drm/i915: enable intel_lvds->pre_pll_enable for ilk+, too
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
59
60 typedef struct {
61 int min, max;
62 } intel_range_t;
63
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75 int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
135 .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
149 .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 10, .max = 22 },
158 .m2 = { .min = 5, .max = 9 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
163 .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 10, .max = 22 },
172 .m2 = { .min = 5, .max = 9 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
177 .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
193 },
194 .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
208 .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
222 },
223 .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
237 },
238 .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 10, .p2_fast = 10 },
252 .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
258 /* Pineview's Ncounter is a ring counter */
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
261 /* Pineview only has one combined m divider, which we treat as m2. */
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
268 .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
282 .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
301 .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
315 .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
329 .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
341 .p1 = { .min = 2, .max = 8 },
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
344 .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
355 .p1 = { .min = 2, .max = 6 },
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
358 .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
371 .p2_slow = 10, .p2_fast = 10 },
372 .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
391 .vco = { .min = 4000000, .max = 5994000},
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
406 .n = { .min = 1, .max = 7 },
407 .m = { .min = 22, .max = 450 },
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419 unsigned long flags;
420 u32 val = 0;
421
422 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO idle wait timed out\n");
425 goto out_unlock;
426 }
427
428 I915_WRITE(DPIO_REG, reg);
429 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430 DPIO_BYTE);
431 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432 DRM_ERROR("DPIO read wait timed out\n");
433 goto out_unlock;
434 }
435 val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439 return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443 u32 val)
444 {
445 unsigned long flags;
446
447 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449 DRM_ERROR("DPIO idle wait timed out\n");
450 goto out_unlock;
451 }
452
453 I915_WRITE(DPIO_DATA, val);
454 I915_WRITE(DPIO_REG, reg);
455 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456 DPIO_BYTE);
457 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 /* Reset the DPIO config */
469 I915_WRITE(DPIO_CTL, 0);
470 POSTING_READ(DPIO_CTL);
471 I915_WRITE(DPIO_CTL, 1);
472 POSTING_READ(DPIO_CTL);
473 }
474
475 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
476 int refclk)
477 {
478 struct drm_device *dev = crtc->dev;
479 const intel_limit_t *limit;
480
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
482 if (intel_is_dual_link_lvds(dev)) {
483 /* LVDS dual channel */
484 if (refclk == 100000)
485 limit = &intel_limits_ironlake_dual_lvds_100m;
486 else
487 limit = &intel_limits_ironlake_dual_lvds;
488 } else {
489 if (refclk == 100000)
490 limit = &intel_limits_ironlake_single_lvds_100m;
491 else
492 limit = &intel_limits_ironlake_single_lvds;
493 }
494 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
495 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
496 limit = &intel_limits_ironlake_display_port;
497 else
498 limit = &intel_limits_ironlake_dac;
499
500 return limit;
501 }
502
503 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
504 {
505 struct drm_device *dev = crtc->dev;
506 const intel_limit_t *limit;
507
508 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
509 if (intel_is_dual_link_lvds(dev))
510 /* LVDS with dual channel */
511 limit = &intel_limits_g4x_dual_channel_lvds;
512 else
513 /* LVDS with dual channel */
514 limit = &intel_limits_g4x_single_channel_lvds;
515 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
516 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
517 limit = &intel_limits_g4x_hdmi;
518 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
519 limit = &intel_limits_g4x_sdvo;
520 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
521 limit = &intel_limits_g4x_display_port;
522 } else /* The option is for other outputs */
523 limit = &intel_limits_i9xx_sdvo;
524
525 return limit;
526 }
527
528 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
529 {
530 struct drm_device *dev = crtc->dev;
531 const intel_limit_t *limit;
532
533 if (HAS_PCH_SPLIT(dev))
534 limit = intel_ironlake_limit(crtc, refclk);
535 else if (IS_G4X(dev)) {
536 limit = intel_g4x_limit(crtc);
537 } else if (IS_PINEVIEW(dev)) {
538 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_pineview_lvds;
540 else
541 limit = &intel_limits_pineview_sdvo;
542 } else if (IS_VALLEYVIEW(dev)) {
543 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
544 limit = &intel_limits_vlv_dac;
545 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
546 limit = &intel_limits_vlv_hdmi;
547 else
548 limit = &intel_limits_vlv_dp;
549 } else if (!IS_GEN2(dev)) {
550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
551 limit = &intel_limits_i9xx_lvds;
552 else
553 limit = &intel_limits_i9xx_sdvo;
554 } else {
555 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
556 limit = &intel_limits_i8xx_lvds;
557 else
558 limit = &intel_limits_i8xx_dvo;
559 }
560 return limit;
561 }
562
563 /* m1 is reserved as 0 in Pineview, n is a ring counter */
564 static void pineview_clock(int refclk, intel_clock_t *clock)
565 {
566 clock->m = clock->m2 + 2;
567 clock->p = clock->p1 * clock->p2;
568 clock->vco = refclk * clock->m / clock->n;
569 clock->dot = clock->vco / clock->p;
570 }
571
572 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
573 {
574 if (IS_PINEVIEW(dev)) {
575 pineview_clock(refclk, clock);
576 return;
577 }
578 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
579 clock->p = clock->p1 * clock->p2;
580 clock->vco = refclk * clock->m / (clock->n + 2);
581 clock->dot = clock->vco / clock->p;
582 }
583
584 /**
585 * Returns whether any output on the specified pipe is of the specified type
586 */
587 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
588 {
589 struct drm_device *dev = crtc->dev;
590 struct intel_encoder *encoder;
591
592 for_each_encoder_on_crtc(dev, crtc, encoder)
593 if (encoder->type == type)
594 return true;
595
596 return false;
597 }
598
599 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
600 /**
601 * Returns whether the given set of divisors are valid for a given refclk with
602 * the given connectors.
603 */
604
605 static bool intel_PLL_is_valid(struct drm_device *dev,
606 const intel_limit_t *limit,
607 const intel_clock_t *clock)
608 {
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->p < limit->p.min || limit->p.max < clock->p)
612 INTELPllInvalid("p out of range\n");
613 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
614 INTELPllInvalid("m2 out of range\n");
615 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
616 INTELPllInvalid("m1 out of range\n");
617 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
618 INTELPllInvalid("m1 <= m2\n");
619 if (clock->m < limit->m.min || limit->m.max < clock->m)
620 INTELPllInvalid("m out of range\n");
621 if (clock->n < limit->n.min || limit->n.max < clock->n)
622 INTELPllInvalid("n out of range\n");
623 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
624 INTELPllInvalid("vco out of range\n");
625 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
626 * connector, etc., rather than just a single range.
627 */
628 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
629 INTELPllInvalid("dot out of range\n");
630
631 return true;
632 }
633
634 static bool
635 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
636 int target, int refclk, intel_clock_t *match_clock,
637 intel_clock_t *best_clock)
638
639 {
640 struct drm_device *dev = crtc->dev;
641 intel_clock_t clock;
642 int err = target;
643
644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
645 /*
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
649 */
650 if (intel_is_dual_link_lvds(dev))
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
661 memset(best_clock, 0, sizeof(*best_clock));
662
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
667 /* m1 is always 0 in Pineview */
668 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
669 break;
670 for (clock.n = limit->n.min;
671 clock.n <= limit->n.max; clock.n++) {
672 for (clock.p1 = limit->p1.min;
673 clock.p1 <= limit->p1.max; clock.p1++) {
674 int this_err;
675
676 intel_clock(dev, refclk, &clock);
677 if (!intel_PLL_is_valid(dev, limit,
678 &clock))
679 continue;
680 if (match_clock &&
681 clock.p != match_clock->p)
682 continue;
683
684 this_err = abs(clock.dot - target);
685 if (this_err < err) {
686 *best_clock = clock;
687 err = this_err;
688 }
689 }
690 }
691 }
692 }
693
694 return (err != target);
695 }
696
697 static bool
698 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
699 int target, int refclk, intel_clock_t *match_clock,
700 intel_clock_t *best_clock)
701 {
702 struct drm_device *dev = crtc->dev;
703 intel_clock_t clock;
704 int max_n;
705 bool found;
706 /* approximately equals target * 0.00585 */
707 int err_most = (target >> 8) + (target >> 9);
708 found = false;
709
710 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
711 int lvds_reg;
712
713 if (HAS_PCH_SPLIT(dev))
714 lvds_reg = PCH_LVDS;
715 else
716 lvds_reg = LVDS;
717 if (intel_is_dual_link_lvds(dev))
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
730 /* based on hardware requirement, prefer smaller n to precision */
731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732 /* based on hardware requirement, prefere larger m1,m2 */
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
741 intel_clock(dev, refclk, &clock);
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
744 continue;
745 if (match_clock &&
746 clock.p != match_clock->p)
747 continue;
748
749 this_err = abs(clock.dot - target);
750 if (this_err < err_most) {
751 *best_clock = clock;
752 err_most = this_err;
753 max_n = clock.n;
754 found = true;
755 }
756 }
757 }
758 }
759 }
760 return found;
761 }
762
763 static bool
764 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
765 int target, int refclk, intel_clock_t *match_clock,
766 intel_clock_t *best_clock)
767 {
768 struct drm_device *dev = crtc->dev;
769 intel_clock_t clock;
770
771 if (target < 200000) {
772 clock.n = 1;
773 clock.p1 = 2;
774 clock.p2 = 10;
775 clock.m1 = 12;
776 clock.m2 = 9;
777 } else {
778 clock.n = 2;
779 clock.p1 = 1;
780 clock.p2 = 10;
781 clock.m1 = 14;
782 clock.m2 = 8;
783 }
784 intel_clock(dev, refclk, &clock);
785 memcpy(best_clock, &clock, sizeof(intel_clock_t));
786 return true;
787 }
788
789 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
790 static bool
791 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
792 int target, int refclk, intel_clock_t *match_clock,
793 intel_clock_t *best_clock)
794 {
795 intel_clock_t clock;
796 if (target < 200000) {
797 clock.p1 = 2;
798 clock.p2 = 10;
799 clock.n = 2;
800 clock.m1 = 23;
801 clock.m2 = 8;
802 } else {
803 clock.p1 = 1;
804 clock.p2 = 10;
805 clock.n = 1;
806 clock.m1 = 14;
807 clock.m2 = 2;
808 }
809 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
810 clock.p = (clock.p1 * clock.p2);
811 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
812 clock.vco = 0;
813 memcpy(best_clock, &clock, sizeof(intel_clock_t));
814 return true;
815 }
816 static bool
817 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820 {
821 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
822 u32 m, n, fastclk;
823 u32 updrate, minupdate, fracbits, p;
824 unsigned long bestppm, ppm, absppm;
825 int dotclk, flag;
826
827 flag = 0;
828 dotclk = target * 1000;
829 bestppm = 1000000;
830 ppm = absppm = 0;
831 fastclk = dotclk / (2*100);
832 updrate = 0;
833 minupdate = 19200;
834 fracbits = 1;
835 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
836 bestm1 = bestm2 = bestp1 = bestp2 = 0;
837
838 /* based on hardware requirement, prefer smaller n to precision */
839 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
840 updrate = refclk / n;
841 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
842 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
843 if (p2 > 10)
844 p2 = p2 - 1;
845 p = p1 * p2;
846 /* based on hardware requirement, prefer bigger m1,m2 values */
847 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
848 m2 = (((2*(fastclk * p * n / m1 )) +
849 refclk) / (2*refclk));
850 m = m1 * m2;
851 vco = updrate * m;
852 if (vco >= limit->vco.min && vco < limit->vco.max) {
853 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
854 absppm = (ppm > 0) ? ppm : (-ppm);
855 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
856 bestppm = 0;
857 flag = 1;
858 }
859 if (absppm < bestppm - 10) {
860 bestppm = absppm;
861 flag = 1;
862 }
863 if (flag) {
864 bestn = n;
865 bestm1 = m1;
866 bestm2 = m2;
867 bestp1 = p1;
868 bestp2 = p2;
869 flag = 0;
870 }
871 }
872 }
873 }
874 }
875 }
876 best_clock->n = bestn;
877 best_clock->m1 = bestm1;
878 best_clock->m2 = bestm2;
879 best_clock->p1 = bestp1;
880 best_clock->p2 = bestp2;
881
882 return true;
883 }
884
885 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887 {
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 return intel_crtc->cpu_transcoder;
892 }
893
894 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
895 {
896 struct drm_i915_private *dev_priv = dev->dev_private;
897 u32 frame, frame_reg = PIPEFRAME(pipe);
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902 DRM_DEBUG_KMS("vblank wait timed out\n");
903 }
904
905 /**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914 {
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 int pipestat_reg = PIPESTAT(pipe);
917
918 if (INTEL_INFO(dev)->gen >= 5) {
919 ironlake_wait_for_vblank(dev, pipe);
920 return;
921 }
922
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939 /* Wait for vblank interrupt bit to set */
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944 }
945
946 /*
947 * intel_wait_for_pipe_off - wait for pipe to turn off
948 * @dev: drm device
949 * @pipe: pipe to wait for
950 *
951 * After disabling a pipe, we can't wait for vblank in the usual way,
952 * spinning on the vblank interrupt status bit, since we won't actually
953 * see an interrupt when the pipe is disabled.
954 *
955 * On Gen4 and above:
956 * wait for the pipe register state bit to turn off
957 *
958 * Otherwise:
959 * wait for the display line value to settle (it usually
960 * ends up stopping at the start of the next frame).
961 *
962 */
963 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
964 {
965 struct drm_i915_private *dev_priv = dev->dev_private;
966 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
967 pipe);
968
969 if (INTEL_INFO(dev)->gen >= 4) {
970 int reg = PIPECONF(cpu_transcoder);
971
972 /* Wait for the Pipe State to go off */
973 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
974 100))
975 WARN(1, "pipe_off wait timed out\n");
976 } else {
977 u32 last_line, line_mask;
978 int reg = PIPEDSL(pipe);
979 unsigned long timeout = jiffies + msecs_to_jiffies(100);
980
981 if (IS_GEN2(dev))
982 line_mask = DSL_LINEMASK_GEN2;
983 else
984 line_mask = DSL_LINEMASK_GEN3;
985
986 /* Wait for the display line to settle */
987 do {
988 last_line = I915_READ(reg) & line_mask;
989 mdelay(5);
990 } while (((I915_READ(reg) & line_mask) != last_line) &&
991 time_after(timeout, jiffies));
992 if (time_after(jiffies, timeout))
993 WARN(1, "pipe_off wait timed out\n");
994 }
995 }
996
997 static const char *state_string(bool enabled)
998 {
999 return enabled ? "on" : "off";
1000 }
1001
1002 /* Only for pre-ILK configs */
1003 static void assert_pll(struct drm_i915_private *dev_priv,
1004 enum pipe pipe, bool state)
1005 {
1006 int reg;
1007 u32 val;
1008 bool cur_state;
1009
1010 reg = DPLL(pipe);
1011 val = I915_READ(reg);
1012 cur_state = !!(val & DPLL_VCO_ENABLE);
1013 WARN(cur_state != state,
1014 "PLL state assertion failure (expected %s, current %s)\n",
1015 state_string(state), state_string(cur_state));
1016 }
1017 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1018 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1019
1020 /* For ILK+ */
1021 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1022 struct intel_pch_pll *pll,
1023 struct intel_crtc *crtc,
1024 bool state)
1025 {
1026 u32 val;
1027 bool cur_state;
1028
1029 if (HAS_PCH_LPT(dev_priv->dev)) {
1030 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1031 return;
1032 }
1033
1034 if (WARN (!pll,
1035 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1036 return;
1037
1038 val = I915_READ(pll->pll_reg);
1039 cur_state = !!(val & DPLL_VCO_ENABLE);
1040 WARN(cur_state != state,
1041 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1042 pll->pll_reg, state_string(state), state_string(cur_state), val);
1043
1044 /* Make sure the selected PLL is correctly attached to the transcoder */
1045 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1046 u32 pch_dpll;
1047
1048 pch_dpll = I915_READ(PCH_DPLL_SEL);
1049 cur_state = pll->pll_reg == _PCH_DPLL_B;
1050 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1051 "PLL[%d] not attached to this transcoder %d: %08x\n",
1052 cur_state, crtc->pipe, pch_dpll)) {
1053 cur_state = !!(val >> (4*crtc->pipe + 3));
1054 WARN(cur_state != state,
1055 "PLL[%d] not %s on this transcoder %d: %08x\n",
1056 pll->pll_reg == _PCH_DPLL_B,
1057 state_string(state),
1058 crtc->pipe,
1059 val);
1060 }
1061 }
1062 }
1063 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1064 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1065
1066 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1067 enum pipe pipe, bool state)
1068 {
1069 int reg;
1070 u32 val;
1071 bool cur_state;
1072 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1073 pipe);
1074
1075 if (IS_HASWELL(dev_priv->dev)) {
1076 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1077 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1078 val = I915_READ(reg);
1079 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1080 } else {
1081 reg = FDI_TX_CTL(pipe);
1082 val = I915_READ(reg);
1083 cur_state = !!(val & FDI_TX_ENABLE);
1084 }
1085 WARN(cur_state != state,
1086 "FDI TX state assertion failure (expected %s, current %s)\n",
1087 state_string(state), state_string(cur_state));
1088 }
1089 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1090 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1091
1092 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1093 enum pipe pipe, bool state)
1094 {
1095 int reg;
1096 u32 val;
1097 bool cur_state;
1098
1099 reg = FDI_RX_CTL(pipe);
1100 val = I915_READ(reg);
1101 cur_state = !!(val & FDI_RX_ENABLE);
1102 WARN(cur_state != state,
1103 "FDI RX state assertion failure (expected %s, current %s)\n",
1104 state_string(state), state_string(cur_state));
1105 }
1106 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1107 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1108
1109 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1110 enum pipe pipe)
1111 {
1112 int reg;
1113 u32 val;
1114
1115 /* ILK FDI PLL is always enabled */
1116 if (dev_priv->info->gen == 5)
1117 return;
1118
1119 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1120 if (IS_HASWELL(dev_priv->dev))
1121 return;
1122
1123 reg = FDI_TX_CTL(pipe);
1124 val = I915_READ(reg);
1125 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1126 }
1127
1128 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1129 enum pipe pipe)
1130 {
1131 int reg;
1132 u32 val;
1133
1134 reg = FDI_RX_CTL(pipe);
1135 val = I915_READ(reg);
1136 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1137 }
1138
1139 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1140 enum pipe pipe)
1141 {
1142 int pp_reg, lvds_reg;
1143 u32 val;
1144 enum pipe panel_pipe = PIPE_A;
1145 bool locked = true;
1146
1147 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1148 pp_reg = PCH_PP_CONTROL;
1149 lvds_reg = PCH_LVDS;
1150 } else {
1151 pp_reg = PP_CONTROL;
1152 lvds_reg = LVDS;
1153 }
1154
1155 val = I915_READ(pp_reg);
1156 if (!(val & PANEL_POWER_ON) ||
1157 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1158 locked = false;
1159
1160 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1161 panel_pipe = PIPE_B;
1162
1163 WARN(panel_pipe == pipe && locked,
1164 "panel assertion failure, pipe %c regs locked\n",
1165 pipe_name(pipe));
1166 }
1167
1168 void assert_pipe(struct drm_i915_private *dev_priv,
1169 enum pipe pipe, bool state)
1170 {
1171 int reg;
1172 u32 val;
1173 bool cur_state;
1174 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1175 pipe);
1176
1177 /* if we need the pipe A quirk it must be always on */
1178 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1179 state = true;
1180
1181 reg = PIPECONF(cpu_transcoder);
1182 val = I915_READ(reg);
1183 cur_state = !!(val & PIPECONF_ENABLE);
1184 WARN(cur_state != state,
1185 "pipe %c assertion failure (expected %s, current %s)\n",
1186 pipe_name(pipe), state_string(state), state_string(cur_state));
1187 }
1188
1189 static void assert_plane(struct drm_i915_private *dev_priv,
1190 enum plane plane, bool state)
1191 {
1192 int reg;
1193 u32 val;
1194 bool cur_state;
1195
1196 reg = DSPCNTR(plane);
1197 val = I915_READ(reg);
1198 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1199 WARN(cur_state != state,
1200 "plane %c assertion failure (expected %s, current %s)\n",
1201 plane_name(plane), state_string(state), state_string(cur_state));
1202 }
1203
1204 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1205 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1206
1207 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1208 enum pipe pipe)
1209 {
1210 int reg, i;
1211 u32 val;
1212 int cur_pipe;
1213
1214 /* Planes are fixed to pipes on ILK+ */
1215 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1216 reg = DSPCNTR(pipe);
1217 val = I915_READ(reg);
1218 WARN((val & DISPLAY_PLANE_ENABLE),
1219 "plane %c assertion failure, should be disabled but not\n",
1220 plane_name(pipe));
1221 return;
1222 }
1223
1224 /* Need to check both planes against the pipe */
1225 for (i = 0; i < 2; i++) {
1226 reg = DSPCNTR(i);
1227 val = I915_READ(reg);
1228 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1229 DISPPLANE_SEL_PIPE_SHIFT;
1230 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1231 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1232 plane_name(i), pipe_name(pipe));
1233 }
1234 }
1235
1236 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1237 {
1238 u32 val;
1239 bool enabled;
1240
1241 if (HAS_PCH_LPT(dev_priv->dev)) {
1242 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1243 return;
1244 }
1245
1246 val = I915_READ(PCH_DREF_CONTROL);
1247 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1248 DREF_SUPERSPREAD_SOURCE_MASK));
1249 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1250 }
1251
1252 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1253 enum pipe pipe)
1254 {
1255 int reg;
1256 u32 val;
1257 bool enabled;
1258
1259 reg = TRANSCONF(pipe);
1260 val = I915_READ(reg);
1261 enabled = !!(val & TRANS_ENABLE);
1262 WARN(enabled,
1263 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1264 pipe_name(pipe));
1265 }
1266
1267 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1268 enum pipe pipe, u32 port_sel, u32 val)
1269 {
1270 if ((val & DP_PORT_EN) == 0)
1271 return false;
1272
1273 if (HAS_PCH_CPT(dev_priv->dev)) {
1274 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1275 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1276 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1277 return false;
1278 } else {
1279 if ((val & DP_PIPE_MASK) != (pipe << 30))
1280 return false;
1281 }
1282 return true;
1283 }
1284
1285 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1286 enum pipe pipe, u32 val)
1287 {
1288 if ((val & PORT_ENABLE) == 0)
1289 return false;
1290
1291 if (HAS_PCH_CPT(dev_priv->dev)) {
1292 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1293 return false;
1294 } else {
1295 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1296 return false;
1297 }
1298 return true;
1299 }
1300
1301 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe, u32 val)
1303 {
1304 if ((val & LVDS_PORT_EN) == 0)
1305 return false;
1306
1307 if (HAS_PCH_CPT(dev_priv->dev)) {
1308 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1309 return false;
1310 } else {
1311 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1312 return false;
1313 }
1314 return true;
1315 }
1316
1317 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, u32 val)
1319 {
1320 if ((val & ADPA_DAC_ENABLE) == 0)
1321 return false;
1322 if (HAS_PCH_CPT(dev_priv->dev)) {
1323 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1324 return false;
1325 } else {
1326 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1327 return false;
1328 }
1329 return true;
1330 }
1331
1332 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1333 enum pipe pipe, int reg, u32 port_sel)
1334 {
1335 u32 val = I915_READ(reg);
1336 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1337 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1338 reg, pipe_name(pipe));
1339
1340 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1341 && (val & DP_PIPEB_SELECT),
1342 "IBX PCH dp port still using transcoder B\n");
1343 }
1344
1345 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1346 enum pipe pipe, int reg)
1347 {
1348 u32 val = I915_READ(reg);
1349 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1350 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1351 reg, pipe_name(pipe));
1352
1353 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1354 && (val & SDVO_PIPE_B_SELECT),
1355 "IBX PCH hdmi port still using transcoder B\n");
1356 }
1357
1358 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
1360 {
1361 int reg;
1362 u32 val;
1363
1364 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1365 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1366 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1367
1368 reg = PCH_ADPA;
1369 val = I915_READ(reg);
1370 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1371 "PCH VGA enabled on transcoder %c, should be disabled\n",
1372 pipe_name(pipe));
1373
1374 reg = PCH_LVDS;
1375 val = I915_READ(reg);
1376 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1377 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1378 pipe_name(pipe));
1379
1380 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1381 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1382 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1383 }
1384
1385 /**
1386 * intel_enable_pll - enable a PLL
1387 * @dev_priv: i915 private structure
1388 * @pipe: pipe PLL to enable
1389 *
1390 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1391 * make sure the PLL reg is writable first though, since the panel write
1392 * protect mechanism may be enabled.
1393 *
1394 * Note! This is for pre-ILK only.
1395 *
1396 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1397 */
1398 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1399 {
1400 int reg;
1401 u32 val;
1402
1403 /* No really, not for ILK+ */
1404 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1405
1406 /* PLL is protected by panel, make sure we can write it */
1407 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1408 assert_panel_unlocked(dev_priv, pipe);
1409
1410 reg = DPLL(pipe);
1411 val = I915_READ(reg);
1412 val |= DPLL_VCO_ENABLE;
1413
1414 /* We do this three times for luck */
1415 I915_WRITE(reg, val);
1416 POSTING_READ(reg);
1417 udelay(150); /* wait for warmup */
1418 I915_WRITE(reg, val);
1419 POSTING_READ(reg);
1420 udelay(150); /* wait for warmup */
1421 I915_WRITE(reg, val);
1422 POSTING_READ(reg);
1423 udelay(150); /* wait for warmup */
1424 }
1425
1426 /**
1427 * intel_disable_pll - disable a PLL
1428 * @dev_priv: i915 private structure
1429 * @pipe: pipe PLL to disable
1430 *
1431 * Disable the PLL for @pipe, making sure the pipe is off first.
1432 *
1433 * Note! This is for pre-ILK only.
1434 */
1435 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436 {
1437 int reg;
1438 u32 val;
1439
1440 /* Don't disable pipe A or pipe A PLLs if needed */
1441 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1442 return;
1443
1444 /* Make sure the pipe isn't still relying on us */
1445 assert_pipe_disabled(dev_priv, pipe);
1446
1447 reg = DPLL(pipe);
1448 val = I915_READ(reg);
1449 val &= ~DPLL_VCO_ENABLE;
1450 I915_WRITE(reg, val);
1451 POSTING_READ(reg);
1452 }
1453
1454 /* SBI access */
1455 static void
1456 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1457 {
1458 unsigned long flags;
1459
1460 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1461 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1462 100)) {
1463 DRM_ERROR("timeout waiting for SBI to become ready\n");
1464 goto out_unlock;
1465 }
1466
1467 I915_WRITE(SBI_ADDR,
1468 (reg << 16));
1469 I915_WRITE(SBI_DATA,
1470 value);
1471 I915_WRITE(SBI_CTL_STAT,
1472 SBI_BUSY |
1473 SBI_CTL_OP_CRWR);
1474
1475 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1476 100)) {
1477 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1478 goto out_unlock;
1479 }
1480
1481 out_unlock:
1482 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1483 }
1484
1485 static u32
1486 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1487 {
1488 unsigned long flags;
1489 u32 value = 0;
1490
1491 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1492 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1493 100)) {
1494 DRM_ERROR("timeout waiting for SBI to become ready\n");
1495 goto out_unlock;
1496 }
1497
1498 I915_WRITE(SBI_ADDR,
1499 (reg << 16));
1500 I915_WRITE(SBI_CTL_STAT,
1501 SBI_BUSY |
1502 SBI_CTL_OP_CRRD);
1503
1504 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1505 100)) {
1506 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1507 goto out_unlock;
1508 }
1509
1510 value = I915_READ(SBI_DATA);
1511
1512 out_unlock:
1513 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1514 return value;
1515 }
1516
1517 /**
1518 * ironlake_enable_pch_pll - enable PCH PLL
1519 * @dev_priv: i915 private structure
1520 * @pipe: pipe PLL to enable
1521 *
1522 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1523 * drives the transcoder clock.
1524 */
1525 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1526 {
1527 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1528 struct intel_pch_pll *pll;
1529 int reg;
1530 u32 val;
1531
1532 /* PCH PLLs only available on ILK, SNB and IVB */
1533 BUG_ON(dev_priv->info->gen < 5);
1534 pll = intel_crtc->pch_pll;
1535 if (pll == NULL)
1536 return;
1537
1538 if (WARN_ON(pll->refcount == 0))
1539 return;
1540
1541 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1542 pll->pll_reg, pll->active, pll->on,
1543 intel_crtc->base.base.id);
1544
1545 /* PCH refclock must be enabled first */
1546 assert_pch_refclk_enabled(dev_priv);
1547
1548 if (pll->active++ && pll->on) {
1549 assert_pch_pll_enabled(dev_priv, pll, NULL);
1550 return;
1551 }
1552
1553 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1554
1555 reg = pll->pll_reg;
1556 val = I915_READ(reg);
1557 val |= DPLL_VCO_ENABLE;
1558 I915_WRITE(reg, val);
1559 POSTING_READ(reg);
1560 udelay(200);
1561
1562 pll->on = true;
1563 }
1564
1565 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1566 {
1567 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1568 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1569 int reg;
1570 u32 val;
1571
1572 /* PCH only available on ILK+ */
1573 BUG_ON(dev_priv->info->gen < 5);
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
1579
1580 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
1583
1584 if (WARN_ON(pll->active == 0)) {
1585 assert_pch_pll_disabled(dev_priv, pll, NULL);
1586 return;
1587 }
1588
1589 if (--pll->active) {
1590 assert_pch_pll_enabled(dev_priv, pll, NULL);
1591 return;
1592 }
1593
1594 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1595
1596 /* Make sure transcoder isn't still depending on us */
1597 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1598
1599 reg = pll->pll_reg;
1600 val = I915_READ(reg);
1601 val &= ~DPLL_VCO_ENABLE;
1602 I915_WRITE(reg, val);
1603 POSTING_READ(reg);
1604 udelay(200);
1605
1606 pll->on = false;
1607 }
1608
1609 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1610 enum pipe pipe)
1611 {
1612 struct drm_device *dev = dev_priv->dev;
1613 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1614 uint32_t reg, val, pipeconf_val;
1615
1616 /* PCH only available on ILK+ */
1617 BUG_ON(dev_priv->info->gen < 5);
1618
1619 /* Make sure PCH DPLL is enabled */
1620 assert_pch_pll_enabled(dev_priv,
1621 to_intel_crtc(crtc)->pch_pll,
1622 to_intel_crtc(crtc));
1623
1624 /* FDI must be feeding us bits for PCH ports */
1625 assert_fdi_tx_enabled(dev_priv, pipe);
1626 assert_fdi_rx_enabled(dev_priv, pipe);
1627
1628 if (HAS_PCH_CPT(dev)) {
1629 /* Workaround: Set the timing override bit before enabling the
1630 * pch transcoder. */
1631 reg = TRANS_CHICKEN2(pipe);
1632 val = I915_READ(reg);
1633 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1634 I915_WRITE(reg, val);
1635 }
1636
1637 reg = TRANSCONF(pipe);
1638 val = I915_READ(reg);
1639 pipeconf_val = I915_READ(PIPECONF(pipe));
1640
1641 if (HAS_PCH_IBX(dev_priv->dev)) {
1642 /*
1643 * make the BPC in transcoder be consistent with
1644 * that in pipeconf reg.
1645 */
1646 val &= ~PIPE_BPC_MASK;
1647 val |= pipeconf_val & PIPE_BPC_MASK;
1648 }
1649
1650 val &= ~TRANS_INTERLACE_MASK;
1651 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1652 if (HAS_PCH_IBX(dev_priv->dev) &&
1653 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1654 val |= TRANS_LEGACY_INTERLACED_ILK;
1655 else
1656 val |= TRANS_INTERLACED;
1657 else
1658 val |= TRANS_PROGRESSIVE;
1659
1660 I915_WRITE(reg, val | TRANS_ENABLE);
1661 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1662 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1663 }
1664
1665 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1666 enum transcoder cpu_transcoder)
1667 {
1668 u32 val, pipeconf_val;
1669
1670 /* PCH only available on ILK+ */
1671 BUG_ON(dev_priv->info->gen < 5);
1672
1673 /* FDI must be feeding us bits for PCH ports */
1674 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1675 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1676
1677 /* Workaround: set timing override bit. */
1678 val = I915_READ(_TRANSA_CHICKEN2);
1679 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1680 I915_WRITE(_TRANSA_CHICKEN2, val);
1681
1682 val = TRANS_ENABLE;
1683 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1684
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1686 PIPECONF_INTERLACED_ILK)
1687 val |= TRANS_INTERLACED;
1688 else
1689 val |= TRANS_PROGRESSIVE;
1690
1691 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1692 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1693 DRM_ERROR("Failed to enable PCH transcoder\n");
1694 }
1695
1696 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1697 enum pipe pipe)
1698 {
1699 struct drm_device *dev = dev_priv->dev;
1700 uint32_t reg, val;
1701
1702 /* FDI relies on the transcoder */
1703 assert_fdi_tx_disabled(dev_priv, pipe);
1704 assert_fdi_rx_disabled(dev_priv, pipe);
1705
1706 /* Ports must be off as well */
1707 assert_pch_ports_disabled(dev_priv, pipe);
1708
1709 reg = TRANSCONF(pipe);
1710 val = I915_READ(reg);
1711 val &= ~TRANS_ENABLE;
1712 I915_WRITE(reg, val);
1713 /* wait for PCH transcoder off, transcoder state */
1714 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1715 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1716
1717 if (!HAS_PCH_IBX(dev)) {
1718 /* Workaround: Clear the timing override chicken bit again. */
1719 reg = TRANS_CHICKEN2(pipe);
1720 val = I915_READ(reg);
1721 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1722 I915_WRITE(reg, val);
1723 }
1724 }
1725
1726 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1727 {
1728 u32 val;
1729
1730 val = I915_READ(_TRANSACONF);
1731 val &= ~TRANS_ENABLE;
1732 I915_WRITE(_TRANSACONF, val);
1733 /* wait for PCH transcoder off, transcoder state */
1734 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1735 DRM_ERROR("Failed to disable PCH transcoder\n");
1736
1737 /* Workaround: clear timing override bit. */
1738 val = I915_READ(_TRANSA_CHICKEN2);
1739 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1740 I915_WRITE(_TRANSA_CHICKEN2, val);
1741 }
1742
1743 /**
1744 * intel_enable_pipe - enable a pipe, asserting requirements
1745 * @dev_priv: i915 private structure
1746 * @pipe: pipe to enable
1747 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1748 *
1749 * Enable @pipe, making sure that various hardware specific requirements
1750 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1751 *
1752 * @pipe should be %PIPE_A or %PIPE_B.
1753 *
1754 * Will wait until the pipe is actually running (i.e. first vblank) before
1755 * returning.
1756 */
1757 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1758 bool pch_port)
1759 {
1760 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1761 pipe);
1762 enum transcoder pch_transcoder;
1763 int reg;
1764 u32 val;
1765
1766 if (IS_HASWELL(dev_priv->dev))
1767 pch_transcoder = TRANSCODER_A;
1768 else
1769 pch_transcoder = pipe;
1770
1771 /*
1772 * A pipe without a PLL won't actually be able to drive bits from
1773 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1774 * need the check.
1775 */
1776 if (!HAS_PCH_SPLIT(dev_priv->dev))
1777 assert_pll_enabled(dev_priv, pipe);
1778 else {
1779 if (pch_port) {
1780 /* if driving the PCH, we need FDI enabled */
1781 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1782 assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
1783 }
1784 /* FIXME: assert CPU port conditions for SNB+ */
1785 }
1786
1787 reg = PIPECONF(cpu_transcoder);
1788 val = I915_READ(reg);
1789 if (val & PIPECONF_ENABLE)
1790 return;
1791
1792 I915_WRITE(reg, val | PIPECONF_ENABLE);
1793 intel_wait_for_vblank(dev_priv->dev, pipe);
1794 }
1795
1796 /**
1797 * intel_disable_pipe - disable a pipe, asserting requirements
1798 * @dev_priv: i915 private structure
1799 * @pipe: pipe to disable
1800 *
1801 * Disable @pipe, making sure that various hardware specific requirements
1802 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1803 *
1804 * @pipe should be %PIPE_A or %PIPE_B.
1805 *
1806 * Will wait until the pipe has shut down before returning.
1807 */
1808 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1809 enum pipe pipe)
1810 {
1811 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1812 pipe);
1813 int reg;
1814 u32 val;
1815
1816 /*
1817 * Make sure planes won't keep trying to pump pixels to us,
1818 * or we might hang the display.
1819 */
1820 assert_planes_disabled(dev_priv, pipe);
1821
1822 /* Don't disable pipe A or pipe A PLLs if needed */
1823 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1824 return;
1825
1826 reg = PIPECONF(cpu_transcoder);
1827 val = I915_READ(reg);
1828 if ((val & PIPECONF_ENABLE) == 0)
1829 return;
1830
1831 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1832 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1833 }
1834
1835 /*
1836 * Plane regs are double buffered, going from enabled->disabled needs a
1837 * trigger in order to latch. The display address reg provides this.
1838 */
1839 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1840 enum plane plane)
1841 {
1842 if (dev_priv->info->gen >= 4)
1843 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1844 else
1845 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1846 }
1847
1848 /**
1849 * intel_enable_plane - enable a display plane on a given pipe
1850 * @dev_priv: i915 private structure
1851 * @plane: plane to enable
1852 * @pipe: pipe being fed
1853 *
1854 * Enable @plane on @pipe, making sure that @pipe is running first.
1855 */
1856 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1857 enum plane plane, enum pipe pipe)
1858 {
1859 int reg;
1860 u32 val;
1861
1862 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1863 assert_pipe_enabled(dev_priv, pipe);
1864
1865 reg = DSPCNTR(plane);
1866 val = I915_READ(reg);
1867 if (val & DISPLAY_PLANE_ENABLE)
1868 return;
1869
1870 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1871 intel_flush_display_plane(dev_priv, plane);
1872 intel_wait_for_vblank(dev_priv->dev, pipe);
1873 }
1874
1875 /**
1876 * intel_disable_plane - disable a display plane
1877 * @dev_priv: i915 private structure
1878 * @plane: plane to disable
1879 * @pipe: pipe consuming the data
1880 *
1881 * Disable @plane; should be an independent operation.
1882 */
1883 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1884 enum plane plane, enum pipe pipe)
1885 {
1886 int reg;
1887 u32 val;
1888
1889 reg = DSPCNTR(plane);
1890 val = I915_READ(reg);
1891 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1892 return;
1893
1894 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1895 intel_flush_display_plane(dev_priv, plane);
1896 intel_wait_for_vblank(dev_priv->dev, pipe);
1897 }
1898
1899 int
1900 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1901 struct drm_i915_gem_object *obj,
1902 struct intel_ring_buffer *pipelined)
1903 {
1904 struct drm_i915_private *dev_priv = dev->dev_private;
1905 u32 alignment;
1906 int ret;
1907
1908 switch (obj->tiling_mode) {
1909 case I915_TILING_NONE:
1910 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1911 alignment = 128 * 1024;
1912 else if (INTEL_INFO(dev)->gen >= 4)
1913 alignment = 4 * 1024;
1914 else
1915 alignment = 64 * 1024;
1916 break;
1917 case I915_TILING_X:
1918 /* pin() will align the object as required by fence */
1919 alignment = 0;
1920 break;
1921 case I915_TILING_Y:
1922 /* FIXME: Is this true? */
1923 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1924 return -EINVAL;
1925 default:
1926 BUG();
1927 }
1928
1929 dev_priv->mm.interruptible = false;
1930 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1931 if (ret)
1932 goto err_interruptible;
1933
1934 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1935 * fence, whereas 965+ only requires a fence if using
1936 * framebuffer compression. For simplicity, we always install
1937 * a fence as the cost is not that onerous.
1938 */
1939 ret = i915_gem_object_get_fence(obj);
1940 if (ret)
1941 goto err_unpin;
1942
1943 i915_gem_object_pin_fence(obj);
1944
1945 dev_priv->mm.interruptible = true;
1946 return 0;
1947
1948 err_unpin:
1949 i915_gem_object_unpin(obj);
1950 err_interruptible:
1951 dev_priv->mm.interruptible = true;
1952 return ret;
1953 }
1954
1955 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1956 {
1957 i915_gem_object_unpin_fence(obj);
1958 i915_gem_object_unpin(obj);
1959 }
1960
1961 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1962 * is assumed to be a power-of-two. */
1963 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1964 unsigned int bpp,
1965 unsigned int pitch)
1966 {
1967 int tile_rows, tiles;
1968
1969 tile_rows = *y / 8;
1970 *y %= 8;
1971 tiles = *x / (512/bpp);
1972 *x %= 512/bpp;
1973
1974 return tile_rows * pitch * 8 + tiles * 4096;
1975 }
1976
1977 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1978 int x, int y)
1979 {
1980 struct drm_device *dev = crtc->dev;
1981 struct drm_i915_private *dev_priv = dev->dev_private;
1982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983 struct intel_framebuffer *intel_fb;
1984 struct drm_i915_gem_object *obj;
1985 int plane = intel_crtc->plane;
1986 unsigned long linear_offset;
1987 u32 dspcntr;
1988 u32 reg;
1989
1990 switch (plane) {
1991 case 0:
1992 case 1:
1993 break;
1994 default:
1995 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1996 return -EINVAL;
1997 }
1998
1999 intel_fb = to_intel_framebuffer(fb);
2000 obj = intel_fb->obj;
2001
2002 reg = DSPCNTR(plane);
2003 dspcntr = I915_READ(reg);
2004 /* Mask out pixel format bits in case we change it */
2005 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2006 switch (fb->pixel_format) {
2007 case DRM_FORMAT_C8:
2008 dspcntr |= DISPPLANE_8BPP;
2009 break;
2010 case DRM_FORMAT_XRGB1555:
2011 case DRM_FORMAT_ARGB1555:
2012 dspcntr |= DISPPLANE_BGRX555;
2013 break;
2014 case DRM_FORMAT_RGB565:
2015 dspcntr |= DISPPLANE_BGRX565;
2016 break;
2017 case DRM_FORMAT_XRGB8888:
2018 case DRM_FORMAT_ARGB8888:
2019 dspcntr |= DISPPLANE_BGRX888;
2020 break;
2021 case DRM_FORMAT_XBGR8888:
2022 case DRM_FORMAT_ABGR8888:
2023 dspcntr |= DISPPLANE_RGBX888;
2024 break;
2025 case DRM_FORMAT_XRGB2101010:
2026 case DRM_FORMAT_ARGB2101010:
2027 dspcntr |= DISPPLANE_BGRX101010;
2028 break;
2029 case DRM_FORMAT_XBGR2101010:
2030 case DRM_FORMAT_ABGR2101010:
2031 dspcntr |= DISPPLANE_RGBX101010;
2032 break;
2033 default:
2034 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2035 return -EINVAL;
2036 }
2037
2038 if (INTEL_INFO(dev)->gen >= 4) {
2039 if (obj->tiling_mode != I915_TILING_NONE)
2040 dspcntr |= DISPPLANE_TILED;
2041 else
2042 dspcntr &= ~DISPPLANE_TILED;
2043 }
2044
2045 I915_WRITE(reg, dspcntr);
2046
2047 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2048
2049 if (INTEL_INFO(dev)->gen >= 4) {
2050 intel_crtc->dspaddr_offset =
2051 intel_gen4_compute_offset_xtiled(&x, &y,
2052 fb->bits_per_pixel / 8,
2053 fb->pitches[0]);
2054 linear_offset -= intel_crtc->dspaddr_offset;
2055 } else {
2056 intel_crtc->dspaddr_offset = linear_offset;
2057 }
2058
2059 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2060 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2061 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2062 if (INTEL_INFO(dev)->gen >= 4) {
2063 I915_MODIFY_DISPBASE(DSPSURF(plane),
2064 obj->gtt_offset + intel_crtc->dspaddr_offset);
2065 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2066 I915_WRITE(DSPLINOFF(plane), linear_offset);
2067 } else
2068 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2069 POSTING_READ(reg);
2070
2071 return 0;
2072 }
2073
2074 static int ironlake_update_plane(struct drm_crtc *crtc,
2075 struct drm_framebuffer *fb, int x, int y)
2076 {
2077 struct drm_device *dev = crtc->dev;
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080 struct intel_framebuffer *intel_fb;
2081 struct drm_i915_gem_object *obj;
2082 int plane = intel_crtc->plane;
2083 unsigned long linear_offset;
2084 u32 dspcntr;
2085 u32 reg;
2086
2087 switch (plane) {
2088 case 0:
2089 case 1:
2090 case 2:
2091 break;
2092 default:
2093 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2094 return -EINVAL;
2095 }
2096
2097 intel_fb = to_intel_framebuffer(fb);
2098 obj = intel_fb->obj;
2099
2100 reg = DSPCNTR(plane);
2101 dspcntr = I915_READ(reg);
2102 /* Mask out pixel format bits in case we change it */
2103 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2104 switch (fb->pixel_format) {
2105 case DRM_FORMAT_C8:
2106 dspcntr |= DISPPLANE_8BPP;
2107 break;
2108 case DRM_FORMAT_RGB565:
2109 dspcntr |= DISPPLANE_BGRX565;
2110 break;
2111 case DRM_FORMAT_XRGB8888:
2112 case DRM_FORMAT_ARGB8888:
2113 dspcntr |= DISPPLANE_BGRX888;
2114 break;
2115 case DRM_FORMAT_XBGR8888:
2116 case DRM_FORMAT_ABGR8888:
2117 dspcntr |= DISPPLANE_RGBX888;
2118 break;
2119 case DRM_FORMAT_XRGB2101010:
2120 case DRM_FORMAT_ARGB2101010:
2121 dspcntr |= DISPPLANE_BGRX101010;
2122 break;
2123 case DRM_FORMAT_XBGR2101010:
2124 case DRM_FORMAT_ABGR2101010:
2125 dspcntr |= DISPPLANE_RGBX101010;
2126 break;
2127 default:
2128 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2129 return -EINVAL;
2130 }
2131
2132 if (obj->tiling_mode != I915_TILING_NONE)
2133 dspcntr |= DISPPLANE_TILED;
2134 else
2135 dspcntr &= ~DISPPLANE_TILED;
2136
2137 /* must disable */
2138 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2139
2140 I915_WRITE(reg, dspcntr);
2141
2142 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2143 intel_crtc->dspaddr_offset =
2144 intel_gen4_compute_offset_xtiled(&x, &y,
2145 fb->bits_per_pixel / 8,
2146 fb->pitches[0]);
2147 linear_offset -= intel_crtc->dspaddr_offset;
2148
2149 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2150 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2151 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2152 I915_MODIFY_DISPBASE(DSPSURF(plane),
2153 obj->gtt_offset + intel_crtc->dspaddr_offset);
2154 if (IS_HASWELL(dev)) {
2155 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2156 } else {
2157 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2158 I915_WRITE(DSPLINOFF(plane), linear_offset);
2159 }
2160 POSTING_READ(reg);
2161
2162 return 0;
2163 }
2164
2165 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2166 static int
2167 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2168 int x, int y, enum mode_set_atomic state)
2169 {
2170 struct drm_device *dev = crtc->dev;
2171 struct drm_i915_private *dev_priv = dev->dev_private;
2172
2173 if (dev_priv->display.disable_fbc)
2174 dev_priv->display.disable_fbc(dev);
2175 intel_increase_pllclock(crtc);
2176
2177 return dev_priv->display.update_plane(crtc, fb, x, y);
2178 }
2179
2180 static int
2181 intel_finish_fb(struct drm_framebuffer *old_fb)
2182 {
2183 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2184 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2185 bool was_interruptible = dev_priv->mm.interruptible;
2186 int ret;
2187
2188 wait_event(dev_priv->pending_flip_queue,
2189 atomic_read(&dev_priv->mm.wedged) ||
2190 atomic_read(&obj->pending_flip) == 0);
2191
2192 /* Big Hammer, we also need to ensure that any pending
2193 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2194 * current scanout is retired before unpinning the old
2195 * framebuffer.
2196 *
2197 * This should only fail upon a hung GPU, in which case we
2198 * can safely continue.
2199 */
2200 dev_priv->mm.interruptible = false;
2201 ret = i915_gem_object_finish_gpu(obj);
2202 dev_priv->mm.interruptible = was_interruptible;
2203
2204 return ret;
2205 }
2206
2207 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2208 {
2209 struct drm_device *dev = crtc->dev;
2210 struct drm_i915_master_private *master_priv;
2211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2212
2213 if (!dev->primary->master)
2214 return;
2215
2216 master_priv = dev->primary->master->driver_priv;
2217 if (!master_priv->sarea_priv)
2218 return;
2219
2220 switch (intel_crtc->pipe) {
2221 case 0:
2222 master_priv->sarea_priv->pipeA_x = x;
2223 master_priv->sarea_priv->pipeA_y = y;
2224 break;
2225 case 1:
2226 master_priv->sarea_priv->pipeB_x = x;
2227 master_priv->sarea_priv->pipeB_y = y;
2228 break;
2229 default:
2230 break;
2231 }
2232 }
2233
2234 static int
2235 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2236 struct drm_framebuffer *fb)
2237 {
2238 struct drm_device *dev = crtc->dev;
2239 struct drm_i915_private *dev_priv = dev->dev_private;
2240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2241 struct drm_framebuffer *old_fb;
2242 int ret;
2243
2244 /* no fb bound */
2245 if (!fb) {
2246 DRM_ERROR("No FB bound\n");
2247 return 0;
2248 }
2249
2250 if(intel_crtc->plane > dev_priv->num_pipe) {
2251 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2252 intel_crtc->plane,
2253 dev_priv->num_pipe);
2254 return -EINVAL;
2255 }
2256
2257 mutex_lock(&dev->struct_mutex);
2258 ret = intel_pin_and_fence_fb_obj(dev,
2259 to_intel_framebuffer(fb)->obj,
2260 NULL);
2261 if (ret != 0) {
2262 mutex_unlock(&dev->struct_mutex);
2263 DRM_ERROR("pin & fence failed\n");
2264 return ret;
2265 }
2266
2267 if (crtc->fb)
2268 intel_finish_fb(crtc->fb);
2269
2270 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2271 if (ret) {
2272 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2273 mutex_unlock(&dev->struct_mutex);
2274 DRM_ERROR("failed to update base address\n");
2275 return ret;
2276 }
2277
2278 old_fb = crtc->fb;
2279 crtc->fb = fb;
2280 crtc->x = x;
2281 crtc->y = y;
2282
2283 if (old_fb) {
2284 intel_wait_for_vblank(dev, intel_crtc->pipe);
2285 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2286 }
2287
2288 intel_update_fbc(dev);
2289 mutex_unlock(&dev->struct_mutex);
2290
2291 intel_crtc_update_sarea_pos(crtc, x, y);
2292
2293 return 0;
2294 }
2295
2296 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2297 {
2298 struct drm_device *dev = crtc->dev;
2299 struct drm_i915_private *dev_priv = dev->dev_private;
2300 u32 dpa_ctl;
2301
2302 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2303 dpa_ctl = I915_READ(DP_A);
2304 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2305
2306 if (clock < 200000) {
2307 u32 temp;
2308 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2309 /* workaround for 160Mhz:
2310 1) program 0x4600c bits 15:0 = 0x8124
2311 2) program 0x46010 bit 0 = 1
2312 3) program 0x46034 bit 24 = 1
2313 4) program 0x64000 bit 14 = 1
2314 */
2315 temp = I915_READ(0x4600c);
2316 temp &= 0xffff0000;
2317 I915_WRITE(0x4600c, temp | 0x8124);
2318
2319 temp = I915_READ(0x46010);
2320 I915_WRITE(0x46010, temp | 1);
2321
2322 temp = I915_READ(0x46034);
2323 I915_WRITE(0x46034, temp | (1 << 24));
2324 } else {
2325 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2326 }
2327 I915_WRITE(DP_A, dpa_ctl);
2328
2329 POSTING_READ(DP_A);
2330 udelay(500);
2331 }
2332
2333 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2334 {
2335 struct drm_device *dev = crtc->dev;
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2338 int pipe = intel_crtc->pipe;
2339 u32 reg, temp;
2340
2341 /* enable normal train */
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
2344 if (IS_IVYBRIDGE(dev)) {
2345 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2346 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2347 } else {
2348 temp &= ~FDI_LINK_TRAIN_NONE;
2349 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2350 }
2351 I915_WRITE(reg, temp);
2352
2353 reg = FDI_RX_CTL(pipe);
2354 temp = I915_READ(reg);
2355 if (HAS_PCH_CPT(dev)) {
2356 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2357 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2358 } else {
2359 temp &= ~FDI_LINK_TRAIN_NONE;
2360 temp |= FDI_LINK_TRAIN_NONE;
2361 }
2362 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2363
2364 /* wait one idle pattern time */
2365 POSTING_READ(reg);
2366 udelay(1000);
2367
2368 /* IVB wants error correction enabled */
2369 if (IS_IVYBRIDGE(dev))
2370 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2371 FDI_FE_ERRC_ENABLE);
2372 }
2373
2374 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2375 {
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377 u32 flags = I915_READ(SOUTH_CHICKEN1);
2378
2379 flags |= FDI_PHASE_SYNC_OVR(pipe);
2380 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2381 flags |= FDI_PHASE_SYNC_EN(pipe);
2382 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2383 POSTING_READ(SOUTH_CHICKEN1);
2384 }
2385
2386 static void ivb_modeset_global_resources(struct drm_device *dev)
2387 {
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389 struct intel_crtc *pipe_B_crtc =
2390 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2391 struct intel_crtc *pipe_C_crtc =
2392 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2393 uint32_t temp;
2394
2395 /* When everything is off disable fdi C so that we could enable fdi B
2396 * with all lanes. XXX: This misses the case where a pipe is not using
2397 * any pch resources and so doesn't need any fdi lanes. */
2398 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2399 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2400 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2401
2402 temp = I915_READ(SOUTH_CHICKEN1);
2403 temp &= ~FDI_BC_BIFURCATION_SELECT;
2404 DRM_DEBUG_KMS("disabling fdi C rx\n");
2405 I915_WRITE(SOUTH_CHICKEN1, temp);
2406 }
2407 }
2408
2409 /* The FDI link training functions for ILK/Ibexpeak. */
2410 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2411 {
2412 struct drm_device *dev = crtc->dev;
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2415 int pipe = intel_crtc->pipe;
2416 int plane = intel_crtc->plane;
2417 u32 reg, temp, tries;
2418
2419 /* FDI needs bits from pipe & plane first */
2420 assert_pipe_enabled(dev_priv, pipe);
2421 assert_plane_enabled(dev_priv, plane);
2422
2423 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2424 for train result */
2425 reg = FDI_RX_IMR(pipe);
2426 temp = I915_READ(reg);
2427 temp &= ~FDI_RX_SYMBOL_LOCK;
2428 temp &= ~FDI_RX_BIT_LOCK;
2429 I915_WRITE(reg, temp);
2430 I915_READ(reg);
2431 udelay(150);
2432
2433 /* enable CPU FDI TX and PCH FDI RX */
2434 reg = FDI_TX_CTL(pipe);
2435 temp = I915_READ(reg);
2436 temp &= ~(7 << 19);
2437 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2438 temp &= ~FDI_LINK_TRAIN_NONE;
2439 temp |= FDI_LINK_TRAIN_PATTERN_1;
2440 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2441
2442 reg = FDI_RX_CTL(pipe);
2443 temp = I915_READ(reg);
2444 temp &= ~FDI_LINK_TRAIN_NONE;
2445 temp |= FDI_LINK_TRAIN_PATTERN_1;
2446 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2447
2448 POSTING_READ(reg);
2449 udelay(150);
2450
2451 /* Ironlake workaround, enable clock pointer after FDI enable*/
2452 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2453 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2454 FDI_RX_PHASE_SYNC_POINTER_EN);
2455
2456 reg = FDI_RX_IIR(pipe);
2457 for (tries = 0; tries < 5; tries++) {
2458 temp = I915_READ(reg);
2459 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2460
2461 if ((temp & FDI_RX_BIT_LOCK)) {
2462 DRM_DEBUG_KMS("FDI train 1 done.\n");
2463 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2464 break;
2465 }
2466 }
2467 if (tries == 5)
2468 DRM_ERROR("FDI train 1 fail!\n");
2469
2470 /* Train 2 */
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~FDI_LINK_TRAIN_NONE;
2474 temp |= FDI_LINK_TRAIN_PATTERN_2;
2475 I915_WRITE(reg, temp);
2476
2477 reg = FDI_RX_CTL(pipe);
2478 temp = I915_READ(reg);
2479 temp &= ~FDI_LINK_TRAIN_NONE;
2480 temp |= FDI_LINK_TRAIN_PATTERN_2;
2481 I915_WRITE(reg, temp);
2482
2483 POSTING_READ(reg);
2484 udelay(150);
2485
2486 reg = FDI_RX_IIR(pipe);
2487 for (tries = 0; tries < 5; tries++) {
2488 temp = I915_READ(reg);
2489 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2490
2491 if (temp & FDI_RX_SYMBOL_LOCK) {
2492 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2493 DRM_DEBUG_KMS("FDI train 2 done.\n");
2494 break;
2495 }
2496 }
2497 if (tries == 5)
2498 DRM_ERROR("FDI train 2 fail!\n");
2499
2500 DRM_DEBUG_KMS("FDI train done\n");
2501
2502 }
2503
2504 static const int snb_b_fdi_train_param[] = {
2505 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2506 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2507 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2508 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2509 };
2510
2511 /* The FDI link training functions for SNB/Cougarpoint. */
2512 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2513 {
2514 struct drm_device *dev = crtc->dev;
2515 struct drm_i915_private *dev_priv = dev->dev_private;
2516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517 int pipe = intel_crtc->pipe;
2518 u32 reg, temp, i, retry;
2519
2520 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2521 for train result */
2522 reg = FDI_RX_IMR(pipe);
2523 temp = I915_READ(reg);
2524 temp &= ~FDI_RX_SYMBOL_LOCK;
2525 temp &= ~FDI_RX_BIT_LOCK;
2526 I915_WRITE(reg, temp);
2527
2528 POSTING_READ(reg);
2529 udelay(150);
2530
2531 /* enable CPU FDI TX and PCH FDI RX */
2532 reg = FDI_TX_CTL(pipe);
2533 temp = I915_READ(reg);
2534 temp &= ~(7 << 19);
2535 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2536 temp &= ~FDI_LINK_TRAIN_NONE;
2537 temp |= FDI_LINK_TRAIN_PATTERN_1;
2538 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2539 /* SNB-B */
2540 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2541 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2542
2543 I915_WRITE(FDI_RX_MISC(pipe),
2544 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2545
2546 reg = FDI_RX_CTL(pipe);
2547 temp = I915_READ(reg);
2548 if (HAS_PCH_CPT(dev)) {
2549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2550 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2551 } else {
2552 temp &= ~FDI_LINK_TRAIN_NONE;
2553 temp |= FDI_LINK_TRAIN_PATTERN_1;
2554 }
2555 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2556
2557 POSTING_READ(reg);
2558 udelay(150);
2559
2560 cpt_phase_pointer_enable(dev, pipe);
2561
2562 for (i = 0; i < 4; i++) {
2563 reg = FDI_TX_CTL(pipe);
2564 temp = I915_READ(reg);
2565 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566 temp |= snb_b_fdi_train_param[i];
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
2570 udelay(500);
2571
2572 for (retry = 0; retry < 5; retry++) {
2573 reg = FDI_RX_IIR(pipe);
2574 temp = I915_READ(reg);
2575 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576 if (temp & FDI_RX_BIT_LOCK) {
2577 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579 break;
2580 }
2581 udelay(50);
2582 }
2583 if (retry < 5)
2584 break;
2585 }
2586 if (i == 4)
2587 DRM_ERROR("FDI train 1 fail!\n");
2588
2589 /* Train 2 */
2590 reg = FDI_TX_CTL(pipe);
2591 temp = I915_READ(reg);
2592 temp &= ~FDI_LINK_TRAIN_NONE;
2593 temp |= FDI_LINK_TRAIN_PATTERN_2;
2594 if (IS_GEN6(dev)) {
2595 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596 /* SNB-B */
2597 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598 }
2599 I915_WRITE(reg, temp);
2600
2601 reg = FDI_RX_CTL(pipe);
2602 temp = I915_READ(reg);
2603 if (HAS_PCH_CPT(dev)) {
2604 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606 } else {
2607 temp &= ~FDI_LINK_TRAIN_NONE;
2608 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609 }
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 for (i = 0; i < 4; i++) {
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
2618 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619 temp |= snb_b_fdi_train_param[i];
2620 I915_WRITE(reg, temp);
2621
2622 POSTING_READ(reg);
2623 udelay(500);
2624
2625 for (retry = 0; retry < 5; retry++) {
2626 reg = FDI_RX_IIR(pipe);
2627 temp = I915_READ(reg);
2628 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629 if (temp & FDI_RX_SYMBOL_LOCK) {
2630 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632 break;
2633 }
2634 udelay(50);
2635 }
2636 if (retry < 5)
2637 break;
2638 }
2639 if (i == 4)
2640 DRM_ERROR("FDI train 2 fail!\n");
2641
2642 DRM_DEBUG_KMS("FDI train done.\n");
2643 }
2644
2645 /* Manual link training for Ivy Bridge A0 parts */
2646 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647 {
2648 struct drm_device *dev = crtc->dev;
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651 int pipe = intel_crtc->pipe;
2652 u32 reg, temp, i;
2653
2654 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655 for train result */
2656 reg = FDI_RX_IMR(pipe);
2657 temp = I915_READ(reg);
2658 temp &= ~FDI_RX_SYMBOL_LOCK;
2659 temp &= ~FDI_RX_BIT_LOCK;
2660 I915_WRITE(reg, temp);
2661
2662 POSTING_READ(reg);
2663 udelay(150);
2664
2665 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666 I915_READ(FDI_RX_IIR(pipe)));
2667
2668 /* enable CPU FDI TX and PCH FDI RX */
2669 reg = FDI_TX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~(7 << 19);
2672 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2677 temp |= FDI_COMPOSITE_SYNC;
2678 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
2680 I915_WRITE(FDI_RX_MISC(pipe),
2681 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_AUTO;
2686 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2688 temp |= FDI_COMPOSITE_SYNC;
2689 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691 POSTING_READ(reg);
2692 udelay(150);
2693
2694 cpt_phase_pointer_enable(dev, pipe);
2695
2696 for (i = 0; i < 4; i++) {
2697 reg = FDI_TX_CTL(pipe);
2698 temp = I915_READ(reg);
2699 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2700 temp |= snb_b_fdi_train_param[i];
2701 I915_WRITE(reg, temp);
2702
2703 POSTING_READ(reg);
2704 udelay(500);
2705
2706 reg = FDI_RX_IIR(pipe);
2707 temp = I915_READ(reg);
2708 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2709
2710 if (temp & FDI_RX_BIT_LOCK ||
2711 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2712 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2713 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2714 break;
2715 }
2716 }
2717 if (i == 4)
2718 DRM_ERROR("FDI train 1 fail!\n");
2719
2720 /* Train 2 */
2721 reg = FDI_TX_CTL(pipe);
2722 temp = I915_READ(reg);
2723 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2724 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2725 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2726 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727 I915_WRITE(reg, temp);
2728
2729 reg = FDI_RX_CTL(pipe);
2730 temp = I915_READ(reg);
2731 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2732 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2733 I915_WRITE(reg, temp);
2734
2735 POSTING_READ(reg);
2736 udelay(150);
2737
2738 for (i = 0; i < 4; i++) {
2739 reg = FDI_TX_CTL(pipe);
2740 temp = I915_READ(reg);
2741 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2742 temp |= snb_b_fdi_train_param[i];
2743 I915_WRITE(reg, temp);
2744
2745 POSTING_READ(reg);
2746 udelay(500);
2747
2748 reg = FDI_RX_IIR(pipe);
2749 temp = I915_READ(reg);
2750 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2751
2752 if (temp & FDI_RX_SYMBOL_LOCK) {
2753 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2754 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2755 break;
2756 }
2757 }
2758 if (i == 4)
2759 DRM_ERROR("FDI train 2 fail!\n");
2760
2761 DRM_DEBUG_KMS("FDI train done.\n");
2762 }
2763
2764 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2765 {
2766 struct drm_device *dev = intel_crtc->base.dev;
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 int pipe = intel_crtc->pipe;
2769 u32 reg, temp;
2770
2771
2772 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2773 reg = FDI_RX_CTL(pipe);
2774 temp = I915_READ(reg);
2775 temp &= ~((0x7 << 19) | (0x7 << 16));
2776 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2777 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2778 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2779
2780 POSTING_READ(reg);
2781 udelay(200);
2782
2783 /* Switch from Rawclk to PCDclk */
2784 temp = I915_READ(reg);
2785 I915_WRITE(reg, temp | FDI_PCDCLK);
2786
2787 POSTING_READ(reg);
2788 udelay(200);
2789
2790 /* On Haswell, the PLL configuration for ports and pipes is handled
2791 * separately, as part of DDI setup */
2792 if (!IS_HASWELL(dev)) {
2793 /* Enable CPU FDI TX PLL, always on for Ironlake */
2794 reg = FDI_TX_CTL(pipe);
2795 temp = I915_READ(reg);
2796 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2797 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2798
2799 POSTING_READ(reg);
2800 udelay(100);
2801 }
2802 }
2803 }
2804
2805 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2806 {
2807 struct drm_device *dev = intel_crtc->base.dev;
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 int pipe = intel_crtc->pipe;
2810 u32 reg, temp;
2811
2812 /* Switch from PCDclk to Rawclk */
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2816
2817 /* Disable CPU FDI TX PLL */
2818 reg = FDI_TX_CTL(pipe);
2819 temp = I915_READ(reg);
2820 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2821
2822 POSTING_READ(reg);
2823 udelay(100);
2824
2825 reg = FDI_RX_CTL(pipe);
2826 temp = I915_READ(reg);
2827 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2828
2829 /* Wait for the clocks to turn off. */
2830 POSTING_READ(reg);
2831 udelay(100);
2832 }
2833
2834 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2835 {
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 u32 flags = I915_READ(SOUTH_CHICKEN1);
2838
2839 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2840 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2841 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2842 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2843 POSTING_READ(SOUTH_CHICKEN1);
2844 }
2845 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2846 {
2847 struct drm_device *dev = crtc->dev;
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2850 int pipe = intel_crtc->pipe;
2851 u32 reg, temp;
2852
2853 /* disable CPU FDI tx and PCH FDI rx */
2854 reg = FDI_TX_CTL(pipe);
2855 temp = I915_READ(reg);
2856 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2857 POSTING_READ(reg);
2858
2859 reg = FDI_RX_CTL(pipe);
2860 temp = I915_READ(reg);
2861 temp &= ~(0x7 << 16);
2862 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2863 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2864
2865 POSTING_READ(reg);
2866 udelay(100);
2867
2868 /* Ironlake workaround, disable clock pointer after downing FDI */
2869 if (HAS_PCH_IBX(dev)) {
2870 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2871 } else if (HAS_PCH_CPT(dev)) {
2872 cpt_phase_pointer_disable(dev, pipe);
2873 }
2874
2875 /* still set train pattern 1 */
2876 reg = FDI_TX_CTL(pipe);
2877 temp = I915_READ(reg);
2878 temp &= ~FDI_LINK_TRAIN_NONE;
2879 temp |= FDI_LINK_TRAIN_PATTERN_1;
2880 I915_WRITE(reg, temp);
2881
2882 reg = FDI_RX_CTL(pipe);
2883 temp = I915_READ(reg);
2884 if (HAS_PCH_CPT(dev)) {
2885 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2886 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2887 } else {
2888 temp &= ~FDI_LINK_TRAIN_NONE;
2889 temp |= FDI_LINK_TRAIN_PATTERN_1;
2890 }
2891 /* BPC in FDI rx is consistent with that in PIPECONF */
2892 temp &= ~(0x07 << 16);
2893 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2894 I915_WRITE(reg, temp);
2895
2896 POSTING_READ(reg);
2897 udelay(100);
2898 }
2899
2900 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901 {
2902 struct drm_device *dev = crtc->dev;
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 unsigned long flags;
2905 bool pending;
2906
2907 if (atomic_read(&dev_priv->mm.wedged))
2908 return false;
2909
2910 spin_lock_irqsave(&dev->event_lock, flags);
2911 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2912 spin_unlock_irqrestore(&dev->event_lock, flags);
2913
2914 return pending;
2915 }
2916
2917 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2918 {
2919 struct drm_device *dev = crtc->dev;
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921
2922 if (crtc->fb == NULL)
2923 return;
2924
2925 wait_event(dev_priv->pending_flip_queue,
2926 !intel_crtc_has_pending_flip(crtc));
2927
2928 mutex_lock(&dev->struct_mutex);
2929 intel_finish_fb(crtc->fb);
2930 mutex_unlock(&dev->struct_mutex);
2931 }
2932
2933 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2934 {
2935 struct drm_device *dev = crtc->dev;
2936 struct intel_encoder *intel_encoder;
2937
2938 /*
2939 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2940 * must be driven by its own crtc; no sharing is possible.
2941 */
2942 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2943 switch (intel_encoder->type) {
2944 case INTEL_OUTPUT_EDP:
2945 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2946 return false;
2947 continue;
2948 }
2949 }
2950
2951 return true;
2952 }
2953
2954 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2955 {
2956 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2957 }
2958
2959 /* Program iCLKIP clock to the desired frequency */
2960 static void lpt_program_iclkip(struct drm_crtc *crtc)
2961 {
2962 struct drm_device *dev = crtc->dev;
2963 struct drm_i915_private *dev_priv = dev->dev_private;
2964 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2965 u32 temp;
2966
2967 /* It is necessary to ungate the pixclk gate prior to programming
2968 * the divisors, and gate it back when it is done.
2969 */
2970 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2971
2972 /* Disable SSCCTL */
2973 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2974 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2975 SBI_SSCCTL_DISABLE);
2976
2977 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2978 if (crtc->mode.clock == 20000) {
2979 auxdiv = 1;
2980 divsel = 0x41;
2981 phaseinc = 0x20;
2982 } else {
2983 /* The iCLK virtual clock root frequency is in MHz,
2984 * but the crtc->mode.clock in in KHz. To get the divisors,
2985 * it is necessary to divide one by another, so we
2986 * convert the virtual clock precision to KHz here for higher
2987 * precision.
2988 */
2989 u32 iclk_virtual_root_freq = 172800 * 1000;
2990 u32 iclk_pi_range = 64;
2991 u32 desired_divisor, msb_divisor_value, pi_value;
2992
2993 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2994 msb_divisor_value = desired_divisor / iclk_pi_range;
2995 pi_value = desired_divisor % iclk_pi_range;
2996
2997 auxdiv = 0;
2998 divsel = msb_divisor_value - 2;
2999 phaseinc = pi_value;
3000 }
3001
3002 /* This should not happen with any sane values */
3003 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3004 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3005 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3006 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3007
3008 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3009 crtc->mode.clock,
3010 auxdiv,
3011 divsel,
3012 phasedir,
3013 phaseinc);
3014
3015 /* Program SSCDIVINTPHASE6 */
3016 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3017 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3018 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3019 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3020 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3021 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3022 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3023
3024 intel_sbi_write(dev_priv,
3025 SBI_SSCDIVINTPHASE6,
3026 temp);
3027
3028 /* Program SSCAUXDIV */
3029 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3030 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3031 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3032 intel_sbi_write(dev_priv,
3033 SBI_SSCAUXDIV6,
3034 temp);
3035
3036
3037 /* Enable modulator and associated divider */
3038 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3039 temp &= ~SBI_SSCCTL_DISABLE;
3040 intel_sbi_write(dev_priv,
3041 SBI_SSCCTL6,
3042 temp);
3043
3044 /* Wait for initialization time */
3045 udelay(24);
3046
3047 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3048 }
3049
3050 /*
3051 * Enable PCH resources required for PCH ports:
3052 * - PCH PLLs
3053 * - FDI training & RX/TX
3054 * - update transcoder timings
3055 * - DP transcoding bits
3056 * - transcoder
3057 */
3058 static void ironlake_pch_enable(struct drm_crtc *crtc)
3059 {
3060 struct drm_device *dev = crtc->dev;
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3063 int pipe = intel_crtc->pipe;
3064 u32 reg, temp;
3065
3066 assert_transcoder_disabled(dev_priv, pipe);
3067
3068 /* Write the TU size bits before fdi link training, so that error
3069 * detection works. */
3070 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3071 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3072
3073 /* For PCH output, training FDI link */
3074 dev_priv->display.fdi_link_train(crtc);
3075
3076 /* XXX: pch pll's can be enabled any time before we enable the PCH
3077 * transcoder, and we actually should do this to not upset any PCH
3078 * transcoder that already use the clock when we share it.
3079 *
3080 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3081 * unconditionally resets the pll - we need that to have the right LVDS
3082 * enable sequence. */
3083 ironlake_enable_pch_pll(intel_crtc);
3084
3085 if (HAS_PCH_CPT(dev)) {
3086 u32 sel;
3087
3088 temp = I915_READ(PCH_DPLL_SEL);
3089 switch (pipe) {
3090 default:
3091 case 0:
3092 temp |= TRANSA_DPLL_ENABLE;
3093 sel = TRANSA_DPLLB_SEL;
3094 break;
3095 case 1:
3096 temp |= TRANSB_DPLL_ENABLE;
3097 sel = TRANSB_DPLLB_SEL;
3098 break;
3099 case 2:
3100 temp |= TRANSC_DPLL_ENABLE;
3101 sel = TRANSC_DPLLB_SEL;
3102 break;
3103 }
3104 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3105 temp |= sel;
3106 else
3107 temp &= ~sel;
3108 I915_WRITE(PCH_DPLL_SEL, temp);
3109 }
3110
3111 /* set transcoder timing, panel must allow it */
3112 assert_panel_unlocked(dev_priv, pipe);
3113 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3114 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3115 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3116
3117 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3118 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3119 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3120 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3121
3122 intel_fdi_normal_train(crtc);
3123
3124 /* For PCH DP, enable TRANS_DP_CTL */
3125 if (HAS_PCH_CPT(dev) &&
3126 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3127 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3128 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3129 reg = TRANS_DP_CTL(pipe);
3130 temp = I915_READ(reg);
3131 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3132 TRANS_DP_SYNC_MASK |
3133 TRANS_DP_BPC_MASK);
3134 temp |= (TRANS_DP_OUTPUT_ENABLE |
3135 TRANS_DP_ENH_FRAMING);
3136 temp |= bpc << 9; /* same format but at 11:9 */
3137
3138 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3139 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3140 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3141 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3142
3143 switch (intel_trans_dp_port_sel(crtc)) {
3144 case PCH_DP_B:
3145 temp |= TRANS_DP_PORT_SEL_B;
3146 break;
3147 case PCH_DP_C:
3148 temp |= TRANS_DP_PORT_SEL_C;
3149 break;
3150 case PCH_DP_D:
3151 temp |= TRANS_DP_PORT_SEL_D;
3152 break;
3153 default:
3154 BUG();
3155 }
3156
3157 I915_WRITE(reg, temp);
3158 }
3159
3160 ironlake_enable_pch_transcoder(dev_priv, pipe);
3161 }
3162
3163 static void lpt_pch_enable(struct drm_crtc *crtc)
3164 {
3165 struct drm_device *dev = crtc->dev;
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3168 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3169
3170 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3171
3172 lpt_program_iclkip(crtc);
3173
3174 /* Set transcoder timing. */
3175 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3176 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3177 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3178
3179 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3180 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3181 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3182 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3183
3184 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3185 }
3186
3187 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3188 {
3189 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3190
3191 if (pll == NULL)
3192 return;
3193
3194 if (pll->refcount == 0) {
3195 WARN(1, "bad PCH PLL refcount\n");
3196 return;
3197 }
3198
3199 --pll->refcount;
3200 intel_crtc->pch_pll = NULL;
3201 }
3202
3203 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3204 {
3205 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3206 struct intel_pch_pll *pll;
3207 int i;
3208
3209 pll = intel_crtc->pch_pll;
3210 if (pll) {
3211 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3212 intel_crtc->base.base.id, pll->pll_reg);
3213 goto prepare;
3214 }
3215
3216 if (HAS_PCH_IBX(dev_priv->dev)) {
3217 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3218 i = intel_crtc->pipe;
3219 pll = &dev_priv->pch_plls[i];
3220
3221 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3222 intel_crtc->base.base.id, pll->pll_reg);
3223
3224 goto found;
3225 }
3226
3227 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3228 pll = &dev_priv->pch_plls[i];
3229
3230 /* Only want to check enabled timings first */
3231 if (pll->refcount == 0)
3232 continue;
3233
3234 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3235 fp == I915_READ(pll->fp0_reg)) {
3236 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3237 intel_crtc->base.base.id,
3238 pll->pll_reg, pll->refcount, pll->active);
3239
3240 goto found;
3241 }
3242 }
3243
3244 /* Ok no matching timings, maybe there's a free one? */
3245 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3246 pll = &dev_priv->pch_plls[i];
3247 if (pll->refcount == 0) {
3248 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3249 intel_crtc->base.base.id, pll->pll_reg);
3250 goto found;
3251 }
3252 }
3253
3254 return NULL;
3255
3256 found:
3257 intel_crtc->pch_pll = pll;
3258 pll->refcount++;
3259 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3260 prepare: /* separate function? */
3261 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3262
3263 /* Wait for the clocks to stabilize before rewriting the regs */
3264 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3265 POSTING_READ(pll->pll_reg);
3266 udelay(150);
3267
3268 I915_WRITE(pll->fp0_reg, fp);
3269 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3270 pll->on = false;
3271 return pll;
3272 }
3273
3274 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3275 {
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277 int dslreg = PIPEDSL(pipe);
3278 u32 temp;
3279
3280 temp = I915_READ(dslreg);
3281 udelay(500);
3282 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3283 if (wait_for(I915_READ(dslreg) != temp, 5))
3284 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3285 }
3286 }
3287
3288 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3289 {
3290 struct drm_device *dev = crtc->dev;
3291 struct drm_i915_private *dev_priv = dev->dev_private;
3292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3293 struct intel_encoder *encoder;
3294 int pipe = intel_crtc->pipe;
3295 int plane = intel_crtc->plane;
3296 u32 temp;
3297 bool is_pch_port;
3298
3299 WARN_ON(!crtc->enabled);
3300
3301 if (intel_crtc->active)
3302 return;
3303
3304 intel_crtc->active = true;
3305 intel_update_watermarks(dev);
3306
3307 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3308 temp = I915_READ(PCH_LVDS);
3309 if ((temp & LVDS_PORT_EN) == 0)
3310 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3311 }
3312
3313 is_pch_port = ironlake_crtc_driving_pch(crtc);
3314
3315 if (is_pch_port) {
3316 /* Note: FDI PLL enabling _must_ be done before we enable the
3317 * cpu pipes, hence this is separate from all the other fdi/pch
3318 * enabling. */
3319 ironlake_fdi_pll_enable(intel_crtc);
3320 } else {
3321 assert_fdi_tx_disabled(dev_priv, pipe);
3322 assert_fdi_rx_disabled(dev_priv, pipe);
3323 }
3324
3325 for_each_encoder_on_crtc(dev, crtc, encoder)
3326 if (encoder->pre_enable)
3327 encoder->pre_enable(encoder);
3328
3329 /* Enable panel fitting for LVDS */
3330 if (dev_priv->pch_pf_size &&
3331 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3332 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3333 /* Force use of hard-coded filter coefficients
3334 * as some pre-programmed values are broken,
3335 * e.g. x201.
3336 */
3337 if (IS_IVYBRIDGE(dev))
3338 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3339 PF_PIPE_SEL_IVB(pipe));
3340 else
3341 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3342 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3343 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3344 }
3345
3346 /*
3347 * On ILK+ LUT must be loaded before the pipe is running but with
3348 * clocks enabled
3349 */
3350 intel_crtc_load_lut(crtc);
3351
3352 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3353 intel_enable_plane(dev_priv, plane, pipe);
3354
3355 if (is_pch_port)
3356 ironlake_pch_enable(crtc);
3357
3358 mutex_lock(&dev->struct_mutex);
3359 intel_update_fbc(dev);
3360 mutex_unlock(&dev->struct_mutex);
3361
3362 intel_crtc_update_cursor(crtc, true);
3363
3364 for_each_encoder_on_crtc(dev, crtc, encoder)
3365 encoder->enable(encoder);
3366
3367 if (HAS_PCH_CPT(dev))
3368 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3369
3370 /*
3371 * There seems to be a race in PCH platform hw (at least on some
3372 * outputs) where an enabled pipe still completes any pageflip right
3373 * away (as if the pipe is off) instead of waiting for vblank. As soon
3374 * as the first vblank happend, everything works as expected. Hence just
3375 * wait for one vblank before returning to avoid strange things
3376 * happening.
3377 */
3378 intel_wait_for_vblank(dev, intel_crtc->pipe);
3379 }
3380
3381 static void haswell_crtc_enable(struct drm_crtc *crtc)
3382 {
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386 struct intel_encoder *encoder;
3387 int pipe = intel_crtc->pipe;
3388 int plane = intel_crtc->plane;
3389 bool is_pch_port;
3390
3391 WARN_ON(!crtc->enabled);
3392
3393 if (intel_crtc->active)
3394 return;
3395
3396 intel_crtc->active = true;
3397 intel_update_watermarks(dev);
3398
3399 is_pch_port = haswell_crtc_driving_pch(crtc);
3400
3401 if (is_pch_port)
3402 dev_priv->display.fdi_link_train(crtc);
3403
3404 for_each_encoder_on_crtc(dev, crtc, encoder)
3405 if (encoder->pre_enable)
3406 encoder->pre_enable(encoder);
3407
3408 intel_ddi_enable_pipe_clock(intel_crtc);
3409
3410 /* Enable panel fitting for eDP */
3411 if (dev_priv->pch_pf_size &&
3412 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3413 /* Force use of hard-coded filter coefficients
3414 * as some pre-programmed values are broken,
3415 * e.g. x201.
3416 */
3417 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3418 PF_PIPE_SEL_IVB(pipe));
3419 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3420 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3421 }
3422
3423 /*
3424 * On ILK+ LUT must be loaded before the pipe is running but with
3425 * clocks enabled
3426 */
3427 intel_crtc_load_lut(crtc);
3428
3429 intel_ddi_set_pipe_settings(crtc);
3430 intel_ddi_enable_pipe_func(crtc);
3431
3432 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3433 intel_enable_plane(dev_priv, plane, pipe);
3434
3435 if (is_pch_port)
3436 lpt_pch_enable(crtc);
3437
3438 mutex_lock(&dev->struct_mutex);
3439 intel_update_fbc(dev);
3440 mutex_unlock(&dev->struct_mutex);
3441
3442 intel_crtc_update_cursor(crtc, true);
3443
3444 for_each_encoder_on_crtc(dev, crtc, encoder)
3445 encoder->enable(encoder);
3446
3447 /*
3448 * There seems to be a race in PCH platform hw (at least on some
3449 * outputs) where an enabled pipe still completes any pageflip right
3450 * away (as if the pipe is off) instead of waiting for vblank. As soon
3451 * as the first vblank happend, everything works as expected. Hence just
3452 * wait for one vblank before returning to avoid strange things
3453 * happening.
3454 */
3455 intel_wait_for_vblank(dev, intel_crtc->pipe);
3456 }
3457
3458 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3459 {
3460 struct drm_device *dev = crtc->dev;
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3463 struct intel_encoder *encoder;
3464 int pipe = intel_crtc->pipe;
3465 int plane = intel_crtc->plane;
3466 u32 reg, temp;
3467
3468
3469 if (!intel_crtc->active)
3470 return;
3471
3472 for_each_encoder_on_crtc(dev, crtc, encoder)
3473 encoder->disable(encoder);
3474
3475 intel_crtc_wait_for_pending_flips(crtc);
3476 drm_vblank_off(dev, pipe);
3477 intel_crtc_update_cursor(crtc, false);
3478
3479 intel_disable_plane(dev_priv, plane, pipe);
3480
3481 if (dev_priv->cfb_plane == plane)
3482 intel_disable_fbc(dev);
3483
3484 intel_disable_pipe(dev_priv, pipe);
3485
3486 /* Disable PF */
3487 I915_WRITE(PF_CTL(pipe), 0);
3488 I915_WRITE(PF_WIN_SZ(pipe), 0);
3489
3490 for_each_encoder_on_crtc(dev, crtc, encoder)
3491 if (encoder->post_disable)
3492 encoder->post_disable(encoder);
3493
3494 ironlake_fdi_disable(crtc);
3495
3496 ironlake_disable_pch_transcoder(dev_priv, pipe);
3497
3498 if (HAS_PCH_CPT(dev)) {
3499 /* disable TRANS_DP_CTL */
3500 reg = TRANS_DP_CTL(pipe);
3501 temp = I915_READ(reg);
3502 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3503 temp |= TRANS_DP_PORT_SEL_NONE;
3504 I915_WRITE(reg, temp);
3505
3506 /* disable DPLL_SEL */
3507 temp = I915_READ(PCH_DPLL_SEL);
3508 switch (pipe) {
3509 case 0:
3510 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3511 break;
3512 case 1:
3513 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3514 break;
3515 case 2:
3516 /* C shares PLL A or B */
3517 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3518 break;
3519 default:
3520 BUG(); /* wtf */
3521 }
3522 I915_WRITE(PCH_DPLL_SEL, temp);
3523 }
3524
3525 /* disable PCH DPLL */
3526 intel_disable_pch_pll(intel_crtc);
3527
3528 ironlake_fdi_pll_disable(intel_crtc);
3529
3530 intel_crtc->active = false;
3531 intel_update_watermarks(dev);
3532
3533 mutex_lock(&dev->struct_mutex);
3534 intel_update_fbc(dev);
3535 mutex_unlock(&dev->struct_mutex);
3536 }
3537
3538 static void haswell_crtc_disable(struct drm_crtc *crtc)
3539 {
3540 struct drm_device *dev = crtc->dev;
3541 struct drm_i915_private *dev_priv = dev->dev_private;
3542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3543 struct intel_encoder *encoder;
3544 int pipe = intel_crtc->pipe;
3545 int plane = intel_crtc->plane;
3546 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3547 bool is_pch_port;
3548
3549 if (!intel_crtc->active)
3550 return;
3551
3552 is_pch_port = haswell_crtc_driving_pch(crtc);
3553
3554 for_each_encoder_on_crtc(dev, crtc, encoder)
3555 encoder->disable(encoder);
3556
3557 intel_crtc_wait_for_pending_flips(crtc);
3558 drm_vblank_off(dev, pipe);
3559 intel_crtc_update_cursor(crtc, false);
3560
3561 intel_disable_plane(dev_priv, plane, pipe);
3562
3563 if (dev_priv->cfb_plane == plane)
3564 intel_disable_fbc(dev);
3565
3566 intel_disable_pipe(dev_priv, pipe);
3567
3568 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3569
3570 /* Disable PF */
3571 I915_WRITE(PF_CTL(pipe), 0);
3572 I915_WRITE(PF_WIN_SZ(pipe), 0);
3573
3574 intel_ddi_disable_pipe_clock(intel_crtc);
3575
3576 for_each_encoder_on_crtc(dev, crtc, encoder)
3577 if (encoder->post_disable)
3578 encoder->post_disable(encoder);
3579
3580 if (is_pch_port) {
3581 lpt_disable_pch_transcoder(dev_priv);
3582 intel_ddi_fdi_disable(crtc);
3583 }
3584
3585 intel_crtc->active = false;
3586 intel_update_watermarks(dev);
3587
3588 mutex_lock(&dev->struct_mutex);
3589 intel_update_fbc(dev);
3590 mutex_unlock(&dev->struct_mutex);
3591 }
3592
3593 static void ironlake_crtc_off(struct drm_crtc *crtc)
3594 {
3595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3596 intel_put_pch_pll(intel_crtc);
3597 }
3598
3599 static void haswell_crtc_off(struct drm_crtc *crtc)
3600 {
3601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3602
3603 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3604 * start using it. */
3605 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3606
3607 intel_ddi_put_crtc_pll(crtc);
3608 }
3609
3610 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3611 {
3612 if (!enable && intel_crtc->overlay) {
3613 struct drm_device *dev = intel_crtc->base.dev;
3614 struct drm_i915_private *dev_priv = dev->dev_private;
3615
3616 mutex_lock(&dev->struct_mutex);
3617 dev_priv->mm.interruptible = false;
3618 (void) intel_overlay_switch_off(intel_crtc->overlay);
3619 dev_priv->mm.interruptible = true;
3620 mutex_unlock(&dev->struct_mutex);
3621 }
3622
3623 /* Let userspace switch the overlay on again. In most cases userspace
3624 * has to recompute where to put it anyway.
3625 */
3626 }
3627
3628 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3629 {
3630 struct drm_device *dev = crtc->dev;
3631 struct drm_i915_private *dev_priv = dev->dev_private;
3632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3633 struct intel_encoder *encoder;
3634 int pipe = intel_crtc->pipe;
3635 int plane = intel_crtc->plane;
3636
3637 WARN_ON(!crtc->enabled);
3638
3639 if (intel_crtc->active)
3640 return;
3641
3642 intel_crtc->active = true;
3643 intel_update_watermarks(dev);
3644
3645 intel_enable_pll(dev_priv, pipe);
3646 intel_enable_pipe(dev_priv, pipe, false);
3647 intel_enable_plane(dev_priv, plane, pipe);
3648
3649 intel_crtc_load_lut(crtc);
3650 intel_update_fbc(dev);
3651
3652 /* Give the overlay scaler a chance to enable if it's on this pipe */
3653 intel_crtc_dpms_overlay(intel_crtc, true);
3654 intel_crtc_update_cursor(crtc, true);
3655
3656 for_each_encoder_on_crtc(dev, crtc, encoder)
3657 encoder->enable(encoder);
3658 }
3659
3660 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3661 {
3662 struct drm_device *dev = crtc->dev;
3663 struct drm_i915_private *dev_priv = dev->dev_private;
3664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3665 struct intel_encoder *encoder;
3666 int pipe = intel_crtc->pipe;
3667 int plane = intel_crtc->plane;
3668
3669
3670 if (!intel_crtc->active)
3671 return;
3672
3673 for_each_encoder_on_crtc(dev, crtc, encoder)
3674 encoder->disable(encoder);
3675
3676 /* Give the overlay scaler a chance to disable if it's on this pipe */
3677 intel_crtc_wait_for_pending_flips(crtc);
3678 drm_vblank_off(dev, pipe);
3679 intel_crtc_dpms_overlay(intel_crtc, false);
3680 intel_crtc_update_cursor(crtc, false);
3681
3682 if (dev_priv->cfb_plane == plane)
3683 intel_disable_fbc(dev);
3684
3685 intel_disable_plane(dev_priv, plane, pipe);
3686 intel_disable_pipe(dev_priv, pipe);
3687 intel_disable_pll(dev_priv, pipe);
3688
3689 intel_crtc->active = false;
3690 intel_update_fbc(dev);
3691 intel_update_watermarks(dev);
3692 }
3693
3694 static void i9xx_crtc_off(struct drm_crtc *crtc)
3695 {
3696 }
3697
3698 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3699 bool enabled)
3700 {
3701 struct drm_device *dev = crtc->dev;
3702 struct drm_i915_master_private *master_priv;
3703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3704 int pipe = intel_crtc->pipe;
3705
3706 if (!dev->primary->master)
3707 return;
3708
3709 master_priv = dev->primary->master->driver_priv;
3710 if (!master_priv->sarea_priv)
3711 return;
3712
3713 switch (pipe) {
3714 case 0:
3715 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3716 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3717 break;
3718 case 1:
3719 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3720 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3721 break;
3722 default:
3723 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3724 break;
3725 }
3726 }
3727
3728 /**
3729 * Sets the power management mode of the pipe and plane.
3730 */
3731 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3732 {
3733 struct drm_device *dev = crtc->dev;
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735 struct intel_encoder *intel_encoder;
3736 bool enable = false;
3737
3738 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3739 enable |= intel_encoder->connectors_active;
3740
3741 if (enable)
3742 dev_priv->display.crtc_enable(crtc);
3743 else
3744 dev_priv->display.crtc_disable(crtc);
3745
3746 intel_crtc_update_sarea(crtc, enable);
3747 }
3748
3749 static void intel_crtc_noop(struct drm_crtc *crtc)
3750 {
3751 }
3752
3753 static void intel_crtc_disable(struct drm_crtc *crtc)
3754 {
3755 struct drm_device *dev = crtc->dev;
3756 struct drm_connector *connector;
3757 struct drm_i915_private *dev_priv = dev->dev_private;
3758
3759 /* crtc should still be enabled when we disable it. */
3760 WARN_ON(!crtc->enabled);
3761
3762 dev_priv->display.crtc_disable(crtc);
3763 intel_crtc_update_sarea(crtc, false);
3764 dev_priv->display.off(crtc);
3765
3766 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3767 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3768
3769 if (crtc->fb) {
3770 mutex_lock(&dev->struct_mutex);
3771 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3772 mutex_unlock(&dev->struct_mutex);
3773 crtc->fb = NULL;
3774 }
3775
3776 /* Update computed state. */
3777 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3778 if (!connector->encoder || !connector->encoder->crtc)
3779 continue;
3780
3781 if (connector->encoder->crtc != crtc)
3782 continue;
3783
3784 connector->dpms = DRM_MODE_DPMS_OFF;
3785 to_intel_encoder(connector->encoder)->connectors_active = false;
3786 }
3787 }
3788
3789 void intel_modeset_disable(struct drm_device *dev)
3790 {
3791 struct drm_crtc *crtc;
3792
3793 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3794 if (crtc->enabled)
3795 intel_crtc_disable(crtc);
3796 }
3797 }
3798
3799 void intel_encoder_noop(struct drm_encoder *encoder)
3800 {
3801 }
3802
3803 void intel_encoder_destroy(struct drm_encoder *encoder)
3804 {
3805 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3806
3807 drm_encoder_cleanup(encoder);
3808 kfree(intel_encoder);
3809 }
3810
3811 /* Simple dpms helper for encodres with just one connector, no cloning and only
3812 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3813 * state of the entire output pipe. */
3814 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3815 {
3816 if (mode == DRM_MODE_DPMS_ON) {
3817 encoder->connectors_active = true;
3818
3819 intel_crtc_update_dpms(encoder->base.crtc);
3820 } else {
3821 encoder->connectors_active = false;
3822
3823 intel_crtc_update_dpms(encoder->base.crtc);
3824 }
3825 }
3826
3827 /* Cross check the actual hw state with our own modeset state tracking (and it's
3828 * internal consistency). */
3829 static void intel_connector_check_state(struct intel_connector *connector)
3830 {
3831 if (connector->get_hw_state(connector)) {
3832 struct intel_encoder *encoder = connector->encoder;
3833 struct drm_crtc *crtc;
3834 bool encoder_enabled;
3835 enum pipe pipe;
3836
3837 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3838 connector->base.base.id,
3839 drm_get_connector_name(&connector->base));
3840
3841 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3842 "wrong connector dpms state\n");
3843 WARN(connector->base.encoder != &encoder->base,
3844 "active connector not linked to encoder\n");
3845 WARN(!encoder->connectors_active,
3846 "encoder->connectors_active not set\n");
3847
3848 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3849 WARN(!encoder_enabled, "encoder not enabled\n");
3850 if (WARN_ON(!encoder->base.crtc))
3851 return;
3852
3853 crtc = encoder->base.crtc;
3854
3855 WARN(!crtc->enabled, "crtc not enabled\n");
3856 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3857 WARN(pipe != to_intel_crtc(crtc)->pipe,
3858 "encoder active on the wrong pipe\n");
3859 }
3860 }
3861
3862 /* Even simpler default implementation, if there's really no special case to
3863 * consider. */
3864 void intel_connector_dpms(struct drm_connector *connector, int mode)
3865 {
3866 struct intel_encoder *encoder = intel_attached_encoder(connector);
3867
3868 /* All the simple cases only support two dpms states. */
3869 if (mode != DRM_MODE_DPMS_ON)
3870 mode = DRM_MODE_DPMS_OFF;
3871
3872 if (mode == connector->dpms)
3873 return;
3874
3875 connector->dpms = mode;
3876
3877 /* Only need to change hw state when actually enabled */
3878 if (encoder->base.crtc)
3879 intel_encoder_dpms(encoder, mode);
3880 else
3881 WARN_ON(encoder->connectors_active != false);
3882
3883 intel_modeset_check_state(connector->dev);
3884 }
3885
3886 /* Simple connector->get_hw_state implementation for encoders that support only
3887 * one connector and no cloning and hence the encoder state determines the state
3888 * of the connector. */
3889 bool intel_connector_get_hw_state(struct intel_connector *connector)
3890 {
3891 enum pipe pipe = 0;
3892 struct intel_encoder *encoder = connector->encoder;
3893
3894 return encoder->get_hw_state(encoder, &pipe);
3895 }
3896
3897 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3898 const struct drm_display_mode *mode,
3899 struct drm_display_mode *adjusted_mode)
3900 {
3901 struct drm_device *dev = crtc->dev;
3902
3903 if (HAS_PCH_SPLIT(dev)) {
3904 /* FDI link clock is fixed at 2.7G */
3905 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3906 return false;
3907 }
3908
3909 /* All interlaced capable intel hw wants timings in frames. Note though
3910 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3911 * timings, so we need to be careful not to clobber these.*/
3912 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3913 drm_mode_set_crtcinfo(adjusted_mode, 0);
3914
3915 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3916 * with a hsync front porch of 0.
3917 */
3918 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3919 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3920 return false;
3921
3922 return true;
3923 }
3924
3925 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3926 {
3927 return 400000; /* FIXME */
3928 }
3929
3930 static int i945_get_display_clock_speed(struct drm_device *dev)
3931 {
3932 return 400000;
3933 }
3934
3935 static int i915_get_display_clock_speed(struct drm_device *dev)
3936 {
3937 return 333000;
3938 }
3939
3940 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3941 {
3942 return 200000;
3943 }
3944
3945 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3946 {
3947 u16 gcfgc = 0;
3948
3949 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3950
3951 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3952 return 133000;
3953 else {
3954 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3955 case GC_DISPLAY_CLOCK_333_MHZ:
3956 return 333000;
3957 default:
3958 case GC_DISPLAY_CLOCK_190_200_MHZ:
3959 return 190000;
3960 }
3961 }
3962 }
3963
3964 static int i865_get_display_clock_speed(struct drm_device *dev)
3965 {
3966 return 266000;
3967 }
3968
3969 static int i855_get_display_clock_speed(struct drm_device *dev)
3970 {
3971 u16 hpllcc = 0;
3972 /* Assume that the hardware is in the high speed state. This
3973 * should be the default.
3974 */
3975 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3976 case GC_CLOCK_133_200:
3977 case GC_CLOCK_100_200:
3978 return 200000;
3979 case GC_CLOCK_166_250:
3980 return 250000;
3981 case GC_CLOCK_100_133:
3982 return 133000;
3983 }
3984
3985 /* Shouldn't happen */
3986 return 0;
3987 }
3988
3989 static int i830_get_display_clock_speed(struct drm_device *dev)
3990 {
3991 return 133000;
3992 }
3993
3994 struct fdi_m_n {
3995 u32 tu;
3996 u32 gmch_m;
3997 u32 gmch_n;
3998 u32 link_m;
3999 u32 link_n;
4000 };
4001
4002 static void
4003 fdi_reduce_ratio(u32 *num, u32 *den)
4004 {
4005 while (*num > 0xffffff || *den > 0xffffff) {
4006 *num >>= 1;
4007 *den >>= 1;
4008 }
4009 }
4010
4011 static void
4012 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4013 int link_clock, struct fdi_m_n *m_n)
4014 {
4015 m_n->tu = 64; /* default size */
4016
4017 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4018 m_n->gmch_m = bits_per_pixel * pixel_clock;
4019 m_n->gmch_n = link_clock * nlanes * 8;
4020 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4021
4022 m_n->link_m = pixel_clock;
4023 m_n->link_n = link_clock;
4024 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4025 }
4026
4027 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4028 {
4029 if (i915_panel_use_ssc >= 0)
4030 return i915_panel_use_ssc != 0;
4031 return dev_priv->lvds_use_ssc
4032 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4033 }
4034
4035 /**
4036 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4037 * @crtc: CRTC structure
4038 * @mode: requested mode
4039 *
4040 * A pipe may be connected to one or more outputs. Based on the depth of the
4041 * attached framebuffer, choose a good color depth to use on the pipe.
4042 *
4043 * If possible, match the pipe depth to the fb depth. In some cases, this
4044 * isn't ideal, because the connected output supports a lesser or restricted
4045 * set of depths. Resolve that here:
4046 * LVDS typically supports only 6bpc, so clamp down in that case
4047 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4048 * Displays may support a restricted set as well, check EDID and clamp as
4049 * appropriate.
4050 * DP may want to dither down to 6bpc to fit larger modes
4051 *
4052 * RETURNS:
4053 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4054 * true if they don't match).
4055 */
4056 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4057 struct drm_framebuffer *fb,
4058 unsigned int *pipe_bpp,
4059 struct drm_display_mode *mode)
4060 {
4061 struct drm_device *dev = crtc->dev;
4062 struct drm_i915_private *dev_priv = dev->dev_private;
4063 struct drm_connector *connector;
4064 struct intel_encoder *intel_encoder;
4065 unsigned int display_bpc = UINT_MAX, bpc;
4066
4067 /* Walk the encoders & connectors on this crtc, get min bpc */
4068 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4069
4070 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4071 unsigned int lvds_bpc;
4072
4073 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4074 LVDS_A3_POWER_UP)
4075 lvds_bpc = 8;
4076 else
4077 lvds_bpc = 6;
4078
4079 if (lvds_bpc < display_bpc) {
4080 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4081 display_bpc = lvds_bpc;
4082 }
4083 continue;
4084 }
4085
4086 /* Not one of the known troublemakers, check the EDID */
4087 list_for_each_entry(connector, &dev->mode_config.connector_list,
4088 head) {
4089 if (connector->encoder != &intel_encoder->base)
4090 continue;
4091
4092 /* Don't use an invalid EDID bpc value */
4093 if (connector->display_info.bpc &&
4094 connector->display_info.bpc < display_bpc) {
4095 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4096 display_bpc = connector->display_info.bpc;
4097 }
4098 }
4099
4100 /*
4101 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4102 * through, clamp it down. (Note: >12bpc will be caught below.)
4103 */
4104 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4105 if (display_bpc > 8 && display_bpc < 12) {
4106 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4107 display_bpc = 12;
4108 } else {
4109 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4110 display_bpc = 8;
4111 }
4112 }
4113 }
4114
4115 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4116 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4117 display_bpc = 6;
4118 }
4119
4120 /*
4121 * We could just drive the pipe at the highest bpc all the time and
4122 * enable dithering as needed, but that costs bandwidth. So choose
4123 * the minimum value that expresses the full color range of the fb but
4124 * also stays within the max display bpc discovered above.
4125 */
4126
4127 switch (fb->depth) {
4128 case 8:
4129 bpc = 8; /* since we go through a colormap */
4130 break;
4131 case 15:
4132 case 16:
4133 bpc = 6; /* min is 18bpp */
4134 break;
4135 case 24:
4136 bpc = 8;
4137 break;
4138 case 30:
4139 bpc = 10;
4140 break;
4141 case 48:
4142 bpc = 12;
4143 break;
4144 default:
4145 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4146 bpc = min((unsigned int)8, display_bpc);
4147 break;
4148 }
4149
4150 display_bpc = min(display_bpc, bpc);
4151
4152 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4153 bpc, display_bpc);
4154
4155 *pipe_bpp = display_bpc * 3;
4156
4157 return display_bpc != bpc;
4158 }
4159
4160 static int vlv_get_refclk(struct drm_crtc *crtc)
4161 {
4162 struct drm_device *dev = crtc->dev;
4163 struct drm_i915_private *dev_priv = dev->dev_private;
4164 int refclk = 27000; /* for DP & HDMI */
4165
4166 return 100000; /* only one validated so far */
4167
4168 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4169 refclk = 96000;
4170 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4171 if (intel_panel_use_ssc(dev_priv))
4172 refclk = 100000;
4173 else
4174 refclk = 96000;
4175 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4176 refclk = 100000;
4177 }
4178
4179 return refclk;
4180 }
4181
4182 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4183 {
4184 struct drm_device *dev = crtc->dev;
4185 struct drm_i915_private *dev_priv = dev->dev_private;
4186 int refclk;
4187
4188 if (IS_VALLEYVIEW(dev)) {
4189 refclk = vlv_get_refclk(crtc);
4190 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4191 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4192 refclk = dev_priv->lvds_ssc_freq * 1000;
4193 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4194 refclk / 1000);
4195 } else if (!IS_GEN2(dev)) {
4196 refclk = 96000;
4197 } else {
4198 refclk = 48000;
4199 }
4200
4201 return refclk;
4202 }
4203
4204 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4205 intel_clock_t *clock)
4206 {
4207 /* SDVO TV has fixed PLL values depend on its clock range,
4208 this mirrors vbios setting. */
4209 if (adjusted_mode->clock >= 100000
4210 && adjusted_mode->clock < 140500) {
4211 clock->p1 = 2;
4212 clock->p2 = 10;
4213 clock->n = 3;
4214 clock->m1 = 16;
4215 clock->m2 = 8;
4216 } else if (adjusted_mode->clock >= 140500
4217 && adjusted_mode->clock <= 200000) {
4218 clock->p1 = 1;
4219 clock->p2 = 10;
4220 clock->n = 6;
4221 clock->m1 = 12;
4222 clock->m2 = 8;
4223 }
4224 }
4225
4226 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4227 intel_clock_t *clock,
4228 intel_clock_t *reduced_clock)
4229 {
4230 struct drm_device *dev = crtc->dev;
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4233 int pipe = intel_crtc->pipe;
4234 u32 fp, fp2 = 0;
4235
4236 if (IS_PINEVIEW(dev)) {
4237 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4238 if (reduced_clock)
4239 fp2 = (1 << reduced_clock->n) << 16 |
4240 reduced_clock->m1 << 8 | reduced_clock->m2;
4241 } else {
4242 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4243 if (reduced_clock)
4244 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4245 reduced_clock->m2;
4246 }
4247
4248 I915_WRITE(FP0(pipe), fp);
4249
4250 intel_crtc->lowfreq_avail = false;
4251 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4252 reduced_clock && i915_powersave) {
4253 I915_WRITE(FP1(pipe), fp2);
4254 intel_crtc->lowfreq_avail = true;
4255 } else {
4256 I915_WRITE(FP1(pipe), fp);
4257 }
4258 }
4259
4260 static void vlv_update_pll(struct drm_crtc *crtc,
4261 struct drm_display_mode *mode,
4262 struct drm_display_mode *adjusted_mode,
4263 intel_clock_t *clock, intel_clock_t *reduced_clock,
4264 int num_connectors)
4265 {
4266 struct drm_device *dev = crtc->dev;
4267 struct drm_i915_private *dev_priv = dev->dev_private;
4268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4269 int pipe = intel_crtc->pipe;
4270 u32 dpll, mdiv, pdiv;
4271 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4272 bool is_sdvo;
4273 u32 temp;
4274
4275 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4276 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4277
4278 dpll = DPLL_VGA_MODE_DIS;
4279 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4280 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4281 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4282
4283 I915_WRITE(DPLL(pipe), dpll);
4284 POSTING_READ(DPLL(pipe));
4285
4286 bestn = clock->n;
4287 bestm1 = clock->m1;
4288 bestm2 = clock->m2;
4289 bestp1 = clock->p1;
4290 bestp2 = clock->p2;
4291
4292 /*
4293 * In Valleyview PLL and program lane counter registers are exposed
4294 * through DPIO interface
4295 */
4296 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4297 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4298 mdiv |= ((bestn << DPIO_N_SHIFT));
4299 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4300 mdiv |= (1 << DPIO_K_SHIFT);
4301 mdiv |= DPIO_ENABLE_CALIBRATION;
4302 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4303
4304 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4305
4306 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4307 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4308 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4309 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4310 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4311
4312 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4313
4314 dpll |= DPLL_VCO_ENABLE;
4315 I915_WRITE(DPLL(pipe), dpll);
4316 POSTING_READ(DPLL(pipe));
4317 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4318 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4319
4320 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4321
4322 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4323 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4324
4325 I915_WRITE(DPLL(pipe), dpll);
4326
4327 /* Wait for the clocks to stabilize. */
4328 POSTING_READ(DPLL(pipe));
4329 udelay(150);
4330
4331 temp = 0;
4332 if (is_sdvo) {
4333 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4334 if (temp > 1)
4335 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4336 else
4337 temp = 0;
4338 }
4339 I915_WRITE(DPLL_MD(pipe), temp);
4340 POSTING_READ(DPLL_MD(pipe));
4341
4342 /* Now program lane control registers */
4343 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4344 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4345 {
4346 temp = 0x1000C4;
4347 if(pipe == 1)
4348 temp |= (1 << 21);
4349 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4350 }
4351 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4352 {
4353 temp = 0x1000C4;
4354 if(pipe == 1)
4355 temp |= (1 << 21);
4356 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4357 }
4358 }
4359
4360 static void i9xx_update_pll(struct drm_crtc *crtc,
4361 struct drm_display_mode *mode,
4362 struct drm_display_mode *adjusted_mode,
4363 intel_clock_t *clock, intel_clock_t *reduced_clock,
4364 int num_connectors)
4365 {
4366 struct drm_device *dev = crtc->dev;
4367 struct drm_i915_private *dev_priv = dev->dev_private;
4368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4369 struct intel_encoder *encoder;
4370 int pipe = intel_crtc->pipe;
4371 u32 dpll;
4372 bool is_sdvo;
4373
4374 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4375
4376 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4377 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4378
4379 dpll = DPLL_VGA_MODE_DIS;
4380
4381 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4382 dpll |= DPLLB_MODE_LVDS;
4383 else
4384 dpll |= DPLLB_MODE_DAC_SERIAL;
4385 if (is_sdvo) {
4386 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4387 if (pixel_multiplier > 1) {
4388 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4389 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4390 }
4391 dpll |= DPLL_DVO_HIGH_SPEED;
4392 }
4393 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4394 dpll |= DPLL_DVO_HIGH_SPEED;
4395
4396 /* compute bitmask from p1 value */
4397 if (IS_PINEVIEW(dev))
4398 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4399 else {
4400 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4401 if (IS_G4X(dev) && reduced_clock)
4402 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4403 }
4404 switch (clock->p2) {
4405 case 5:
4406 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4407 break;
4408 case 7:
4409 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4410 break;
4411 case 10:
4412 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4413 break;
4414 case 14:
4415 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4416 break;
4417 }
4418 if (INTEL_INFO(dev)->gen >= 4)
4419 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4420
4421 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4422 dpll |= PLL_REF_INPUT_TVCLKINBC;
4423 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4424 /* XXX: just matching BIOS for now */
4425 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4426 dpll |= 3;
4427 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4428 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4429 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4430 else
4431 dpll |= PLL_REF_INPUT_DREFCLK;
4432
4433 dpll |= DPLL_VCO_ENABLE;
4434 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4435 POSTING_READ(DPLL(pipe));
4436 udelay(150);
4437
4438 for_each_encoder_on_crtc(dev, crtc, encoder)
4439 if (encoder->pre_pll_enable)
4440 encoder->pre_pll_enable(encoder);
4441
4442 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4443 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4444
4445 I915_WRITE(DPLL(pipe), dpll);
4446
4447 /* Wait for the clocks to stabilize. */
4448 POSTING_READ(DPLL(pipe));
4449 udelay(150);
4450
4451 if (INTEL_INFO(dev)->gen >= 4) {
4452 u32 temp = 0;
4453 if (is_sdvo) {
4454 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4455 if (temp > 1)
4456 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4457 else
4458 temp = 0;
4459 }
4460 I915_WRITE(DPLL_MD(pipe), temp);
4461 } else {
4462 /* The pixel multiplier can only be updated once the
4463 * DPLL is enabled and the clocks are stable.
4464 *
4465 * So write it again.
4466 */
4467 I915_WRITE(DPLL(pipe), dpll);
4468 }
4469 }
4470
4471 static void i8xx_update_pll(struct drm_crtc *crtc,
4472 struct drm_display_mode *adjusted_mode,
4473 intel_clock_t *clock, intel_clock_t *reduced_clock,
4474 int num_connectors)
4475 {
4476 struct drm_device *dev = crtc->dev;
4477 struct drm_i915_private *dev_priv = dev->dev_private;
4478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4479 struct intel_encoder *encoder;
4480 int pipe = intel_crtc->pipe;
4481 u32 dpll;
4482
4483 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4484
4485 dpll = DPLL_VGA_MODE_DIS;
4486
4487 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4488 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4489 } else {
4490 if (clock->p1 == 2)
4491 dpll |= PLL_P1_DIVIDE_BY_TWO;
4492 else
4493 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4494 if (clock->p2 == 4)
4495 dpll |= PLL_P2_DIVIDE_BY_4;
4496 }
4497
4498 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4499 /* XXX: just matching BIOS for now */
4500 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4501 dpll |= 3;
4502 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4503 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4504 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4505 else
4506 dpll |= PLL_REF_INPUT_DREFCLK;
4507
4508 dpll |= DPLL_VCO_ENABLE;
4509 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4510 POSTING_READ(DPLL(pipe));
4511 udelay(150);
4512
4513 for_each_encoder_on_crtc(dev, crtc, encoder)
4514 if (encoder->pre_pll_enable)
4515 encoder->pre_pll_enable(encoder);
4516
4517 I915_WRITE(DPLL(pipe), dpll);
4518
4519 /* Wait for the clocks to stabilize. */
4520 POSTING_READ(DPLL(pipe));
4521 udelay(150);
4522
4523 /* The pixel multiplier can only be updated once the
4524 * DPLL is enabled and the clocks are stable.
4525 *
4526 * So write it again.
4527 */
4528 I915_WRITE(DPLL(pipe), dpll);
4529 }
4530
4531 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4532 struct drm_display_mode *mode,
4533 struct drm_display_mode *adjusted_mode)
4534 {
4535 struct drm_device *dev = intel_crtc->base.dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 enum pipe pipe = intel_crtc->pipe;
4538 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4539 uint32_t vsyncshift;
4540
4541 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4542 /* the chip adds 2 halflines automatically */
4543 adjusted_mode->crtc_vtotal -= 1;
4544 adjusted_mode->crtc_vblank_end -= 1;
4545 vsyncshift = adjusted_mode->crtc_hsync_start
4546 - adjusted_mode->crtc_htotal / 2;
4547 } else {
4548 vsyncshift = 0;
4549 }
4550
4551 if (INTEL_INFO(dev)->gen > 3)
4552 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4553
4554 I915_WRITE(HTOTAL(cpu_transcoder),
4555 (adjusted_mode->crtc_hdisplay - 1) |
4556 ((adjusted_mode->crtc_htotal - 1) << 16));
4557 I915_WRITE(HBLANK(cpu_transcoder),
4558 (adjusted_mode->crtc_hblank_start - 1) |
4559 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4560 I915_WRITE(HSYNC(cpu_transcoder),
4561 (adjusted_mode->crtc_hsync_start - 1) |
4562 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4563
4564 I915_WRITE(VTOTAL(cpu_transcoder),
4565 (adjusted_mode->crtc_vdisplay - 1) |
4566 ((adjusted_mode->crtc_vtotal - 1) << 16));
4567 I915_WRITE(VBLANK(cpu_transcoder),
4568 (adjusted_mode->crtc_vblank_start - 1) |
4569 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4570 I915_WRITE(VSYNC(cpu_transcoder),
4571 (adjusted_mode->crtc_vsync_start - 1) |
4572 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4573
4574 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4575 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4576 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4577 * bits. */
4578 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4579 (pipe == PIPE_B || pipe == PIPE_C))
4580 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4581
4582 /* pipesrc controls the size that is scaled from, which should
4583 * always be the user's requested size.
4584 */
4585 I915_WRITE(PIPESRC(pipe),
4586 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4587 }
4588
4589 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4590 struct drm_display_mode *mode,
4591 struct drm_display_mode *adjusted_mode,
4592 int x, int y,
4593 struct drm_framebuffer *fb)
4594 {
4595 struct drm_device *dev = crtc->dev;
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4598 int pipe = intel_crtc->pipe;
4599 int plane = intel_crtc->plane;
4600 int refclk, num_connectors = 0;
4601 intel_clock_t clock, reduced_clock;
4602 u32 dspcntr, pipeconf;
4603 bool ok, has_reduced_clock = false, is_sdvo = false;
4604 bool is_lvds = false, is_tv = false, is_dp = false;
4605 struct intel_encoder *encoder;
4606 const intel_limit_t *limit;
4607 int ret;
4608
4609 for_each_encoder_on_crtc(dev, crtc, encoder) {
4610 switch (encoder->type) {
4611 case INTEL_OUTPUT_LVDS:
4612 is_lvds = true;
4613 break;
4614 case INTEL_OUTPUT_SDVO:
4615 case INTEL_OUTPUT_HDMI:
4616 is_sdvo = true;
4617 if (encoder->needs_tv_clock)
4618 is_tv = true;
4619 break;
4620 case INTEL_OUTPUT_TVOUT:
4621 is_tv = true;
4622 break;
4623 case INTEL_OUTPUT_DISPLAYPORT:
4624 is_dp = true;
4625 break;
4626 }
4627
4628 num_connectors++;
4629 }
4630
4631 refclk = i9xx_get_refclk(crtc, num_connectors);
4632
4633 /*
4634 * Returns a set of divisors for the desired target clock with the given
4635 * refclk, or FALSE. The returned values represent the clock equation:
4636 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4637 */
4638 limit = intel_limit(crtc, refclk);
4639 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4640 &clock);
4641 if (!ok) {
4642 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4643 return -EINVAL;
4644 }
4645
4646 /* Ensure that the cursor is valid for the new mode before changing... */
4647 intel_crtc_update_cursor(crtc, true);
4648
4649 if (is_lvds && dev_priv->lvds_downclock_avail) {
4650 /*
4651 * Ensure we match the reduced clock's P to the target clock.
4652 * If the clocks don't match, we can't switch the display clock
4653 * by using the FP0/FP1. In such case we will disable the LVDS
4654 * downclock feature.
4655 */
4656 has_reduced_clock = limit->find_pll(limit, crtc,
4657 dev_priv->lvds_downclock,
4658 refclk,
4659 &clock,
4660 &reduced_clock);
4661 }
4662
4663 if (is_sdvo && is_tv)
4664 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4665
4666 if (IS_GEN2(dev))
4667 i8xx_update_pll(crtc, adjusted_mode, &clock,
4668 has_reduced_clock ? &reduced_clock : NULL,
4669 num_connectors);
4670 else if (IS_VALLEYVIEW(dev))
4671 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4672 has_reduced_clock ? &reduced_clock : NULL,
4673 num_connectors);
4674 else
4675 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4676 has_reduced_clock ? &reduced_clock : NULL,
4677 num_connectors);
4678
4679 /* setup pipeconf */
4680 pipeconf = I915_READ(PIPECONF(pipe));
4681
4682 /* Set up the display plane register */
4683 dspcntr = DISPPLANE_GAMMA_ENABLE;
4684
4685 if (pipe == 0)
4686 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4687 else
4688 dspcntr |= DISPPLANE_SEL_PIPE_B;
4689
4690 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4691 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4692 * core speed.
4693 *
4694 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4695 * pipe == 0 check?
4696 */
4697 if (mode->clock >
4698 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4699 pipeconf |= PIPECONF_DOUBLE_WIDE;
4700 else
4701 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4702 }
4703
4704 /* default to 8bpc */
4705 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4706 if (is_dp) {
4707 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4708 pipeconf |= PIPECONF_BPP_6 |
4709 PIPECONF_DITHER_EN |
4710 PIPECONF_DITHER_TYPE_SP;
4711 }
4712 }
4713
4714 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4715 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4716 pipeconf |= PIPECONF_BPP_6 |
4717 PIPECONF_ENABLE |
4718 I965_PIPECONF_ACTIVE;
4719 }
4720 }
4721
4722 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4723 drm_mode_debug_printmodeline(mode);
4724
4725 if (HAS_PIPE_CXSR(dev)) {
4726 if (intel_crtc->lowfreq_avail) {
4727 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4728 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4729 } else {
4730 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4731 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4732 }
4733 }
4734
4735 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4736 if (!IS_GEN2(dev) &&
4737 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4738 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4739 else
4740 pipeconf |= PIPECONF_PROGRESSIVE;
4741
4742 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4743
4744 /* pipesrc and dspsize control the size that is scaled from,
4745 * which should always be the user's requested size.
4746 */
4747 I915_WRITE(DSPSIZE(plane),
4748 ((mode->vdisplay - 1) << 16) |
4749 (mode->hdisplay - 1));
4750 I915_WRITE(DSPPOS(plane), 0);
4751
4752 I915_WRITE(PIPECONF(pipe), pipeconf);
4753 POSTING_READ(PIPECONF(pipe));
4754 intel_enable_pipe(dev_priv, pipe, false);
4755
4756 intel_wait_for_vblank(dev, pipe);
4757
4758 I915_WRITE(DSPCNTR(plane), dspcntr);
4759 POSTING_READ(DSPCNTR(plane));
4760
4761 ret = intel_pipe_set_base(crtc, x, y, fb);
4762
4763 intel_update_watermarks(dev);
4764
4765 return ret;
4766 }
4767
4768 /*
4769 * Initialize reference clocks when the driver loads
4770 */
4771 void ironlake_init_pch_refclk(struct drm_device *dev)
4772 {
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 struct drm_mode_config *mode_config = &dev->mode_config;
4775 struct intel_encoder *encoder;
4776 u32 temp;
4777 bool has_lvds = false;
4778 bool has_cpu_edp = false;
4779 bool has_pch_edp = false;
4780 bool has_panel = false;
4781 bool has_ck505 = false;
4782 bool can_ssc = false;
4783
4784 /* We need to take the global config into account */
4785 list_for_each_entry(encoder, &mode_config->encoder_list,
4786 base.head) {
4787 switch (encoder->type) {
4788 case INTEL_OUTPUT_LVDS:
4789 has_panel = true;
4790 has_lvds = true;
4791 break;
4792 case INTEL_OUTPUT_EDP:
4793 has_panel = true;
4794 if (intel_encoder_is_pch_edp(&encoder->base))
4795 has_pch_edp = true;
4796 else
4797 has_cpu_edp = true;
4798 break;
4799 }
4800 }
4801
4802 if (HAS_PCH_IBX(dev)) {
4803 has_ck505 = dev_priv->display_clock_mode;
4804 can_ssc = has_ck505;
4805 } else {
4806 has_ck505 = false;
4807 can_ssc = true;
4808 }
4809
4810 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4811 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4812 has_ck505);
4813
4814 /* Ironlake: try to setup display ref clock before DPLL
4815 * enabling. This is only under driver's control after
4816 * PCH B stepping, previous chipset stepping should be
4817 * ignoring this setting.
4818 */
4819 temp = I915_READ(PCH_DREF_CONTROL);
4820 /* Always enable nonspread source */
4821 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4822
4823 if (has_ck505)
4824 temp |= DREF_NONSPREAD_CK505_ENABLE;
4825 else
4826 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4827
4828 if (has_panel) {
4829 temp &= ~DREF_SSC_SOURCE_MASK;
4830 temp |= DREF_SSC_SOURCE_ENABLE;
4831
4832 /* SSC must be turned on before enabling the CPU output */
4833 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4834 DRM_DEBUG_KMS("Using SSC on panel\n");
4835 temp |= DREF_SSC1_ENABLE;
4836 } else
4837 temp &= ~DREF_SSC1_ENABLE;
4838
4839 /* Get SSC going before enabling the outputs */
4840 I915_WRITE(PCH_DREF_CONTROL, temp);
4841 POSTING_READ(PCH_DREF_CONTROL);
4842 udelay(200);
4843
4844 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4845
4846 /* Enable CPU source on CPU attached eDP */
4847 if (has_cpu_edp) {
4848 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4849 DRM_DEBUG_KMS("Using SSC on eDP\n");
4850 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4851 }
4852 else
4853 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4854 } else
4855 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4856
4857 I915_WRITE(PCH_DREF_CONTROL, temp);
4858 POSTING_READ(PCH_DREF_CONTROL);
4859 udelay(200);
4860 } else {
4861 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4862
4863 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4864
4865 /* Turn off CPU output */
4866 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4867
4868 I915_WRITE(PCH_DREF_CONTROL, temp);
4869 POSTING_READ(PCH_DREF_CONTROL);
4870 udelay(200);
4871
4872 /* Turn off the SSC source */
4873 temp &= ~DREF_SSC_SOURCE_MASK;
4874 temp |= DREF_SSC_SOURCE_DISABLE;
4875
4876 /* Turn off SSC1 */
4877 temp &= ~ DREF_SSC1_ENABLE;
4878
4879 I915_WRITE(PCH_DREF_CONTROL, temp);
4880 POSTING_READ(PCH_DREF_CONTROL);
4881 udelay(200);
4882 }
4883 }
4884
4885 static int ironlake_get_refclk(struct drm_crtc *crtc)
4886 {
4887 struct drm_device *dev = crtc->dev;
4888 struct drm_i915_private *dev_priv = dev->dev_private;
4889 struct intel_encoder *encoder;
4890 struct intel_encoder *edp_encoder = NULL;
4891 int num_connectors = 0;
4892 bool is_lvds = false;
4893
4894 for_each_encoder_on_crtc(dev, crtc, encoder) {
4895 switch (encoder->type) {
4896 case INTEL_OUTPUT_LVDS:
4897 is_lvds = true;
4898 break;
4899 case INTEL_OUTPUT_EDP:
4900 edp_encoder = encoder;
4901 break;
4902 }
4903 num_connectors++;
4904 }
4905
4906 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4907 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4908 dev_priv->lvds_ssc_freq);
4909 return dev_priv->lvds_ssc_freq * 1000;
4910 }
4911
4912 return 120000;
4913 }
4914
4915 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4916 struct drm_display_mode *adjusted_mode,
4917 bool dither)
4918 {
4919 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921 int pipe = intel_crtc->pipe;
4922 uint32_t val;
4923
4924 val = I915_READ(PIPECONF(pipe));
4925
4926 val &= ~PIPE_BPC_MASK;
4927 switch (intel_crtc->bpp) {
4928 case 18:
4929 val |= PIPE_6BPC;
4930 break;
4931 case 24:
4932 val |= PIPE_8BPC;
4933 break;
4934 case 30:
4935 val |= PIPE_10BPC;
4936 break;
4937 case 36:
4938 val |= PIPE_12BPC;
4939 break;
4940 default:
4941 /* Case prevented by intel_choose_pipe_bpp_dither. */
4942 BUG();
4943 }
4944
4945 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4946 if (dither)
4947 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4948
4949 val &= ~PIPECONF_INTERLACE_MASK;
4950 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4951 val |= PIPECONF_INTERLACED_ILK;
4952 else
4953 val |= PIPECONF_PROGRESSIVE;
4954
4955 I915_WRITE(PIPECONF(pipe), val);
4956 POSTING_READ(PIPECONF(pipe));
4957 }
4958
4959 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4960 struct drm_display_mode *adjusted_mode,
4961 bool dither)
4962 {
4963 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4965 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4966 uint32_t val;
4967
4968 val = I915_READ(PIPECONF(cpu_transcoder));
4969
4970 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4971 if (dither)
4972 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4973
4974 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4975 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4976 val |= PIPECONF_INTERLACED_ILK;
4977 else
4978 val |= PIPECONF_PROGRESSIVE;
4979
4980 I915_WRITE(PIPECONF(cpu_transcoder), val);
4981 POSTING_READ(PIPECONF(cpu_transcoder));
4982 }
4983
4984 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4985 struct drm_display_mode *adjusted_mode,
4986 intel_clock_t *clock,
4987 bool *has_reduced_clock,
4988 intel_clock_t *reduced_clock)
4989 {
4990 struct drm_device *dev = crtc->dev;
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992 struct intel_encoder *intel_encoder;
4993 int refclk;
4994 const intel_limit_t *limit;
4995 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4996
4997 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4998 switch (intel_encoder->type) {
4999 case INTEL_OUTPUT_LVDS:
5000 is_lvds = true;
5001 break;
5002 case INTEL_OUTPUT_SDVO:
5003 case INTEL_OUTPUT_HDMI:
5004 is_sdvo = true;
5005 if (intel_encoder->needs_tv_clock)
5006 is_tv = true;
5007 break;
5008 case INTEL_OUTPUT_TVOUT:
5009 is_tv = true;
5010 break;
5011 }
5012 }
5013
5014 refclk = ironlake_get_refclk(crtc);
5015
5016 /*
5017 * Returns a set of divisors for the desired target clock with the given
5018 * refclk, or FALSE. The returned values represent the clock equation:
5019 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5020 */
5021 limit = intel_limit(crtc, refclk);
5022 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5023 clock);
5024 if (!ret)
5025 return false;
5026
5027 if (is_lvds && dev_priv->lvds_downclock_avail) {
5028 /*
5029 * Ensure we match the reduced clock's P to the target clock.
5030 * If the clocks don't match, we can't switch the display clock
5031 * by using the FP0/FP1. In such case we will disable the LVDS
5032 * downclock feature.
5033 */
5034 *has_reduced_clock = limit->find_pll(limit, crtc,
5035 dev_priv->lvds_downclock,
5036 refclk,
5037 clock,
5038 reduced_clock);
5039 }
5040
5041 if (is_sdvo && is_tv)
5042 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5043
5044 return true;
5045 }
5046
5047 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5048 {
5049 struct drm_i915_private *dev_priv = dev->dev_private;
5050 uint32_t temp;
5051
5052 temp = I915_READ(SOUTH_CHICKEN1);
5053 if (temp & FDI_BC_BIFURCATION_SELECT)
5054 return;
5055
5056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5057 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5058
5059 temp |= FDI_BC_BIFURCATION_SELECT;
5060 DRM_DEBUG_KMS("enabling fdi C rx\n");
5061 I915_WRITE(SOUTH_CHICKEN1, temp);
5062 POSTING_READ(SOUTH_CHICKEN1);
5063 }
5064
5065 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5066 {
5067 struct drm_device *dev = intel_crtc->base.dev;
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 struct intel_crtc *pipe_B_crtc =
5070 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5071
5072 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5073 intel_crtc->pipe, intel_crtc->fdi_lanes);
5074 if (intel_crtc->fdi_lanes > 4) {
5075 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5076 intel_crtc->pipe, intel_crtc->fdi_lanes);
5077 /* Clamp lanes to avoid programming the hw with bogus values. */
5078 intel_crtc->fdi_lanes = 4;
5079
5080 return false;
5081 }
5082
5083 if (dev_priv->num_pipe == 2)
5084 return true;
5085
5086 switch (intel_crtc->pipe) {
5087 case PIPE_A:
5088 return true;
5089 case PIPE_B:
5090 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5091 intel_crtc->fdi_lanes > 2) {
5092 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5093 intel_crtc->pipe, intel_crtc->fdi_lanes);
5094 /* Clamp lanes to avoid programming the hw with bogus values. */
5095 intel_crtc->fdi_lanes = 2;
5096
5097 return false;
5098 }
5099
5100 if (intel_crtc->fdi_lanes > 2)
5101 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5102 else
5103 cpt_enable_fdi_bc_bifurcation(dev);
5104
5105 return true;
5106 case PIPE_C:
5107 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5108 if (intel_crtc->fdi_lanes > 2) {
5109 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5110 intel_crtc->pipe, intel_crtc->fdi_lanes);
5111 /* Clamp lanes to avoid programming the hw with bogus values. */
5112 intel_crtc->fdi_lanes = 2;
5113
5114 return false;
5115 }
5116 } else {
5117 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5118 return false;
5119 }
5120
5121 cpt_enable_fdi_bc_bifurcation(dev);
5122
5123 return true;
5124 default:
5125 BUG();
5126 }
5127 }
5128
5129 static void ironlake_set_m_n(struct drm_crtc *crtc,
5130 struct drm_display_mode *mode,
5131 struct drm_display_mode *adjusted_mode)
5132 {
5133 struct drm_device *dev = crtc->dev;
5134 struct drm_i915_private *dev_priv = dev->dev_private;
5135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5136 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5137 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5138 struct fdi_m_n m_n = {0};
5139 int target_clock, pixel_multiplier, lane, link_bw;
5140 bool is_dp = false, is_cpu_edp = false;
5141
5142 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5143 switch (intel_encoder->type) {
5144 case INTEL_OUTPUT_DISPLAYPORT:
5145 is_dp = true;
5146 break;
5147 case INTEL_OUTPUT_EDP:
5148 is_dp = true;
5149 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5150 is_cpu_edp = true;
5151 edp_encoder = intel_encoder;
5152 break;
5153 }
5154 }
5155
5156 /* FDI link */
5157 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5158 lane = 0;
5159 /* CPU eDP doesn't require FDI link, so just set DP M/N
5160 according to current link config */
5161 if (is_cpu_edp) {
5162 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5163 } else {
5164 /* FDI is a binary signal running at ~2.7GHz, encoding
5165 * each output octet as 10 bits. The actual frequency
5166 * is stored as a divider into a 100MHz clock, and the
5167 * mode pixel clock is stored in units of 1KHz.
5168 * Hence the bw of each lane in terms of the mode signal
5169 * is:
5170 */
5171 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5172 }
5173
5174 /* [e]DP over FDI requires target mode clock instead of link clock. */
5175 if (edp_encoder)
5176 target_clock = intel_edp_target_clock(edp_encoder, mode);
5177 else if (is_dp)
5178 target_clock = mode->clock;
5179 else
5180 target_clock = adjusted_mode->clock;
5181
5182 if (!lane) {
5183 /*
5184 * Account for spread spectrum to avoid
5185 * oversubscribing the link. Max center spread
5186 * is 2.5%; use 5% for safety's sake.
5187 */
5188 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5189 lane = bps / (link_bw * 8) + 1;
5190 }
5191
5192 intel_crtc->fdi_lanes = lane;
5193
5194 if (pixel_multiplier > 1)
5195 link_bw *= pixel_multiplier;
5196 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5197 &m_n);
5198
5199 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5200 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5201 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5202 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5203 }
5204
5205 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5206 struct drm_display_mode *adjusted_mode,
5207 intel_clock_t *clock, u32 fp)
5208 {
5209 struct drm_crtc *crtc = &intel_crtc->base;
5210 struct drm_device *dev = crtc->dev;
5211 struct drm_i915_private *dev_priv = dev->dev_private;
5212 struct intel_encoder *intel_encoder;
5213 uint32_t dpll;
5214 int factor, pixel_multiplier, num_connectors = 0;
5215 bool is_lvds = false, is_sdvo = false, is_tv = false;
5216 bool is_dp = false, is_cpu_edp = false;
5217
5218 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5219 switch (intel_encoder->type) {
5220 case INTEL_OUTPUT_LVDS:
5221 is_lvds = true;
5222 break;
5223 case INTEL_OUTPUT_SDVO:
5224 case INTEL_OUTPUT_HDMI:
5225 is_sdvo = true;
5226 if (intel_encoder->needs_tv_clock)
5227 is_tv = true;
5228 break;
5229 case INTEL_OUTPUT_TVOUT:
5230 is_tv = true;
5231 break;
5232 case INTEL_OUTPUT_DISPLAYPORT:
5233 is_dp = true;
5234 break;
5235 case INTEL_OUTPUT_EDP:
5236 is_dp = true;
5237 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5238 is_cpu_edp = true;
5239 break;
5240 }
5241
5242 num_connectors++;
5243 }
5244
5245 /* Enable autotuning of the PLL clock (if permissible) */
5246 factor = 21;
5247 if (is_lvds) {
5248 if ((intel_panel_use_ssc(dev_priv) &&
5249 dev_priv->lvds_ssc_freq == 100) ||
5250 intel_is_dual_link_lvds(dev))
5251 factor = 25;
5252 } else if (is_sdvo && is_tv)
5253 factor = 20;
5254
5255 if (clock->m < factor * clock->n)
5256 fp |= FP_CB_TUNE;
5257
5258 dpll = 0;
5259
5260 if (is_lvds)
5261 dpll |= DPLLB_MODE_LVDS;
5262 else
5263 dpll |= DPLLB_MODE_DAC_SERIAL;
5264 if (is_sdvo) {
5265 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5266 if (pixel_multiplier > 1) {
5267 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5268 }
5269 dpll |= DPLL_DVO_HIGH_SPEED;
5270 }
5271 if (is_dp && !is_cpu_edp)
5272 dpll |= DPLL_DVO_HIGH_SPEED;
5273
5274 /* compute bitmask from p1 value */
5275 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5276 /* also FPA1 */
5277 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5278
5279 switch (clock->p2) {
5280 case 5:
5281 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5282 break;
5283 case 7:
5284 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5285 break;
5286 case 10:
5287 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5288 break;
5289 case 14:
5290 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5291 break;
5292 }
5293
5294 if (is_sdvo && is_tv)
5295 dpll |= PLL_REF_INPUT_TVCLKINBC;
5296 else if (is_tv)
5297 /* XXX: just matching BIOS for now */
5298 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5299 dpll |= 3;
5300 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5301 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5302 else
5303 dpll |= PLL_REF_INPUT_DREFCLK;
5304
5305 return dpll;
5306 }
5307
5308 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5309 struct drm_display_mode *mode,
5310 struct drm_display_mode *adjusted_mode,
5311 int x, int y,
5312 struct drm_framebuffer *fb)
5313 {
5314 struct drm_device *dev = crtc->dev;
5315 struct drm_i915_private *dev_priv = dev->dev_private;
5316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5317 int pipe = intel_crtc->pipe;
5318 int plane = intel_crtc->plane;
5319 int num_connectors = 0;
5320 intel_clock_t clock, reduced_clock;
5321 u32 dpll, fp = 0, fp2 = 0;
5322 bool ok, has_reduced_clock = false;
5323 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5324 struct intel_encoder *encoder;
5325 int ret;
5326 bool dither, fdi_config_ok;
5327
5328 for_each_encoder_on_crtc(dev, crtc, encoder) {
5329 switch (encoder->type) {
5330 case INTEL_OUTPUT_LVDS:
5331 is_lvds = true;
5332 break;
5333 case INTEL_OUTPUT_DISPLAYPORT:
5334 is_dp = true;
5335 break;
5336 case INTEL_OUTPUT_EDP:
5337 is_dp = true;
5338 if (!intel_encoder_is_pch_edp(&encoder->base))
5339 is_cpu_edp = true;
5340 break;
5341 }
5342
5343 num_connectors++;
5344 }
5345
5346 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5347 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5348
5349 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5350 &has_reduced_clock, &reduced_clock);
5351 if (!ok) {
5352 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5353 return -EINVAL;
5354 }
5355
5356 /* Ensure that the cursor is valid for the new mode before changing... */
5357 intel_crtc_update_cursor(crtc, true);
5358
5359 /* determine panel color depth */
5360 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5361 adjusted_mode);
5362 if (is_lvds && dev_priv->lvds_dither)
5363 dither = true;
5364
5365 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5366 if (has_reduced_clock)
5367 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5368 reduced_clock.m2;
5369
5370 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5371
5372 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5373 drm_mode_debug_printmodeline(mode);
5374
5375 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5376 if (!is_cpu_edp) {
5377 struct intel_pch_pll *pll;
5378
5379 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5380 if (pll == NULL) {
5381 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5382 pipe);
5383 return -EINVAL;
5384 }
5385 } else
5386 intel_put_pch_pll(intel_crtc);
5387
5388 if (is_dp && !is_cpu_edp) {
5389 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5390 } else {
5391 /* For non-DP output, clear any trans DP clock recovery setting.*/
5392 I915_WRITE(TRANSDATA_M1(pipe), 0);
5393 I915_WRITE(TRANSDATA_N1(pipe), 0);
5394 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5395 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5396 }
5397
5398 for_each_encoder_on_crtc(dev, crtc, encoder)
5399 if (encoder->pre_pll_enable)
5400 encoder->pre_pll_enable(encoder);
5401
5402 if (intel_crtc->pch_pll) {
5403 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5404
5405 /* Wait for the clocks to stabilize. */
5406 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5407 udelay(150);
5408
5409 /* The pixel multiplier can only be updated once the
5410 * DPLL is enabled and the clocks are stable.
5411 *
5412 * So write it again.
5413 */
5414 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5415 }
5416
5417 intel_crtc->lowfreq_avail = false;
5418 if (intel_crtc->pch_pll) {
5419 if (is_lvds && has_reduced_clock && i915_powersave) {
5420 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5421 intel_crtc->lowfreq_avail = true;
5422 } else {
5423 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5424 }
5425 }
5426
5427 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5428
5429 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5430 * ironlake_check_fdi_lanes. */
5431 ironlake_set_m_n(crtc, mode, adjusted_mode);
5432
5433 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5434
5435 if (is_cpu_edp)
5436 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5437
5438 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5439
5440 intel_wait_for_vblank(dev, pipe);
5441
5442 /* Set up the display plane register */
5443 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5444 POSTING_READ(DSPCNTR(plane));
5445
5446 ret = intel_pipe_set_base(crtc, x, y, fb);
5447
5448 intel_update_watermarks(dev);
5449
5450 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5451
5452 return fdi_config_ok ? ret : -EINVAL;
5453 }
5454
5455 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5456 struct drm_display_mode *mode,
5457 struct drm_display_mode *adjusted_mode,
5458 int x, int y,
5459 struct drm_framebuffer *fb)
5460 {
5461 struct drm_device *dev = crtc->dev;
5462 struct drm_i915_private *dev_priv = dev->dev_private;
5463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5464 int pipe = intel_crtc->pipe;
5465 int plane = intel_crtc->plane;
5466 int num_connectors = 0;
5467 intel_clock_t clock, reduced_clock;
5468 u32 dpll = 0, fp = 0, fp2 = 0;
5469 bool ok, has_reduced_clock = false;
5470 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5471 struct intel_encoder *encoder;
5472 u32 temp;
5473 int ret;
5474 bool dither;
5475
5476 for_each_encoder_on_crtc(dev, crtc, encoder) {
5477 switch (encoder->type) {
5478 case INTEL_OUTPUT_LVDS:
5479 is_lvds = true;
5480 break;
5481 case INTEL_OUTPUT_DISPLAYPORT:
5482 is_dp = true;
5483 break;
5484 case INTEL_OUTPUT_EDP:
5485 is_dp = true;
5486 if (!intel_encoder_is_pch_edp(&encoder->base))
5487 is_cpu_edp = true;
5488 break;
5489 }
5490
5491 num_connectors++;
5492 }
5493
5494 if (is_cpu_edp)
5495 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5496 else
5497 intel_crtc->cpu_transcoder = pipe;
5498
5499 /* We are not sure yet this won't happen. */
5500 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5501 INTEL_PCH_TYPE(dev));
5502
5503 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5504 num_connectors, pipe_name(pipe));
5505
5506 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5507 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5508
5509 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5510
5511 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5512 return -EINVAL;
5513
5514 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5515 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5516 &has_reduced_clock,
5517 &reduced_clock);
5518 if (!ok) {
5519 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5520 return -EINVAL;
5521 }
5522 }
5523
5524 /* Ensure that the cursor is valid for the new mode before changing... */
5525 intel_crtc_update_cursor(crtc, true);
5526
5527 /* determine panel color depth */
5528 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5529 adjusted_mode);
5530 if (is_lvds && dev_priv->lvds_dither)
5531 dither = true;
5532
5533 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5534 drm_mode_debug_printmodeline(mode);
5535
5536 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5537 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5538 if (has_reduced_clock)
5539 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5540 reduced_clock.m2;
5541
5542 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5543 fp);
5544
5545 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5546 * own on pre-Haswell/LPT generation */
5547 if (!is_cpu_edp) {
5548 struct intel_pch_pll *pll;
5549
5550 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5551 if (pll == NULL) {
5552 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5553 pipe);
5554 return -EINVAL;
5555 }
5556 } else
5557 intel_put_pch_pll(intel_crtc);
5558
5559 /* The LVDS pin pair needs to be on before the DPLLs are
5560 * enabled. This is an exception to the general rule that
5561 * mode_set doesn't turn things on.
5562 */
5563 if (is_lvds) {
5564 temp = I915_READ(PCH_LVDS);
5565 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5566 if (HAS_PCH_CPT(dev)) {
5567 temp &= ~PORT_TRANS_SEL_MASK;
5568 temp |= PORT_TRANS_SEL_CPT(pipe);
5569 } else {
5570 if (pipe == 1)
5571 temp |= LVDS_PIPEB_SELECT;
5572 else
5573 temp &= ~LVDS_PIPEB_SELECT;
5574 }
5575
5576 /* set the corresponsding LVDS_BORDER bit */
5577 temp |= dev_priv->lvds_border_bits;
5578 /* Set the B0-B3 data pairs corresponding to whether
5579 * we're going to set the DPLLs for dual-channel mode or
5580 * not.
5581 */
5582 if (clock.p2 == 7)
5583 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5584 else
5585 temp &= ~(LVDS_B0B3_POWER_UP |
5586 LVDS_CLKB_POWER_UP);
5587
5588 /* It would be nice to set 24 vs 18-bit mode
5589 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5590 * look more thoroughly into how panels behave in the
5591 * two modes.
5592 */
5593 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5594 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5595 temp |= LVDS_HSYNC_POLARITY;
5596 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5597 temp |= LVDS_VSYNC_POLARITY;
5598 I915_WRITE(PCH_LVDS, temp);
5599 }
5600 }
5601
5602 if (is_dp && !is_cpu_edp) {
5603 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5604 } else {
5605 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5606 /* For non-DP output, clear any trans DP clock recovery
5607 * setting.*/
5608 I915_WRITE(TRANSDATA_M1(pipe), 0);
5609 I915_WRITE(TRANSDATA_N1(pipe), 0);
5610 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5611 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5612 }
5613 }
5614
5615 intel_crtc->lowfreq_avail = false;
5616 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5617 if (intel_crtc->pch_pll) {
5618 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5619
5620 /* Wait for the clocks to stabilize. */
5621 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5622 udelay(150);
5623
5624 /* The pixel multiplier can only be updated once the
5625 * DPLL is enabled and the clocks are stable.
5626 *
5627 * So write it again.
5628 */
5629 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5630 }
5631
5632 if (intel_crtc->pch_pll) {
5633 if (is_lvds && has_reduced_clock && i915_powersave) {
5634 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5635 intel_crtc->lowfreq_avail = true;
5636 } else {
5637 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5638 }
5639 }
5640 }
5641
5642 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5643
5644 if (!is_dp || is_cpu_edp)
5645 ironlake_set_m_n(crtc, mode, adjusted_mode);
5646
5647 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5648 if (is_cpu_edp)
5649 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5650
5651 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5652
5653 /* Set up the display plane register */
5654 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5655 POSTING_READ(DSPCNTR(plane));
5656
5657 ret = intel_pipe_set_base(crtc, x, y, fb);
5658
5659 intel_update_watermarks(dev);
5660
5661 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5662
5663 return ret;
5664 }
5665
5666 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5667 struct drm_display_mode *mode,
5668 struct drm_display_mode *adjusted_mode,
5669 int x, int y,
5670 struct drm_framebuffer *fb)
5671 {
5672 struct drm_device *dev = crtc->dev;
5673 struct drm_i915_private *dev_priv = dev->dev_private;
5674 struct drm_encoder_helper_funcs *encoder_funcs;
5675 struct intel_encoder *encoder;
5676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5677 int pipe = intel_crtc->pipe;
5678 int ret;
5679
5680 drm_vblank_pre_modeset(dev, pipe);
5681
5682 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5683 x, y, fb);
5684 drm_vblank_post_modeset(dev, pipe);
5685
5686 if (ret != 0)
5687 return ret;
5688
5689 for_each_encoder_on_crtc(dev, crtc, encoder) {
5690 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5691 encoder->base.base.id,
5692 drm_get_encoder_name(&encoder->base),
5693 mode->base.id, mode->name);
5694 encoder_funcs = encoder->base.helper_private;
5695 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5696 }
5697
5698 return 0;
5699 }
5700
5701 static bool intel_eld_uptodate(struct drm_connector *connector,
5702 int reg_eldv, uint32_t bits_eldv,
5703 int reg_elda, uint32_t bits_elda,
5704 int reg_edid)
5705 {
5706 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5707 uint8_t *eld = connector->eld;
5708 uint32_t i;
5709
5710 i = I915_READ(reg_eldv);
5711 i &= bits_eldv;
5712
5713 if (!eld[0])
5714 return !i;
5715
5716 if (!i)
5717 return false;
5718
5719 i = I915_READ(reg_elda);
5720 i &= ~bits_elda;
5721 I915_WRITE(reg_elda, i);
5722
5723 for (i = 0; i < eld[2]; i++)
5724 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5725 return false;
5726
5727 return true;
5728 }
5729
5730 static void g4x_write_eld(struct drm_connector *connector,
5731 struct drm_crtc *crtc)
5732 {
5733 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5734 uint8_t *eld = connector->eld;
5735 uint32_t eldv;
5736 uint32_t len;
5737 uint32_t i;
5738
5739 i = I915_READ(G4X_AUD_VID_DID);
5740
5741 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5742 eldv = G4X_ELDV_DEVCL_DEVBLC;
5743 else
5744 eldv = G4X_ELDV_DEVCTG;
5745
5746 if (intel_eld_uptodate(connector,
5747 G4X_AUD_CNTL_ST, eldv,
5748 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5749 G4X_HDMIW_HDMIEDID))
5750 return;
5751
5752 i = I915_READ(G4X_AUD_CNTL_ST);
5753 i &= ~(eldv | G4X_ELD_ADDR);
5754 len = (i >> 9) & 0x1f; /* ELD buffer size */
5755 I915_WRITE(G4X_AUD_CNTL_ST, i);
5756
5757 if (!eld[0])
5758 return;
5759
5760 len = min_t(uint8_t, eld[2], len);
5761 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5762 for (i = 0; i < len; i++)
5763 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5764
5765 i = I915_READ(G4X_AUD_CNTL_ST);
5766 i |= eldv;
5767 I915_WRITE(G4X_AUD_CNTL_ST, i);
5768 }
5769
5770 static void haswell_write_eld(struct drm_connector *connector,
5771 struct drm_crtc *crtc)
5772 {
5773 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5774 uint8_t *eld = connector->eld;
5775 struct drm_device *dev = crtc->dev;
5776 uint32_t eldv;
5777 uint32_t i;
5778 int len;
5779 int pipe = to_intel_crtc(crtc)->pipe;
5780 int tmp;
5781
5782 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5783 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5784 int aud_config = HSW_AUD_CFG(pipe);
5785 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5786
5787
5788 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5789
5790 /* Audio output enable */
5791 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5792 tmp = I915_READ(aud_cntrl_st2);
5793 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5794 I915_WRITE(aud_cntrl_st2, tmp);
5795
5796 /* Wait for 1 vertical blank */
5797 intel_wait_for_vblank(dev, pipe);
5798
5799 /* Set ELD valid state */
5800 tmp = I915_READ(aud_cntrl_st2);
5801 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5802 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5803 I915_WRITE(aud_cntrl_st2, tmp);
5804 tmp = I915_READ(aud_cntrl_st2);
5805 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5806
5807 /* Enable HDMI mode */
5808 tmp = I915_READ(aud_config);
5809 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5810 /* clear N_programing_enable and N_value_index */
5811 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5812 I915_WRITE(aud_config, tmp);
5813
5814 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5815
5816 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5817
5818 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5819 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5820 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5821 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5822 } else
5823 I915_WRITE(aud_config, 0);
5824
5825 if (intel_eld_uptodate(connector,
5826 aud_cntrl_st2, eldv,
5827 aud_cntl_st, IBX_ELD_ADDRESS,
5828 hdmiw_hdmiedid))
5829 return;
5830
5831 i = I915_READ(aud_cntrl_st2);
5832 i &= ~eldv;
5833 I915_WRITE(aud_cntrl_st2, i);
5834
5835 if (!eld[0])
5836 return;
5837
5838 i = I915_READ(aud_cntl_st);
5839 i &= ~IBX_ELD_ADDRESS;
5840 I915_WRITE(aud_cntl_st, i);
5841 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5842 DRM_DEBUG_DRIVER("port num:%d\n", i);
5843
5844 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5845 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5846 for (i = 0; i < len; i++)
5847 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5848
5849 i = I915_READ(aud_cntrl_st2);
5850 i |= eldv;
5851 I915_WRITE(aud_cntrl_st2, i);
5852
5853 }
5854
5855 static void ironlake_write_eld(struct drm_connector *connector,
5856 struct drm_crtc *crtc)
5857 {
5858 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5859 uint8_t *eld = connector->eld;
5860 uint32_t eldv;
5861 uint32_t i;
5862 int len;
5863 int hdmiw_hdmiedid;
5864 int aud_config;
5865 int aud_cntl_st;
5866 int aud_cntrl_st2;
5867 int pipe = to_intel_crtc(crtc)->pipe;
5868
5869 if (HAS_PCH_IBX(connector->dev)) {
5870 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5871 aud_config = IBX_AUD_CFG(pipe);
5872 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5873 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5874 } else {
5875 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5876 aud_config = CPT_AUD_CFG(pipe);
5877 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5878 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5879 }
5880
5881 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5882
5883 i = I915_READ(aud_cntl_st);
5884 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5885 if (!i) {
5886 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5887 /* operate blindly on all ports */
5888 eldv = IBX_ELD_VALIDB;
5889 eldv |= IBX_ELD_VALIDB << 4;
5890 eldv |= IBX_ELD_VALIDB << 8;
5891 } else {
5892 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5893 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5894 }
5895
5896 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5897 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5898 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5899 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5900 } else
5901 I915_WRITE(aud_config, 0);
5902
5903 if (intel_eld_uptodate(connector,
5904 aud_cntrl_st2, eldv,
5905 aud_cntl_st, IBX_ELD_ADDRESS,
5906 hdmiw_hdmiedid))
5907 return;
5908
5909 i = I915_READ(aud_cntrl_st2);
5910 i &= ~eldv;
5911 I915_WRITE(aud_cntrl_st2, i);
5912
5913 if (!eld[0])
5914 return;
5915
5916 i = I915_READ(aud_cntl_st);
5917 i &= ~IBX_ELD_ADDRESS;
5918 I915_WRITE(aud_cntl_st, i);
5919
5920 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5921 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5922 for (i = 0; i < len; i++)
5923 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5924
5925 i = I915_READ(aud_cntrl_st2);
5926 i |= eldv;
5927 I915_WRITE(aud_cntrl_st2, i);
5928 }
5929
5930 void intel_write_eld(struct drm_encoder *encoder,
5931 struct drm_display_mode *mode)
5932 {
5933 struct drm_crtc *crtc = encoder->crtc;
5934 struct drm_connector *connector;
5935 struct drm_device *dev = encoder->dev;
5936 struct drm_i915_private *dev_priv = dev->dev_private;
5937
5938 connector = drm_select_eld(encoder, mode);
5939 if (!connector)
5940 return;
5941
5942 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5943 connector->base.id,
5944 drm_get_connector_name(connector),
5945 connector->encoder->base.id,
5946 drm_get_encoder_name(connector->encoder));
5947
5948 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5949
5950 if (dev_priv->display.write_eld)
5951 dev_priv->display.write_eld(connector, crtc);
5952 }
5953
5954 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5955 void intel_crtc_load_lut(struct drm_crtc *crtc)
5956 {
5957 struct drm_device *dev = crtc->dev;
5958 struct drm_i915_private *dev_priv = dev->dev_private;
5959 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5960 int palreg = PALETTE(intel_crtc->pipe);
5961 int i;
5962
5963 /* The clocks have to be on to load the palette. */
5964 if (!crtc->enabled || !intel_crtc->active)
5965 return;
5966
5967 /* use legacy palette for Ironlake */
5968 if (HAS_PCH_SPLIT(dev))
5969 palreg = LGC_PALETTE(intel_crtc->pipe);
5970
5971 for (i = 0; i < 256; i++) {
5972 I915_WRITE(palreg + 4 * i,
5973 (intel_crtc->lut_r[i] << 16) |
5974 (intel_crtc->lut_g[i] << 8) |
5975 intel_crtc->lut_b[i]);
5976 }
5977 }
5978
5979 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5980 {
5981 struct drm_device *dev = crtc->dev;
5982 struct drm_i915_private *dev_priv = dev->dev_private;
5983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5984 bool visible = base != 0;
5985 u32 cntl;
5986
5987 if (intel_crtc->cursor_visible == visible)
5988 return;
5989
5990 cntl = I915_READ(_CURACNTR);
5991 if (visible) {
5992 /* On these chipsets we can only modify the base whilst
5993 * the cursor is disabled.
5994 */
5995 I915_WRITE(_CURABASE, base);
5996
5997 cntl &= ~(CURSOR_FORMAT_MASK);
5998 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5999 cntl |= CURSOR_ENABLE |
6000 CURSOR_GAMMA_ENABLE |
6001 CURSOR_FORMAT_ARGB;
6002 } else
6003 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6004 I915_WRITE(_CURACNTR, cntl);
6005
6006 intel_crtc->cursor_visible = visible;
6007 }
6008
6009 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6010 {
6011 struct drm_device *dev = crtc->dev;
6012 struct drm_i915_private *dev_priv = dev->dev_private;
6013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6014 int pipe = intel_crtc->pipe;
6015 bool visible = base != 0;
6016
6017 if (intel_crtc->cursor_visible != visible) {
6018 uint32_t cntl = I915_READ(CURCNTR(pipe));
6019 if (base) {
6020 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6021 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6022 cntl |= pipe << 28; /* Connect to correct pipe */
6023 } else {
6024 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6025 cntl |= CURSOR_MODE_DISABLE;
6026 }
6027 I915_WRITE(CURCNTR(pipe), cntl);
6028
6029 intel_crtc->cursor_visible = visible;
6030 }
6031 /* and commit changes on next vblank */
6032 I915_WRITE(CURBASE(pipe), base);
6033 }
6034
6035 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6036 {
6037 struct drm_device *dev = crtc->dev;
6038 struct drm_i915_private *dev_priv = dev->dev_private;
6039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6040 int pipe = intel_crtc->pipe;
6041 bool visible = base != 0;
6042
6043 if (intel_crtc->cursor_visible != visible) {
6044 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6045 if (base) {
6046 cntl &= ~CURSOR_MODE;
6047 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6048 } else {
6049 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6050 cntl |= CURSOR_MODE_DISABLE;
6051 }
6052 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6053
6054 intel_crtc->cursor_visible = visible;
6055 }
6056 /* and commit changes on next vblank */
6057 I915_WRITE(CURBASE_IVB(pipe), base);
6058 }
6059
6060 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6061 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6062 bool on)
6063 {
6064 struct drm_device *dev = crtc->dev;
6065 struct drm_i915_private *dev_priv = dev->dev_private;
6066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6067 int pipe = intel_crtc->pipe;
6068 int x = intel_crtc->cursor_x;
6069 int y = intel_crtc->cursor_y;
6070 u32 base, pos;
6071 bool visible;
6072
6073 pos = 0;
6074
6075 if (on && crtc->enabled && crtc->fb) {
6076 base = intel_crtc->cursor_addr;
6077 if (x > (int) crtc->fb->width)
6078 base = 0;
6079
6080 if (y > (int) crtc->fb->height)
6081 base = 0;
6082 } else
6083 base = 0;
6084
6085 if (x < 0) {
6086 if (x + intel_crtc->cursor_width < 0)
6087 base = 0;
6088
6089 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6090 x = -x;
6091 }
6092 pos |= x << CURSOR_X_SHIFT;
6093
6094 if (y < 0) {
6095 if (y + intel_crtc->cursor_height < 0)
6096 base = 0;
6097
6098 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6099 y = -y;
6100 }
6101 pos |= y << CURSOR_Y_SHIFT;
6102
6103 visible = base != 0;
6104 if (!visible && !intel_crtc->cursor_visible)
6105 return;
6106
6107 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6108 I915_WRITE(CURPOS_IVB(pipe), pos);
6109 ivb_update_cursor(crtc, base);
6110 } else {
6111 I915_WRITE(CURPOS(pipe), pos);
6112 if (IS_845G(dev) || IS_I865G(dev))
6113 i845_update_cursor(crtc, base);
6114 else
6115 i9xx_update_cursor(crtc, base);
6116 }
6117 }
6118
6119 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6120 struct drm_file *file,
6121 uint32_t handle,
6122 uint32_t width, uint32_t height)
6123 {
6124 struct drm_device *dev = crtc->dev;
6125 struct drm_i915_private *dev_priv = dev->dev_private;
6126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6127 struct drm_i915_gem_object *obj;
6128 uint32_t addr;
6129 int ret;
6130
6131 /* if we want to turn off the cursor ignore width and height */
6132 if (!handle) {
6133 DRM_DEBUG_KMS("cursor off\n");
6134 addr = 0;
6135 obj = NULL;
6136 mutex_lock(&dev->struct_mutex);
6137 goto finish;
6138 }
6139
6140 /* Currently we only support 64x64 cursors */
6141 if (width != 64 || height != 64) {
6142 DRM_ERROR("we currently only support 64x64 cursors\n");
6143 return -EINVAL;
6144 }
6145
6146 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6147 if (&obj->base == NULL)
6148 return -ENOENT;
6149
6150 if (obj->base.size < width * height * 4) {
6151 DRM_ERROR("buffer is to small\n");
6152 ret = -ENOMEM;
6153 goto fail;
6154 }
6155
6156 /* we only need to pin inside GTT if cursor is non-phy */
6157 mutex_lock(&dev->struct_mutex);
6158 if (!dev_priv->info->cursor_needs_physical) {
6159 if (obj->tiling_mode) {
6160 DRM_ERROR("cursor cannot be tiled\n");
6161 ret = -EINVAL;
6162 goto fail_locked;
6163 }
6164
6165 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6166 if (ret) {
6167 DRM_ERROR("failed to move cursor bo into the GTT\n");
6168 goto fail_locked;
6169 }
6170
6171 ret = i915_gem_object_put_fence(obj);
6172 if (ret) {
6173 DRM_ERROR("failed to release fence for cursor");
6174 goto fail_unpin;
6175 }
6176
6177 addr = obj->gtt_offset;
6178 } else {
6179 int align = IS_I830(dev) ? 16 * 1024 : 256;
6180 ret = i915_gem_attach_phys_object(dev, obj,
6181 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6182 align);
6183 if (ret) {
6184 DRM_ERROR("failed to attach phys object\n");
6185 goto fail_locked;
6186 }
6187 addr = obj->phys_obj->handle->busaddr;
6188 }
6189
6190 if (IS_GEN2(dev))
6191 I915_WRITE(CURSIZE, (height << 12) | width);
6192
6193 finish:
6194 if (intel_crtc->cursor_bo) {
6195 if (dev_priv->info->cursor_needs_physical) {
6196 if (intel_crtc->cursor_bo != obj)
6197 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6198 } else
6199 i915_gem_object_unpin(intel_crtc->cursor_bo);
6200 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6201 }
6202
6203 mutex_unlock(&dev->struct_mutex);
6204
6205 intel_crtc->cursor_addr = addr;
6206 intel_crtc->cursor_bo = obj;
6207 intel_crtc->cursor_width = width;
6208 intel_crtc->cursor_height = height;
6209
6210 intel_crtc_update_cursor(crtc, true);
6211
6212 return 0;
6213 fail_unpin:
6214 i915_gem_object_unpin(obj);
6215 fail_locked:
6216 mutex_unlock(&dev->struct_mutex);
6217 fail:
6218 drm_gem_object_unreference_unlocked(&obj->base);
6219 return ret;
6220 }
6221
6222 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6223 {
6224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6225
6226 intel_crtc->cursor_x = x;
6227 intel_crtc->cursor_y = y;
6228
6229 intel_crtc_update_cursor(crtc, true);
6230
6231 return 0;
6232 }
6233
6234 /** Sets the color ramps on behalf of RandR */
6235 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6236 u16 blue, int regno)
6237 {
6238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6239
6240 intel_crtc->lut_r[regno] = red >> 8;
6241 intel_crtc->lut_g[regno] = green >> 8;
6242 intel_crtc->lut_b[regno] = blue >> 8;
6243 }
6244
6245 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6246 u16 *blue, int regno)
6247 {
6248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6249
6250 *red = intel_crtc->lut_r[regno] << 8;
6251 *green = intel_crtc->lut_g[regno] << 8;
6252 *blue = intel_crtc->lut_b[regno] << 8;
6253 }
6254
6255 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6256 u16 *blue, uint32_t start, uint32_t size)
6257 {
6258 int end = (start + size > 256) ? 256 : start + size, i;
6259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6260
6261 for (i = start; i < end; i++) {
6262 intel_crtc->lut_r[i] = red[i] >> 8;
6263 intel_crtc->lut_g[i] = green[i] >> 8;
6264 intel_crtc->lut_b[i] = blue[i] >> 8;
6265 }
6266
6267 intel_crtc_load_lut(crtc);
6268 }
6269
6270 /**
6271 * Get a pipe with a simple mode set on it for doing load-based monitor
6272 * detection.
6273 *
6274 * It will be up to the load-detect code to adjust the pipe as appropriate for
6275 * its requirements. The pipe will be connected to no other encoders.
6276 *
6277 * Currently this code will only succeed if there is a pipe with no encoders
6278 * configured for it. In the future, it could choose to temporarily disable
6279 * some outputs to free up a pipe for its use.
6280 *
6281 * \return crtc, or NULL if no pipes are available.
6282 */
6283
6284 /* VESA 640x480x72Hz mode to set on the pipe */
6285 static struct drm_display_mode load_detect_mode = {
6286 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6287 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6288 };
6289
6290 static struct drm_framebuffer *
6291 intel_framebuffer_create(struct drm_device *dev,
6292 struct drm_mode_fb_cmd2 *mode_cmd,
6293 struct drm_i915_gem_object *obj)
6294 {
6295 struct intel_framebuffer *intel_fb;
6296 int ret;
6297
6298 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6299 if (!intel_fb) {
6300 drm_gem_object_unreference_unlocked(&obj->base);
6301 return ERR_PTR(-ENOMEM);
6302 }
6303
6304 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6305 if (ret) {
6306 drm_gem_object_unreference_unlocked(&obj->base);
6307 kfree(intel_fb);
6308 return ERR_PTR(ret);
6309 }
6310
6311 return &intel_fb->base;
6312 }
6313
6314 static u32
6315 intel_framebuffer_pitch_for_width(int width, int bpp)
6316 {
6317 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6318 return ALIGN(pitch, 64);
6319 }
6320
6321 static u32
6322 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6323 {
6324 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6325 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6326 }
6327
6328 static struct drm_framebuffer *
6329 intel_framebuffer_create_for_mode(struct drm_device *dev,
6330 struct drm_display_mode *mode,
6331 int depth, int bpp)
6332 {
6333 struct drm_i915_gem_object *obj;
6334 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6335
6336 obj = i915_gem_alloc_object(dev,
6337 intel_framebuffer_size_for_mode(mode, bpp));
6338 if (obj == NULL)
6339 return ERR_PTR(-ENOMEM);
6340
6341 mode_cmd.width = mode->hdisplay;
6342 mode_cmd.height = mode->vdisplay;
6343 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6344 bpp);
6345 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6346
6347 return intel_framebuffer_create(dev, &mode_cmd, obj);
6348 }
6349
6350 static struct drm_framebuffer *
6351 mode_fits_in_fbdev(struct drm_device *dev,
6352 struct drm_display_mode *mode)
6353 {
6354 struct drm_i915_private *dev_priv = dev->dev_private;
6355 struct drm_i915_gem_object *obj;
6356 struct drm_framebuffer *fb;
6357
6358 if (dev_priv->fbdev == NULL)
6359 return NULL;
6360
6361 obj = dev_priv->fbdev->ifb.obj;
6362 if (obj == NULL)
6363 return NULL;
6364
6365 fb = &dev_priv->fbdev->ifb.base;
6366 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6367 fb->bits_per_pixel))
6368 return NULL;
6369
6370 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6371 return NULL;
6372
6373 return fb;
6374 }
6375
6376 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6377 struct drm_display_mode *mode,
6378 struct intel_load_detect_pipe *old)
6379 {
6380 struct intel_crtc *intel_crtc;
6381 struct intel_encoder *intel_encoder =
6382 intel_attached_encoder(connector);
6383 struct drm_crtc *possible_crtc;
6384 struct drm_encoder *encoder = &intel_encoder->base;
6385 struct drm_crtc *crtc = NULL;
6386 struct drm_device *dev = encoder->dev;
6387 struct drm_framebuffer *fb;
6388 int i = -1;
6389
6390 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6391 connector->base.id, drm_get_connector_name(connector),
6392 encoder->base.id, drm_get_encoder_name(encoder));
6393
6394 /*
6395 * Algorithm gets a little messy:
6396 *
6397 * - if the connector already has an assigned crtc, use it (but make
6398 * sure it's on first)
6399 *
6400 * - try to find the first unused crtc that can drive this connector,
6401 * and use that if we find one
6402 */
6403
6404 /* See if we already have a CRTC for this connector */
6405 if (encoder->crtc) {
6406 crtc = encoder->crtc;
6407
6408 old->dpms_mode = connector->dpms;
6409 old->load_detect_temp = false;
6410
6411 /* Make sure the crtc and connector are running */
6412 if (connector->dpms != DRM_MODE_DPMS_ON)
6413 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6414
6415 return true;
6416 }
6417
6418 /* Find an unused one (if possible) */
6419 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6420 i++;
6421 if (!(encoder->possible_crtcs & (1 << i)))
6422 continue;
6423 if (!possible_crtc->enabled) {
6424 crtc = possible_crtc;
6425 break;
6426 }
6427 }
6428
6429 /*
6430 * If we didn't find an unused CRTC, don't use any.
6431 */
6432 if (!crtc) {
6433 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6434 return false;
6435 }
6436
6437 intel_encoder->new_crtc = to_intel_crtc(crtc);
6438 to_intel_connector(connector)->new_encoder = intel_encoder;
6439
6440 intel_crtc = to_intel_crtc(crtc);
6441 old->dpms_mode = connector->dpms;
6442 old->load_detect_temp = true;
6443 old->release_fb = NULL;
6444
6445 if (!mode)
6446 mode = &load_detect_mode;
6447
6448 /* We need a framebuffer large enough to accommodate all accesses
6449 * that the plane may generate whilst we perform load detection.
6450 * We can not rely on the fbcon either being present (we get called
6451 * during its initialisation to detect all boot displays, or it may
6452 * not even exist) or that it is large enough to satisfy the
6453 * requested mode.
6454 */
6455 fb = mode_fits_in_fbdev(dev, mode);
6456 if (fb == NULL) {
6457 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6458 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6459 old->release_fb = fb;
6460 } else
6461 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6462 if (IS_ERR(fb)) {
6463 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6464 return false;
6465 }
6466
6467 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6468 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6469 if (old->release_fb)
6470 old->release_fb->funcs->destroy(old->release_fb);
6471 return false;
6472 }
6473
6474 /* let the connector get through one full cycle before testing */
6475 intel_wait_for_vblank(dev, intel_crtc->pipe);
6476 return true;
6477 }
6478
6479 void intel_release_load_detect_pipe(struct drm_connector *connector,
6480 struct intel_load_detect_pipe *old)
6481 {
6482 struct intel_encoder *intel_encoder =
6483 intel_attached_encoder(connector);
6484 struct drm_encoder *encoder = &intel_encoder->base;
6485
6486 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6487 connector->base.id, drm_get_connector_name(connector),
6488 encoder->base.id, drm_get_encoder_name(encoder));
6489
6490 if (old->load_detect_temp) {
6491 struct drm_crtc *crtc = encoder->crtc;
6492
6493 to_intel_connector(connector)->new_encoder = NULL;
6494 intel_encoder->new_crtc = NULL;
6495 intel_set_mode(crtc, NULL, 0, 0, NULL);
6496
6497 if (old->release_fb)
6498 old->release_fb->funcs->destroy(old->release_fb);
6499
6500 return;
6501 }
6502
6503 /* Switch crtc and encoder back off if necessary */
6504 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6505 connector->funcs->dpms(connector, old->dpms_mode);
6506 }
6507
6508 /* Returns the clock of the currently programmed mode of the given pipe. */
6509 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6510 {
6511 struct drm_i915_private *dev_priv = dev->dev_private;
6512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6513 int pipe = intel_crtc->pipe;
6514 u32 dpll = I915_READ(DPLL(pipe));
6515 u32 fp;
6516 intel_clock_t clock;
6517
6518 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6519 fp = I915_READ(FP0(pipe));
6520 else
6521 fp = I915_READ(FP1(pipe));
6522
6523 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6524 if (IS_PINEVIEW(dev)) {
6525 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6526 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6527 } else {
6528 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6529 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6530 }
6531
6532 if (!IS_GEN2(dev)) {
6533 if (IS_PINEVIEW(dev))
6534 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6535 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6536 else
6537 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6538 DPLL_FPA01_P1_POST_DIV_SHIFT);
6539
6540 switch (dpll & DPLL_MODE_MASK) {
6541 case DPLLB_MODE_DAC_SERIAL:
6542 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6543 5 : 10;
6544 break;
6545 case DPLLB_MODE_LVDS:
6546 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6547 7 : 14;
6548 break;
6549 default:
6550 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6551 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6552 return 0;
6553 }
6554
6555 /* XXX: Handle the 100Mhz refclk */
6556 intel_clock(dev, 96000, &clock);
6557 } else {
6558 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6559
6560 if (is_lvds) {
6561 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6562 DPLL_FPA01_P1_POST_DIV_SHIFT);
6563 clock.p2 = 14;
6564
6565 if ((dpll & PLL_REF_INPUT_MASK) ==
6566 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6567 /* XXX: might not be 66MHz */
6568 intel_clock(dev, 66000, &clock);
6569 } else
6570 intel_clock(dev, 48000, &clock);
6571 } else {
6572 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6573 clock.p1 = 2;
6574 else {
6575 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6576 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6577 }
6578 if (dpll & PLL_P2_DIVIDE_BY_4)
6579 clock.p2 = 4;
6580 else
6581 clock.p2 = 2;
6582
6583 intel_clock(dev, 48000, &clock);
6584 }
6585 }
6586
6587 /* XXX: It would be nice to validate the clocks, but we can't reuse
6588 * i830PllIsValid() because it relies on the xf86_config connector
6589 * configuration being accurate, which it isn't necessarily.
6590 */
6591
6592 return clock.dot;
6593 }
6594
6595 /** Returns the currently programmed mode of the given pipe. */
6596 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6597 struct drm_crtc *crtc)
6598 {
6599 struct drm_i915_private *dev_priv = dev->dev_private;
6600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6601 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6602 struct drm_display_mode *mode;
6603 int htot = I915_READ(HTOTAL(cpu_transcoder));
6604 int hsync = I915_READ(HSYNC(cpu_transcoder));
6605 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6606 int vsync = I915_READ(VSYNC(cpu_transcoder));
6607
6608 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6609 if (!mode)
6610 return NULL;
6611
6612 mode->clock = intel_crtc_clock_get(dev, crtc);
6613 mode->hdisplay = (htot & 0xffff) + 1;
6614 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6615 mode->hsync_start = (hsync & 0xffff) + 1;
6616 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6617 mode->vdisplay = (vtot & 0xffff) + 1;
6618 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6619 mode->vsync_start = (vsync & 0xffff) + 1;
6620 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6621
6622 drm_mode_set_name(mode);
6623
6624 return mode;
6625 }
6626
6627 static void intel_increase_pllclock(struct drm_crtc *crtc)
6628 {
6629 struct drm_device *dev = crtc->dev;
6630 drm_i915_private_t *dev_priv = dev->dev_private;
6631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6632 int pipe = intel_crtc->pipe;
6633 int dpll_reg = DPLL(pipe);
6634 int dpll;
6635
6636 if (HAS_PCH_SPLIT(dev))
6637 return;
6638
6639 if (!dev_priv->lvds_downclock_avail)
6640 return;
6641
6642 dpll = I915_READ(dpll_reg);
6643 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6644 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6645
6646 assert_panel_unlocked(dev_priv, pipe);
6647
6648 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6649 I915_WRITE(dpll_reg, dpll);
6650 intel_wait_for_vblank(dev, pipe);
6651
6652 dpll = I915_READ(dpll_reg);
6653 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6654 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6655 }
6656 }
6657
6658 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6659 {
6660 struct drm_device *dev = crtc->dev;
6661 drm_i915_private_t *dev_priv = dev->dev_private;
6662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6663
6664 if (HAS_PCH_SPLIT(dev))
6665 return;
6666
6667 if (!dev_priv->lvds_downclock_avail)
6668 return;
6669
6670 /*
6671 * Since this is called by a timer, we should never get here in
6672 * the manual case.
6673 */
6674 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6675 int pipe = intel_crtc->pipe;
6676 int dpll_reg = DPLL(pipe);
6677 int dpll;
6678
6679 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6680
6681 assert_panel_unlocked(dev_priv, pipe);
6682
6683 dpll = I915_READ(dpll_reg);
6684 dpll |= DISPLAY_RATE_SELECT_FPA1;
6685 I915_WRITE(dpll_reg, dpll);
6686 intel_wait_for_vblank(dev, pipe);
6687 dpll = I915_READ(dpll_reg);
6688 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6689 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6690 }
6691
6692 }
6693
6694 void intel_mark_busy(struct drm_device *dev)
6695 {
6696 i915_update_gfx_val(dev->dev_private);
6697 }
6698
6699 void intel_mark_idle(struct drm_device *dev)
6700 {
6701 }
6702
6703 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6704 {
6705 struct drm_device *dev = obj->base.dev;
6706 struct drm_crtc *crtc;
6707
6708 if (!i915_powersave)
6709 return;
6710
6711 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6712 if (!crtc->fb)
6713 continue;
6714
6715 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6716 intel_increase_pllclock(crtc);
6717 }
6718 }
6719
6720 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6721 {
6722 struct drm_device *dev = obj->base.dev;
6723 struct drm_crtc *crtc;
6724
6725 if (!i915_powersave)
6726 return;
6727
6728 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6729 if (!crtc->fb)
6730 continue;
6731
6732 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6733 intel_decrease_pllclock(crtc);
6734 }
6735 }
6736
6737 static void intel_crtc_destroy(struct drm_crtc *crtc)
6738 {
6739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6740 struct drm_device *dev = crtc->dev;
6741 struct intel_unpin_work *work;
6742 unsigned long flags;
6743
6744 spin_lock_irqsave(&dev->event_lock, flags);
6745 work = intel_crtc->unpin_work;
6746 intel_crtc->unpin_work = NULL;
6747 spin_unlock_irqrestore(&dev->event_lock, flags);
6748
6749 if (work) {
6750 cancel_work_sync(&work->work);
6751 kfree(work);
6752 }
6753
6754 drm_crtc_cleanup(crtc);
6755
6756 kfree(intel_crtc);
6757 }
6758
6759 static void intel_unpin_work_fn(struct work_struct *__work)
6760 {
6761 struct intel_unpin_work *work =
6762 container_of(__work, struct intel_unpin_work, work);
6763 struct drm_device *dev = work->crtc->dev;
6764
6765 mutex_lock(&dev->struct_mutex);
6766 intel_unpin_fb_obj(work->old_fb_obj);
6767 drm_gem_object_unreference(&work->pending_flip_obj->base);
6768 drm_gem_object_unreference(&work->old_fb_obj->base);
6769
6770 intel_update_fbc(dev);
6771 mutex_unlock(&dev->struct_mutex);
6772
6773 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6774 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6775
6776 kfree(work);
6777 }
6778
6779 static void do_intel_finish_page_flip(struct drm_device *dev,
6780 struct drm_crtc *crtc)
6781 {
6782 drm_i915_private_t *dev_priv = dev->dev_private;
6783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6784 struct intel_unpin_work *work;
6785 struct drm_i915_gem_object *obj;
6786 unsigned long flags;
6787
6788 /* Ignore early vblank irqs */
6789 if (intel_crtc == NULL)
6790 return;
6791
6792 spin_lock_irqsave(&dev->event_lock, flags);
6793 work = intel_crtc->unpin_work;
6794 if (work == NULL || !work->pending) {
6795 spin_unlock_irqrestore(&dev->event_lock, flags);
6796 return;
6797 }
6798
6799 intel_crtc->unpin_work = NULL;
6800
6801 if (work->event)
6802 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6803
6804 drm_vblank_put(dev, intel_crtc->pipe);
6805
6806 spin_unlock_irqrestore(&dev->event_lock, flags);
6807
6808 obj = work->old_fb_obj;
6809
6810 wake_up(&dev_priv->pending_flip_queue);
6811
6812 queue_work(dev_priv->wq, &work->work);
6813
6814 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6815 }
6816
6817 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6818 {
6819 drm_i915_private_t *dev_priv = dev->dev_private;
6820 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6821
6822 do_intel_finish_page_flip(dev, crtc);
6823 }
6824
6825 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6826 {
6827 drm_i915_private_t *dev_priv = dev->dev_private;
6828 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6829
6830 do_intel_finish_page_flip(dev, crtc);
6831 }
6832
6833 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6834 {
6835 drm_i915_private_t *dev_priv = dev->dev_private;
6836 struct intel_crtc *intel_crtc =
6837 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6838 unsigned long flags;
6839
6840 spin_lock_irqsave(&dev->event_lock, flags);
6841 if (intel_crtc->unpin_work) {
6842 if ((++intel_crtc->unpin_work->pending) > 1)
6843 DRM_ERROR("Prepared flip multiple times\n");
6844 } else {
6845 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6846 }
6847 spin_unlock_irqrestore(&dev->event_lock, flags);
6848 }
6849
6850 static int intel_gen2_queue_flip(struct drm_device *dev,
6851 struct drm_crtc *crtc,
6852 struct drm_framebuffer *fb,
6853 struct drm_i915_gem_object *obj)
6854 {
6855 struct drm_i915_private *dev_priv = dev->dev_private;
6856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6857 u32 flip_mask;
6858 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6859 int ret;
6860
6861 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6862 if (ret)
6863 goto err;
6864
6865 ret = intel_ring_begin(ring, 6);
6866 if (ret)
6867 goto err_unpin;
6868
6869 /* Can't queue multiple flips, so wait for the previous
6870 * one to finish before executing the next.
6871 */
6872 if (intel_crtc->plane)
6873 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6874 else
6875 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6876 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6877 intel_ring_emit(ring, MI_NOOP);
6878 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6879 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6880 intel_ring_emit(ring, fb->pitches[0]);
6881 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6882 intel_ring_emit(ring, 0); /* aux display base address, unused */
6883 intel_ring_advance(ring);
6884 return 0;
6885
6886 err_unpin:
6887 intel_unpin_fb_obj(obj);
6888 err:
6889 return ret;
6890 }
6891
6892 static int intel_gen3_queue_flip(struct drm_device *dev,
6893 struct drm_crtc *crtc,
6894 struct drm_framebuffer *fb,
6895 struct drm_i915_gem_object *obj)
6896 {
6897 struct drm_i915_private *dev_priv = dev->dev_private;
6898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6899 u32 flip_mask;
6900 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6901 int ret;
6902
6903 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6904 if (ret)
6905 goto err;
6906
6907 ret = intel_ring_begin(ring, 6);
6908 if (ret)
6909 goto err_unpin;
6910
6911 if (intel_crtc->plane)
6912 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6913 else
6914 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6915 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6916 intel_ring_emit(ring, MI_NOOP);
6917 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6918 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6919 intel_ring_emit(ring, fb->pitches[0]);
6920 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6921 intel_ring_emit(ring, MI_NOOP);
6922
6923 intel_ring_advance(ring);
6924 return 0;
6925
6926 err_unpin:
6927 intel_unpin_fb_obj(obj);
6928 err:
6929 return ret;
6930 }
6931
6932 static int intel_gen4_queue_flip(struct drm_device *dev,
6933 struct drm_crtc *crtc,
6934 struct drm_framebuffer *fb,
6935 struct drm_i915_gem_object *obj)
6936 {
6937 struct drm_i915_private *dev_priv = dev->dev_private;
6938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6939 uint32_t pf, pipesrc;
6940 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6941 int ret;
6942
6943 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6944 if (ret)
6945 goto err;
6946
6947 ret = intel_ring_begin(ring, 4);
6948 if (ret)
6949 goto err_unpin;
6950
6951 /* i965+ uses the linear or tiled offsets from the
6952 * Display Registers (which do not change across a page-flip)
6953 * so we need only reprogram the base address.
6954 */
6955 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6956 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6957 intel_ring_emit(ring, fb->pitches[0]);
6958 intel_ring_emit(ring,
6959 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6960 obj->tiling_mode);
6961
6962 /* XXX Enabling the panel-fitter across page-flip is so far
6963 * untested on non-native modes, so ignore it for now.
6964 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6965 */
6966 pf = 0;
6967 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6968 intel_ring_emit(ring, pf | pipesrc);
6969 intel_ring_advance(ring);
6970 return 0;
6971
6972 err_unpin:
6973 intel_unpin_fb_obj(obj);
6974 err:
6975 return ret;
6976 }
6977
6978 static int intel_gen6_queue_flip(struct drm_device *dev,
6979 struct drm_crtc *crtc,
6980 struct drm_framebuffer *fb,
6981 struct drm_i915_gem_object *obj)
6982 {
6983 struct drm_i915_private *dev_priv = dev->dev_private;
6984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6985 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6986 uint32_t pf, pipesrc;
6987 int ret;
6988
6989 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6990 if (ret)
6991 goto err;
6992
6993 ret = intel_ring_begin(ring, 4);
6994 if (ret)
6995 goto err_unpin;
6996
6997 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6998 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6999 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7000 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7001
7002 /* Contrary to the suggestions in the documentation,
7003 * "Enable Panel Fitter" does not seem to be required when page
7004 * flipping with a non-native mode, and worse causes a normal
7005 * modeset to fail.
7006 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7007 */
7008 pf = 0;
7009 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7010 intel_ring_emit(ring, pf | pipesrc);
7011 intel_ring_advance(ring);
7012 return 0;
7013
7014 err_unpin:
7015 intel_unpin_fb_obj(obj);
7016 err:
7017 return ret;
7018 }
7019
7020 /*
7021 * On gen7 we currently use the blit ring because (in early silicon at least)
7022 * the render ring doesn't give us interrpts for page flip completion, which
7023 * means clients will hang after the first flip is queued. Fortunately the
7024 * blit ring generates interrupts properly, so use it instead.
7025 */
7026 static int intel_gen7_queue_flip(struct drm_device *dev,
7027 struct drm_crtc *crtc,
7028 struct drm_framebuffer *fb,
7029 struct drm_i915_gem_object *obj)
7030 {
7031 struct drm_i915_private *dev_priv = dev->dev_private;
7032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7033 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7034 uint32_t plane_bit = 0;
7035 int ret;
7036
7037 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7038 if (ret)
7039 goto err;
7040
7041 switch(intel_crtc->plane) {
7042 case PLANE_A:
7043 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7044 break;
7045 case PLANE_B:
7046 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7047 break;
7048 case PLANE_C:
7049 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7050 break;
7051 default:
7052 WARN_ONCE(1, "unknown plane in flip command\n");
7053 ret = -ENODEV;
7054 goto err_unpin;
7055 }
7056
7057 ret = intel_ring_begin(ring, 4);
7058 if (ret)
7059 goto err_unpin;
7060
7061 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7062 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7063 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7064 intel_ring_emit(ring, (MI_NOOP));
7065 intel_ring_advance(ring);
7066 return 0;
7067
7068 err_unpin:
7069 intel_unpin_fb_obj(obj);
7070 err:
7071 return ret;
7072 }
7073
7074 static int intel_default_queue_flip(struct drm_device *dev,
7075 struct drm_crtc *crtc,
7076 struct drm_framebuffer *fb,
7077 struct drm_i915_gem_object *obj)
7078 {
7079 return -ENODEV;
7080 }
7081
7082 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7083 struct drm_framebuffer *fb,
7084 struct drm_pending_vblank_event *event)
7085 {
7086 struct drm_device *dev = crtc->dev;
7087 struct drm_i915_private *dev_priv = dev->dev_private;
7088 struct intel_framebuffer *intel_fb;
7089 struct drm_i915_gem_object *obj;
7090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7091 struct intel_unpin_work *work;
7092 unsigned long flags;
7093 int ret;
7094
7095 /* Can't change pixel format via MI display flips. */
7096 if (fb->pixel_format != crtc->fb->pixel_format)
7097 return -EINVAL;
7098
7099 /*
7100 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7101 * Note that pitch changes could also affect these register.
7102 */
7103 if (INTEL_INFO(dev)->gen > 3 &&
7104 (fb->offsets[0] != crtc->fb->offsets[0] ||
7105 fb->pitches[0] != crtc->fb->pitches[0]))
7106 return -EINVAL;
7107
7108 work = kzalloc(sizeof *work, GFP_KERNEL);
7109 if (work == NULL)
7110 return -ENOMEM;
7111
7112 work->event = event;
7113 work->crtc = crtc;
7114 intel_fb = to_intel_framebuffer(crtc->fb);
7115 work->old_fb_obj = intel_fb->obj;
7116 INIT_WORK(&work->work, intel_unpin_work_fn);
7117
7118 ret = drm_vblank_get(dev, intel_crtc->pipe);
7119 if (ret)
7120 goto free_work;
7121
7122 /* We borrow the event spin lock for protecting unpin_work */
7123 spin_lock_irqsave(&dev->event_lock, flags);
7124 if (intel_crtc->unpin_work) {
7125 spin_unlock_irqrestore(&dev->event_lock, flags);
7126 kfree(work);
7127 drm_vblank_put(dev, intel_crtc->pipe);
7128
7129 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7130 return -EBUSY;
7131 }
7132 intel_crtc->unpin_work = work;
7133 spin_unlock_irqrestore(&dev->event_lock, flags);
7134
7135 intel_fb = to_intel_framebuffer(fb);
7136 obj = intel_fb->obj;
7137
7138 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7139 flush_workqueue(dev_priv->wq);
7140
7141 ret = i915_mutex_lock_interruptible(dev);
7142 if (ret)
7143 goto cleanup;
7144
7145 /* Reference the objects for the scheduled work. */
7146 drm_gem_object_reference(&work->old_fb_obj->base);
7147 drm_gem_object_reference(&obj->base);
7148
7149 crtc->fb = fb;
7150
7151 work->pending_flip_obj = obj;
7152
7153 work->enable_stall_check = true;
7154
7155 atomic_inc(&intel_crtc->unpin_work_count);
7156
7157 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7158 if (ret)
7159 goto cleanup_pending;
7160
7161 intel_disable_fbc(dev);
7162 intel_mark_fb_busy(obj);
7163 mutex_unlock(&dev->struct_mutex);
7164
7165 trace_i915_flip_request(intel_crtc->plane, obj);
7166
7167 return 0;
7168
7169 cleanup_pending:
7170 atomic_dec(&intel_crtc->unpin_work_count);
7171 drm_gem_object_unreference(&work->old_fb_obj->base);
7172 drm_gem_object_unreference(&obj->base);
7173 mutex_unlock(&dev->struct_mutex);
7174
7175 cleanup:
7176 spin_lock_irqsave(&dev->event_lock, flags);
7177 intel_crtc->unpin_work = NULL;
7178 spin_unlock_irqrestore(&dev->event_lock, flags);
7179
7180 drm_vblank_put(dev, intel_crtc->pipe);
7181 free_work:
7182 kfree(work);
7183
7184 return ret;
7185 }
7186
7187 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7188 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7189 .load_lut = intel_crtc_load_lut,
7190 .disable = intel_crtc_noop,
7191 };
7192
7193 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7194 {
7195 struct intel_encoder *other_encoder;
7196 struct drm_crtc *crtc = &encoder->new_crtc->base;
7197
7198 if (WARN_ON(!crtc))
7199 return false;
7200
7201 list_for_each_entry(other_encoder,
7202 &crtc->dev->mode_config.encoder_list,
7203 base.head) {
7204
7205 if (&other_encoder->new_crtc->base != crtc ||
7206 encoder == other_encoder)
7207 continue;
7208 else
7209 return true;
7210 }
7211
7212 return false;
7213 }
7214
7215 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7216 struct drm_crtc *crtc)
7217 {
7218 struct drm_device *dev;
7219 struct drm_crtc *tmp;
7220 int crtc_mask = 1;
7221
7222 WARN(!crtc, "checking null crtc?\n");
7223
7224 dev = crtc->dev;
7225
7226 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7227 if (tmp == crtc)
7228 break;
7229 crtc_mask <<= 1;
7230 }
7231
7232 if (encoder->possible_crtcs & crtc_mask)
7233 return true;
7234 return false;
7235 }
7236
7237 /**
7238 * intel_modeset_update_staged_output_state
7239 *
7240 * Updates the staged output configuration state, e.g. after we've read out the
7241 * current hw state.
7242 */
7243 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7244 {
7245 struct intel_encoder *encoder;
7246 struct intel_connector *connector;
7247
7248 list_for_each_entry(connector, &dev->mode_config.connector_list,
7249 base.head) {
7250 connector->new_encoder =
7251 to_intel_encoder(connector->base.encoder);
7252 }
7253
7254 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7255 base.head) {
7256 encoder->new_crtc =
7257 to_intel_crtc(encoder->base.crtc);
7258 }
7259 }
7260
7261 /**
7262 * intel_modeset_commit_output_state
7263 *
7264 * This function copies the stage display pipe configuration to the real one.
7265 */
7266 static void intel_modeset_commit_output_state(struct drm_device *dev)
7267 {
7268 struct intel_encoder *encoder;
7269 struct intel_connector *connector;
7270
7271 list_for_each_entry(connector, &dev->mode_config.connector_list,
7272 base.head) {
7273 connector->base.encoder = &connector->new_encoder->base;
7274 }
7275
7276 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7277 base.head) {
7278 encoder->base.crtc = &encoder->new_crtc->base;
7279 }
7280 }
7281
7282 static struct drm_display_mode *
7283 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7284 struct drm_display_mode *mode)
7285 {
7286 struct drm_device *dev = crtc->dev;
7287 struct drm_display_mode *adjusted_mode;
7288 struct drm_encoder_helper_funcs *encoder_funcs;
7289 struct intel_encoder *encoder;
7290
7291 adjusted_mode = drm_mode_duplicate(dev, mode);
7292 if (!adjusted_mode)
7293 return ERR_PTR(-ENOMEM);
7294
7295 /* Pass our mode to the connectors and the CRTC to give them a chance to
7296 * adjust it according to limitations or connector properties, and also
7297 * a chance to reject the mode entirely.
7298 */
7299 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7300 base.head) {
7301
7302 if (&encoder->new_crtc->base != crtc)
7303 continue;
7304 encoder_funcs = encoder->base.helper_private;
7305 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7306 adjusted_mode))) {
7307 DRM_DEBUG_KMS("Encoder fixup failed\n");
7308 goto fail;
7309 }
7310 }
7311
7312 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7313 DRM_DEBUG_KMS("CRTC fixup failed\n");
7314 goto fail;
7315 }
7316 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7317
7318 return adjusted_mode;
7319 fail:
7320 drm_mode_destroy(dev, adjusted_mode);
7321 return ERR_PTR(-EINVAL);
7322 }
7323
7324 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7325 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7326 static void
7327 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7328 unsigned *prepare_pipes, unsigned *disable_pipes)
7329 {
7330 struct intel_crtc *intel_crtc;
7331 struct drm_device *dev = crtc->dev;
7332 struct intel_encoder *encoder;
7333 struct intel_connector *connector;
7334 struct drm_crtc *tmp_crtc;
7335
7336 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7337
7338 /* Check which crtcs have changed outputs connected to them, these need
7339 * to be part of the prepare_pipes mask. We don't (yet) support global
7340 * modeset across multiple crtcs, so modeset_pipes will only have one
7341 * bit set at most. */
7342 list_for_each_entry(connector, &dev->mode_config.connector_list,
7343 base.head) {
7344 if (connector->base.encoder == &connector->new_encoder->base)
7345 continue;
7346
7347 if (connector->base.encoder) {
7348 tmp_crtc = connector->base.encoder->crtc;
7349
7350 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7351 }
7352
7353 if (connector->new_encoder)
7354 *prepare_pipes |=
7355 1 << connector->new_encoder->new_crtc->pipe;
7356 }
7357
7358 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7359 base.head) {
7360 if (encoder->base.crtc == &encoder->new_crtc->base)
7361 continue;
7362
7363 if (encoder->base.crtc) {
7364 tmp_crtc = encoder->base.crtc;
7365
7366 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7367 }
7368
7369 if (encoder->new_crtc)
7370 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7371 }
7372
7373 /* Check for any pipes that will be fully disabled ... */
7374 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7375 base.head) {
7376 bool used = false;
7377
7378 /* Don't try to disable disabled crtcs. */
7379 if (!intel_crtc->base.enabled)
7380 continue;
7381
7382 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7383 base.head) {
7384 if (encoder->new_crtc == intel_crtc)
7385 used = true;
7386 }
7387
7388 if (!used)
7389 *disable_pipes |= 1 << intel_crtc->pipe;
7390 }
7391
7392
7393 /* set_mode is also used to update properties on life display pipes. */
7394 intel_crtc = to_intel_crtc(crtc);
7395 if (crtc->enabled)
7396 *prepare_pipes |= 1 << intel_crtc->pipe;
7397
7398 /* We only support modeset on one single crtc, hence we need to do that
7399 * only for the passed in crtc iff we change anything else than just
7400 * disable crtcs.
7401 *
7402 * This is actually not true, to be fully compatible with the old crtc
7403 * helper we automatically disable _any_ output (i.e. doesn't need to be
7404 * connected to the crtc we're modesetting on) if it's disconnected.
7405 * Which is a rather nutty api (since changed the output configuration
7406 * without userspace's explicit request can lead to confusion), but
7407 * alas. Hence we currently need to modeset on all pipes we prepare. */
7408 if (*prepare_pipes)
7409 *modeset_pipes = *prepare_pipes;
7410
7411 /* ... and mask these out. */
7412 *modeset_pipes &= ~(*disable_pipes);
7413 *prepare_pipes &= ~(*disable_pipes);
7414 }
7415
7416 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7417 {
7418 struct drm_encoder *encoder;
7419 struct drm_device *dev = crtc->dev;
7420
7421 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7422 if (encoder->crtc == crtc)
7423 return true;
7424
7425 return false;
7426 }
7427
7428 static void
7429 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7430 {
7431 struct intel_encoder *intel_encoder;
7432 struct intel_crtc *intel_crtc;
7433 struct drm_connector *connector;
7434
7435 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7436 base.head) {
7437 if (!intel_encoder->base.crtc)
7438 continue;
7439
7440 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7441
7442 if (prepare_pipes & (1 << intel_crtc->pipe))
7443 intel_encoder->connectors_active = false;
7444 }
7445
7446 intel_modeset_commit_output_state(dev);
7447
7448 /* Update computed state. */
7449 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7450 base.head) {
7451 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7452 }
7453
7454 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7455 if (!connector->encoder || !connector->encoder->crtc)
7456 continue;
7457
7458 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7459
7460 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7461 struct drm_property *dpms_property =
7462 dev->mode_config.dpms_property;
7463
7464 connector->dpms = DRM_MODE_DPMS_ON;
7465 drm_object_property_set_value(&connector->base,
7466 dpms_property,
7467 DRM_MODE_DPMS_ON);
7468
7469 intel_encoder = to_intel_encoder(connector->encoder);
7470 intel_encoder->connectors_active = true;
7471 }
7472 }
7473
7474 }
7475
7476 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7477 list_for_each_entry((intel_crtc), \
7478 &(dev)->mode_config.crtc_list, \
7479 base.head) \
7480 if (mask & (1 <<(intel_crtc)->pipe)) \
7481
7482 void
7483 intel_modeset_check_state(struct drm_device *dev)
7484 {
7485 struct intel_crtc *crtc;
7486 struct intel_encoder *encoder;
7487 struct intel_connector *connector;
7488
7489 list_for_each_entry(connector, &dev->mode_config.connector_list,
7490 base.head) {
7491 /* This also checks the encoder/connector hw state with the
7492 * ->get_hw_state callbacks. */
7493 intel_connector_check_state(connector);
7494
7495 WARN(&connector->new_encoder->base != connector->base.encoder,
7496 "connector's staged encoder doesn't match current encoder\n");
7497 }
7498
7499 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7500 base.head) {
7501 bool enabled = false;
7502 bool active = false;
7503 enum pipe pipe, tracked_pipe;
7504
7505 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7506 encoder->base.base.id,
7507 drm_get_encoder_name(&encoder->base));
7508
7509 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7510 "encoder's stage crtc doesn't match current crtc\n");
7511 WARN(encoder->connectors_active && !encoder->base.crtc,
7512 "encoder's active_connectors set, but no crtc\n");
7513
7514 list_for_each_entry(connector, &dev->mode_config.connector_list,
7515 base.head) {
7516 if (connector->base.encoder != &encoder->base)
7517 continue;
7518 enabled = true;
7519 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7520 active = true;
7521 }
7522 WARN(!!encoder->base.crtc != enabled,
7523 "encoder's enabled state mismatch "
7524 "(expected %i, found %i)\n",
7525 !!encoder->base.crtc, enabled);
7526 WARN(active && !encoder->base.crtc,
7527 "active encoder with no crtc\n");
7528
7529 WARN(encoder->connectors_active != active,
7530 "encoder's computed active state doesn't match tracked active state "
7531 "(expected %i, found %i)\n", active, encoder->connectors_active);
7532
7533 active = encoder->get_hw_state(encoder, &pipe);
7534 WARN(active != encoder->connectors_active,
7535 "encoder's hw state doesn't match sw tracking "
7536 "(expected %i, found %i)\n",
7537 encoder->connectors_active, active);
7538
7539 if (!encoder->base.crtc)
7540 continue;
7541
7542 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7543 WARN(active && pipe != tracked_pipe,
7544 "active encoder's pipe doesn't match"
7545 "(expected %i, found %i)\n",
7546 tracked_pipe, pipe);
7547
7548 }
7549
7550 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7551 base.head) {
7552 bool enabled = false;
7553 bool active = false;
7554
7555 DRM_DEBUG_KMS("[CRTC:%d]\n",
7556 crtc->base.base.id);
7557
7558 WARN(crtc->active && !crtc->base.enabled,
7559 "active crtc, but not enabled in sw tracking\n");
7560
7561 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7562 base.head) {
7563 if (encoder->base.crtc != &crtc->base)
7564 continue;
7565 enabled = true;
7566 if (encoder->connectors_active)
7567 active = true;
7568 }
7569 WARN(active != crtc->active,
7570 "crtc's computed active state doesn't match tracked active state "
7571 "(expected %i, found %i)\n", active, crtc->active);
7572 WARN(enabled != crtc->base.enabled,
7573 "crtc's computed enabled state doesn't match tracked enabled state "
7574 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7575
7576 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7577 }
7578 }
7579
7580 bool intel_set_mode(struct drm_crtc *crtc,
7581 struct drm_display_mode *mode,
7582 int x, int y, struct drm_framebuffer *fb)
7583 {
7584 struct drm_device *dev = crtc->dev;
7585 drm_i915_private_t *dev_priv = dev->dev_private;
7586 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7587 struct intel_crtc *intel_crtc;
7588 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7589 bool ret = true;
7590
7591 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7592 &prepare_pipes, &disable_pipes);
7593
7594 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7595 modeset_pipes, prepare_pipes, disable_pipes);
7596
7597 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7598 intel_crtc_disable(&intel_crtc->base);
7599
7600 saved_hwmode = crtc->hwmode;
7601 saved_mode = crtc->mode;
7602
7603 /* Hack: Because we don't (yet) support global modeset on multiple
7604 * crtcs, we don't keep track of the new mode for more than one crtc.
7605 * Hence simply check whether any bit is set in modeset_pipes in all the
7606 * pieces of code that are not yet converted to deal with mutliple crtcs
7607 * changing their mode at the same time. */
7608 adjusted_mode = NULL;
7609 if (modeset_pipes) {
7610 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7611 if (IS_ERR(adjusted_mode)) {
7612 return false;
7613 }
7614 }
7615
7616 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7617 if (intel_crtc->base.enabled)
7618 dev_priv->display.crtc_disable(&intel_crtc->base);
7619 }
7620
7621 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7622 * to set it here already despite that we pass it down the callchain.
7623 */
7624 if (modeset_pipes)
7625 crtc->mode = *mode;
7626
7627 /* Only after disabling all output pipelines that will be changed can we
7628 * update the the output configuration. */
7629 intel_modeset_update_state(dev, prepare_pipes);
7630
7631 if (dev_priv->display.modeset_global_resources)
7632 dev_priv->display.modeset_global_resources(dev);
7633
7634 /* Set up the DPLL and any encoders state that needs to adjust or depend
7635 * on the DPLL.
7636 */
7637 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7638 ret = !intel_crtc_mode_set(&intel_crtc->base,
7639 mode, adjusted_mode,
7640 x, y, fb);
7641 if (!ret)
7642 goto done;
7643 }
7644
7645 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7646 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7647 dev_priv->display.crtc_enable(&intel_crtc->base);
7648
7649 if (modeset_pipes) {
7650 /* Store real post-adjustment hardware mode. */
7651 crtc->hwmode = *adjusted_mode;
7652
7653 /* Calculate and store various constants which
7654 * are later needed by vblank and swap-completion
7655 * timestamping. They are derived from true hwmode.
7656 */
7657 drm_calc_timestamping_constants(crtc);
7658 }
7659
7660 /* FIXME: add subpixel order */
7661 done:
7662 drm_mode_destroy(dev, adjusted_mode);
7663 if (!ret && crtc->enabled) {
7664 crtc->hwmode = saved_hwmode;
7665 crtc->mode = saved_mode;
7666 } else {
7667 intel_modeset_check_state(dev);
7668 }
7669
7670 return ret;
7671 }
7672
7673 #undef for_each_intel_crtc_masked
7674
7675 static void intel_set_config_free(struct intel_set_config *config)
7676 {
7677 if (!config)
7678 return;
7679
7680 kfree(config->save_connector_encoders);
7681 kfree(config->save_encoder_crtcs);
7682 kfree(config);
7683 }
7684
7685 static int intel_set_config_save_state(struct drm_device *dev,
7686 struct intel_set_config *config)
7687 {
7688 struct drm_encoder *encoder;
7689 struct drm_connector *connector;
7690 int count;
7691
7692 config->save_encoder_crtcs =
7693 kcalloc(dev->mode_config.num_encoder,
7694 sizeof(struct drm_crtc *), GFP_KERNEL);
7695 if (!config->save_encoder_crtcs)
7696 return -ENOMEM;
7697
7698 config->save_connector_encoders =
7699 kcalloc(dev->mode_config.num_connector,
7700 sizeof(struct drm_encoder *), GFP_KERNEL);
7701 if (!config->save_connector_encoders)
7702 return -ENOMEM;
7703
7704 /* Copy data. Note that driver private data is not affected.
7705 * Should anything bad happen only the expected state is
7706 * restored, not the drivers personal bookkeeping.
7707 */
7708 count = 0;
7709 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7710 config->save_encoder_crtcs[count++] = encoder->crtc;
7711 }
7712
7713 count = 0;
7714 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7715 config->save_connector_encoders[count++] = connector->encoder;
7716 }
7717
7718 return 0;
7719 }
7720
7721 static void intel_set_config_restore_state(struct drm_device *dev,
7722 struct intel_set_config *config)
7723 {
7724 struct intel_encoder *encoder;
7725 struct intel_connector *connector;
7726 int count;
7727
7728 count = 0;
7729 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7730 encoder->new_crtc =
7731 to_intel_crtc(config->save_encoder_crtcs[count++]);
7732 }
7733
7734 count = 0;
7735 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7736 connector->new_encoder =
7737 to_intel_encoder(config->save_connector_encoders[count++]);
7738 }
7739 }
7740
7741 static void
7742 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7743 struct intel_set_config *config)
7744 {
7745
7746 /* We should be able to check here if the fb has the same properties
7747 * and then just flip_or_move it */
7748 if (set->crtc->fb != set->fb) {
7749 /* If we have no fb then treat it as a full mode set */
7750 if (set->crtc->fb == NULL) {
7751 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7752 config->mode_changed = true;
7753 } else if (set->fb == NULL) {
7754 config->mode_changed = true;
7755 } else if (set->fb->depth != set->crtc->fb->depth) {
7756 config->mode_changed = true;
7757 } else if (set->fb->bits_per_pixel !=
7758 set->crtc->fb->bits_per_pixel) {
7759 config->mode_changed = true;
7760 } else
7761 config->fb_changed = true;
7762 }
7763
7764 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7765 config->fb_changed = true;
7766
7767 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7768 DRM_DEBUG_KMS("modes are different, full mode set\n");
7769 drm_mode_debug_printmodeline(&set->crtc->mode);
7770 drm_mode_debug_printmodeline(set->mode);
7771 config->mode_changed = true;
7772 }
7773 }
7774
7775 static int
7776 intel_modeset_stage_output_state(struct drm_device *dev,
7777 struct drm_mode_set *set,
7778 struct intel_set_config *config)
7779 {
7780 struct drm_crtc *new_crtc;
7781 struct intel_connector *connector;
7782 struct intel_encoder *encoder;
7783 int count, ro;
7784
7785 /* The upper layers ensure that we either disabl a crtc or have a list
7786 * of connectors. For paranoia, double-check this. */
7787 WARN_ON(!set->fb && (set->num_connectors != 0));
7788 WARN_ON(set->fb && (set->num_connectors == 0));
7789
7790 count = 0;
7791 list_for_each_entry(connector, &dev->mode_config.connector_list,
7792 base.head) {
7793 /* Otherwise traverse passed in connector list and get encoders
7794 * for them. */
7795 for (ro = 0; ro < set->num_connectors; ro++) {
7796 if (set->connectors[ro] == &connector->base) {
7797 connector->new_encoder = connector->encoder;
7798 break;
7799 }
7800 }
7801
7802 /* If we disable the crtc, disable all its connectors. Also, if
7803 * the connector is on the changing crtc but not on the new
7804 * connector list, disable it. */
7805 if ((!set->fb || ro == set->num_connectors) &&
7806 connector->base.encoder &&
7807 connector->base.encoder->crtc == set->crtc) {
7808 connector->new_encoder = NULL;
7809
7810 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7811 connector->base.base.id,
7812 drm_get_connector_name(&connector->base));
7813 }
7814
7815
7816 if (&connector->new_encoder->base != connector->base.encoder) {
7817 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7818 config->mode_changed = true;
7819 }
7820
7821 /* Disable all disconnected encoders. */
7822 if (connector->base.status == connector_status_disconnected)
7823 connector->new_encoder = NULL;
7824 }
7825 /* connector->new_encoder is now updated for all connectors. */
7826
7827 /* Update crtc of enabled connectors. */
7828 count = 0;
7829 list_for_each_entry(connector, &dev->mode_config.connector_list,
7830 base.head) {
7831 if (!connector->new_encoder)
7832 continue;
7833
7834 new_crtc = connector->new_encoder->base.crtc;
7835
7836 for (ro = 0; ro < set->num_connectors; ro++) {
7837 if (set->connectors[ro] == &connector->base)
7838 new_crtc = set->crtc;
7839 }
7840
7841 /* Make sure the new CRTC will work with the encoder */
7842 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7843 new_crtc)) {
7844 return -EINVAL;
7845 }
7846 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7847
7848 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7849 connector->base.base.id,
7850 drm_get_connector_name(&connector->base),
7851 new_crtc->base.id);
7852 }
7853
7854 /* Check for any encoders that needs to be disabled. */
7855 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7856 base.head) {
7857 list_for_each_entry(connector,
7858 &dev->mode_config.connector_list,
7859 base.head) {
7860 if (connector->new_encoder == encoder) {
7861 WARN_ON(!connector->new_encoder->new_crtc);
7862
7863 goto next_encoder;
7864 }
7865 }
7866 encoder->new_crtc = NULL;
7867 next_encoder:
7868 /* Only now check for crtc changes so we don't miss encoders
7869 * that will be disabled. */
7870 if (&encoder->new_crtc->base != encoder->base.crtc) {
7871 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7872 config->mode_changed = true;
7873 }
7874 }
7875 /* Now we've also updated encoder->new_crtc for all encoders. */
7876
7877 return 0;
7878 }
7879
7880 static int intel_crtc_set_config(struct drm_mode_set *set)
7881 {
7882 struct drm_device *dev;
7883 struct drm_mode_set save_set;
7884 struct intel_set_config *config;
7885 int ret;
7886
7887 BUG_ON(!set);
7888 BUG_ON(!set->crtc);
7889 BUG_ON(!set->crtc->helper_private);
7890
7891 if (!set->mode)
7892 set->fb = NULL;
7893
7894 /* The fb helper likes to play gross jokes with ->mode_set_config.
7895 * Unfortunately the crtc helper doesn't do much at all for this case,
7896 * so we have to cope with this madness until the fb helper is fixed up. */
7897 if (set->fb && set->num_connectors == 0)
7898 return 0;
7899
7900 if (set->fb) {
7901 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7902 set->crtc->base.id, set->fb->base.id,
7903 (int)set->num_connectors, set->x, set->y);
7904 } else {
7905 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7906 }
7907
7908 dev = set->crtc->dev;
7909
7910 ret = -ENOMEM;
7911 config = kzalloc(sizeof(*config), GFP_KERNEL);
7912 if (!config)
7913 goto out_config;
7914
7915 ret = intel_set_config_save_state(dev, config);
7916 if (ret)
7917 goto out_config;
7918
7919 save_set.crtc = set->crtc;
7920 save_set.mode = &set->crtc->mode;
7921 save_set.x = set->crtc->x;
7922 save_set.y = set->crtc->y;
7923 save_set.fb = set->crtc->fb;
7924
7925 /* Compute whether we need a full modeset, only an fb base update or no
7926 * change at all. In the future we might also check whether only the
7927 * mode changed, e.g. for LVDS where we only change the panel fitter in
7928 * such cases. */
7929 intel_set_config_compute_mode_changes(set, config);
7930
7931 ret = intel_modeset_stage_output_state(dev, set, config);
7932 if (ret)
7933 goto fail;
7934
7935 if (config->mode_changed) {
7936 if (set->mode) {
7937 DRM_DEBUG_KMS("attempting to set mode from"
7938 " userspace\n");
7939 drm_mode_debug_printmodeline(set->mode);
7940 }
7941
7942 if (!intel_set_mode(set->crtc, set->mode,
7943 set->x, set->y, set->fb)) {
7944 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7945 set->crtc->base.id);
7946 ret = -EINVAL;
7947 goto fail;
7948 }
7949 } else if (config->fb_changed) {
7950 ret = intel_pipe_set_base(set->crtc,
7951 set->x, set->y, set->fb);
7952 }
7953
7954 intel_set_config_free(config);
7955
7956 return 0;
7957
7958 fail:
7959 intel_set_config_restore_state(dev, config);
7960
7961 /* Try to restore the config */
7962 if (config->mode_changed &&
7963 !intel_set_mode(save_set.crtc, save_set.mode,
7964 save_set.x, save_set.y, save_set.fb))
7965 DRM_ERROR("failed to restore config after modeset failure\n");
7966
7967 out_config:
7968 intel_set_config_free(config);
7969 return ret;
7970 }
7971
7972 static const struct drm_crtc_funcs intel_crtc_funcs = {
7973 .cursor_set = intel_crtc_cursor_set,
7974 .cursor_move = intel_crtc_cursor_move,
7975 .gamma_set = intel_crtc_gamma_set,
7976 .set_config = intel_crtc_set_config,
7977 .destroy = intel_crtc_destroy,
7978 .page_flip = intel_crtc_page_flip,
7979 };
7980
7981 static void intel_cpu_pll_init(struct drm_device *dev)
7982 {
7983 if (IS_HASWELL(dev))
7984 intel_ddi_pll_init(dev);
7985 }
7986
7987 static void intel_pch_pll_init(struct drm_device *dev)
7988 {
7989 drm_i915_private_t *dev_priv = dev->dev_private;
7990 int i;
7991
7992 if (dev_priv->num_pch_pll == 0) {
7993 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7994 return;
7995 }
7996
7997 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7998 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7999 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8000 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8001 }
8002 }
8003
8004 static void intel_crtc_init(struct drm_device *dev, int pipe)
8005 {
8006 drm_i915_private_t *dev_priv = dev->dev_private;
8007 struct intel_crtc *intel_crtc;
8008 int i;
8009
8010 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8011 if (intel_crtc == NULL)
8012 return;
8013
8014 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8015
8016 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8017 for (i = 0; i < 256; i++) {
8018 intel_crtc->lut_r[i] = i;
8019 intel_crtc->lut_g[i] = i;
8020 intel_crtc->lut_b[i] = i;
8021 }
8022
8023 /* Swap pipes & planes for FBC on pre-965 */
8024 intel_crtc->pipe = pipe;
8025 intel_crtc->plane = pipe;
8026 intel_crtc->cpu_transcoder = pipe;
8027 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8028 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8029 intel_crtc->plane = !pipe;
8030 }
8031
8032 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8033 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8034 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8035 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8036
8037 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8038
8039 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8040 }
8041
8042 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8043 struct drm_file *file)
8044 {
8045 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8046 struct drm_mode_object *drmmode_obj;
8047 struct intel_crtc *crtc;
8048
8049 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8050 return -ENODEV;
8051
8052 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8053 DRM_MODE_OBJECT_CRTC);
8054
8055 if (!drmmode_obj) {
8056 DRM_ERROR("no such CRTC id\n");
8057 return -EINVAL;
8058 }
8059
8060 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8061 pipe_from_crtc_id->pipe = crtc->pipe;
8062
8063 return 0;
8064 }
8065
8066 static int intel_encoder_clones(struct intel_encoder *encoder)
8067 {
8068 struct drm_device *dev = encoder->base.dev;
8069 struct intel_encoder *source_encoder;
8070 int index_mask = 0;
8071 int entry = 0;
8072
8073 list_for_each_entry(source_encoder,
8074 &dev->mode_config.encoder_list, base.head) {
8075
8076 if (encoder == source_encoder)
8077 index_mask |= (1 << entry);
8078
8079 /* Intel hw has only one MUX where enocoders could be cloned. */
8080 if (encoder->cloneable && source_encoder->cloneable)
8081 index_mask |= (1 << entry);
8082
8083 entry++;
8084 }
8085
8086 return index_mask;
8087 }
8088
8089 static bool has_edp_a(struct drm_device *dev)
8090 {
8091 struct drm_i915_private *dev_priv = dev->dev_private;
8092
8093 if (!IS_MOBILE(dev))
8094 return false;
8095
8096 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8097 return false;
8098
8099 if (IS_GEN5(dev) &&
8100 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8101 return false;
8102
8103 return true;
8104 }
8105
8106 static void intel_setup_outputs(struct drm_device *dev)
8107 {
8108 struct drm_i915_private *dev_priv = dev->dev_private;
8109 struct intel_encoder *encoder;
8110 bool dpd_is_edp = false;
8111 bool has_lvds;
8112
8113 has_lvds = intel_lvds_init(dev);
8114 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8115 /* disable the panel fitter on everything but LVDS */
8116 I915_WRITE(PFIT_CONTROL, 0);
8117 }
8118
8119 if (!(IS_HASWELL(dev) &&
8120 (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8121 intel_crt_init(dev);
8122
8123 if (IS_HASWELL(dev)) {
8124 int found;
8125
8126 /* Haswell uses DDI functions to detect digital outputs */
8127 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8128 /* DDI A only supports eDP */
8129 if (found)
8130 intel_ddi_init(dev, PORT_A);
8131
8132 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8133 * register */
8134 found = I915_READ(SFUSE_STRAP);
8135
8136 if (found & SFUSE_STRAP_DDIB_DETECTED)
8137 intel_ddi_init(dev, PORT_B);
8138 if (found & SFUSE_STRAP_DDIC_DETECTED)
8139 intel_ddi_init(dev, PORT_C);
8140 if (found & SFUSE_STRAP_DDID_DETECTED)
8141 intel_ddi_init(dev, PORT_D);
8142 } else if (HAS_PCH_SPLIT(dev)) {
8143 int found;
8144 dpd_is_edp = intel_dpd_is_edp(dev);
8145
8146 if (has_edp_a(dev))
8147 intel_dp_init(dev, DP_A, PORT_A);
8148
8149 if (I915_READ(HDMIB) & PORT_DETECTED) {
8150 /* PCH SDVOB multiplex with HDMIB */
8151 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8152 if (!found)
8153 intel_hdmi_init(dev, HDMIB, PORT_B);
8154 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8155 intel_dp_init(dev, PCH_DP_B, PORT_B);
8156 }
8157
8158 if (I915_READ(HDMIC) & PORT_DETECTED)
8159 intel_hdmi_init(dev, HDMIC, PORT_C);
8160
8161 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8162 intel_hdmi_init(dev, HDMID, PORT_D);
8163
8164 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8165 intel_dp_init(dev, PCH_DP_C, PORT_C);
8166
8167 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8168 intel_dp_init(dev, PCH_DP_D, PORT_D);
8169 } else if (IS_VALLEYVIEW(dev)) {
8170 int found;
8171
8172 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8173 if (I915_READ(DP_C) & DP_DETECTED)
8174 intel_dp_init(dev, DP_C, PORT_C);
8175
8176 if (I915_READ(SDVOB) & PORT_DETECTED) {
8177 /* SDVOB multiplex with HDMIB */
8178 found = intel_sdvo_init(dev, SDVOB, true);
8179 if (!found)
8180 intel_hdmi_init(dev, SDVOB, PORT_B);
8181 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8182 intel_dp_init(dev, DP_B, PORT_B);
8183 }
8184
8185 if (I915_READ(SDVOC) & PORT_DETECTED)
8186 intel_hdmi_init(dev, SDVOC, PORT_C);
8187
8188 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8189 bool found = false;
8190
8191 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8192 DRM_DEBUG_KMS("probing SDVOB\n");
8193 found = intel_sdvo_init(dev, SDVOB, true);
8194 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8195 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8196 intel_hdmi_init(dev, SDVOB, PORT_B);
8197 }
8198
8199 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8200 DRM_DEBUG_KMS("probing DP_B\n");
8201 intel_dp_init(dev, DP_B, PORT_B);
8202 }
8203 }
8204
8205 /* Before G4X SDVOC doesn't have its own detect register */
8206
8207 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8208 DRM_DEBUG_KMS("probing SDVOC\n");
8209 found = intel_sdvo_init(dev, SDVOC, false);
8210 }
8211
8212 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8213
8214 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8215 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8216 intel_hdmi_init(dev, SDVOC, PORT_C);
8217 }
8218 if (SUPPORTS_INTEGRATED_DP(dev)) {
8219 DRM_DEBUG_KMS("probing DP_C\n");
8220 intel_dp_init(dev, DP_C, PORT_C);
8221 }
8222 }
8223
8224 if (SUPPORTS_INTEGRATED_DP(dev) &&
8225 (I915_READ(DP_D) & DP_DETECTED)) {
8226 DRM_DEBUG_KMS("probing DP_D\n");
8227 intel_dp_init(dev, DP_D, PORT_D);
8228 }
8229 } else if (IS_GEN2(dev))
8230 intel_dvo_init(dev);
8231
8232 if (SUPPORTS_TV(dev))
8233 intel_tv_init(dev);
8234
8235 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8236 encoder->base.possible_crtcs = encoder->crtc_mask;
8237 encoder->base.possible_clones =
8238 intel_encoder_clones(encoder);
8239 }
8240
8241 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8242 ironlake_init_pch_refclk(dev);
8243
8244 drm_helper_move_panel_connectors_to_head(dev);
8245 }
8246
8247 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8248 {
8249 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8250
8251 drm_framebuffer_cleanup(fb);
8252 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8253
8254 kfree(intel_fb);
8255 }
8256
8257 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8258 struct drm_file *file,
8259 unsigned int *handle)
8260 {
8261 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8262 struct drm_i915_gem_object *obj = intel_fb->obj;
8263
8264 return drm_gem_handle_create(file, &obj->base, handle);
8265 }
8266
8267 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8268 .destroy = intel_user_framebuffer_destroy,
8269 .create_handle = intel_user_framebuffer_create_handle,
8270 };
8271
8272 int intel_framebuffer_init(struct drm_device *dev,
8273 struct intel_framebuffer *intel_fb,
8274 struct drm_mode_fb_cmd2 *mode_cmd,
8275 struct drm_i915_gem_object *obj)
8276 {
8277 int ret;
8278
8279 if (obj->tiling_mode == I915_TILING_Y)
8280 return -EINVAL;
8281
8282 if (mode_cmd->pitches[0] & 63)
8283 return -EINVAL;
8284
8285 /* FIXME <= Gen4 stride limits are bit unclear */
8286 if (mode_cmd->pitches[0] > 32768)
8287 return -EINVAL;
8288
8289 if (obj->tiling_mode != I915_TILING_NONE &&
8290 mode_cmd->pitches[0] != obj->stride)
8291 return -EINVAL;
8292
8293 /* Reject formats not supported by any plane early. */
8294 switch (mode_cmd->pixel_format) {
8295 case DRM_FORMAT_C8:
8296 case DRM_FORMAT_RGB565:
8297 case DRM_FORMAT_XRGB8888:
8298 case DRM_FORMAT_ARGB8888:
8299 break;
8300 case DRM_FORMAT_XRGB1555:
8301 case DRM_FORMAT_ARGB1555:
8302 if (INTEL_INFO(dev)->gen > 3)
8303 return -EINVAL;
8304 break;
8305 case DRM_FORMAT_XBGR8888:
8306 case DRM_FORMAT_ABGR8888:
8307 case DRM_FORMAT_XRGB2101010:
8308 case DRM_FORMAT_ARGB2101010:
8309 case DRM_FORMAT_XBGR2101010:
8310 case DRM_FORMAT_ABGR2101010:
8311 if (INTEL_INFO(dev)->gen < 4)
8312 return -EINVAL;
8313 break;
8314 case DRM_FORMAT_YUYV:
8315 case DRM_FORMAT_UYVY:
8316 case DRM_FORMAT_YVYU:
8317 case DRM_FORMAT_VYUY:
8318 if (INTEL_INFO(dev)->gen < 6)
8319 return -EINVAL;
8320 break;
8321 default:
8322 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8323 return -EINVAL;
8324 }
8325
8326 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8327 if (mode_cmd->offsets[0] != 0)
8328 return -EINVAL;
8329
8330 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8331 if (ret) {
8332 DRM_ERROR("framebuffer init failed %d\n", ret);
8333 return ret;
8334 }
8335
8336 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8337 intel_fb->obj = obj;
8338 return 0;
8339 }
8340
8341 static struct drm_framebuffer *
8342 intel_user_framebuffer_create(struct drm_device *dev,
8343 struct drm_file *filp,
8344 struct drm_mode_fb_cmd2 *mode_cmd)
8345 {
8346 struct drm_i915_gem_object *obj;
8347
8348 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8349 mode_cmd->handles[0]));
8350 if (&obj->base == NULL)
8351 return ERR_PTR(-ENOENT);
8352
8353 return intel_framebuffer_create(dev, mode_cmd, obj);
8354 }
8355
8356 static const struct drm_mode_config_funcs intel_mode_funcs = {
8357 .fb_create = intel_user_framebuffer_create,
8358 .output_poll_changed = intel_fb_output_poll_changed,
8359 };
8360
8361 /* Set up chip specific display functions */
8362 static void intel_init_display(struct drm_device *dev)
8363 {
8364 struct drm_i915_private *dev_priv = dev->dev_private;
8365
8366 /* We always want a DPMS function */
8367 if (IS_HASWELL(dev)) {
8368 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8369 dev_priv->display.crtc_enable = haswell_crtc_enable;
8370 dev_priv->display.crtc_disable = haswell_crtc_disable;
8371 dev_priv->display.off = haswell_crtc_off;
8372 dev_priv->display.update_plane = ironlake_update_plane;
8373 } else if (HAS_PCH_SPLIT(dev)) {
8374 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8375 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8376 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8377 dev_priv->display.off = ironlake_crtc_off;
8378 dev_priv->display.update_plane = ironlake_update_plane;
8379 } else {
8380 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8381 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8382 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8383 dev_priv->display.off = i9xx_crtc_off;
8384 dev_priv->display.update_plane = i9xx_update_plane;
8385 }
8386
8387 /* Returns the core display clock speed */
8388 if (IS_VALLEYVIEW(dev))
8389 dev_priv->display.get_display_clock_speed =
8390 valleyview_get_display_clock_speed;
8391 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8392 dev_priv->display.get_display_clock_speed =
8393 i945_get_display_clock_speed;
8394 else if (IS_I915G(dev))
8395 dev_priv->display.get_display_clock_speed =
8396 i915_get_display_clock_speed;
8397 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8398 dev_priv->display.get_display_clock_speed =
8399 i9xx_misc_get_display_clock_speed;
8400 else if (IS_I915GM(dev))
8401 dev_priv->display.get_display_clock_speed =
8402 i915gm_get_display_clock_speed;
8403 else if (IS_I865G(dev))
8404 dev_priv->display.get_display_clock_speed =
8405 i865_get_display_clock_speed;
8406 else if (IS_I85X(dev))
8407 dev_priv->display.get_display_clock_speed =
8408 i855_get_display_clock_speed;
8409 else /* 852, 830 */
8410 dev_priv->display.get_display_clock_speed =
8411 i830_get_display_clock_speed;
8412
8413 if (HAS_PCH_SPLIT(dev)) {
8414 if (IS_GEN5(dev)) {
8415 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8416 dev_priv->display.write_eld = ironlake_write_eld;
8417 } else if (IS_GEN6(dev)) {
8418 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8419 dev_priv->display.write_eld = ironlake_write_eld;
8420 } else if (IS_IVYBRIDGE(dev)) {
8421 /* FIXME: detect B0+ stepping and use auto training */
8422 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8423 dev_priv->display.write_eld = ironlake_write_eld;
8424 dev_priv->display.modeset_global_resources =
8425 ivb_modeset_global_resources;
8426 } else if (IS_HASWELL(dev)) {
8427 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8428 dev_priv->display.write_eld = haswell_write_eld;
8429 } else
8430 dev_priv->display.update_wm = NULL;
8431 } else if (IS_G4X(dev)) {
8432 dev_priv->display.write_eld = g4x_write_eld;
8433 }
8434
8435 /* Default just returns -ENODEV to indicate unsupported */
8436 dev_priv->display.queue_flip = intel_default_queue_flip;
8437
8438 switch (INTEL_INFO(dev)->gen) {
8439 case 2:
8440 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8441 break;
8442
8443 case 3:
8444 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8445 break;
8446
8447 case 4:
8448 case 5:
8449 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8450 break;
8451
8452 case 6:
8453 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8454 break;
8455 case 7:
8456 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8457 break;
8458 }
8459 }
8460
8461 /*
8462 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8463 * resume, or other times. This quirk makes sure that's the case for
8464 * affected systems.
8465 */
8466 static void quirk_pipea_force(struct drm_device *dev)
8467 {
8468 struct drm_i915_private *dev_priv = dev->dev_private;
8469
8470 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8471 DRM_INFO("applying pipe a force quirk\n");
8472 }
8473
8474 /*
8475 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8476 */
8477 static void quirk_ssc_force_disable(struct drm_device *dev)
8478 {
8479 struct drm_i915_private *dev_priv = dev->dev_private;
8480 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8481 DRM_INFO("applying lvds SSC disable quirk\n");
8482 }
8483
8484 /*
8485 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8486 * brightness value
8487 */
8488 static void quirk_invert_brightness(struct drm_device *dev)
8489 {
8490 struct drm_i915_private *dev_priv = dev->dev_private;
8491 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8492 DRM_INFO("applying inverted panel brightness quirk\n");
8493 }
8494
8495 struct intel_quirk {
8496 int device;
8497 int subsystem_vendor;
8498 int subsystem_device;
8499 void (*hook)(struct drm_device *dev);
8500 };
8501
8502 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8503 struct intel_dmi_quirk {
8504 void (*hook)(struct drm_device *dev);
8505 const struct dmi_system_id (*dmi_id_list)[];
8506 };
8507
8508 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8509 {
8510 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8511 return 1;
8512 }
8513
8514 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8515 {
8516 .dmi_id_list = &(const struct dmi_system_id[]) {
8517 {
8518 .callback = intel_dmi_reverse_brightness,
8519 .ident = "NCR Corporation",
8520 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8521 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8522 },
8523 },
8524 { } /* terminating entry */
8525 },
8526 .hook = quirk_invert_brightness,
8527 },
8528 };
8529
8530 static struct intel_quirk intel_quirks[] = {
8531 /* HP Mini needs pipe A force quirk (LP: #322104) */
8532 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8533
8534 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8535 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8536
8537 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8538 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8539
8540 /* 830/845 need to leave pipe A & dpll A up */
8541 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8542 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8543
8544 /* Lenovo U160 cannot use SSC on LVDS */
8545 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8546
8547 /* Sony Vaio Y cannot use SSC on LVDS */
8548 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8549
8550 /* Acer Aspire 5734Z must invert backlight brightness */
8551 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8552 };
8553
8554 static void intel_init_quirks(struct drm_device *dev)
8555 {
8556 struct pci_dev *d = dev->pdev;
8557 int i;
8558
8559 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8560 struct intel_quirk *q = &intel_quirks[i];
8561
8562 if (d->device == q->device &&
8563 (d->subsystem_vendor == q->subsystem_vendor ||
8564 q->subsystem_vendor == PCI_ANY_ID) &&
8565 (d->subsystem_device == q->subsystem_device ||
8566 q->subsystem_device == PCI_ANY_ID))
8567 q->hook(dev);
8568 }
8569 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8570 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8571 intel_dmi_quirks[i].hook(dev);
8572 }
8573 }
8574
8575 /* Disable the VGA plane that we never use */
8576 static void i915_disable_vga(struct drm_device *dev)
8577 {
8578 struct drm_i915_private *dev_priv = dev->dev_private;
8579 u8 sr1;
8580 u32 vga_reg;
8581
8582 if (HAS_PCH_SPLIT(dev))
8583 vga_reg = CPU_VGACNTRL;
8584 else
8585 vga_reg = VGACNTRL;
8586
8587 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8588 outb(SR01, VGA_SR_INDEX);
8589 sr1 = inb(VGA_SR_DATA);
8590 outb(sr1 | 1<<5, VGA_SR_DATA);
8591 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8592 udelay(300);
8593
8594 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8595 POSTING_READ(vga_reg);
8596 }
8597
8598 void intel_modeset_init_hw(struct drm_device *dev)
8599 {
8600 /* We attempt to init the necessary power wells early in the initialization
8601 * time, so the subsystems that expect power to be enabled can work.
8602 */
8603 intel_init_power_wells(dev);
8604
8605 intel_prepare_ddi(dev);
8606
8607 intel_init_clock_gating(dev);
8608
8609 mutex_lock(&dev->struct_mutex);
8610 intel_enable_gt_powersave(dev);
8611 mutex_unlock(&dev->struct_mutex);
8612 }
8613
8614 void intel_modeset_init(struct drm_device *dev)
8615 {
8616 struct drm_i915_private *dev_priv = dev->dev_private;
8617 int i, ret;
8618
8619 drm_mode_config_init(dev);
8620
8621 dev->mode_config.min_width = 0;
8622 dev->mode_config.min_height = 0;
8623
8624 dev->mode_config.preferred_depth = 24;
8625 dev->mode_config.prefer_shadow = 1;
8626
8627 dev->mode_config.funcs = &intel_mode_funcs;
8628
8629 intel_init_quirks(dev);
8630
8631 intel_init_pm(dev);
8632
8633 intel_init_display(dev);
8634
8635 if (IS_GEN2(dev)) {
8636 dev->mode_config.max_width = 2048;
8637 dev->mode_config.max_height = 2048;
8638 } else if (IS_GEN3(dev)) {
8639 dev->mode_config.max_width = 4096;
8640 dev->mode_config.max_height = 4096;
8641 } else {
8642 dev->mode_config.max_width = 8192;
8643 dev->mode_config.max_height = 8192;
8644 }
8645 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8646
8647 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8648 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8649
8650 for (i = 0; i < dev_priv->num_pipe; i++) {
8651 intel_crtc_init(dev, i);
8652 ret = intel_plane_init(dev, i);
8653 if (ret)
8654 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8655 }
8656
8657 intel_cpu_pll_init(dev);
8658 intel_pch_pll_init(dev);
8659
8660 /* Just disable it once at startup */
8661 i915_disable_vga(dev);
8662 intel_setup_outputs(dev);
8663 }
8664
8665 static void
8666 intel_connector_break_all_links(struct intel_connector *connector)
8667 {
8668 connector->base.dpms = DRM_MODE_DPMS_OFF;
8669 connector->base.encoder = NULL;
8670 connector->encoder->connectors_active = false;
8671 connector->encoder->base.crtc = NULL;
8672 }
8673
8674 static void intel_enable_pipe_a(struct drm_device *dev)
8675 {
8676 struct intel_connector *connector;
8677 struct drm_connector *crt = NULL;
8678 struct intel_load_detect_pipe load_detect_temp;
8679
8680 /* We can't just switch on the pipe A, we need to set things up with a
8681 * proper mode and output configuration. As a gross hack, enable pipe A
8682 * by enabling the load detect pipe once. */
8683 list_for_each_entry(connector,
8684 &dev->mode_config.connector_list,
8685 base.head) {
8686 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8687 crt = &connector->base;
8688 break;
8689 }
8690 }
8691
8692 if (!crt)
8693 return;
8694
8695 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8696 intel_release_load_detect_pipe(crt, &load_detect_temp);
8697
8698
8699 }
8700
8701 static bool
8702 intel_check_plane_mapping(struct intel_crtc *crtc)
8703 {
8704 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8705 u32 reg, val;
8706
8707 if (dev_priv->num_pipe == 1)
8708 return true;
8709
8710 reg = DSPCNTR(!crtc->plane);
8711 val = I915_READ(reg);
8712
8713 if ((val & DISPLAY_PLANE_ENABLE) &&
8714 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8715 return false;
8716
8717 return true;
8718 }
8719
8720 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8721 {
8722 struct drm_device *dev = crtc->base.dev;
8723 struct drm_i915_private *dev_priv = dev->dev_private;
8724 u32 reg;
8725
8726 /* Clear any frame start delays used for debugging left by the BIOS */
8727 reg = PIPECONF(crtc->cpu_transcoder);
8728 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8729
8730 /* We need to sanitize the plane -> pipe mapping first because this will
8731 * disable the crtc (and hence change the state) if it is wrong. Note
8732 * that gen4+ has a fixed plane -> pipe mapping. */
8733 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8734 struct intel_connector *connector;
8735 bool plane;
8736
8737 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8738 crtc->base.base.id);
8739
8740 /* Pipe has the wrong plane attached and the plane is active.
8741 * Temporarily change the plane mapping and disable everything
8742 * ... */
8743 plane = crtc->plane;
8744 crtc->plane = !plane;
8745 dev_priv->display.crtc_disable(&crtc->base);
8746 crtc->plane = plane;
8747
8748 /* ... and break all links. */
8749 list_for_each_entry(connector, &dev->mode_config.connector_list,
8750 base.head) {
8751 if (connector->encoder->base.crtc != &crtc->base)
8752 continue;
8753
8754 intel_connector_break_all_links(connector);
8755 }
8756
8757 WARN_ON(crtc->active);
8758 crtc->base.enabled = false;
8759 }
8760
8761 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8762 crtc->pipe == PIPE_A && !crtc->active) {
8763 /* BIOS forgot to enable pipe A, this mostly happens after
8764 * resume. Force-enable the pipe to fix this, the update_dpms
8765 * call below we restore the pipe to the right state, but leave
8766 * the required bits on. */
8767 intel_enable_pipe_a(dev);
8768 }
8769
8770 /* Adjust the state of the output pipe according to whether we
8771 * have active connectors/encoders. */
8772 intel_crtc_update_dpms(&crtc->base);
8773
8774 if (crtc->active != crtc->base.enabled) {
8775 struct intel_encoder *encoder;
8776
8777 /* This can happen either due to bugs in the get_hw_state
8778 * functions or because the pipe is force-enabled due to the
8779 * pipe A quirk. */
8780 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8781 crtc->base.base.id,
8782 crtc->base.enabled ? "enabled" : "disabled",
8783 crtc->active ? "enabled" : "disabled");
8784
8785 crtc->base.enabled = crtc->active;
8786
8787 /* Because we only establish the connector -> encoder ->
8788 * crtc links if something is active, this means the
8789 * crtc is now deactivated. Break the links. connector
8790 * -> encoder links are only establish when things are
8791 * actually up, hence no need to break them. */
8792 WARN_ON(crtc->active);
8793
8794 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8795 WARN_ON(encoder->connectors_active);
8796 encoder->base.crtc = NULL;
8797 }
8798 }
8799 }
8800
8801 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8802 {
8803 struct intel_connector *connector;
8804 struct drm_device *dev = encoder->base.dev;
8805
8806 /* We need to check both for a crtc link (meaning that the
8807 * encoder is active and trying to read from a pipe) and the
8808 * pipe itself being active. */
8809 bool has_active_crtc = encoder->base.crtc &&
8810 to_intel_crtc(encoder->base.crtc)->active;
8811
8812 if (encoder->connectors_active && !has_active_crtc) {
8813 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8814 encoder->base.base.id,
8815 drm_get_encoder_name(&encoder->base));
8816
8817 /* Connector is active, but has no active pipe. This is
8818 * fallout from our resume register restoring. Disable
8819 * the encoder manually again. */
8820 if (encoder->base.crtc) {
8821 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8822 encoder->base.base.id,
8823 drm_get_encoder_name(&encoder->base));
8824 encoder->disable(encoder);
8825 }
8826
8827 /* Inconsistent output/port/pipe state happens presumably due to
8828 * a bug in one of the get_hw_state functions. Or someplace else
8829 * in our code, like the register restore mess on resume. Clamp
8830 * things to off as a safer default. */
8831 list_for_each_entry(connector,
8832 &dev->mode_config.connector_list,
8833 base.head) {
8834 if (connector->encoder != encoder)
8835 continue;
8836
8837 intel_connector_break_all_links(connector);
8838 }
8839 }
8840 /* Enabled encoders without active connectors will be fixed in
8841 * the crtc fixup. */
8842 }
8843
8844 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8845 * and i915 state tracking structures. */
8846 void intel_modeset_setup_hw_state(struct drm_device *dev,
8847 bool force_restore)
8848 {
8849 struct drm_i915_private *dev_priv = dev->dev_private;
8850 enum pipe pipe;
8851 u32 tmp;
8852 struct intel_crtc *crtc;
8853 struct intel_encoder *encoder;
8854 struct intel_connector *connector;
8855
8856 if (IS_HASWELL(dev)) {
8857 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8858
8859 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8860 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8861 case TRANS_DDI_EDP_INPUT_A_ON:
8862 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8863 pipe = PIPE_A;
8864 break;
8865 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8866 pipe = PIPE_B;
8867 break;
8868 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8869 pipe = PIPE_C;
8870 break;
8871 }
8872
8873 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8874 crtc->cpu_transcoder = TRANSCODER_EDP;
8875
8876 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8877 pipe_name(pipe));
8878 }
8879 }
8880
8881 for_each_pipe(pipe) {
8882 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8883
8884 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8885 if (tmp & PIPECONF_ENABLE)
8886 crtc->active = true;
8887 else
8888 crtc->active = false;
8889
8890 crtc->base.enabled = crtc->active;
8891
8892 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8893 crtc->base.base.id,
8894 crtc->active ? "enabled" : "disabled");
8895 }
8896
8897 if (IS_HASWELL(dev))
8898 intel_ddi_setup_hw_pll_state(dev);
8899
8900 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8901 base.head) {
8902 pipe = 0;
8903
8904 if (encoder->get_hw_state(encoder, &pipe)) {
8905 encoder->base.crtc =
8906 dev_priv->pipe_to_crtc_mapping[pipe];
8907 } else {
8908 encoder->base.crtc = NULL;
8909 }
8910
8911 encoder->connectors_active = false;
8912 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8913 encoder->base.base.id,
8914 drm_get_encoder_name(&encoder->base),
8915 encoder->base.crtc ? "enabled" : "disabled",
8916 pipe);
8917 }
8918
8919 list_for_each_entry(connector, &dev->mode_config.connector_list,
8920 base.head) {
8921 if (connector->get_hw_state(connector)) {
8922 connector->base.dpms = DRM_MODE_DPMS_ON;
8923 connector->encoder->connectors_active = true;
8924 connector->base.encoder = &connector->encoder->base;
8925 } else {
8926 connector->base.dpms = DRM_MODE_DPMS_OFF;
8927 connector->base.encoder = NULL;
8928 }
8929 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8930 connector->base.base.id,
8931 drm_get_connector_name(&connector->base),
8932 connector->base.encoder ? "enabled" : "disabled");
8933 }
8934
8935 /* HW state is read out, now we need to sanitize this mess. */
8936 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8937 base.head) {
8938 intel_sanitize_encoder(encoder);
8939 }
8940
8941 for_each_pipe(pipe) {
8942 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8943 intel_sanitize_crtc(crtc);
8944 }
8945
8946 if (force_restore) {
8947 for_each_pipe(pipe) {
8948 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8949 intel_set_mode(&crtc->base, &crtc->base.mode,
8950 crtc->base.x, crtc->base.y, crtc->base.fb);
8951 }
8952 } else {
8953 intel_modeset_update_staged_output_state(dev);
8954 }
8955
8956 intel_modeset_check_state(dev);
8957
8958 drm_mode_config_reset(dev);
8959 }
8960
8961 void intel_modeset_gem_init(struct drm_device *dev)
8962 {
8963 intel_modeset_init_hw(dev);
8964
8965 intel_setup_overlay(dev);
8966
8967 intel_modeset_setup_hw_state(dev, false);
8968 }
8969
8970 void intel_modeset_cleanup(struct drm_device *dev)
8971 {
8972 struct drm_i915_private *dev_priv = dev->dev_private;
8973 struct drm_crtc *crtc;
8974 struct intel_crtc *intel_crtc;
8975
8976 drm_kms_helper_poll_fini(dev);
8977 mutex_lock(&dev->struct_mutex);
8978
8979 intel_unregister_dsm_handler();
8980
8981
8982 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8983 /* Skip inactive CRTCs */
8984 if (!crtc->fb)
8985 continue;
8986
8987 intel_crtc = to_intel_crtc(crtc);
8988 intel_increase_pllclock(crtc);
8989 }
8990
8991 intel_disable_fbc(dev);
8992
8993 intel_disable_gt_powersave(dev);
8994
8995 ironlake_teardown_rc6(dev);
8996
8997 if (IS_VALLEYVIEW(dev))
8998 vlv_init_dpio(dev);
8999
9000 mutex_unlock(&dev->struct_mutex);
9001
9002 /* Disable the irq before mode object teardown, for the irq might
9003 * enqueue unpin/hotplug work. */
9004 drm_irq_uninstall(dev);
9005 cancel_work_sync(&dev_priv->hotplug_work);
9006 cancel_work_sync(&dev_priv->rps.work);
9007
9008 /* flush any delayed tasks or pending work */
9009 flush_scheduled_work();
9010
9011 drm_mode_config_cleanup(dev);
9012 }
9013
9014 /*
9015 * Return which encoder is currently attached for connector.
9016 */
9017 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9018 {
9019 return &intel_attached_encoder(connector)->base;
9020 }
9021
9022 void intel_connector_attach_encoder(struct intel_connector *connector,
9023 struct intel_encoder *encoder)
9024 {
9025 connector->encoder = encoder;
9026 drm_mode_connector_attach_encoder(&connector->base,
9027 &encoder->base);
9028 }
9029
9030 /*
9031 * set vga decode state - true == enable VGA decode
9032 */
9033 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9034 {
9035 struct drm_i915_private *dev_priv = dev->dev_private;
9036 u16 gmch_ctrl;
9037
9038 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9039 if (state)
9040 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9041 else
9042 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9043 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9044 return 0;
9045 }
9046
9047 #ifdef CONFIG_DEBUG_FS
9048 #include <linux/seq_file.h>
9049
9050 struct intel_display_error_state {
9051 struct intel_cursor_error_state {
9052 u32 control;
9053 u32 position;
9054 u32 base;
9055 u32 size;
9056 } cursor[I915_MAX_PIPES];
9057
9058 struct intel_pipe_error_state {
9059 u32 conf;
9060 u32 source;
9061
9062 u32 htotal;
9063 u32 hblank;
9064 u32 hsync;
9065 u32 vtotal;
9066 u32 vblank;
9067 u32 vsync;
9068 } pipe[I915_MAX_PIPES];
9069
9070 struct intel_plane_error_state {
9071 u32 control;
9072 u32 stride;
9073 u32 size;
9074 u32 pos;
9075 u32 addr;
9076 u32 surface;
9077 u32 tile_offset;
9078 } plane[I915_MAX_PIPES];
9079 };
9080
9081 struct intel_display_error_state *
9082 intel_display_capture_error_state(struct drm_device *dev)
9083 {
9084 drm_i915_private_t *dev_priv = dev->dev_private;
9085 struct intel_display_error_state *error;
9086 enum transcoder cpu_transcoder;
9087 int i;
9088
9089 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9090 if (error == NULL)
9091 return NULL;
9092
9093 for_each_pipe(i) {
9094 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9095
9096 error->cursor[i].control = I915_READ(CURCNTR(i));
9097 error->cursor[i].position = I915_READ(CURPOS(i));
9098 error->cursor[i].base = I915_READ(CURBASE(i));
9099
9100 error->plane[i].control = I915_READ(DSPCNTR(i));
9101 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9102 error->plane[i].size = I915_READ(DSPSIZE(i));
9103 error->plane[i].pos = I915_READ(DSPPOS(i));
9104 error->plane[i].addr = I915_READ(DSPADDR(i));
9105 if (INTEL_INFO(dev)->gen >= 4) {
9106 error->plane[i].surface = I915_READ(DSPSURF(i));
9107 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9108 }
9109
9110 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9111 error->pipe[i].source = I915_READ(PIPESRC(i));
9112 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9113 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9114 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9115 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9116 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9117 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9118 }
9119
9120 return error;
9121 }
9122
9123 void
9124 intel_display_print_error_state(struct seq_file *m,
9125 struct drm_device *dev,
9126 struct intel_display_error_state *error)
9127 {
9128 drm_i915_private_t *dev_priv = dev->dev_private;
9129 int i;
9130
9131 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9132 for_each_pipe(i) {
9133 seq_printf(m, "Pipe [%d]:\n", i);
9134 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9135 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9136 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9137 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9138 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9139 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9140 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9141 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9142
9143 seq_printf(m, "Plane [%d]:\n", i);
9144 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9145 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9146 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9147 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9148 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9149 if (INTEL_INFO(dev)->gen >= 4) {
9150 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9151 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9152 }
9153
9154 seq_printf(m, "Cursor [%d]:\n", i);
9155 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9156 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9157 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9158 }
9159 }
9160 #endif
This page took 0.295375 seconds and 6 git commands to generate.