drm/i915: Fix display pixel format handling
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
179 .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
195 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
224 },
225 .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
239 },
240 .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
253 .p2_slow = 10, .p2_fast = 10 },
254 .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
260 /* Pineview's Ncounter is a ring counter */
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
263 /* Pineview only has one combined m divider, which we treat as m2. */
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
284 .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
343 .p1 = { .min = 2, .max = 8 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
357 .p1 = { .min = 2, .max = 6 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
360 .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
373 .p2_slow = 10, .p2_fast = 10 },
374 .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
393 .vco = { .min = 4000000, .max = 5994000},
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 22, .max = 450 },
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446 {
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497 {
498 unsigned int val;
499
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
525 {
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 const intel_limit_t *limit;
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532 /* LVDS dual channel */
533 if (refclk == 100000)
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
538 if (refclk == 100000)
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
546 else
547 limit = &intel_limits_ironlake_dac;
548
549 return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559 if (is_dual_link_lvds(dev_priv, LVDS))
560 /* LVDS with dual channel */
561 limit = &intel_limits_g4x_dual_channel_lvds;
562 else
563 /* LVDS with dual channel */
564 limit = &intel_limits_g4x_single_channel_lvds;
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567 limit = &intel_limits_g4x_hdmi;
568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569 limit = &intel_limits_g4x_sdvo;
570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571 limit = &intel_limits_g4x_display_port;
572 } else /* The option is for other outputs */
573 limit = &intel_limits_i9xx_sdvo;
574
575 return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
583 if (HAS_PCH_SPLIT(dev))
584 limit = intel_ironlake_limit(crtc, refclk);
585 else if (IS_G4X(dev)) {
586 limit = intel_g4x_limit(crtc);
587 } else if (IS_PINEVIEW(dev)) {
588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589 limit = &intel_limits_pineview_lvds;
590 else
591 limit = &intel_limits_pineview_sdvo;
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606 limit = &intel_limits_i8xx_lvds;
607 else
608 limit = &intel_limits_i8xx_dvo;
609 }
610 return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
626 return;
627 }
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639 struct drm_device *dev = crtc->dev;
640 struct intel_encoder *encoder;
641
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
644 return true;
645
646 return false;
647 }
648
649 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
658 {
659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
660 INTELPllInvalid("p1 out of range\n");
661 if (clock->p < limit->p.min || limit->p.max < clock->p)
662 INTELPllInvalid("p out of range\n");
663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
664 INTELPllInvalid("m2 out of range\n");
665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
666 INTELPllInvalid("m1 out of range\n");
667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668 INTELPllInvalid("m1 <= m2\n");
669 if (clock->m < limit->m.min || limit->m.max < clock->m)
670 INTELPllInvalid("m out of range\n");
671 if (clock->n < limit->n.min || limit->n.max < clock->n)
672 INTELPllInvalid("n out of range\n");
673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674 INTELPllInvalid("vco out of range\n");
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679 INTELPllInvalid("dot out of range\n");
680
681 return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
688
689 {
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
693 int err = target;
694
695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696 (I915_READ(LVDS)) != 0) {
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
703 if (is_dual_link_lvds(dev_priv, LVDS))
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
714 memset(best_clock, 0, sizeof(*best_clock));
715
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
727 int this_err;
728
729 intel_clock(dev, refclk, &clock);
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
732 continue;
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
754 {
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765 int lvds_reg;
766
767 if (HAS_PCH_SPLIT(dev))
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
785 /* based on hardware requirement, prefer smaller n to precision */
786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787 /* based on hardware requirement, prefere larger m1,m2 */
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
796 intel_clock(dev, refclk, &clock);
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
799 continue;
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
803
804 this_err = abs(clock.dot - target);
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
815 return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
822 {
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
825
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
849 {
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875 {
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
882 flag = 0;
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942 {
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946 return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
953
954 frame = I915_READ(frame_reg);
955
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
964 *
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
967 */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970 struct drm_i915_private *dev_priv = dev->dev_private;
971 int pipestat_reg = PIPESTAT(pipe);
972
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
976 }
977
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
980 *
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
990 */
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994 /* Wait for vblank interrupt bit to set */
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
998 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1005 *
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1009 *
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1012 *
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
1016 *
1017 */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022 pipe);
1023
1024 if (INTEL_INFO(dev)->gen >= 4) {
1025 int reg = PIPECONF(cpu_transcoder);
1026
1027 /* Wait for the Pipe State to go off */
1028 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029 100))
1030 WARN(1, "pipe_off wait timed out\n");
1031 } else {
1032 u32 last_line, line_mask;
1033 int reg = PIPEDSL(pipe);
1034 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036 if (IS_GEN2(dev))
1037 line_mask = DSL_LINEMASK_GEN2;
1038 else
1039 line_mask = DSL_LINEMASK_GEN3;
1040
1041 /* Wait for the display line to settle */
1042 do {
1043 last_line = I915_READ(reg) & line_mask;
1044 mdelay(5);
1045 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046 time_after(timeout, jiffies));
1047 if (time_after(jiffies, timeout))
1048 WARN(1, "pipe_off wait timed out\n");
1049 }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054 return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, bool state)
1060 {
1061 int reg;
1062 u32 val;
1063 bool cur_state;
1064
1065 reg = DPLL(pipe);
1066 val = I915_READ(reg);
1067 cur_state = !!(val & DPLL_VCO_ENABLE);
1068 WARN(cur_state != state,
1069 "PLL state assertion failure (expected %s, current %s)\n",
1070 state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077 struct intel_pch_pll *pll,
1078 struct intel_crtc *crtc,
1079 bool state)
1080 {
1081 u32 val;
1082 bool cur_state;
1083
1084 if (HAS_PCH_LPT(dev_priv->dev)) {
1085 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086 return;
1087 }
1088
1089 if (WARN (!pll,
1090 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091 return;
1092
1093 val = I915_READ(pll->pll_reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097 pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099 /* Make sure the selected PLL is correctly attached to the transcoder */
1100 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101 u32 pch_dpll;
1102
1103 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106 "PLL[%d] not attached to this transcoder %d: %08x\n",
1107 cur_state, crtc->pipe, pch_dpll)) {
1108 cur_state = !!(val >> (4*crtc->pipe + 3));
1109 WARN(cur_state != state,
1110 "PLL[%d] not %s on this transcoder %d: %08x\n",
1111 pll->pll_reg == _PCH_DPLL_B,
1112 state_string(state),
1113 crtc->pipe,
1114 val);
1115 }
1116 }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
1123 {
1124 int reg;
1125 u32 val;
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (IS_HASWELL(dev_priv->dev)) {
1131 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133 val = I915_READ(reg);
1134 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135 } else {
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 cur_state = !!(val & FDI_TX_ENABLE);
1139 }
1140 WARN(cur_state != state,
1141 "FDI TX state assertion failure (expected %s, current %s)\n",
1142 state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148 enum pipe pipe, bool state)
1149 {
1150 int reg;
1151 u32 val;
1152 bool cur_state;
1153
1154 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156 return;
1157 } else {
1158 reg = FDI_RX_CTL(pipe);
1159 val = I915_READ(reg);
1160 cur_state = !!(val & FDI_RX_ENABLE);
1161 }
1162 WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171 {
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
1176 if (dev_priv->info->gen == 5)
1177 return;
1178
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (IS_HASWELL(dev_priv->dev))
1181 return;
1182
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190 {
1191 int reg;
1192 u32 val;
1193
1194 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196 return;
1197 }
1198 reg = FDI_RX_CTL(pipe);
1199 val = I915_READ(reg);
1200 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205 {
1206 int pp_reg, lvds_reg;
1207 u32 val;
1208 enum pipe panel_pipe = PIPE_A;
1209 bool locked = true;
1210
1211 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212 pp_reg = PCH_PP_CONTROL;
1213 lvds_reg = PCH_LVDS;
1214 } else {
1215 pp_reg = PP_CONTROL;
1216 lvds_reg = LVDS;
1217 }
1218
1219 val = I915_READ(pp_reg);
1220 if (!(val & PANEL_POWER_ON) ||
1221 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222 locked = false;
1223
1224 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225 panel_pipe = PIPE_B;
1226
1227 WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
1229 pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1234 {
1235 int reg;
1236 u32 val;
1237 bool cur_state;
1238 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239 pipe);
1240
1241 /* if we need the pipe A quirk it must be always on */
1242 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243 state = true;
1244
1245 reg = PIPECONF(cpu_transcoder);
1246 val = I915_READ(reg);
1247 cur_state = !!(val & PIPECONF_ENABLE);
1248 WARN(cur_state != state,
1249 "pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254 enum plane plane, bool state)
1255 {
1256 int reg;
1257 u32 val;
1258 bool cur_state;
1259
1260 reg = DSPCNTR(plane);
1261 val = I915_READ(reg);
1262 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263 WARN(cur_state != state,
1264 "plane %c assertion failure (expected %s, current %s)\n",
1265 plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe)
1273 {
1274 int reg, i;
1275 u32 val;
1276 int cur_pipe;
1277
1278 /* Planes are fixed to pipes on ILK+ */
1279 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280 reg = DSPCNTR(pipe);
1281 val = I915_READ(reg);
1282 WARN((val & DISPLAY_PLANE_ENABLE),
1283 "plane %c assertion failure, should be disabled but not\n",
1284 plane_name(pipe));
1285 return;
1286 }
1287
1288 /* Need to check both planes against the pipe */
1289 for (i = 0; i < 2; i++) {
1290 reg = DSPCNTR(i);
1291 val = I915_READ(reg);
1292 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293 DISPPLANE_SEL_PIPE_SHIFT;
1294 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296 plane_name(i), pipe_name(pipe));
1297 }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302 u32 val;
1303 bool enabled;
1304
1305 if (HAS_PCH_LPT(dev_priv->dev)) {
1306 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307 return;
1308 }
1309
1310 val = I915_READ(PCH_DREF_CONTROL);
1311 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312 DREF_SUPERSPREAD_SOURCE_MASK));
1313 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318 {
1319 int reg;
1320 u32 val;
1321 bool enabled;
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 enabled = !!(val & TRANS_ENABLE);
1326 WARN(enabled,
1327 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328 pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334 if ((val & DP_PORT_EN) == 0)
1335 return false;
1336
1337 if (HAS_PCH_CPT(dev_priv->dev)) {
1338 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341 return false;
1342 } else {
1343 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344 return false;
1345 }
1346 return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe, u32 val)
1351 {
1352 if ((val & PORT_ENABLE) == 0)
1353 return false;
1354
1355 if (HAS_PCH_CPT(dev_priv->dev)) {
1356 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357 return false;
1358 } else {
1359 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360 return false;
1361 }
1362 return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 val)
1367 {
1368 if ((val & LVDS_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376 return false;
1377 }
1378 return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382 enum pipe pipe, u32 val)
1383 {
1384 if ((val & ADPA_DAC_ENABLE) == 0)
1385 return false;
1386 if (HAS_PCH_CPT(dev_priv->dev)) {
1387 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388 return false;
1389 } else {
1390 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391 return false;
1392 }
1393 return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe, int reg, u32 port_sel)
1398 {
1399 u32 val = I915_READ(reg);
1400 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402 reg, pipe_name(pipe));
1403
1404 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405 && (val & DP_PIPEB_SELECT),
1406 "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, int reg)
1411 {
1412 u32 val = I915_READ(reg);
1413 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415 reg, pipe_name(pipe));
1416
1417 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418 && (val & SDVO_PIPE_B_SELECT),
1419 "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1424 {
1425 int reg;
1426 u32 val;
1427
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432 reg = PCH_ADPA;
1433 val = I915_READ(reg);
1434 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435 "PCH VGA enabled on transcoder %c, should be disabled\n",
1436 pipe_name(pipe));
1437
1438 reg = PCH_LVDS;
1439 val = I915_READ(reg);
1440 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442 pipe_name(pipe));
1443
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450 * intel_enable_pll - enable a PLL
1451 * @dev_priv: i915 private structure
1452 * @pipe: pipe PLL to enable
1453 *
1454 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1455 * make sure the PLL reg is writable first though, since the panel write
1456 * protect mechanism may be enabled.
1457 *
1458 * Note! This is for pre-ILK only.
1459 *
1460 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461 */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464 int reg;
1465 u32 val;
1466
1467 /* No really, not for ILK+ */
1468 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472 assert_panel_unlocked(dev_priv, pipe);
1473
1474 reg = DPLL(pipe);
1475 val = I915_READ(reg);
1476 val |= DPLL_VCO_ENABLE;
1477
1478 /* We do this three times for luck */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 I915_WRITE(reg, val);
1483 POSTING_READ(reg);
1484 udelay(150); /* wait for warmup */
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1487 udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491 * intel_disable_pll - disable a PLL
1492 * @dev_priv: i915 private structure
1493 * @pipe: pipe PLL to disable
1494 *
1495 * Disable the PLL for @pipe, making sure the pipe is off first.
1496 *
1497 * Note! This is for pre-ILK only.
1498 */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501 int reg;
1502 u32 val;
1503
1504 /* Don't disable pipe A or pipe A PLLs if needed */
1505 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506 return;
1507
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1510
1511 reg = DPLL(pipe);
1512 val = I915_READ(reg);
1513 val &= ~DPLL_VCO_ENABLE;
1514 I915_WRITE(reg, val);
1515 POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522 unsigned long flags;
1523
1524 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526 100)) {
1527 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528 goto out_unlock;
1529 }
1530
1531 I915_WRITE(SBI_ADDR,
1532 (reg << 16));
1533 I915_WRITE(SBI_DATA,
1534 value);
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRWR);
1538
1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542 goto out_unlock;
1543 }
1544
1545 out_unlock:
1546 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552 unsigned long flags;
1553 u32 value = 0;
1554
1555 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557 100)) {
1558 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559 goto out_unlock;
1560 }
1561
1562 I915_WRITE(SBI_ADDR,
1563 (reg << 16));
1564 I915_WRITE(SBI_CTL_STAT,
1565 SBI_BUSY |
1566 SBI_CTL_OP_CRRD);
1567
1568 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569 100)) {
1570 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571 goto out_unlock;
1572 }
1573
1574 value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578 return value;
1579 }
1580
1581 /**
1582 * intel_enable_pch_pll - enable PCH PLL
1583 * @dev_priv: i915 private structure
1584 * @pipe: pipe PLL to enable
1585 *
1586 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587 * drives the transcoder clock.
1588 */
1589 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592 struct intel_pch_pll *pll;
1593 int reg;
1594 u32 val;
1595
1596 /* PCH PLLs only available on ILK, SNB and IVB */
1597 BUG_ON(dev_priv->info->gen < 5);
1598 pll = intel_crtc->pch_pll;
1599 if (pll == NULL)
1600 return;
1601
1602 if (WARN_ON(pll->refcount == 0))
1603 return;
1604
1605 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606 pll->pll_reg, pll->active, pll->on,
1607 intel_crtc->base.base.id);
1608
1609 /* PCH refclock must be enabled first */
1610 assert_pch_refclk_enabled(dev_priv);
1611
1612 if (pll->active++ && pll->on) {
1613 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614 return;
1615 }
1616
1617 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619 reg = pll->pll_reg;
1620 val = I915_READ(reg);
1621 val |= DPLL_VCO_ENABLE;
1622 I915_WRITE(reg, val);
1623 POSTING_READ(reg);
1624 udelay(200);
1625
1626 pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633 int reg;
1634 u32 val;
1635
1636 /* PCH only available on ILK+ */
1637 BUG_ON(dev_priv->info->gen < 5);
1638 if (pll == NULL)
1639 return;
1640
1641 if (WARN_ON(pll->refcount == 0))
1642 return;
1643
1644 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645 pll->pll_reg, pll->active, pll->on,
1646 intel_crtc->base.base.id);
1647
1648 if (WARN_ON(pll->active == 0)) {
1649 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650 return;
1651 }
1652
1653 if (--pll->active) {
1654 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655 return;
1656 }
1657
1658 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660 /* Make sure transcoder isn't still depending on us */
1661 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663 reg = pll->pll_reg;
1664 val = I915_READ(reg);
1665 val &= ~DPLL_VCO_ENABLE;
1666 I915_WRITE(reg, val);
1667 POSTING_READ(reg);
1668 udelay(200);
1669
1670 pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
1675 {
1676 int reg;
1677 u32 val, pipeconf_val;
1678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680 /* PCH only available on ILK+ */
1681 BUG_ON(dev_priv->info->gen < 5);
1682
1683 /* Make sure PCH DPLL is enabled */
1684 assert_pch_pll_enabled(dev_priv,
1685 to_intel_crtc(crtc)->pch_pll,
1686 to_intel_crtc(crtc));
1687
1688 /* FDI must be feeding us bits for PCH ports */
1689 assert_fdi_tx_enabled(dev_priv, pipe);
1690 assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694 return;
1695 }
1696 reg = TRANSCONF(pipe);
1697 val = I915_READ(reg);
1698 pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700 if (HAS_PCH_IBX(dev_priv->dev)) {
1701 /*
1702 * make the BPC in transcoder be consistent with
1703 * that in pipeconf reg.
1704 */
1705 val &= ~PIPE_BPC_MASK;
1706 val |= pipeconf_val & PIPE_BPC_MASK;
1707 }
1708
1709 val &= ~TRANS_INTERLACE_MASK;
1710 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711 if (HAS_PCH_IBX(dev_priv->dev) &&
1712 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713 val |= TRANS_LEGACY_INTERLACED_ILK;
1714 else
1715 val |= TRANS_INTERLACED;
1716 else
1717 val |= TRANS_PROGRESSIVE;
1718
1719 I915_WRITE(reg, val | TRANS_ENABLE);
1720 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725 enum pipe pipe)
1726 {
1727 int reg;
1728 u32 val;
1729
1730 /* FDI relies on the transcoder */
1731 assert_fdi_tx_disabled(dev_priv, pipe);
1732 assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734 /* Ports must be off as well */
1735 assert_pch_ports_disabled(dev_priv, pipe);
1736
1737 reg = TRANSCONF(pipe);
1738 val = I915_READ(reg);
1739 val &= ~TRANS_ENABLE;
1740 I915_WRITE(reg, val);
1741 /* wait for PCH transcoder off, transcoder state */
1742 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747 * intel_enable_pipe - enable a pipe, asserting requirements
1748 * @dev_priv: i915 private structure
1749 * @pipe: pipe to enable
1750 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751 *
1752 * Enable @pipe, making sure that various hardware specific requirements
1753 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754 *
1755 * @pipe should be %PIPE_A or %PIPE_B.
1756 *
1757 * Will wait until the pipe is actually running (i.e. first vblank) before
1758 * returning.
1759 */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761 bool pch_port)
1762 {
1763 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764 pipe);
1765 int reg;
1766 u32 val;
1767
1768 /*
1769 * A pipe without a PLL won't actually be able to drive bits from
1770 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1771 * need the check.
1772 */
1773 if (!HAS_PCH_SPLIT(dev_priv->dev))
1774 assert_pll_enabled(dev_priv, pipe);
1775 else {
1776 if (pch_port) {
1777 /* if driving the PCH, we need FDI enabled */
1778 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780 }
1781 /* FIXME: assert CPU port conditions for SNB+ */
1782 }
1783
1784 reg = PIPECONF(cpu_transcoder);
1785 val = I915_READ(reg);
1786 if (val & PIPECONF_ENABLE)
1787 return;
1788
1789 I915_WRITE(reg, val | PIPECONF_ENABLE);
1790 intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794 * intel_disable_pipe - disable a pipe, asserting requirements
1795 * @dev_priv: i915 private structure
1796 * @pipe: pipe to disable
1797 *
1798 * Disable @pipe, making sure that various hardware specific requirements
1799 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800 *
1801 * @pipe should be %PIPE_A or %PIPE_B.
1802 *
1803 * Will wait until the pipe has shut down before returning.
1804 */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806 enum pipe pipe)
1807 {
1808 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809 pipe);
1810 int reg;
1811 u32 val;
1812
1813 /*
1814 * Make sure planes won't keep trying to pump pixels to us,
1815 * or we might hang the display.
1816 */
1817 assert_planes_disabled(dev_priv, pipe);
1818
1819 /* Don't disable pipe A or pipe A PLLs if needed */
1820 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821 return;
1822
1823 reg = PIPECONF(cpu_transcoder);
1824 val = I915_READ(reg);
1825 if ((val & PIPECONF_ENABLE) == 0)
1826 return;
1827
1828 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833 * Plane regs are double buffered, going from enabled->disabled needs a
1834 * trigger in order to latch. The display address reg provides this.
1835 */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837 enum plane plane)
1838 {
1839 if (dev_priv->info->gen >= 4)
1840 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841 else
1842 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1843 }
1844
1845 /**
1846 * intel_enable_plane - enable a display plane on a given pipe
1847 * @dev_priv: i915 private structure
1848 * @plane: plane to enable
1849 * @pipe: pipe being fed
1850 *
1851 * Enable @plane on @pipe, making sure that @pipe is running first.
1852 */
1853 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1854 enum plane plane, enum pipe pipe)
1855 {
1856 int reg;
1857 u32 val;
1858
1859 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1860 assert_pipe_enabled(dev_priv, pipe);
1861
1862 reg = DSPCNTR(plane);
1863 val = I915_READ(reg);
1864 if (val & DISPLAY_PLANE_ENABLE)
1865 return;
1866
1867 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1868 intel_flush_display_plane(dev_priv, plane);
1869 intel_wait_for_vblank(dev_priv->dev, pipe);
1870 }
1871
1872 /**
1873 * intel_disable_plane - disable a display plane
1874 * @dev_priv: i915 private structure
1875 * @plane: plane to disable
1876 * @pipe: pipe consuming the data
1877 *
1878 * Disable @plane; should be an independent operation.
1879 */
1880 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1881 enum plane plane, enum pipe pipe)
1882 {
1883 int reg;
1884 u32 val;
1885
1886 reg = DSPCNTR(plane);
1887 val = I915_READ(reg);
1888 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1889 return;
1890
1891 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1892 intel_flush_display_plane(dev_priv, plane);
1893 intel_wait_for_vblank(dev_priv->dev, pipe);
1894 }
1895
1896 int
1897 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1898 struct drm_i915_gem_object *obj,
1899 struct intel_ring_buffer *pipelined)
1900 {
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 u32 alignment;
1903 int ret;
1904
1905 switch (obj->tiling_mode) {
1906 case I915_TILING_NONE:
1907 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1908 alignment = 128 * 1024;
1909 else if (INTEL_INFO(dev)->gen >= 4)
1910 alignment = 4 * 1024;
1911 else
1912 alignment = 64 * 1024;
1913 break;
1914 case I915_TILING_X:
1915 /* pin() will align the object as required by fence */
1916 alignment = 0;
1917 break;
1918 case I915_TILING_Y:
1919 /* FIXME: Is this true? */
1920 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1921 return -EINVAL;
1922 default:
1923 BUG();
1924 }
1925
1926 dev_priv->mm.interruptible = false;
1927 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1928 if (ret)
1929 goto err_interruptible;
1930
1931 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932 * fence, whereas 965+ only requires a fence if using
1933 * framebuffer compression. For simplicity, we always install
1934 * a fence as the cost is not that onerous.
1935 */
1936 ret = i915_gem_object_get_fence(obj);
1937 if (ret)
1938 goto err_unpin;
1939
1940 i915_gem_object_pin_fence(obj);
1941
1942 dev_priv->mm.interruptible = true;
1943 return 0;
1944
1945 err_unpin:
1946 i915_gem_object_unpin(obj);
1947 err_interruptible:
1948 dev_priv->mm.interruptible = true;
1949 return ret;
1950 }
1951
1952 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953 {
1954 i915_gem_object_unpin_fence(obj);
1955 i915_gem_object_unpin(obj);
1956 }
1957
1958 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959 * is assumed to be a power-of-two. */
1960 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1961 unsigned int bpp,
1962 unsigned int pitch)
1963 {
1964 int tile_rows, tiles;
1965
1966 tile_rows = *y / 8;
1967 *y %= 8;
1968 tiles = *x / (512/bpp);
1969 *x %= 512/bpp;
1970
1971 return tile_rows * pitch * 8 + tiles * 4096;
1972 }
1973
1974 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1975 int x, int y)
1976 {
1977 struct drm_device *dev = crtc->dev;
1978 struct drm_i915_private *dev_priv = dev->dev_private;
1979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1980 struct intel_framebuffer *intel_fb;
1981 struct drm_i915_gem_object *obj;
1982 int plane = intel_crtc->plane;
1983 unsigned long linear_offset;
1984 u32 dspcntr;
1985 u32 reg;
1986
1987 switch (plane) {
1988 case 0:
1989 case 1:
1990 break;
1991 default:
1992 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1993 return -EINVAL;
1994 }
1995
1996 intel_fb = to_intel_framebuffer(fb);
1997 obj = intel_fb->obj;
1998
1999 reg = DSPCNTR(plane);
2000 dspcntr = I915_READ(reg);
2001 /* Mask out pixel format bits in case we change it */
2002 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2003 switch (fb->pixel_format) {
2004 case DRM_FORMAT_C8:
2005 dspcntr |= DISPPLANE_8BPP;
2006 break;
2007 case DRM_FORMAT_XRGB1555:
2008 case DRM_FORMAT_ARGB1555:
2009 dspcntr |= DISPPLANE_BGRX555;
2010 break;
2011 case DRM_FORMAT_RGB565:
2012 dspcntr |= DISPPLANE_BGRX565;
2013 break;
2014 case DRM_FORMAT_XRGB8888:
2015 case DRM_FORMAT_ARGB8888:
2016 dspcntr |= DISPPLANE_BGRX888;
2017 break;
2018 case DRM_FORMAT_XBGR8888:
2019 case DRM_FORMAT_ABGR8888:
2020 dspcntr |= DISPPLANE_RGBX888;
2021 break;
2022 case DRM_FORMAT_XRGB2101010:
2023 case DRM_FORMAT_ARGB2101010:
2024 dspcntr |= DISPPLANE_BGRX101010;
2025 break;
2026 case DRM_FORMAT_XBGR2101010:
2027 case DRM_FORMAT_ABGR2101010:
2028 dspcntr |= DISPPLANE_RGBX101010;
2029 break;
2030 default:
2031 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2032 return -EINVAL;
2033 }
2034
2035 if (INTEL_INFO(dev)->gen >= 4) {
2036 if (obj->tiling_mode != I915_TILING_NONE)
2037 dspcntr |= DISPPLANE_TILED;
2038 else
2039 dspcntr &= ~DISPPLANE_TILED;
2040 }
2041
2042 I915_WRITE(reg, dspcntr);
2043
2044 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2045
2046 if (INTEL_INFO(dev)->gen >= 4) {
2047 intel_crtc->dspaddr_offset =
2048 intel_gen4_compute_offset_xtiled(&x, &y,
2049 fb->bits_per_pixel / 8,
2050 fb->pitches[0]);
2051 linear_offset -= intel_crtc->dspaddr_offset;
2052 } else {
2053 intel_crtc->dspaddr_offset = linear_offset;
2054 }
2055
2056 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2057 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2058 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2059 if (INTEL_INFO(dev)->gen >= 4) {
2060 I915_MODIFY_DISPBASE(DSPSURF(plane),
2061 obj->gtt_offset + intel_crtc->dspaddr_offset);
2062 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2063 I915_WRITE(DSPLINOFF(plane), linear_offset);
2064 } else
2065 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2066 POSTING_READ(reg);
2067
2068 return 0;
2069 }
2070
2071 static int ironlake_update_plane(struct drm_crtc *crtc,
2072 struct drm_framebuffer *fb, int x, int y)
2073 {
2074 struct drm_device *dev = crtc->dev;
2075 struct drm_i915_private *dev_priv = dev->dev_private;
2076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077 struct intel_framebuffer *intel_fb;
2078 struct drm_i915_gem_object *obj;
2079 int plane = intel_crtc->plane;
2080 unsigned long linear_offset;
2081 u32 dspcntr;
2082 u32 reg;
2083
2084 switch (plane) {
2085 case 0:
2086 case 1:
2087 case 2:
2088 break;
2089 default:
2090 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091 return -EINVAL;
2092 }
2093
2094 intel_fb = to_intel_framebuffer(fb);
2095 obj = intel_fb->obj;
2096
2097 reg = DSPCNTR(plane);
2098 dspcntr = I915_READ(reg);
2099 /* Mask out pixel format bits in case we change it */
2100 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2101 switch (fb->pixel_format) {
2102 case DRM_FORMAT_C8:
2103 dspcntr |= DISPPLANE_8BPP;
2104 break;
2105 case DRM_FORMAT_RGB565:
2106 dspcntr |= DISPPLANE_BGRX565;
2107 break;
2108 case DRM_FORMAT_XRGB8888:
2109 case DRM_FORMAT_ARGB8888:
2110 dspcntr |= DISPPLANE_BGRX888;
2111 break;
2112 case DRM_FORMAT_XBGR8888:
2113 case DRM_FORMAT_ABGR8888:
2114 dspcntr |= DISPPLANE_RGBX888;
2115 break;
2116 case DRM_FORMAT_XRGB2101010:
2117 case DRM_FORMAT_ARGB2101010:
2118 dspcntr |= DISPPLANE_BGRX101010;
2119 break;
2120 case DRM_FORMAT_XBGR2101010:
2121 case DRM_FORMAT_ABGR2101010:
2122 dspcntr |= DISPPLANE_RGBX101010;
2123 break;
2124 default:
2125 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2126 return -EINVAL;
2127 }
2128
2129 if (obj->tiling_mode != I915_TILING_NONE)
2130 dspcntr |= DISPPLANE_TILED;
2131 else
2132 dspcntr &= ~DISPPLANE_TILED;
2133
2134 /* must disable */
2135 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2136
2137 I915_WRITE(reg, dspcntr);
2138
2139 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2140 intel_crtc->dspaddr_offset =
2141 intel_gen4_compute_offset_xtiled(&x, &y,
2142 fb->bits_per_pixel / 8,
2143 fb->pitches[0]);
2144 linear_offset -= intel_crtc->dspaddr_offset;
2145
2146 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2147 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2148 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2149 I915_MODIFY_DISPBASE(DSPSURF(plane),
2150 obj->gtt_offset + intel_crtc->dspaddr_offset);
2151 if (IS_HASWELL(dev)) {
2152 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2153 } else {
2154 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2155 I915_WRITE(DSPLINOFF(plane), linear_offset);
2156 }
2157 POSTING_READ(reg);
2158
2159 return 0;
2160 }
2161
2162 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2163 static int
2164 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2165 int x, int y, enum mode_set_atomic state)
2166 {
2167 struct drm_device *dev = crtc->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169
2170 if (dev_priv->display.disable_fbc)
2171 dev_priv->display.disable_fbc(dev);
2172 intel_increase_pllclock(crtc);
2173
2174 return dev_priv->display.update_plane(crtc, fb, x, y);
2175 }
2176
2177 static int
2178 intel_finish_fb(struct drm_framebuffer *old_fb)
2179 {
2180 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182 bool was_interruptible = dev_priv->mm.interruptible;
2183 int ret;
2184
2185 wait_event(dev_priv->pending_flip_queue,
2186 atomic_read(&dev_priv->mm.wedged) ||
2187 atomic_read(&obj->pending_flip) == 0);
2188
2189 /* Big Hammer, we also need to ensure that any pending
2190 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2191 * current scanout is retired before unpinning the old
2192 * framebuffer.
2193 *
2194 * This should only fail upon a hung GPU, in which case we
2195 * can safely continue.
2196 */
2197 dev_priv->mm.interruptible = false;
2198 ret = i915_gem_object_finish_gpu(obj);
2199 dev_priv->mm.interruptible = was_interruptible;
2200
2201 return ret;
2202 }
2203
2204 static int
2205 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2206 struct drm_framebuffer *fb)
2207 {
2208 struct drm_device *dev = crtc->dev;
2209 struct drm_i915_private *dev_priv = dev->dev_private;
2210 struct drm_i915_master_private *master_priv;
2211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2212 struct drm_framebuffer *old_fb;
2213 int ret;
2214
2215 /* no fb bound */
2216 if (!fb) {
2217 DRM_ERROR("No FB bound\n");
2218 return 0;
2219 }
2220
2221 if(intel_crtc->plane > dev_priv->num_pipe) {
2222 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2223 intel_crtc->plane,
2224 dev_priv->num_pipe);
2225 return -EINVAL;
2226 }
2227
2228 mutex_lock(&dev->struct_mutex);
2229 ret = intel_pin_and_fence_fb_obj(dev,
2230 to_intel_framebuffer(fb)->obj,
2231 NULL);
2232 if (ret != 0) {
2233 mutex_unlock(&dev->struct_mutex);
2234 DRM_ERROR("pin & fence failed\n");
2235 return ret;
2236 }
2237
2238 if (crtc->fb)
2239 intel_finish_fb(crtc->fb);
2240
2241 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2242 if (ret) {
2243 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2244 mutex_unlock(&dev->struct_mutex);
2245 DRM_ERROR("failed to update base address\n");
2246 return ret;
2247 }
2248
2249 old_fb = crtc->fb;
2250 crtc->fb = fb;
2251 crtc->x = x;
2252 crtc->y = y;
2253
2254 if (old_fb) {
2255 intel_wait_for_vblank(dev, intel_crtc->pipe);
2256 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2257 }
2258
2259 intel_update_fbc(dev);
2260 mutex_unlock(&dev->struct_mutex);
2261
2262 if (!dev->primary->master)
2263 return 0;
2264
2265 master_priv = dev->primary->master->driver_priv;
2266 if (!master_priv->sarea_priv)
2267 return 0;
2268
2269 if (intel_crtc->pipe) {
2270 master_priv->sarea_priv->pipeB_x = x;
2271 master_priv->sarea_priv->pipeB_y = y;
2272 } else {
2273 master_priv->sarea_priv->pipeA_x = x;
2274 master_priv->sarea_priv->pipeA_y = y;
2275 }
2276
2277 return 0;
2278 }
2279
2280 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2281 {
2282 struct drm_device *dev = crtc->dev;
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 u32 dpa_ctl;
2285
2286 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2287 dpa_ctl = I915_READ(DP_A);
2288 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2289
2290 if (clock < 200000) {
2291 u32 temp;
2292 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2293 /* workaround for 160Mhz:
2294 1) program 0x4600c bits 15:0 = 0x8124
2295 2) program 0x46010 bit 0 = 1
2296 3) program 0x46034 bit 24 = 1
2297 4) program 0x64000 bit 14 = 1
2298 */
2299 temp = I915_READ(0x4600c);
2300 temp &= 0xffff0000;
2301 I915_WRITE(0x4600c, temp | 0x8124);
2302
2303 temp = I915_READ(0x46010);
2304 I915_WRITE(0x46010, temp | 1);
2305
2306 temp = I915_READ(0x46034);
2307 I915_WRITE(0x46034, temp | (1 << 24));
2308 } else {
2309 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2310 }
2311 I915_WRITE(DP_A, dpa_ctl);
2312
2313 POSTING_READ(DP_A);
2314 udelay(500);
2315 }
2316
2317 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2318 {
2319 struct drm_device *dev = crtc->dev;
2320 struct drm_i915_private *dev_priv = dev->dev_private;
2321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2322 int pipe = intel_crtc->pipe;
2323 u32 reg, temp;
2324
2325 /* enable normal train */
2326 reg = FDI_TX_CTL(pipe);
2327 temp = I915_READ(reg);
2328 if (IS_IVYBRIDGE(dev)) {
2329 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2330 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2331 } else {
2332 temp &= ~FDI_LINK_TRAIN_NONE;
2333 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2334 }
2335 I915_WRITE(reg, temp);
2336
2337 reg = FDI_RX_CTL(pipe);
2338 temp = I915_READ(reg);
2339 if (HAS_PCH_CPT(dev)) {
2340 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2341 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2342 } else {
2343 temp &= ~FDI_LINK_TRAIN_NONE;
2344 temp |= FDI_LINK_TRAIN_NONE;
2345 }
2346 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2347
2348 /* wait one idle pattern time */
2349 POSTING_READ(reg);
2350 udelay(1000);
2351
2352 /* IVB wants error correction enabled */
2353 if (IS_IVYBRIDGE(dev))
2354 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2355 FDI_FE_ERRC_ENABLE);
2356 }
2357
2358 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2359 {
2360 struct drm_i915_private *dev_priv = dev->dev_private;
2361 u32 flags = I915_READ(SOUTH_CHICKEN1);
2362
2363 flags |= FDI_PHASE_SYNC_OVR(pipe);
2364 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2365 flags |= FDI_PHASE_SYNC_EN(pipe);
2366 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2367 POSTING_READ(SOUTH_CHICKEN1);
2368 }
2369
2370 static void ivb_modeset_global_resources(struct drm_device *dev)
2371 {
2372 struct drm_i915_private *dev_priv = dev->dev_private;
2373 struct intel_crtc *pipe_B_crtc =
2374 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2375 struct intel_crtc *pipe_C_crtc =
2376 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2377 uint32_t temp;
2378
2379 /* When everything is off disable fdi C so that we could enable fdi B
2380 * with all lanes. XXX: This misses the case where a pipe is not using
2381 * any pch resources and so doesn't need any fdi lanes. */
2382 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2383 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2384 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2385
2386 temp = I915_READ(SOUTH_CHICKEN1);
2387 temp &= ~FDI_BC_BIFURCATION_SELECT;
2388 DRM_DEBUG_KMS("disabling fdi C rx\n");
2389 I915_WRITE(SOUTH_CHICKEN1, temp);
2390 }
2391 }
2392
2393 /* The FDI link training functions for ILK/Ibexpeak. */
2394 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2395 {
2396 struct drm_device *dev = crtc->dev;
2397 struct drm_i915_private *dev_priv = dev->dev_private;
2398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2399 int pipe = intel_crtc->pipe;
2400 int plane = intel_crtc->plane;
2401 u32 reg, temp, tries;
2402
2403 /* FDI needs bits from pipe & plane first */
2404 assert_pipe_enabled(dev_priv, pipe);
2405 assert_plane_enabled(dev_priv, plane);
2406
2407 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2408 for train result */
2409 reg = FDI_RX_IMR(pipe);
2410 temp = I915_READ(reg);
2411 temp &= ~FDI_RX_SYMBOL_LOCK;
2412 temp &= ~FDI_RX_BIT_LOCK;
2413 I915_WRITE(reg, temp);
2414 I915_READ(reg);
2415 udelay(150);
2416
2417 /* enable CPU FDI TX and PCH FDI RX */
2418 reg = FDI_TX_CTL(pipe);
2419 temp = I915_READ(reg);
2420 temp &= ~(7 << 19);
2421 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2422 temp &= ~FDI_LINK_TRAIN_NONE;
2423 temp |= FDI_LINK_TRAIN_PATTERN_1;
2424 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2425
2426 reg = FDI_RX_CTL(pipe);
2427 temp = I915_READ(reg);
2428 temp &= ~FDI_LINK_TRAIN_NONE;
2429 temp |= FDI_LINK_TRAIN_PATTERN_1;
2430 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2431
2432 POSTING_READ(reg);
2433 udelay(150);
2434
2435 /* Ironlake workaround, enable clock pointer after FDI enable*/
2436 if (HAS_PCH_IBX(dev)) {
2437 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2438 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2439 FDI_RX_PHASE_SYNC_POINTER_EN);
2440 }
2441
2442 reg = FDI_RX_IIR(pipe);
2443 for (tries = 0; tries < 5; tries++) {
2444 temp = I915_READ(reg);
2445 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2446
2447 if ((temp & FDI_RX_BIT_LOCK)) {
2448 DRM_DEBUG_KMS("FDI train 1 done.\n");
2449 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2450 break;
2451 }
2452 }
2453 if (tries == 5)
2454 DRM_ERROR("FDI train 1 fail!\n");
2455
2456 /* Train 2 */
2457 reg = FDI_TX_CTL(pipe);
2458 temp = I915_READ(reg);
2459 temp &= ~FDI_LINK_TRAIN_NONE;
2460 temp |= FDI_LINK_TRAIN_PATTERN_2;
2461 I915_WRITE(reg, temp);
2462
2463 reg = FDI_RX_CTL(pipe);
2464 temp = I915_READ(reg);
2465 temp &= ~FDI_LINK_TRAIN_NONE;
2466 temp |= FDI_LINK_TRAIN_PATTERN_2;
2467 I915_WRITE(reg, temp);
2468
2469 POSTING_READ(reg);
2470 udelay(150);
2471
2472 reg = FDI_RX_IIR(pipe);
2473 for (tries = 0; tries < 5; tries++) {
2474 temp = I915_READ(reg);
2475 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2476
2477 if (temp & FDI_RX_SYMBOL_LOCK) {
2478 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2479 DRM_DEBUG_KMS("FDI train 2 done.\n");
2480 break;
2481 }
2482 }
2483 if (tries == 5)
2484 DRM_ERROR("FDI train 2 fail!\n");
2485
2486 DRM_DEBUG_KMS("FDI train done\n");
2487
2488 }
2489
2490 static const int snb_b_fdi_train_param[] = {
2491 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2492 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2493 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2494 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2495 };
2496
2497 /* The FDI link training functions for SNB/Cougarpoint. */
2498 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2499 {
2500 struct drm_device *dev = crtc->dev;
2501 struct drm_i915_private *dev_priv = dev->dev_private;
2502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2503 int pipe = intel_crtc->pipe;
2504 u32 reg, temp, i, retry;
2505
2506 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2507 for train result */
2508 reg = FDI_RX_IMR(pipe);
2509 temp = I915_READ(reg);
2510 temp &= ~FDI_RX_SYMBOL_LOCK;
2511 temp &= ~FDI_RX_BIT_LOCK;
2512 I915_WRITE(reg, temp);
2513
2514 POSTING_READ(reg);
2515 udelay(150);
2516
2517 /* enable CPU FDI TX and PCH FDI RX */
2518 reg = FDI_TX_CTL(pipe);
2519 temp = I915_READ(reg);
2520 temp &= ~(7 << 19);
2521 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2522 temp &= ~FDI_LINK_TRAIN_NONE;
2523 temp |= FDI_LINK_TRAIN_PATTERN_1;
2524 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2525 /* SNB-B */
2526 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2527 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2528
2529 I915_WRITE(FDI_RX_MISC(pipe),
2530 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2531
2532 reg = FDI_RX_CTL(pipe);
2533 temp = I915_READ(reg);
2534 if (HAS_PCH_CPT(dev)) {
2535 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2536 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2537 } else {
2538 temp &= ~FDI_LINK_TRAIN_NONE;
2539 temp |= FDI_LINK_TRAIN_PATTERN_1;
2540 }
2541 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2542
2543 POSTING_READ(reg);
2544 udelay(150);
2545
2546 if (HAS_PCH_CPT(dev))
2547 cpt_phase_pointer_enable(dev, pipe);
2548
2549 for (i = 0; i < 4; i++) {
2550 reg = FDI_TX_CTL(pipe);
2551 temp = I915_READ(reg);
2552 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2553 temp |= snb_b_fdi_train_param[i];
2554 I915_WRITE(reg, temp);
2555
2556 POSTING_READ(reg);
2557 udelay(500);
2558
2559 for (retry = 0; retry < 5; retry++) {
2560 reg = FDI_RX_IIR(pipe);
2561 temp = I915_READ(reg);
2562 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2563 if (temp & FDI_RX_BIT_LOCK) {
2564 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2565 DRM_DEBUG_KMS("FDI train 1 done.\n");
2566 break;
2567 }
2568 udelay(50);
2569 }
2570 if (retry < 5)
2571 break;
2572 }
2573 if (i == 4)
2574 DRM_ERROR("FDI train 1 fail!\n");
2575
2576 /* Train 2 */
2577 reg = FDI_TX_CTL(pipe);
2578 temp = I915_READ(reg);
2579 temp &= ~FDI_LINK_TRAIN_NONE;
2580 temp |= FDI_LINK_TRAIN_PATTERN_2;
2581 if (IS_GEN6(dev)) {
2582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2583 /* SNB-B */
2584 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2585 }
2586 I915_WRITE(reg, temp);
2587
2588 reg = FDI_RX_CTL(pipe);
2589 temp = I915_READ(reg);
2590 if (HAS_PCH_CPT(dev)) {
2591 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2592 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2593 } else {
2594 temp &= ~FDI_LINK_TRAIN_NONE;
2595 temp |= FDI_LINK_TRAIN_PATTERN_2;
2596 }
2597 I915_WRITE(reg, temp);
2598
2599 POSTING_READ(reg);
2600 udelay(150);
2601
2602 for (i = 0; i < 4; i++) {
2603 reg = FDI_TX_CTL(pipe);
2604 temp = I915_READ(reg);
2605 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2606 temp |= snb_b_fdi_train_param[i];
2607 I915_WRITE(reg, temp);
2608
2609 POSTING_READ(reg);
2610 udelay(500);
2611
2612 for (retry = 0; retry < 5; retry++) {
2613 reg = FDI_RX_IIR(pipe);
2614 temp = I915_READ(reg);
2615 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2616 if (temp & FDI_RX_SYMBOL_LOCK) {
2617 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2618 DRM_DEBUG_KMS("FDI train 2 done.\n");
2619 break;
2620 }
2621 udelay(50);
2622 }
2623 if (retry < 5)
2624 break;
2625 }
2626 if (i == 4)
2627 DRM_ERROR("FDI train 2 fail!\n");
2628
2629 DRM_DEBUG_KMS("FDI train done.\n");
2630 }
2631
2632 /* Manual link training for Ivy Bridge A0 parts */
2633 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2634 {
2635 struct drm_device *dev = crtc->dev;
2636 struct drm_i915_private *dev_priv = dev->dev_private;
2637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2638 int pipe = intel_crtc->pipe;
2639 u32 reg, temp, i;
2640
2641 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2642 for train result */
2643 reg = FDI_RX_IMR(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~FDI_RX_SYMBOL_LOCK;
2646 temp &= ~FDI_RX_BIT_LOCK;
2647 I915_WRITE(reg, temp);
2648
2649 POSTING_READ(reg);
2650 udelay(150);
2651
2652 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2653 I915_READ(FDI_RX_IIR(pipe)));
2654
2655 /* enable CPU FDI TX and PCH FDI RX */
2656 reg = FDI_TX_CTL(pipe);
2657 temp = I915_READ(reg);
2658 temp &= ~(7 << 19);
2659 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2660 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2661 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2662 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2663 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2664 temp |= FDI_COMPOSITE_SYNC;
2665 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2666
2667 I915_WRITE(FDI_RX_MISC(pipe),
2668 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2669
2670 reg = FDI_RX_CTL(pipe);
2671 temp = I915_READ(reg);
2672 temp &= ~FDI_LINK_TRAIN_AUTO;
2673 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2674 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2675 temp |= FDI_COMPOSITE_SYNC;
2676 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2677
2678 POSTING_READ(reg);
2679 udelay(150);
2680
2681 if (HAS_PCH_CPT(dev))
2682 cpt_phase_pointer_enable(dev, pipe);
2683
2684 for (i = 0; i < 4; i++) {
2685 reg = FDI_TX_CTL(pipe);
2686 temp = I915_READ(reg);
2687 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2688 temp |= snb_b_fdi_train_param[i];
2689 I915_WRITE(reg, temp);
2690
2691 POSTING_READ(reg);
2692 udelay(500);
2693
2694 reg = FDI_RX_IIR(pipe);
2695 temp = I915_READ(reg);
2696 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2697
2698 if (temp & FDI_RX_BIT_LOCK ||
2699 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2700 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2701 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2702 break;
2703 }
2704 }
2705 if (i == 4)
2706 DRM_ERROR("FDI train 1 fail!\n");
2707
2708 /* Train 2 */
2709 reg = FDI_TX_CTL(pipe);
2710 temp = I915_READ(reg);
2711 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2712 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2713 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2714 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2715 I915_WRITE(reg, temp);
2716
2717 reg = FDI_RX_CTL(pipe);
2718 temp = I915_READ(reg);
2719 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2720 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2721 I915_WRITE(reg, temp);
2722
2723 POSTING_READ(reg);
2724 udelay(150);
2725
2726 for (i = 0; i < 4; i++) {
2727 reg = FDI_TX_CTL(pipe);
2728 temp = I915_READ(reg);
2729 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2730 temp |= snb_b_fdi_train_param[i];
2731 I915_WRITE(reg, temp);
2732
2733 POSTING_READ(reg);
2734 udelay(500);
2735
2736 reg = FDI_RX_IIR(pipe);
2737 temp = I915_READ(reg);
2738 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2739
2740 if (temp & FDI_RX_SYMBOL_LOCK) {
2741 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2742 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2743 break;
2744 }
2745 }
2746 if (i == 4)
2747 DRM_ERROR("FDI train 2 fail!\n");
2748
2749 DRM_DEBUG_KMS("FDI train done.\n");
2750 }
2751
2752 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2753 {
2754 struct drm_device *dev = intel_crtc->base.dev;
2755 struct drm_i915_private *dev_priv = dev->dev_private;
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759
2760 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2761 reg = FDI_RX_CTL(pipe);
2762 temp = I915_READ(reg);
2763 temp &= ~((0x7 << 19) | (0x7 << 16));
2764 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2765 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2766 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2767
2768 POSTING_READ(reg);
2769 udelay(200);
2770
2771 /* Switch from Rawclk to PCDclk */
2772 temp = I915_READ(reg);
2773 I915_WRITE(reg, temp | FDI_PCDCLK);
2774
2775 POSTING_READ(reg);
2776 udelay(200);
2777
2778 /* On Haswell, the PLL configuration for ports and pipes is handled
2779 * separately, as part of DDI setup */
2780 if (!IS_HASWELL(dev)) {
2781 /* Enable CPU FDI TX PLL, always on for Ironlake */
2782 reg = FDI_TX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2785 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2786
2787 POSTING_READ(reg);
2788 udelay(100);
2789 }
2790 }
2791 }
2792
2793 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2794 {
2795 struct drm_device *dev = intel_crtc->base.dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 int pipe = intel_crtc->pipe;
2798 u32 reg, temp;
2799
2800 /* Switch from PCDclk to Rawclk */
2801 reg = FDI_RX_CTL(pipe);
2802 temp = I915_READ(reg);
2803 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2804
2805 /* Disable CPU FDI TX PLL */
2806 reg = FDI_TX_CTL(pipe);
2807 temp = I915_READ(reg);
2808 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2809
2810 POSTING_READ(reg);
2811 udelay(100);
2812
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2816
2817 /* Wait for the clocks to turn off. */
2818 POSTING_READ(reg);
2819 udelay(100);
2820 }
2821
2822 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 u32 flags = I915_READ(SOUTH_CHICKEN1);
2826
2827 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2828 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2829 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2830 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2831 POSTING_READ(SOUTH_CHICKEN1);
2832 }
2833 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2834 {
2835 struct drm_device *dev = crtc->dev;
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838 int pipe = intel_crtc->pipe;
2839 u32 reg, temp;
2840
2841 /* disable CPU FDI tx and PCH FDI rx */
2842 reg = FDI_TX_CTL(pipe);
2843 temp = I915_READ(reg);
2844 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2845 POSTING_READ(reg);
2846
2847 reg = FDI_RX_CTL(pipe);
2848 temp = I915_READ(reg);
2849 temp &= ~(0x7 << 16);
2850 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2851 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2852
2853 POSTING_READ(reg);
2854 udelay(100);
2855
2856 /* Ironlake workaround, disable clock pointer after downing FDI */
2857 if (HAS_PCH_IBX(dev)) {
2858 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2859 I915_WRITE(FDI_RX_CHICKEN(pipe),
2860 I915_READ(FDI_RX_CHICKEN(pipe) &
2861 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2862 } else if (HAS_PCH_CPT(dev)) {
2863 cpt_phase_pointer_disable(dev, pipe);
2864 }
2865
2866 /* still set train pattern 1 */
2867 reg = FDI_TX_CTL(pipe);
2868 temp = I915_READ(reg);
2869 temp &= ~FDI_LINK_TRAIN_NONE;
2870 temp |= FDI_LINK_TRAIN_PATTERN_1;
2871 I915_WRITE(reg, temp);
2872
2873 reg = FDI_RX_CTL(pipe);
2874 temp = I915_READ(reg);
2875 if (HAS_PCH_CPT(dev)) {
2876 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2877 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2878 } else {
2879 temp &= ~FDI_LINK_TRAIN_NONE;
2880 temp |= FDI_LINK_TRAIN_PATTERN_1;
2881 }
2882 /* BPC in FDI rx is consistent with that in PIPECONF */
2883 temp &= ~(0x07 << 16);
2884 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2885 I915_WRITE(reg, temp);
2886
2887 POSTING_READ(reg);
2888 udelay(100);
2889 }
2890
2891 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2892 {
2893 struct drm_device *dev = crtc->dev;
2894 struct drm_i915_private *dev_priv = dev->dev_private;
2895 unsigned long flags;
2896 bool pending;
2897
2898 if (atomic_read(&dev_priv->mm.wedged))
2899 return false;
2900
2901 spin_lock_irqsave(&dev->event_lock, flags);
2902 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2903 spin_unlock_irqrestore(&dev->event_lock, flags);
2904
2905 return pending;
2906 }
2907
2908 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2909 {
2910 struct drm_device *dev = crtc->dev;
2911 struct drm_i915_private *dev_priv = dev->dev_private;
2912
2913 if (crtc->fb == NULL)
2914 return;
2915
2916 wait_event(dev_priv->pending_flip_queue,
2917 !intel_crtc_has_pending_flip(crtc));
2918
2919 mutex_lock(&dev->struct_mutex);
2920 intel_finish_fb(crtc->fb);
2921 mutex_unlock(&dev->struct_mutex);
2922 }
2923
2924 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2925 {
2926 struct drm_device *dev = crtc->dev;
2927 struct intel_encoder *intel_encoder;
2928
2929 /*
2930 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2931 * must be driven by its own crtc; no sharing is possible.
2932 */
2933 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2934 switch (intel_encoder->type) {
2935 case INTEL_OUTPUT_EDP:
2936 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2937 return false;
2938 continue;
2939 }
2940 }
2941
2942 return true;
2943 }
2944
2945 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2946 {
2947 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2948 }
2949
2950 /* Program iCLKIP clock to the desired frequency */
2951 static void lpt_program_iclkip(struct drm_crtc *crtc)
2952 {
2953 struct drm_device *dev = crtc->dev;
2954 struct drm_i915_private *dev_priv = dev->dev_private;
2955 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2956 u32 temp;
2957
2958 /* It is necessary to ungate the pixclk gate prior to programming
2959 * the divisors, and gate it back when it is done.
2960 */
2961 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2962
2963 /* Disable SSCCTL */
2964 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2965 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2966 SBI_SSCCTL_DISABLE);
2967
2968 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2969 if (crtc->mode.clock == 20000) {
2970 auxdiv = 1;
2971 divsel = 0x41;
2972 phaseinc = 0x20;
2973 } else {
2974 /* The iCLK virtual clock root frequency is in MHz,
2975 * but the crtc->mode.clock in in KHz. To get the divisors,
2976 * it is necessary to divide one by another, so we
2977 * convert the virtual clock precision to KHz here for higher
2978 * precision.
2979 */
2980 u32 iclk_virtual_root_freq = 172800 * 1000;
2981 u32 iclk_pi_range = 64;
2982 u32 desired_divisor, msb_divisor_value, pi_value;
2983
2984 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2985 msb_divisor_value = desired_divisor / iclk_pi_range;
2986 pi_value = desired_divisor % iclk_pi_range;
2987
2988 auxdiv = 0;
2989 divsel = msb_divisor_value - 2;
2990 phaseinc = pi_value;
2991 }
2992
2993 /* This should not happen with any sane values */
2994 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2995 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2996 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2997 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2998
2999 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3000 crtc->mode.clock,
3001 auxdiv,
3002 divsel,
3003 phasedir,
3004 phaseinc);
3005
3006 /* Program SSCDIVINTPHASE6 */
3007 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3008 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3009 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3010 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3011 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3012 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3013 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3014
3015 intel_sbi_write(dev_priv,
3016 SBI_SSCDIVINTPHASE6,
3017 temp);
3018
3019 /* Program SSCAUXDIV */
3020 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3021 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3022 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3023 intel_sbi_write(dev_priv,
3024 SBI_SSCAUXDIV6,
3025 temp);
3026
3027
3028 /* Enable modulator and associated divider */
3029 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3030 temp &= ~SBI_SSCCTL_DISABLE;
3031 intel_sbi_write(dev_priv,
3032 SBI_SSCCTL6,
3033 temp);
3034
3035 /* Wait for initialization time */
3036 udelay(24);
3037
3038 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3039 }
3040
3041 /*
3042 * Enable PCH resources required for PCH ports:
3043 * - PCH PLLs
3044 * - FDI training & RX/TX
3045 * - update transcoder timings
3046 * - DP transcoding bits
3047 * - transcoder
3048 */
3049 static void ironlake_pch_enable(struct drm_crtc *crtc)
3050 {
3051 struct drm_device *dev = crtc->dev;
3052 struct drm_i915_private *dev_priv = dev->dev_private;
3053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3054 int pipe = intel_crtc->pipe;
3055 u32 reg, temp;
3056
3057 assert_transcoder_disabled(dev_priv, pipe);
3058
3059 /* Write the TU size bits before fdi link training, so that error
3060 * detection works. */
3061 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3062 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3063
3064 /* For PCH output, training FDI link */
3065 dev_priv->display.fdi_link_train(crtc);
3066
3067 /* XXX: pch pll's can be enabled any time before we enable the PCH
3068 * transcoder, and we actually should do this to not upset any PCH
3069 * transcoder that already use the clock when we share it.
3070 *
3071 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3072 * unconditionally resets the pll - we need that to have the right LVDS
3073 * enable sequence. */
3074 intel_enable_pch_pll(intel_crtc);
3075
3076 if (HAS_PCH_LPT(dev)) {
3077 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3078 lpt_program_iclkip(crtc);
3079 } else if (HAS_PCH_CPT(dev)) {
3080 u32 sel;
3081
3082 temp = I915_READ(PCH_DPLL_SEL);
3083 switch (pipe) {
3084 default:
3085 case 0:
3086 temp |= TRANSA_DPLL_ENABLE;
3087 sel = TRANSA_DPLLB_SEL;
3088 break;
3089 case 1:
3090 temp |= TRANSB_DPLL_ENABLE;
3091 sel = TRANSB_DPLLB_SEL;
3092 break;
3093 case 2:
3094 temp |= TRANSC_DPLL_ENABLE;
3095 sel = TRANSC_DPLLB_SEL;
3096 break;
3097 }
3098 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3099 temp |= sel;
3100 else
3101 temp &= ~sel;
3102 I915_WRITE(PCH_DPLL_SEL, temp);
3103 }
3104
3105 /* set transcoder timing, panel must allow it */
3106 assert_panel_unlocked(dev_priv, pipe);
3107 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3108 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3109 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3110
3111 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3112 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3113 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3114 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3115
3116 if (!IS_HASWELL(dev))
3117 intel_fdi_normal_train(crtc);
3118
3119 /* For PCH DP, enable TRANS_DP_CTL */
3120 if (HAS_PCH_CPT(dev) &&
3121 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3122 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3123 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3124 reg = TRANS_DP_CTL(pipe);
3125 temp = I915_READ(reg);
3126 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3127 TRANS_DP_SYNC_MASK |
3128 TRANS_DP_BPC_MASK);
3129 temp |= (TRANS_DP_OUTPUT_ENABLE |
3130 TRANS_DP_ENH_FRAMING);
3131 temp |= bpc << 9; /* same format but at 11:9 */
3132
3133 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3134 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3135 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3136 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3137
3138 switch (intel_trans_dp_port_sel(crtc)) {
3139 case PCH_DP_B:
3140 temp |= TRANS_DP_PORT_SEL_B;
3141 break;
3142 case PCH_DP_C:
3143 temp |= TRANS_DP_PORT_SEL_C;
3144 break;
3145 case PCH_DP_D:
3146 temp |= TRANS_DP_PORT_SEL_D;
3147 break;
3148 default:
3149 BUG();
3150 }
3151
3152 I915_WRITE(reg, temp);
3153 }
3154
3155 intel_enable_transcoder(dev_priv, pipe);
3156 }
3157
3158 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3159 {
3160 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3161
3162 if (pll == NULL)
3163 return;
3164
3165 if (pll->refcount == 0) {
3166 WARN(1, "bad PCH PLL refcount\n");
3167 return;
3168 }
3169
3170 --pll->refcount;
3171 intel_crtc->pch_pll = NULL;
3172 }
3173
3174 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3175 {
3176 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3177 struct intel_pch_pll *pll;
3178 int i;
3179
3180 pll = intel_crtc->pch_pll;
3181 if (pll) {
3182 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3183 intel_crtc->base.base.id, pll->pll_reg);
3184 goto prepare;
3185 }
3186
3187 if (HAS_PCH_IBX(dev_priv->dev)) {
3188 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3189 i = intel_crtc->pipe;
3190 pll = &dev_priv->pch_plls[i];
3191
3192 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3193 intel_crtc->base.base.id, pll->pll_reg);
3194
3195 goto found;
3196 }
3197
3198 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3199 pll = &dev_priv->pch_plls[i];
3200
3201 /* Only want to check enabled timings first */
3202 if (pll->refcount == 0)
3203 continue;
3204
3205 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3206 fp == I915_READ(pll->fp0_reg)) {
3207 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3208 intel_crtc->base.base.id,
3209 pll->pll_reg, pll->refcount, pll->active);
3210
3211 goto found;
3212 }
3213 }
3214
3215 /* Ok no matching timings, maybe there's a free one? */
3216 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3217 pll = &dev_priv->pch_plls[i];
3218 if (pll->refcount == 0) {
3219 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3220 intel_crtc->base.base.id, pll->pll_reg);
3221 goto found;
3222 }
3223 }
3224
3225 return NULL;
3226
3227 found:
3228 intel_crtc->pch_pll = pll;
3229 pll->refcount++;
3230 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3231 prepare: /* separate function? */
3232 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3233
3234 /* Wait for the clocks to stabilize before rewriting the regs */
3235 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3236 POSTING_READ(pll->pll_reg);
3237 udelay(150);
3238
3239 I915_WRITE(pll->fp0_reg, fp);
3240 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3241 pll->on = false;
3242 return pll;
3243 }
3244
3245 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3246 {
3247 struct drm_i915_private *dev_priv = dev->dev_private;
3248 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3249 u32 temp;
3250
3251 temp = I915_READ(dslreg);
3252 udelay(500);
3253 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3254 /* Without this, mode sets may fail silently on FDI */
3255 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3256 udelay(250);
3257 I915_WRITE(tc2reg, 0);
3258 if (wait_for(I915_READ(dslreg) != temp, 5))
3259 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3260 }
3261 }
3262
3263 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3264 {
3265 struct drm_device *dev = crtc->dev;
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3268 struct intel_encoder *encoder;
3269 int pipe = intel_crtc->pipe;
3270 int plane = intel_crtc->plane;
3271 u32 temp;
3272 bool is_pch_port;
3273
3274 WARN_ON(!crtc->enabled);
3275
3276 if (intel_crtc->active)
3277 return;
3278
3279 intel_crtc->active = true;
3280 intel_update_watermarks(dev);
3281
3282 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3283 temp = I915_READ(PCH_LVDS);
3284 if ((temp & LVDS_PORT_EN) == 0)
3285 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3286 }
3287
3288 is_pch_port = ironlake_crtc_driving_pch(crtc);
3289
3290 if (is_pch_port) {
3291 /* Note: FDI PLL enabling _must_ be done before we enable the
3292 * cpu pipes, hence this is separate from all the other fdi/pch
3293 * enabling. */
3294 ironlake_fdi_pll_enable(intel_crtc);
3295 } else {
3296 assert_fdi_tx_disabled(dev_priv, pipe);
3297 assert_fdi_rx_disabled(dev_priv, pipe);
3298 }
3299
3300 for_each_encoder_on_crtc(dev, crtc, encoder)
3301 if (encoder->pre_enable)
3302 encoder->pre_enable(encoder);
3303
3304 /* Enable panel fitting for LVDS */
3305 if (dev_priv->pch_pf_size &&
3306 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3307 /* Force use of hard-coded filter coefficients
3308 * as some pre-programmed values are broken,
3309 * e.g. x201.
3310 */
3311 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3312 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3313 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3314 }
3315
3316 /*
3317 * On ILK+ LUT must be loaded before the pipe is running but with
3318 * clocks enabled
3319 */
3320 intel_crtc_load_lut(crtc);
3321
3322 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3323 intel_enable_plane(dev_priv, plane, pipe);
3324
3325 if (is_pch_port)
3326 ironlake_pch_enable(crtc);
3327
3328 mutex_lock(&dev->struct_mutex);
3329 intel_update_fbc(dev);
3330 mutex_unlock(&dev->struct_mutex);
3331
3332 intel_crtc_update_cursor(crtc, true);
3333
3334 for_each_encoder_on_crtc(dev, crtc, encoder)
3335 encoder->enable(encoder);
3336
3337 if (HAS_PCH_CPT(dev))
3338 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3339
3340 /*
3341 * There seems to be a race in PCH platform hw (at least on some
3342 * outputs) where an enabled pipe still completes any pageflip right
3343 * away (as if the pipe is off) instead of waiting for vblank. As soon
3344 * as the first vblank happend, everything works as expected. Hence just
3345 * wait for one vblank before returning to avoid strange things
3346 * happening.
3347 */
3348 intel_wait_for_vblank(dev, intel_crtc->pipe);
3349 }
3350
3351 static void haswell_crtc_enable(struct drm_crtc *crtc)
3352 {
3353 struct drm_device *dev = crtc->dev;
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356 struct intel_encoder *encoder;
3357 int pipe = intel_crtc->pipe;
3358 int plane = intel_crtc->plane;
3359 bool is_pch_port;
3360
3361 WARN_ON(!crtc->enabled);
3362
3363 if (intel_crtc->active)
3364 return;
3365
3366 intel_crtc->active = true;
3367 intel_update_watermarks(dev);
3368
3369 is_pch_port = haswell_crtc_driving_pch(crtc);
3370
3371 if (is_pch_port)
3372 ironlake_fdi_pll_enable(intel_crtc);
3373
3374 for_each_encoder_on_crtc(dev, crtc, encoder)
3375 if (encoder->pre_enable)
3376 encoder->pre_enable(encoder);
3377
3378 intel_ddi_enable_pipe_clock(intel_crtc);
3379
3380 /* Enable panel fitting for eDP */
3381 if (dev_priv->pch_pf_size && HAS_eDP) {
3382 /* Force use of hard-coded filter coefficients
3383 * as some pre-programmed values are broken,
3384 * e.g. x201.
3385 */
3386 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3387 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3388 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3389 }
3390
3391 /*
3392 * On ILK+ LUT must be loaded before the pipe is running but with
3393 * clocks enabled
3394 */
3395 intel_crtc_load_lut(crtc);
3396
3397 intel_ddi_set_pipe_settings(crtc);
3398 intel_ddi_enable_pipe_func(crtc);
3399
3400 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3401 intel_enable_plane(dev_priv, plane, pipe);
3402
3403 if (is_pch_port)
3404 ironlake_pch_enable(crtc);
3405
3406 mutex_lock(&dev->struct_mutex);
3407 intel_update_fbc(dev);
3408 mutex_unlock(&dev->struct_mutex);
3409
3410 intel_crtc_update_cursor(crtc, true);
3411
3412 for_each_encoder_on_crtc(dev, crtc, encoder)
3413 encoder->enable(encoder);
3414
3415 /*
3416 * There seems to be a race in PCH platform hw (at least on some
3417 * outputs) where an enabled pipe still completes any pageflip right
3418 * away (as if the pipe is off) instead of waiting for vblank. As soon
3419 * as the first vblank happend, everything works as expected. Hence just
3420 * wait for one vblank before returning to avoid strange things
3421 * happening.
3422 */
3423 intel_wait_for_vblank(dev, intel_crtc->pipe);
3424 }
3425
3426 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3427 {
3428 struct drm_device *dev = crtc->dev;
3429 struct drm_i915_private *dev_priv = dev->dev_private;
3430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3431 struct intel_encoder *encoder;
3432 int pipe = intel_crtc->pipe;
3433 int plane = intel_crtc->plane;
3434 u32 reg, temp;
3435
3436
3437 if (!intel_crtc->active)
3438 return;
3439
3440 for_each_encoder_on_crtc(dev, crtc, encoder)
3441 encoder->disable(encoder);
3442
3443 intel_crtc_wait_for_pending_flips(crtc);
3444 drm_vblank_off(dev, pipe);
3445 intel_crtc_update_cursor(crtc, false);
3446
3447 intel_disable_plane(dev_priv, plane, pipe);
3448
3449 if (dev_priv->cfb_plane == plane)
3450 intel_disable_fbc(dev);
3451
3452 intel_disable_pipe(dev_priv, pipe);
3453
3454 /* Disable PF */
3455 I915_WRITE(PF_CTL(pipe), 0);
3456 I915_WRITE(PF_WIN_SZ(pipe), 0);
3457
3458 for_each_encoder_on_crtc(dev, crtc, encoder)
3459 if (encoder->post_disable)
3460 encoder->post_disable(encoder);
3461
3462 ironlake_fdi_disable(crtc);
3463
3464 intel_disable_transcoder(dev_priv, pipe);
3465
3466 if (HAS_PCH_CPT(dev)) {
3467 /* disable TRANS_DP_CTL */
3468 reg = TRANS_DP_CTL(pipe);
3469 temp = I915_READ(reg);
3470 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3471 temp |= TRANS_DP_PORT_SEL_NONE;
3472 I915_WRITE(reg, temp);
3473
3474 /* disable DPLL_SEL */
3475 temp = I915_READ(PCH_DPLL_SEL);
3476 switch (pipe) {
3477 case 0:
3478 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3479 break;
3480 case 1:
3481 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3482 break;
3483 case 2:
3484 /* C shares PLL A or B */
3485 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3486 break;
3487 default:
3488 BUG(); /* wtf */
3489 }
3490 I915_WRITE(PCH_DPLL_SEL, temp);
3491 }
3492
3493 /* disable PCH DPLL */
3494 intel_disable_pch_pll(intel_crtc);
3495
3496 ironlake_fdi_pll_disable(intel_crtc);
3497
3498 intel_crtc->active = false;
3499 intel_update_watermarks(dev);
3500
3501 mutex_lock(&dev->struct_mutex);
3502 intel_update_fbc(dev);
3503 mutex_unlock(&dev->struct_mutex);
3504 }
3505
3506 static void haswell_crtc_disable(struct drm_crtc *crtc)
3507 {
3508 struct drm_device *dev = crtc->dev;
3509 struct drm_i915_private *dev_priv = dev->dev_private;
3510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3511 struct intel_encoder *encoder;
3512 int pipe = intel_crtc->pipe;
3513 int plane = intel_crtc->plane;
3514 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3515 bool is_pch_port;
3516
3517 if (!intel_crtc->active)
3518 return;
3519
3520 is_pch_port = haswell_crtc_driving_pch(crtc);
3521
3522 for_each_encoder_on_crtc(dev, crtc, encoder)
3523 encoder->disable(encoder);
3524
3525 intel_crtc_wait_for_pending_flips(crtc);
3526 drm_vblank_off(dev, pipe);
3527 intel_crtc_update_cursor(crtc, false);
3528
3529 intel_disable_plane(dev_priv, plane, pipe);
3530
3531 if (dev_priv->cfb_plane == plane)
3532 intel_disable_fbc(dev);
3533
3534 intel_disable_pipe(dev_priv, pipe);
3535
3536 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3537
3538 /* Disable PF */
3539 I915_WRITE(PF_CTL(pipe), 0);
3540 I915_WRITE(PF_WIN_SZ(pipe), 0);
3541
3542 intel_ddi_disable_pipe_clock(intel_crtc);
3543
3544 for_each_encoder_on_crtc(dev, crtc, encoder)
3545 if (encoder->post_disable)
3546 encoder->post_disable(encoder);
3547
3548 if (is_pch_port) {
3549 ironlake_fdi_disable(crtc);
3550 intel_disable_transcoder(dev_priv, pipe);
3551 intel_disable_pch_pll(intel_crtc);
3552 ironlake_fdi_pll_disable(intel_crtc);
3553 }
3554
3555 intel_crtc->active = false;
3556 intel_update_watermarks(dev);
3557
3558 mutex_lock(&dev->struct_mutex);
3559 intel_update_fbc(dev);
3560 mutex_unlock(&dev->struct_mutex);
3561 }
3562
3563 static void ironlake_crtc_off(struct drm_crtc *crtc)
3564 {
3565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3566 intel_put_pch_pll(intel_crtc);
3567 }
3568
3569 static void haswell_crtc_off(struct drm_crtc *crtc)
3570 {
3571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3572
3573 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3574 * start using it. */
3575 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3576
3577 intel_ddi_put_crtc_pll(crtc);
3578 }
3579
3580 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3581 {
3582 if (!enable && intel_crtc->overlay) {
3583 struct drm_device *dev = intel_crtc->base.dev;
3584 struct drm_i915_private *dev_priv = dev->dev_private;
3585
3586 mutex_lock(&dev->struct_mutex);
3587 dev_priv->mm.interruptible = false;
3588 (void) intel_overlay_switch_off(intel_crtc->overlay);
3589 dev_priv->mm.interruptible = true;
3590 mutex_unlock(&dev->struct_mutex);
3591 }
3592
3593 /* Let userspace switch the overlay on again. In most cases userspace
3594 * has to recompute where to put it anyway.
3595 */
3596 }
3597
3598 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3599 {
3600 struct drm_device *dev = crtc->dev;
3601 struct drm_i915_private *dev_priv = dev->dev_private;
3602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3603 struct intel_encoder *encoder;
3604 int pipe = intel_crtc->pipe;
3605 int plane = intel_crtc->plane;
3606
3607 WARN_ON(!crtc->enabled);
3608
3609 if (intel_crtc->active)
3610 return;
3611
3612 intel_crtc->active = true;
3613 intel_update_watermarks(dev);
3614
3615 intel_enable_pll(dev_priv, pipe);
3616 intel_enable_pipe(dev_priv, pipe, false);
3617 intel_enable_plane(dev_priv, plane, pipe);
3618
3619 intel_crtc_load_lut(crtc);
3620 intel_update_fbc(dev);
3621
3622 /* Give the overlay scaler a chance to enable if it's on this pipe */
3623 intel_crtc_dpms_overlay(intel_crtc, true);
3624 intel_crtc_update_cursor(crtc, true);
3625
3626 for_each_encoder_on_crtc(dev, crtc, encoder)
3627 encoder->enable(encoder);
3628 }
3629
3630 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3631 {
3632 struct drm_device *dev = crtc->dev;
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3635 struct intel_encoder *encoder;
3636 int pipe = intel_crtc->pipe;
3637 int plane = intel_crtc->plane;
3638
3639
3640 if (!intel_crtc->active)
3641 return;
3642
3643 for_each_encoder_on_crtc(dev, crtc, encoder)
3644 encoder->disable(encoder);
3645
3646 /* Give the overlay scaler a chance to disable if it's on this pipe */
3647 intel_crtc_wait_for_pending_flips(crtc);
3648 drm_vblank_off(dev, pipe);
3649 intel_crtc_dpms_overlay(intel_crtc, false);
3650 intel_crtc_update_cursor(crtc, false);
3651
3652 if (dev_priv->cfb_plane == plane)
3653 intel_disable_fbc(dev);
3654
3655 intel_disable_plane(dev_priv, plane, pipe);
3656 intel_disable_pipe(dev_priv, pipe);
3657 intel_disable_pll(dev_priv, pipe);
3658
3659 intel_crtc->active = false;
3660 intel_update_fbc(dev);
3661 intel_update_watermarks(dev);
3662 }
3663
3664 static void i9xx_crtc_off(struct drm_crtc *crtc)
3665 {
3666 }
3667
3668 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3669 bool enabled)
3670 {
3671 struct drm_device *dev = crtc->dev;
3672 struct drm_i915_master_private *master_priv;
3673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3674 int pipe = intel_crtc->pipe;
3675
3676 if (!dev->primary->master)
3677 return;
3678
3679 master_priv = dev->primary->master->driver_priv;
3680 if (!master_priv->sarea_priv)
3681 return;
3682
3683 switch (pipe) {
3684 case 0:
3685 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3686 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3687 break;
3688 case 1:
3689 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3690 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3691 break;
3692 default:
3693 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3694 break;
3695 }
3696 }
3697
3698 /**
3699 * Sets the power management mode of the pipe and plane.
3700 */
3701 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3702 {
3703 struct drm_device *dev = crtc->dev;
3704 struct drm_i915_private *dev_priv = dev->dev_private;
3705 struct intel_encoder *intel_encoder;
3706 bool enable = false;
3707
3708 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3709 enable |= intel_encoder->connectors_active;
3710
3711 if (enable)
3712 dev_priv->display.crtc_enable(crtc);
3713 else
3714 dev_priv->display.crtc_disable(crtc);
3715
3716 intel_crtc_update_sarea(crtc, enable);
3717 }
3718
3719 static void intel_crtc_noop(struct drm_crtc *crtc)
3720 {
3721 }
3722
3723 static void intel_crtc_disable(struct drm_crtc *crtc)
3724 {
3725 struct drm_device *dev = crtc->dev;
3726 struct drm_connector *connector;
3727 struct drm_i915_private *dev_priv = dev->dev_private;
3728
3729 /* crtc should still be enabled when we disable it. */
3730 WARN_ON(!crtc->enabled);
3731
3732 dev_priv->display.crtc_disable(crtc);
3733 intel_crtc_update_sarea(crtc, false);
3734 dev_priv->display.off(crtc);
3735
3736 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3737 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3738
3739 if (crtc->fb) {
3740 mutex_lock(&dev->struct_mutex);
3741 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3742 mutex_unlock(&dev->struct_mutex);
3743 crtc->fb = NULL;
3744 }
3745
3746 /* Update computed state. */
3747 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3748 if (!connector->encoder || !connector->encoder->crtc)
3749 continue;
3750
3751 if (connector->encoder->crtc != crtc)
3752 continue;
3753
3754 connector->dpms = DRM_MODE_DPMS_OFF;
3755 to_intel_encoder(connector->encoder)->connectors_active = false;
3756 }
3757 }
3758
3759 void intel_modeset_disable(struct drm_device *dev)
3760 {
3761 struct drm_crtc *crtc;
3762
3763 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3764 if (crtc->enabled)
3765 intel_crtc_disable(crtc);
3766 }
3767 }
3768
3769 void intel_encoder_noop(struct drm_encoder *encoder)
3770 {
3771 }
3772
3773 void intel_encoder_destroy(struct drm_encoder *encoder)
3774 {
3775 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3776
3777 drm_encoder_cleanup(encoder);
3778 kfree(intel_encoder);
3779 }
3780
3781 /* Simple dpms helper for encodres with just one connector, no cloning and only
3782 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3783 * state of the entire output pipe. */
3784 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3785 {
3786 if (mode == DRM_MODE_DPMS_ON) {
3787 encoder->connectors_active = true;
3788
3789 intel_crtc_update_dpms(encoder->base.crtc);
3790 } else {
3791 encoder->connectors_active = false;
3792
3793 intel_crtc_update_dpms(encoder->base.crtc);
3794 }
3795 }
3796
3797 /* Cross check the actual hw state with our own modeset state tracking (and it's
3798 * internal consistency). */
3799 static void intel_connector_check_state(struct intel_connector *connector)
3800 {
3801 if (connector->get_hw_state(connector)) {
3802 struct intel_encoder *encoder = connector->encoder;
3803 struct drm_crtc *crtc;
3804 bool encoder_enabled;
3805 enum pipe pipe;
3806
3807 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3808 connector->base.base.id,
3809 drm_get_connector_name(&connector->base));
3810
3811 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3812 "wrong connector dpms state\n");
3813 WARN(connector->base.encoder != &encoder->base,
3814 "active connector not linked to encoder\n");
3815 WARN(!encoder->connectors_active,
3816 "encoder->connectors_active not set\n");
3817
3818 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3819 WARN(!encoder_enabled, "encoder not enabled\n");
3820 if (WARN_ON(!encoder->base.crtc))
3821 return;
3822
3823 crtc = encoder->base.crtc;
3824
3825 WARN(!crtc->enabled, "crtc not enabled\n");
3826 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3827 WARN(pipe != to_intel_crtc(crtc)->pipe,
3828 "encoder active on the wrong pipe\n");
3829 }
3830 }
3831
3832 /* Even simpler default implementation, if there's really no special case to
3833 * consider. */
3834 void intel_connector_dpms(struct drm_connector *connector, int mode)
3835 {
3836 struct intel_encoder *encoder = intel_attached_encoder(connector);
3837
3838 /* All the simple cases only support two dpms states. */
3839 if (mode != DRM_MODE_DPMS_ON)
3840 mode = DRM_MODE_DPMS_OFF;
3841
3842 if (mode == connector->dpms)
3843 return;
3844
3845 connector->dpms = mode;
3846
3847 /* Only need to change hw state when actually enabled */
3848 if (encoder->base.crtc)
3849 intel_encoder_dpms(encoder, mode);
3850 else
3851 WARN_ON(encoder->connectors_active != false);
3852
3853 intel_modeset_check_state(connector->dev);
3854 }
3855
3856 /* Simple connector->get_hw_state implementation for encoders that support only
3857 * one connector and no cloning and hence the encoder state determines the state
3858 * of the connector. */
3859 bool intel_connector_get_hw_state(struct intel_connector *connector)
3860 {
3861 enum pipe pipe = 0;
3862 struct intel_encoder *encoder = connector->encoder;
3863
3864 return encoder->get_hw_state(encoder, &pipe);
3865 }
3866
3867 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3868 const struct drm_display_mode *mode,
3869 struct drm_display_mode *adjusted_mode)
3870 {
3871 struct drm_device *dev = crtc->dev;
3872
3873 if (HAS_PCH_SPLIT(dev)) {
3874 /* FDI link clock is fixed at 2.7G */
3875 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3876 return false;
3877 }
3878
3879 /* All interlaced capable intel hw wants timings in frames. Note though
3880 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3881 * timings, so we need to be careful not to clobber these.*/
3882 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3883 drm_mode_set_crtcinfo(adjusted_mode, 0);
3884
3885 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3886 * with a hsync front porch of 0.
3887 */
3888 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3889 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3890 return false;
3891
3892 return true;
3893 }
3894
3895 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3896 {
3897 return 400000; /* FIXME */
3898 }
3899
3900 static int i945_get_display_clock_speed(struct drm_device *dev)
3901 {
3902 return 400000;
3903 }
3904
3905 static int i915_get_display_clock_speed(struct drm_device *dev)
3906 {
3907 return 333000;
3908 }
3909
3910 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3911 {
3912 return 200000;
3913 }
3914
3915 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3916 {
3917 u16 gcfgc = 0;
3918
3919 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3920
3921 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3922 return 133000;
3923 else {
3924 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3925 case GC_DISPLAY_CLOCK_333_MHZ:
3926 return 333000;
3927 default:
3928 case GC_DISPLAY_CLOCK_190_200_MHZ:
3929 return 190000;
3930 }
3931 }
3932 }
3933
3934 static int i865_get_display_clock_speed(struct drm_device *dev)
3935 {
3936 return 266000;
3937 }
3938
3939 static int i855_get_display_clock_speed(struct drm_device *dev)
3940 {
3941 u16 hpllcc = 0;
3942 /* Assume that the hardware is in the high speed state. This
3943 * should be the default.
3944 */
3945 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3946 case GC_CLOCK_133_200:
3947 case GC_CLOCK_100_200:
3948 return 200000;
3949 case GC_CLOCK_166_250:
3950 return 250000;
3951 case GC_CLOCK_100_133:
3952 return 133000;
3953 }
3954
3955 /* Shouldn't happen */
3956 return 0;
3957 }
3958
3959 static int i830_get_display_clock_speed(struct drm_device *dev)
3960 {
3961 return 133000;
3962 }
3963
3964 struct fdi_m_n {
3965 u32 tu;
3966 u32 gmch_m;
3967 u32 gmch_n;
3968 u32 link_m;
3969 u32 link_n;
3970 };
3971
3972 static void
3973 fdi_reduce_ratio(u32 *num, u32 *den)
3974 {
3975 while (*num > 0xffffff || *den > 0xffffff) {
3976 *num >>= 1;
3977 *den >>= 1;
3978 }
3979 }
3980
3981 static void
3982 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3983 int link_clock, struct fdi_m_n *m_n)
3984 {
3985 m_n->tu = 64; /* default size */
3986
3987 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3988 m_n->gmch_m = bits_per_pixel * pixel_clock;
3989 m_n->gmch_n = link_clock * nlanes * 8;
3990 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3991
3992 m_n->link_m = pixel_clock;
3993 m_n->link_n = link_clock;
3994 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3995 }
3996
3997 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3998 {
3999 if (i915_panel_use_ssc >= 0)
4000 return i915_panel_use_ssc != 0;
4001 return dev_priv->lvds_use_ssc
4002 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4003 }
4004
4005 /**
4006 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4007 * @crtc: CRTC structure
4008 * @mode: requested mode
4009 *
4010 * A pipe may be connected to one or more outputs. Based on the depth of the
4011 * attached framebuffer, choose a good color depth to use on the pipe.
4012 *
4013 * If possible, match the pipe depth to the fb depth. In some cases, this
4014 * isn't ideal, because the connected output supports a lesser or restricted
4015 * set of depths. Resolve that here:
4016 * LVDS typically supports only 6bpc, so clamp down in that case
4017 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4018 * Displays may support a restricted set as well, check EDID and clamp as
4019 * appropriate.
4020 * DP may want to dither down to 6bpc to fit larger modes
4021 *
4022 * RETURNS:
4023 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4024 * true if they don't match).
4025 */
4026 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4027 struct drm_framebuffer *fb,
4028 unsigned int *pipe_bpp,
4029 struct drm_display_mode *mode)
4030 {
4031 struct drm_device *dev = crtc->dev;
4032 struct drm_i915_private *dev_priv = dev->dev_private;
4033 struct drm_connector *connector;
4034 struct intel_encoder *intel_encoder;
4035 unsigned int display_bpc = UINT_MAX, bpc;
4036
4037 /* Walk the encoders & connectors on this crtc, get min bpc */
4038 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4039
4040 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4041 unsigned int lvds_bpc;
4042
4043 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4044 LVDS_A3_POWER_UP)
4045 lvds_bpc = 8;
4046 else
4047 lvds_bpc = 6;
4048
4049 if (lvds_bpc < display_bpc) {
4050 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4051 display_bpc = lvds_bpc;
4052 }
4053 continue;
4054 }
4055
4056 /* Not one of the known troublemakers, check the EDID */
4057 list_for_each_entry(connector, &dev->mode_config.connector_list,
4058 head) {
4059 if (connector->encoder != &intel_encoder->base)
4060 continue;
4061
4062 /* Don't use an invalid EDID bpc value */
4063 if (connector->display_info.bpc &&
4064 connector->display_info.bpc < display_bpc) {
4065 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4066 display_bpc = connector->display_info.bpc;
4067 }
4068 }
4069
4070 /*
4071 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4072 * through, clamp it down. (Note: >12bpc will be caught below.)
4073 */
4074 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4075 if (display_bpc > 8 && display_bpc < 12) {
4076 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4077 display_bpc = 12;
4078 } else {
4079 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4080 display_bpc = 8;
4081 }
4082 }
4083 }
4084
4085 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4086 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4087 display_bpc = 6;
4088 }
4089
4090 /*
4091 * We could just drive the pipe at the highest bpc all the time and
4092 * enable dithering as needed, but that costs bandwidth. So choose
4093 * the minimum value that expresses the full color range of the fb but
4094 * also stays within the max display bpc discovered above.
4095 */
4096
4097 switch (fb->depth) {
4098 case 8:
4099 bpc = 8; /* since we go through a colormap */
4100 break;
4101 case 15:
4102 case 16:
4103 bpc = 6; /* min is 18bpp */
4104 break;
4105 case 24:
4106 bpc = 8;
4107 break;
4108 case 30:
4109 bpc = 10;
4110 break;
4111 case 48:
4112 bpc = 12;
4113 break;
4114 default:
4115 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4116 bpc = min((unsigned int)8, display_bpc);
4117 break;
4118 }
4119
4120 display_bpc = min(display_bpc, bpc);
4121
4122 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4123 bpc, display_bpc);
4124
4125 *pipe_bpp = display_bpc * 3;
4126
4127 return display_bpc != bpc;
4128 }
4129
4130 static int vlv_get_refclk(struct drm_crtc *crtc)
4131 {
4132 struct drm_device *dev = crtc->dev;
4133 struct drm_i915_private *dev_priv = dev->dev_private;
4134 int refclk = 27000; /* for DP & HDMI */
4135
4136 return 100000; /* only one validated so far */
4137
4138 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4139 refclk = 96000;
4140 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4141 if (intel_panel_use_ssc(dev_priv))
4142 refclk = 100000;
4143 else
4144 refclk = 96000;
4145 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4146 refclk = 100000;
4147 }
4148
4149 return refclk;
4150 }
4151
4152 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4153 {
4154 struct drm_device *dev = crtc->dev;
4155 struct drm_i915_private *dev_priv = dev->dev_private;
4156 int refclk;
4157
4158 if (IS_VALLEYVIEW(dev)) {
4159 refclk = vlv_get_refclk(crtc);
4160 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4161 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4162 refclk = dev_priv->lvds_ssc_freq * 1000;
4163 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4164 refclk / 1000);
4165 } else if (!IS_GEN2(dev)) {
4166 refclk = 96000;
4167 } else {
4168 refclk = 48000;
4169 }
4170
4171 return refclk;
4172 }
4173
4174 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4175 intel_clock_t *clock)
4176 {
4177 /* SDVO TV has fixed PLL values depend on its clock range,
4178 this mirrors vbios setting. */
4179 if (adjusted_mode->clock >= 100000
4180 && adjusted_mode->clock < 140500) {
4181 clock->p1 = 2;
4182 clock->p2 = 10;
4183 clock->n = 3;
4184 clock->m1 = 16;
4185 clock->m2 = 8;
4186 } else if (adjusted_mode->clock >= 140500
4187 && adjusted_mode->clock <= 200000) {
4188 clock->p1 = 1;
4189 clock->p2 = 10;
4190 clock->n = 6;
4191 clock->m1 = 12;
4192 clock->m2 = 8;
4193 }
4194 }
4195
4196 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4197 intel_clock_t *clock,
4198 intel_clock_t *reduced_clock)
4199 {
4200 struct drm_device *dev = crtc->dev;
4201 struct drm_i915_private *dev_priv = dev->dev_private;
4202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203 int pipe = intel_crtc->pipe;
4204 u32 fp, fp2 = 0;
4205
4206 if (IS_PINEVIEW(dev)) {
4207 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4208 if (reduced_clock)
4209 fp2 = (1 << reduced_clock->n) << 16 |
4210 reduced_clock->m1 << 8 | reduced_clock->m2;
4211 } else {
4212 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4213 if (reduced_clock)
4214 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4215 reduced_clock->m2;
4216 }
4217
4218 I915_WRITE(FP0(pipe), fp);
4219
4220 intel_crtc->lowfreq_avail = false;
4221 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4222 reduced_clock && i915_powersave) {
4223 I915_WRITE(FP1(pipe), fp2);
4224 intel_crtc->lowfreq_avail = true;
4225 } else {
4226 I915_WRITE(FP1(pipe), fp);
4227 }
4228 }
4229
4230 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4231 struct drm_display_mode *adjusted_mode)
4232 {
4233 struct drm_device *dev = crtc->dev;
4234 struct drm_i915_private *dev_priv = dev->dev_private;
4235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4236 int pipe = intel_crtc->pipe;
4237 u32 temp;
4238
4239 temp = I915_READ(LVDS);
4240 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4241 if (pipe == 1) {
4242 temp |= LVDS_PIPEB_SELECT;
4243 } else {
4244 temp &= ~LVDS_PIPEB_SELECT;
4245 }
4246 /* set the corresponsding LVDS_BORDER bit */
4247 temp |= dev_priv->lvds_border_bits;
4248 /* Set the B0-B3 data pairs corresponding to whether we're going to
4249 * set the DPLLs for dual-channel mode or not.
4250 */
4251 if (clock->p2 == 7)
4252 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4253 else
4254 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4255
4256 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4257 * appropriately here, but we need to look more thoroughly into how
4258 * panels behave in the two modes.
4259 */
4260 /* set the dithering flag on LVDS as needed */
4261 if (INTEL_INFO(dev)->gen >= 4) {
4262 if (dev_priv->lvds_dither)
4263 temp |= LVDS_ENABLE_DITHER;
4264 else
4265 temp &= ~LVDS_ENABLE_DITHER;
4266 }
4267 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4268 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4269 temp |= LVDS_HSYNC_POLARITY;
4270 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4271 temp |= LVDS_VSYNC_POLARITY;
4272 I915_WRITE(LVDS, temp);
4273 }
4274
4275 static void vlv_update_pll(struct drm_crtc *crtc,
4276 struct drm_display_mode *mode,
4277 struct drm_display_mode *adjusted_mode,
4278 intel_clock_t *clock, intel_clock_t *reduced_clock,
4279 int num_connectors)
4280 {
4281 struct drm_device *dev = crtc->dev;
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4284 int pipe = intel_crtc->pipe;
4285 u32 dpll, mdiv, pdiv;
4286 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4287 bool is_sdvo;
4288 u32 temp;
4289
4290 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4291 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4292
4293 dpll = DPLL_VGA_MODE_DIS;
4294 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4295 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4296 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4297
4298 I915_WRITE(DPLL(pipe), dpll);
4299 POSTING_READ(DPLL(pipe));
4300
4301 bestn = clock->n;
4302 bestm1 = clock->m1;
4303 bestm2 = clock->m2;
4304 bestp1 = clock->p1;
4305 bestp2 = clock->p2;
4306
4307 /*
4308 * In Valleyview PLL and program lane counter registers are exposed
4309 * through DPIO interface
4310 */
4311 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4312 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4313 mdiv |= ((bestn << DPIO_N_SHIFT));
4314 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4315 mdiv |= (1 << DPIO_K_SHIFT);
4316 mdiv |= DPIO_ENABLE_CALIBRATION;
4317 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4318
4319 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4320
4321 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4322 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4323 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4324 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4325 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4326
4327 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4328
4329 dpll |= DPLL_VCO_ENABLE;
4330 I915_WRITE(DPLL(pipe), dpll);
4331 POSTING_READ(DPLL(pipe));
4332 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4333 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4334
4335 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4336
4337 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4338 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4339
4340 I915_WRITE(DPLL(pipe), dpll);
4341
4342 /* Wait for the clocks to stabilize. */
4343 POSTING_READ(DPLL(pipe));
4344 udelay(150);
4345
4346 temp = 0;
4347 if (is_sdvo) {
4348 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4349 if (temp > 1)
4350 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4351 else
4352 temp = 0;
4353 }
4354 I915_WRITE(DPLL_MD(pipe), temp);
4355 POSTING_READ(DPLL_MD(pipe));
4356
4357 /* Now program lane control registers */
4358 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4359 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4360 {
4361 temp = 0x1000C4;
4362 if(pipe == 1)
4363 temp |= (1 << 21);
4364 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4365 }
4366 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4367 {
4368 temp = 0x1000C4;
4369 if(pipe == 1)
4370 temp |= (1 << 21);
4371 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4372 }
4373 }
4374
4375 static void i9xx_update_pll(struct drm_crtc *crtc,
4376 struct drm_display_mode *mode,
4377 struct drm_display_mode *adjusted_mode,
4378 intel_clock_t *clock, intel_clock_t *reduced_clock,
4379 int num_connectors)
4380 {
4381 struct drm_device *dev = crtc->dev;
4382 struct drm_i915_private *dev_priv = dev->dev_private;
4383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4384 int pipe = intel_crtc->pipe;
4385 u32 dpll;
4386 bool is_sdvo;
4387
4388 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4389
4390 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4391 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4392
4393 dpll = DPLL_VGA_MODE_DIS;
4394
4395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4396 dpll |= DPLLB_MODE_LVDS;
4397 else
4398 dpll |= DPLLB_MODE_DAC_SERIAL;
4399 if (is_sdvo) {
4400 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4401 if (pixel_multiplier > 1) {
4402 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4403 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4404 }
4405 dpll |= DPLL_DVO_HIGH_SPEED;
4406 }
4407 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4408 dpll |= DPLL_DVO_HIGH_SPEED;
4409
4410 /* compute bitmask from p1 value */
4411 if (IS_PINEVIEW(dev))
4412 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4413 else {
4414 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4415 if (IS_G4X(dev) && reduced_clock)
4416 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4417 }
4418 switch (clock->p2) {
4419 case 5:
4420 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4421 break;
4422 case 7:
4423 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4424 break;
4425 case 10:
4426 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4427 break;
4428 case 14:
4429 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4430 break;
4431 }
4432 if (INTEL_INFO(dev)->gen >= 4)
4433 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4434
4435 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4436 dpll |= PLL_REF_INPUT_TVCLKINBC;
4437 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4438 /* XXX: just matching BIOS for now */
4439 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4440 dpll |= 3;
4441 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4442 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4443 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4444 else
4445 dpll |= PLL_REF_INPUT_DREFCLK;
4446
4447 dpll |= DPLL_VCO_ENABLE;
4448 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4449 POSTING_READ(DPLL(pipe));
4450 udelay(150);
4451
4452 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4453 * This is an exception to the general rule that mode_set doesn't turn
4454 * things on.
4455 */
4456 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4457 intel_update_lvds(crtc, clock, adjusted_mode);
4458
4459 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4460 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4461
4462 I915_WRITE(DPLL(pipe), dpll);
4463
4464 /* Wait for the clocks to stabilize. */
4465 POSTING_READ(DPLL(pipe));
4466 udelay(150);
4467
4468 if (INTEL_INFO(dev)->gen >= 4) {
4469 u32 temp = 0;
4470 if (is_sdvo) {
4471 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4472 if (temp > 1)
4473 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4474 else
4475 temp = 0;
4476 }
4477 I915_WRITE(DPLL_MD(pipe), temp);
4478 } else {
4479 /* The pixel multiplier can only be updated once the
4480 * DPLL is enabled and the clocks are stable.
4481 *
4482 * So write it again.
4483 */
4484 I915_WRITE(DPLL(pipe), dpll);
4485 }
4486 }
4487
4488 static void i8xx_update_pll(struct drm_crtc *crtc,
4489 struct drm_display_mode *adjusted_mode,
4490 intel_clock_t *clock, intel_clock_t *reduced_clock,
4491 int num_connectors)
4492 {
4493 struct drm_device *dev = crtc->dev;
4494 struct drm_i915_private *dev_priv = dev->dev_private;
4495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4496 int pipe = intel_crtc->pipe;
4497 u32 dpll;
4498
4499 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4500
4501 dpll = DPLL_VGA_MODE_DIS;
4502
4503 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4504 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4505 } else {
4506 if (clock->p1 == 2)
4507 dpll |= PLL_P1_DIVIDE_BY_TWO;
4508 else
4509 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4510 if (clock->p2 == 4)
4511 dpll |= PLL_P2_DIVIDE_BY_4;
4512 }
4513
4514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4515 /* XXX: just matching BIOS for now */
4516 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4517 dpll |= 3;
4518 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4519 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4520 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4521 else
4522 dpll |= PLL_REF_INPUT_DREFCLK;
4523
4524 dpll |= DPLL_VCO_ENABLE;
4525 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4526 POSTING_READ(DPLL(pipe));
4527 udelay(150);
4528
4529 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4530 * This is an exception to the general rule that mode_set doesn't turn
4531 * things on.
4532 */
4533 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4534 intel_update_lvds(crtc, clock, adjusted_mode);
4535
4536 I915_WRITE(DPLL(pipe), dpll);
4537
4538 /* Wait for the clocks to stabilize. */
4539 POSTING_READ(DPLL(pipe));
4540 udelay(150);
4541
4542 /* The pixel multiplier can only be updated once the
4543 * DPLL is enabled and the clocks are stable.
4544 *
4545 * So write it again.
4546 */
4547 I915_WRITE(DPLL(pipe), dpll);
4548 }
4549
4550 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4551 struct drm_display_mode *mode,
4552 struct drm_display_mode *adjusted_mode)
4553 {
4554 struct drm_device *dev = intel_crtc->base.dev;
4555 struct drm_i915_private *dev_priv = dev->dev_private;
4556 enum pipe pipe = intel_crtc->pipe;
4557 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4558 uint32_t vsyncshift;
4559
4560 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4561 /* the chip adds 2 halflines automatically */
4562 adjusted_mode->crtc_vtotal -= 1;
4563 adjusted_mode->crtc_vblank_end -= 1;
4564 vsyncshift = adjusted_mode->crtc_hsync_start
4565 - adjusted_mode->crtc_htotal / 2;
4566 } else {
4567 vsyncshift = 0;
4568 }
4569
4570 if (INTEL_INFO(dev)->gen > 3)
4571 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4572
4573 I915_WRITE(HTOTAL(cpu_transcoder),
4574 (adjusted_mode->crtc_hdisplay - 1) |
4575 ((adjusted_mode->crtc_htotal - 1) << 16));
4576 I915_WRITE(HBLANK(cpu_transcoder),
4577 (adjusted_mode->crtc_hblank_start - 1) |
4578 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4579 I915_WRITE(HSYNC(cpu_transcoder),
4580 (adjusted_mode->crtc_hsync_start - 1) |
4581 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4582
4583 I915_WRITE(VTOTAL(cpu_transcoder),
4584 (adjusted_mode->crtc_vdisplay - 1) |
4585 ((adjusted_mode->crtc_vtotal - 1) << 16));
4586 I915_WRITE(VBLANK(cpu_transcoder),
4587 (adjusted_mode->crtc_vblank_start - 1) |
4588 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4589 I915_WRITE(VSYNC(cpu_transcoder),
4590 (adjusted_mode->crtc_vsync_start - 1) |
4591 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4592
4593 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4594 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4595 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4596 * bits. */
4597 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4598 (pipe == PIPE_B || pipe == PIPE_C))
4599 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4600
4601 /* pipesrc controls the size that is scaled from, which should
4602 * always be the user's requested size.
4603 */
4604 I915_WRITE(PIPESRC(pipe),
4605 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4606 }
4607
4608 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4609 struct drm_display_mode *mode,
4610 struct drm_display_mode *adjusted_mode,
4611 int x, int y,
4612 struct drm_framebuffer *fb)
4613 {
4614 struct drm_device *dev = crtc->dev;
4615 struct drm_i915_private *dev_priv = dev->dev_private;
4616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4617 int pipe = intel_crtc->pipe;
4618 int plane = intel_crtc->plane;
4619 int refclk, num_connectors = 0;
4620 intel_clock_t clock, reduced_clock;
4621 u32 dspcntr, pipeconf;
4622 bool ok, has_reduced_clock = false, is_sdvo = false;
4623 bool is_lvds = false, is_tv = false, is_dp = false;
4624 struct intel_encoder *encoder;
4625 const intel_limit_t *limit;
4626 int ret;
4627
4628 for_each_encoder_on_crtc(dev, crtc, encoder) {
4629 switch (encoder->type) {
4630 case INTEL_OUTPUT_LVDS:
4631 is_lvds = true;
4632 break;
4633 case INTEL_OUTPUT_SDVO:
4634 case INTEL_OUTPUT_HDMI:
4635 is_sdvo = true;
4636 if (encoder->needs_tv_clock)
4637 is_tv = true;
4638 break;
4639 case INTEL_OUTPUT_TVOUT:
4640 is_tv = true;
4641 break;
4642 case INTEL_OUTPUT_DISPLAYPORT:
4643 is_dp = true;
4644 break;
4645 }
4646
4647 num_connectors++;
4648 }
4649
4650 refclk = i9xx_get_refclk(crtc, num_connectors);
4651
4652 /*
4653 * Returns a set of divisors for the desired target clock with the given
4654 * refclk, or FALSE. The returned values represent the clock equation:
4655 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4656 */
4657 limit = intel_limit(crtc, refclk);
4658 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4659 &clock);
4660 if (!ok) {
4661 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4662 return -EINVAL;
4663 }
4664
4665 /* Ensure that the cursor is valid for the new mode before changing... */
4666 intel_crtc_update_cursor(crtc, true);
4667
4668 if (is_lvds && dev_priv->lvds_downclock_avail) {
4669 /*
4670 * Ensure we match the reduced clock's P to the target clock.
4671 * If the clocks don't match, we can't switch the display clock
4672 * by using the FP0/FP1. In such case we will disable the LVDS
4673 * downclock feature.
4674 */
4675 has_reduced_clock = limit->find_pll(limit, crtc,
4676 dev_priv->lvds_downclock,
4677 refclk,
4678 &clock,
4679 &reduced_clock);
4680 }
4681
4682 if (is_sdvo && is_tv)
4683 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4684
4685 if (IS_GEN2(dev))
4686 i8xx_update_pll(crtc, adjusted_mode, &clock,
4687 has_reduced_clock ? &reduced_clock : NULL,
4688 num_connectors);
4689 else if (IS_VALLEYVIEW(dev))
4690 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4691 has_reduced_clock ? &reduced_clock : NULL,
4692 num_connectors);
4693 else
4694 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4695 has_reduced_clock ? &reduced_clock : NULL,
4696 num_connectors);
4697
4698 /* setup pipeconf */
4699 pipeconf = I915_READ(PIPECONF(pipe));
4700
4701 /* Set up the display plane register */
4702 dspcntr = DISPPLANE_GAMMA_ENABLE;
4703
4704 if (pipe == 0)
4705 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4706 else
4707 dspcntr |= DISPPLANE_SEL_PIPE_B;
4708
4709 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4710 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4711 * core speed.
4712 *
4713 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4714 * pipe == 0 check?
4715 */
4716 if (mode->clock >
4717 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4718 pipeconf |= PIPECONF_DOUBLE_WIDE;
4719 else
4720 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4721 }
4722
4723 /* default to 8bpc */
4724 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4725 if (is_dp) {
4726 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4727 pipeconf |= PIPECONF_BPP_6 |
4728 PIPECONF_DITHER_EN |
4729 PIPECONF_DITHER_TYPE_SP;
4730 }
4731 }
4732
4733 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4734 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4735 pipeconf |= PIPECONF_BPP_6 |
4736 PIPECONF_ENABLE |
4737 I965_PIPECONF_ACTIVE;
4738 }
4739 }
4740
4741 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4742 drm_mode_debug_printmodeline(mode);
4743
4744 if (HAS_PIPE_CXSR(dev)) {
4745 if (intel_crtc->lowfreq_avail) {
4746 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4747 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4748 } else {
4749 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4750 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4751 }
4752 }
4753
4754 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4755 if (!IS_GEN2(dev) &&
4756 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4757 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4758 else
4759 pipeconf |= PIPECONF_PROGRESSIVE;
4760
4761 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4762
4763 /* pipesrc and dspsize control the size that is scaled from,
4764 * which should always be the user's requested size.
4765 */
4766 I915_WRITE(DSPSIZE(plane),
4767 ((mode->vdisplay - 1) << 16) |
4768 (mode->hdisplay - 1));
4769 I915_WRITE(DSPPOS(plane), 0);
4770
4771 I915_WRITE(PIPECONF(pipe), pipeconf);
4772 POSTING_READ(PIPECONF(pipe));
4773 intel_enable_pipe(dev_priv, pipe, false);
4774
4775 intel_wait_for_vblank(dev, pipe);
4776
4777 I915_WRITE(DSPCNTR(plane), dspcntr);
4778 POSTING_READ(DSPCNTR(plane));
4779
4780 ret = intel_pipe_set_base(crtc, x, y, fb);
4781
4782 intel_update_watermarks(dev);
4783
4784 return ret;
4785 }
4786
4787 /*
4788 * Initialize reference clocks when the driver loads
4789 */
4790 void ironlake_init_pch_refclk(struct drm_device *dev)
4791 {
4792 struct drm_i915_private *dev_priv = dev->dev_private;
4793 struct drm_mode_config *mode_config = &dev->mode_config;
4794 struct intel_encoder *encoder;
4795 u32 temp;
4796 bool has_lvds = false;
4797 bool has_cpu_edp = false;
4798 bool has_pch_edp = false;
4799 bool has_panel = false;
4800 bool has_ck505 = false;
4801 bool can_ssc = false;
4802
4803 /* We need to take the global config into account */
4804 list_for_each_entry(encoder, &mode_config->encoder_list,
4805 base.head) {
4806 switch (encoder->type) {
4807 case INTEL_OUTPUT_LVDS:
4808 has_panel = true;
4809 has_lvds = true;
4810 break;
4811 case INTEL_OUTPUT_EDP:
4812 has_panel = true;
4813 if (intel_encoder_is_pch_edp(&encoder->base))
4814 has_pch_edp = true;
4815 else
4816 has_cpu_edp = true;
4817 break;
4818 }
4819 }
4820
4821 if (HAS_PCH_IBX(dev)) {
4822 has_ck505 = dev_priv->display_clock_mode;
4823 can_ssc = has_ck505;
4824 } else {
4825 has_ck505 = false;
4826 can_ssc = true;
4827 }
4828
4829 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4830 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4831 has_ck505);
4832
4833 /* Ironlake: try to setup display ref clock before DPLL
4834 * enabling. This is only under driver's control after
4835 * PCH B stepping, previous chipset stepping should be
4836 * ignoring this setting.
4837 */
4838 temp = I915_READ(PCH_DREF_CONTROL);
4839 /* Always enable nonspread source */
4840 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4841
4842 if (has_ck505)
4843 temp |= DREF_NONSPREAD_CK505_ENABLE;
4844 else
4845 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4846
4847 if (has_panel) {
4848 temp &= ~DREF_SSC_SOURCE_MASK;
4849 temp |= DREF_SSC_SOURCE_ENABLE;
4850
4851 /* SSC must be turned on before enabling the CPU output */
4852 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4853 DRM_DEBUG_KMS("Using SSC on panel\n");
4854 temp |= DREF_SSC1_ENABLE;
4855 } else
4856 temp &= ~DREF_SSC1_ENABLE;
4857
4858 /* Get SSC going before enabling the outputs */
4859 I915_WRITE(PCH_DREF_CONTROL, temp);
4860 POSTING_READ(PCH_DREF_CONTROL);
4861 udelay(200);
4862
4863 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4864
4865 /* Enable CPU source on CPU attached eDP */
4866 if (has_cpu_edp) {
4867 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4868 DRM_DEBUG_KMS("Using SSC on eDP\n");
4869 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4870 }
4871 else
4872 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4873 } else
4874 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4875
4876 I915_WRITE(PCH_DREF_CONTROL, temp);
4877 POSTING_READ(PCH_DREF_CONTROL);
4878 udelay(200);
4879 } else {
4880 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4881
4882 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4883
4884 /* Turn off CPU output */
4885 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4886
4887 I915_WRITE(PCH_DREF_CONTROL, temp);
4888 POSTING_READ(PCH_DREF_CONTROL);
4889 udelay(200);
4890
4891 /* Turn off the SSC source */
4892 temp &= ~DREF_SSC_SOURCE_MASK;
4893 temp |= DREF_SSC_SOURCE_DISABLE;
4894
4895 /* Turn off SSC1 */
4896 temp &= ~ DREF_SSC1_ENABLE;
4897
4898 I915_WRITE(PCH_DREF_CONTROL, temp);
4899 POSTING_READ(PCH_DREF_CONTROL);
4900 udelay(200);
4901 }
4902 }
4903
4904 static int ironlake_get_refclk(struct drm_crtc *crtc)
4905 {
4906 struct drm_device *dev = crtc->dev;
4907 struct drm_i915_private *dev_priv = dev->dev_private;
4908 struct intel_encoder *encoder;
4909 struct intel_encoder *edp_encoder = NULL;
4910 int num_connectors = 0;
4911 bool is_lvds = false;
4912
4913 for_each_encoder_on_crtc(dev, crtc, encoder) {
4914 switch (encoder->type) {
4915 case INTEL_OUTPUT_LVDS:
4916 is_lvds = true;
4917 break;
4918 case INTEL_OUTPUT_EDP:
4919 edp_encoder = encoder;
4920 break;
4921 }
4922 num_connectors++;
4923 }
4924
4925 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4926 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4927 dev_priv->lvds_ssc_freq);
4928 return dev_priv->lvds_ssc_freq * 1000;
4929 }
4930
4931 return 120000;
4932 }
4933
4934 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4935 struct drm_display_mode *adjusted_mode,
4936 bool dither)
4937 {
4938 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4940 int pipe = intel_crtc->pipe;
4941 uint32_t val;
4942
4943 val = I915_READ(PIPECONF(pipe));
4944
4945 val &= ~PIPE_BPC_MASK;
4946 switch (intel_crtc->bpp) {
4947 case 18:
4948 val |= PIPE_6BPC;
4949 break;
4950 case 24:
4951 val |= PIPE_8BPC;
4952 break;
4953 case 30:
4954 val |= PIPE_10BPC;
4955 break;
4956 case 36:
4957 val |= PIPE_12BPC;
4958 break;
4959 default:
4960 /* Case prevented by intel_choose_pipe_bpp_dither. */
4961 BUG();
4962 }
4963
4964 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4965 if (dither)
4966 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4967
4968 val &= ~PIPECONF_INTERLACE_MASK;
4969 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4970 val |= PIPECONF_INTERLACED_ILK;
4971 else
4972 val |= PIPECONF_PROGRESSIVE;
4973
4974 I915_WRITE(PIPECONF(pipe), val);
4975 POSTING_READ(PIPECONF(pipe));
4976 }
4977
4978 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4979 struct drm_display_mode *adjusted_mode,
4980 bool dither)
4981 {
4982 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4984 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4985 uint32_t val;
4986
4987 val = I915_READ(PIPECONF(cpu_transcoder));
4988
4989 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4990 if (dither)
4991 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4992
4993 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4994 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4995 val |= PIPECONF_INTERLACED_ILK;
4996 else
4997 val |= PIPECONF_PROGRESSIVE;
4998
4999 I915_WRITE(PIPECONF(cpu_transcoder), val);
5000 POSTING_READ(PIPECONF(cpu_transcoder));
5001 }
5002
5003 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5004 struct drm_display_mode *adjusted_mode,
5005 intel_clock_t *clock,
5006 bool *has_reduced_clock,
5007 intel_clock_t *reduced_clock)
5008 {
5009 struct drm_device *dev = crtc->dev;
5010 struct drm_i915_private *dev_priv = dev->dev_private;
5011 struct intel_encoder *intel_encoder;
5012 int refclk;
5013 const intel_limit_t *limit;
5014 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5015
5016 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5017 switch (intel_encoder->type) {
5018 case INTEL_OUTPUT_LVDS:
5019 is_lvds = true;
5020 break;
5021 case INTEL_OUTPUT_SDVO:
5022 case INTEL_OUTPUT_HDMI:
5023 is_sdvo = true;
5024 if (intel_encoder->needs_tv_clock)
5025 is_tv = true;
5026 break;
5027 case INTEL_OUTPUT_TVOUT:
5028 is_tv = true;
5029 break;
5030 }
5031 }
5032
5033 refclk = ironlake_get_refclk(crtc);
5034
5035 /*
5036 * Returns a set of divisors for the desired target clock with the given
5037 * refclk, or FALSE. The returned values represent the clock equation:
5038 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5039 */
5040 limit = intel_limit(crtc, refclk);
5041 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5042 clock);
5043 if (!ret)
5044 return false;
5045
5046 if (is_lvds && dev_priv->lvds_downclock_avail) {
5047 /*
5048 * Ensure we match the reduced clock's P to the target clock.
5049 * If the clocks don't match, we can't switch the display clock
5050 * by using the FP0/FP1. In such case we will disable the LVDS
5051 * downclock feature.
5052 */
5053 *has_reduced_clock = limit->find_pll(limit, crtc,
5054 dev_priv->lvds_downclock,
5055 refclk,
5056 clock,
5057 reduced_clock);
5058 }
5059
5060 if (is_sdvo && is_tv)
5061 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5062
5063 return true;
5064 }
5065
5066 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5067 {
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 uint32_t temp;
5070
5071 temp = I915_READ(SOUTH_CHICKEN1);
5072 if (temp & FDI_BC_BIFURCATION_SELECT)
5073 return;
5074
5075 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5076 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5077
5078 temp |= FDI_BC_BIFURCATION_SELECT;
5079 DRM_DEBUG_KMS("enabling fdi C rx\n");
5080 I915_WRITE(SOUTH_CHICKEN1, temp);
5081 POSTING_READ(SOUTH_CHICKEN1);
5082 }
5083
5084 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5085 {
5086 struct drm_device *dev = intel_crtc->base.dev;
5087 struct drm_i915_private *dev_priv = dev->dev_private;
5088 struct intel_crtc *pipe_B_crtc =
5089 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5090
5091 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5092 intel_crtc->pipe, intel_crtc->fdi_lanes);
5093 if (intel_crtc->fdi_lanes > 4) {
5094 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5095 intel_crtc->pipe, intel_crtc->fdi_lanes);
5096 /* Clamp lanes to avoid programming the hw with bogus values. */
5097 intel_crtc->fdi_lanes = 4;
5098
5099 return false;
5100 }
5101
5102 if (dev_priv->num_pipe == 2)
5103 return true;
5104
5105 switch (intel_crtc->pipe) {
5106 case PIPE_A:
5107 return true;
5108 case PIPE_B:
5109 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5110 intel_crtc->fdi_lanes > 2) {
5111 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5112 intel_crtc->pipe, intel_crtc->fdi_lanes);
5113 /* Clamp lanes to avoid programming the hw with bogus values. */
5114 intel_crtc->fdi_lanes = 2;
5115
5116 return false;
5117 }
5118
5119 if (intel_crtc->fdi_lanes > 2)
5120 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5121 else
5122 cpt_enable_fdi_bc_bifurcation(dev);
5123
5124 return true;
5125 case PIPE_C:
5126 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5127 if (intel_crtc->fdi_lanes > 2) {
5128 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5129 intel_crtc->pipe, intel_crtc->fdi_lanes);
5130 /* Clamp lanes to avoid programming the hw with bogus values. */
5131 intel_crtc->fdi_lanes = 2;
5132
5133 return false;
5134 }
5135 } else {
5136 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5137 return false;
5138 }
5139
5140 cpt_enable_fdi_bc_bifurcation(dev);
5141
5142 return true;
5143 default:
5144 BUG();
5145 }
5146 }
5147
5148 static void ironlake_set_m_n(struct drm_crtc *crtc,
5149 struct drm_display_mode *mode,
5150 struct drm_display_mode *adjusted_mode)
5151 {
5152 struct drm_device *dev = crtc->dev;
5153 struct drm_i915_private *dev_priv = dev->dev_private;
5154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5155 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5156 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5157 struct fdi_m_n m_n = {0};
5158 int target_clock, pixel_multiplier, lane, link_bw;
5159 bool is_dp = false, is_cpu_edp = false;
5160
5161 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5162 switch (intel_encoder->type) {
5163 case INTEL_OUTPUT_DISPLAYPORT:
5164 is_dp = true;
5165 break;
5166 case INTEL_OUTPUT_EDP:
5167 is_dp = true;
5168 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5169 is_cpu_edp = true;
5170 edp_encoder = intel_encoder;
5171 break;
5172 }
5173 }
5174
5175 /* FDI link */
5176 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5177 lane = 0;
5178 /* CPU eDP doesn't require FDI link, so just set DP M/N
5179 according to current link config */
5180 if (is_cpu_edp) {
5181 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5182 } else {
5183 /* FDI is a binary signal running at ~2.7GHz, encoding
5184 * each output octet as 10 bits. The actual frequency
5185 * is stored as a divider into a 100MHz clock, and the
5186 * mode pixel clock is stored in units of 1KHz.
5187 * Hence the bw of each lane in terms of the mode signal
5188 * is:
5189 */
5190 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5191 }
5192
5193 /* [e]DP over FDI requires target mode clock instead of link clock. */
5194 if (edp_encoder)
5195 target_clock = intel_edp_target_clock(edp_encoder, mode);
5196 else if (is_dp)
5197 target_clock = mode->clock;
5198 else
5199 target_clock = adjusted_mode->clock;
5200
5201 if (!lane) {
5202 /*
5203 * Account for spread spectrum to avoid
5204 * oversubscribing the link. Max center spread
5205 * is 2.5%; use 5% for safety's sake.
5206 */
5207 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5208 lane = bps / (link_bw * 8) + 1;
5209 }
5210
5211 intel_crtc->fdi_lanes = lane;
5212
5213 if (pixel_multiplier > 1)
5214 link_bw *= pixel_multiplier;
5215 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5216 &m_n);
5217
5218 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5219 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5220 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5221 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5222 }
5223
5224 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5225 struct drm_display_mode *adjusted_mode,
5226 intel_clock_t *clock, u32 fp)
5227 {
5228 struct drm_crtc *crtc = &intel_crtc->base;
5229 struct drm_device *dev = crtc->dev;
5230 struct drm_i915_private *dev_priv = dev->dev_private;
5231 struct intel_encoder *intel_encoder;
5232 uint32_t dpll;
5233 int factor, pixel_multiplier, num_connectors = 0;
5234 bool is_lvds = false, is_sdvo = false, is_tv = false;
5235 bool is_dp = false, is_cpu_edp = false;
5236
5237 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5238 switch (intel_encoder->type) {
5239 case INTEL_OUTPUT_LVDS:
5240 is_lvds = true;
5241 break;
5242 case INTEL_OUTPUT_SDVO:
5243 case INTEL_OUTPUT_HDMI:
5244 is_sdvo = true;
5245 if (intel_encoder->needs_tv_clock)
5246 is_tv = true;
5247 break;
5248 case INTEL_OUTPUT_TVOUT:
5249 is_tv = true;
5250 break;
5251 case INTEL_OUTPUT_DISPLAYPORT:
5252 is_dp = true;
5253 break;
5254 case INTEL_OUTPUT_EDP:
5255 is_dp = true;
5256 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5257 is_cpu_edp = true;
5258 break;
5259 }
5260
5261 num_connectors++;
5262 }
5263
5264 /* Enable autotuning of the PLL clock (if permissible) */
5265 factor = 21;
5266 if (is_lvds) {
5267 if ((intel_panel_use_ssc(dev_priv) &&
5268 dev_priv->lvds_ssc_freq == 100) ||
5269 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5270 factor = 25;
5271 } else if (is_sdvo && is_tv)
5272 factor = 20;
5273
5274 if (clock->m < factor * clock->n)
5275 fp |= FP_CB_TUNE;
5276
5277 dpll = 0;
5278
5279 if (is_lvds)
5280 dpll |= DPLLB_MODE_LVDS;
5281 else
5282 dpll |= DPLLB_MODE_DAC_SERIAL;
5283 if (is_sdvo) {
5284 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5285 if (pixel_multiplier > 1) {
5286 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5287 }
5288 dpll |= DPLL_DVO_HIGH_SPEED;
5289 }
5290 if (is_dp && !is_cpu_edp)
5291 dpll |= DPLL_DVO_HIGH_SPEED;
5292
5293 /* compute bitmask from p1 value */
5294 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5295 /* also FPA1 */
5296 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5297
5298 switch (clock->p2) {
5299 case 5:
5300 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5301 break;
5302 case 7:
5303 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5304 break;
5305 case 10:
5306 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5307 break;
5308 case 14:
5309 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5310 break;
5311 }
5312
5313 if (is_sdvo && is_tv)
5314 dpll |= PLL_REF_INPUT_TVCLKINBC;
5315 else if (is_tv)
5316 /* XXX: just matching BIOS for now */
5317 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5318 dpll |= 3;
5319 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5320 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5321 else
5322 dpll |= PLL_REF_INPUT_DREFCLK;
5323
5324 return dpll;
5325 }
5326
5327 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5328 struct drm_display_mode *mode,
5329 struct drm_display_mode *adjusted_mode,
5330 int x, int y,
5331 struct drm_framebuffer *fb)
5332 {
5333 struct drm_device *dev = crtc->dev;
5334 struct drm_i915_private *dev_priv = dev->dev_private;
5335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5336 int pipe = intel_crtc->pipe;
5337 int plane = intel_crtc->plane;
5338 int num_connectors = 0;
5339 intel_clock_t clock, reduced_clock;
5340 u32 dpll, fp = 0, fp2 = 0;
5341 bool ok, has_reduced_clock = false;
5342 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5343 struct intel_encoder *encoder;
5344 u32 temp;
5345 int ret;
5346 bool dither, fdi_config_ok;
5347
5348 for_each_encoder_on_crtc(dev, crtc, encoder) {
5349 switch (encoder->type) {
5350 case INTEL_OUTPUT_LVDS:
5351 is_lvds = true;
5352 break;
5353 case INTEL_OUTPUT_DISPLAYPORT:
5354 is_dp = true;
5355 break;
5356 case INTEL_OUTPUT_EDP:
5357 is_dp = true;
5358 if (!intel_encoder_is_pch_edp(&encoder->base))
5359 is_cpu_edp = true;
5360 break;
5361 }
5362
5363 num_connectors++;
5364 }
5365
5366 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5367 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5368
5369 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5370 &has_reduced_clock, &reduced_clock);
5371 if (!ok) {
5372 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5373 return -EINVAL;
5374 }
5375
5376 /* Ensure that the cursor is valid for the new mode before changing... */
5377 intel_crtc_update_cursor(crtc, true);
5378
5379 /* determine panel color depth */
5380 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5381 adjusted_mode);
5382 if (is_lvds && dev_priv->lvds_dither)
5383 dither = true;
5384
5385 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5386 if (has_reduced_clock)
5387 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5388 reduced_clock.m2;
5389
5390 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5391
5392 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5393 drm_mode_debug_printmodeline(mode);
5394
5395 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5396 if (!is_cpu_edp) {
5397 struct intel_pch_pll *pll;
5398
5399 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5400 if (pll == NULL) {
5401 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5402 pipe);
5403 return -EINVAL;
5404 }
5405 } else
5406 intel_put_pch_pll(intel_crtc);
5407
5408 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5409 * This is an exception to the general rule that mode_set doesn't turn
5410 * things on.
5411 */
5412 if (is_lvds) {
5413 temp = I915_READ(PCH_LVDS);
5414 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5415 if (HAS_PCH_CPT(dev)) {
5416 temp &= ~PORT_TRANS_SEL_MASK;
5417 temp |= PORT_TRANS_SEL_CPT(pipe);
5418 } else {
5419 if (pipe == 1)
5420 temp |= LVDS_PIPEB_SELECT;
5421 else
5422 temp &= ~LVDS_PIPEB_SELECT;
5423 }
5424
5425 /* set the corresponsding LVDS_BORDER bit */
5426 temp |= dev_priv->lvds_border_bits;
5427 /* Set the B0-B3 data pairs corresponding to whether we're going to
5428 * set the DPLLs for dual-channel mode or not.
5429 */
5430 if (clock.p2 == 7)
5431 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5432 else
5433 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5434
5435 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5436 * appropriately here, but we need to look more thoroughly into how
5437 * panels behave in the two modes.
5438 */
5439 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5440 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5441 temp |= LVDS_HSYNC_POLARITY;
5442 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5443 temp |= LVDS_VSYNC_POLARITY;
5444 I915_WRITE(PCH_LVDS, temp);
5445 }
5446
5447 if (is_dp && !is_cpu_edp) {
5448 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5449 } else {
5450 /* For non-DP output, clear any trans DP clock recovery setting.*/
5451 I915_WRITE(TRANSDATA_M1(pipe), 0);
5452 I915_WRITE(TRANSDATA_N1(pipe), 0);
5453 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5454 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5455 }
5456
5457 if (intel_crtc->pch_pll) {
5458 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5459
5460 /* Wait for the clocks to stabilize. */
5461 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5462 udelay(150);
5463
5464 /* The pixel multiplier can only be updated once the
5465 * DPLL is enabled and the clocks are stable.
5466 *
5467 * So write it again.
5468 */
5469 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5470 }
5471
5472 intel_crtc->lowfreq_avail = false;
5473 if (intel_crtc->pch_pll) {
5474 if (is_lvds && has_reduced_clock && i915_powersave) {
5475 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5476 intel_crtc->lowfreq_avail = true;
5477 } else {
5478 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5479 }
5480 }
5481
5482 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5483
5484 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5485 * ironlake_check_fdi_lanes. */
5486 ironlake_set_m_n(crtc, mode, adjusted_mode);
5487
5488 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5489
5490 if (is_cpu_edp)
5491 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5492
5493 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5494
5495 intel_wait_for_vblank(dev, pipe);
5496
5497 /* Set up the display plane register */
5498 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5499 POSTING_READ(DSPCNTR(plane));
5500
5501 ret = intel_pipe_set_base(crtc, x, y, fb);
5502
5503 intel_update_watermarks(dev);
5504
5505 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5506
5507 return fdi_config_ok ? ret : -EINVAL;
5508 }
5509
5510 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5511 struct drm_display_mode *mode,
5512 struct drm_display_mode *adjusted_mode,
5513 int x, int y,
5514 struct drm_framebuffer *fb)
5515 {
5516 struct drm_device *dev = crtc->dev;
5517 struct drm_i915_private *dev_priv = dev->dev_private;
5518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5519 int pipe = intel_crtc->pipe;
5520 int plane = intel_crtc->plane;
5521 int num_connectors = 0;
5522 intel_clock_t clock, reduced_clock;
5523 u32 dpll = 0, fp = 0, fp2 = 0;
5524 bool ok, has_reduced_clock = false;
5525 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5526 struct intel_encoder *encoder;
5527 u32 temp;
5528 int ret;
5529 bool dither;
5530
5531 for_each_encoder_on_crtc(dev, crtc, encoder) {
5532 switch (encoder->type) {
5533 case INTEL_OUTPUT_LVDS:
5534 is_lvds = true;
5535 break;
5536 case INTEL_OUTPUT_DISPLAYPORT:
5537 is_dp = true;
5538 break;
5539 case INTEL_OUTPUT_EDP:
5540 is_dp = true;
5541 if (!intel_encoder_is_pch_edp(&encoder->base))
5542 is_cpu_edp = true;
5543 break;
5544 }
5545
5546 num_connectors++;
5547 }
5548
5549 if (is_cpu_edp)
5550 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5551 else
5552 intel_crtc->cpu_transcoder = pipe;
5553
5554 /* We are not sure yet this won't happen. */
5555 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5556 INTEL_PCH_TYPE(dev));
5557
5558 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5559 num_connectors, pipe_name(pipe));
5560
5561 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5562 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5563
5564 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5565
5566 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5567 return -EINVAL;
5568
5569 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5570 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5571 &has_reduced_clock,
5572 &reduced_clock);
5573 if (!ok) {
5574 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5575 return -EINVAL;
5576 }
5577 }
5578
5579 /* Ensure that the cursor is valid for the new mode before changing... */
5580 intel_crtc_update_cursor(crtc, true);
5581
5582 /* determine panel color depth */
5583 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5584 adjusted_mode);
5585 if (is_lvds && dev_priv->lvds_dither)
5586 dither = true;
5587
5588 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5589 drm_mode_debug_printmodeline(mode);
5590
5591 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5592 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5593 if (has_reduced_clock)
5594 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5595 reduced_clock.m2;
5596
5597 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5598 fp);
5599
5600 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5601 * own on pre-Haswell/LPT generation */
5602 if (!is_cpu_edp) {
5603 struct intel_pch_pll *pll;
5604
5605 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5606 if (pll == NULL) {
5607 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5608 pipe);
5609 return -EINVAL;
5610 }
5611 } else
5612 intel_put_pch_pll(intel_crtc);
5613
5614 /* The LVDS pin pair needs to be on before the DPLLs are
5615 * enabled. This is an exception to the general rule that
5616 * mode_set doesn't turn things on.
5617 */
5618 if (is_lvds) {
5619 temp = I915_READ(PCH_LVDS);
5620 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5621 if (HAS_PCH_CPT(dev)) {
5622 temp &= ~PORT_TRANS_SEL_MASK;
5623 temp |= PORT_TRANS_SEL_CPT(pipe);
5624 } else {
5625 if (pipe == 1)
5626 temp |= LVDS_PIPEB_SELECT;
5627 else
5628 temp &= ~LVDS_PIPEB_SELECT;
5629 }
5630
5631 /* set the corresponsding LVDS_BORDER bit */
5632 temp |= dev_priv->lvds_border_bits;
5633 /* Set the B0-B3 data pairs corresponding to whether
5634 * we're going to set the DPLLs for dual-channel mode or
5635 * not.
5636 */
5637 if (clock.p2 == 7)
5638 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5639 else
5640 temp &= ~(LVDS_B0B3_POWER_UP |
5641 LVDS_CLKB_POWER_UP);
5642
5643 /* It would be nice to set 24 vs 18-bit mode
5644 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5645 * look more thoroughly into how panels behave in the
5646 * two modes.
5647 */
5648 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5649 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5650 temp |= LVDS_HSYNC_POLARITY;
5651 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5652 temp |= LVDS_VSYNC_POLARITY;
5653 I915_WRITE(PCH_LVDS, temp);
5654 }
5655 }
5656
5657 if (is_dp && !is_cpu_edp) {
5658 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5659 } else {
5660 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5661 /* For non-DP output, clear any trans DP clock recovery
5662 * setting.*/
5663 I915_WRITE(TRANSDATA_M1(pipe), 0);
5664 I915_WRITE(TRANSDATA_N1(pipe), 0);
5665 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5666 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5667 }
5668 }
5669
5670 intel_crtc->lowfreq_avail = false;
5671 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5672 if (intel_crtc->pch_pll) {
5673 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5674
5675 /* Wait for the clocks to stabilize. */
5676 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5677 udelay(150);
5678
5679 /* The pixel multiplier can only be updated once the
5680 * DPLL is enabled and the clocks are stable.
5681 *
5682 * So write it again.
5683 */
5684 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5685 }
5686
5687 if (intel_crtc->pch_pll) {
5688 if (is_lvds && has_reduced_clock && i915_powersave) {
5689 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5690 intel_crtc->lowfreq_avail = true;
5691 } else {
5692 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5693 }
5694 }
5695 }
5696
5697 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5698
5699 if (!is_dp || is_cpu_edp)
5700 ironlake_set_m_n(crtc, mode, adjusted_mode);
5701
5702 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5703 if (is_cpu_edp)
5704 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5705
5706 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5707
5708 /* Set up the display plane register */
5709 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5710 POSTING_READ(DSPCNTR(plane));
5711
5712 ret = intel_pipe_set_base(crtc, x, y, fb);
5713
5714 intel_update_watermarks(dev);
5715
5716 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5717
5718 return ret;
5719 }
5720
5721 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5722 struct drm_display_mode *mode,
5723 struct drm_display_mode *adjusted_mode,
5724 int x, int y,
5725 struct drm_framebuffer *fb)
5726 {
5727 struct drm_device *dev = crtc->dev;
5728 struct drm_i915_private *dev_priv = dev->dev_private;
5729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5730 int pipe = intel_crtc->pipe;
5731 int ret;
5732
5733 drm_vblank_pre_modeset(dev, pipe);
5734
5735 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5736 x, y, fb);
5737 drm_vblank_post_modeset(dev, pipe);
5738
5739 return ret;
5740 }
5741
5742 static bool intel_eld_uptodate(struct drm_connector *connector,
5743 int reg_eldv, uint32_t bits_eldv,
5744 int reg_elda, uint32_t bits_elda,
5745 int reg_edid)
5746 {
5747 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5748 uint8_t *eld = connector->eld;
5749 uint32_t i;
5750
5751 i = I915_READ(reg_eldv);
5752 i &= bits_eldv;
5753
5754 if (!eld[0])
5755 return !i;
5756
5757 if (!i)
5758 return false;
5759
5760 i = I915_READ(reg_elda);
5761 i &= ~bits_elda;
5762 I915_WRITE(reg_elda, i);
5763
5764 for (i = 0; i < eld[2]; i++)
5765 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5766 return false;
5767
5768 return true;
5769 }
5770
5771 static void g4x_write_eld(struct drm_connector *connector,
5772 struct drm_crtc *crtc)
5773 {
5774 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5775 uint8_t *eld = connector->eld;
5776 uint32_t eldv;
5777 uint32_t len;
5778 uint32_t i;
5779
5780 i = I915_READ(G4X_AUD_VID_DID);
5781
5782 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5783 eldv = G4X_ELDV_DEVCL_DEVBLC;
5784 else
5785 eldv = G4X_ELDV_DEVCTG;
5786
5787 if (intel_eld_uptodate(connector,
5788 G4X_AUD_CNTL_ST, eldv,
5789 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5790 G4X_HDMIW_HDMIEDID))
5791 return;
5792
5793 i = I915_READ(G4X_AUD_CNTL_ST);
5794 i &= ~(eldv | G4X_ELD_ADDR);
5795 len = (i >> 9) & 0x1f; /* ELD buffer size */
5796 I915_WRITE(G4X_AUD_CNTL_ST, i);
5797
5798 if (!eld[0])
5799 return;
5800
5801 len = min_t(uint8_t, eld[2], len);
5802 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5803 for (i = 0; i < len; i++)
5804 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5805
5806 i = I915_READ(G4X_AUD_CNTL_ST);
5807 i |= eldv;
5808 I915_WRITE(G4X_AUD_CNTL_ST, i);
5809 }
5810
5811 static void haswell_write_eld(struct drm_connector *connector,
5812 struct drm_crtc *crtc)
5813 {
5814 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5815 uint8_t *eld = connector->eld;
5816 struct drm_device *dev = crtc->dev;
5817 uint32_t eldv;
5818 uint32_t i;
5819 int len;
5820 int pipe = to_intel_crtc(crtc)->pipe;
5821 int tmp;
5822
5823 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5824 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5825 int aud_config = HSW_AUD_CFG(pipe);
5826 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5827
5828
5829 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5830
5831 /* Audio output enable */
5832 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5833 tmp = I915_READ(aud_cntrl_st2);
5834 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5835 I915_WRITE(aud_cntrl_st2, tmp);
5836
5837 /* Wait for 1 vertical blank */
5838 intel_wait_for_vblank(dev, pipe);
5839
5840 /* Set ELD valid state */
5841 tmp = I915_READ(aud_cntrl_st2);
5842 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5843 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5844 I915_WRITE(aud_cntrl_st2, tmp);
5845 tmp = I915_READ(aud_cntrl_st2);
5846 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5847
5848 /* Enable HDMI mode */
5849 tmp = I915_READ(aud_config);
5850 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5851 /* clear N_programing_enable and N_value_index */
5852 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5853 I915_WRITE(aud_config, tmp);
5854
5855 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5856
5857 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5858
5859 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5860 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5861 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5862 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5863 } else
5864 I915_WRITE(aud_config, 0);
5865
5866 if (intel_eld_uptodate(connector,
5867 aud_cntrl_st2, eldv,
5868 aud_cntl_st, IBX_ELD_ADDRESS,
5869 hdmiw_hdmiedid))
5870 return;
5871
5872 i = I915_READ(aud_cntrl_st2);
5873 i &= ~eldv;
5874 I915_WRITE(aud_cntrl_st2, i);
5875
5876 if (!eld[0])
5877 return;
5878
5879 i = I915_READ(aud_cntl_st);
5880 i &= ~IBX_ELD_ADDRESS;
5881 I915_WRITE(aud_cntl_st, i);
5882 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5883 DRM_DEBUG_DRIVER("port num:%d\n", i);
5884
5885 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5886 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5887 for (i = 0; i < len; i++)
5888 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5889
5890 i = I915_READ(aud_cntrl_st2);
5891 i |= eldv;
5892 I915_WRITE(aud_cntrl_st2, i);
5893
5894 }
5895
5896 static void ironlake_write_eld(struct drm_connector *connector,
5897 struct drm_crtc *crtc)
5898 {
5899 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5900 uint8_t *eld = connector->eld;
5901 uint32_t eldv;
5902 uint32_t i;
5903 int len;
5904 int hdmiw_hdmiedid;
5905 int aud_config;
5906 int aud_cntl_st;
5907 int aud_cntrl_st2;
5908 int pipe = to_intel_crtc(crtc)->pipe;
5909
5910 if (HAS_PCH_IBX(connector->dev)) {
5911 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5912 aud_config = IBX_AUD_CFG(pipe);
5913 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5914 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5915 } else {
5916 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5917 aud_config = CPT_AUD_CFG(pipe);
5918 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5919 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5920 }
5921
5922 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5923
5924 i = I915_READ(aud_cntl_st);
5925 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5926 if (!i) {
5927 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5928 /* operate blindly on all ports */
5929 eldv = IBX_ELD_VALIDB;
5930 eldv |= IBX_ELD_VALIDB << 4;
5931 eldv |= IBX_ELD_VALIDB << 8;
5932 } else {
5933 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5934 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5935 }
5936
5937 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5938 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5939 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5940 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5941 } else
5942 I915_WRITE(aud_config, 0);
5943
5944 if (intel_eld_uptodate(connector,
5945 aud_cntrl_st2, eldv,
5946 aud_cntl_st, IBX_ELD_ADDRESS,
5947 hdmiw_hdmiedid))
5948 return;
5949
5950 i = I915_READ(aud_cntrl_st2);
5951 i &= ~eldv;
5952 I915_WRITE(aud_cntrl_st2, i);
5953
5954 if (!eld[0])
5955 return;
5956
5957 i = I915_READ(aud_cntl_st);
5958 i &= ~IBX_ELD_ADDRESS;
5959 I915_WRITE(aud_cntl_st, i);
5960
5961 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5962 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5963 for (i = 0; i < len; i++)
5964 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5965
5966 i = I915_READ(aud_cntrl_st2);
5967 i |= eldv;
5968 I915_WRITE(aud_cntrl_st2, i);
5969 }
5970
5971 void intel_write_eld(struct drm_encoder *encoder,
5972 struct drm_display_mode *mode)
5973 {
5974 struct drm_crtc *crtc = encoder->crtc;
5975 struct drm_connector *connector;
5976 struct drm_device *dev = encoder->dev;
5977 struct drm_i915_private *dev_priv = dev->dev_private;
5978
5979 connector = drm_select_eld(encoder, mode);
5980 if (!connector)
5981 return;
5982
5983 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5984 connector->base.id,
5985 drm_get_connector_name(connector),
5986 connector->encoder->base.id,
5987 drm_get_encoder_name(connector->encoder));
5988
5989 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5990
5991 if (dev_priv->display.write_eld)
5992 dev_priv->display.write_eld(connector, crtc);
5993 }
5994
5995 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5996 void intel_crtc_load_lut(struct drm_crtc *crtc)
5997 {
5998 struct drm_device *dev = crtc->dev;
5999 struct drm_i915_private *dev_priv = dev->dev_private;
6000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6001 int palreg = PALETTE(intel_crtc->pipe);
6002 int i;
6003
6004 /* The clocks have to be on to load the palette. */
6005 if (!crtc->enabled || !intel_crtc->active)
6006 return;
6007
6008 /* use legacy palette for Ironlake */
6009 if (HAS_PCH_SPLIT(dev))
6010 palreg = LGC_PALETTE(intel_crtc->pipe);
6011
6012 for (i = 0; i < 256; i++) {
6013 I915_WRITE(palreg + 4 * i,
6014 (intel_crtc->lut_r[i] << 16) |
6015 (intel_crtc->lut_g[i] << 8) |
6016 intel_crtc->lut_b[i]);
6017 }
6018 }
6019
6020 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6021 {
6022 struct drm_device *dev = crtc->dev;
6023 struct drm_i915_private *dev_priv = dev->dev_private;
6024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6025 bool visible = base != 0;
6026 u32 cntl;
6027
6028 if (intel_crtc->cursor_visible == visible)
6029 return;
6030
6031 cntl = I915_READ(_CURACNTR);
6032 if (visible) {
6033 /* On these chipsets we can only modify the base whilst
6034 * the cursor is disabled.
6035 */
6036 I915_WRITE(_CURABASE, base);
6037
6038 cntl &= ~(CURSOR_FORMAT_MASK);
6039 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6040 cntl |= CURSOR_ENABLE |
6041 CURSOR_GAMMA_ENABLE |
6042 CURSOR_FORMAT_ARGB;
6043 } else
6044 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6045 I915_WRITE(_CURACNTR, cntl);
6046
6047 intel_crtc->cursor_visible = visible;
6048 }
6049
6050 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6051 {
6052 struct drm_device *dev = crtc->dev;
6053 struct drm_i915_private *dev_priv = dev->dev_private;
6054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6055 int pipe = intel_crtc->pipe;
6056 bool visible = base != 0;
6057
6058 if (intel_crtc->cursor_visible != visible) {
6059 uint32_t cntl = I915_READ(CURCNTR(pipe));
6060 if (base) {
6061 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6062 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6063 cntl |= pipe << 28; /* Connect to correct pipe */
6064 } else {
6065 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6066 cntl |= CURSOR_MODE_DISABLE;
6067 }
6068 I915_WRITE(CURCNTR(pipe), cntl);
6069
6070 intel_crtc->cursor_visible = visible;
6071 }
6072 /* and commit changes on next vblank */
6073 I915_WRITE(CURBASE(pipe), base);
6074 }
6075
6076 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6077 {
6078 struct drm_device *dev = crtc->dev;
6079 struct drm_i915_private *dev_priv = dev->dev_private;
6080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6081 int pipe = intel_crtc->pipe;
6082 bool visible = base != 0;
6083
6084 if (intel_crtc->cursor_visible != visible) {
6085 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6086 if (base) {
6087 cntl &= ~CURSOR_MODE;
6088 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6089 } else {
6090 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6091 cntl |= CURSOR_MODE_DISABLE;
6092 }
6093 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6094
6095 intel_crtc->cursor_visible = visible;
6096 }
6097 /* and commit changes on next vblank */
6098 I915_WRITE(CURBASE_IVB(pipe), base);
6099 }
6100
6101 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6102 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6103 bool on)
6104 {
6105 struct drm_device *dev = crtc->dev;
6106 struct drm_i915_private *dev_priv = dev->dev_private;
6107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6108 int pipe = intel_crtc->pipe;
6109 int x = intel_crtc->cursor_x;
6110 int y = intel_crtc->cursor_y;
6111 u32 base, pos;
6112 bool visible;
6113
6114 pos = 0;
6115
6116 if (on && crtc->enabled && crtc->fb) {
6117 base = intel_crtc->cursor_addr;
6118 if (x > (int) crtc->fb->width)
6119 base = 0;
6120
6121 if (y > (int) crtc->fb->height)
6122 base = 0;
6123 } else
6124 base = 0;
6125
6126 if (x < 0) {
6127 if (x + intel_crtc->cursor_width < 0)
6128 base = 0;
6129
6130 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6131 x = -x;
6132 }
6133 pos |= x << CURSOR_X_SHIFT;
6134
6135 if (y < 0) {
6136 if (y + intel_crtc->cursor_height < 0)
6137 base = 0;
6138
6139 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6140 y = -y;
6141 }
6142 pos |= y << CURSOR_Y_SHIFT;
6143
6144 visible = base != 0;
6145 if (!visible && !intel_crtc->cursor_visible)
6146 return;
6147
6148 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6149 I915_WRITE(CURPOS_IVB(pipe), pos);
6150 ivb_update_cursor(crtc, base);
6151 } else {
6152 I915_WRITE(CURPOS(pipe), pos);
6153 if (IS_845G(dev) || IS_I865G(dev))
6154 i845_update_cursor(crtc, base);
6155 else
6156 i9xx_update_cursor(crtc, base);
6157 }
6158 }
6159
6160 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6161 struct drm_file *file,
6162 uint32_t handle,
6163 uint32_t width, uint32_t height)
6164 {
6165 struct drm_device *dev = crtc->dev;
6166 struct drm_i915_private *dev_priv = dev->dev_private;
6167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6168 struct drm_i915_gem_object *obj;
6169 uint32_t addr;
6170 int ret;
6171
6172 /* if we want to turn off the cursor ignore width and height */
6173 if (!handle) {
6174 DRM_DEBUG_KMS("cursor off\n");
6175 addr = 0;
6176 obj = NULL;
6177 mutex_lock(&dev->struct_mutex);
6178 goto finish;
6179 }
6180
6181 /* Currently we only support 64x64 cursors */
6182 if (width != 64 || height != 64) {
6183 DRM_ERROR("we currently only support 64x64 cursors\n");
6184 return -EINVAL;
6185 }
6186
6187 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6188 if (&obj->base == NULL)
6189 return -ENOENT;
6190
6191 if (obj->base.size < width * height * 4) {
6192 DRM_ERROR("buffer is to small\n");
6193 ret = -ENOMEM;
6194 goto fail;
6195 }
6196
6197 /* we only need to pin inside GTT if cursor is non-phy */
6198 mutex_lock(&dev->struct_mutex);
6199 if (!dev_priv->info->cursor_needs_physical) {
6200 if (obj->tiling_mode) {
6201 DRM_ERROR("cursor cannot be tiled\n");
6202 ret = -EINVAL;
6203 goto fail_locked;
6204 }
6205
6206 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6207 if (ret) {
6208 DRM_ERROR("failed to move cursor bo into the GTT\n");
6209 goto fail_locked;
6210 }
6211
6212 ret = i915_gem_object_put_fence(obj);
6213 if (ret) {
6214 DRM_ERROR("failed to release fence for cursor");
6215 goto fail_unpin;
6216 }
6217
6218 addr = obj->gtt_offset;
6219 } else {
6220 int align = IS_I830(dev) ? 16 * 1024 : 256;
6221 ret = i915_gem_attach_phys_object(dev, obj,
6222 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6223 align);
6224 if (ret) {
6225 DRM_ERROR("failed to attach phys object\n");
6226 goto fail_locked;
6227 }
6228 addr = obj->phys_obj->handle->busaddr;
6229 }
6230
6231 if (IS_GEN2(dev))
6232 I915_WRITE(CURSIZE, (height << 12) | width);
6233
6234 finish:
6235 if (intel_crtc->cursor_bo) {
6236 if (dev_priv->info->cursor_needs_physical) {
6237 if (intel_crtc->cursor_bo != obj)
6238 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6239 } else
6240 i915_gem_object_unpin(intel_crtc->cursor_bo);
6241 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6242 }
6243
6244 mutex_unlock(&dev->struct_mutex);
6245
6246 intel_crtc->cursor_addr = addr;
6247 intel_crtc->cursor_bo = obj;
6248 intel_crtc->cursor_width = width;
6249 intel_crtc->cursor_height = height;
6250
6251 intel_crtc_update_cursor(crtc, true);
6252
6253 return 0;
6254 fail_unpin:
6255 i915_gem_object_unpin(obj);
6256 fail_locked:
6257 mutex_unlock(&dev->struct_mutex);
6258 fail:
6259 drm_gem_object_unreference_unlocked(&obj->base);
6260 return ret;
6261 }
6262
6263 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6264 {
6265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6266
6267 intel_crtc->cursor_x = x;
6268 intel_crtc->cursor_y = y;
6269
6270 intel_crtc_update_cursor(crtc, true);
6271
6272 return 0;
6273 }
6274
6275 /** Sets the color ramps on behalf of RandR */
6276 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6277 u16 blue, int regno)
6278 {
6279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6280
6281 intel_crtc->lut_r[regno] = red >> 8;
6282 intel_crtc->lut_g[regno] = green >> 8;
6283 intel_crtc->lut_b[regno] = blue >> 8;
6284 }
6285
6286 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6287 u16 *blue, int regno)
6288 {
6289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290
6291 *red = intel_crtc->lut_r[regno] << 8;
6292 *green = intel_crtc->lut_g[regno] << 8;
6293 *blue = intel_crtc->lut_b[regno] << 8;
6294 }
6295
6296 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6297 u16 *blue, uint32_t start, uint32_t size)
6298 {
6299 int end = (start + size > 256) ? 256 : start + size, i;
6300 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6301
6302 for (i = start; i < end; i++) {
6303 intel_crtc->lut_r[i] = red[i] >> 8;
6304 intel_crtc->lut_g[i] = green[i] >> 8;
6305 intel_crtc->lut_b[i] = blue[i] >> 8;
6306 }
6307
6308 intel_crtc_load_lut(crtc);
6309 }
6310
6311 /**
6312 * Get a pipe with a simple mode set on it for doing load-based monitor
6313 * detection.
6314 *
6315 * It will be up to the load-detect code to adjust the pipe as appropriate for
6316 * its requirements. The pipe will be connected to no other encoders.
6317 *
6318 * Currently this code will only succeed if there is a pipe with no encoders
6319 * configured for it. In the future, it could choose to temporarily disable
6320 * some outputs to free up a pipe for its use.
6321 *
6322 * \return crtc, or NULL if no pipes are available.
6323 */
6324
6325 /* VESA 640x480x72Hz mode to set on the pipe */
6326 static struct drm_display_mode load_detect_mode = {
6327 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6328 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6329 };
6330
6331 static struct drm_framebuffer *
6332 intel_framebuffer_create(struct drm_device *dev,
6333 struct drm_mode_fb_cmd2 *mode_cmd,
6334 struct drm_i915_gem_object *obj)
6335 {
6336 struct intel_framebuffer *intel_fb;
6337 int ret;
6338
6339 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6340 if (!intel_fb) {
6341 drm_gem_object_unreference_unlocked(&obj->base);
6342 return ERR_PTR(-ENOMEM);
6343 }
6344
6345 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6346 if (ret) {
6347 drm_gem_object_unreference_unlocked(&obj->base);
6348 kfree(intel_fb);
6349 return ERR_PTR(ret);
6350 }
6351
6352 return &intel_fb->base;
6353 }
6354
6355 static u32
6356 intel_framebuffer_pitch_for_width(int width, int bpp)
6357 {
6358 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6359 return ALIGN(pitch, 64);
6360 }
6361
6362 static u32
6363 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6364 {
6365 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6366 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6367 }
6368
6369 static struct drm_framebuffer *
6370 intel_framebuffer_create_for_mode(struct drm_device *dev,
6371 struct drm_display_mode *mode,
6372 int depth, int bpp)
6373 {
6374 struct drm_i915_gem_object *obj;
6375 struct drm_mode_fb_cmd2 mode_cmd;
6376
6377 obj = i915_gem_alloc_object(dev,
6378 intel_framebuffer_size_for_mode(mode, bpp));
6379 if (obj == NULL)
6380 return ERR_PTR(-ENOMEM);
6381
6382 mode_cmd.width = mode->hdisplay;
6383 mode_cmd.height = mode->vdisplay;
6384 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6385 bpp);
6386 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6387
6388 return intel_framebuffer_create(dev, &mode_cmd, obj);
6389 }
6390
6391 static struct drm_framebuffer *
6392 mode_fits_in_fbdev(struct drm_device *dev,
6393 struct drm_display_mode *mode)
6394 {
6395 struct drm_i915_private *dev_priv = dev->dev_private;
6396 struct drm_i915_gem_object *obj;
6397 struct drm_framebuffer *fb;
6398
6399 if (dev_priv->fbdev == NULL)
6400 return NULL;
6401
6402 obj = dev_priv->fbdev->ifb.obj;
6403 if (obj == NULL)
6404 return NULL;
6405
6406 fb = &dev_priv->fbdev->ifb.base;
6407 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6408 fb->bits_per_pixel))
6409 return NULL;
6410
6411 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6412 return NULL;
6413
6414 return fb;
6415 }
6416
6417 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6418 struct drm_display_mode *mode,
6419 struct intel_load_detect_pipe *old)
6420 {
6421 struct intel_crtc *intel_crtc;
6422 struct intel_encoder *intel_encoder =
6423 intel_attached_encoder(connector);
6424 struct drm_crtc *possible_crtc;
6425 struct drm_encoder *encoder = &intel_encoder->base;
6426 struct drm_crtc *crtc = NULL;
6427 struct drm_device *dev = encoder->dev;
6428 struct drm_framebuffer *fb;
6429 int i = -1;
6430
6431 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6432 connector->base.id, drm_get_connector_name(connector),
6433 encoder->base.id, drm_get_encoder_name(encoder));
6434
6435 /*
6436 * Algorithm gets a little messy:
6437 *
6438 * - if the connector already has an assigned crtc, use it (but make
6439 * sure it's on first)
6440 *
6441 * - try to find the first unused crtc that can drive this connector,
6442 * and use that if we find one
6443 */
6444
6445 /* See if we already have a CRTC for this connector */
6446 if (encoder->crtc) {
6447 crtc = encoder->crtc;
6448
6449 old->dpms_mode = connector->dpms;
6450 old->load_detect_temp = false;
6451
6452 /* Make sure the crtc and connector are running */
6453 if (connector->dpms != DRM_MODE_DPMS_ON)
6454 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6455
6456 return true;
6457 }
6458
6459 /* Find an unused one (if possible) */
6460 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6461 i++;
6462 if (!(encoder->possible_crtcs & (1 << i)))
6463 continue;
6464 if (!possible_crtc->enabled) {
6465 crtc = possible_crtc;
6466 break;
6467 }
6468 }
6469
6470 /*
6471 * If we didn't find an unused CRTC, don't use any.
6472 */
6473 if (!crtc) {
6474 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6475 return false;
6476 }
6477
6478 intel_encoder->new_crtc = to_intel_crtc(crtc);
6479 to_intel_connector(connector)->new_encoder = intel_encoder;
6480
6481 intel_crtc = to_intel_crtc(crtc);
6482 old->dpms_mode = connector->dpms;
6483 old->load_detect_temp = true;
6484 old->release_fb = NULL;
6485
6486 if (!mode)
6487 mode = &load_detect_mode;
6488
6489 /* We need a framebuffer large enough to accommodate all accesses
6490 * that the plane may generate whilst we perform load detection.
6491 * We can not rely on the fbcon either being present (we get called
6492 * during its initialisation to detect all boot displays, or it may
6493 * not even exist) or that it is large enough to satisfy the
6494 * requested mode.
6495 */
6496 fb = mode_fits_in_fbdev(dev, mode);
6497 if (fb == NULL) {
6498 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6499 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6500 old->release_fb = fb;
6501 } else
6502 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6503 if (IS_ERR(fb)) {
6504 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6505 goto fail;
6506 }
6507
6508 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6509 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6510 if (old->release_fb)
6511 old->release_fb->funcs->destroy(old->release_fb);
6512 goto fail;
6513 }
6514
6515 /* let the connector get through one full cycle before testing */
6516 intel_wait_for_vblank(dev, intel_crtc->pipe);
6517
6518 return true;
6519 fail:
6520 connector->encoder = NULL;
6521 encoder->crtc = NULL;
6522 return false;
6523 }
6524
6525 void intel_release_load_detect_pipe(struct drm_connector *connector,
6526 struct intel_load_detect_pipe *old)
6527 {
6528 struct intel_encoder *intel_encoder =
6529 intel_attached_encoder(connector);
6530 struct drm_encoder *encoder = &intel_encoder->base;
6531
6532 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6533 connector->base.id, drm_get_connector_name(connector),
6534 encoder->base.id, drm_get_encoder_name(encoder));
6535
6536 if (old->load_detect_temp) {
6537 struct drm_crtc *crtc = encoder->crtc;
6538
6539 to_intel_connector(connector)->new_encoder = NULL;
6540 intel_encoder->new_crtc = NULL;
6541 intel_set_mode(crtc, NULL, 0, 0, NULL);
6542
6543 if (old->release_fb)
6544 old->release_fb->funcs->destroy(old->release_fb);
6545
6546 return;
6547 }
6548
6549 /* Switch crtc and encoder back off if necessary */
6550 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6551 connector->funcs->dpms(connector, old->dpms_mode);
6552 }
6553
6554 /* Returns the clock of the currently programmed mode of the given pipe. */
6555 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6556 {
6557 struct drm_i915_private *dev_priv = dev->dev_private;
6558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6559 int pipe = intel_crtc->pipe;
6560 u32 dpll = I915_READ(DPLL(pipe));
6561 u32 fp;
6562 intel_clock_t clock;
6563
6564 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6565 fp = I915_READ(FP0(pipe));
6566 else
6567 fp = I915_READ(FP1(pipe));
6568
6569 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6570 if (IS_PINEVIEW(dev)) {
6571 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6572 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6573 } else {
6574 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6575 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6576 }
6577
6578 if (!IS_GEN2(dev)) {
6579 if (IS_PINEVIEW(dev))
6580 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6581 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6582 else
6583 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6584 DPLL_FPA01_P1_POST_DIV_SHIFT);
6585
6586 switch (dpll & DPLL_MODE_MASK) {
6587 case DPLLB_MODE_DAC_SERIAL:
6588 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6589 5 : 10;
6590 break;
6591 case DPLLB_MODE_LVDS:
6592 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6593 7 : 14;
6594 break;
6595 default:
6596 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6597 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6598 return 0;
6599 }
6600
6601 /* XXX: Handle the 100Mhz refclk */
6602 intel_clock(dev, 96000, &clock);
6603 } else {
6604 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6605
6606 if (is_lvds) {
6607 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6608 DPLL_FPA01_P1_POST_DIV_SHIFT);
6609 clock.p2 = 14;
6610
6611 if ((dpll & PLL_REF_INPUT_MASK) ==
6612 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6613 /* XXX: might not be 66MHz */
6614 intel_clock(dev, 66000, &clock);
6615 } else
6616 intel_clock(dev, 48000, &clock);
6617 } else {
6618 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6619 clock.p1 = 2;
6620 else {
6621 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6622 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6623 }
6624 if (dpll & PLL_P2_DIVIDE_BY_4)
6625 clock.p2 = 4;
6626 else
6627 clock.p2 = 2;
6628
6629 intel_clock(dev, 48000, &clock);
6630 }
6631 }
6632
6633 /* XXX: It would be nice to validate the clocks, but we can't reuse
6634 * i830PllIsValid() because it relies on the xf86_config connector
6635 * configuration being accurate, which it isn't necessarily.
6636 */
6637
6638 return clock.dot;
6639 }
6640
6641 /** Returns the currently programmed mode of the given pipe. */
6642 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6643 struct drm_crtc *crtc)
6644 {
6645 struct drm_i915_private *dev_priv = dev->dev_private;
6646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6647 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6648 struct drm_display_mode *mode;
6649 int htot = I915_READ(HTOTAL(cpu_transcoder));
6650 int hsync = I915_READ(HSYNC(cpu_transcoder));
6651 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6652 int vsync = I915_READ(VSYNC(cpu_transcoder));
6653
6654 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6655 if (!mode)
6656 return NULL;
6657
6658 mode->clock = intel_crtc_clock_get(dev, crtc);
6659 mode->hdisplay = (htot & 0xffff) + 1;
6660 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6661 mode->hsync_start = (hsync & 0xffff) + 1;
6662 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6663 mode->vdisplay = (vtot & 0xffff) + 1;
6664 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6665 mode->vsync_start = (vsync & 0xffff) + 1;
6666 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6667
6668 drm_mode_set_name(mode);
6669
6670 return mode;
6671 }
6672
6673 static void intel_increase_pllclock(struct drm_crtc *crtc)
6674 {
6675 struct drm_device *dev = crtc->dev;
6676 drm_i915_private_t *dev_priv = dev->dev_private;
6677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6678 int pipe = intel_crtc->pipe;
6679 int dpll_reg = DPLL(pipe);
6680 int dpll;
6681
6682 if (HAS_PCH_SPLIT(dev))
6683 return;
6684
6685 if (!dev_priv->lvds_downclock_avail)
6686 return;
6687
6688 dpll = I915_READ(dpll_reg);
6689 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6690 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6691
6692 assert_panel_unlocked(dev_priv, pipe);
6693
6694 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6695 I915_WRITE(dpll_reg, dpll);
6696 intel_wait_for_vblank(dev, pipe);
6697
6698 dpll = I915_READ(dpll_reg);
6699 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6700 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6701 }
6702 }
6703
6704 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6705 {
6706 struct drm_device *dev = crtc->dev;
6707 drm_i915_private_t *dev_priv = dev->dev_private;
6708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6709
6710 if (HAS_PCH_SPLIT(dev))
6711 return;
6712
6713 if (!dev_priv->lvds_downclock_avail)
6714 return;
6715
6716 /*
6717 * Since this is called by a timer, we should never get here in
6718 * the manual case.
6719 */
6720 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6721 int pipe = intel_crtc->pipe;
6722 int dpll_reg = DPLL(pipe);
6723 int dpll;
6724
6725 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6726
6727 assert_panel_unlocked(dev_priv, pipe);
6728
6729 dpll = I915_READ(dpll_reg);
6730 dpll |= DISPLAY_RATE_SELECT_FPA1;
6731 I915_WRITE(dpll_reg, dpll);
6732 intel_wait_for_vblank(dev, pipe);
6733 dpll = I915_READ(dpll_reg);
6734 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6735 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6736 }
6737
6738 }
6739
6740 void intel_mark_busy(struct drm_device *dev)
6741 {
6742 i915_update_gfx_val(dev->dev_private);
6743 }
6744
6745 void intel_mark_idle(struct drm_device *dev)
6746 {
6747 }
6748
6749 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6750 {
6751 struct drm_device *dev = obj->base.dev;
6752 struct drm_crtc *crtc;
6753
6754 if (!i915_powersave)
6755 return;
6756
6757 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6758 if (!crtc->fb)
6759 continue;
6760
6761 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6762 intel_increase_pllclock(crtc);
6763 }
6764 }
6765
6766 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6767 {
6768 struct drm_device *dev = obj->base.dev;
6769 struct drm_crtc *crtc;
6770
6771 if (!i915_powersave)
6772 return;
6773
6774 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6775 if (!crtc->fb)
6776 continue;
6777
6778 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6779 intel_decrease_pllclock(crtc);
6780 }
6781 }
6782
6783 static void intel_crtc_destroy(struct drm_crtc *crtc)
6784 {
6785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6786 struct drm_device *dev = crtc->dev;
6787 struct intel_unpin_work *work;
6788 unsigned long flags;
6789
6790 spin_lock_irqsave(&dev->event_lock, flags);
6791 work = intel_crtc->unpin_work;
6792 intel_crtc->unpin_work = NULL;
6793 spin_unlock_irqrestore(&dev->event_lock, flags);
6794
6795 if (work) {
6796 cancel_work_sync(&work->work);
6797 kfree(work);
6798 }
6799
6800 drm_crtc_cleanup(crtc);
6801
6802 kfree(intel_crtc);
6803 }
6804
6805 static void intel_unpin_work_fn(struct work_struct *__work)
6806 {
6807 struct intel_unpin_work *work =
6808 container_of(__work, struct intel_unpin_work, work);
6809
6810 mutex_lock(&work->dev->struct_mutex);
6811 intel_unpin_fb_obj(work->old_fb_obj);
6812 drm_gem_object_unreference(&work->pending_flip_obj->base);
6813 drm_gem_object_unreference(&work->old_fb_obj->base);
6814
6815 intel_update_fbc(work->dev);
6816 mutex_unlock(&work->dev->struct_mutex);
6817 kfree(work);
6818 }
6819
6820 static void do_intel_finish_page_flip(struct drm_device *dev,
6821 struct drm_crtc *crtc)
6822 {
6823 drm_i915_private_t *dev_priv = dev->dev_private;
6824 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6825 struct intel_unpin_work *work;
6826 struct drm_i915_gem_object *obj;
6827 struct drm_pending_vblank_event *e;
6828 struct timeval tvbl;
6829 unsigned long flags;
6830
6831 /* Ignore early vblank irqs */
6832 if (intel_crtc == NULL)
6833 return;
6834
6835 spin_lock_irqsave(&dev->event_lock, flags);
6836 work = intel_crtc->unpin_work;
6837 if (work == NULL || !work->pending) {
6838 spin_unlock_irqrestore(&dev->event_lock, flags);
6839 return;
6840 }
6841
6842 intel_crtc->unpin_work = NULL;
6843
6844 if (work->event) {
6845 e = work->event;
6846 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6847
6848 e->event.tv_sec = tvbl.tv_sec;
6849 e->event.tv_usec = tvbl.tv_usec;
6850
6851 list_add_tail(&e->base.link,
6852 &e->base.file_priv->event_list);
6853 wake_up_interruptible(&e->base.file_priv->event_wait);
6854 }
6855
6856 drm_vblank_put(dev, intel_crtc->pipe);
6857
6858 spin_unlock_irqrestore(&dev->event_lock, flags);
6859
6860 obj = work->old_fb_obj;
6861
6862 atomic_clear_mask(1 << intel_crtc->plane,
6863 &obj->pending_flip.counter);
6864
6865 wake_up(&dev_priv->pending_flip_queue);
6866 schedule_work(&work->work);
6867
6868 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6869 }
6870
6871 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6872 {
6873 drm_i915_private_t *dev_priv = dev->dev_private;
6874 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6875
6876 do_intel_finish_page_flip(dev, crtc);
6877 }
6878
6879 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6880 {
6881 drm_i915_private_t *dev_priv = dev->dev_private;
6882 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6883
6884 do_intel_finish_page_flip(dev, crtc);
6885 }
6886
6887 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6888 {
6889 drm_i915_private_t *dev_priv = dev->dev_private;
6890 struct intel_crtc *intel_crtc =
6891 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6892 unsigned long flags;
6893
6894 spin_lock_irqsave(&dev->event_lock, flags);
6895 if (intel_crtc->unpin_work) {
6896 if ((++intel_crtc->unpin_work->pending) > 1)
6897 DRM_ERROR("Prepared flip multiple times\n");
6898 } else {
6899 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6900 }
6901 spin_unlock_irqrestore(&dev->event_lock, flags);
6902 }
6903
6904 static int intel_gen2_queue_flip(struct drm_device *dev,
6905 struct drm_crtc *crtc,
6906 struct drm_framebuffer *fb,
6907 struct drm_i915_gem_object *obj)
6908 {
6909 struct drm_i915_private *dev_priv = dev->dev_private;
6910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6911 u32 flip_mask;
6912 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6913 int ret;
6914
6915 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6916 if (ret)
6917 goto err;
6918
6919 ret = intel_ring_begin(ring, 6);
6920 if (ret)
6921 goto err_unpin;
6922
6923 /* Can't queue multiple flips, so wait for the previous
6924 * one to finish before executing the next.
6925 */
6926 if (intel_crtc->plane)
6927 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6928 else
6929 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6930 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6931 intel_ring_emit(ring, MI_NOOP);
6932 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6933 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6934 intel_ring_emit(ring, fb->pitches[0]);
6935 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6936 intel_ring_emit(ring, 0); /* aux display base address, unused */
6937 intel_ring_advance(ring);
6938 return 0;
6939
6940 err_unpin:
6941 intel_unpin_fb_obj(obj);
6942 err:
6943 return ret;
6944 }
6945
6946 static int intel_gen3_queue_flip(struct drm_device *dev,
6947 struct drm_crtc *crtc,
6948 struct drm_framebuffer *fb,
6949 struct drm_i915_gem_object *obj)
6950 {
6951 struct drm_i915_private *dev_priv = dev->dev_private;
6952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6953 u32 flip_mask;
6954 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6955 int ret;
6956
6957 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6958 if (ret)
6959 goto err;
6960
6961 ret = intel_ring_begin(ring, 6);
6962 if (ret)
6963 goto err_unpin;
6964
6965 if (intel_crtc->plane)
6966 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6967 else
6968 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6969 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6970 intel_ring_emit(ring, MI_NOOP);
6971 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6972 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6973 intel_ring_emit(ring, fb->pitches[0]);
6974 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6975 intel_ring_emit(ring, MI_NOOP);
6976
6977 intel_ring_advance(ring);
6978 return 0;
6979
6980 err_unpin:
6981 intel_unpin_fb_obj(obj);
6982 err:
6983 return ret;
6984 }
6985
6986 static int intel_gen4_queue_flip(struct drm_device *dev,
6987 struct drm_crtc *crtc,
6988 struct drm_framebuffer *fb,
6989 struct drm_i915_gem_object *obj)
6990 {
6991 struct drm_i915_private *dev_priv = dev->dev_private;
6992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6993 uint32_t pf, pipesrc;
6994 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6995 int ret;
6996
6997 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6998 if (ret)
6999 goto err;
7000
7001 ret = intel_ring_begin(ring, 4);
7002 if (ret)
7003 goto err_unpin;
7004
7005 /* i965+ uses the linear or tiled offsets from the
7006 * Display Registers (which do not change across a page-flip)
7007 * so we need only reprogram the base address.
7008 */
7009 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7010 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7011 intel_ring_emit(ring, fb->pitches[0]);
7012 intel_ring_emit(ring,
7013 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7014 obj->tiling_mode);
7015
7016 /* XXX Enabling the panel-fitter across page-flip is so far
7017 * untested on non-native modes, so ignore it for now.
7018 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7019 */
7020 pf = 0;
7021 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7022 intel_ring_emit(ring, pf | pipesrc);
7023 intel_ring_advance(ring);
7024 return 0;
7025
7026 err_unpin:
7027 intel_unpin_fb_obj(obj);
7028 err:
7029 return ret;
7030 }
7031
7032 static int intel_gen6_queue_flip(struct drm_device *dev,
7033 struct drm_crtc *crtc,
7034 struct drm_framebuffer *fb,
7035 struct drm_i915_gem_object *obj)
7036 {
7037 struct drm_i915_private *dev_priv = dev->dev_private;
7038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7039 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7040 uint32_t pf, pipesrc;
7041 int ret;
7042
7043 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7044 if (ret)
7045 goto err;
7046
7047 ret = intel_ring_begin(ring, 4);
7048 if (ret)
7049 goto err_unpin;
7050
7051 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7052 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7053 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7054 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7055
7056 /* Contrary to the suggestions in the documentation,
7057 * "Enable Panel Fitter" does not seem to be required when page
7058 * flipping with a non-native mode, and worse causes a normal
7059 * modeset to fail.
7060 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7061 */
7062 pf = 0;
7063 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7064 intel_ring_emit(ring, pf | pipesrc);
7065 intel_ring_advance(ring);
7066 return 0;
7067
7068 err_unpin:
7069 intel_unpin_fb_obj(obj);
7070 err:
7071 return ret;
7072 }
7073
7074 /*
7075 * On gen7 we currently use the blit ring because (in early silicon at least)
7076 * the render ring doesn't give us interrpts for page flip completion, which
7077 * means clients will hang after the first flip is queued. Fortunately the
7078 * blit ring generates interrupts properly, so use it instead.
7079 */
7080 static int intel_gen7_queue_flip(struct drm_device *dev,
7081 struct drm_crtc *crtc,
7082 struct drm_framebuffer *fb,
7083 struct drm_i915_gem_object *obj)
7084 {
7085 struct drm_i915_private *dev_priv = dev->dev_private;
7086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7087 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7088 uint32_t plane_bit = 0;
7089 int ret;
7090
7091 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7092 if (ret)
7093 goto err;
7094
7095 switch(intel_crtc->plane) {
7096 case PLANE_A:
7097 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7098 break;
7099 case PLANE_B:
7100 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7101 break;
7102 case PLANE_C:
7103 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7104 break;
7105 default:
7106 WARN_ONCE(1, "unknown plane in flip command\n");
7107 ret = -ENODEV;
7108 goto err_unpin;
7109 }
7110
7111 ret = intel_ring_begin(ring, 4);
7112 if (ret)
7113 goto err_unpin;
7114
7115 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7116 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7117 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7118 intel_ring_emit(ring, (MI_NOOP));
7119 intel_ring_advance(ring);
7120 return 0;
7121
7122 err_unpin:
7123 intel_unpin_fb_obj(obj);
7124 err:
7125 return ret;
7126 }
7127
7128 static int intel_default_queue_flip(struct drm_device *dev,
7129 struct drm_crtc *crtc,
7130 struct drm_framebuffer *fb,
7131 struct drm_i915_gem_object *obj)
7132 {
7133 return -ENODEV;
7134 }
7135
7136 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7137 struct drm_framebuffer *fb,
7138 struct drm_pending_vblank_event *event)
7139 {
7140 struct drm_device *dev = crtc->dev;
7141 struct drm_i915_private *dev_priv = dev->dev_private;
7142 struct intel_framebuffer *intel_fb;
7143 struct drm_i915_gem_object *obj;
7144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7145 struct intel_unpin_work *work;
7146 unsigned long flags;
7147 int ret;
7148
7149 /* Can't change pixel format via MI display flips. */
7150 if (fb->pixel_format != crtc->fb->pixel_format)
7151 return -EINVAL;
7152
7153 /*
7154 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7155 * Note that pitch changes could also affect these register.
7156 */
7157 if (INTEL_INFO(dev)->gen > 3 &&
7158 (fb->offsets[0] != crtc->fb->offsets[0] ||
7159 fb->pitches[0] != crtc->fb->pitches[0]))
7160 return -EINVAL;
7161
7162 work = kzalloc(sizeof *work, GFP_KERNEL);
7163 if (work == NULL)
7164 return -ENOMEM;
7165
7166 work->event = event;
7167 work->dev = crtc->dev;
7168 intel_fb = to_intel_framebuffer(crtc->fb);
7169 work->old_fb_obj = intel_fb->obj;
7170 INIT_WORK(&work->work, intel_unpin_work_fn);
7171
7172 ret = drm_vblank_get(dev, intel_crtc->pipe);
7173 if (ret)
7174 goto free_work;
7175
7176 /* We borrow the event spin lock for protecting unpin_work */
7177 spin_lock_irqsave(&dev->event_lock, flags);
7178 if (intel_crtc->unpin_work) {
7179 spin_unlock_irqrestore(&dev->event_lock, flags);
7180 kfree(work);
7181 drm_vblank_put(dev, intel_crtc->pipe);
7182
7183 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7184 return -EBUSY;
7185 }
7186 intel_crtc->unpin_work = work;
7187 spin_unlock_irqrestore(&dev->event_lock, flags);
7188
7189 intel_fb = to_intel_framebuffer(fb);
7190 obj = intel_fb->obj;
7191
7192 ret = i915_mutex_lock_interruptible(dev);
7193 if (ret)
7194 goto cleanup;
7195
7196 /* Reference the objects for the scheduled work. */
7197 drm_gem_object_reference(&work->old_fb_obj->base);
7198 drm_gem_object_reference(&obj->base);
7199
7200 crtc->fb = fb;
7201
7202 work->pending_flip_obj = obj;
7203
7204 work->enable_stall_check = true;
7205
7206 /* Block clients from rendering to the new back buffer until
7207 * the flip occurs and the object is no longer visible.
7208 */
7209 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7210
7211 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7212 if (ret)
7213 goto cleanup_pending;
7214
7215 intel_disable_fbc(dev);
7216 intel_mark_fb_busy(obj);
7217 mutex_unlock(&dev->struct_mutex);
7218
7219 trace_i915_flip_request(intel_crtc->plane, obj);
7220
7221 return 0;
7222
7223 cleanup_pending:
7224 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7225 drm_gem_object_unreference(&work->old_fb_obj->base);
7226 drm_gem_object_unreference(&obj->base);
7227 mutex_unlock(&dev->struct_mutex);
7228
7229 cleanup:
7230 spin_lock_irqsave(&dev->event_lock, flags);
7231 intel_crtc->unpin_work = NULL;
7232 spin_unlock_irqrestore(&dev->event_lock, flags);
7233
7234 drm_vblank_put(dev, intel_crtc->pipe);
7235 free_work:
7236 kfree(work);
7237
7238 return ret;
7239 }
7240
7241 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7242 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7243 .load_lut = intel_crtc_load_lut,
7244 .disable = intel_crtc_noop,
7245 };
7246
7247 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7248 {
7249 struct intel_encoder *other_encoder;
7250 struct drm_crtc *crtc = &encoder->new_crtc->base;
7251
7252 if (WARN_ON(!crtc))
7253 return false;
7254
7255 list_for_each_entry(other_encoder,
7256 &crtc->dev->mode_config.encoder_list,
7257 base.head) {
7258
7259 if (&other_encoder->new_crtc->base != crtc ||
7260 encoder == other_encoder)
7261 continue;
7262 else
7263 return true;
7264 }
7265
7266 return false;
7267 }
7268
7269 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7270 struct drm_crtc *crtc)
7271 {
7272 struct drm_device *dev;
7273 struct drm_crtc *tmp;
7274 int crtc_mask = 1;
7275
7276 WARN(!crtc, "checking null crtc?\n");
7277
7278 dev = crtc->dev;
7279
7280 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7281 if (tmp == crtc)
7282 break;
7283 crtc_mask <<= 1;
7284 }
7285
7286 if (encoder->possible_crtcs & crtc_mask)
7287 return true;
7288 return false;
7289 }
7290
7291 /**
7292 * intel_modeset_update_staged_output_state
7293 *
7294 * Updates the staged output configuration state, e.g. after we've read out the
7295 * current hw state.
7296 */
7297 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7298 {
7299 struct intel_encoder *encoder;
7300 struct intel_connector *connector;
7301
7302 list_for_each_entry(connector, &dev->mode_config.connector_list,
7303 base.head) {
7304 connector->new_encoder =
7305 to_intel_encoder(connector->base.encoder);
7306 }
7307
7308 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7309 base.head) {
7310 encoder->new_crtc =
7311 to_intel_crtc(encoder->base.crtc);
7312 }
7313 }
7314
7315 /**
7316 * intel_modeset_commit_output_state
7317 *
7318 * This function copies the stage display pipe configuration to the real one.
7319 */
7320 static void intel_modeset_commit_output_state(struct drm_device *dev)
7321 {
7322 struct intel_encoder *encoder;
7323 struct intel_connector *connector;
7324
7325 list_for_each_entry(connector, &dev->mode_config.connector_list,
7326 base.head) {
7327 connector->base.encoder = &connector->new_encoder->base;
7328 }
7329
7330 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7331 base.head) {
7332 encoder->base.crtc = &encoder->new_crtc->base;
7333 }
7334 }
7335
7336 static struct drm_display_mode *
7337 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7338 struct drm_display_mode *mode)
7339 {
7340 struct drm_device *dev = crtc->dev;
7341 struct drm_display_mode *adjusted_mode;
7342 struct drm_encoder_helper_funcs *encoder_funcs;
7343 struct intel_encoder *encoder;
7344
7345 adjusted_mode = drm_mode_duplicate(dev, mode);
7346 if (!adjusted_mode)
7347 return ERR_PTR(-ENOMEM);
7348
7349 /* Pass our mode to the connectors and the CRTC to give them a chance to
7350 * adjust it according to limitations or connector properties, and also
7351 * a chance to reject the mode entirely.
7352 */
7353 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7354 base.head) {
7355
7356 if (&encoder->new_crtc->base != crtc)
7357 continue;
7358 encoder_funcs = encoder->base.helper_private;
7359 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7360 adjusted_mode))) {
7361 DRM_DEBUG_KMS("Encoder fixup failed\n");
7362 goto fail;
7363 }
7364 }
7365
7366 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7367 DRM_DEBUG_KMS("CRTC fixup failed\n");
7368 goto fail;
7369 }
7370 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7371
7372 return adjusted_mode;
7373 fail:
7374 drm_mode_destroy(dev, adjusted_mode);
7375 return ERR_PTR(-EINVAL);
7376 }
7377
7378 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7379 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7380 static void
7381 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7382 unsigned *prepare_pipes, unsigned *disable_pipes)
7383 {
7384 struct intel_crtc *intel_crtc;
7385 struct drm_device *dev = crtc->dev;
7386 struct intel_encoder *encoder;
7387 struct intel_connector *connector;
7388 struct drm_crtc *tmp_crtc;
7389
7390 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7391
7392 /* Check which crtcs have changed outputs connected to them, these need
7393 * to be part of the prepare_pipes mask. We don't (yet) support global
7394 * modeset across multiple crtcs, so modeset_pipes will only have one
7395 * bit set at most. */
7396 list_for_each_entry(connector, &dev->mode_config.connector_list,
7397 base.head) {
7398 if (connector->base.encoder == &connector->new_encoder->base)
7399 continue;
7400
7401 if (connector->base.encoder) {
7402 tmp_crtc = connector->base.encoder->crtc;
7403
7404 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7405 }
7406
7407 if (connector->new_encoder)
7408 *prepare_pipes |=
7409 1 << connector->new_encoder->new_crtc->pipe;
7410 }
7411
7412 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7413 base.head) {
7414 if (encoder->base.crtc == &encoder->new_crtc->base)
7415 continue;
7416
7417 if (encoder->base.crtc) {
7418 tmp_crtc = encoder->base.crtc;
7419
7420 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7421 }
7422
7423 if (encoder->new_crtc)
7424 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7425 }
7426
7427 /* Check for any pipes that will be fully disabled ... */
7428 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7429 base.head) {
7430 bool used = false;
7431
7432 /* Don't try to disable disabled crtcs. */
7433 if (!intel_crtc->base.enabled)
7434 continue;
7435
7436 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7437 base.head) {
7438 if (encoder->new_crtc == intel_crtc)
7439 used = true;
7440 }
7441
7442 if (!used)
7443 *disable_pipes |= 1 << intel_crtc->pipe;
7444 }
7445
7446
7447 /* set_mode is also used to update properties on life display pipes. */
7448 intel_crtc = to_intel_crtc(crtc);
7449 if (crtc->enabled)
7450 *prepare_pipes |= 1 << intel_crtc->pipe;
7451
7452 /* We only support modeset on one single crtc, hence we need to do that
7453 * only for the passed in crtc iff we change anything else than just
7454 * disable crtcs.
7455 *
7456 * This is actually not true, to be fully compatible with the old crtc
7457 * helper we automatically disable _any_ output (i.e. doesn't need to be
7458 * connected to the crtc we're modesetting on) if it's disconnected.
7459 * Which is a rather nutty api (since changed the output configuration
7460 * without userspace's explicit request can lead to confusion), but
7461 * alas. Hence we currently need to modeset on all pipes we prepare. */
7462 if (*prepare_pipes)
7463 *modeset_pipes = *prepare_pipes;
7464
7465 /* ... and mask these out. */
7466 *modeset_pipes &= ~(*disable_pipes);
7467 *prepare_pipes &= ~(*disable_pipes);
7468 }
7469
7470 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7471 {
7472 struct drm_encoder *encoder;
7473 struct drm_device *dev = crtc->dev;
7474
7475 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7476 if (encoder->crtc == crtc)
7477 return true;
7478
7479 return false;
7480 }
7481
7482 static void
7483 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7484 {
7485 struct intel_encoder *intel_encoder;
7486 struct intel_crtc *intel_crtc;
7487 struct drm_connector *connector;
7488
7489 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7490 base.head) {
7491 if (!intel_encoder->base.crtc)
7492 continue;
7493
7494 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7495
7496 if (prepare_pipes & (1 << intel_crtc->pipe))
7497 intel_encoder->connectors_active = false;
7498 }
7499
7500 intel_modeset_commit_output_state(dev);
7501
7502 /* Update computed state. */
7503 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7504 base.head) {
7505 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7506 }
7507
7508 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7509 if (!connector->encoder || !connector->encoder->crtc)
7510 continue;
7511
7512 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7513
7514 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7515 struct drm_property *dpms_property =
7516 dev->mode_config.dpms_property;
7517
7518 connector->dpms = DRM_MODE_DPMS_ON;
7519 drm_connector_property_set_value(connector,
7520 dpms_property,
7521 DRM_MODE_DPMS_ON);
7522
7523 intel_encoder = to_intel_encoder(connector->encoder);
7524 intel_encoder->connectors_active = true;
7525 }
7526 }
7527
7528 }
7529
7530 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7531 list_for_each_entry((intel_crtc), \
7532 &(dev)->mode_config.crtc_list, \
7533 base.head) \
7534 if (mask & (1 <<(intel_crtc)->pipe)) \
7535
7536 void
7537 intel_modeset_check_state(struct drm_device *dev)
7538 {
7539 struct intel_crtc *crtc;
7540 struct intel_encoder *encoder;
7541 struct intel_connector *connector;
7542
7543 list_for_each_entry(connector, &dev->mode_config.connector_list,
7544 base.head) {
7545 /* This also checks the encoder/connector hw state with the
7546 * ->get_hw_state callbacks. */
7547 intel_connector_check_state(connector);
7548
7549 WARN(&connector->new_encoder->base != connector->base.encoder,
7550 "connector's staged encoder doesn't match current encoder\n");
7551 }
7552
7553 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7554 base.head) {
7555 bool enabled = false;
7556 bool active = false;
7557 enum pipe pipe, tracked_pipe;
7558
7559 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7560 encoder->base.base.id,
7561 drm_get_encoder_name(&encoder->base));
7562
7563 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7564 "encoder's stage crtc doesn't match current crtc\n");
7565 WARN(encoder->connectors_active && !encoder->base.crtc,
7566 "encoder's active_connectors set, but no crtc\n");
7567
7568 list_for_each_entry(connector, &dev->mode_config.connector_list,
7569 base.head) {
7570 if (connector->base.encoder != &encoder->base)
7571 continue;
7572 enabled = true;
7573 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7574 active = true;
7575 }
7576 WARN(!!encoder->base.crtc != enabled,
7577 "encoder's enabled state mismatch "
7578 "(expected %i, found %i)\n",
7579 !!encoder->base.crtc, enabled);
7580 WARN(active && !encoder->base.crtc,
7581 "active encoder with no crtc\n");
7582
7583 WARN(encoder->connectors_active != active,
7584 "encoder's computed active state doesn't match tracked active state "
7585 "(expected %i, found %i)\n", active, encoder->connectors_active);
7586
7587 active = encoder->get_hw_state(encoder, &pipe);
7588 WARN(active != encoder->connectors_active,
7589 "encoder's hw state doesn't match sw tracking "
7590 "(expected %i, found %i)\n",
7591 encoder->connectors_active, active);
7592
7593 if (!encoder->base.crtc)
7594 continue;
7595
7596 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7597 WARN(active && pipe != tracked_pipe,
7598 "active encoder's pipe doesn't match"
7599 "(expected %i, found %i)\n",
7600 tracked_pipe, pipe);
7601
7602 }
7603
7604 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7605 base.head) {
7606 bool enabled = false;
7607 bool active = false;
7608
7609 DRM_DEBUG_KMS("[CRTC:%d]\n",
7610 crtc->base.base.id);
7611
7612 WARN(crtc->active && !crtc->base.enabled,
7613 "active crtc, but not enabled in sw tracking\n");
7614
7615 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7616 base.head) {
7617 if (encoder->base.crtc != &crtc->base)
7618 continue;
7619 enabled = true;
7620 if (encoder->connectors_active)
7621 active = true;
7622 }
7623 WARN(active != crtc->active,
7624 "crtc's computed active state doesn't match tracked active state "
7625 "(expected %i, found %i)\n", active, crtc->active);
7626 WARN(enabled != crtc->base.enabled,
7627 "crtc's computed enabled state doesn't match tracked enabled state "
7628 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7629
7630 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7631 }
7632 }
7633
7634 bool intel_set_mode(struct drm_crtc *crtc,
7635 struct drm_display_mode *mode,
7636 int x, int y, struct drm_framebuffer *fb)
7637 {
7638 struct drm_device *dev = crtc->dev;
7639 drm_i915_private_t *dev_priv = dev->dev_private;
7640 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7641 struct drm_encoder_helper_funcs *encoder_funcs;
7642 struct drm_encoder *encoder;
7643 struct intel_crtc *intel_crtc;
7644 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7645 bool ret = true;
7646
7647 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7648 &prepare_pipes, &disable_pipes);
7649
7650 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7651 modeset_pipes, prepare_pipes, disable_pipes);
7652
7653 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7654 intel_crtc_disable(&intel_crtc->base);
7655
7656 saved_hwmode = crtc->hwmode;
7657 saved_mode = crtc->mode;
7658
7659 /* Hack: Because we don't (yet) support global modeset on multiple
7660 * crtcs, we don't keep track of the new mode for more than one crtc.
7661 * Hence simply check whether any bit is set in modeset_pipes in all the
7662 * pieces of code that are not yet converted to deal with mutliple crtcs
7663 * changing their mode at the same time. */
7664 adjusted_mode = NULL;
7665 if (modeset_pipes) {
7666 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7667 if (IS_ERR(adjusted_mode)) {
7668 return false;
7669 }
7670 }
7671
7672 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7673 if (intel_crtc->base.enabled)
7674 dev_priv->display.crtc_disable(&intel_crtc->base);
7675 }
7676
7677 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7678 * to set it here already despite that we pass it down the callchain.
7679 */
7680 if (modeset_pipes)
7681 crtc->mode = *mode;
7682
7683 /* Only after disabling all output pipelines that will be changed can we
7684 * update the the output configuration. */
7685 intel_modeset_update_state(dev, prepare_pipes);
7686
7687 if (dev_priv->display.modeset_global_resources)
7688 dev_priv->display.modeset_global_resources(dev);
7689
7690 /* Set up the DPLL and any encoders state that needs to adjust or depend
7691 * on the DPLL.
7692 */
7693 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7694 ret = !intel_crtc_mode_set(&intel_crtc->base,
7695 mode, adjusted_mode,
7696 x, y, fb);
7697 if (!ret)
7698 goto done;
7699
7700 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7701
7702 if (encoder->crtc != &intel_crtc->base)
7703 continue;
7704
7705 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7706 encoder->base.id, drm_get_encoder_name(encoder),
7707 mode->base.id, mode->name);
7708 encoder_funcs = encoder->helper_private;
7709 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7710 }
7711 }
7712
7713 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7714 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7715 dev_priv->display.crtc_enable(&intel_crtc->base);
7716
7717 if (modeset_pipes) {
7718 /* Store real post-adjustment hardware mode. */
7719 crtc->hwmode = *adjusted_mode;
7720
7721 /* Calculate and store various constants which
7722 * are later needed by vblank and swap-completion
7723 * timestamping. They are derived from true hwmode.
7724 */
7725 drm_calc_timestamping_constants(crtc);
7726 }
7727
7728 /* FIXME: add subpixel order */
7729 done:
7730 drm_mode_destroy(dev, adjusted_mode);
7731 if (!ret && crtc->enabled) {
7732 crtc->hwmode = saved_hwmode;
7733 crtc->mode = saved_mode;
7734 } else {
7735 intel_modeset_check_state(dev);
7736 }
7737
7738 return ret;
7739 }
7740
7741 #undef for_each_intel_crtc_masked
7742
7743 static void intel_set_config_free(struct intel_set_config *config)
7744 {
7745 if (!config)
7746 return;
7747
7748 kfree(config->save_connector_encoders);
7749 kfree(config->save_encoder_crtcs);
7750 kfree(config);
7751 }
7752
7753 static int intel_set_config_save_state(struct drm_device *dev,
7754 struct intel_set_config *config)
7755 {
7756 struct drm_encoder *encoder;
7757 struct drm_connector *connector;
7758 int count;
7759
7760 config->save_encoder_crtcs =
7761 kcalloc(dev->mode_config.num_encoder,
7762 sizeof(struct drm_crtc *), GFP_KERNEL);
7763 if (!config->save_encoder_crtcs)
7764 return -ENOMEM;
7765
7766 config->save_connector_encoders =
7767 kcalloc(dev->mode_config.num_connector,
7768 sizeof(struct drm_encoder *), GFP_KERNEL);
7769 if (!config->save_connector_encoders)
7770 return -ENOMEM;
7771
7772 /* Copy data. Note that driver private data is not affected.
7773 * Should anything bad happen only the expected state is
7774 * restored, not the drivers personal bookkeeping.
7775 */
7776 count = 0;
7777 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7778 config->save_encoder_crtcs[count++] = encoder->crtc;
7779 }
7780
7781 count = 0;
7782 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7783 config->save_connector_encoders[count++] = connector->encoder;
7784 }
7785
7786 return 0;
7787 }
7788
7789 static void intel_set_config_restore_state(struct drm_device *dev,
7790 struct intel_set_config *config)
7791 {
7792 struct intel_encoder *encoder;
7793 struct intel_connector *connector;
7794 int count;
7795
7796 count = 0;
7797 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7798 encoder->new_crtc =
7799 to_intel_crtc(config->save_encoder_crtcs[count++]);
7800 }
7801
7802 count = 0;
7803 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7804 connector->new_encoder =
7805 to_intel_encoder(config->save_connector_encoders[count++]);
7806 }
7807 }
7808
7809 static void
7810 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7811 struct intel_set_config *config)
7812 {
7813
7814 /* We should be able to check here if the fb has the same properties
7815 * and then just flip_or_move it */
7816 if (set->crtc->fb != set->fb) {
7817 /* If we have no fb then treat it as a full mode set */
7818 if (set->crtc->fb == NULL) {
7819 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7820 config->mode_changed = true;
7821 } else if (set->fb == NULL) {
7822 config->mode_changed = true;
7823 } else if (set->fb->depth != set->crtc->fb->depth) {
7824 config->mode_changed = true;
7825 } else if (set->fb->bits_per_pixel !=
7826 set->crtc->fb->bits_per_pixel) {
7827 config->mode_changed = true;
7828 } else
7829 config->fb_changed = true;
7830 }
7831
7832 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7833 config->fb_changed = true;
7834
7835 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7836 DRM_DEBUG_KMS("modes are different, full mode set\n");
7837 drm_mode_debug_printmodeline(&set->crtc->mode);
7838 drm_mode_debug_printmodeline(set->mode);
7839 config->mode_changed = true;
7840 }
7841 }
7842
7843 static int
7844 intel_modeset_stage_output_state(struct drm_device *dev,
7845 struct drm_mode_set *set,
7846 struct intel_set_config *config)
7847 {
7848 struct drm_crtc *new_crtc;
7849 struct intel_connector *connector;
7850 struct intel_encoder *encoder;
7851 int count, ro;
7852
7853 /* The upper layers ensure that we either disabl a crtc or have a list
7854 * of connectors. For paranoia, double-check this. */
7855 WARN_ON(!set->fb && (set->num_connectors != 0));
7856 WARN_ON(set->fb && (set->num_connectors == 0));
7857
7858 count = 0;
7859 list_for_each_entry(connector, &dev->mode_config.connector_list,
7860 base.head) {
7861 /* Otherwise traverse passed in connector list and get encoders
7862 * for them. */
7863 for (ro = 0; ro < set->num_connectors; ro++) {
7864 if (set->connectors[ro] == &connector->base) {
7865 connector->new_encoder = connector->encoder;
7866 break;
7867 }
7868 }
7869
7870 /* If we disable the crtc, disable all its connectors. Also, if
7871 * the connector is on the changing crtc but not on the new
7872 * connector list, disable it. */
7873 if ((!set->fb || ro == set->num_connectors) &&
7874 connector->base.encoder &&
7875 connector->base.encoder->crtc == set->crtc) {
7876 connector->new_encoder = NULL;
7877
7878 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7879 connector->base.base.id,
7880 drm_get_connector_name(&connector->base));
7881 }
7882
7883
7884 if (&connector->new_encoder->base != connector->base.encoder) {
7885 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7886 config->mode_changed = true;
7887 }
7888
7889 /* Disable all disconnected encoders. */
7890 if (connector->base.status == connector_status_disconnected)
7891 connector->new_encoder = NULL;
7892 }
7893 /* connector->new_encoder is now updated for all connectors. */
7894
7895 /* Update crtc of enabled connectors. */
7896 count = 0;
7897 list_for_each_entry(connector, &dev->mode_config.connector_list,
7898 base.head) {
7899 if (!connector->new_encoder)
7900 continue;
7901
7902 new_crtc = connector->new_encoder->base.crtc;
7903
7904 for (ro = 0; ro < set->num_connectors; ro++) {
7905 if (set->connectors[ro] == &connector->base)
7906 new_crtc = set->crtc;
7907 }
7908
7909 /* Make sure the new CRTC will work with the encoder */
7910 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7911 new_crtc)) {
7912 return -EINVAL;
7913 }
7914 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7915
7916 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7917 connector->base.base.id,
7918 drm_get_connector_name(&connector->base),
7919 new_crtc->base.id);
7920 }
7921
7922 /* Check for any encoders that needs to be disabled. */
7923 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7924 base.head) {
7925 list_for_each_entry(connector,
7926 &dev->mode_config.connector_list,
7927 base.head) {
7928 if (connector->new_encoder == encoder) {
7929 WARN_ON(!connector->new_encoder->new_crtc);
7930
7931 goto next_encoder;
7932 }
7933 }
7934 encoder->new_crtc = NULL;
7935 next_encoder:
7936 /* Only now check for crtc changes so we don't miss encoders
7937 * that will be disabled. */
7938 if (&encoder->new_crtc->base != encoder->base.crtc) {
7939 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7940 config->mode_changed = true;
7941 }
7942 }
7943 /* Now we've also updated encoder->new_crtc for all encoders. */
7944
7945 return 0;
7946 }
7947
7948 static int intel_crtc_set_config(struct drm_mode_set *set)
7949 {
7950 struct drm_device *dev;
7951 struct drm_mode_set save_set;
7952 struct intel_set_config *config;
7953 int ret;
7954
7955 BUG_ON(!set);
7956 BUG_ON(!set->crtc);
7957 BUG_ON(!set->crtc->helper_private);
7958
7959 if (!set->mode)
7960 set->fb = NULL;
7961
7962 /* The fb helper likes to play gross jokes with ->mode_set_config.
7963 * Unfortunately the crtc helper doesn't do much at all for this case,
7964 * so we have to cope with this madness until the fb helper is fixed up. */
7965 if (set->fb && set->num_connectors == 0)
7966 return 0;
7967
7968 if (set->fb) {
7969 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7970 set->crtc->base.id, set->fb->base.id,
7971 (int)set->num_connectors, set->x, set->y);
7972 } else {
7973 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7974 }
7975
7976 dev = set->crtc->dev;
7977
7978 ret = -ENOMEM;
7979 config = kzalloc(sizeof(*config), GFP_KERNEL);
7980 if (!config)
7981 goto out_config;
7982
7983 ret = intel_set_config_save_state(dev, config);
7984 if (ret)
7985 goto out_config;
7986
7987 save_set.crtc = set->crtc;
7988 save_set.mode = &set->crtc->mode;
7989 save_set.x = set->crtc->x;
7990 save_set.y = set->crtc->y;
7991 save_set.fb = set->crtc->fb;
7992
7993 /* Compute whether we need a full modeset, only an fb base update or no
7994 * change at all. In the future we might also check whether only the
7995 * mode changed, e.g. for LVDS where we only change the panel fitter in
7996 * such cases. */
7997 intel_set_config_compute_mode_changes(set, config);
7998
7999 ret = intel_modeset_stage_output_state(dev, set, config);
8000 if (ret)
8001 goto fail;
8002
8003 if (config->mode_changed) {
8004 if (set->mode) {
8005 DRM_DEBUG_KMS("attempting to set mode from"
8006 " userspace\n");
8007 drm_mode_debug_printmodeline(set->mode);
8008 }
8009
8010 if (!intel_set_mode(set->crtc, set->mode,
8011 set->x, set->y, set->fb)) {
8012 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8013 set->crtc->base.id);
8014 ret = -EINVAL;
8015 goto fail;
8016 }
8017 } else if (config->fb_changed) {
8018 ret = intel_pipe_set_base(set->crtc,
8019 set->x, set->y, set->fb);
8020 }
8021
8022 intel_set_config_free(config);
8023
8024 return 0;
8025
8026 fail:
8027 intel_set_config_restore_state(dev, config);
8028
8029 /* Try to restore the config */
8030 if (config->mode_changed &&
8031 !intel_set_mode(save_set.crtc, save_set.mode,
8032 save_set.x, save_set.y, save_set.fb))
8033 DRM_ERROR("failed to restore config after modeset failure\n");
8034
8035 out_config:
8036 intel_set_config_free(config);
8037 return ret;
8038 }
8039
8040 static const struct drm_crtc_funcs intel_crtc_funcs = {
8041 .cursor_set = intel_crtc_cursor_set,
8042 .cursor_move = intel_crtc_cursor_move,
8043 .gamma_set = intel_crtc_gamma_set,
8044 .set_config = intel_crtc_set_config,
8045 .destroy = intel_crtc_destroy,
8046 .page_flip = intel_crtc_page_flip,
8047 };
8048
8049 static void intel_cpu_pll_init(struct drm_device *dev)
8050 {
8051 if (IS_HASWELL(dev))
8052 intel_ddi_pll_init(dev);
8053 }
8054
8055 static void intel_pch_pll_init(struct drm_device *dev)
8056 {
8057 drm_i915_private_t *dev_priv = dev->dev_private;
8058 int i;
8059
8060 if (dev_priv->num_pch_pll == 0) {
8061 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8062 return;
8063 }
8064
8065 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8066 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8067 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8068 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8069 }
8070 }
8071
8072 static void intel_crtc_init(struct drm_device *dev, int pipe)
8073 {
8074 drm_i915_private_t *dev_priv = dev->dev_private;
8075 struct intel_crtc *intel_crtc;
8076 int i;
8077
8078 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8079 if (intel_crtc == NULL)
8080 return;
8081
8082 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8083
8084 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8085 for (i = 0; i < 256; i++) {
8086 intel_crtc->lut_r[i] = i;
8087 intel_crtc->lut_g[i] = i;
8088 intel_crtc->lut_b[i] = i;
8089 }
8090
8091 /* Swap pipes & planes for FBC on pre-965 */
8092 intel_crtc->pipe = pipe;
8093 intel_crtc->plane = pipe;
8094 intel_crtc->cpu_transcoder = pipe;
8095 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8096 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8097 intel_crtc->plane = !pipe;
8098 }
8099
8100 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8101 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8102 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8103 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8104
8105 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8106
8107 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8108 }
8109
8110 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8111 struct drm_file *file)
8112 {
8113 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8114 struct drm_mode_object *drmmode_obj;
8115 struct intel_crtc *crtc;
8116
8117 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8118 return -ENODEV;
8119
8120 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8121 DRM_MODE_OBJECT_CRTC);
8122
8123 if (!drmmode_obj) {
8124 DRM_ERROR("no such CRTC id\n");
8125 return -EINVAL;
8126 }
8127
8128 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8129 pipe_from_crtc_id->pipe = crtc->pipe;
8130
8131 return 0;
8132 }
8133
8134 static int intel_encoder_clones(struct intel_encoder *encoder)
8135 {
8136 struct drm_device *dev = encoder->base.dev;
8137 struct intel_encoder *source_encoder;
8138 int index_mask = 0;
8139 int entry = 0;
8140
8141 list_for_each_entry(source_encoder,
8142 &dev->mode_config.encoder_list, base.head) {
8143
8144 if (encoder == source_encoder)
8145 index_mask |= (1 << entry);
8146
8147 /* Intel hw has only one MUX where enocoders could be cloned. */
8148 if (encoder->cloneable && source_encoder->cloneable)
8149 index_mask |= (1 << entry);
8150
8151 entry++;
8152 }
8153
8154 return index_mask;
8155 }
8156
8157 static bool has_edp_a(struct drm_device *dev)
8158 {
8159 struct drm_i915_private *dev_priv = dev->dev_private;
8160
8161 if (!IS_MOBILE(dev))
8162 return false;
8163
8164 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8165 return false;
8166
8167 if (IS_GEN5(dev) &&
8168 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8169 return false;
8170
8171 return true;
8172 }
8173
8174 static void intel_setup_outputs(struct drm_device *dev)
8175 {
8176 struct drm_i915_private *dev_priv = dev->dev_private;
8177 struct intel_encoder *encoder;
8178 bool dpd_is_edp = false;
8179 bool has_lvds;
8180
8181 has_lvds = intel_lvds_init(dev);
8182 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8183 /* disable the panel fitter on everything but LVDS */
8184 I915_WRITE(PFIT_CONTROL, 0);
8185 }
8186
8187 if (HAS_PCH_SPLIT(dev)) {
8188 dpd_is_edp = intel_dpd_is_edp(dev);
8189
8190 if (has_edp_a(dev))
8191 intel_dp_init(dev, DP_A, PORT_A);
8192
8193 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8194 intel_dp_init(dev, PCH_DP_D, PORT_D);
8195 }
8196
8197 intel_crt_init(dev);
8198
8199 if (IS_HASWELL(dev)) {
8200 int found;
8201
8202 /* Haswell uses DDI functions to detect digital outputs */
8203 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8204 /* DDI A only supports eDP */
8205 if (found)
8206 intel_ddi_init(dev, PORT_A);
8207
8208 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8209 * register */
8210 found = I915_READ(SFUSE_STRAP);
8211
8212 if (found & SFUSE_STRAP_DDIB_DETECTED)
8213 intel_ddi_init(dev, PORT_B);
8214 if (found & SFUSE_STRAP_DDIC_DETECTED)
8215 intel_ddi_init(dev, PORT_C);
8216 if (found & SFUSE_STRAP_DDID_DETECTED)
8217 intel_ddi_init(dev, PORT_D);
8218 } else if (HAS_PCH_SPLIT(dev)) {
8219 int found;
8220
8221 if (I915_READ(HDMIB) & PORT_DETECTED) {
8222 /* PCH SDVOB multiplex with HDMIB */
8223 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8224 if (!found)
8225 intel_hdmi_init(dev, HDMIB, PORT_B);
8226 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8227 intel_dp_init(dev, PCH_DP_B, PORT_B);
8228 }
8229
8230 if (I915_READ(HDMIC) & PORT_DETECTED)
8231 intel_hdmi_init(dev, HDMIC, PORT_C);
8232
8233 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8234 intel_hdmi_init(dev, HDMID, PORT_D);
8235
8236 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8237 intel_dp_init(dev, PCH_DP_C, PORT_C);
8238
8239 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8240 intel_dp_init(dev, PCH_DP_D, PORT_D);
8241 } else if (IS_VALLEYVIEW(dev)) {
8242 int found;
8243
8244 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8245 if (I915_READ(DP_C) & DP_DETECTED)
8246 intel_dp_init(dev, DP_C, PORT_C);
8247
8248 if (I915_READ(SDVOB) & PORT_DETECTED) {
8249 /* SDVOB multiplex with HDMIB */
8250 found = intel_sdvo_init(dev, SDVOB, true);
8251 if (!found)
8252 intel_hdmi_init(dev, SDVOB, PORT_B);
8253 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8254 intel_dp_init(dev, DP_B, PORT_B);
8255 }
8256
8257 if (I915_READ(SDVOC) & PORT_DETECTED)
8258 intel_hdmi_init(dev, SDVOC, PORT_C);
8259
8260 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8261 bool found = false;
8262
8263 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8264 DRM_DEBUG_KMS("probing SDVOB\n");
8265 found = intel_sdvo_init(dev, SDVOB, true);
8266 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8267 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8268 intel_hdmi_init(dev, SDVOB, PORT_B);
8269 }
8270
8271 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8272 DRM_DEBUG_KMS("probing DP_B\n");
8273 intel_dp_init(dev, DP_B, PORT_B);
8274 }
8275 }
8276
8277 /* Before G4X SDVOC doesn't have its own detect register */
8278
8279 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8280 DRM_DEBUG_KMS("probing SDVOC\n");
8281 found = intel_sdvo_init(dev, SDVOC, false);
8282 }
8283
8284 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8285
8286 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8287 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8288 intel_hdmi_init(dev, SDVOC, PORT_C);
8289 }
8290 if (SUPPORTS_INTEGRATED_DP(dev)) {
8291 DRM_DEBUG_KMS("probing DP_C\n");
8292 intel_dp_init(dev, DP_C, PORT_C);
8293 }
8294 }
8295
8296 if (SUPPORTS_INTEGRATED_DP(dev) &&
8297 (I915_READ(DP_D) & DP_DETECTED)) {
8298 DRM_DEBUG_KMS("probing DP_D\n");
8299 intel_dp_init(dev, DP_D, PORT_D);
8300 }
8301 } else if (IS_GEN2(dev))
8302 intel_dvo_init(dev);
8303
8304 if (SUPPORTS_TV(dev))
8305 intel_tv_init(dev);
8306
8307 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8308 encoder->base.possible_crtcs = encoder->crtc_mask;
8309 encoder->base.possible_clones =
8310 intel_encoder_clones(encoder);
8311 }
8312
8313 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8314 ironlake_init_pch_refclk(dev);
8315 }
8316
8317 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8318 {
8319 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8320
8321 drm_framebuffer_cleanup(fb);
8322 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8323
8324 kfree(intel_fb);
8325 }
8326
8327 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8328 struct drm_file *file,
8329 unsigned int *handle)
8330 {
8331 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8332 struct drm_i915_gem_object *obj = intel_fb->obj;
8333
8334 return drm_gem_handle_create(file, &obj->base, handle);
8335 }
8336
8337 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8338 .destroy = intel_user_framebuffer_destroy,
8339 .create_handle = intel_user_framebuffer_create_handle,
8340 };
8341
8342 int intel_framebuffer_init(struct drm_device *dev,
8343 struct intel_framebuffer *intel_fb,
8344 struct drm_mode_fb_cmd2 *mode_cmd,
8345 struct drm_i915_gem_object *obj)
8346 {
8347 int ret;
8348
8349 if (obj->tiling_mode == I915_TILING_Y)
8350 return -EINVAL;
8351
8352 if (mode_cmd->pitches[0] & 63)
8353 return -EINVAL;
8354
8355 /* Reject formats not supported by any plane early. */
8356 switch (mode_cmd->pixel_format) {
8357 case DRM_FORMAT_C8:
8358 case DRM_FORMAT_RGB565:
8359 case DRM_FORMAT_XRGB8888:
8360 case DRM_FORMAT_ARGB8888:
8361 break;
8362 case DRM_FORMAT_XRGB1555:
8363 case DRM_FORMAT_ARGB1555:
8364 if (INTEL_INFO(dev)->gen > 3)
8365 return -EINVAL;
8366 break;
8367 case DRM_FORMAT_XBGR8888:
8368 case DRM_FORMAT_ABGR8888:
8369 case DRM_FORMAT_XRGB2101010:
8370 case DRM_FORMAT_ARGB2101010:
8371 case DRM_FORMAT_XBGR2101010:
8372 case DRM_FORMAT_ABGR2101010:
8373 if (INTEL_INFO(dev)->gen < 4)
8374 return -EINVAL;
8375 break;
8376 case DRM_FORMAT_YUYV:
8377 case DRM_FORMAT_UYVY:
8378 case DRM_FORMAT_YVYU:
8379 case DRM_FORMAT_VYUY:
8380 if (INTEL_INFO(dev)->gen < 6)
8381 return -EINVAL;
8382 break;
8383 default:
8384 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8385 return -EINVAL;
8386 }
8387
8388 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8389 if (ret) {
8390 DRM_ERROR("framebuffer init failed %d\n", ret);
8391 return ret;
8392 }
8393
8394 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8395 intel_fb->obj = obj;
8396 return 0;
8397 }
8398
8399 static struct drm_framebuffer *
8400 intel_user_framebuffer_create(struct drm_device *dev,
8401 struct drm_file *filp,
8402 struct drm_mode_fb_cmd2 *mode_cmd)
8403 {
8404 struct drm_i915_gem_object *obj;
8405
8406 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8407 mode_cmd->handles[0]));
8408 if (&obj->base == NULL)
8409 return ERR_PTR(-ENOENT);
8410
8411 return intel_framebuffer_create(dev, mode_cmd, obj);
8412 }
8413
8414 static const struct drm_mode_config_funcs intel_mode_funcs = {
8415 .fb_create = intel_user_framebuffer_create,
8416 .output_poll_changed = intel_fb_output_poll_changed,
8417 };
8418
8419 /* Set up chip specific display functions */
8420 static void intel_init_display(struct drm_device *dev)
8421 {
8422 struct drm_i915_private *dev_priv = dev->dev_private;
8423
8424 /* We always want a DPMS function */
8425 if (IS_HASWELL(dev)) {
8426 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8427 dev_priv->display.crtc_enable = haswell_crtc_enable;
8428 dev_priv->display.crtc_disable = haswell_crtc_disable;
8429 dev_priv->display.off = haswell_crtc_off;
8430 dev_priv->display.update_plane = ironlake_update_plane;
8431 } else if (HAS_PCH_SPLIT(dev)) {
8432 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8433 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8434 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8435 dev_priv->display.off = ironlake_crtc_off;
8436 dev_priv->display.update_plane = ironlake_update_plane;
8437 } else {
8438 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8439 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8440 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8441 dev_priv->display.off = i9xx_crtc_off;
8442 dev_priv->display.update_plane = i9xx_update_plane;
8443 }
8444
8445 /* Returns the core display clock speed */
8446 if (IS_VALLEYVIEW(dev))
8447 dev_priv->display.get_display_clock_speed =
8448 valleyview_get_display_clock_speed;
8449 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8450 dev_priv->display.get_display_clock_speed =
8451 i945_get_display_clock_speed;
8452 else if (IS_I915G(dev))
8453 dev_priv->display.get_display_clock_speed =
8454 i915_get_display_clock_speed;
8455 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8456 dev_priv->display.get_display_clock_speed =
8457 i9xx_misc_get_display_clock_speed;
8458 else if (IS_I915GM(dev))
8459 dev_priv->display.get_display_clock_speed =
8460 i915gm_get_display_clock_speed;
8461 else if (IS_I865G(dev))
8462 dev_priv->display.get_display_clock_speed =
8463 i865_get_display_clock_speed;
8464 else if (IS_I85X(dev))
8465 dev_priv->display.get_display_clock_speed =
8466 i855_get_display_clock_speed;
8467 else /* 852, 830 */
8468 dev_priv->display.get_display_clock_speed =
8469 i830_get_display_clock_speed;
8470
8471 if (HAS_PCH_SPLIT(dev)) {
8472 if (IS_GEN5(dev)) {
8473 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8474 dev_priv->display.write_eld = ironlake_write_eld;
8475 } else if (IS_GEN6(dev)) {
8476 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8477 dev_priv->display.write_eld = ironlake_write_eld;
8478 } else if (IS_IVYBRIDGE(dev)) {
8479 /* FIXME: detect B0+ stepping and use auto training */
8480 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8481 dev_priv->display.write_eld = ironlake_write_eld;
8482 dev_priv->display.modeset_global_resources =
8483 ivb_modeset_global_resources;
8484 } else if (IS_HASWELL(dev)) {
8485 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8486 dev_priv->display.write_eld = haswell_write_eld;
8487 } else
8488 dev_priv->display.update_wm = NULL;
8489 } else if (IS_G4X(dev)) {
8490 dev_priv->display.write_eld = g4x_write_eld;
8491 }
8492
8493 /* Default just returns -ENODEV to indicate unsupported */
8494 dev_priv->display.queue_flip = intel_default_queue_flip;
8495
8496 switch (INTEL_INFO(dev)->gen) {
8497 case 2:
8498 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8499 break;
8500
8501 case 3:
8502 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8503 break;
8504
8505 case 4:
8506 case 5:
8507 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8508 break;
8509
8510 case 6:
8511 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8512 break;
8513 case 7:
8514 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8515 break;
8516 }
8517 }
8518
8519 /*
8520 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8521 * resume, or other times. This quirk makes sure that's the case for
8522 * affected systems.
8523 */
8524 static void quirk_pipea_force(struct drm_device *dev)
8525 {
8526 struct drm_i915_private *dev_priv = dev->dev_private;
8527
8528 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8529 DRM_INFO("applying pipe a force quirk\n");
8530 }
8531
8532 /*
8533 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8534 */
8535 static void quirk_ssc_force_disable(struct drm_device *dev)
8536 {
8537 struct drm_i915_private *dev_priv = dev->dev_private;
8538 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8539 DRM_INFO("applying lvds SSC disable quirk\n");
8540 }
8541
8542 /*
8543 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8544 * brightness value
8545 */
8546 static void quirk_invert_brightness(struct drm_device *dev)
8547 {
8548 struct drm_i915_private *dev_priv = dev->dev_private;
8549 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8550 DRM_INFO("applying inverted panel brightness quirk\n");
8551 }
8552
8553 struct intel_quirk {
8554 int device;
8555 int subsystem_vendor;
8556 int subsystem_device;
8557 void (*hook)(struct drm_device *dev);
8558 };
8559
8560 static struct intel_quirk intel_quirks[] = {
8561 /* HP Mini needs pipe A force quirk (LP: #322104) */
8562 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8563
8564 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8565 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8566
8567 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8568 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8569
8570 /* 830/845 need to leave pipe A & dpll A up */
8571 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8572 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8573
8574 /* Lenovo U160 cannot use SSC on LVDS */
8575 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8576
8577 /* Sony Vaio Y cannot use SSC on LVDS */
8578 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8579
8580 /* Acer Aspire 5734Z must invert backlight brightness */
8581 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8582 };
8583
8584 static void intel_init_quirks(struct drm_device *dev)
8585 {
8586 struct pci_dev *d = dev->pdev;
8587 int i;
8588
8589 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8590 struct intel_quirk *q = &intel_quirks[i];
8591
8592 if (d->device == q->device &&
8593 (d->subsystem_vendor == q->subsystem_vendor ||
8594 q->subsystem_vendor == PCI_ANY_ID) &&
8595 (d->subsystem_device == q->subsystem_device ||
8596 q->subsystem_device == PCI_ANY_ID))
8597 q->hook(dev);
8598 }
8599 }
8600
8601 /* Disable the VGA plane that we never use */
8602 static void i915_disable_vga(struct drm_device *dev)
8603 {
8604 struct drm_i915_private *dev_priv = dev->dev_private;
8605 u8 sr1;
8606 u32 vga_reg;
8607
8608 if (HAS_PCH_SPLIT(dev))
8609 vga_reg = CPU_VGACNTRL;
8610 else
8611 vga_reg = VGACNTRL;
8612
8613 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8614 outb(SR01, VGA_SR_INDEX);
8615 sr1 = inb(VGA_SR_DATA);
8616 outb(sr1 | 1<<5, VGA_SR_DATA);
8617 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8618 udelay(300);
8619
8620 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8621 POSTING_READ(vga_reg);
8622 }
8623
8624 void intel_modeset_init_hw(struct drm_device *dev)
8625 {
8626 /* We attempt to init the necessary power wells early in the initialization
8627 * time, so the subsystems that expect power to be enabled can work.
8628 */
8629 intel_init_power_wells(dev);
8630
8631 intel_prepare_ddi(dev);
8632
8633 intel_init_clock_gating(dev);
8634
8635 mutex_lock(&dev->struct_mutex);
8636 intel_enable_gt_powersave(dev);
8637 mutex_unlock(&dev->struct_mutex);
8638 }
8639
8640 void intel_modeset_init(struct drm_device *dev)
8641 {
8642 struct drm_i915_private *dev_priv = dev->dev_private;
8643 int i, ret;
8644
8645 drm_mode_config_init(dev);
8646
8647 dev->mode_config.min_width = 0;
8648 dev->mode_config.min_height = 0;
8649
8650 dev->mode_config.preferred_depth = 24;
8651 dev->mode_config.prefer_shadow = 1;
8652
8653 dev->mode_config.funcs = &intel_mode_funcs;
8654
8655 intel_init_quirks(dev);
8656
8657 intel_init_pm(dev);
8658
8659 intel_init_display(dev);
8660
8661 if (IS_GEN2(dev)) {
8662 dev->mode_config.max_width = 2048;
8663 dev->mode_config.max_height = 2048;
8664 } else if (IS_GEN3(dev)) {
8665 dev->mode_config.max_width = 4096;
8666 dev->mode_config.max_height = 4096;
8667 } else {
8668 dev->mode_config.max_width = 8192;
8669 dev->mode_config.max_height = 8192;
8670 }
8671 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8672
8673 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8674 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8675
8676 for (i = 0; i < dev_priv->num_pipe; i++) {
8677 intel_crtc_init(dev, i);
8678 ret = intel_plane_init(dev, i);
8679 if (ret)
8680 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8681 }
8682
8683 intel_cpu_pll_init(dev);
8684 intel_pch_pll_init(dev);
8685
8686 /* Just disable it once at startup */
8687 i915_disable_vga(dev);
8688 intel_setup_outputs(dev);
8689 }
8690
8691 static void
8692 intel_connector_break_all_links(struct intel_connector *connector)
8693 {
8694 connector->base.dpms = DRM_MODE_DPMS_OFF;
8695 connector->base.encoder = NULL;
8696 connector->encoder->connectors_active = false;
8697 connector->encoder->base.crtc = NULL;
8698 }
8699
8700 static void intel_enable_pipe_a(struct drm_device *dev)
8701 {
8702 struct intel_connector *connector;
8703 struct drm_connector *crt = NULL;
8704 struct intel_load_detect_pipe load_detect_temp;
8705
8706 /* We can't just switch on the pipe A, we need to set things up with a
8707 * proper mode and output configuration. As a gross hack, enable pipe A
8708 * by enabling the load detect pipe once. */
8709 list_for_each_entry(connector,
8710 &dev->mode_config.connector_list,
8711 base.head) {
8712 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8713 crt = &connector->base;
8714 break;
8715 }
8716 }
8717
8718 if (!crt)
8719 return;
8720
8721 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8722 intel_release_load_detect_pipe(crt, &load_detect_temp);
8723
8724
8725 }
8726
8727 static bool
8728 intel_check_plane_mapping(struct intel_crtc *crtc)
8729 {
8730 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8731 u32 reg, val;
8732
8733 if (dev_priv->num_pipe == 1)
8734 return true;
8735
8736 reg = DSPCNTR(!crtc->plane);
8737 val = I915_READ(reg);
8738
8739 if ((val & DISPLAY_PLANE_ENABLE) &&
8740 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8741 return false;
8742
8743 return true;
8744 }
8745
8746 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8747 {
8748 struct drm_device *dev = crtc->base.dev;
8749 struct drm_i915_private *dev_priv = dev->dev_private;
8750 u32 reg;
8751
8752 /* Clear any frame start delays used for debugging left by the BIOS */
8753 reg = PIPECONF(crtc->cpu_transcoder);
8754 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8755
8756 /* We need to sanitize the plane -> pipe mapping first because this will
8757 * disable the crtc (and hence change the state) if it is wrong. Note
8758 * that gen4+ has a fixed plane -> pipe mapping. */
8759 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8760 struct intel_connector *connector;
8761 bool plane;
8762
8763 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8764 crtc->base.base.id);
8765
8766 /* Pipe has the wrong plane attached and the plane is active.
8767 * Temporarily change the plane mapping and disable everything
8768 * ... */
8769 plane = crtc->plane;
8770 crtc->plane = !plane;
8771 dev_priv->display.crtc_disable(&crtc->base);
8772 crtc->plane = plane;
8773
8774 /* ... and break all links. */
8775 list_for_each_entry(connector, &dev->mode_config.connector_list,
8776 base.head) {
8777 if (connector->encoder->base.crtc != &crtc->base)
8778 continue;
8779
8780 intel_connector_break_all_links(connector);
8781 }
8782
8783 WARN_ON(crtc->active);
8784 crtc->base.enabled = false;
8785 }
8786
8787 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8788 crtc->pipe == PIPE_A && !crtc->active) {
8789 /* BIOS forgot to enable pipe A, this mostly happens after
8790 * resume. Force-enable the pipe to fix this, the update_dpms
8791 * call below we restore the pipe to the right state, but leave
8792 * the required bits on. */
8793 intel_enable_pipe_a(dev);
8794 }
8795
8796 /* Adjust the state of the output pipe according to whether we
8797 * have active connectors/encoders. */
8798 intel_crtc_update_dpms(&crtc->base);
8799
8800 if (crtc->active != crtc->base.enabled) {
8801 struct intel_encoder *encoder;
8802
8803 /* This can happen either due to bugs in the get_hw_state
8804 * functions or because the pipe is force-enabled due to the
8805 * pipe A quirk. */
8806 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8807 crtc->base.base.id,
8808 crtc->base.enabled ? "enabled" : "disabled",
8809 crtc->active ? "enabled" : "disabled");
8810
8811 crtc->base.enabled = crtc->active;
8812
8813 /* Because we only establish the connector -> encoder ->
8814 * crtc links if something is active, this means the
8815 * crtc is now deactivated. Break the links. connector
8816 * -> encoder links are only establish when things are
8817 * actually up, hence no need to break them. */
8818 WARN_ON(crtc->active);
8819
8820 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8821 WARN_ON(encoder->connectors_active);
8822 encoder->base.crtc = NULL;
8823 }
8824 }
8825 }
8826
8827 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8828 {
8829 struct intel_connector *connector;
8830 struct drm_device *dev = encoder->base.dev;
8831
8832 /* We need to check both for a crtc link (meaning that the
8833 * encoder is active and trying to read from a pipe) and the
8834 * pipe itself being active. */
8835 bool has_active_crtc = encoder->base.crtc &&
8836 to_intel_crtc(encoder->base.crtc)->active;
8837
8838 if (encoder->connectors_active && !has_active_crtc) {
8839 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8840 encoder->base.base.id,
8841 drm_get_encoder_name(&encoder->base));
8842
8843 /* Connector is active, but has no active pipe. This is
8844 * fallout from our resume register restoring. Disable
8845 * the encoder manually again. */
8846 if (encoder->base.crtc) {
8847 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8848 encoder->base.base.id,
8849 drm_get_encoder_name(&encoder->base));
8850 encoder->disable(encoder);
8851 }
8852
8853 /* Inconsistent output/port/pipe state happens presumably due to
8854 * a bug in one of the get_hw_state functions. Or someplace else
8855 * in our code, like the register restore mess on resume. Clamp
8856 * things to off as a safer default. */
8857 list_for_each_entry(connector,
8858 &dev->mode_config.connector_list,
8859 base.head) {
8860 if (connector->encoder != encoder)
8861 continue;
8862
8863 intel_connector_break_all_links(connector);
8864 }
8865 }
8866 /* Enabled encoders without active connectors will be fixed in
8867 * the crtc fixup. */
8868 }
8869
8870 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8871 * and i915 state tracking structures. */
8872 void intel_modeset_setup_hw_state(struct drm_device *dev)
8873 {
8874 struct drm_i915_private *dev_priv = dev->dev_private;
8875 enum pipe pipe;
8876 u32 tmp;
8877 struct intel_crtc *crtc;
8878 struct intel_encoder *encoder;
8879 struct intel_connector *connector;
8880
8881 if (IS_HASWELL(dev)) {
8882 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8883
8884 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8885 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8886 case TRANS_DDI_EDP_INPUT_A_ON:
8887 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8888 pipe = PIPE_A;
8889 break;
8890 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8891 pipe = PIPE_B;
8892 break;
8893 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8894 pipe = PIPE_C;
8895 break;
8896 }
8897
8898 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8899 crtc->cpu_transcoder = TRANSCODER_EDP;
8900
8901 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8902 pipe_name(pipe));
8903 }
8904 }
8905
8906 for_each_pipe(pipe) {
8907 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8908
8909 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8910 if (tmp & PIPECONF_ENABLE)
8911 crtc->active = true;
8912 else
8913 crtc->active = false;
8914
8915 crtc->base.enabled = crtc->active;
8916
8917 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8918 crtc->base.base.id,
8919 crtc->active ? "enabled" : "disabled");
8920 }
8921
8922 if (IS_HASWELL(dev))
8923 intel_ddi_setup_hw_pll_state(dev);
8924
8925 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8926 base.head) {
8927 pipe = 0;
8928
8929 if (encoder->get_hw_state(encoder, &pipe)) {
8930 encoder->base.crtc =
8931 dev_priv->pipe_to_crtc_mapping[pipe];
8932 } else {
8933 encoder->base.crtc = NULL;
8934 }
8935
8936 encoder->connectors_active = false;
8937 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8938 encoder->base.base.id,
8939 drm_get_encoder_name(&encoder->base),
8940 encoder->base.crtc ? "enabled" : "disabled",
8941 pipe);
8942 }
8943
8944 list_for_each_entry(connector, &dev->mode_config.connector_list,
8945 base.head) {
8946 if (connector->get_hw_state(connector)) {
8947 connector->base.dpms = DRM_MODE_DPMS_ON;
8948 connector->encoder->connectors_active = true;
8949 connector->base.encoder = &connector->encoder->base;
8950 } else {
8951 connector->base.dpms = DRM_MODE_DPMS_OFF;
8952 connector->base.encoder = NULL;
8953 }
8954 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8955 connector->base.base.id,
8956 drm_get_connector_name(&connector->base),
8957 connector->base.encoder ? "enabled" : "disabled");
8958 }
8959
8960 /* HW state is read out, now we need to sanitize this mess. */
8961 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8962 base.head) {
8963 intel_sanitize_encoder(encoder);
8964 }
8965
8966 for_each_pipe(pipe) {
8967 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8968 intel_sanitize_crtc(crtc);
8969 }
8970
8971 intel_modeset_update_staged_output_state(dev);
8972
8973 intel_modeset_check_state(dev);
8974
8975 drm_mode_config_reset(dev);
8976 }
8977
8978 void intel_modeset_gem_init(struct drm_device *dev)
8979 {
8980 intel_modeset_init_hw(dev);
8981
8982 intel_setup_overlay(dev);
8983
8984 intel_modeset_setup_hw_state(dev);
8985 }
8986
8987 void intel_modeset_cleanup(struct drm_device *dev)
8988 {
8989 struct drm_i915_private *dev_priv = dev->dev_private;
8990 struct drm_crtc *crtc;
8991 struct intel_crtc *intel_crtc;
8992
8993 drm_kms_helper_poll_fini(dev);
8994 mutex_lock(&dev->struct_mutex);
8995
8996 intel_unregister_dsm_handler();
8997
8998
8999 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9000 /* Skip inactive CRTCs */
9001 if (!crtc->fb)
9002 continue;
9003
9004 intel_crtc = to_intel_crtc(crtc);
9005 intel_increase_pllclock(crtc);
9006 }
9007
9008 intel_disable_fbc(dev);
9009
9010 intel_disable_gt_powersave(dev);
9011
9012 ironlake_teardown_rc6(dev);
9013
9014 if (IS_VALLEYVIEW(dev))
9015 vlv_init_dpio(dev);
9016
9017 mutex_unlock(&dev->struct_mutex);
9018
9019 /* Disable the irq before mode object teardown, for the irq might
9020 * enqueue unpin/hotplug work. */
9021 drm_irq_uninstall(dev);
9022 cancel_work_sync(&dev_priv->hotplug_work);
9023 cancel_work_sync(&dev_priv->rps.work);
9024
9025 /* flush any delayed tasks or pending work */
9026 flush_scheduled_work();
9027
9028 drm_mode_config_cleanup(dev);
9029 }
9030
9031 /*
9032 * Return which encoder is currently attached for connector.
9033 */
9034 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9035 {
9036 return &intel_attached_encoder(connector)->base;
9037 }
9038
9039 void intel_connector_attach_encoder(struct intel_connector *connector,
9040 struct intel_encoder *encoder)
9041 {
9042 connector->encoder = encoder;
9043 drm_mode_connector_attach_encoder(&connector->base,
9044 &encoder->base);
9045 }
9046
9047 /*
9048 * set vga decode state - true == enable VGA decode
9049 */
9050 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9051 {
9052 struct drm_i915_private *dev_priv = dev->dev_private;
9053 u16 gmch_ctrl;
9054
9055 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9056 if (state)
9057 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9058 else
9059 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9060 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9061 return 0;
9062 }
9063
9064 #ifdef CONFIG_DEBUG_FS
9065 #include <linux/seq_file.h>
9066
9067 struct intel_display_error_state {
9068 struct intel_cursor_error_state {
9069 u32 control;
9070 u32 position;
9071 u32 base;
9072 u32 size;
9073 } cursor[I915_MAX_PIPES];
9074
9075 struct intel_pipe_error_state {
9076 u32 conf;
9077 u32 source;
9078
9079 u32 htotal;
9080 u32 hblank;
9081 u32 hsync;
9082 u32 vtotal;
9083 u32 vblank;
9084 u32 vsync;
9085 } pipe[I915_MAX_PIPES];
9086
9087 struct intel_plane_error_state {
9088 u32 control;
9089 u32 stride;
9090 u32 size;
9091 u32 pos;
9092 u32 addr;
9093 u32 surface;
9094 u32 tile_offset;
9095 } plane[I915_MAX_PIPES];
9096 };
9097
9098 struct intel_display_error_state *
9099 intel_display_capture_error_state(struct drm_device *dev)
9100 {
9101 drm_i915_private_t *dev_priv = dev->dev_private;
9102 struct intel_display_error_state *error;
9103 enum transcoder cpu_transcoder;
9104 int i;
9105
9106 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9107 if (error == NULL)
9108 return NULL;
9109
9110 for_each_pipe(i) {
9111 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9112
9113 error->cursor[i].control = I915_READ(CURCNTR(i));
9114 error->cursor[i].position = I915_READ(CURPOS(i));
9115 error->cursor[i].base = I915_READ(CURBASE(i));
9116
9117 error->plane[i].control = I915_READ(DSPCNTR(i));
9118 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9119 error->plane[i].size = I915_READ(DSPSIZE(i));
9120 error->plane[i].pos = I915_READ(DSPPOS(i));
9121 error->plane[i].addr = I915_READ(DSPADDR(i));
9122 if (INTEL_INFO(dev)->gen >= 4) {
9123 error->plane[i].surface = I915_READ(DSPSURF(i));
9124 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9125 }
9126
9127 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9128 error->pipe[i].source = I915_READ(PIPESRC(i));
9129 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9130 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9131 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9132 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9133 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9134 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9135 }
9136
9137 return error;
9138 }
9139
9140 void
9141 intel_display_print_error_state(struct seq_file *m,
9142 struct drm_device *dev,
9143 struct intel_display_error_state *error)
9144 {
9145 drm_i915_private_t *dev_priv = dev->dev_private;
9146 int i;
9147
9148 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9149 for_each_pipe(i) {
9150 seq_printf(m, "Pipe [%d]:\n", i);
9151 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9152 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9153 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9154 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9155 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9156 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9157 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9158 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9159
9160 seq_printf(m, "Plane [%d]:\n", i);
9161 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9162 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9163 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9164 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9165 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9166 if (INTEL_INFO(dev)->gen >= 4) {
9167 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9168 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9169 }
9170
9171 seq_printf(m, "Cursor [%d]:\n", i);
9172 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9173 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9174 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9175 }
9176 }
9177 #endif
This page took 0.374407 seconds and 6 git commands to generate.