drm/i915: move i9xx dpll enabling into crtc enable function
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 int min, max;
50 } intel_range_t;
51
52 typedef struct {
53 int dot_limit;
54 int p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM 2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60 intel_range_t dot, vco, n, m, m1, m2, p, p1;
61 intel_p2_t p2;
62 };
63
64 /* FDI */
65 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
66
67 int
68 intel_pch_rawclk(struct drm_device *dev)
69 {
70 struct drm_i915_private *dev_priv = dev->dev_private;
71
72 WARN_ON(!HAS_PCH_SPLIT(dev));
73
74 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
75 }
76
77 static inline u32 /* units of 100MHz */
78 intel_fdi_link_freq(struct drm_device *dev)
79 {
80 if (IS_GEN5(dev)) {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
83 } else
84 return 27;
85 }
86
87 static const intel_limit_t intel_limits_i8xx_dvo = {
88 .dot = { .min = 25000, .max = 350000 },
89 .vco = { .min = 930000, .max = 1400000 },
90 .n = { .min = 3, .max = 16 },
91 .m = { .min = 96, .max = 140 },
92 .m1 = { .min = 18, .max = 26 },
93 .m2 = { .min = 6, .max = 16 },
94 .p = { .min = 4, .max = 128 },
95 .p1 = { .min = 2, .max = 33 },
96 .p2 = { .dot_limit = 165000,
97 .p2_slow = 4, .p2_fast = 2 },
98 };
99
100 static const intel_limit_t intel_limits_i8xx_lvds = {
101 .dot = { .min = 25000, .max = 350000 },
102 .vco = { .min = 930000, .max = 1400000 },
103 .n = { .min = 3, .max = 16 },
104 .m = { .min = 96, .max = 140 },
105 .m1 = { .min = 18, .max = 26 },
106 .m2 = { .min = 6, .max = 16 },
107 .p = { .min = 4, .max = 128 },
108 .p1 = { .min = 1, .max = 6 },
109 .p2 = { .dot_limit = 165000,
110 .p2_slow = 14, .p2_fast = 7 },
111 };
112
113 static const intel_limit_t intel_limits_i9xx_sdvo = {
114 .dot = { .min = 20000, .max = 400000 },
115 .vco = { .min = 1400000, .max = 2800000 },
116 .n = { .min = 1, .max = 6 },
117 .m = { .min = 70, .max = 120 },
118 .m1 = { .min = 8, .max = 18 },
119 .m2 = { .min = 3, .max = 7 },
120 .p = { .min = 5, .max = 80 },
121 .p1 = { .min = 1, .max = 8 },
122 .p2 = { .dot_limit = 200000,
123 .p2_slow = 10, .p2_fast = 5 },
124 };
125
126 static const intel_limit_t intel_limits_i9xx_lvds = {
127 .dot = { .min = 20000, .max = 400000 },
128 .vco = { .min = 1400000, .max = 2800000 },
129 .n = { .min = 1, .max = 6 },
130 .m = { .min = 70, .max = 120 },
131 .m1 = { .min = 8, .max = 18 },
132 .m2 = { .min = 3, .max = 7 },
133 .p = { .min = 7, .max = 98 },
134 .p1 = { .min = 1, .max = 8 },
135 .p2 = { .dot_limit = 112000,
136 .p2_slow = 14, .p2_fast = 7 },
137 };
138
139
140 static const intel_limit_t intel_limits_g4x_sdvo = {
141 .dot = { .min = 25000, .max = 270000 },
142 .vco = { .min = 1750000, .max = 3500000},
143 .n = { .min = 1, .max = 4 },
144 .m = { .min = 104, .max = 138 },
145 .m1 = { .min = 17, .max = 23 },
146 .m2 = { .min = 5, .max = 11 },
147 .p = { .min = 10, .max = 30 },
148 .p1 = { .min = 1, .max = 3},
149 .p2 = { .dot_limit = 270000,
150 .p2_slow = 10,
151 .p2_fast = 10
152 },
153 };
154
155 static const intel_limit_t intel_limits_g4x_hdmi = {
156 .dot = { .min = 22000, .max = 400000 },
157 .vco = { .min = 1750000, .max = 3500000},
158 .n = { .min = 1, .max = 4 },
159 .m = { .min = 104, .max = 138 },
160 .m1 = { .min = 16, .max = 23 },
161 .m2 = { .min = 5, .max = 11 },
162 .p = { .min = 5, .max = 80 },
163 .p1 = { .min = 1, .max = 8},
164 .p2 = { .dot_limit = 165000,
165 .p2_slow = 10, .p2_fast = 5 },
166 };
167
168 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
169 .dot = { .min = 20000, .max = 115000 },
170 .vco = { .min = 1750000, .max = 3500000 },
171 .n = { .min = 1, .max = 3 },
172 .m = { .min = 104, .max = 138 },
173 .m1 = { .min = 17, .max = 23 },
174 .m2 = { .min = 5, .max = 11 },
175 .p = { .min = 28, .max = 112 },
176 .p1 = { .min = 2, .max = 8 },
177 .p2 = { .dot_limit = 0,
178 .p2_slow = 14, .p2_fast = 14
179 },
180 };
181
182 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
183 .dot = { .min = 80000, .max = 224000 },
184 .vco = { .min = 1750000, .max = 3500000 },
185 .n = { .min = 1, .max = 3 },
186 .m = { .min = 104, .max = 138 },
187 .m1 = { .min = 17, .max = 23 },
188 .m2 = { .min = 5, .max = 11 },
189 .p = { .min = 14, .max = 42 },
190 .p1 = { .min = 2, .max = 6 },
191 .p2 = { .dot_limit = 0,
192 .p2_slow = 7, .p2_fast = 7
193 },
194 };
195
196 static const intel_limit_t intel_limits_pineview_sdvo = {
197 .dot = { .min = 20000, .max = 400000},
198 .vco = { .min = 1700000, .max = 3500000 },
199 /* Pineview's Ncounter is a ring counter */
200 .n = { .min = 3, .max = 6 },
201 .m = { .min = 2, .max = 256 },
202 /* Pineview only has one combined m divider, which we treat as m2. */
203 .m1 = { .min = 0, .max = 0 },
204 .m2 = { .min = 0, .max = 254 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 200000,
208 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const intel_limit_t intel_limits_pineview_lvds = {
212 .dot = { .min = 20000, .max = 400000 },
213 .vco = { .min = 1700000, .max = 3500000 },
214 .n = { .min = 3, .max = 6 },
215 .m = { .min = 2, .max = 256 },
216 .m1 = { .min = 0, .max = 0 },
217 .m2 = { .min = 0, .max = 254 },
218 .p = { .min = 7, .max = 112 },
219 .p1 = { .min = 1, .max = 8 },
220 .p2 = { .dot_limit = 112000,
221 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 /* Ironlake / Sandybridge
225 *
226 * We calculate clock using (register_value + 2) for N/M1/M2, so here
227 * the range value for them is (actual_value - 2).
228 */
229 static const intel_limit_t intel_limits_ironlake_dac = {
230 .dot = { .min = 25000, .max = 350000 },
231 .vco = { .min = 1760000, .max = 3510000 },
232 .n = { .min = 1, .max = 5 },
233 .m = { .min = 79, .max = 127 },
234 .m1 = { .min = 12, .max = 22 },
235 .m2 = { .min = 5, .max = 9 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8 },
238 .p2 = { .dot_limit = 225000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_ironlake_single_lvds = {
243 .dot = { .min = 25000, .max = 350000 },
244 .vco = { .min = 1760000, .max = 3510000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 79, .max = 118 },
247 .m1 = { .min = 12, .max = 22 },
248 .m2 = { .min = 5, .max = 9 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 225000,
252 .p2_slow = 14, .p2_fast = 14 },
253 };
254
255 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
256 .dot = { .min = 25000, .max = 350000 },
257 .vco = { .min = 1760000, .max = 3510000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 79, .max = 127 },
260 .m1 = { .min = 12, .max = 22 },
261 .m2 = { .min = 5, .max = 9 },
262 .p = { .min = 14, .max = 56 },
263 .p1 = { .min = 2, .max = 8 },
264 .p2 = { .dot_limit = 225000,
265 .p2_slow = 7, .p2_fast = 7 },
266 };
267
268 /* LVDS 100mhz refclk limits. */
269 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
270 .dot = { .min = 25000, .max = 350000 },
271 .vco = { .min = 1760000, .max = 3510000 },
272 .n = { .min = 1, .max = 2 },
273 .m = { .min = 79, .max = 126 },
274 .m1 = { .min = 12, .max = 22 },
275 .m2 = { .min = 5, .max = 9 },
276 .p = { .min = 28, .max = 112 },
277 .p1 = { .min = 2, .max = 8 },
278 .p2 = { .dot_limit = 225000,
279 .p2_slow = 14, .p2_fast = 14 },
280 };
281
282 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 3 },
286 .m = { .min = 79, .max = 126 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 14, .max = 42 },
290 .p1 = { .min = 2, .max = 6 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 7, .p2_fast = 7 },
293 };
294
295 static const intel_limit_t intel_limits_vlv_dac = {
296 .dot = { .min = 25000, .max = 270000 },
297 .vco = { .min = 4000000, .max = 6000000 },
298 .n = { .min = 1, .max = 7 },
299 .m = { .min = 22, .max = 450 }, /* guess */
300 .m1 = { .min = 2, .max = 3 },
301 .m2 = { .min = 11, .max = 156 },
302 .p = { .min = 10, .max = 30 },
303 .p1 = { .min = 1, .max = 3 },
304 .p2 = { .dot_limit = 270000,
305 .p2_slow = 2, .p2_fast = 20 },
306 };
307
308 static const intel_limit_t intel_limits_vlv_hdmi = {
309 .dot = { .min = 25000, .max = 270000 },
310 .vco = { .min = 4000000, .max = 6000000 },
311 .n = { .min = 1, .max = 7 },
312 .m = { .min = 60, .max = 300 }, /* guess */
313 .m1 = { .min = 2, .max = 3 },
314 .m2 = { .min = 11, .max = 156 },
315 .p = { .min = 10, .max = 30 },
316 .p1 = { .min = 2, .max = 3 },
317 .p2 = { .dot_limit = 270000,
318 .p2_slow = 2, .p2_fast = 20 },
319 };
320
321 static const intel_limit_t intel_limits_vlv_dp = {
322 .dot = { .min = 25000, .max = 270000 },
323 .vco = { .min = 4000000, .max = 6000000 },
324 .n = { .min = 1, .max = 7 },
325 .m = { .min = 22, .max = 450 },
326 .m1 = { .min = 2, .max = 3 },
327 .m2 = { .min = 11, .max = 156 },
328 .p = { .min = 10, .max = 30 },
329 .p1 = { .min = 1, .max = 3 },
330 .p2 = { .dot_limit = 270000,
331 .p2_slow = 2, .p2_fast = 20 },
332 };
333
334 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
335 int refclk)
336 {
337 struct drm_device *dev = crtc->dev;
338 const intel_limit_t *limit;
339
340 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
341 if (intel_is_dual_link_lvds(dev)) {
342 if (refclk == 100000)
343 limit = &intel_limits_ironlake_dual_lvds_100m;
344 else
345 limit = &intel_limits_ironlake_dual_lvds;
346 } else {
347 if (refclk == 100000)
348 limit = &intel_limits_ironlake_single_lvds_100m;
349 else
350 limit = &intel_limits_ironlake_single_lvds;
351 }
352 } else
353 limit = &intel_limits_ironlake_dac;
354
355 return limit;
356 }
357
358 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
359 {
360 struct drm_device *dev = crtc->dev;
361 const intel_limit_t *limit;
362
363 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
364 if (intel_is_dual_link_lvds(dev))
365 limit = &intel_limits_g4x_dual_channel_lvds;
366 else
367 limit = &intel_limits_g4x_single_channel_lvds;
368 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
369 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
370 limit = &intel_limits_g4x_hdmi;
371 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
372 limit = &intel_limits_g4x_sdvo;
373 } else /* The option is for other outputs */
374 limit = &intel_limits_i9xx_sdvo;
375
376 return limit;
377 }
378
379 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
380 {
381 struct drm_device *dev = crtc->dev;
382 const intel_limit_t *limit;
383
384 if (HAS_PCH_SPLIT(dev))
385 limit = intel_ironlake_limit(crtc, refclk);
386 else if (IS_G4X(dev)) {
387 limit = intel_g4x_limit(crtc);
388 } else if (IS_PINEVIEW(dev)) {
389 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
390 limit = &intel_limits_pineview_lvds;
391 else
392 limit = &intel_limits_pineview_sdvo;
393 } else if (IS_VALLEYVIEW(dev)) {
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
395 limit = &intel_limits_vlv_dac;
396 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
397 limit = &intel_limits_vlv_hdmi;
398 else
399 limit = &intel_limits_vlv_dp;
400 } else if (!IS_GEN2(dev)) {
401 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
402 limit = &intel_limits_i9xx_lvds;
403 else
404 limit = &intel_limits_i9xx_sdvo;
405 } else {
406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407 limit = &intel_limits_i8xx_lvds;
408 else
409 limit = &intel_limits_i8xx_dvo;
410 }
411 return limit;
412 }
413
414 /* m1 is reserved as 0 in Pineview, n is a ring counter */
415 static void pineview_clock(int refclk, intel_clock_t *clock)
416 {
417 clock->m = clock->m2 + 2;
418 clock->p = clock->p1 * clock->p2;
419 clock->vco = refclk * clock->m / clock->n;
420 clock->dot = clock->vco / clock->p;
421 }
422
423 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
424 {
425 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
426 }
427
428 static void i9xx_clock(int refclk, intel_clock_t *clock)
429 {
430 clock->m = i9xx_dpll_compute_m(clock);
431 clock->p = clock->p1 * clock->p2;
432 clock->vco = refclk * clock->m / (clock->n + 2);
433 clock->dot = clock->vco / clock->p;
434 }
435
436 /**
437 * Returns whether any output on the specified pipe is of the specified type
438 */
439 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
440 {
441 struct drm_device *dev = crtc->dev;
442 struct intel_encoder *encoder;
443
444 for_each_encoder_on_crtc(dev, crtc, encoder)
445 if (encoder->type == type)
446 return true;
447
448 return false;
449 }
450
451 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
452 /**
453 * Returns whether the given set of divisors are valid for a given refclk with
454 * the given connectors.
455 */
456
457 static bool intel_PLL_is_valid(struct drm_device *dev,
458 const intel_limit_t *limit,
459 const intel_clock_t *clock)
460 {
461 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
462 INTELPllInvalid("p1 out of range\n");
463 if (clock->p < limit->p.min || limit->p.max < clock->p)
464 INTELPllInvalid("p out of range\n");
465 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
466 INTELPllInvalid("m2 out of range\n");
467 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
468 INTELPllInvalid("m1 out of range\n");
469 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
470 INTELPllInvalid("m1 <= m2\n");
471 if (clock->m < limit->m.min || limit->m.max < clock->m)
472 INTELPllInvalid("m out of range\n");
473 if (clock->n < limit->n.min || limit->n.max < clock->n)
474 INTELPllInvalid("n out of range\n");
475 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
476 INTELPllInvalid("vco out of range\n");
477 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
478 * connector, etc., rather than just a single range.
479 */
480 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
481 INTELPllInvalid("dot out of range\n");
482
483 return true;
484 }
485
486 static bool
487 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
488 int target, int refclk, intel_clock_t *match_clock,
489 intel_clock_t *best_clock)
490 {
491 struct drm_device *dev = crtc->dev;
492 intel_clock_t clock;
493 int err = target;
494
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
496 /*
497 * For LVDS just rely on its current settings for dual-channel.
498 * We haven't figured out how to reliably set up different
499 * single/dual channel state, if we even can.
500 */
501 if (intel_is_dual_link_lvds(dev))
502 clock.p2 = limit->p2.p2_fast;
503 else
504 clock.p2 = limit->p2.p2_slow;
505 } else {
506 if (target < limit->p2.dot_limit)
507 clock.p2 = limit->p2.p2_slow;
508 else
509 clock.p2 = limit->p2.p2_fast;
510 }
511
512 memset(best_clock, 0, sizeof(*best_clock));
513
514 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
515 clock.m1++) {
516 for (clock.m2 = limit->m2.min;
517 clock.m2 <= limit->m2.max; clock.m2++) {
518 if (clock.m2 >= clock.m1)
519 break;
520 for (clock.n = limit->n.min;
521 clock.n <= limit->n.max; clock.n++) {
522 for (clock.p1 = limit->p1.min;
523 clock.p1 <= limit->p1.max; clock.p1++) {
524 int this_err;
525
526 i9xx_clock(refclk, &clock);
527 if (!intel_PLL_is_valid(dev, limit,
528 &clock))
529 continue;
530 if (match_clock &&
531 clock.p != match_clock->p)
532 continue;
533
534 this_err = abs(clock.dot - target);
535 if (this_err < err) {
536 *best_clock = clock;
537 err = this_err;
538 }
539 }
540 }
541 }
542 }
543
544 return (err != target);
545 }
546
547 static bool
548 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
549 int target, int refclk, intel_clock_t *match_clock,
550 intel_clock_t *best_clock)
551 {
552 struct drm_device *dev = crtc->dev;
553 intel_clock_t clock;
554 int err = target;
555
556 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557 /*
558 * For LVDS just rely on its current settings for dual-channel.
559 * We haven't figured out how to reliably set up different
560 * single/dual channel state, if we even can.
561 */
562 if (intel_is_dual_link_lvds(dev))
563 clock.p2 = limit->p2.p2_fast;
564 else
565 clock.p2 = limit->p2.p2_slow;
566 } else {
567 if (target < limit->p2.dot_limit)
568 clock.p2 = limit->p2.p2_slow;
569 else
570 clock.p2 = limit->p2.p2_fast;
571 }
572
573 memset(best_clock, 0, sizeof(*best_clock));
574
575 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
576 clock.m1++) {
577 for (clock.m2 = limit->m2.min;
578 clock.m2 <= limit->m2.max; clock.m2++) {
579 for (clock.n = limit->n.min;
580 clock.n <= limit->n.max; clock.n++) {
581 for (clock.p1 = limit->p1.min;
582 clock.p1 <= limit->p1.max; clock.p1++) {
583 int this_err;
584
585 pineview_clock(refclk, &clock);
586 if (!intel_PLL_is_valid(dev, limit,
587 &clock))
588 continue;
589 if (match_clock &&
590 clock.p != match_clock->p)
591 continue;
592
593 this_err = abs(clock.dot - target);
594 if (this_err < err) {
595 *best_clock = clock;
596 err = this_err;
597 }
598 }
599 }
600 }
601 }
602
603 return (err != target);
604 }
605
606 static bool
607 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
608 int target, int refclk, intel_clock_t *match_clock,
609 intel_clock_t *best_clock)
610 {
611 struct drm_device *dev = crtc->dev;
612 intel_clock_t clock;
613 int max_n;
614 bool found;
615 /* approximately equals target * 0.00585 */
616 int err_most = (target >> 8) + (target >> 9);
617 found = false;
618
619 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
620 if (intel_is_dual_link_lvds(dev))
621 clock.p2 = limit->p2.p2_fast;
622 else
623 clock.p2 = limit->p2.p2_slow;
624 } else {
625 if (target < limit->p2.dot_limit)
626 clock.p2 = limit->p2.p2_slow;
627 else
628 clock.p2 = limit->p2.p2_fast;
629 }
630
631 memset(best_clock, 0, sizeof(*best_clock));
632 max_n = limit->n.max;
633 /* based on hardware requirement, prefer smaller n to precision */
634 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
635 /* based on hardware requirement, prefere larger m1,m2 */
636 for (clock.m1 = limit->m1.max;
637 clock.m1 >= limit->m1.min; clock.m1--) {
638 for (clock.m2 = limit->m2.max;
639 clock.m2 >= limit->m2.min; clock.m2--) {
640 for (clock.p1 = limit->p1.max;
641 clock.p1 >= limit->p1.min; clock.p1--) {
642 int this_err;
643
644 i9xx_clock(refclk, &clock);
645 if (!intel_PLL_is_valid(dev, limit,
646 &clock))
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err_most) {
651 *best_clock = clock;
652 err_most = this_err;
653 max_n = clock.n;
654 found = true;
655 }
656 }
657 }
658 }
659 }
660 return found;
661 }
662
663 static bool
664 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
665 int target, int refclk, intel_clock_t *match_clock,
666 intel_clock_t *best_clock)
667 {
668 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
669 u32 m, n, fastclk;
670 u32 updrate, minupdate, fracbits, p;
671 unsigned long bestppm, ppm, absppm;
672 int dotclk, flag;
673
674 flag = 0;
675 dotclk = target * 1000;
676 bestppm = 1000000;
677 ppm = absppm = 0;
678 fastclk = dotclk / (2*100);
679 updrate = 0;
680 minupdate = 19200;
681 fracbits = 1;
682 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
683 bestm1 = bestm2 = bestp1 = bestp2 = 0;
684
685 /* based on hardware requirement, prefer smaller n to precision */
686 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
687 updrate = refclk / n;
688 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
689 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
690 if (p2 > 10)
691 p2 = p2 - 1;
692 p = p1 * p2;
693 /* based on hardware requirement, prefer bigger m1,m2 values */
694 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
695 m2 = (((2*(fastclk * p * n / m1 )) +
696 refclk) / (2*refclk));
697 m = m1 * m2;
698 vco = updrate * m;
699 if (vco >= limit->vco.min && vco < limit->vco.max) {
700 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
701 absppm = (ppm > 0) ? ppm : (-ppm);
702 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
703 bestppm = 0;
704 flag = 1;
705 }
706 if (absppm < bestppm - 10) {
707 bestppm = absppm;
708 flag = 1;
709 }
710 if (flag) {
711 bestn = n;
712 bestm1 = m1;
713 bestm2 = m2;
714 bestp1 = p1;
715 bestp2 = p2;
716 flag = 0;
717 }
718 }
719 }
720 }
721 }
722 }
723 best_clock->n = bestn;
724 best_clock->m1 = bestm1;
725 best_clock->m2 = bestm2;
726 best_clock->p1 = bestp1;
727 best_clock->p2 = bestp2;
728
729 return true;
730 }
731
732 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
733 enum pipe pipe)
734 {
735 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738 return intel_crtc->config.cpu_transcoder;
739 }
740
741 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
742 {
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 u32 frame, frame_reg = PIPEFRAME(pipe);
745
746 frame = I915_READ(frame_reg);
747
748 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
749 DRM_DEBUG_KMS("vblank wait timed out\n");
750 }
751
752 /**
753 * intel_wait_for_vblank - wait for vblank on a given pipe
754 * @dev: drm device
755 * @pipe: pipe to wait for
756 *
757 * Wait for vblank to occur on a given pipe. Needed for various bits of
758 * mode setting code.
759 */
760 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762 struct drm_i915_private *dev_priv = dev->dev_private;
763 int pipestat_reg = PIPESTAT(pipe);
764
765 if (INTEL_INFO(dev)->gen >= 5) {
766 ironlake_wait_for_vblank(dev, pipe);
767 return;
768 }
769
770 /* Clear existing vblank status. Note this will clear any other
771 * sticky status fields as well.
772 *
773 * This races with i915_driver_irq_handler() with the result
774 * that either function could miss a vblank event. Here it is not
775 * fatal, as we will either wait upon the next vblank interrupt or
776 * timeout. Generally speaking intel_wait_for_vblank() is only
777 * called during modeset at which time the GPU should be idle and
778 * should *not* be performing page flips and thus not waiting on
779 * vblanks...
780 * Currently, the result of us stealing a vblank from the irq
781 * handler is that a single frame will be skipped during swapbuffers.
782 */
783 I915_WRITE(pipestat_reg,
784 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
785
786 /* Wait for vblank interrupt bit to set */
787 if (wait_for(I915_READ(pipestat_reg) &
788 PIPE_VBLANK_INTERRUPT_STATUS,
789 50))
790 DRM_DEBUG_KMS("vblank wait timed out\n");
791 }
792
793 /*
794 * intel_wait_for_pipe_off - wait for pipe to turn off
795 * @dev: drm device
796 * @pipe: pipe to wait for
797 *
798 * After disabling a pipe, we can't wait for vblank in the usual way,
799 * spinning on the vblank interrupt status bit, since we won't actually
800 * see an interrupt when the pipe is disabled.
801 *
802 * On Gen4 and above:
803 * wait for the pipe register state bit to turn off
804 *
805 * Otherwise:
806 * wait for the display line value to settle (it usually
807 * ends up stopping at the start of the next frame).
808 *
809 */
810 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
811 {
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
814 pipe);
815
816 if (INTEL_INFO(dev)->gen >= 4) {
817 int reg = PIPECONF(cpu_transcoder);
818
819 /* Wait for the Pipe State to go off */
820 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
821 100))
822 WARN(1, "pipe_off wait timed out\n");
823 } else {
824 u32 last_line, line_mask;
825 int reg = PIPEDSL(pipe);
826 unsigned long timeout = jiffies + msecs_to_jiffies(100);
827
828 if (IS_GEN2(dev))
829 line_mask = DSL_LINEMASK_GEN2;
830 else
831 line_mask = DSL_LINEMASK_GEN3;
832
833 /* Wait for the display line to settle */
834 do {
835 last_line = I915_READ(reg) & line_mask;
836 mdelay(5);
837 } while (((I915_READ(reg) & line_mask) != last_line) &&
838 time_after(timeout, jiffies));
839 if (time_after(jiffies, timeout))
840 WARN(1, "pipe_off wait timed out\n");
841 }
842 }
843
844 /*
845 * ibx_digital_port_connected - is the specified port connected?
846 * @dev_priv: i915 private structure
847 * @port: the port to test
848 *
849 * Returns true if @port is connected, false otherwise.
850 */
851 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
852 struct intel_digital_port *port)
853 {
854 u32 bit;
855
856 if (HAS_PCH_IBX(dev_priv->dev)) {
857 switch(port->port) {
858 case PORT_B:
859 bit = SDE_PORTB_HOTPLUG;
860 break;
861 case PORT_C:
862 bit = SDE_PORTC_HOTPLUG;
863 break;
864 case PORT_D:
865 bit = SDE_PORTD_HOTPLUG;
866 break;
867 default:
868 return true;
869 }
870 } else {
871 switch(port->port) {
872 case PORT_B:
873 bit = SDE_PORTB_HOTPLUG_CPT;
874 break;
875 case PORT_C:
876 bit = SDE_PORTC_HOTPLUG_CPT;
877 break;
878 case PORT_D:
879 bit = SDE_PORTD_HOTPLUG_CPT;
880 break;
881 default:
882 return true;
883 }
884 }
885
886 return I915_READ(SDEISR) & bit;
887 }
888
889 static const char *state_string(bool enabled)
890 {
891 return enabled ? "on" : "off";
892 }
893
894 /* Only for pre-ILK configs */
895 void assert_pll(struct drm_i915_private *dev_priv,
896 enum pipe pipe, bool state)
897 {
898 int reg;
899 u32 val;
900 bool cur_state;
901
902 reg = DPLL(pipe);
903 val = I915_READ(reg);
904 cur_state = !!(val & DPLL_VCO_ENABLE);
905 WARN(cur_state != state,
906 "PLL state assertion failure (expected %s, current %s)\n",
907 state_string(state), state_string(cur_state));
908 }
909
910 struct intel_shared_dpll *
911 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
912 {
913 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
914
915 if (crtc->config.shared_dpll < 0)
916 return NULL;
917
918 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
919 }
920
921 /* For ILK+ */
922 void assert_shared_dpll(struct drm_i915_private *dev_priv,
923 struct intel_shared_dpll *pll,
924 bool state)
925 {
926 bool cur_state;
927 struct intel_dpll_hw_state hw_state;
928
929 if (HAS_PCH_LPT(dev_priv->dev)) {
930 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
931 return;
932 }
933
934 if (WARN (!pll,
935 "asserting DPLL %s with no DPLL\n", state_string(state)))
936 return;
937
938 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
939 WARN(cur_state != state,
940 "%s assertion failure (expected %s, current %s)\n",
941 pll->name, state_string(state), state_string(cur_state));
942 }
943
944 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
945 enum pipe pipe, bool state)
946 {
947 int reg;
948 u32 val;
949 bool cur_state;
950 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
951 pipe);
952
953 if (HAS_DDI(dev_priv->dev)) {
954 /* DDI does not have a specific FDI_TX register */
955 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
956 val = I915_READ(reg);
957 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
958 } else {
959 reg = FDI_TX_CTL(pipe);
960 val = I915_READ(reg);
961 cur_state = !!(val & FDI_TX_ENABLE);
962 }
963 WARN(cur_state != state,
964 "FDI TX state assertion failure (expected %s, current %s)\n",
965 state_string(state), state_string(cur_state));
966 }
967 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
968 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
969
970 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
971 enum pipe pipe, bool state)
972 {
973 int reg;
974 u32 val;
975 bool cur_state;
976
977 reg = FDI_RX_CTL(pipe);
978 val = I915_READ(reg);
979 cur_state = !!(val & FDI_RX_ENABLE);
980 WARN(cur_state != state,
981 "FDI RX state assertion failure (expected %s, current %s)\n",
982 state_string(state), state_string(cur_state));
983 }
984 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
985 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
986
987 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
988 enum pipe pipe)
989 {
990 int reg;
991 u32 val;
992
993 /* ILK FDI PLL is always enabled */
994 if (dev_priv->info->gen == 5)
995 return;
996
997 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
998 if (HAS_DDI(dev_priv->dev))
999 return;
1000
1001 reg = FDI_TX_CTL(pipe);
1002 val = I915_READ(reg);
1003 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1004 }
1005
1006 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1007 enum pipe pipe, bool state)
1008 {
1009 int reg;
1010 u32 val;
1011 bool cur_state;
1012
1013 reg = FDI_RX_CTL(pipe);
1014 val = I915_READ(reg);
1015 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1016 WARN(cur_state != state,
1017 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1018 state_string(state), state_string(cur_state));
1019 }
1020
1021 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1022 enum pipe pipe)
1023 {
1024 int pp_reg, lvds_reg;
1025 u32 val;
1026 enum pipe panel_pipe = PIPE_A;
1027 bool locked = true;
1028
1029 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1030 pp_reg = PCH_PP_CONTROL;
1031 lvds_reg = PCH_LVDS;
1032 } else {
1033 pp_reg = PP_CONTROL;
1034 lvds_reg = LVDS;
1035 }
1036
1037 val = I915_READ(pp_reg);
1038 if (!(val & PANEL_POWER_ON) ||
1039 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1040 locked = false;
1041
1042 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1043 panel_pipe = PIPE_B;
1044
1045 WARN(panel_pipe == pipe && locked,
1046 "panel assertion failure, pipe %c regs locked\n",
1047 pipe_name(pipe));
1048 }
1049
1050 void assert_pipe(struct drm_i915_private *dev_priv,
1051 enum pipe pipe, bool state)
1052 {
1053 int reg;
1054 u32 val;
1055 bool cur_state;
1056 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1057 pipe);
1058
1059 /* if we need the pipe A quirk it must be always on */
1060 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1061 state = true;
1062
1063 if (!intel_display_power_enabled(dev_priv->dev,
1064 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1065 cur_state = false;
1066 } else {
1067 reg = PIPECONF(cpu_transcoder);
1068 val = I915_READ(reg);
1069 cur_state = !!(val & PIPECONF_ENABLE);
1070 }
1071
1072 WARN(cur_state != state,
1073 "pipe %c assertion failure (expected %s, current %s)\n",
1074 pipe_name(pipe), state_string(state), state_string(cur_state));
1075 }
1076
1077 static void assert_plane(struct drm_i915_private *dev_priv,
1078 enum plane plane, bool state)
1079 {
1080 int reg;
1081 u32 val;
1082 bool cur_state;
1083
1084 reg = DSPCNTR(plane);
1085 val = I915_READ(reg);
1086 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1087 WARN(cur_state != state,
1088 "plane %c assertion failure (expected %s, current %s)\n",
1089 plane_name(plane), state_string(state), state_string(cur_state));
1090 }
1091
1092 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1093 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1094
1095 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1096 enum pipe pipe)
1097 {
1098 struct drm_device *dev = dev_priv->dev;
1099 int reg, i;
1100 u32 val;
1101 int cur_pipe;
1102
1103 /* Primary planes are fixed to pipes on gen4+ */
1104 if (INTEL_INFO(dev)->gen >= 4) {
1105 reg = DSPCNTR(pipe);
1106 val = I915_READ(reg);
1107 WARN((val & DISPLAY_PLANE_ENABLE),
1108 "plane %c assertion failure, should be disabled but not\n",
1109 plane_name(pipe));
1110 return;
1111 }
1112
1113 /* Need to check both planes against the pipe */
1114 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
1115 reg = DSPCNTR(i);
1116 val = I915_READ(reg);
1117 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1118 DISPPLANE_SEL_PIPE_SHIFT;
1119 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1120 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1121 plane_name(i), pipe_name(pipe));
1122 }
1123 }
1124
1125 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127 {
1128 struct drm_device *dev = dev_priv->dev;
1129 int reg, i;
1130 u32 val;
1131
1132 if (IS_VALLEYVIEW(dev)) {
1133 for (i = 0; i < dev_priv->num_plane; i++) {
1134 reg = SPCNTR(pipe, i);
1135 val = I915_READ(reg);
1136 WARN((val & SP_ENABLE),
1137 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1138 sprite_name(pipe, i), pipe_name(pipe));
1139 }
1140 } else if (INTEL_INFO(dev)->gen >= 7) {
1141 reg = SPRCTL(pipe);
1142 val = I915_READ(reg);
1143 WARN((val & SPRITE_ENABLE),
1144 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1145 plane_name(pipe), pipe_name(pipe));
1146 } else if (INTEL_INFO(dev)->gen >= 5) {
1147 reg = DVSCNTR(pipe);
1148 val = I915_READ(reg);
1149 WARN((val & DVS_ENABLE),
1150 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1151 plane_name(pipe), pipe_name(pipe));
1152 }
1153 }
1154
1155 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1156 {
1157 u32 val;
1158 bool enabled;
1159
1160 if (HAS_PCH_LPT(dev_priv->dev)) {
1161 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1162 return;
1163 }
1164
1165 val = I915_READ(PCH_DREF_CONTROL);
1166 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1167 DREF_SUPERSPREAD_SOURCE_MASK));
1168 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1169 }
1170
1171 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1172 enum pipe pipe)
1173 {
1174 int reg;
1175 u32 val;
1176 bool enabled;
1177
1178 reg = PCH_TRANSCONF(pipe);
1179 val = I915_READ(reg);
1180 enabled = !!(val & TRANS_ENABLE);
1181 WARN(enabled,
1182 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1183 pipe_name(pipe));
1184 }
1185
1186 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1187 enum pipe pipe, u32 port_sel, u32 val)
1188 {
1189 if ((val & DP_PORT_EN) == 0)
1190 return false;
1191
1192 if (HAS_PCH_CPT(dev_priv->dev)) {
1193 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1194 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1195 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1196 return false;
1197 } else {
1198 if ((val & DP_PIPE_MASK) != (pipe << 30))
1199 return false;
1200 }
1201 return true;
1202 }
1203
1204 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1205 enum pipe pipe, u32 val)
1206 {
1207 if ((val & SDVO_ENABLE) == 0)
1208 return false;
1209
1210 if (HAS_PCH_CPT(dev_priv->dev)) {
1211 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1212 return false;
1213 } else {
1214 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1215 return false;
1216 }
1217 return true;
1218 }
1219
1220 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1221 enum pipe pipe, u32 val)
1222 {
1223 if ((val & LVDS_PORT_EN) == 0)
1224 return false;
1225
1226 if (HAS_PCH_CPT(dev_priv->dev)) {
1227 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1228 return false;
1229 } else {
1230 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1231 return false;
1232 }
1233 return true;
1234 }
1235
1236 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, u32 val)
1238 {
1239 if ((val & ADPA_DAC_ENABLE) == 0)
1240 return false;
1241 if (HAS_PCH_CPT(dev_priv->dev)) {
1242 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1243 return false;
1244 } else {
1245 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1246 return false;
1247 }
1248 return true;
1249 }
1250
1251 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1252 enum pipe pipe, int reg, u32 port_sel)
1253 {
1254 u32 val = I915_READ(reg);
1255 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1256 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1257 reg, pipe_name(pipe));
1258
1259 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1260 && (val & DP_PIPEB_SELECT),
1261 "IBX PCH dp port still using transcoder B\n");
1262 }
1263
1264 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1265 enum pipe pipe, int reg)
1266 {
1267 u32 val = I915_READ(reg);
1268 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1269 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1270 reg, pipe_name(pipe));
1271
1272 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1273 && (val & SDVO_PIPE_B_SELECT),
1274 "IBX PCH hdmi port still using transcoder B\n");
1275 }
1276
1277 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1278 enum pipe pipe)
1279 {
1280 int reg;
1281 u32 val;
1282
1283 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1284 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1285 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1286
1287 reg = PCH_ADPA;
1288 val = I915_READ(reg);
1289 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1290 "PCH VGA enabled on transcoder %c, should be disabled\n",
1291 pipe_name(pipe));
1292
1293 reg = PCH_LVDS;
1294 val = I915_READ(reg);
1295 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1296 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1297 pipe_name(pipe));
1298
1299 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1300 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1301 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1302 }
1303
1304 static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1305 {
1306 int reg;
1307 u32 val;
1308
1309 assert_pipe_disabled(dev_priv, pipe);
1310
1311 /* No really, not for ILK+ */
1312 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1313
1314 /* PLL is protected by panel, make sure we can write it */
1315 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1316 assert_panel_unlocked(dev_priv, pipe);
1317
1318 reg = DPLL(pipe);
1319 val = I915_READ(reg);
1320 val |= DPLL_VCO_ENABLE;
1321
1322 /* We do this three times for luck */
1323 I915_WRITE(reg, val);
1324 POSTING_READ(reg);
1325 udelay(150); /* wait for warmup */
1326 I915_WRITE(reg, val);
1327 POSTING_READ(reg);
1328 udelay(150); /* wait for warmup */
1329 I915_WRITE(reg, val);
1330 POSTING_READ(reg);
1331 udelay(150); /* wait for warmup */
1332 }
1333
1334 static void i9xx_enable_pll(struct intel_crtc *crtc)
1335 {
1336 struct drm_device *dev = crtc->base.dev;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 int reg = DPLL(crtc->pipe);
1339 u32 dpll = crtc->config.dpll_hw_state.dpll;
1340
1341 assert_pipe_disabled(dev_priv, crtc->pipe);
1342
1343 /* No really, not for ILK+ */
1344 BUG_ON(dev_priv->info->gen >= 5);
1345
1346 /* PLL is protected by panel, make sure we can write it */
1347 if (IS_MOBILE(dev) && !IS_I830(dev))
1348 assert_panel_unlocked(dev_priv, crtc->pipe);
1349
1350 I915_WRITE(reg, dpll);
1351
1352 /* Wait for the clocks to stabilize. */
1353 POSTING_READ(reg);
1354 udelay(150);
1355
1356 if (INTEL_INFO(dev)->gen >= 4) {
1357 I915_WRITE(DPLL_MD(crtc->pipe),
1358 crtc->config.dpll_hw_state.dpll_md);
1359 } else {
1360 /* The pixel multiplier can only be updated once the
1361 * DPLL is enabled and the clocks are stable.
1362 *
1363 * So write it again.
1364 */
1365 I915_WRITE(reg, dpll);
1366 }
1367
1368 /* We do this three times for luck */
1369 I915_WRITE(reg, dpll);
1370 POSTING_READ(reg);
1371 udelay(150); /* wait for warmup */
1372 I915_WRITE(reg, dpll);
1373 POSTING_READ(reg);
1374 udelay(150); /* wait for warmup */
1375 I915_WRITE(reg, dpll);
1376 POSTING_READ(reg);
1377 udelay(150); /* wait for warmup */
1378 }
1379
1380 /**
1381 * intel_disable_pll - disable a PLL
1382 * @dev_priv: i915 private structure
1383 * @pipe: pipe PLL to disable
1384 *
1385 * Disable the PLL for @pipe, making sure the pipe is off first.
1386 *
1387 * Note! This is for pre-ILK only.
1388 */
1389 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1390 {
1391 int reg;
1392 u32 val;
1393
1394 /* Don't disable pipe A or pipe A PLLs if needed */
1395 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1396 return;
1397
1398 /* Make sure the pipe isn't still relying on us */
1399 assert_pipe_disabled(dev_priv, pipe);
1400
1401 reg = DPLL(pipe);
1402 val = I915_READ(reg);
1403 val &= ~DPLL_VCO_ENABLE;
1404 I915_WRITE(reg, val);
1405 POSTING_READ(reg);
1406 }
1407
1408 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1409 {
1410 u32 port_mask;
1411
1412 if (!port)
1413 port_mask = DPLL_PORTB_READY_MASK;
1414 else
1415 port_mask = DPLL_PORTC_READY_MASK;
1416
1417 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1418 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1419 'B' + port, I915_READ(DPLL(0)));
1420 }
1421
1422 /**
1423 * ironlake_enable_shared_dpll - enable PCH PLL
1424 * @dev_priv: i915 private structure
1425 * @pipe: pipe PLL to enable
1426 *
1427 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1428 * drives the transcoder clock.
1429 */
1430 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1431 {
1432 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1433 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1434
1435 /* PCH PLLs only available on ILK, SNB and IVB */
1436 BUG_ON(dev_priv->info->gen < 5);
1437 if (WARN_ON(pll == NULL))
1438 return;
1439
1440 if (WARN_ON(pll->refcount == 0))
1441 return;
1442
1443 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1444 pll->name, pll->active, pll->on,
1445 crtc->base.base.id);
1446
1447 if (pll->active++) {
1448 WARN_ON(!pll->on);
1449 assert_shared_dpll_enabled(dev_priv, pll);
1450 return;
1451 }
1452 WARN_ON(pll->on);
1453
1454 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1455 pll->enable(dev_priv, pll);
1456 pll->on = true;
1457 }
1458
1459 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1460 {
1461 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1462 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1463
1464 /* PCH only available on ILK+ */
1465 BUG_ON(dev_priv->info->gen < 5);
1466 if (WARN_ON(pll == NULL))
1467 return;
1468
1469 if (WARN_ON(pll->refcount == 0))
1470 return;
1471
1472 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1473 pll->name, pll->active, pll->on,
1474 crtc->base.base.id);
1475
1476 if (WARN_ON(pll->active == 0)) {
1477 assert_shared_dpll_disabled(dev_priv, pll);
1478 return;
1479 }
1480
1481 assert_shared_dpll_enabled(dev_priv, pll);
1482 WARN_ON(!pll->on);
1483 if (--pll->active)
1484 return;
1485
1486 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1487 pll->disable(dev_priv, pll);
1488 pll->on = false;
1489 }
1490
1491 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1492 enum pipe pipe)
1493 {
1494 struct drm_device *dev = dev_priv->dev;
1495 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1497 uint32_t reg, val, pipeconf_val;
1498
1499 /* PCH only available on ILK+ */
1500 BUG_ON(dev_priv->info->gen < 5);
1501
1502 /* Make sure PCH DPLL is enabled */
1503 assert_shared_dpll_enabled(dev_priv,
1504 intel_crtc_to_shared_dpll(intel_crtc));
1505
1506 /* FDI must be feeding us bits for PCH ports */
1507 assert_fdi_tx_enabled(dev_priv, pipe);
1508 assert_fdi_rx_enabled(dev_priv, pipe);
1509
1510 if (HAS_PCH_CPT(dev)) {
1511 /* Workaround: Set the timing override bit before enabling the
1512 * pch transcoder. */
1513 reg = TRANS_CHICKEN2(pipe);
1514 val = I915_READ(reg);
1515 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1516 I915_WRITE(reg, val);
1517 }
1518
1519 reg = PCH_TRANSCONF(pipe);
1520 val = I915_READ(reg);
1521 pipeconf_val = I915_READ(PIPECONF(pipe));
1522
1523 if (HAS_PCH_IBX(dev_priv->dev)) {
1524 /*
1525 * make the BPC in transcoder be consistent with
1526 * that in pipeconf reg.
1527 */
1528 val &= ~PIPECONF_BPC_MASK;
1529 val |= pipeconf_val & PIPECONF_BPC_MASK;
1530 }
1531
1532 val &= ~TRANS_INTERLACE_MASK;
1533 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1534 if (HAS_PCH_IBX(dev_priv->dev) &&
1535 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1536 val |= TRANS_LEGACY_INTERLACED_ILK;
1537 else
1538 val |= TRANS_INTERLACED;
1539 else
1540 val |= TRANS_PROGRESSIVE;
1541
1542 I915_WRITE(reg, val | TRANS_ENABLE);
1543 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1544 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1545 }
1546
1547 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1548 enum transcoder cpu_transcoder)
1549 {
1550 u32 val, pipeconf_val;
1551
1552 /* PCH only available on ILK+ */
1553 BUG_ON(dev_priv->info->gen < 5);
1554
1555 /* FDI must be feeding us bits for PCH ports */
1556 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1557 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1558
1559 /* Workaround: set timing override bit. */
1560 val = I915_READ(_TRANSA_CHICKEN2);
1561 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1562 I915_WRITE(_TRANSA_CHICKEN2, val);
1563
1564 val = TRANS_ENABLE;
1565 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1566
1567 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1568 PIPECONF_INTERLACED_ILK)
1569 val |= TRANS_INTERLACED;
1570 else
1571 val |= TRANS_PROGRESSIVE;
1572
1573 I915_WRITE(LPT_TRANSCONF, val);
1574 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1575 DRM_ERROR("Failed to enable PCH transcoder\n");
1576 }
1577
1578 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1579 enum pipe pipe)
1580 {
1581 struct drm_device *dev = dev_priv->dev;
1582 uint32_t reg, val;
1583
1584 /* FDI relies on the transcoder */
1585 assert_fdi_tx_disabled(dev_priv, pipe);
1586 assert_fdi_rx_disabled(dev_priv, pipe);
1587
1588 /* Ports must be off as well */
1589 assert_pch_ports_disabled(dev_priv, pipe);
1590
1591 reg = PCH_TRANSCONF(pipe);
1592 val = I915_READ(reg);
1593 val &= ~TRANS_ENABLE;
1594 I915_WRITE(reg, val);
1595 /* wait for PCH transcoder off, transcoder state */
1596 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1597 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1598
1599 if (!HAS_PCH_IBX(dev)) {
1600 /* Workaround: Clear the timing override chicken bit again. */
1601 reg = TRANS_CHICKEN2(pipe);
1602 val = I915_READ(reg);
1603 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1604 I915_WRITE(reg, val);
1605 }
1606 }
1607
1608 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1609 {
1610 u32 val;
1611
1612 val = I915_READ(LPT_TRANSCONF);
1613 val &= ~TRANS_ENABLE;
1614 I915_WRITE(LPT_TRANSCONF, val);
1615 /* wait for PCH transcoder off, transcoder state */
1616 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1617 DRM_ERROR("Failed to disable PCH transcoder\n");
1618
1619 /* Workaround: clear timing override bit. */
1620 val = I915_READ(_TRANSA_CHICKEN2);
1621 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1622 I915_WRITE(_TRANSA_CHICKEN2, val);
1623 }
1624
1625 /**
1626 * intel_enable_pipe - enable a pipe, asserting requirements
1627 * @dev_priv: i915 private structure
1628 * @pipe: pipe to enable
1629 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1630 *
1631 * Enable @pipe, making sure that various hardware specific requirements
1632 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1633 *
1634 * @pipe should be %PIPE_A or %PIPE_B.
1635 *
1636 * Will wait until the pipe is actually running (i.e. first vblank) before
1637 * returning.
1638 */
1639 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1640 bool pch_port)
1641 {
1642 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1643 pipe);
1644 enum pipe pch_transcoder;
1645 int reg;
1646 u32 val;
1647
1648 assert_planes_disabled(dev_priv, pipe);
1649 assert_sprites_disabled(dev_priv, pipe);
1650
1651 if (HAS_PCH_LPT(dev_priv->dev))
1652 pch_transcoder = TRANSCODER_A;
1653 else
1654 pch_transcoder = pipe;
1655
1656 /*
1657 * A pipe without a PLL won't actually be able to drive bits from
1658 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1659 * need the check.
1660 */
1661 if (!HAS_PCH_SPLIT(dev_priv->dev))
1662 assert_pll_enabled(dev_priv, pipe);
1663 else {
1664 if (pch_port) {
1665 /* if driving the PCH, we need FDI enabled */
1666 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1667 assert_fdi_tx_pll_enabled(dev_priv,
1668 (enum pipe) cpu_transcoder);
1669 }
1670 /* FIXME: assert CPU port conditions for SNB+ */
1671 }
1672
1673 reg = PIPECONF(cpu_transcoder);
1674 val = I915_READ(reg);
1675 if (val & PIPECONF_ENABLE)
1676 return;
1677
1678 I915_WRITE(reg, val | PIPECONF_ENABLE);
1679 intel_wait_for_vblank(dev_priv->dev, pipe);
1680 }
1681
1682 /**
1683 * intel_disable_pipe - disable a pipe, asserting requirements
1684 * @dev_priv: i915 private structure
1685 * @pipe: pipe to disable
1686 *
1687 * Disable @pipe, making sure that various hardware specific requirements
1688 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1689 *
1690 * @pipe should be %PIPE_A or %PIPE_B.
1691 *
1692 * Will wait until the pipe has shut down before returning.
1693 */
1694 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1695 enum pipe pipe)
1696 {
1697 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1698 pipe);
1699 int reg;
1700 u32 val;
1701
1702 /*
1703 * Make sure planes won't keep trying to pump pixels to us,
1704 * or we might hang the display.
1705 */
1706 assert_planes_disabled(dev_priv, pipe);
1707 assert_sprites_disabled(dev_priv, pipe);
1708
1709 /* Don't disable pipe A or pipe A PLLs if needed */
1710 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1711 return;
1712
1713 reg = PIPECONF(cpu_transcoder);
1714 val = I915_READ(reg);
1715 if ((val & PIPECONF_ENABLE) == 0)
1716 return;
1717
1718 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1719 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1720 }
1721
1722 /*
1723 * Plane regs are double buffered, going from enabled->disabled needs a
1724 * trigger in order to latch. The display address reg provides this.
1725 */
1726 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1727 enum plane plane)
1728 {
1729 if (dev_priv->info->gen >= 4)
1730 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1731 else
1732 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1733 }
1734
1735 /**
1736 * intel_enable_plane - enable a display plane on a given pipe
1737 * @dev_priv: i915 private structure
1738 * @plane: plane to enable
1739 * @pipe: pipe being fed
1740 *
1741 * Enable @plane on @pipe, making sure that @pipe is running first.
1742 */
1743 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1744 enum plane plane, enum pipe pipe)
1745 {
1746 int reg;
1747 u32 val;
1748
1749 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1750 assert_pipe_enabled(dev_priv, pipe);
1751
1752 reg = DSPCNTR(plane);
1753 val = I915_READ(reg);
1754 if (val & DISPLAY_PLANE_ENABLE)
1755 return;
1756
1757 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1758 intel_flush_display_plane(dev_priv, plane);
1759 intel_wait_for_vblank(dev_priv->dev, pipe);
1760 }
1761
1762 /**
1763 * intel_disable_plane - disable a display plane
1764 * @dev_priv: i915 private structure
1765 * @plane: plane to disable
1766 * @pipe: pipe consuming the data
1767 *
1768 * Disable @plane; should be an independent operation.
1769 */
1770 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1771 enum plane plane, enum pipe pipe)
1772 {
1773 int reg;
1774 u32 val;
1775
1776 reg = DSPCNTR(plane);
1777 val = I915_READ(reg);
1778 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1779 return;
1780
1781 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1782 intel_flush_display_plane(dev_priv, plane);
1783 intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 static bool need_vtd_wa(struct drm_device *dev)
1787 {
1788 #ifdef CONFIG_INTEL_IOMMU
1789 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1790 return true;
1791 #endif
1792 return false;
1793 }
1794
1795 int
1796 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1797 struct drm_i915_gem_object *obj,
1798 struct intel_ring_buffer *pipelined)
1799 {
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 u32 alignment;
1802 int ret;
1803
1804 switch (obj->tiling_mode) {
1805 case I915_TILING_NONE:
1806 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1807 alignment = 128 * 1024;
1808 else if (INTEL_INFO(dev)->gen >= 4)
1809 alignment = 4 * 1024;
1810 else
1811 alignment = 64 * 1024;
1812 break;
1813 case I915_TILING_X:
1814 /* pin() will align the object as required by fence */
1815 alignment = 0;
1816 break;
1817 case I915_TILING_Y:
1818 /* Despite that we check this in framebuffer_init userspace can
1819 * screw us over and change the tiling after the fact. Only
1820 * pinned buffers can't change their tiling. */
1821 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1822 return -EINVAL;
1823 default:
1824 BUG();
1825 }
1826
1827 /* Note that the w/a also requires 64 PTE of padding following the
1828 * bo. We currently fill all unused PTE with the shadow page and so
1829 * we should always have valid PTE following the scanout preventing
1830 * the VT-d warning.
1831 */
1832 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1833 alignment = 256 * 1024;
1834
1835 dev_priv->mm.interruptible = false;
1836 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1837 if (ret)
1838 goto err_interruptible;
1839
1840 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1841 * fence, whereas 965+ only requires a fence if using
1842 * framebuffer compression. For simplicity, we always install
1843 * a fence as the cost is not that onerous.
1844 */
1845 ret = i915_gem_object_get_fence(obj);
1846 if (ret)
1847 goto err_unpin;
1848
1849 i915_gem_object_pin_fence(obj);
1850
1851 dev_priv->mm.interruptible = true;
1852 return 0;
1853
1854 err_unpin:
1855 i915_gem_object_unpin(obj);
1856 err_interruptible:
1857 dev_priv->mm.interruptible = true;
1858 return ret;
1859 }
1860
1861 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1862 {
1863 i915_gem_object_unpin_fence(obj);
1864 i915_gem_object_unpin(obj);
1865 }
1866
1867 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1868 * is assumed to be a power-of-two. */
1869 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1870 unsigned int tiling_mode,
1871 unsigned int cpp,
1872 unsigned int pitch)
1873 {
1874 if (tiling_mode != I915_TILING_NONE) {
1875 unsigned int tile_rows, tiles;
1876
1877 tile_rows = *y / 8;
1878 *y %= 8;
1879
1880 tiles = *x / (512/cpp);
1881 *x %= 512/cpp;
1882
1883 return tile_rows * pitch * 8 + tiles * 4096;
1884 } else {
1885 unsigned int offset;
1886
1887 offset = *y * pitch + *x * cpp;
1888 *y = 0;
1889 *x = (offset & 4095) / cpp;
1890 return offset & -4096;
1891 }
1892 }
1893
1894 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1895 int x, int y)
1896 {
1897 struct drm_device *dev = crtc->dev;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1900 struct intel_framebuffer *intel_fb;
1901 struct drm_i915_gem_object *obj;
1902 int plane = intel_crtc->plane;
1903 unsigned long linear_offset;
1904 u32 dspcntr;
1905 u32 reg;
1906
1907 switch (plane) {
1908 case 0:
1909 case 1:
1910 break;
1911 default:
1912 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1913 return -EINVAL;
1914 }
1915
1916 intel_fb = to_intel_framebuffer(fb);
1917 obj = intel_fb->obj;
1918
1919 reg = DSPCNTR(plane);
1920 dspcntr = I915_READ(reg);
1921 /* Mask out pixel format bits in case we change it */
1922 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1923 switch (fb->pixel_format) {
1924 case DRM_FORMAT_C8:
1925 dspcntr |= DISPPLANE_8BPP;
1926 break;
1927 case DRM_FORMAT_XRGB1555:
1928 case DRM_FORMAT_ARGB1555:
1929 dspcntr |= DISPPLANE_BGRX555;
1930 break;
1931 case DRM_FORMAT_RGB565:
1932 dspcntr |= DISPPLANE_BGRX565;
1933 break;
1934 case DRM_FORMAT_XRGB8888:
1935 case DRM_FORMAT_ARGB8888:
1936 dspcntr |= DISPPLANE_BGRX888;
1937 break;
1938 case DRM_FORMAT_XBGR8888:
1939 case DRM_FORMAT_ABGR8888:
1940 dspcntr |= DISPPLANE_RGBX888;
1941 break;
1942 case DRM_FORMAT_XRGB2101010:
1943 case DRM_FORMAT_ARGB2101010:
1944 dspcntr |= DISPPLANE_BGRX101010;
1945 break;
1946 case DRM_FORMAT_XBGR2101010:
1947 case DRM_FORMAT_ABGR2101010:
1948 dspcntr |= DISPPLANE_RGBX101010;
1949 break;
1950 default:
1951 BUG();
1952 }
1953
1954 if (INTEL_INFO(dev)->gen >= 4) {
1955 if (obj->tiling_mode != I915_TILING_NONE)
1956 dspcntr |= DISPPLANE_TILED;
1957 else
1958 dspcntr &= ~DISPPLANE_TILED;
1959 }
1960
1961 if (IS_G4X(dev))
1962 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1963
1964 I915_WRITE(reg, dspcntr);
1965
1966 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1967
1968 if (INTEL_INFO(dev)->gen >= 4) {
1969 intel_crtc->dspaddr_offset =
1970 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1971 fb->bits_per_pixel / 8,
1972 fb->pitches[0]);
1973 linear_offset -= intel_crtc->dspaddr_offset;
1974 } else {
1975 intel_crtc->dspaddr_offset = linear_offset;
1976 }
1977
1978 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
1979 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
1980 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1981 if (INTEL_INFO(dev)->gen >= 4) {
1982 I915_MODIFY_DISPBASE(DSPSURF(plane),
1983 obj->gtt_offset + intel_crtc->dspaddr_offset);
1984 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1985 I915_WRITE(DSPLINOFF(plane), linear_offset);
1986 } else
1987 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
1988 POSTING_READ(reg);
1989
1990 return 0;
1991 }
1992
1993 static int ironlake_update_plane(struct drm_crtc *crtc,
1994 struct drm_framebuffer *fb, int x, int y)
1995 {
1996 struct drm_device *dev = crtc->dev;
1997 struct drm_i915_private *dev_priv = dev->dev_private;
1998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1999 struct intel_framebuffer *intel_fb;
2000 struct drm_i915_gem_object *obj;
2001 int plane = intel_crtc->plane;
2002 unsigned long linear_offset;
2003 u32 dspcntr;
2004 u32 reg;
2005
2006 switch (plane) {
2007 case 0:
2008 case 1:
2009 case 2:
2010 break;
2011 default:
2012 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2013 return -EINVAL;
2014 }
2015
2016 intel_fb = to_intel_framebuffer(fb);
2017 obj = intel_fb->obj;
2018
2019 reg = DSPCNTR(plane);
2020 dspcntr = I915_READ(reg);
2021 /* Mask out pixel format bits in case we change it */
2022 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2023 switch (fb->pixel_format) {
2024 case DRM_FORMAT_C8:
2025 dspcntr |= DISPPLANE_8BPP;
2026 break;
2027 case DRM_FORMAT_RGB565:
2028 dspcntr |= DISPPLANE_BGRX565;
2029 break;
2030 case DRM_FORMAT_XRGB8888:
2031 case DRM_FORMAT_ARGB8888:
2032 dspcntr |= DISPPLANE_BGRX888;
2033 break;
2034 case DRM_FORMAT_XBGR8888:
2035 case DRM_FORMAT_ABGR8888:
2036 dspcntr |= DISPPLANE_RGBX888;
2037 break;
2038 case DRM_FORMAT_XRGB2101010:
2039 case DRM_FORMAT_ARGB2101010:
2040 dspcntr |= DISPPLANE_BGRX101010;
2041 break;
2042 case DRM_FORMAT_XBGR2101010:
2043 case DRM_FORMAT_ABGR2101010:
2044 dspcntr |= DISPPLANE_RGBX101010;
2045 break;
2046 default:
2047 BUG();
2048 }
2049
2050 if (obj->tiling_mode != I915_TILING_NONE)
2051 dspcntr |= DISPPLANE_TILED;
2052 else
2053 dspcntr &= ~DISPPLANE_TILED;
2054
2055 /* must disable */
2056 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2057
2058 I915_WRITE(reg, dspcntr);
2059
2060 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2061 intel_crtc->dspaddr_offset =
2062 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2063 fb->bits_per_pixel / 8,
2064 fb->pitches[0]);
2065 linear_offset -= intel_crtc->dspaddr_offset;
2066
2067 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2068 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2069 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2070 I915_MODIFY_DISPBASE(DSPSURF(plane),
2071 obj->gtt_offset + intel_crtc->dspaddr_offset);
2072 if (IS_HASWELL(dev)) {
2073 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2074 } else {
2075 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2076 I915_WRITE(DSPLINOFF(plane), linear_offset);
2077 }
2078 POSTING_READ(reg);
2079
2080 return 0;
2081 }
2082
2083 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2084 static int
2085 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2086 int x, int y, enum mode_set_atomic state)
2087 {
2088 struct drm_device *dev = crtc->dev;
2089 struct drm_i915_private *dev_priv = dev->dev_private;
2090
2091 if (dev_priv->display.disable_fbc)
2092 dev_priv->display.disable_fbc(dev);
2093 intel_increase_pllclock(crtc);
2094
2095 return dev_priv->display.update_plane(crtc, fb, x, y);
2096 }
2097
2098 void intel_display_handle_reset(struct drm_device *dev)
2099 {
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 struct drm_crtc *crtc;
2102
2103 /*
2104 * Flips in the rings have been nuked by the reset,
2105 * so complete all pending flips so that user space
2106 * will get its events and not get stuck.
2107 *
2108 * Also update the base address of all primary
2109 * planes to the the last fb to make sure we're
2110 * showing the correct fb after a reset.
2111 *
2112 * Need to make two loops over the crtcs so that we
2113 * don't try to grab a crtc mutex before the
2114 * pending_flip_queue really got woken up.
2115 */
2116
2117 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2119 enum plane plane = intel_crtc->plane;
2120
2121 intel_prepare_page_flip(dev, plane);
2122 intel_finish_page_flip_plane(dev, plane);
2123 }
2124
2125 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2127
2128 mutex_lock(&crtc->mutex);
2129 if (intel_crtc->active)
2130 dev_priv->display.update_plane(crtc, crtc->fb,
2131 crtc->x, crtc->y);
2132 mutex_unlock(&crtc->mutex);
2133 }
2134 }
2135
2136 static int
2137 intel_finish_fb(struct drm_framebuffer *old_fb)
2138 {
2139 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2140 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2141 bool was_interruptible = dev_priv->mm.interruptible;
2142 int ret;
2143
2144 /* Big Hammer, we also need to ensure that any pending
2145 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2146 * current scanout is retired before unpinning the old
2147 * framebuffer.
2148 *
2149 * This should only fail upon a hung GPU, in which case we
2150 * can safely continue.
2151 */
2152 dev_priv->mm.interruptible = false;
2153 ret = i915_gem_object_finish_gpu(obj);
2154 dev_priv->mm.interruptible = was_interruptible;
2155
2156 return ret;
2157 }
2158
2159 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2160 {
2161 struct drm_device *dev = crtc->dev;
2162 struct drm_i915_master_private *master_priv;
2163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2164
2165 if (!dev->primary->master)
2166 return;
2167
2168 master_priv = dev->primary->master->driver_priv;
2169 if (!master_priv->sarea_priv)
2170 return;
2171
2172 switch (intel_crtc->pipe) {
2173 case 0:
2174 master_priv->sarea_priv->pipeA_x = x;
2175 master_priv->sarea_priv->pipeA_y = y;
2176 break;
2177 case 1:
2178 master_priv->sarea_priv->pipeB_x = x;
2179 master_priv->sarea_priv->pipeB_y = y;
2180 break;
2181 default:
2182 break;
2183 }
2184 }
2185
2186 static int
2187 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2188 struct drm_framebuffer *fb)
2189 {
2190 struct drm_device *dev = crtc->dev;
2191 struct drm_i915_private *dev_priv = dev->dev_private;
2192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2193 struct drm_framebuffer *old_fb;
2194 int ret;
2195
2196 /* no fb bound */
2197 if (!fb) {
2198 DRM_ERROR("No FB bound\n");
2199 return 0;
2200 }
2201
2202 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2203 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2204 plane_name(intel_crtc->plane),
2205 INTEL_INFO(dev)->num_pipes);
2206 return -EINVAL;
2207 }
2208
2209 mutex_lock(&dev->struct_mutex);
2210 ret = intel_pin_and_fence_fb_obj(dev,
2211 to_intel_framebuffer(fb)->obj,
2212 NULL);
2213 if (ret != 0) {
2214 mutex_unlock(&dev->struct_mutex);
2215 DRM_ERROR("pin & fence failed\n");
2216 return ret;
2217 }
2218
2219 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2220 if (ret) {
2221 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2222 mutex_unlock(&dev->struct_mutex);
2223 DRM_ERROR("failed to update base address\n");
2224 return ret;
2225 }
2226
2227 old_fb = crtc->fb;
2228 crtc->fb = fb;
2229 crtc->x = x;
2230 crtc->y = y;
2231
2232 if (old_fb) {
2233 if (intel_crtc->active && old_fb != fb)
2234 intel_wait_for_vblank(dev, intel_crtc->pipe);
2235 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2236 }
2237
2238 intel_update_fbc(dev);
2239 mutex_unlock(&dev->struct_mutex);
2240
2241 intel_crtc_update_sarea_pos(crtc, x, y);
2242
2243 return 0;
2244 }
2245
2246 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2247 {
2248 struct drm_device *dev = crtc->dev;
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2251 int pipe = intel_crtc->pipe;
2252 u32 reg, temp;
2253
2254 /* enable normal train */
2255 reg = FDI_TX_CTL(pipe);
2256 temp = I915_READ(reg);
2257 if (IS_IVYBRIDGE(dev)) {
2258 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2259 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2260 } else {
2261 temp &= ~FDI_LINK_TRAIN_NONE;
2262 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2263 }
2264 I915_WRITE(reg, temp);
2265
2266 reg = FDI_RX_CTL(pipe);
2267 temp = I915_READ(reg);
2268 if (HAS_PCH_CPT(dev)) {
2269 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2270 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2271 } else {
2272 temp &= ~FDI_LINK_TRAIN_NONE;
2273 temp |= FDI_LINK_TRAIN_NONE;
2274 }
2275 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2276
2277 /* wait one idle pattern time */
2278 POSTING_READ(reg);
2279 udelay(1000);
2280
2281 /* IVB wants error correction enabled */
2282 if (IS_IVYBRIDGE(dev))
2283 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2284 FDI_FE_ERRC_ENABLE);
2285 }
2286
2287 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2288 {
2289 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2290 }
2291
2292 static void ivb_modeset_global_resources(struct drm_device *dev)
2293 {
2294 struct drm_i915_private *dev_priv = dev->dev_private;
2295 struct intel_crtc *pipe_B_crtc =
2296 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2297 struct intel_crtc *pipe_C_crtc =
2298 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2299 uint32_t temp;
2300
2301 /*
2302 * When everything is off disable fdi C so that we could enable fdi B
2303 * with all lanes. Note that we don't care about enabled pipes without
2304 * an enabled pch encoder.
2305 */
2306 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2307 !pipe_has_enabled_pch(pipe_C_crtc)) {
2308 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2309 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2310
2311 temp = I915_READ(SOUTH_CHICKEN1);
2312 temp &= ~FDI_BC_BIFURCATION_SELECT;
2313 DRM_DEBUG_KMS("disabling fdi C rx\n");
2314 I915_WRITE(SOUTH_CHICKEN1, temp);
2315 }
2316 }
2317
2318 /* The FDI link training functions for ILK/Ibexpeak. */
2319 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2320 {
2321 struct drm_device *dev = crtc->dev;
2322 struct drm_i915_private *dev_priv = dev->dev_private;
2323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2324 int pipe = intel_crtc->pipe;
2325 int plane = intel_crtc->plane;
2326 u32 reg, temp, tries;
2327
2328 /* FDI needs bits from pipe & plane first */
2329 assert_pipe_enabled(dev_priv, pipe);
2330 assert_plane_enabled(dev_priv, plane);
2331
2332 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2333 for train result */
2334 reg = FDI_RX_IMR(pipe);
2335 temp = I915_READ(reg);
2336 temp &= ~FDI_RX_SYMBOL_LOCK;
2337 temp &= ~FDI_RX_BIT_LOCK;
2338 I915_WRITE(reg, temp);
2339 I915_READ(reg);
2340 udelay(150);
2341
2342 /* enable CPU FDI TX and PCH FDI RX */
2343 reg = FDI_TX_CTL(pipe);
2344 temp = I915_READ(reg);
2345 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2346 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2347 temp &= ~FDI_LINK_TRAIN_NONE;
2348 temp |= FDI_LINK_TRAIN_PATTERN_1;
2349 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2350
2351 reg = FDI_RX_CTL(pipe);
2352 temp = I915_READ(reg);
2353 temp &= ~FDI_LINK_TRAIN_NONE;
2354 temp |= FDI_LINK_TRAIN_PATTERN_1;
2355 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2356
2357 POSTING_READ(reg);
2358 udelay(150);
2359
2360 /* Ironlake workaround, enable clock pointer after FDI enable*/
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364
2365 reg = FDI_RX_IIR(pipe);
2366 for (tries = 0; tries < 5; tries++) {
2367 temp = I915_READ(reg);
2368 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2369
2370 if ((temp & FDI_RX_BIT_LOCK)) {
2371 DRM_DEBUG_KMS("FDI train 1 done.\n");
2372 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2373 break;
2374 }
2375 }
2376 if (tries == 5)
2377 DRM_ERROR("FDI train 1 fail!\n");
2378
2379 /* Train 2 */
2380 reg = FDI_TX_CTL(pipe);
2381 temp = I915_READ(reg);
2382 temp &= ~FDI_LINK_TRAIN_NONE;
2383 temp |= FDI_LINK_TRAIN_PATTERN_2;
2384 I915_WRITE(reg, temp);
2385
2386 reg = FDI_RX_CTL(pipe);
2387 temp = I915_READ(reg);
2388 temp &= ~FDI_LINK_TRAIN_NONE;
2389 temp |= FDI_LINK_TRAIN_PATTERN_2;
2390 I915_WRITE(reg, temp);
2391
2392 POSTING_READ(reg);
2393 udelay(150);
2394
2395 reg = FDI_RX_IIR(pipe);
2396 for (tries = 0; tries < 5; tries++) {
2397 temp = I915_READ(reg);
2398 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400 if (temp & FDI_RX_SYMBOL_LOCK) {
2401 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2402 DRM_DEBUG_KMS("FDI train 2 done.\n");
2403 break;
2404 }
2405 }
2406 if (tries == 5)
2407 DRM_ERROR("FDI train 2 fail!\n");
2408
2409 DRM_DEBUG_KMS("FDI train done\n");
2410
2411 }
2412
2413 static const int snb_b_fdi_train_param[] = {
2414 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2415 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2416 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2417 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2418 };
2419
2420 /* The FDI link training functions for SNB/Cougarpoint. */
2421 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2422 {
2423 struct drm_device *dev = crtc->dev;
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2426 int pipe = intel_crtc->pipe;
2427 u32 reg, temp, i, retry;
2428
2429 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2430 for train result */
2431 reg = FDI_RX_IMR(pipe);
2432 temp = I915_READ(reg);
2433 temp &= ~FDI_RX_SYMBOL_LOCK;
2434 temp &= ~FDI_RX_BIT_LOCK;
2435 I915_WRITE(reg, temp);
2436
2437 POSTING_READ(reg);
2438 udelay(150);
2439
2440 /* enable CPU FDI TX and PCH FDI RX */
2441 reg = FDI_TX_CTL(pipe);
2442 temp = I915_READ(reg);
2443 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2444 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2445 temp &= ~FDI_LINK_TRAIN_NONE;
2446 temp |= FDI_LINK_TRAIN_PATTERN_1;
2447 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2448 /* SNB-B */
2449 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2450 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2451
2452 I915_WRITE(FDI_RX_MISC(pipe),
2453 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2454
2455 reg = FDI_RX_CTL(pipe);
2456 temp = I915_READ(reg);
2457 if (HAS_PCH_CPT(dev)) {
2458 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2459 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2460 } else {
2461 temp &= ~FDI_LINK_TRAIN_NONE;
2462 temp |= FDI_LINK_TRAIN_PATTERN_1;
2463 }
2464 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2465
2466 POSTING_READ(reg);
2467 udelay(150);
2468
2469 for (i = 0; i < 4; i++) {
2470 reg = FDI_TX_CTL(pipe);
2471 temp = I915_READ(reg);
2472 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2473 temp |= snb_b_fdi_train_param[i];
2474 I915_WRITE(reg, temp);
2475
2476 POSTING_READ(reg);
2477 udelay(500);
2478
2479 for (retry = 0; retry < 5; retry++) {
2480 reg = FDI_RX_IIR(pipe);
2481 temp = I915_READ(reg);
2482 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2483 if (temp & FDI_RX_BIT_LOCK) {
2484 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2485 DRM_DEBUG_KMS("FDI train 1 done.\n");
2486 break;
2487 }
2488 udelay(50);
2489 }
2490 if (retry < 5)
2491 break;
2492 }
2493 if (i == 4)
2494 DRM_ERROR("FDI train 1 fail!\n");
2495
2496 /* Train 2 */
2497 reg = FDI_TX_CTL(pipe);
2498 temp = I915_READ(reg);
2499 temp &= ~FDI_LINK_TRAIN_NONE;
2500 temp |= FDI_LINK_TRAIN_PATTERN_2;
2501 if (IS_GEN6(dev)) {
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 /* SNB-B */
2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505 }
2506 I915_WRITE(reg, temp);
2507
2508 reg = FDI_RX_CTL(pipe);
2509 temp = I915_READ(reg);
2510 if (HAS_PCH_CPT(dev)) {
2511 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2512 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2513 } else {
2514 temp &= ~FDI_LINK_TRAIN_NONE;
2515 temp |= FDI_LINK_TRAIN_PATTERN_2;
2516 }
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(150);
2521
2522 for (i = 0; i < 4; i++) {
2523 reg = FDI_TX_CTL(pipe);
2524 temp = I915_READ(reg);
2525 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2526 temp |= snb_b_fdi_train_param[i];
2527 I915_WRITE(reg, temp);
2528
2529 POSTING_READ(reg);
2530 udelay(500);
2531
2532 for (retry = 0; retry < 5; retry++) {
2533 reg = FDI_RX_IIR(pipe);
2534 temp = I915_READ(reg);
2535 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2536 if (temp & FDI_RX_SYMBOL_LOCK) {
2537 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2538 DRM_DEBUG_KMS("FDI train 2 done.\n");
2539 break;
2540 }
2541 udelay(50);
2542 }
2543 if (retry < 5)
2544 break;
2545 }
2546 if (i == 4)
2547 DRM_ERROR("FDI train 2 fail!\n");
2548
2549 DRM_DEBUG_KMS("FDI train done.\n");
2550 }
2551
2552 /* Manual link training for Ivy Bridge A0 parts */
2553 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2554 {
2555 struct drm_device *dev = crtc->dev;
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2558 int pipe = intel_crtc->pipe;
2559 u32 reg, temp, i;
2560
2561 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2562 for train result */
2563 reg = FDI_RX_IMR(pipe);
2564 temp = I915_READ(reg);
2565 temp &= ~FDI_RX_SYMBOL_LOCK;
2566 temp &= ~FDI_RX_BIT_LOCK;
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
2570 udelay(150);
2571
2572 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2573 I915_READ(FDI_RX_IIR(pipe)));
2574
2575 /* enable CPU FDI TX and PCH FDI RX */
2576 reg = FDI_TX_CTL(pipe);
2577 temp = I915_READ(reg);
2578 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2579 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2580 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2581 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2583 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2584 temp |= FDI_COMPOSITE_SYNC;
2585 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2586
2587 I915_WRITE(FDI_RX_MISC(pipe),
2588 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2589
2590 reg = FDI_RX_CTL(pipe);
2591 temp = I915_READ(reg);
2592 temp &= ~FDI_LINK_TRAIN_AUTO;
2593 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2594 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2595 temp |= FDI_COMPOSITE_SYNC;
2596 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2597
2598 POSTING_READ(reg);
2599 udelay(150);
2600
2601 for (i = 0; i < 4; i++) {
2602 reg = FDI_TX_CTL(pipe);
2603 temp = I915_READ(reg);
2604 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2605 temp |= snb_b_fdi_train_param[i];
2606 I915_WRITE(reg, temp);
2607
2608 POSTING_READ(reg);
2609 udelay(500);
2610
2611 reg = FDI_RX_IIR(pipe);
2612 temp = I915_READ(reg);
2613 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2614
2615 if (temp & FDI_RX_BIT_LOCK ||
2616 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2617 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2618 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2619 break;
2620 }
2621 }
2622 if (i == 4)
2623 DRM_ERROR("FDI train 1 fail!\n");
2624
2625 /* Train 2 */
2626 reg = FDI_TX_CTL(pipe);
2627 temp = I915_READ(reg);
2628 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2629 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2630 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2631 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2632 I915_WRITE(reg, temp);
2633
2634 reg = FDI_RX_CTL(pipe);
2635 temp = I915_READ(reg);
2636 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2637 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2638 I915_WRITE(reg, temp);
2639
2640 POSTING_READ(reg);
2641 udelay(150);
2642
2643 for (i = 0; i < 4; i++) {
2644 reg = FDI_TX_CTL(pipe);
2645 temp = I915_READ(reg);
2646 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2647 temp |= snb_b_fdi_train_param[i];
2648 I915_WRITE(reg, temp);
2649
2650 POSTING_READ(reg);
2651 udelay(500);
2652
2653 reg = FDI_RX_IIR(pipe);
2654 temp = I915_READ(reg);
2655 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2656
2657 if (temp & FDI_RX_SYMBOL_LOCK) {
2658 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2659 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2660 break;
2661 }
2662 }
2663 if (i == 4)
2664 DRM_ERROR("FDI train 2 fail!\n");
2665
2666 DRM_DEBUG_KMS("FDI train done.\n");
2667 }
2668
2669 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2670 {
2671 struct drm_device *dev = intel_crtc->base.dev;
2672 struct drm_i915_private *dev_priv = dev->dev_private;
2673 int pipe = intel_crtc->pipe;
2674 u32 reg, temp;
2675
2676
2677 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2678 reg = FDI_RX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2681 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2682 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2683 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2684
2685 POSTING_READ(reg);
2686 udelay(200);
2687
2688 /* Switch from Rawclk to PCDclk */
2689 temp = I915_READ(reg);
2690 I915_WRITE(reg, temp | FDI_PCDCLK);
2691
2692 POSTING_READ(reg);
2693 udelay(200);
2694
2695 /* Enable CPU FDI TX PLL, always on for Ironlake */
2696 reg = FDI_TX_CTL(pipe);
2697 temp = I915_READ(reg);
2698 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2699 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2700
2701 POSTING_READ(reg);
2702 udelay(100);
2703 }
2704 }
2705
2706 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2707 {
2708 struct drm_device *dev = intel_crtc->base.dev;
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 int pipe = intel_crtc->pipe;
2711 u32 reg, temp;
2712
2713 /* Switch from PCDclk to Rawclk */
2714 reg = FDI_RX_CTL(pipe);
2715 temp = I915_READ(reg);
2716 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2717
2718 /* Disable CPU FDI TX PLL */
2719 reg = FDI_TX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2722
2723 POSTING_READ(reg);
2724 udelay(100);
2725
2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg);
2728 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2729
2730 /* Wait for the clocks to turn off. */
2731 POSTING_READ(reg);
2732 udelay(100);
2733 }
2734
2735 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2736 {
2737 struct drm_device *dev = crtc->dev;
2738 struct drm_i915_private *dev_priv = dev->dev_private;
2739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2740 int pipe = intel_crtc->pipe;
2741 u32 reg, temp;
2742
2743 /* disable CPU FDI tx and PCH FDI rx */
2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg);
2746 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2747 POSTING_READ(reg);
2748
2749 reg = FDI_RX_CTL(pipe);
2750 temp = I915_READ(reg);
2751 temp &= ~(0x7 << 16);
2752 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2753 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2754
2755 POSTING_READ(reg);
2756 udelay(100);
2757
2758 /* Ironlake workaround, disable clock pointer after downing FDI */
2759 if (HAS_PCH_IBX(dev)) {
2760 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2761 }
2762
2763 /* still set train pattern 1 */
2764 reg = FDI_TX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 temp &= ~FDI_LINK_TRAIN_NONE;
2767 temp |= FDI_LINK_TRAIN_PATTERN_1;
2768 I915_WRITE(reg, temp);
2769
2770 reg = FDI_RX_CTL(pipe);
2771 temp = I915_READ(reg);
2772 if (HAS_PCH_CPT(dev)) {
2773 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2774 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2775 } else {
2776 temp &= ~FDI_LINK_TRAIN_NONE;
2777 temp |= FDI_LINK_TRAIN_PATTERN_1;
2778 }
2779 /* BPC in FDI rx is consistent with that in PIPECONF */
2780 temp &= ~(0x07 << 16);
2781 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2782 I915_WRITE(reg, temp);
2783
2784 POSTING_READ(reg);
2785 udelay(100);
2786 }
2787
2788 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2789 {
2790 struct drm_device *dev = crtc->dev;
2791 struct drm_i915_private *dev_priv = dev->dev_private;
2792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2793 unsigned long flags;
2794 bool pending;
2795
2796 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2797 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2798 return false;
2799
2800 spin_lock_irqsave(&dev->event_lock, flags);
2801 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2802 spin_unlock_irqrestore(&dev->event_lock, flags);
2803
2804 return pending;
2805 }
2806
2807 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2808 {
2809 struct drm_device *dev = crtc->dev;
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811
2812 if (crtc->fb == NULL)
2813 return;
2814
2815 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2816
2817 wait_event(dev_priv->pending_flip_queue,
2818 !intel_crtc_has_pending_flip(crtc));
2819
2820 mutex_lock(&dev->struct_mutex);
2821 intel_finish_fb(crtc->fb);
2822 mutex_unlock(&dev->struct_mutex);
2823 }
2824
2825 /* Program iCLKIP clock to the desired frequency */
2826 static void lpt_program_iclkip(struct drm_crtc *crtc)
2827 {
2828 struct drm_device *dev = crtc->dev;
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2831 u32 temp;
2832
2833 mutex_lock(&dev_priv->dpio_lock);
2834
2835 /* It is necessary to ungate the pixclk gate prior to programming
2836 * the divisors, and gate it back when it is done.
2837 */
2838 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2839
2840 /* Disable SSCCTL */
2841 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2842 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2843 SBI_SSCCTL_DISABLE,
2844 SBI_ICLK);
2845
2846 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2847 if (crtc->mode.clock == 20000) {
2848 auxdiv = 1;
2849 divsel = 0x41;
2850 phaseinc = 0x20;
2851 } else {
2852 /* The iCLK virtual clock root frequency is in MHz,
2853 * but the crtc->mode.clock in in KHz. To get the divisors,
2854 * it is necessary to divide one by another, so we
2855 * convert the virtual clock precision to KHz here for higher
2856 * precision.
2857 */
2858 u32 iclk_virtual_root_freq = 172800 * 1000;
2859 u32 iclk_pi_range = 64;
2860 u32 desired_divisor, msb_divisor_value, pi_value;
2861
2862 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2863 msb_divisor_value = desired_divisor / iclk_pi_range;
2864 pi_value = desired_divisor % iclk_pi_range;
2865
2866 auxdiv = 0;
2867 divsel = msb_divisor_value - 2;
2868 phaseinc = pi_value;
2869 }
2870
2871 /* This should not happen with any sane values */
2872 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2873 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2874 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2875 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2876
2877 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2878 crtc->mode.clock,
2879 auxdiv,
2880 divsel,
2881 phasedir,
2882 phaseinc);
2883
2884 /* Program SSCDIVINTPHASE6 */
2885 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2886 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2887 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2888 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2889 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2890 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2891 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2892 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2893
2894 /* Program SSCAUXDIV */
2895 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2896 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2897 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2898 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2899
2900 /* Enable modulator and associated divider */
2901 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2902 temp &= ~SBI_SSCCTL_DISABLE;
2903 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2904
2905 /* Wait for initialization time */
2906 udelay(24);
2907
2908 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2909
2910 mutex_unlock(&dev_priv->dpio_lock);
2911 }
2912
2913 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2914 enum pipe pch_transcoder)
2915 {
2916 struct drm_device *dev = crtc->base.dev;
2917 struct drm_i915_private *dev_priv = dev->dev_private;
2918 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2919
2920 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2921 I915_READ(HTOTAL(cpu_transcoder)));
2922 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2923 I915_READ(HBLANK(cpu_transcoder)));
2924 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2925 I915_READ(HSYNC(cpu_transcoder)));
2926
2927 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2928 I915_READ(VTOTAL(cpu_transcoder)));
2929 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2930 I915_READ(VBLANK(cpu_transcoder)));
2931 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2932 I915_READ(VSYNC(cpu_transcoder)));
2933 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2934 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2935 }
2936
2937 /*
2938 * Enable PCH resources required for PCH ports:
2939 * - PCH PLLs
2940 * - FDI training & RX/TX
2941 * - update transcoder timings
2942 * - DP transcoding bits
2943 * - transcoder
2944 */
2945 static void ironlake_pch_enable(struct drm_crtc *crtc)
2946 {
2947 struct drm_device *dev = crtc->dev;
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2950 int pipe = intel_crtc->pipe;
2951 u32 reg, temp;
2952
2953 assert_pch_transcoder_disabled(dev_priv, pipe);
2954
2955 /* Write the TU size bits before fdi link training, so that error
2956 * detection works. */
2957 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2958 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2959
2960 /* For PCH output, training FDI link */
2961 dev_priv->display.fdi_link_train(crtc);
2962
2963 /* XXX: pch pll's can be enabled any time before we enable the PCH
2964 * transcoder, and we actually should do this to not upset any PCH
2965 * transcoder that already use the clock when we share it.
2966 *
2967 * Note that enable_shared_dpll tries to do the right thing, but
2968 * get_shared_dpll unconditionally resets the pll - we need that to have
2969 * the right LVDS enable sequence. */
2970 ironlake_enable_shared_dpll(intel_crtc);
2971
2972 if (HAS_PCH_CPT(dev)) {
2973 u32 sel;
2974
2975 temp = I915_READ(PCH_DPLL_SEL);
2976 temp |= TRANS_DPLL_ENABLE(pipe);
2977 sel = TRANS_DPLLB_SEL(pipe);
2978 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
2979 temp |= sel;
2980 else
2981 temp &= ~sel;
2982 I915_WRITE(PCH_DPLL_SEL, temp);
2983 }
2984
2985 /* set transcoder timing, panel must allow it */
2986 assert_panel_unlocked(dev_priv, pipe);
2987 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2988
2989 intel_fdi_normal_train(crtc);
2990
2991 /* For PCH DP, enable TRANS_DP_CTL */
2992 if (HAS_PCH_CPT(dev) &&
2993 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2994 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2995 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2996 reg = TRANS_DP_CTL(pipe);
2997 temp = I915_READ(reg);
2998 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2999 TRANS_DP_SYNC_MASK |
3000 TRANS_DP_BPC_MASK);
3001 temp |= (TRANS_DP_OUTPUT_ENABLE |
3002 TRANS_DP_ENH_FRAMING);
3003 temp |= bpc << 9; /* same format but at 11:9 */
3004
3005 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3006 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3007 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3008 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3009
3010 switch (intel_trans_dp_port_sel(crtc)) {
3011 case PCH_DP_B:
3012 temp |= TRANS_DP_PORT_SEL_B;
3013 break;
3014 case PCH_DP_C:
3015 temp |= TRANS_DP_PORT_SEL_C;
3016 break;
3017 case PCH_DP_D:
3018 temp |= TRANS_DP_PORT_SEL_D;
3019 break;
3020 default:
3021 BUG();
3022 }
3023
3024 I915_WRITE(reg, temp);
3025 }
3026
3027 ironlake_enable_pch_transcoder(dev_priv, pipe);
3028 }
3029
3030 static void lpt_pch_enable(struct drm_crtc *crtc)
3031 {
3032 struct drm_device *dev = crtc->dev;
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3035 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3036
3037 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3038
3039 lpt_program_iclkip(crtc);
3040
3041 /* Set transcoder timing. */
3042 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3043
3044 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3045 }
3046
3047 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3048 {
3049 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3050
3051 if (pll == NULL)
3052 return;
3053
3054 if (pll->refcount == 0) {
3055 WARN(1, "bad %s refcount\n", pll->name);
3056 return;
3057 }
3058
3059 if (--pll->refcount == 0) {
3060 WARN_ON(pll->on);
3061 WARN_ON(pll->active);
3062 }
3063
3064 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3065 }
3066
3067 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3068 {
3069 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3070 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3071 enum intel_dpll_id i;
3072
3073 if (pll) {
3074 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3075 crtc->base.base.id, pll->name);
3076 intel_put_shared_dpll(crtc);
3077 }
3078
3079 if (HAS_PCH_IBX(dev_priv->dev)) {
3080 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3081 i = crtc->pipe;
3082 pll = &dev_priv->shared_dplls[i];
3083
3084 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3085 crtc->base.base.id, pll->name);
3086
3087 goto found;
3088 }
3089
3090 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3091 pll = &dev_priv->shared_dplls[i];
3092
3093 /* Only want to check enabled timings first */
3094 if (pll->refcount == 0)
3095 continue;
3096
3097 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3098 sizeof(pll->hw_state)) == 0) {
3099 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3100 crtc->base.base.id,
3101 pll->name, pll->refcount, pll->active);
3102
3103 goto found;
3104 }
3105 }
3106
3107 /* Ok no matching timings, maybe there's a free one? */
3108 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3109 pll = &dev_priv->shared_dplls[i];
3110 if (pll->refcount == 0) {
3111 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3112 crtc->base.base.id, pll->name);
3113 goto found;
3114 }
3115 }
3116
3117 return NULL;
3118
3119 found:
3120 crtc->config.shared_dpll = i;
3121 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3122 pipe_name(crtc->pipe));
3123
3124 if (pll->active == 0) {
3125 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3126 sizeof(pll->hw_state));
3127
3128 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3129 WARN_ON(pll->on);
3130 assert_shared_dpll_disabled(dev_priv, pll);
3131
3132 pll->mode_set(dev_priv, pll);
3133 }
3134 pll->refcount++;
3135
3136 return pll;
3137 }
3138
3139 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3140 {
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3142 int dslreg = PIPEDSL(pipe);
3143 u32 temp;
3144
3145 temp = I915_READ(dslreg);
3146 udelay(500);
3147 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3148 if (wait_for(I915_READ(dslreg) != temp, 5))
3149 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3150 }
3151 }
3152
3153 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3154 {
3155 struct drm_device *dev = crtc->base.dev;
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157 int pipe = crtc->pipe;
3158
3159 if (crtc->config.pch_pfit.size) {
3160 /* Force use of hard-coded filter coefficients
3161 * as some pre-programmed values are broken,
3162 * e.g. x201.
3163 */
3164 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3165 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3166 PF_PIPE_SEL_IVB(pipe));
3167 else
3168 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3169 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3170 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3171 }
3172 }
3173
3174 static void intel_enable_planes(struct drm_crtc *crtc)
3175 {
3176 struct drm_device *dev = crtc->dev;
3177 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3178 struct intel_plane *intel_plane;
3179
3180 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3181 if (intel_plane->pipe == pipe)
3182 intel_plane_restore(&intel_plane->base);
3183 }
3184
3185 static void intel_disable_planes(struct drm_crtc *crtc)
3186 {
3187 struct drm_device *dev = crtc->dev;
3188 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3189 struct intel_plane *intel_plane;
3190
3191 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3192 if (intel_plane->pipe == pipe)
3193 intel_plane_disable(&intel_plane->base);
3194 }
3195
3196 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3197 {
3198 struct drm_device *dev = crtc->dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201 struct intel_encoder *encoder;
3202 int pipe = intel_crtc->pipe;
3203 int plane = intel_crtc->plane;
3204
3205 WARN_ON(!crtc->enabled);
3206
3207 if (intel_crtc->active)
3208 return;
3209
3210 intel_crtc->active = true;
3211
3212 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3213 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3214
3215 intel_update_watermarks(dev);
3216
3217 for_each_encoder_on_crtc(dev, crtc, encoder) {
3218 if (encoder->pre_pll_enable)
3219 encoder->pre_pll_enable(encoder);
3220 if (encoder->pre_enable)
3221 encoder->pre_enable(encoder);
3222 }
3223
3224 if (intel_crtc->config.has_pch_encoder) {
3225 /* Note: FDI PLL enabling _must_ be done before we enable the
3226 * cpu pipes, hence this is separate from all the other fdi/pch
3227 * enabling. */
3228 ironlake_fdi_pll_enable(intel_crtc);
3229 } else {
3230 assert_fdi_tx_disabled(dev_priv, pipe);
3231 assert_fdi_rx_disabled(dev_priv, pipe);
3232 }
3233
3234 ironlake_pfit_enable(intel_crtc);
3235
3236 /*
3237 * On ILK+ LUT must be loaded before the pipe is running but with
3238 * clocks enabled
3239 */
3240 intel_crtc_load_lut(crtc);
3241
3242 intel_enable_pipe(dev_priv, pipe,
3243 intel_crtc->config.has_pch_encoder);
3244 intel_enable_plane(dev_priv, plane, pipe);
3245 intel_enable_planes(crtc);
3246 intel_crtc_update_cursor(crtc, true);
3247
3248 if (intel_crtc->config.has_pch_encoder)
3249 ironlake_pch_enable(crtc);
3250
3251 mutex_lock(&dev->struct_mutex);
3252 intel_update_fbc(dev);
3253 mutex_unlock(&dev->struct_mutex);
3254
3255 for_each_encoder_on_crtc(dev, crtc, encoder)
3256 encoder->enable(encoder);
3257
3258 if (HAS_PCH_CPT(dev))
3259 cpt_verify_modeset(dev, intel_crtc->pipe);
3260
3261 /*
3262 * There seems to be a race in PCH platform hw (at least on some
3263 * outputs) where an enabled pipe still completes any pageflip right
3264 * away (as if the pipe is off) instead of waiting for vblank. As soon
3265 * as the first vblank happend, everything works as expected. Hence just
3266 * wait for one vblank before returning to avoid strange things
3267 * happening.
3268 */
3269 intel_wait_for_vblank(dev, intel_crtc->pipe);
3270 }
3271
3272 /* IPS only exists on ULT machines and is tied to pipe A. */
3273 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3274 {
3275 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3276 }
3277
3278 static void hsw_enable_ips(struct intel_crtc *crtc)
3279 {
3280 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3281
3282 if (!crtc->config.ips_enabled)
3283 return;
3284
3285 /* We can only enable IPS after we enable a plane and wait for a vblank.
3286 * We guarantee that the plane is enabled by calling intel_enable_ips
3287 * only after intel_enable_plane. And intel_enable_plane already waits
3288 * for a vblank, so all we need to do here is to enable the IPS bit. */
3289 assert_plane_enabled(dev_priv, crtc->plane);
3290 I915_WRITE(IPS_CTL, IPS_ENABLE);
3291 }
3292
3293 static void hsw_disable_ips(struct intel_crtc *crtc)
3294 {
3295 struct drm_device *dev = crtc->base.dev;
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297
3298 if (!crtc->config.ips_enabled)
3299 return;
3300
3301 assert_plane_enabled(dev_priv, crtc->plane);
3302 I915_WRITE(IPS_CTL, 0);
3303
3304 /* We need to wait for a vblank before we can disable the plane. */
3305 intel_wait_for_vblank(dev, crtc->pipe);
3306 }
3307
3308 static void haswell_crtc_enable(struct drm_crtc *crtc)
3309 {
3310 struct drm_device *dev = crtc->dev;
3311 struct drm_i915_private *dev_priv = dev->dev_private;
3312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3313 struct intel_encoder *encoder;
3314 int pipe = intel_crtc->pipe;
3315 int plane = intel_crtc->plane;
3316
3317 WARN_ON(!crtc->enabled);
3318
3319 if (intel_crtc->active)
3320 return;
3321
3322 intel_crtc->active = true;
3323
3324 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3325 if (intel_crtc->config.has_pch_encoder)
3326 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3327
3328 intel_update_watermarks(dev);
3329
3330 if (intel_crtc->config.has_pch_encoder)
3331 dev_priv->display.fdi_link_train(crtc);
3332
3333 for_each_encoder_on_crtc(dev, crtc, encoder)
3334 if (encoder->pre_enable)
3335 encoder->pre_enable(encoder);
3336
3337 intel_ddi_enable_pipe_clock(intel_crtc);
3338
3339 ironlake_pfit_enable(intel_crtc);
3340
3341 /*
3342 * On ILK+ LUT must be loaded before the pipe is running but with
3343 * clocks enabled
3344 */
3345 intel_crtc_load_lut(crtc);
3346
3347 intel_ddi_set_pipe_settings(crtc);
3348 intel_ddi_enable_transcoder_func(crtc);
3349
3350 intel_enable_pipe(dev_priv, pipe,
3351 intel_crtc->config.has_pch_encoder);
3352 intel_enable_plane(dev_priv, plane, pipe);
3353 intel_enable_planes(crtc);
3354 intel_crtc_update_cursor(crtc, true);
3355
3356 hsw_enable_ips(intel_crtc);
3357
3358 if (intel_crtc->config.has_pch_encoder)
3359 lpt_pch_enable(crtc);
3360
3361 mutex_lock(&dev->struct_mutex);
3362 intel_update_fbc(dev);
3363 mutex_unlock(&dev->struct_mutex);
3364
3365 for_each_encoder_on_crtc(dev, crtc, encoder)
3366 encoder->enable(encoder);
3367
3368 /*
3369 * There seems to be a race in PCH platform hw (at least on some
3370 * outputs) where an enabled pipe still completes any pageflip right
3371 * away (as if the pipe is off) instead of waiting for vblank. As soon
3372 * as the first vblank happend, everything works as expected. Hence just
3373 * wait for one vblank before returning to avoid strange things
3374 * happening.
3375 */
3376 intel_wait_for_vblank(dev, intel_crtc->pipe);
3377 }
3378
3379 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3380 {
3381 struct drm_device *dev = crtc->base.dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383 int pipe = crtc->pipe;
3384
3385 /* To avoid upsetting the power well on haswell only disable the pfit if
3386 * it's in use. The hw state code will make sure we get this right. */
3387 if (crtc->config.pch_pfit.size) {
3388 I915_WRITE(PF_CTL(pipe), 0);
3389 I915_WRITE(PF_WIN_POS(pipe), 0);
3390 I915_WRITE(PF_WIN_SZ(pipe), 0);
3391 }
3392 }
3393
3394 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3395 {
3396 struct drm_device *dev = crtc->dev;
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399 struct intel_encoder *encoder;
3400 int pipe = intel_crtc->pipe;
3401 int plane = intel_crtc->plane;
3402 u32 reg, temp;
3403
3404
3405 if (!intel_crtc->active)
3406 return;
3407
3408 for_each_encoder_on_crtc(dev, crtc, encoder)
3409 encoder->disable(encoder);
3410
3411 intel_crtc_wait_for_pending_flips(crtc);
3412 drm_vblank_off(dev, pipe);
3413
3414 if (dev_priv->cfb_plane == plane)
3415 intel_disable_fbc(dev);
3416
3417 intel_crtc_update_cursor(crtc, false);
3418 intel_disable_planes(crtc);
3419 intel_disable_plane(dev_priv, plane, pipe);
3420
3421 if (intel_crtc->config.has_pch_encoder)
3422 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3423
3424 intel_disable_pipe(dev_priv, pipe);
3425
3426 ironlake_pfit_disable(intel_crtc);
3427
3428 for_each_encoder_on_crtc(dev, crtc, encoder)
3429 if (encoder->post_disable)
3430 encoder->post_disable(encoder);
3431
3432 if (intel_crtc->config.has_pch_encoder) {
3433 ironlake_fdi_disable(crtc);
3434
3435 ironlake_disable_pch_transcoder(dev_priv, pipe);
3436 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3437
3438 if (HAS_PCH_CPT(dev)) {
3439 /* disable TRANS_DP_CTL */
3440 reg = TRANS_DP_CTL(pipe);
3441 temp = I915_READ(reg);
3442 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3443 TRANS_DP_PORT_SEL_MASK);
3444 temp |= TRANS_DP_PORT_SEL_NONE;
3445 I915_WRITE(reg, temp);
3446
3447 /* disable DPLL_SEL */
3448 temp = I915_READ(PCH_DPLL_SEL);
3449 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3450 I915_WRITE(PCH_DPLL_SEL, temp);
3451 }
3452
3453 /* disable PCH DPLL */
3454 intel_disable_shared_dpll(intel_crtc);
3455
3456 ironlake_fdi_pll_disable(intel_crtc);
3457 }
3458
3459 intel_crtc->active = false;
3460 intel_update_watermarks(dev);
3461
3462 mutex_lock(&dev->struct_mutex);
3463 intel_update_fbc(dev);
3464 mutex_unlock(&dev->struct_mutex);
3465 }
3466
3467 static void haswell_crtc_disable(struct drm_crtc *crtc)
3468 {
3469 struct drm_device *dev = crtc->dev;
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3472 struct intel_encoder *encoder;
3473 int pipe = intel_crtc->pipe;
3474 int plane = intel_crtc->plane;
3475 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3476
3477 if (!intel_crtc->active)
3478 return;
3479
3480 for_each_encoder_on_crtc(dev, crtc, encoder)
3481 encoder->disable(encoder);
3482
3483 intel_crtc_wait_for_pending_flips(crtc);
3484 drm_vblank_off(dev, pipe);
3485
3486 /* FBC must be disabled before disabling the plane on HSW. */
3487 if (dev_priv->cfb_plane == plane)
3488 intel_disable_fbc(dev);
3489
3490 hsw_disable_ips(intel_crtc);
3491
3492 intel_crtc_update_cursor(crtc, false);
3493 intel_disable_planes(crtc);
3494 intel_disable_plane(dev_priv, plane, pipe);
3495
3496 if (intel_crtc->config.has_pch_encoder)
3497 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3498 intel_disable_pipe(dev_priv, pipe);
3499
3500 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3501
3502 ironlake_pfit_disable(intel_crtc);
3503
3504 intel_ddi_disable_pipe_clock(intel_crtc);
3505
3506 for_each_encoder_on_crtc(dev, crtc, encoder)
3507 if (encoder->post_disable)
3508 encoder->post_disable(encoder);
3509
3510 if (intel_crtc->config.has_pch_encoder) {
3511 lpt_disable_pch_transcoder(dev_priv);
3512 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3513 intel_ddi_fdi_disable(crtc);
3514 }
3515
3516 intel_crtc->active = false;
3517 intel_update_watermarks(dev);
3518
3519 mutex_lock(&dev->struct_mutex);
3520 intel_update_fbc(dev);
3521 mutex_unlock(&dev->struct_mutex);
3522 }
3523
3524 static void ironlake_crtc_off(struct drm_crtc *crtc)
3525 {
3526 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3527 intel_put_shared_dpll(intel_crtc);
3528 }
3529
3530 static void haswell_crtc_off(struct drm_crtc *crtc)
3531 {
3532 intel_ddi_put_crtc_pll(crtc);
3533 }
3534
3535 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3536 {
3537 if (!enable && intel_crtc->overlay) {
3538 struct drm_device *dev = intel_crtc->base.dev;
3539 struct drm_i915_private *dev_priv = dev->dev_private;
3540
3541 mutex_lock(&dev->struct_mutex);
3542 dev_priv->mm.interruptible = false;
3543 (void) intel_overlay_switch_off(intel_crtc->overlay);
3544 dev_priv->mm.interruptible = true;
3545 mutex_unlock(&dev->struct_mutex);
3546 }
3547
3548 /* Let userspace switch the overlay on again. In most cases userspace
3549 * has to recompute where to put it anyway.
3550 */
3551 }
3552
3553 /**
3554 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3555 * cursor plane briefly if not already running after enabling the display
3556 * plane.
3557 * This workaround avoids occasional blank screens when self refresh is
3558 * enabled.
3559 */
3560 static void
3561 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3562 {
3563 u32 cntl = I915_READ(CURCNTR(pipe));
3564
3565 if ((cntl & CURSOR_MODE) == 0) {
3566 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3567
3568 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3569 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3570 intel_wait_for_vblank(dev_priv->dev, pipe);
3571 I915_WRITE(CURCNTR(pipe), cntl);
3572 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3573 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3574 }
3575 }
3576
3577 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3578 {
3579 struct drm_device *dev = crtc->base.dev;
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581 struct intel_crtc_config *pipe_config = &crtc->config;
3582
3583 if (!crtc->config.gmch_pfit.control)
3584 return;
3585
3586 /*
3587 * The panel fitter should only be adjusted whilst the pipe is disabled,
3588 * according to register description and PRM.
3589 */
3590 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3591 assert_pipe_disabled(dev_priv, crtc->pipe);
3592
3593 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3594 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3595
3596 /* Border color in case we don't scale up to the full screen. Black by
3597 * default, change to something else for debugging. */
3598 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3599 }
3600
3601 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3602 {
3603 struct drm_device *dev = crtc->dev;
3604 struct drm_i915_private *dev_priv = dev->dev_private;
3605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3606 struct intel_encoder *encoder;
3607 int pipe = intel_crtc->pipe;
3608 int plane = intel_crtc->plane;
3609
3610 WARN_ON(!crtc->enabled);
3611
3612 if (intel_crtc->active)
3613 return;
3614
3615 intel_crtc->active = true;
3616 intel_update_watermarks(dev);
3617
3618 mutex_lock(&dev_priv->dpio_lock);
3619
3620 for_each_encoder_on_crtc(dev, crtc, encoder)
3621 if (encoder->pre_pll_enable)
3622 encoder->pre_pll_enable(encoder);
3623
3624 vlv_enable_pll(dev_priv, pipe);
3625
3626 for_each_encoder_on_crtc(dev, crtc, encoder)
3627 if (encoder->pre_enable)
3628 encoder->pre_enable(encoder);
3629
3630 /* VLV wants encoder enabling _before_ the pipe is up. */
3631 for_each_encoder_on_crtc(dev, crtc, encoder)
3632 encoder->enable(encoder);
3633
3634 i9xx_pfit_enable(intel_crtc);
3635
3636 intel_crtc_load_lut(crtc);
3637
3638 intel_enable_pipe(dev_priv, pipe, false);
3639 intel_enable_plane(dev_priv, plane, pipe);
3640 intel_enable_planes(crtc);
3641 intel_crtc_update_cursor(crtc, true);
3642
3643 intel_update_fbc(dev);
3644
3645 mutex_unlock(&dev_priv->dpio_lock);
3646 }
3647
3648 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3649 {
3650 struct drm_device *dev = crtc->dev;
3651 struct drm_i915_private *dev_priv = dev->dev_private;
3652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3653 struct intel_encoder *encoder;
3654 int pipe = intel_crtc->pipe;
3655 int plane = intel_crtc->plane;
3656
3657 WARN_ON(!crtc->enabled);
3658
3659 if (intel_crtc->active)
3660 return;
3661
3662 intel_crtc->active = true;
3663 intel_update_watermarks(dev);
3664
3665 for_each_encoder_on_crtc(dev, crtc, encoder)
3666 if (encoder->pre_pll_enable)
3667 encoder->pre_pll_enable(encoder);
3668
3669 i9xx_enable_pll(intel_crtc);
3670
3671 for_each_encoder_on_crtc(dev, crtc, encoder)
3672 if (encoder->pre_enable)
3673 encoder->pre_enable(encoder);
3674
3675 i9xx_pfit_enable(intel_crtc);
3676
3677 intel_crtc_load_lut(crtc);
3678
3679 intel_enable_pipe(dev_priv, pipe, false);
3680 intel_enable_plane(dev_priv, plane, pipe);
3681 intel_enable_planes(crtc);
3682 /* The fixup needs to happen before cursor is enabled */
3683 if (IS_G4X(dev))
3684 g4x_fixup_plane(dev_priv, pipe);
3685 intel_crtc_update_cursor(crtc, true);
3686
3687 /* Give the overlay scaler a chance to enable if it's on this pipe */
3688 intel_crtc_dpms_overlay(intel_crtc, true);
3689
3690 intel_update_fbc(dev);
3691
3692 for_each_encoder_on_crtc(dev, crtc, encoder)
3693 encoder->enable(encoder);
3694 }
3695
3696 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3697 {
3698 struct drm_device *dev = crtc->base.dev;
3699 struct drm_i915_private *dev_priv = dev->dev_private;
3700
3701 if (!crtc->config.gmch_pfit.control)
3702 return;
3703
3704 assert_pipe_disabled(dev_priv, crtc->pipe);
3705
3706 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3707 I915_READ(PFIT_CONTROL));
3708 I915_WRITE(PFIT_CONTROL, 0);
3709 }
3710
3711 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3712 {
3713 struct drm_device *dev = crtc->dev;
3714 struct drm_i915_private *dev_priv = dev->dev_private;
3715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3716 struct intel_encoder *encoder;
3717 int pipe = intel_crtc->pipe;
3718 int plane = intel_crtc->plane;
3719
3720 if (!intel_crtc->active)
3721 return;
3722
3723 for_each_encoder_on_crtc(dev, crtc, encoder)
3724 encoder->disable(encoder);
3725
3726 /* Give the overlay scaler a chance to disable if it's on this pipe */
3727 intel_crtc_wait_for_pending_flips(crtc);
3728 drm_vblank_off(dev, pipe);
3729
3730 if (dev_priv->cfb_plane == plane)
3731 intel_disable_fbc(dev);
3732
3733 intel_crtc_dpms_overlay(intel_crtc, false);
3734 intel_crtc_update_cursor(crtc, false);
3735 intel_disable_planes(crtc);
3736 intel_disable_plane(dev_priv, plane, pipe);
3737
3738 intel_disable_pipe(dev_priv, pipe);
3739
3740 i9xx_pfit_disable(intel_crtc);
3741
3742 for_each_encoder_on_crtc(dev, crtc, encoder)
3743 if (encoder->post_disable)
3744 encoder->post_disable(encoder);
3745
3746 intel_disable_pll(dev_priv, pipe);
3747
3748 intel_crtc->active = false;
3749 intel_update_fbc(dev);
3750 intel_update_watermarks(dev);
3751 }
3752
3753 static void i9xx_crtc_off(struct drm_crtc *crtc)
3754 {
3755 }
3756
3757 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3758 bool enabled)
3759 {
3760 struct drm_device *dev = crtc->dev;
3761 struct drm_i915_master_private *master_priv;
3762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3763 int pipe = intel_crtc->pipe;
3764
3765 if (!dev->primary->master)
3766 return;
3767
3768 master_priv = dev->primary->master->driver_priv;
3769 if (!master_priv->sarea_priv)
3770 return;
3771
3772 switch (pipe) {
3773 case 0:
3774 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3775 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3776 break;
3777 case 1:
3778 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3779 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3780 break;
3781 default:
3782 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3783 break;
3784 }
3785 }
3786
3787 /**
3788 * Sets the power management mode of the pipe and plane.
3789 */
3790 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3791 {
3792 struct drm_device *dev = crtc->dev;
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 struct intel_encoder *intel_encoder;
3795 bool enable = false;
3796
3797 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3798 enable |= intel_encoder->connectors_active;
3799
3800 if (enable)
3801 dev_priv->display.crtc_enable(crtc);
3802 else
3803 dev_priv->display.crtc_disable(crtc);
3804
3805 intel_crtc_update_sarea(crtc, enable);
3806 }
3807
3808 static void intel_crtc_disable(struct drm_crtc *crtc)
3809 {
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_connector *connector;
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814
3815 /* crtc should still be enabled when we disable it. */
3816 WARN_ON(!crtc->enabled);
3817
3818 dev_priv->display.crtc_disable(crtc);
3819 intel_crtc->eld_vld = false;
3820 intel_crtc_update_sarea(crtc, false);
3821 dev_priv->display.off(crtc);
3822
3823 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3824 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3825
3826 if (crtc->fb) {
3827 mutex_lock(&dev->struct_mutex);
3828 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3829 mutex_unlock(&dev->struct_mutex);
3830 crtc->fb = NULL;
3831 }
3832
3833 /* Update computed state. */
3834 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3835 if (!connector->encoder || !connector->encoder->crtc)
3836 continue;
3837
3838 if (connector->encoder->crtc != crtc)
3839 continue;
3840
3841 connector->dpms = DRM_MODE_DPMS_OFF;
3842 to_intel_encoder(connector->encoder)->connectors_active = false;
3843 }
3844 }
3845
3846 void intel_modeset_disable(struct drm_device *dev)
3847 {
3848 struct drm_crtc *crtc;
3849
3850 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3851 if (crtc->enabled)
3852 intel_crtc_disable(crtc);
3853 }
3854 }
3855
3856 void intel_encoder_destroy(struct drm_encoder *encoder)
3857 {
3858 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3859
3860 drm_encoder_cleanup(encoder);
3861 kfree(intel_encoder);
3862 }
3863
3864 /* Simple dpms helper for encodres with just one connector, no cloning and only
3865 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3866 * state of the entire output pipe. */
3867 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3868 {
3869 if (mode == DRM_MODE_DPMS_ON) {
3870 encoder->connectors_active = true;
3871
3872 intel_crtc_update_dpms(encoder->base.crtc);
3873 } else {
3874 encoder->connectors_active = false;
3875
3876 intel_crtc_update_dpms(encoder->base.crtc);
3877 }
3878 }
3879
3880 /* Cross check the actual hw state with our own modeset state tracking (and it's
3881 * internal consistency). */
3882 static void intel_connector_check_state(struct intel_connector *connector)
3883 {
3884 if (connector->get_hw_state(connector)) {
3885 struct intel_encoder *encoder = connector->encoder;
3886 struct drm_crtc *crtc;
3887 bool encoder_enabled;
3888 enum pipe pipe;
3889
3890 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3891 connector->base.base.id,
3892 drm_get_connector_name(&connector->base));
3893
3894 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3895 "wrong connector dpms state\n");
3896 WARN(connector->base.encoder != &encoder->base,
3897 "active connector not linked to encoder\n");
3898 WARN(!encoder->connectors_active,
3899 "encoder->connectors_active not set\n");
3900
3901 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3902 WARN(!encoder_enabled, "encoder not enabled\n");
3903 if (WARN_ON(!encoder->base.crtc))
3904 return;
3905
3906 crtc = encoder->base.crtc;
3907
3908 WARN(!crtc->enabled, "crtc not enabled\n");
3909 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3910 WARN(pipe != to_intel_crtc(crtc)->pipe,
3911 "encoder active on the wrong pipe\n");
3912 }
3913 }
3914
3915 /* Even simpler default implementation, if there's really no special case to
3916 * consider. */
3917 void intel_connector_dpms(struct drm_connector *connector, int mode)
3918 {
3919 struct intel_encoder *encoder = intel_attached_encoder(connector);
3920
3921 /* All the simple cases only support two dpms states. */
3922 if (mode != DRM_MODE_DPMS_ON)
3923 mode = DRM_MODE_DPMS_OFF;
3924
3925 if (mode == connector->dpms)
3926 return;
3927
3928 connector->dpms = mode;
3929
3930 /* Only need to change hw state when actually enabled */
3931 if (encoder->base.crtc)
3932 intel_encoder_dpms(encoder, mode);
3933 else
3934 WARN_ON(encoder->connectors_active != false);
3935
3936 intel_modeset_check_state(connector->dev);
3937 }
3938
3939 /* Simple connector->get_hw_state implementation for encoders that support only
3940 * one connector and no cloning and hence the encoder state determines the state
3941 * of the connector. */
3942 bool intel_connector_get_hw_state(struct intel_connector *connector)
3943 {
3944 enum pipe pipe = 0;
3945 struct intel_encoder *encoder = connector->encoder;
3946
3947 return encoder->get_hw_state(encoder, &pipe);
3948 }
3949
3950 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3951 struct intel_crtc_config *pipe_config)
3952 {
3953 struct drm_i915_private *dev_priv = dev->dev_private;
3954 struct intel_crtc *pipe_B_crtc =
3955 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3956
3957 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3958 pipe_name(pipe), pipe_config->fdi_lanes);
3959 if (pipe_config->fdi_lanes > 4) {
3960 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3961 pipe_name(pipe), pipe_config->fdi_lanes);
3962 return false;
3963 }
3964
3965 if (IS_HASWELL(dev)) {
3966 if (pipe_config->fdi_lanes > 2) {
3967 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3968 pipe_config->fdi_lanes);
3969 return false;
3970 } else {
3971 return true;
3972 }
3973 }
3974
3975 if (INTEL_INFO(dev)->num_pipes == 2)
3976 return true;
3977
3978 /* Ivybridge 3 pipe is really complicated */
3979 switch (pipe) {
3980 case PIPE_A:
3981 return true;
3982 case PIPE_B:
3983 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3984 pipe_config->fdi_lanes > 2) {
3985 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3986 pipe_name(pipe), pipe_config->fdi_lanes);
3987 return false;
3988 }
3989 return true;
3990 case PIPE_C:
3991 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
3992 pipe_B_crtc->config.fdi_lanes <= 2) {
3993 if (pipe_config->fdi_lanes > 2) {
3994 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3995 pipe_name(pipe), pipe_config->fdi_lanes);
3996 return false;
3997 }
3998 } else {
3999 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4000 return false;
4001 }
4002 return true;
4003 default:
4004 BUG();
4005 }
4006 }
4007
4008 #define RETRY 1
4009 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4010 struct intel_crtc_config *pipe_config)
4011 {
4012 struct drm_device *dev = intel_crtc->base.dev;
4013 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4014 int lane, link_bw, fdi_dotclock;
4015 bool setup_ok, needs_recompute = false;
4016
4017 retry:
4018 /* FDI is a binary signal running at ~2.7GHz, encoding
4019 * each output octet as 10 bits. The actual frequency
4020 * is stored as a divider into a 100MHz clock, and the
4021 * mode pixel clock is stored in units of 1KHz.
4022 * Hence the bw of each lane in terms of the mode signal
4023 * is:
4024 */
4025 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4026
4027 fdi_dotclock = adjusted_mode->clock;
4028 fdi_dotclock /= pipe_config->pixel_multiplier;
4029
4030 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4031 pipe_config->pipe_bpp);
4032
4033 pipe_config->fdi_lanes = lane;
4034
4035 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4036 link_bw, &pipe_config->fdi_m_n);
4037
4038 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4039 intel_crtc->pipe, pipe_config);
4040 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4041 pipe_config->pipe_bpp -= 2*3;
4042 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4043 pipe_config->pipe_bpp);
4044 needs_recompute = true;
4045 pipe_config->bw_constrained = true;
4046
4047 goto retry;
4048 }
4049
4050 if (needs_recompute)
4051 return RETRY;
4052
4053 return setup_ok ? 0 : -EINVAL;
4054 }
4055
4056 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4057 struct intel_crtc_config *pipe_config)
4058 {
4059 pipe_config->ips_enabled = i915_enable_ips &&
4060 hsw_crtc_supports_ips(crtc) &&
4061 pipe_config->pipe_bpp == 24;
4062 }
4063
4064 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4065 struct intel_crtc_config *pipe_config)
4066 {
4067 struct drm_device *dev = crtc->base.dev;
4068 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4069
4070 if (HAS_PCH_SPLIT(dev)) {
4071 /* FDI link clock is fixed at 2.7G */
4072 if (pipe_config->requested_mode.clock * 3
4073 > IRONLAKE_FDI_FREQ * 4)
4074 return -EINVAL;
4075 }
4076
4077 /* All interlaced capable intel hw wants timings in frames. Note though
4078 * that intel_lvds_mode_fixup does some funny tricks with the crtc
4079 * timings, so we need to be careful not to clobber these.*/
4080 if (!pipe_config->timings_set)
4081 drm_mode_set_crtcinfo(adjusted_mode, 0);
4082
4083 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4084 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4085 */
4086 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4087 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4088 return -EINVAL;
4089
4090 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4091 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4092 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4093 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4094 * for lvds. */
4095 pipe_config->pipe_bpp = 8*3;
4096 }
4097
4098 if (HAS_IPS(dev))
4099 hsw_compute_ips_config(crtc, pipe_config);
4100
4101 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4102 * clock survives for now. */
4103 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4104 pipe_config->shared_dpll = crtc->config.shared_dpll;
4105
4106 if (pipe_config->has_pch_encoder)
4107 return ironlake_fdi_compute_config(crtc, pipe_config);
4108
4109 return 0;
4110 }
4111
4112 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4113 {
4114 return 400000; /* FIXME */
4115 }
4116
4117 static int i945_get_display_clock_speed(struct drm_device *dev)
4118 {
4119 return 400000;
4120 }
4121
4122 static int i915_get_display_clock_speed(struct drm_device *dev)
4123 {
4124 return 333000;
4125 }
4126
4127 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4128 {
4129 return 200000;
4130 }
4131
4132 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4133 {
4134 u16 gcfgc = 0;
4135
4136 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4137
4138 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4139 return 133000;
4140 else {
4141 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4142 case GC_DISPLAY_CLOCK_333_MHZ:
4143 return 333000;
4144 default:
4145 case GC_DISPLAY_CLOCK_190_200_MHZ:
4146 return 190000;
4147 }
4148 }
4149 }
4150
4151 static int i865_get_display_clock_speed(struct drm_device *dev)
4152 {
4153 return 266000;
4154 }
4155
4156 static int i855_get_display_clock_speed(struct drm_device *dev)
4157 {
4158 u16 hpllcc = 0;
4159 /* Assume that the hardware is in the high speed state. This
4160 * should be the default.
4161 */
4162 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4163 case GC_CLOCK_133_200:
4164 case GC_CLOCK_100_200:
4165 return 200000;
4166 case GC_CLOCK_166_250:
4167 return 250000;
4168 case GC_CLOCK_100_133:
4169 return 133000;
4170 }
4171
4172 /* Shouldn't happen */
4173 return 0;
4174 }
4175
4176 static int i830_get_display_clock_speed(struct drm_device *dev)
4177 {
4178 return 133000;
4179 }
4180
4181 static void
4182 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4183 {
4184 while (*num > DATA_LINK_M_N_MASK ||
4185 *den > DATA_LINK_M_N_MASK) {
4186 *num >>= 1;
4187 *den >>= 1;
4188 }
4189 }
4190
4191 static void compute_m_n(unsigned int m, unsigned int n,
4192 uint32_t *ret_m, uint32_t *ret_n)
4193 {
4194 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4195 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4196 intel_reduce_m_n_ratio(ret_m, ret_n);
4197 }
4198
4199 void
4200 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4201 int pixel_clock, int link_clock,
4202 struct intel_link_m_n *m_n)
4203 {
4204 m_n->tu = 64;
4205
4206 compute_m_n(bits_per_pixel * pixel_clock,
4207 link_clock * nlanes * 8,
4208 &m_n->gmch_m, &m_n->gmch_n);
4209
4210 compute_m_n(pixel_clock, link_clock,
4211 &m_n->link_m, &m_n->link_n);
4212 }
4213
4214 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4215 {
4216 if (i915_panel_use_ssc >= 0)
4217 return i915_panel_use_ssc != 0;
4218 return dev_priv->vbt.lvds_use_ssc
4219 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4220 }
4221
4222 static int vlv_get_refclk(struct drm_crtc *crtc)
4223 {
4224 struct drm_device *dev = crtc->dev;
4225 struct drm_i915_private *dev_priv = dev->dev_private;
4226 int refclk = 27000; /* for DP & HDMI */
4227
4228 return 100000; /* only one validated so far */
4229
4230 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4231 refclk = 96000;
4232 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4233 if (intel_panel_use_ssc(dev_priv))
4234 refclk = 100000;
4235 else
4236 refclk = 96000;
4237 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4238 refclk = 100000;
4239 }
4240
4241 return refclk;
4242 }
4243
4244 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4245 {
4246 struct drm_device *dev = crtc->dev;
4247 struct drm_i915_private *dev_priv = dev->dev_private;
4248 int refclk;
4249
4250 if (IS_VALLEYVIEW(dev)) {
4251 refclk = vlv_get_refclk(crtc);
4252 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4253 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4254 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4255 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4256 refclk / 1000);
4257 } else if (!IS_GEN2(dev)) {
4258 refclk = 96000;
4259 } else {
4260 refclk = 48000;
4261 }
4262
4263 return refclk;
4264 }
4265
4266 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4267 {
4268 return (1 << dpll->n) << 16 | dpll->m2;
4269 }
4270
4271 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4272 {
4273 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4274 }
4275
4276 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4277 intel_clock_t *reduced_clock)
4278 {
4279 struct drm_device *dev = crtc->base.dev;
4280 struct drm_i915_private *dev_priv = dev->dev_private;
4281 int pipe = crtc->pipe;
4282 u32 fp, fp2 = 0;
4283
4284 if (IS_PINEVIEW(dev)) {
4285 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4286 if (reduced_clock)
4287 fp2 = pnv_dpll_compute_fp(reduced_clock);
4288 } else {
4289 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4290 if (reduced_clock)
4291 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4292 }
4293
4294 I915_WRITE(FP0(pipe), fp);
4295 crtc->config.dpll_hw_state.fp0 = fp;
4296
4297 crtc->lowfreq_avail = false;
4298 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4299 reduced_clock && i915_powersave) {
4300 I915_WRITE(FP1(pipe), fp2);
4301 crtc->config.dpll_hw_state.fp1 = fp2;
4302 crtc->lowfreq_avail = true;
4303 } else {
4304 I915_WRITE(FP1(pipe), fp);
4305 crtc->config.dpll_hw_state.fp1 = fp;
4306 }
4307 }
4308
4309 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4310 {
4311 u32 reg_val;
4312
4313 /*
4314 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4315 * and set it to a reasonable value instead.
4316 */
4317 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4318 reg_val &= 0xffffff00;
4319 reg_val |= 0x00000030;
4320 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4321
4322 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4323 reg_val &= 0x8cffffff;
4324 reg_val = 0x8c000000;
4325 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4326
4327 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4328 reg_val &= 0xffffff00;
4329 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4330
4331 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4332 reg_val &= 0x00ffffff;
4333 reg_val |= 0xb0000000;
4334 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4335 }
4336
4337 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4338 struct intel_link_m_n *m_n)
4339 {
4340 struct drm_device *dev = crtc->base.dev;
4341 struct drm_i915_private *dev_priv = dev->dev_private;
4342 int pipe = crtc->pipe;
4343
4344 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4345 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4346 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4347 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4348 }
4349
4350 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4351 struct intel_link_m_n *m_n)
4352 {
4353 struct drm_device *dev = crtc->base.dev;
4354 struct drm_i915_private *dev_priv = dev->dev_private;
4355 int pipe = crtc->pipe;
4356 enum transcoder transcoder = crtc->config.cpu_transcoder;
4357
4358 if (INTEL_INFO(dev)->gen >= 5) {
4359 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4360 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4361 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4362 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4363 } else {
4364 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4365 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4366 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4367 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4368 }
4369 }
4370
4371 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4372 {
4373 if (crtc->config.has_pch_encoder)
4374 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4375 else
4376 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4377 }
4378
4379 static void vlv_update_pll(struct intel_crtc *crtc)
4380 {
4381 struct drm_device *dev = crtc->base.dev;
4382 struct drm_i915_private *dev_priv = dev->dev_private;
4383 struct intel_encoder *encoder;
4384 int pipe = crtc->pipe;
4385 u32 dpll, mdiv;
4386 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4387 bool is_hdmi;
4388 u32 coreclk, reg_val, dpll_md;
4389
4390 mutex_lock(&dev_priv->dpio_lock);
4391
4392 is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4393
4394 bestn = crtc->config.dpll.n;
4395 bestm1 = crtc->config.dpll.m1;
4396 bestm2 = crtc->config.dpll.m2;
4397 bestp1 = crtc->config.dpll.p1;
4398 bestp2 = crtc->config.dpll.p2;
4399
4400 /* See eDP HDMI DPIO driver vbios notes doc */
4401
4402 /* PLL B needs special handling */
4403 if (pipe)
4404 vlv_pllb_recal_opamp(dev_priv);
4405
4406 /* Set up Tx target for periodic Rcomp update */
4407 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4408
4409 /* Disable target IRef on PLL */
4410 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4411 reg_val &= 0x00ffffff;
4412 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4413
4414 /* Disable fast lock */
4415 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4416
4417 /* Set idtafcrecal before PLL is enabled */
4418 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4419 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4420 mdiv |= ((bestn << DPIO_N_SHIFT));
4421 mdiv |= (1 << DPIO_K_SHIFT);
4422
4423 /*
4424 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4425 * but we don't support that).
4426 * Note: don't use the DAC post divider as it seems unstable.
4427 */
4428 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4429 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4430
4431 mdiv |= DPIO_ENABLE_CALIBRATION;
4432 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4433
4434 /* Set HBR and RBR LPF coefficients */
4435 if (crtc->config.port_clock == 162000 ||
4436 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4437 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4438 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4439 0x005f0021);
4440 else
4441 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4442 0x00d0000f);
4443
4444 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4445 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4446 /* Use SSC source */
4447 if (!pipe)
4448 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4449 0x0df40000);
4450 else
4451 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4452 0x0df70000);
4453 } else { /* HDMI or VGA */
4454 /* Use bend source */
4455 if (!pipe)
4456 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4457 0x0df70000);
4458 else
4459 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4460 0x0df40000);
4461 }
4462
4463 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4464 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4465 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4466 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4467 coreclk |= 0x01000000;
4468 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4469
4470 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4471
4472 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4473 if (encoder->pre_pll_enable)
4474 encoder->pre_pll_enable(encoder);
4475
4476 /* Enable DPIO clock input */
4477 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4478 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4479 if (pipe)
4480 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4481
4482 dpll |= DPLL_VCO_ENABLE;
4483 crtc->config.dpll_hw_state.dpll = dpll;
4484
4485 I915_WRITE(DPLL(pipe), dpll);
4486 POSTING_READ(DPLL(pipe));
4487 udelay(150);
4488
4489 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4490 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4491
4492 dpll_md = (crtc->config.pixel_multiplier - 1)
4493 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4494 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4495
4496 I915_WRITE(DPLL_MD(pipe), dpll_md);
4497 POSTING_READ(DPLL_MD(pipe));
4498
4499 if (crtc->config.has_dp_encoder)
4500 intel_dp_set_m_n(crtc);
4501
4502 mutex_unlock(&dev_priv->dpio_lock);
4503 }
4504
4505 static void i9xx_update_pll(struct intel_crtc *crtc,
4506 intel_clock_t *reduced_clock,
4507 int num_connectors)
4508 {
4509 struct drm_device *dev = crtc->base.dev;
4510 struct drm_i915_private *dev_priv = dev->dev_private;
4511 u32 dpll;
4512 bool is_sdvo;
4513 struct dpll *clock = &crtc->config.dpll;
4514
4515 i9xx_update_pll_dividers(crtc, reduced_clock);
4516
4517 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4518 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4519
4520 dpll = DPLL_VGA_MODE_DIS;
4521
4522 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4523 dpll |= DPLLB_MODE_LVDS;
4524 else
4525 dpll |= DPLLB_MODE_DAC_SERIAL;
4526
4527 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4528 dpll |= (crtc->config.pixel_multiplier - 1)
4529 << SDVO_MULTIPLIER_SHIFT_HIRES;
4530 }
4531
4532 if (is_sdvo)
4533 dpll |= DPLL_DVO_HIGH_SPEED;
4534
4535 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4536 dpll |= DPLL_DVO_HIGH_SPEED;
4537
4538 /* compute bitmask from p1 value */
4539 if (IS_PINEVIEW(dev))
4540 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4541 else {
4542 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4543 if (IS_G4X(dev) && reduced_clock)
4544 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4545 }
4546 switch (clock->p2) {
4547 case 5:
4548 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4549 break;
4550 case 7:
4551 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4552 break;
4553 case 10:
4554 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4555 break;
4556 case 14:
4557 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4558 break;
4559 }
4560 if (INTEL_INFO(dev)->gen >= 4)
4561 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4562
4563 if (crtc->config.sdvo_tv_clock)
4564 dpll |= PLL_REF_INPUT_TVCLKINBC;
4565 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4566 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4567 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4568 else
4569 dpll |= PLL_REF_INPUT_DREFCLK;
4570
4571 dpll |= DPLL_VCO_ENABLE;
4572 crtc->config.dpll_hw_state.dpll = dpll;
4573
4574 if (INTEL_INFO(dev)->gen >= 4) {
4575 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4576 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4577 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4578 }
4579
4580 if (crtc->config.has_dp_encoder)
4581 intel_dp_set_m_n(crtc);
4582 }
4583
4584 static void i8xx_update_pll(struct intel_crtc *crtc,
4585 intel_clock_t *reduced_clock,
4586 int num_connectors)
4587 {
4588 struct drm_device *dev = crtc->base.dev;
4589 struct drm_i915_private *dev_priv = dev->dev_private;
4590 u32 dpll;
4591 struct dpll *clock = &crtc->config.dpll;
4592
4593 i9xx_update_pll_dividers(crtc, reduced_clock);
4594
4595 dpll = DPLL_VGA_MODE_DIS;
4596
4597 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4598 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4599 } else {
4600 if (clock->p1 == 2)
4601 dpll |= PLL_P1_DIVIDE_BY_TWO;
4602 else
4603 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4604 if (clock->p2 == 4)
4605 dpll |= PLL_P2_DIVIDE_BY_4;
4606 }
4607
4608 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4609 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4610 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4611 else
4612 dpll |= PLL_REF_INPUT_DREFCLK;
4613
4614 dpll |= DPLL_VCO_ENABLE;
4615 crtc->config.dpll_hw_state.dpll = dpll;
4616 }
4617
4618 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4619 {
4620 struct drm_device *dev = intel_crtc->base.dev;
4621 struct drm_i915_private *dev_priv = dev->dev_private;
4622 enum pipe pipe = intel_crtc->pipe;
4623 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4624 struct drm_display_mode *adjusted_mode =
4625 &intel_crtc->config.adjusted_mode;
4626 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4627 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4628
4629 /* We need to be careful not to changed the adjusted mode, for otherwise
4630 * the hw state checker will get angry at the mismatch. */
4631 crtc_vtotal = adjusted_mode->crtc_vtotal;
4632 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4633
4634 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4635 /* the chip adds 2 halflines automatically */
4636 crtc_vtotal -= 1;
4637 crtc_vblank_end -= 1;
4638 vsyncshift = adjusted_mode->crtc_hsync_start
4639 - adjusted_mode->crtc_htotal / 2;
4640 } else {
4641 vsyncshift = 0;
4642 }
4643
4644 if (INTEL_INFO(dev)->gen > 3)
4645 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4646
4647 I915_WRITE(HTOTAL(cpu_transcoder),
4648 (adjusted_mode->crtc_hdisplay - 1) |
4649 ((adjusted_mode->crtc_htotal - 1) << 16));
4650 I915_WRITE(HBLANK(cpu_transcoder),
4651 (adjusted_mode->crtc_hblank_start - 1) |
4652 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4653 I915_WRITE(HSYNC(cpu_transcoder),
4654 (adjusted_mode->crtc_hsync_start - 1) |
4655 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4656
4657 I915_WRITE(VTOTAL(cpu_transcoder),
4658 (adjusted_mode->crtc_vdisplay - 1) |
4659 ((crtc_vtotal - 1) << 16));
4660 I915_WRITE(VBLANK(cpu_transcoder),
4661 (adjusted_mode->crtc_vblank_start - 1) |
4662 ((crtc_vblank_end - 1) << 16));
4663 I915_WRITE(VSYNC(cpu_transcoder),
4664 (adjusted_mode->crtc_vsync_start - 1) |
4665 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4666
4667 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4668 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4669 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4670 * bits. */
4671 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4672 (pipe == PIPE_B || pipe == PIPE_C))
4673 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4674
4675 /* pipesrc controls the size that is scaled from, which should
4676 * always be the user's requested size.
4677 */
4678 I915_WRITE(PIPESRC(pipe),
4679 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4680 }
4681
4682 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4683 struct intel_crtc_config *pipe_config)
4684 {
4685 struct drm_device *dev = crtc->base.dev;
4686 struct drm_i915_private *dev_priv = dev->dev_private;
4687 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4688 uint32_t tmp;
4689
4690 tmp = I915_READ(HTOTAL(cpu_transcoder));
4691 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4692 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4693 tmp = I915_READ(HBLANK(cpu_transcoder));
4694 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4695 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4696 tmp = I915_READ(HSYNC(cpu_transcoder));
4697 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4698 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4699
4700 tmp = I915_READ(VTOTAL(cpu_transcoder));
4701 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4702 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4703 tmp = I915_READ(VBLANK(cpu_transcoder));
4704 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4705 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4706 tmp = I915_READ(VSYNC(cpu_transcoder));
4707 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4708 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4709
4710 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4711 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4712 pipe_config->adjusted_mode.crtc_vtotal += 1;
4713 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4714 }
4715
4716 tmp = I915_READ(PIPESRC(crtc->pipe));
4717 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4718 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4719 }
4720
4721 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4722 {
4723 struct drm_device *dev = intel_crtc->base.dev;
4724 struct drm_i915_private *dev_priv = dev->dev_private;
4725 uint32_t pipeconf;
4726
4727 pipeconf = 0;
4728
4729 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4730 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4731 * core speed.
4732 *
4733 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4734 * pipe == 0 check?
4735 */
4736 if (intel_crtc->config.requested_mode.clock >
4737 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4738 pipeconf |= PIPECONF_DOUBLE_WIDE;
4739 }
4740
4741 /* only g4x and later have fancy bpc/dither controls */
4742 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4743 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4744 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4745 pipeconf |= PIPECONF_DITHER_EN |
4746 PIPECONF_DITHER_TYPE_SP;
4747
4748 switch (intel_crtc->config.pipe_bpp) {
4749 case 18:
4750 pipeconf |= PIPECONF_6BPC;
4751 break;
4752 case 24:
4753 pipeconf |= PIPECONF_8BPC;
4754 break;
4755 case 30:
4756 pipeconf |= PIPECONF_10BPC;
4757 break;
4758 default:
4759 /* Case prevented by intel_choose_pipe_bpp_dither. */
4760 BUG();
4761 }
4762 }
4763
4764 if (HAS_PIPE_CXSR(dev)) {
4765 if (intel_crtc->lowfreq_avail) {
4766 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4767 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4768 } else {
4769 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4770 }
4771 }
4772
4773 if (!IS_GEN2(dev) &&
4774 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4775 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4776 else
4777 pipeconf |= PIPECONF_PROGRESSIVE;
4778
4779 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4780 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4781
4782 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4783 POSTING_READ(PIPECONF(intel_crtc->pipe));
4784 }
4785
4786 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4787 int x, int y,
4788 struct drm_framebuffer *fb)
4789 {
4790 struct drm_device *dev = crtc->dev;
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4793 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4794 int pipe = intel_crtc->pipe;
4795 int plane = intel_crtc->plane;
4796 int refclk, num_connectors = 0;
4797 intel_clock_t clock, reduced_clock;
4798 u32 dspcntr;
4799 bool ok, has_reduced_clock = false;
4800 bool is_lvds = false;
4801 struct intel_encoder *encoder;
4802 const intel_limit_t *limit;
4803 int ret;
4804
4805 for_each_encoder_on_crtc(dev, crtc, encoder) {
4806 switch (encoder->type) {
4807 case INTEL_OUTPUT_LVDS:
4808 is_lvds = true;
4809 break;
4810 }
4811
4812 num_connectors++;
4813 }
4814
4815 refclk = i9xx_get_refclk(crtc, num_connectors);
4816
4817 /*
4818 * Returns a set of divisors for the desired target clock with the given
4819 * refclk, or FALSE. The returned values represent the clock equation:
4820 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4821 */
4822 limit = intel_limit(crtc, refclk);
4823 ok = dev_priv->display.find_dpll(limit, crtc,
4824 intel_crtc->config.port_clock,
4825 refclk, NULL, &clock);
4826 if (!ok && !intel_crtc->config.clock_set) {
4827 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4828 return -EINVAL;
4829 }
4830
4831 /* Ensure that the cursor is valid for the new mode before changing... */
4832 intel_crtc_update_cursor(crtc, true);
4833
4834 if (is_lvds && dev_priv->lvds_downclock_avail) {
4835 /*
4836 * Ensure we match the reduced clock's P to the target clock.
4837 * If the clocks don't match, we can't switch the display clock
4838 * by using the FP0/FP1. In such case we will disable the LVDS
4839 * downclock feature.
4840 */
4841 has_reduced_clock =
4842 dev_priv->display.find_dpll(limit, crtc,
4843 dev_priv->lvds_downclock,
4844 refclk, &clock,
4845 &reduced_clock);
4846 }
4847 /* Compat-code for transition, will disappear. */
4848 if (!intel_crtc->config.clock_set) {
4849 intel_crtc->config.dpll.n = clock.n;
4850 intel_crtc->config.dpll.m1 = clock.m1;
4851 intel_crtc->config.dpll.m2 = clock.m2;
4852 intel_crtc->config.dpll.p1 = clock.p1;
4853 intel_crtc->config.dpll.p2 = clock.p2;
4854 }
4855
4856 if (IS_GEN2(dev))
4857 i8xx_update_pll(intel_crtc,
4858 has_reduced_clock ? &reduced_clock : NULL,
4859 num_connectors);
4860 else if (IS_VALLEYVIEW(dev))
4861 vlv_update_pll(intel_crtc);
4862 else
4863 i9xx_update_pll(intel_crtc,
4864 has_reduced_clock ? &reduced_clock : NULL,
4865 num_connectors);
4866
4867 /* Set up the display plane register */
4868 dspcntr = DISPPLANE_GAMMA_ENABLE;
4869
4870 if (!IS_VALLEYVIEW(dev)) {
4871 if (pipe == 0)
4872 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4873 else
4874 dspcntr |= DISPPLANE_SEL_PIPE_B;
4875 }
4876
4877 intel_set_pipe_timings(intel_crtc);
4878
4879 /* pipesrc and dspsize control the size that is scaled from,
4880 * which should always be the user's requested size.
4881 */
4882 I915_WRITE(DSPSIZE(plane),
4883 ((mode->vdisplay - 1) << 16) |
4884 (mode->hdisplay - 1));
4885 I915_WRITE(DSPPOS(plane), 0);
4886
4887 i9xx_set_pipeconf(intel_crtc);
4888
4889 I915_WRITE(DSPCNTR(plane), dspcntr);
4890 POSTING_READ(DSPCNTR(plane));
4891
4892 ret = intel_pipe_set_base(crtc, x, y, fb);
4893
4894 intel_update_watermarks(dev);
4895
4896 return ret;
4897 }
4898
4899 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4900 struct intel_crtc_config *pipe_config)
4901 {
4902 struct drm_device *dev = crtc->base.dev;
4903 struct drm_i915_private *dev_priv = dev->dev_private;
4904 uint32_t tmp;
4905
4906 tmp = I915_READ(PFIT_CONTROL);
4907
4908 if (INTEL_INFO(dev)->gen < 4) {
4909 if (crtc->pipe != PIPE_B)
4910 return;
4911
4912 /* gen2/3 store dither state in pfit control, needs to match */
4913 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4914 } else {
4915 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4916 return;
4917 }
4918
4919 if (!(tmp & PFIT_ENABLE))
4920 return;
4921
4922 pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4923 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4924 if (INTEL_INFO(dev)->gen < 5)
4925 pipe_config->gmch_pfit.lvds_border_bits =
4926 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4927 }
4928
4929 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4930 struct intel_crtc_config *pipe_config)
4931 {
4932 struct drm_device *dev = crtc->base.dev;
4933 struct drm_i915_private *dev_priv = dev->dev_private;
4934 uint32_t tmp;
4935
4936 pipe_config->cpu_transcoder = crtc->pipe;
4937 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4938
4939 tmp = I915_READ(PIPECONF(crtc->pipe));
4940 if (!(tmp & PIPECONF_ENABLE))
4941 return false;
4942
4943 intel_get_pipe_timings(crtc, pipe_config);
4944
4945 i9xx_get_pfit_config(crtc, pipe_config);
4946
4947 if (INTEL_INFO(dev)->gen >= 4) {
4948 tmp = I915_READ(DPLL_MD(crtc->pipe));
4949 pipe_config->pixel_multiplier =
4950 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4951 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4952 pipe_config->dpll_hw_state.dpll_md = tmp;
4953 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4954 tmp = I915_READ(DPLL(crtc->pipe));
4955 pipe_config->pixel_multiplier =
4956 ((tmp & SDVO_MULTIPLIER_MASK)
4957 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
4958 } else {
4959 /* Note that on i915G/GM the pixel multiplier is in the sdvo
4960 * port and will be fixed up in the encoder->get_config
4961 * function. */
4962 pipe_config->pixel_multiplier = 1;
4963 }
4964 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
4965 if (!IS_VALLEYVIEW(dev)) {
4966 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
4967 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
4968 }
4969
4970 return true;
4971 }
4972
4973 static void ironlake_init_pch_refclk(struct drm_device *dev)
4974 {
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 struct drm_mode_config *mode_config = &dev->mode_config;
4977 struct intel_encoder *encoder;
4978 u32 val, final;
4979 bool has_lvds = false;
4980 bool has_cpu_edp = false;
4981 bool has_panel = false;
4982 bool has_ck505 = false;
4983 bool can_ssc = false;
4984
4985 /* We need to take the global config into account */
4986 list_for_each_entry(encoder, &mode_config->encoder_list,
4987 base.head) {
4988 switch (encoder->type) {
4989 case INTEL_OUTPUT_LVDS:
4990 has_panel = true;
4991 has_lvds = true;
4992 break;
4993 case INTEL_OUTPUT_EDP:
4994 has_panel = true;
4995 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
4996 has_cpu_edp = true;
4997 break;
4998 }
4999 }
5000
5001 if (HAS_PCH_IBX(dev)) {
5002 has_ck505 = dev_priv->vbt.display_clock_mode;
5003 can_ssc = has_ck505;
5004 } else {
5005 has_ck505 = false;
5006 can_ssc = true;
5007 }
5008
5009 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5010 has_panel, has_lvds, has_ck505);
5011
5012 /* Ironlake: try to setup display ref clock before DPLL
5013 * enabling. This is only under driver's control after
5014 * PCH B stepping, previous chipset stepping should be
5015 * ignoring this setting.
5016 */
5017 val = I915_READ(PCH_DREF_CONTROL);
5018
5019 /* As we must carefully and slowly disable/enable each source in turn,
5020 * compute the final state we want first and check if we need to
5021 * make any changes at all.
5022 */
5023 final = val;
5024 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5025 if (has_ck505)
5026 final |= DREF_NONSPREAD_CK505_ENABLE;
5027 else
5028 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5029
5030 final &= ~DREF_SSC_SOURCE_MASK;
5031 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5032 final &= ~DREF_SSC1_ENABLE;
5033
5034 if (has_panel) {
5035 final |= DREF_SSC_SOURCE_ENABLE;
5036
5037 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5038 final |= DREF_SSC1_ENABLE;
5039
5040 if (has_cpu_edp) {
5041 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5042 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5043 else
5044 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5045 } else
5046 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5047 } else {
5048 final |= DREF_SSC_SOURCE_DISABLE;
5049 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5050 }
5051
5052 if (final == val)
5053 return;
5054
5055 /* Always enable nonspread source */
5056 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5057
5058 if (has_ck505)
5059 val |= DREF_NONSPREAD_CK505_ENABLE;
5060 else
5061 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5062
5063 if (has_panel) {
5064 val &= ~DREF_SSC_SOURCE_MASK;
5065 val |= DREF_SSC_SOURCE_ENABLE;
5066
5067 /* SSC must be turned on before enabling the CPU output */
5068 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5069 DRM_DEBUG_KMS("Using SSC on panel\n");
5070 val |= DREF_SSC1_ENABLE;
5071 } else
5072 val &= ~DREF_SSC1_ENABLE;
5073
5074 /* Get SSC going before enabling the outputs */
5075 I915_WRITE(PCH_DREF_CONTROL, val);
5076 POSTING_READ(PCH_DREF_CONTROL);
5077 udelay(200);
5078
5079 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5080
5081 /* Enable CPU source on CPU attached eDP */
5082 if (has_cpu_edp) {
5083 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5084 DRM_DEBUG_KMS("Using SSC on eDP\n");
5085 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5086 }
5087 else
5088 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5089 } else
5090 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5091
5092 I915_WRITE(PCH_DREF_CONTROL, val);
5093 POSTING_READ(PCH_DREF_CONTROL);
5094 udelay(200);
5095 } else {
5096 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5097
5098 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5099
5100 /* Turn off CPU output */
5101 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5102
5103 I915_WRITE(PCH_DREF_CONTROL, val);
5104 POSTING_READ(PCH_DREF_CONTROL);
5105 udelay(200);
5106
5107 /* Turn off the SSC source */
5108 val &= ~DREF_SSC_SOURCE_MASK;
5109 val |= DREF_SSC_SOURCE_DISABLE;
5110
5111 /* Turn off SSC1 */
5112 val &= ~DREF_SSC1_ENABLE;
5113
5114 I915_WRITE(PCH_DREF_CONTROL, val);
5115 POSTING_READ(PCH_DREF_CONTROL);
5116 udelay(200);
5117 }
5118
5119 BUG_ON(val != final);
5120 }
5121
5122 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5123 static void lpt_init_pch_refclk(struct drm_device *dev)
5124 {
5125 struct drm_i915_private *dev_priv = dev->dev_private;
5126 struct drm_mode_config *mode_config = &dev->mode_config;
5127 struct intel_encoder *encoder;
5128 bool has_vga = false;
5129 bool is_sdv = false;
5130 u32 tmp;
5131
5132 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5133 switch (encoder->type) {
5134 case INTEL_OUTPUT_ANALOG:
5135 has_vga = true;
5136 break;
5137 }
5138 }
5139
5140 if (!has_vga)
5141 return;
5142
5143 mutex_lock(&dev_priv->dpio_lock);
5144
5145 /* XXX: Rip out SDV support once Haswell ships for real. */
5146 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5147 is_sdv = true;
5148
5149 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5150 tmp &= ~SBI_SSCCTL_DISABLE;
5151 tmp |= SBI_SSCCTL_PATHALT;
5152 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5153
5154 udelay(24);
5155
5156 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5157 tmp &= ~SBI_SSCCTL_PATHALT;
5158 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5159
5160 if (!is_sdv) {
5161 tmp = I915_READ(SOUTH_CHICKEN2);
5162 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5163 I915_WRITE(SOUTH_CHICKEN2, tmp);
5164
5165 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5166 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5167 DRM_ERROR("FDI mPHY reset assert timeout\n");
5168
5169 tmp = I915_READ(SOUTH_CHICKEN2);
5170 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5171 I915_WRITE(SOUTH_CHICKEN2, tmp);
5172
5173 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5174 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5175 100))
5176 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5177 }
5178
5179 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5180 tmp &= ~(0xFF << 24);
5181 tmp |= (0x12 << 24);
5182 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5183
5184 if (is_sdv) {
5185 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5186 tmp |= 0x7FFF;
5187 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5188 }
5189
5190 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5191 tmp |= (1 << 11);
5192 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5193
5194 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5195 tmp |= (1 << 11);
5196 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5197
5198 if (is_sdv) {
5199 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5200 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5201 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5202
5203 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5204 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5205 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5206
5207 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5208 tmp |= (0x3F << 8);
5209 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5210
5211 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5212 tmp |= (0x3F << 8);
5213 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5214 }
5215
5216 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5217 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5218 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5219
5220 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5221 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5222 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5223
5224 if (!is_sdv) {
5225 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5226 tmp &= ~(7 << 13);
5227 tmp |= (5 << 13);
5228 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5229
5230 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5231 tmp &= ~(7 << 13);
5232 tmp |= (5 << 13);
5233 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5234 }
5235
5236 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5237 tmp &= ~0xFF;
5238 tmp |= 0x1C;
5239 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5240
5241 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5242 tmp &= ~0xFF;
5243 tmp |= 0x1C;
5244 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5245
5246 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5247 tmp &= ~(0xFF << 16);
5248 tmp |= (0x1C << 16);
5249 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5250
5251 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5252 tmp &= ~(0xFF << 16);
5253 tmp |= (0x1C << 16);
5254 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5255
5256 if (!is_sdv) {
5257 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5258 tmp |= (1 << 27);
5259 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5260
5261 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5262 tmp |= (1 << 27);
5263 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5264
5265 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5266 tmp &= ~(0xF << 28);
5267 tmp |= (4 << 28);
5268 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5269
5270 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5271 tmp &= ~(0xF << 28);
5272 tmp |= (4 << 28);
5273 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5274 }
5275
5276 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5277 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5278 tmp |= SBI_DBUFF0_ENABLE;
5279 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5280
5281 mutex_unlock(&dev_priv->dpio_lock);
5282 }
5283
5284 /*
5285 * Initialize reference clocks when the driver loads
5286 */
5287 void intel_init_pch_refclk(struct drm_device *dev)
5288 {
5289 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5290 ironlake_init_pch_refclk(dev);
5291 else if (HAS_PCH_LPT(dev))
5292 lpt_init_pch_refclk(dev);
5293 }
5294
5295 static int ironlake_get_refclk(struct drm_crtc *crtc)
5296 {
5297 struct drm_device *dev = crtc->dev;
5298 struct drm_i915_private *dev_priv = dev->dev_private;
5299 struct intel_encoder *encoder;
5300 int num_connectors = 0;
5301 bool is_lvds = false;
5302
5303 for_each_encoder_on_crtc(dev, crtc, encoder) {
5304 switch (encoder->type) {
5305 case INTEL_OUTPUT_LVDS:
5306 is_lvds = true;
5307 break;
5308 }
5309 num_connectors++;
5310 }
5311
5312 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5313 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5314 dev_priv->vbt.lvds_ssc_freq);
5315 return dev_priv->vbt.lvds_ssc_freq * 1000;
5316 }
5317
5318 return 120000;
5319 }
5320
5321 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5322 {
5323 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5325 int pipe = intel_crtc->pipe;
5326 uint32_t val;
5327
5328 val = 0;
5329
5330 switch (intel_crtc->config.pipe_bpp) {
5331 case 18:
5332 val |= PIPECONF_6BPC;
5333 break;
5334 case 24:
5335 val |= PIPECONF_8BPC;
5336 break;
5337 case 30:
5338 val |= PIPECONF_10BPC;
5339 break;
5340 case 36:
5341 val |= PIPECONF_12BPC;
5342 break;
5343 default:
5344 /* Case prevented by intel_choose_pipe_bpp_dither. */
5345 BUG();
5346 }
5347
5348 if (intel_crtc->config.dither)
5349 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5350
5351 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5352 val |= PIPECONF_INTERLACED_ILK;
5353 else
5354 val |= PIPECONF_PROGRESSIVE;
5355
5356 if (intel_crtc->config.limited_color_range)
5357 val |= PIPECONF_COLOR_RANGE_SELECT;
5358
5359 I915_WRITE(PIPECONF(pipe), val);
5360 POSTING_READ(PIPECONF(pipe));
5361 }
5362
5363 /*
5364 * Set up the pipe CSC unit.
5365 *
5366 * Currently only full range RGB to limited range RGB conversion
5367 * is supported, but eventually this should handle various
5368 * RGB<->YCbCr scenarios as well.
5369 */
5370 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5371 {
5372 struct drm_device *dev = crtc->dev;
5373 struct drm_i915_private *dev_priv = dev->dev_private;
5374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5375 int pipe = intel_crtc->pipe;
5376 uint16_t coeff = 0x7800; /* 1.0 */
5377
5378 /*
5379 * TODO: Check what kind of values actually come out of the pipe
5380 * with these coeff/postoff values and adjust to get the best
5381 * accuracy. Perhaps we even need to take the bpc value into
5382 * consideration.
5383 */
5384
5385 if (intel_crtc->config.limited_color_range)
5386 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5387
5388 /*
5389 * GY/GU and RY/RU should be the other way around according
5390 * to BSpec, but reality doesn't agree. Just set them up in
5391 * a way that results in the correct picture.
5392 */
5393 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5394 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5395
5396 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5397 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5398
5399 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5400 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5401
5402 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5403 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5404 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5405
5406 if (INTEL_INFO(dev)->gen > 6) {
5407 uint16_t postoff = 0;
5408
5409 if (intel_crtc->config.limited_color_range)
5410 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5411
5412 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5413 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5414 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5415
5416 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5417 } else {
5418 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5419
5420 if (intel_crtc->config.limited_color_range)
5421 mode |= CSC_BLACK_SCREEN_OFFSET;
5422
5423 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5424 }
5425 }
5426
5427 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5428 {
5429 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5431 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5432 uint32_t val;
5433
5434 val = 0;
5435
5436 if (intel_crtc->config.dither)
5437 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5438
5439 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5440 val |= PIPECONF_INTERLACED_ILK;
5441 else
5442 val |= PIPECONF_PROGRESSIVE;
5443
5444 I915_WRITE(PIPECONF(cpu_transcoder), val);
5445 POSTING_READ(PIPECONF(cpu_transcoder));
5446
5447 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5448 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5449 }
5450
5451 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5452 intel_clock_t *clock,
5453 bool *has_reduced_clock,
5454 intel_clock_t *reduced_clock)
5455 {
5456 struct drm_device *dev = crtc->dev;
5457 struct drm_i915_private *dev_priv = dev->dev_private;
5458 struct intel_encoder *intel_encoder;
5459 int refclk;
5460 const intel_limit_t *limit;
5461 bool ret, is_lvds = false;
5462
5463 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5464 switch (intel_encoder->type) {
5465 case INTEL_OUTPUT_LVDS:
5466 is_lvds = true;
5467 break;
5468 }
5469 }
5470
5471 refclk = ironlake_get_refclk(crtc);
5472
5473 /*
5474 * Returns a set of divisors for the desired target clock with the given
5475 * refclk, or FALSE. The returned values represent the clock equation:
5476 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5477 */
5478 limit = intel_limit(crtc, refclk);
5479 ret = dev_priv->display.find_dpll(limit, crtc,
5480 to_intel_crtc(crtc)->config.port_clock,
5481 refclk, NULL, clock);
5482 if (!ret)
5483 return false;
5484
5485 if (is_lvds && dev_priv->lvds_downclock_avail) {
5486 /*
5487 * Ensure we match the reduced clock's P to the target clock.
5488 * If the clocks don't match, we can't switch the display clock
5489 * by using the FP0/FP1. In such case we will disable the LVDS
5490 * downclock feature.
5491 */
5492 *has_reduced_clock =
5493 dev_priv->display.find_dpll(limit, crtc,
5494 dev_priv->lvds_downclock,
5495 refclk, clock,
5496 reduced_clock);
5497 }
5498
5499 return true;
5500 }
5501
5502 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5503 {
5504 struct drm_i915_private *dev_priv = dev->dev_private;
5505 uint32_t temp;
5506
5507 temp = I915_READ(SOUTH_CHICKEN1);
5508 if (temp & FDI_BC_BIFURCATION_SELECT)
5509 return;
5510
5511 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5512 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5513
5514 temp |= FDI_BC_BIFURCATION_SELECT;
5515 DRM_DEBUG_KMS("enabling fdi C rx\n");
5516 I915_WRITE(SOUTH_CHICKEN1, temp);
5517 POSTING_READ(SOUTH_CHICKEN1);
5518 }
5519
5520 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5521 {
5522 struct drm_device *dev = intel_crtc->base.dev;
5523 struct drm_i915_private *dev_priv = dev->dev_private;
5524
5525 switch (intel_crtc->pipe) {
5526 case PIPE_A:
5527 break;
5528 case PIPE_B:
5529 if (intel_crtc->config.fdi_lanes > 2)
5530 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5531 else
5532 cpt_enable_fdi_bc_bifurcation(dev);
5533
5534 break;
5535 case PIPE_C:
5536 cpt_enable_fdi_bc_bifurcation(dev);
5537
5538 break;
5539 default:
5540 BUG();
5541 }
5542 }
5543
5544 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5545 {
5546 /*
5547 * Account for spread spectrum to avoid
5548 * oversubscribing the link. Max center spread
5549 * is 2.5%; use 5% for safety's sake.
5550 */
5551 u32 bps = target_clock * bpp * 21 / 20;
5552 return bps / (link_bw * 8) + 1;
5553 }
5554
5555 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5556 {
5557 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5558 }
5559
5560 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5561 u32 *fp,
5562 intel_clock_t *reduced_clock, u32 *fp2)
5563 {
5564 struct drm_crtc *crtc = &intel_crtc->base;
5565 struct drm_device *dev = crtc->dev;
5566 struct drm_i915_private *dev_priv = dev->dev_private;
5567 struct intel_encoder *intel_encoder;
5568 uint32_t dpll;
5569 int factor, num_connectors = 0;
5570 bool is_lvds = false, is_sdvo = false;
5571
5572 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5573 switch (intel_encoder->type) {
5574 case INTEL_OUTPUT_LVDS:
5575 is_lvds = true;
5576 break;
5577 case INTEL_OUTPUT_SDVO:
5578 case INTEL_OUTPUT_HDMI:
5579 is_sdvo = true;
5580 break;
5581 }
5582
5583 num_connectors++;
5584 }
5585
5586 /* Enable autotuning of the PLL clock (if permissible) */
5587 factor = 21;
5588 if (is_lvds) {
5589 if ((intel_panel_use_ssc(dev_priv) &&
5590 dev_priv->vbt.lvds_ssc_freq == 100) ||
5591 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5592 factor = 25;
5593 } else if (intel_crtc->config.sdvo_tv_clock)
5594 factor = 20;
5595
5596 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5597 *fp |= FP_CB_TUNE;
5598
5599 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5600 *fp2 |= FP_CB_TUNE;
5601
5602 dpll = 0;
5603
5604 if (is_lvds)
5605 dpll |= DPLLB_MODE_LVDS;
5606 else
5607 dpll |= DPLLB_MODE_DAC_SERIAL;
5608
5609 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5610 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5611
5612 if (is_sdvo)
5613 dpll |= DPLL_DVO_HIGH_SPEED;
5614 if (intel_crtc->config.has_dp_encoder)
5615 dpll |= DPLL_DVO_HIGH_SPEED;
5616
5617 /* compute bitmask from p1 value */
5618 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5619 /* also FPA1 */
5620 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5621
5622 switch (intel_crtc->config.dpll.p2) {
5623 case 5:
5624 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5625 break;
5626 case 7:
5627 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5628 break;
5629 case 10:
5630 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5631 break;
5632 case 14:
5633 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5634 break;
5635 }
5636
5637 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5638 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5639 else
5640 dpll |= PLL_REF_INPUT_DREFCLK;
5641
5642 return dpll | DPLL_VCO_ENABLE;
5643 }
5644
5645 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5646 int x, int y,
5647 struct drm_framebuffer *fb)
5648 {
5649 struct drm_device *dev = crtc->dev;
5650 struct drm_i915_private *dev_priv = dev->dev_private;
5651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5652 int pipe = intel_crtc->pipe;
5653 int plane = intel_crtc->plane;
5654 int num_connectors = 0;
5655 intel_clock_t clock, reduced_clock;
5656 u32 dpll = 0, fp = 0, fp2 = 0;
5657 bool ok, has_reduced_clock = false;
5658 bool is_lvds = false;
5659 struct intel_encoder *encoder;
5660 struct intel_shared_dpll *pll;
5661 int ret;
5662
5663 for_each_encoder_on_crtc(dev, crtc, encoder) {
5664 switch (encoder->type) {
5665 case INTEL_OUTPUT_LVDS:
5666 is_lvds = true;
5667 break;
5668 }
5669
5670 num_connectors++;
5671 }
5672
5673 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5674 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5675
5676 ok = ironlake_compute_clocks(crtc, &clock,
5677 &has_reduced_clock, &reduced_clock);
5678 if (!ok && !intel_crtc->config.clock_set) {
5679 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5680 return -EINVAL;
5681 }
5682 /* Compat-code for transition, will disappear. */
5683 if (!intel_crtc->config.clock_set) {
5684 intel_crtc->config.dpll.n = clock.n;
5685 intel_crtc->config.dpll.m1 = clock.m1;
5686 intel_crtc->config.dpll.m2 = clock.m2;
5687 intel_crtc->config.dpll.p1 = clock.p1;
5688 intel_crtc->config.dpll.p2 = clock.p2;
5689 }
5690
5691 /* Ensure that the cursor is valid for the new mode before changing... */
5692 intel_crtc_update_cursor(crtc, true);
5693
5694 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5695 if (intel_crtc->config.has_pch_encoder) {
5696 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5697 if (has_reduced_clock)
5698 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5699
5700 dpll = ironlake_compute_dpll(intel_crtc,
5701 &fp, &reduced_clock,
5702 has_reduced_clock ? &fp2 : NULL);
5703
5704 intel_crtc->config.dpll_hw_state.dpll = dpll;
5705 intel_crtc->config.dpll_hw_state.fp0 = fp;
5706 if (has_reduced_clock)
5707 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5708 else
5709 intel_crtc->config.dpll_hw_state.fp1 = fp;
5710
5711 pll = intel_get_shared_dpll(intel_crtc);
5712 if (pll == NULL) {
5713 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5714 pipe_name(pipe));
5715 return -EINVAL;
5716 }
5717 } else
5718 intel_put_shared_dpll(intel_crtc);
5719
5720 if (intel_crtc->config.has_dp_encoder)
5721 intel_dp_set_m_n(intel_crtc);
5722
5723 if (is_lvds && has_reduced_clock && i915_powersave)
5724 intel_crtc->lowfreq_avail = true;
5725 else
5726 intel_crtc->lowfreq_avail = false;
5727
5728 if (intel_crtc->config.has_pch_encoder) {
5729 pll = intel_crtc_to_shared_dpll(intel_crtc);
5730
5731 }
5732
5733 intel_set_pipe_timings(intel_crtc);
5734
5735 if (intel_crtc->config.has_pch_encoder) {
5736 intel_cpu_transcoder_set_m_n(intel_crtc,
5737 &intel_crtc->config.fdi_m_n);
5738 }
5739
5740 if (IS_IVYBRIDGE(dev))
5741 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5742
5743 ironlake_set_pipeconf(crtc);
5744
5745 /* Set up the display plane register */
5746 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5747 POSTING_READ(DSPCNTR(plane));
5748
5749 ret = intel_pipe_set_base(crtc, x, y, fb);
5750
5751 intel_update_watermarks(dev);
5752
5753 return ret;
5754 }
5755
5756 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5757 struct intel_crtc_config *pipe_config)
5758 {
5759 struct drm_device *dev = crtc->base.dev;
5760 struct drm_i915_private *dev_priv = dev->dev_private;
5761 enum transcoder transcoder = pipe_config->cpu_transcoder;
5762
5763 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5764 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5765 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5766 & ~TU_SIZE_MASK;
5767 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5768 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5769 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5770 }
5771
5772 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5773 struct intel_crtc_config *pipe_config)
5774 {
5775 struct drm_device *dev = crtc->base.dev;
5776 struct drm_i915_private *dev_priv = dev->dev_private;
5777 uint32_t tmp;
5778
5779 tmp = I915_READ(PF_CTL(crtc->pipe));
5780
5781 if (tmp & PF_ENABLE) {
5782 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5783 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5784
5785 /* We currently do not free assignements of panel fitters on
5786 * ivb/hsw (since we don't use the higher upscaling modes which
5787 * differentiates them) so just WARN about this case for now. */
5788 if (IS_GEN7(dev)) {
5789 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5790 PF_PIPE_SEL_IVB(crtc->pipe));
5791 }
5792 }
5793 }
5794
5795 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5796 struct intel_crtc_config *pipe_config)
5797 {
5798 struct drm_device *dev = crtc->base.dev;
5799 struct drm_i915_private *dev_priv = dev->dev_private;
5800 uint32_t tmp;
5801
5802 pipe_config->cpu_transcoder = crtc->pipe;
5803 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5804
5805 tmp = I915_READ(PIPECONF(crtc->pipe));
5806 if (!(tmp & PIPECONF_ENABLE))
5807 return false;
5808
5809 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5810 struct intel_shared_dpll *pll;
5811
5812 pipe_config->has_pch_encoder = true;
5813
5814 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5815 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5816 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5817
5818 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5819
5820 /* XXX: Can't properly read out the pch dpll pixel multiplier
5821 * since we don't have state tracking for pch clocks yet. */
5822 pipe_config->pixel_multiplier = 1;
5823
5824 if (HAS_PCH_IBX(dev_priv->dev)) {
5825 pipe_config->shared_dpll = crtc->pipe;
5826 } else {
5827 tmp = I915_READ(PCH_DPLL_SEL);
5828 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5829 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5830 else
5831 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5832 }
5833
5834 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5835
5836 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5837 &pipe_config->dpll_hw_state));
5838 } else {
5839 pipe_config->pixel_multiplier = 1;
5840 }
5841
5842 intel_get_pipe_timings(crtc, pipe_config);
5843
5844 ironlake_get_pfit_config(crtc, pipe_config);
5845
5846 return true;
5847 }
5848
5849 static void haswell_modeset_global_resources(struct drm_device *dev)
5850 {
5851 bool enable = false;
5852 struct intel_crtc *crtc;
5853
5854 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5855 if (!crtc->base.enabled)
5856 continue;
5857
5858 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5859 crtc->config.cpu_transcoder != TRANSCODER_EDP)
5860 enable = true;
5861 }
5862
5863 intel_set_power_well(dev, enable);
5864 }
5865
5866 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5867 int x, int y,
5868 struct drm_framebuffer *fb)
5869 {
5870 struct drm_device *dev = crtc->dev;
5871 struct drm_i915_private *dev_priv = dev->dev_private;
5872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5873 int plane = intel_crtc->plane;
5874 int ret;
5875
5876 if (!intel_ddi_pll_mode_set(crtc))
5877 return -EINVAL;
5878
5879 /* Ensure that the cursor is valid for the new mode before changing... */
5880 intel_crtc_update_cursor(crtc, true);
5881
5882 if (intel_crtc->config.has_dp_encoder)
5883 intel_dp_set_m_n(intel_crtc);
5884
5885 intel_crtc->lowfreq_avail = false;
5886
5887 intel_set_pipe_timings(intel_crtc);
5888
5889 if (intel_crtc->config.has_pch_encoder) {
5890 intel_cpu_transcoder_set_m_n(intel_crtc,
5891 &intel_crtc->config.fdi_m_n);
5892 }
5893
5894 haswell_set_pipeconf(crtc);
5895
5896 intel_set_pipe_csc(crtc);
5897
5898 /* Set up the display plane register */
5899 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5900 POSTING_READ(DSPCNTR(plane));
5901
5902 ret = intel_pipe_set_base(crtc, x, y, fb);
5903
5904 intel_update_watermarks(dev);
5905
5906 return ret;
5907 }
5908
5909 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5910 struct intel_crtc_config *pipe_config)
5911 {
5912 struct drm_device *dev = crtc->base.dev;
5913 struct drm_i915_private *dev_priv = dev->dev_private;
5914 enum intel_display_power_domain pfit_domain;
5915 uint32_t tmp;
5916
5917 pipe_config->cpu_transcoder = crtc->pipe;
5918 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5919
5920 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5921 if (tmp & TRANS_DDI_FUNC_ENABLE) {
5922 enum pipe trans_edp_pipe;
5923 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5924 default:
5925 WARN(1, "unknown pipe linked to edp transcoder\n");
5926 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5927 case TRANS_DDI_EDP_INPUT_A_ON:
5928 trans_edp_pipe = PIPE_A;
5929 break;
5930 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5931 trans_edp_pipe = PIPE_B;
5932 break;
5933 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5934 trans_edp_pipe = PIPE_C;
5935 break;
5936 }
5937
5938 if (trans_edp_pipe == crtc->pipe)
5939 pipe_config->cpu_transcoder = TRANSCODER_EDP;
5940 }
5941
5942 if (!intel_display_power_enabled(dev,
5943 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5944 return false;
5945
5946 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5947 if (!(tmp & PIPECONF_ENABLE))
5948 return false;
5949
5950 /*
5951 * Haswell has only FDI/PCH transcoder A. It is which is connected to
5952 * DDI E. So just check whether this pipe is wired to DDI E and whether
5953 * the PCH transcoder is on.
5954 */
5955 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
5956 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5957 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5958 pipe_config->has_pch_encoder = true;
5959
5960 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5961 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5962 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5963
5964 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5965 }
5966
5967 intel_get_pipe_timings(crtc, pipe_config);
5968
5969 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
5970 if (intel_display_power_enabled(dev, pfit_domain))
5971 ironlake_get_pfit_config(crtc, pipe_config);
5972
5973 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
5974 (I915_READ(IPS_CTL) & IPS_ENABLE);
5975
5976 pipe_config->pixel_multiplier = 1;
5977
5978 return true;
5979 }
5980
5981 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5982 int x, int y,
5983 struct drm_framebuffer *fb)
5984 {
5985 struct drm_device *dev = crtc->dev;
5986 struct drm_i915_private *dev_priv = dev->dev_private;
5987 struct drm_encoder_helper_funcs *encoder_funcs;
5988 struct intel_encoder *encoder;
5989 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5990 struct drm_display_mode *adjusted_mode =
5991 &intel_crtc->config.adjusted_mode;
5992 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5993 int pipe = intel_crtc->pipe;
5994 int ret;
5995
5996 drm_vblank_pre_modeset(dev, pipe);
5997
5998 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5999
6000 drm_vblank_post_modeset(dev, pipe);
6001
6002 if (ret != 0)
6003 return ret;
6004
6005 for_each_encoder_on_crtc(dev, crtc, encoder) {
6006 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6007 encoder->base.base.id,
6008 drm_get_encoder_name(&encoder->base),
6009 mode->base.id, mode->name);
6010 if (encoder->mode_set) {
6011 encoder->mode_set(encoder);
6012 } else {
6013 encoder_funcs = encoder->base.helper_private;
6014 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6015 }
6016 }
6017
6018 return 0;
6019 }
6020
6021 static bool intel_eld_uptodate(struct drm_connector *connector,
6022 int reg_eldv, uint32_t bits_eldv,
6023 int reg_elda, uint32_t bits_elda,
6024 int reg_edid)
6025 {
6026 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6027 uint8_t *eld = connector->eld;
6028 uint32_t i;
6029
6030 i = I915_READ(reg_eldv);
6031 i &= bits_eldv;
6032
6033 if (!eld[0])
6034 return !i;
6035
6036 if (!i)
6037 return false;
6038
6039 i = I915_READ(reg_elda);
6040 i &= ~bits_elda;
6041 I915_WRITE(reg_elda, i);
6042
6043 for (i = 0; i < eld[2]; i++)
6044 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6045 return false;
6046
6047 return true;
6048 }
6049
6050 static void g4x_write_eld(struct drm_connector *connector,
6051 struct drm_crtc *crtc)
6052 {
6053 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6054 uint8_t *eld = connector->eld;
6055 uint32_t eldv;
6056 uint32_t len;
6057 uint32_t i;
6058
6059 i = I915_READ(G4X_AUD_VID_DID);
6060
6061 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6062 eldv = G4X_ELDV_DEVCL_DEVBLC;
6063 else
6064 eldv = G4X_ELDV_DEVCTG;
6065
6066 if (intel_eld_uptodate(connector,
6067 G4X_AUD_CNTL_ST, eldv,
6068 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6069 G4X_HDMIW_HDMIEDID))
6070 return;
6071
6072 i = I915_READ(G4X_AUD_CNTL_ST);
6073 i &= ~(eldv | G4X_ELD_ADDR);
6074 len = (i >> 9) & 0x1f; /* ELD buffer size */
6075 I915_WRITE(G4X_AUD_CNTL_ST, i);
6076
6077 if (!eld[0])
6078 return;
6079
6080 len = min_t(uint8_t, eld[2], len);
6081 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6082 for (i = 0; i < len; i++)
6083 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6084
6085 i = I915_READ(G4X_AUD_CNTL_ST);
6086 i |= eldv;
6087 I915_WRITE(G4X_AUD_CNTL_ST, i);
6088 }
6089
6090 static void haswell_write_eld(struct drm_connector *connector,
6091 struct drm_crtc *crtc)
6092 {
6093 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6094 uint8_t *eld = connector->eld;
6095 struct drm_device *dev = crtc->dev;
6096 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6097 uint32_t eldv;
6098 uint32_t i;
6099 int len;
6100 int pipe = to_intel_crtc(crtc)->pipe;
6101 int tmp;
6102
6103 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6104 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6105 int aud_config = HSW_AUD_CFG(pipe);
6106 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6107
6108
6109 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6110
6111 /* Audio output enable */
6112 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6113 tmp = I915_READ(aud_cntrl_st2);
6114 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6115 I915_WRITE(aud_cntrl_st2, tmp);
6116
6117 /* Wait for 1 vertical blank */
6118 intel_wait_for_vblank(dev, pipe);
6119
6120 /* Set ELD valid state */
6121 tmp = I915_READ(aud_cntrl_st2);
6122 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6123 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6124 I915_WRITE(aud_cntrl_st2, tmp);
6125 tmp = I915_READ(aud_cntrl_st2);
6126 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6127
6128 /* Enable HDMI mode */
6129 tmp = I915_READ(aud_config);
6130 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6131 /* clear N_programing_enable and N_value_index */
6132 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6133 I915_WRITE(aud_config, tmp);
6134
6135 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6136
6137 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6138 intel_crtc->eld_vld = true;
6139
6140 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6141 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6142 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6143 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6144 } else
6145 I915_WRITE(aud_config, 0);
6146
6147 if (intel_eld_uptodate(connector,
6148 aud_cntrl_st2, eldv,
6149 aud_cntl_st, IBX_ELD_ADDRESS,
6150 hdmiw_hdmiedid))
6151 return;
6152
6153 i = I915_READ(aud_cntrl_st2);
6154 i &= ~eldv;
6155 I915_WRITE(aud_cntrl_st2, i);
6156
6157 if (!eld[0])
6158 return;
6159
6160 i = I915_READ(aud_cntl_st);
6161 i &= ~IBX_ELD_ADDRESS;
6162 I915_WRITE(aud_cntl_st, i);
6163 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6164 DRM_DEBUG_DRIVER("port num:%d\n", i);
6165
6166 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6167 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6168 for (i = 0; i < len; i++)
6169 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6170
6171 i = I915_READ(aud_cntrl_st2);
6172 i |= eldv;
6173 I915_WRITE(aud_cntrl_st2, i);
6174
6175 }
6176
6177 static void ironlake_write_eld(struct drm_connector *connector,
6178 struct drm_crtc *crtc)
6179 {
6180 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6181 uint8_t *eld = connector->eld;
6182 uint32_t eldv;
6183 uint32_t i;
6184 int len;
6185 int hdmiw_hdmiedid;
6186 int aud_config;
6187 int aud_cntl_st;
6188 int aud_cntrl_st2;
6189 int pipe = to_intel_crtc(crtc)->pipe;
6190
6191 if (HAS_PCH_IBX(connector->dev)) {
6192 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6193 aud_config = IBX_AUD_CFG(pipe);
6194 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6195 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6196 } else {
6197 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6198 aud_config = CPT_AUD_CFG(pipe);
6199 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6200 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6201 }
6202
6203 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6204
6205 i = I915_READ(aud_cntl_st);
6206 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6207 if (!i) {
6208 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6209 /* operate blindly on all ports */
6210 eldv = IBX_ELD_VALIDB;
6211 eldv |= IBX_ELD_VALIDB << 4;
6212 eldv |= IBX_ELD_VALIDB << 8;
6213 } else {
6214 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6215 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6216 }
6217
6218 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6219 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6220 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6221 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6222 } else
6223 I915_WRITE(aud_config, 0);
6224
6225 if (intel_eld_uptodate(connector,
6226 aud_cntrl_st2, eldv,
6227 aud_cntl_st, IBX_ELD_ADDRESS,
6228 hdmiw_hdmiedid))
6229 return;
6230
6231 i = I915_READ(aud_cntrl_st2);
6232 i &= ~eldv;
6233 I915_WRITE(aud_cntrl_st2, i);
6234
6235 if (!eld[0])
6236 return;
6237
6238 i = I915_READ(aud_cntl_st);
6239 i &= ~IBX_ELD_ADDRESS;
6240 I915_WRITE(aud_cntl_st, i);
6241
6242 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6243 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6244 for (i = 0; i < len; i++)
6245 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6246
6247 i = I915_READ(aud_cntrl_st2);
6248 i |= eldv;
6249 I915_WRITE(aud_cntrl_st2, i);
6250 }
6251
6252 void intel_write_eld(struct drm_encoder *encoder,
6253 struct drm_display_mode *mode)
6254 {
6255 struct drm_crtc *crtc = encoder->crtc;
6256 struct drm_connector *connector;
6257 struct drm_device *dev = encoder->dev;
6258 struct drm_i915_private *dev_priv = dev->dev_private;
6259
6260 connector = drm_select_eld(encoder, mode);
6261 if (!connector)
6262 return;
6263
6264 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6265 connector->base.id,
6266 drm_get_connector_name(connector),
6267 connector->encoder->base.id,
6268 drm_get_encoder_name(connector->encoder));
6269
6270 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6271
6272 if (dev_priv->display.write_eld)
6273 dev_priv->display.write_eld(connector, crtc);
6274 }
6275
6276 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6277 void intel_crtc_load_lut(struct drm_crtc *crtc)
6278 {
6279 struct drm_device *dev = crtc->dev;
6280 struct drm_i915_private *dev_priv = dev->dev_private;
6281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6282 enum pipe pipe = intel_crtc->pipe;
6283 int palreg = PALETTE(pipe);
6284 int i;
6285 bool reenable_ips = false;
6286
6287 /* The clocks have to be on to load the palette. */
6288 if (!crtc->enabled || !intel_crtc->active)
6289 return;
6290
6291 if (!HAS_PCH_SPLIT(dev_priv->dev))
6292 assert_pll_enabled(dev_priv, pipe);
6293
6294 /* use legacy palette for Ironlake */
6295 if (HAS_PCH_SPLIT(dev))
6296 palreg = LGC_PALETTE(pipe);
6297
6298 /* Workaround : Do not read or write the pipe palette/gamma data while
6299 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6300 */
6301 if (intel_crtc->config.ips_enabled &&
6302 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6303 GAMMA_MODE_MODE_SPLIT)) {
6304 hsw_disable_ips(intel_crtc);
6305 reenable_ips = true;
6306 }
6307
6308 for (i = 0; i < 256; i++) {
6309 I915_WRITE(palreg + 4 * i,
6310 (intel_crtc->lut_r[i] << 16) |
6311 (intel_crtc->lut_g[i] << 8) |
6312 intel_crtc->lut_b[i]);
6313 }
6314
6315 if (reenable_ips)
6316 hsw_enable_ips(intel_crtc);
6317 }
6318
6319 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6320 {
6321 struct drm_device *dev = crtc->dev;
6322 struct drm_i915_private *dev_priv = dev->dev_private;
6323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6324 bool visible = base != 0;
6325 u32 cntl;
6326
6327 if (intel_crtc->cursor_visible == visible)
6328 return;
6329
6330 cntl = I915_READ(_CURACNTR);
6331 if (visible) {
6332 /* On these chipsets we can only modify the base whilst
6333 * the cursor is disabled.
6334 */
6335 I915_WRITE(_CURABASE, base);
6336
6337 cntl &= ~(CURSOR_FORMAT_MASK);
6338 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6339 cntl |= CURSOR_ENABLE |
6340 CURSOR_GAMMA_ENABLE |
6341 CURSOR_FORMAT_ARGB;
6342 } else
6343 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6344 I915_WRITE(_CURACNTR, cntl);
6345
6346 intel_crtc->cursor_visible = visible;
6347 }
6348
6349 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6350 {
6351 struct drm_device *dev = crtc->dev;
6352 struct drm_i915_private *dev_priv = dev->dev_private;
6353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6354 int pipe = intel_crtc->pipe;
6355 bool visible = base != 0;
6356
6357 if (intel_crtc->cursor_visible != visible) {
6358 uint32_t cntl = I915_READ(CURCNTR(pipe));
6359 if (base) {
6360 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6361 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6362 cntl |= pipe << 28; /* Connect to correct pipe */
6363 } else {
6364 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6365 cntl |= CURSOR_MODE_DISABLE;
6366 }
6367 I915_WRITE(CURCNTR(pipe), cntl);
6368
6369 intel_crtc->cursor_visible = visible;
6370 }
6371 /* and commit changes on next vblank */
6372 I915_WRITE(CURBASE(pipe), base);
6373 }
6374
6375 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6376 {
6377 struct drm_device *dev = crtc->dev;
6378 struct drm_i915_private *dev_priv = dev->dev_private;
6379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6380 int pipe = intel_crtc->pipe;
6381 bool visible = base != 0;
6382
6383 if (intel_crtc->cursor_visible != visible) {
6384 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6385 if (base) {
6386 cntl &= ~CURSOR_MODE;
6387 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6388 } else {
6389 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6390 cntl |= CURSOR_MODE_DISABLE;
6391 }
6392 if (IS_HASWELL(dev))
6393 cntl |= CURSOR_PIPE_CSC_ENABLE;
6394 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6395
6396 intel_crtc->cursor_visible = visible;
6397 }
6398 /* and commit changes on next vblank */
6399 I915_WRITE(CURBASE_IVB(pipe), base);
6400 }
6401
6402 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6403 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6404 bool on)
6405 {
6406 struct drm_device *dev = crtc->dev;
6407 struct drm_i915_private *dev_priv = dev->dev_private;
6408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409 int pipe = intel_crtc->pipe;
6410 int x = intel_crtc->cursor_x;
6411 int y = intel_crtc->cursor_y;
6412 u32 base, pos;
6413 bool visible;
6414
6415 pos = 0;
6416
6417 if (on && crtc->enabled && crtc->fb) {
6418 base = intel_crtc->cursor_addr;
6419 if (x > (int) crtc->fb->width)
6420 base = 0;
6421
6422 if (y > (int) crtc->fb->height)
6423 base = 0;
6424 } else
6425 base = 0;
6426
6427 if (x < 0) {
6428 if (x + intel_crtc->cursor_width < 0)
6429 base = 0;
6430
6431 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6432 x = -x;
6433 }
6434 pos |= x << CURSOR_X_SHIFT;
6435
6436 if (y < 0) {
6437 if (y + intel_crtc->cursor_height < 0)
6438 base = 0;
6439
6440 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6441 y = -y;
6442 }
6443 pos |= y << CURSOR_Y_SHIFT;
6444
6445 visible = base != 0;
6446 if (!visible && !intel_crtc->cursor_visible)
6447 return;
6448
6449 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6450 I915_WRITE(CURPOS_IVB(pipe), pos);
6451 ivb_update_cursor(crtc, base);
6452 } else {
6453 I915_WRITE(CURPOS(pipe), pos);
6454 if (IS_845G(dev) || IS_I865G(dev))
6455 i845_update_cursor(crtc, base);
6456 else
6457 i9xx_update_cursor(crtc, base);
6458 }
6459 }
6460
6461 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6462 struct drm_file *file,
6463 uint32_t handle,
6464 uint32_t width, uint32_t height)
6465 {
6466 struct drm_device *dev = crtc->dev;
6467 struct drm_i915_private *dev_priv = dev->dev_private;
6468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6469 struct drm_i915_gem_object *obj;
6470 uint32_t addr;
6471 int ret;
6472
6473 /* if we want to turn off the cursor ignore width and height */
6474 if (!handle) {
6475 DRM_DEBUG_KMS("cursor off\n");
6476 addr = 0;
6477 obj = NULL;
6478 mutex_lock(&dev->struct_mutex);
6479 goto finish;
6480 }
6481
6482 /* Currently we only support 64x64 cursors */
6483 if (width != 64 || height != 64) {
6484 DRM_ERROR("we currently only support 64x64 cursors\n");
6485 return -EINVAL;
6486 }
6487
6488 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6489 if (&obj->base == NULL)
6490 return -ENOENT;
6491
6492 if (obj->base.size < width * height * 4) {
6493 DRM_ERROR("buffer is to small\n");
6494 ret = -ENOMEM;
6495 goto fail;
6496 }
6497
6498 /* we only need to pin inside GTT if cursor is non-phy */
6499 mutex_lock(&dev->struct_mutex);
6500 if (!dev_priv->info->cursor_needs_physical) {
6501 unsigned alignment;
6502
6503 if (obj->tiling_mode) {
6504 DRM_ERROR("cursor cannot be tiled\n");
6505 ret = -EINVAL;
6506 goto fail_locked;
6507 }
6508
6509 /* Note that the w/a also requires 2 PTE of padding following
6510 * the bo. We currently fill all unused PTE with the shadow
6511 * page and so we should always have valid PTE following the
6512 * cursor preventing the VT-d warning.
6513 */
6514 alignment = 0;
6515 if (need_vtd_wa(dev))
6516 alignment = 64*1024;
6517
6518 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6519 if (ret) {
6520 DRM_ERROR("failed to move cursor bo into the GTT\n");
6521 goto fail_locked;
6522 }
6523
6524 ret = i915_gem_object_put_fence(obj);
6525 if (ret) {
6526 DRM_ERROR("failed to release fence for cursor");
6527 goto fail_unpin;
6528 }
6529
6530 addr = obj->gtt_offset;
6531 } else {
6532 int align = IS_I830(dev) ? 16 * 1024 : 256;
6533 ret = i915_gem_attach_phys_object(dev, obj,
6534 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6535 align);
6536 if (ret) {
6537 DRM_ERROR("failed to attach phys object\n");
6538 goto fail_locked;
6539 }
6540 addr = obj->phys_obj->handle->busaddr;
6541 }
6542
6543 if (IS_GEN2(dev))
6544 I915_WRITE(CURSIZE, (height << 12) | width);
6545
6546 finish:
6547 if (intel_crtc->cursor_bo) {
6548 if (dev_priv->info->cursor_needs_physical) {
6549 if (intel_crtc->cursor_bo != obj)
6550 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6551 } else
6552 i915_gem_object_unpin(intel_crtc->cursor_bo);
6553 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6554 }
6555
6556 mutex_unlock(&dev->struct_mutex);
6557
6558 intel_crtc->cursor_addr = addr;
6559 intel_crtc->cursor_bo = obj;
6560 intel_crtc->cursor_width = width;
6561 intel_crtc->cursor_height = height;
6562
6563 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6564
6565 return 0;
6566 fail_unpin:
6567 i915_gem_object_unpin(obj);
6568 fail_locked:
6569 mutex_unlock(&dev->struct_mutex);
6570 fail:
6571 drm_gem_object_unreference_unlocked(&obj->base);
6572 return ret;
6573 }
6574
6575 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6576 {
6577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6578
6579 intel_crtc->cursor_x = x;
6580 intel_crtc->cursor_y = y;
6581
6582 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6583
6584 return 0;
6585 }
6586
6587 /** Sets the color ramps on behalf of RandR */
6588 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6589 u16 blue, int regno)
6590 {
6591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6592
6593 intel_crtc->lut_r[regno] = red >> 8;
6594 intel_crtc->lut_g[regno] = green >> 8;
6595 intel_crtc->lut_b[regno] = blue >> 8;
6596 }
6597
6598 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6599 u16 *blue, int regno)
6600 {
6601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6602
6603 *red = intel_crtc->lut_r[regno] << 8;
6604 *green = intel_crtc->lut_g[regno] << 8;
6605 *blue = intel_crtc->lut_b[regno] << 8;
6606 }
6607
6608 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6609 u16 *blue, uint32_t start, uint32_t size)
6610 {
6611 int end = (start + size > 256) ? 256 : start + size, i;
6612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6613
6614 for (i = start; i < end; i++) {
6615 intel_crtc->lut_r[i] = red[i] >> 8;
6616 intel_crtc->lut_g[i] = green[i] >> 8;
6617 intel_crtc->lut_b[i] = blue[i] >> 8;
6618 }
6619
6620 intel_crtc_load_lut(crtc);
6621 }
6622
6623 /* VESA 640x480x72Hz mode to set on the pipe */
6624 static struct drm_display_mode load_detect_mode = {
6625 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6626 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6627 };
6628
6629 static struct drm_framebuffer *
6630 intel_framebuffer_create(struct drm_device *dev,
6631 struct drm_mode_fb_cmd2 *mode_cmd,
6632 struct drm_i915_gem_object *obj)
6633 {
6634 struct intel_framebuffer *intel_fb;
6635 int ret;
6636
6637 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6638 if (!intel_fb) {
6639 drm_gem_object_unreference_unlocked(&obj->base);
6640 return ERR_PTR(-ENOMEM);
6641 }
6642
6643 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6644 if (ret) {
6645 drm_gem_object_unreference_unlocked(&obj->base);
6646 kfree(intel_fb);
6647 return ERR_PTR(ret);
6648 }
6649
6650 return &intel_fb->base;
6651 }
6652
6653 static u32
6654 intel_framebuffer_pitch_for_width(int width, int bpp)
6655 {
6656 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6657 return ALIGN(pitch, 64);
6658 }
6659
6660 static u32
6661 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6662 {
6663 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6664 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6665 }
6666
6667 static struct drm_framebuffer *
6668 intel_framebuffer_create_for_mode(struct drm_device *dev,
6669 struct drm_display_mode *mode,
6670 int depth, int bpp)
6671 {
6672 struct drm_i915_gem_object *obj;
6673 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6674
6675 obj = i915_gem_alloc_object(dev,
6676 intel_framebuffer_size_for_mode(mode, bpp));
6677 if (obj == NULL)
6678 return ERR_PTR(-ENOMEM);
6679
6680 mode_cmd.width = mode->hdisplay;
6681 mode_cmd.height = mode->vdisplay;
6682 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6683 bpp);
6684 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6685
6686 return intel_framebuffer_create(dev, &mode_cmd, obj);
6687 }
6688
6689 static struct drm_framebuffer *
6690 mode_fits_in_fbdev(struct drm_device *dev,
6691 struct drm_display_mode *mode)
6692 {
6693 struct drm_i915_private *dev_priv = dev->dev_private;
6694 struct drm_i915_gem_object *obj;
6695 struct drm_framebuffer *fb;
6696
6697 if (dev_priv->fbdev == NULL)
6698 return NULL;
6699
6700 obj = dev_priv->fbdev->ifb.obj;
6701 if (obj == NULL)
6702 return NULL;
6703
6704 fb = &dev_priv->fbdev->ifb.base;
6705 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6706 fb->bits_per_pixel))
6707 return NULL;
6708
6709 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6710 return NULL;
6711
6712 return fb;
6713 }
6714
6715 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6716 struct drm_display_mode *mode,
6717 struct intel_load_detect_pipe *old)
6718 {
6719 struct intel_crtc *intel_crtc;
6720 struct intel_encoder *intel_encoder =
6721 intel_attached_encoder(connector);
6722 struct drm_crtc *possible_crtc;
6723 struct drm_encoder *encoder = &intel_encoder->base;
6724 struct drm_crtc *crtc = NULL;
6725 struct drm_device *dev = encoder->dev;
6726 struct drm_framebuffer *fb;
6727 int i = -1;
6728
6729 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6730 connector->base.id, drm_get_connector_name(connector),
6731 encoder->base.id, drm_get_encoder_name(encoder));
6732
6733 /*
6734 * Algorithm gets a little messy:
6735 *
6736 * - if the connector already has an assigned crtc, use it (but make
6737 * sure it's on first)
6738 *
6739 * - try to find the first unused crtc that can drive this connector,
6740 * and use that if we find one
6741 */
6742
6743 /* See if we already have a CRTC for this connector */
6744 if (encoder->crtc) {
6745 crtc = encoder->crtc;
6746
6747 mutex_lock(&crtc->mutex);
6748
6749 old->dpms_mode = connector->dpms;
6750 old->load_detect_temp = false;
6751
6752 /* Make sure the crtc and connector are running */
6753 if (connector->dpms != DRM_MODE_DPMS_ON)
6754 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6755
6756 return true;
6757 }
6758
6759 /* Find an unused one (if possible) */
6760 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6761 i++;
6762 if (!(encoder->possible_crtcs & (1 << i)))
6763 continue;
6764 if (!possible_crtc->enabled) {
6765 crtc = possible_crtc;
6766 break;
6767 }
6768 }
6769
6770 /*
6771 * If we didn't find an unused CRTC, don't use any.
6772 */
6773 if (!crtc) {
6774 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6775 return false;
6776 }
6777
6778 mutex_lock(&crtc->mutex);
6779 intel_encoder->new_crtc = to_intel_crtc(crtc);
6780 to_intel_connector(connector)->new_encoder = intel_encoder;
6781
6782 intel_crtc = to_intel_crtc(crtc);
6783 old->dpms_mode = connector->dpms;
6784 old->load_detect_temp = true;
6785 old->release_fb = NULL;
6786
6787 if (!mode)
6788 mode = &load_detect_mode;
6789
6790 /* We need a framebuffer large enough to accommodate all accesses
6791 * that the plane may generate whilst we perform load detection.
6792 * We can not rely on the fbcon either being present (we get called
6793 * during its initialisation to detect all boot displays, or it may
6794 * not even exist) or that it is large enough to satisfy the
6795 * requested mode.
6796 */
6797 fb = mode_fits_in_fbdev(dev, mode);
6798 if (fb == NULL) {
6799 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6800 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6801 old->release_fb = fb;
6802 } else
6803 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6804 if (IS_ERR(fb)) {
6805 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6806 mutex_unlock(&crtc->mutex);
6807 return false;
6808 }
6809
6810 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6811 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6812 if (old->release_fb)
6813 old->release_fb->funcs->destroy(old->release_fb);
6814 mutex_unlock(&crtc->mutex);
6815 return false;
6816 }
6817
6818 /* let the connector get through one full cycle before testing */
6819 intel_wait_for_vblank(dev, intel_crtc->pipe);
6820 return true;
6821 }
6822
6823 void intel_release_load_detect_pipe(struct drm_connector *connector,
6824 struct intel_load_detect_pipe *old)
6825 {
6826 struct intel_encoder *intel_encoder =
6827 intel_attached_encoder(connector);
6828 struct drm_encoder *encoder = &intel_encoder->base;
6829 struct drm_crtc *crtc = encoder->crtc;
6830
6831 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6832 connector->base.id, drm_get_connector_name(connector),
6833 encoder->base.id, drm_get_encoder_name(encoder));
6834
6835 if (old->load_detect_temp) {
6836 to_intel_connector(connector)->new_encoder = NULL;
6837 intel_encoder->new_crtc = NULL;
6838 intel_set_mode(crtc, NULL, 0, 0, NULL);
6839
6840 if (old->release_fb) {
6841 drm_framebuffer_unregister_private(old->release_fb);
6842 drm_framebuffer_unreference(old->release_fb);
6843 }
6844
6845 mutex_unlock(&crtc->mutex);
6846 return;
6847 }
6848
6849 /* Switch crtc and encoder back off if necessary */
6850 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6851 connector->funcs->dpms(connector, old->dpms_mode);
6852
6853 mutex_unlock(&crtc->mutex);
6854 }
6855
6856 /* Returns the clock of the currently programmed mode of the given pipe. */
6857 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6858 {
6859 struct drm_i915_private *dev_priv = dev->dev_private;
6860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6861 int pipe = intel_crtc->pipe;
6862 u32 dpll = I915_READ(DPLL(pipe));
6863 u32 fp;
6864 intel_clock_t clock;
6865
6866 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6867 fp = I915_READ(FP0(pipe));
6868 else
6869 fp = I915_READ(FP1(pipe));
6870
6871 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6872 if (IS_PINEVIEW(dev)) {
6873 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6874 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6875 } else {
6876 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6877 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6878 }
6879
6880 if (!IS_GEN2(dev)) {
6881 if (IS_PINEVIEW(dev))
6882 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6883 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6884 else
6885 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6886 DPLL_FPA01_P1_POST_DIV_SHIFT);
6887
6888 switch (dpll & DPLL_MODE_MASK) {
6889 case DPLLB_MODE_DAC_SERIAL:
6890 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6891 5 : 10;
6892 break;
6893 case DPLLB_MODE_LVDS:
6894 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6895 7 : 14;
6896 break;
6897 default:
6898 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6899 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6900 return 0;
6901 }
6902
6903 if (IS_PINEVIEW(dev))
6904 pineview_clock(96000, &clock);
6905 else
6906 i9xx_clock(96000, &clock);
6907 } else {
6908 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6909
6910 if (is_lvds) {
6911 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6912 DPLL_FPA01_P1_POST_DIV_SHIFT);
6913 clock.p2 = 14;
6914
6915 if ((dpll & PLL_REF_INPUT_MASK) ==
6916 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6917 /* XXX: might not be 66MHz */
6918 i9xx_clock(66000, &clock);
6919 } else
6920 i9xx_clock(48000, &clock);
6921 } else {
6922 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6923 clock.p1 = 2;
6924 else {
6925 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6926 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6927 }
6928 if (dpll & PLL_P2_DIVIDE_BY_4)
6929 clock.p2 = 4;
6930 else
6931 clock.p2 = 2;
6932
6933 i9xx_clock(48000, &clock);
6934 }
6935 }
6936
6937 /* XXX: It would be nice to validate the clocks, but we can't reuse
6938 * i830PllIsValid() because it relies on the xf86_config connector
6939 * configuration being accurate, which it isn't necessarily.
6940 */
6941
6942 return clock.dot;
6943 }
6944
6945 /** Returns the currently programmed mode of the given pipe. */
6946 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6947 struct drm_crtc *crtc)
6948 {
6949 struct drm_i915_private *dev_priv = dev->dev_private;
6950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6951 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6952 struct drm_display_mode *mode;
6953 int htot = I915_READ(HTOTAL(cpu_transcoder));
6954 int hsync = I915_READ(HSYNC(cpu_transcoder));
6955 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6956 int vsync = I915_READ(VSYNC(cpu_transcoder));
6957
6958 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6959 if (!mode)
6960 return NULL;
6961
6962 mode->clock = intel_crtc_clock_get(dev, crtc);
6963 mode->hdisplay = (htot & 0xffff) + 1;
6964 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6965 mode->hsync_start = (hsync & 0xffff) + 1;
6966 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6967 mode->vdisplay = (vtot & 0xffff) + 1;
6968 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6969 mode->vsync_start = (vsync & 0xffff) + 1;
6970 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6971
6972 drm_mode_set_name(mode);
6973
6974 return mode;
6975 }
6976
6977 static void intel_increase_pllclock(struct drm_crtc *crtc)
6978 {
6979 struct drm_device *dev = crtc->dev;
6980 drm_i915_private_t *dev_priv = dev->dev_private;
6981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6982 int pipe = intel_crtc->pipe;
6983 int dpll_reg = DPLL(pipe);
6984 int dpll;
6985
6986 if (HAS_PCH_SPLIT(dev))
6987 return;
6988
6989 if (!dev_priv->lvds_downclock_avail)
6990 return;
6991
6992 dpll = I915_READ(dpll_reg);
6993 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6994 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6995
6996 assert_panel_unlocked(dev_priv, pipe);
6997
6998 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6999 I915_WRITE(dpll_reg, dpll);
7000 intel_wait_for_vblank(dev, pipe);
7001
7002 dpll = I915_READ(dpll_reg);
7003 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7004 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7005 }
7006 }
7007
7008 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7009 {
7010 struct drm_device *dev = crtc->dev;
7011 drm_i915_private_t *dev_priv = dev->dev_private;
7012 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7013
7014 if (HAS_PCH_SPLIT(dev))
7015 return;
7016
7017 if (!dev_priv->lvds_downclock_avail)
7018 return;
7019
7020 /*
7021 * Since this is called by a timer, we should never get here in
7022 * the manual case.
7023 */
7024 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7025 int pipe = intel_crtc->pipe;
7026 int dpll_reg = DPLL(pipe);
7027 int dpll;
7028
7029 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7030
7031 assert_panel_unlocked(dev_priv, pipe);
7032
7033 dpll = I915_READ(dpll_reg);
7034 dpll |= DISPLAY_RATE_SELECT_FPA1;
7035 I915_WRITE(dpll_reg, dpll);
7036 intel_wait_for_vblank(dev, pipe);
7037 dpll = I915_READ(dpll_reg);
7038 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7039 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7040 }
7041
7042 }
7043
7044 void intel_mark_busy(struct drm_device *dev)
7045 {
7046 i915_update_gfx_val(dev->dev_private);
7047 }
7048
7049 void intel_mark_idle(struct drm_device *dev)
7050 {
7051 struct drm_crtc *crtc;
7052
7053 if (!i915_powersave)
7054 return;
7055
7056 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7057 if (!crtc->fb)
7058 continue;
7059
7060 intel_decrease_pllclock(crtc);
7061 }
7062 }
7063
7064 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7065 struct intel_ring_buffer *ring)
7066 {
7067 struct drm_device *dev = obj->base.dev;
7068 struct drm_crtc *crtc;
7069
7070 if (!i915_powersave)
7071 return;
7072
7073 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7074 if (!crtc->fb)
7075 continue;
7076
7077 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7078 continue;
7079
7080 intel_increase_pllclock(crtc);
7081 if (ring && intel_fbc_enabled(dev))
7082 ring->fbc_dirty = true;
7083 }
7084 }
7085
7086 static void intel_crtc_destroy(struct drm_crtc *crtc)
7087 {
7088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7089 struct drm_device *dev = crtc->dev;
7090 struct intel_unpin_work *work;
7091 unsigned long flags;
7092
7093 spin_lock_irqsave(&dev->event_lock, flags);
7094 work = intel_crtc->unpin_work;
7095 intel_crtc->unpin_work = NULL;
7096 spin_unlock_irqrestore(&dev->event_lock, flags);
7097
7098 if (work) {
7099 cancel_work_sync(&work->work);
7100 kfree(work);
7101 }
7102
7103 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7104
7105 drm_crtc_cleanup(crtc);
7106
7107 kfree(intel_crtc);
7108 }
7109
7110 static void intel_unpin_work_fn(struct work_struct *__work)
7111 {
7112 struct intel_unpin_work *work =
7113 container_of(__work, struct intel_unpin_work, work);
7114 struct drm_device *dev = work->crtc->dev;
7115
7116 mutex_lock(&dev->struct_mutex);
7117 intel_unpin_fb_obj(work->old_fb_obj);
7118 drm_gem_object_unreference(&work->pending_flip_obj->base);
7119 drm_gem_object_unreference(&work->old_fb_obj->base);
7120
7121 intel_update_fbc(dev);
7122 mutex_unlock(&dev->struct_mutex);
7123
7124 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7125 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7126
7127 kfree(work);
7128 }
7129
7130 static void do_intel_finish_page_flip(struct drm_device *dev,
7131 struct drm_crtc *crtc)
7132 {
7133 drm_i915_private_t *dev_priv = dev->dev_private;
7134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7135 struct intel_unpin_work *work;
7136 unsigned long flags;
7137
7138 /* Ignore early vblank irqs */
7139 if (intel_crtc == NULL)
7140 return;
7141
7142 spin_lock_irqsave(&dev->event_lock, flags);
7143 work = intel_crtc->unpin_work;
7144
7145 /* Ensure we don't miss a work->pending update ... */
7146 smp_rmb();
7147
7148 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7149 spin_unlock_irqrestore(&dev->event_lock, flags);
7150 return;
7151 }
7152
7153 /* and that the unpin work is consistent wrt ->pending. */
7154 smp_rmb();
7155
7156 intel_crtc->unpin_work = NULL;
7157
7158 if (work->event)
7159 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7160
7161 drm_vblank_put(dev, intel_crtc->pipe);
7162
7163 spin_unlock_irqrestore(&dev->event_lock, flags);
7164
7165 wake_up_all(&dev_priv->pending_flip_queue);
7166
7167 queue_work(dev_priv->wq, &work->work);
7168
7169 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7170 }
7171
7172 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7173 {
7174 drm_i915_private_t *dev_priv = dev->dev_private;
7175 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7176
7177 do_intel_finish_page_flip(dev, crtc);
7178 }
7179
7180 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7181 {
7182 drm_i915_private_t *dev_priv = dev->dev_private;
7183 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7184
7185 do_intel_finish_page_flip(dev, crtc);
7186 }
7187
7188 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7189 {
7190 drm_i915_private_t *dev_priv = dev->dev_private;
7191 struct intel_crtc *intel_crtc =
7192 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7193 unsigned long flags;
7194
7195 /* NB: An MMIO update of the plane base pointer will also
7196 * generate a page-flip completion irq, i.e. every modeset
7197 * is also accompanied by a spurious intel_prepare_page_flip().
7198 */
7199 spin_lock_irqsave(&dev->event_lock, flags);
7200 if (intel_crtc->unpin_work)
7201 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7202 spin_unlock_irqrestore(&dev->event_lock, flags);
7203 }
7204
7205 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7206 {
7207 /* Ensure that the work item is consistent when activating it ... */
7208 smp_wmb();
7209 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7210 /* and that it is marked active as soon as the irq could fire. */
7211 smp_wmb();
7212 }
7213
7214 static int intel_gen2_queue_flip(struct drm_device *dev,
7215 struct drm_crtc *crtc,
7216 struct drm_framebuffer *fb,
7217 struct drm_i915_gem_object *obj)
7218 {
7219 struct drm_i915_private *dev_priv = dev->dev_private;
7220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7221 u32 flip_mask;
7222 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7223 int ret;
7224
7225 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7226 if (ret)
7227 goto err;
7228
7229 ret = intel_ring_begin(ring, 6);
7230 if (ret)
7231 goto err_unpin;
7232
7233 /* Can't queue multiple flips, so wait for the previous
7234 * one to finish before executing the next.
7235 */
7236 if (intel_crtc->plane)
7237 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7238 else
7239 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7240 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7241 intel_ring_emit(ring, MI_NOOP);
7242 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7243 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7244 intel_ring_emit(ring, fb->pitches[0]);
7245 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7246 intel_ring_emit(ring, 0); /* aux display base address, unused */
7247
7248 intel_mark_page_flip_active(intel_crtc);
7249 intel_ring_advance(ring);
7250 return 0;
7251
7252 err_unpin:
7253 intel_unpin_fb_obj(obj);
7254 err:
7255 return ret;
7256 }
7257
7258 static int intel_gen3_queue_flip(struct drm_device *dev,
7259 struct drm_crtc *crtc,
7260 struct drm_framebuffer *fb,
7261 struct drm_i915_gem_object *obj)
7262 {
7263 struct drm_i915_private *dev_priv = dev->dev_private;
7264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7265 u32 flip_mask;
7266 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7267 int ret;
7268
7269 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7270 if (ret)
7271 goto err;
7272
7273 ret = intel_ring_begin(ring, 6);
7274 if (ret)
7275 goto err_unpin;
7276
7277 if (intel_crtc->plane)
7278 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7279 else
7280 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7281 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7282 intel_ring_emit(ring, MI_NOOP);
7283 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7284 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7285 intel_ring_emit(ring, fb->pitches[0]);
7286 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7287 intel_ring_emit(ring, MI_NOOP);
7288
7289 intel_mark_page_flip_active(intel_crtc);
7290 intel_ring_advance(ring);
7291 return 0;
7292
7293 err_unpin:
7294 intel_unpin_fb_obj(obj);
7295 err:
7296 return ret;
7297 }
7298
7299 static int intel_gen4_queue_flip(struct drm_device *dev,
7300 struct drm_crtc *crtc,
7301 struct drm_framebuffer *fb,
7302 struct drm_i915_gem_object *obj)
7303 {
7304 struct drm_i915_private *dev_priv = dev->dev_private;
7305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7306 uint32_t pf, pipesrc;
7307 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7308 int ret;
7309
7310 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7311 if (ret)
7312 goto err;
7313
7314 ret = intel_ring_begin(ring, 4);
7315 if (ret)
7316 goto err_unpin;
7317
7318 /* i965+ uses the linear or tiled offsets from the
7319 * Display Registers (which do not change across a page-flip)
7320 * so we need only reprogram the base address.
7321 */
7322 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7323 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7324 intel_ring_emit(ring, fb->pitches[0]);
7325 intel_ring_emit(ring,
7326 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7327 obj->tiling_mode);
7328
7329 /* XXX Enabling the panel-fitter across page-flip is so far
7330 * untested on non-native modes, so ignore it for now.
7331 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7332 */
7333 pf = 0;
7334 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7335 intel_ring_emit(ring, pf | pipesrc);
7336
7337 intel_mark_page_flip_active(intel_crtc);
7338 intel_ring_advance(ring);
7339 return 0;
7340
7341 err_unpin:
7342 intel_unpin_fb_obj(obj);
7343 err:
7344 return ret;
7345 }
7346
7347 static int intel_gen6_queue_flip(struct drm_device *dev,
7348 struct drm_crtc *crtc,
7349 struct drm_framebuffer *fb,
7350 struct drm_i915_gem_object *obj)
7351 {
7352 struct drm_i915_private *dev_priv = dev->dev_private;
7353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7354 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7355 uint32_t pf, pipesrc;
7356 int ret;
7357
7358 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7359 if (ret)
7360 goto err;
7361
7362 ret = intel_ring_begin(ring, 4);
7363 if (ret)
7364 goto err_unpin;
7365
7366 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7367 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7368 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7369 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7370
7371 /* Contrary to the suggestions in the documentation,
7372 * "Enable Panel Fitter" does not seem to be required when page
7373 * flipping with a non-native mode, and worse causes a normal
7374 * modeset to fail.
7375 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7376 */
7377 pf = 0;
7378 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7379 intel_ring_emit(ring, pf | pipesrc);
7380
7381 intel_mark_page_flip_active(intel_crtc);
7382 intel_ring_advance(ring);
7383 return 0;
7384
7385 err_unpin:
7386 intel_unpin_fb_obj(obj);
7387 err:
7388 return ret;
7389 }
7390
7391 /*
7392 * On gen7 we currently use the blit ring because (in early silicon at least)
7393 * the render ring doesn't give us interrpts for page flip completion, which
7394 * means clients will hang after the first flip is queued. Fortunately the
7395 * blit ring generates interrupts properly, so use it instead.
7396 */
7397 static int intel_gen7_queue_flip(struct drm_device *dev,
7398 struct drm_crtc *crtc,
7399 struct drm_framebuffer *fb,
7400 struct drm_i915_gem_object *obj)
7401 {
7402 struct drm_i915_private *dev_priv = dev->dev_private;
7403 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7404 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7405 uint32_t plane_bit = 0;
7406 int ret;
7407
7408 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7409 if (ret)
7410 goto err;
7411
7412 switch(intel_crtc->plane) {
7413 case PLANE_A:
7414 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7415 break;
7416 case PLANE_B:
7417 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7418 break;
7419 case PLANE_C:
7420 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7421 break;
7422 default:
7423 WARN_ONCE(1, "unknown plane in flip command\n");
7424 ret = -ENODEV;
7425 goto err_unpin;
7426 }
7427
7428 ret = intel_ring_begin(ring, 4);
7429 if (ret)
7430 goto err_unpin;
7431
7432 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7433 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7434 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7435 intel_ring_emit(ring, (MI_NOOP));
7436
7437 intel_mark_page_flip_active(intel_crtc);
7438 intel_ring_advance(ring);
7439 return 0;
7440
7441 err_unpin:
7442 intel_unpin_fb_obj(obj);
7443 err:
7444 return ret;
7445 }
7446
7447 static int intel_default_queue_flip(struct drm_device *dev,
7448 struct drm_crtc *crtc,
7449 struct drm_framebuffer *fb,
7450 struct drm_i915_gem_object *obj)
7451 {
7452 return -ENODEV;
7453 }
7454
7455 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7456 struct drm_framebuffer *fb,
7457 struct drm_pending_vblank_event *event)
7458 {
7459 struct drm_device *dev = crtc->dev;
7460 struct drm_i915_private *dev_priv = dev->dev_private;
7461 struct drm_framebuffer *old_fb = crtc->fb;
7462 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7464 struct intel_unpin_work *work;
7465 unsigned long flags;
7466 int ret;
7467
7468 /* Can't change pixel format via MI display flips. */
7469 if (fb->pixel_format != crtc->fb->pixel_format)
7470 return -EINVAL;
7471
7472 /*
7473 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7474 * Note that pitch changes could also affect these register.
7475 */
7476 if (INTEL_INFO(dev)->gen > 3 &&
7477 (fb->offsets[0] != crtc->fb->offsets[0] ||
7478 fb->pitches[0] != crtc->fb->pitches[0]))
7479 return -EINVAL;
7480
7481 work = kzalloc(sizeof *work, GFP_KERNEL);
7482 if (work == NULL)
7483 return -ENOMEM;
7484
7485 work->event = event;
7486 work->crtc = crtc;
7487 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7488 INIT_WORK(&work->work, intel_unpin_work_fn);
7489
7490 ret = drm_vblank_get(dev, intel_crtc->pipe);
7491 if (ret)
7492 goto free_work;
7493
7494 /* We borrow the event spin lock for protecting unpin_work */
7495 spin_lock_irqsave(&dev->event_lock, flags);
7496 if (intel_crtc->unpin_work) {
7497 spin_unlock_irqrestore(&dev->event_lock, flags);
7498 kfree(work);
7499 drm_vblank_put(dev, intel_crtc->pipe);
7500
7501 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7502 return -EBUSY;
7503 }
7504 intel_crtc->unpin_work = work;
7505 spin_unlock_irqrestore(&dev->event_lock, flags);
7506
7507 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7508 flush_workqueue(dev_priv->wq);
7509
7510 ret = i915_mutex_lock_interruptible(dev);
7511 if (ret)
7512 goto cleanup;
7513
7514 /* Reference the objects for the scheduled work. */
7515 drm_gem_object_reference(&work->old_fb_obj->base);
7516 drm_gem_object_reference(&obj->base);
7517
7518 crtc->fb = fb;
7519
7520 work->pending_flip_obj = obj;
7521
7522 work->enable_stall_check = true;
7523
7524 atomic_inc(&intel_crtc->unpin_work_count);
7525 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7526
7527 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7528 if (ret)
7529 goto cleanup_pending;
7530
7531 intel_disable_fbc(dev);
7532 intel_mark_fb_busy(obj, NULL);
7533 mutex_unlock(&dev->struct_mutex);
7534
7535 trace_i915_flip_request(intel_crtc->plane, obj);
7536
7537 return 0;
7538
7539 cleanup_pending:
7540 atomic_dec(&intel_crtc->unpin_work_count);
7541 crtc->fb = old_fb;
7542 drm_gem_object_unreference(&work->old_fb_obj->base);
7543 drm_gem_object_unreference(&obj->base);
7544 mutex_unlock(&dev->struct_mutex);
7545
7546 cleanup:
7547 spin_lock_irqsave(&dev->event_lock, flags);
7548 intel_crtc->unpin_work = NULL;
7549 spin_unlock_irqrestore(&dev->event_lock, flags);
7550
7551 drm_vblank_put(dev, intel_crtc->pipe);
7552 free_work:
7553 kfree(work);
7554
7555 return ret;
7556 }
7557
7558 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7559 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7560 .load_lut = intel_crtc_load_lut,
7561 };
7562
7563 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7564 struct drm_crtc *crtc)
7565 {
7566 struct drm_device *dev;
7567 struct drm_crtc *tmp;
7568 int crtc_mask = 1;
7569
7570 WARN(!crtc, "checking null crtc?\n");
7571
7572 dev = crtc->dev;
7573
7574 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7575 if (tmp == crtc)
7576 break;
7577 crtc_mask <<= 1;
7578 }
7579
7580 if (encoder->possible_crtcs & crtc_mask)
7581 return true;
7582 return false;
7583 }
7584
7585 /**
7586 * intel_modeset_update_staged_output_state
7587 *
7588 * Updates the staged output configuration state, e.g. after we've read out the
7589 * current hw state.
7590 */
7591 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7592 {
7593 struct intel_encoder *encoder;
7594 struct intel_connector *connector;
7595
7596 list_for_each_entry(connector, &dev->mode_config.connector_list,
7597 base.head) {
7598 connector->new_encoder =
7599 to_intel_encoder(connector->base.encoder);
7600 }
7601
7602 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7603 base.head) {
7604 encoder->new_crtc =
7605 to_intel_crtc(encoder->base.crtc);
7606 }
7607 }
7608
7609 /**
7610 * intel_modeset_commit_output_state
7611 *
7612 * This function copies the stage display pipe configuration to the real one.
7613 */
7614 static void intel_modeset_commit_output_state(struct drm_device *dev)
7615 {
7616 struct intel_encoder *encoder;
7617 struct intel_connector *connector;
7618
7619 list_for_each_entry(connector, &dev->mode_config.connector_list,
7620 base.head) {
7621 connector->base.encoder = &connector->new_encoder->base;
7622 }
7623
7624 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7625 base.head) {
7626 encoder->base.crtc = &encoder->new_crtc->base;
7627 }
7628 }
7629
7630 static void
7631 connected_sink_compute_bpp(struct intel_connector * connector,
7632 struct intel_crtc_config *pipe_config)
7633 {
7634 int bpp = pipe_config->pipe_bpp;
7635
7636 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7637 connector->base.base.id,
7638 drm_get_connector_name(&connector->base));
7639
7640 /* Don't use an invalid EDID bpc value */
7641 if (connector->base.display_info.bpc &&
7642 connector->base.display_info.bpc * 3 < bpp) {
7643 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7644 bpp, connector->base.display_info.bpc*3);
7645 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7646 }
7647
7648 /* Clamp bpp to 8 on screens without EDID 1.4 */
7649 if (connector->base.display_info.bpc == 0 && bpp > 24) {
7650 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7651 bpp);
7652 pipe_config->pipe_bpp = 24;
7653 }
7654 }
7655
7656 static int
7657 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7658 struct drm_framebuffer *fb,
7659 struct intel_crtc_config *pipe_config)
7660 {
7661 struct drm_device *dev = crtc->base.dev;
7662 struct intel_connector *connector;
7663 int bpp;
7664
7665 switch (fb->pixel_format) {
7666 case DRM_FORMAT_C8:
7667 bpp = 8*3; /* since we go through a colormap */
7668 break;
7669 case DRM_FORMAT_XRGB1555:
7670 case DRM_FORMAT_ARGB1555:
7671 /* checked in intel_framebuffer_init already */
7672 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7673 return -EINVAL;
7674 case DRM_FORMAT_RGB565:
7675 bpp = 6*3; /* min is 18bpp */
7676 break;
7677 case DRM_FORMAT_XBGR8888:
7678 case DRM_FORMAT_ABGR8888:
7679 /* checked in intel_framebuffer_init already */
7680 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7681 return -EINVAL;
7682 case DRM_FORMAT_XRGB8888:
7683 case DRM_FORMAT_ARGB8888:
7684 bpp = 8*3;
7685 break;
7686 case DRM_FORMAT_XRGB2101010:
7687 case DRM_FORMAT_ARGB2101010:
7688 case DRM_FORMAT_XBGR2101010:
7689 case DRM_FORMAT_ABGR2101010:
7690 /* checked in intel_framebuffer_init already */
7691 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7692 return -EINVAL;
7693 bpp = 10*3;
7694 break;
7695 /* TODO: gen4+ supports 16 bpc floating point, too. */
7696 default:
7697 DRM_DEBUG_KMS("unsupported depth\n");
7698 return -EINVAL;
7699 }
7700
7701 pipe_config->pipe_bpp = bpp;
7702
7703 /* Clamp display bpp to EDID value */
7704 list_for_each_entry(connector, &dev->mode_config.connector_list,
7705 base.head) {
7706 if (!connector->new_encoder ||
7707 connector->new_encoder->new_crtc != crtc)
7708 continue;
7709
7710 connected_sink_compute_bpp(connector, pipe_config);
7711 }
7712
7713 return bpp;
7714 }
7715
7716 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7717 struct intel_crtc_config *pipe_config,
7718 const char *context)
7719 {
7720 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7721 context, pipe_name(crtc->pipe));
7722
7723 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7724 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7725 pipe_config->pipe_bpp, pipe_config->dither);
7726 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7727 pipe_config->has_pch_encoder,
7728 pipe_config->fdi_lanes,
7729 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7730 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7731 pipe_config->fdi_m_n.tu);
7732 DRM_DEBUG_KMS("requested mode:\n");
7733 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7734 DRM_DEBUG_KMS("adjusted mode:\n");
7735 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7736 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7737 pipe_config->gmch_pfit.control,
7738 pipe_config->gmch_pfit.pgm_ratios,
7739 pipe_config->gmch_pfit.lvds_border_bits);
7740 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7741 pipe_config->pch_pfit.pos,
7742 pipe_config->pch_pfit.size);
7743 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7744 }
7745
7746 static bool check_encoder_cloning(struct drm_crtc *crtc)
7747 {
7748 int num_encoders = 0;
7749 bool uncloneable_encoders = false;
7750 struct intel_encoder *encoder;
7751
7752 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
7753 base.head) {
7754 if (&encoder->new_crtc->base != crtc)
7755 continue;
7756
7757 num_encoders++;
7758 if (!encoder->cloneable)
7759 uncloneable_encoders = true;
7760 }
7761
7762 return !(num_encoders > 1 && uncloneable_encoders);
7763 }
7764
7765 static struct intel_crtc_config *
7766 intel_modeset_pipe_config(struct drm_crtc *crtc,
7767 struct drm_framebuffer *fb,
7768 struct drm_display_mode *mode)
7769 {
7770 struct drm_device *dev = crtc->dev;
7771 struct drm_encoder_helper_funcs *encoder_funcs;
7772 struct intel_encoder *encoder;
7773 struct intel_crtc_config *pipe_config;
7774 int plane_bpp, ret = -EINVAL;
7775 bool retry = true;
7776
7777 if (!check_encoder_cloning(crtc)) {
7778 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
7779 return ERR_PTR(-EINVAL);
7780 }
7781
7782 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7783 if (!pipe_config)
7784 return ERR_PTR(-ENOMEM);
7785
7786 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7787 drm_mode_copy(&pipe_config->requested_mode, mode);
7788 pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
7789 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7790
7791 /* Compute a starting value for pipe_config->pipe_bpp taking the source
7792 * plane pixel format and any sink constraints into account. Returns the
7793 * source plane bpp so that dithering can be selected on mismatches
7794 * after encoders and crtc also have had their say. */
7795 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
7796 fb, pipe_config);
7797 if (plane_bpp < 0)
7798 goto fail;
7799
7800 encoder_retry:
7801 /* Ensure the port clock defaults are reset when retrying. */
7802 pipe_config->port_clock = 0;
7803 pipe_config->pixel_multiplier = 1;
7804
7805 /* Pass our mode to the connectors and the CRTC to give them a chance to
7806 * adjust it according to limitations or connector properties, and also
7807 * a chance to reject the mode entirely.
7808 */
7809 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7810 base.head) {
7811
7812 if (&encoder->new_crtc->base != crtc)
7813 continue;
7814
7815 if (encoder->compute_config) {
7816 if (!(encoder->compute_config(encoder, pipe_config))) {
7817 DRM_DEBUG_KMS("Encoder config failure\n");
7818 goto fail;
7819 }
7820
7821 continue;
7822 }
7823
7824 encoder_funcs = encoder->base.helper_private;
7825 if (!(encoder_funcs->mode_fixup(&encoder->base,
7826 &pipe_config->requested_mode,
7827 &pipe_config->adjusted_mode))) {
7828 DRM_DEBUG_KMS("Encoder fixup failed\n");
7829 goto fail;
7830 }
7831 }
7832
7833 /* Set default port clock if not overwritten by the encoder. Needs to be
7834 * done afterwards in case the encoder adjusts the mode. */
7835 if (!pipe_config->port_clock)
7836 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
7837
7838 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
7839 if (ret < 0) {
7840 DRM_DEBUG_KMS("CRTC fixup failed\n");
7841 goto fail;
7842 }
7843
7844 if (ret == RETRY) {
7845 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7846 ret = -EINVAL;
7847 goto fail;
7848 }
7849
7850 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7851 retry = false;
7852 goto encoder_retry;
7853 }
7854
7855 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7856 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7857 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7858
7859 return pipe_config;
7860 fail:
7861 kfree(pipe_config);
7862 return ERR_PTR(ret);
7863 }
7864
7865 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7866 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7867 static void
7868 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7869 unsigned *prepare_pipes, unsigned *disable_pipes)
7870 {
7871 struct intel_crtc *intel_crtc;
7872 struct drm_device *dev = crtc->dev;
7873 struct intel_encoder *encoder;
7874 struct intel_connector *connector;
7875 struct drm_crtc *tmp_crtc;
7876
7877 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7878
7879 /* Check which crtcs have changed outputs connected to them, these need
7880 * to be part of the prepare_pipes mask. We don't (yet) support global
7881 * modeset across multiple crtcs, so modeset_pipes will only have one
7882 * bit set at most. */
7883 list_for_each_entry(connector, &dev->mode_config.connector_list,
7884 base.head) {
7885 if (connector->base.encoder == &connector->new_encoder->base)
7886 continue;
7887
7888 if (connector->base.encoder) {
7889 tmp_crtc = connector->base.encoder->crtc;
7890
7891 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7892 }
7893
7894 if (connector->new_encoder)
7895 *prepare_pipes |=
7896 1 << connector->new_encoder->new_crtc->pipe;
7897 }
7898
7899 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7900 base.head) {
7901 if (encoder->base.crtc == &encoder->new_crtc->base)
7902 continue;
7903
7904 if (encoder->base.crtc) {
7905 tmp_crtc = encoder->base.crtc;
7906
7907 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7908 }
7909
7910 if (encoder->new_crtc)
7911 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7912 }
7913
7914 /* Check for any pipes that will be fully disabled ... */
7915 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7916 base.head) {
7917 bool used = false;
7918
7919 /* Don't try to disable disabled crtcs. */
7920 if (!intel_crtc->base.enabled)
7921 continue;
7922
7923 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7924 base.head) {
7925 if (encoder->new_crtc == intel_crtc)
7926 used = true;
7927 }
7928
7929 if (!used)
7930 *disable_pipes |= 1 << intel_crtc->pipe;
7931 }
7932
7933
7934 /* set_mode is also used to update properties on life display pipes. */
7935 intel_crtc = to_intel_crtc(crtc);
7936 if (crtc->enabled)
7937 *prepare_pipes |= 1 << intel_crtc->pipe;
7938
7939 /*
7940 * For simplicity do a full modeset on any pipe where the output routing
7941 * changed. We could be more clever, but that would require us to be
7942 * more careful with calling the relevant encoder->mode_set functions.
7943 */
7944 if (*prepare_pipes)
7945 *modeset_pipes = *prepare_pipes;
7946
7947 /* ... and mask these out. */
7948 *modeset_pipes &= ~(*disable_pipes);
7949 *prepare_pipes &= ~(*disable_pipes);
7950
7951 /*
7952 * HACK: We don't (yet) fully support global modesets. intel_set_config
7953 * obies this rule, but the modeset restore mode of
7954 * intel_modeset_setup_hw_state does not.
7955 */
7956 *modeset_pipes &= 1 << intel_crtc->pipe;
7957 *prepare_pipes &= 1 << intel_crtc->pipe;
7958
7959 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7960 *modeset_pipes, *prepare_pipes, *disable_pipes);
7961 }
7962
7963 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7964 {
7965 struct drm_encoder *encoder;
7966 struct drm_device *dev = crtc->dev;
7967
7968 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7969 if (encoder->crtc == crtc)
7970 return true;
7971
7972 return false;
7973 }
7974
7975 static void
7976 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7977 {
7978 struct intel_encoder *intel_encoder;
7979 struct intel_crtc *intel_crtc;
7980 struct drm_connector *connector;
7981
7982 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7983 base.head) {
7984 if (!intel_encoder->base.crtc)
7985 continue;
7986
7987 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7988
7989 if (prepare_pipes & (1 << intel_crtc->pipe))
7990 intel_encoder->connectors_active = false;
7991 }
7992
7993 intel_modeset_commit_output_state(dev);
7994
7995 /* Update computed state. */
7996 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7997 base.head) {
7998 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7999 }
8000
8001 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8002 if (!connector->encoder || !connector->encoder->crtc)
8003 continue;
8004
8005 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8006
8007 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8008 struct drm_property *dpms_property =
8009 dev->mode_config.dpms_property;
8010
8011 connector->dpms = DRM_MODE_DPMS_ON;
8012 drm_object_property_set_value(&connector->base,
8013 dpms_property,
8014 DRM_MODE_DPMS_ON);
8015
8016 intel_encoder = to_intel_encoder(connector->encoder);
8017 intel_encoder->connectors_active = true;
8018 }
8019 }
8020
8021 }
8022
8023 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8024 list_for_each_entry((intel_crtc), \
8025 &(dev)->mode_config.crtc_list, \
8026 base.head) \
8027 if (mask & (1 <<(intel_crtc)->pipe))
8028
8029 static bool
8030 intel_pipe_config_compare(struct drm_device *dev,
8031 struct intel_crtc_config *current_config,
8032 struct intel_crtc_config *pipe_config)
8033 {
8034 #define PIPE_CONF_CHECK_X(name) \
8035 if (current_config->name != pipe_config->name) { \
8036 DRM_ERROR("mismatch in " #name " " \
8037 "(expected 0x%08x, found 0x%08x)\n", \
8038 current_config->name, \
8039 pipe_config->name); \
8040 return false; \
8041 }
8042
8043 #define PIPE_CONF_CHECK_I(name) \
8044 if (current_config->name != pipe_config->name) { \
8045 DRM_ERROR("mismatch in " #name " " \
8046 "(expected %i, found %i)\n", \
8047 current_config->name, \
8048 pipe_config->name); \
8049 return false; \
8050 }
8051
8052 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8053 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8054 DRM_ERROR("mismatch in " #name " " \
8055 "(expected %i, found %i)\n", \
8056 current_config->name & (mask), \
8057 pipe_config->name & (mask)); \
8058 return false; \
8059 }
8060
8061 #define PIPE_CONF_QUIRK(quirk) \
8062 ((current_config->quirks | pipe_config->quirks) & (quirk))
8063
8064 PIPE_CONF_CHECK_I(cpu_transcoder);
8065
8066 PIPE_CONF_CHECK_I(has_pch_encoder);
8067 PIPE_CONF_CHECK_I(fdi_lanes);
8068 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8069 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8070 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8071 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8072 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8073
8074 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8075 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8076 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8077 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8078 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8079 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8080
8081 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8082 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8083 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8084 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8085 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8086 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8087
8088 if (!HAS_PCH_SPLIT(dev))
8089 PIPE_CONF_CHECK_I(pixel_multiplier);
8090
8091 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8092 DRM_MODE_FLAG_INTERLACE);
8093
8094 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8095 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8096 DRM_MODE_FLAG_PHSYNC);
8097 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8098 DRM_MODE_FLAG_NHSYNC);
8099 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8100 DRM_MODE_FLAG_PVSYNC);
8101 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8102 DRM_MODE_FLAG_NVSYNC);
8103 }
8104
8105 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8106 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8107
8108 PIPE_CONF_CHECK_I(gmch_pfit.control);
8109 /* pfit ratios are autocomputed by the hw on gen4+ */
8110 if (INTEL_INFO(dev)->gen < 4)
8111 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8112 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8113 PIPE_CONF_CHECK_I(pch_pfit.pos);
8114 PIPE_CONF_CHECK_I(pch_pfit.size);
8115
8116 PIPE_CONF_CHECK_I(ips_enabled);
8117
8118 PIPE_CONF_CHECK_I(shared_dpll);
8119 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8120 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8121 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8122 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8123
8124 #undef PIPE_CONF_CHECK_X
8125 #undef PIPE_CONF_CHECK_I
8126 #undef PIPE_CONF_CHECK_FLAGS
8127 #undef PIPE_CONF_QUIRK
8128
8129 return true;
8130 }
8131
8132 static void
8133 check_connector_state(struct drm_device *dev)
8134 {
8135 struct intel_connector *connector;
8136
8137 list_for_each_entry(connector, &dev->mode_config.connector_list,
8138 base.head) {
8139 /* This also checks the encoder/connector hw state with the
8140 * ->get_hw_state callbacks. */
8141 intel_connector_check_state(connector);
8142
8143 WARN(&connector->new_encoder->base != connector->base.encoder,
8144 "connector's staged encoder doesn't match current encoder\n");
8145 }
8146 }
8147
8148 static void
8149 check_encoder_state(struct drm_device *dev)
8150 {
8151 struct intel_encoder *encoder;
8152 struct intel_connector *connector;
8153
8154 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8155 base.head) {
8156 bool enabled = false;
8157 bool active = false;
8158 enum pipe pipe, tracked_pipe;
8159
8160 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8161 encoder->base.base.id,
8162 drm_get_encoder_name(&encoder->base));
8163
8164 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8165 "encoder's stage crtc doesn't match current crtc\n");
8166 WARN(encoder->connectors_active && !encoder->base.crtc,
8167 "encoder's active_connectors set, but no crtc\n");
8168
8169 list_for_each_entry(connector, &dev->mode_config.connector_list,
8170 base.head) {
8171 if (connector->base.encoder != &encoder->base)
8172 continue;
8173 enabled = true;
8174 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8175 active = true;
8176 }
8177 WARN(!!encoder->base.crtc != enabled,
8178 "encoder's enabled state mismatch "
8179 "(expected %i, found %i)\n",
8180 !!encoder->base.crtc, enabled);
8181 WARN(active && !encoder->base.crtc,
8182 "active encoder with no crtc\n");
8183
8184 WARN(encoder->connectors_active != active,
8185 "encoder's computed active state doesn't match tracked active state "
8186 "(expected %i, found %i)\n", active, encoder->connectors_active);
8187
8188 active = encoder->get_hw_state(encoder, &pipe);
8189 WARN(active != encoder->connectors_active,
8190 "encoder's hw state doesn't match sw tracking "
8191 "(expected %i, found %i)\n",
8192 encoder->connectors_active, active);
8193
8194 if (!encoder->base.crtc)
8195 continue;
8196
8197 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8198 WARN(active && pipe != tracked_pipe,
8199 "active encoder's pipe doesn't match"
8200 "(expected %i, found %i)\n",
8201 tracked_pipe, pipe);
8202
8203 }
8204 }
8205
8206 static void
8207 check_crtc_state(struct drm_device *dev)
8208 {
8209 drm_i915_private_t *dev_priv = dev->dev_private;
8210 struct intel_crtc *crtc;
8211 struct intel_encoder *encoder;
8212 struct intel_crtc_config pipe_config;
8213
8214 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8215 base.head) {
8216 bool enabled = false;
8217 bool active = false;
8218
8219 memset(&pipe_config, 0, sizeof(pipe_config));
8220
8221 DRM_DEBUG_KMS("[CRTC:%d]\n",
8222 crtc->base.base.id);
8223
8224 WARN(crtc->active && !crtc->base.enabled,
8225 "active crtc, but not enabled in sw tracking\n");
8226
8227 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8228 base.head) {
8229 if (encoder->base.crtc != &crtc->base)
8230 continue;
8231 enabled = true;
8232 if (encoder->connectors_active)
8233 active = true;
8234 }
8235
8236 WARN(active != crtc->active,
8237 "crtc's computed active state doesn't match tracked active state "
8238 "(expected %i, found %i)\n", active, crtc->active);
8239 WARN(enabled != crtc->base.enabled,
8240 "crtc's computed enabled state doesn't match tracked enabled state "
8241 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8242
8243 active = dev_priv->display.get_pipe_config(crtc,
8244 &pipe_config);
8245
8246 /* hw state is inconsistent with the pipe A quirk */
8247 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8248 active = crtc->active;
8249
8250 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8251 base.head) {
8252 if (encoder->base.crtc != &crtc->base)
8253 continue;
8254 if (encoder->get_config)
8255 encoder->get_config(encoder, &pipe_config);
8256 }
8257
8258 WARN(crtc->active != active,
8259 "crtc active state doesn't match with hw state "
8260 "(expected %i, found %i)\n", crtc->active, active);
8261
8262 if (active &&
8263 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8264 WARN(1, "pipe state doesn't match!\n");
8265 intel_dump_pipe_config(crtc, &pipe_config,
8266 "[hw state]");
8267 intel_dump_pipe_config(crtc, &crtc->config,
8268 "[sw state]");
8269 }
8270 }
8271 }
8272
8273 static void
8274 check_shared_dpll_state(struct drm_device *dev)
8275 {
8276 drm_i915_private_t *dev_priv = dev->dev_private;
8277 struct intel_crtc *crtc;
8278 struct intel_dpll_hw_state dpll_hw_state;
8279 int i;
8280
8281 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8282 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8283 int enabled_crtcs = 0, active_crtcs = 0;
8284 bool active;
8285
8286 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8287
8288 DRM_DEBUG_KMS("%s\n", pll->name);
8289
8290 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8291
8292 WARN(pll->active > pll->refcount,
8293 "more active pll users than references: %i vs %i\n",
8294 pll->active, pll->refcount);
8295 WARN(pll->active && !pll->on,
8296 "pll in active use but not on in sw tracking\n");
8297 WARN(pll->on != active,
8298 "pll on state mismatch (expected %i, found %i)\n",
8299 pll->on, active);
8300
8301 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8302 base.head) {
8303 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8304 enabled_crtcs++;
8305 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8306 active_crtcs++;
8307 }
8308 WARN(pll->active != active_crtcs,
8309 "pll active crtcs mismatch (expected %i, found %i)\n",
8310 pll->active, active_crtcs);
8311 WARN(pll->refcount != enabled_crtcs,
8312 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8313 pll->refcount, enabled_crtcs);
8314
8315 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8316 sizeof(dpll_hw_state)),
8317 "pll hw state mismatch\n");
8318 }
8319 }
8320
8321 void
8322 intel_modeset_check_state(struct drm_device *dev)
8323 {
8324 check_connector_state(dev);
8325 check_encoder_state(dev);
8326 check_crtc_state(dev);
8327 check_shared_dpll_state(dev);
8328 }
8329
8330 static int __intel_set_mode(struct drm_crtc *crtc,
8331 struct drm_display_mode *mode,
8332 int x, int y, struct drm_framebuffer *fb)
8333 {
8334 struct drm_device *dev = crtc->dev;
8335 drm_i915_private_t *dev_priv = dev->dev_private;
8336 struct drm_display_mode *saved_mode, *saved_hwmode;
8337 struct intel_crtc_config *pipe_config = NULL;
8338 struct intel_crtc *intel_crtc;
8339 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8340 int ret = 0;
8341
8342 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8343 if (!saved_mode)
8344 return -ENOMEM;
8345 saved_hwmode = saved_mode + 1;
8346
8347 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8348 &prepare_pipes, &disable_pipes);
8349
8350 *saved_hwmode = crtc->hwmode;
8351 *saved_mode = crtc->mode;
8352
8353 /* Hack: Because we don't (yet) support global modeset on multiple
8354 * crtcs, we don't keep track of the new mode for more than one crtc.
8355 * Hence simply check whether any bit is set in modeset_pipes in all the
8356 * pieces of code that are not yet converted to deal with mutliple crtcs
8357 * changing their mode at the same time. */
8358 if (modeset_pipes) {
8359 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8360 if (IS_ERR(pipe_config)) {
8361 ret = PTR_ERR(pipe_config);
8362 pipe_config = NULL;
8363
8364 goto out;
8365 }
8366 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8367 "[modeset]");
8368 }
8369
8370 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8371 intel_crtc_disable(&intel_crtc->base);
8372
8373 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8374 if (intel_crtc->base.enabled)
8375 dev_priv->display.crtc_disable(&intel_crtc->base);
8376 }
8377
8378 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8379 * to set it here already despite that we pass it down the callchain.
8380 */
8381 if (modeset_pipes) {
8382 crtc->mode = *mode;
8383 /* mode_set/enable/disable functions rely on a correct pipe
8384 * config. */
8385 to_intel_crtc(crtc)->config = *pipe_config;
8386 }
8387
8388 /* Only after disabling all output pipelines that will be changed can we
8389 * update the the output configuration. */
8390 intel_modeset_update_state(dev, prepare_pipes);
8391
8392 if (dev_priv->display.modeset_global_resources)
8393 dev_priv->display.modeset_global_resources(dev);
8394
8395 /* Set up the DPLL and any encoders state that needs to adjust or depend
8396 * on the DPLL.
8397 */
8398 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8399 ret = intel_crtc_mode_set(&intel_crtc->base,
8400 x, y, fb);
8401 if (ret)
8402 goto done;
8403 }
8404
8405 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8406 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8407 dev_priv->display.crtc_enable(&intel_crtc->base);
8408
8409 if (modeset_pipes) {
8410 /* Store real post-adjustment hardware mode. */
8411 crtc->hwmode = pipe_config->adjusted_mode;
8412
8413 /* Calculate and store various constants which
8414 * are later needed by vblank and swap-completion
8415 * timestamping. They are derived from true hwmode.
8416 */
8417 drm_calc_timestamping_constants(crtc);
8418 }
8419
8420 /* FIXME: add subpixel order */
8421 done:
8422 if (ret && crtc->enabled) {
8423 crtc->hwmode = *saved_hwmode;
8424 crtc->mode = *saved_mode;
8425 }
8426
8427 out:
8428 kfree(pipe_config);
8429 kfree(saved_mode);
8430 return ret;
8431 }
8432
8433 int intel_set_mode(struct drm_crtc *crtc,
8434 struct drm_display_mode *mode,
8435 int x, int y, struct drm_framebuffer *fb)
8436 {
8437 int ret;
8438
8439 ret = __intel_set_mode(crtc, mode, x, y, fb);
8440
8441 if (ret == 0)
8442 intel_modeset_check_state(crtc->dev);
8443
8444 return ret;
8445 }
8446
8447 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8448 {
8449 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8450 }
8451
8452 #undef for_each_intel_crtc_masked
8453
8454 static void intel_set_config_free(struct intel_set_config *config)
8455 {
8456 if (!config)
8457 return;
8458
8459 kfree(config->save_connector_encoders);
8460 kfree(config->save_encoder_crtcs);
8461 kfree(config);
8462 }
8463
8464 static int intel_set_config_save_state(struct drm_device *dev,
8465 struct intel_set_config *config)
8466 {
8467 struct drm_encoder *encoder;
8468 struct drm_connector *connector;
8469 int count;
8470
8471 config->save_encoder_crtcs =
8472 kcalloc(dev->mode_config.num_encoder,
8473 sizeof(struct drm_crtc *), GFP_KERNEL);
8474 if (!config->save_encoder_crtcs)
8475 return -ENOMEM;
8476
8477 config->save_connector_encoders =
8478 kcalloc(dev->mode_config.num_connector,
8479 sizeof(struct drm_encoder *), GFP_KERNEL);
8480 if (!config->save_connector_encoders)
8481 return -ENOMEM;
8482
8483 /* Copy data. Note that driver private data is not affected.
8484 * Should anything bad happen only the expected state is
8485 * restored, not the drivers personal bookkeeping.
8486 */
8487 count = 0;
8488 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8489 config->save_encoder_crtcs[count++] = encoder->crtc;
8490 }
8491
8492 count = 0;
8493 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8494 config->save_connector_encoders[count++] = connector->encoder;
8495 }
8496
8497 return 0;
8498 }
8499
8500 static void intel_set_config_restore_state(struct drm_device *dev,
8501 struct intel_set_config *config)
8502 {
8503 struct intel_encoder *encoder;
8504 struct intel_connector *connector;
8505 int count;
8506
8507 count = 0;
8508 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8509 encoder->new_crtc =
8510 to_intel_crtc(config->save_encoder_crtcs[count++]);
8511 }
8512
8513 count = 0;
8514 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8515 connector->new_encoder =
8516 to_intel_encoder(config->save_connector_encoders[count++]);
8517 }
8518 }
8519
8520 static bool
8521 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8522 int num_connectors)
8523 {
8524 int i;
8525
8526 for (i = 0; i < num_connectors; i++)
8527 if (connectors[i].encoder &&
8528 connectors[i].encoder->crtc == crtc &&
8529 connectors[i].dpms != DRM_MODE_DPMS_ON)
8530 return true;
8531
8532 return false;
8533 }
8534
8535 static void
8536 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8537 struct intel_set_config *config)
8538 {
8539
8540 /* We should be able to check here if the fb has the same properties
8541 * and then just flip_or_move it */
8542 if (set->connectors != NULL &&
8543 is_crtc_connector_off(set->crtc, *set->connectors,
8544 set->num_connectors)) {
8545 config->mode_changed = true;
8546 } else if (set->crtc->fb != set->fb) {
8547 /* If we have no fb then treat it as a full mode set */
8548 if (set->crtc->fb == NULL) {
8549 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8550 config->mode_changed = true;
8551 } else if (set->fb == NULL) {
8552 config->mode_changed = true;
8553 } else if (set->fb->pixel_format !=
8554 set->crtc->fb->pixel_format) {
8555 config->mode_changed = true;
8556 } else {
8557 config->fb_changed = true;
8558 }
8559 }
8560
8561 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8562 config->fb_changed = true;
8563
8564 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8565 DRM_DEBUG_KMS("modes are different, full mode set\n");
8566 drm_mode_debug_printmodeline(&set->crtc->mode);
8567 drm_mode_debug_printmodeline(set->mode);
8568 config->mode_changed = true;
8569 }
8570 }
8571
8572 static int
8573 intel_modeset_stage_output_state(struct drm_device *dev,
8574 struct drm_mode_set *set,
8575 struct intel_set_config *config)
8576 {
8577 struct drm_crtc *new_crtc;
8578 struct intel_connector *connector;
8579 struct intel_encoder *encoder;
8580 int count, ro;
8581
8582 /* The upper layers ensure that we either disable a crtc or have a list
8583 * of connectors. For paranoia, double-check this. */
8584 WARN_ON(!set->fb && (set->num_connectors != 0));
8585 WARN_ON(set->fb && (set->num_connectors == 0));
8586
8587 count = 0;
8588 list_for_each_entry(connector, &dev->mode_config.connector_list,
8589 base.head) {
8590 /* Otherwise traverse passed in connector list and get encoders
8591 * for them. */
8592 for (ro = 0; ro < set->num_connectors; ro++) {
8593 if (set->connectors[ro] == &connector->base) {
8594 connector->new_encoder = connector->encoder;
8595 break;
8596 }
8597 }
8598
8599 /* If we disable the crtc, disable all its connectors. Also, if
8600 * the connector is on the changing crtc but not on the new
8601 * connector list, disable it. */
8602 if ((!set->fb || ro == set->num_connectors) &&
8603 connector->base.encoder &&
8604 connector->base.encoder->crtc == set->crtc) {
8605 connector->new_encoder = NULL;
8606
8607 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8608 connector->base.base.id,
8609 drm_get_connector_name(&connector->base));
8610 }
8611
8612
8613 if (&connector->new_encoder->base != connector->base.encoder) {
8614 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8615 config->mode_changed = true;
8616 }
8617 }
8618 /* connector->new_encoder is now updated for all connectors. */
8619
8620 /* Update crtc of enabled connectors. */
8621 count = 0;
8622 list_for_each_entry(connector, &dev->mode_config.connector_list,
8623 base.head) {
8624 if (!connector->new_encoder)
8625 continue;
8626
8627 new_crtc = connector->new_encoder->base.crtc;
8628
8629 for (ro = 0; ro < set->num_connectors; ro++) {
8630 if (set->connectors[ro] == &connector->base)
8631 new_crtc = set->crtc;
8632 }
8633
8634 /* Make sure the new CRTC will work with the encoder */
8635 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8636 new_crtc)) {
8637 return -EINVAL;
8638 }
8639 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8640
8641 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8642 connector->base.base.id,
8643 drm_get_connector_name(&connector->base),
8644 new_crtc->base.id);
8645 }
8646
8647 /* Check for any encoders that needs to be disabled. */
8648 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8649 base.head) {
8650 list_for_each_entry(connector,
8651 &dev->mode_config.connector_list,
8652 base.head) {
8653 if (connector->new_encoder == encoder) {
8654 WARN_ON(!connector->new_encoder->new_crtc);
8655
8656 goto next_encoder;
8657 }
8658 }
8659 encoder->new_crtc = NULL;
8660 next_encoder:
8661 /* Only now check for crtc changes so we don't miss encoders
8662 * that will be disabled. */
8663 if (&encoder->new_crtc->base != encoder->base.crtc) {
8664 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8665 config->mode_changed = true;
8666 }
8667 }
8668 /* Now we've also updated encoder->new_crtc for all encoders. */
8669
8670 return 0;
8671 }
8672
8673 static int intel_crtc_set_config(struct drm_mode_set *set)
8674 {
8675 struct drm_device *dev;
8676 struct drm_mode_set save_set;
8677 struct intel_set_config *config;
8678 int ret;
8679
8680 BUG_ON(!set);
8681 BUG_ON(!set->crtc);
8682 BUG_ON(!set->crtc->helper_private);
8683
8684 /* Enforce sane interface api - has been abused by the fb helper. */
8685 BUG_ON(!set->mode && set->fb);
8686 BUG_ON(set->fb && set->num_connectors == 0);
8687
8688 if (set->fb) {
8689 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8690 set->crtc->base.id, set->fb->base.id,
8691 (int)set->num_connectors, set->x, set->y);
8692 } else {
8693 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8694 }
8695
8696 dev = set->crtc->dev;
8697
8698 ret = -ENOMEM;
8699 config = kzalloc(sizeof(*config), GFP_KERNEL);
8700 if (!config)
8701 goto out_config;
8702
8703 ret = intel_set_config_save_state(dev, config);
8704 if (ret)
8705 goto out_config;
8706
8707 save_set.crtc = set->crtc;
8708 save_set.mode = &set->crtc->mode;
8709 save_set.x = set->crtc->x;
8710 save_set.y = set->crtc->y;
8711 save_set.fb = set->crtc->fb;
8712
8713 /* Compute whether we need a full modeset, only an fb base update or no
8714 * change at all. In the future we might also check whether only the
8715 * mode changed, e.g. for LVDS where we only change the panel fitter in
8716 * such cases. */
8717 intel_set_config_compute_mode_changes(set, config);
8718
8719 ret = intel_modeset_stage_output_state(dev, set, config);
8720 if (ret)
8721 goto fail;
8722
8723 if (config->mode_changed) {
8724 ret = intel_set_mode(set->crtc, set->mode,
8725 set->x, set->y, set->fb);
8726 } else if (config->fb_changed) {
8727 intel_crtc_wait_for_pending_flips(set->crtc);
8728
8729 ret = intel_pipe_set_base(set->crtc,
8730 set->x, set->y, set->fb);
8731 }
8732
8733 if (ret) {
8734 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
8735 set->crtc->base.id, ret);
8736 fail:
8737 intel_set_config_restore_state(dev, config);
8738
8739 /* Try to restore the config */
8740 if (config->mode_changed &&
8741 intel_set_mode(save_set.crtc, save_set.mode,
8742 save_set.x, save_set.y, save_set.fb))
8743 DRM_ERROR("failed to restore config after modeset failure\n");
8744 }
8745
8746 out_config:
8747 intel_set_config_free(config);
8748 return ret;
8749 }
8750
8751 static const struct drm_crtc_funcs intel_crtc_funcs = {
8752 .cursor_set = intel_crtc_cursor_set,
8753 .cursor_move = intel_crtc_cursor_move,
8754 .gamma_set = intel_crtc_gamma_set,
8755 .set_config = intel_crtc_set_config,
8756 .destroy = intel_crtc_destroy,
8757 .page_flip = intel_crtc_page_flip,
8758 };
8759
8760 static void intel_cpu_pll_init(struct drm_device *dev)
8761 {
8762 if (HAS_DDI(dev))
8763 intel_ddi_pll_init(dev);
8764 }
8765
8766 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
8767 struct intel_shared_dpll *pll,
8768 struct intel_dpll_hw_state *hw_state)
8769 {
8770 uint32_t val;
8771
8772 val = I915_READ(PCH_DPLL(pll->id));
8773 hw_state->dpll = val;
8774 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
8775 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
8776
8777 return val & DPLL_VCO_ENABLE;
8778 }
8779
8780 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
8781 struct intel_shared_dpll *pll)
8782 {
8783 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
8784 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
8785 }
8786
8787 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
8788 struct intel_shared_dpll *pll)
8789 {
8790 /* PCH refclock must be enabled first */
8791 assert_pch_refclk_enabled(dev_priv);
8792
8793 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8794
8795 /* Wait for the clocks to stabilize. */
8796 POSTING_READ(PCH_DPLL(pll->id));
8797 udelay(150);
8798
8799 /* The pixel multiplier can only be updated once the
8800 * DPLL is enabled and the clocks are stable.
8801 *
8802 * So write it again.
8803 */
8804 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8805 POSTING_READ(PCH_DPLL(pll->id));
8806 udelay(200);
8807 }
8808
8809 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
8810 struct intel_shared_dpll *pll)
8811 {
8812 struct drm_device *dev = dev_priv->dev;
8813 struct intel_crtc *crtc;
8814
8815 /* Make sure no transcoder isn't still depending on us. */
8816 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
8817 if (intel_crtc_to_shared_dpll(crtc) == pll)
8818 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
8819 }
8820
8821 I915_WRITE(PCH_DPLL(pll->id), 0);
8822 POSTING_READ(PCH_DPLL(pll->id));
8823 udelay(200);
8824 }
8825
8826 static char *ibx_pch_dpll_names[] = {
8827 "PCH DPLL A",
8828 "PCH DPLL B",
8829 };
8830
8831 static void ibx_pch_dpll_init(struct drm_device *dev)
8832 {
8833 struct drm_i915_private *dev_priv = dev->dev_private;
8834 int i;
8835
8836 dev_priv->num_shared_dpll = 2;
8837
8838 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8839 dev_priv->shared_dplls[i].id = i;
8840 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
8841 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
8842 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
8843 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
8844 dev_priv->shared_dplls[i].get_hw_state =
8845 ibx_pch_dpll_get_hw_state;
8846 }
8847 }
8848
8849 static void intel_shared_dpll_init(struct drm_device *dev)
8850 {
8851 struct drm_i915_private *dev_priv = dev->dev_private;
8852
8853 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8854 ibx_pch_dpll_init(dev);
8855 else
8856 dev_priv->num_shared_dpll = 0;
8857
8858 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
8859 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
8860 dev_priv->num_shared_dpll);
8861 }
8862
8863 static void intel_crtc_init(struct drm_device *dev, int pipe)
8864 {
8865 drm_i915_private_t *dev_priv = dev->dev_private;
8866 struct intel_crtc *intel_crtc;
8867 int i;
8868
8869 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8870 if (intel_crtc == NULL)
8871 return;
8872
8873 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8874
8875 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8876 for (i = 0; i < 256; i++) {
8877 intel_crtc->lut_r[i] = i;
8878 intel_crtc->lut_g[i] = i;
8879 intel_crtc->lut_b[i] = i;
8880 }
8881
8882 /* Swap pipes & planes for FBC on pre-965 */
8883 intel_crtc->pipe = pipe;
8884 intel_crtc->plane = pipe;
8885 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8886 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8887 intel_crtc->plane = !pipe;
8888 }
8889
8890 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8891 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8892 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8893 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8894
8895 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8896 }
8897
8898 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8899 struct drm_file *file)
8900 {
8901 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8902 struct drm_mode_object *drmmode_obj;
8903 struct intel_crtc *crtc;
8904
8905 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8906 return -ENODEV;
8907
8908 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8909 DRM_MODE_OBJECT_CRTC);
8910
8911 if (!drmmode_obj) {
8912 DRM_ERROR("no such CRTC id\n");
8913 return -EINVAL;
8914 }
8915
8916 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8917 pipe_from_crtc_id->pipe = crtc->pipe;
8918
8919 return 0;
8920 }
8921
8922 static int intel_encoder_clones(struct intel_encoder *encoder)
8923 {
8924 struct drm_device *dev = encoder->base.dev;
8925 struct intel_encoder *source_encoder;
8926 int index_mask = 0;
8927 int entry = 0;
8928
8929 list_for_each_entry(source_encoder,
8930 &dev->mode_config.encoder_list, base.head) {
8931
8932 if (encoder == source_encoder)
8933 index_mask |= (1 << entry);
8934
8935 /* Intel hw has only one MUX where enocoders could be cloned. */
8936 if (encoder->cloneable && source_encoder->cloneable)
8937 index_mask |= (1 << entry);
8938
8939 entry++;
8940 }
8941
8942 return index_mask;
8943 }
8944
8945 static bool has_edp_a(struct drm_device *dev)
8946 {
8947 struct drm_i915_private *dev_priv = dev->dev_private;
8948
8949 if (!IS_MOBILE(dev))
8950 return false;
8951
8952 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8953 return false;
8954
8955 if (IS_GEN5(dev) &&
8956 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8957 return false;
8958
8959 return true;
8960 }
8961
8962 static void intel_setup_outputs(struct drm_device *dev)
8963 {
8964 struct drm_i915_private *dev_priv = dev->dev_private;
8965 struct intel_encoder *encoder;
8966 bool dpd_is_edp = false;
8967
8968 intel_lvds_init(dev);
8969
8970 if (!IS_ULT(dev))
8971 intel_crt_init(dev);
8972
8973 if (HAS_DDI(dev)) {
8974 int found;
8975
8976 /* Haswell uses DDI functions to detect digital outputs */
8977 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8978 /* DDI A only supports eDP */
8979 if (found)
8980 intel_ddi_init(dev, PORT_A);
8981
8982 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8983 * register */
8984 found = I915_READ(SFUSE_STRAP);
8985
8986 if (found & SFUSE_STRAP_DDIB_DETECTED)
8987 intel_ddi_init(dev, PORT_B);
8988 if (found & SFUSE_STRAP_DDIC_DETECTED)
8989 intel_ddi_init(dev, PORT_C);
8990 if (found & SFUSE_STRAP_DDID_DETECTED)
8991 intel_ddi_init(dev, PORT_D);
8992 } else if (HAS_PCH_SPLIT(dev)) {
8993 int found;
8994 dpd_is_edp = intel_dpd_is_edp(dev);
8995
8996 if (has_edp_a(dev))
8997 intel_dp_init(dev, DP_A, PORT_A);
8998
8999 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9000 /* PCH SDVOB multiplex with HDMIB */
9001 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9002 if (!found)
9003 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9004 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9005 intel_dp_init(dev, PCH_DP_B, PORT_B);
9006 }
9007
9008 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9009 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9010
9011 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9012 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9013
9014 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9015 intel_dp_init(dev, PCH_DP_C, PORT_C);
9016
9017 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9018 intel_dp_init(dev, PCH_DP_D, PORT_D);
9019 } else if (IS_VALLEYVIEW(dev)) {
9020 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9021 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9022 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9023
9024 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9025 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9026 PORT_B);
9027 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9028 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9029 }
9030 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9031 bool found = false;
9032
9033 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9034 DRM_DEBUG_KMS("probing SDVOB\n");
9035 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9036 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9037 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9038 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9039 }
9040
9041 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9042 intel_dp_init(dev, DP_B, PORT_B);
9043 }
9044
9045 /* Before G4X SDVOC doesn't have its own detect register */
9046
9047 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9048 DRM_DEBUG_KMS("probing SDVOC\n");
9049 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9050 }
9051
9052 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9053
9054 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9055 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9056 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9057 }
9058 if (SUPPORTS_INTEGRATED_DP(dev))
9059 intel_dp_init(dev, DP_C, PORT_C);
9060 }
9061
9062 if (SUPPORTS_INTEGRATED_DP(dev) &&
9063 (I915_READ(DP_D) & DP_DETECTED))
9064 intel_dp_init(dev, DP_D, PORT_D);
9065 } else if (IS_GEN2(dev))
9066 intel_dvo_init(dev);
9067
9068 if (SUPPORTS_TV(dev))
9069 intel_tv_init(dev);
9070
9071 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9072 encoder->base.possible_crtcs = encoder->crtc_mask;
9073 encoder->base.possible_clones =
9074 intel_encoder_clones(encoder);
9075 }
9076
9077 intel_init_pch_refclk(dev);
9078
9079 drm_helper_move_panel_connectors_to_head(dev);
9080 }
9081
9082 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9083 {
9084 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9085
9086 drm_framebuffer_cleanup(fb);
9087 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9088
9089 kfree(intel_fb);
9090 }
9091
9092 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9093 struct drm_file *file,
9094 unsigned int *handle)
9095 {
9096 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9097 struct drm_i915_gem_object *obj = intel_fb->obj;
9098
9099 return drm_gem_handle_create(file, &obj->base, handle);
9100 }
9101
9102 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9103 .destroy = intel_user_framebuffer_destroy,
9104 .create_handle = intel_user_framebuffer_create_handle,
9105 };
9106
9107 int intel_framebuffer_init(struct drm_device *dev,
9108 struct intel_framebuffer *intel_fb,
9109 struct drm_mode_fb_cmd2 *mode_cmd,
9110 struct drm_i915_gem_object *obj)
9111 {
9112 int pitch_limit;
9113 int ret;
9114
9115 if (obj->tiling_mode == I915_TILING_Y) {
9116 DRM_DEBUG("hardware does not support tiling Y\n");
9117 return -EINVAL;
9118 }
9119
9120 if (mode_cmd->pitches[0] & 63) {
9121 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9122 mode_cmd->pitches[0]);
9123 return -EINVAL;
9124 }
9125
9126 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9127 pitch_limit = 32*1024;
9128 } else if (INTEL_INFO(dev)->gen >= 4) {
9129 if (obj->tiling_mode)
9130 pitch_limit = 16*1024;
9131 else
9132 pitch_limit = 32*1024;
9133 } else if (INTEL_INFO(dev)->gen >= 3) {
9134 if (obj->tiling_mode)
9135 pitch_limit = 8*1024;
9136 else
9137 pitch_limit = 16*1024;
9138 } else
9139 /* XXX DSPC is limited to 4k tiled */
9140 pitch_limit = 8*1024;
9141
9142 if (mode_cmd->pitches[0] > pitch_limit) {
9143 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9144 obj->tiling_mode ? "tiled" : "linear",
9145 mode_cmd->pitches[0], pitch_limit);
9146 return -EINVAL;
9147 }
9148
9149 if (obj->tiling_mode != I915_TILING_NONE &&
9150 mode_cmd->pitches[0] != obj->stride) {
9151 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9152 mode_cmd->pitches[0], obj->stride);
9153 return -EINVAL;
9154 }
9155
9156 /* Reject formats not supported by any plane early. */
9157 switch (mode_cmd->pixel_format) {
9158 case DRM_FORMAT_C8:
9159 case DRM_FORMAT_RGB565:
9160 case DRM_FORMAT_XRGB8888:
9161 case DRM_FORMAT_ARGB8888:
9162 break;
9163 case DRM_FORMAT_XRGB1555:
9164 case DRM_FORMAT_ARGB1555:
9165 if (INTEL_INFO(dev)->gen > 3) {
9166 DRM_DEBUG("unsupported pixel format: %s\n",
9167 drm_get_format_name(mode_cmd->pixel_format));
9168 return -EINVAL;
9169 }
9170 break;
9171 case DRM_FORMAT_XBGR8888:
9172 case DRM_FORMAT_ABGR8888:
9173 case DRM_FORMAT_XRGB2101010:
9174 case DRM_FORMAT_ARGB2101010:
9175 case DRM_FORMAT_XBGR2101010:
9176 case DRM_FORMAT_ABGR2101010:
9177 if (INTEL_INFO(dev)->gen < 4) {
9178 DRM_DEBUG("unsupported pixel format: %s\n",
9179 drm_get_format_name(mode_cmd->pixel_format));
9180 return -EINVAL;
9181 }
9182 break;
9183 case DRM_FORMAT_YUYV:
9184 case DRM_FORMAT_UYVY:
9185 case DRM_FORMAT_YVYU:
9186 case DRM_FORMAT_VYUY:
9187 if (INTEL_INFO(dev)->gen < 5) {
9188 DRM_DEBUG("unsupported pixel format: %s\n",
9189 drm_get_format_name(mode_cmd->pixel_format));
9190 return -EINVAL;
9191 }
9192 break;
9193 default:
9194 DRM_DEBUG("unsupported pixel format: %s\n",
9195 drm_get_format_name(mode_cmd->pixel_format));
9196 return -EINVAL;
9197 }
9198
9199 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9200 if (mode_cmd->offsets[0] != 0)
9201 return -EINVAL;
9202
9203 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9204 intel_fb->obj = obj;
9205
9206 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9207 if (ret) {
9208 DRM_ERROR("framebuffer init failed %d\n", ret);
9209 return ret;
9210 }
9211
9212 return 0;
9213 }
9214
9215 static struct drm_framebuffer *
9216 intel_user_framebuffer_create(struct drm_device *dev,
9217 struct drm_file *filp,
9218 struct drm_mode_fb_cmd2 *mode_cmd)
9219 {
9220 struct drm_i915_gem_object *obj;
9221
9222 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9223 mode_cmd->handles[0]));
9224 if (&obj->base == NULL)
9225 return ERR_PTR(-ENOENT);
9226
9227 return intel_framebuffer_create(dev, mode_cmd, obj);
9228 }
9229
9230 static const struct drm_mode_config_funcs intel_mode_funcs = {
9231 .fb_create = intel_user_framebuffer_create,
9232 .output_poll_changed = intel_fb_output_poll_changed,
9233 };
9234
9235 /* Set up chip specific display functions */
9236 static void intel_init_display(struct drm_device *dev)
9237 {
9238 struct drm_i915_private *dev_priv = dev->dev_private;
9239
9240 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9241 dev_priv->display.find_dpll = g4x_find_best_dpll;
9242 else if (IS_VALLEYVIEW(dev))
9243 dev_priv->display.find_dpll = vlv_find_best_dpll;
9244 else if (IS_PINEVIEW(dev))
9245 dev_priv->display.find_dpll = pnv_find_best_dpll;
9246 else
9247 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9248
9249 if (HAS_DDI(dev)) {
9250 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9251 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9252 dev_priv->display.crtc_enable = haswell_crtc_enable;
9253 dev_priv->display.crtc_disable = haswell_crtc_disable;
9254 dev_priv->display.off = haswell_crtc_off;
9255 dev_priv->display.update_plane = ironlake_update_plane;
9256 } else if (HAS_PCH_SPLIT(dev)) {
9257 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9258 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9259 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9260 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9261 dev_priv->display.off = ironlake_crtc_off;
9262 dev_priv->display.update_plane = ironlake_update_plane;
9263 } else if (IS_VALLEYVIEW(dev)) {
9264 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9265 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9266 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9267 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9268 dev_priv->display.off = i9xx_crtc_off;
9269 dev_priv->display.update_plane = i9xx_update_plane;
9270 } else {
9271 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9272 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9273 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9274 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9275 dev_priv->display.off = i9xx_crtc_off;
9276 dev_priv->display.update_plane = i9xx_update_plane;
9277 }
9278
9279 /* Returns the core display clock speed */
9280 if (IS_VALLEYVIEW(dev))
9281 dev_priv->display.get_display_clock_speed =
9282 valleyview_get_display_clock_speed;
9283 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9284 dev_priv->display.get_display_clock_speed =
9285 i945_get_display_clock_speed;
9286 else if (IS_I915G(dev))
9287 dev_priv->display.get_display_clock_speed =
9288 i915_get_display_clock_speed;
9289 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9290 dev_priv->display.get_display_clock_speed =
9291 i9xx_misc_get_display_clock_speed;
9292 else if (IS_I915GM(dev))
9293 dev_priv->display.get_display_clock_speed =
9294 i915gm_get_display_clock_speed;
9295 else if (IS_I865G(dev))
9296 dev_priv->display.get_display_clock_speed =
9297 i865_get_display_clock_speed;
9298 else if (IS_I85X(dev))
9299 dev_priv->display.get_display_clock_speed =
9300 i855_get_display_clock_speed;
9301 else /* 852, 830 */
9302 dev_priv->display.get_display_clock_speed =
9303 i830_get_display_clock_speed;
9304
9305 if (HAS_PCH_SPLIT(dev)) {
9306 if (IS_GEN5(dev)) {
9307 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9308 dev_priv->display.write_eld = ironlake_write_eld;
9309 } else if (IS_GEN6(dev)) {
9310 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9311 dev_priv->display.write_eld = ironlake_write_eld;
9312 } else if (IS_IVYBRIDGE(dev)) {
9313 /* FIXME: detect B0+ stepping and use auto training */
9314 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9315 dev_priv->display.write_eld = ironlake_write_eld;
9316 dev_priv->display.modeset_global_resources =
9317 ivb_modeset_global_resources;
9318 } else if (IS_HASWELL(dev)) {
9319 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9320 dev_priv->display.write_eld = haswell_write_eld;
9321 dev_priv->display.modeset_global_resources =
9322 haswell_modeset_global_resources;
9323 }
9324 } else if (IS_G4X(dev)) {
9325 dev_priv->display.write_eld = g4x_write_eld;
9326 }
9327
9328 /* Default just returns -ENODEV to indicate unsupported */
9329 dev_priv->display.queue_flip = intel_default_queue_flip;
9330
9331 switch (INTEL_INFO(dev)->gen) {
9332 case 2:
9333 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9334 break;
9335
9336 case 3:
9337 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9338 break;
9339
9340 case 4:
9341 case 5:
9342 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9343 break;
9344
9345 case 6:
9346 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9347 break;
9348 case 7:
9349 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9350 break;
9351 }
9352 }
9353
9354 /*
9355 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9356 * resume, or other times. This quirk makes sure that's the case for
9357 * affected systems.
9358 */
9359 static void quirk_pipea_force(struct drm_device *dev)
9360 {
9361 struct drm_i915_private *dev_priv = dev->dev_private;
9362
9363 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9364 DRM_INFO("applying pipe a force quirk\n");
9365 }
9366
9367 /*
9368 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9369 */
9370 static void quirk_ssc_force_disable(struct drm_device *dev)
9371 {
9372 struct drm_i915_private *dev_priv = dev->dev_private;
9373 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9374 DRM_INFO("applying lvds SSC disable quirk\n");
9375 }
9376
9377 /*
9378 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9379 * brightness value
9380 */
9381 static void quirk_invert_brightness(struct drm_device *dev)
9382 {
9383 struct drm_i915_private *dev_priv = dev->dev_private;
9384 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9385 DRM_INFO("applying inverted panel brightness quirk\n");
9386 }
9387
9388 struct intel_quirk {
9389 int device;
9390 int subsystem_vendor;
9391 int subsystem_device;
9392 void (*hook)(struct drm_device *dev);
9393 };
9394
9395 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9396 struct intel_dmi_quirk {
9397 void (*hook)(struct drm_device *dev);
9398 const struct dmi_system_id (*dmi_id_list)[];
9399 };
9400
9401 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9402 {
9403 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9404 return 1;
9405 }
9406
9407 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9408 {
9409 .dmi_id_list = &(const struct dmi_system_id[]) {
9410 {
9411 .callback = intel_dmi_reverse_brightness,
9412 .ident = "NCR Corporation",
9413 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9414 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9415 },
9416 },
9417 { } /* terminating entry */
9418 },
9419 .hook = quirk_invert_brightness,
9420 },
9421 };
9422
9423 static struct intel_quirk intel_quirks[] = {
9424 /* HP Mini needs pipe A force quirk (LP: #322104) */
9425 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9426
9427 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9428 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9429
9430 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9431 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9432
9433 /* 830/845 need to leave pipe A & dpll A up */
9434 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9435 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9436
9437 /* Lenovo U160 cannot use SSC on LVDS */
9438 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9439
9440 /* Sony Vaio Y cannot use SSC on LVDS */
9441 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9442
9443 /* Acer Aspire 5734Z must invert backlight brightness */
9444 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9445
9446 /* Acer/eMachines G725 */
9447 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9448
9449 /* Acer/eMachines e725 */
9450 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9451
9452 /* Acer/Packard Bell NCL20 */
9453 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9454
9455 /* Acer Aspire 4736Z */
9456 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9457 };
9458
9459 static void intel_init_quirks(struct drm_device *dev)
9460 {
9461 struct pci_dev *d = dev->pdev;
9462 int i;
9463
9464 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9465 struct intel_quirk *q = &intel_quirks[i];
9466
9467 if (d->device == q->device &&
9468 (d->subsystem_vendor == q->subsystem_vendor ||
9469 q->subsystem_vendor == PCI_ANY_ID) &&
9470 (d->subsystem_device == q->subsystem_device ||
9471 q->subsystem_device == PCI_ANY_ID))
9472 q->hook(dev);
9473 }
9474 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9475 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9476 intel_dmi_quirks[i].hook(dev);
9477 }
9478 }
9479
9480 /* Disable the VGA plane that we never use */
9481 static void i915_disable_vga(struct drm_device *dev)
9482 {
9483 struct drm_i915_private *dev_priv = dev->dev_private;
9484 u8 sr1;
9485 u32 vga_reg = i915_vgacntrl_reg(dev);
9486
9487 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9488 outb(SR01, VGA_SR_INDEX);
9489 sr1 = inb(VGA_SR_DATA);
9490 outb(sr1 | 1<<5, VGA_SR_DATA);
9491 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9492 udelay(300);
9493
9494 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9495 POSTING_READ(vga_reg);
9496 }
9497
9498 void intel_modeset_init_hw(struct drm_device *dev)
9499 {
9500 intel_init_power_well(dev);
9501
9502 intel_prepare_ddi(dev);
9503
9504 intel_init_clock_gating(dev);
9505
9506 mutex_lock(&dev->struct_mutex);
9507 intel_enable_gt_powersave(dev);
9508 mutex_unlock(&dev->struct_mutex);
9509 }
9510
9511 void intel_modeset_suspend_hw(struct drm_device *dev)
9512 {
9513 intel_suspend_hw(dev);
9514 }
9515
9516 void intel_modeset_init(struct drm_device *dev)
9517 {
9518 struct drm_i915_private *dev_priv = dev->dev_private;
9519 int i, j, ret;
9520
9521 drm_mode_config_init(dev);
9522
9523 dev->mode_config.min_width = 0;
9524 dev->mode_config.min_height = 0;
9525
9526 dev->mode_config.preferred_depth = 24;
9527 dev->mode_config.prefer_shadow = 1;
9528
9529 dev->mode_config.funcs = &intel_mode_funcs;
9530
9531 intel_init_quirks(dev);
9532
9533 intel_init_pm(dev);
9534
9535 if (INTEL_INFO(dev)->num_pipes == 0)
9536 return;
9537
9538 intel_init_display(dev);
9539
9540 if (IS_GEN2(dev)) {
9541 dev->mode_config.max_width = 2048;
9542 dev->mode_config.max_height = 2048;
9543 } else if (IS_GEN3(dev)) {
9544 dev->mode_config.max_width = 4096;
9545 dev->mode_config.max_height = 4096;
9546 } else {
9547 dev->mode_config.max_width = 8192;
9548 dev->mode_config.max_height = 8192;
9549 }
9550 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9551
9552 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9553 INTEL_INFO(dev)->num_pipes,
9554 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9555
9556 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9557 intel_crtc_init(dev, i);
9558 for (j = 0; j < dev_priv->num_plane; j++) {
9559 ret = intel_plane_init(dev, i, j);
9560 if (ret)
9561 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9562 pipe_name(i), sprite_name(i, j), ret);
9563 }
9564 }
9565
9566 intel_cpu_pll_init(dev);
9567 intel_shared_dpll_init(dev);
9568
9569 /* Just disable it once at startup */
9570 i915_disable_vga(dev);
9571 intel_setup_outputs(dev);
9572
9573 /* Just in case the BIOS is doing something questionable. */
9574 intel_disable_fbc(dev);
9575 }
9576
9577 static void
9578 intel_connector_break_all_links(struct intel_connector *connector)
9579 {
9580 connector->base.dpms = DRM_MODE_DPMS_OFF;
9581 connector->base.encoder = NULL;
9582 connector->encoder->connectors_active = false;
9583 connector->encoder->base.crtc = NULL;
9584 }
9585
9586 static void intel_enable_pipe_a(struct drm_device *dev)
9587 {
9588 struct intel_connector *connector;
9589 struct drm_connector *crt = NULL;
9590 struct intel_load_detect_pipe load_detect_temp;
9591
9592 /* We can't just switch on the pipe A, we need to set things up with a
9593 * proper mode and output configuration. As a gross hack, enable pipe A
9594 * by enabling the load detect pipe once. */
9595 list_for_each_entry(connector,
9596 &dev->mode_config.connector_list,
9597 base.head) {
9598 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9599 crt = &connector->base;
9600 break;
9601 }
9602 }
9603
9604 if (!crt)
9605 return;
9606
9607 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9608 intel_release_load_detect_pipe(crt, &load_detect_temp);
9609
9610
9611 }
9612
9613 static bool
9614 intel_check_plane_mapping(struct intel_crtc *crtc)
9615 {
9616 struct drm_device *dev = crtc->base.dev;
9617 struct drm_i915_private *dev_priv = dev->dev_private;
9618 u32 reg, val;
9619
9620 if (INTEL_INFO(dev)->num_pipes == 1)
9621 return true;
9622
9623 reg = DSPCNTR(!crtc->plane);
9624 val = I915_READ(reg);
9625
9626 if ((val & DISPLAY_PLANE_ENABLE) &&
9627 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9628 return false;
9629
9630 return true;
9631 }
9632
9633 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9634 {
9635 struct drm_device *dev = crtc->base.dev;
9636 struct drm_i915_private *dev_priv = dev->dev_private;
9637 u32 reg;
9638
9639 /* Clear any frame start delays used for debugging left by the BIOS */
9640 reg = PIPECONF(crtc->config.cpu_transcoder);
9641 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9642
9643 /* We need to sanitize the plane -> pipe mapping first because this will
9644 * disable the crtc (and hence change the state) if it is wrong. Note
9645 * that gen4+ has a fixed plane -> pipe mapping. */
9646 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9647 struct intel_connector *connector;
9648 bool plane;
9649
9650 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9651 crtc->base.base.id);
9652
9653 /* Pipe has the wrong plane attached and the plane is active.
9654 * Temporarily change the plane mapping and disable everything
9655 * ... */
9656 plane = crtc->plane;
9657 crtc->plane = !plane;
9658 dev_priv->display.crtc_disable(&crtc->base);
9659 crtc->plane = plane;
9660
9661 /* ... and break all links. */
9662 list_for_each_entry(connector, &dev->mode_config.connector_list,
9663 base.head) {
9664 if (connector->encoder->base.crtc != &crtc->base)
9665 continue;
9666
9667 intel_connector_break_all_links(connector);
9668 }
9669
9670 WARN_ON(crtc->active);
9671 crtc->base.enabled = false;
9672 }
9673
9674 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9675 crtc->pipe == PIPE_A && !crtc->active) {
9676 /* BIOS forgot to enable pipe A, this mostly happens after
9677 * resume. Force-enable the pipe to fix this, the update_dpms
9678 * call below we restore the pipe to the right state, but leave
9679 * the required bits on. */
9680 intel_enable_pipe_a(dev);
9681 }
9682
9683 /* Adjust the state of the output pipe according to whether we
9684 * have active connectors/encoders. */
9685 intel_crtc_update_dpms(&crtc->base);
9686
9687 if (crtc->active != crtc->base.enabled) {
9688 struct intel_encoder *encoder;
9689
9690 /* This can happen either due to bugs in the get_hw_state
9691 * functions or because the pipe is force-enabled due to the
9692 * pipe A quirk. */
9693 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9694 crtc->base.base.id,
9695 crtc->base.enabled ? "enabled" : "disabled",
9696 crtc->active ? "enabled" : "disabled");
9697
9698 crtc->base.enabled = crtc->active;
9699
9700 /* Because we only establish the connector -> encoder ->
9701 * crtc links if something is active, this means the
9702 * crtc is now deactivated. Break the links. connector
9703 * -> encoder links are only establish when things are
9704 * actually up, hence no need to break them. */
9705 WARN_ON(crtc->active);
9706
9707 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9708 WARN_ON(encoder->connectors_active);
9709 encoder->base.crtc = NULL;
9710 }
9711 }
9712 }
9713
9714 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9715 {
9716 struct intel_connector *connector;
9717 struct drm_device *dev = encoder->base.dev;
9718
9719 /* We need to check both for a crtc link (meaning that the
9720 * encoder is active and trying to read from a pipe) and the
9721 * pipe itself being active. */
9722 bool has_active_crtc = encoder->base.crtc &&
9723 to_intel_crtc(encoder->base.crtc)->active;
9724
9725 if (encoder->connectors_active && !has_active_crtc) {
9726 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9727 encoder->base.base.id,
9728 drm_get_encoder_name(&encoder->base));
9729
9730 /* Connector is active, but has no active pipe. This is
9731 * fallout from our resume register restoring. Disable
9732 * the encoder manually again. */
9733 if (encoder->base.crtc) {
9734 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9735 encoder->base.base.id,
9736 drm_get_encoder_name(&encoder->base));
9737 encoder->disable(encoder);
9738 }
9739
9740 /* Inconsistent output/port/pipe state happens presumably due to
9741 * a bug in one of the get_hw_state functions. Or someplace else
9742 * in our code, like the register restore mess on resume. Clamp
9743 * things to off as a safer default. */
9744 list_for_each_entry(connector,
9745 &dev->mode_config.connector_list,
9746 base.head) {
9747 if (connector->encoder != encoder)
9748 continue;
9749
9750 intel_connector_break_all_links(connector);
9751 }
9752 }
9753 /* Enabled encoders without active connectors will be fixed in
9754 * the crtc fixup. */
9755 }
9756
9757 void i915_redisable_vga(struct drm_device *dev)
9758 {
9759 struct drm_i915_private *dev_priv = dev->dev_private;
9760 u32 vga_reg = i915_vgacntrl_reg(dev);
9761
9762 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9763 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9764 i915_disable_vga(dev);
9765 }
9766 }
9767
9768 static void intel_modeset_readout_hw_state(struct drm_device *dev)
9769 {
9770 struct drm_i915_private *dev_priv = dev->dev_private;
9771 enum pipe pipe;
9772 struct intel_crtc *crtc;
9773 struct intel_encoder *encoder;
9774 struct intel_connector *connector;
9775 int i;
9776
9777 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9778 base.head) {
9779 memset(&crtc->config, 0, sizeof(crtc->config));
9780
9781 crtc->active = dev_priv->display.get_pipe_config(crtc,
9782 &crtc->config);
9783
9784 crtc->base.enabled = crtc->active;
9785
9786 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9787 crtc->base.base.id,
9788 crtc->active ? "enabled" : "disabled");
9789 }
9790
9791 /* FIXME: Smash this into the new shared dpll infrastructure. */
9792 if (HAS_DDI(dev))
9793 intel_ddi_setup_hw_pll_state(dev);
9794
9795 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9796 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9797
9798 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
9799 pll->active = 0;
9800 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9801 base.head) {
9802 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9803 pll->active++;
9804 }
9805 pll->refcount = pll->active;
9806
9807 DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
9808 pll->name, pll->refcount);
9809 }
9810
9811 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9812 base.head) {
9813 pipe = 0;
9814
9815 if (encoder->get_hw_state(encoder, &pipe)) {
9816 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9817 encoder->base.crtc = &crtc->base;
9818 if (encoder->get_config)
9819 encoder->get_config(encoder, &crtc->config);
9820 } else {
9821 encoder->base.crtc = NULL;
9822 }
9823
9824 encoder->connectors_active = false;
9825 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9826 encoder->base.base.id,
9827 drm_get_encoder_name(&encoder->base),
9828 encoder->base.crtc ? "enabled" : "disabled",
9829 pipe);
9830 }
9831
9832 list_for_each_entry(connector, &dev->mode_config.connector_list,
9833 base.head) {
9834 if (connector->get_hw_state(connector)) {
9835 connector->base.dpms = DRM_MODE_DPMS_ON;
9836 connector->encoder->connectors_active = true;
9837 connector->base.encoder = &connector->encoder->base;
9838 } else {
9839 connector->base.dpms = DRM_MODE_DPMS_OFF;
9840 connector->base.encoder = NULL;
9841 }
9842 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9843 connector->base.base.id,
9844 drm_get_connector_name(&connector->base),
9845 connector->base.encoder ? "enabled" : "disabled");
9846 }
9847 }
9848
9849 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9850 * and i915 state tracking structures. */
9851 void intel_modeset_setup_hw_state(struct drm_device *dev,
9852 bool force_restore)
9853 {
9854 struct drm_i915_private *dev_priv = dev->dev_private;
9855 enum pipe pipe;
9856 struct drm_plane *plane;
9857 struct intel_crtc *crtc;
9858 struct intel_encoder *encoder;
9859
9860 intel_modeset_readout_hw_state(dev);
9861
9862 /* HW state is read out, now we need to sanitize this mess. */
9863 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9864 base.head) {
9865 intel_sanitize_encoder(encoder);
9866 }
9867
9868 for_each_pipe(pipe) {
9869 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9870 intel_sanitize_crtc(crtc);
9871 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
9872 }
9873
9874 if (force_restore) {
9875 /*
9876 * We need to use raw interfaces for restoring state to avoid
9877 * checking (bogus) intermediate states.
9878 */
9879 for_each_pipe(pipe) {
9880 struct drm_crtc *crtc =
9881 dev_priv->pipe_to_crtc_mapping[pipe];
9882
9883 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9884 crtc->fb);
9885 }
9886 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9887 intel_plane_restore(plane);
9888
9889 i915_redisable_vga(dev);
9890 } else {
9891 intel_modeset_update_staged_output_state(dev);
9892 }
9893
9894 intel_modeset_check_state(dev);
9895
9896 drm_mode_config_reset(dev);
9897 }
9898
9899 void intel_modeset_gem_init(struct drm_device *dev)
9900 {
9901 intel_modeset_init_hw(dev);
9902
9903 intel_setup_overlay(dev);
9904
9905 intel_modeset_setup_hw_state(dev, false);
9906 }
9907
9908 void intel_modeset_cleanup(struct drm_device *dev)
9909 {
9910 struct drm_i915_private *dev_priv = dev->dev_private;
9911 struct drm_crtc *crtc;
9912 struct intel_crtc *intel_crtc;
9913
9914 /*
9915 * Interrupts and polling as the first thing to avoid creating havoc.
9916 * Too much stuff here (turning of rps, connectors, ...) would
9917 * experience fancy races otherwise.
9918 */
9919 drm_irq_uninstall(dev);
9920 cancel_work_sync(&dev_priv->hotplug_work);
9921 /*
9922 * Due to the hpd irq storm handling the hotplug work can re-arm the
9923 * poll handlers. Hence disable polling after hpd handling is shut down.
9924 */
9925 drm_kms_helper_poll_fini(dev);
9926
9927 mutex_lock(&dev->struct_mutex);
9928
9929 intel_unregister_dsm_handler();
9930
9931 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9932 /* Skip inactive CRTCs */
9933 if (!crtc->fb)
9934 continue;
9935
9936 intel_crtc = to_intel_crtc(crtc);
9937 intel_increase_pllclock(crtc);
9938 }
9939
9940 intel_disable_fbc(dev);
9941
9942 intel_disable_gt_powersave(dev);
9943
9944 ironlake_teardown_rc6(dev);
9945
9946 mutex_unlock(&dev->struct_mutex);
9947
9948 /* flush any delayed tasks or pending work */
9949 flush_scheduled_work();
9950
9951 /* destroy backlight, if any, before the connectors */
9952 intel_panel_destroy_backlight(dev);
9953
9954 drm_mode_config_cleanup(dev);
9955
9956 intel_cleanup_overlay(dev);
9957 }
9958
9959 /*
9960 * Return which encoder is currently attached for connector.
9961 */
9962 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9963 {
9964 return &intel_attached_encoder(connector)->base;
9965 }
9966
9967 void intel_connector_attach_encoder(struct intel_connector *connector,
9968 struct intel_encoder *encoder)
9969 {
9970 connector->encoder = encoder;
9971 drm_mode_connector_attach_encoder(&connector->base,
9972 &encoder->base);
9973 }
9974
9975 /*
9976 * set vga decode state - true == enable VGA decode
9977 */
9978 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9979 {
9980 struct drm_i915_private *dev_priv = dev->dev_private;
9981 u16 gmch_ctrl;
9982
9983 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9984 if (state)
9985 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9986 else
9987 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9988 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9989 return 0;
9990 }
9991
9992 #ifdef CONFIG_DEBUG_FS
9993 #include <linux/seq_file.h>
9994
9995 struct intel_display_error_state {
9996
9997 u32 power_well_driver;
9998
9999 struct intel_cursor_error_state {
10000 u32 control;
10001 u32 position;
10002 u32 base;
10003 u32 size;
10004 } cursor[I915_MAX_PIPES];
10005
10006 struct intel_pipe_error_state {
10007 enum transcoder cpu_transcoder;
10008 u32 conf;
10009 u32 source;
10010
10011 u32 htotal;
10012 u32 hblank;
10013 u32 hsync;
10014 u32 vtotal;
10015 u32 vblank;
10016 u32 vsync;
10017 } pipe[I915_MAX_PIPES];
10018
10019 struct intel_plane_error_state {
10020 u32 control;
10021 u32 stride;
10022 u32 size;
10023 u32 pos;
10024 u32 addr;
10025 u32 surface;
10026 u32 tile_offset;
10027 } plane[I915_MAX_PIPES];
10028 };
10029
10030 struct intel_display_error_state *
10031 intel_display_capture_error_state(struct drm_device *dev)
10032 {
10033 drm_i915_private_t *dev_priv = dev->dev_private;
10034 struct intel_display_error_state *error;
10035 enum transcoder cpu_transcoder;
10036 int i;
10037
10038 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10039 if (error == NULL)
10040 return NULL;
10041
10042 if (HAS_POWER_WELL(dev))
10043 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10044
10045 for_each_pipe(i) {
10046 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10047 error->pipe[i].cpu_transcoder = cpu_transcoder;
10048
10049 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10050 error->cursor[i].control = I915_READ(CURCNTR(i));
10051 error->cursor[i].position = I915_READ(CURPOS(i));
10052 error->cursor[i].base = I915_READ(CURBASE(i));
10053 } else {
10054 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10055 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10056 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10057 }
10058
10059 error->plane[i].control = I915_READ(DSPCNTR(i));
10060 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10061 if (INTEL_INFO(dev)->gen <= 3) {
10062 error->plane[i].size = I915_READ(DSPSIZE(i));
10063 error->plane[i].pos = I915_READ(DSPPOS(i));
10064 }
10065 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10066 error->plane[i].addr = I915_READ(DSPADDR(i));
10067 if (INTEL_INFO(dev)->gen >= 4) {
10068 error->plane[i].surface = I915_READ(DSPSURF(i));
10069 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10070 }
10071
10072 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10073 error->pipe[i].source = I915_READ(PIPESRC(i));
10074 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10075 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10076 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10077 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10078 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10079 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10080 }
10081
10082 /* In the code above we read the registers without checking if the power
10083 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10084 * prevent the next I915_WRITE from detecting it and printing an error
10085 * message. */
10086 if (HAS_POWER_WELL(dev))
10087 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
10088
10089 return error;
10090 }
10091
10092 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10093
10094 void
10095 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10096 struct drm_device *dev,
10097 struct intel_display_error_state *error)
10098 {
10099 int i;
10100
10101 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10102 if (HAS_POWER_WELL(dev))
10103 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10104 error->power_well_driver);
10105 for_each_pipe(i) {
10106 err_printf(m, "Pipe [%d]:\n", i);
10107 err_printf(m, " CPU transcoder: %c\n",
10108 transcoder_name(error->pipe[i].cpu_transcoder));
10109 err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
10110 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10111 err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
10112 err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
10113 err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
10114 err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
10115 err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
10116 err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
10117
10118 err_printf(m, "Plane [%d]:\n", i);
10119 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10120 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10121 if (INTEL_INFO(dev)->gen <= 3) {
10122 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10123 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10124 }
10125 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10126 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10127 if (INTEL_INFO(dev)->gen >= 4) {
10128 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10129 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10130 }
10131
10132 err_printf(m, "Cursor [%d]:\n", i);
10133 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10134 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10135 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10136 }
10137 }
10138 #endif
This page took 0.282921 seconds and 6 git commands to generate.