drm/i915: remove HAS_eDP as unnecessary and inconsistent indirection
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
59
60 typedef struct {
61 int min, max;
62 } intel_range_t;
63
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75 int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
135 .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
149 .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 10, .max = 22 },
158 .m2 = { .min = 5, .max = 9 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
163 .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 10, .max = 22 },
172 .m2 = { .min = 5, .max = 9 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
177 .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
193 },
194 .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
208 .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
222 },
223 .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
237 },
238 .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 10, .p2_fast = 10 },
252 .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
258 /* Pineview's Ncounter is a ring counter */
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
261 /* Pineview only has one combined m divider, which we treat as m2. */
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
268 .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
282 .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
301 .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
315 .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
329 .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
341 .p1 = { .min = 2, .max = 8 },
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
344 .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
355 .p1 = { .min = 2, .max = 6 },
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
358 .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
371 .p2_slow = 10, .p2_fast = 10 },
372 .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
391 .vco = { .min = 4000000, .max = 5994000},
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
406 .n = { .min = 1, .max = 7 },
407 .m = { .min = 22, .max = 450 },
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419 unsigned long flags;
420 u32 val = 0;
421
422 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO idle wait timed out\n");
425 goto out_unlock;
426 }
427
428 I915_WRITE(DPIO_REG, reg);
429 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430 DPIO_BYTE);
431 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432 DRM_ERROR("DPIO read wait timed out\n");
433 goto out_unlock;
434 }
435 val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439 return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443 u32 val)
444 {
445 unsigned long flags;
446
447 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449 DRM_ERROR("DPIO idle wait timed out\n");
450 goto out_unlock;
451 }
452
453 I915_WRITE(DPIO_DATA, val);
454 I915_WRITE(DPIO_REG, reg);
455 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456 DPIO_BYTE);
457 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 /* Reset the DPIO config */
469 I915_WRITE(DPIO_CTL, 0);
470 POSTING_READ(DPIO_CTL);
471 I915_WRITE(DPIO_CTL, 1);
472 POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478 return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482 {
483 .callback = intel_dual_link_lvds_callback,
484 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485 .matches = {
486 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488 },
489 },
490 { } /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494 unsigned int reg)
495 {
496 unsigned int val;
497
498 /* use the module option value if specified */
499 if (i915_lvds_channel_mode > 0)
500 return i915_lvds_channel_mode == 2;
501
502 if (dmi_check_system(intel_dual_link_lvds))
503 return true;
504
505 if (dev_priv->lvds_val)
506 val = dev_priv->lvds_val;
507 else {
508 /* BIOS should set the proper LVDS register value at boot, but
509 * in reality, it doesn't set the value when the lid is closed;
510 * we need to check "the value to be set" in VBT when LVDS
511 * register is uninitialized.
512 */
513 val = I915_READ(reg);
514 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515 val = dev_priv->bios_lvds_val;
516 dev_priv->lvds_val = val;
517 }
518 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522 int refclk)
523 {
524 struct drm_device *dev = crtc->dev;
525 struct drm_i915_private *dev_priv = dev->dev_private;
526 const intel_limit_t *limit;
527
528 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530 /* LVDS dual channel */
531 if (refclk == 100000)
532 limit = &intel_limits_ironlake_dual_lvds_100m;
533 else
534 limit = &intel_limits_ironlake_dual_lvds;
535 } else {
536 if (refclk == 100000)
537 limit = &intel_limits_ironlake_single_lvds_100m;
538 else
539 limit = &intel_limits_ironlake_single_lvds;
540 }
541 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543 limit = &intel_limits_ironlake_display_port;
544 else
545 limit = &intel_limits_ironlake_dac;
546
547 return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552 struct drm_device *dev = crtc->dev;
553 struct drm_i915_private *dev_priv = dev->dev_private;
554 const intel_limit_t *limit;
555
556 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557 if (is_dual_link_lvds(dev_priv, LVDS))
558 /* LVDS with dual channel */
559 limit = &intel_limits_g4x_dual_channel_lvds;
560 else
561 /* LVDS with dual channel */
562 limit = &intel_limits_g4x_single_channel_lvds;
563 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565 limit = &intel_limits_g4x_hdmi;
566 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567 limit = &intel_limits_g4x_sdvo;
568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569 limit = &intel_limits_g4x_display_port;
570 } else /* The option is for other outputs */
571 limit = &intel_limits_i9xx_sdvo;
572
573 return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578 struct drm_device *dev = crtc->dev;
579 const intel_limit_t *limit;
580
581 if (HAS_PCH_SPLIT(dev))
582 limit = intel_ironlake_limit(crtc, refclk);
583 else if (IS_G4X(dev)) {
584 limit = intel_g4x_limit(crtc);
585 } else if (IS_PINEVIEW(dev)) {
586 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587 limit = &intel_limits_pineview_lvds;
588 else
589 limit = &intel_limits_pineview_sdvo;
590 } else if (IS_VALLEYVIEW(dev)) {
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592 limit = &intel_limits_vlv_dac;
593 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594 limit = &intel_limits_vlv_hdmi;
595 else
596 limit = &intel_limits_vlv_dp;
597 } else if (!IS_GEN2(dev)) {
598 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599 limit = &intel_limits_i9xx_lvds;
600 else
601 limit = &intel_limits_i9xx_sdvo;
602 } else {
603 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604 limit = &intel_limits_i8xx_lvds;
605 else
606 limit = &intel_limits_i8xx_dvo;
607 }
608 return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614 clock->m = clock->m2 + 2;
615 clock->p = clock->p1 * clock->p2;
616 clock->vco = refclk * clock->m / clock->n;
617 clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622 if (IS_PINEVIEW(dev)) {
623 pineview_clock(refclk, clock);
624 return;
625 }
626 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627 clock->p = clock->p1 * clock->p2;
628 clock->vco = refclk * clock->m / (clock->n + 2);
629 clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633 * Returns whether any output on the specified pipe is of the specified type
634 */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637 struct drm_device *dev = crtc->dev;
638 struct intel_encoder *encoder;
639
640 for_each_encoder_on_crtc(dev, crtc, encoder)
641 if (encoder->type == type)
642 return true;
643
644 return false;
645 }
646
647 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649 * Returns whether the given set of divisors are valid for a given refclk with
650 * the given connectors.
651 */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654 const intel_limit_t *limit,
655 const intel_clock_t *clock)
656 {
657 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
658 INTELPllInvalid("p1 out of range\n");
659 if (clock->p < limit->p.min || limit->p.max < clock->p)
660 INTELPllInvalid("p out of range\n");
661 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
662 INTELPllInvalid("m2 out of range\n");
663 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
664 INTELPllInvalid("m1 out of range\n");
665 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666 INTELPllInvalid("m1 <= m2\n");
667 if (clock->m < limit->m.min || limit->m.max < clock->m)
668 INTELPllInvalid("m out of range\n");
669 if (clock->n < limit->n.min || limit->n.max < clock->n)
670 INTELPllInvalid("n out of range\n");
671 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672 INTELPllInvalid("vco out of range\n");
673 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674 * connector, etc., rather than just a single range.
675 */
676 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677 INTELPllInvalid("dot out of range\n");
678
679 return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
686
687 {
688 struct drm_device *dev = crtc->dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 intel_clock_t clock;
691 int err = target;
692
693 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
694 (I915_READ(LVDS)) != 0) {
695 /*
696 * For LVDS, if the panel is on, just rely on its current
697 * settings for dual-channel. We haven't figured out how to
698 * reliably set up different single/dual channel state, if we
699 * even can.
700 */
701 if (is_dual_link_lvds(dev_priv, LVDS))
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
712 memset(best_clock, 0, sizeof(*best_clock));
713
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
718 /* m1 is always 0 in Pineview */
719 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
720 break;
721 for (clock.n = limit->n.min;
722 clock.n <= limit->n.max; clock.n++) {
723 for (clock.p1 = limit->p1.min;
724 clock.p1 <= limit->p1.max; clock.p1++) {
725 int this_err;
726
727 intel_clock(dev, refclk, &clock);
728 if (!intel_PLL_is_valid(dev, limit,
729 &clock))
730 continue;
731 if (match_clock &&
732 clock.p != match_clock->p)
733 continue;
734
735 this_err = abs(clock.dot - target);
736 if (this_err < err) {
737 *best_clock = clock;
738 err = this_err;
739 }
740 }
741 }
742 }
743 }
744
745 return (err != target);
746 }
747
748 static bool
749 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
750 int target, int refclk, intel_clock_t *match_clock,
751 intel_clock_t *best_clock)
752 {
753 struct drm_device *dev = crtc->dev;
754 struct drm_i915_private *dev_priv = dev->dev_private;
755 intel_clock_t clock;
756 int max_n;
757 bool found;
758 /* approximately equals target * 0.00585 */
759 int err_most = (target >> 8) + (target >> 9);
760 found = false;
761
762 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
763 int lvds_reg;
764
765 if (HAS_PCH_SPLIT(dev))
766 lvds_reg = PCH_LVDS;
767 else
768 lvds_reg = LVDS;
769 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
770 LVDS_CLKB_POWER_UP)
771 clock.p2 = limit->p2.p2_fast;
772 else
773 clock.p2 = limit->p2.p2_slow;
774 } else {
775 if (target < limit->p2.dot_limit)
776 clock.p2 = limit->p2.p2_slow;
777 else
778 clock.p2 = limit->p2.p2_fast;
779 }
780
781 memset(best_clock, 0, sizeof(*best_clock));
782 max_n = limit->n.max;
783 /* based on hardware requirement, prefer smaller n to precision */
784 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785 /* based on hardware requirement, prefere larger m1,m2 */
786 for (clock.m1 = limit->m1.max;
787 clock.m1 >= limit->m1.min; clock.m1--) {
788 for (clock.m2 = limit->m2.max;
789 clock.m2 >= limit->m2.min; clock.m2--) {
790 for (clock.p1 = limit->p1.max;
791 clock.p1 >= limit->p1.min; clock.p1--) {
792 int this_err;
793
794 intel_clock(dev, refclk, &clock);
795 if (!intel_PLL_is_valid(dev, limit,
796 &clock))
797 continue;
798 if (match_clock &&
799 clock.p != match_clock->p)
800 continue;
801
802 this_err = abs(clock.dot - target);
803 if (this_err < err_most) {
804 *best_clock = clock;
805 err_most = this_err;
806 max_n = clock.n;
807 found = true;
808 }
809 }
810 }
811 }
812 }
813 return found;
814 }
815
816 static bool
817 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820 {
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
823
824 if (target < 200000) {
825 clock.n = 1;
826 clock.p1 = 2;
827 clock.p2 = 10;
828 clock.m1 = 12;
829 clock.m2 = 9;
830 } else {
831 clock.n = 2;
832 clock.p1 = 1;
833 clock.p2 = 10;
834 clock.m1 = 14;
835 clock.m2 = 8;
836 }
837 intel_clock(dev, refclk, &clock);
838 memcpy(best_clock, &clock, sizeof(intel_clock_t));
839 return true;
840 }
841
842 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
843 static bool
844 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
845 int target, int refclk, intel_clock_t *match_clock,
846 intel_clock_t *best_clock)
847 {
848 intel_clock_t clock;
849 if (target < 200000) {
850 clock.p1 = 2;
851 clock.p2 = 10;
852 clock.n = 2;
853 clock.m1 = 23;
854 clock.m2 = 8;
855 } else {
856 clock.p1 = 1;
857 clock.p2 = 10;
858 clock.n = 1;
859 clock.m1 = 14;
860 clock.m2 = 2;
861 }
862 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863 clock.p = (clock.p1 * clock.p2);
864 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865 clock.vco = 0;
866 memcpy(best_clock, &clock, sizeof(intel_clock_t));
867 return true;
868 }
869 static bool
870 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *match_clock,
872 intel_clock_t *best_clock)
873 {
874 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875 u32 m, n, fastclk;
876 u32 updrate, minupdate, fracbits, p;
877 unsigned long bestppm, ppm, absppm;
878 int dotclk, flag;
879
880 flag = 0;
881 dotclk = target * 1000;
882 bestppm = 1000000;
883 ppm = absppm = 0;
884 fastclk = dotclk / (2*100);
885 updrate = 0;
886 minupdate = 19200;
887 fracbits = 1;
888 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889 bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891 /* based on hardware requirement, prefer smaller n to precision */
892 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893 updrate = refclk / n;
894 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896 if (p2 > 10)
897 p2 = p2 - 1;
898 p = p1 * p2;
899 /* based on hardware requirement, prefer bigger m1,m2 values */
900 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901 m2 = (((2*(fastclk * p * n / m1 )) +
902 refclk) / (2*refclk));
903 m = m1 * m2;
904 vco = updrate * m;
905 if (vco >= limit->vco.min && vco < limit->vco.max) {
906 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907 absppm = (ppm > 0) ? ppm : (-ppm);
908 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909 bestppm = 0;
910 flag = 1;
911 }
912 if (absppm < bestppm - 10) {
913 bestppm = absppm;
914 flag = 1;
915 }
916 if (flag) {
917 bestn = n;
918 bestm1 = m1;
919 bestm2 = m2;
920 bestp1 = p1;
921 bestp2 = p2;
922 flag = 0;
923 }
924 }
925 }
926 }
927 }
928 }
929 best_clock->n = bestn;
930 best_clock->m1 = bestm1;
931 best_clock->m2 = bestm2;
932 best_clock->p1 = bestp1;
933 best_clock->p2 = bestp2;
934
935 return true;
936 }
937
938 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939 enum pipe pipe)
940 {
941 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944 return intel_crtc->cpu_transcoder;
945 }
946
947 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948 {
949 struct drm_i915_private *dev_priv = dev->dev_private;
950 u32 frame, frame_reg = PIPEFRAME(pipe);
951
952 frame = I915_READ(frame_reg);
953
954 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955 DRM_DEBUG_KMS("vblank wait timed out\n");
956 }
957
958 /**
959 * intel_wait_for_vblank - wait for vblank on a given pipe
960 * @dev: drm device
961 * @pipe: pipe to wait for
962 *
963 * Wait for vblank to occur on a given pipe. Needed for various bits of
964 * mode setting code.
965 */
966 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
967 {
968 struct drm_i915_private *dev_priv = dev->dev_private;
969 int pipestat_reg = PIPESTAT(pipe);
970
971 if (INTEL_INFO(dev)->gen >= 5) {
972 ironlake_wait_for_vblank(dev, pipe);
973 return;
974 }
975
976 /* Clear existing vblank status. Note this will clear any other
977 * sticky status fields as well.
978 *
979 * This races with i915_driver_irq_handler() with the result
980 * that either function could miss a vblank event. Here it is not
981 * fatal, as we will either wait upon the next vblank interrupt or
982 * timeout. Generally speaking intel_wait_for_vblank() is only
983 * called during modeset at which time the GPU should be idle and
984 * should *not* be performing page flips and thus not waiting on
985 * vblanks...
986 * Currently, the result of us stealing a vblank from the irq
987 * handler is that a single frame will be skipped during swapbuffers.
988 */
989 I915_WRITE(pipestat_reg,
990 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
992 /* Wait for vblank interrupt bit to set */
993 if (wait_for(I915_READ(pipestat_reg) &
994 PIPE_VBLANK_INTERRUPT_STATUS,
995 50))
996 DRM_DEBUG_KMS("vblank wait timed out\n");
997 }
998
999 /*
1000 * intel_wait_for_pipe_off - wait for pipe to turn off
1001 * @dev: drm device
1002 * @pipe: pipe to wait for
1003 *
1004 * After disabling a pipe, we can't wait for vblank in the usual way,
1005 * spinning on the vblank interrupt status bit, since we won't actually
1006 * see an interrupt when the pipe is disabled.
1007 *
1008 * On Gen4 and above:
1009 * wait for the pipe register state bit to turn off
1010 *
1011 * Otherwise:
1012 * wait for the display line value to settle (it usually
1013 * ends up stopping at the start of the next frame).
1014 *
1015 */
1016 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1017 {
1018 struct drm_i915_private *dev_priv = dev->dev_private;
1019 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020 pipe);
1021
1022 if (INTEL_INFO(dev)->gen >= 4) {
1023 int reg = PIPECONF(cpu_transcoder);
1024
1025 /* Wait for the Pipe State to go off */
1026 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027 100))
1028 WARN(1, "pipe_off wait timed out\n");
1029 } else {
1030 u32 last_line, line_mask;
1031 int reg = PIPEDSL(pipe);
1032 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034 if (IS_GEN2(dev))
1035 line_mask = DSL_LINEMASK_GEN2;
1036 else
1037 line_mask = DSL_LINEMASK_GEN3;
1038
1039 /* Wait for the display line to settle */
1040 do {
1041 last_line = I915_READ(reg) & line_mask;
1042 mdelay(5);
1043 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044 time_after(timeout, jiffies));
1045 if (time_after(jiffies, timeout))
1046 WARN(1, "pipe_off wait timed out\n");
1047 }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052 return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1058 {
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075 struct intel_pch_pll *pll,
1076 struct intel_crtc *crtc,
1077 bool state)
1078 {
1079 u32 val;
1080 bool cur_state;
1081
1082 if (HAS_PCH_LPT(dev_priv->dev)) {
1083 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084 return;
1085 }
1086
1087 if (WARN (!pll,
1088 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089 return;
1090
1091 val = I915_READ(pll->pll_reg);
1092 cur_state = !!(val & DPLL_VCO_ENABLE);
1093 WARN(cur_state != state,
1094 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095 pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097 /* Make sure the selected PLL is correctly attached to the transcoder */
1098 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099 u32 pch_dpll;
1100
1101 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104 "PLL[%d] not attached to this transcoder %d: %08x\n",
1105 cur_state, crtc->pipe, pch_dpll)) {
1106 cur_state = !!(val >> (4*crtc->pipe + 3));
1107 WARN(cur_state != state,
1108 "PLL[%d] not %s on this transcoder %d: %08x\n",
1109 pll->pll_reg == _PCH_DPLL_B,
1110 state_string(state),
1111 crtc->pipe,
1112 val);
1113 }
1114 }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121 {
1122 int reg;
1123 u32 val;
1124 bool cur_state;
1125 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126 pipe);
1127
1128 if (IS_HASWELL(dev_priv->dev)) {
1129 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1130 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133 } else {
1134 reg = FDI_TX_CTL(pipe);
1135 val = I915_READ(reg);
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 int reg;
1149 u32 val;
1150 bool cur_state;
1151
1152 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1153 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1154 return;
1155 } else {
1156 reg = FDI_RX_CTL(pipe);
1157 val = I915_READ(reg);
1158 cur_state = !!(val & FDI_RX_ENABLE);
1159 }
1160 WARN(cur_state != state,
1161 "FDI RX state assertion failure (expected %s, current %s)\n",
1162 state_string(state), state_string(cur_state));
1163 }
1164 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1165 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1166
1167 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1168 enum pipe pipe)
1169 {
1170 int reg;
1171 u32 val;
1172
1173 /* ILK FDI PLL is always enabled */
1174 if (dev_priv->info->gen == 5)
1175 return;
1176
1177 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1178 if (IS_HASWELL(dev_priv->dev))
1179 return;
1180
1181 reg = FDI_TX_CTL(pipe);
1182 val = I915_READ(reg);
1183 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1184 }
1185
1186 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1187 enum pipe pipe)
1188 {
1189 int reg;
1190 u32 val;
1191
1192 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1193 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1194 return;
1195 }
1196 reg = FDI_RX_CTL(pipe);
1197 val = I915_READ(reg);
1198 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1199 }
1200
1201 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1202 enum pipe pipe)
1203 {
1204 int pp_reg, lvds_reg;
1205 u32 val;
1206 enum pipe panel_pipe = PIPE_A;
1207 bool locked = true;
1208
1209 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1210 pp_reg = PCH_PP_CONTROL;
1211 lvds_reg = PCH_LVDS;
1212 } else {
1213 pp_reg = PP_CONTROL;
1214 lvds_reg = LVDS;
1215 }
1216
1217 val = I915_READ(pp_reg);
1218 if (!(val & PANEL_POWER_ON) ||
1219 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1220 locked = false;
1221
1222 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1223 panel_pipe = PIPE_B;
1224
1225 WARN(panel_pipe == pipe && locked,
1226 "panel assertion failure, pipe %c regs locked\n",
1227 pipe_name(pipe));
1228 }
1229
1230 void assert_pipe(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1232 {
1233 int reg;
1234 u32 val;
1235 bool cur_state;
1236 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1237 pipe);
1238
1239 /* if we need the pipe A quirk it must be always on */
1240 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1241 state = true;
1242
1243 reg = PIPECONF(cpu_transcoder);
1244 val = I915_READ(reg);
1245 cur_state = !!(val & PIPECONF_ENABLE);
1246 WARN(cur_state != state,
1247 "pipe %c assertion failure (expected %s, current %s)\n",
1248 pipe_name(pipe), state_string(state), state_string(cur_state));
1249 }
1250
1251 static void assert_plane(struct drm_i915_private *dev_priv,
1252 enum plane plane, bool state)
1253 {
1254 int reg;
1255 u32 val;
1256 bool cur_state;
1257
1258 reg = DSPCNTR(plane);
1259 val = I915_READ(reg);
1260 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1261 WARN(cur_state != state,
1262 "plane %c assertion failure (expected %s, current %s)\n",
1263 plane_name(plane), state_string(state), state_string(cur_state));
1264 }
1265
1266 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1267 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1268
1269 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1270 enum pipe pipe)
1271 {
1272 int reg, i;
1273 u32 val;
1274 int cur_pipe;
1275
1276 /* Planes are fixed to pipes on ILK+ */
1277 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1278 reg = DSPCNTR(pipe);
1279 val = I915_READ(reg);
1280 WARN((val & DISPLAY_PLANE_ENABLE),
1281 "plane %c assertion failure, should be disabled but not\n",
1282 plane_name(pipe));
1283 return;
1284 }
1285
1286 /* Need to check both planes against the pipe */
1287 for (i = 0; i < 2; i++) {
1288 reg = DSPCNTR(i);
1289 val = I915_READ(reg);
1290 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1291 DISPPLANE_SEL_PIPE_SHIFT;
1292 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1293 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1294 plane_name(i), pipe_name(pipe));
1295 }
1296 }
1297
1298 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1299 {
1300 u32 val;
1301 bool enabled;
1302
1303 if (HAS_PCH_LPT(dev_priv->dev)) {
1304 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1305 return;
1306 }
1307
1308 val = I915_READ(PCH_DREF_CONTROL);
1309 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310 DREF_SUPERSPREAD_SOURCE_MASK));
1311 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1315 enum pipe pipe)
1316 {
1317 int reg;
1318 u32 val;
1319 bool enabled;
1320
1321 reg = TRANSCONF(pipe);
1322 val = I915_READ(reg);
1323 enabled = !!(val & TRANS_ENABLE);
1324 WARN(enabled,
1325 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326 pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330 enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332 if ((val & DP_PORT_EN) == 0)
1333 return false;
1334
1335 if (HAS_PCH_CPT(dev_priv->dev)) {
1336 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339 return false;
1340 } else {
1341 if ((val & DP_PIPE_MASK) != (pipe << 30))
1342 return false;
1343 }
1344 return true;
1345 }
1346
1347 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1348 enum pipe pipe, u32 val)
1349 {
1350 if ((val & PORT_ENABLE) == 0)
1351 return false;
1352
1353 if (HAS_PCH_CPT(dev_priv->dev)) {
1354 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1355 return false;
1356 } else {
1357 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1358 return false;
1359 }
1360 return true;
1361 }
1362
1363 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 val)
1365 {
1366 if ((val & LVDS_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1371 return false;
1372 } else {
1373 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1374 return false;
1375 }
1376 return true;
1377 }
1378
1379 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1380 enum pipe pipe, u32 val)
1381 {
1382 if ((val & ADPA_DAC_ENABLE) == 0)
1383 return false;
1384 if (HAS_PCH_CPT(dev_priv->dev)) {
1385 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1386 return false;
1387 } else {
1388 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1389 return false;
1390 }
1391 return true;
1392 }
1393
1394 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1395 enum pipe pipe, int reg, u32 port_sel)
1396 {
1397 u32 val = I915_READ(reg);
1398 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1399 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1400 reg, pipe_name(pipe));
1401
1402 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1403 && (val & DP_PIPEB_SELECT),
1404 "IBX PCH dp port still using transcoder B\n");
1405 }
1406
1407 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1408 enum pipe pipe, int reg)
1409 {
1410 u32 val = I915_READ(reg);
1411 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1412 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1413 reg, pipe_name(pipe));
1414
1415 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1416 && (val & SDVO_PIPE_B_SELECT),
1417 "IBX PCH hdmi port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1421 enum pipe pipe)
1422 {
1423 int reg;
1424 u32 val;
1425
1426 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1427 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1429
1430 reg = PCH_ADPA;
1431 val = I915_READ(reg);
1432 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1433 "PCH VGA enabled on transcoder %c, should be disabled\n",
1434 pipe_name(pipe));
1435
1436 reg = PCH_LVDS;
1437 val = I915_READ(reg);
1438 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1439 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1440 pipe_name(pipe));
1441
1442 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1443 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1445 }
1446
1447 /**
1448 * intel_enable_pll - enable a PLL
1449 * @dev_priv: i915 private structure
1450 * @pipe: pipe PLL to enable
1451 *
1452 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1453 * make sure the PLL reg is writable first though, since the panel write
1454 * protect mechanism may be enabled.
1455 *
1456 * Note! This is for pre-ILK only.
1457 *
1458 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1459 */
1460 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1461 {
1462 int reg;
1463 u32 val;
1464
1465 /* No really, not for ILK+ */
1466 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1467
1468 /* PLL is protected by panel, make sure we can write it */
1469 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1470 assert_panel_unlocked(dev_priv, pipe);
1471
1472 reg = DPLL(pipe);
1473 val = I915_READ(reg);
1474 val |= DPLL_VCO_ENABLE;
1475
1476 /* We do this three times for luck */
1477 I915_WRITE(reg, val);
1478 POSTING_READ(reg);
1479 udelay(150); /* wait for warmup */
1480 I915_WRITE(reg, val);
1481 POSTING_READ(reg);
1482 udelay(150); /* wait for warmup */
1483 I915_WRITE(reg, val);
1484 POSTING_READ(reg);
1485 udelay(150); /* wait for warmup */
1486 }
1487
1488 /**
1489 * intel_disable_pll - disable a PLL
1490 * @dev_priv: i915 private structure
1491 * @pipe: pipe PLL to disable
1492 *
1493 * Disable the PLL for @pipe, making sure the pipe is off first.
1494 *
1495 * Note! This is for pre-ILK only.
1496 */
1497 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1498 {
1499 int reg;
1500 u32 val;
1501
1502 /* Don't disable pipe A or pipe A PLLs if needed */
1503 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1504 return;
1505
1506 /* Make sure the pipe isn't still relying on us */
1507 assert_pipe_disabled(dev_priv, pipe);
1508
1509 reg = DPLL(pipe);
1510 val = I915_READ(reg);
1511 val &= ~DPLL_VCO_ENABLE;
1512 I915_WRITE(reg, val);
1513 POSTING_READ(reg);
1514 }
1515
1516 /* SBI access */
1517 static void
1518 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1519 {
1520 unsigned long flags;
1521
1522 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1523 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1524 100)) {
1525 DRM_ERROR("timeout waiting for SBI to become ready\n");
1526 goto out_unlock;
1527 }
1528
1529 I915_WRITE(SBI_ADDR,
1530 (reg << 16));
1531 I915_WRITE(SBI_DATA,
1532 value);
1533 I915_WRITE(SBI_CTL_STAT,
1534 SBI_BUSY |
1535 SBI_CTL_OP_CRWR);
1536
1537 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1538 100)) {
1539 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1540 goto out_unlock;
1541 }
1542
1543 out_unlock:
1544 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1545 }
1546
1547 static u32
1548 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1549 {
1550 unsigned long flags;
1551 u32 value = 0;
1552
1553 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1554 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1555 100)) {
1556 DRM_ERROR("timeout waiting for SBI to become ready\n");
1557 goto out_unlock;
1558 }
1559
1560 I915_WRITE(SBI_ADDR,
1561 (reg << 16));
1562 I915_WRITE(SBI_CTL_STAT,
1563 SBI_BUSY |
1564 SBI_CTL_OP_CRRD);
1565
1566 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1567 100)) {
1568 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1569 goto out_unlock;
1570 }
1571
1572 value = I915_READ(SBI_DATA);
1573
1574 out_unlock:
1575 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1576 return value;
1577 }
1578
1579 /**
1580 * ironlake_enable_pch_pll - enable PCH PLL
1581 * @dev_priv: i915 private structure
1582 * @pipe: pipe PLL to enable
1583 *
1584 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1585 * drives the transcoder clock.
1586 */
1587 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1588 {
1589 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1590 struct intel_pch_pll *pll;
1591 int reg;
1592 u32 val;
1593
1594 /* PCH PLLs only available on ILK, SNB and IVB */
1595 BUG_ON(dev_priv->info->gen < 5);
1596 pll = intel_crtc->pch_pll;
1597 if (pll == NULL)
1598 return;
1599
1600 if (WARN_ON(pll->refcount == 0))
1601 return;
1602
1603 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1604 pll->pll_reg, pll->active, pll->on,
1605 intel_crtc->base.base.id);
1606
1607 /* PCH refclock must be enabled first */
1608 assert_pch_refclk_enabled(dev_priv);
1609
1610 if (pll->active++ && pll->on) {
1611 assert_pch_pll_enabled(dev_priv, pll, NULL);
1612 return;
1613 }
1614
1615 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1616
1617 reg = pll->pll_reg;
1618 val = I915_READ(reg);
1619 val |= DPLL_VCO_ENABLE;
1620 I915_WRITE(reg, val);
1621 POSTING_READ(reg);
1622 udelay(200);
1623
1624 pll->on = true;
1625 }
1626
1627 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1628 {
1629 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1630 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1631 int reg;
1632 u32 val;
1633
1634 /* PCH only available on ILK+ */
1635 BUG_ON(dev_priv->info->gen < 5);
1636 if (pll == NULL)
1637 return;
1638
1639 if (WARN_ON(pll->refcount == 0))
1640 return;
1641
1642 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1643 pll->pll_reg, pll->active, pll->on,
1644 intel_crtc->base.base.id);
1645
1646 if (WARN_ON(pll->active == 0)) {
1647 assert_pch_pll_disabled(dev_priv, pll, NULL);
1648 return;
1649 }
1650
1651 if (--pll->active) {
1652 assert_pch_pll_enabled(dev_priv, pll, NULL);
1653 return;
1654 }
1655
1656 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1657
1658 /* Make sure transcoder isn't still depending on us */
1659 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1660
1661 reg = pll->pll_reg;
1662 val = I915_READ(reg);
1663 val &= ~DPLL_VCO_ENABLE;
1664 I915_WRITE(reg, val);
1665 POSTING_READ(reg);
1666 udelay(200);
1667
1668 pll->on = false;
1669 }
1670
1671 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1672 enum pipe pipe)
1673 {
1674 struct drm_device *dev = dev_priv->dev;
1675 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1676 uint32_t reg, val, pipeconf_val;
1677
1678 /* PCH only available on ILK+ */
1679 BUG_ON(dev_priv->info->gen < 5);
1680
1681 /* Make sure PCH DPLL is enabled */
1682 assert_pch_pll_enabled(dev_priv,
1683 to_intel_crtc(crtc)->pch_pll,
1684 to_intel_crtc(crtc));
1685
1686 /* FDI must be feeding us bits for PCH ports */
1687 assert_fdi_tx_enabled(dev_priv, pipe);
1688 assert_fdi_rx_enabled(dev_priv, pipe);
1689
1690 if (HAS_PCH_CPT(dev)) {
1691 /* Workaround: Set the timing override bit before enabling the
1692 * pch transcoder. */
1693 reg = TRANS_CHICKEN2(pipe);
1694 val = I915_READ(reg);
1695 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1696 I915_WRITE(reg, val);
1697 }
1698
1699 reg = TRANSCONF(pipe);
1700 val = I915_READ(reg);
1701 pipeconf_val = I915_READ(PIPECONF(pipe));
1702
1703 if (HAS_PCH_IBX(dev_priv->dev)) {
1704 /*
1705 * make the BPC in transcoder be consistent with
1706 * that in pipeconf reg.
1707 */
1708 val &= ~PIPE_BPC_MASK;
1709 val |= pipeconf_val & PIPE_BPC_MASK;
1710 }
1711
1712 val &= ~TRANS_INTERLACE_MASK;
1713 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1714 if (HAS_PCH_IBX(dev_priv->dev) &&
1715 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1716 val |= TRANS_LEGACY_INTERLACED_ILK;
1717 else
1718 val |= TRANS_INTERLACED;
1719 else
1720 val |= TRANS_PROGRESSIVE;
1721
1722 I915_WRITE(reg, val | TRANS_ENABLE);
1723 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1724 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1725 }
1726
1727 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1728 enum transcoder cpu_transcoder)
1729 {
1730 u32 val, pipeconf_val;
1731
1732 /* PCH only available on ILK+ */
1733 BUG_ON(dev_priv->info->gen < 5);
1734
1735 /* FDI must be feeding us bits for PCH ports */
1736 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1737 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1738
1739 /* Workaround: set timing override bit. */
1740 val = I915_READ(_TRANSA_CHICKEN2);
1741 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1742 I915_WRITE(_TRANSA_CHICKEN2, val);
1743
1744 val = TRANS_ENABLE;
1745 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1746
1747 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1748 PIPECONF_INTERLACED_ILK)
1749 val |= TRANS_INTERLACED;
1750 else
1751 val |= TRANS_PROGRESSIVE;
1752
1753 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1754 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1755 DRM_ERROR("Failed to enable PCH transcoder\n");
1756 }
1757
1758 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1759 enum pipe pipe)
1760 {
1761 struct drm_device *dev = dev_priv->dev;
1762 uint32_t reg, val;
1763
1764 /* FDI relies on the transcoder */
1765 assert_fdi_tx_disabled(dev_priv, pipe);
1766 assert_fdi_rx_disabled(dev_priv, pipe);
1767
1768 /* Ports must be off as well */
1769 assert_pch_ports_disabled(dev_priv, pipe);
1770
1771 reg = TRANSCONF(pipe);
1772 val = I915_READ(reg);
1773 val &= ~TRANS_ENABLE;
1774 I915_WRITE(reg, val);
1775 /* wait for PCH transcoder off, transcoder state */
1776 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1777 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1778
1779 if (!HAS_PCH_IBX(dev)) {
1780 /* Workaround: Clear the timing override chicken bit again. */
1781 reg = TRANS_CHICKEN2(pipe);
1782 val = I915_READ(reg);
1783 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1784 I915_WRITE(reg, val);
1785 }
1786 }
1787
1788 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1789 {
1790 u32 val;
1791
1792 val = I915_READ(_TRANSACONF);
1793 val &= ~TRANS_ENABLE;
1794 I915_WRITE(_TRANSACONF, val);
1795 /* wait for PCH transcoder off, transcoder state */
1796 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1797 DRM_ERROR("Failed to disable PCH transcoder\n");
1798
1799 /* Workaround: clear timing override bit. */
1800 val = I915_READ(_TRANSA_CHICKEN2);
1801 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1802 I915_WRITE(_TRANSA_CHICKEN2, val);
1803 }
1804
1805 /**
1806 * intel_enable_pipe - enable a pipe, asserting requirements
1807 * @dev_priv: i915 private structure
1808 * @pipe: pipe to enable
1809 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1810 *
1811 * Enable @pipe, making sure that various hardware specific requirements
1812 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1813 *
1814 * @pipe should be %PIPE_A or %PIPE_B.
1815 *
1816 * Will wait until the pipe is actually running (i.e. first vblank) before
1817 * returning.
1818 */
1819 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1820 bool pch_port)
1821 {
1822 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1823 pipe);
1824 int reg;
1825 u32 val;
1826
1827 /*
1828 * A pipe without a PLL won't actually be able to drive bits from
1829 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1830 * need the check.
1831 */
1832 if (!HAS_PCH_SPLIT(dev_priv->dev))
1833 assert_pll_enabled(dev_priv, pipe);
1834 else {
1835 if (pch_port) {
1836 /* if driving the PCH, we need FDI enabled */
1837 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1838 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1839 }
1840 /* FIXME: assert CPU port conditions for SNB+ */
1841 }
1842
1843 reg = PIPECONF(cpu_transcoder);
1844 val = I915_READ(reg);
1845 if (val & PIPECONF_ENABLE)
1846 return;
1847
1848 I915_WRITE(reg, val | PIPECONF_ENABLE);
1849 intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 /**
1853 * intel_disable_pipe - disable a pipe, asserting requirements
1854 * @dev_priv: i915 private structure
1855 * @pipe: pipe to disable
1856 *
1857 * Disable @pipe, making sure that various hardware specific requirements
1858 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1859 *
1860 * @pipe should be %PIPE_A or %PIPE_B.
1861 *
1862 * Will wait until the pipe has shut down before returning.
1863 */
1864 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1865 enum pipe pipe)
1866 {
1867 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1868 pipe);
1869 int reg;
1870 u32 val;
1871
1872 /*
1873 * Make sure planes won't keep trying to pump pixels to us,
1874 * or we might hang the display.
1875 */
1876 assert_planes_disabled(dev_priv, pipe);
1877
1878 /* Don't disable pipe A or pipe A PLLs if needed */
1879 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1880 return;
1881
1882 reg = PIPECONF(cpu_transcoder);
1883 val = I915_READ(reg);
1884 if ((val & PIPECONF_ENABLE) == 0)
1885 return;
1886
1887 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1888 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1889 }
1890
1891 /*
1892 * Plane regs are double buffered, going from enabled->disabled needs a
1893 * trigger in order to latch. The display address reg provides this.
1894 */
1895 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1896 enum plane plane)
1897 {
1898 if (dev_priv->info->gen >= 4)
1899 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1900 else
1901 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1902 }
1903
1904 /**
1905 * intel_enable_plane - enable a display plane on a given pipe
1906 * @dev_priv: i915 private structure
1907 * @plane: plane to enable
1908 * @pipe: pipe being fed
1909 *
1910 * Enable @plane on @pipe, making sure that @pipe is running first.
1911 */
1912 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1913 enum plane plane, enum pipe pipe)
1914 {
1915 int reg;
1916 u32 val;
1917
1918 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1919 assert_pipe_enabled(dev_priv, pipe);
1920
1921 reg = DSPCNTR(plane);
1922 val = I915_READ(reg);
1923 if (val & DISPLAY_PLANE_ENABLE)
1924 return;
1925
1926 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1927 intel_flush_display_plane(dev_priv, plane);
1928 intel_wait_for_vblank(dev_priv->dev, pipe);
1929 }
1930
1931 /**
1932 * intel_disable_plane - disable a display plane
1933 * @dev_priv: i915 private structure
1934 * @plane: plane to disable
1935 * @pipe: pipe consuming the data
1936 *
1937 * Disable @plane; should be an independent operation.
1938 */
1939 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1940 enum plane plane, enum pipe pipe)
1941 {
1942 int reg;
1943 u32 val;
1944
1945 reg = DSPCNTR(plane);
1946 val = I915_READ(reg);
1947 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1948 return;
1949
1950 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1951 intel_flush_display_plane(dev_priv, plane);
1952 intel_wait_for_vblank(dev_priv->dev, pipe);
1953 }
1954
1955 int
1956 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1957 struct drm_i915_gem_object *obj,
1958 struct intel_ring_buffer *pipelined)
1959 {
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 u32 alignment;
1962 int ret;
1963
1964 switch (obj->tiling_mode) {
1965 case I915_TILING_NONE:
1966 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1967 alignment = 128 * 1024;
1968 else if (INTEL_INFO(dev)->gen >= 4)
1969 alignment = 4 * 1024;
1970 else
1971 alignment = 64 * 1024;
1972 break;
1973 case I915_TILING_X:
1974 /* pin() will align the object as required by fence */
1975 alignment = 0;
1976 break;
1977 case I915_TILING_Y:
1978 /* FIXME: Is this true? */
1979 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1980 return -EINVAL;
1981 default:
1982 BUG();
1983 }
1984
1985 dev_priv->mm.interruptible = false;
1986 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1987 if (ret)
1988 goto err_interruptible;
1989
1990 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1991 * fence, whereas 965+ only requires a fence if using
1992 * framebuffer compression. For simplicity, we always install
1993 * a fence as the cost is not that onerous.
1994 */
1995 ret = i915_gem_object_get_fence(obj);
1996 if (ret)
1997 goto err_unpin;
1998
1999 i915_gem_object_pin_fence(obj);
2000
2001 dev_priv->mm.interruptible = true;
2002 return 0;
2003
2004 err_unpin:
2005 i915_gem_object_unpin(obj);
2006 err_interruptible:
2007 dev_priv->mm.interruptible = true;
2008 return ret;
2009 }
2010
2011 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2012 {
2013 i915_gem_object_unpin_fence(obj);
2014 i915_gem_object_unpin(obj);
2015 }
2016
2017 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2018 * is assumed to be a power-of-two. */
2019 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2020 unsigned int bpp,
2021 unsigned int pitch)
2022 {
2023 int tile_rows, tiles;
2024
2025 tile_rows = *y / 8;
2026 *y %= 8;
2027 tiles = *x / (512/bpp);
2028 *x %= 512/bpp;
2029
2030 return tile_rows * pitch * 8 + tiles * 4096;
2031 }
2032
2033 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2034 int x, int y)
2035 {
2036 struct drm_device *dev = crtc->dev;
2037 struct drm_i915_private *dev_priv = dev->dev_private;
2038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039 struct intel_framebuffer *intel_fb;
2040 struct drm_i915_gem_object *obj;
2041 int plane = intel_crtc->plane;
2042 unsigned long linear_offset;
2043 u32 dspcntr;
2044 u32 reg;
2045
2046 switch (plane) {
2047 case 0:
2048 case 1:
2049 break;
2050 default:
2051 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2052 return -EINVAL;
2053 }
2054
2055 intel_fb = to_intel_framebuffer(fb);
2056 obj = intel_fb->obj;
2057
2058 reg = DSPCNTR(plane);
2059 dspcntr = I915_READ(reg);
2060 /* Mask out pixel format bits in case we change it */
2061 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2062 switch (fb->pixel_format) {
2063 case DRM_FORMAT_C8:
2064 dspcntr |= DISPPLANE_8BPP;
2065 break;
2066 case DRM_FORMAT_XRGB1555:
2067 case DRM_FORMAT_ARGB1555:
2068 dspcntr |= DISPPLANE_BGRX555;
2069 break;
2070 case DRM_FORMAT_RGB565:
2071 dspcntr |= DISPPLANE_BGRX565;
2072 break;
2073 case DRM_FORMAT_XRGB8888:
2074 case DRM_FORMAT_ARGB8888:
2075 dspcntr |= DISPPLANE_BGRX888;
2076 break;
2077 case DRM_FORMAT_XBGR8888:
2078 case DRM_FORMAT_ABGR8888:
2079 dspcntr |= DISPPLANE_RGBX888;
2080 break;
2081 case DRM_FORMAT_XRGB2101010:
2082 case DRM_FORMAT_ARGB2101010:
2083 dspcntr |= DISPPLANE_BGRX101010;
2084 break;
2085 case DRM_FORMAT_XBGR2101010:
2086 case DRM_FORMAT_ABGR2101010:
2087 dspcntr |= DISPPLANE_RGBX101010;
2088 break;
2089 default:
2090 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2091 return -EINVAL;
2092 }
2093
2094 if (INTEL_INFO(dev)->gen >= 4) {
2095 if (obj->tiling_mode != I915_TILING_NONE)
2096 dspcntr |= DISPPLANE_TILED;
2097 else
2098 dspcntr &= ~DISPPLANE_TILED;
2099 }
2100
2101 I915_WRITE(reg, dspcntr);
2102
2103 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2104
2105 if (INTEL_INFO(dev)->gen >= 4) {
2106 intel_crtc->dspaddr_offset =
2107 intel_gen4_compute_offset_xtiled(&x, &y,
2108 fb->bits_per_pixel / 8,
2109 fb->pitches[0]);
2110 linear_offset -= intel_crtc->dspaddr_offset;
2111 } else {
2112 intel_crtc->dspaddr_offset = linear_offset;
2113 }
2114
2115 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2116 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2117 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2118 if (INTEL_INFO(dev)->gen >= 4) {
2119 I915_MODIFY_DISPBASE(DSPSURF(plane),
2120 obj->gtt_offset + intel_crtc->dspaddr_offset);
2121 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2122 I915_WRITE(DSPLINOFF(plane), linear_offset);
2123 } else
2124 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2125 POSTING_READ(reg);
2126
2127 return 0;
2128 }
2129
2130 static int ironlake_update_plane(struct drm_crtc *crtc,
2131 struct drm_framebuffer *fb, int x, int y)
2132 {
2133 struct drm_device *dev = crtc->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136 struct intel_framebuffer *intel_fb;
2137 struct drm_i915_gem_object *obj;
2138 int plane = intel_crtc->plane;
2139 unsigned long linear_offset;
2140 u32 dspcntr;
2141 u32 reg;
2142
2143 switch (plane) {
2144 case 0:
2145 case 1:
2146 case 2:
2147 break;
2148 default:
2149 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2150 return -EINVAL;
2151 }
2152
2153 intel_fb = to_intel_framebuffer(fb);
2154 obj = intel_fb->obj;
2155
2156 reg = DSPCNTR(plane);
2157 dspcntr = I915_READ(reg);
2158 /* Mask out pixel format bits in case we change it */
2159 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2160 switch (fb->pixel_format) {
2161 case DRM_FORMAT_C8:
2162 dspcntr |= DISPPLANE_8BPP;
2163 break;
2164 case DRM_FORMAT_RGB565:
2165 dspcntr |= DISPPLANE_BGRX565;
2166 break;
2167 case DRM_FORMAT_XRGB8888:
2168 case DRM_FORMAT_ARGB8888:
2169 dspcntr |= DISPPLANE_BGRX888;
2170 break;
2171 case DRM_FORMAT_XBGR8888:
2172 case DRM_FORMAT_ABGR8888:
2173 dspcntr |= DISPPLANE_RGBX888;
2174 break;
2175 case DRM_FORMAT_XRGB2101010:
2176 case DRM_FORMAT_ARGB2101010:
2177 dspcntr |= DISPPLANE_BGRX101010;
2178 break;
2179 case DRM_FORMAT_XBGR2101010:
2180 case DRM_FORMAT_ABGR2101010:
2181 dspcntr |= DISPPLANE_RGBX101010;
2182 break;
2183 default:
2184 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2185 return -EINVAL;
2186 }
2187
2188 if (obj->tiling_mode != I915_TILING_NONE)
2189 dspcntr |= DISPPLANE_TILED;
2190 else
2191 dspcntr &= ~DISPPLANE_TILED;
2192
2193 /* must disable */
2194 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2195
2196 I915_WRITE(reg, dspcntr);
2197
2198 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2199 intel_crtc->dspaddr_offset =
2200 intel_gen4_compute_offset_xtiled(&x, &y,
2201 fb->bits_per_pixel / 8,
2202 fb->pitches[0]);
2203 linear_offset -= intel_crtc->dspaddr_offset;
2204
2205 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2206 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2207 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2208 I915_MODIFY_DISPBASE(DSPSURF(plane),
2209 obj->gtt_offset + intel_crtc->dspaddr_offset);
2210 if (IS_HASWELL(dev)) {
2211 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2212 } else {
2213 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2214 I915_WRITE(DSPLINOFF(plane), linear_offset);
2215 }
2216 POSTING_READ(reg);
2217
2218 return 0;
2219 }
2220
2221 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2222 static int
2223 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2224 int x, int y, enum mode_set_atomic state)
2225 {
2226 struct drm_device *dev = crtc->dev;
2227 struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229 if (dev_priv->display.disable_fbc)
2230 dev_priv->display.disable_fbc(dev);
2231 intel_increase_pllclock(crtc);
2232
2233 return dev_priv->display.update_plane(crtc, fb, x, y);
2234 }
2235
2236 static int
2237 intel_finish_fb(struct drm_framebuffer *old_fb)
2238 {
2239 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2240 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241 bool was_interruptible = dev_priv->mm.interruptible;
2242 int ret;
2243
2244 wait_event(dev_priv->pending_flip_queue,
2245 atomic_read(&dev_priv->mm.wedged) ||
2246 atomic_read(&obj->pending_flip) == 0);
2247
2248 /* Big Hammer, we also need to ensure that any pending
2249 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2250 * current scanout is retired before unpinning the old
2251 * framebuffer.
2252 *
2253 * This should only fail upon a hung GPU, in which case we
2254 * can safely continue.
2255 */
2256 dev_priv->mm.interruptible = false;
2257 ret = i915_gem_object_finish_gpu(obj);
2258 dev_priv->mm.interruptible = was_interruptible;
2259
2260 return ret;
2261 }
2262
2263 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2264 {
2265 struct drm_device *dev = crtc->dev;
2266 struct drm_i915_master_private *master_priv;
2267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2268
2269 if (!dev->primary->master)
2270 return;
2271
2272 master_priv = dev->primary->master->driver_priv;
2273 if (!master_priv->sarea_priv)
2274 return;
2275
2276 switch (intel_crtc->pipe) {
2277 case 0:
2278 master_priv->sarea_priv->pipeA_x = x;
2279 master_priv->sarea_priv->pipeA_y = y;
2280 break;
2281 case 1:
2282 master_priv->sarea_priv->pipeB_x = x;
2283 master_priv->sarea_priv->pipeB_y = y;
2284 break;
2285 default:
2286 break;
2287 }
2288 }
2289
2290 static int
2291 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2292 struct drm_framebuffer *fb)
2293 {
2294 struct drm_device *dev = crtc->dev;
2295 struct drm_i915_private *dev_priv = dev->dev_private;
2296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297 struct drm_framebuffer *old_fb;
2298 int ret;
2299
2300 /* no fb bound */
2301 if (!fb) {
2302 DRM_ERROR("No FB bound\n");
2303 return 0;
2304 }
2305
2306 if(intel_crtc->plane > dev_priv->num_pipe) {
2307 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2308 intel_crtc->plane,
2309 dev_priv->num_pipe);
2310 return -EINVAL;
2311 }
2312
2313 mutex_lock(&dev->struct_mutex);
2314 ret = intel_pin_and_fence_fb_obj(dev,
2315 to_intel_framebuffer(fb)->obj,
2316 NULL);
2317 if (ret != 0) {
2318 mutex_unlock(&dev->struct_mutex);
2319 DRM_ERROR("pin & fence failed\n");
2320 return ret;
2321 }
2322
2323 if (crtc->fb)
2324 intel_finish_fb(crtc->fb);
2325
2326 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327 if (ret) {
2328 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2329 mutex_unlock(&dev->struct_mutex);
2330 DRM_ERROR("failed to update base address\n");
2331 return ret;
2332 }
2333
2334 old_fb = crtc->fb;
2335 crtc->fb = fb;
2336 crtc->x = x;
2337 crtc->y = y;
2338
2339 if (old_fb) {
2340 intel_wait_for_vblank(dev, intel_crtc->pipe);
2341 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2342 }
2343
2344 intel_update_fbc(dev);
2345 mutex_unlock(&dev->struct_mutex);
2346
2347 intel_crtc_update_sarea_pos(crtc, x, y);
2348
2349 return 0;
2350 }
2351
2352 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2353 {
2354 struct drm_device *dev = crtc->dev;
2355 struct drm_i915_private *dev_priv = dev->dev_private;
2356 u32 dpa_ctl;
2357
2358 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2359 dpa_ctl = I915_READ(DP_A);
2360 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2361
2362 if (clock < 200000) {
2363 u32 temp;
2364 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2365 /* workaround for 160Mhz:
2366 1) program 0x4600c bits 15:0 = 0x8124
2367 2) program 0x46010 bit 0 = 1
2368 3) program 0x46034 bit 24 = 1
2369 4) program 0x64000 bit 14 = 1
2370 */
2371 temp = I915_READ(0x4600c);
2372 temp &= 0xffff0000;
2373 I915_WRITE(0x4600c, temp | 0x8124);
2374
2375 temp = I915_READ(0x46010);
2376 I915_WRITE(0x46010, temp | 1);
2377
2378 temp = I915_READ(0x46034);
2379 I915_WRITE(0x46034, temp | (1 << 24));
2380 } else {
2381 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2382 }
2383 I915_WRITE(DP_A, dpa_ctl);
2384
2385 POSTING_READ(DP_A);
2386 udelay(500);
2387 }
2388
2389 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2390 {
2391 struct drm_device *dev = crtc->dev;
2392 struct drm_i915_private *dev_priv = dev->dev_private;
2393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394 int pipe = intel_crtc->pipe;
2395 u32 reg, temp;
2396
2397 /* enable normal train */
2398 reg = FDI_TX_CTL(pipe);
2399 temp = I915_READ(reg);
2400 if (IS_IVYBRIDGE(dev)) {
2401 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2402 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2403 } else {
2404 temp &= ~FDI_LINK_TRAIN_NONE;
2405 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2406 }
2407 I915_WRITE(reg, temp);
2408
2409 reg = FDI_RX_CTL(pipe);
2410 temp = I915_READ(reg);
2411 if (HAS_PCH_CPT(dev)) {
2412 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2413 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2414 } else {
2415 temp &= ~FDI_LINK_TRAIN_NONE;
2416 temp |= FDI_LINK_TRAIN_NONE;
2417 }
2418 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2419
2420 /* wait one idle pattern time */
2421 POSTING_READ(reg);
2422 udelay(1000);
2423
2424 /* IVB wants error correction enabled */
2425 if (IS_IVYBRIDGE(dev))
2426 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2427 FDI_FE_ERRC_ENABLE);
2428 }
2429
2430 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2431 {
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 u32 flags = I915_READ(SOUTH_CHICKEN1);
2434
2435 flags |= FDI_PHASE_SYNC_OVR(pipe);
2436 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2437 flags |= FDI_PHASE_SYNC_EN(pipe);
2438 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2439 POSTING_READ(SOUTH_CHICKEN1);
2440 }
2441
2442 static void ivb_modeset_global_resources(struct drm_device *dev)
2443 {
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 struct intel_crtc *pipe_B_crtc =
2446 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2447 struct intel_crtc *pipe_C_crtc =
2448 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2449 uint32_t temp;
2450
2451 /* When everything is off disable fdi C so that we could enable fdi B
2452 * with all lanes. XXX: This misses the case where a pipe is not using
2453 * any pch resources and so doesn't need any fdi lanes. */
2454 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2455 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2456 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2457
2458 temp = I915_READ(SOUTH_CHICKEN1);
2459 temp &= ~FDI_BC_BIFURCATION_SELECT;
2460 DRM_DEBUG_KMS("disabling fdi C rx\n");
2461 I915_WRITE(SOUTH_CHICKEN1, temp);
2462 }
2463 }
2464
2465 /* The FDI link training functions for ILK/Ibexpeak. */
2466 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2467 {
2468 struct drm_device *dev = crtc->dev;
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2471 int pipe = intel_crtc->pipe;
2472 int plane = intel_crtc->plane;
2473 u32 reg, temp, tries;
2474
2475 /* FDI needs bits from pipe & plane first */
2476 assert_pipe_enabled(dev_priv, pipe);
2477 assert_plane_enabled(dev_priv, plane);
2478
2479 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2480 for train result */
2481 reg = FDI_RX_IMR(pipe);
2482 temp = I915_READ(reg);
2483 temp &= ~FDI_RX_SYMBOL_LOCK;
2484 temp &= ~FDI_RX_BIT_LOCK;
2485 I915_WRITE(reg, temp);
2486 I915_READ(reg);
2487 udelay(150);
2488
2489 /* enable CPU FDI TX and PCH FDI RX */
2490 reg = FDI_TX_CTL(pipe);
2491 temp = I915_READ(reg);
2492 temp &= ~(7 << 19);
2493 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2494 temp &= ~FDI_LINK_TRAIN_NONE;
2495 temp |= FDI_LINK_TRAIN_PATTERN_1;
2496 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2503
2504 POSTING_READ(reg);
2505 udelay(150);
2506
2507 /* Ironlake workaround, enable clock pointer after FDI enable*/
2508 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2509 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2510 FDI_RX_PHASE_SYNC_POINTER_EN);
2511
2512 reg = FDI_RX_IIR(pipe);
2513 for (tries = 0; tries < 5; tries++) {
2514 temp = I915_READ(reg);
2515 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2516
2517 if ((temp & FDI_RX_BIT_LOCK)) {
2518 DRM_DEBUG_KMS("FDI train 1 done.\n");
2519 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2520 break;
2521 }
2522 }
2523 if (tries == 5)
2524 DRM_ERROR("FDI train 1 fail!\n");
2525
2526 /* Train 2 */
2527 reg = FDI_TX_CTL(pipe);
2528 temp = I915_READ(reg);
2529 temp &= ~FDI_LINK_TRAIN_NONE;
2530 temp |= FDI_LINK_TRAIN_PATTERN_2;
2531 I915_WRITE(reg, temp);
2532
2533 reg = FDI_RX_CTL(pipe);
2534 temp = I915_READ(reg);
2535 temp &= ~FDI_LINK_TRAIN_NONE;
2536 temp |= FDI_LINK_TRAIN_PATTERN_2;
2537 I915_WRITE(reg, temp);
2538
2539 POSTING_READ(reg);
2540 udelay(150);
2541
2542 reg = FDI_RX_IIR(pipe);
2543 for (tries = 0; tries < 5; tries++) {
2544 temp = I915_READ(reg);
2545 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2546
2547 if (temp & FDI_RX_SYMBOL_LOCK) {
2548 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2549 DRM_DEBUG_KMS("FDI train 2 done.\n");
2550 break;
2551 }
2552 }
2553 if (tries == 5)
2554 DRM_ERROR("FDI train 2 fail!\n");
2555
2556 DRM_DEBUG_KMS("FDI train done\n");
2557
2558 }
2559
2560 static const int snb_b_fdi_train_param[] = {
2561 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2562 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2563 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2564 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2565 };
2566
2567 /* The FDI link training functions for SNB/Cougarpoint. */
2568 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2569 {
2570 struct drm_device *dev = crtc->dev;
2571 struct drm_i915_private *dev_priv = dev->dev_private;
2572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2573 int pipe = intel_crtc->pipe;
2574 u32 reg, temp, i, retry;
2575
2576 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2577 for train result */
2578 reg = FDI_RX_IMR(pipe);
2579 temp = I915_READ(reg);
2580 temp &= ~FDI_RX_SYMBOL_LOCK;
2581 temp &= ~FDI_RX_BIT_LOCK;
2582 I915_WRITE(reg, temp);
2583
2584 POSTING_READ(reg);
2585 udelay(150);
2586
2587 /* enable CPU FDI TX and PCH FDI RX */
2588 reg = FDI_TX_CTL(pipe);
2589 temp = I915_READ(reg);
2590 temp &= ~(7 << 19);
2591 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2592 temp &= ~FDI_LINK_TRAIN_NONE;
2593 temp |= FDI_LINK_TRAIN_PATTERN_1;
2594 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2595 /* SNB-B */
2596 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2597 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2598
2599 I915_WRITE(FDI_RX_MISC(pipe),
2600 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2601
2602 reg = FDI_RX_CTL(pipe);
2603 temp = I915_READ(reg);
2604 if (HAS_PCH_CPT(dev)) {
2605 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2606 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2607 } else {
2608 temp &= ~FDI_LINK_TRAIN_NONE;
2609 temp |= FDI_LINK_TRAIN_PATTERN_1;
2610 }
2611 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2612
2613 POSTING_READ(reg);
2614 udelay(150);
2615
2616 cpt_phase_pointer_enable(dev, pipe);
2617
2618 for (i = 0; i < 4; i++) {
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622 temp |= snb_b_fdi_train_param[i];
2623 I915_WRITE(reg, temp);
2624
2625 POSTING_READ(reg);
2626 udelay(500);
2627
2628 for (retry = 0; retry < 5; retry++) {
2629 reg = FDI_RX_IIR(pipe);
2630 temp = I915_READ(reg);
2631 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2632 if (temp & FDI_RX_BIT_LOCK) {
2633 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2634 DRM_DEBUG_KMS("FDI train 1 done.\n");
2635 break;
2636 }
2637 udelay(50);
2638 }
2639 if (retry < 5)
2640 break;
2641 }
2642 if (i == 4)
2643 DRM_ERROR("FDI train 1 fail!\n");
2644
2645 /* Train 2 */
2646 reg = FDI_TX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 temp &= ~FDI_LINK_TRAIN_NONE;
2649 temp |= FDI_LINK_TRAIN_PATTERN_2;
2650 if (IS_GEN6(dev)) {
2651 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2652 /* SNB-B */
2653 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2654 }
2655 I915_WRITE(reg, temp);
2656
2657 reg = FDI_RX_CTL(pipe);
2658 temp = I915_READ(reg);
2659 if (HAS_PCH_CPT(dev)) {
2660 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2661 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2662 } else {
2663 temp &= ~FDI_LINK_TRAIN_NONE;
2664 temp |= FDI_LINK_TRAIN_PATTERN_2;
2665 }
2666 I915_WRITE(reg, temp);
2667
2668 POSTING_READ(reg);
2669 udelay(150);
2670
2671 for (i = 0; i < 4; i++) {
2672 reg = FDI_TX_CTL(pipe);
2673 temp = I915_READ(reg);
2674 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675 temp |= snb_b_fdi_train_param[i];
2676 I915_WRITE(reg, temp);
2677
2678 POSTING_READ(reg);
2679 udelay(500);
2680
2681 for (retry = 0; retry < 5; retry++) {
2682 reg = FDI_RX_IIR(pipe);
2683 temp = I915_READ(reg);
2684 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2685 if (temp & FDI_RX_SYMBOL_LOCK) {
2686 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2687 DRM_DEBUG_KMS("FDI train 2 done.\n");
2688 break;
2689 }
2690 udelay(50);
2691 }
2692 if (retry < 5)
2693 break;
2694 }
2695 if (i == 4)
2696 DRM_ERROR("FDI train 2 fail!\n");
2697
2698 DRM_DEBUG_KMS("FDI train done.\n");
2699 }
2700
2701 /* Manual link training for Ivy Bridge A0 parts */
2702 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2703 {
2704 struct drm_device *dev = crtc->dev;
2705 struct drm_i915_private *dev_priv = dev->dev_private;
2706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707 int pipe = intel_crtc->pipe;
2708 u32 reg, temp, i;
2709
2710 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2711 for train result */
2712 reg = FDI_RX_IMR(pipe);
2713 temp = I915_READ(reg);
2714 temp &= ~FDI_RX_SYMBOL_LOCK;
2715 temp &= ~FDI_RX_BIT_LOCK;
2716 I915_WRITE(reg, temp);
2717
2718 POSTING_READ(reg);
2719 udelay(150);
2720
2721 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2722 I915_READ(FDI_RX_IIR(pipe)));
2723
2724 /* enable CPU FDI TX and PCH FDI RX */
2725 reg = FDI_TX_CTL(pipe);
2726 temp = I915_READ(reg);
2727 temp &= ~(7 << 19);
2728 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2729 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2730 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2731 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2733 temp |= FDI_COMPOSITE_SYNC;
2734 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2735
2736 I915_WRITE(FDI_RX_MISC(pipe),
2737 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2738
2739 reg = FDI_RX_CTL(pipe);
2740 temp = I915_READ(reg);
2741 temp &= ~FDI_LINK_TRAIN_AUTO;
2742 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2743 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2744 temp |= FDI_COMPOSITE_SYNC;
2745 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2746
2747 POSTING_READ(reg);
2748 udelay(150);
2749
2750 cpt_phase_pointer_enable(dev, pipe);
2751
2752 for (i = 0; i < 4; i++) {
2753 reg = FDI_TX_CTL(pipe);
2754 temp = I915_READ(reg);
2755 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756 temp |= snb_b_fdi_train_param[i];
2757 I915_WRITE(reg, temp);
2758
2759 POSTING_READ(reg);
2760 udelay(500);
2761
2762 reg = FDI_RX_IIR(pipe);
2763 temp = I915_READ(reg);
2764 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2765
2766 if (temp & FDI_RX_BIT_LOCK ||
2767 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2768 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2769 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2770 break;
2771 }
2772 }
2773 if (i == 4)
2774 DRM_ERROR("FDI train 1 fail!\n");
2775
2776 /* Train 2 */
2777 reg = FDI_TX_CTL(pipe);
2778 temp = I915_READ(reg);
2779 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2780 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2781 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2782 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2783 I915_WRITE(reg, temp);
2784
2785 reg = FDI_RX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2789 I915_WRITE(reg, temp);
2790
2791 POSTING_READ(reg);
2792 udelay(150);
2793
2794 for (i = 0; i < 4; i++) {
2795 reg = FDI_TX_CTL(pipe);
2796 temp = I915_READ(reg);
2797 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2798 temp |= snb_b_fdi_train_param[i];
2799 I915_WRITE(reg, temp);
2800
2801 POSTING_READ(reg);
2802 udelay(500);
2803
2804 reg = FDI_RX_IIR(pipe);
2805 temp = I915_READ(reg);
2806 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2807
2808 if (temp & FDI_RX_SYMBOL_LOCK) {
2809 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2810 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2811 break;
2812 }
2813 }
2814 if (i == 4)
2815 DRM_ERROR("FDI train 2 fail!\n");
2816
2817 DRM_DEBUG_KMS("FDI train done.\n");
2818 }
2819
2820 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2821 {
2822 struct drm_device *dev = intel_crtc->base.dev;
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 int pipe = intel_crtc->pipe;
2825 u32 reg, temp;
2826
2827
2828 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2829 reg = FDI_RX_CTL(pipe);
2830 temp = I915_READ(reg);
2831 temp &= ~((0x7 << 19) | (0x7 << 16));
2832 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2833 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2834 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2835
2836 POSTING_READ(reg);
2837 udelay(200);
2838
2839 /* Switch from Rawclk to PCDclk */
2840 temp = I915_READ(reg);
2841 I915_WRITE(reg, temp | FDI_PCDCLK);
2842
2843 POSTING_READ(reg);
2844 udelay(200);
2845
2846 /* On Haswell, the PLL configuration for ports and pipes is handled
2847 * separately, as part of DDI setup */
2848 if (!IS_HASWELL(dev)) {
2849 /* Enable CPU FDI TX PLL, always on for Ironlake */
2850 reg = FDI_TX_CTL(pipe);
2851 temp = I915_READ(reg);
2852 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2853 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2854
2855 POSTING_READ(reg);
2856 udelay(100);
2857 }
2858 }
2859 }
2860
2861 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2862 {
2863 struct drm_device *dev = intel_crtc->base.dev;
2864 struct drm_i915_private *dev_priv = dev->dev_private;
2865 int pipe = intel_crtc->pipe;
2866 u32 reg, temp;
2867
2868 /* Switch from PCDclk to Rawclk */
2869 reg = FDI_RX_CTL(pipe);
2870 temp = I915_READ(reg);
2871 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2872
2873 /* Disable CPU FDI TX PLL */
2874 reg = FDI_TX_CTL(pipe);
2875 temp = I915_READ(reg);
2876 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2877
2878 POSTING_READ(reg);
2879 udelay(100);
2880
2881 reg = FDI_RX_CTL(pipe);
2882 temp = I915_READ(reg);
2883 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2884
2885 /* Wait for the clocks to turn off. */
2886 POSTING_READ(reg);
2887 udelay(100);
2888 }
2889
2890 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2891 {
2892 struct drm_i915_private *dev_priv = dev->dev_private;
2893 u32 flags = I915_READ(SOUTH_CHICKEN1);
2894
2895 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2896 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2897 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2898 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2899 POSTING_READ(SOUTH_CHICKEN1);
2900 }
2901 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2902 {
2903 struct drm_device *dev = crtc->dev;
2904 struct drm_i915_private *dev_priv = dev->dev_private;
2905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906 int pipe = intel_crtc->pipe;
2907 u32 reg, temp;
2908
2909 /* disable CPU FDI tx and PCH FDI rx */
2910 reg = FDI_TX_CTL(pipe);
2911 temp = I915_READ(reg);
2912 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2913 POSTING_READ(reg);
2914
2915 reg = FDI_RX_CTL(pipe);
2916 temp = I915_READ(reg);
2917 temp &= ~(0x7 << 16);
2918 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2919 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2920
2921 POSTING_READ(reg);
2922 udelay(100);
2923
2924 /* Ironlake workaround, disable clock pointer after downing FDI */
2925 if (HAS_PCH_IBX(dev)) {
2926 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2927 I915_WRITE(FDI_RX_CHICKEN(pipe),
2928 I915_READ(FDI_RX_CHICKEN(pipe) &
2929 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2930 } else if (HAS_PCH_CPT(dev)) {
2931 cpt_phase_pointer_disable(dev, pipe);
2932 }
2933
2934 /* still set train pattern 1 */
2935 reg = FDI_TX_CTL(pipe);
2936 temp = I915_READ(reg);
2937 temp &= ~FDI_LINK_TRAIN_NONE;
2938 temp |= FDI_LINK_TRAIN_PATTERN_1;
2939 I915_WRITE(reg, temp);
2940
2941 reg = FDI_RX_CTL(pipe);
2942 temp = I915_READ(reg);
2943 if (HAS_PCH_CPT(dev)) {
2944 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2945 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2946 } else {
2947 temp &= ~FDI_LINK_TRAIN_NONE;
2948 temp |= FDI_LINK_TRAIN_PATTERN_1;
2949 }
2950 /* BPC in FDI rx is consistent with that in PIPECONF */
2951 temp &= ~(0x07 << 16);
2952 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2953 I915_WRITE(reg, temp);
2954
2955 POSTING_READ(reg);
2956 udelay(100);
2957 }
2958
2959 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2960 {
2961 struct drm_device *dev = crtc->dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 unsigned long flags;
2964 bool pending;
2965
2966 if (atomic_read(&dev_priv->mm.wedged))
2967 return false;
2968
2969 spin_lock_irqsave(&dev->event_lock, flags);
2970 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2971 spin_unlock_irqrestore(&dev->event_lock, flags);
2972
2973 return pending;
2974 }
2975
2976 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2977 {
2978 struct drm_device *dev = crtc->dev;
2979 struct drm_i915_private *dev_priv = dev->dev_private;
2980
2981 if (crtc->fb == NULL)
2982 return;
2983
2984 wait_event(dev_priv->pending_flip_queue,
2985 !intel_crtc_has_pending_flip(crtc));
2986
2987 mutex_lock(&dev->struct_mutex);
2988 intel_finish_fb(crtc->fb);
2989 mutex_unlock(&dev->struct_mutex);
2990 }
2991
2992 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2993 {
2994 struct drm_device *dev = crtc->dev;
2995 struct intel_encoder *intel_encoder;
2996
2997 /*
2998 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2999 * must be driven by its own crtc; no sharing is possible.
3000 */
3001 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3002 switch (intel_encoder->type) {
3003 case INTEL_OUTPUT_EDP:
3004 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3005 return false;
3006 continue;
3007 }
3008 }
3009
3010 return true;
3011 }
3012
3013 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3014 {
3015 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3016 }
3017
3018 /* Program iCLKIP clock to the desired frequency */
3019 static void lpt_program_iclkip(struct drm_crtc *crtc)
3020 {
3021 struct drm_device *dev = crtc->dev;
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3024 u32 temp;
3025
3026 /* It is necessary to ungate the pixclk gate prior to programming
3027 * the divisors, and gate it back when it is done.
3028 */
3029 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3030
3031 /* Disable SSCCTL */
3032 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3033 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3034 SBI_SSCCTL_DISABLE);
3035
3036 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3037 if (crtc->mode.clock == 20000) {
3038 auxdiv = 1;
3039 divsel = 0x41;
3040 phaseinc = 0x20;
3041 } else {
3042 /* The iCLK virtual clock root frequency is in MHz,
3043 * but the crtc->mode.clock in in KHz. To get the divisors,
3044 * it is necessary to divide one by another, so we
3045 * convert the virtual clock precision to KHz here for higher
3046 * precision.
3047 */
3048 u32 iclk_virtual_root_freq = 172800 * 1000;
3049 u32 iclk_pi_range = 64;
3050 u32 desired_divisor, msb_divisor_value, pi_value;
3051
3052 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3053 msb_divisor_value = desired_divisor / iclk_pi_range;
3054 pi_value = desired_divisor % iclk_pi_range;
3055
3056 auxdiv = 0;
3057 divsel = msb_divisor_value - 2;
3058 phaseinc = pi_value;
3059 }
3060
3061 /* This should not happen with any sane values */
3062 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3063 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3064 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3065 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3066
3067 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3068 crtc->mode.clock,
3069 auxdiv,
3070 divsel,
3071 phasedir,
3072 phaseinc);
3073
3074 /* Program SSCDIVINTPHASE6 */
3075 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3076 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3077 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3078 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3079 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3080 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3081 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3082
3083 intel_sbi_write(dev_priv,
3084 SBI_SSCDIVINTPHASE6,
3085 temp);
3086
3087 /* Program SSCAUXDIV */
3088 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3089 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3090 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3091 intel_sbi_write(dev_priv,
3092 SBI_SSCAUXDIV6,
3093 temp);
3094
3095
3096 /* Enable modulator and associated divider */
3097 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3098 temp &= ~SBI_SSCCTL_DISABLE;
3099 intel_sbi_write(dev_priv,
3100 SBI_SSCCTL6,
3101 temp);
3102
3103 /* Wait for initialization time */
3104 udelay(24);
3105
3106 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3107 }
3108
3109 /*
3110 * Enable PCH resources required for PCH ports:
3111 * - PCH PLLs
3112 * - FDI training & RX/TX
3113 * - update transcoder timings
3114 * - DP transcoding bits
3115 * - transcoder
3116 */
3117 static void ironlake_pch_enable(struct drm_crtc *crtc)
3118 {
3119 struct drm_device *dev = crtc->dev;
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3122 int pipe = intel_crtc->pipe;
3123 u32 reg, temp;
3124
3125 assert_transcoder_disabled(dev_priv, pipe);
3126
3127 /* Write the TU size bits before fdi link training, so that error
3128 * detection works. */
3129 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3130 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3131
3132 /* For PCH output, training FDI link */
3133 dev_priv->display.fdi_link_train(crtc);
3134
3135 /* XXX: pch pll's can be enabled any time before we enable the PCH
3136 * transcoder, and we actually should do this to not upset any PCH
3137 * transcoder that already use the clock when we share it.
3138 *
3139 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3140 * unconditionally resets the pll - we need that to have the right LVDS
3141 * enable sequence. */
3142 ironlake_enable_pch_pll(intel_crtc);
3143
3144 if (HAS_PCH_CPT(dev)) {
3145 u32 sel;
3146
3147 temp = I915_READ(PCH_DPLL_SEL);
3148 switch (pipe) {
3149 default:
3150 case 0:
3151 temp |= TRANSA_DPLL_ENABLE;
3152 sel = TRANSA_DPLLB_SEL;
3153 break;
3154 case 1:
3155 temp |= TRANSB_DPLL_ENABLE;
3156 sel = TRANSB_DPLLB_SEL;
3157 break;
3158 case 2:
3159 temp |= TRANSC_DPLL_ENABLE;
3160 sel = TRANSC_DPLLB_SEL;
3161 break;
3162 }
3163 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3164 temp |= sel;
3165 else
3166 temp &= ~sel;
3167 I915_WRITE(PCH_DPLL_SEL, temp);
3168 }
3169
3170 /* set transcoder timing, panel must allow it */
3171 assert_panel_unlocked(dev_priv, pipe);
3172 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3173 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3174 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3175
3176 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3177 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3178 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3179 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3180
3181 intel_fdi_normal_train(crtc);
3182
3183 /* For PCH DP, enable TRANS_DP_CTL */
3184 if (HAS_PCH_CPT(dev) &&
3185 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3186 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3187 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3188 reg = TRANS_DP_CTL(pipe);
3189 temp = I915_READ(reg);
3190 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3191 TRANS_DP_SYNC_MASK |
3192 TRANS_DP_BPC_MASK);
3193 temp |= (TRANS_DP_OUTPUT_ENABLE |
3194 TRANS_DP_ENH_FRAMING);
3195 temp |= bpc << 9; /* same format but at 11:9 */
3196
3197 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3198 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3199 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3200 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3201
3202 switch (intel_trans_dp_port_sel(crtc)) {
3203 case PCH_DP_B:
3204 temp |= TRANS_DP_PORT_SEL_B;
3205 break;
3206 case PCH_DP_C:
3207 temp |= TRANS_DP_PORT_SEL_C;
3208 break;
3209 case PCH_DP_D:
3210 temp |= TRANS_DP_PORT_SEL_D;
3211 break;
3212 default:
3213 BUG();
3214 }
3215
3216 I915_WRITE(reg, temp);
3217 }
3218
3219 ironlake_enable_pch_transcoder(dev_priv, pipe);
3220 }
3221
3222 static void lpt_pch_enable(struct drm_crtc *crtc)
3223 {
3224 struct drm_device *dev = crtc->dev;
3225 struct drm_i915_private *dev_priv = dev->dev_private;
3226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3227 int pipe = intel_crtc->pipe;
3228 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3229
3230 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3231
3232 /* Write the TU size bits before fdi link training, so that error
3233 * detection works. */
3234 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3235 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3236
3237 /* For PCH output, training FDI link */
3238 dev_priv->display.fdi_link_train(crtc);
3239
3240 lpt_program_iclkip(crtc);
3241
3242 /* Set transcoder timing. */
3243 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3244 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3245 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3246
3247 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3248 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3249 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3250 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3251
3252 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3253 }
3254
3255 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3256 {
3257 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3258
3259 if (pll == NULL)
3260 return;
3261
3262 if (pll->refcount == 0) {
3263 WARN(1, "bad PCH PLL refcount\n");
3264 return;
3265 }
3266
3267 --pll->refcount;
3268 intel_crtc->pch_pll = NULL;
3269 }
3270
3271 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3272 {
3273 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3274 struct intel_pch_pll *pll;
3275 int i;
3276
3277 pll = intel_crtc->pch_pll;
3278 if (pll) {
3279 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3280 intel_crtc->base.base.id, pll->pll_reg);
3281 goto prepare;
3282 }
3283
3284 if (HAS_PCH_IBX(dev_priv->dev)) {
3285 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3286 i = intel_crtc->pipe;
3287 pll = &dev_priv->pch_plls[i];
3288
3289 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3290 intel_crtc->base.base.id, pll->pll_reg);
3291
3292 goto found;
3293 }
3294
3295 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3296 pll = &dev_priv->pch_plls[i];
3297
3298 /* Only want to check enabled timings first */
3299 if (pll->refcount == 0)
3300 continue;
3301
3302 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3303 fp == I915_READ(pll->fp0_reg)) {
3304 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3305 intel_crtc->base.base.id,
3306 pll->pll_reg, pll->refcount, pll->active);
3307
3308 goto found;
3309 }
3310 }
3311
3312 /* Ok no matching timings, maybe there's a free one? */
3313 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3314 pll = &dev_priv->pch_plls[i];
3315 if (pll->refcount == 0) {
3316 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3317 intel_crtc->base.base.id, pll->pll_reg);
3318 goto found;
3319 }
3320 }
3321
3322 return NULL;
3323
3324 found:
3325 intel_crtc->pch_pll = pll;
3326 pll->refcount++;
3327 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3328 prepare: /* separate function? */
3329 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3330
3331 /* Wait for the clocks to stabilize before rewriting the regs */
3332 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3333 POSTING_READ(pll->pll_reg);
3334 udelay(150);
3335
3336 I915_WRITE(pll->fp0_reg, fp);
3337 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3338 pll->on = false;
3339 return pll;
3340 }
3341
3342 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3343 {
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 int dslreg = PIPEDSL(pipe);
3346 u32 temp;
3347
3348 temp = I915_READ(dslreg);
3349 udelay(500);
3350 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3351 if (wait_for(I915_READ(dslreg) != temp, 5))
3352 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3353 }
3354 }
3355
3356 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3357 {
3358 struct drm_device *dev = crtc->dev;
3359 struct drm_i915_private *dev_priv = dev->dev_private;
3360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3361 struct intel_encoder *encoder;
3362 int pipe = intel_crtc->pipe;
3363 int plane = intel_crtc->plane;
3364 u32 temp;
3365 bool is_pch_port;
3366
3367 WARN_ON(!crtc->enabled);
3368
3369 if (intel_crtc->active)
3370 return;
3371
3372 intel_crtc->active = true;
3373 intel_update_watermarks(dev);
3374
3375 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3376 temp = I915_READ(PCH_LVDS);
3377 if ((temp & LVDS_PORT_EN) == 0)
3378 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3379 }
3380
3381 is_pch_port = ironlake_crtc_driving_pch(crtc);
3382
3383 if (is_pch_port) {
3384 /* Note: FDI PLL enabling _must_ be done before we enable the
3385 * cpu pipes, hence this is separate from all the other fdi/pch
3386 * enabling. */
3387 ironlake_fdi_pll_enable(intel_crtc);
3388 } else {
3389 assert_fdi_tx_disabled(dev_priv, pipe);
3390 assert_fdi_rx_disabled(dev_priv, pipe);
3391 }
3392
3393 for_each_encoder_on_crtc(dev, crtc, encoder)
3394 if (encoder->pre_enable)
3395 encoder->pre_enable(encoder);
3396
3397 /* Enable panel fitting for LVDS */
3398 if (dev_priv->pch_pf_size &&
3399 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3400 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3401 /* Force use of hard-coded filter coefficients
3402 * as some pre-programmed values are broken,
3403 * e.g. x201.
3404 */
3405 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3406 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3407 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3408 }
3409
3410 /*
3411 * On ILK+ LUT must be loaded before the pipe is running but with
3412 * clocks enabled
3413 */
3414 intel_crtc_load_lut(crtc);
3415
3416 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3417 intel_enable_plane(dev_priv, plane, pipe);
3418
3419 if (is_pch_port)
3420 ironlake_pch_enable(crtc);
3421
3422 mutex_lock(&dev->struct_mutex);
3423 intel_update_fbc(dev);
3424 mutex_unlock(&dev->struct_mutex);
3425
3426 intel_crtc_update_cursor(crtc, true);
3427
3428 for_each_encoder_on_crtc(dev, crtc, encoder)
3429 encoder->enable(encoder);
3430
3431 if (HAS_PCH_CPT(dev))
3432 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3433
3434 /*
3435 * There seems to be a race in PCH platform hw (at least on some
3436 * outputs) where an enabled pipe still completes any pageflip right
3437 * away (as if the pipe is off) instead of waiting for vblank. As soon
3438 * as the first vblank happend, everything works as expected. Hence just
3439 * wait for one vblank before returning to avoid strange things
3440 * happening.
3441 */
3442 intel_wait_for_vblank(dev, intel_crtc->pipe);
3443 }
3444
3445 static void haswell_crtc_enable(struct drm_crtc *crtc)
3446 {
3447 struct drm_device *dev = crtc->dev;
3448 struct drm_i915_private *dev_priv = dev->dev_private;
3449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3450 struct intel_encoder *encoder;
3451 int pipe = intel_crtc->pipe;
3452 int plane = intel_crtc->plane;
3453 bool is_pch_port;
3454
3455 WARN_ON(!crtc->enabled);
3456
3457 if (intel_crtc->active)
3458 return;
3459
3460 intel_crtc->active = true;
3461 intel_update_watermarks(dev);
3462
3463 is_pch_port = haswell_crtc_driving_pch(crtc);
3464
3465 if (is_pch_port)
3466 ironlake_fdi_pll_enable(intel_crtc);
3467
3468 for_each_encoder_on_crtc(dev, crtc, encoder)
3469 if (encoder->pre_enable)
3470 encoder->pre_enable(encoder);
3471
3472 intel_ddi_enable_pipe_clock(intel_crtc);
3473
3474 /* Enable panel fitting for eDP */
3475 if (dev_priv->pch_pf_size &&
3476 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3477 /* Force use of hard-coded filter coefficients
3478 * as some pre-programmed values are broken,
3479 * e.g. x201.
3480 */
3481 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3482 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3483 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3484 }
3485
3486 /*
3487 * On ILK+ LUT must be loaded before the pipe is running but with
3488 * clocks enabled
3489 */
3490 intel_crtc_load_lut(crtc);
3491
3492 intel_ddi_set_pipe_settings(crtc);
3493 intel_ddi_enable_pipe_func(crtc);
3494
3495 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3496 intel_enable_plane(dev_priv, plane, pipe);
3497
3498 if (is_pch_port)
3499 lpt_pch_enable(crtc);
3500
3501 mutex_lock(&dev->struct_mutex);
3502 intel_update_fbc(dev);
3503 mutex_unlock(&dev->struct_mutex);
3504
3505 intel_crtc_update_cursor(crtc, true);
3506
3507 for_each_encoder_on_crtc(dev, crtc, encoder)
3508 encoder->enable(encoder);
3509
3510 /*
3511 * There seems to be a race in PCH platform hw (at least on some
3512 * outputs) where an enabled pipe still completes any pageflip right
3513 * away (as if the pipe is off) instead of waiting for vblank. As soon
3514 * as the first vblank happend, everything works as expected. Hence just
3515 * wait for one vblank before returning to avoid strange things
3516 * happening.
3517 */
3518 intel_wait_for_vblank(dev, intel_crtc->pipe);
3519 }
3520
3521 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3522 {
3523 struct drm_device *dev = crtc->dev;
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3526 struct intel_encoder *encoder;
3527 int pipe = intel_crtc->pipe;
3528 int plane = intel_crtc->plane;
3529 u32 reg, temp;
3530
3531
3532 if (!intel_crtc->active)
3533 return;
3534
3535 for_each_encoder_on_crtc(dev, crtc, encoder)
3536 encoder->disable(encoder);
3537
3538 intel_crtc_wait_for_pending_flips(crtc);
3539 drm_vblank_off(dev, pipe);
3540 intel_crtc_update_cursor(crtc, false);
3541
3542 intel_disable_plane(dev_priv, plane, pipe);
3543
3544 if (dev_priv->cfb_plane == plane)
3545 intel_disable_fbc(dev);
3546
3547 intel_disable_pipe(dev_priv, pipe);
3548
3549 /* Disable PF */
3550 I915_WRITE(PF_CTL(pipe), 0);
3551 I915_WRITE(PF_WIN_SZ(pipe), 0);
3552
3553 for_each_encoder_on_crtc(dev, crtc, encoder)
3554 if (encoder->post_disable)
3555 encoder->post_disable(encoder);
3556
3557 ironlake_fdi_disable(crtc);
3558
3559 ironlake_disable_pch_transcoder(dev_priv, pipe);
3560
3561 if (HAS_PCH_CPT(dev)) {
3562 /* disable TRANS_DP_CTL */
3563 reg = TRANS_DP_CTL(pipe);
3564 temp = I915_READ(reg);
3565 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3566 temp |= TRANS_DP_PORT_SEL_NONE;
3567 I915_WRITE(reg, temp);
3568
3569 /* disable DPLL_SEL */
3570 temp = I915_READ(PCH_DPLL_SEL);
3571 switch (pipe) {
3572 case 0:
3573 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3574 break;
3575 case 1:
3576 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3577 break;
3578 case 2:
3579 /* C shares PLL A or B */
3580 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3581 break;
3582 default:
3583 BUG(); /* wtf */
3584 }
3585 I915_WRITE(PCH_DPLL_SEL, temp);
3586 }
3587
3588 /* disable PCH DPLL */
3589 intel_disable_pch_pll(intel_crtc);
3590
3591 ironlake_fdi_pll_disable(intel_crtc);
3592
3593 intel_crtc->active = false;
3594 intel_update_watermarks(dev);
3595
3596 mutex_lock(&dev->struct_mutex);
3597 intel_update_fbc(dev);
3598 mutex_unlock(&dev->struct_mutex);
3599 }
3600
3601 static void haswell_crtc_disable(struct drm_crtc *crtc)
3602 {
3603 struct drm_device *dev = crtc->dev;
3604 struct drm_i915_private *dev_priv = dev->dev_private;
3605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3606 struct intel_encoder *encoder;
3607 int pipe = intel_crtc->pipe;
3608 int plane = intel_crtc->plane;
3609 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3610 bool is_pch_port;
3611
3612 if (!intel_crtc->active)
3613 return;
3614
3615 is_pch_port = haswell_crtc_driving_pch(crtc);
3616
3617 for_each_encoder_on_crtc(dev, crtc, encoder)
3618 encoder->disable(encoder);
3619
3620 intel_crtc_wait_for_pending_flips(crtc);
3621 drm_vblank_off(dev, pipe);
3622 intel_crtc_update_cursor(crtc, false);
3623
3624 intel_disable_plane(dev_priv, plane, pipe);
3625
3626 if (dev_priv->cfb_plane == plane)
3627 intel_disable_fbc(dev);
3628
3629 intel_disable_pipe(dev_priv, pipe);
3630
3631 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3632
3633 /* Disable PF */
3634 I915_WRITE(PF_CTL(pipe), 0);
3635 I915_WRITE(PF_WIN_SZ(pipe), 0);
3636
3637 intel_ddi_disable_pipe_clock(intel_crtc);
3638
3639 for_each_encoder_on_crtc(dev, crtc, encoder)
3640 if (encoder->post_disable)
3641 encoder->post_disable(encoder);
3642
3643 if (is_pch_port) {
3644 ironlake_fdi_disable(crtc);
3645 lpt_disable_pch_transcoder(dev_priv);
3646 ironlake_fdi_pll_disable(intel_crtc);
3647 }
3648
3649 intel_crtc->active = false;
3650 intel_update_watermarks(dev);
3651
3652 mutex_lock(&dev->struct_mutex);
3653 intel_update_fbc(dev);
3654 mutex_unlock(&dev->struct_mutex);
3655 }
3656
3657 static void ironlake_crtc_off(struct drm_crtc *crtc)
3658 {
3659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660 intel_put_pch_pll(intel_crtc);
3661 }
3662
3663 static void haswell_crtc_off(struct drm_crtc *crtc)
3664 {
3665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3666
3667 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3668 * start using it. */
3669 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3670
3671 intel_ddi_put_crtc_pll(crtc);
3672 }
3673
3674 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3675 {
3676 if (!enable && intel_crtc->overlay) {
3677 struct drm_device *dev = intel_crtc->base.dev;
3678 struct drm_i915_private *dev_priv = dev->dev_private;
3679
3680 mutex_lock(&dev->struct_mutex);
3681 dev_priv->mm.interruptible = false;
3682 (void) intel_overlay_switch_off(intel_crtc->overlay);
3683 dev_priv->mm.interruptible = true;
3684 mutex_unlock(&dev->struct_mutex);
3685 }
3686
3687 /* Let userspace switch the overlay on again. In most cases userspace
3688 * has to recompute where to put it anyway.
3689 */
3690 }
3691
3692 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3693 {
3694 struct drm_device *dev = crtc->dev;
3695 struct drm_i915_private *dev_priv = dev->dev_private;
3696 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3697 struct intel_encoder *encoder;
3698 int pipe = intel_crtc->pipe;
3699 int plane = intel_crtc->plane;
3700
3701 WARN_ON(!crtc->enabled);
3702
3703 if (intel_crtc->active)
3704 return;
3705
3706 intel_crtc->active = true;
3707 intel_update_watermarks(dev);
3708
3709 intel_enable_pll(dev_priv, pipe);
3710 intel_enable_pipe(dev_priv, pipe, false);
3711 intel_enable_plane(dev_priv, plane, pipe);
3712
3713 intel_crtc_load_lut(crtc);
3714 intel_update_fbc(dev);
3715
3716 /* Give the overlay scaler a chance to enable if it's on this pipe */
3717 intel_crtc_dpms_overlay(intel_crtc, true);
3718 intel_crtc_update_cursor(crtc, true);
3719
3720 for_each_encoder_on_crtc(dev, crtc, encoder)
3721 encoder->enable(encoder);
3722 }
3723
3724 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3725 {
3726 struct drm_device *dev = crtc->dev;
3727 struct drm_i915_private *dev_priv = dev->dev_private;
3728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3729 struct intel_encoder *encoder;
3730 int pipe = intel_crtc->pipe;
3731 int plane = intel_crtc->plane;
3732
3733
3734 if (!intel_crtc->active)
3735 return;
3736
3737 for_each_encoder_on_crtc(dev, crtc, encoder)
3738 encoder->disable(encoder);
3739
3740 /* Give the overlay scaler a chance to disable if it's on this pipe */
3741 intel_crtc_wait_for_pending_flips(crtc);
3742 drm_vblank_off(dev, pipe);
3743 intel_crtc_dpms_overlay(intel_crtc, false);
3744 intel_crtc_update_cursor(crtc, false);
3745
3746 if (dev_priv->cfb_plane == plane)
3747 intel_disable_fbc(dev);
3748
3749 intel_disable_plane(dev_priv, plane, pipe);
3750 intel_disable_pipe(dev_priv, pipe);
3751 intel_disable_pll(dev_priv, pipe);
3752
3753 intel_crtc->active = false;
3754 intel_update_fbc(dev);
3755 intel_update_watermarks(dev);
3756 }
3757
3758 static void i9xx_crtc_off(struct drm_crtc *crtc)
3759 {
3760 }
3761
3762 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3763 bool enabled)
3764 {
3765 struct drm_device *dev = crtc->dev;
3766 struct drm_i915_master_private *master_priv;
3767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768 int pipe = intel_crtc->pipe;
3769
3770 if (!dev->primary->master)
3771 return;
3772
3773 master_priv = dev->primary->master->driver_priv;
3774 if (!master_priv->sarea_priv)
3775 return;
3776
3777 switch (pipe) {
3778 case 0:
3779 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3780 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3781 break;
3782 case 1:
3783 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3784 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3785 break;
3786 default:
3787 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3788 break;
3789 }
3790 }
3791
3792 /**
3793 * Sets the power management mode of the pipe and plane.
3794 */
3795 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3796 {
3797 struct drm_device *dev = crtc->dev;
3798 struct drm_i915_private *dev_priv = dev->dev_private;
3799 struct intel_encoder *intel_encoder;
3800 bool enable = false;
3801
3802 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3803 enable |= intel_encoder->connectors_active;
3804
3805 if (enable)
3806 dev_priv->display.crtc_enable(crtc);
3807 else
3808 dev_priv->display.crtc_disable(crtc);
3809
3810 intel_crtc_update_sarea(crtc, enable);
3811 }
3812
3813 static void intel_crtc_noop(struct drm_crtc *crtc)
3814 {
3815 }
3816
3817 static void intel_crtc_disable(struct drm_crtc *crtc)
3818 {
3819 struct drm_device *dev = crtc->dev;
3820 struct drm_connector *connector;
3821 struct drm_i915_private *dev_priv = dev->dev_private;
3822
3823 /* crtc should still be enabled when we disable it. */
3824 WARN_ON(!crtc->enabled);
3825
3826 dev_priv->display.crtc_disable(crtc);
3827 intel_crtc_update_sarea(crtc, false);
3828 dev_priv->display.off(crtc);
3829
3830 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3831 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3832
3833 if (crtc->fb) {
3834 mutex_lock(&dev->struct_mutex);
3835 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3836 mutex_unlock(&dev->struct_mutex);
3837 crtc->fb = NULL;
3838 }
3839
3840 /* Update computed state. */
3841 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3842 if (!connector->encoder || !connector->encoder->crtc)
3843 continue;
3844
3845 if (connector->encoder->crtc != crtc)
3846 continue;
3847
3848 connector->dpms = DRM_MODE_DPMS_OFF;
3849 to_intel_encoder(connector->encoder)->connectors_active = false;
3850 }
3851 }
3852
3853 void intel_modeset_disable(struct drm_device *dev)
3854 {
3855 struct drm_crtc *crtc;
3856
3857 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3858 if (crtc->enabled)
3859 intel_crtc_disable(crtc);
3860 }
3861 }
3862
3863 void intel_encoder_noop(struct drm_encoder *encoder)
3864 {
3865 }
3866
3867 void intel_encoder_destroy(struct drm_encoder *encoder)
3868 {
3869 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3870
3871 drm_encoder_cleanup(encoder);
3872 kfree(intel_encoder);
3873 }
3874
3875 /* Simple dpms helper for encodres with just one connector, no cloning and only
3876 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3877 * state of the entire output pipe. */
3878 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3879 {
3880 if (mode == DRM_MODE_DPMS_ON) {
3881 encoder->connectors_active = true;
3882
3883 intel_crtc_update_dpms(encoder->base.crtc);
3884 } else {
3885 encoder->connectors_active = false;
3886
3887 intel_crtc_update_dpms(encoder->base.crtc);
3888 }
3889 }
3890
3891 /* Cross check the actual hw state with our own modeset state tracking (and it's
3892 * internal consistency). */
3893 static void intel_connector_check_state(struct intel_connector *connector)
3894 {
3895 if (connector->get_hw_state(connector)) {
3896 struct intel_encoder *encoder = connector->encoder;
3897 struct drm_crtc *crtc;
3898 bool encoder_enabled;
3899 enum pipe pipe;
3900
3901 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3902 connector->base.base.id,
3903 drm_get_connector_name(&connector->base));
3904
3905 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3906 "wrong connector dpms state\n");
3907 WARN(connector->base.encoder != &encoder->base,
3908 "active connector not linked to encoder\n");
3909 WARN(!encoder->connectors_active,
3910 "encoder->connectors_active not set\n");
3911
3912 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3913 WARN(!encoder_enabled, "encoder not enabled\n");
3914 if (WARN_ON(!encoder->base.crtc))
3915 return;
3916
3917 crtc = encoder->base.crtc;
3918
3919 WARN(!crtc->enabled, "crtc not enabled\n");
3920 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3921 WARN(pipe != to_intel_crtc(crtc)->pipe,
3922 "encoder active on the wrong pipe\n");
3923 }
3924 }
3925
3926 /* Even simpler default implementation, if there's really no special case to
3927 * consider. */
3928 void intel_connector_dpms(struct drm_connector *connector, int mode)
3929 {
3930 struct intel_encoder *encoder = intel_attached_encoder(connector);
3931
3932 /* All the simple cases only support two dpms states. */
3933 if (mode != DRM_MODE_DPMS_ON)
3934 mode = DRM_MODE_DPMS_OFF;
3935
3936 if (mode == connector->dpms)
3937 return;
3938
3939 connector->dpms = mode;
3940
3941 /* Only need to change hw state when actually enabled */
3942 if (encoder->base.crtc)
3943 intel_encoder_dpms(encoder, mode);
3944 else
3945 WARN_ON(encoder->connectors_active != false);
3946
3947 intel_modeset_check_state(connector->dev);
3948 }
3949
3950 /* Simple connector->get_hw_state implementation for encoders that support only
3951 * one connector and no cloning and hence the encoder state determines the state
3952 * of the connector. */
3953 bool intel_connector_get_hw_state(struct intel_connector *connector)
3954 {
3955 enum pipe pipe = 0;
3956 struct intel_encoder *encoder = connector->encoder;
3957
3958 return encoder->get_hw_state(encoder, &pipe);
3959 }
3960
3961 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3962 const struct drm_display_mode *mode,
3963 struct drm_display_mode *adjusted_mode)
3964 {
3965 struct drm_device *dev = crtc->dev;
3966
3967 if (HAS_PCH_SPLIT(dev)) {
3968 /* FDI link clock is fixed at 2.7G */
3969 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3970 return false;
3971 }
3972
3973 /* All interlaced capable intel hw wants timings in frames. Note though
3974 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3975 * timings, so we need to be careful not to clobber these.*/
3976 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3977 drm_mode_set_crtcinfo(adjusted_mode, 0);
3978
3979 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3980 * with a hsync front porch of 0.
3981 */
3982 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3983 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3984 return false;
3985
3986 return true;
3987 }
3988
3989 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3990 {
3991 return 400000; /* FIXME */
3992 }
3993
3994 static int i945_get_display_clock_speed(struct drm_device *dev)
3995 {
3996 return 400000;
3997 }
3998
3999 static int i915_get_display_clock_speed(struct drm_device *dev)
4000 {
4001 return 333000;
4002 }
4003
4004 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4005 {
4006 return 200000;
4007 }
4008
4009 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4010 {
4011 u16 gcfgc = 0;
4012
4013 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4014
4015 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4016 return 133000;
4017 else {
4018 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4019 case GC_DISPLAY_CLOCK_333_MHZ:
4020 return 333000;
4021 default:
4022 case GC_DISPLAY_CLOCK_190_200_MHZ:
4023 return 190000;
4024 }
4025 }
4026 }
4027
4028 static int i865_get_display_clock_speed(struct drm_device *dev)
4029 {
4030 return 266000;
4031 }
4032
4033 static int i855_get_display_clock_speed(struct drm_device *dev)
4034 {
4035 u16 hpllcc = 0;
4036 /* Assume that the hardware is in the high speed state. This
4037 * should be the default.
4038 */
4039 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4040 case GC_CLOCK_133_200:
4041 case GC_CLOCK_100_200:
4042 return 200000;
4043 case GC_CLOCK_166_250:
4044 return 250000;
4045 case GC_CLOCK_100_133:
4046 return 133000;
4047 }
4048
4049 /* Shouldn't happen */
4050 return 0;
4051 }
4052
4053 static int i830_get_display_clock_speed(struct drm_device *dev)
4054 {
4055 return 133000;
4056 }
4057
4058 struct fdi_m_n {
4059 u32 tu;
4060 u32 gmch_m;
4061 u32 gmch_n;
4062 u32 link_m;
4063 u32 link_n;
4064 };
4065
4066 static void
4067 fdi_reduce_ratio(u32 *num, u32 *den)
4068 {
4069 while (*num > 0xffffff || *den > 0xffffff) {
4070 *num >>= 1;
4071 *den >>= 1;
4072 }
4073 }
4074
4075 static void
4076 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4077 int link_clock, struct fdi_m_n *m_n)
4078 {
4079 m_n->tu = 64; /* default size */
4080
4081 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4082 m_n->gmch_m = bits_per_pixel * pixel_clock;
4083 m_n->gmch_n = link_clock * nlanes * 8;
4084 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4085
4086 m_n->link_m = pixel_clock;
4087 m_n->link_n = link_clock;
4088 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4089 }
4090
4091 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4092 {
4093 if (i915_panel_use_ssc >= 0)
4094 return i915_panel_use_ssc != 0;
4095 return dev_priv->lvds_use_ssc
4096 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4097 }
4098
4099 /**
4100 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4101 * @crtc: CRTC structure
4102 * @mode: requested mode
4103 *
4104 * A pipe may be connected to one or more outputs. Based on the depth of the
4105 * attached framebuffer, choose a good color depth to use on the pipe.
4106 *
4107 * If possible, match the pipe depth to the fb depth. In some cases, this
4108 * isn't ideal, because the connected output supports a lesser or restricted
4109 * set of depths. Resolve that here:
4110 * LVDS typically supports only 6bpc, so clamp down in that case
4111 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4112 * Displays may support a restricted set as well, check EDID and clamp as
4113 * appropriate.
4114 * DP may want to dither down to 6bpc to fit larger modes
4115 *
4116 * RETURNS:
4117 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4118 * true if they don't match).
4119 */
4120 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4121 struct drm_framebuffer *fb,
4122 unsigned int *pipe_bpp,
4123 struct drm_display_mode *mode)
4124 {
4125 struct drm_device *dev = crtc->dev;
4126 struct drm_i915_private *dev_priv = dev->dev_private;
4127 struct drm_connector *connector;
4128 struct intel_encoder *intel_encoder;
4129 unsigned int display_bpc = UINT_MAX, bpc;
4130
4131 /* Walk the encoders & connectors on this crtc, get min bpc */
4132 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4133
4134 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4135 unsigned int lvds_bpc;
4136
4137 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4138 LVDS_A3_POWER_UP)
4139 lvds_bpc = 8;
4140 else
4141 lvds_bpc = 6;
4142
4143 if (lvds_bpc < display_bpc) {
4144 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4145 display_bpc = lvds_bpc;
4146 }
4147 continue;
4148 }
4149
4150 /* Not one of the known troublemakers, check the EDID */
4151 list_for_each_entry(connector, &dev->mode_config.connector_list,
4152 head) {
4153 if (connector->encoder != &intel_encoder->base)
4154 continue;
4155
4156 /* Don't use an invalid EDID bpc value */
4157 if (connector->display_info.bpc &&
4158 connector->display_info.bpc < display_bpc) {
4159 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4160 display_bpc = connector->display_info.bpc;
4161 }
4162 }
4163
4164 /*
4165 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4166 * through, clamp it down. (Note: >12bpc will be caught below.)
4167 */
4168 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4169 if (display_bpc > 8 && display_bpc < 12) {
4170 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4171 display_bpc = 12;
4172 } else {
4173 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4174 display_bpc = 8;
4175 }
4176 }
4177 }
4178
4179 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4180 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4181 display_bpc = 6;
4182 }
4183
4184 /*
4185 * We could just drive the pipe at the highest bpc all the time and
4186 * enable dithering as needed, but that costs bandwidth. So choose
4187 * the minimum value that expresses the full color range of the fb but
4188 * also stays within the max display bpc discovered above.
4189 */
4190
4191 switch (fb->depth) {
4192 case 8:
4193 bpc = 8; /* since we go through a colormap */
4194 break;
4195 case 15:
4196 case 16:
4197 bpc = 6; /* min is 18bpp */
4198 break;
4199 case 24:
4200 bpc = 8;
4201 break;
4202 case 30:
4203 bpc = 10;
4204 break;
4205 case 48:
4206 bpc = 12;
4207 break;
4208 default:
4209 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4210 bpc = min((unsigned int)8, display_bpc);
4211 break;
4212 }
4213
4214 display_bpc = min(display_bpc, bpc);
4215
4216 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4217 bpc, display_bpc);
4218
4219 *pipe_bpp = display_bpc * 3;
4220
4221 return display_bpc != bpc;
4222 }
4223
4224 static int vlv_get_refclk(struct drm_crtc *crtc)
4225 {
4226 struct drm_device *dev = crtc->dev;
4227 struct drm_i915_private *dev_priv = dev->dev_private;
4228 int refclk = 27000; /* for DP & HDMI */
4229
4230 return 100000; /* only one validated so far */
4231
4232 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4233 refclk = 96000;
4234 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4235 if (intel_panel_use_ssc(dev_priv))
4236 refclk = 100000;
4237 else
4238 refclk = 96000;
4239 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4240 refclk = 100000;
4241 }
4242
4243 return refclk;
4244 }
4245
4246 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4247 {
4248 struct drm_device *dev = crtc->dev;
4249 struct drm_i915_private *dev_priv = dev->dev_private;
4250 int refclk;
4251
4252 if (IS_VALLEYVIEW(dev)) {
4253 refclk = vlv_get_refclk(crtc);
4254 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4255 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4256 refclk = dev_priv->lvds_ssc_freq * 1000;
4257 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4258 refclk / 1000);
4259 } else if (!IS_GEN2(dev)) {
4260 refclk = 96000;
4261 } else {
4262 refclk = 48000;
4263 }
4264
4265 return refclk;
4266 }
4267
4268 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4269 intel_clock_t *clock)
4270 {
4271 /* SDVO TV has fixed PLL values depend on its clock range,
4272 this mirrors vbios setting. */
4273 if (adjusted_mode->clock >= 100000
4274 && adjusted_mode->clock < 140500) {
4275 clock->p1 = 2;
4276 clock->p2 = 10;
4277 clock->n = 3;
4278 clock->m1 = 16;
4279 clock->m2 = 8;
4280 } else if (adjusted_mode->clock >= 140500
4281 && adjusted_mode->clock <= 200000) {
4282 clock->p1 = 1;
4283 clock->p2 = 10;
4284 clock->n = 6;
4285 clock->m1 = 12;
4286 clock->m2 = 8;
4287 }
4288 }
4289
4290 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4291 intel_clock_t *clock,
4292 intel_clock_t *reduced_clock)
4293 {
4294 struct drm_device *dev = crtc->dev;
4295 struct drm_i915_private *dev_priv = dev->dev_private;
4296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4297 int pipe = intel_crtc->pipe;
4298 u32 fp, fp2 = 0;
4299
4300 if (IS_PINEVIEW(dev)) {
4301 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4302 if (reduced_clock)
4303 fp2 = (1 << reduced_clock->n) << 16 |
4304 reduced_clock->m1 << 8 | reduced_clock->m2;
4305 } else {
4306 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4307 if (reduced_clock)
4308 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4309 reduced_clock->m2;
4310 }
4311
4312 I915_WRITE(FP0(pipe), fp);
4313
4314 intel_crtc->lowfreq_avail = false;
4315 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4316 reduced_clock && i915_powersave) {
4317 I915_WRITE(FP1(pipe), fp2);
4318 intel_crtc->lowfreq_avail = true;
4319 } else {
4320 I915_WRITE(FP1(pipe), fp);
4321 }
4322 }
4323
4324 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4325 struct drm_display_mode *adjusted_mode)
4326 {
4327 struct drm_device *dev = crtc->dev;
4328 struct drm_i915_private *dev_priv = dev->dev_private;
4329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4330 int pipe = intel_crtc->pipe;
4331 u32 temp;
4332
4333 temp = I915_READ(LVDS);
4334 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4335 if (pipe == 1) {
4336 temp |= LVDS_PIPEB_SELECT;
4337 } else {
4338 temp &= ~LVDS_PIPEB_SELECT;
4339 }
4340 /* set the corresponsding LVDS_BORDER bit */
4341 temp |= dev_priv->lvds_border_bits;
4342 /* Set the B0-B3 data pairs corresponding to whether we're going to
4343 * set the DPLLs for dual-channel mode or not.
4344 */
4345 if (clock->p2 == 7)
4346 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4347 else
4348 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4349
4350 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4351 * appropriately here, but we need to look more thoroughly into how
4352 * panels behave in the two modes.
4353 */
4354 /* set the dithering flag on LVDS as needed */
4355 if (INTEL_INFO(dev)->gen >= 4) {
4356 if (dev_priv->lvds_dither)
4357 temp |= LVDS_ENABLE_DITHER;
4358 else
4359 temp &= ~LVDS_ENABLE_DITHER;
4360 }
4361 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4362 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4363 temp |= LVDS_HSYNC_POLARITY;
4364 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4365 temp |= LVDS_VSYNC_POLARITY;
4366 I915_WRITE(LVDS, temp);
4367 }
4368
4369 static void vlv_update_pll(struct drm_crtc *crtc,
4370 struct drm_display_mode *mode,
4371 struct drm_display_mode *adjusted_mode,
4372 intel_clock_t *clock, intel_clock_t *reduced_clock,
4373 int num_connectors)
4374 {
4375 struct drm_device *dev = crtc->dev;
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4378 int pipe = intel_crtc->pipe;
4379 u32 dpll, mdiv, pdiv;
4380 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4381 bool is_sdvo;
4382 u32 temp;
4383
4384 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4385 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4386
4387 dpll = DPLL_VGA_MODE_DIS;
4388 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4389 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4390 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4391
4392 I915_WRITE(DPLL(pipe), dpll);
4393 POSTING_READ(DPLL(pipe));
4394
4395 bestn = clock->n;
4396 bestm1 = clock->m1;
4397 bestm2 = clock->m2;
4398 bestp1 = clock->p1;
4399 bestp2 = clock->p2;
4400
4401 /*
4402 * In Valleyview PLL and program lane counter registers are exposed
4403 * through DPIO interface
4404 */
4405 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4406 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4407 mdiv |= ((bestn << DPIO_N_SHIFT));
4408 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4409 mdiv |= (1 << DPIO_K_SHIFT);
4410 mdiv |= DPIO_ENABLE_CALIBRATION;
4411 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4412
4413 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4414
4415 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4416 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4417 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4418 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4419 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4420
4421 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4422
4423 dpll |= DPLL_VCO_ENABLE;
4424 I915_WRITE(DPLL(pipe), dpll);
4425 POSTING_READ(DPLL(pipe));
4426 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4427 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4428
4429 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4430
4431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4432 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4433
4434 I915_WRITE(DPLL(pipe), dpll);
4435
4436 /* Wait for the clocks to stabilize. */
4437 POSTING_READ(DPLL(pipe));
4438 udelay(150);
4439
4440 temp = 0;
4441 if (is_sdvo) {
4442 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4443 if (temp > 1)
4444 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4445 else
4446 temp = 0;
4447 }
4448 I915_WRITE(DPLL_MD(pipe), temp);
4449 POSTING_READ(DPLL_MD(pipe));
4450
4451 /* Now program lane control registers */
4452 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4453 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4454 {
4455 temp = 0x1000C4;
4456 if(pipe == 1)
4457 temp |= (1 << 21);
4458 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4459 }
4460 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4461 {
4462 temp = 0x1000C4;
4463 if(pipe == 1)
4464 temp |= (1 << 21);
4465 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4466 }
4467 }
4468
4469 static void i9xx_update_pll(struct drm_crtc *crtc,
4470 struct drm_display_mode *mode,
4471 struct drm_display_mode *adjusted_mode,
4472 intel_clock_t *clock, intel_clock_t *reduced_clock,
4473 int num_connectors)
4474 {
4475 struct drm_device *dev = crtc->dev;
4476 struct drm_i915_private *dev_priv = dev->dev_private;
4477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4478 int pipe = intel_crtc->pipe;
4479 u32 dpll;
4480 bool is_sdvo;
4481
4482 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4483
4484 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4485 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4486
4487 dpll = DPLL_VGA_MODE_DIS;
4488
4489 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4490 dpll |= DPLLB_MODE_LVDS;
4491 else
4492 dpll |= DPLLB_MODE_DAC_SERIAL;
4493 if (is_sdvo) {
4494 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4495 if (pixel_multiplier > 1) {
4496 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4497 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4498 }
4499 dpll |= DPLL_DVO_HIGH_SPEED;
4500 }
4501 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4502 dpll |= DPLL_DVO_HIGH_SPEED;
4503
4504 /* compute bitmask from p1 value */
4505 if (IS_PINEVIEW(dev))
4506 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4507 else {
4508 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4509 if (IS_G4X(dev) && reduced_clock)
4510 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4511 }
4512 switch (clock->p2) {
4513 case 5:
4514 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4515 break;
4516 case 7:
4517 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4518 break;
4519 case 10:
4520 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4521 break;
4522 case 14:
4523 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4524 break;
4525 }
4526 if (INTEL_INFO(dev)->gen >= 4)
4527 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4528
4529 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4530 dpll |= PLL_REF_INPUT_TVCLKINBC;
4531 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4532 /* XXX: just matching BIOS for now */
4533 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4534 dpll |= 3;
4535 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4536 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4537 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4538 else
4539 dpll |= PLL_REF_INPUT_DREFCLK;
4540
4541 dpll |= DPLL_VCO_ENABLE;
4542 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4543 POSTING_READ(DPLL(pipe));
4544 udelay(150);
4545
4546 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4547 * This is an exception to the general rule that mode_set doesn't turn
4548 * things on.
4549 */
4550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4551 intel_update_lvds(crtc, clock, adjusted_mode);
4552
4553 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4554 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4555
4556 I915_WRITE(DPLL(pipe), dpll);
4557
4558 /* Wait for the clocks to stabilize. */
4559 POSTING_READ(DPLL(pipe));
4560 udelay(150);
4561
4562 if (INTEL_INFO(dev)->gen >= 4) {
4563 u32 temp = 0;
4564 if (is_sdvo) {
4565 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4566 if (temp > 1)
4567 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4568 else
4569 temp = 0;
4570 }
4571 I915_WRITE(DPLL_MD(pipe), temp);
4572 } else {
4573 /* The pixel multiplier can only be updated once the
4574 * DPLL is enabled and the clocks are stable.
4575 *
4576 * So write it again.
4577 */
4578 I915_WRITE(DPLL(pipe), dpll);
4579 }
4580 }
4581
4582 static void i8xx_update_pll(struct drm_crtc *crtc,
4583 struct drm_display_mode *adjusted_mode,
4584 intel_clock_t *clock, intel_clock_t *reduced_clock,
4585 int num_connectors)
4586 {
4587 struct drm_device *dev = crtc->dev;
4588 struct drm_i915_private *dev_priv = dev->dev_private;
4589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4590 int pipe = intel_crtc->pipe;
4591 u32 dpll;
4592
4593 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4594
4595 dpll = DPLL_VGA_MODE_DIS;
4596
4597 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4598 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4599 } else {
4600 if (clock->p1 == 2)
4601 dpll |= PLL_P1_DIVIDE_BY_TWO;
4602 else
4603 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4604 if (clock->p2 == 4)
4605 dpll |= PLL_P2_DIVIDE_BY_4;
4606 }
4607
4608 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4609 /* XXX: just matching BIOS for now */
4610 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4611 dpll |= 3;
4612 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4613 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4614 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4615 else
4616 dpll |= PLL_REF_INPUT_DREFCLK;
4617
4618 dpll |= DPLL_VCO_ENABLE;
4619 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4620 POSTING_READ(DPLL(pipe));
4621 udelay(150);
4622
4623 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4624 * This is an exception to the general rule that mode_set doesn't turn
4625 * things on.
4626 */
4627 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4628 intel_update_lvds(crtc, clock, adjusted_mode);
4629
4630 I915_WRITE(DPLL(pipe), dpll);
4631
4632 /* Wait for the clocks to stabilize. */
4633 POSTING_READ(DPLL(pipe));
4634 udelay(150);
4635
4636 /* The pixel multiplier can only be updated once the
4637 * DPLL is enabled and the clocks are stable.
4638 *
4639 * So write it again.
4640 */
4641 I915_WRITE(DPLL(pipe), dpll);
4642 }
4643
4644 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4645 struct drm_display_mode *mode,
4646 struct drm_display_mode *adjusted_mode)
4647 {
4648 struct drm_device *dev = intel_crtc->base.dev;
4649 struct drm_i915_private *dev_priv = dev->dev_private;
4650 enum pipe pipe = intel_crtc->pipe;
4651 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4652 uint32_t vsyncshift;
4653
4654 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4655 /* the chip adds 2 halflines automatically */
4656 adjusted_mode->crtc_vtotal -= 1;
4657 adjusted_mode->crtc_vblank_end -= 1;
4658 vsyncshift = adjusted_mode->crtc_hsync_start
4659 - adjusted_mode->crtc_htotal / 2;
4660 } else {
4661 vsyncshift = 0;
4662 }
4663
4664 if (INTEL_INFO(dev)->gen > 3)
4665 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4666
4667 I915_WRITE(HTOTAL(cpu_transcoder),
4668 (adjusted_mode->crtc_hdisplay - 1) |
4669 ((adjusted_mode->crtc_htotal - 1) << 16));
4670 I915_WRITE(HBLANK(cpu_transcoder),
4671 (adjusted_mode->crtc_hblank_start - 1) |
4672 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4673 I915_WRITE(HSYNC(cpu_transcoder),
4674 (adjusted_mode->crtc_hsync_start - 1) |
4675 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4676
4677 I915_WRITE(VTOTAL(cpu_transcoder),
4678 (adjusted_mode->crtc_vdisplay - 1) |
4679 ((adjusted_mode->crtc_vtotal - 1) << 16));
4680 I915_WRITE(VBLANK(cpu_transcoder),
4681 (adjusted_mode->crtc_vblank_start - 1) |
4682 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4683 I915_WRITE(VSYNC(cpu_transcoder),
4684 (adjusted_mode->crtc_vsync_start - 1) |
4685 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4686
4687 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4688 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4689 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4690 * bits. */
4691 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4692 (pipe == PIPE_B || pipe == PIPE_C))
4693 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4694
4695 /* pipesrc controls the size that is scaled from, which should
4696 * always be the user's requested size.
4697 */
4698 I915_WRITE(PIPESRC(pipe),
4699 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4700 }
4701
4702 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4703 struct drm_display_mode *mode,
4704 struct drm_display_mode *adjusted_mode,
4705 int x, int y,
4706 struct drm_framebuffer *fb)
4707 {
4708 struct drm_device *dev = crtc->dev;
4709 struct drm_i915_private *dev_priv = dev->dev_private;
4710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4711 int pipe = intel_crtc->pipe;
4712 int plane = intel_crtc->plane;
4713 int refclk, num_connectors = 0;
4714 intel_clock_t clock, reduced_clock;
4715 u32 dspcntr, pipeconf;
4716 bool ok, has_reduced_clock = false, is_sdvo = false;
4717 bool is_lvds = false, is_tv = false, is_dp = false;
4718 struct intel_encoder *encoder;
4719 const intel_limit_t *limit;
4720 int ret;
4721
4722 for_each_encoder_on_crtc(dev, crtc, encoder) {
4723 switch (encoder->type) {
4724 case INTEL_OUTPUT_LVDS:
4725 is_lvds = true;
4726 break;
4727 case INTEL_OUTPUT_SDVO:
4728 case INTEL_OUTPUT_HDMI:
4729 is_sdvo = true;
4730 if (encoder->needs_tv_clock)
4731 is_tv = true;
4732 break;
4733 case INTEL_OUTPUT_TVOUT:
4734 is_tv = true;
4735 break;
4736 case INTEL_OUTPUT_DISPLAYPORT:
4737 is_dp = true;
4738 break;
4739 }
4740
4741 num_connectors++;
4742 }
4743
4744 refclk = i9xx_get_refclk(crtc, num_connectors);
4745
4746 /*
4747 * Returns a set of divisors for the desired target clock with the given
4748 * refclk, or FALSE. The returned values represent the clock equation:
4749 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4750 */
4751 limit = intel_limit(crtc, refclk);
4752 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4753 &clock);
4754 if (!ok) {
4755 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4756 return -EINVAL;
4757 }
4758
4759 /* Ensure that the cursor is valid for the new mode before changing... */
4760 intel_crtc_update_cursor(crtc, true);
4761
4762 if (is_lvds && dev_priv->lvds_downclock_avail) {
4763 /*
4764 * Ensure we match the reduced clock's P to the target clock.
4765 * If the clocks don't match, we can't switch the display clock
4766 * by using the FP0/FP1. In such case we will disable the LVDS
4767 * downclock feature.
4768 */
4769 has_reduced_clock = limit->find_pll(limit, crtc,
4770 dev_priv->lvds_downclock,
4771 refclk,
4772 &clock,
4773 &reduced_clock);
4774 }
4775
4776 if (is_sdvo && is_tv)
4777 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4778
4779 if (IS_GEN2(dev))
4780 i8xx_update_pll(crtc, adjusted_mode, &clock,
4781 has_reduced_clock ? &reduced_clock : NULL,
4782 num_connectors);
4783 else if (IS_VALLEYVIEW(dev))
4784 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4785 has_reduced_clock ? &reduced_clock : NULL,
4786 num_connectors);
4787 else
4788 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4789 has_reduced_clock ? &reduced_clock : NULL,
4790 num_connectors);
4791
4792 /* setup pipeconf */
4793 pipeconf = I915_READ(PIPECONF(pipe));
4794
4795 /* Set up the display plane register */
4796 dspcntr = DISPPLANE_GAMMA_ENABLE;
4797
4798 if (pipe == 0)
4799 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4800 else
4801 dspcntr |= DISPPLANE_SEL_PIPE_B;
4802
4803 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4804 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4805 * core speed.
4806 *
4807 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4808 * pipe == 0 check?
4809 */
4810 if (mode->clock >
4811 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4812 pipeconf |= PIPECONF_DOUBLE_WIDE;
4813 else
4814 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4815 }
4816
4817 /* default to 8bpc */
4818 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4819 if (is_dp) {
4820 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4821 pipeconf |= PIPECONF_BPP_6 |
4822 PIPECONF_DITHER_EN |
4823 PIPECONF_DITHER_TYPE_SP;
4824 }
4825 }
4826
4827 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4828 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4829 pipeconf |= PIPECONF_BPP_6 |
4830 PIPECONF_ENABLE |
4831 I965_PIPECONF_ACTIVE;
4832 }
4833 }
4834
4835 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4836 drm_mode_debug_printmodeline(mode);
4837
4838 if (HAS_PIPE_CXSR(dev)) {
4839 if (intel_crtc->lowfreq_avail) {
4840 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4841 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4842 } else {
4843 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4844 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4845 }
4846 }
4847
4848 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4849 if (!IS_GEN2(dev) &&
4850 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4851 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4852 else
4853 pipeconf |= PIPECONF_PROGRESSIVE;
4854
4855 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4856
4857 /* pipesrc and dspsize control the size that is scaled from,
4858 * which should always be the user's requested size.
4859 */
4860 I915_WRITE(DSPSIZE(plane),
4861 ((mode->vdisplay - 1) << 16) |
4862 (mode->hdisplay - 1));
4863 I915_WRITE(DSPPOS(plane), 0);
4864
4865 I915_WRITE(PIPECONF(pipe), pipeconf);
4866 POSTING_READ(PIPECONF(pipe));
4867 intel_enable_pipe(dev_priv, pipe, false);
4868
4869 intel_wait_for_vblank(dev, pipe);
4870
4871 I915_WRITE(DSPCNTR(plane), dspcntr);
4872 POSTING_READ(DSPCNTR(plane));
4873
4874 ret = intel_pipe_set_base(crtc, x, y, fb);
4875
4876 intel_update_watermarks(dev);
4877
4878 return ret;
4879 }
4880
4881 /*
4882 * Initialize reference clocks when the driver loads
4883 */
4884 void ironlake_init_pch_refclk(struct drm_device *dev)
4885 {
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887 struct drm_mode_config *mode_config = &dev->mode_config;
4888 struct intel_encoder *encoder;
4889 u32 temp;
4890 bool has_lvds = false;
4891 bool has_cpu_edp = false;
4892 bool has_pch_edp = false;
4893 bool has_panel = false;
4894 bool has_ck505 = false;
4895 bool can_ssc = false;
4896
4897 /* We need to take the global config into account */
4898 list_for_each_entry(encoder, &mode_config->encoder_list,
4899 base.head) {
4900 switch (encoder->type) {
4901 case INTEL_OUTPUT_LVDS:
4902 has_panel = true;
4903 has_lvds = true;
4904 break;
4905 case INTEL_OUTPUT_EDP:
4906 has_panel = true;
4907 if (intel_encoder_is_pch_edp(&encoder->base))
4908 has_pch_edp = true;
4909 else
4910 has_cpu_edp = true;
4911 break;
4912 }
4913 }
4914
4915 if (HAS_PCH_IBX(dev)) {
4916 has_ck505 = dev_priv->display_clock_mode;
4917 can_ssc = has_ck505;
4918 } else {
4919 has_ck505 = false;
4920 can_ssc = true;
4921 }
4922
4923 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4924 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4925 has_ck505);
4926
4927 /* Ironlake: try to setup display ref clock before DPLL
4928 * enabling. This is only under driver's control after
4929 * PCH B stepping, previous chipset stepping should be
4930 * ignoring this setting.
4931 */
4932 temp = I915_READ(PCH_DREF_CONTROL);
4933 /* Always enable nonspread source */
4934 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4935
4936 if (has_ck505)
4937 temp |= DREF_NONSPREAD_CK505_ENABLE;
4938 else
4939 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4940
4941 if (has_panel) {
4942 temp &= ~DREF_SSC_SOURCE_MASK;
4943 temp |= DREF_SSC_SOURCE_ENABLE;
4944
4945 /* SSC must be turned on before enabling the CPU output */
4946 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4947 DRM_DEBUG_KMS("Using SSC on panel\n");
4948 temp |= DREF_SSC1_ENABLE;
4949 } else
4950 temp &= ~DREF_SSC1_ENABLE;
4951
4952 /* Get SSC going before enabling the outputs */
4953 I915_WRITE(PCH_DREF_CONTROL, temp);
4954 POSTING_READ(PCH_DREF_CONTROL);
4955 udelay(200);
4956
4957 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4958
4959 /* Enable CPU source on CPU attached eDP */
4960 if (has_cpu_edp) {
4961 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4962 DRM_DEBUG_KMS("Using SSC on eDP\n");
4963 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4964 }
4965 else
4966 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4967 } else
4968 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4969
4970 I915_WRITE(PCH_DREF_CONTROL, temp);
4971 POSTING_READ(PCH_DREF_CONTROL);
4972 udelay(200);
4973 } else {
4974 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4975
4976 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4977
4978 /* Turn off CPU output */
4979 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4980
4981 I915_WRITE(PCH_DREF_CONTROL, temp);
4982 POSTING_READ(PCH_DREF_CONTROL);
4983 udelay(200);
4984
4985 /* Turn off the SSC source */
4986 temp &= ~DREF_SSC_SOURCE_MASK;
4987 temp |= DREF_SSC_SOURCE_DISABLE;
4988
4989 /* Turn off SSC1 */
4990 temp &= ~ DREF_SSC1_ENABLE;
4991
4992 I915_WRITE(PCH_DREF_CONTROL, temp);
4993 POSTING_READ(PCH_DREF_CONTROL);
4994 udelay(200);
4995 }
4996 }
4997
4998 static int ironlake_get_refclk(struct drm_crtc *crtc)
4999 {
5000 struct drm_device *dev = crtc->dev;
5001 struct drm_i915_private *dev_priv = dev->dev_private;
5002 struct intel_encoder *encoder;
5003 struct intel_encoder *edp_encoder = NULL;
5004 int num_connectors = 0;
5005 bool is_lvds = false;
5006
5007 for_each_encoder_on_crtc(dev, crtc, encoder) {
5008 switch (encoder->type) {
5009 case INTEL_OUTPUT_LVDS:
5010 is_lvds = true;
5011 break;
5012 case INTEL_OUTPUT_EDP:
5013 edp_encoder = encoder;
5014 break;
5015 }
5016 num_connectors++;
5017 }
5018
5019 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5020 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5021 dev_priv->lvds_ssc_freq);
5022 return dev_priv->lvds_ssc_freq * 1000;
5023 }
5024
5025 return 120000;
5026 }
5027
5028 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5029 struct drm_display_mode *adjusted_mode,
5030 bool dither)
5031 {
5032 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5034 int pipe = intel_crtc->pipe;
5035 uint32_t val;
5036
5037 val = I915_READ(PIPECONF(pipe));
5038
5039 val &= ~PIPE_BPC_MASK;
5040 switch (intel_crtc->bpp) {
5041 case 18:
5042 val |= PIPE_6BPC;
5043 break;
5044 case 24:
5045 val |= PIPE_8BPC;
5046 break;
5047 case 30:
5048 val |= PIPE_10BPC;
5049 break;
5050 case 36:
5051 val |= PIPE_12BPC;
5052 break;
5053 default:
5054 /* Case prevented by intel_choose_pipe_bpp_dither. */
5055 BUG();
5056 }
5057
5058 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5059 if (dither)
5060 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5061
5062 val &= ~PIPECONF_INTERLACE_MASK;
5063 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5064 val |= PIPECONF_INTERLACED_ILK;
5065 else
5066 val |= PIPECONF_PROGRESSIVE;
5067
5068 I915_WRITE(PIPECONF(pipe), val);
5069 POSTING_READ(PIPECONF(pipe));
5070 }
5071
5072 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5073 struct drm_display_mode *adjusted_mode,
5074 bool dither)
5075 {
5076 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5079 uint32_t val;
5080
5081 val = I915_READ(PIPECONF(cpu_transcoder));
5082
5083 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5084 if (dither)
5085 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5086
5087 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5088 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5089 val |= PIPECONF_INTERLACED_ILK;
5090 else
5091 val |= PIPECONF_PROGRESSIVE;
5092
5093 I915_WRITE(PIPECONF(cpu_transcoder), val);
5094 POSTING_READ(PIPECONF(cpu_transcoder));
5095 }
5096
5097 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5098 struct drm_display_mode *adjusted_mode,
5099 intel_clock_t *clock,
5100 bool *has_reduced_clock,
5101 intel_clock_t *reduced_clock)
5102 {
5103 struct drm_device *dev = crtc->dev;
5104 struct drm_i915_private *dev_priv = dev->dev_private;
5105 struct intel_encoder *intel_encoder;
5106 int refclk;
5107 const intel_limit_t *limit;
5108 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5109
5110 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5111 switch (intel_encoder->type) {
5112 case INTEL_OUTPUT_LVDS:
5113 is_lvds = true;
5114 break;
5115 case INTEL_OUTPUT_SDVO:
5116 case INTEL_OUTPUT_HDMI:
5117 is_sdvo = true;
5118 if (intel_encoder->needs_tv_clock)
5119 is_tv = true;
5120 break;
5121 case INTEL_OUTPUT_TVOUT:
5122 is_tv = true;
5123 break;
5124 }
5125 }
5126
5127 refclk = ironlake_get_refclk(crtc);
5128
5129 /*
5130 * Returns a set of divisors for the desired target clock with the given
5131 * refclk, or FALSE. The returned values represent the clock equation:
5132 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5133 */
5134 limit = intel_limit(crtc, refclk);
5135 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5136 clock);
5137 if (!ret)
5138 return false;
5139
5140 if (is_lvds && dev_priv->lvds_downclock_avail) {
5141 /*
5142 * Ensure we match the reduced clock's P to the target clock.
5143 * If the clocks don't match, we can't switch the display clock
5144 * by using the FP0/FP1. In such case we will disable the LVDS
5145 * downclock feature.
5146 */
5147 *has_reduced_clock = limit->find_pll(limit, crtc,
5148 dev_priv->lvds_downclock,
5149 refclk,
5150 clock,
5151 reduced_clock);
5152 }
5153
5154 if (is_sdvo && is_tv)
5155 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5156
5157 return true;
5158 }
5159
5160 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5161 {
5162 struct drm_i915_private *dev_priv = dev->dev_private;
5163 uint32_t temp;
5164
5165 temp = I915_READ(SOUTH_CHICKEN1);
5166 if (temp & FDI_BC_BIFURCATION_SELECT)
5167 return;
5168
5169 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5170 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5171
5172 temp |= FDI_BC_BIFURCATION_SELECT;
5173 DRM_DEBUG_KMS("enabling fdi C rx\n");
5174 I915_WRITE(SOUTH_CHICKEN1, temp);
5175 POSTING_READ(SOUTH_CHICKEN1);
5176 }
5177
5178 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5179 {
5180 struct drm_device *dev = intel_crtc->base.dev;
5181 struct drm_i915_private *dev_priv = dev->dev_private;
5182 struct intel_crtc *pipe_B_crtc =
5183 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5184
5185 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5186 intel_crtc->pipe, intel_crtc->fdi_lanes);
5187 if (intel_crtc->fdi_lanes > 4) {
5188 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5189 intel_crtc->pipe, intel_crtc->fdi_lanes);
5190 /* Clamp lanes to avoid programming the hw with bogus values. */
5191 intel_crtc->fdi_lanes = 4;
5192
5193 return false;
5194 }
5195
5196 if (dev_priv->num_pipe == 2)
5197 return true;
5198
5199 switch (intel_crtc->pipe) {
5200 case PIPE_A:
5201 return true;
5202 case PIPE_B:
5203 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5204 intel_crtc->fdi_lanes > 2) {
5205 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5206 intel_crtc->pipe, intel_crtc->fdi_lanes);
5207 /* Clamp lanes to avoid programming the hw with bogus values. */
5208 intel_crtc->fdi_lanes = 2;
5209
5210 return false;
5211 }
5212
5213 if (intel_crtc->fdi_lanes > 2)
5214 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5215 else
5216 cpt_enable_fdi_bc_bifurcation(dev);
5217
5218 return true;
5219 case PIPE_C:
5220 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5221 if (intel_crtc->fdi_lanes > 2) {
5222 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5223 intel_crtc->pipe, intel_crtc->fdi_lanes);
5224 /* Clamp lanes to avoid programming the hw with bogus values. */
5225 intel_crtc->fdi_lanes = 2;
5226
5227 return false;
5228 }
5229 } else {
5230 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5231 return false;
5232 }
5233
5234 cpt_enable_fdi_bc_bifurcation(dev);
5235
5236 return true;
5237 default:
5238 BUG();
5239 }
5240 }
5241
5242 static void ironlake_set_m_n(struct drm_crtc *crtc,
5243 struct drm_display_mode *mode,
5244 struct drm_display_mode *adjusted_mode)
5245 {
5246 struct drm_device *dev = crtc->dev;
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5249 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5250 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5251 struct fdi_m_n m_n = {0};
5252 int target_clock, pixel_multiplier, lane, link_bw;
5253 bool is_dp = false, is_cpu_edp = false;
5254
5255 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5256 switch (intel_encoder->type) {
5257 case INTEL_OUTPUT_DISPLAYPORT:
5258 is_dp = true;
5259 break;
5260 case INTEL_OUTPUT_EDP:
5261 is_dp = true;
5262 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5263 is_cpu_edp = true;
5264 edp_encoder = intel_encoder;
5265 break;
5266 }
5267 }
5268
5269 /* FDI link */
5270 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5271 lane = 0;
5272 /* CPU eDP doesn't require FDI link, so just set DP M/N
5273 according to current link config */
5274 if (is_cpu_edp) {
5275 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5276 } else {
5277 /* FDI is a binary signal running at ~2.7GHz, encoding
5278 * each output octet as 10 bits. The actual frequency
5279 * is stored as a divider into a 100MHz clock, and the
5280 * mode pixel clock is stored in units of 1KHz.
5281 * Hence the bw of each lane in terms of the mode signal
5282 * is:
5283 */
5284 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5285 }
5286
5287 /* [e]DP over FDI requires target mode clock instead of link clock. */
5288 if (edp_encoder)
5289 target_clock = intel_edp_target_clock(edp_encoder, mode);
5290 else if (is_dp)
5291 target_clock = mode->clock;
5292 else
5293 target_clock = adjusted_mode->clock;
5294
5295 if (!lane) {
5296 /*
5297 * Account for spread spectrum to avoid
5298 * oversubscribing the link. Max center spread
5299 * is 2.5%; use 5% for safety's sake.
5300 */
5301 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5302 lane = bps / (link_bw * 8) + 1;
5303 }
5304
5305 intel_crtc->fdi_lanes = lane;
5306
5307 if (pixel_multiplier > 1)
5308 link_bw *= pixel_multiplier;
5309 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5310 &m_n);
5311
5312 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5313 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5314 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5315 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5316 }
5317
5318 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5319 struct drm_display_mode *adjusted_mode,
5320 intel_clock_t *clock, u32 fp)
5321 {
5322 struct drm_crtc *crtc = &intel_crtc->base;
5323 struct drm_device *dev = crtc->dev;
5324 struct drm_i915_private *dev_priv = dev->dev_private;
5325 struct intel_encoder *intel_encoder;
5326 uint32_t dpll;
5327 int factor, pixel_multiplier, num_connectors = 0;
5328 bool is_lvds = false, is_sdvo = false, is_tv = false;
5329 bool is_dp = false, is_cpu_edp = false;
5330
5331 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5332 switch (intel_encoder->type) {
5333 case INTEL_OUTPUT_LVDS:
5334 is_lvds = true;
5335 break;
5336 case INTEL_OUTPUT_SDVO:
5337 case INTEL_OUTPUT_HDMI:
5338 is_sdvo = true;
5339 if (intel_encoder->needs_tv_clock)
5340 is_tv = true;
5341 break;
5342 case INTEL_OUTPUT_TVOUT:
5343 is_tv = true;
5344 break;
5345 case INTEL_OUTPUT_DISPLAYPORT:
5346 is_dp = true;
5347 break;
5348 case INTEL_OUTPUT_EDP:
5349 is_dp = true;
5350 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5351 is_cpu_edp = true;
5352 break;
5353 }
5354
5355 num_connectors++;
5356 }
5357
5358 /* Enable autotuning of the PLL clock (if permissible) */
5359 factor = 21;
5360 if (is_lvds) {
5361 if ((intel_panel_use_ssc(dev_priv) &&
5362 dev_priv->lvds_ssc_freq == 100) ||
5363 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5364 factor = 25;
5365 } else if (is_sdvo && is_tv)
5366 factor = 20;
5367
5368 if (clock->m < factor * clock->n)
5369 fp |= FP_CB_TUNE;
5370
5371 dpll = 0;
5372
5373 if (is_lvds)
5374 dpll |= DPLLB_MODE_LVDS;
5375 else
5376 dpll |= DPLLB_MODE_DAC_SERIAL;
5377 if (is_sdvo) {
5378 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5379 if (pixel_multiplier > 1) {
5380 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5381 }
5382 dpll |= DPLL_DVO_HIGH_SPEED;
5383 }
5384 if (is_dp && !is_cpu_edp)
5385 dpll |= DPLL_DVO_HIGH_SPEED;
5386
5387 /* compute bitmask from p1 value */
5388 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5389 /* also FPA1 */
5390 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5391
5392 switch (clock->p2) {
5393 case 5:
5394 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5395 break;
5396 case 7:
5397 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5398 break;
5399 case 10:
5400 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5401 break;
5402 case 14:
5403 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5404 break;
5405 }
5406
5407 if (is_sdvo && is_tv)
5408 dpll |= PLL_REF_INPUT_TVCLKINBC;
5409 else if (is_tv)
5410 /* XXX: just matching BIOS for now */
5411 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5412 dpll |= 3;
5413 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5414 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5415 else
5416 dpll |= PLL_REF_INPUT_DREFCLK;
5417
5418 return dpll;
5419 }
5420
5421 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5422 struct drm_display_mode *mode,
5423 struct drm_display_mode *adjusted_mode,
5424 int x, int y,
5425 struct drm_framebuffer *fb)
5426 {
5427 struct drm_device *dev = crtc->dev;
5428 struct drm_i915_private *dev_priv = dev->dev_private;
5429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5430 int pipe = intel_crtc->pipe;
5431 int plane = intel_crtc->plane;
5432 int num_connectors = 0;
5433 intel_clock_t clock, reduced_clock;
5434 u32 dpll, fp = 0, fp2 = 0;
5435 bool ok, has_reduced_clock = false;
5436 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5437 struct intel_encoder *encoder;
5438 u32 temp;
5439 int ret;
5440 bool dither, fdi_config_ok;
5441
5442 for_each_encoder_on_crtc(dev, crtc, encoder) {
5443 switch (encoder->type) {
5444 case INTEL_OUTPUT_LVDS:
5445 is_lvds = true;
5446 break;
5447 case INTEL_OUTPUT_DISPLAYPORT:
5448 is_dp = true;
5449 break;
5450 case INTEL_OUTPUT_EDP:
5451 is_dp = true;
5452 if (!intel_encoder_is_pch_edp(&encoder->base))
5453 is_cpu_edp = true;
5454 break;
5455 }
5456
5457 num_connectors++;
5458 }
5459
5460 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5461 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5462
5463 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5464 &has_reduced_clock, &reduced_clock);
5465 if (!ok) {
5466 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5467 return -EINVAL;
5468 }
5469
5470 /* Ensure that the cursor is valid for the new mode before changing... */
5471 intel_crtc_update_cursor(crtc, true);
5472
5473 /* determine panel color depth */
5474 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5475 adjusted_mode);
5476 if (is_lvds && dev_priv->lvds_dither)
5477 dither = true;
5478
5479 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5480 if (has_reduced_clock)
5481 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5482 reduced_clock.m2;
5483
5484 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5485
5486 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5487 drm_mode_debug_printmodeline(mode);
5488
5489 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5490 if (!is_cpu_edp) {
5491 struct intel_pch_pll *pll;
5492
5493 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5494 if (pll == NULL) {
5495 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5496 pipe);
5497 return -EINVAL;
5498 }
5499 } else
5500 intel_put_pch_pll(intel_crtc);
5501
5502 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5503 * This is an exception to the general rule that mode_set doesn't turn
5504 * things on.
5505 */
5506 if (is_lvds) {
5507 temp = I915_READ(PCH_LVDS);
5508 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5509 if (HAS_PCH_CPT(dev)) {
5510 temp &= ~PORT_TRANS_SEL_MASK;
5511 temp |= PORT_TRANS_SEL_CPT(pipe);
5512 } else {
5513 if (pipe == 1)
5514 temp |= LVDS_PIPEB_SELECT;
5515 else
5516 temp &= ~LVDS_PIPEB_SELECT;
5517 }
5518
5519 /* set the corresponsding LVDS_BORDER bit */
5520 temp |= dev_priv->lvds_border_bits;
5521 /* Set the B0-B3 data pairs corresponding to whether we're going to
5522 * set the DPLLs for dual-channel mode or not.
5523 */
5524 if (clock.p2 == 7)
5525 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5526 else
5527 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5528
5529 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5530 * appropriately here, but we need to look more thoroughly into how
5531 * panels behave in the two modes.
5532 */
5533 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5534 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5535 temp |= LVDS_HSYNC_POLARITY;
5536 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5537 temp |= LVDS_VSYNC_POLARITY;
5538 I915_WRITE(PCH_LVDS, temp);
5539 }
5540
5541 if (is_dp && !is_cpu_edp) {
5542 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5543 } else {
5544 /* For non-DP output, clear any trans DP clock recovery setting.*/
5545 I915_WRITE(TRANSDATA_M1(pipe), 0);
5546 I915_WRITE(TRANSDATA_N1(pipe), 0);
5547 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5548 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5549 }
5550
5551 if (intel_crtc->pch_pll) {
5552 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5553
5554 /* Wait for the clocks to stabilize. */
5555 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5556 udelay(150);
5557
5558 /* The pixel multiplier can only be updated once the
5559 * DPLL is enabled and the clocks are stable.
5560 *
5561 * So write it again.
5562 */
5563 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5564 }
5565
5566 intel_crtc->lowfreq_avail = false;
5567 if (intel_crtc->pch_pll) {
5568 if (is_lvds && has_reduced_clock && i915_powersave) {
5569 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5570 intel_crtc->lowfreq_avail = true;
5571 } else {
5572 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5573 }
5574 }
5575
5576 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5577
5578 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5579 * ironlake_check_fdi_lanes. */
5580 ironlake_set_m_n(crtc, mode, adjusted_mode);
5581
5582 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5583
5584 if (is_cpu_edp)
5585 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5586
5587 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5588
5589 intel_wait_for_vblank(dev, pipe);
5590
5591 /* Set up the display plane register */
5592 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5593 POSTING_READ(DSPCNTR(plane));
5594
5595 ret = intel_pipe_set_base(crtc, x, y, fb);
5596
5597 intel_update_watermarks(dev);
5598
5599 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5600
5601 return fdi_config_ok ? ret : -EINVAL;
5602 }
5603
5604 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5605 struct drm_display_mode *mode,
5606 struct drm_display_mode *adjusted_mode,
5607 int x, int y,
5608 struct drm_framebuffer *fb)
5609 {
5610 struct drm_device *dev = crtc->dev;
5611 struct drm_i915_private *dev_priv = dev->dev_private;
5612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5613 int pipe = intel_crtc->pipe;
5614 int plane = intel_crtc->plane;
5615 int num_connectors = 0;
5616 intel_clock_t clock, reduced_clock;
5617 u32 dpll = 0, fp = 0, fp2 = 0;
5618 bool ok, has_reduced_clock = false;
5619 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5620 struct intel_encoder *encoder;
5621 u32 temp;
5622 int ret;
5623 bool dither;
5624
5625 for_each_encoder_on_crtc(dev, crtc, encoder) {
5626 switch (encoder->type) {
5627 case INTEL_OUTPUT_LVDS:
5628 is_lvds = true;
5629 break;
5630 case INTEL_OUTPUT_DISPLAYPORT:
5631 is_dp = true;
5632 break;
5633 case INTEL_OUTPUT_EDP:
5634 is_dp = true;
5635 if (!intel_encoder_is_pch_edp(&encoder->base))
5636 is_cpu_edp = true;
5637 break;
5638 }
5639
5640 num_connectors++;
5641 }
5642
5643 if (is_cpu_edp)
5644 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5645 else
5646 intel_crtc->cpu_transcoder = pipe;
5647
5648 /* We are not sure yet this won't happen. */
5649 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5650 INTEL_PCH_TYPE(dev));
5651
5652 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5653 num_connectors, pipe_name(pipe));
5654
5655 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5656 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5657
5658 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5659
5660 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5661 return -EINVAL;
5662
5663 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5664 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5665 &has_reduced_clock,
5666 &reduced_clock);
5667 if (!ok) {
5668 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5669 return -EINVAL;
5670 }
5671 }
5672
5673 /* Ensure that the cursor is valid for the new mode before changing... */
5674 intel_crtc_update_cursor(crtc, true);
5675
5676 /* determine panel color depth */
5677 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5678 adjusted_mode);
5679 if (is_lvds && dev_priv->lvds_dither)
5680 dither = true;
5681
5682 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5683 drm_mode_debug_printmodeline(mode);
5684
5685 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5686 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5687 if (has_reduced_clock)
5688 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5689 reduced_clock.m2;
5690
5691 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5692 fp);
5693
5694 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5695 * own on pre-Haswell/LPT generation */
5696 if (!is_cpu_edp) {
5697 struct intel_pch_pll *pll;
5698
5699 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5700 if (pll == NULL) {
5701 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5702 pipe);
5703 return -EINVAL;
5704 }
5705 } else
5706 intel_put_pch_pll(intel_crtc);
5707
5708 /* The LVDS pin pair needs to be on before the DPLLs are
5709 * enabled. This is an exception to the general rule that
5710 * mode_set doesn't turn things on.
5711 */
5712 if (is_lvds) {
5713 temp = I915_READ(PCH_LVDS);
5714 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5715 if (HAS_PCH_CPT(dev)) {
5716 temp &= ~PORT_TRANS_SEL_MASK;
5717 temp |= PORT_TRANS_SEL_CPT(pipe);
5718 } else {
5719 if (pipe == 1)
5720 temp |= LVDS_PIPEB_SELECT;
5721 else
5722 temp &= ~LVDS_PIPEB_SELECT;
5723 }
5724
5725 /* set the corresponsding LVDS_BORDER bit */
5726 temp |= dev_priv->lvds_border_bits;
5727 /* Set the B0-B3 data pairs corresponding to whether
5728 * we're going to set the DPLLs for dual-channel mode or
5729 * not.
5730 */
5731 if (clock.p2 == 7)
5732 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5733 else
5734 temp &= ~(LVDS_B0B3_POWER_UP |
5735 LVDS_CLKB_POWER_UP);
5736
5737 /* It would be nice to set 24 vs 18-bit mode
5738 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5739 * look more thoroughly into how panels behave in the
5740 * two modes.
5741 */
5742 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5743 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5744 temp |= LVDS_HSYNC_POLARITY;
5745 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5746 temp |= LVDS_VSYNC_POLARITY;
5747 I915_WRITE(PCH_LVDS, temp);
5748 }
5749 }
5750
5751 if (is_dp && !is_cpu_edp) {
5752 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5753 } else {
5754 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5755 /* For non-DP output, clear any trans DP clock recovery
5756 * setting.*/
5757 I915_WRITE(TRANSDATA_M1(pipe), 0);
5758 I915_WRITE(TRANSDATA_N1(pipe), 0);
5759 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5760 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5761 }
5762 }
5763
5764 intel_crtc->lowfreq_avail = false;
5765 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5766 if (intel_crtc->pch_pll) {
5767 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5768
5769 /* Wait for the clocks to stabilize. */
5770 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5771 udelay(150);
5772
5773 /* The pixel multiplier can only be updated once the
5774 * DPLL is enabled and the clocks are stable.
5775 *
5776 * So write it again.
5777 */
5778 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5779 }
5780
5781 if (intel_crtc->pch_pll) {
5782 if (is_lvds && has_reduced_clock && i915_powersave) {
5783 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5784 intel_crtc->lowfreq_avail = true;
5785 } else {
5786 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5787 }
5788 }
5789 }
5790
5791 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5792
5793 if (!is_dp || is_cpu_edp)
5794 ironlake_set_m_n(crtc, mode, adjusted_mode);
5795
5796 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5797 if (is_cpu_edp)
5798 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5799
5800 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5801
5802 /* Set up the display plane register */
5803 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5804 POSTING_READ(DSPCNTR(plane));
5805
5806 ret = intel_pipe_set_base(crtc, x, y, fb);
5807
5808 intel_update_watermarks(dev);
5809
5810 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5811
5812 return ret;
5813 }
5814
5815 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5816 struct drm_display_mode *mode,
5817 struct drm_display_mode *adjusted_mode,
5818 int x, int y,
5819 struct drm_framebuffer *fb)
5820 {
5821 struct drm_device *dev = crtc->dev;
5822 struct drm_i915_private *dev_priv = dev->dev_private;
5823 struct drm_encoder_helper_funcs *encoder_funcs;
5824 struct intel_encoder *encoder;
5825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5826 int pipe = intel_crtc->pipe;
5827 int ret;
5828
5829 drm_vblank_pre_modeset(dev, pipe);
5830
5831 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5832 x, y, fb);
5833 drm_vblank_post_modeset(dev, pipe);
5834
5835 if (ret != 0)
5836 return ret;
5837
5838 for_each_encoder_on_crtc(dev, crtc, encoder) {
5839 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5840 encoder->base.base.id,
5841 drm_get_encoder_name(&encoder->base),
5842 mode->base.id, mode->name);
5843 encoder_funcs = encoder->base.helper_private;
5844 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5845 }
5846
5847 return 0;
5848 }
5849
5850 static bool intel_eld_uptodate(struct drm_connector *connector,
5851 int reg_eldv, uint32_t bits_eldv,
5852 int reg_elda, uint32_t bits_elda,
5853 int reg_edid)
5854 {
5855 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5856 uint8_t *eld = connector->eld;
5857 uint32_t i;
5858
5859 i = I915_READ(reg_eldv);
5860 i &= bits_eldv;
5861
5862 if (!eld[0])
5863 return !i;
5864
5865 if (!i)
5866 return false;
5867
5868 i = I915_READ(reg_elda);
5869 i &= ~bits_elda;
5870 I915_WRITE(reg_elda, i);
5871
5872 for (i = 0; i < eld[2]; i++)
5873 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5874 return false;
5875
5876 return true;
5877 }
5878
5879 static void g4x_write_eld(struct drm_connector *connector,
5880 struct drm_crtc *crtc)
5881 {
5882 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5883 uint8_t *eld = connector->eld;
5884 uint32_t eldv;
5885 uint32_t len;
5886 uint32_t i;
5887
5888 i = I915_READ(G4X_AUD_VID_DID);
5889
5890 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5891 eldv = G4X_ELDV_DEVCL_DEVBLC;
5892 else
5893 eldv = G4X_ELDV_DEVCTG;
5894
5895 if (intel_eld_uptodate(connector,
5896 G4X_AUD_CNTL_ST, eldv,
5897 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5898 G4X_HDMIW_HDMIEDID))
5899 return;
5900
5901 i = I915_READ(G4X_AUD_CNTL_ST);
5902 i &= ~(eldv | G4X_ELD_ADDR);
5903 len = (i >> 9) & 0x1f; /* ELD buffer size */
5904 I915_WRITE(G4X_AUD_CNTL_ST, i);
5905
5906 if (!eld[0])
5907 return;
5908
5909 len = min_t(uint8_t, eld[2], len);
5910 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5911 for (i = 0; i < len; i++)
5912 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5913
5914 i = I915_READ(G4X_AUD_CNTL_ST);
5915 i |= eldv;
5916 I915_WRITE(G4X_AUD_CNTL_ST, i);
5917 }
5918
5919 static void haswell_write_eld(struct drm_connector *connector,
5920 struct drm_crtc *crtc)
5921 {
5922 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5923 uint8_t *eld = connector->eld;
5924 struct drm_device *dev = crtc->dev;
5925 uint32_t eldv;
5926 uint32_t i;
5927 int len;
5928 int pipe = to_intel_crtc(crtc)->pipe;
5929 int tmp;
5930
5931 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5932 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5933 int aud_config = HSW_AUD_CFG(pipe);
5934 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5935
5936
5937 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5938
5939 /* Audio output enable */
5940 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5941 tmp = I915_READ(aud_cntrl_st2);
5942 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5943 I915_WRITE(aud_cntrl_st2, tmp);
5944
5945 /* Wait for 1 vertical blank */
5946 intel_wait_for_vblank(dev, pipe);
5947
5948 /* Set ELD valid state */
5949 tmp = I915_READ(aud_cntrl_st2);
5950 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5951 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5952 I915_WRITE(aud_cntrl_st2, tmp);
5953 tmp = I915_READ(aud_cntrl_st2);
5954 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5955
5956 /* Enable HDMI mode */
5957 tmp = I915_READ(aud_config);
5958 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5959 /* clear N_programing_enable and N_value_index */
5960 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5961 I915_WRITE(aud_config, tmp);
5962
5963 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5964
5965 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5966
5967 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5968 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5969 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5970 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5971 } else
5972 I915_WRITE(aud_config, 0);
5973
5974 if (intel_eld_uptodate(connector,
5975 aud_cntrl_st2, eldv,
5976 aud_cntl_st, IBX_ELD_ADDRESS,
5977 hdmiw_hdmiedid))
5978 return;
5979
5980 i = I915_READ(aud_cntrl_st2);
5981 i &= ~eldv;
5982 I915_WRITE(aud_cntrl_st2, i);
5983
5984 if (!eld[0])
5985 return;
5986
5987 i = I915_READ(aud_cntl_st);
5988 i &= ~IBX_ELD_ADDRESS;
5989 I915_WRITE(aud_cntl_st, i);
5990 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5991 DRM_DEBUG_DRIVER("port num:%d\n", i);
5992
5993 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5994 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5995 for (i = 0; i < len; i++)
5996 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5997
5998 i = I915_READ(aud_cntrl_st2);
5999 i |= eldv;
6000 I915_WRITE(aud_cntrl_st2, i);
6001
6002 }
6003
6004 static void ironlake_write_eld(struct drm_connector *connector,
6005 struct drm_crtc *crtc)
6006 {
6007 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6008 uint8_t *eld = connector->eld;
6009 uint32_t eldv;
6010 uint32_t i;
6011 int len;
6012 int hdmiw_hdmiedid;
6013 int aud_config;
6014 int aud_cntl_st;
6015 int aud_cntrl_st2;
6016 int pipe = to_intel_crtc(crtc)->pipe;
6017
6018 if (HAS_PCH_IBX(connector->dev)) {
6019 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6020 aud_config = IBX_AUD_CFG(pipe);
6021 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6022 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6023 } else {
6024 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6025 aud_config = CPT_AUD_CFG(pipe);
6026 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6027 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6028 }
6029
6030 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6031
6032 i = I915_READ(aud_cntl_st);
6033 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6034 if (!i) {
6035 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6036 /* operate blindly on all ports */
6037 eldv = IBX_ELD_VALIDB;
6038 eldv |= IBX_ELD_VALIDB << 4;
6039 eldv |= IBX_ELD_VALIDB << 8;
6040 } else {
6041 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6042 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6043 }
6044
6045 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6046 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6047 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6048 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6049 } else
6050 I915_WRITE(aud_config, 0);
6051
6052 if (intel_eld_uptodate(connector,
6053 aud_cntrl_st2, eldv,
6054 aud_cntl_st, IBX_ELD_ADDRESS,
6055 hdmiw_hdmiedid))
6056 return;
6057
6058 i = I915_READ(aud_cntrl_st2);
6059 i &= ~eldv;
6060 I915_WRITE(aud_cntrl_st2, i);
6061
6062 if (!eld[0])
6063 return;
6064
6065 i = I915_READ(aud_cntl_st);
6066 i &= ~IBX_ELD_ADDRESS;
6067 I915_WRITE(aud_cntl_st, i);
6068
6069 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6070 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6071 for (i = 0; i < len; i++)
6072 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6073
6074 i = I915_READ(aud_cntrl_st2);
6075 i |= eldv;
6076 I915_WRITE(aud_cntrl_st2, i);
6077 }
6078
6079 void intel_write_eld(struct drm_encoder *encoder,
6080 struct drm_display_mode *mode)
6081 {
6082 struct drm_crtc *crtc = encoder->crtc;
6083 struct drm_connector *connector;
6084 struct drm_device *dev = encoder->dev;
6085 struct drm_i915_private *dev_priv = dev->dev_private;
6086
6087 connector = drm_select_eld(encoder, mode);
6088 if (!connector)
6089 return;
6090
6091 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6092 connector->base.id,
6093 drm_get_connector_name(connector),
6094 connector->encoder->base.id,
6095 drm_get_encoder_name(connector->encoder));
6096
6097 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6098
6099 if (dev_priv->display.write_eld)
6100 dev_priv->display.write_eld(connector, crtc);
6101 }
6102
6103 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6104 void intel_crtc_load_lut(struct drm_crtc *crtc)
6105 {
6106 struct drm_device *dev = crtc->dev;
6107 struct drm_i915_private *dev_priv = dev->dev_private;
6108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6109 int palreg = PALETTE(intel_crtc->pipe);
6110 int i;
6111
6112 /* The clocks have to be on to load the palette. */
6113 if (!crtc->enabled || !intel_crtc->active)
6114 return;
6115
6116 /* use legacy palette for Ironlake */
6117 if (HAS_PCH_SPLIT(dev))
6118 palreg = LGC_PALETTE(intel_crtc->pipe);
6119
6120 for (i = 0; i < 256; i++) {
6121 I915_WRITE(palreg + 4 * i,
6122 (intel_crtc->lut_r[i] << 16) |
6123 (intel_crtc->lut_g[i] << 8) |
6124 intel_crtc->lut_b[i]);
6125 }
6126 }
6127
6128 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6129 {
6130 struct drm_device *dev = crtc->dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6133 bool visible = base != 0;
6134 u32 cntl;
6135
6136 if (intel_crtc->cursor_visible == visible)
6137 return;
6138
6139 cntl = I915_READ(_CURACNTR);
6140 if (visible) {
6141 /* On these chipsets we can only modify the base whilst
6142 * the cursor is disabled.
6143 */
6144 I915_WRITE(_CURABASE, base);
6145
6146 cntl &= ~(CURSOR_FORMAT_MASK);
6147 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6148 cntl |= CURSOR_ENABLE |
6149 CURSOR_GAMMA_ENABLE |
6150 CURSOR_FORMAT_ARGB;
6151 } else
6152 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6153 I915_WRITE(_CURACNTR, cntl);
6154
6155 intel_crtc->cursor_visible = visible;
6156 }
6157
6158 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6159 {
6160 struct drm_device *dev = crtc->dev;
6161 struct drm_i915_private *dev_priv = dev->dev_private;
6162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163 int pipe = intel_crtc->pipe;
6164 bool visible = base != 0;
6165
6166 if (intel_crtc->cursor_visible != visible) {
6167 uint32_t cntl = I915_READ(CURCNTR(pipe));
6168 if (base) {
6169 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6170 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6171 cntl |= pipe << 28; /* Connect to correct pipe */
6172 } else {
6173 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6174 cntl |= CURSOR_MODE_DISABLE;
6175 }
6176 I915_WRITE(CURCNTR(pipe), cntl);
6177
6178 intel_crtc->cursor_visible = visible;
6179 }
6180 /* and commit changes on next vblank */
6181 I915_WRITE(CURBASE(pipe), base);
6182 }
6183
6184 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6185 {
6186 struct drm_device *dev = crtc->dev;
6187 struct drm_i915_private *dev_priv = dev->dev_private;
6188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6189 int pipe = intel_crtc->pipe;
6190 bool visible = base != 0;
6191
6192 if (intel_crtc->cursor_visible != visible) {
6193 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6194 if (base) {
6195 cntl &= ~CURSOR_MODE;
6196 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6197 } else {
6198 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6199 cntl |= CURSOR_MODE_DISABLE;
6200 }
6201 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6202
6203 intel_crtc->cursor_visible = visible;
6204 }
6205 /* and commit changes on next vblank */
6206 I915_WRITE(CURBASE_IVB(pipe), base);
6207 }
6208
6209 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6210 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6211 bool on)
6212 {
6213 struct drm_device *dev = crtc->dev;
6214 struct drm_i915_private *dev_priv = dev->dev_private;
6215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6216 int pipe = intel_crtc->pipe;
6217 int x = intel_crtc->cursor_x;
6218 int y = intel_crtc->cursor_y;
6219 u32 base, pos;
6220 bool visible;
6221
6222 pos = 0;
6223
6224 if (on && crtc->enabled && crtc->fb) {
6225 base = intel_crtc->cursor_addr;
6226 if (x > (int) crtc->fb->width)
6227 base = 0;
6228
6229 if (y > (int) crtc->fb->height)
6230 base = 0;
6231 } else
6232 base = 0;
6233
6234 if (x < 0) {
6235 if (x + intel_crtc->cursor_width < 0)
6236 base = 0;
6237
6238 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6239 x = -x;
6240 }
6241 pos |= x << CURSOR_X_SHIFT;
6242
6243 if (y < 0) {
6244 if (y + intel_crtc->cursor_height < 0)
6245 base = 0;
6246
6247 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6248 y = -y;
6249 }
6250 pos |= y << CURSOR_Y_SHIFT;
6251
6252 visible = base != 0;
6253 if (!visible && !intel_crtc->cursor_visible)
6254 return;
6255
6256 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6257 I915_WRITE(CURPOS_IVB(pipe), pos);
6258 ivb_update_cursor(crtc, base);
6259 } else {
6260 I915_WRITE(CURPOS(pipe), pos);
6261 if (IS_845G(dev) || IS_I865G(dev))
6262 i845_update_cursor(crtc, base);
6263 else
6264 i9xx_update_cursor(crtc, base);
6265 }
6266 }
6267
6268 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6269 struct drm_file *file,
6270 uint32_t handle,
6271 uint32_t width, uint32_t height)
6272 {
6273 struct drm_device *dev = crtc->dev;
6274 struct drm_i915_private *dev_priv = dev->dev_private;
6275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6276 struct drm_i915_gem_object *obj;
6277 uint32_t addr;
6278 int ret;
6279
6280 /* if we want to turn off the cursor ignore width and height */
6281 if (!handle) {
6282 DRM_DEBUG_KMS("cursor off\n");
6283 addr = 0;
6284 obj = NULL;
6285 mutex_lock(&dev->struct_mutex);
6286 goto finish;
6287 }
6288
6289 /* Currently we only support 64x64 cursors */
6290 if (width != 64 || height != 64) {
6291 DRM_ERROR("we currently only support 64x64 cursors\n");
6292 return -EINVAL;
6293 }
6294
6295 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6296 if (&obj->base == NULL)
6297 return -ENOENT;
6298
6299 if (obj->base.size < width * height * 4) {
6300 DRM_ERROR("buffer is to small\n");
6301 ret = -ENOMEM;
6302 goto fail;
6303 }
6304
6305 /* we only need to pin inside GTT if cursor is non-phy */
6306 mutex_lock(&dev->struct_mutex);
6307 if (!dev_priv->info->cursor_needs_physical) {
6308 if (obj->tiling_mode) {
6309 DRM_ERROR("cursor cannot be tiled\n");
6310 ret = -EINVAL;
6311 goto fail_locked;
6312 }
6313
6314 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6315 if (ret) {
6316 DRM_ERROR("failed to move cursor bo into the GTT\n");
6317 goto fail_locked;
6318 }
6319
6320 ret = i915_gem_object_put_fence(obj);
6321 if (ret) {
6322 DRM_ERROR("failed to release fence for cursor");
6323 goto fail_unpin;
6324 }
6325
6326 addr = obj->gtt_offset;
6327 } else {
6328 int align = IS_I830(dev) ? 16 * 1024 : 256;
6329 ret = i915_gem_attach_phys_object(dev, obj,
6330 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6331 align);
6332 if (ret) {
6333 DRM_ERROR("failed to attach phys object\n");
6334 goto fail_locked;
6335 }
6336 addr = obj->phys_obj->handle->busaddr;
6337 }
6338
6339 if (IS_GEN2(dev))
6340 I915_WRITE(CURSIZE, (height << 12) | width);
6341
6342 finish:
6343 if (intel_crtc->cursor_bo) {
6344 if (dev_priv->info->cursor_needs_physical) {
6345 if (intel_crtc->cursor_bo != obj)
6346 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6347 } else
6348 i915_gem_object_unpin(intel_crtc->cursor_bo);
6349 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6350 }
6351
6352 mutex_unlock(&dev->struct_mutex);
6353
6354 intel_crtc->cursor_addr = addr;
6355 intel_crtc->cursor_bo = obj;
6356 intel_crtc->cursor_width = width;
6357 intel_crtc->cursor_height = height;
6358
6359 intel_crtc_update_cursor(crtc, true);
6360
6361 return 0;
6362 fail_unpin:
6363 i915_gem_object_unpin(obj);
6364 fail_locked:
6365 mutex_unlock(&dev->struct_mutex);
6366 fail:
6367 drm_gem_object_unreference_unlocked(&obj->base);
6368 return ret;
6369 }
6370
6371 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6372 {
6373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6374
6375 intel_crtc->cursor_x = x;
6376 intel_crtc->cursor_y = y;
6377
6378 intel_crtc_update_cursor(crtc, true);
6379
6380 return 0;
6381 }
6382
6383 /** Sets the color ramps on behalf of RandR */
6384 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6385 u16 blue, int regno)
6386 {
6387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6388
6389 intel_crtc->lut_r[regno] = red >> 8;
6390 intel_crtc->lut_g[regno] = green >> 8;
6391 intel_crtc->lut_b[regno] = blue >> 8;
6392 }
6393
6394 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6395 u16 *blue, int regno)
6396 {
6397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6398
6399 *red = intel_crtc->lut_r[regno] << 8;
6400 *green = intel_crtc->lut_g[regno] << 8;
6401 *blue = intel_crtc->lut_b[regno] << 8;
6402 }
6403
6404 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6405 u16 *blue, uint32_t start, uint32_t size)
6406 {
6407 int end = (start + size > 256) ? 256 : start + size, i;
6408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409
6410 for (i = start; i < end; i++) {
6411 intel_crtc->lut_r[i] = red[i] >> 8;
6412 intel_crtc->lut_g[i] = green[i] >> 8;
6413 intel_crtc->lut_b[i] = blue[i] >> 8;
6414 }
6415
6416 intel_crtc_load_lut(crtc);
6417 }
6418
6419 /**
6420 * Get a pipe with a simple mode set on it for doing load-based monitor
6421 * detection.
6422 *
6423 * It will be up to the load-detect code to adjust the pipe as appropriate for
6424 * its requirements. The pipe will be connected to no other encoders.
6425 *
6426 * Currently this code will only succeed if there is a pipe with no encoders
6427 * configured for it. In the future, it could choose to temporarily disable
6428 * some outputs to free up a pipe for its use.
6429 *
6430 * \return crtc, or NULL if no pipes are available.
6431 */
6432
6433 /* VESA 640x480x72Hz mode to set on the pipe */
6434 static struct drm_display_mode load_detect_mode = {
6435 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6436 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6437 };
6438
6439 static struct drm_framebuffer *
6440 intel_framebuffer_create(struct drm_device *dev,
6441 struct drm_mode_fb_cmd2 *mode_cmd,
6442 struct drm_i915_gem_object *obj)
6443 {
6444 struct intel_framebuffer *intel_fb;
6445 int ret;
6446
6447 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6448 if (!intel_fb) {
6449 drm_gem_object_unreference_unlocked(&obj->base);
6450 return ERR_PTR(-ENOMEM);
6451 }
6452
6453 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6454 if (ret) {
6455 drm_gem_object_unreference_unlocked(&obj->base);
6456 kfree(intel_fb);
6457 return ERR_PTR(ret);
6458 }
6459
6460 return &intel_fb->base;
6461 }
6462
6463 static u32
6464 intel_framebuffer_pitch_for_width(int width, int bpp)
6465 {
6466 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6467 return ALIGN(pitch, 64);
6468 }
6469
6470 static u32
6471 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6472 {
6473 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6474 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6475 }
6476
6477 static struct drm_framebuffer *
6478 intel_framebuffer_create_for_mode(struct drm_device *dev,
6479 struct drm_display_mode *mode,
6480 int depth, int bpp)
6481 {
6482 struct drm_i915_gem_object *obj;
6483 struct drm_mode_fb_cmd2 mode_cmd;
6484
6485 obj = i915_gem_alloc_object(dev,
6486 intel_framebuffer_size_for_mode(mode, bpp));
6487 if (obj == NULL)
6488 return ERR_PTR(-ENOMEM);
6489
6490 mode_cmd.width = mode->hdisplay;
6491 mode_cmd.height = mode->vdisplay;
6492 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6493 bpp);
6494 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6495
6496 return intel_framebuffer_create(dev, &mode_cmd, obj);
6497 }
6498
6499 static struct drm_framebuffer *
6500 mode_fits_in_fbdev(struct drm_device *dev,
6501 struct drm_display_mode *mode)
6502 {
6503 struct drm_i915_private *dev_priv = dev->dev_private;
6504 struct drm_i915_gem_object *obj;
6505 struct drm_framebuffer *fb;
6506
6507 if (dev_priv->fbdev == NULL)
6508 return NULL;
6509
6510 obj = dev_priv->fbdev->ifb.obj;
6511 if (obj == NULL)
6512 return NULL;
6513
6514 fb = &dev_priv->fbdev->ifb.base;
6515 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6516 fb->bits_per_pixel))
6517 return NULL;
6518
6519 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6520 return NULL;
6521
6522 return fb;
6523 }
6524
6525 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6526 struct drm_display_mode *mode,
6527 struct intel_load_detect_pipe *old)
6528 {
6529 struct intel_crtc *intel_crtc;
6530 struct intel_encoder *intel_encoder =
6531 intel_attached_encoder(connector);
6532 struct drm_crtc *possible_crtc;
6533 struct drm_encoder *encoder = &intel_encoder->base;
6534 struct drm_crtc *crtc = NULL;
6535 struct drm_device *dev = encoder->dev;
6536 struct drm_framebuffer *fb;
6537 int i = -1;
6538
6539 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6540 connector->base.id, drm_get_connector_name(connector),
6541 encoder->base.id, drm_get_encoder_name(encoder));
6542
6543 /*
6544 * Algorithm gets a little messy:
6545 *
6546 * - if the connector already has an assigned crtc, use it (but make
6547 * sure it's on first)
6548 *
6549 * - try to find the first unused crtc that can drive this connector,
6550 * and use that if we find one
6551 */
6552
6553 /* See if we already have a CRTC for this connector */
6554 if (encoder->crtc) {
6555 crtc = encoder->crtc;
6556
6557 old->dpms_mode = connector->dpms;
6558 old->load_detect_temp = false;
6559
6560 /* Make sure the crtc and connector are running */
6561 if (connector->dpms != DRM_MODE_DPMS_ON)
6562 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6563
6564 return true;
6565 }
6566
6567 /* Find an unused one (if possible) */
6568 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6569 i++;
6570 if (!(encoder->possible_crtcs & (1 << i)))
6571 continue;
6572 if (!possible_crtc->enabled) {
6573 crtc = possible_crtc;
6574 break;
6575 }
6576 }
6577
6578 /*
6579 * If we didn't find an unused CRTC, don't use any.
6580 */
6581 if (!crtc) {
6582 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6583 return false;
6584 }
6585
6586 intel_encoder->new_crtc = to_intel_crtc(crtc);
6587 to_intel_connector(connector)->new_encoder = intel_encoder;
6588
6589 intel_crtc = to_intel_crtc(crtc);
6590 old->dpms_mode = connector->dpms;
6591 old->load_detect_temp = true;
6592 old->release_fb = NULL;
6593
6594 if (!mode)
6595 mode = &load_detect_mode;
6596
6597 /* We need a framebuffer large enough to accommodate all accesses
6598 * that the plane may generate whilst we perform load detection.
6599 * We can not rely on the fbcon either being present (we get called
6600 * during its initialisation to detect all boot displays, or it may
6601 * not even exist) or that it is large enough to satisfy the
6602 * requested mode.
6603 */
6604 fb = mode_fits_in_fbdev(dev, mode);
6605 if (fb == NULL) {
6606 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6607 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6608 old->release_fb = fb;
6609 } else
6610 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6611 if (IS_ERR(fb)) {
6612 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6613 goto fail;
6614 }
6615
6616 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6617 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6618 if (old->release_fb)
6619 old->release_fb->funcs->destroy(old->release_fb);
6620 goto fail;
6621 }
6622
6623 /* let the connector get through one full cycle before testing */
6624 intel_wait_for_vblank(dev, intel_crtc->pipe);
6625
6626 return true;
6627 fail:
6628 connector->encoder = NULL;
6629 encoder->crtc = NULL;
6630 return false;
6631 }
6632
6633 void intel_release_load_detect_pipe(struct drm_connector *connector,
6634 struct intel_load_detect_pipe *old)
6635 {
6636 struct intel_encoder *intel_encoder =
6637 intel_attached_encoder(connector);
6638 struct drm_encoder *encoder = &intel_encoder->base;
6639
6640 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6641 connector->base.id, drm_get_connector_name(connector),
6642 encoder->base.id, drm_get_encoder_name(encoder));
6643
6644 if (old->load_detect_temp) {
6645 struct drm_crtc *crtc = encoder->crtc;
6646
6647 to_intel_connector(connector)->new_encoder = NULL;
6648 intel_encoder->new_crtc = NULL;
6649 intel_set_mode(crtc, NULL, 0, 0, NULL);
6650
6651 if (old->release_fb)
6652 old->release_fb->funcs->destroy(old->release_fb);
6653
6654 return;
6655 }
6656
6657 /* Switch crtc and encoder back off if necessary */
6658 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6659 connector->funcs->dpms(connector, old->dpms_mode);
6660 }
6661
6662 /* Returns the clock of the currently programmed mode of the given pipe. */
6663 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6664 {
6665 struct drm_i915_private *dev_priv = dev->dev_private;
6666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6667 int pipe = intel_crtc->pipe;
6668 u32 dpll = I915_READ(DPLL(pipe));
6669 u32 fp;
6670 intel_clock_t clock;
6671
6672 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6673 fp = I915_READ(FP0(pipe));
6674 else
6675 fp = I915_READ(FP1(pipe));
6676
6677 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6678 if (IS_PINEVIEW(dev)) {
6679 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6680 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6681 } else {
6682 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6683 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6684 }
6685
6686 if (!IS_GEN2(dev)) {
6687 if (IS_PINEVIEW(dev))
6688 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6689 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6690 else
6691 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6692 DPLL_FPA01_P1_POST_DIV_SHIFT);
6693
6694 switch (dpll & DPLL_MODE_MASK) {
6695 case DPLLB_MODE_DAC_SERIAL:
6696 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6697 5 : 10;
6698 break;
6699 case DPLLB_MODE_LVDS:
6700 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6701 7 : 14;
6702 break;
6703 default:
6704 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6705 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6706 return 0;
6707 }
6708
6709 /* XXX: Handle the 100Mhz refclk */
6710 intel_clock(dev, 96000, &clock);
6711 } else {
6712 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6713
6714 if (is_lvds) {
6715 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6716 DPLL_FPA01_P1_POST_DIV_SHIFT);
6717 clock.p2 = 14;
6718
6719 if ((dpll & PLL_REF_INPUT_MASK) ==
6720 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6721 /* XXX: might not be 66MHz */
6722 intel_clock(dev, 66000, &clock);
6723 } else
6724 intel_clock(dev, 48000, &clock);
6725 } else {
6726 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6727 clock.p1 = 2;
6728 else {
6729 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6730 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6731 }
6732 if (dpll & PLL_P2_DIVIDE_BY_4)
6733 clock.p2 = 4;
6734 else
6735 clock.p2 = 2;
6736
6737 intel_clock(dev, 48000, &clock);
6738 }
6739 }
6740
6741 /* XXX: It would be nice to validate the clocks, but we can't reuse
6742 * i830PllIsValid() because it relies on the xf86_config connector
6743 * configuration being accurate, which it isn't necessarily.
6744 */
6745
6746 return clock.dot;
6747 }
6748
6749 /** Returns the currently programmed mode of the given pipe. */
6750 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6751 struct drm_crtc *crtc)
6752 {
6753 struct drm_i915_private *dev_priv = dev->dev_private;
6754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6755 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6756 struct drm_display_mode *mode;
6757 int htot = I915_READ(HTOTAL(cpu_transcoder));
6758 int hsync = I915_READ(HSYNC(cpu_transcoder));
6759 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6760 int vsync = I915_READ(VSYNC(cpu_transcoder));
6761
6762 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6763 if (!mode)
6764 return NULL;
6765
6766 mode->clock = intel_crtc_clock_get(dev, crtc);
6767 mode->hdisplay = (htot & 0xffff) + 1;
6768 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6769 mode->hsync_start = (hsync & 0xffff) + 1;
6770 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6771 mode->vdisplay = (vtot & 0xffff) + 1;
6772 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6773 mode->vsync_start = (vsync & 0xffff) + 1;
6774 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6775
6776 drm_mode_set_name(mode);
6777
6778 return mode;
6779 }
6780
6781 static void intel_increase_pllclock(struct drm_crtc *crtc)
6782 {
6783 struct drm_device *dev = crtc->dev;
6784 drm_i915_private_t *dev_priv = dev->dev_private;
6785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6786 int pipe = intel_crtc->pipe;
6787 int dpll_reg = DPLL(pipe);
6788 int dpll;
6789
6790 if (HAS_PCH_SPLIT(dev))
6791 return;
6792
6793 if (!dev_priv->lvds_downclock_avail)
6794 return;
6795
6796 dpll = I915_READ(dpll_reg);
6797 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6798 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6799
6800 assert_panel_unlocked(dev_priv, pipe);
6801
6802 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6803 I915_WRITE(dpll_reg, dpll);
6804 intel_wait_for_vblank(dev, pipe);
6805
6806 dpll = I915_READ(dpll_reg);
6807 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6808 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6809 }
6810 }
6811
6812 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6813 {
6814 struct drm_device *dev = crtc->dev;
6815 drm_i915_private_t *dev_priv = dev->dev_private;
6816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6817
6818 if (HAS_PCH_SPLIT(dev))
6819 return;
6820
6821 if (!dev_priv->lvds_downclock_avail)
6822 return;
6823
6824 /*
6825 * Since this is called by a timer, we should never get here in
6826 * the manual case.
6827 */
6828 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6829 int pipe = intel_crtc->pipe;
6830 int dpll_reg = DPLL(pipe);
6831 int dpll;
6832
6833 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6834
6835 assert_panel_unlocked(dev_priv, pipe);
6836
6837 dpll = I915_READ(dpll_reg);
6838 dpll |= DISPLAY_RATE_SELECT_FPA1;
6839 I915_WRITE(dpll_reg, dpll);
6840 intel_wait_for_vblank(dev, pipe);
6841 dpll = I915_READ(dpll_reg);
6842 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6843 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6844 }
6845
6846 }
6847
6848 void intel_mark_busy(struct drm_device *dev)
6849 {
6850 i915_update_gfx_val(dev->dev_private);
6851 }
6852
6853 void intel_mark_idle(struct drm_device *dev)
6854 {
6855 }
6856
6857 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6858 {
6859 struct drm_device *dev = obj->base.dev;
6860 struct drm_crtc *crtc;
6861
6862 if (!i915_powersave)
6863 return;
6864
6865 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6866 if (!crtc->fb)
6867 continue;
6868
6869 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6870 intel_increase_pllclock(crtc);
6871 }
6872 }
6873
6874 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6875 {
6876 struct drm_device *dev = obj->base.dev;
6877 struct drm_crtc *crtc;
6878
6879 if (!i915_powersave)
6880 return;
6881
6882 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6883 if (!crtc->fb)
6884 continue;
6885
6886 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6887 intel_decrease_pllclock(crtc);
6888 }
6889 }
6890
6891 static void intel_crtc_destroy(struct drm_crtc *crtc)
6892 {
6893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6894 struct drm_device *dev = crtc->dev;
6895 struct intel_unpin_work *work;
6896 unsigned long flags;
6897
6898 spin_lock_irqsave(&dev->event_lock, flags);
6899 work = intel_crtc->unpin_work;
6900 intel_crtc->unpin_work = NULL;
6901 spin_unlock_irqrestore(&dev->event_lock, flags);
6902
6903 if (work) {
6904 cancel_work_sync(&work->work);
6905 kfree(work);
6906 }
6907
6908 drm_crtc_cleanup(crtc);
6909
6910 kfree(intel_crtc);
6911 }
6912
6913 static void intel_unpin_work_fn(struct work_struct *__work)
6914 {
6915 struct intel_unpin_work *work =
6916 container_of(__work, struct intel_unpin_work, work);
6917
6918 mutex_lock(&work->dev->struct_mutex);
6919 intel_unpin_fb_obj(work->old_fb_obj);
6920 drm_gem_object_unreference(&work->pending_flip_obj->base);
6921 drm_gem_object_unreference(&work->old_fb_obj->base);
6922
6923 intel_update_fbc(work->dev);
6924 mutex_unlock(&work->dev->struct_mutex);
6925 kfree(work);
6926 }
6927
6928 static void do_intel_finish_page_flip(struct drm_device *dev,
6929 struct drm_crtc *crtc)
6930 {
6931 drm_i915_private_t *dev_priv = dev->dev_private;
6932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6933 struct intel_unpin_work *work;
6934 struct drm_i915_gem_object *obj;
6935 struct drm_pending_vblank_event *e;
6936 struct timeval tvbl;
6937 unsigned long flags;
6938
6939 /* Ignore early vblank irqs */
6940 if (intel_crtc == NULL)
6941 return;
6942
6943 spin_lock_irqsave(&dev->event_lock, flags);
6944 work = intel_crtc->unpin_work;
6945 if (work == NULL || !work->pending) {
6946 spin_unlock_irqrestore(&dev->event_lock, flags);
6947 return;
6948 }
6949
6950 intel_crtc->unpin_work = NULL;
6951
6952 if (work->event) {
6953 e = work->event;
6954 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6955
6956 e->event.tv_sec = tvbl.tv_sec;
6957 e->event.tv_usec = tvbl.tv_usec;
6958
6959 list_add_tail(&e->base.link,
6960 &e->base.file_priv->event_list);
6961 wake_up_interruptible(&e->base.file_priv->event_wait);
6962 }
6963
6964 drm_vblank_put(dev, intel_crtc->pipe);
6965
6966 spin_unlock_irqrestore(&dev->event_lock, flags);
6967
6968 obj = work->old_fb_obj;
6969
6970 atomic_clear_mask(1 << intel_crtc->plane,
6971 &obj->pending_flip.counter);
6972
6973 wake_up(&dev_priv->pending_flip_queue);
6974 schedule_work(&work->work);
6975
6976 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6977 }
6978
6979 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6980 {
6981 drm_i915_private_t *dev_priv = dev->dev_private;
6982 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6983
6984 do_intel_finish_page_flip(dev, crtc);
6985 }
6986
6987 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6988 {
6989 drm_i915_private_t *dev_priv = dev->dev_private;
6990 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6991
6992 do_intel_finish_page_flip(dev, crtc);
6993 }
6994
6995 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6996 {
6997 drm_i915_private_t *dev_priv = dev->dev_private;
6998 struct intel_crtc *intel_crtc =
6999 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7000 unsigned long flags;
7001
7002 spin_lock_irqsave(&dev->event_lock, flags);
7003 if (intel_crtc->unpin_work) {
7004 if ((++intel_crtc->unpin_work->pending) > 1)
7005 DRM_ERROR("Prepared flip multiple times\n");
7006 } else {
7007 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7008 }
7009 spin_unlock_irqrestore(&dev->event_lock, flags);
7010 }
7011
7012 static int intel_gen2_queue_flip(struct drm_device *dev,
7013 struct drm_crtc *crtc,
7014 struct drm_framebuffer *fb,
7015 struct drm_i915_gem_object *obj)
7016 {
7017 struct drm_i915_private *dev_priv = dev->dev_private;
7018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7019 u32 flip_mask;
7020 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7021 int ret;
7022
7023 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7024 if (ret)
7025 goto err;
7026
7027 ret = intel_ring_begin(ring, 6);
7028 if (ret)
7029 goto err_unpin;
7030
7031 /* Can't queue multiple flips, so wait for the previous
7032 * one to finish before executing the next.
7033 */
7034 if (intel_crtc->plane)
7035 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7036 else
7037 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7038 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7039 intel_ring_emit(ring, MI_NOOP);
7040 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7041 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7042 intel_ring_emit(ring, fb->pitches[0]);
7043 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7044 intel_ring_emit(ring, 0); /* aux display base address, unused */
7045 intel_ring_advance(ring);
7046 return 0;
7047
7048 err_unpin:
7049 intel_unpin_fb_obj(obj);
7050 err:
7051 return ret;
7052 }
7053
7054 static int intel_gen3_queue_flip(struct drm_device *dev,
7055 struct drm_crtc *crtc,
7056 struct drm_framebuffer *fb,
7057 struct drm_i915_gem_object *obj)
7058 {
7059 struct drm_i915_private *dev_priv = dev->dev_private;
7060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7061 u32 flip_mask;
7062 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7063 int ret;
7064
7065 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7066 if (ret)
7067 goto err;
7068
7069 ret = intel_ring_begin(ring, 6);
7070 if (ret)
7071 goto err_unpin;
7072
7073 if (intel_crtc->plane)
7074 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7075 else
7076 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7077 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7078 intel_ring_emit(ring, MI_NOOP);
7079 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7080 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7081 intel_ring_emit(ring, fb->pitches[0]);
7082 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7083 intel_ring_emit(ring, MI_NOOP);
7084
7085 intel_ring_advance(ring);
7086 return 0;
7087
7088 err_unpin:
7089 intel_unpin_fb_obj(obj);
7090 err:
7091 return ret;
7092 }
7093
7094 static int intel_gen4_queue_flip(struct drm_device *dev,
7095 struct drm_crtc *crtc,
7096 struct drm_framebuffer *fb,
7097 struct drm_i915_gem_object *obj)
7098 {
7099 struct drm_i915_private *dev_priv = dev->dev_private;
7100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7101 uint32_t pf, pipesrc;
7102 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7103 int ret;
7104
7105 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7106 if (ret)
7107 goto err;
7108
7109 ret = intel_ring_begin(ring, 4);
7110 if (ret)
7111 goto err_unpin;
7112
7113 /* i965+ uses the linear or tiled offsets from the
7114 * Display Registers (which do not change across a page-flip)
7115 * so we need only reprogram the base address.
7116 */
7117 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7118 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7119 intel_ring_emit(ring, fb->pitches[0]);
7120 intel_ring_emit(ring,
7121 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7122 obj->tiling_mode);
7123
7124 /* XXX Enabling the panel-fitter across page-flip is so far
7125 * untested on non-native modes, so ignore it for now.
7126 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7127 */
7128 pf = 0;
7129 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7130 intel_ring_emit(ring, pf | pipesrc);
7131 intel_ring_advance(ring);
7132 return 0;
7133
7134 err_unpin:
7135 intel_unpin_fb_obj(obj);
7136 err:
7137 return ret;
7138 }
7139
7140 static int intel_gen6_queue_flip(struct drm_device *dev,
7141 struct drm_crtc *crtc,
7142 struct drm_framebuffer *fb,
7143 struct drm_i915_gem_object *obj)
7144 {
7145 struct drm_i915_private *dev_priv = dev->dev_private;
7146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7147 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7148 uint32_t pf, pipesrc;
7149 int ret;
7150
7151 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7152 if (ret)
7153 goto err;
7154
7155 ret = intel_ring_begin(ring, 4);
7156 if (ret)
7157 goto err_unpin;
7158
7159 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7160 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7161 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7162 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7163
7164 /* Contrary to the suggestions in the documentation,
7165 * "Enable Panel Fitter" does not seem to be required when page
7166 * flipping with a non-native mode, and worse causes a normal
7167 * modeset to fail.
7168 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7169 */
7170 pf = 0;
7171 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7172 intel_ring_emit(ring, pf | pipesrc);
7173 intel_ring_advance(ring);
7174 return 0;
7175
7176 err_unpin:
7177 intel_unpin_fb_obj(obj);
7178 err:
7179 return ret;
7180 }
7181
7182 /*
7183 * On gen7 we currently use the blit ring because (in early silicon at least)
7184 * the render ring doesn't give us interrpts for page flip completion, which
7185 * means clients will hang after the first flip is queued. Fortunately the
7186 * blit ring generates interrupts properly, so use it instead.
7187 */
7188 static int intel_gen7_queue_flip(struct drm_device *dev,
7189 struct drm_crtc *crtc,
7190 struct drm_framebuffer *fb,
7191 struct drm_i915_gem_object *obj)
7192 {
7193 struct drm_i915_private *dev_priv = dev->dev_private;
7194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7195 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7196 uint32_t plane_bit = 0;
7197 int ret;
7198
7199 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7200 if (ret)
7201 goto err;
7202
7203 switch(intel_crtc->plane) {
7204 case PLANE_A:
7205 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7206 break;
7207 case PLANE_B:
7208 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7209 break;
7210 case PLANE_C:
7211 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7212 break;
7213 default:
7214 WARN_ONCE(1, "unknown plane in flip command\n");
7215 ret = -ENODEV;
7216 goto err_unpin;
7217 }
7218
7219 ret = intel_ring_begin(ring, 4);
7220 if (ret)
7221 goto err_unpin;
7222
7223 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7224 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7225 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7226 intel_ring_emit(ring, (MI_NOOP));
7227 intel_ring_advance(ring);
7228 return 0;
7229
7230 err_unpin:
7231 intel_unpin_fb_obj(obj);
7232 err:
7233 return ret;
7234 }
7235
7236 static int intel_default_queue_flip(struct drm_device *dev,
7237 struct drm_crtc *crtc,
7238 struct drm_framebuffer *fb,
7239 struct drm_i915_gem_object *obj)
7240 {
7241 return -ENODEV;
7242 }
7243
7244 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7245 struct drm_framebuffer *fb,
7246 struct drm_pending_vblank_event *event)
7247 {
7248 struct drm_device *dev = crtc->dev;
7249 struct drm_i915_private *dev_priv = dev->dev_private;
7250 struct intel_framebuffer *intel_fb;
7251 struct drm_i915_gem_object *obj;
7252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7253 struct intel_unpin_work *work;
7254 unsigned long flags;
7255 int ret;
7256
7257 /* Can't change pixel format via MI display flips. */
7258 if (fb->pixel_format != crtc->fb->pixel_format)
7259 return -EINVAL;
7260
7261 /*
7262 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7263 * Note that pitch changes could also affect these register.
7264 */
7265 if (INTEL_INFO(dev)->gen > 3 &&
7266 (fb->offsets[0] != crtc->fb->offsets[0] ||
7267 fb->pitches[0] != crtc->fb->pitches[0]))
7268 return -EINVAL;
7269
7270 work = kzalloc(sizeof *work, GFP_KERNEL);
7271 if (work == NULL)
7272 return -ENOMEM;
7273
7274 work->event = event;
7275 work->dev = crtc->dev;
7276 intel_fb = to_intel_framebuffer(crtc->fb);
7277 work->old_fb_obj = intel_fb->obj;
7278 INIT_WORK(&work->work, intel_unpin_work_fn);
7279
7280 ret = drm_vblank_get(dev, intel_crtc->pipe);
7281 if (ret)
7282 goto free_work;
7283
7284 /* We borrow the event spin lock for protecting unpin_work */
7285 spin_lock_irqsave(&dev->event_lock, flags);
7286 if (intel_crtc->unpin_work) {
7287 spin_unlock_irqrestore(&dev->event_lock, flags);
7288 kfree(work);
7289 drm_vblank_put(dev, intel_crtc->pipe);
7290
7291 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7292 return -EBUSY;
7293 }
7294 intel_crtc->unpin_work = work;
7295 spin_unlock_irqrestore(&dev->event_lock, flags);
7296
7297 intel_fb = to_intel_framebuffer(fb);
7298 obj = intel_fb->obj;
7299
7300 ret = i915_mutex_lock_interruptible(dev);
7301 if (ret)
7302 goto cleanup;
7303
7304 /* Reference the objects for the scheduled work. */
7305 drm_gem_object_reference(&work->old_fb_obj->base);
7306 drm_gem_object_reference(&obj->base);
7307
7308 crtc->fb = fb;
7309
7310 work->pending_flip_obj = obj;
7311
7312 work->enable_stall_check = true;
7313
7314 /* Block clients from rendering to the new back buffer until
7315 * the flip occurs and the object is no longer visible.
7316 */
7317 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7318
7319 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7320 if (ret)
7321 goto cleanup_pending;
7322
7323 intel_disable_fbc(dev);
7324 intel_mark_fb_busy(obj);
7325 mutex_unlock(&dev->struct_mutex);
7326
7327 trace_i915_flip_request(intel_crtc->plane, obj);
7328
7329 return 0;
7330
7331 cleanup_pending:
7332 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7333 drm_gem_object_unreference(&work->old_fb_obj->base);
7334 drm_gem_object_unreference(&obj->base);
7335 mutex_unlock(&dev->struct_mutex);
7336
7337 cleanup:
7338 spin_lock_irqsave(&dev->event_lock, flags);
7339 intel_crtc->unpin_work = NULL;
7340 spin_unlock_irqrestore(&dev->event_lock, flags);
7341
7342 drm_vblank_put(dev, intel_crtc->pipe);
7343 free_work:
7344 kfree(work);
7345
7346 return ret;
7347 }
7348
7349 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7350 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7351 .load_lut = intel_crtc_load_lut,
7352 .disable = intel_crtc_noop,
7353 };
7354
7355 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7356 {
7357 struct intel_encoder *other_encoder;
7358 struct drm_crtc *crtc = &encoder->new_crtc->base;
7359
7360 if (WARN_ON(!crtc))
7361 return false;
7362
7363 list_for_each_entry(other_encoder,
7364 &crtc->dev->mode_config.encoder_list,
7365 base.head) {
7366
7367 if (&other_encoder->new_crtc->base != crtc ||
7368 encoder == other_encoder)
7369 continue;
7370 else
7371 return true;
7372 }
7373
7374 return false;
7375 }
7376
7377 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7378 struct drm_crtc *crtc)
7379 {
7380 struct drm_device *dev;
7381 struct drm_crtc *tmp;
7382 int crtc_mask = 1;
7383
7384 WARN(!crtc, "checking null crtc?\n");
7385
7386 dev = crtc->dev;
7387
7388 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7389 if (tmp == crtc)
7390 break;
7391 crtc_mask <<= 1;
7392 }
7393
7394 if (encoder->possible_crtcs & crtc_mask)
7395 return true;
7396 return false;
7397 }
7398
7399 /**
7400 * intel_modeset_update_staged_output_state
7401 *
7402 * Updates the staged output configuration state, e.g. after we've read out the
7403 * current hw state.
7404 */
7405 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7406 {
7407 struct intel_encoder *encoder;
7408 struct intel_connector *connector;
7409
7410 list_for_each_entry(connector, &dev->mode_config.connector_list,
7411 base.head) {
7412 connector->new_encoder =
7413 to_intel_encoder(connector->base.encoder);
7414 }
7415
7416 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7417 base.head) {
7418 encoder->new_crtc =
7419 to_intel_crtc(encoder->base.crtc);
7420 }
7421 }
7422
7423 /**
7424 * intel_modeset_commit_output_state
7425 *
7426 * This function copies the stage display pipe configuration to the real one.
7427 */
7428 static void intel_modeset_commit_output_state(struct drm_device *dev)
7429 {
7430 struct intel_encoder *encoder;
7431 struct intel_connector *connector;
7432
7433 list_for_each_entry(connector, &dev->mode_config.connector_list,
7434 base.head) {
7435 connector->base.encoder = &connector->new_encoder->base;
7436 }
7437
7438 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7439 base.head) {
7440 encoder->base.crtc = &encoder->new_crtc->base;
7441 }
7442 }
7443
7444 static struct drm_display_mode *
7445 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7446 struct drm_display_mode *mode)
7447 {
7448 struct drm_device *dev = crtc->dev;
7449 struct drm_display_mode *adjusted_mode;
7450 struct drm_encoder_helper_funcs *encoder_funcs;
7451 struct intel_encoder *encoder;
7452
7453 adjusted_mode = drm_mode_duplicate(dev, mode);
7454 if (!adjusted_mode)
7455 return ERR_PTR(-ENOMEM);
7456
7457 /* Pass our mode to the connectors and the CRTC to give them a chance to
7458 * adjust it according to limitations or connector properties, and also
7459 * a chance to reject the mode entirely.
7460 */
7461 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7462 base.head) {
7463
7464 if (&encoder->new_crtc->base != crtc)
7465 continue;
7466 encoder_funcs = encoder->base.helper_private;
7467 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7468 adjusted_mode))) {
7469 DRM_DEBUG_KMS("Encoder fixup failed\n");
7470 goto fail;
7471 }
7472 }
7473
7474 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7475 DRM_DEBUG_KMS("CRTC fixup failed\n");
7476 goto fail;
7477 }
7478 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7479
7480 return adjusted_mode;
7481 fail:
7482 drm_mode_destroy(dev, adjusted_mode);
7483 return ERR_PTR(-EINVAL);
7484 }
7485
7486 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7487 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7488 static void
7489 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7490 unsigned *prepare_pipes, unsigned *disable_pipes)
7491 {
7492 struct intel_crtc *intel_crtc;
7493 struct drm_device *dev = crtc->dev;
7494 struct intel_encoder *encoder;
7495 struct intel_connector *connector;
7496 struct drm_crtc *tmp_crtc;
7497
7498 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7499
7500 /* Check which crtcs have changed outputs connected to them, these need
7501 * to be part of the prepare_pipes mask. We don't (yet) support global
7502 * modeset across multiple crtcs, so modeset_pipes will only have one
7503 * bit set at most. */
7504 list_for_each_entry(connector, &dev->mode_config.connector_list,
7505 base.head) {
7506 if (connector->base.encoder == &connector->new_encoder->base)
7507 continue;
7508
7509 if (connector->base.encoder) {
7510 tmp_crtc = connector->base.encoder->crtc;
7511
7512 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7513 }
7514
7515 if (connector->new_encoder)
7516 *prepare_pipes |=
7517 1 << connector->new_encoder->new_crtc->pipe;
7518 }
7519
7520 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7521 base.head) {
7522 if (encoder->base.crtc == &encoder->new_crtc->base)
7523 continue;
7524
7525 if (encoder->base.crtc) {
7526 tmp_crtc = encoder->base.crtc;
7527
7528 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7529 }
7530
7531 if (encoder->new_crtc)
7532 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7533 }
7534
7535 /* Check for any pipes that will be fully disabled ... */
7536 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7537 base.head) {
7538 bool used = false;
7539
7540 /* Don't try to disable disabled crtcs. */
7541 if (!intel_crtc->base.enabled)
7542 continue;
7543
7544 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7545 base.head) {
7546 if (encoder->new_crtc == intel_crtc)
7547 used = true;
7548 }
7549
7550 if (!used)
7551 *disable_pipes |= 1 << intel_crtc->pipe;
7552 }
7553
7554
7555 /* set_mode is also used to update properties on life display pipes. */
7556 intel_crtc = to_intel_crtc(crtc);
7557 if (crtc->enabled)
7558 *prepare_pipes |= 1 << intel_crtc->pipe;
7559
7560 /* We only support modeset on one single crtc, hence we need to do that
7561 * only for the passed in crtc iff we change anything else than just
7562 * disable crtcs.
7563 *
7564 * This is actually not true, to be fully compatible with the old crtc
7565 * helper we automatically disable _any_ output (i.e. doesn't need to be
7566 * connected to the crtc we're modesetting on) if it's disconnected.
7567 * Which is a rather nutty api (since changed the output configuration
7568 * without userspace's explicit request can lead to confusion), but
7569 * alas. Hence we currently need to modeset on all pipes we prepare. */
7570 if (*prepare_pipes)
7571 *modeset_pipes = *prepare_pipes;
7572
7573 /* ... and mask these out. */
7574 *modeset_pipes &= ~(*disable_pipes);
7575 *prepare_pipes &= ~(*disable_pipes);
7576 }
7577
7578 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7579 {
7580 struct drm_encoder *encoder;
7581 struct drm_device *dev = crtc->dev;
7582
7583 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7584 if (encoder->crtc == crtc)
7585 return true;
7586
7587 return false;
7588 }
7589
7590 static void
7591 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7592 {
7593 struct intel_encoder *intel_encoder;
7594 struct intel_crtc *intel_crtc;
7595 struct drm_connector *connector;
7596
7597 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7598 base.head) {
7599 if (!intel_encoder->base.crtc)
7600 continue;
7601
7602 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7603
7604 if (prepare_pipes & (1 << intel_crtc->pipe))
7605 intel_encoder->connectors_active = false;
7606 }
7607
7608 intel_modeset_commit_output_state(dev);
7609
7610 /* Update computed state. */
7611 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7612 base.head) {
7613 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7614 }
7615
7616 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7617 if (!connector->encoder || !connector->encoder->crtc)
7618 continue;
7619
7620 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7621
7622 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7623 struct drm_property *dpms_property =
7624 dev->mode_config.dpms_property;
7625
7626 connector->dpms = DRM_MODE_DPMS_ON;
7627 drm_connector_property_set_value(connector,
7628 dpms_property,
7629 DRM_MODE_DPMS_ON);
7630
7631 intel_encoder = to_intel_encoder(connector->encoder);
7632 intel_encoder->connectors_active = true;
7633 }
7634 }
7635
7636 }
7637
7638 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7639 list_for_each_entry((intel_crtc), \
7640 &(dev)->mode_config.crtc_list, \
7641 base.head) \
7642 if (mask & (1 <<(intel_crtc)->pipe)) \
7643
7644 void
7645 intel_modeset_check_state(struct drm_device *dev)
7646 {
7647 struct intel_crtc *crtc;
7648 struct intel_encoder *encoder;
7649 struct intel_connector *connector;
7650
7651 list_for_each_entry(connector, &dev->mode_config.connector_list,
7652 base.head) {
7653 /* This also checks the encoder/connector hw state with the
7654 * ->get_hw_state callbacks. */
7655 intel_connector_check_state(connector);
7656
7657 WARN(&connector->new_encoder->base != connector->base.encoder,
7658 "connector's staged encoder doesn't match current encoder\n");
7659 }
7660
7661 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7662 base.head) {
7663 bool enabled = false;
7664 bool active = false;
7665 enum pipe pipe, tracked_pipe;
7666
7667 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7668 encoder->base.base.id,
7669 drm_get_encoder_name(&encoder->base));
7670
7671 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7672 "encoder's stage crtc doesn't match current crtc\n");
7673 WARN(encoder->connectors_active && !encoder->base.crtc,
7674 "encoder's active_connectors set, but no crtc\n");
7675
7676 list_for_each_entry(connector, &dev->mode_config.connector_list,
7677 base.head) {
7678 if (connector->base.encoder != &encoder->base)
7679 continue;
7680 enabled = true;
7681 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7682 active = true;
7683 }
7684 WARN(!!encoder->base.crtc != enabled,
7685 "encoder's enabled state mismatch "
7686 "(expected %i, found %i)\n",
7687 !!encoder->base.crtc, enabled);
7688 WARN(active && !encoder->base.crtc,
7689 "active encoder with no crtc\n");
7690
7691 WARN(encoder->connectors_active != active,
7692 "encoder's computed active state doesn't match tracked active state "
7693 "(expected %i, found %i)\n", active, encoder->connectors_active);
7694
7695 active = encoder->get_hw_state(encoder, &pipe);
7696 WARN(active != encoder->connectors_active,
7697 "encoder's hw state doesn't match sw tracking "
7698 "(expected %i, found %i)\n",
7699 encoder->connectors_active, active);
7700
7701 if (!encoder->base.crtc)
7702 continue;
7703
7704 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7705 WARN(active && pipe != tracked_pipe,
7706 "active encoder's pipe doesn't match"
7707 "(expected %i, found %i)\n",
7708 tracked_pipe, pipe);
7709
7710 }
7711
7712 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7713 base.head) {
7714 bool enabled = false;
7715 bool active = false;
7716
7717 DRM_DEBUG_KMS("[CRTC:%d]\n",
7718 crtc->base.base.id);
7719
7720 WARN(crtc->active && !crtc->base.enabled,
7721 "active crtc, but not enabled in sw tracking\n");
7722
7723 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7724 base.head) {
7725 if (encoder->base.crtc != &crtc->base)
7726 continue;
7727 enabled = true;
7728 if (encoder->connectors_active)
7729 active = true;
7730 }
7731 WARN(active != crtc->active,
7732 "crtc's computed active state doesn't match tracked active state "
7733 "(expected %i, found %i)\n", active, crtc->active);
7734 WARN(enabled != crtc->base.enabled,
7735 "crtc's computed enabled state doesn't match tracked enabled state "
7736 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7737
7738 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7739 }
7740 }
7741
7742 bool intel_set_mode(struct drm_crtc *crtc,
7743 struct drm_display_mode *mode,
7744 int x, int y, struct drm_framebuffer *fb)
7745 {
7746 struct drm_device *dev = crtc->dev;
7747 drm_i915_private_t *dev_priv = dev->dev_private;
7748 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7749 struct intel_crtc *intel_crtc;
7750 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7751 bool ret = true;
7752
7753 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7754 &prepare_pipes, &disable_pipes);
7755
7756 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7757 modeset_pipes, prepare_pipes, disable_pipes);
7758
7759 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7760 intel_crtc_disable(&intel_crtc->base);
7761
7762 saved_hwmode = crtc->hwmode;
7763 saved_mode = crtc->mode;
7764
7765 /* Hack: Because we don't (yet) support global modeset on multiple
7766 * crtcs, we don't keep track of the new mode for more than one crtc.
7767 * Hence simply check whether any bit is set in modeset_pipes in all the
7768 * pieces of code that are not yet converted to deal with mutliple crtcs
7769 * changing their mode at the same time. */
7770 adjusted_mode = NULL;
7771 if (modeset_pipes) {
7772 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7773 if (IS_ERR(adjusted_mode)) {
7774 return false;
7775 }
7776 }
7777
7778 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7779 if (intel_crtc->base.enabled)
7780 dev_priv->display.crtc_disable(&intel_crtc->base);
7781 }
7782
7783 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7784 * to set it here already despite that we pass it down the callchain.
7785 */
7786 if (modeset_pipes)
7787 crtc->mode = *mode;
7788
7789 /* Only after disabling all output pipelines that will be changed can we
7790 * update the the output configuration. */
7791 intel_modeset_update_state(dev, prepare_pipes);
7792
7793 if (dev_priv->display.modeset_global_resources)
7794 dev_priv->display.modeset_global_resources(dev);
7795
7796 /* Set up the DPLL and any encoders state that needs to adjust or depend
7797 * on the DPLL.
7798 */
7799 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7800 ret = !intel_crtc_mode_set(&intel_crtc->base,
7801 mode, adjusted_mode,
7802 x, y, fb);
7803 if (!ret)
7804 goto done;
7805 }
7806
7807 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7808 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7809 dev_priv->display.crtc_enable(&intel_crtc->base);
7810
7811 if (modeset_pipes) {
7812 /* Store real post-adjustment hardware mode. */
7813 crtc->hwmode = *adjusted_mode;
7814
7815 /* Calculate and store various constants which
7816 * are later needed by vblank and swap-completion
7817 * timestamping. They are derived from true hwmode.
7818 */
7819 drm_calc_timestamping_constants(crtc);
7820 }
7821
7822 /* FIXME: add subpixel order */
7823 done:
7824 drm_mode_destroy(dev, adjusted_mode);
7825 if (!ret && crtc->enabled) {
7826 crtc->hwmode = saved_hwmode;
7827 crtc->mode = saved_mode;
7828 } else {
7829 intel_modeset_check_state(dev);
7830 }
7831
7832 return ret;
7833 }
7834
7835 #undef for_each_intel_crtc_masked
7836
7837 static void intel_set_config_free(struct intel_set_config *config)
7838 {
7839 if (!config)
7840 return;
7841
7842 kfree(config->save_connector_encoders);
7843 kfree(config->save_encoder_crtcs);
7844 kfree(config);
7845 }
7846
7847 static int intel_set_config_save_state(struct drm_device *dev,
7848 struct intel_set_config *config)
7849 {
7850 struct drm_encoder *encoder;
7851 struct drm_connector *connector;
7852 int count;
7853
7854 config->save_encoder_crtcs =
7855 kcalloc(dev->mode_config.num_encoder,
7856 sizeof(struct drm_crtc *), GFP_KERNEL);
7857 if (!config->save_encoder_crtcs)
7858 return -ENOMEM;
7859
7860 config->save_connector_encoders =
7861 kcalloc(dev->mode_config.num_connector,
7862 sizeof(struct drm_encoder *), GFP_KERNEL);
7863 if (!config->save_connector_encoders)
7864 return -ENOMEM;
7865
7866 /* Copy data. Note that driver private data is not affected.
7867 * Should anything bad happen only the expected state is
7868 * restored, not the drivers personal bookkeeping.
7869 */
7870 count = 0;
7871 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7872 config->save_encoder_crtcs[count++] = encoder->crtc;
7873 }
7874
7875 count = 0;
7876 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7877 config->save_connector_encoders[count++] = connector->encoder;
7878 }
7879
7880 return 0;
7881 }
7882
7883 static void intel_set_config_restore_state(struct drm_device *dev,
7884 struct intel_set_config *config)
7885 {
7886 struct intel_encoder *encoder;
7887 struct intel_connector *connector;
7888 int count;
7889
7890 count = 0;
7891 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7892 encoder->new_crtc =
7893 to_intel_crtc(config->save_encoder_crtcs[count++]);
7894 }
7895
7896 count = 0;
7897 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7898 connector->new_encoder =
7899 to_intel_encoder(config->save_connector_encoders[count++]);
7900 }
7901 }
7902
7903 static void
7904 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7905 struct intel_set_config *config)
7906 {
7907
7908 /* We should be able to check here if the fb has the same properties
7909 * and then just flip_or_move it */
7910 if (set->crtc->fb != set->fb) {
7911 /* If we have no fb then treat it as a full mode set */
7912 if (set->crtc->fb == NULL) {
7913 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7914 config->mode_changed = true;
7915 } else if (set->fb == NULL) {
7916 config->mode_changed = true;
7917 } else if (set->fb->depth != set->crtc->fb->depth) {
7918 config->mode_changed = true;
7919 } else if (set->fb->bits_per_pixel !=
7920 set->crtc->fb->bits_per_pixel) {
7921 config->mode_changed = true;
7922 } else
7923 config->fb_changed = true;
7924 }
7925
7926 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7927 config->fb_changed = true;
7928
7929 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7930 DRM_DEBUG_KMS("modes are different, full mode set\n");
7931 drm_mode_debug_printmodeline(&set->crtc->mode);
7932 drm_mode_debug_printmodeline(set->mode);
7933 config->mode_changed = true;
7934 }
7935 }
7936
7937 static int
7938 intel_modeset_stage_output_state(struct drm_device *dev,
7939 struct drm_mode_set *set,
7940 struct intel_set_config *config)
7941 {
7942 struct drm_crtc *new_crtc;
7943 struct intel_connector *connector;
7944 struct intel_encoder *encoder;
7945 int count, ro;
7946
7947 /* The upper layers ensure that we either disabl a crtc or have a list
7948 * of connectors. For paranoia, double-check this. */
7949 WARN_ON(!set->fb && (set->num_connectors != 0));
7950 WARN_ON(set->fb && (set->num_connectors == 0));
7951
7952 count = 0;
7953 list_for_each_entry(connector, &dev->mode_config.connector_list,
7954 base.head) {
7955 /* Otherwise traverse passed in connector list and get encoders
7956 * for them. */
7957 for (ro = 0; ro < set->num_connectors; ro++) {
7958 if (set->connectors[ro] == &connector->base) {
7959 connector->new_encoder = connector->encoder;
7960 break;
7961 }
7962 }
7963
7964 /* If we disable the crtc, disable all its connectors. Also, if
7965 * the connector is on the changing crtc but not on the new
7966 * connector list, disable it. */
7967 if ((!set->fb || ro == set->num_connectors) &&
7968 connector->base.encoder &&
7969 connector->base.encoder->crtc == set->crtc) {
7970 connector->new_encoder = NULL;
7971
7972 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7973 connector->base.base.id,
7974 drm_get_connector_name(&connector->base));
7975 }
7976
7977
7978 if (&connector->new_encoder->base != connector->base.encoder) {
7979 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7980 config->mode_changed = true;
7981 }
7982
7983 /* Disable all disconnected encoders. */
7984 if (connector->base.status == connector_status_disconnected)
7985 connector->new_encoder = NULL;
7986 }
7987 /* connector->new_encoder is now updated for all connectors. */
7988
7989 /* Update crtc of enabled connectors. */
7990 count = 0;
7991 list_for_each_entry(connector, &dev->mode_config.connector_list,
7992 base.head) {
7993 if (!connector->new_encoder)
7994 continue;
7995
7996 new_crtc = connector->new_encoder->base.crtc;
7997
7998 for (ro = 0; ro < set->num_connectors; ro++) {
7999 if (set->connectors[ro] == &connector->base)
8000 new_crtc = set->crtc;
8001 }
8002
8003 /* Make sure the new CRTC will work with the encoder */
8004 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8005 new_crtc)) {
8006 return -EINVAL;
8007 }
8008 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8009
8010 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8011 connector->base.base.id,
8012 drm_get_connector_name(&connector->base),
8013 new_crtc->base.id);
8014 }
8015
8016 /* Check for any encoders that needs to be disabled. */
8017 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8018 base.head) {
8019 list_for_each_entry(connector,
8020 &dev->mode_config.connector_list,
8021 base.head) {
8022 if (connector->new_encoder == encoder) {
8023 WARN_ON(!connector->new_encoder->new_crtc);
8024
8025 goto next_encoder;
8026 }
8027 }
8028 encoder->new_crtc = NULL;
8029 next_encoder:
8030 /* Only now check for crtc changes so we don't miss encoders
8031 * that will be disabled. */
8032 if (&encoder->new_crtc->base != encoder->base.crtc) {
8033 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8034 config->mode_changed = true;
8035 }
8036 }
8037 /* Now we've also updated encoder->new_crtc for all encoders. */
8038
8039 return 0;
8040 }
8041
8042 static int intel_crtc_set_config(struct drm_mode_set *set)
8043 {
8044 struct drm_device *dev;
8045 struct drm_mode_set save_set;
8046 struct intel_set_config *config;
8047 int ret;
8048
8049 BUG_ON(!set);
8050 BUG_ON(!set->crtc);
8051 BUG_ON(!set->crtc->helper_private);
8052
8053 if (!set->mode)
8054 set->fb = NULL;
8055
8056 /* The fb helper likes to play gross jokes with ->mode_set_config.
8057 * Unfortunately the crtc helper doesn't do much at all for this case,
8058 * so we have to cope with this madness until the fb helper is fixed up. */
8059 if (set->fb && set->num_connectors == 0)
8060 return 0;
8061
8062 if (set->fb) {
8063 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8064 set->crtc->base.id, set->fb->base.id,
8065 (int)set->num_connectors, set->x, set->y);
8066 } else {
8067 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8068 }
8069
8070 dev = set->crtc->dev;
8071
8072 ret = -ENOMEM;
8073 config = kzalloc(sizeof(*config), GFP_KERNEL);
8074 if (!config)
8075 goto out_config;
8076
8077 ret = intel_set_config_save_state(dev, config);
8078 if (ret)
8079 goto out_config;
8080
8081 save_set.crtc = set->crtc;
8082 save_set.mode = &set->crtc->mode;
8083 save_set.x = set->crtc->x;
8084 save_set.y = set->crtc->y;
8085 save_set.fb = set->crtc->fb;
8086
8087 /* Compute whether we need a full modeset, only an fb base update or no
8088 * change at all. In the future we might also check whether only the
8089 * mode changed, e.g. for LVDS where we only change the panel fitter in
8090 * such cases. */
8091 intel_set_config_compute_mode_changes(set, config);
8092
8093 ret = intel_modeset_stage_output_state(dev, set, config);
8094 if (ret)
8095 goto fail;
8096
8097 if (config->mode_changed) {
8098 if (set->mode) {
8099 DRM_DEBUG_KMS("attempting to set mode from"
8100 " userspace\n");
8101 drm_mode_debug_printmodeline(set->mode);
8102 }
8103
8104 if (!intel_set_mode(set->crtc, set->mode,
8105 set->x, set->y, set->fb)) {
8106 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8107 set->crtc->base.id);
8108 ret = -EINVAL;
8109 goto fail;
8110 }
8111 } else if (config->fb_changed) {
8112 ret = intel_pipe_set_base(set->crtc,
8113 set->x, set->y, set->fb);
8114 }
8115
8116 intel_set_config_free(config);
8117
8118 return 0;
8119
8120 fail:
8121 intel_set_config_restore_state(dev, config);
8122
8123 /* Try to restore the config */
8124 if (config->mode_changed &&
8125 !intel_set_mode(save_set.crtc, save_set.mode,
8126 save_set.x, save_set.y, save_set.fb))
8127 DRM_ERROR("failed to restore config after modeset failure\n");
8128
8129 out_config:
8130 intel_set_config_free(config);
8131 return ret;
8132 }
8133
8134 static const struct drm_crtc_funcs intel_crtc_funcs = {
8135 .cursor_set = intel_crtc_cursor_set,
8136 .cursor_move = intel_crtc_cursor_move,
8137 .gamma_set = intel_crtc_gamma_set,
8138 .set_config = intel_crtc_set_config,
8139 .destroy = intel_crtc_destroy,
8140 .page_flip = intel_crtc_page_flip,
8141 };
8142
8143 static void intel_cpu_pll_init(struct drm_device *dev)
8144 {
8145 if (IS_HASWELL(dev))
8146 intel_ddi_pll_init(dev);
8147 }
8148
8149 static void intel_pch_pll_init(struct drm_device *dev)
8150 {
8151 drm_i915_private_t *dev_priv = dev->dev_private;
8152 int i;
8153
8154 if (dev_priv->num_pch_pll == 0) {
8155 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8156 return;
8157 }
8158
8159 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8160 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8161 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8162 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8163 }
8164 }
8165
8166 static void intel_crtc_init(struct drm_device *dev, int pipe)
8167 {
8168 drm_i915_private_t *dev_priv = dev->dev_private;
8169 struct intel_crtc *intel_crtc;
8170 int i;
8171
8172 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8173 if (intel_crtc == NULL)
8174 return;
8175
8176 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8177
8178 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8179 for (i = 0; i < 256; i++) {
8180 intel_crtc->lut_r[i] = i;
8181 intel_crtc->lut_g[i] = i;
8182 intel_crtc->lut_b[i] = i;
8183 }
8184
8185 /* Swap pipes & planes for FBC on pre-965 */
8186 intel_crtc->pipe = pipe;
8187 intel_crtc->plane = pipe;
8188 intel_crtc->cpu_transcoder = pipe;
8189 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8190 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8191 intel_crtc->plane = !pipe;
8192 }
8193
8194 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8195 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8196 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8197 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8198
8199 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8200
8201 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8202 }
8203
8204 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8205 struct drm_file *file)
8206 {
8207 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8208 struct drm_mode_object *drmmode_obj;
8209 struct intel_crtc *crtc;
8210
8211 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8212 return -ENODEV;
8213
8214 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8215 DRM_MODE_OBJECT_CRTC);
8216
8217 if (!drmmode_obj) {
8218 DRM_ERROR("no such CRTC id\n");
8219 return -EINVAL;
8220 }
8221
8222 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8223 pipe_from_crtc_id->pipe = crtc->pipe;
8224
8225 return 0;
8226 }
8227
8228 static int intel_encoder_clones(struct intel_encoder *encoder)
8229 {
8230 struct drm_device *dev = encoder->base.dev;
8231 struct intel_encoder *source_encoder;
8232 int index_mask = 0;
8233 int entry = 0;
8234
8235 list_for_each_entry(source_encoder,
8236 &dev->mode_config.encoder_list, base.head) {
8237
8238 if (encoder == source_encoder)
8239 index_mask |= (1 << entry);
8240
8241 /* Intel hw has only one MUX where enocoders could be cloned. */
8242 if (encoder->cloneable && source_encoder->cloneable)
8243 index_mask |= (1 << entry);
8244
8245 entry++;
8246 }
8247
8248 return index_mask;
8249 }
8250
8251 static bool has_edp_a(struct drm_device *dev)
8252 {
8253 struct drm_i915_private *dev_priv = dev->dev_private;
8254
8255 if (!IS_MOBILE(dev))
8256 return false;
8257
8258 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8259 return false;
8260
8261 if (IS_GEN5(dev) &&
8262 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8263 return false;
8264
8265 return true;
8266 }
8267
8268 static void intel_setup_outputs(struct drm_device *dev)
8269 {
8270 struct drm_i915_private *dev_priv = dev->dev_private;
8271 struct intel_encoder *encoder;
8272 bool dpd_is_edp = false;
8273 bool has_lvds;
8274
8275 has_lvds = intel_lvds_init(dev);
8276 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8277 /* disable the panel fitter on everything but LVDS */
8278 I915_WRITE(PFIT_CONTROL, 0);
8279 }
8280
8281 intel_crt_init(dev);
8282
8283 if (IS_HASWELL(dev)) {
8284 int found;
8285
8286 /* Haswell uses DDI functions to detect digital outputs */
8287 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8288 /* DDI A only supports eDP */
8289 if (found)
8290 intel_ddi_init(dev, PORT_A);
8291
8292 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8293 * register */
8294 found = I915_READ(SFUSE_STRAP);
8295
8296 if (found & SFUSE_STRAP_DDIB_DETECTED)
8297 intel_ddi_init(dev, PORT_B);
8298 if (found & SFUSE_STRAP_DDIC_DETECTED)
8299 intel_ddi_init(dev, PORT_C);
8300 if (found & SFUSE_STRAP_DDID_DETECTED)
8301 intel_ddi_init(dev, PORT_D);
8302 } else if (HAS_PCH_SPLIT(dev)) {
8303 int found;
8304 dpd_is_edp = intel_dpd_is_edp(dev);
8305
8306 if (has_edp_a(dev))
8307 intel_dp_init(dev, DP_A, PORT_A);
8308
8309 if (I915_READ(HDMIB) & PORT_DETECTED) {
8310 /* PCH SDVOB multiplex with HDMIB */
8311 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8312 if (!found)
8313 intel_hdmi_init(dev, HDMIB, PORT_B);
8314 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8315 intel_dp_init(dev, PCH_DP_B, PORT_B);
8316 }
8317
8318 if (I915_READ(HDMIC) & PORT_DETECTED)
8319 intel_hdmi_init(dev, HDMIC, PORT_C);
8320
8321 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8322 intel_hdmi_init(dev, HDMID, PORT_D);
8323
8324 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8325 intel_dp_init(dev, PCH_DP_C, PORT_C);
8326
8327 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8328 intel_dp_init(dev, PCH_DP_D, PORT_D);
8329 } else if (IS_VALLEYVIEW(dev)) {
8330 int found;
8331
8332 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8333 if (I915_READ(DP_C) & DP_DETECTED)
8334 intel_dp_init(dev, DP_C, PORT_C);
8335
8336 if (I915_READ(SDVOB) & PORT_DETECTED) {
8337 /* SDVOB multiplex with HDMIB */
8338 found = intel_sdvo_init(dev, SDVOB, true);
8339 if (!found)
8340 intel_hdmi_init(dev, SDVOB, PORT_B);
8341 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8342 intel_dp_init(dev, DP_B, PORT_B);
8343 }
8344
8345 if (I915_READ(SDVOC) & PORT_DETECTED)
8346 intel_hdmi_init(dev, SDVOC, PORT_C);
8347
8348 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8349 bool found = false;
8350
8351 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8352 DRM_DEBUG_KMS("probing SDVOB\n");
8353 found = intel_sdvo_init(dev, SDVOB, true);
8354 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8355 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8356 intel_hdmi_init(dev, SDVOB, PORT_B);
8357 }
8358
8359 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8360 DRM_DEBUG_KMS("probing DP_B\n");
8361 intel_dp_init(dev, DP_B, PORT_B);
8362 }
8363 }
8364
8365 /* Before G4X SDVOC doesn't have its own detect register */
8366
8367 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8368 DRM_DEBUG_KMS("probing SDVOC\n");
8369 found = intel_sdvo_init(dev, SDVOC, false);
8370 }
8371
8372 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8373
8374 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8375 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8376 intel_hdmi_init(dev, SDVOC, PORT_C);
8377 }
8378 if (SUPPORTS_INTEGRATED_DP(dev)) {
8379 DRM_DEBUG_KMS("probing DP_C\n");
8380 intel_dp_init(dev, DP_C, PORT_C);
8381 }
8382 }
8383
8384 if (SUPPORTS_INTEGRATED_DP(dev) &&
8385 (I915_READ(DP_D) & DP_DETECTED)) {
8386 DRM_DEBUG_KMS("probing DP_D\n");
8387 intel_dp_init(dev, DP_D, PORT_D);
8388 }
8389 } else if (IS_GEN2(dev))
8390 intel_dvo_init(dev);
8391
8392 if (SUPPORTS_TV(dev))
8393 intel_tv_init(dev);
8394
8395 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8396 encoder->base.possible_crtcs = encoder->crtc_mask;
8397 encoder->base.possible_clones =
8398 intel_encoder_clones(encoder);
8399 }
8400
8401 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8402 ironlake_init_pch_refclk(dev);
8403
8404 drm_helper_move_panel_connectors_to_head(dev);
8405 }
8406
8407 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8408 {
8409 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8410
8411 drm_framebuffer_cleanup(fb);
8412 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8413
8414 kfree(intel_fb);
8415 }
8416
8417 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8418 struct drm_file *file,
8419 unsigned int *handle)
8420 {
8421 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8422 struct drm_i915_gem_object *obj = intel_fb->obj;
8423
8424 return drm_gem_handle_create(file, &obj->base, handle);
8425 }
8426
8427 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8428 .destroy = intel_user_framebuffer_destroy,
8429 .create_handle = intel_user_framebuffer_create_handle,
8430 };
8431
8432 int intel_framebuffer_init(struct drm_device *dev,
8433 struct intel_framebuffer *intel_fb,
8434 struct drm_mode_fb_cmd2 *mode_cmd,
8435 struct drm_i915_gem_object *obj)
8436 {
8437 int ret;
8438
8439 if (obj->tiling_mode == I915_TILING_Y)
8440 return -EINVAL;
8441
8442 if (mode_cmd->pitches[0] & 63)
8443 return -EINVAL;
8444
8445 /* FIXME <= Gen4 stride limits are bit unclear */
8446 if (mode_cmd->pitches[0] > 32768)
8447 return -EINVAL;
8448
8449 if (obj->tiling_mode != I915_TILING_NONE &&
8450 mode_cmd->pitches[0] != obj->stride)
8451 return -EINVAL;
8452
8453 /* Reject formats not supported by any plane early. */
8454 switch (mode_cmd->pixel_format) {
8455 case DRM_FORMAT_C8:
8456 case DRM_FORMAT_RGB565:
8457 case DRM_FORMAT_XRGB8888:
8458 case DRM_FORMAT_ARGB8888:
8459 break;
8460 case DRM_FORMAT_XRGB1555:
8461 case DRM_FORMAT_ARGB1555:
8462 if (INTEL_INFO(dev)->gen > 3)
8463 return -EINVAL;
8464 break;
8465 case DRM_FORMAT_XBGR8888:
8466 case DRM_FORMAT_ABGR8888:
8467 case DRM_FORMAT_XRGB2101010:
8468 case DRM_FORMAT_ARGB2101010:
8469 case DRM_FORMAT_XBGR2101010:
8470 case DRM_FORMAT_ABGR2101010:
8471 if (INTEL_INFO(dev)->gen < 4)
8472 return -EINVAL;
8473 break;
8474 case DRM_FORMAT_YUYV:
8475 case DRM_FORMAT_UYVY:
8476 case DRM_FORMAT_YVYU:
8477 case DRM_FORMAT_VYUY:
8478 if (INTEL_INFO(dev)->gen < 6)
8479 return -EINVAL;
8480 break;
8481 default:
8482 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8483 return -EINVAL;
8484 }
8485
8486 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8487 if (mode_cmd->offsets[0] != 0)
8488 return -EINVAL;
8489
8490 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8491 if (ret) {
8492 DRM_ERROR("framebuffer init failed %d\n", ret);
8493 return ret;
8494 }
8495
8496 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8497 intel_fb->obj = obj;
8498 return 0;
8499 }
8500
8501 static struct drm_framebuffer *
8502 intel_user_framebuffer_create(struct drm_device *dev,
8503 struct drm_file *filp,
8504 struct drm_mode_fb_cmd2 *mode_cmd)
8505 {
8506 struct drm_i915_gem_object *obj;
8507
8508 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8509 mode_cmd->handles[0]));
8510 if (&obj->base == NULL)
8511 return ERR_PTR(-ENOENT);
8512
8513 return intel_framebuffer_create(dev, mode_cmd, obj);
8514 }
8515
8516 static const struct drm_mode_config_funcs intel_mode_funcs = {
8517 .fb_create = intel_user_framebuffer_create,
8518 .output_poll_changed = intel_fb_output_poll_changed,
8519 };
8520
8521 /* Set up chip specific display functions */
8522 static void intel_init_display(struct drm_device *dev)
8523 {
8524 struct drm_i915_private *dev_priv = dev->dev_private;
8525
8526 /* We always want a DPMS function */
8527 if (IS_HASWELL(dev)) {
8528 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8529 dev_priv->display.crtc_enable = haswell_crtc_enable;
8530 dev_priv->display.crtc_disable = haswell_crtc_disable;
8531 dev_priv->display.off = haswell_crtc_off;
8532 dev_priv->display.update_plane = ironlake_update_plane;
8533 } else if (HAS_PCH_SPLIT(dev)) {
8534 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8535 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8536 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8537 dev_priv->display.off = ironlake_crtc_off;
8538 dev_priv->display.update_plane = ironlake_update_plane;
8539 } else {
8540 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8541 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8542 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8543 dev_priv->display.off = i9xx_crtc_off;
8544 dev_priv->display.update_plane = i9xx_update_plane;
8545 }
8546
8547 /* Returns the core display clock speed */
8548 if (IS_VALLEYVIEW(dev))
8549 dev_priv->display.get_display_clock_speed =
8550 valleyview_get_display_clock_speed;
8551 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8552 dev_priv->display.get_display_clock_speed =
8553 i945_get_display_clock_speed;
8554 else if (IS_I915G(dev))
8555 dev_priv->display.get_display_clock_speed =
8556 i915_get_display_clock_speed;
8557 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8558 dev_priv->display.get_display_clock_speed =
8559 i9xx_misc_get_display_clock_speed;
8560 else if (IS_I915GM(dev))
8561 dev_priv->display.get_display_clock_speed =
8562 i915gm_get_display_clock_speed;
8563 else if (IS_I865G(dev))
8564 dev_priv->display.get_display_clock_speed =
8565 i865_get_display_clock_speed;
8566 else if (IS_I85X(dev))
8567 dev_priv->display.get_display_clock_speed =
8568 i855_get_display_clock_speed;
8569 else /* 852, 830 */
8570 dev_priv->display.get_display_clock_speed =
8571 i830_get_display_clock_speed;
8572
8573 if (HAS_PCH_SPLIT(dev)) {
8574 if (IS_GEN5(dev)) {
8575 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8576 dev_priv->display.write_eld = ironlake_write_eld;
8577 } else if (IS_GEN6(dev)) {
8578 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8579 dev_priv->display.write_eld = ironlake_write_eld;
8580 } else if (IS_IVYBRIDGE(dev)) {
8581 /* FIXME: detect B0+ stepping and use auto training */
8582 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8583 dev_priv->display.write_eld = ironlake_write_eld;
8584 dev_priv->display.modeset_global_resources =
8585 ivb_modeset_global_resources;
8586 } else if (IS_HASWELL(dev)) {
8587 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8588 dev_priv->display.write_eld = haswell_write_eld;
8589 } else
8590 dev_priv->display.update_wm = NULL;
8591 } else if (IS_G4X(dev)) {
8592 dev_priv->display.write_eld = g4x_write_eld;
8593 }
8594
8595 /* Default just returns -ENODEV to indicate unsupported */
8596 dev_priv->display.queue_flip = intel_default_queue_flip;
8597
8598 switch (INTEL_INFO(dev)->gen) {
8599 case 2:
8600 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8601 break;
8602
8603 case 3:
8604 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8605 break;
8606
8607 case 4:
8608 case 5:
8609 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8610 break;
8611
8612 case 6:
8613 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8614 break;
8615 case 7:
8616 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8617 break;
8618 }
8619 }
8620
8621 /*
8622 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8623 * resume, or other times. This quirk makes sure that's the case for
8624 * affected systems.
8625 */
8626 static void quirk_pipea_force(struct drm_device *dev)
8627 {
8628 struct drm_i915_private *dev_priv = dev->dev_private;
8629
8630 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8631 DRM_INFO("applying pipe a force quirk\n");
8632 }
8633
8634 /*
8635 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8636 */
8637 static void quirk_ssc_force_disable(struct drm_device *dev)
8638 {
8639 struct drm_i915_private *dev_priv = dev->dev_private;
8640 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8641 DRM_INFO("applying lvds SSC disable quirk\n");
8642 }
8643
8644 /*
8645 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8646 * brightness value
8647 */
8648 static void quirk_invert_brightness(struct drm_device *dev)
8649 {
8650 struct drm_i915_private *dev_priv = dev->dev_private;
8651 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8652 DRM_INFO("applying inverted panel brightness quirk\n");
8653 }
8654
8655 struct intel_quirk {
8656 int device;
8657 int subsystem_vendor;
8658 int subsystem_device;
8659 void (*hook)(struct drm_device *dev);
8660 };
8661
8662 static struct intel_quirk intel_quirks[] = {
8663 /* HP Mini needs pipe A force quirk (LP: #322104) */
8664 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8665
8666 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8667 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8668
8669 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8670 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8671
8672 /* 830/845 need to leave pipe A & dpll A up */
8673 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8674 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8675
8676 /* Lenovo U160 cannot use SSC on LVDS */
8677 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8678
8679 /* Sony Vaio Y cannot use SSC on LVDS */
8680 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8681
8682 /* Acer Aspire 5734Z must invert backlight brightness */
8683 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8684 };
8685
8686 static void intel_init_quirks(struct drm_device *dev)
8687 {
8688 struct pci_dev *d = dev->pdev;
8689 int i;
8690
8691 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8692 struct intel_quirk *q = &intel_quirks[i];
8693
8694 if (d->device == q->device &&
8695 (d->subsystem_vendor == q->subsystem_vendor ||
8696 q->subsystem_vendor == PCI_ANY_ID) &&
8697 (d->subsystem_device == q->subsystem_device ||
8698 q->subsystem_device == PCI_ANY_ID))
8699 q->hook(dev);
8700 }
8701 }
8702
8703 /* Disable the VGA plane that we never use */
8704 static void i915_disable_vga(struct drm_device *dev)
8705 {
8706 struct drm_i915_private *dev_priv = dev->dev_private;
8707 u8 sr1;
8708 u32 vga_reg;
8709
8710 if (HAS_PCH_SPLIT(dev))
8711 vga_reg = CPU_VGACNTRL;
8712 else
8713 vga_reg = VGACNTRL;
8714
8715 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8716 outb(SR01, VGA_SR_INDEX);
8717 sr1 = inb(VGA_SR_DATA);
8718 outb(sr1 | 1<<5, VGA_SR_DATA);
8719 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8720 udelay(300);
8721
8722 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8723 POSTING_READ(vga_reg);
8724 }
8725
8726 void intel_modeset_init_hw(struct drm_device *dev)
8727 {
8728 /* We attempt to init the necessary power wells early in the initialization
8729 * time, so the subsystems that expect power to be enabled can work.
8730 */
8731 intel_init_power_wells(dev);
8732
8733 intel_prepare_ddi(dev);
8734
8735 intel_init_clock_gating(dev);
8736
8737 mutex_lock(&dev->struct_mutex);
8738 intel_enable_gt_powersave(dev);
8739 mutex_unlock(&dev->struct_mutex);
8740 }
8741
8742 void intel_modeset_init(struct drm_device *dev)
8743 {
8744 struct drm_i915_private *dev_priv = dev->dev_private;
8745 int i, ret;
8746
8747 drm_mode_config_init(dev);
8748
8749 dev->mode_config.min_width = 0;
8750 dev->mode_config.min_height = 0;
8751
8752 dev->mode_config.preferred_depth = 24;
8753 dev->mode_config.prefer_shadow = 1;
8754
8755 dev->mode_config.funcs = &intel_mode_funcs;
8756
8757 intel_init_quirks(dev);
8758
8759 intel_init_pm(dev);
8760
8761 intel_init_display(dev);
8762
8763 if (IS_GEN2(dev)) {
8764 dev->mode_config.max_width = 2048;
8765 dev->mode_config.max_height = 2048;
8766 } else if (IS_GEN3(dev)) {
8767 dev->mode_config.max_width = 4096;
8768 dev->mode_config.max_height = 4096;
8769 } else {
8770 dev->mode_config.max_width = 8192;
8771 dev->mode_config.max_height = 8192;
8772 }
8773 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8774
8775 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8776 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8777
8778 for (i = 0; i < dev_priv->num_pipe; i++) {
8779 intel_crtc_init(dev, i);
8780 ret = intel_plane_init(dev, i);
8781 if (ret)
8782 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8783 }
8784
8785 intel_cpu_pll_init(dev);
8786 intel_pch_pll_init(dev);
8787
8788 /* Just disable it once at startup */
8789 i915_disable_vga(dev);
8790 intel_setup_outputs(dev);
8791 }
8792
8793 static void
8794 intel_connector_break_all_links(struct intel_connector *connector)
8795 {
8796 connector->base.dpms = DRM_MODE_DPMS_OFF;
8797 connector->base.encoder = NULL;
8798 connector->encoder->connectors_active = false;
8799 connector->encoder->base.crtc = NULL;
8800 }
8801
8802 static void intel_enable_pipe_a(struct drm_device *dev)
8803 {
8804 struct intel_connector *connector;
8805 struct drm_connector *crt = NULL;
8806 struct intel_load_detect_pipe load_detect_temp;
8807
8808 /* We can't just switch on the pipe A, we need to set things up with a
8809 * proper mode and output configuration. As a gross hack, enable pipe A
8810 * by enabling the load detect pipe once. */
8811 list_for_each_entry(connector,
8812 &dev->mode_config.connector_list,
8813 base.head) {
8814 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8815 crt = &connector->base;
8816 break;
8817 }
8818 }
8819
8820 if (!crt)
8821 return;
8822
8823 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8824 intel_release_load_detect_pipe(crt, &load_detect_temp);
8825
8826
8827 }
8828
8829 static bool
8830 intel_check_plane_mapping(struct intel_crtc *crtc)
8831 {
8832 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8833 u32 reg, val;
8834
8835 if (dev_priv->num_pipe == 1)
8836 return true;
8837
8838 reg = DSPCNTR(!crtc->plane);
8839 val = I915_READ(reg);
8840
8841 if ((val & DISPLAY_PLANE_ENABLE) &&
8842 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8843 return false;
8844
8845 return true;
8846 }
8847
8848 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8849 {
8850 struct drm_device *dev = crtc->base.dev;
8851 struct drm_i915_private *dev_priv = dev->dev_private;
8852 u32 reg;
8853
8854 /* Clear any frame start delays used for debugging left by the BIOS */
8855 reg = PIPECONF(crtc->cpu_transcoder);
8856 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8857
8858 /* We need to sanitize the plane -> pipe mapping first because this will
8859 * disable the crtc (and hence change the state) if it is wrong. Note
8860 * that gen4+ has a fixed plane -> pipe mapping. */
8861 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8862 struct intel_connector *connector;
8863 bool plane;
8864
8865 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8866 crtc->base.base.id);
8867
8868 /* Pipe has the wrong plane attached and the plane is active.
8869 * Temporarily change the plane mapping and disable everything
8870 * ... */
8871 plane = crtc->plane;
8872 crtc->plane = !plane;
8873 dev_priv->display.crtc_disable(&crtc->base);
8874 crtc->plane = plane;
8875
8876 /* ... and break all links. */
8877 list_for_each_entry(connector, &dev->mode_config.connector_list,
8878 base.head) {
8879 if (connector->encoder->base.crtc != &crtc->base)
8880 continue;
8881
8882 intel_connector_break_all_links(connector);
8883 }
8884
8885 WARN_ON(crtc->active);
8886 crtc->base.enabled = false;
8887 }
8888
8889 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8890 crtc->pipe == PIPE_A && !crtc->active) {
8891 /* BIOS forgot to enable pipe A, this mostly happens after
8892 * resume. Force-enable the pipe to fix this, the update_dpms
8893 * call below we restore the pipe to the right state, but leave
8894 * the required bits on. */
8895 intel_enable_pipe_a(dev);
8896 }
8897
8898 /* Adjust the state of the output pipe according to whether we
8899 * have active connectors/encoders. */
8900 intel_crtc_update_dpms(&crtc->base);
8901
8902 if (crtc->active != crtc->base.enabled) {
8903 struct intel_encoder *encoder;
8904
8905 /* This can happen either due to bugs in the get_hw_state
8906 * functions or because the pipe is force-enabled due to the
8907 * pipe A quirk. */
8908 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8909 crtc->base.base.id,
8910 crtc->base.enabled ? "enabled" : "disabled",
8911 crtc->active ? "enabled" : "disabled");
8912
8913 crtc->base.enabled = crtc->active;
8914
8915 /* Because we only establish the connector -> encoder ->
8916 * crtc links if something is active, this means the
8917 * crtc is now deactivated. Break the links. connector
8918 * -> encoder links are only establish when things are
8919 * actually up, hence no need to break them. */
8920 WARN_ON(crtc->active);
8921
8922 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8923 WARN_ON(encoder->connectors_active);
8924 encoder->base.crtc = NULL;
8925 }
8926 }
8927 }
8928
8929 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8930 {
8931 struct intel_connector *connector;
8932 struct drm_device *dev = encoder->base.dev;
8933
8934 /* We need to check both for a crtc link (meaning that the
8935 * encoder is active and trying to read from a pipe) and the
8936 * pipe itself being active. */
8937 bool has_active_crtc = encoder->base.crtc &&
8938 to_intel_crtc(encoder->base.crtc)->active;
8939
8940 if (encoder->connectors_active && !has_active_crtc) {
8941 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8942 encoder->base.base.id,
8943 drm_get_encoder_name(&encoder->base));
8944
8945 /* Connector is active, but has no active pipe. This is
8946 * fallout from our resume register restoring. Disable
8947 * the encoder manually again. */
8948 if (encoder->base.crtc) {
8949 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8950 encoder->base.base.id,
8951 drm_get_encoder_name(&encoder->base));
8952 encoder->disable(encoder);
8953 }
8954
8955 /* Inconsistent output/port/pipe state happens presumably due to
8956 * a bug in one of the get_hw_state functions. Or someplace else
8957 * in our code, like the register restore mess on resume. Clamp
8958 * things to off as a safer default. */
8959 list_for_each_entry(connector,
8960 &dev->mode_config.connector_list,
8961 base.head) {
8962 if (connector->encoder != encoder)
8963 continue;
8964
8965 intel_connector_break_all_links(connector);
8966 }
8967 }
8968 /* Enabled encoders without active connectors will be fixed in
8969 * the crtc fixup. */
8970 }
8971
8972 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8973 * and i915 state tracking structures. */
8974 void intel_modeset_setup_hw_state(struct drm_device *dev)
8975 {
8976 struct drm_i915_private *dev_priv = dev->dev_private;
8977 enum pipe pipe;
8978 u32 tmp;
8979 struct intel_crtc *crtc;
8980 struct intel_encoder *encoder;
8981 struct intel_connector *connector;
8982
8983 if (IS_HASWELL(dev)) {
8984 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8985
8986 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8987 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8988 case TRANS_DDI_EDP_INPUT_A_ON:
8989 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8990 pipe = PIPE_A;
8991 break;
8992 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8993 pipe = PIPE_B;
8994 break;
8995 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8996 pipe = PIPE_C;
8997 break;
8998 }
8999
9000 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9001 crtc->cpu_transcoder = TRANSCODER_EDP;
9002
9003 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9004 pipe_name(pipe));
9005 }
9006 }
9007
9008 for_each_pipe(pipe) {
9009 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9010
9011 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9012 if (tmp & PIPECONF_ENABLE)
9013 crtc->active = true;
9014 else
9015 crtc->active = false;
9016
9017 crtc->base.enabled = crtc->active;
9018
9019 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9020 crtc->base.base.id,
9021 crtc->active ? "enabled" : "disabled");
9022 }
9023
9024 if (IS_HASWELL(dev))
9025 intel_ddi_setup_hw_pll_state(dev);
9026
9027 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9028 base.head) {
9029 pipe = 0;
9030
9031 if (encoder->get_hw_state(encoder, &pipe)) {
9032 encoder->base.crtc =
9033 dev_priv->pipe_to_crtc_mapping[pipe];
9034 } else {
9035 encoder->base.crtc = NULL;
9036 }
9037
9038 encoder->connectors_active = false;
9039 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9040 encoder->base.base.id,
9041 drm_get_encoder_name(&encoder->base),
9042 encoder->base.crtc ? "enabled" : "disabled",
9043 pipe);
9044 }
9045
9046 list_for_each_entry(connector, &dev->mode_config.connector_list,
9047 base.head) {
9048 if (connector->get_hw_state(connector)) {
9049 connector->base.dpms = DRM_MODE_DPMS_ON;
9050 connector->encoder->connectors_active = true;
9051 connector->base.encoder = &connector->encoder->base;
9052 } else {
9053 connector->base.dpms = DRM_MODE_DPMS_OFF;
9054 connector->base.encoder = NULL;
9055 }
9056 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9057 connector->base.base.id,
9058 drm_get_connector_name(&connector->base),
9059 connector->base.encoder ? "enabled" : "disabled");
9060 }
9061
9062 /* HW state is read out, now we need to sanitize this mess. */
9063 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9064 base.head) {
9065 intel_sanitize_encoder(encoder);
9066 }
9067
9068 for_each_pipe(pipe) {
9069 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9070 intel_sanitize_crtc(crtc);
9071 }
9072
9073 intel_modeset_update_staged_output_state(dev);
9074
9075 intel_modeset_check_state(dev);
9076
9077 drm_mode_config_reset(dev);
9078 }
9079
9080 void intel_modeset_gem_init(struct drm_device *dev)
9081 {
9082 intel_modeset_init_hw(dev);
9083
9084 intel_setup_overlay(dev);
9085
9086 intel_modeset_setup_hw_state(dev);
9087 }
9088
9089 void intel_modeset_cleanup(struct drm_device *dev)
9090 {
9091 struct drm_i915_private *dev_priv = dev->dev_private;
9092 struct drm_crtc *crtc;
9093 struct intel_crtc *intel_crtc;
9094
9095 drm_kms_helper_poll_fini(dev);
9096 mutex_lock(&dev->struct_mutex);
9097
9098 intel_unregister_dsm_handler();
9099
9100
9101 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9102 /* Skip inactive CRTCs */
9103 if (!crtc->fb)
9104 continue;
9105
9106 intel_crtc = to_intel_crtc(crtc);
9107 intel_increase_pllclock(crtc);
9108 }
9109
9110 intel_disable_fbc(dev);
9111
9112 intel_disable_gt_powersave(dev);
9113
9114 ironlake_teardown_rc6(dev);
9115
9116 if (IS_VALLEYVIEW(dev))
9117 vlv_init_dpio(dev);
9118
9119 mutex_unlock(&dev->struct_mutex);
9120
9121 /* Disable the irq before mode object teardown, for the irq might
9122 * enqueue unpin/hotplug work. */
9123 drm_irq_uninstall(dev);
9124 cancel_work_sync(&dev_priv->hotplug_work);
9125 cancel_work_sync(&dev_priv->rps.work);
9126
9127 /* flush any delayed tasks or pending work */
9128 flush_scheduled_work();
9129
9130 drm_mode_config_cleanup(dev);
9131 }
9132
9133 /*
9134 * Return which encoder is currently attached for connector.
9135 */
9136 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9137 {
9138 return &intel_attached_encoder(connector)->base;
9139 }
9140
9141 void intel_connector_attach_encoder(struct intel_connector *connector,
9142 struct intel_encoder *encoder)
9143 {
9144 connector->encoder = encoder;
9145 drm_mode_connector_attach_encoder(&connector->base,
9146 &encoder->base);
9147 }
9148
9149 /*
9150 * set vga decode state - true == enable VGA decode
9151 */
9152 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9153 {
9154 struct drm_i915_private *dev_priv = dev->dev_private;
9155 u16 gmch_ctrl;
9156
9157 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9158 if (state)
9159 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9160 else
9161 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9162 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9163 return 0;
9164 }
9165
9166 #ifdef CONFIG_DEBUG_FS
9167 #include <linux/seq_file.h>
9168
9169 struct intel_display_error_state {
9170 struct intel_cursor_error_state {
9171 u32 control;
9172 u32 position;
9173 u32 base;
9174 u32 size;
9175 } cursor[I915_MAX_PIPES];
9176
9177 struct intel_pipe_error_state {
9178 u32 conf;
9179 u32 source;
9180
9181 u32 htotal;
9182 u32 hblank;
9183 u32 hsync;
9184 u32 vtotal;
9185 u32 vblank;
9186 u32 vsync;
9187 } pipe[I915_MAX_PIPES];
9188
9189 struct intel_plane_error_state {
9190 u32 control;
9191 u32 stride;
9192 u32 size;
9193 u32 pos;
9194 u32 addr;
9195 u32 surface;
9196 u32 tile_offset;
9197 } plane[I915_MAX_PIPES];
9198 };
9199
9200 struct intel_display_error_state *
9201 intel_display_capture_error_state(struct drm_device *dev)
9202 {
9203 drm_i915_private_t *dev_priv = dev->dev_private;
9204 struct intel_display_error_state *error;
9205 enum transcoder cpu_transcoder;
9206 int i;
9207
9208 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9209 if (error == NULL)
9210 return NULL;
9211
9212 for_each_pipe(i) {
9213 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9214
9215 error->cursor[i].control = I915_READ(CURCNTR(i));
9216 error->cursor[i].position = I915_READ(CURPOS(i));
9217 error->cursor[i].base = I915_READ(CURBASE(i));
9218
9219 error->plane[i].control = I915_READ(DSPCNTR(i));
9220 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9221 error->plane[i].size = I915_READ(DSPSIZE(i));
9222 error->plane[i].pos = I915_READ(DSPPOS(i));
9223 error->plane[i].addr = I915_READ(DSPADDR(i));
9224 if (INTEL_INFO(dev)->gen >= 4) {
9225 error->plane[i].surface = I915_READ(DSPSURF(i));
9226 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9227 }
9228
9229 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9230 error->pipe[i].source = I915_READ(PIPESRC(i));
9231 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9232 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9233 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9234 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9235 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9236 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9237 }
9238
9239 return error;
9240 }
9241
9242 void
9243 intel_display_print_error_state(struct seq_file *m,
9244 struct drm_device *dev,
9245 struct intel_display_error_state *error)
9246 {
9247 drm_i915_private_t *dev_priv = dev->dev_private;
9248 int i;
9249
9250 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9251 for_each_pipe(i) {
9252 seq_printf(m, "Pipe [%d]:\n", i);
9253 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9254 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9255 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9256 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9257 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9258 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9259 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9260 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9261
9262 seq_printf(m, "Plane [%d]:\n", i);
9263 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9264 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9265 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9266 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9267 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9268 if (INTEL_INFO(dev)->gen >= 4) {
9269 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9270 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9271 }
9272
9273 seq_printf(m, "Cursor [%d]:\n", i);
9274 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9275 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9276 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9277 }
9278 }
9279 #endif
This page took 0.547906 seconds and 6 git commands to generate.