup;
10062
10063 atomic_inc(&intel_crtc->unpin_work_count);
10064 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10065
10066 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10067 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10068
10069 if (IS_VALLEYVIEW(dev)) {
10070 ring = &dev_priv->ring[BCS];
10071 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10072 /* vlv: DISPLAY_FLIP fails to change tiling */
10073 ring = NULL;
10074 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10075 ring = &dev_priv->ring[BCS];
10076 } else if (INTEL_INFO(dev)->gen >= 7) {
10077 ring = i915_gem_request_get_ring(obj->last_read_req);
10078 if (ring == NULL || ring->id != RCS)
10079 ring = &dev_priv->ring[BCS];
10080 } else {
10081 ring = &dev_priv->ring[RCS];
10082 }
10083
10084 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10085 crtc->primary->state, ring);
10086 if (ret)
10087 goto cleanup_pending;
10088
10089 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10090 + intel_crtc->dspaddr_offset;
10091
10092 if (use_mmio_flip(ring, obj)) {
10093 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10094 page_flip_flags);
10095 if (ret)
10096 goto cleanup_unpin;
10097
10098 i915_gem_request_assign(&work->flip_queued_req,
10099 obj->last_write_req);
10100 } else {
10101 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10102 page_flip_flags);
10103 if (ret)
10104 goto cleanup_unpin;
10105
10106 i915_gem_request_assign(&work->flip_queued_req,
10107 intel_ring_get_request(ring));
10108 }
10109
10110 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10111 work->enable_stall_check = true;
10112
10113 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10114 INTEL_FRONTBUFFER_PRIMARY(pipe));
10115
10116 intel_fbc_disable(dev);
10117 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10118 mutex_unlock(&dev->struct_mutex);
10119
10120 trace_i915_flip_request(intel_crtc->plane, obj);
10121
10122 return 0;
10123
10124 cleanup_unpin:
10125 intel_unpin_fb_obj(fb, crtc->primary->state);
10126 cleanup_pending:
10127 atomic_dec(&intel_crtc->unpin_work_count);
10128 mutex_unlock(&dev->struct_mutex);
10129 cleanup:
10130 crtc->primary->fb = old_fb;
10131 update_state_fb(crtc->primary);
10132
10133 drm_gem_object_unreference_unlocked(&obj->base);
10134 drm_framebuffer_unreference(work->old_fb);
10135
10136 spin_lock_irq(&dev->event_lock);
10137 intel_crtc->unpin_work = NULL;
10138 spin_unlock_irq(&dev->event_lock);
10139
10140 drm_crtc_vblank_put(crtc);
10141 free_work:
10142 kfree(work);
10143
10144 if (ret == -EIO) {
10145 out_hang:
10146 ret = intel_plane_restore(primary);
10147 if (ret == 0 && event) {
10148 spin_lock_irq(&dev->event_lock);
10149 drm_send_vblank_event(dev, pipe, event);
10150 spin_unlock_irq(&dev->event_lock);
10151 }
10152 }
10153 return ret;
10154 }
10155
10156 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10157 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10158 .load_lut = intel_crtc_load_lut,
10159 .atomic_begin = intel_begin_crtc_commit,
10160 .atomic_flush = intel_finish_crtc_commit,
10161 };
10162
10163 /**
10164 * intel_modeset_update_staged_output_state
10165 *
10166 * Updates the staged output configuration state, e.g. after we've read out the
10167 * current hw state.
10168 */
10169 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10170 {
10171 struct intel_crtc *crtc;
10172 struct intel_encoder *encoder;
10173 struct intel_connector *connector;
10174
10175 for_each_intel_connector(dev, connector) {
10176 connector->new_encoder =
10177 to_intel_encoder(connector->base.encoder);
10178 }
10179
10180 for_each_intel_encoder(dev, encoder) {
10181 encoder->new_crtc =
10182 to_intel_crtc(encoder->base.crtc);
10183 }
10184
10185 for_each_intel_crtc(dev, crtc) {
10186 crtc->new_enabled = crtc->base.state->enable;
10187
10188 if (crtc->new_enabled)
10189 crtc->new_config = crtc->config;
10190 else
10191 crtc->new_config = NULL;
10192 }
10193 }
10194
10195 /**
10196 * intel_modeset_commit_output_state
10197 *
10198 * This function copies the stage display pipe configuration to the real one.
10199 */
10200 static void intel_modeset_commit_output_state(struct drm_device *dev)
10201 {
10202 struct intel_crtc *crtc;
10203 struct intel_encoder *encoder;
10204 struct intel_connector *connector;
10205
10206 for_each_intel_connector(dev, connector) {
10207 connector->base.encoder = &connector->new_encoder->base;
10208 }
10209
10210 for_each_intel_encoder(dev, encoder) {
10211 encoder->base.crtc = &encoder->new_crtc->base;
10212 }
10213
10214 for_each_intel_crtc(dev, crtc) {
10215 crtc->base.state->enable = crtc->new_enabled;
10216 crtc->base.enabled = crtc->new_enabled;
10217 }
10218 }
10219
10220 static void
10221 connected_sink_compute_bpp(struct intel_connector *connector,
10222 struct intel_crtc_state *pipe_config)
10223 {
10224 int bpp = pipe_config->pipe_bpp;
10225
10226 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10227 connector->base.base.id,
10228 connector->base.name);
10229
10230 /* Don't use an invalid EDID bpc value */
10231 if (connector->base.display_info.bpc &&
10232 connector->base.display_info.bpc * 3 < bpp) {
10233 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10234 bpp, connector->base.display_info.bpc*3);
10235 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10236 }
10237
10238 /* Clamp bpp to 8 on screens without EDID 1.4 */
10239 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10240 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10241 bpp);
10242 pipe_config->pipe_bpp = 24;
10243 }
10244 }
10245
10246 static int
10247 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10248 struct drm_framebuffer *fb,
10249 struct intel_crtc_state *pipe_config)
10250 {
10251 struct drm_device *dev = crtc->base.dev;
10252 struct intel_connector *connector;
10253 int bpp;
10254
10255 switch (fb->pixel_format) {
10256 case DRM_FORMAT_C8:
10257 bpp = 8*3; /* since we go through a colormap */
10258 break;
10259 case DRM_FORMAT_XRGB1555:
10260 case DRM_FORMAT_ARGB1555:
10261 /* checked in intel_framebuffer_init already */
10262 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10263 return -EINVAL;
10264 case DRM_FORMAT_RGB565:
10265 bpp = 6*3; /* min is 18bpp */
10266 break;
10267 case DRM_FORMAT_XBGR8888:
10268 case DRM_FORMAT_ABGR8888:
10269 /* checked in intel_framebuffer_init already */
10270 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10271 return -EINVAL;
10272 case DRM_FORMAT_XRGB8888:
10273 case DRM_FORMAT_ARGB8888:
10274 bpp = 8*3;
10275 break;
10276 case DRM_FORMAT_XRGB2101010:
10277 case DRM_FORMAT_ARGB2101010:
10278 case DRM_FORMAT_XBGR2101010:
10279 case DRM_FORMAT_ABGR2101010:
10280 /* checked in intel_framebuffer_init already */
10281 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10282 return -EINVAL;
10283 bpp = 10*3;
10284 break;
10285 /* TODO: gen4+ supports 16 bpc floating point, too. */
10286 default:
10287 DRM_DEBUG_KMS("unsupported depth\n");
10288 return -EINVAL;
10289 }
10290
10291 pipe_config->pipe_bpp = bpp;
10292
10293 /* Clamp display bpp to EDID value */
10294 for_each_intel_connector(dev, connector) {
10295 if (!connector->new_encoder ||
10296 connector->new_encoder->new_crtc != crtc)
10297 continue;
10298
10299 connected_sink_compute_bpp(connector, pipe_config);
10300 }
10301
10302 return bpp;
10303 }
10304
10305 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10306 {
10307 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10308 "type: 0x%x flags: 0x%x\n",
10309 mode->crtc_clock,
10310 mode->crtc_hdisplay, mode->crtc_hsync_start,
10311 mode->crtc_hsync_end, mode->crtc_htotal,
10312 mode->crtc_vdisplay, mode->crtc_vsync_start,
10313 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10314 }
10315
10316 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10317 struct intel_crtc_state *pipe_config,
10318 const char *context)
10319 {
10320 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10321 context, pipe_name(crtc->pipe));
10322
10323 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10324 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10325 pipe_config->pipe_bpp, pipe_config->dither);
10326 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10327 pipe_config->has_pch_encoder,
10328 pipe_config->fdi_lanes,
10329 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10330 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10331 pipe_config->fdi_m_n.tu);
10332 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10333 pipe_config->has_dp_encoder,
10334 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10335 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10336 pipe_config->dp_m_n.tu);
10337
10338 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10339 pipe_config->has_dp_encoder,
10340 pipe_config->dp_m2_n2.gmch_m,
10341 pipe_config->dp_m2_n2.gmch_n,
10342 pipe_config->dp_m2_n2.link_m,
10343 pipe_config->dp_m2_n2.link_n,
10344 pipe_config->dp_m2_n2.tu);
10345
10346 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10347 pipe_config->has_audio,
10348 pipe_config->has_infoframe);
10349
10350 DRM_DEBUG_KMS("requested mode:\n");
10351 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10352 DRM_DEBUG_KMS("adjusted mode:\n");
10353 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10354 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10355 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10356 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10357 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10358 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10359 pipe_config->gmch_pfit.control,
10360 pipe_config->gmch_pfit.pgm_ratios,
10361 pipe_config->gmch_pfit.lvds_border_bits);
10362 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10363 pipe_config->pch_pfit.pos,
10364 pipe_config->pch_pfit.size,
10365 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10366 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10367 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10368 }
10369
10370 static bool encoders_cloneable(const struct intel_encoder *a,
10371 const struct intel_encoder *b)
10372 {
10373 /* masks could be asymmetric, so check both ways */
10374 return a == b || (a->cloneable & (1 << b->type) &&
10375 b->cloneable & (1 << a->type));
10376 }
10377
10378 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10379 struct intel_encoder *encoder)
10380 {
10381 struct drm_device *dev = crtc->base.dev;
10382 struct intel_encoder *source_encoder;
10383
10384 for_each_intel_encoder(dev, source_encoder) {
10385 if (source_encoder->new_crtc != crtc)
10386 continue;
10387
10388 if (!encoders_cloneable(encoder, source_encoder))
10389 return false;
10390 }
10391
10392 return true;
10393 }
10394
10395 static bool check_encoder_cloning(struct intel_crtc *crtc)
10396 {
10397 struct drm_device *dev = crtc->base.dev;
10398 struct intel_encoder *encoder;
10399
10400 for_each_intel_encoder(dev, encoder) {
10401 if (encoder->new_crtc != crtc)
10402 continue;
10403
10404 if (!check_single_encoder_cloning(crtc, encoder))
10405 return false;
10406 }
10407
10408 return true;
10409 }
10410
10411 static bool check_digital_port_conflicts(struct drm_device *dev)
10412 {
10413 struct intel_connector *connector;
10414 unsigned int used_ports = 0;
10415
10416 /*
10417 * Walk the connector list instead of the encoder
10418 * list to detect the problem on ddi platforms
10419 * where there's just one encoder per digital port.
10420 */
10421 for_each_intel_connector(dev, connector) {
10422 struct intel_encoder *encoder = connector->new_encoder;
10423
10424 if (!encoder)
10425 continue;
10426
10427 WARN_ON(!encoder->new_crtc);
10428
10429 switch (encoder->type) {
10430 unsigned int port_mask;
10431 case INTEL_OUTPUT_UNKNOWN:
10432 if (WARN_ON(!HAS_DDI(dev)))
10433 break;
10434 case INTEL_OUTPUT_DISPLAYPORT:
10435 case INTEL_OUTPUT_HDMI:
10436 case INTEL_OUTPUT_EDP:
10437 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10438
10439 /* the same port mustn't appear more than once */
10440 if (used_ports & port_mask)
10441 return false;
10442
10443 used_ports |= port_mask;
10444 default:
10445 break;
10446 }
10447 }
10448
10449 return true;
10450 }
10451
10452 static struct intel_crtc_state *
10453 intel_modeset_pipe_config(struct drm_crtc *crtc,
10454 struct drm_framebuffer *fb,
10455 struct drm_display_mode *mode)
10456 {
10457 struct drm_device *dev = crtc->dev;
10458 struct intel_encoder *encoder;
10459 struct intel_crtc_state *pipe_config;
10460 int plane_bpp, ret = -EINVAL;
10461 bool retry = true;
10462
10463 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10464 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10465 return ERR_PTR(-EINVAL);
10466 }
10467
10468 if (!check_digital_port_conflicts(dev)) {
10469 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10470 return ERR_PTR(-EINVAL);
10471 }
10472
10473 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10474 if (!pipe_config)
10475 return ERR_PTR(-ENOMEM);
10476
10477 pipe_config->base.crtc = crtc;
10478 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10479 drm_mode_copy(&pipe_config->base.mode, mode);
10480
10481 pipe_config->cpu_transcoder =
10482 (enum transcoder) to_intel_crtc(crtc)->pipe;
10483 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10484
10485 /*
10486 * Sanitize sync polarity flags based on requested ones. If neither
10487 * positive or negative polarity is requested, treat this as meaning
10488 * negative polarity.
10489 */
10490 if (!(pipe_config->base.adjusted_mode.flags &
10491 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10492 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10493
10494 if (!(pipe_config->base.adjusted_mode.flags &
10495 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10496 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10497
10498 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10499 * plane pixel format and any sink constraints into account. Returns the
10500 * source plane bpp so that dithering can be selected on mismatches
10501 * after encoders and crtc also have had their say. */
10502 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10503 fb, pipe_config);
10504 if (plane_bpp < 0)
10505 goto fail;
10506
10507 /*
10508 * Determine the real pipe dimensions. Note that stereo modes can
10509 * increase the actual pipe size due to the frame doubling and
10510 * insertion of additional space for blanks between the frame. This
10511 * is stored in the crtc timings. We use the requested mode to do this
10512 * computation to clearly distinguish it from the adjusted mode, which
10513 * can be changed by the connectors in the below retry loop.
10514 */
10515 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10516 &pipe_config->pipe_src_w,
10517 &pipe_config->pipe_src_h);
10518
10519 encoder_retry:
10520 /* Ensure the port clock defaults are reset when retrying. */
10521 pipe_config->port_clock = 0;
10522 pipe_config->pixel_multiplier = 1;
10523
10524 /* Fill in default crtc timings, allow encoders to overwrite them. */
10525 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10526 CRTC_STEREO_DOUBLE);
10527
10528 /* Pass our mode to the connectors and the CRTC to give them a chance to
10529 * adjust it according to limitations or connector properties, and also
10530 * a chance to reject the mode entirely.
10531 */
10532 for_each_intel_encoder(dev, encoder) {
10533
10534 if (&encoder->new_crtc->base != crtc)
10535 continue;
10536
10537 if (!(encoder->compute_config(encoder, pipe_config))) {
10538 DRM_DEBUG_KMS("Encoder config failure\n");
10539 goto fail;
10540 }
10541 }
10542
10543 /* Set default port clock if not overwritten by the encoder. Needs to be
10544 * done afterwards in case the encoder adjusts the mode. */
10545 if (!pipe_config->port_clock)
10546 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10547 * pipe_config->pixel_multiplier;
10548
10549 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10550 if (ret < 0) {
10551 DRM_DEBUG_KMS("CRTC fixup failed\n");
10552 goto fail;
10553 }
10554
10555 if (ret == RETRY) {
10556 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10557 ret = -EINVAL;
10558 goto fail;
10559 }
10560
10561 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10562 retry = false;
10563 goto encoder_retry;
10564 }
10565
10566 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10567 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10568 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10569
10570 return pipe_config;
10571 fail:
10572 kfree(pipe_config);
10573 return ERR_PTR(ret);
10574 }
10575
10576 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10577 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10578 static void
10579 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10580 unsigned *prepare_pipes, unsigned *disable_pipes)
10581 {
10582 struct intel_crtc *intel_crtc;
10583 struct drm_device *dev = crtc->dev;
10584 struct intel_encoder *encoder;
10585 struct intel_connector *connector;
10586 struct drm_crtc *tmp_crtc;
10587
10588 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10589
10590 /* Check which crtcs have changed outputs connected to them, these need
10591 * to be part of the prepare_pipes mask. We don't (yet) support global
10592 * modeset across multiple crtcs, so modeset_pipes will only have one
10593 * bit set at most. */
10594 for_each_intel_connector(dev, connector) {
10595 if (connector->base.encoder == &connector->new_encoder->base)
10596 continue;
10597
10598 if (connector->base.encoder) {
10599 tmp_crtc = connector->base.encoder->crtc;
10600
10601 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10602 }
10603
10604 if (connector->new_encoder)
10605 *prepare_pipes |=
10606 1 << connector->new_encoder->new_crtc->pipe;
10607 }
10608
10609 for_each_intel_encoder(dev, encoder) {
10610 if (encoder->base.crtc == &encoder->new_crtc->base)
10611 continue;
10612
10613 if (encoder->base.crtc) {
10614 tmp_crtc = encoder->base.crtc;
10615
10616 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10617 }
10618
10619 if (encoder->new_crtc)
10620 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10621 }
10622
10623 /* Check for pipes that will be enabled/disabled ... */
10624 for_each_intel_crtc(dev, intel_crtc) {
10625 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10626 continue;
10627
10628 if (!intel_crtc->new_enabled)
10629 *disable_pipes |= 1 << intel_crtc->pipe;
10630 else
10631 *prepare_pipes |= 1 << intel_crtc->pipe;
10632 }
10633
10634
10635 /* set_mode is also used to update properties on life display pipes. */
10636 intel_crtc = to_intel_crtc(crtc);
10637 if (intel_crtc->new_enabled)
10638 *prepare_pipes |= 1 << intel_crtc->pipe;
10639
10640 /*
10641 * For simplicity do a full modeset on any pipe where the output routing
10642 * changed. We could be more clever, but that would require us to be
10643 * more careful with calling the relevant encoder->mode_set functions.
10644 */
10645 if (*prepare_pipes)
10646 *modeset_pipes = *prepare_pipes;
10647
10648 /* ... and mask these out. */
10649 *modeset_pipes &= ~(*disable_pipes);
10650 *prepare_pipes &= ~(*disable_pipes);
10651
10652 /*
10653 * HACK: We don't (yet) fully support global modesets. intel_set_config
10654 * obies this rule, but the modeset restore mode of
10655 * intel_modeset_setup_hw_state does not.
10656 */
10657 *modeset_pipes &= 1 << intel_crtc->pipe;
10658 *prepare_pipes &= 1 << intel_crtc->pipe;
10659
10660 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10661 *modeset_pipes, *prepare_pipes, *disable_pipes);
10662 }
10663
10664 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10665 {
10666 struct drm_encoder *encoder;
10667 struct drm_device *dev = crtc->dev;
10668
10669 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10670 if (encoder->crtc == crtc)
10671 return true;
10672
10673 return false;
10674 }
10675
10676 static void
10677 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10678 {
10679 struct drm_i915_private *dev_priv = dev->dev_private;
10680 struct intel_encoder *intel_encoder;
10681 struct intel_crtc *intel_crtc;
10682 struct drm_connector *connector;
10683
10684 intel_shared_dpll_commit(dev_priv);
10685
10686 for_each_intel_encoder(dev, intel_encoder) {
10687 if (!intel_encoder->base.crtc)
10688 continue;
10689
10690 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10691
10692 if (prepare_pipes & (1 << intel_crtc->pipe))
10693 intel_encoder->connectors_active = false;
10694 }
10695
10696 intel_modeset_commit_output_state(dev);
10697
10698 /* Double check state. */
10699 for_each_intel_crtc(dev, intel_crtc) {
10700 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10701 WARN_ON(intel_crtc->new_config &&
10702 intel_crtc->new_config != intel_crtc->config);
10703 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10704 }
10705
10706 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10707 if (!connector->encoder || !connector->encoder->crtc)
10708 continue;
10709
10710 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10711
10712 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10713 struct drm_property *dpms_property =
10714 dev->mode_config.dpms_property;
10715
10716 connector->dpms = DRM_MODE_DPMS_ON;
10717 drm_object_property_set_value(&connector->base,
10718 dpms_property,
10719 DRM_MODE_DPMS_ON);
10720
10721 intel_encoder = to_intel_encoder(connector->encoder);
10722 intel_encoder->connectors_active = true;
10723 }
10724 }
10725
10726 }
10727
10728 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10729 {
10730 int diff;
10731
10732 if (clock1 == clock2)
10733 return true;
10734
10735 if (!clock1 || !clock2)
10736 return false;
10737
10738 diff = abs(clock1 - clock2);
10739
10740 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10741 return true;
10742
10743 return false;
10744 }
10745
10746 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10747 list_for_each_entry((intel_crtc), \
10748 &(dev)->mode_config.crtc_list, \
10749 base.head) \
10750 if (mask & (1 <<(intel_crtc)->pipe))
10751
10752 static bool
10753 intel_pipe_config_compare(struct drm_device *dev,
10754 struct intel_crtc_state *current_config,
10755 struct intel_crtc_state *pipe_config)
10756 {
10757 #define PIPE_CONF_CHECK_X(name) \
10758 if (current_config->name != pipe_config->name) { \
10759 DRM_ERROR("mismatch in " #name " " \
10760 "(expected 0x%08x, found 0x%08x)\n", \
10761 current_config->name, \
10762 pipe_config->name); \
10763 return false; \
10764 }
10765
10766 #define PIPE_CONF_CHECK_I(name) \
10767 if (current_config->name != pipe_config->name) { \
10768 DRM_ERROR("mismatch in " #name " " \
10769 "(expected %i, found %i)\n", \
10770 current_config->name, \
10771 pipe_config->name); \
10772 return false; \
10773 }
10774
10775 /* This is required for BDW+ where there is only one set of registers for
10776 * switching between high and low RR.
10777 * This macro can be used whenever a comparison has to be made between one
10778 * hw state and multiple sw state variables.
10779 */
10780 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10781 if ((current_config->name != pipe_config->name) && \
10782 (current_config->alt_name != pipe_config->name)) { \
10783 DRM_ERROR("mismatch in " #name " " \
10784 "(expected %i or %i, found %i)\n", \
10785 current_config->name, \
10786 current_config->alt_name, \
10787 pipe_config->name); \
10788 return false; \
10789 }
10790
10791 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10792 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10793 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10794 "(expected %i, found %i)\n", \
10795 current_config->name & (mask), \
10796 pipe_config->name & (mask)); \
10797 return false; \
10798 }
10799
10800 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10801 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10802 DRM_ERROR("mismatch in " #name " " \
10803 "(expected %i, found %i)\n", \
10804 current_config->name, \
10805 pipe_config->name); \
10806 return false; \
10807 }
10808
10809 #define PIPE_CONF_QUIRK(quirk) \
10810 ((current_config->quirks | pipe_config->quirks) & (quirk))
10811
10812 PIPE_CONF_CHECK_I(cpu_transcoder);
10813
10814 PIPE_CONF_CHECK_I(has_pch_encoder);
10815 PIPE_CONF_CHECK_I(fdi_lanes);
10816 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10817 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10818 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10819 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10820 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10821
10822 PIPE_CONF_CHECK_I(has_dp_encoder);
10823
10824 if (INTEL_INFO(dev)->gen < 8) {
10825 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10826 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10827 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10828 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10829 PIPE_CONF_CHECK_I(dp_m_n.tu);
10830
10831 if (current_config->has_drrs) {
10832 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10833 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10834 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10835 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10836 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10837 }
10838 } else {
10839 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10840 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10841 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10842 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10843 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10844 }
10845
10846 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10847 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10848 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10849 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10850 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10851 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10852
10853 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10854 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10855 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10856 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10857 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10858 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10859
10860 PIPE_CONF_CHECK_I(pixel_multiplier);
10861 PIPE_CONF_CHECK_I(has_hdmi_sink);
10862 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10863 IS_VALLEYVIEW(dev))
10864 PIPE_CONF_CHECK_I(limited_color_range);
10865 PIPE_CONF_CHECK_I(has_infoframe);
10866
10867 PIPE_CONF_CHECK_I(has_audio);
10868
10869 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10870 DRM_MODE_FLAG_INTERLACE);
10871
10872 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10873 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10874 DRM_MODE_FLAG_PHSYNC);
10875 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10876 DRM_MODE_FLAG_NHSYNC);
10877 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10878 DRM_MODE_FLAG_PVSYNC);
10879 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10880 DRM_MODE_FLAG_NVSYNC);
10881 }
10882
10883 PIPE_CONF_CHECK_I(pipe_src_w);
10884 PIPE_CONF_CHECK_I(pipe_src_h);
10885
10886 /*
10887 * FIXME: BIOS likes to set up a cloned config with lvds+external
10888 * screen. Since we don't yet re-compute the pipe config when moving
10889 * just the lvds port away to another pipe the sw tracking won't match.
10890 *
10891 * Proper atomic modesets with recomputed global state will fix this.
10892 * Until then just don't check gmch state for inherited modes.
10893 */
10894 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10895 PIPE_CONF_CHECK_I(gmch_pfit.control);
10896 /* pfit ratios are autocomputed by the hw on gen4+ */
10897 if (INTEL_INFO(dev)->gen < 4)
10898 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10899 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10900 }
10901
10902 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10903 if (current_config->pch_pfit.enabled) {
10904 PIPE_CONF_CHECK_I(pch_pfit.pos);
10905 PIPE_CONF_CHECK_I(pch_pfit.size);
10906 }
10907
10908 /* BDW+ don't expose a synchronous way to read the state */
10909 if (IS_HASWELL(dev))
10910 PIPE_CONF_CHECK_I(ips_enabled);
10911
10912 PIPE_CONF_CHECK_I(double_wide);
10913
10914 PIPE_CONF_CHECK_X(ddi_pll_sel);
10915
10916 PIPE_CONF_CHECK_I(shared_dpll);
10917 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10918 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10919 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10920 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10921 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10922 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10923 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10924 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10925
10926 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10927 PIPE_CONF_CHECK_I(pipe_bpp);
10928
10929 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10930 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10931
10932 #undef PIPE_CONF_CHECK_X
10933 #undef PIPE_CONF_CHECK_I
10934 #undef PIPE_CONF_CHECK_I_ALT
10935 #undef PIPE_CONF_CHECK_FLAGS
10936 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10937 #undef PIPE_CONF_QUIRK
10938
10939 return true;
10940 }
10941
10942 static void check_wm_state(struct drm_device *dev)
10943 {
10944 struct drm_i915_private *dev_priv = dev->dev_private;
10945 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10946 struct intel_crtc *intel_crtc;
10947 int plane;
10948
10949 if (INTEL_INFO(dev)->gen < 9)
10950 return;
10951
10952 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10953 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10954
10955 for_each_intel_crtc(dev, intel_crtc) {
10956 struct skl_ddb_entry *hw_entry, *sw_entry;
10957 const enum pipe pipe = intel_crtc->pipe;
10958
10959 if (!intel_crtc->active)
10960 continue;
10961
10962 /* planes */
10963 for_each_plane(dev_priv, pipe, plane) {
10964 hw_entry = &hw_ddb.plane[pipe][plane];
10965 sw_entry = &sw_ddb->plane[pipe][plane];
10966
10967 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10968 continue;
10969
10970 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10971 "(expected (%u,%u), found (%u,%u))\n",
10972 pipe_name(pipe), plane + 1,
10973 sw_entry->start, sw_entry->end,
10974 hw_entry->start, hw_entry->end);
10975 }
10976
10977 /* cursor */
10978 hw_entry = &hw_ddb.cursor[pipe];
10979 sw_entry = &sw_ddb->cursor[pipe];
10980
10981 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10982 continue;
10983
10984 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10985 "(expected (%u,%u), found (%u,%u))\n",
10986 pipe_name(pipe),
10987 sw_entry->start, sw_entry->end,
10988 hw_entry->start, hw_entry->end);
10989 }
10990 }
10991
10992 static void
10993 check_connector_state(struct drm_device *dev)
10994 {
10995 struct intel_connector *connector;
10996
10997 for_each_intel_connector(dev, connector) {
10998 /* This also checks the encoder/connector hw state with the
10999 * ->get_hw_state callbacks. */
11000 intel_connector_check_state(connector);
11001
11002 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11003 "connector's staged encoder doesn't match current encoder\n");
11004 }
11005 }
11006
11007 static void
11008 check_encoder_state(struct drm_device *dev)
11009 {
11010 struct intel_encoder *encoder;
11011 struct intel_connector *connector;
11012
11013 for_each_intel_encoder(dev, encoder) {
11014 bool enabled = false;
11015 bool active = false;
11016 enum pipe pipe, tracked_pipe;
11017
11018 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11019 encoder->base.base.id,
11020 encoder->base.name);
11021
11022 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11023 "encoder's stage crtc doesn't match current crtc\n");
11024 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11025 "encoder's active_connectors set, but no crtc\n");
11026
11027 for_each_intel_connector(dev, connector) {
11028 if (connector->base.encoder != &encoder->base)
11029 continue;
11030 enabled = true;
11031 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11032 active = true;
11033 }
11034 /*
11035 * for MST connectors if we unplug the connector is gone
11036 * away but the encoder is still connected to a crtc
11037 * until a modeset happens in response to the hotplug.
11038 */
11039 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11040 continue;
11041
11042 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11043 "encoder's enabled state mismatch "
11044 "(expected %i, found %i)\n",
11045 !!encoder->base.crtc, enabled);
11046 I915_STATE_WARN(active && !encoder->base.crtc,
11047 "active encoder with no crtc\n");
11048
11049 I915_STATE_WARN(encoder->connectors_active != active,
11050 "encoder's computed active state doesn't match tracked active state "
11051 "(expected %i, found %i)\n", active, encoder->connectors_active);
11052
11053 active = encoder->get_hw_state(encoder, &pipe);
11054 I915_STATE_WARN(active != encoder->connectors_active,
11055 "encoder's hw state doesn't match sw tracking "
11056 "(expected %i, found %i)\n",
11057 encoder->connectors_active, active);
11058
11059 if (!encoder->base.crtc)
11060 continue;
11061
11062 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11063 I915_STATE_WARN(active && pipe != tracked_pipe,
11064 "active encoder's pipe doesn't match"
11065 "(expected %i, found %i)\n",
11066 tracked_pipe, pipe);
11067
11068 }
11069 }
11070
11071 static void
11072 check_crtc_state(struct drm_device *dev)
11073 {
11074 struct drm_i915_private *dev_priv = dev->dev_private;
11075 struct intel_crtc *crtc;
11076 struct intel_encoder *encoder;
11077 struct intel_crtc_state pipe_config;
11078
11079 for_each_intel_crtc(dev, crtc) {
11080 bool enabled = false;
11081 bool active = false;
11082
11083 memset(&pipe_config, 0, sizeof(pipe_config));
11084
11085 DRM_DEBUG_KMS("[CRTC:%d]\n",
11086 crtc->base.base.id);
11087
11088 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11089 "active crtc, but not enabled in sw tracking\n");
11090
11091 for_each_intel_encoder(dev, encoder) {
11092 if (encoder->base.crtc != &crtc->base)
11093 continue;
11094 enabled = true;
11095 if (encoder->connectors_active)
11096 active = true;
11097 }
11098
11099 I915_STATE_WARN(active != crtc->active,
11100 "crtc's computed active state doesn't match tracked active state "
11101 "(expected %i, found %i)\n", active, crtc->active);
11102 I915_STATE_WARN(enabled != crtc->base.state->enable,
11103 "crtc's computed enabled state doesn't match tracked enabled state "
11104 "(expected %i, found %i)\n", enabled,
11105 crtc->base.state->enable);
11106
11107 active = dev_priv->display.get_pipe_config(crtc,
11108 &pipe_config);
11109
11110 /* hw state is inconsistent with the pipe quirk */
11111 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11112 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11113 active = crtc->active;
11114
11115 for_each_intel_encoder(dev, encoder) {
11116 enum pipe pipe;
11117 if (encoder->base.crtc != &crtc->base)
11118 continue;
11119 if (encoder->get_hw_state(encoder, &pipe))
11120 encoder->get_config(encoder, &pipe_config);
11121 }
11122
11123 I915_STATE_WARN(crtc->active != active,
11124 "crtc active state doesn't match with hw state "
11125 "(expected %i, found %i)\n", crtc->active, active);
11126
11127 if (active &&
11128 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11129 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11130 intel_dump_pipe_config(crtc, &pipe_config,
11131 "[hw state]");
11132 intel_dump_pipe_config(crtc, crtc->config,
11133 "[sw state]");
11134 }
11135 }
11136 }
11137
11138 static void
11139 check_shared_dpll_state(struct drm_device *dev)
11140 {
11141 struct drm_i915_private *dev_priv = dev->dev_private;
11142 struct intel_crtc *crtc;
11143 struct intel_dpll_hw_state dpll_hw_state;
11144 int i;
11145
11146 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11147 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11148 int enabled_crtcs = 0, active_crtcs = 0;
11149 bool active;
11150
11151 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11152
11153 DRM_DEBUG_KMS("%s\n", pll->name);
11154
11155 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11156
11157 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11158 "more active pll users than references: %i vs %i\n",
11159 pll->active, hweight32(pll->config.crtc_mask));
11160 I915_STATE_WARN(pll->active && !pll->on,
11161 "pll in active use but not on in sw tracking\n");
11162 I915_STATE_WARN(pll->on && !pll->active,
11163 "pll in on but not on in use in sw tracking\n");
11164 I915_STATE_WARN(pll->on != active,
11165 "pll on state mismatch (expected %i, found %i)\n",
11166 pll->on, active);
11167
11168 for_each_intel_crtc(dev, crtc) {
11169 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11170 enabled_crtcs++;
11171 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11172 active_crtcs++;
11173 }
11174 I915_STATE_WARN(pll->active != active_crtcs,
11175 "pll active crtcs mismatch (expected %i, found %i)\n",
11176 pll->active, active_crtcs);
11177 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11178 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11179 hweight32(pll->config.crtc_mask), enabled_crtcs);
11180
11181 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11182 sizeof(dpll_hw_state)),
11183 "pll hw state mismatch\n");
11184 }
11185 }
11186
11187 void
11188 intel_modeset_check_state(struct drm_device *dev)
11189 {
11190 check_wm_state(dev);
11191 check_connector_state(dev);
11192 check_encoder_state(dev);
11193 check_crtc_state(dev);
11194 check_shared_dpll_state(dev);
11195 }
11196
11197 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11198 int dotclock)
11199 {
11200 /*
11201 * FDI already provided one idea for the dotclock.
11202 * Yell if the encoder disagrees.
11203 */
11204 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11205 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11206 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11207 }
11208
11209 static void update_scanline_offset(struct intel_crtc *crtc)
11210 {
11211 struct drm_device *dev = crtc->base.dev;
11212
11213 /*
11214 * The scanline counter increments at the leading edge of hsync.
11215 *
11216 * On most platforms it starts counting from vtotal-1 on the
11217 * first active line. That means the scanline counter value is
11218 * always one less than what we would expect. Ie. just after
11219 * start of vblank, which also occurs at start of hsync (on the
11220 * last active line), the scanline counter will read vblank_start-1.
11221 *
11222 * On gen2 the scanline counter starts counting from 1 instead
11223 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11224 * to keep the value positive), instead of adding one.
11225 *
11226 * On HSW+ the behaviour of the scanline counter depends on the output
11227 * type. For DP ports it behaves like most other platforms, but on HDMI
11228 * there's an extra 1 line difference. So we need to add two instead of
11229 * one to the value.
11230 */
11231 if (IS_GEN2(dev)) {
11232 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11233 int vtotal;
11234
11235 vtotal = mode->crtc_vtotal;
11236 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11237 vtotal /= 2;
11238
11239 crtc->scanline_offset = vtotal - 1;
11240 } else if (HAS_DDI(dev) &&
11241 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11242 crtc->scanline_offset = 2;
11243 } else
11244 crtc->scanline_offset = 1;
11245 }
11246
11247 static struct intel_crtc_state *
11248 intel_modeset_compute_config(struct drm_crtc *crtc,
11249 struct drm_display_mode *mode,
11250 struct drm_framebuffer *fb,
11251 unsigned *modeset_pipes,
11252 unsigned *prepare_pipes,
11253 unsigned *disable_pipes)
11254 {
11255 struct intel_crtc_state *pipe_config = NULL;
11256
11257 intel_modeset_affected_pipes(crtc, modeset_pipes,
11258 prepare_pipes, disable_pipes);
11259
11260 if ((*modeset_pipes) == 0)
11261 goto out;
11262
11263 /*
11264 * Note this needs changes when we start tracking multiple modes
11265 * and crtcs. At that point we'll need to compute the whole config
11266 * (i.e. one pipe_config for each crtc) rather than just the one
11267 * for this crtc.
11268 */
11269 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11270 if (IS_ERR(pipe_config)) {
11271 goto out;
11272 }
11273 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11274 "[modeset]");
11275
11276 out:
11277 return pipe_config;
11278 }
11279
11280 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11281 unsigned modeset_pipes,
11282 unsigned disable_pipes)
11283 {
11284 struct drm_i915_private *dev_priv = to_i915(dev);
11285 unsigned clear_pipes = modeset_pipes | disable_pipes;
11286 struct intel_crtc *intel_crtc;
11287 int ret = 0;
11288
11289 if (!dev_priv->display.crtc_compute_clock)
11290 return 0;
11291
11292 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11293 if (ret)
11294 goto done;
11295
11296 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11297 struct intel_crtc_state *state = intel_crtc->new_config;
11298 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11299 state);
11300 if (ret) {
11301 intel_shared_dpll_abort_config(dev_priv);
11302 goto done;
11303 }
11304 }
11305
11306 done:
11307 return ret;
11308 }
11309
11310 static int __intel_set_mode(struct drm_crtc *crtc,
11311 struct drm_display_mode *mode,
11312 int x, int y, struct drm_framebuffer *fb,
11313 struct intel_crtc_state *pipe_config,
11314 unsigned modeset_pipes,
11315 unsigned prepare_pipes,
11316 unsigned disable_pipes)
11317 {
11318 struct drm_device *dev = crtc->dev;
11319 struct drm_i915_private *dev_priv = dev->dev_private;
11320 struct drm_display_mode *saved_mode;
11321 struct intel_crtc *intel_crtc;
11322 int ret = 0;
11323
11324 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11325 if (!saved_mode)
11326 return -ENOMEM;
11327
11328 *saved_mode = crtc->mode;
11329
11330 if (modeset_pipes)
11331 to_intel_crtc(crtc)->new_config = pipe_config;
11332
11333 /*
11334 * See if the config requires any additional preparation, e.g.
11335 * to adjust global state with pipes off. We need to do this
11336 * here so we can get the modeset_pipe updated config for the new
11337 * mode set on this crtc. For other crtcs we need to use the
11338 * adjusted_mode bits in the crtc directly.
11339 */
11340 if (IS_VALLEYVIEW(dev)) {
11341 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11342
11343 /* may have added more to prepare_pipes than we should */
11344 prepare_pipes &= ~disable_pipes;
11345 }
11346
11347 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11348 if (ret)
11349 goto done;
11350
11351 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11352 intel_crtc_disable(&intel_crtc->base);
11353
11354 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11355 if (intel_crtc->base.state->enable)
11356 dev_priv->display.crtc_disable(&intel_crtc->base);
11357 }
11358
11359 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11360 * to set it here already despite that we pass it down the callchain.
11361 *
11362 * Note we'll need to fix this up when we start tracking multiple
11363 * pipes; here we assume a single modeset_pipe and only track the
11364 * single crtc and mode.
11365 */
11366 if (modeset_pipes) {
11367 crtc->mode = *mode;
11368 /* mode_set/enable/disable functions rely on a correct pipe
11369 * config. */
11370 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11371
11372 /*
11373 * Calculate and store various constants which
11374 * are later needed by vblank and swap-completion
11375 * timestamping. They are derived from true hwmode.
11376 */
11377 drm_calc_timestamping_constants(crtc,
11378 &pipe_config->base.adjusted_mode);
11379 }
11380
11381 /* Only after disabling all output pipelines that will be changed can we
11382 * update the the output configuration. */
11383 intel_modeset_update_state(dev, prepare_pipes);
11384
11385 modeset_update_crtc_power_domains(dev);
11386
11387 /* Set up the DPLL and any encoders state that needs to adjust or depend
11388 * on the DPLL.
11389 */
11390 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11391 struct drm_plane *primary = intel_crtc->base.primary;
11392 int vdisplay, hdisplay;
11393
11394 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11395 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11396 fb, 0, 0,
11397 hdisplay, vdisplay,
11398 x << 16, y << 16,
11399 hdisplay << 16, vdisplay << 16);
11400 }
11401
11402 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11403 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11404 update_scanline_offset(intel_crtc);
11405
11406 dev_priv->display.crtc_enable(&intel_crtc->base);
11407 }
11408
11409 /* FIXME: add subpixel order */
11410 done:
11411 if (ret && crtc->state->enable)
11412 crtc->mode = *saved_mode;
11413
11414 kfree(saved_mode);
11415 return ret;
11416 }
11417
11418 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11419 struct drm_display_mode *mode,
11420 int x, int y, struct drm_framebuffer *fb,
11421 struct intel_crtc_state *pipe_config,
11422 unsigned modeset_pipes,
11423 unsigned prepare_pipes,
11424 unsigned disable_pipes)
11425 {
11426 int ret;
11427
11428 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11429 prepare_pipes, disable_pipes);
11430
11431 if (ret == 0)
11432 intel_modeset_check_state(crtc->dev);
11433
11434 return ret;
11435 }
11436
11437 static int intel_set_mode(struct drm_crtc *crtc,
11438 struct drm_display_mode *mode,
11439 int x, int y, struct drm_framebuffer *fb)
11440 {
11441 struct intel_crtc_state *pipe_config;
11442 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11443
11444 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11445 &modeset_pipes,
11446 &prepare_pipes,
11447 &disable_pipes);
11448
11449 if (IS_ERR(pipe_config))
11450 return PTR_ERR(pipe_config);
11451
11452 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11453 modeset_pipes, prepare_pipes,
11454 disable_pipes);
11455 }
11456
11457 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11458 {
11459 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11460 }
11461
11462 #undef for_each_intel_crtc_masked
11463
11464 static void intel_set_config_free(struct intel_set_config *config)
11465 {
11466 if (!config)
11467 return;
11468
11469 kfree(config->save_connector_encoders);
11470 kfree(config->save_encoder_crtcs);
11471 kfree(config->save_crtc_enabled);
11472 kfree(config);
11473 }
11474
11475 static int intel_set_config_save_state(struct drm_device *dev,
11476 struct intel_set_config *config)
11477 {
11478 struct drm_crtc *crtc;
11479 struct drm_encoder *encoder;
11480 struct drm_connector *connector;
11481 int count;
11482
11483 config->save_crtc_enabled =
11484 kcalloc(dev->mode_config.num_crtc,
11485 sizeof(bool), GFP_KERNEL);
11486 if (!config->save_crtc_enabled)
11487 return -ENOMEM;
11488
11489 config->save_encoder_crtcs =
11490 kcalloc(dev->mode_config.num_encoder,
11491 sizeof(struct drm_crtc *), GFP_KERNEL);
11492 if (!config->save_encoder_crtcs)
11493 return -ENOMEM;
11494
11495 config->save_connector_encoders =
11496 kcalloc(dev->mode_config.num_connector,
11497 sizeof(struct drm_encoder *), GFP_KERNEL);
11498 if (!config->save_connector_encoders)
11499 return -ENOMEM;
11500
11501 /* Copy data. Note that driver private data is not affected.
11502 * Should anything bad happen only the expected state is
11503 * restored, not the drivers personal bookkeeping.
11504 */
11505 count = 0;
11506 for_each_crtc(dev, crtc) {
11507 config->save_crtc_enabled[count++] = crtc->state->enable;
11508 }
11509
11510 count = 0;
11511 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11512 config->save_encoder_crtcs[count++] = encoder->crtc;
11513 }
11514
11515 count = 0;
11516 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11517 config->save_connector_encoders[count++] = connector->encoder;
11518 }
11519
11520 return 0;
11521 }
11522
11523 static void intel_set_config_restore_state(struct drm_device *dev,
11524 struct intel_set_config *config)
11525 {
11526 struct intel_crtc *crtc;
11527 struct intel_encoder *encoder;
11528 struct intel_connector *connector;
11529 int count;
11530
11531 count = 0;
11532 for_each_intel_crtc(dev, crtc) {
11533 crtc->new_enabled = config->save_crtc_enabled[count++];
11534
11535 if (crtc->new_enabled)
11536 crtc->new_config = crtc->config;
11537 else
11538 crtc->new_config = NULL;
11539 }
11540
11541 count = 0;
11542 for_each_intel_encoder(dev, encoder) {
11543 encoder->new_crtc =
11544 to_intel_crtc(config->save_encoder_crtcs[count++]);
11545 }
11546
11547 count = 0;
11548 for_each_intel_connector(dev, connector) {
11549 connector->new_encoder =
11550 to_intel_encoder(config->save_connector_encoders[count++]);
11551 }
11552 }
11553
11554 static bool
11555 is_crtc_connector_off(struct drm_mode_set *set)
11556 {
11557 int i;
11558
11559 if (set->num_connectors == 0)
11560 return false;
11561
11562 if (WARN_ON(set->connectors == NULL))
11563 return false;
11564
11565 for (i = 0; i < set->num_connectors; i++)
11566 if (set->connectors[i]->encoder &&
11567 set->connectors[i]->encoder->crtc == set->crtc &&
11568 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11569 return true;
11570
11571 return false;
11572 }
11573
11574 static void
11575 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11576 struct intel_set_config *config)
11577 {
11578
11579 /* We should be able to check here if the fb has the same properties
11580 * and then just flip_or_move it */
11581 if (is_crtc_connector_off(set)) {
11582 config->mode_changed = true;
11583 } else if (set->crtc->primary->fb != set->fb) {
11584 /*
11585 * If we have no fb, we can only flip as long as the crtc is
11586 * active, otherwise we need a full mode set. The crtc may
11587 * be active if we've only disabled the primary plane, or
11588 * in fastboot situations.
11589 */
11590 if (set->crtc->primary->fb == NULL) {
11591 struct intel_crtc *intel_crtc =
11592 to_intel_crtc(set->crtc);
11593
11594 if (intel_crtc->active) {
11595 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11596 config->fb_changed = true;
11597 } else {
11598 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11599 config->mode_changed = true;
11600 }
11601 } else if (set->fb == NULL) {
11602 config->mode_changed = true;
11603 } else if (set->fb->pixel_format !=
11604 set->crtc->primary->fb->pixel_format) {
11605 config->mode_changed = true;
11606 } else {
11607 config->fb_changed = true;
11608 }
11609 }
11610
11611 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11612 config->fb_changed = true;
11613
11614 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11615 DRM_DEBUG_KMS("modes are different, full mode set\n");
11616 drm_mode_debug_printmodeline(&set->crtc->mode);
11617 drm_mode_debug_printmodeline(set->mode);
11618 config->mode_changed = true;
11619 }
11620
11621 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11622 set->crtc->base.id, config->mode_changed, config->fb_changed);
11623 }
11624
11625 static int
11626 intel_modeset_stage_output_state(struct drm_device *dev,
11627 struct drm_mode_set *set,
11628 struct intel_set_config *config)
11629 {
11630 struct intel_connector *connector;
11631 struct intel_encoder *encoder;
11632 struct intel_crtc *crtc;
11633 int ro;
11634
11635 /* The upper layers ensure that we either disable a crtc or have a list
11636 * of connectors. For paranoia, double-check this. */
11637 WARN_ON(!set->fb && (set->num_connectors != 0));
11638 WARN_ON(set->fb && (set->num_connectors == 0));
11639
11640 for_each_intel_connector(dev, connector) {
11641 /* Otherwise traverse passed in connector list and get encoders
11642 * for them. */
11643 for (ro = 0; ro < set->num_connectors; ro++) {
11644 if (set->connectors[ro] == &connector->base) {
11645 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11646 break;
11647 }
11648 }
11649
11650 /* If we disable the crtc, disable all its connectors. Also, if
11651 * the connector is on the changing crtc but not on the new
11652 * connector list, disable it. */
11653 if ((!set->fb || ro == set->num_connectors) &&
11654 connector->base.encoder &&
11655 connector->base.encoder->crtc == set->crtc) {
11656 connector->new_encoder = NULL;
11657
11658 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11659 connector->base.base.id,
11660 connector->base.name);
11661 }
11662
11663
11664 if (&connector->new_encoder->base != connector->base.encoder) {
11665 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11666 connector->base.base.id,
11667 connector->base.name);
11668 config->mode_changed = true;
11669 }
11670 }
11671 /* connector->new_encoder is now updated for all connectors. */
11672
11673 /* Update crtc of enabled connectors. */
11674 for_each_intel_connector(dev, connector) {
11675 struct drm_crtc *new_crtc;
11676
11677 if (!connector->new_encoder)
11678 continue;
11679
11680 new_crtc = connector->new_encoder->base.crtc;
11681
11682 for (ro = 0; ro < set->num_connectors; ro++) {
11683 if (set->connectors[ro] == &connector->base)
11684 new_crtc = set->crtc;
11685 }
11686
11687 /* Make sure the new CRTC will work with the encoder */
11688 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11689 new_crtc)) {
11690 return -EINVAL;
11691 }
11692 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11693
11694 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11695 connector->base.base.id,
11696 connector->base.name,
11697 new_crtc->base.id);
11698 }
11699
11700 /* Check for any encoders that needs to be disabled. */
11701 for_each_intel_encoder(dev, encoder) {
11702 int num_connectors = 0;
11703 for_each_intel_connector(dev, connector) {
11704 if (connector->new_encoder == encoder) {
11705 WARN_ON(!connector->new_encoder->new_crtc);
11706 num_connectors++;
11707 }
11708 }
11709
11710 if (num_connectors == 0)
11711 encoder->new_crtc = NULL;
11712 else if (num_connectors > 1)
11713 return -EINVAL;
11714
11715 /* Only now check for crtc changes so we don't miss encoders
11716 * that will be disabled. */
11717 if (&encoder->new_crtc->base != encoder->base.crtc) {
11718 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11719 encoder->base.base.id,
11720 encoder->base.name);
11721 config->mode_changed = true;
11722 }
11723 }
11724 /* Now we've also updated encoder->new_crtc for all encoders. */
11725 for_each_intel_connector(dev, connector) {
11726 if (connector->new_encoder)
11727 if (connector->new_encoder != connector->encoder)
11728 connector->encoder = connector->new_encoder;
11729 }
11730 for_each_intel_crtc(dev, crtc) {
11731 crtc->new_enabled = false;
11732
11733 for_each_intel_encoder(dev, encoder) {
11734 if (encoder->new_crtc == crtc) {
11735 crtc->new_enabled = true;
11736 break;
11737 }
11738 }
11739
11740 if (crtc->new_enabled != crtc->base.state->enable) {
11741 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11742 crtc->base.base.id,
11743 crtc->new_enabled ? "en" : "dis");
11744 config->mode_changed = true;
11745 }
11746
11747 if (crtc->new_enabled)
11748 crtc->new_config = crtc->config;
11749 else
11750 crtc->new_config = NULL;
11751 }
11752
11753 return 0;
11754 }
11755
11756 static void disable_crtc_nofb(struct intel_crtc *crtc)
11757 {
11758 struct drm_device *dev = crtc->base.dev;
11759 struct intel_encoder *encoder;
11760 struct intel_connector *connector;
11761
11762 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11763 pipe_name(crtc->pipe));
11764
11765 for_each_intel_connector(dev, connector) {
11766 if (connector->new_encoder &&
11767 connector->new_encoder->new_crtc == crtc)
11768 connector->new_encoder = NULL;
11769 }
11770
11771 for_each_intel_encoder(dev, encoder) {
11772 if (encoder->new_crtc == crtc)
11773 encoder->new_crtc = NULL;
11774 }
11775
11776 crtc->new_enabled = false;
11777 crtc->new_config = NULL;
11778 }
11779
11780 static int intel_crtc_set_config(struct drm_mode_set *set)
11781 {
11782 struct drm_device *dev;
11783 struct drm_mode_set save_set;
11784 struct intel_set_config *config;
11785 struct intel_crtc_state *pipe_config;
11786 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11787 int ret;
11788
11789 BUG_ON(!set);
11790 BUG_ON(!set->crtc);
11791 BUG_ON(!set->crtc->helper_private);
11792
11793 /* Enforce sane interface api - has been abused by the fb helper. */
11794 BUG_ON(!set->mode && set->fb);
11795 BUG_ON(set->fb && set->num_connectors == 0);
11796
11797 if (set->fb) {
11798 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11799 set->crtc->base.id, set->fb->base.id,
11800 (int)set->num_connectors, set->x, set->y);
11801 } else {
11802 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11803 }
11804
11805 dev = set->crtc->dev;
11806
11807 ret = -ENOMEM;
11808 config = kzalloc(sizeof(*config), GFP_KERNEL);
11809 if (!config)
11810 goto out_config;
11811
11812 ret = intel_set_config_save_state(dev, config);
11813 if (ret)
11814 goto out_config;
11815
11816 save_set.crtc = set->crtc;
11817 save_set.mode = &set->crtc->mode;
11818 save_set.x = set->crtc->x;
11819 save_set.y = set->crtc->y;
11820 save_set.fb = set->crtc->primary->fb;
11821
11822 /* Compute whether we need a full modeset, only an fb base update or no
11823 * change at all. In the future we might also check whether only the
11824 * mode changed, e.g. for LVDS where we only change the panel fitter in
11825 * such cases. */
11826 intel_set_config_compute_mode_changes(set, config);
11827
11828 ret = intel_modeset_stage_output_state(dev, set, config);
11829 if (ret)
11830 goto fail;
11831
11832 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11833 set->fb,
11834 &modeset_pipes,
11835 &prepare_pipes,
11836 &disable_pipes);
11837 if (IS_ERR(pipe_config)) {
11838 ret = PTR_ERR(pipe_config);
11839 goto fail;
11840 } else if (pipe_config) {
11841 if (pipe_config->has_audio !=
11842 to_intel_crtc(set->crtc)->config->has_audio)
11843 config->mode_changed = true;
11844
11845 /*
11846 * Note we have an issue here with infoframes: current code
11847 * only updates them on the full mode set path per hw
11848 * requirements. So here we should be checking for any
11849 * required changes and forcing a mode set.
11850 */
11851 }
11852
11853 /* set_mode will free it in the mode_changed case */
11854 if (!config->mode_changed)
11855 kfree(pipe_config);
11856
11857 intel_update_pipe_size(to_intel_crtc(set->crtc));
11858
11859 if (config->mode_changed) {
11860 ret = intel_set_mode_pipes(set->crtc, set->mode,
11861 set->x, set->y, set->fb, pipe_config,
11862 modeset_pipes, prepare_pipes,
11863 disable_pipes);
11864 } else if (config->fb_changed) {
11865 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11866 struct drm_plane *primary = set->crtc->primary;
11867 int vdisplay, hdisplay;
11868
11869 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11870 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11871 0, 0, hdisplay, vdisplay,
11872 set->x << 16, set->y << 16,
11873 hdisplay << 16, vdisplay << 16);
11874
11875 /*
11876 * We need to make sure the primary plane is re-enabled if it
11877 * has previously been turned off.
11878 */
11879 if (!intel_crtc->primary_enabled && ret == 0) {
11880 WARN_ON(!intel_crtc->active);
11881 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11882 }
11883
11884 /*
11885 * In the fastboot case this may be our only check of the
11886 * state after boot. It would be better to only do it on
11887 * the first update, but we don't have a nice way of doing that
11888 * (and really, set_config isn't used much for high freq page
11889 * flipping, so increasing its cost here shouldn't be a big
11890 * deal).
11891 */
11892 if (i915.fastboot && ret == 0)
11893 intel_modeset_check_state(set->crtc->dev);
11894 }
11895
11896 if (ret) {
11897 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11898 set->crtc->base.id, ret);
11899 fail:
11900 intel_set_config_restore_state(dev, config);
11901
11902 /*
11903 * HACK: if the pipe was on, but we didn't have a framebuffer,
11904 * force the pipe off to avoid oopsing in the modeset code
11905 * due to fb==NULL. This should only happen during boot since
11906 * we don't yet reconstruct the FB from the hardware state.
11907 */
11908 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11909 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11910
11911 /* Try to restore the config */
11912 if (config->mode_changed &&
11913 intel_set_mode(save_set.crtc, save_set.mode,
11914 save_set.x, save_set.y, save_set.fb))
11915 DRM_ERROR("failed to restore config after modeset failure\n");
11916 }
11917
11918 out_config:
11919 intel_set_config_free(config);
11920 return ret;
11921 }
11922
11923 static const struct drm_crtc_funcs intel_crtc_funcs = {
11924 .gamma_set = intel_crtc_gamma_set,
11925 .set_config = intel_crtc_set_config,
11926 .destroy = intel_crtc_destroy,
11927 .page_flip = intel_crtc_page_flip,
11928 .atomic_duplicate_state = intel_crtc_duplicate_state,
11929 .atomic_destroy_state = intel_crtc_destroy_state,
11930 };
11931
11932 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11933 struct intel_shared_dpll *pll,
11934 struct intel_dpll_hw_state *hw_state)
11935 {
11936 uint32_t val;
11937
11938 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11939 return false;
11940
11941 val = I915_READ(PCH_DPLL(pll->id));
11942 hw_state->dpll = val;
11943 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11944 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11945
11946 return val & DPLL_VCO_ENABLE;
11947 }
11948
11949 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11950 struct intel_shared_dpll *pll)
11951 {
11952 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11953 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11954 }
11955
11956 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11957 struct intel_shared_dpll *pll)
11958 {
11959 /* PCH refclock must be enabled first */
11960 ibx_assert_pch_refclk_enabled(dev_priv);
11961
11962 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11963
11964 /* Wait for the clocks to stabilize. */
11965 POSTING_READ(PCH_DPLL(pll->id));
11966 udelay(150);
11967
11968 /* The pixel multiplier can only be updated once the
11969 * DPLL is enabled and the clocks are stable.
11970 *
11971 * So write it again.
11972 */
11973 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11974 POSTING_READ(PCH_DPLL(pll->id));
11975 udelay(200);
11976 }
11977
11978 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11979 struct intel_shared_dpll *pll)
11980 {
11981 struct drm_device *dev = dev_priv->dev;
11982 struct intel_crtc *crtc;
11983
11984 /* Make sure no transcoder isn't still depending on us. */
11985 for_each_intel_crtc(dev, crtc) {
11986 if (intel_crtc_to_shared_dpll(crtc) == pll)
11987 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11988 }
11989
11990 I915_WRITE(PCH_DPLL(pll->id), 0);
11991 POSTING_READ(PCH_DPLL(pll->id));
11992 udelay(200);
11993 }
11994
11995 static char *ibx_pch_dpll_names[] = {
11996 "PCH DPLL A",
11997 "PCH DPLL B",
11998 };
11999
12000 static void ibx_pch_dpll_init(struct drm_device *dev)
12001 {
12002 struct drm_i915_private *dev_priv = dev->dev_private;
12003 int i;
12004
12005 dev_priv->num_shared_dpll = 2;
12006
12007 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12008 dev_priv->shared_dplls[i].id = i;
12009 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12010 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12011 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12012 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12013 dev_priv->shared_dplls[i].get_hw_state =
12014 ibx_pch_dpll_get_hw_state;
12015 }
12016 }
12017
12018 static void intel_shared_dpll_init(struct drm_device *dev)
12019 {
12020 struct drm_i915_private *dev_priv = dev->dev_private;
12021
12022 if (HAS_DDI(dev))
12023 intel_ddi_pll_init(dev);
12024 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12025 ibx_pch_dpll_init(dev);
12026 else
12027 dev_priv->num_shared_dpll = 0;
12028
12029 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12030 }
12031
12032 /**
12033 * intel_wm_need_update - Check whether watermarks need updating
12034 * @plane: drm plane
12035 * @state: new plane state
12036 *
12037 * Check current plane state versus the new one to determine whether
12038 * watermarks need to be recalculated.
12039 *
12040 * Returns true or false.
12041 */
12042 bool intel_wm_need_update(struct drm_plane *plane,
12043 struct drm_plane_state *state)
12044 {
12045 /* Update watermarks on tiling changes. */
12046 if (!plane->state->fb || !state->fb ||
12047 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12048 plane->state->rotation != state->rotation)
12049 return true;
12050
12051 return false;
12052 }
12053
12054 /**
12055 * intel_prepare_plane_fb - Prepare fb for usage on plane
12056 * @plane: drm plane to prepare for
12057 * @fb: framebuffer to prepare for presentation
12058 *
12059 * Prepares a framebuffer for usage on a display plane. Generally this
12060 * involves pinning the underlying object and updating the frontbuffer tracking
12061 * bits. Some older platforms need special physical address handling for
12062 * cursor planes.
12063 *
12064 * Returns 0 on success, negative error code on failure.
12065 */
12066 int
12067 intel_prepare_plane_fb(struct drm_plane *plane,
12068 struct drm_framebuffer *fb,
12069 const struct drm_plane_state *new_state)
12070 {
12071 struct drm_device *dev = plane->dev;
12072 struct intel_plane *intel_plane = to_intel_plane(plane);
12073 enum pipe pipe = intel_plane->pipe;
12074 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12075 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12076 unsigned frontbuffer_bits = 0;
12077 int ret = 0;
12078
12079 if (!obj)
12080 return 0;
12081
12082 switch (plane->type) {
12083 case DRM_PLANE_TYPE_PRIMARY:
12084 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12085 break;
12086 case DRM_PLANE_TYPE_CURSOR:
12087 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12088 break;
12089 case DRM_PLANE_TYPE_OVERLAY:
12090 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12091 break;
12092 }
12093
12094 mutex_lock(&dev->struct_mutex);
12095
12096 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12097 INTEL_INFO(dev)->cursor_needs_physical) {
12098 int align = IS_I830(dev) ? 16 * 1024 : 256;
12099 ret = i915_gem_object_attach_phys(obj, align);
12100 if (ret)
12101 DRM_DEBUG_KMS("failed to attach phys object\n");
12102 } else {
12103 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12104 }
12105
12106 if (ret == 0)
12107 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12108
12109 mutex_unlock(&dev->struct_mutex);
12110
12111 return ret;
12112 }
12113
12114 /**
12115 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12116 * @plane: drm plane to clean up for
12117 * @fb: old framebuffer that was on plane
12118 *
12119 * Cleans up a framebuffer that has just been removed from a plane.
12120 */
12121 void
12122 intel_cleanup_plane_fb(struct drm_plane *plane,
12123 struct drm_framebuffer *fb,
12124 const struct drm_plane_state *old_state)
12125 {
12126 struct drm_device *dev = plane->dev;
12127 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12128
12129 if (WARN_ON(!obj))
12130 return;
12131
12132 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12133 !INTEL_INFO(dev)->cursor_needs_physical) {
12134 mutex_lock(&dev->struct_mutex);
12135 intel_unpin_fb_obj(fb, old_state);
12136 mutex_unlock(&dev->struct_mutex);
12137 }
12138 }
12139
12140 static int
12141 intel_check_primary_plane(struct drm_plane *plane,
12142 struct intel_plane_state *state)
12143 {
12144 struct drm_device *dev = plane->dev;
12145 struct drm_i915_private *dev_priv = dev->dev_private;
12146 struct drm_crtc *crtc = state->base.crtc;
12147 struct intel_crtc *intel_crtc;
12148 struct drm_framebuffer *fb = state->base.fb;
12149 struct drm_rect *dest = &state->dst;
12150 struct drm_rect *src = &state->src;
12151 const struct drm_rect *clip = &state->clip;
12152 int ret;
12153
12154 crtc = crtc ? crtc : plane->crtc;
12155 intel_crtc = to_intel_crtc(crtc);
12156
12157 ret = drm_plane_helper_check_update(plane, crtc, fb,
12158 src, dest, clip,
12159 DRM_PLANE_HELPER_NO_SCALING,
12160 DRM_PLANE_HELPER_NO_SCALING,
12161 false, true, &state->visible);
12162 if (ret)
12163 return ret;
12164
12165 if (intel_crtc->active) {
12166 intel_crtc->atomic.wait_for_flips = true;
12167
12168 /*
12169 * FBC does not work on some platforms for rotated
12170 * planes, so disable it when rotation is not 0 and
12171 * update it when rotation is set back to 0.
12172 *
12173 * FIXME: This is redundant with the fbc update done in
12174 * the primary plane enable function except that that
12175 * one is done too late. We eventually need to unify
12176 * this.
12177 */
12178 if (intel_crtc->primary_enabled &&
12179 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12180 dev_priv->fbc.crtc == intel_crtc &&
12181 state->base.rotation != BIT(DRM_ROTATE_0)) {
12182 intel_crtc->atomic.disable_fbc = true;
12183 }
12184
12185 if (state->visible) {
12186 /*
12187 * BDW signals flip done immediately if the plane
12188 * is disabled, even if the plane enable is already
12189 * armed to occur at the next vblank :(
12190 */
12191 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12192 intel_crtc->atomic.wait_vblank = true;
12193 }
12194
12195 intel_crtc->atomic.fb_bits |=
12196 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12197
12198 intel_crtc->atomic.update_fbc = true;
12199
12200 if (intel_wm_need_update(plane, &state->base))
12201 intel_crtc->atomic.update_wm = true;
12202 }
12203
12204 return 0;
12205 }
12206
12207 static void
12208 intel_commit_primary_plane(struct drm_plane *plane,
12209 struct intel_plane_state *state)
12210 {
12211 struct drm_crtc *crtc = state->base.crtc;
12212 struct drm_framebuffer *fb = state->base.fb;
12213 struct drm_device *dev = plane->dev;
12214 struct drm_i915_private *dev_priv = dev->dev_private;
12215 struct intel_crtc *intel_crtc;
12216 struct drm_rect *src = &state->src;
12217
12218 crtc = crtc ? crtc : plane->crtc;
12219 intel_crtc = to_intel_crtc(crtc);
12220
12221 plane->fb = fb;
12222 crtc->x = src->x1 >> 16;
12223 crtc->y = src->y1 >> 16;
12224
12225 if (intel_crtc->active) {
12226 if (state->visible) {
12227 /* FIXME: kill this fastboot hack */
12228 intel_update_pipe_size(intel_crtc);
12229
12230 intel_crtc->primary_enabled = true;
12231
12232 dev_priv->display.update_primary_plane(crtc, plane->fb,
12233 crtc->x, crtc->y);
12234 } else {
12235 /*
12236 * If clipping results in a non-visible primary plane,
12237 * we'll disable the primary plane. Note that this is
12238 * a bit different than what happens if userspace
12239 * explicitly disables the plane by passing fb=0
12240 * because plane->fb still gets set and pinned.
12241 */
12242 intel_disable_primary_hw_plane(plane, crtc);
12243 }
12244 }
12245 }
12246
12247 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12248 {
12249 struct drm_device *dev = crtc->dev;
12250 struct drm_i915_private *dev_priv = dev->dev_private;
12251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12252 struct intel_plane *intel_plane;
12253 struct drm_plane *p;
12254 unsigned fb_bits = 0;
12255
12256 /* Track fb's for any planes being disabled */
12257 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12258 intel_plane = to_intel_plane(p);
12259
12260 if (intel_crtc->atomic.disabled_planes &
12261 (1 << drm_plane_index(p))) {
12262 switch (p->type) {
12263 case DRM_PLANE_TYPE_PRIMARY:
12264 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12265 break;
12266 case DRM_PLANE_TYPE_CURSOR:
12267 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12268 break;
12269 case DRM_PLANE_TYPE_OVERLAY:
12270 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12271 break;
12272 }
12273
12274 mutex_lock(&dev->struct_mutex);
12275 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12276 mutex_unlock(&dev->struct_mutex);
12277 }
12278 }
12279
12280 if (intel_crtc->atomic.wait_for_flips)
12281 intel_crtc_wait_for_pending_flips(crtc);
12282
12283 if (intel_crtc->atomic.disable_fbc)
12284 intel_fbc_disable(dev);
12285
12286 if (intel_crtc->atomic.pre_disable_primary)
12287 intel_pre_disable_primary(crtc);
12288
12289 if (intel_crtc->atomic.update_wm)
12290 intel_update_watermarks(crtc);
12291
12292 intel_runtime_pm_get(dev_priv);
12293
12294 /* Perform vblank evasion around commit operation */
12295 if (intel_crtc->active)
12296 intel_crtc->atomic.evade =
12297 intel_pipe_update_start(intel_crtc,
12298 &intel_crtc->atomic.start_vbl_count);
12299 }
12300
12301 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12302 {
12303 struct drm_device *dev = crtc->dev;
12304 struct drm_i915_private *dev_priv = dev->dev_private;
12305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12306 struct drm_plane *p;
12307
12308 if (intel_crtc->atomic.evade)
12309 intel_pipe_update_end(intel_crtc,
12310 intel_crtc->atomic.start_vbl_count);
12311
12312 intel_runtime_pm_put(dev_priv);
12313
12314 if (intel_crtc->atomic.wait_vblank)
12315 intel_wait_for_vblank(dev, intel_crtc->pipe);
12316
12317 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12318
12319 if (intel_crtc->atomic.update_fbc) {
12320 mutex_lock(&dev->struct_mutex);
12321 intel_fbc_update(dev);
12322 mutex_unlock(&dev->struct_mutex);
12323 }
12324
12325 if (intel_crtc->atomic.post_enable_primary)
12326 intel_post_enable_primary(crtc);
12327
12328 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12329 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12330 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12331 false, false);
12332
12333 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12334 }
12335
12336 /**
12337 * intel_plane_destroy - destroy a plane
12338 * @plane: plane to destroy
12339 *
12340 * Common destruction function for all types of planes (primary, cursor,
12341 * sprite).
12342 */
12343 void intel_plane_destroy(struct drm_plane *plane)
12344 {
12345 struct intel_plane *intel_plane = to_intel_plane(plane);
12346 drm_plane_cleanup(plane);
12347 kfree(intel_plane);
12348 }
12349
12350 const struct drm_plane_funcs intel_plane_funcs = {
12351 .update_plane = drm_plane_helper_update,
12352 .disable_plane = drm_plane_helper_disable,
12353 .destroy = intel_plane_destroy,
12354 .set_property = drm_atomic_helper_plane_set_property,
12355 .atomic_get_property = intel_plane_atomic_get_property,
12356 .atomic_set_property = intel_plane_atomic_set_property,
12357 .atomic_duplicate_state = intel_plane_duplicate_state,
12358 .atomic_destroy_state = intel_plane_destroy_state,
12359
12360 };
12361
12362 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12363 int pipe)
12364 {
12365 struct intel_plane *primary;
12366 struct intel_plane_state *state;
12367 const uint32_t *intel_primary_formats;
12368 int num_formats;
12369
12370 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12371 if (primary == NULL)
12372 return NULL;
12373
12374 state = intel_create_plane_state(&primary->base);
12375 if (!state) {
12376 kfree(primary);
12377 return NULL;
12378 }
12379 primary->base.state = &state->base;
12380
12381 primary->can_scale = false;
12382 primary->max_downscale = 1;
12383 primary->pipe = pipe;
12384 primary->plane = pipe;
12385 primary->check_plane = intel_check_primary_plane;
12386 primary->commit_plane = intel_commit_primary_plane;
12387 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12388 primary->plane = !pipe;
12389
12390 if (INTEL_INFO(dev)->gen <= 3) {
12391 intel_primary_formats = intel_primary_formats_gen2;
12392 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12393 } else {
12394 intel_primary_formats = intel_primary_formats_gen4;
12395 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12396 }
12397
12398 drm_universal_plane_init(dev, &primary->base, 0,
12399 &intel_plane_funcs,
12400 intel_primary_formats, num_formats,
12401 DRM_PLANE_TYPE_PRIMARY);
12402
12403 if (INTEL_INFO(dev)->gen >= 4) {
12404 if (!dev->mode_config.rotation_property)
12405 dev->mode_config.rotation_property =
12406 drm_mode_create_rotation_property(dev,
12407 BIT(DRM_ROTATE_0) |
12408 BIT(DRM_ROTATE_180));
12409 if (dev->mode_config.rotation_property)
12410 drm_object_attach_property(&primary->base.base,
12411 dev->mode_config.rotation_property,
12412 state->base.rotation);
12413 }
12414
12415 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12416
12417 return &primary->base;
12418 }
12419
12420 static int
12421 intel_check_cursor_plane(struct drm_plane *plane,
12422 struct intel_plane_state *state)
12423 {
12424 struct drm_crtc *crtc = state->base.crtc;
12425 struct drm_device *dev = plane->dev;
12426 struct drm_framebuffer *fb = state->base.fb;
12427 struct drm_rect *dest = &state->dst;
12428 struct drm_rect *src = &state->src;
12429 const struct drm_rect *clip = &state->clip;
12430 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12431 struct intel_crtc *intel_crtc;
12432 unsigned stride;
12433 int ret;
12434
12435 crtc = crtc ? crtc : plane->crtc;
12436 intel_crtc = to_intel_crtc(crtc);
12437
12438 ret = drm_plane_helper_check_update(plane, crtc, fb,
12439 src, dest, clip,
12440 DRM_PLANE_HELPER_NO_SCALING,
12441 DRM_PLANE_HELPER_NO_SCALING,
12442 true, true, &state->visible);
12443 if (ret)
12444 return ret;
12445
12446
12447 /* if we want to turn off the cursor ignore width and height */
12448 if (!obj)
12449 goto finish;
12450
12451 /* Check for which cursor types we support */
12452 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12453 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12454 state->base.crtc_w, state->base.crtc_h);
12455 return -EINVAL;
12456 }
12457
12458 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12459 if (obj->base.size < stride * state->base.crtc_h) {
12460 DRM_DEBUG_KMS("buffer is too small\n");
12461 return -ENOMEM;
12462 }
12463
12464 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12465 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12466 ret = -EINVAL;
12467 }
12468
12469 finish:
12470 if (intel_crtc->active) {
12471 if (plane->state->crtc_w != state->base.crtc_w)
12472 intel_crtc->atomic.update_wm = true;
12473
12474 intel_crtc->atomic.fb_bits |=
12475 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12476 }
12477
12478 return ret;
12479 }
12480
12481 static void
12482 intel_commit_cursor_plane(struct drm_plane *plane,
12483 struct intel_plane_state *state)
12484 {
12485 struct drm_crtc *crtc = state->base.crtc;
12486 struct drm_device *dev = plane->dev;
12487 struct intel_crtc *intel_crtc;
12488 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12489 uint32_t addr;
12490
12491 crtc = crtc ? crtc : plane->crtc;
12492 intel_crtc = to_intel_crtc(crtc);
12493
12494 plane->fb = state->base.fb;
12495 crtc->cursor_x = state->base.crtc_x;
12496 crtc->cursor_y = state->base.crtc_y;
12497
12498 if (intel_crtc->cursor_bo == obj)
12499 goto update;
12500
12501 if (!obj)
12502 addr = 0;
12503 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12504 addr = i915_gem_obj_ggtt_offset(obj);
12505 else
12506 addr = obj->phys_handle->busaddr;
12507
12508 intel_crtc->cursor_addr = addr;
12509 intel_crtc->cursor_bo = obj;
12510 update:
12511
12512 if (intel_crtc->active)
12513 intel_crtc_update_cursor(crtc, state->visible);
12514 }
12515
12516 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12517 int pipe)
12518 {
12519 struct intel_plane *cursor;
12520 struct intel_plane_state *state;
12521
12522 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12523 if (cursor == NULL)
12524 return NULL;
12525
12526 state = intel_create_plane_state(&cursor->base);
12527 if (!state) {
12528 kfree(cursor);
12529 return NULL;
12530 }
12531 cursor->base.state = &state->base;
12532
12533 cursor->can_scale = false;
12534 cursor->max_downscale = 1;
12535 cursor->pipe = pipe;
12536 cursor->plane = pipe;
12537 cursor->check_plane = intel_check_cursor_plane;
12538 cursor->commit_plane = intel_commit_cursor_plane;
12539
12540 drm_universal_plane_init(dev, &cursor->base, 0,
12541 &intel_plane_funcs,
12542 intel_cursor_formats,
12543 ARRAY_SIZE(intel_cursor_formats),
12544 DRM_PLANE_TYPE_CURSOR);
12545
12546 if (INTEL_INFO(dev)->gen >= 4) {
12547 if (!dev->mode_config.rotation_property)
12548 dev->mode_config.rotation_property =
12549 drm_mode_create_rotation_property(dev,
12550 BIT(DRM_ROTATE_0) |
12551 BIT(DRM_ROTATE_180));
12552 if (dev->mode_config.rotation_property)
12553 drm_object_attach_property(&cursor->base.base,
12554 dev->mode_config.rotation_property,
12555 state->base.rotation);
12556 }
12557
12558 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12559
12560 return &cursor->base;
12561 }
12562
12563 static void intel_crtc_init(struct drm_device *dev, int pipe)
12564 {
12565 struct drm_i915_private *dev_priv = dev->dev_private;
12566 struct intel_crtc *intel_crtc;
12567 struct intel_crtc_state *crtc_state = NULL;
12568 struct drm_plane *primary = NULL;
12569 struct drm_plane *cursor = NULL;
12570 int i, ret;
12571
12572 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12573 if (intel_crtc == NULL)
12574 return;
12575
12576 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12577 if (!crtc_state)
12578 goto fail;
12579 intel_crtc_set_state(intel_crtc, crtc_state);
12580 crtc_state->base.crtc = &intel_crtc->base;
12581
12582 primary = intel_primary_plane_create(dev, pipe);
12583 if (!primary)
12584 goto fail;
12585
12586 cursor = intel_cursor_plane_create(dev, pipe);
12587 if (!cursor)
12588 goto fail;
12589
12590 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12591 cursor, &intel_crtc_funcs);
12592 if (ret)
12593 goto fail;
12594
12595 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12596 for (i = 0; i < 256; i++) {
12597 intel_crtc->lut_r[i] = i;
12598 intel_crtc->lut_g[i] = i;
12599 intel_crtc->lut_b[i] = i;
12600 }
12601
12602 /*
12603 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12604 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12605 */
12606 intel_crtc->pipe = pipe;
12607 intel_crtc->plane = pipe;
12608 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12609 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12610 intel_crtc->plane = !pipe;
12611 }
12612
12613 intel_crtc->cursor_base = ~0;
12614 intel_crtc->cursor_cntl = ~0;
12615 intel_crtc->cursor_size = ~0;
12616
12617 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12618 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12619 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12620 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12621
12622 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12623
12624 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12625
12626 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12627 return;
12628
12629 fail:
12630 if (primary)
12631 drm_plane_cleanup(primary);
12632 if (cursor)
12633 drm_plane_cleanup(cursor);
12634 kfree(crtc_state);
12635 kfree(intel_crtc);
12636 }
12637
12638 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12639 {
12640 struct drm_encoder *encoder = connector->base.encoder;
12641 struct drm_device *dev = connector->base.dev;
12642
12643 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12644
12645 if (!encoder || WARN_ON(!encoder->crtc))
12646 return INVALID_PIPE;
12647
12648 return to_intel_crtc(encoder->crtc)->pipe;
12649 }
12650
12651 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12652 struct drm_file *file)
12653 {
12654 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12655 struct drm_crtc *drmmode_crtc;
12656 struct intel_crtc *crtc;
12657
12658 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12659
12660 if (!drmmode_crtc) {
12661 DRM_ERROR("no such CRTC id\n");
12662 return -ENOENT;
12663 }
12664
12665 crtc = to_intel_crtc(drmmode_crtc);
12666 pipe_from_crtc_id->pipe = crtc->pipe;
12667
12668 return 0;
12669 }
12670
12671 static int intel_encoder_clones(struct intel_encoder *encoder)
12672 {
12673 struct drm_device *dev = encoder->base.dev;
12674 struct intel_encoder *source_encoder;
12675 int index_mask = 0;
12676 int entry = 0;
12677
12678 for_each_intel_encoder(dev, source_encoder) {
12679 if (encoders_cloneable(encoder, source_encoder))
12680 index_mask |= (1 << entry);
12681
12682 entry++;
12683 }
12684
12685 return index_mask;
12686 }
12687
12688 static bool has_edp_a(struct drm_device *dev)
12689 {
12690 struct drm_i915_private *dev_priv = dev->dev_private;
12691
12692 if (!IS_MOBILE(dev))
12693 return false;
12694
12695 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12696 return false;
12697
12698 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12699 return false;
12700
12701 return true;
12702 }
12703
12704 static bool intel_crt_present(struct drm_device *dev)
12705 {
12706 struct drm_i915_private *dev_priv = dev->dev_private;
12707
12708 if (INTEL_INFO(dev)->gen >= 9)
12709 return false;
12710
12711 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12712 return false;
12713
12714 if (IS_CHERRYVIEW(dev))
12715 return false;
12716
12717 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12718 return false;
12719
12720 return true;
12721 }
12722
12723 static void intel_setup_outputs(struct drm_device *dev)
12724 {
12725 struct drm_i915_private *dev_priv = dev->dev_private;
12726 struct intel_encoder *encoder;
12727 struct drm_connector *connector;
12728 bool dpd_is_edp = false;
12729
12730 intel_lvds_init(dev);
12731
12732 if (intel_crt_present(dev))
12733 intel_crt_init(dev);
12734
12735 if (HAS_DDI(dev)) {
12736 int found;
12737
12738 /*
12739 * Haswell uses DDI functions to detect digital outputs.
12740 * On SKL pre-D0 the strap isn't connected, so we assume
12741 * it's there.
12742 */
12743 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12744 /* WaIgnoreDDIAStrap: skl */
12745 if (found ||
12746 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
12747 intel_ddi_init(dev, PORT_A);
12748
12749 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12750 * register */
12751 found = I915_READ(SFUSE_STRAP);
12752
12753 if (found & SFUSE_STRAP_DDIB_DETECTED)
12754 intel_ddi_init(dev, PORT_B);
12755 if (found & SFUSE_STRAP_DDIC_DETECTED)
12756 intel_ddi_init(dev, PORT_C);
12757 if (found & SFUSE_STRAP_DDID_DETECTED)
12758 intel_ddi_init(dev, PORT_D);
12759 } else if (HAS_PCH_SPLIT(dev)) {
12760 int found;
12761 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12762
12763 if (has_edp_a(dev))
12764 intel_dp_init(dev, DP_A, PORT_A);
12765
12766 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12767 /* PCH SDVOB multiplex with HDMIB */
12768 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12769 if (!found)
12770 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12771 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12772 intel_dp_init(dev, PCH_DP_B, PORT_B);
12773 }
12774
12775 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12776 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12777
12778 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12779 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12780
12781 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12782 intel_dp_init(dev, PCH_DP_C, PORT_C);
12783
12784 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12785 intel_dp_init(dev, PCH_DP_D, PORT_D);
12786 } else if (IS_VALLEYVIEW(dev)) {
12787 /*
12788 * The DP_DETECTED bit is the latched state of the DDC
12789 * SDA pin at boot. However since eDP doesn't require DDC
12790 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12791 * eDP ports may have been muxed to an alternate function.
12792 * Thus we can't rely on the DP_DETECTED bit alone to detect
12793 * eDP ports. Consult the VBT as well as DP_DETECTED to
12794 * detect eDP ports.
12795 */
12796 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12797 !intel_dp_is_edp(dev, PORT_B))
12798 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12799 PORT_B);
12800 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12801 intel_dp_is_edp(dev, PORT_B))
12802 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12803
12804 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12805 !intel_dp_is_edp(dev, PORT_C))
12806 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12807 PORT_C);
12808 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12809 intel_dp_is_edp(dev, PORT_C))
12810 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12811
12812 if (IS_CHERRYVIEW(dev)) {
12813 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12814 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12815 PORT_D);
12816 /* eDP not supported on port D, so don't check VBT */
12817 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12818 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12819 }
12820
12821 intel_dsi_init(dev);
12822 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12823 bool found = false;
12824
12825 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12826 DRM_DEBUG_KMS("probing SDVOB\n");
12827 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12828 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12829 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12830 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12831 }
12832
12833 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12834 intel_dp_init(dev, DP_B, PORT_B);
12835 }
12836
12837 /* Before G4X SDVOC doesn't have its own detect register */
12838
12839 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12840 DRM_DEBUG_KMS("probing SDVOC\n");
12841 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12842 }
12843
12844 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12845
12846 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12847 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12848 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12849 }
12850 if (SUPPORTS_INTEGRATED_DP(dev))
12851 intel_dp_init(dev, DP_C, PORT_C);
12852 }
12853
12854 if (SUPPORTS_INTEGRATED_DP(dev) &&
12855 (I915_READ(DP_D) & DP_DETECTED))
12856 intel_dp_init(dev, DP_D, PORT_D);
12857 } else if (IS_GEN2(dev))
12858 intel_dvo_init(dev);
12859
12860 if (SUPPORTS_TV(dev))
12861 intel_tv_init(dev);
12862
12863 /*
12864 * FIXME: We don't have full atomic support yet, but we want to be
12865 * able to enable/test plane updates via the atomic interface in the
12866 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12867 * will take some atomic codepaths to lookup properties during
12868 * drmModeGetConnector() that unconditionally dereference
12869 * connector->state.
12870 *
12871 * We create a dummy connector state here for each connector to ensure
12872 * the DRM core doesn't try to dereference a NULL connector->state.
12873 * The actual connector properties will never be updated or contain
12874 * useful information, but since we're doing this specifically for
12875 * testing/debug of the plane operations (and only when a specific
12876 * kernel module option is given), that shouldn't really matter.
12877 *
12878 * Once atomic support for crtc's + connectors lands, this loop should
12879 * be removed since we'll be setting up real connector state, which
12880 * will contain Intel-specific properties.
12881 */
12882 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12883 list_for_each_entry(connector,
12884 &dev->mode_config.connector_list,
12885 head) {
12886 if (!WARN_ON(connector->state)) {
12887 connector->state =
12888 kzalloc(sizeof(*connector->state),
12889 GFP_KERNEL);
12890 }
12891 }
12892 }
12893
12894 intel_psr_init(dev);
12895
12896 for_each_intel_encoder(dev, encoder) {
12897 encoder->base.possible_crtcs = encoder->crtc_mask;
12898 encoder->base.possible_clones =
12899 intel_encoder_clones(encoder);
12900 }
12901
12902 intel_init_pch_refclk(dev);
12903
12904 drm_helper_move_panel_connectors_to_head(dev);
12905 }
12906
12907 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12908 {
12909 struct drm_device *dev = fb->dev;
12910 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12911
12912 drm_framebuffer_cleanup(fb);
12913 mutex_lock(&dev->struct_mutex);
12914 WARN_ON(!intel_fb->obj->framebuffer_references--);
12915 drm_gem_object_unreference(&intel_fb->obj->base);
12916 mutex_unlock(&dev->struct_mutex);
12917 kfree(intel_fb);
12918 }
12919
12920 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12921 struct drm_file *file,
12922 unsigned int *handle)
12923 {
12924 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12925 struct drm_i915_gem_object *obj = intel_fb->obj;
12926
12927 return drm_gem_handle_create(file, &obj->base, handle);
12928 }
12929
12930 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12931 .destroy = intel_user_framebuffer_destroy,
12932 .create_handle = intel_user_framebuffer_create_handle,
12933 };
12934
12935 static
12936 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
12937 uint32_t pixel_format)
12938 {
12939 u32 gen = INTEL_INFO(dev)->gen;
12940
12941 if (gen >= 9) {
12942 /* "The stride in bytes must not exceed the of the size of 8K
12943 * pixels and 32K bytes."
12944 */
12945 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
12946 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
12947 return 32*1024;
12948 } else if (gen >= 4) {
12949 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12950 return 16*1024;
12951 else
12952 return 32*1024;
12953 } else if (gen >= 3) {
12954 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12955 return 8*1024;
12956 else
12957 return 16*1024;
12958 } else {
12959 /* XXX DSPC is limited to 4k tiled */
12960 return 8*1024;
12961 }
12962 }
12963
12964 static int intel_framebuffer_init(struct drm_device *dev,
12965 struct intel_framebuffer *intel_fb,
12966 struct drm_mode_fb_cmd2 *mode_cmd,
12967 struct drm_i915_gem_object *obj)
12968 {
12969 unsigned int aligned_height;
12970 int ret;
12971 u32 pitch_limit, stride_alignment;
12972
12973 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12974
12975 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12976 /* Enforce that fb modifier and tiling mode match, but only for
12977 * X-tiled. This is needed for FBC. */
12978 if (!!(obj->tiling_mode == I915_TILING_X) !=
12979 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12980 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12981 return -EINVAL;
12982 }
12983 } else {
12984 if (obj->tiling_mode == I915_TILING_X)
12985 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12986 else if (obj->tiling_mode == I915_TILING_Y) {
12987 DRM_DEBUG("No Y tiling for legacy addfb\n");
12988 return -EINVAL;
12989 }
12990 }
12991
12992 /* Passed in modifier sanity checking. */
12993 switch (mode_cmd->modifier[0]) {
12994 case I915_FORMAT_MOD_Y_TILED:
12995 case I915_FORMAT_MOD_Yf_TILED:
12996 if (INTEL_INFO(dev)->gen < 9) {
12997 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
12998 mode_cmd->modifier[0]);
12999 return -EINVAL;
13000 }
13001 case DRM_FORMAT_MOD_NONE:
13002 case I915_FORMAT_MOD_X_TILED:
13003 break;
13004 default:
13005 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13006 mode_cmd->modifier[0]);
13007 return -EINVAL;
13008 }
13009
13010 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13011 mode_cmd->pixel_format);
13012 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13013 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13014 mode_cmd->pitches[0], stride_alignment);
13015 return -EINVAL;
13016 }
13017
13018 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13019 mode_cmd->pixel_format);
13020 if (mode_cmd->pitches[0] > pitch_limit) {
13021 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13022 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13023 "tiled" : "linear",
13024 mode_cmd->pitches[0], pitch_limit);
13025 return -EINVAL;
13026 }
13027
13028 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13029 mode_cmd->pitches[0] != obj->stride) {
13030 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13031 mode_cmd->pitches[0], obj->stride);
13032 return -EINVAL;
13033 }
13034
13035 /* Reject formats not supported by any plane early. */
13036 switch (mode_cmd->pixel_format) {
13037 case DRM_FORMAT_C8:
13038 case DRM_FORMAT_RGB565:
13039 case DRM_FORMAT_XRGB8888:
13040 case DRM_FORMAT_ARGB8888:
13041 break;
13042 case DRM_FORMAT_XRGB1555:
13043 case DRM_FORMAT_ARGB1555:
13044 if (INTEL_INFO(dev)->gen > 3) {
13045 DRM_DEBUG("unsupported pixel format: %s\n",
13046 drm_get_format_name(mode_cmd->pixel_format));
13047 return -EINVAL;
13048 }
13049 break;
13050 case DRM_FORMAT_XBGR8888:
13051 case DRM_FORMAT_ABGR8888:
13052 case DRM_FORMAT_XRGB2101010:
13053 case DRM_FORMAT_ARGB2101010:
13054 case DRM_FORMAT_XBGR2101010:
13055 case DRM_FORMAT_ABGR2101010:
13056 if (INTEL_INFO(dev)->gen < 4) {
13057 DRM_DEBUG("unsupported pixel format: %s\n",
13058 drm_get_format_name(mode_cmd->pixel_format));
13059 return -EINVAL;
13060 }
13061 break;
13062 case DRM_FORMAT_YUYV:
13063 case DRM_FORMAT_UYVY:
13064 case DRM_FORMAT_YVYU:
13065 case DRM_FORMAT_VYUY:
13066 if (INTEL_INFO(dev)->gen < 5) {
13067 DRM_DEBUG("unsupported pixel format: %s\n",
13068 drm_get_format_name(mode_cmd->pixel_format));
13069 return -EINVAL;
13070 }
13071 break;
13072 default:
13073 DRM_DEBUG("unsupported pixel format: %s\n",
13074 drm_get_format_name(mode_cmd->pixel_format));
13075 return -EINVAL;
13076 }
13077
13078 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13079 if (mode_cmd->offsets[0] != 0)
13080 return -EINVAL;
13081
13082 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13083 mode_cmd->pixel_format,
13084 mode_cmd->modifier[0]);
13085 /* FIXME drm helper for size checks (especially planar formats)? */
13086 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13087 return -EINVAL;
13088
13089 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13090 intel_fb->obj = obj;
13091 intel_fb->obj->framebuffer_references++;
13092
13093 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13094 if (ret) {
13095 DRM_ERROR("framebuffer init failed %d\n", ret);
13096 return ret;
13097 }
13098
13099 return 0;
13100 }
13101
13102 static struct drm_framebuffer *
13103 intel_user_framebuffer_create(struct drm_device *dev,
13104 struct drm_file *filp,
13105 struct drm_mode_fb_cmd2 *mode_cmd)
13106 {
13107 struct drm_i915_gem_object *obj;
13108
13109 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13110 mode_cmd->handles[0]));
13111 if (&obj->base == NULL)
13112 return ERR_PTR(-ENOENT);
13113
13114 return intel_framebuffer_create(dev, mode_cmd, obj);
13115 }
13116
13117 #ifndef CONFIG_DRM_I915_FBDEV
13118 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13119 {
13120 }
13121 #endif
13122
13123 static const struct drm_mode_config_funcs intel_mode_funcs = {
13124 .fb_create = intel_user_framebuffer_create,
13125 .output_poll_changed = intel_fbdev_output_poll_changed,
13126 .atomic_check = intel_atomic_check,
13127 .atomic_commit = intel_atomic_commit,
13128 };
13129
13130 /* Set up chip specific display functions */
13131 static void intel_init_display(struct drm_device *dev)
13132 {
13133 struct drm_i915_private *dev_priv = dev->dev_private;
13134
13135 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13136 dev_priv->display.find_dpll = g4x_find_best_dpll;
13137 else if (IS_CHERRYVIEW(dev))
13138 dev_priv->display.find_dpll = chv_find_best_dpll;
13139 else if (IS_VALLEYVIEW(dev))
13140 dev_priv->display.find_dpll = vlv_find_best_dpll;
13141 else if (IS_PINEVIEW(dev))
13142 dev_priv->display.find_dpll = pnv_find_best_dpll;
13143 else
13144 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13145
13146 if (INTEL_INFO(dev)->gen >= 9) {
13147 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13148 dev_priv->display.get_initial_plane_config =
13149 skylake_get_initial_plane_config;
13150 dev_priv->display.crtc_compute_clock =
13151 haswell_crtc_compute_clock;
13152 dev_priv->display.crtc_enable = haswell_crtc_enable;
13153 dev_priv->display.crtc_disable = haswell_crtc_disable;
13154 dev_priv->display.off = ironlake_crtc_off;
13155 dev_priv->display.update_primary_plane =
13156 skylake_update_primary_plane;
13157 } else if (HAS_DDI(dev)) {
13158 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13159 dev_priv->display.get_initial_plane_config =
13160 ironlake_get_initial_plane_config;
13161 dev_priv->display.crtc_compute_clock =
13162 haswell_crtc_compute_clock;
13163 dev_priv->display.crtc_enable = haswell_crtc_enable;
13164 dev_priv->display.crtc_disable = haswell_crtc_disable;
13165 dev_priv->display.off = ironlake_crtc_off;
13166 dev_priv->display.update_primary_plane =
13167 ironlake_update_primary_plane;
13168 } else if (HAS_PCH_SPLIT(dev)) {
13169 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13170 dev_priv->display.get_initial_plane_config =
13171 ironlake_get_initial_plane_config;
13172 dev_priv->display.crtc_compute_clock =
13173 ironlake_crtc_compute_clock;
13174 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13175 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13176 dev_priv->display.off = ironlake_crtc_off;
13177 dev_priv->display.update_primary_plane =
13178 ironlake_update_primary_plane;
13179 } else if (IS_VALLEYVIEW(dev)) {
13180 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13181 dev_priv->display.get_initial_plane_config =
13182 i9xx_get_initial_plane_config;
13183 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13184 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13185 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13186 dev_priv->display.off = i9xx_crtc_off;
13187 dev_priv->display.update_primary_plane =
13188 i9xx_update_primary_plane;
13189 } else {
13190 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13191 dev_priv->display.get_initial_plane_config =
13192 i9xx_get_initial_plane_config;
13193 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13194 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13195 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13196 dev_priv->display.off = i9xx_crtc_off;
13197 dev_priv->display.update_primary_plane =
13198 i9xx_update_primary_plane;
13199 }
13200
13201 /* Returns the core display clock speed */
13202 if (IS_VALLEYVIEW(dev))
13203 dev_priv->display.get_display_clock_speed =
13204 valleyview_get_display_clock_speed;
13205 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13206 dev_priv->display.get_display_clock_speed =
13207 i945_get_display_clock_speed;
13208 else if (IS_I915G(dev))
13209 dev_priv->display.get_display_clock_speed =
13210 i915_get_display_clock_speed;
13211 else if (IS_I945GM(dev) || IS_845G(dev))
13212 dev_priv->display.get_display_clock_speed =
13213 i9xx_misc_get_display_clock_speed;
13214 else if (IS_PINEVIEW(dev))
13215 dev_priv->display.get_display_clock_speed =
13216 pnv_get_display_clock_speed;
13217 else if (IS_I915GM(dev))
13218 dev_priv->display.get_display_clock_speed =
13219 i915gm_get_display_clock_speed;
13220 else if (IS_I865G(dev))
13221 dev_priv->display.get_display_clock_speed =
13222 i865_get_display_clock_speed;
13223 else if (IS_I85X(dev))
13224 dev_priv->display.get_display_clock_speed =
13225 i855_get_display_clock_speed;
13226 else /* 852, 830 */
13227 dev_priv->display.get_display_clock_speed =
13228 i830_get_display_clock_speed;
13229
13230 if (IS_GEN5(dev)) {
13231 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13232 } else if (IS_GEN6(dev)) {
13233 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13234 } else if (IS_IVYBRIDGE(dev)) {
13235 /* FIXME: detect B0+ stepping and use auto training */
13236 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13237 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13238 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13239 } else if (IS_VALLEYVIEW(dev)) {
13240 dev_priv->display.modeset_global_resources =
13241 valleyview_modeset_global_resources;
13242 }
13243
13244 switch (INTEL_INFO(dev)->gen) {
13245 case 2:
13246 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13247 break;
13248
13249 case 3:
13250 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13251 break;
13252
13253 case 4:
13254 case 5:
13255 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13256 break;
13257
13258 case 6:
13259 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13260 break;
13261 case 7:
13262 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13263 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13264 break;
13265 case 9:
13266 /* Drop through - unsupported since execlist only. */
13267 default:
13268 /* Default just returns -ENODEV to indicate unsupported */
13269 dev_priv->display.queue_flip = intel_default_queue_flip;
13270 }
13271
13272 intel_panel_init_backlight_funcs(dev);
13273
13274 mutex_init(&dev_priv->pps_mutex);
13275 }
13276
13277 /*
13278 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13279 * resume, or other times. This quirk makes sure that's the case for
13280 * affected systems.
13281 */
13282 static void quirk_pipea_force(struct drm_device *dev)
13283 {
13284 struct drm_i915_private *dev_priv = dev->dev_private;
13285
13286 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13287 DRM_INFO("applying pipe a force quirk\n");
13288 }
13289
13290 static void quirk_pipeb_force(struct drm_device *dev)
13291 {
13292 struct drm_i915_private *dev_priv = dev->dev_private;
13293
13294 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13295 DRM_INFO("applying pipe b force quirk\n");
13296 }
13297
13298 /*
13299 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13300 */
13301 static void quirk_ssc_force_disable(struct drm_device *dev)
13302 {
13303 struct drm_i915_private *dev_priv = dev->dev_private;
13304 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13305 DRM_INFO("applying lvds SSC disable quirk\n");
13306 }
13307
13308 /*
13309 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13310 * brightness value
13311 */
13312 static void quirk_invert_brightness(struct drm_device *dev)
13313 {
13314 struct drm_i915_private *dev_priv = dev->dev_private;
13315 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13316 DRM_INFO("applying inverted panel brightness quirk\n");
13317 }
13318
13319 /* Some VBT's incorrectly indicate no backlight is present */
13320 static void quirk_backlight_present(struct drm_device *dev)
13321 {
13322 struct drm_i915_private *dev_priv = dev->dev_private;
13323 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13324 DRM_INFO("applying backlight present quirk\n");
13325 }
13326
13327 struct intel_quirk {
13328 int device;
13329 int subsystem_vendor;
13330 int subsystem_device;
13331 void (*hook)(struct drm_device *dev);
13332 };
13333
13334 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13335 struct intel_dmi_quirk {
13336 void (*hook)(struct drm_device *dev);
13337 const struct dmi_system_id (*dmi_id_list)[];
13338 };
13339
13340 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13341 {
13342 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13343 return 1;
13344 }
13345
13346 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13347 {
13348 .dmi_id_list = &(const struct dmi_system_id[]) {
13349 {
13350 .callback = intel_dmi_reverse_brightness,
13351 .ident = "NCR Corporation",
13352 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13353 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13354 },
13355 },
13356 { } /* terminating entry */
13357 },
13358 .hook = quirk_invert_brightness,
13359 },
13360 };
13361
13362 static struct intel_quirk intel_quirks[] = {
13363 /* HP Mini needs pipe A force quirk (LP: #322104) */
13364 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13365
13366 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13367 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13368
13369 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13370 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13371
13372 /* 830 needs to leave pipe A & dpll A up */
13373 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13374
13375 /* 830 needs to leave pipe B & dpll B up */
13376 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13377
13378 /* Lenovo U160 cannot use SSC on LVDS */
13379 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13380
13381 /* Sony Vaio Y cannot use SSC on LVDS */
13382 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13383
13384 /* Acer Aspire 5734Z must invert backlight brightness */
13385 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13386
13387 /* Acer/eMachines G725 */
13388 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13389
13390 /* Acer/eMachines e725 */
13391 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13392
13393 /* Acer/Packard Bell NCL20 */
13394 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13395
13396 /* Acer Aspire 4736Z */
13397 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13398
13399 /* Acer Aspire 5336 */
13400 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13401
13402 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13403 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13404
13405 /* Acer C720 Chromebook (Core i3 4005U) */
13406 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13407
13408 /* Apple Macbook 2,1 (Core 2 T7400) */
13409 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13410
13411 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13412 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13413
13414 /* HP Chromebook 14 (Celeron 2955U) */
13415 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13416
13417 /* Dell Chromebook 11 */
13418 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13419 };
13420
13421 static void intel_init_quirks(struct drm_device *dev)
13422 {
13423 struct pci_dev *d = dev->pdev;
13424 int i;
13425
13426 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13427 struct intel_quirk *q = &intel_quirks[i];
13428
13429 if (d->device == q->device &&
13430 (d->subsystem_vendor == q->subsystem_vendor ||
13431 q->subsystem_vendor == PCI_ANY_ID) &&
13432 (d->subsystem_device == q->subsystem_device ||
13433 q->subsystem_device == PCI_ANY_ID))
13434 q->hook(dev);
13435 }
13436 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13437 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13438 intel_dmi_quirks[i].hook(dev);
13439 }
13440 }
13441
13442 /* Disable the VGA plane that we never use */
13443 static void i915_disable_vga(struct drm_device *dev)
13444 {
13445 struct drm_i915_private *dev_priv = dev->dev_private;
13446 u8 sr1;
13447 u32 vga_reg = i915_vgacntrl_reg(dev);
13448
13449 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13450 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13451 outb(SR01, VGA_SR_INDEX);
13452 sr1 = inb(VGA_SR_DATA);
13453 outb(sr1 | 1<<5, VGA_SR_DATA);
13454 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13455 udelay(300);
13456
13457 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13458 POSTING_READ(vga_reg);
13459 }
13460
13461 void intel_modeset_init_hw(struct drm_device *dev)
13462 {
13463 intel_prepare_ddi(dev);
13464
13465 if (IS_VALLEYVIEW(dev))
13466 vlv_update_cdclk(dev);
13467
13468 intel_init_clock_gating(dev);
13469
13470 intel_enable_gt_powersave(dev);
13471 }
13472
13473 void intel_modeset_init(struct drm_device *dev)
13474 {
13475 struct drm_i915_private *dev_priv = dev->dev_private;
13476 int sprite, ret;
13477 enum pipe pipe;
13478 struct intel_crtc *crtc;
13479
13480 drm_mode_config_init(dev);
13481
13482 dev->mode_config.min_width = 0;
13483 dev->mode_config.min_height = 0;
13484
13485 dev->mode_config.preferred_depth = 24;
13486 dev->mode_config.prefer_shadow = 1;
13487
13488 dev->mode_config.allow_fb_modifiers = true;
13489
13490 dev->mode_config.funcs = &intel_mode_funcs;
13491
13492 intel_init_quirks(dev);
13493
13494 intel_init_pm(dev);
13495
13496 if (INTEL_INFO(dev)->num_pipes == 0)
13497 return;
13498
13499 intel_init_display(dev);
13500 intel_init_audio(dev);
13501
13502 if (IS_GEN2(dev)) {
13503 dev->mode_config.max_width = 2048;
13504 dev->mode_config.max_height = 2048;
13505 } else if (IS_GEN3(dev)) {
13506 dev->mode_config.max_width = 4096;
13507 dev->mode_config.max_height = 4096;
13508 } else {
13509 dev->mode_config.max_width = 8192;
13510 dev->mode_config.max_height = 8192;
13511 }
13512
13513 if (IS_845G(dev) || IS_I865G(dev)) {
13514 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13515 dev->mode_config.cursor_height = 1023;
13516 } else if (IS_GEN2(dev)) {
13517 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13518 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13519 } else {
13520 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13521 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13522 }
13523
13524 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13525
13526 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13527 INTEL_INFO(dev)->num_pipes,
13528 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13529
13530 for_each_pipe(dev_priv, pipe) {
13531 intel_crtc_init(dev, pipe);
13532 for_each_sprite(dev_priv, pipe, sprite) {
13533 ret = intel_plane_init(dev, pipe, sprite);
13534 if (ret)
13535 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13536 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13537 }
13538 }
13539
13540 intel_init_dpio(dev);
13541
13542 intel_shared_dpll_init(dev);
13543
13544 /* Just disable it once at startup */
13545 i915_disable_vga(dev);
13546 intel_setup_outputs(dev);
13547
13548 /* Just in case the BIOS is doing something questionable. */
13549 intel_fbc_disable(dev);
13550
13551 drm_modeset_lock_all(dev);
13552 intel_modeset_setup_hw_state(dev, false);
13553 drm_modeset_unlock_all(dev);
13554
13555 for_each_intel_crtc(dev, crtc) {
13556 if (!crtc->active)
13557 continue;
13558
13559 /*
13560 * Note that reserving the BIOS fb up front prevents us
13561 * from stuffing other stolen allocations like the ring
13562 * on top. This prevents some ugliness at boot time, and
13563 * can even allow for smooth boot transitions if the BIOS
13564 * fb is large enough for the active pipe configuration.
13565 */
13566 if (dev_priv->display.get_initial_plane_config) {
13567 dev_priv->display.get_initial_plane_config(crtc,
13568 &crtc->plane_config);
13569 /*
13570 * If the fb is shared between multiple heads, we'll
13571 * just get the first one.
13572 */
13573 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
13574 }
13575 }
13576 }
13577
13578 static void intel_enable_pipe_a(struct drm_device *dev)
13579 {
13580 struct intel_connector *connector;
13581 struct drm_connector *crt = NULL;
13582 struct intel_load_detect_pipe load_detect_temp;
13583 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13584
13585 /* We can't just switch on the pipe A, we need to set things up with a
13586 * proper mode and output configuration. As a gross hack, enable pipe A
13587 * by enabling the load detect pipe once. */
13588 for_each_intel_connector(dev, connector) {
13589 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13590 crt = &connector->base;
13591 break;
13592 }
13593 }
13594
13595 if (!crt)
13596 return;
13597
13598 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13599 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
13600 }
13601
13602 static bool
13603 intel_check_plane_mapping(struct intel_crtc *crtc)
13604 {
13605 struct drm_device *dev = crtc->base.dev;
13606 struct drm_i915_private *dev_priv = dev->dev_private;
13607 u32 reg, val;
13608
13609 if (INTEL_INFO(dev)->num_pipes == 1)
13610 return true;
13611
13612 reg = DSPCNTR(!crtc->plane);
13613 val = I915_READ(reg);
13614
13615 if ((val & DISPLAY_PLANE_ENABLE) &&
13616 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13617 return false;
13618
13619 return true;
13620 }
13621
13622 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13623 {
13624 struct drm_device *dev = crtc->base.dev;
13625 struct drm_i915_private *dev_priv = dev->dev_private;
13626 u32 reg;
13627
13628 /* Clear any frame start delays used for debugging left by the BIOS */
13629 reg = PIPECONF(crtc->config->cpu_transcoder);
13630 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13631
13632 /* restore vblank interrupts to correct state */
13633 drm_crtc_vblank_reset(&crtc->base);
13634 if (crtc->active) {
13635 update_scanline_offset(crtc);
13636 drm_crtc_vblank_on(&crtc->base);
13637 }
13638
13639 /* We need to sanitize the plane -> pipe mapping first because this will
13640 * disable the crtc (and hence change the state) if it is wrong. Note
13641 * that gen4+ has a fixed plane -> pipe mapping. */
13642 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13643 struct intel_connector *connector;
13644 bool plane;
13645
13646 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13647 crtc->base.base.id);
13648
13649 /* Pipe has the wrong plane attached and the plane is active.
13650 * Temporarily change the plane mapping and disable everything
13651 * ... */
13652 plane = crtc->plane;
13653 crtc->plane = !plane;
13654 crtc->primary_enabled = true;
13655 dev_priv->display.crtc_disable(&crtc->base);
13656 crtc->plane = plane;
13657
13658 /* ... and break all links. */
13659 for_each_intel_connector(dev, connector) {
13660 if (connector->encoder->base.crtc != &crtc->base)
13661 continue;
13662
13663 connector->base.dpms = DRM_MODE_DPMS_OFF;
13664 connector->base.encoder = NULL;
13665 }
13666 /* multiple connectors may have the same encoder:
13667 * handle them and break crtc link separately */
13668 for_each_intel_connector(dev, connector)
13669 if (connector->encoder->base.crtc == &crtc->base) {
13670 connector->encoder->base.crtc = NULL;
13671 connector->encoder->connectors_active = false;
13672 }
13673
13674 WARN_ON(crtc->active);
13675 crtc->base.state->enable = false;
13676 crtc->base.enabled = false;
13677 }
13678
13679 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13680 crtc->pipe == PIPE_A && !crtc->active) {
13681 /* BIOS forgot to enable pipe A, this mostly happens after
13682 * resume. Force-enable the pipe to fix this, the update_dpms
13683 * call below we restore the pipe to the right state, but leave
13684 * the required bits on. */
13685 intel_enable_pipe_a(dev);
13686 }
13687
13688 /* Adjust the state of the output pipe according to whether we
13689 * have active connectors/encoders. */
13690 intel_crtc_update_dpms(&crtc->base);
13691
13692 if (crtc->active != crtc->base.state->enable) {
13693 struct intel_encoder *encoder;
13694
13695 /* This can happen either due to bugs in the get_hw_state
13696 * functions or because the pipe is force-enabled due to the
13697 * pipe A quirk. */
13698 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13699 crtc->base.base.id,
13700 crtc->base.state->enable ? "enabled" : "disabled",
13701 crtc->active ? "enabled" : "disabled");
13702
13703 crtc->base.state->enable = crtc->active;
13704 crtc->base.enabled = crtc->active;
13705
13706 /* Because we only establish the connector -> encoder ->
13707 * crtc links if something is active, this means the
13708 * crtc is now deactivated. Break the links. connector
13709 * -> encoder links are only establish when things are
13710 * actually up, hence no need to break them. */
13711 WARN_ON(crtc->active);
13712
13713 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13714 WARN_ON(encoder->connectors_active);
13715 encoder->base.crtc = NULL;
13716 }
13717 }
13718
13719 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13720 /*
13721 * We start out with underrun reporting disabled to avoid races.
13722 * For correct bookkeeping mark this on active crtcs.
13723 *
13724 * Also on gmch platforms we dont have any hardware bits to
13725 * disable the underrun reporting. Which means we need to start
13726 * out with underrun reporting disabled also on inactive pipes,
13727 * since otherwise we'll complain about the garbage we read when
13728 * e.g. coming up after runtime pm.
13729 *
13730 * No protection against concurrent access is required - at
13731 * worst a fifo underrun happens which also sets this to false.
13732 */
13733 crtc->cpu_fifo_underrun_disabled = true;
13734 crtc->pch_fifo_underrun_disabled = true;
13735 }
13736 }
13737
13738 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13739 {
13740 struct intel_connector *connector;
13741 struct drm_device *dev = encoder->base.dev;
13742
13743 /* We need to check both for a crtc link (meaning that the
13744 * encoder is active and trying to read from a pipe) and the
13745 * pipe itself being active. */
13746 bool has_active_crtc = encoder->base.crtc &&
13747 to_intel_crtc(encoder->base.crtc)->active;
13748
13749 if (encoder->connectors_active && !has_active_crtc) {
13750 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13751 encoder->base.base.id,
13752 encoder->base.name);
13753
13754 /* Connector is active, but has no active pipe. This is
13755 * fallout from our resume register restoring. Disable
13756 * the encoder manually again. */
13757 if (encoder->base.crtc) {
13758 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13759 encoder->base.base.id,
13760 encoder->base.name);
13761 encoder->disable(encoder);
13762 if (encoder->post_disable)
13763 encoder->post_disable(encoder);
13764 }
13765 encoder->base.crtc = NULL;
13766 encoder->connectors_active = false;
13767
13768 /* Inconsistent output/port/pipe state happens presumably due to
13769 * a bug in one of the get_hw_state functions. Or someplace else
13770 * in our code, like the register restore mess on resume. Clamp
13771 * things to off as a safer default. */
13772 for_each_intel_connector(dev, connector) {
13773 if (connector->encoder != encoder)
13774 continue;
13775 connector->base.dpms = DRM_MODE_DPMS_OFF;
13776 connector->base.encoder = NULL;
13777 }
13778 }
13779 /* Enabled encoders without active connectors will be fixed in
13780 * the crtc fixup. */
13781 }
13782
13783 void i915_redisable_vga_power_on(struct drm_device *dev)
13784 {
13785 struct drm_i915_private *dev_priv = dev->dev_private;
13786 u32 vga_reg = i915_vgacntrl_reg(dev);
13787
13788 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13789 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13790 i915_disable_vga(dev);
13791 }
13792 }
13793
13794 void i915_redisable_vga(struct drm_device *dev)
13795 {
13796 struct drm_i915_private *dev_priv = dev->dev_private;
13797
13798 /* This function can be called both from intel_modeset_setup_hw_state or
13799 * at a very early point in our resume sequence, where the power well
13800 * structures are not yet restored. Since this function is at a very
13801 * paranoid "someone might have enabled VGA while we were not looking"
13802 * level, just check if the power well is enabled instead of trying to
13803 * follow the "don't touch the power well if we don't need it" policy
13804 * the rest of the driver uses. */
13805 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13806 return;
13807
13808 i915_redisable_vga_power_on(dev);
13809 }
13810
13811 static bool primary_get_hw_state(struct intel_crtc *crtc)
13812 {
13813 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13814
13815 if (!crtc->active)
13816 return false;
13817
13818 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13819 }
13820
13821 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13822 {
13823 struct drm_i915_private *dev_priv = dev->dev_private;
13824 enum pipe pipe;
13825 struct intel_crtc *crtc;
13826 struct intel_encoder *encoder;
13827 struct intel_connector *connector;
13828 int i;
13829
13830 for_each_intel_crtc(dev, crtc) {
13831 memset(crtc->config, 0, sizeof(*crtc->config));
13832
13833 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13834
13835 crtc->active = dev_priv->display.get_pipe_config(crtc,
13836 crtc->config);
13837
13838 crtc->base.state->enable = crtc->active;
13839 crtc->base.enabled = crtc->active;
13840 crtc->primary_enabled = primary_get_hw_state(crtc);
13841
13842 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13843 crtc->base.base.id,
13844 crtc->active ? "enabled" : "disabled");
13845 }
13846
13847 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13848 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13849
13850 pll->on = pll->get_hw_state(dev_priv, pll,
13851 &pll->config.hw_state);
13852 pll->active = 0;
13853 pll->config.crtc_mask = 0;
13854 for_each_intel_crtc(dev, crtc) {
13855 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13856 pll->active++;
13857 pll->config.crtc_mask |= 1 << crtc->pipe;
13858 }
13859 }
13860
13861 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13862 pll->name, pll->config.crtc_mask, pll->on);
13863
13864 if (pll->config.crtc_mask)
13865 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13866 }
13867
13868 for_each_intel_encoder(dev, encoder) {
13869 pipe = 0;
13870
13871 if (encoder->get_hw_state(encoder, &pipe)) {
13872 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13873 encoder->base.crtc = &crtc->base;
13874 encoder->get_config(encoder, crtc->config);
13875 } else {
13876 encoder->base.crtc = NULL;
13877 }
13878
13879 encoder->connectors_active = false;
13880 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13881 encoder->base.base.id,
13882 encoder->base.name,
13883 encoder->base.crtc ? "enabled" : "disabled",
13884 pipe_name(pipe));
13885 }
13886
13887 for_each_intel_connector(dev, connector) {
13888 if (connector->get_hw_state(connector)) {
13889 connector->base.dpms = DRM_MODE_DPMS_ON;
13890 connector->encoder->connectors_active = true;
13891 connector->base.encoder = &connector->encoder->base;
13892 } else {
13893 connector->base.dpms = DRM_MODE_DPMS_OFF;
13894 connector->base.encoder = NULL;
13895 }
13896 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13897 connector->base.base.id,
13898 connector->base.name,
13899 connector->base.encoder ? "enabled" : "disabled");
13900 }
13901 }
13902
13903 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13904 * and i915 state tracking structures. */
13905 void intel_modeset_setup_hw_state(struct drm_device *dev,
13906 bool force_restore)
13907 {
13908 struct drm_i915_private *dev_priv = dev->dev_private;
13909 enum pipe pipe;
13910 struct intel_crtc *crtc;
13911 struct intel_encoder *encoder;
13912 int i;
13913
13914 intel_modeset_readout_hw_state(dev);
13915
13916 /*
13917 * Now that we have the config, copy it to each CRTC struct
13918 * Note that this could go away if we move to using crtc_config
13919 * checking everywhere.
13920 */
13921 for_each_intel_crtc(dev, crtc) {
13922 if (crtc->active && i915.fastboot) {
13923 intel_mode_from_pipe_config(&crtc->base.mode,
13924 crtc->config);
13925 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13926 crtc->base.base.id);
13927 drm_mode_debug_printmodeline(&crtc->base.mode);
13928 }
13929 }
13930
13931 /* HW state is read out, now we need to sanitize this mess. */
13932 for_each_intel_encoder(dev, encoder) {
13933 intel_sanitize_encoder(encoder);
13934 }
13935
13936 for_each_pipe(dev_priv, pipe) {
13937 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13938 intel_sanitize_crtc(crtc);
13939 intel_dump_pipe_config(crtc, crtc->config,
13940 "[setup_hw_state]");
13941 }
13942
13943 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13944 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13945
13946 if (!pll->on || pll->active)
13947 continue;
13948
13949 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13950
13951 pll->disable(dev_priv, pll);
13952 pll->on = false;
13953 }
13954
13955 if (IS_GEN9(dev))
13956 skl_wm_get_hw_state(dev);
13957 else if (HAS_PCH_SPLIT(dev))
13958 ilk_wm_get_hw_state(dev);
13959
13960 if (force_restore) {
13961 i915_redisable_vga(dev);
13962
13963 /*
13964 * We need to use raw interfaces for restoring state to avoid
13965 * checking (bogus) intermediate states.
13966 */
13967 for_each_pipe(dev_priv, pipe) {
13968 struct drm_crtc *crtc =
13969 dev_priv->pipe_to_crtc_mapping[pipe];
13970
13971 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13972 crtc->primary->fb);
13973 }
13974 } else {
13975 intel_modeset_update_staged_output_state(dev);
13976 }
13977
13978 intel_modeset_check_state(dev);
13979 }
13980
13981 void intel_modeset_gem_init(struct drm_device *dev)
13982 {
13983 struct drm_i915_private *dev_priv = dev->dev_private;
13984 struct drm_crtc *c;
13985 struct drm_i915_gem_object *obj;
13986
13987 mutex_lock(&dev->struct_mutex);
13988 intel_init_gt_powersave(dev);
13989 mutex_unlock(&dev->struct_mutex);
13990
13991 /*
13992 * There may be no VBT; and if the BIOS enabled SSC we can
13993 * just keep using it to avoid unnecessary flicker. Whereas if the
13994 * BIOS isn't using it, don't assume it will work even if the VBT
13995 * indicates as much.
13996 */
13997 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13998 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13999 DREF_SSC1_ENABLE);
14000
14001 intel_modeset_init_hw(dev);
14002
14003 intel_setup_overlay(dev);
14004
14005 /*
14006 * Make sure any fbs we allocated at startup are properly
14007 * pinned & fenced. When we do the allocation it's too early
14008 * for this.
14009 */
14010 mutex_lock(&dev->struct_mutex);
14011 for_each_crtc(dev, c) {
14012 obj = intel_fb_obj(c->primary->fb);
14013 if (obj == NULL)
14014 continue;
14015
14016 if (intel_pin_and_fence_fb_obj(c->primary,
14017 c->primary->fb,
14018 c->primary->state,
14019 NULL)) {
14020 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14021 to_intel_crtc(c)->pipe);
14022 drm_framebuffer_unreference(c->primary->fb);
14023 c->primary->fb = NULL;
14024 update_state_fb(c->primary);
14025 }
14026 }
14027 mutex_unlock(&dev->struct_mutex);
14028
14029 intel_backlight_register(dev);
14030 }
14031
14032 void intel_connector_unregister(struct intel_connector *intel_connector)
14033 {
14034 struct drm_connector *connector = &intel_connector->base;
14035
14036 intel_panel_destroy_backlight(connector);
14037 drm_connector_unregister(connector);
14038 }
14039
14040 void intel_modeset_cleanup(struct drm_device *dev)
14041 {
14042 struct drm_i915_private *dev_priv = dev->dev_private;
14043 struct drm_connector *connector;
14044
14045 intel_disable_gt_powersave(dev);
14046
14047 intel_backlight_unregister(dev);
14048
14049 /*
14050 * Interrupts and polling as the first thing to avoid creating havoc.
14051 * Too much stuff here (turning of connectors, ...) would
14052 * experience fancy races otherwise.
14053 */
14054 intel_irq_uninstall(dev_priv);
14055
14056 /*
14057 * Due to the hpd irq storm handling the hotplug work can re-arm the
14058 * poll handlers. Hence disable polling after hpd handling is shut down.
14059 */
14060 drm_kms_helper_poll_fini(dev);
14061
14062 mutex_lock(&dev->struct_mutex);
14063
14064 intel_unregister_dsm_handler();
14065
14066 intel_fbc_disable(dev);
14067
14068 mutex_unlock(&dev->struct_mutex);
14069
14070 /* flush any delayed tasks or pending work */
14071 flush_scheduled_work();
14072
14073 /* destroy the backlight and sysfs files before encoders/connectors */
14074 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14075 struct intel_connector *intel_connector;
14076
14077 intel_connector = to_intel_connector(connector);
14078 intel_connector->unregister(intel_connector);
14079 }
14080
14081 drm_mode_config_cleanup(dev);
14082
14083 intel_cleanup_overlay(dev);
14084
14085 mutex_lock(&dev->struct_mutex);
14086 intel_cleanup_gt_powersave(dev);
14087 mutex_unlock(&dev->struct_mutex);
14088 }
14089
14090 /*
14091 * Return which encoder is currently attached for connector.
14092 */
14093 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14094 {
14095 return &intel_attached_encoder(connector)->base;
14096 }
14097
14098 void intel_connector_attach_encoder(struct intel_connector *connector,
14099 struct intel_encoder *encoder)
14100 {
14101 connector->encoder = encoder;
14102 drm_mode_connector_attach_encoder(&connector->base,
14103 &encoder->base);
14104 }
14105
14106 /*
14107 * set vga decode state - true == enable VGA decode
14108 */
14109 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14110 {
14111 struct drm_i915_private *dev_priv = dev->dev_private;
14112 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14113 u16 gmch_ctrl;
14114
14115 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14116 DRM_ERROR("failed to read control word\n");
14117 return -EIO;
14118 }
14119
14120 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14121 return 0;
14122
14123 if (state)
14124 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14125 else
14126 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14127
14128 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14129 DRM_ERROR("failed to write control word\n");
14130 return -EIO;
14131 }
14132
14133 return 0;
14134 }
14135
14136 struct intel_display_error_state {
14137
14138 u32 power_well_driver;
14139
14140 int num_transcoders;
14141
14142 struct intel_cursor_error_state {
14143 u32 control;
14144 u32 position;
14145 u32 base;
14146 u32 size;
14147 } cursor[I915_MAX_PIPES];
14148
14149 struct intel_pipe_error_state {
14150 bool power_domain_on;
14151 u32 source;
14152 u32 stat;
14153 } pipe[I915_MAX_PIPES];
14154
14155 struct intel_plane_error_state {
14156 u32 control;
14157 u32 stride;
14158 u32 size;
14159 u32 pos;
14160 u32 addr;
14161 u32 surface;
14162 u32 tile_offset;
14163 } plane[I915_MAX_PIPES];
14164
14165 struct intel_transcoder_error_state {
14166 bool power_domain_on;
14167 enum transcoder cpu_transcoder;
14168
14169 u32 conf;
14170
14171 u32 htotal;
14172 u32 hblank;
14173 u32 hsync;
14174 u32 vtotal;
14175 u32 vblank;
14176 u32 vsync;
14177 } transcoder[4];
14178 };
14179
14180 struct intel_display_error_state *
14181 intel_display_capture_error_state(struct drm_device *dev)
14182 {
14183 struct drm_i915_private *dev_priv = dev->dev_private;
14184 struct intel_display_error_state *error;
14185 int transcoders[] = {
14186 TRANSCODER_A,
14187 TRANSCODER_B,
14188 TRANSCODER_C,
14189 TRANSCODER_EDP,
14190 };
14191 int i;
14192
14193 if (INTEL_INFO(dev)->num_pipes == 0)
14194 return NULL;
14195
14196 error = kzalloc(sizeof(*error), GFP_ATOMIC);
14197 if (error == NULL)
14198 return NULL;
14199
14200 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14201 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14202
14203 for_each_pipe(dev_priv, i) {
14204 error->pipe[i].power_domain_on =
14205 __intel_display_power_is_enabled(dev_priv,
14206 POWER_DOMAIN_PIPE(i));
14207 if (!error->pipe[i].power_domain_on)
14208 continue;
14209
14210 error->cursor[i].control = I915_READ(CURCNTR(i));
14211 error->cursor[i].position = I915_READ(CURPOS(i));
14212 error->cursor[i].base = I915_READ(CURBASE(i));
14213
14214 error->plane[i].control = I915_READ(DSPCNTR(i));
14215 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14216 if (INTEL_INFO(dev)->gen <= 3) {
14217 error->plane[i].size = I915_READ(DSPSIZE(i));
14218 error->plane[i].pos = I915_READ(DSPPOS(i));
14219 }
14220 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14221 error->plane[i].addr = I915_READ(DSPADDR(i));
14222 if (INTEL_INFO(dev)->gen >= 4) {
14223 error->plane[i].surface = I915_READ(DSPSURF(i));
14224 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14225 }
14226
14227 error->pipe[i].source = I915_READ(PIPESRC(i));
14228
14229 if (HAS_GMCH_DISPLAY(dev))
14230 error->pipe[i].stat = I915_READ(PIPESTAT(i));
14231 }
14232
14233 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14234 if (HAS_DDI(dev_priv->dev))
14235 error->num_transcoders++; /* Account for eDP. */
14236
14237 for (i = 0; i < error->num_transcoders; i++) {
14238 enum transcoder cpu_transcoder = transcoders[i];
14239
14240 error->transcoder[i].power_domain_on =
14241 __intel_display_power_is_enabled(dev_priv,
14242 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14243 if (!error->transcoder[i].power_domain_on)
14244 continue;
14245
14246 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14247
14248 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14249 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14250 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14251 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14252 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14253 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14254 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14255 }
14256
14257 return error;
14258 }
14259
14260 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14261
14262 void
14263 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14264 struct drm_device *dev,
14265 struct intel_display_error_state *error)
14266 {
14267 struct drm_i915_private *dev_priv = dev->dev_private;
14268 int i;
14269
14270 if (!error)
14271 return;
14272
14273 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14274 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14275 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14276 error->power_well_driver);
14277 for_each_pipe(dev_priv, i) {
14278 err_printf(m, "Pipe [%d]:\n", i);
14279 err_printf(m, " Power: %s\n",
14280 error->pipe[i].power_domain_on ? "on" : "off");
14281 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
14282 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
14283
14284 err_printf(m, "Plane [%d]:\n", i);
14285 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14286 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
14287 if (INTEL_INFO(dev)->gen <= 3) {
14288 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14289 err_printf(m, " POS: %08x\n", error->plane[i].pos);
14290 }
14291 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14292 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
14293 if (INTEL_INFO(dev)->gen >= 4) {
14294 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14295 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14296 }
14297
14298 err_printf(m, "Cursor [%d]:\n", i);
14299 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14300 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14301 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14302 }
14303
14304 for (i = 0; i < error->num_transcoders; i++) {
14305 err_printf(m, "CPU transcoder: %c\n",
14306 transcoder_name(error->transcoder[i].cpu_transcoder));
14307 err_printf(m, " Power: %s\n",
14308 error->transcoder[i].power_domain_on ? "on" : "off");
14309 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14310 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14311 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14312 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14313 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14314 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14315 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14316 }
14317 }
14318
14319 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14320 {
14321 struct intel_crtc *crtc;
14322
14323 for_each_intel_crtc(dev, crtc) {
14324 struct intel_unpin_work *work;
14325
14326 spin_lock_irq(&dev->event_lock);
14327
14328 work = crtc->unpin_work;
14329
14330 if (work && work->event &&
14331 work->event->base.file_priv == file) {
14332 kfree(work->event);
14333 work->event = NULL;
14334 }
14335
14336 spin_unlock_irq(&dev->event_lock);
14337 }
14338 }
This page took 0.437914 seconds and 6 git commands to generate.